

SIP: Understanding the
Session Initiation Protocol

Third Edition

For a complete listing of titles in the
Artech House Telecommunications Series,

turn to the back of this book.

SIP: Understanding the
Session Initiation Protocol

Third Edition

Alan B. Johnston

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Cover design by Yekaterina Ratner
Cover art by Lisa Johnston

ISBN 13: 978-1-60783-995-8

© 2009 ARTECH HOUSE
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may
be reproduced or utilized in any form or by any means, electronic or mechanical, including pho-
tocopying, recording, or by any information storage and retrieval system, without permission in
writing from the publisher.
 All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

10 9 8 7 6 5 4 3 2 1

For Lisa

vii

Contents

 Foreword to the First Edition xxi

 Preface to the Third Edition xxiii

 Preface to the Second Edition xxv

 Preface to the First Edition xxvii

1 SIP and the Internet 1

1.1 Signaling Protocols 1

1.2 Internet Multimedia Protocol Stack 2
1.2.1 Physical Layer 2
1.2.2 Data/Link Layer 2
1.2.3 Network Layer 3
1.2.4 Transport Layer 4
1.2.5 Application Layer 9
1.2.6 Utility Applications 9
1.2.7 Multicast 10

1.3 Internet Names 11

1.4 URLs, URIs, and URNs 11

1.5 Domain Name Service 13
1.5.1 DNS Resource Records 14
1.5.2 Address Resource Records (A or AAAA) 15

viii SIP: Understanding the Session Initiation Protocol

1.5.3 Service Resource Records (SRV) 15
1.5.4 Naming Authority Pointer Resource Records (NAPTR) 16
1.5.5 DNS Resolvers 16

1.6 Global Open Standards 17

1.7 Internet Standards Process 18

1.8 A Brief History of SIP 20

1.9 Conclusion 21
 References 21

2 Introduction to SIP 23

2.1 A Simple Session Establishment Example 23

2.2 SIP Call with a Proxy Server 31

2.3 SIP Registration Example 36

2.4 SIP Presence and Instant Message Example 38

2.5 Message Transport 43
2.5.1 UDP Transport 43
2.5.2 TCP Transport 45
2.5.3 TLS Transport 46
2.5.4 SCTP Transport 46

2.6 Transport Protocol Selection 47

2.7 Conclusion 48

2.8 Questions 48
 References 50

3 SIP Clients and Servers 51

3.1 SIP User Agents 51

3.2 Presence Agents 52

3.3 Back-to-Back User Agents 53

3.4 SIP Gateways 54

3.5 SIP Servers 56
3.5.1 Proxy Servers 56
3.5.2 Redirect Servers 61
3.5.3 Registrar Servers 63

3.6 Uniform Resource Indicators 64

3.7 Acknowledgment of Messages 65

 Contents ix

3.8 Reliability 66

3.9 Multicast Support 68

3.10 Conclusion 69

3.11 Questions 69
 References 72

4 SIP Request Messages 73

4.1 Methods 73
4.1.1 INVITE 73
4.1.2 REGISTER 76
4.1.3 BYE 78
4.1.4 ACK 78
4.1.5 CANCEL 81
4.1.6 OPTIONS 82
4.1.7 SUBSCRIBE 84
4.1.8 NOTIFY 87
4.1.9 PUBLISH 88
4.1.10 REFER 91
4.1.11 MESSAGE 94
4.1.12 INFO 96
4.1.13 PRACK 97
4.1.14 UPDATE 99

4.2 URI and URL Schemes Used by SIP 100
4.2.1 SIP and SIPS URIs 101
4.2.2 Telephone URLs 102
4.2.3 Presence and Instant Messaging URLs 104

4.3 Tags 104

4.4 Message Bodies 105

4.5 Conclusion 107

4.6 Questions 107
 References 108

5 SIP Response Messages 111

5.1 Informational 112
5.1.1 100 Trying 112
5.1.2 180 Ringing 113

x SIP: Understanding the Session Initiation Protocol

5.1.3 181 Call is Being Forwarded 113
5.1.4 182 Call Queued 113
5.1.5 183 Session Progress 113

5.2 Success 114
5.2.1 200 OK 114
5.2.2 202 Accepted 115
5.2.3 204 No Notifi cation 115

5.3 Redirection 115
5.3.1 300 Multiple Choices 115
5.3.2 301 Moved Permanently 116
5.3.3 302 Moved Temporarily 116
5.3.4 305 Use Proxy 116
5.3.5 380 Alternative Service 116

5.4 Client Error 116
5.4.1 400 Bad Request 116
5.4.2 401 Unauthorized 117
5.4.3 402 Payment Required 117
5.4.4 403 Forbidden 117
5.4.5 404 Not Found 118
5.4.6 405 Method Not Allowed 118
5.4.7 406 Not Acceptable 118
5.4.8 407 Proxy Authentication Required 118
5.4.9 408 Request Timeout 119
5.4.10 409 Confl ict 119
5.4.11 410 Gone 119
5.4.12 411 Length Required 119
5.4.13 412 Conditional Request Failed 119
5.4.14 413 Request Entity Too Large 120
5.4.15 414 Request-URI Too Long 120
5.4.16 415 Unsupported Media Type 120
5.4.17 416 Unsupported URI Scheme 120
5.4.18 417 Unknown Resource Priority 120
5.4.19 420 Bad Extension 121
5.4.20 421 Extension Required 121
5.4.21 422 Session Timer Interval Too Small 121
5.4.22 423 Interval Too Brief 121

 Contents xi

5.4.23 428 Use Identity Header 121
5.4.24 429 Provide Referror Identity 122
5.4.25 430 Flow Failed 122
5.4.26 433 Anonymity Disallowed 122
5.4.27 436 Bad Identity-Info Header 122
5.4.28 437 Unsupported Certifi cate 122
5.4.29 438 Invalid Identity Header 123
5.4.30 439 First Hop Lacks Outbound Support 123
5.4.31 440 Max-Breadth Exceeded 123
5.4.32 470 Consent Needed 123
5.4.33 480 Temporarily Unavailable 123
5.4.34 481 Dialog/Transaction Does Not Exist 123
5.4.35 482 Loop Detected 124
5.4.36 483 Too Many Hops 124
5.4.37 484 Address Incomplete 125
5.4.38 485 Ambiguous 125
5.4.39 486 Busy Here 126
5.4.40 487 Request Terminated 126
5.4.41 488 Not Acceptable Here 126
5.4.42 489 Bad Event 126
5.4.43 491 Request Pending 126
5.4.44 493 Request Undecipherable 127
5.4.45 494 Security Agreement Required 127

5.5 Server Error 128
5.5.1 500 Server Internal Error 128
5.5.2 501 Not Implemented 128
5.5.3 502 Bad Gateway 128
5.5.4 503 Service Unavailable 128
5.5.5 504 Gateway Timeout 128
5.5.6 505 Version Not Supported 129
5.5.7 513 Message Too Large 129
5.5.8 580 Preconditions Failure 129

5.6 Global Error 129
5.6.1 600 Busy Everywhere 129
5.6.2 603 Decline 129
5.6.3 604 Does Not Exist Anywhere 130

xii SIP: Understanding the Session Initiation Protocol

5.6.4 606 Not Acceptable 130

5.7 Questions 130
 References 131

6 SIP Header Fields 133

6.1 Request and Response Header Fields 134
6.1.1 Accept 134
6.1.2 Accept-Encoding 134
6.1.3 Accept-Language 136
6.1.4 Alert-Info 136
6.1.5 Allow 137
6.1.6 Allow-Events 137
6.1.7 Answer-Mode 137
6.1.8 Call-ID 137
6.1.9 Contact 138
6.1.10 CSeq 140
6.1.11 Date 141
6.1.12 Encryption 141
6.1.13 Expires 141
6.1.14 From 141
6.1.15 History Info 142
6.1.16 Organization 143
6.1.17 Path 143
6.1.18 Priv-Answer-Mode 143
6.1.19 Record-Route 144
6.1.20 Recv-Info 144
6.1.21 Refer-Sub 144
6.1.22 Retry-After 145
6.1.23 Subject 145
6.1.24 Supported 146
6.1.25 Timestamp 147
6.1.26 To 147
6.1.27 User-Agent 147
6.1.28 Via 148

6.2 Request Header Fields 149
6.2.1 Accept-Contact 149

 Contents xiii

6.2.2 Authorization 150
6.2.3 Call-Info 150
6.2.4 Event 150
6.2.5 Hide 151
6.2.6 Identity 151
6.2.7 Identity-Info 151
6.2.8 In-Reply-To 151
6.2.9 Info-Package 152
6.2.10 Join 152
6.2.11 Priority 153
6.2.12 Privacy 153
6.2.13 Proxy-Authorization 153
6.2.14 Proxy-Require 154
6.2.15 P-OSP-Auth-Token 155
6.2.16 P-Asserted-Identity 155
6.2.17 P-Preferred-Identity 155
6.2.18 Max-Breadth 155
6.2.19 Max-Forwards 156
6.2.20 Reason 156
6.2.21 Refer-To 156
6.2.22 Referred-By 157
6.2.23 Reply-To 157
6.2.24 Replaces 158
6.2.25 Reject-Contact 158
6.2.26 Request-Disposition 159
6.2.27 Require 159
6.2.28 Resource-Priority 160
6.2.29 Response-Key 160
6.2.30 Route 160
6.2.31 RAck 161
6.2.32 Security-Client 161
6.2.33 Security-Verify 162
6.2.34 Session-Expires 162
6.2.35 SIP-If-Match 162
6.2.36 Subscription-State 162
6.2.37 Suppress-If-Match 163
6.2.38 Target-Dialog 163

xiv SIP: Understanding the Session Initiation Protocol

6.2.39 Trigger-Consent 163

6.3 Response Header Fields 163
6.3.1 Accept-Resource-Priority 163
6.3.2 Authentication-Info 164
6.3.3 Error-Info 164
6.3.4 Flow-Timer 165
6.3.5 Min-Expires 165
6.3.6 Min-SE 165
6.3.7 Permission-Missing 165
6.3.8 Proxy-Authenticate 166
6.3.9 Security-Server 166
6.3.10 Server 166
6.3.11 Service-Route 166
6.3.12 SIP-ETag 167
6.3.13 Unsupported 167
6.3.14 Warning 167
6.3.15 WWW-Authenticate 168
6.3.16 RSeq 168

6.4 Message Body Header Fields 169
6.4.1 Content-Encoding 169
6.4.2 Content-Disposition 169
6.4.3 Content-Language 170
6.4.4 Content-Length 170
6.4.5 Content-Type 170
6.4.6 MIME-Version 171

6.5 Questions 171
 References 172

7 Wireless, Mobility, and IMS 177

7.1 IP Mobility 177

7.2 SIP Mobility 178

7.3 IMS and SIP 184

7.4 IMS Header Fields 186

7.5 Conclusion 186

7.6 Questions 187
 References 187

 Contents xv

8 Presence and Instant Messaging 189

8.1 Introduction 189

8.2 History of IM and Presence 189

8.3 SIMPLE 191

8.4 Presence with SIMPLE 191
8.4.1 SIP Events Framework 191
8.4.2 Presence Bodies 192
8.4.3 Resource Lists 194
8.4.4 Filtering 200
8.4.5 Conditional Event Notifi cations and ETags 201
8.4.6 Partial Publication 202
8.4.7 Presence Documents Summary 204

8.5 Instant Messaging with SIMPLE 205
8.5.1 Page Mode Instant Messaging 205
8.5.2 Common Profi le for Instant Messaging 205
8.5.3 Instant Messaging Delivery Notifi cation 206
8.5.4 Message Composition Indication 208
8.5.5 Multiple Recipient Messages 209
8.5.6 Session Mode Instant Messaging 210

8.6 Jabber 213
8.6.1 Standardization as Extensible Messaging and
 Presence Protocol 213
8.6.2 Interworking with SIMPLE 214
8.6.3 Jingle 214
8.6.4 Future Standardization of XMPP 214

8.7 Conclusion 214

8.8 Questions 215
 References 216

9 Services in SIP 219

9.1 Gateway Services 219

9.2 SIP Trunking 221

9.3 SIP Service Examples 221

9.4 Voicemail 223

9.5 SIP Video 225

xvi SIP: Understanding the Session Initiation Protocol

9.6 Facsimile 226

9.7 Conferencing 227
9.7.1 Focus 227
9.7.2 Mixer 228
9.7.3 Non-SIP Conference Control 228

9.8 Application Sequencing 229

9.9 Other SIP Service Architectures 230
9.9.1 Service Oriented Architecture 231
9.9.2 Servlets 231
9.9.3 Service Delivery Platform 231

9.10 Conclusion 232

9.11 Questions 232
 References 232

10 Network Address Translation 235

10.1 Introduction to NAT 235

10.2 Advantages of NAT 236

10.3 Disadvantages of NAT 237

10.4 How NAT Works 238

10.5 Types of NAT 239
10.5.1 Endpoint Independent Mapping NAT 240
10.5.2 Address Dependent Mapping NAT 240
10.5.3 Address and Port Dependent Mapping NAT 241
10.5.4 Hairpinning Support 241
10.5.5 IP Address Pooling Options 242
10.5.6 Port Assignment Options 242
10.5.7 Mapping Refresh 242
10.5.8 Filtering Modes 243

10.6 NAT Mapping Examples 244

10.7 NATs and SIP 245

10.8 Properties of a Friendly NAT or How a NAT Should
 BEHAVE 247

10.9 STUN Protocol 248

10.10 UNSAF Requirements 249

10.11 SIP Problems with NAT 249

 Contents xvii

10.11.1 Symmetric SIP 250
10.11.2 Connection Reuse 250
10.11.3 SIP Outbound 251

10.12 Media NAT Traversal Solutions 251
10.12.1 Symmetric RTP 251
10.12.2 RTCP Attribute 253
10.12.3 Self-Fixing Approach 253

10.13 Hole Punching 253

10.14 TURN: Traversal Using Relays Around NAT 257

10.15 ICE: Interactive Connectivity Establishment 258

10.16 Conclusion 259

10.17 Questions 260
 References 261

11 Related Protocols 263

11.1 PSTN Protocols 263
11.1.1 Circuit Associated Signaling 263
11.1.2 ISDN Signaling 264
11.1.3 ISUP Signaling 264

11.2 SIP for Telephones 264

11.3 Media Gateway Control Protocols 265

11.4 H.323 266
11.4.1 Introduction to H.323 266
11.4.2 Example of H.323 268
11.4.3 Versions 271
 References 271

12 Media Transport 273

12.1 Real-Time Transport Protocol (RTP) 273

12.2 RTP Control Protocol (RTCP) 278
12.2.1 RTCP Reports 279
12.2.2 RTCP Extended Reports 279

12.3 Compression 280

12.4 RTP Audio Video Profi les 281
12.4.1 Audio Codecs 282

xviii SIP: Understanding the Session Initiation Protocol

12.4.2 Video Codecs 283

12.5 Conferencing 284

12.6 ToIP—Conversational Text 285

12.7 DTMF Transport 285

12.8 Questions 286
 References 287

13 Negotiating Media Sessions 289

13.1 Session Description Protocol (SDP) 289
13.1.1 Protocol Version 291
13.1.2 Origin 291
13.1.3 Session Name and Information 292
13.1.4 URI 292
13.1.5 E-Mail Address and Phone Number 292
13.1.6 Connection Data 292
13.1.7 Bandwidth 293
13.1.8 Time, Repeat Times, and Time Zones 293
13.1.9 Encryption Keys 293
13.1.10 Media Announcements 293
13.1.11 Attributes 294

13.2 SDP Extensions 296

13.3 Th e Off er Answer Model 297
13.3.1 Rules for Generating an Off er 299
13.3.2 Rules for Generating an Answer 299
13.3.3 Rules for Modifying a Session 299
13.3.4 Special Case—Call Hold 299

13.4 Static and Dynamic Payloads 300

13.5 SIP Off er Answer Exchanges 300

13.6 Conclusion 301

13.7 Questions 301
 References 304

14 SIP Security 307

14.1 Basic Security Concepts 307
14.1.1 Encryption 308
14.1.2 Public Key Cryptography 309

 Contents xix

14.1.3 Diffi e-Hellman Cryptography 309
14.1.4 Message Authentication 309
14.1.5 Digital Certifi cates 310

14.2 Th reats 311

14.3 Security Protocols 312
14.3.1 IPSec 312
14.3.2 TLS 313
14.3.3 DNSSec 313
14.3.4 Secure MIME 314

14.4 SIP Security Model 314
14.4.1 SIP Digest Authentication 314
14.4.2 SIP Authentication Using TLS 316
14.4.3 Secure SIP 317
14.4.4 Identity 317
14.4.5 Enhanced SIP Identity 318

14.5 SIP Certifi cate Service 319

14.6 Media Security 322
14.6.1 Non-RTP Media 322
14.6.2 Secure RTP 323
14.6.3 Keying SRTP 323
14.6.4 Best Eff ort Encryption 325
14.6.5 ZRTP 326

14.7 Questions 327
 References 328

15 Peer-to-Peer SIP 331

15.1 P2P Properties 331

15.2 P2P Properties of SIP 332

15.3 P2P Overlays 333

15.4 RELOAD 336

15.5 Host Identity Protocol 338

15.6 Conclusion 339

15.7 Questions 340
 References 341

xx SIP: Understanding the Session Initiation Protocol

16 Call Flow Examples 343

16.1 SIP Call with Authentication, Proxies, and Record-Route 343

16.2 SIP Call with Stateless and Stateful Proxies with
 Called Party Busy 349

16.3 SIP to PSTN Call Th rough Gateways 352

16.4 PSTN to SIP Call Th rough a Gateway 356

16.5 Parallel Search 359

16.6 Call Setup with Two Proxies 363

16.7 SIP Presence and Instant Message Example 365
 References 368

17 Future Directions 369

17.1 Bug Fixes and Clarifi cations 370

17.2 More Extensions 370

17.3 Better Identity 371

17.4 Interdomain SIP 371

17.5 Making Features Work Better 371

17.6 Emergency Calling 372

17.7 More SIP Trunking 372

17.8 P2P and HIP 372

17.9 Improved NAT Traversal 372

17.10 Security Deployment 372

17.11 Better Interoperability 373
 References 373

 Appendix Introduction to ABNF and XML 375

A.1 ABNF Rules 375

A.2 Introduction to XML 377
 References 379

 About the Author 381

 Index 383

xxi

Foreword to the First Edition
The Internet now challenges the close to $1 trillion world telecom industry.
A renaissance in communications is taking place on the Internet. At its source
are new communication protocols that would be impractical on the centralized
control systems of circuit-switched networks used in telecommunications. The
Internet and the World Wide Web can be technically defi ned only by their pro-
tocols. Similarly, IP telephony and the wider family of IP communications are
defi ned by several key protocols, most notably by the Session Initiation Protocol,
or SIP.

The previously closed door of telecommunications is now wide open to
web developers because of SIP and its relation to the web HTTP 1.1 proto-
col and the e-mail SMTP protocol. IP communications include voice/video,
presence, instant messaging, mobility, conferencing, and even games. We believe
many other communication areas are yet to be invented. The integration of all
types of communications on the Internet may represent the next “killer applica-
tion” and generate yet another wave of Internet growth.

As explained in this book, SIP is a close relative of the HTTP 1.1 and
SMTP protocols. This represents a revolution in communications because it
abandons the telecom signaling and control models developed for telephony
over many years in favor of Internet and web-based protocols. Users and service
providers obtain not only seamless integration of telephony and conferencing
with many other World Wide Web and messaging applications, but also benefi t
from new forms of communications, such as presence and instant messaging.

Mobility can also be managed across various networks and devices using
SIP. Location management is now under user control, so that incoming “calls”
can be routed to any network and device that the called party may prefer. Users
may even move across the globe to another service provider and maintain not
only their URL “number”, but also their personal tailored services and prefer-
ences. The end user gains control over all possible preferences, depending on

xxii SIP: Understanding the Session Initiation Protocol

various parameters such as who the other party is, what network he is on and
what devices he is using, as well as time of day, subject, and other variables.

The new dimension in communications called “presence” enables users for
the fi rst time to indulge in “polite calling” by fi rst sensing presence and prefer-
ences of the other party, before making a call. In its turn, presence can trigger
location- and time-dependent user preferences. Users may want to be contacted
in different ways, depending on their location and type of network access.

E-commerce will also benefi t from IP communications. Extremely com-
plex telecom applications, as found in call centers, have become even more com-
plex when integrated with e-mail and web applications for e-commerce. Such
applications, however, are quite straightforward to implement using SIP, due to
its common structure with the web and e-mail. For example, both call routing
and e-mail routing to agents—based on various criteria such as queue length,
skill set, time of day, customer ID, the web page the customer is looking at, and
customer history—can be reduced to simple XML scripts when using SIP and
another IETF standard, the Call Processing Language (CPL). These examples are
in no way exhaustive, but are mentioned here as a way of introduction.

This book starts with a short summary of the Internet, the World Wide
Web, and its core protocols and addressing. Though familiar to many readers,
these chapters provide useful focus on issues for the topics ahead. The intro-
duction to SIP is made easy and understandable by examples that illustrate the
protocol architecture and message details. Finally, in the core of the book, a me-
thodical and complete explanation of SIP is provided. We refer the reader to the
Table of Contents for a better overview and navigation through the topics.

Alan Johnston has made signifi cant contributions toward the use of SIP for
communications over the Internet. I had the privilege of watching Alan in meet-
ings with some of the largest telecom vendors as he went methodically line by
line over hundreds of call fl ows, which were then submitted as an Internet Draft
to the Internet Engineering Task Force (IETF) and implemented in commercial
systems. Alan combines in this book his expertise and methodical approach with
page turning narrative and a discreet sense of humor.

I could not help reading the book manuscript page by page, since every-
thing from Internet basics, protocols, and SIP itself is explained so well, in an
attractive and concise manner.

Henry Sinnreich
Distinguished Member of Engineering

WorldCom
Richardson, Texas

July 2000

xxiii

Preface to the Third Edition
Like the SIP protocol, this book continues to expand and grow in new direc-
tions. While the core SIP protocol is essentially the same as it was in 2000, in
the years since then, many SIP extensions have been proposed and standardized
in the IETF. Important areas such as NAT traversal, SIP and media security, and
peer-to-peer (P2P) applications have made many changes in the protocol and the
protocol suite. As before, this book will help you sort through all the RFCs and
fully understand this important protocol.

Chapter 1 is an introduction for those unfamiliar with the basics of the
Internet and the TCP/IP protocol suite. Readers with familiarity in this area can
probably skip straight to Chapter 2 for a quick introduction to the SIP protocol.
For the rest of the readers, you will fi nd an overview of the various layers of the
protocol stack and an introduction to such concepts as the Domain Name Ser-
vice (DNS) and Uniform Resource Locators (URLs) and an introduction to the
Internet standards process in the Internet Engineering Task Force (IETF). Also
for the beginner, a new appendix introduces the basics of ABNF and XML, es-
sential for understanding SIP syntax.

Chapters 2 and 3 give you the basics of the protocol, the various messages,
elements, transports, and applications. Chapters 4 and 5 explain the SIP request
types or methods, with one new method introduced in this edition. Chapters 5
and 6 detail all the SIP response messages and header fi eld types. There are liter-
ally dozens and dozens of new responses and header fi elds in this edition; Chap-
ter 6 alone now has 50 references, fi ve times as many as the fi rst edition. Chapter
7 covers mobility and wireless aspects of SIP. Chapter 8 covers the important
presence and instant messaging applications and extensions for SIP, known as
SIMPLE. While the basics for these applications were in previous editions, the
full suite of functions and operations is now standardized and covered with ex-
amples in this chapter. Chapter 9 covers SIP services from VoIP to SIP trunking
to conferencing, fax, and video.

xxiv SIP: Understanding the Session Initiation Protocol

Chapter 10 represents many years of hard work in the industry for solving
the Network Address Translation (NAT) traversal issue. A large impediment to
SIP and VoIP deployment has been NAT traversal, and the scalability of many
older solutions has been a major headache for deployments. This chapter ex-
plains how NAT works, new classifi cations schemes for understanding the types
of NAT. Then, hole punching is explained, with detailed examples of various
types of NAT. NAT traversal protocols such as STUN, TURN, and ICE are
explained, and the ways that SIP uses them to scaleably solve the NAT traversal
problem are described. This chapter represents the latest technology from the
fi eld, presented in this edition for the fi rst time.

This edition also has more information about related protocols such as
SDP, H.323, Jabber or XMPP, and Real-Time Transport Protocol (RTP) for
media. Chapter 13 discusses how SIP negotiates various types of multimedia
sessions.

Chapter 14 is a concise summary of SIP security, starting with the basics
of security and encryption, attacks, security protocols, and SIP authentication
mechanisms. This chapter also has detailed information about delivering secure
media (Secure RTP or SRTP) with SIP. New media keying protocols including
ZRTP are also covered.

Chapter 15 is new, covering peer-to-peer (P2P) technologies and how they
apply to SIP. The new RELOAD protocol being developed in the IETF is cov-
ered, along with other approaches including Host Identity Protocol or HIP.

Chapter 16 includes the detailed call fl ows for which this book is famous,
and Chapter 17 discusses the future of SIP and areas of development and innova-
tion in the years to come. Perhaps these topics will fi nd their way into another
future edition.

Also new in this edition are the review questions at the end of most chap-
ters. This has evolved from the classes I have taught on Internet communications
at Washington University in St. Louis over the past few years. In fact, much of
the new material was generated and developed for my teaching. As a result, I
thank my past (and future) students for their interest and attention. I also thank
Dr. John Corrigan and Dr. Tom Bush for their support and encouragement of
this class. I would like to thank Anwar Siddiqui, Harvey Waxman, and Mun
Yuen Leong at Avaya for their support of my SIP work. I especially thank my
wife Lisa for her excellent cover artwork and fi gure design.

In closing, I thank everyone at Artech for giving me the opportunity once
again to write about my favorite topic. I also thank you, my past and current
readers, for your interest, support, and enthusiasm, and I wish you the best of
luck in all your endeavors with the Session Initiation Protocol.

xxv

Preface to the Second Edition
Much has changed in the 2.5 years since the fi rst edition of SIP: Understand-
ing the Session Initiation Protocol was published. In 2001, SIP was a relatively
unknown quantity, an upstart in the voice over IP (VoIP) and multimedia com-
munications industry. Today, SIP is seen as the future of call signaling and tele-
phony. It has been widely deployed by service providers and enterprises and is
used casually every day by users of the dominant PC operating system. The full
range of possibilities enabled by SIP is just now being glimpsed, and many more
possibilities are yet to come.

One reason for this rapid acceptance is that SIP is an incredibly powerful
call control protocol. It allows intelligent end points to implement the entire
suite of telephony, Private Branch Exchange (PBX), Class, and Centrex services
without a service provider, and without a controller or switch, for example.

The biggest driver for SIP on the Internet, however, has less to do with
SIP’s signaling and call control capabilities. Instead, it is due to the extensions
of SIP that turn it into a powerful “rendezvous” protocol that leverages mobility
and presence to allow users to communicate using different devices, modes, and
services anywhere they are connected to the Internet. SIP applications provide
support for presence—the ability to fi nd out the status or location of a user with-
out attempting to set up a session.

Another major change in the past few years is the adoption of wireless SIP
to enable multimedia IP communications. As described in the chapter on wire-
less, SIP is now being used both in its standard form over 802.11 wireless net-
works and in planned commercial Third Generation Partnership Project (3GPP)
rollouts in the coming years. SIP is ideally suited for this key application.

Since 2001 SIP has also grown in terms of the specifi cation itself. Initially,
SIP was described by a single RFC with a few related RFCs and a couple of RFC
extensions. In Chapter 6 alone, more than 20 SIP-related RFCs are referenced.
This book attempts to put all those documents together and provide a single

xxvi SIP: Understanding the Session Initiation Protocol

reference for the protocol and all its extensions. Even SIP headers and responses
that were standardized in the past but are now removed (deprecated) are listed in
this text, providing useful context and background. Many others are discussed
that are in the fi nal stages of standardization prior to publication as RFCs, pro-
viding an up-to-date insider’s view of the future of the protocol. In closing, I
again thank my colleagues in the Internet Engineering Task Force (IETF) and at
MCI for all their contributions to the development of this protocol—it has been
a privilege to be a part of a group of people that have created the SIP industry.
Finally, I’d like to tip my hat to two of the key inventors of SIP who continue
to develop and propel its implementation: Henning Schulzrinne and Jonathan
Rosenberg.

xxvii

Preface to the First Edition
When I began looking into the Session Initiation Protocol (SIP) in October
1998, I had prepared a list of a half dozen protocols relating to Voice over IP
and Next Generation Networking. It was only a few days into my study that my
list narrowed to just one: SIP. My background was in telecommunications, so I
was familiar with the complex suite of protocols used for signaling in the Public
Switched Telephone Network. It was readily apparent to me that SIP would be
revolutionary in the telecommunications industry. Only a few weeks later I re-
member describing SIP to a colleague as the “SS7 of future telephony”—quite a
bold statement for a protocol that almost no one had heard of, and that was not
even yet a proposed standard!

Nearly 2 years later, I have continued to work almost exclusively with SIP
since that day in my position with WorldCom, giving seminars and teaching the
protocol to others. This book grew out of those seminars and my work on vari-
ous Internet-Drafts.

This revolutionary protocol was also the discovery of a radical standards
body—the Internet Engineering Task Force (IETF). Later, I attended my fi rst
IETF meeting, which was for me a career changing event. To interact with this
dedicated band of engineers and developers, who have quietly taken the Internet
from obscurity into one of the most important technological developments of
the late 20th century, for the fi rst time was truly exciting.

Just a few short years later, SIP has taken the telecommunications industry
by storm. The industry press contains announcement after announcement of
SIP product and service support from established vendor startups, and from es-
tablished carriers. As each new group and company joins the dialog, the protocol
has been able to adapt and grow without becoming unwieldy or overly complex.
In the future, I believe that SIP, along with a TCP/IP stack, will fi nd its way into
practically every intelligent electronic device that has a need to communicate
with the outside world.

xxviii SIP: Understanding the Session Initiation Protocol

With my telecommunications background, it is not surprising that I rely
on telephone examples and analogies throughout this book to explain and illus-
trate SIP. This is also consistent with the probability that telecommunications is
the fi rst widely deployed use of the protocol. SIP stacks will soon be in multime-
dia PCs, laptops, palmtops, and in dedicated SIP telephones. The protocol will
be used by telephone switches, gateways, wireless devices, and mobile phones.
One of the key features of SIP, however, is its fl exibility; as a result, the protocol
is likely to be used in a whole host of applications that have little or nothing
to do with telephony. Quite possibly one of these applications, such as instant
messaging, may become the next “killer application” of the Internet. However,
the operation and concepts of the protocol are unchanged regardless of the ap-
plication, and the telephone analogies and examples are, I feel, easy to follow and
comprehend.

The book begins with a discussion of the Internet, the IETF, and the Inter-
net Multimedia Protocol Stack, of which SIP is a part. From there, the protocol
is introduced by examples. Next, the elements of a SIP network are discussed,
and the details of the protocol in terms of message types, headers, and response
codes are covered. In order to make up a complete telephony system, related pro-
tocols, including Session Description Protocol (SDP) and Real-Time Transport
Protocol (RTP), are covered. SIP is then compared to another signaling protocol,
H.323, with the key advantages of SIP highlighted. Finally, the future direction
of the evolution of the protocol is examined.

Two of the recurring themes of this book are the simplicity and stateless
nature of the protocol. Simplicity is a hallmark of SIP due to its text-encoded,
highly readable messages, and its simple transactional model with few excep-
tions and special conditions. Statelessness relates to the ability of SIP servers to
store minimal (or no) information about the state or existence of a media session
in a network. The ability of a SIP network to use stateless servers that do not
need to record transactions, keep logs, fi ll and empty buffers, etc., is, I believe, a
seminal step in the evolution of communications systems. I hope that these two
themes become apparent as you read this book and learn about this exciting new
protocol.

The text is fi lled with examples and sample SIP messages. I had to invent
a whole set of IP addresses, domain names, and URLs. Please note that they are
all fi ctional—do not try to send anything to them.

I would fi rst like to thank the group of current and former engineers at
WorldCom who shared their knowledge of this protocol and gave me the oppor-
tunity to author my fi rst Internet-Draft document. I particularly thank Henry
Sinnreich, Steve Donovan, Dean Willis, and Matt Cannon. I also thank Robert
Sparks, who I fi rst met at the fi rst seminar on SIP that I ever presented. Through-
out the whole 3-hour session I kept wondering about the guy with the pony
tail who seemed to know more than me about this brand new protocol! Robert

 Preface to the First Edition xxix

and I have spent countless hours discussing fi ne points of the protocol. In addi-
tion, I would like to thank him for his expert review of this manuscript prior to
publication—it is a better book due to his thoroughness and attention to detail.
I also thank everyone on the IETF SIP list who has assisted me with the protocol
and added to my understanding of it.

A special thanks to my wife Lisa for the terrifi c cover artwork and the cool
fi gures throughout the book.

Finally, I thank my editor Jon Workman, the series editor and reviewer,
and the whole team at Artech for helping me in this, my fi rst adventure in
publishing.

1

1
SIP and the Internet
The Session Initiation Protocol (SIP) is a signaling, presence, and instant mes-
saging protocol developed to set up, modify, and tear down multimedia sessions;
request and deliver presence; and send and receive instant messages [1]. When
teaching or lecturing about SIP, I begin by explaining that SIP is an Internet pro-
tocol. This actually means much more than just that SIP runs over the Internet.
This means that SIP uses and takes advantage of the Internet architecture and
protocol suite. This chapter will introduce the TCP/IP protocol suite that is the
foundation for the Internet and SIP. First, some of the basic concepts of Internet
protocols such as Transmission Control Protocol (TCP), Internet Protocol (IP),
User Datagram Protocol (UDP), and the Domain Name System (DNS) will be
covered. SIP, along with many other Internet protocols, has been developed by
the Internet Engineering Task Force (IETF). The processes, steps, and life cycle
involved in the development of Internet standards will also be covered. This
chapter ends with a brief history of SIP.

1.1 Signaling Protocols

This book is about the Session Initiation Protocol (SIP). As the name implies,
the protocol allows two end points to establish media sessions with each other.
The main signaling functions of the protocol are as follows:

Location of an end point; •

Contacting an end point to determine willingness to establish a session; •

Exchange of media information to allow a session to be established; •

2 SIP: Understanding the Session Initiation Protocol

Modifi cation of existing media sessions; •

Teardown of existing media sessions. •

SIP has also been extended to request and deliver presence information
(online/off-line status and location information such as that contained in a bud-
dy list) as well as instant message sessions. These functions include:

Publishing and uploading of presence information; •

Requesting delivery of presence information; •

Presence and other event notifi cation; •

Transporting of instant messages. •

While some of the examples discuss SIP from a telephony perspective,
there will be many nontelephony uses for SIP. SIP will likely be used to establish
a set of session types that bear almost no resemblance to a telephone call.

The following section will introduce the Internet multimedia protocol
stack and discuss these protocols at a high level.

1.2 Internet Multimedia Protocol Stack

Figure 1.1 shows the fi ve layer Internet multimedia protocol stack. The layers
shown and protocols identifi ed will be discussed.

1.2.1 Physical Layer

The physical layer is the lowest layer of the protocol stack. It shows how devices
are physically connected with each other. Common physical layer methods in-
clude copper (coax, twisted pair, or other wired connections), photons (fi ber
optics, laser light, or other photonic sources), or phonons (radio waves, micro-
waves, or other electromagnetic transmissions).

1.2.2 Data/Link Layer

The next layer is the data/link layer, which could be an Ethernet local area net-
work (LAN); a telephone line (V.90 or 56k modem) running Point-to-Point
Protocol (PPP); a digital subscriber line (DSL); or even a wireless 802.11 net-
work. This layer performs such functions as symbol exchange, frame synchro-
nization, and physical interface specifi cation. Ethernet typically adds a 13-octet
header and a 3-octet footer to every packet sent. Note that an octet is 8 bits of
data, sometimes called a byte.

 SIP and the Internet 3

1.2.3 Network Layer

The next layer in Figure 1.1 is the network or Internet layer. Internet Protocol
(IP) [2] is used at this layer to route a packet across the network using the desti-
nation IP address. IP is a connectionless, best-effort packet delivery protocol. IP
packets can be lost, delayed, or received out of sequence. Each packet is routed
on its own using the IP header appended to the physical packet. Most IP address
examples in this book use the older version of IP, version 4 (IPv4). IPv4 addresses
are four octets long, usually written in “dotted decimal” notation (for example,
207.134.3.5). At the IP layer, packets are not acknowledged. A checksum is cal-
culated to detect corruption in the IP header, which could cause a packet to
become misrouted. Corruption or errors in the IP payload, however, are not
detected; a higher layer must perform this function if necessary, and it is usually
done at the transport layer. IP uses a single-octet protocol number in the packet
header to identify the transport layer protocol that should receive the packet.

IP version 6 (IPv6) [3] was developed by the IETF as a replacement for
IPv4. It has been slowly gaining support and is supported now by most operat-
ing systems. The biggest initial networks of IPv6 are wireless telephony carriers
who need the most important advantage of IPv6 over IPv4—a much enlarged
addressing space. IPv6 increases the addressing space from 32 bits in IPv4 to
128 bits, providing for over 4 billion IPv6 addresses. An IPv6 address is typically
written as a sequence of eight hexadecimal numbers separated by colons. For ex-
ample, 0:0:0:0:aaaa:bbbb:cccc:dddd is an IPv6 address written in this format.
It is also common to drop sequences of zeros with a single double colon. This
same address can then be written as ::aaaa:bbbb:cccc:dddd. SIP can use either
IPv4 or IPv6.

IP addresses used over the public Internet are assigned in blocks by re-
gional internet registries (RIR). For example, the American Registry for Internet

Figure 1.1 The Internet multimedia protocol stack.

4 SIP: Understanding the Session Initiation Protocol

Numbers (ARIN) allocates addresses in North America while Réseaux IP Eu-
ropéens Network Coordination Centre (RIP ENCC) allocates addresses in Eu-
rope. The Internet Assigned Number Association (IANA) manages the overall IP
address pool, delegating blocks to the RIRs. Individual end users and enterprises
use IP addresses allocated to them by their Internet Service Provider (ISP) from
a regional registry.

As a result of this centralized assignment, IP addresses are globally unique.
This enables a packet to be routed across the public Internet using only the
destination IP address. Various protocols are used to route packets over an IP
network, but they are outside of the scope of this book. Subnetting and other
aspects of the structure of IP addresses are also not covered here. There are other
excellent sources [4] that cover the entire suite of TCP/IP protocols in more
detail.

Private IP addresses are addresses that are not routable on the public Inter-
net but can be routable on a stub network LAN. A router performing network
address translation (NAT) is used when a host with a private IP address needs to
access resources on the public Internet. NAT temporarily binds or maps a host’s
private IP address, which is only routable within the LAN with a public IP ad-
dress that has been allocated to the NAT. The NAT rewrites IP packets as they
pass through in both directions, allowing connections. A detailed description
of NAT and how it affects SIP and Internet communications can be found in
Chapter 10. There are three IPv4 address blocks which have been allocated for
private addresses in [5]:

10.0.0.0 - 10.255.255.255 or 10/8
172.16.0.0 - 172.31.255.255 or 172.16/12
192.168.0.0 - 192.168.255.255 or 192.168/16

Confi guration information for Internet Protocol can be manually confi g-
ured in a host or it can be learned automatically. Typically a host needs to know
its own IP address, default gateway, subnet mask, and DNS server addresses. One
common protocol for this is Dynamic Host Confi guration Protocol (DHCP)
which is defi ned by RFC 2132 [6]. DHCP allows a host to autodiscover all these
parameters upon initialization of the IP stack. There are various DHCP exten-
sions which have been defi ned to autoconfi gure other protocols, including SIP.

1.2.4 Transport Layer

The next layer shown in Figure 1.1 is the transport layer. It uses a two-octet port
number from the application layer to deliver the datagram or segment to the cor-
rect application layer protocol at the destination IP address. There are two com-
monly used transport layer protocols: Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP). In addition, there are two uncommon trans-

 SIP and the Internet 5

port protocols: Stream Control Transmission Protocol (SCTP) and Datagram
Congestion Control Protocol (DCCP), which are beginning to be used on the
Internet. There is also Transport Layer Security (TLS) which provides security
on top of TCP. These protocols are introduced in the following sections.

1.2.4.1 Transmission Control Protocol

Transmission Control Protocol (TCP) [7] provides reliable, connection-oriented
transport over IP. A TCP connection between two hosts over an IP network is
sometimes known as a socket. TCP is a client/server protocol. Servers “listen”
on a specifi c port number for an incoming request to open a socket. A client
sends a request to open a new socket to the server on the well-known port. The
combination of the source IP address, source port, destination IP address, and
destination port identifi es the socket connection. As such, it is possible for two
hosts to have multiple TCP connections open between them.

TCP uses sequence numbers and positive acknowledgments to ensure that
each block of data, called a segment, has been received. Lost segments are re-
transmitted until they are successfully received. Figure 1.2 shows the message
exchange to establish and tear down a TCP connection. A TCP server listens on
a well-known port for a TCP SYN (synchronization) message to open the connec-
tion. The SYN message contains the initial sequence number the client will use
during the connection. The server responds with an ACK message to acknowledge
the SYN with an acknowledgment number, and then follows up with its own SYN
message containing its own initial sequence number. Often, these two messages
are combined into one SYN-ACK message that does both functions. The client
completes the three-way handshake with an ACK or a DATA packet with the AK fl ag
set to the server acknowledging the server’s sequence number. Now that the con-
nection is open, either client or server can send data in DATA packets (segments).
The connection is closed when either side sends a FIN packet that receives an ACK.
This exchange is shown in Figure 1.2.

TCP sends data in units called segments. The maximum segment size
(MSS) is negotiated between the hosts during the handshake, and is usually
based on the maximum transmission unit (MTU) of the local network. In gen-
eral, the larger the segment size the more effi cient the transport, except when
packet loss is present when smaller segments can result in fewer retransmissions.
A typical MTU value for the Internet is 1,500 octets.

TCP uses cumulative acknowledgements for reliability. The recipient sends
ACK packets including the next sequence number it expects to receive. If a sender
does not receive an ACK within a certain time period, the segment is resent. An
example is shown in Figure 1.3.

TCP also has built in fl ow control. Flow control is used by a receiver to
slow down the rate of transmission to allow the receiver to properly process or
buffer incoming segments. TCP uses a sliding window for end-to-end control.

6 SIP: Understanding the Session Initiation Protocol

Senders can only send the number of octets in the window before waiting for an
ACK. A receiver can reduce the size of the window in ACK messages, even setting
it to 0 to cause the sender to stop sending. Once the receiver has caught up,
another ACK can be sent to increase the window size and resume the fl ow of seg-
ments. This is shown in Figure 1.4.

Figure 1.2 TCP handshake example.

Figure 1.3 TCP reliability example.

 SIP and the Internet 7

TCP also has built in congestion control. TCP uses a slow-start algorithm
to attempt to avoid congestion. When congestion occurs, TCP uses a fast re-
transmit and a fast recovery. The details of how these algorithms work can be
found in any good TCP/IP reference such as [4].

TCP adds a 20-octet header fi eld to each packet, and is a stream-oriented
transport. An application using TCP to send messages must provide its own
framing or separation between messages. Error segments are detected by a check-
sum covering both the TCP header and payload.

1.2.4.2 Transport Port Numbers

Ports numbers are used by the transport layer to multiplex and demultiplex mul-
tiple connections on a single host. Otherwise a pair of hosts could only have a
single connection between them. Also, messages for different protocols can be
separated by using different port numbers. Often these port numbers are associ-
ated with a specifi c protocol. Others are registered to a particular protocol. Ports
are a 16 bit integer. Ports in the range 0 to 1024 are called well-known ports.
Ports in the range of 1024 through 49151 are known as registered ports. Ports in
the range of 49152 through 65535 are known as dynamic, private, or ephemeral
ports. For example, Web servers use the well known port of 80, SIP uses the reg-
istered ports of 5060 and 5061, while RTP usually uses a dynamic port.

1.2.4.3 User Datagram Protocol

User Datagram Protocol (UDP) [8] provides unreliable transport across the In-
ternet. It is a best-effort delivery service, since there is no acknowledgment of

Figure 1.4 TCP fl ow control example.

8 SIP: Understanding the Session Initiation Protocol

sent datagrams. Most of the complexity of TCP is not present, including se-
quence numbers, acknowledgments, and window sizes. UDP does detect data-
grams with errors with a checksum. It is up to higher layer protocols to detect
this datagram loss and initiate a retransmission if desired.

UDP does not provide congestion control or fl ow control—if any of these
functions are needed, they must be built into the application layer protocol.
UDP is best suited for short, single packet exchanges such as DNS or routing
queries. It is also good for real-time, low latency transports protocols such as SIP
and RTP.

UDP adds an 8 octet header fi eld to datagrams. Applications and protocols
that use UDP must do their own framing—they must break up information into
individual UDP packets. For a message oriented protocol, this typically means
one message or request per UDP datagram.

1.2.4.4 Transmission Layer Security

Transmission Layer Security (TLS) [9] is based on the Secure Sockets Layer (SSL)
protocol fi rst used in Web browsers. TLS uses TCP for transport although it has
recently been extended to also run over UDP. TLS is commonly used today on
the Internet for secure Web sites using the secure HTTP (https) URI scheme.

The TLS protocol has two layers: the TLS Transport Protocol and the TLS
Handshake Protocol. The TLS Transport Protocol is used to provide a reliable
and private transport mechanism. Data sent using the TLS Transport Protocol is
encrypted so that a third party cannot intercept the data. A third party also can-
not modify the transported data without one of the parties discovering this. The
TLS Handshake Protocol is used to establish the connection, negotiate the en-
cryption keys used by the TLS Transport Protocol, and provide authentication.

The key agreement scheme selects an encryption algorithm and generates a
one-time key based on a secret passed between the two sides. During the hand-
shake, the parties exchange certifi cates, which can be used for authentication.
The cryptographic computations for a TLS connection are not trivial, and the
multiple round trips needed to open a connection can add to message laten-
cy. Also, certifi cate verifi cation can introduce processing delays. However, TLS
transport has clear security advantages over UDP or TCP. TLS is widely sup-
ported due to its use in secure Web browsers and servers. TLS will be discussed
more in Chapter 14.

1.2.4.5 Stream Control Transport Protocol

The Stream Control Transmission Protocol (SCTP) [10] is similar to TCP in
that it provides reliable stream-based transport. However, it has some advantages
over TCP transport for a message-based protocol. First, it has built-in message
segmentation, so that individual messages are separated at the transport layer.
Another advantage is that SCTP avoids the so-called “head of line blocking”

 SIP and the Internet 9

problem of TCP. This is a TCP problem in which a dropped segment with a large
window causes the entire window’s worth of messages to wait in a buffer (that is,
be blocked) until the dropped segment is retransmitted.

SCTP also supports multihoming, so if one of a pair of load balancing
servers fails, the other can immediately begin receiving the messages without
even requiring a DNS or other database lookup.

As a transport protocol, SCTP requires operating system level support to
be used, which will initially delay its use in the Internet. Also, as we shall see
in Chapter 10 on NAT traversal, the use of new transports on the Internet is
severely limited by their support in middleboxes such as NAT. Also, note that
the advantages of SCTP over TCP only occur during packet loss. In a zero loss
network, the performance of the two is identical. SCTP is not commonly sup-
ported in Internet hosts today.

1.2.4.6 Datagram Congestion Control Protocol

Datagram Congestion Control Protocol (DCCP) [11] is another new transport
protocol that tries to provide congestion and fl ow control similar to TCP but
without the reliability or in-order delivery of TCP. It shows some promise for use
as a real-time transport. However, its support is very limited today, and limited
NAT support will delay its adoption.

1.2.5 Application Layer

The top layer shown in Figure 1.1 is the application layer. This includes signaling
protocols such as SIP and media transport protocols such as Real-Time Trans-
port Protocol (RTP), which is introduced in Chapter 12. HTTP, SMTP, FTP,
and Telnet are all examples of application layer protocols. SIP can theoretically
use any transport protocol, although it is currently standardized to run over TCP,
UDP, and SCTP. The use of TCP, TLS, SCTP, and UDP transport for SIP will
be discussed in the next chapter.

1.2.6 Utility Applications

Two Internet utility applications are also shown in Figure 1.1. The most com-
mon use of the DNS (well-known port number 53) is to resolve a symbolic name
(such as domain.com, which is easy to remember) into an IP address (which is
required by IP to route the packet). Also shown is the Dynamic Host Confi gura-
tion Protocol (DHCP). DHCP allows an IP device to download confi guration
information upon initialization. Common fi elds include a dynamically assigned
IP address, DNS addresses, subnet masks, maximum transmission unit (MTU),
or maximum packet size, and server addresses for e-mail and Web browsing. SIP
has a DHCP extension for confi guration [12].

10 SIP: Understanding the Session Initiation Protocol

Another utility is Internet Control Message Protocol (ICMP), a control and
diagnostic protocol that runs between single IP routing hops—between routers
and between routers and hosts. It runs directly on top of the IP layer without
a transport protocol, using protocol 1. The most common ICMP message is a
Type 8 Echo Request or ping. Ping tests can be used to verify connectivity. A
Type 0 Echo Reply is a ping response whose latency is often measured and dis-
played. Other ICMP error messages include a Type 3 Destination Unreachable
message or a Type 11 TTL Exceeded for Datagram where TTL stands for Time to
Live. ICMP is also used to provide the traceroute (tracert on Windows) Internet
utility used to discover IP hops between hosts.

1.2.7 Multicast

In normal Internet packet routing, or unicast routing, a packet is routed to a
single destination. In multicast routing, a single packet is routed to a set of des-
tinations. Single LAN segments running a protocol such as Ethernet offer the
capability for packet broadcast, where a packet is sent to every node on the
network. Scaling this to a larger network with routers is a recipe for disaster, as
broadcast traffi c can quickly cause congestion. An alternative approach for this
type of packet distribution is to use a packet refl ector that receives packets and
forwards copies to all destinations that are members of a broadcast group. For
a number of years, the Internet Multicast Backbone Network (MBONE), an
overlay of the public Internet, has used multicast routing for high-bandwidth
broadcast sessions. Participants who wish to join a multicast session send a re-
quest to join the session to their local MBONE router using a protocol known
as Internet Group Management Protocol (IGMP). That router will then begin
to broadcast the multicast session on that LAN segment.

Additional requests to join the session from others in the same LAN seg-
ment will result in no additional multicast packets being sent, since the packets
are already being broadcast. If the router is not aware of any multicast partici-
pants on its segment, it will not forward any of the packets. Routing of multicast
packets between routers uses special multicast routing protocols to ensure that
packet traffi c on the backbone is kept to a minimum. Multicast IPv4 Internet
addresses are reserved in the range 224.0.0.0 to 239.255.255.255.

Multicast transport is always UDP, since the handshake and acknowledg-
ments of TCP are not possible. Certain addresses have been defi ned for certain
protocols and applications. The scope or extent of a multicast session can be lim-
ited using the time to live (TTL) fi eld in the IP header. This fi eld is decremented
by each router that forwards the packet, which limits the number of hops the
packet takes. SIP support for multicast will be discussed in Section 3.8. Multi-
cast is slowly becoming a part of the public Internet as service providers begin
supporting it, and it is fi nding an important application today in the streaming

 SIP and the Internet 11

of real-time video to set top boxes sometimes known as IPTV. There is another
approach known as application layer multicast which uses peer-to-peer technol-
ogy, which does not require any changes at the IP layer. This will be discussed
in Chapter 15.

1.3 Internet Names

Internet addresses, covered in Chapter 2, are used to route individual datagrams
over the Internet. However, they are not very friendly for humans to use. IPv4
addresses can be as long as 12 digits while IPv6 addresses can be as long as 32
hexadecimal digits long. A given Internet host with only one IP address may
have many identities. Also, some Internet identities are that of the human user,
not the actual host. For example, an e-mail address identifi es a user, not a par-
ticular host on the Internet. The user may utilize multiple Internet hosts to ac-
cess e-mail.

Internet names began with RFC 822 [13] which defi ned the user@host
format that is so familiar today with email addresses. These text based names
were defi ned to enable a piece of software known as a parser to be able to ex-
tract the various parts of the address and any parameters. In addition, some of
the fi rst Internet applications such as e-mail used a text-based way of encoding
protocol messages. The method of encoding both Internet names and messages
was defi ned in RFC 822 as Backus Naur Format (BNF). BNF was developed by
John Backus to defi ne the early programming language ALGOL. Today, many
Internet protocols, including SIP, are defi ned using Augmented Backus Naur
Form (ABNF) [14] which is based on BNF. The appendix has an introduction
to ABNF.

1.4 URLs, URIs, and URNs

Uniform Resource Locators (URLs) are an addressing scheme developed for the
World Wide Web (WWW). It is defi ned in RFC 1738 [15], and is a syntax for
representing a resource available on the Internet. The general form is:

scheme:scheme-specifi c-part

for example, consider:

http://www.artechhouse.com/Default.aspx

The token http identifi es the scheme or protocol to be used, in this
case HTTP. The specifi er follows the “:” and contains a domain name (www.
artechhouse.com), which can be resolved into an IP address and a fi le name

12 SIP: Understanding the Session Initiation Protocol

(/Default.aspx). URLs can also contain additional parameters or qualifi ers relat-
ing to transport, but they can never contain spaces. For example, telnet://host.
company.com:24 indicates that the Telnet Protocol should be used to access host.
company.com using port 24. New schemes for URLs for new protocols are easily
constructed, and dozens have been defi ned, such as mailto, tel, and https. The
sip and sips schemes will be introduced in Section 4.2.

Most protocols reference URLs, but with SIP we mainly reference Uniform
Resource Indicators (URIs). This is due to the mobility aspects of SIP, which
means that a particular address (URI) is not tied to a single physical device but
instead is a logical entity that may move around and change its location in the
Internet. However, the terms URL and URI are often used almost interchange-
ably in other contexts.

Some other examples include:

http://www.ese.wustl.edu

sip:barney@fwd.rubble.com

mailto:help@example.com?Subject=Help!

The initial set of URL schemes defi ned in RFC 1738 are in Table 1.1.
Common SIP and Internet Communications URL and URI schemes are

listed in Table 1.2. The details of SIP and SIPS URIs are covered in Section
4.2.

Uniform Resource Names or URNs are defi ned by [16]. A URN provides
a standard name for a resource but does not provide any information for how to
access the resource. An example URN namespace is book ISBNs (International
Standard Book Numbers):

Table 1.1
Initial Set of URL Schemes

Scheme Protocol
http Hypertext Transfer Protocol
ftp File Transfer Protocol
gopher The Gopher Protocol
mailto Electronic mail address
news USENET news
nntp USENET news using NNTP access
telnet Remote login
wais Wide Area Information Servers
fi le Host-specifi c fi le name
prospero Prospero Directory Service

 SIP and the Internet 13

URN:ISBN:1-60783-995-4

URN namespaces are often used to identify XML extensions.

1.5 Domain Name Service

The Domain Name Service [17] is used on the Internet to map a symbolic name
(such as www.amazon.com) to an IP address (such as 100.101.102.103 which is an
example IPv4 address). DNS is also used to obtain information needed to route
e-mail messages and, in the future, SIP messages. The use of names instead of
numerical addresses is one of the Internet’s greatest strengths because it gives
the Internet a human, friendly feel. Domain names are organized in a hierarchy.
Each level of the name is separated by a dot, with the highest level domain on
the right side. (Note that the dots in a domain name have no correspondence to
the dots in an IP address written in dotted decimal notation.) General top-level
domains are shown in Table 1.3 (see http://www.icann.org/tlds for the latest
list). Some such as com, net, and edu are commonly encountered, while others
such as aero and coop are rare. There is also a set of country domains such as:
us (United States), uk (United Kingdom), ca (Canada), and au (Australia). Each
of these top-level domains has just one authority that assigns that domain to a
user or group.

Once a domain name has been assigned, the authority places a link in their
DNS server to the DNS server of the user or group who has been assigned the
domain. For example, when company.com is allocated to a company, the authori-
tative DNS server for the top-level com domain entry for company contains the
IP address of the company’s DNS server(s). A name can then be further qualifi ed
by entries in the company’s DNS server to point to individual servers in their
network. For example, the company’s DNS server may contain entries for www.
company.com, ftp.company.com, and smtp.company.com. A number of types of
DNS record types are defi ned. The DNS records used to resolve a host name
into an IP address are called address records, or A records. Other types of records

Table 1.2
URL and URI Schemes Used in Internet Communications

Scheme Protocol
sip SIP
sips Secure SIP (TLS)
tel Telephone number and dial string
im Instant messaging inbox
pres Presence
xmpp Jabber IM and presence
h323 H.323

14 SIP: Understanding the Session Initiation Protocol

include CNAME (canonical name or alias records), MX (mail exchange records),
SRV (service records, used by SIP and other protocols), and TXT (free-form text
records). Another type of DNS record is a PTR, or pointer record, used for reverse
lookups. Reverse lookups are used to map an IP address back to a domain name.
These records can be used to generate server logs that show not only the IP ad-
dresses of clients served, but also their domain name. Web browsing provides an
example of the use of the DNS system. Another type of DNS record is known
as a Naming Authority Pointer (NAPTR) record that can be used by a protocol
known as ENUM [18] to map global telephone numbers into Internet URLs.

1.5.1 DNS Resource Records

DNS resource records are text records that are stored in DNS servers and re-
trieved by DNS resolvers. Each record has a minimum of four fi elds: name,
type, class, and time to live (TTL). The name is the owner of the record and
the resource being identifi ed. The type is the type of resource records such as A,
AAAA, MX, SRV, NAPTR, PTR, or TXT. Class is the class of address, which is IN
for Internet addresses (all other network addresses are CH for Chaos). The time to
live fi eld is a 32-bit integer count of the number of seconds the record should be
cached before being discarded.

Common DNS resource record types are listed in Table 1.4. The resource
records used by SIP are discussed in detail in the following sections.

Table 1.3
Generic Top Level Domains (gTLDs)

Domain Description
com Company
net Network
int Internet
org Not-for-profi t organization
edu University or college
gov U.S. government
mil U.S. military
arpa ARPAnet
info Information
biz Business
museum Museum
name Name
pro Professional
aero Air transport industry
coop Cooperatives

 SIP and the Internet 15

1.5.2 Address Resource Records (A or AAAA)

The most common type of resource record is an address record. As the name
suggests, it provides an address for a resource or a host name. Besides the name,
TTL, class, and type fi elds it includes a target fi eld, which is an IP address. An A
record provides [17] an IPv4 address while an AAAA record [19] provides an IPv6
address. An AAAA record is usually called a “quad A” record.

Structure:
Name TTL Class A Target

For example,

ese.wustl.edu. 3600 IN A 128.252.168.2
ietf.org. 300 IN AAAA 2610:a0:c779:b::d1ad:35b4

are examples of an A record and an AAAA record. Notice the “.” used after the host
name—this is to indicate that the address is absolute.

1.5.3 Service Resource Records (SRV)

Service resource records or SRV records [20] are used to lookup a host that pro-
vides a particular service. A number of services have been defi ned for SRV records
including SIP service. SRV records use an underscore (_) in the service name to
distinguish it from normal host names which may not include an underscore.

Structure:

Service.Proto.Name TTL Class SRV Priority Weight Port Target

Table 1.4
Common DNS Resource Record Types

RR Type Reference Description
A RFC 1035 Address IPv4, See Section 1.5.2
AAAA RFC 3596 Address IPv6, See Section 1.5.2
CNAME RFC 1035 Canonical name, used for aliases
MX RFC 1035 Mail exchange
NAPTR RFC 2915 Naming authority pointer record; see Section 1.5.4
NS RFC 1035 Name server records
PTR RFC 1035 Reverse domain name lookup
SOA RFC 1035 Start of authority
SPF RFC 4408 Sender policy framework for authorizing e-mail
SRV RFC 2782 Services; see Section 1.5.3
TXT RFC 1035 Text records

16 SIP: Understanding the Session Initiation Protocol

The priority fi eld is used to set the relative priority of this record, as an SRV
query might return several SRV resource records. The priority is a 16 bit unsigned
integer. Resolvers should use the lowest priority record (highest priority). The
weight is a relative weight used to select between records with the same priority.
It is also a 16 bit unsigned integer. The port is the transport port number that
should be used for this service. This allows multiple instances of the same service
to be run on the same host—each can utilize a different port number. The target
is the domain name of the host. To reach the desired service, the target address
and port number should be used.

For example,

_sip._udp.avaya.com. 300 IN SRV 0 100 5060 sip.avaya.com.

This example resource record is for SIP service using UDP as the transport
protocol. The priority of this record is 0, indicating that it is the highest priority.
The port number is 5060, the registered port for SIP. The target is sip.avaya.
com, which will require an address (A or AAAA) lookup to resolve to an IP address.
The use of SRV records in SIP will be discussed in Section 2.6.

1.5.4 Naming Authority Pointer Resource Records (NAPTR)

Naming authority pointer resource records or NAPTR records [21] are used
to point to another record or URI. They are used by SIP to discover which
transport protocols a given domain or server supports. In a protocol known as
ENUM, they are used to resolve a telephone number into a URI. The usage of
NAPTR records in SIP are discussed in Section 2.6.

Structure:

Domain TTL Class Type Order Preference Flags Service Regexp Replacement

Example:

columbia.edu. 3600 IN NAPTR 1 0 “s” “SIP+D2U” “” _sip._udp.columbia.edu.

1.5.5 DNS Resolvers

DNS resolvers are the software in an Internet host that looks up DNS records
and sends DNS requests. When a user types in a Web address, such as www.
artechhouse.com, the name must be resolved to an IP address before the browser
can send the request for the index Web page from the Artech House Web server.
The Web browser fi rst launches a DNS query to the IP address for its DNS
server, which has been manually confi gured or set up using DHCP.

 SIP and the Internet 17

The fi rst step of the DNS resolver is to check the local DNS cache to see
if the desired host name is already cached. If so, it returns that value without
performing a lookup. If the value is not cached, then a query will be launched. If
the DNS resolver is confi gured with the IP address of one or more DNS servers,
it may simply forward the request to that DNS server and let that server take
care of the request. Alternatively, it could resolve the address on its own using the
following steps. The DNS resolver would check to see if the authoritative DNS
server for the top level domain (e.g., com) is stored in its cache. If not, it will
have to query a DNS root server (e.g., “.”) for this information. DNS resolvers
are confi gured with the IP addresses of the 16 DNS root servers. One of these
will be selected and the query sent. With the authoritative DNS server name for
the top level domain, the resolver will then query that DNS server for the next
level domain name (e.g., “example.com”). Once it has the authoritative DNS
server for that domain, another query will be launched for the next level domain
name (e.g., “www.example.com”). This continues until the actual host name re-
cords are retrieved. At every stage, DNS servers can return cached values instead
of launching a new query.

If the DNS server happens to have the name’s A record stored locally
(cached) from a recent query, it will return the IP address. If not, the DNS root
server will then be queried to locate the authoritative DNS server for Artech
House, which must contain the A records for the artechhouse.com domain. The
HTTP GET request is then sent to that IP address, and the Web browsing session
begins. There is only one authoritative DNS server for a domain, and it is oper-
ated by the owner of the domain name. Due to a very effi cient caching scheme
built into DNS, a DNS request often does not have to route all the way to this
server. DNS is also used by an SMTP server to deliver an e-mail message. An
SMTP server with an e-mail message to deliver initiates a DNS request for the
MX record of the domain name in the destination e-mail address. The response to
the request allows the SMTP server to contact the destination SMTP server and
transfer the message. A similar process is defi ned for locating a SIP server using
SRV, or service, DNS records.

1.6 Global Open Standards

SIP is an example of a global, open, Internet standard. Global means that the
same protocol is used regardless of the country. A Web browser or Web server
works the same if it is located in the United States, Europe, or Asia. This con-
trasts with telephony protocols, which have historically been highly regionalized.
For example, ISDN User Part (ISUP), which forms the basis for today’s tele-
phone network, has numerous national and regional varieties. Telephone equip-
ment can only be used in the country for which it was manufactured. Switching

18 SIP: Understanding the Session Initiation Protocol

gear used to handle international traffi c to many different countries is some of
the most complicated and expensive telephone equipment. As a result, features,
services, and innovation have spread very slowly over the PSTN. Contrast this
to the Internet where new applications and services are immediately available
worldwide to anyone with Internet connectivity.

SIP is an example of an open standard. This means that any individual or
company can access the standard, participate in the standards process, and have
their voices heard and their issues discussed. Again, this contrasts with other
standards bodies, which have closed membership, expensive fees, or geographi-
cal restrictions. Internet standards have always been freely available to download
over the Internet.

SIP is a standard because it provides a defi nition for how different vendors,
providers, and users can interconnect and interoperate their communication
equipment. As such, SIP defi nes message formats and state machines (i.e., “bits
on the wire”). SIP does not specify architectures, business models, exact service
defi nitions, or user interfaces.

1.7 Internet Standards Process

The Internet Engineering Task Force (IETF) [22] is the body that develops stan-
dards for the Internet. It is a loosely organized group of implementers, vendors,
service providers, and academics who work together to solve Internet problems
and develop new protocols. Anyone can participate in the IETF standards pro-
cess. The fi rst step is to fi nd the working group in the area of interest and join their
e-mail mailing list. Most of the IETF work is done over e-mail with exchanges of
ideas and discussions about the standards. The basic operation and principles of
the IETF are described in the well-written “Tao of the IETF” [23].

Standards begin life as a working document known as an Internet Draft.
These documents are only valid for 6 months. After this time, they are either
updated or they expire. A document that gains support from participants and
is heading in the right direction can be adopted by a working group as an of-
fi cial working group document. A working group is a group of interested parties
within the IETF who have been chartered to work on a particular problem or
protocol. Document which have been adopted by a working group typically have
a fi le name beginning draft-ietf-wg-... where wg is the name of the working
group. Individual drafts usually have a fi le name beginning draft-authorlast-
name-.... The document will continue to be refi ned and improved until the
working group chairs determine that it is ready for a fi nal review, known as Last
Call. There is a Working Group Last Call (WGLC) and an IETF Last Call (IETF
LC). Current Internet Drafts are listed at http://www.ietf.org/internet-drafts.

 SIP and the Internet 19

At this point, the document is considered and discussed by a group known
as the Internet Engineering Steering Group (IESG) [24], which consists of 15
members. This body discusses and then votes on approval of the document.
Once approved, the document is published as part of the Request for Com-
ments (RFC) Series. RFC documents are protocol standards, informational
documents, or best current practices (BCP). RFC documents are identifi ed by
their numbers, for example, SIP is RFC 3261. RFC numbers are sequential—
as of early 2009, new RFCs were being published with numbers in the 5400s.
RFCs have been published since the early 1980s, and the number of new RFCs
has increased since the turn of the century. There is even a tradition of publish-
ing “April 1st RFCs,” which are essentially jokes. These RFCs appear completely
serious and cannot be distinguished from normal RFCs, except that the subject
matter is usually ridiculous and the RFC will be dated April 1. More than a few
humorless engineers have been caught off guard by these documents, and some
even show up on vendor specifi cation sheets and request for proposals! RFCs are
archived by the RFC editor [25]. RFCs can replace (obsolete) or add to (update)
existing RFCs—this information is available on the RFC editor’s Web site and is
crucial information for developers and implementers. For example, the original
SIP specifi cation was published as RFC 2543. Then, RFC 3261 was published,
which obsoletes RFC 2543. An implementor fi nding and coding to RFC 2543
will not interoperate with current SIP implementations on the Internet.

Inside the IETF is another body known as the Internet Architecture Board
or IAB [26]. This group does not vote to approve standards but addresses archi-
tectural and high level issues affecting the Internet. There is a companion group
to the IETF known as the Internet Research Task Force (IRTF) [27]. The IRTF
looks at topics and protocols that won’t be deployed on the Internet for more
than a few years. There is also the Internet Assigned Names Association (IANA)
[28]. IANA allocates and manages the pool of Internet addresses. IANA allocates
addresses to regional bodies who then allocate them to Internet service providers
(ISPs), enterprises, governments, and universities. The Internet Corporation for
Assigned Names and Numbers or ICANN [29] manages the top level Internet
domains. The World Wide Web Consortium or W3C [30] is responsible for all
things relating to the Web, including Hypertext Markup Language (HTML) and
Extensible Markup Language (XML), introduced in the appendix. The W3C is
also developing standards for applications to use the Web to interact; this is
known as Web services.

The International SIP Forum [31] is an organization that promotes the
use of the SIP protocol. They are a membership nonprofi t organization that
holds regular meetings and discusses issues of interest to vendors, service provid-
ers, and users of SIP. Currently there are over 50 member companies. The SIP
Forum has recently started publishing their own SIP recommendations, which
describe how to utilized IETF SIP standards. For example, in 2007, version 1.0

20 SIP: Understanding the Session Initiation Protocol

of the SIPConnect SIP trunking recommendation [32] was published, which is
discussed in Section 9.2.

1.8 A Brief History of SIP

SIP was originally developed by the IETF Multi-Party Multimedia Session
Control Working Group (MMUSIC). Version 1.0 was submitted as an Inter-
net Draft in 1997. Signifi cant changes were made to the protocol and resulted
in a second version, version 2.0, which was submitted as an Internet Draft in
1998. The protocol achieved proposed standard status in March 1999 and was
published as RFC 2543 [33] in April 1999. In September 1999, the now closed
SIP Working Group was established by the IETF to meet the growing interest
in the protocol. An Internet Draft containing bug fi xes and clarifi cations to SIP
was submitted in July 2000, referred to as RFC 2543 “bis.” This document was
eventually published as RFC 3261 [1], which obsoletes (or replaces) the original
RFC 2543 specifi cation. In addition, many SIP extension RFC documents have
been published.

The popularity of SIP in the IETF has lead to the formation of other SIP-
related working groups. The now closed Session Initiation Protocol Investigation
(SIPPING) working group was formed to investigate applications of SIP, de-
velop requirements for SIP extensions, and publish best current practice (BCP)
documents about the use of SIP. Currently, the SIPCORE working group is
responsible for the core SIP standards. The SIP for Instant Messaging and Pres-
ence Leveraging Extensions (SIMPLE) working group was formed to standardize
related protocols for presence and instant messaging applications. Other work-
ing groups that make use of SIP include the PSTN and Internet Internetworking
(PINT) working group and the Service in the PSTN/IN Requesting Internet
Services (SPIRITS) working group.

To advance from proposed standard to draft standard, a protocol must
have multiple independent interworking implementations and limited opera-
tional experience. Since the early days of RFC 2543, SIP interoperability test
events, called SIPit (formerly called “bakeoffs”), have been held a few times per
year. For the latest information about SIPit, visit http://www.sipit.net. (Note
that the SIP Forum is a marketing/promotion organization for SIP and does not
have any standardization function.) The fi nal level, standard, is achieved after
operational success has been demonstrated. With the documented interoperabil-
ity from SIPit, the plan is to move SIP from proposed standard to draft standard
status in the future.

SIP incorporates elements of two widely used Internet protocols: Hyper
Text Transport Protocol (HTTP) used for Web browsing and Simple Mail Trans-
port Protocol (SMTP) used for e-mail. From HTTP, SIP borrowed a client-

 SIP and the Internet 21

server design and the use of URLs and URIs. From SMTP, SIP borrowed a text-
encoding scheme and header style. For example, SIP reuses SMTP headers such
as To, From, Date, and Subject.

SIP is also a protocol still under development. A number of key extensions
are still being developed. As a result, this book will contain some references to
Internet Drafts instead of RFCs. Implementers must be very careful when work-
ing from an Internet Draft as there may be an issued RFC that replaces it, or
another Internet Draft may come out in the future to replace it. In short, an
understanding of the IETF process and the stage of development of a particular
extension may be needed in some areas. In this book, only stable and mature SIP
extensions are discussed; the few that have Internet Draft references will likely be
published as RFCs around the same time this edition is published.

1.9 Conclusion

This chapter has introduced the Internet, Internet architecture, and standards
processes. Various bodies involved in Internet standards including the IETF,
IRTF, IESG, and IAB have been discussed, as well as the basics of the Domain
Name Service and Uniform Resource Locators and Indicators.

References

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [1]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

“Internet Protocol,” RFC 791, 1981. [2]

Deering, S., and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC [3]
1883, 1995.

Wilder, F., [4] A Guide to the TCP/IP Protocol Suite, Norwood, MA: Artech House, 1998.

Rekhter, Y., et al., “Address Allocation for Private Internets,” RFC 1918, February 1996. [5]

Alexander, S., and R. Droms, “DHCP Options and BOOTP Vendor Extensions,” RFC [6]
2132, March 1997.

“Transmission Control Protocol,” RFC 793, 1981. [7]

Postal, J., “User Datagram Protocol,” RFC 768, 1980. [8]

Dierks, T., et al., “The TLS Protocol Version 1.0,” RFC 2246, 1999. [9]

Stewart, R., et al., “Stream Control Transmission Protocol,” RFC 2960, 1999. [10]

Phelan, T., “Datagram Transport Layer Security (DTLS) over the Datagram Congestion [11]
Control Protocol (DCCP),” RFC 5238, May 2008.

Schulzrinne, H., “Dynamic Host Confi guration Protocol (DHCP-for-IPv4) Option for [12]
Session Initiation Protocol (SIP) Servers,” RFC 3361, August 2002.

22 SIP: Understanding the Session Initiation Protocol

Crocker, D., “Standard for the Format of ARPA Internet Text Messages,” STD 11, RFC [13]
822, August 1982.

Crocker, D., and P. Overell, “Augmented BNF for Syntax Specifi cations: ABNF,” STD 68, [14]
RFC 5234, January 2008.

Berners-Lee, T., L. Masinter, and M. McCahill, “Uniform Resource Locators (URL),” RFC [15]
1738, December 1994.

Moats, R., “URN Syntax,” RFC 2141, May 1997. [16]

Mockapetris, P., “Domain Names—Implementation and Specifi cation,” STD 13, RFC [17]
1035, November 1987.

Faltstrom, P., and M. Mealling, “The E.164 to Uniform Resource Identifi ers (URI) [18]
Dynamic Delegation Discovery System (DDDS) Application (ENUM),” RFC 3761, April
2004.

Thomson, S., et al., “DNS Extensions to Support IP Version 6,” RFC 3596, October [19]
2003.

Gulbrandsen, A., P. Vixie, and L. Esibov, “A DNS RR for Specifying the Location of Services [20]
(DNS SRV),” RFC 2782, February 2000.

Mealling, M., and R. Daniel, “The Naming Authority Pointer (NAPTR) DNS Resource [21]
Record,” RFC 2915, September 2000.

http://www.ietf.org. [22]

Hoffman, P., and S. Harris, “The Tao of IETF—A Novice’s Guide to the Internet [23]
Engineering Task Force,” RFC 4677, September 2006.

http://www.iesg.org. [24]

http://www.rfc-editor.org. [25]

http://www.iab.org. [26]

http://www.irtf.org. [27]

http://www.iana.org. [28]

http://www.icann.org. [29]

http://www.w3c.org. [30]

http://www.sipforum.org. [31]

http://www.sipforum.org/sipconnect. [32]

Handley, M., et al., “SIP: Session Initiation Protocol,” RFC 2543, March 1999. [33]

23

2
Introduction to SIP
Often the best way to learn a protocol is to look at examples of its use. While the
terminology, structures, and format of a new protocol can be confusing at fi rst
read, an example message fl ow can give a quick grasp of some of the key concepts
of a protocol. The example message exchanges in this chapter will introduce SIP
as defi ned by RFC 3261 [1].

The fi rst example shows the basic message exchange between two SIP de-
vices to establish and tear down a session; the second example shows the message
exchange when a SIP proxy server is used. The third example shows SIP regis-
tration, and the fourth shows a SIP presence and instant message example. The
chapter concludes with a discussion of SIP message transmission using UDP,
TCP, TLS, and SCTP.

The examples will be introduced using call fl ow diagrams between a called
and calling party, along with the details of each message. Each arrow in the
fi gures represents a SIP message, with the arrowhead indicating the direction of
transmission. The thick lines in the fi gures indicate the media stream. In these
examples, the media will be assumed to be RTP [2] packets containing audio,
but it could be another protocol. Details of RTP are covered in Chapter 12.

2.1 A Simple Session Establishment Example

Figure 2.1 shows the SIP message exchange between two SIP-enabled devices.
The two devices could be SIP phones, phone clients running on a laptop or PC
(known as softclients), PDAs, or mobile phones. It is assumed that both devices
are connected to an IP network such as the Internet and know each other’s IP
address.

The calling party, Tesla, begins the message exchange by sending a SIP
I NVITE message to the called party, Marconi. The INVITE contains the details of

24 SIP: Understanding the Session Initiation Protocol

the type of session or call that is requested. It could be a simple voice (audio) ses-
sion, a multimedia session such as a videoconference, or a gaming session.
The INVITE message contains the following fi elds:

INVITE sip:Marconi@radio.org SIP/2.0
Via: SIP/2.0/UDP lab.high-voltage.org:5060;branch=z9hG4bKfw19b
Max-Forwards: 70
To: G. Marconi <sip:Marconi@radio.org>
From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
Call-ID: j2qu348ek2328ws
CSeq: 1 INVITE
Subject: About That Power Outage...
Contact: <sip:n.tesla@lab.high-voltage.org>
Content-Type: application/sdp
Content-Length: 158

v=0
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org
s=Phone Call
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Since SIP is a text-encoded protocol, this is actually what the SIP message
would look like “on the wire” as a UDP datagram being transported over, for
example, Ethernet.

The fi elds listed in the INVITE message are called header fi elds. They have the
form Header: Value CRLF. The fi rst line of the request message, called the start
line, lists the method, which is INVITE, the Request-URI, then the SIP version
number (2.0), all separated by spaces. Each line of a SIP message is terminated by

Figure 2.1 A simple SIP session establishment example.

 Introduction to SIP 25

a CRLF (Carriage Return Line Feed). The Request-URI is a special form of SIP
URI and indicates the resource to which the request is being sent, also known as
the request target. SIP URIs are discussed in more detail in Section 4.2.

The fi rst header fi eld following the start line shown is a Via header fi eld.
Each SIP device that originates or forwards a SIP message stamps its own ad-
dress in a Via header fi eld, usually written as a host name that can be resolved
into an IP address using a DNS query. The Via header fi eld contains the SIP
version number (2.0), a “/”, then UDP for UDP transport, a space, the hostname
or address, a colon, then a port number (in this example the “well-known” SIP
port number 5060). Transport of SIP using TCP, UDP, TLS, and SCTP and the
use of port numbers are covered later in this chapter. The branch parameter is a
transaction identifi er. Responses relating to this request can be correlated because
they will contain this same transaction identifi er.

The next header fi eld shown is the Max-Forwards. It is initialized to some
large integer and decremented by each SIP server, which receives and forwards
the request, providing simple loop detection.

The next header fi elds are the To and From header fi elds, which show the
originator and destination of the SIP request. SIP requests are routed based on
the Request-URI instead of the To URI. This is because the Request-URI can be
changed and rewritten as a request is forwarded, while the To URI generally stays
the same. When a name label is used, as in this example, the SIP URI is enclosed
in brackets <>. The name label could be displayed during alerting, for example,
but is not used by the protocol.

The Call-ID header fi eld is an identifi er used to keep track of a particular
SIP session. The originator of the request creates a locally unique string. Some
older implementations also add an “@” and its host name to the string. In addi-
tion to the Call-ID, each party in the session also contributes a random identifi er,
unique for each call. These identifi ers, called tags, are included in the To and
From header fi elds as the session is established. The initial INVITE shown contains
a From tag but no To tag.

The initiator of the session that generates the establishing INVITE generates
the unique Call-ID and From tag. In the response to the INVITE, the user agent
answering the request will generate the To tag. The combination of the local
tag (contained in the From header fi eld), remote tag (contained in the To header
fi eld), and the Call-ID uniquely identifi es the established session, known as a
dialog. This dialog identifi er is used by both parties to identify this call because
there could be multiple calls set up between them. Subsequent requests within
the established session will use this dialog identifi er, as will be shown in the fol-
lowing examples.

The next header fi eld shown is the CSeq, or command sequence. It contains
a number, followed by the method name, INVITE in this case. This number is

26 SIP: Understanding the Session Initiation Protocol

incremented for each new request sent. In this example, the command sequence
number is initialized to 1, but it could start at another integer value.

The Via header fi elds plus the Max-Forwards, To, From, Call-ID, and
CSeq header fi elds represent the minimum required header fi eld set in any SIP
request message. Other header fi elds can be included as optional additional in-
formation, or information needed for a specifi c request type. A Contact header
fi eld is also required in this INVITE message, which contains the SIP URI of
Tesla’s communication device, known as a user agent (UA); this URI can be
used to route messages directly to Tesla. The optional Subject header fi eld is
present in this example. It is not used by the protocol, but could be displayed
during alerting to aid the called party in deciding whether to accept the call. The
same sort of useful prioritization and screening commonly performed using the
Subject and From header fi elds in an e-mail message is also possible with a SIP
INVITE request.

The Content-Type and Content-Length header fi elds indicate that the
message body is Session Description Protocol or SDP [3] and contains 158 oc-
tets of data. The basis for the octet count of 158 is shown in Table 2.1, where
the CR LF at the end of each line is shown as a ©® and the octet count for each
line is shown on the right-hand side. A blank line separates the message body
from the header fi eld list, which ends with the Content-Length header fi eld. In
this case, there are seven lines of SDP data describing the media attributes that
the caller Tesla desires for the call. This media information is needed because
SIP makes no assumptions about the type of media session to be established—
the caller must specify exactly what type of session (audio, video, gaming) that
he wishes to establish. The SDP fi eld names are listed in Table 2.2, and will be
discussed in detail in Chapter 13, but a quick review of the lines shows the basic
information necessary to establish a session.

Table 2.2 includes the:

Table 2.1
Content-Length Calculation Example

Line Total
v=0©® 05
o=Tesla 2890844526 2890844526
IN IP4 lab.high-voltage.org©® 59

s=Phone Call©® 14
c=IN IP4 100.101.102.103©® 26
t=0 0©® 07
m=audio 49170 RTP/AVP 0©® 25
a=rtpmap:0 PCMU/8000©® 22

158

 Introduction to SIP 27

Connection IP address (100.101.102.103);•

Media format (audio);•

Port number (49170);•

Media transport protocol (RTP);•

Media encoding (PCM • μ Law);

Sampling rate (8,000 Hz).•

INVITE is an example of a SIP request message. There are fi ve other meth-
ods or types of SIP requests defi ned in the core SIP specifi cation RFC 3261 with
others defi ned in extension RFCs, which update RFC 3261. The next message
in Figure 2.1 is a 180 Ringing message sent in response to the INVITE. This mes-
sage indicates that the called party, Marconi, has received the INVITE and that
alerting is taking place. The alerting could be ringing a phone, a fl ashing message
on a screen, or any other method of attracting the attention of the called party,
Marconi.

The 180 Ringing is an example of a SIP response message. Responses are
numerical and are classifi ed by the fi rst digit of the number. A 180 response is an
informational class response, identifi ed by the fi rst digit being a 1. Informational
responses are used to convey noncritical information about the progress of the
call. Many SIP response codes were based on HTTP version 1.1 response codes
with some extensions and additions. Anyone who has ever browsed the World
Wide Web has likely received a “404 Not Found” response from a Web server
when a requested page was not found. 404 Not Found is also a valid SIP client
error class response in a request to an unknown user. The other classes of SIP
responses are covered in Chapter 5.

The response code number in SIP alone determines the way the response
is interpreted by the server or the user. The reason phrase, Ringing in this case, is
suggested in the standard, but any text can be used to convey more information.

Table 2.2
SDP Data from Example

SDP Parameter Parameter Name
v=0 Version number
o=Tesla 2890844526 2890844526 IN
IP4 lab.high-voltage.org Origin

s=- Call subject
c=IN IP4 100.101.102.103 Connection
t=0 0 Time
m=audio 49170 RTP/AVP 0 Media
a=rtpmap:0 PCMU/8000 Attributes

28 SIP: Understanding the Session Initiation Protocol

For instance, 180 Hold your horses, I’m trying to wake him up! is a perfectly
valid SIP response and has the same meaning as a 180 Ringing response.

The 180 Ringing response has the following structure:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP lab.high-voltage.org:5060;branch=z9hG4bKfw19b
 ;received=100.101.102.103
To: G. Marconi <sip:marconi@radio.org>;tag=a53e42
From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
Call-ID: j2qu348ek2328ws
CSeq: 1 INVITE
Contact: <sip:marconi@tower.radio.org>
Content-length: 0

The message was created by copying many of the header fi elds from the
 INVITE message, including the Via, To, From, Call-ID, and CSeq, then adding a
response start line containing the SIP version number, the response code, and the
reason phrase. This approach simplifi es the message processing for responses.

The Via header fi eld contains the original branch parameter but also has
an additional received parameter. This parameter contains the literal IP address
that the request was received from (100.101.102.103), which typically is the same
address that the URI in the Via resolves using DNS (lab.high-voltage.org).

Note that the To and From header fi elds are not reversed in the response
message as one might expect them to be. Even though this message is sent to
Marconi from Tesla, the header fi elds read the opposite. This is because the To
and From header fi elds in SIP are defi ned to indicate the direction of the request,
not the direction of the message. Since Tesla initiated this request, all responses
to this INVITE will read To: Marconi From: Tesla.

The To header fi eld now contains a tag that was generated by Marconi. All
future requests and responses in this session or dialog will contain both the tag
generated by Tesla and the tag generated by Marconi.

The response also contains a Contact header fi eld, which contains an ad-
dress at which Marconi can be contacted directly once the session is established.

When the called party, Marconi, decides to accept the call (i.e., the phone
is answered), a 200 OK response is sent. This response also indicates that the type
of media session proposed by the caller is acceptable. The 200 OK is an example
of a success class response. The 200 OK message body contains Marconi’s media
information:

SIP/2.0 200 OK
Via: SIP/2.0/UDP lab.high-voltage.org:5060;branch=z9hG4bKfw19b
 ;received=100.101.102.103
To: G. Marconi <sip:marconi@radio.org>;tag=a53e42
From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
Call-ID: j2qu348ek2328ws
CSeq: 1 INVITE
Contact: <sip:marconi@tower.radio.org>

 Introduction to SIP 29

Content-Type: application/sdp
Content-Length: 155

v=0
o=Marconi 2890844528 2890844528 IN IP4 tower.radio.org
s=Phone Call
c=IN IP4 200.201.202.203
t=0 0
m=audio 60000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

This response is constructed the same way as the 180 Ringing response
and contains the same To tag and Contact URI. The media capabilities, however,
must be communicated in a SDP message body added to the response. From the
same SDP fi elds as Table 2.2, the SDP contains:

End-point IP address (200.201.202.203);•

Media format (audio);•

Port number (60000);•

Media transport protocol (RTP);•

Media encoding (PCM • μ-Law);

Sampling rate (8,000 Hz).•

The fi nal step is to confi rm the media session with an acknowledgment
request. The confi rmation means that Tesla has successfully received Marconi’s
response. This exchange of media information allows the media session to be
established using another protocol: RTP in this example.

ACK sip:marconi@tower.radio.org SIP/2.0
Via: SIP/2.0/UDP lab.high-voltage.rg:5060;branch=z9hG4bK321g
Max-Forwards: 70
To: G. Marconi <sip:marconi@radio.org>;tag=a53e42
From: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
Call-ID: j2qu348ek2328ws
CSeq: 1 ACK
Content-Length: 0

The command sequence, CSeq, has the same number as the INVITE, but
the method is set to ACK. At this point, the media session begins using the media
information carried in the SIP messages. The media session takes place using
another protocol, typically RTP. The branch parameter in the Via header fi eld
contains a newer transaction identifi er than the INVITE, since an ACK sent to ac-
knowledge a 200 OK is considered a separate transaction.

This message exchange shows that SIP is an end-to-end signaling protocol.
A SIP network or SIP server is not required for the protocol to be used. Two end
points running a SIP protocol stack and knowing each other’s IP addresses can

30 SIP: Understanding the Session Initiation Protocol

use SIP to set up a media session between them. Although less obvious, this ex-
ample also shows the client-server nature of the SIP protocol. When Tesla origi-
nates the INVITE request, he is acting as a SIP client. When Marconi responds
to the request, he is acting as a SIP server. After the media session is established,
Marconi originates the BYE request and acts as the SIP client, while Tesla acts as
the SIP server when he responds. This is why a SIP-enabled device must contain
both SIP user agent server and SIP user agent client software—during a typical
session, both are needed. This is quite different from other client-server Internet
protocols such as HTTP or FTP. The Web browser is always an HTTP client,
and the Web server is always an HTTP server, and similarly for FTP. In SIP, an
end point will switch back and forth during a session between being a client and
a server.

In Figure 2.1, a BYE request is sent by Marconi to terminate the media
session:

BYE sip:n.tesla@lab.high-voltage.org SIP/2.0
Via: SIP/2.0/UDP tower.radio.org:5060;branch=z9hG4bK392kf
Max-Forwards: 70
To: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
From: G. Marconi <sip:marconi@radio.org>;tag=a53e42
Call-ID: j2qu348ek2328ws
CSeq: 1392 BYE
Content-Length: 0

The Via header fi eld in this example is populated with Marconi’s host ad-
dress and contains a new transaction identifi er since the BYE is considered a sepa-
rate transaction from the INVITE or ACK transactions shown previously. The To
and From header fi elds refl ect that this request is originated by Marconi, as they
are reversed from the messages in the previous transaction. Tesla, however, is able
to identify the dialog using the presence of the same local and remote tags and
Call-ID as the INVITE, and tear down the correct media session.

Notice that all of the branch IDs shown in the example so far begin with
the string z9hG4bK. This is a special string that indicates that the branch ID has
been calculated using strict rules defi ned in RFC 3261 and is as a result usable
as a transaction identifi er..1

The confi rmation response to the BYE is a 200 OK:

SIP/2.0 200 OK
Via: SIP/2.0/UDP tower.radio.org:5060;branch=z9hG4bK392kf
 ;received=200.201.202.203
To: Nikola Tesla <sip:n.tesla@high-voltage.org>;tag=76341
From: G. Marconi <sip:marconi@radio.org>;tag=a53e42
Call-ID: j2qu348ek2328ws

1. This string is needed because branch IDs generated by user agents prior to RFC 3261 may have
constructed branch IDs which are not suitable as transaction identifi ers. In this case, a client
must construct its own transaction identifi er using the To tag, From tag, Call-ID, and CSeq.

 Introduction to SIP 31

CSeq: 1392 BYE
Content-Length: 0

The response echoes the CSeq of the original request: 1392 BYE. No ACK is
sent since ACK is only sent in response to INVITE requests.

2.2 SIP Call with a Proxy Server

In the SIP message exchange of Figure 2.1, Tesla knew the IP address of Marconi
and was able to send the INVITE directly to that address. This will not be the case
in general—an IP address cannot be used like a telephone number. One reason
is that IP addresses are often dynamically assigned due to the shortage of IPv4
addresses. For example, when a PC dials in to an Internet service provider (ISP)
modem bank, an IP address is assigned using DHCP to the PC from a pool of
available addresses allocated to the ISP. For the duration of the session, the IP
address does not change, but it is different for each dial-in session. Even for an
“always on” Internet connection such as a DSL line, a different IP address can be
assigned after each reboot of the PC. Also, an IP address does not uniquely iden-
tify a user, but identifi es a node on a particular physical IP network. You have
one IP address at your offi ce, another at home, and still another when you log on
remotely while traveling. Ideally, there would be one address that would identify
you wherever you are. In fact, there is an Internet protocol that does exactly that
with e-mail. SMTP uses a host or system independent name (an e-mail address)
that does not correspond to a particular IP address. It allows e-mail messages to
reach you regardless of what your IP address is and where you are logged onto
the Internet.

In addition, a request routed using only IP addresses will reach only one
end point—only one device. Since communication is typically user-to-user in-
stead of device-to-device, a more useful addressing scheme would allow a par-
ticular user to call another particular user, which would result in the request
reaching the target user regardless of which device they are currently using, or if
they have multiple devices.

SIP uses e-mail-like names for addresses. The addressing scheme is part of
a family of Internet addresses known as URIs, as described in Section 1.4. SIP
URIs can also handle telephone numbers, transport parameters, and a number
of other items. A full description, including examples, can be found in Section
4.2. For now, the key point is that a SIP URI is a name that is resolved to an IP
address by using a SIP proxy server and DNS lookups at the time of the call, as
will be seen in the next example. Figure 2.2 shows an example of a more typical
SIP call with a type of SIP server called a proxy server. In this example, the caller
Schroedinger calls Heisenberg through a SIP proxy server. A SIP proxy operates
in a similar way to a proxy in HTTP and other Internet protocols. A SIP proxy

32 SIP: Understanding the Session Initiation Protocol

does not set up or terminate sessions, but sits in the middle of a SIP message ex-
change, receiving messages and forwarding them. This example shows one proxy,
but there can be multiple proxies in a signaling path.

SIP has two broad categories of URIs: ones that correspond to a user, and
ones that correspond to a single device or end point. The user URI is known
as an address of record (AOR), and a request sent to an address of record will
require database lookups and service and feature operations, which can result
in the request being sent to one or more end devices. A device URI is known
as a contact, and typically does not require database lookups. An address of re-
cord URI is usually used in To and From header fi elds, as this is the general way
to reach a person and is suitable for storing in address books and in returning
missed calls. A device URI is usually used in a Contact header fi eld and is associ-
ated with a particular user for a shorter period of time. The method of relating
(or binding) a contact URI with an address of record URI will be discussed in
Section 2.3.

Because Schroedinger does not know exactly where Heisenberg is currently
logged on and what device he is currently using, a SIP proxy server is used to
route the INVITE. First, a DNS lookup of Heisenberg’s SIP URI domain name
(munich.de) is performed (see Section 2.6 for the details), which returns the IP
address of the proxy server proxy.munich.de, which handles that domain. The
INVITE is then sent to that IP address:

INVITE sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=42

Figure 2.2 SIP call example with a proxy server.

 Introduction to SIP 33

Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Subject: Where are you exactly?
Contact: <sip:schroed5244@pc33.wave.org>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
t=0 0
c=IN IP4 100.101.102.103
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The proxy looks up the SIP URI in the Request-URI (sip:werner.
 heisenberg@munich.de) in its database and locates Heisenberg. This completes
the two-step process of:

DNS lookup by user agent to locate the IP address of the proxy. Data-1.
base lookup is performed by the proxy to locate the IP address.

The 2. INVITE is then forwarded to Heisenberg’s IP address with the
addition of a second Via header fi eld stamped with the address of
the proxy.

INVITE sip:werner.heisenberg@200.201.202.203
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 69
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:schroed5244@pc33.wave.org>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
c=IN IP4 100.101.102.103
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

From the presence of two Via header fi elds, Heisenberg knows that the
 INVITE has been routed through a proxy server. Having received the INVITE, a
180 Ringing response is sent by Heisenberg to the proxy:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
 ;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159

34 SIP: Understanding the Session Initiation Protocol

From: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

Again, this response contains the Via header fi elds, and the To, From,
Call-ID, and CSeq header fi elds from the INVITE request. The response is then
sent to the address in the fi rst Via header fi eld, proxy.munich.de to the port
number listed in the Via header fi eld: 5060, in this case. Notice that the To header
fi eld now has a tag added to it to identify this particular dialog. Only the fi rst Via
header fi eld contains a received parameter, since the second Via header already
contains the literal IP address in the URI. The Contact header fi eld contains the
device URI of Heisenberg.

The proxy receives the response, checks that the fi rst Via header fi eld has its
own address (proxy.munich.de), uses the transaction identifi er in the Via header
to locate the transaction, removes that Via header fi eld, then forwards the re-
sponse to the address in the next Via header fi eld: IP address 100.101.102.103,
port 5060. The resulting response sent by the proxy to Schroedinger is:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

The use of Via header fi elds in routing and forwarding SIP messages re-
duces complexity in message forwarding. The request required a database lookup
by the proxy to be routed. The response requires no lookup because the routing
is imbedded in the message in the Via header fi elds. This ensures that responses
route back through the same set of proxies as the request. The call is accepted by
Heisenberg, who sends a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
 ;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Type: application/sdp
Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
s=Phone Call

 Introduction to SIP 35

c=IN IP4 200.201.202.203
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The proxy forwards the 200 OK message to Schroedinger after removing the
fi rst Via header fi eld:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Type: application/sdp
Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
s=phone call
c=IN IP4 200.201.202.203
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The presence of the Contact header fi eld with the SIP URI address of
Heisenberg in the 200 OK allows Schroedinger to send the ACK directly to Heisen-
berg, bypassing the proxy. (Note that the Request-URI is set to Heisenberg’s
Contact URI and not the URI in the To header fi eld.) This request, and all future
requests, continue to use the tag in the To header fi eld:

ACK sip:werner.heisenberg@200.201.202.203
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKka42
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 ACK
Content-Length: 0

This shows that the proxy server is not really “in the call.” It facilitates
the two end points locating and contacting each other, but it can drop out of
the signaling path as soon as it no longer adds any value to the exchange. This
role of helping the two user agents locate each other is sometimes called rendez-
vous and is a key function of the SIP protocol. A proxy server can force further
messaging to route through it by inserting a Record-Route header fi eld, which
is described in Section 6.119. In addition, it is possible to have a proxy server
that does not retain any knowledge of the fact that there is a session established
between Schroedinger and Heisenberg (referred to as call state information). This

36 SIP: Understanding the Session Initiation Protocol

is discussed in Section 2.3.1. Note that the media is always end-to-end and not
through the proxy.

In SIP the path of the signaling messages is totally independent of the path
of the media. In telephony, this is described as the separation of control channel
and bearer channel.

The media session is ended when Heisenberg sends a BYE message:

BYE sip:schroed5244@pc33.wave.org SIP/2.0
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
Max-Forwards: 70
To: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>
 ;tag=314159
Call-ID: 4827311-391-32934
CSeq: 2000 BYE
Content-Length: 0

Note that Heisenberg’s CSeq was initialized to 2000. Each SIP device main-
tains its own independent CSeq number space. This is explained in some detail in
Section 6.1.5. The Request-URI is set to Schroedinger’s Contact URI. Schroed-
inger confi rms with a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
To: E. Schroedinger <sip:schroed5244@wave.org>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>
 ;tag=314159
Call-ID: 4827311-391-32934
CSeq: 2000 BYE
Content-Length: 0

Not discussed in the previous example is the question of how the data-
base accessed by the proxy contained Heisenberg’s current IP address. There are
many ways this could be done using SIP or other protocols. The mechanism for
accomplishing this using SIP is called registration and is discussed in the next
section.

2.3 SIP Registration Example

In this example, shown in Figure 2.3, Heisenberg sends a SIP REGISTER request
to a type of SIP server known as a registrar server. The SIP registrar server receives
the message and uses the information in the request to update the database used
by proxies to route SIP requests. Contained in the REGISTER message To header
is the SIP URI address of Heisenberg. This is Heisenberg’s well-known address,
perhaps printed on his business card or published on a Web page or in a direc-
tory. Also contained in the REGISTER is a Contact URI, which represents the cur-
rent device (and its IP address) that the user Heisenberg is currently using. The

 Introduction to SIP 37

registrar binds the SIP URI of Heisenberg and the IP address of the device in a
database that can be used, for example, by the proxy server in Figure 2.2 to locate
Heisenberg. When a proxy server with access to the database receives an INVITE
request addressed to Heisenberg’s URI (i.e., an incoming call), the request will
be proxied to the Contact URI of the currently registered device.

This registration has no real counterpart in the telephone network, but it
is very similar to the registration a wireless phone performs when it is turned on.
A mobile phone sends its identity to the base station (BS), which then forwards
the location and phone number of the mobile phone to a home location register
(HLR). When the mobile switching center (MSC) receives an incoming call,
it consults the HLR to get the current location of the mobile phone. Further
aspects of SIP mobility are discussed in Chapter 7.

The REGISTER message sent by Heisenberg to the SIP registrar server has
the form:

REGISTER sip:registrar.munich.de SIP/2.0
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKus19
Max-Forwards: 70
To: Werner Heisenberg <sip:werner.heisenberg@munich.de>
From: Werner Heisenberg <sip:werner.heisenberg@munich.de>
 ;tag=3431
Call-ID: 73764291
CSeq: 1 REGISTER
Contact: sip:werner.heisenberg@200.201.202.203
Content-Length: 0

The Request-URI in the start line of the message contains the address of
the registrar server. In a REGISTER request, the To header fi eld contains the URI
that is being registered, in this case sip:werner.heisenberg@munich.de. This
results in the To and From header fi elds usually being the same, although an

Figure 2.3 SIP registration example.

38 SIP: Understanding the Session Initiation Protocol

example of third-party registration is given in Section 4.1.2. The SIP URI in the
Contact address is stored by the registrar.

The registrar server acknowledges the successful registration by sending a
200 OK response to Heisenberg. The response echoes the Contact information
that has just been stored in the database and includes a To tag:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKus19
To: Werner Heisenberg <sip:werner.heisenberg@munich.de>
 ;tag=8771
From: Werner Heisenberg <sip:werner.heisenberg@munich.de>
 ;tag=3431
Call-ID: 73764291
CSeq: 1 REGISTER
Contact: <sip:werner.heisenberg@munich.de>;expires=3600
Content-Length: 0

The Contact URI is returned along with an expires parameter, which in-
dicates how long the registration is valid (in this case, 1 hour, or 3,600 seconds).
If Heisenberg wants the registration to be valid beyond that interval, he must
send another REGISTER request within the expiration interval.

Registration is typically performed automatically on initialization of a SIP
device and at regular intervals determined by the expiration interval chosen by
the registrar server. Registration is an additive process—more than one device
can be registered against a SIP URI. If more than one device is registered, a
proxy may forward the request to either or both devices in a sequential or parallel
search. Additional register operations can be used to clear registrations or retrieve
a list of currently registered devices.

2.4 SIP Presence and Instant Message Example

This example shows how SIP is used in a presence and instant messaging applica-
tion. Presence information can be thought of as the state of a user or device, or
willingness to communicate at a particular instant. It can be as simple as whether
a particular user is signed in or not, whether they are active at their station, or
idle or away. For a mobile device, presence information can include the actual
location in terms of coordinates, or in general terms such as “in the offi ce,” “trav-
eling,” or “in the lab.” Presence information can even include information about
the status or mood of the user, whether they are working, relaxing, or socializing.
For all these examples, a presence protocol is mainly concerned about establish-
ing subscriptions or long-term relationships between devices about transferring
status information, and the delivery of that information. The actual information
transferred, and how that information is presented to the user, is application
dependent. In terms of the SIP protocol, SUBSCRIBE is used to request status or

 Introduction to SIP 39

presence updates from the presence server (or presentity), and NOTIFY is used to
deliver that information to the requestor or presence watcher. SIP presence uses
the SIP Events extensions [4, 5].

In this example, Chebychev wishes to communicate with Poisson. The
message fl ow is shown in Figure 2.4. To fi nd out the status of Poisson, Cheby-
chev subscribes to Poisson’s presence information by sending a SUBSCRIBE mes-
sage to Poisson. The request looks like:

SUBSCRIBE sip:poisson@probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK348471123
Max-Forwards: 70
To: M. Poisson <sip:poisson@probability.org>
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520
CSeq: 3412 SUBSCRIBE
Allow-Events: presence
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:pafnuty@lecturehall21.academy.ru:37129;transport=tcp>
Event: presence
Content-Length: 0

In this example, TCP is used as the transport for the SIP messages as
indicated in the Via header fi eld and in the transport=tcp parameter in the

Figure 2.4 SIP presence and instant messaging example.

40 SIP: Understanding the Session Initiation Protocol

Contact URI. Also note that a nondefault port number, port 37129 is used for
this Contact URI. This request also contains Allow and Allow-Events header
fi elds, which are used to advertise capabilities. In this example, Chebychev is in-
dicating support for receiving seven methods listed in the Allow header fi eld, and
also presence subscriptions in the Allow-Event header fi eld. As this SUBSCRIBE
is creating a dialog (in an analogous way that an INVITE created a dialog in the
earlier examples), the From contains a tag but the To header fi eld does not yet
contain a tag.

Poisson accepts the subscription request by sending a 200 OK response back
to Chebychev:

SIP/2.0 200 OK
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK348471123;received=19.34.3.1
To: M. Poisson <sip:poisson@probability.org>;tag=25140
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520
CSeq: 3412 SUBSCRIBE
Allow-Events: dialog, presence
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Event: presence
Expires: 3600
Content-Length: 0

In this example, there are no proxy servers between Chebychev’s watcher
and Poisson’s presence server, although there could be any number. The Expires
header fi eld indicates that the subscription expires in 1 hour. The actual sub-
scription is begun by Poisson sending the fi rst NOTIFY back to Chebychev:

NOTIFY sip:pafnuty@lecturehall21.academy.ru:37129 SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4321
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: dialog, presence
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=3600
Event: presence
Content-Type: application/pidf+xml
Content-Length: 244

<?xml version=”1.0” encoding=”UTF-8”?>
<presence xmlns=”urn:ietf:params:xml:ns:pidf”
 entity=”sip:poisson@probability.org”>
 <tuple id=”452426775”>
 <status>
 <basic>closed</basic>
 </status>

 Introduction to SIP 41

 </tuple>
</presence>

Note that this NOTIFY is sent within the dialog established with the
 SUBSCRIBE—it uses the same dialog identifi er (Call-ID, local and remote tags)—
and the request is sent to the Contact URI provided by Chebychev in the sub-
scription request. The Subscription-State header fi eld indicates that the sub-
scription has been authorized and activated and that it will expire in 1 hour
unless refreshed by Chebychev (using another SUBSCRIBE request).

The Common Presence and Instant Message Presence Information Data
Format (CPIM PIDF) [6] XML message body contains the status information
that Poisson is currently off-line (closed).

Chebychev sends a 200 OK response to the NOTIFY to confi rm that it has
been received:

SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4321;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Content-Length: 0

Later, when Poisson does sign in, this information is provided in a second
NOTIFY containing the change in status:

NOTIFY sip:pafnuty@lecturehall21.academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK334241
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: presence
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=1800
Event: presence
Content-Type: application/pidf+xml
Content-Length: 325

<?xml version=”1.0” encoding=”UTF-8”?>
<presence xmlns=”urn:ietf:params:xml:ns:pidf”
 entity=”sip:poisson@probability.org”>
 <tuple id=”452426775”>
 <status>
 <basic>open</basic>
 </status>
 <contact>sip:s.possion@dist.probability.org;transport=tcp
 </contact>
 </tuple>
</presence>

42 SIP: Understanding the Session Initiation Protocol

The expiration time indicated in the Subscription-State header fi eld in-
dicates that 30 minutes have passed since the subscription was established. The
CPIM PIDF XML message body now indicates that Poisson is online (open) and
can be reached via the URI:

sip:s.possion@dist.probability.org;transport=tcp

Chebychev confi rms receipt of the NOTIFY with a 200 OK response:

SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK334241;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY
Content-Length: 0

Now that Chebychev knows that Poisson is online, he sends an instant
message to him using the Contact URI from the NOTIFY:

MESSAGE sip:s.possion@dist.probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK3gtr2
Max-Forwards: 70
To: M. Poisson <sip:s.possion@dist.probability.org>
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 11

Hi There!

Notice that this MESSAGE is sent outside the dialog. Instant messages sent
using the MESSAGE method in SIP are like page messages—they are not part of
any dialog. As a result, each message contains a new Call-ID and From tag. The
200 OK response is used to acknowledge receipt of the instant message.

SIP/2.0 200 OK
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK3gtr2;received=19.34.3.1
To: M. Poisson <sip:s.possion@dist.probability.org>;tag=2321
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Content-Length: 0

 Introduction to SIP 43

Poison answers with a reply, which is also sent outside of any dialog, with a
new Call-ID and From tag (an instant message response is never sent in a 200 OK
reply to a MESSAGE request).

MESSAGE sip:chebychev@academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4526245
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>
From: M. Poisson <sip:s.possion@dist.probability.org>
 ;tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 2

Well, hello there to you, too!

This receives a 200 OK reply:

SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4526245;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>
 ;tag=mc3bg5q77wms
From: M. Poisson <sip:s.possion@dist.probability.org>;
 tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Content-Length: 0

Other presence packages defi ne other sets of information that can be re-
quested by watchers from presence servers. Further examples of SIP presence and
instant messaging can be found in Chapter 8.

2.5 Message Transport

As discussed in Chapter 1, SIP is an application layer protocol in the Internet
Multimedia Protocol stack shown in Figure 1.1. RFC 3261 defi nes the use of
TCP, UDP, or TLS transport. An extension document describes how SCTP can
be used. How a SIP message is transported using these four protocols will be de-
scribed in the following sections. The compression of SIP for transport over low
bandwidth connections, such as wireless, is discussed in Chapter 7.

2.5.1 UDP Transport

When using UDP, each SIP request or response message is carried in a single
UDP datagram or packet. For a particularly large message body, there is a com-

44 SIP: Understanding the Session Initiation Protocol

pact form of SIP that saves space in representing some header fi elds with a single
character. This is discussed in Chapter 6. Figure 2.5 shows a SIP BYE request
exchange during an established SIP session using UDP.

The source port is chosen from a pool of available port numbers (above
49172), or the default SIP port of 5060 can be used. The lack of handshaking or
acknowledgment in UDP transport means that a datagram could be lost along
with a SIP message. The checksum, however, enables UDP to discard errored
datagrams, allowing SIP to assume that a received message is complete and error-
free. The reliability mechanisms built into SIP to handle message retransmissions
are described in Section 3.7. The reply is also sent to port 5060, or the port num-
ber listed in the top Via header fi eld.

UDP provides the simplest transport for user agents and servers, and al-
lows them to operate without the transport layer state. However, UDP offers no
congestion control. A series of lost packets on a heavily loaded IP link can cause
retransmissions, which in turn produce more lost packets and can push the link
into congestion collapse. Also, UDP may only be used for SIP when the message
(and its response) is known to be less than the Message Transport Unit (MTU)
size of the IP network. For simple SIP messages, this is not a problem. However,
for large messages containing multiple message bodies and large header fi elds,
this can be a problem. In this case, TCP must be used, since SIP does not sup-
port fragmentation at the SIP layer.

Figure 2.5 Transmission of a SIP message using UDP.

 Introduction to SIP 45

2.5.2 TCP Transport

TCP provides a reliable transport layer, but at a cost of complexity and trans-
mission delay over the network. The use of TCP for transport in a SIP mes-
sage exchange is shown in Figure 2.6. This example shows an INVITE sent by
a user agent at 100.101.103.103 to a type of SIP server called a redirect server at
200.201.202.203. A SIP redirect server does not forward INVITE requests like a
proxy, but looks up the destination address and instead returns that address in
a redirection class (3xx) response. The 302 Moved Temporarily response is ac-
knowledged by the user agent with an ACK message. Not shown in this fi gure is
the next step, where the INVITE would be resent to the address returned by the
redirect server. As in the UDP example, the well-known SIP port number of 5060
is chosen for the destination port, and the source port is chosen from an available
pool of port numbers. Before the message can be sent, however, the TCP connec-
tion must be opened between the two end points. This transport layer datagram
exchange is shown in Figure 2.6 as a single arrow, but it is actually a three-way
handshake between the end points as shown in Figure 1.2. Once the connection
is established, the messages are sent in the stream.

The Content-Length header fi eld is critical when TCP is used to transport
SIP, since it is used to fi nd the end of one message and the start of the next.
When TCP or another stream-based transport is used, Content-Length is a re-
quired header fi eld in all requests and responses.

To send the 302 Moved Temporarily response, the server typically opens
a new TCP connection in the reverse direction, using 5060 (or the port listed in

Figure 2.6 Transmission of a SIP message using TCP.

46 SIP: Understanding the Session Initiation Protocol

the top Via header fi eld) as the destination port. The acknowledgment ACK is sent
in the TCP stream used for the INVITE. Because this concludes the SIP session,
the connection is then closed. If a TCP connection closes during a dialog, a new
one can be opened to send a request within the dialog, such as a BYE request to
terminate the media session.

As previously mentioned, TCP provides reliable transport and congestion
control. It can also transport SIP messages of arbitrary sizes. The disadvantages
of TCP include the setup delay in establishing the connection and the need for
servers to maintain this connection state at the transport layer.

2.5.3 TLS Transport

SIP can use TLS [7] over TCP the same way as for encrypted transport, with the
additional capabilities of authentication. In Section 4.2.1 the secure SIP URI
scheme (sips) will be discussed, which uses TLS transport. The default SIP port
number for TLS transport is port 5061.

If TLS is used between two proxies, each proxy may have a certifi cate al-
lowing mutual authentication. However, if a client does not have a certifi cate,
TLS can be used in conjunction with another authentication mechanism, such
as SIP digest, to allow mutual authentication.

The SIP use of TLS takes advantage of both the encryption and authenti-
cation services. However, the encryption and authentication is only useful on a
single hop. If a SIP request takes multiple hops (i.e., includes one or more proxy
servers), TLS is not useful for end-to-end authentication. SIP proxies must sup-
port TLS and will likely use TLS for long-lived connections. TLS will be covered
more in Chapter 14.

2.5.4 SCTP Transport

An extension to SIP defi nes the use of SCTP [8] with SIP to provide reliable
stream-based transport with some advantages over TCP transport for a message-
based protocol such as SIP. First, it has built-in message segmentation, so that
individual SIP messages are separated at the transport layer. With TCP, the SIP
protocol must use the Content-Length calculation to delineate messages. If a
TCP connection is being shared by a number of SIP transactions and dialogs,
the “head of line blocking” problem discussed in Section 1.2.4.5 can cause the
buffer to contain valid SIP messages that could be processed by the server while
the retransmission takes place. Due to its message level delineation, SCTP is able
to continue to forward messages to the application layer while simultaneously
requesting a retransmission of a dropped message. Note that this is only a prob-
lem when multiple applications are multiplexed over a single TCP connection.
An example of this is a TCP link between two signaling proxy servers. For a user

 Introduction to SIP 47

agent to proxy TCP connection, this is usually not a problem unless the two have
many simultaneous dialogs established.

SCTP also supports multihoming, so if one of a pair of load balancing SIP
proxies fails, the other can immediately begin receiving the messages without
even requiring a DNS or other database lookup. The SIP usage of SCTP is de-
scribed in [9].

2.6 Transport Protocol Selection

Since SIP supports multiple transport protocols, it must have a way of manag-
ing them. The full SIP usage of DNS is defi ned in [10], but the basic steps
for a client are listed here. There are two ways that this is acheived. The fi rst is
through explicit indications in a SIP URI. The presence of a transport=tcp or
transport=sctp [9] indicates that the particular transport protocol should be
used for this URI. Note that for TLS transport, the SIPS URI scheme should
be used, although some implementations use the nonstandard transport=tls
parameter. UDP is used if transport=udp is included. When no transport pa-
rameter is included, the following rules are followed:

If the URI has a numeric IP address, then UDP should be used for a 1.
SIP URI and TCP for a SIPS URI.

If the URI does not have a numeric address but has a numeric port 2.
number, then UDP should be used for a SIP URI and TCP for a SIPS
URI.

If the URI does not have a numeric IP address or port, and NAPTR 3.
DNS queries are supported, then a DNS NAPTR query should be
performed on the host part of the URI. The NAPTR service fi elds are
“SIP+D2U” for UDP, “SIP+D2T” for TCP, and “SIP+D2S” for SCTP
transport. The result of the NAPTR regex replacement will be a URI,
which is used for an SRV lookup described in the next step. The pref-
erence fi eld indicates the relative preference if multiple transports are
supported. If no NAPTR records are returned, an SRV query should
be performed.

The SIP usage of DNS SRV records uses “_sip” or “_sips” for the pro-4.
tocol and “_udp”, “_tcp”, and “_sctp” for UDP, TCP, and SCTP trans-
ports. The results of the SRV query will be a target hostname and port
number. The request should be sent to that address and port. Full de-
tails on SRV record usage are in [11].

48 SIP: Understanding the Session Initiation Protocol

If no SRV records are found, then an address query for A or an AAAA 5.
DNS query should be performed, and UDP should be used for a SIP
URI and TCP for a SIPS URI.

A slightly different set of rules are followed by proxy servers, as described
in [10].

For example, consider the DNS lookup performed by Schroedinger in Fig-
ure 2.2. The URI is sip:werner.heisenberg@munich.de, which does not contain
a numeric IP address or port, so steps 1 and 2 are not followed. Schroedinger
then follows step 3 and performs a NAPTR query on munich.de which returns
the following record:

munich.de. 360 IN NAPTR 100 50 “s” “SIPS+DTU” “” _sip._udp.munich.de

Since only UDP transport is supported, step 4 results in an SRV query on
_sip._udp.munich.de, which returns the following record:

_sip._udp.munich.de. 300 IN SRV 0 100 5060 proxy.munich.de

Finally, an A lookup is performed on proxy.munich.de which returns:

proxy.munich.de. 3600 IN A 100.101.102.105

As a result, Schroedinger sends the INVITE to 100.101.102.105:5060 as shown
in Figure 2.2.

2.7 Conclusion

This chapter introduced the Session Initiation Protocol using some common
call fl ow examples including a basic call, call through a proxy server, registration,
and presence and instant messaging. The next chapter will explore further the
details of SIP and the behavior or standard elements such as user agents, proxies,
redirect servers, and registrars.

2.8 Questions

Q2.1 Defi ne a SIP dialog.

Q2.2 What SIP parameter carries the SIP transaction identifi er?

Q2.3 Compare proxy, registrar, and redirect servers.

 Introduction to SIP 49

Q2.4 Which SIP methods create dialogs? Which SIP methods end
 dialogs?

Q2.5 Explain the purpose of the Contact header fi eld in an INVITE.

Q2.6 Is the Content-Length header fi eld mandatory for TCP
 transport? Why or why not?

Q2.7 What is the purpose of Via header fi elds?

Q2.8 The DNS application Dig has returned the following values. What
 are the three types of DNS Resource returned? Explain the meaning
 of each fi eld of the record for _sip._tcp.iptel.org. What IP address
 and port would a SIP request (Service = sip) be sent to at the
 iptel.org domain, assuming TCP transport (Proto=tcp)?

$ dig _sip._tcp.iptel.org in srv

; <<>> DiG 9.3.4 <<>> _sip._tcp.iptel.org in srv
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id:
15807
;; fl ags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5,
ADDITIONAL: 5

;; QUESTION SECTION:
;_sip._tcp.iptel.org. IN SRV

;; ANSWER SECTION:
_sip._tcp.iptel.org. 86400 IN SRV 0 0 15060 sip.
iptel.org.

;; AUTHORITY SECTION:
iptel.org. 51797 IN NS ns4.mydyndns.org.
iptel.org. 51797 IN NS ns5.mydyndns.org.
iptel.org. 51797 IN NS ns.iptel.org.
iptel.org. 51797 IN NS ns2.mydyndns.org.
iptel.org. 51797 IN NS ns3.mydyndns.org.

;; ADDITIONAL SECTION:
sip.iptel.org. 86400 IN A 213.192.59.75
ns2.mydyndns.org. 41406 IN A 204.13.249.76
ns3.mydyndns.org. 41406 IN A 208.78.69.76
ns4.mydyndns.org. 41406 IN A 91.198.22.76
ns5.mydyndns.org. 43021 IN A 203.62.195.76

;; Query time: 178 msec
;; SERVER: 192.168.0.1#53(192.168.0.1)
;; WHEN: Wed Feb 6 09:56:07 2008
;; MSG SIZE rcvd: 248

Q2.9 Explain the difference between the Request-URI and the To URI
 in a SIP INVITE.

50 SIP: Understanding the Session Initiation Protocol

Q2.10 Explain the meaning of each of the parameters in the following
 Via header fi eld:

Via: SIP/2.0/SCTP room42.lib.edu:4213
 ;branch=z9hG4bK3423;received=13.34.3.1

References

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [1]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

Schulzrinne, H., et al., “RTP: A Transport Protocol for Real-Time Applications,” STD 64, [2]
RFC 3550, July 2003.

Handley, M., V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC [3]
4566, July 2006.

Roach, A., “Session Initiation Protocol (SIP)—Specific Event Notification,” RFC 3265, [4]
June 2002.

Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,” [5]
RFC 3428, December 2002.

Sugano, H., et al., “Presence Information Data Format (PIDF),” RFC 3863, August [6]
2004.

Dierks, T., and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246, January 1999. [7]

Stewart, R., et al., “Stream Control Transmission Protocol,” RFC 2960, October 2000. [8]

Rosenberg, J., H. Schulzrinne, and G. Camarillo, “The Stream Control Transmission Pro- [9]
tocol (SCTP) as a Transport for the Session Initiation Protocol (SIP),” RFC 4168, October
2005.

Rosenberg, J., and H. Schulzrinne, “SIP: Session Initiation Protocol,” RFC 3263, June [10]
2002.

Gulbrandsen, A., P. Vixie, and L. Esibov, “A DNS RR for Specifying the Location of Services [11]
(DNS SRV),” RFC2782, February 2000.

51

3
SIP Clients and Servers
The client-server nature of SIP has been introduced in the example message
fl ows of Chapter 2. In this chapter, the types of clients and servers in a SIP net-
work will be introduced and defi ned.

3.1 SIP User Agents

A SIP-enabled end device is called a SIP user agent (UA) [1]. One purpose of SIP
is to enable sessions to be established between user agents. As the name implies,
a user agent takes direction or input from a user and acts as an agent on their be-
half to set up and tear down media sessions with other user agents. In most cases
the user will be a human, but the user could also be another protocol, as in the
case of a gateway (described in Section 3.4). A UA must be capable of establish-
ing a media session with another UA.

A UA must maintain the state on calls that it initiates or participates in.
A minimum call state set includes the local and remote tags, Call-ID, local and
remote CSeq header fi elds, along with the route set and any state information
necessary for the media. This information is used to store the dialog information
and for reliability. The remote CSeq storage is necessary to distinguish between a
new request and a retransmission of an old request. A re-INVITE is used to change
the session parameters of an existing or pending call. It uses the same Call-ID
and tags as the original INVITE/200 OK exchange, but the CSeq is incremented
because it is a new request. A retransmitted INVITE will contain the same Call-
ID and CSeq as a previous INVITE. Even after a call has been terminated, the call
state must be maintained by a user agent for at least 32 seconds in case of lost
messages in the call tear down.

User agents silently discard an ACK for an unknown dialog. Requests to
an unknown URI receive a 404 Not Found response. A user agent receiving a

52 SIP: Understanding the Session Initiation Protocol

request for an unknown dialog responds with a 481 Dialog/Transaction Does
Not Exist. Responses from an unknown dialog are also silently discarded. These
silent discards are necessary for security. Otherwise, a malicious user agent could
gain information about other SIP user agents by spamming fake requests or
responses.

A minimal implementation must to be able to interpret any unknown re-
sponse based on the class (fi rst digit of the number) of the response, but it is not
required to understand every response code defi ned. That is, if an undefi ned 498
Wrong Phase of the Moon response is received, it must be treated as a 400 Client
Error.

A user agent responds to an unsupported request with a 501 Not Implemented
response. For example, a UA receiving a method that it does not support would
return a 501 response. A SIP UA must support UDP and TCP transport if it
sends messages greater than 1,000 octets in size.

A SIP user agent contains both a client application and a server applica-
tion. The two parts are a user agent client (UAC) and user agent server (UAS).
The UAC initiates requests while the UAS generates responses. During a session,
a user agent will usually operate as both a UAC and a UAS.

A SIP user agent must also support Session Description Protocol (SDP)
for media description. Other types of media description protocols can be used in
bodies, but SDP support is mandatory. Details of SDP are in Section 13.1.

A UA must understand any extensions listed in a Require header fi eld in a
request. Unknown header fi elds may be ignored by a UA. A UA should advertise
its capabilities and features in any request it sends. This allows other UAs to
learn them without having to make an explicit capabilities query. For example,
the methods that a UA supports should be listed in an Allow header fi eld. SIP
extensions should be listed in a Supported header fi eld. Message body types that
are supported should be listed in an Accept header fi eld.

UAs typically register with a proxy server in their domain.

3.2 Presence Agents

A presence agent (PA) [2] is a SIP UA that is capable of receiving subscription
requests and generating state notifi cations as defi ned by the SIP Events specifi ca-
tion [3]. An example of a presence agent can be found in Section 3.4. A presence
agent supports the presence event package [2], responds to SUBSCRIBE requests,
and sends NOTIFY requests. A presence agent also sometimes publishes event state
to an event state compositor (ESC) using PUBLISH requests, as described in Sec-
tion 4.1.9.

 SIP Clients and Servers 53

A presence agent can collect presence information from a number of de-
vices. Presence information can come from a SIP device registering, a SIP device
publishing presence information [4], or many other non-SIP sources.

A presence server is also a presence UA that can supply presence informa-
tion about a number of users, and can also act as a proxy, forwarding SUBSCRIBE
requests to another presence agents.

A presence agent fi rst authenticates a subscription request. If the authenti-
cation passes, it establishes a dialog and sends the notifi cations over that dialog.
The subscription can be refreshed by receiving new SUBSCRIBE requests.

Chapter 8 has a complete description of presence agents.

3.3 Back-to-Back User Agents

A back-to-back user agent (B2BUA) is a type of SIP UA that receives a SIP re-
quest, then reformulates the request and sends it out as a new request. As such,
some B2BUAs act like a proxy but do not follow proxy routing rules. For example,
a B2BUA device can be used to implement an anonymizer service in which two
SIP UAs can communicate without either party learning the other party’s URI,
IP address, or other information. To achieve this, an anonymizer B2BUA would
reformulate an incoming request with an entirely new From, Via, Contact,
Call-ID, and SDP media information, also removing any other SIP header fi elds
that might contain information about the calling party. The response returned
would also change the Contact and SDP media information from the called par-
ty. The modifi ed SDP would point to the B2BUA itself, which would forward
RTP media packets from the called party to the calling party and vice versa. In
this way, neither end point learns any identifying information about the other
party during the session establishment. (Of course, the calling party needs to
know the called party’s URI in order for the call to take place.)

Sometimes B2BUAs are employed to implement other SIP services. How-
ever, they break the end-to-end nature of an Internet protocol such as SIP. Also,
a B2BUA is a call-stateful single point of failure in a network, which means their
use will reduce the reliability of SIP sessions over the Internet. The relayed media
suffers from increased latency and increased probability of packet loss, which can
reduce the quality of the media session. Geographic distribution of B2BUAs can
reduce these effects, but the problem of selecting the best B2BUA for a particular
session is a very diffi cult one since the source and destination IP addresses of the
media are not known until the session is actually established (with a 200 OK).

B2BUAs can be a part of many devices. For example, many private branch
exchange (PBX) enterprise telephone systems incorporate B2BUA logic. Confer-
ence bridges and mixers also use B2BUA logic. Another type of B2BUA present
in some SIP networks is application layer gateways (ALG). Some fi rewalls have

54 SIP: Understanding the Session Initiation Protocol

ALG functionality built in, which allows a fi rewall to permit SIP and media
traffi c while still maintaining a high level of security. Another common type of
B2BUA is known as a Session Border Controller (SBC). Some common func-
tions of a SBC are listed in Table 3.1 which is from [5]. Note that many of these
functions break the end-to-end security properties of SIP and SIP security.

3.4 SIP Gateways

A SIP gateway is an application that interfaces a SIP network to a network utiliz-
ing another signaling protocol. In terms of the SIP protocol, a gateway is just a
special type of user agent, where the user agent acts on behalf of another protocol
rather than a human. A gateway terminates the signaling path and can also ter-
minate the media path, although this is not always the case. For example, a SIP
to H.323 gateway terminates the SIP signaling path and converts the signaling
to H.323, but the SIP user agent and H.323 terminal can exchange RTP media
information directly with each other without going through the gateway. An
example of this is described in Section 11.4.

A SIP to Public Switched Telephone Network (PSTN) gateway terminates
both the signaling and media paths. SIP can be translated into, or interwork
with, common PSTN protocols such as Integrated Services Digital Network
(ISDN), ISDN User Part (ISUP), and other circuit associated signaling (CAS)
protocols, which are briefl y described in Section 11.1. A PSTN gateway also con-
verts the RTP media stream in the IP network into a standard telephony trunk
or line. The conversion of signaling and media paths allows calling to and from
the PSTN using SIP. Examples of these gateways are described in Section 16.2.
Figure 3.1 shows a SIP network connected via gateways with the PSTN and an
H.323 network. The SIP/H.323 interworking function is described in [6].

In Figure 3.1, the SIP network, PSTN network, and H.323 networks are
shown as clouds, which obscure the underlying details. Connecting to the SIP

Table 3.1
Session Border Controller Functions

Function Use
Topology hiding Hiding all internal IP addresses to conceal internal topology.
Media traffi c management Controlling which media types and codecs are used.

Fixing capability mismatches
Ensuring interop when multiple ways of implementing
features happens (e.g., transfer with REFER or 3PCC).

Maintaining NAT mappings Keeping SIP-related UDP NAT Mappings alive.
Access control Authenticating and challenging requests.
Protocol repair Fixing known SIP interoperability failures in devices.
Media encryption Allows SRTP in external network but RTP in internal network.

 SIP Clients and Servers 55

cloud are SIP IP telephones, SIP-enabled PCs, and corporate SIP gateways with
attached telephones. The clouds are connected by gateways. H.323 terminals
and H.323-enabled PCs are attached to the H.323 network. The PSTN cloud
connects to ordinary analog black telephones (so-called because of the original
color of their shell), digital ISDN telephones, and corporate private branch ex-
changes (PBXs). PBXs connect to the PSTN using shared trunks and provide
line interfaces for either analog or digital telephones.

Gateways are sometimes decomposed into a media gateway (MG) and a
media gateway controller (MGC). An MGC is sometimes called a call agent
because it manages call control protocols (signaling), while the MG manages the
media connection. This decomposition is transparent to SIP; the protocols used
to decompose a gateway are described in Section 11.3.

Another difference between a user agent and a gateway is the number of
users supported. While a user agent typically supports a single user (although
perhaps with multiple lines), a gateway can support hundreds or thousands
of users. A PSTN gateway could support a large corporate customer, or an entire
geographic area. As a result, a gateway does not REGISTER every user it supports in
the same way that a user agent might. Instead, a non-SIP protocol can be used to
inform proxies about gateways and assist in routing. One protocol that has been
proposed for this is the Telephony Routing over IP (TRIP) protocol [7], which
allows an interdomain routing table of gateways to be developed. Another proto-
col called Telephony Gateway Registration Protocol (TGREP) [8] has also been
developed to allow a gateway to register with a proxy server within a domain.

Figure 3.1 A SIP network with gateways.

56 SIP: Understanding the Session Initiation Protocol

3.5 SIP Servers

SIP servers are applications that accept SIP requests and respond to them. A SIP
server should not be confused with a user agent server or the client-server nature
of the protocol, which describe operation in terms of clients (originators of re-
quests) and servers (originators of responses to requests). A SIP server is a differ-
ent type of entity; the types of SIP servers discussed in this section are logical en-
tities. Actual SIP server implementations may contain a number of server types,
or may operate as a different type of server under different conditions. Because
servers provide services and features to user agents, they must support both TCP
and UDP for transport. Figure 3.2 shows the interaction of user agents, servers,
and a location service. Note that the protocol used between a server and the loca-
tion service or database is generally not SIP and is not discussed in this book.

3.5.1 Proxy Servers

A SIP proxy server receives a SIP request from a user agent or another proxy and
acts on behalf of the user agent in forwarding or responding to the request. Just as
a router forwards IP packets at the IP layer, a SIP proxy forwards SIP messages at
the application layer. A proxy is not a B2BUA since it is only allowed to modify
requests and responses according to strict rules set out in RFC 3261. These rules
preserve the end-to-end transparency of the SIP signaling while still allowing a
proxy server to perform valuable services and functions for user agents.

Figure 3.2 SIP user agent, server, and location service interaction.

 SIP Clients and Servers 57

A proxy server typically has access to a database or a location service to aid
it in processing the request (determining the next hop). The interface between
the proxy and the location service is not defi ned by the SIP protocol. A proxy
can use any number of types of databases to aid in processing a request. Data-
bases could contain SIP registrations, presence information, or any other type of
information about where a user is located. The example in Figure 2.2 introduced
a proxy server as a facilitator of SIP message exchange, providing user location
services to the caller.

A proxy does not need to understand a SIP request in order to forward it—
any unknown request type is assumed to use the non-INVITE transaction model.
A proxy should not change the order of header fi elds or in general modify or
delete header fi elds.

A proxy server is different from a user agent or gateway in three key ways:

A proxy server does not issue requests; it only responds to requests from 1.
a user agent. (CANCEL and ACK requests are an exception to this rule.)

A proxy server has no media capabilities.2.

A proxy server does not parse message bodies; it relies exclusively on SIP 3.
header fi elds.

Figure 3.3 shows a common network topology known as the SIP Trap-
ezoid. In this topology, a pair of user agents in different domains establishes a
session using a pair of proxy servers, one in each domain. The trapezoid refers
to the shape formed by the signaling and media messages. In this confi guration,
each user agent is confi gured with a default outbound proxy server, to which it
sends all requests. This proxy server typically will authenticate the user agent
and may pull up a profi le of the user and apply outbound routing services. In an
interdomain exchange, DNS SRV queries will be used to locate a proxy server in
the other domain. This proxy, sometimes called an inbound proxy, may apply
inbound routing services on behalf of the called party. This proxy also has access
to the current registration information for the user, and can route the request to
the called party. In general, future SIP requests will be sent directly between the
two user agents, unless one or both proxies insert a Record-Route header fi eld.

A proxy server can be either stateless or stateful. A stateless proxy server
processes each SIP request or response based solely on the message contents.
Once the message has been parsed, processed, and forwarded or responded to,
no information (such as dialog information) about the message is stored. A state-
less proxy never retransmits a message, and does not use any SIP timers. Note
that the stateless loop detection using Via header fi elds described in RFC 2543
has been deprecated (removed) in RFC 3261 in favor of the use of a mandatory
Max-Forwards header fi eld in all requests.

58 SIP: Understanding the Session Initiation Protocol

A stateful proxy server keeps track of requests and responses received in
the past, and uses that information in processing future requests and responses.
For example, a stateful proxy server starts a timer when a request is forwarded.
If no response to the request is received within the timer period, the proxy will
retransmit the request, relieving the user agent of this task. Also, a stateful proxy
can require user agent authentication, as described in Chapter 14.

The most common type of SIP proxy is a transaction stateful proxy. A
transaction stateful proxy keeps state about a transaction but only for the dura-
tion of the pending request. For example, a transaction stateful proxy will keep
state when it receives an INVITE request until it receives a 200 OK or a fi nal failure
response (e.g., 404 Not Found). After that, it would destroy the state information.
This allows a proxy to perform useful search services but minimize the amount
of state storage required.

One such example of a search service is a proxy server that receives an
INVITE request, then forwards it to a number of locations at the same time, or
forks the request. This forking proxy server keeps track of each of the outstanding
requests and the response to each, as shown in Figure 3.4. This is useful if the
location service or database lookup returns multiple possible locations for the
called party that need to be tried.

In the example of Figure 3.4, the INVITE contains:

INVITE sip:support@chaos.info SIP/2.0
Via: SIP/2.0/UDP 45.2.32.1:5060 ;branch=z9hG4bK67865
Max-Forwards: 70
To: <sip:support@chaos.info>

Figure 3.3 A SIP trapezoid.

 SIP Clients and Servers 59

From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Subject: Bifurcation Question
Contact: <sip:sarkovskii@45.2.32.1>
Content-Type: application/sdp
Content-Length: ...

(SDP not shown)

The INVITE is received by the chaos.info proxy server, which forks to two
user agents. Each user agent begins alerting, sending two provisional responses
back to Sarkovskii. They are:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865
To: <sip:support@chaos.info>;tag=343214112
From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Contact: <sip:agent42@67.42.2.1>
Content-Length: 0

and:

Figure 3.4 Forking proxy operation.

60 SIP: Understanding the Session Initiation Protocol

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865
To: <sip:support@chaos.info>;tag=a5ff34d9ee201
From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Contact: <sip:agent7@67.42.2.32>
Content-Length: 0

The two responses are identical except for having different To tags
and Contact URIs. Finally, one of the two UAs answers and sends a 200 OK

response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 45.2.32.1:5060;branch=z9hG4bK67865
To: <sip:support@chaos.info>;tag=343214112
From: A. N. Sarkovskii <sip:sarkovskii@45.2.32.1>;tag=7643545
Call-ID: 0140092501
CSeq: 1 INVITE
Contact: <sip:agent42@67.42.2.1>
Content-Type: application/sdp
Content-Length: ...

(SDP not shown)

The forking proxy server sends a CANCEL to the second UA to stop that
phone alerting. If both UAs had answered, the forking proxy would have for-
warded both 200 OK responses back to the caller who then would have had to
choose which one, most likely by accepting one and sending a BYE to the other.

A stateful proxy usually sends a 100 Trying response when it receives an
INVITE. A stateless proxy never sends a 100 Trying response. A 100 Trying re-
sponse received by a proxy is never forwarded—it is a single hop only response.
A proxy handling a TCP request must be stateful, since a user agent will assume
reliable transport and rely on the proxy for retransmissions on any UDP hops in
the signaling path.1

The only limit to the number of proxies that can forward a message is con-
trolled by the Max-Forwards header fi eld, which is decremented by each proxy that
touches the request. If the Max-Forwards count goes to zero, the proxy discards
the message and sends a 483 Too Many Hops response back to the originator.

The SIP session timer extension [9] limits the time period over which a
stateful proxy must maintain state information without a refresh re-INVITE. In
the initial INVITE request, a Session-Expires header fi eld indicates a timer inter-
val after which stateful proxies may discard state information about the session.
User agents must tear down the call after the expiration of the timer. The caller
can send re-INVITEs to refresh the timer, enabling a “keep alive” mechanism for

1. TCP usually provides end-to-end reliability for applications. In SIP, however, TCP only pro-
vides single-hop reliability. End-to-end reliability is only achieved by a chain of TCP hops or TCP
hops interleaved with UDP hops and stateful proxies.

 SIP Clients and Servers 61

SIP. This solves the problem of how long to store state information in cases where
a BYE request is lost or misdirected, or in other security cases described in later
sections. The details of this implementation are described in Section 6.2.34.

3.5.2 Redirect Servers

A redirect server was introduced in Figure 2.6 as a type of SIP server that re-
sponds to, but does not forward, requests. Like a proxy server, a redirect server
uses a database or location service to lookup a user. The location information,
however, is sent back to the caller in a redirection class response (3xx), which,
after the ACK, concludes the transaction. Figure 3.5 shows a call fl ow that is very
similar to the example in Figure 3.2, except the server uses redirection instead of
proxying to assist Schroedinger in locating Heisenberg.

The INVITE from Figure 3.5 contains:

INVITE sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060 ;branch=z9hG4bK54532
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=4313413
Call-ID: 734224912341371927319032
CSeq: 1 INVITE

Figure 3.5 Example with redirect server.

62 SIP: Understanding the Session Initiation Protocol

Subject: Where are you exactly?
Contact: <sip:schroed5244@pc33.wave.org>
Content-Type: application/sdp
Content-Length: 150

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=-
t=0 0
c=IN IP4 100.101.102.103
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The redirection response to the INVITE is sent by the redirect server:

SIP/2.0 302 Moved Temporarily
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK54532
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=052500
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=4313413
Call-ID: 734224912341371927319032
CSeq: 1 INVITE
Contact: sip:werner.heisenberg@200.201.202.203
Content-Length: 0

Schroedinger acknowledges the response:

ACK sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK54532
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=052500
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=4313413
Call-ID: 734224912341371927319032
CSeq: 1 ACK
Content-Length: 0

Notice that the ACK request reuses the same branch ID as the INVITE and
the 302 response. This is because an ACK to a non-2xx fi nal response is considered
to be part of the same transaction as the INVITE. Only an ACK sent in response
to a 200 OK is considered a separate transaction with a unique branch ID. Also,
an ACK to a non-2xx fi nal response is a hop-by-hop response, not an end-to-end
response as discussed in Section 3.6.

This exchange completes this call attempt, so a new INVITE is generated
with a new Call-ID and sent directly to the location obtained from the Contact
header fi eld in the 302 response from the redirect server.

INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bK92313
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@wave.org>;tag=13473
Call-ID: 54-67-45-23-13
CSeq: 1 INVITE
Subject: Where are you exactly?

 SIP Clients and Servers 63

Contact: <sip:schroed5244@pc33.wave.org>
Content-Type: application/sdp
Content-Length: 150

v=0
o=schroed5244 2890844526 2890844526 IN IP4
00.101.102.103
s=-
t=0 0
c=IN IP4 100.101.102.103
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The call then proceeds in the same way as Figure 3.2, with the messages be-
ing identical. Note that in Figure 3.5, a 180 Ringing response is not sent; instead,
the 200 OK response is sent right away. Since 1xx informational responses are
optional, this is a perfectly valid response by the UAS if Heisenberg responded
to the alerting immediately and accepted the call. In the PSTN, this scenario is
called fast answer.

3.5.3 Registrar Servers

A SIP registrar server was introduced in the example of Figure 3.3. A registrar
server, also known as a registration server, accepts SIP REGISTER requests; all other
requests receive a 501 Not Implemented response. The contact information from
the request is then made available to other SIP servers within the same admin-
istrative domain, such as proxies and redirect servers. In a registration request,
the To header fi eld contains the name of the resource being registered, and the
Contact header fi elds contain the contact or device URIs. The registration server
creates a temporary binding between the address of record (AOR) URI in the To
and the device URI in the Contact header fi eld.

Registration servers usually require the registering user agent to be authen-
ticated, using the means described in Chapter 14, so that incoming calls can-
not be hijacked by an unauthorized user. This could be accomplished by an
unauthorized user registering someone else’s SIP URI to point to their own UA.
Incoming calls to that URI would then ring the wrong UA. Depending on the
header fi elds present, a REGISTER request can be used by a user agent to retrieve
a list of current registrations, clear all registrations, or add a registration URI to
the list. These types of requests are described in Section 4.1.2.

There are a number of ways in which a proxy may know to fork a request
to a set of UAs. One way is through manual confi guration, such as entering
the information in a Web page or database. Another way is to have multiple
registrations for the same AOR. If multiple UAs register against the same AOR,
the proxy can fork an incoming request to all of them. The priority of multiple
registrations is governed by the q-value included in the Contact header fi eld. For
contacts of the same priority, a proxy can fork the request to all of them at the

64 SIP: Understanding the Session Initiation Protocol

same time. For contacts with different priorities, a proxy can do sequential fork-
ing, sending the request in the order specifi ed by the q-values.

For full registration security, TLS must be used as HTTP digest does not
provide the needed integrity protection. Otherwise, an attacker can modify the
Contact URI in an authenticated REGISTER to point to another UA.

3.6 Uniform Resource Indicators

SIP uses a number of Uniform Resource Identifi ers. Common URIs are shown
in Table 3.2.

SIP URIs will be discussed in Section 4.2. SIPS will be covered in Chap-
ter 14. Telephony URI is covered in Section 4.2.2. Presence and IM URIs are
covered in Chapter 8, along with the XMPP URI. H.323 URIs are covered in
Section 11.4. Web URIs are defi ned in [10].

SIP uses Uniform Resource Indicators or URIs for most addresses. URIs
and URLs were introduced in Section 1.4. For SIP, the URI scheme is either sip
for a normal SIP URI or sips for a Secure SIP URI. Secure SIP means that a SIP
message sent using this URI will be protected using TLS across each hop. SIP
URIs must contain either a host name or an IP address. They usually contain a
user part, although they do not have to. For example, a URI for a proxy server
typically will not have a user part. URIs also may contain parameters. SIP URI
parameters are listed in Table 3.3. In this table, URI means any valid URI while
URN means any valid URN.

The following is a list of some examples of SIP URIs.

sip:fred@fl intstone.org
sip:vilma@fl intstone.org;transport=tcp
sip:the%20great%one@whalers.org
sip:7325551212@gw.gateway.com
sip:192.0.3.4:44352
sip:proxy34.sipstation.com

Table 3.2
Common URIs Used with SIP

URI Scheme Use Specifi cation
sip SIP RFC 3261
sips Secure SIP RFC 3261
tel Telephony RFC 3966
pres Presence RFC 3861
im Instant messaging RFC 3861
xmpp XMPP (Jabber) RFC 4622
h323 H.323 RFC 3508
http Web RFC 2616

 SIP Clients and Servers 65

sip:r3.example.com;lr
sip:+43321232;user=phone@sp.serviceprovider.org

SIP URIs can also be used to encoded telephone numbers. Sometimes, this
includes the user=phone parameter.

3.7 Acknowledgment of Messages

Most SIP requests are end-to-end messages between user agents. Proxies between
the two user agents simply forward the messages they receive and rely on the user
agents to generate acknowledgments or responses.

There are some exceptions to this general rule. The CANCEL method (used
to terminate pending calls or searches and discussed in detail in Section 4.1.5)
is a hop-by-hop request. A proxy receiving a CANCEL immediately sends a 200 OK
response back to the sender and generates a new CANCEL, which is then forwarded
in the next hop to the same set of destinations as the original request. (The order

Table 3.3
SIP URI Parameters

Parameter Specifi cation Example Common Usage
cause RFC 4458 cause=486 Voicemail
comp RFC 3486 comp=sigcomp Sigcomp compression used
content-type RFC 4240 content-type=audio Media server control
delay RFC 4240 delay=10 Media server control
duration RFC 4240 duration=60 Media server control
gr [14] gr Globally routable UA URI
local RFC 4240 local=en Media server control

lr RFC 3261 lr
Loose route parameter used in
Route and Record-Route

maddr RFC 3261 maddr=1.2.3.4 Multicast address

method RFC 3261 method=INVITE
Used to escape a method into
a URI

ob [15] ob SIP outbound
param[n] RFC 4240 param1=”today” Media server control [11]
play RFC 4240 play=URI Media server control [11]
repeat RFC 4240 repeat=forever Media server control [11]
sigcomp-id RFC 5049 sigcomp-id=URN Sigcomp ID [12]
target RFC 4240 target=IRO Media server control [11]
target RFC 4458 target=URI Voicemail [13]

ttl RFC 3261 ttl=224
Time to live for a multicast
address

transport RFC 3261 transport=tcp Transport protocol
user RFC 3261 user=phone Telephone digits in user part
voicexml RFC 4240 voicexml=URI Media server control [11]

66 SIP: Understanding the Session Initiation Protocol

of sending the 200 OK and forwarding the CANCEL is not important.) This is
shown in Figure 3.4.

Other exceptions to this rule include 3xx, 4xx, 5xx, and 6xx responses to
an INVITE request. While an ACK to a 2xx response is generated by the end point,
a 3xx, 4xx, 5xx, or 6xx response is acknowledged on a hop-by-hop basis. A
proxy server receiving one of these responses immediately generates an ACK back
to the sender and forwards the response to the next hop. This type of hop-by-
hop acknowledgment is shown in Figure 4.2.

ACK messages are only sent to acknowledge responses to INVITE requests.
For responses to all other request types, there is no acknowledgment. A lost re-
sponse is detected by the UAS when the request is retransmitted.

3.8 Reliability

SIP has reliability mechanisms defi ned, which allow the use of unreliable trans-
port layer protocols such as UDP. When SIP uses TCP, these mechanisms are
not used, since it is assumed that TCP will retransmit the message if it is lost and
inform the client if the server is unreachable.

For SIP transport using UDP, there is always the possibility of messages
being lost or even received out of sequence, because UDP guarantees only that
the datagram is error free. A UAS validates and parses a SIP request to make sure
that the UAC has not errored by creating a request missing required header fi elds
or other syntax violations. Reliability mechanisms in SIP include:

Retransmission timers;•

Increasing command sequence • CSeq numbers;

Positive acknowledgments. •

How SIP handles retransmissions depends on the method. One retransmis-
sion scheme is defi ned for INVITEs, known as INVITE transactions, and another is
defi ned for all other methods, known as a non-INVITE transaction.

For non-INVITE transactions, a SIP timer, T1, is started by a UAC or a
stateful proxy server when a new request is generated or sent. If no response to
the request (as identifi ed by a response containing the identical local tag, remote
tag, Call-ID, and CSeq) is received when T1 expires, the request is resent. After a
request is retransmitted, the next timer period is doubled until T2 is reached. If
a provisional (informational class 1xx) response is received, the UAC or stateful
proxy server immediately switches to timer T2. After that, the remaining retrans-
missions occur at T2 intervals. This capped exponential backoff process is con-
tinued until a 64*T1, after which the request is declared dead. A stateful proxy

 SIP Clients and Servers 67

server that receives a retransmission of a request discards the retransmission and
continues its retransmission schedule based on its own timers. Typically, it will
resend the last provisional response. This retransmission scheme for non-INVITE
is shown in Figure 3.6 for a REFER request.

For an INVITE transaction, the retransmission scheme is slightly different.
INVITEs are retransmitted starting at T1, and then the timer is doubled after each
retransmission. The INVITE is retransmitted until 64*T1 after which the request
is declared dead. After a provisional (1xx) response is received, the INVITE is
never retransmitted. This retransmission scheme is shown in Figure 3.7. A proxy
may discard the transaction state after 3 minutes. A stateful proxy must store
a forwarded request or generated response message for 32 seconds. Suggested
default values for T1 and T2 are 500 ms and 4 seconds, respectively. Timer T1 is
supposed to be an estimate of the roundtrip time (RTT) in the network. Longer
values are allowed, but not shorter ones, because this will generate more message
retransmissions. See Table 4 in RFC 3261 [1] for a summary of SIP timers.

Note that gaps in CSeq number do not always indicate a lost message. In
the authentication examples, not every request (and hence CSeq) generated by

Figure 3.6 A SIP reliability example of a non-INVITE transaction.

68 SIP: Understanding the Session Initiation Protocol

the UAC will reach the UAS if authentication challenges occur by proxies in the
path.

3.9 Multicast Support

SIP support for UDP multicast has been mentioned in previous sections. There
are two main uses for multicast in SIP.

SIP registration can be done using multicast, by sending the REGISTER mes-
sage to the well-known “All SIP Servers” URI sip:sip.mcast.net at IP address
224.0.1.75 for IPv4. The ttl parameter is usually set to 1 to indicate that only a
single hop should be used.

RFC 2543 defi ned sending other SIP messages, including INVITE, over
multicast. However, this was not included in RFC 3261 and is no longer con-
sidered standard SIP.

Figure 3.7 A SIP reliability example of an INVITE transaction.

 SIP Clients and Servers 69

The use of a multicast address is indicated by the maddr parameter in a URI
or in a SIP message using the maddr parameter in the Via header fi eld.

3.10 Conclusion

This chapter introduced SIP clients and servers, discussing user agents, gateways,
proxies, redirect servers, and registrars. SIP URIs, reliability, and retransmissions
were also covered.

3.11 Questions

Q3.1 Fill in the missing messages in the call fl ow in Figure 3.8 with two
 UAs and one proxy.

Q3.2 A UA sends an OPTIONS to another UA, which does not respond.
 Assume T1 = 500 ms and T2 = 4 seconds. Show the timing of the
 retransmissions relative to t = 0 when the fi rst OPTIONS is sent.
 How many messages are sent all together?

Q3.3 Fill in the CSeq header fi elds (number and method) for each of the
 messages in Figure 3.9.

Figure 3.8 Call fl ow for Question Q3.1.

70 SIP: Understanding the Session Initiation Protocol

Q3.4 Add the missing SIP messages and responses for the call fl ow in
 Figure 3.10. Assume the proxy does not Record-Route (Hint:
 there are 6 missing messages that will result in just a single media
 session between Alice and Bob.)

Figure 3.9 Call fl ow for Question Q3.3.

Figure 3.10 Call fl ow for Question Q3.4.

 SIP Clients and Servers 71

Q3.5 Fill in the time intervals for the retransmission example in Figure
 3.11.

Q3.6 What are two ways that a proxy knows to fork a request?

Q3.7 When does a proxy generate an ACK to a response, and when does
 it just forward the response without generating an ACK?

Q3.8 What is the difference between a redirect server and a proxy server?

Q3.9 What is the purpose of a SIP registrar server?

Q3.10 A UA sends a REGISTER. After 2.3 seconds, a 100 Trying

 response is received. After another 0.7 second, a 200 OK response
 is received. In total, how many times was the REGISTER request
 sent?

Figure 3.11 Call fl ow for Question Q3.6.

72 SIP: Understanding the Session Initiation Protocol

References

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [1]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” RFC [2]
3856, August 2004.

Roach, A., “Session Initiation Protocol (SIP)—Specific Event Notification,” RFC 3265, [3]
June 2002.

Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC [4]
3903, October 2004.

Hautakorpi, J., et al., “Requirements from SIP (Session Initiation Protocol) Session Border [5]
Control Deployments,” draft-ietf-sipping-sbc-funcs-08 (work in progress), January 2009.

Schulzrinne, H., and C. Agboh, “Session Initiation Protocol (SIP)-H.323 Interworking [6]
Requirements,” RFC 4123, July 2005.

Rosenberg, J., H. Salama, and M. Squire, “Telephony Routing over IP (TRIP),” RFC 3219, [7]
January 2002.

Bangalore, M., et al., “A Telephony Gateway Registration Protocol (TGREP),” RFC 5140, [8]
March 2008.

Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),” [9]
RFC 4028, April 2005.

Fielding, R., et al., “Hypertext Transfer Protocol—HTTP/1.1,” RFC 2616, June 1999. [10]

Burger, E., J. Van Dyke, and A. Spitzer, “Basic Network Media Services with SIP,” RFC [11]
4240, December 2005.

Bormann, C., et al., “Applying Signaling Compression (SigComp) to the Session Initiation [12]
Protocol (SIP),” RFC 5049, December 2007.

Jennings, C., F. Audet, and J. Elwell, “Session Initiation Protocol (SIP) URIs for Applications [13]
such as Voicemail and Interactive Voice Response (IVR),” RFC 4458, April 2006.

Rosenberg, J., “Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) [14]
in the Session Initiation Protocol (SIP),” draft-ietf-sip-gruu-15 (work in progress), October
2007.

Jennings, C., and R. Mahy, “Managing Client Initiated Connections in the Session [15]
Initiation Protocol (SIP),” draft-ietf-sip-outbound-20 (work in progress), June 2009.

73

4
SIP Request Messages
This chapter covers the types of SIP requests called methods. Six are described
in the SIP specifi cation document RFC 3261 [1]. Eight more methods are de-
scribed in separate RFC documents. After discussing the methods, this chapter
concludes with a discussion of SIP URLs and URIs, tags, and message bodies.

4.1 Methods

SIP requests or methods are considered “verbs” in the protocol, since they re-
quest a specifi c action to be taken by another user agent or server. The INVITE,
REGISTER, BYE, ACK, CANCEL, and OPTIONS methods are the original six methods
in SIP. The REFER, SUBSCRIBE, NOTIFY, PUBLISH, MESSAGE, UPDATE, INFO, and
PRACK methods are described in separate RFCs.

A user agent (UA) receiving a method it does not support replies with a 501
Not Implemented response. Method names are case sensitive and conventionally
use all uppercase for visual clarity to distinguish them from header fi elds, which
use both upper and lower case. Note that a proxy does not need to understand
a request method in order to forward the request. A proxy treats an unknown
method as if it were an OPTIONS; that is, it forwards the request to the destina-
tion if it can. This allows new features and methods useful for user agents to be
introduced without requiring support from proxies that may be in the middle.
UAs should indicate which methods they support in an Allow header fi eld in
requests and responses.

4.1.1 INVITE

The INVITE method is used to establish media sessions between user agents. In
telephony, it is similar to a Setup message in ISDN or an initial address mes-
sage (IAM) in ISUP. (PSTN protocols are briefl y introduced in Section 11.1.)

74 SIP: Understanding the Session Initiation Protocol

Responses to INVITEs are always acknowledged with the ACK method described
in Section 4.1.4. Examples of the use of the INVITE method are described in
Chapter 2.

An INVITE usually has a message body containing the media information
of the caller. The message body can also contain other session information, such
as a resource list. If an INVITE does not contain media information, the ACK con-
tains the media information of the UAC. An example of this call fl ow is shown
in Figure 4.1. If the media information contained in the ACK is not acceptable,
then the called party must send a BYE to cancel the session—a CANCEL cannot
be sent because the session is already established. A media session is considered
established when the INVITE, 200 OK, and ACK messages have been exchanged
between the UAC and the UAS. A successful INVITE request establishes a dialog
between the two user agents, which continues until a BYE is sent by either party
to end the session, as described in Section 4.1.3.

A UAC that originates an INVITE to establish a dialog creates a globally
unique Call-ID that is used for the duration of the call. A CSeq count is initial-
ized (which need not be set to 1, but must be an integer) and incremented for
each new request for the same Call-ID. The To and From headers are populated
with the remote and local addresses. A From tag is included in the INVITE, and
the UAS includes a To tag in any responses, as described in Section 4.3. A To tag
in a 200 OK response to an INVITE is used in the To header fi eld of the ACK and all
future requests within the dialog. The combination of the To tag, From tag, and
Call-ID is the unique identifi er for the dialog.

An INVITE sent for an existing dialog references the same Call-ID as the
original INVITE and contains the same To and From tags. Sometimes called a
re-INVITE, the request is used to change the session characteristics or refresh
the state of the dialog. The CSeq command sequence number is incremented so

Figure 4.1 INVITE without an SDP offer.

 SIP Request Messages 75

that a UAS can distinguish the re-INVITE from a retransmission of the original
INVITE.

If a re-INVITE is refused or fails in any way, the session continues as if the
INVITE had never been sent. A re-INVITE must not be sent by a UAC until a fi nal
response to the initial INVITE has been received—instead, an UPDATE request can
be sent, as described in Section 4.1.14. There is an additional case where two
UAs simultaneously send re-INVITEs to each other. This is handled in the same
way with a Retry-After header. This condition is called glare in telephony (see
Figure 5.3) and occurs when both ends of a trunk group seize the same trunk at
the same time.

An Expires header in an INVITE indicates to the UAS how long the call
request is valid. For example, the UAS could leave an unanswered INVITE request
displayed on a screen for the duration specifi ed in the Expires header. Once a
session is established, the Expires header has no meaning—the expiration of the
time does not terminate the media session. Instead, a Session-Expires header
can be used to place a time limit on an established session without a re-INVITE
or UPDATE refresh.

An example INVITE request with a SDP message body is shown here:

INVITE sip:411@salzburg.at;user=phone SIP/2.0
Via: SIP/2.0/UDP salzburg.edu.at:5060;branch=z9hG4bK1d32hr4
Max-Forwards:70
To: <sip:411@salzburg.at;user=phone>
From: Christian Doppler <sip:c.doppler@salzburg.edu.at>
 ;tag=817234
Call-ID: 12-45-A5-46-F5-43-32-F3-C2
CSeq: 1 INVITE
Subject: Train Timetables
Allow: INVITE, ACK, CANCEL, BYE, OPTIONS, REFER, SUBSCRIBE,
 NOTIFY
Contact: sip:c.doppler@salzburg.edu.at
Content-Type: application/sdp
Content-Length: 195

v=0
o=doppler 2890842326 2890844532 IN IP4 salzburg.edu.at
s=-
c=IN IP4 50.61.72.83
t=0 0
m=audio 49172 RTP/AVP 97 98 0
a=rtpmap:97 iLBC/8000
a=rtpmap:98 SPEEX/8000
a=rtpmap:0 PCMU/8000

In addition to the required headers, this request contains the optional
Subject and Allow header fi elds. Note that this Request-URI contains a phone
number. Phone number support in SIP URIs is described in Section 4.2.

The mandatory and header fi elds in an INVITE request are shown in Table
4.1.

76 SIP: Understanding the Session Initiation Protocol

Table 4.1
Mandatory Header Fields in an INVITE

Via

To

From

Call-ID

CSeq

Contact

Max-Forwards

4.1.2 REGISTER

The REGISTER method is used by a UA to notify a SIP network of its current
Contact URI (IP address) and the URI that should have requests routed to this
Contact. As mentioned in Section 3.5.3, SIP registration bears some similarity
to cell phone registration on initialization. Registration is not required to enable
a user agent to use a proxy server for outgoing calls. It is necessary, however, for
a user agent to register to receive incoming calls from proxies that serve that do-
main, unless some non-SIP mechanism is used by the location service to popu-
late the SIP URIs and Contacts of end points. A REGISTER request may contain
a message body, although its use is not defi ned in the standard. Depending on
the use of the Contact and Expires headers in the REGISTER request, the registrar
server will take different actions. Examples of this are shown in Table 4.2. If
no expires parameter or Expires header is present, a SIP URI will expire in 1
hour. The presence of an Expires header sets the expiration of Contacts with no
 expires parameter. If an expires parameter is present, it sets the expiration time
for that Contact only. Non-SIP URIs have no default expiration time.

The CSeq is incremented for a REGISTER request. The use of the Request-
URI, To, From, and Call-ID headers in a REGISTER request is slightly different

Table 4.2
Example Registration Contact URIs

Request Headers Registrar Action
Contact: *
Expires: 0 Cancel all registrations.

Contact: sip:galvani@bologna.edu.it
;expires=1800

Add Contact to current registrations;
registration expires in 30 minutes.

Contact: sip:sgalvani@192.34.3.1
Expires: 1800

Add Contact to current registrations;
registration expires in 30 minutes.

Contact: mailto:galvani@bologna.edu.it
;q=0.1 Add email URL, which doesn’t expire.

No Contact header present
Return all current registrations in
response.

 SIP Request Messages 77

than for other requests. The Request-URI contains only the domain of the reg-
istrar server with no user portion. The REGISTER request may be forwarded or
proxied until it reaches the authoritative registrar server for the specifi ed domain.
The To header contains the SIP URI of the AOR (address of record) of the user
agent that is being registered. The From contains the SIP URI of the sender of
the request, usually the same as the To header. It is recommended that the same
Call-ID be used for all registrations by a user agent.

A user agent sending a REGISTER request may receive a 3xx redirection or
4xx failure response containing a Contact header of the location to which regis-
trations should be sent.

A third-party registration occurs when the party sending the registration
request is not the party that is being registered. In this case, the From header will
contain the URI of the party submitting the registration on behalf of the party
identifi ed in the To header. Chapter 2 contains an example of a fi rst-party regis-
tration. An example third-party registration request for the user Euclid is shown
here:

REGISTER sip:registrar.athens.gr SIP/2.0
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK313
Max-Forwards:70
To: sip:euclid@athens.gr
From: <sip:secretary@academy.athens.gr>;tag=543131
Call-ID: 48erl8132409wqer
CSeq: 1 REGISTER
Contact: sip:euclid@parthenon.athens.gr
Contact: mailto:euclid@geometry.org
Content-Length: 0

In some cases, the Contact URI provided by a UA in a registration may not
be routable. For example, if the UA is behind a NAT, or if a fi rewall is confi gured
to block incoming requests from arbitrary hosts. If this Contact URI is used
outside a SIP dialog (for example, in sending a REFER or performing attended
transfer), then call control operations might fail. An extension mechanism has
been developed in which a UA can request from a registrar a so-called Globally
Routable User Agent URI or GRUU [2]. This URI can be used in Contact head-
er fi elds and other places the device wants to be directly reachable. A UA includes
a Supported:gruu header fi eld in a REGISTER request and a sip.instance feature
tag, and if the registrar supports the mechanism, a GRUU will be returned in
the 200 OK to the register in the pub-gruu and temp-gruu Contact header fi eld
parameters. The temp-gruu changes each time a registration is refreshed, while
the pub-gruu is valid as long as the registration is refreshed. An example Contact
header fi eld containing a GRUU is shown here:

Contact: <sip:euclid@201.202.203.204>
 ;pub-gruu=”sip:euclid@athens.gr;gr=urn:uuid:00a0dc91e6bdf6”
 ;temp-gruu=”sip:k20fl asdf2da@athens.gr;gr”

78 SIP: Understanding the Session Initiation Protocol

 ;+sip.instance=”<urn:uuid:00a0dc91e6bdf6>”
 ;expires=1800

The mandatory headers in a REGISTER request are shown in Table 4.3.

4.1.3 BYE

The BYE method is used to terminate an established media session. In telephony,
it is similar to a release message. A session is considered established if an INVITE
has received a success class response (2xx) or an ACK has been sent. A BYE is sent
only by UAs participating in the session, never by proxies or other third parties.
It is an end-to-end method, so responses are only generated by the other UA. A
UA responds with a 481 Dialog/Transaction Does Not Exist to a BYE for an
unknown dialog.

A BYE cannot be used to cancel pending INVITEs because it will not be
forked like an INVITE and may not reach the same set of UAs as the INVITE. An
example BYE request looks like the following:

BYE sip:info@hypotenuse.org SIP/2.0
Via: SIP/2.0/TCP port443.hotmail.com:54212;branch=z9hG4bK312bc
Max-Forwards:70
To: <sip:info@hypotenuse.org>;tag=63124
From: <sip:pythag42@hotmail.com>;tag=9341123
Call-ID: 34283291273
CSeq: 47 BYE
Content-Length: 0

The mandatory headers in a BYE request are shown in Table 4.4.

4.1.4 ACK

The ACK method is used to acknowledge fi nal responses to INVITE requests. Final
responses to all other requests are never acknowledged. Final responses are de-
fi ned as 2xx, 3xx, 4xx, 5xx, or 6xx class responses. The CSeq number is never
incremented for an ACK, but the CSeq method is changed to ACK. This is so that a
UAS can match the CSeq number of the ACK with the number of the correspond-
ing INVITE.

Table 4.3
Mandatory Header Fields in a REGISTER

Via

To

From

Call-ID

CSeq

Max-Forwards

 SIP Request Messages 79

An ACK may contain an application/sdp message body. This is permitted if
the initial INVITE did not contain a SDP message body. If the INVITE contained
an SDP offer message body, the ACK may not contain an SDP message body. The
ACK may not be used to modify a media description that has already been sent
in the initial INVITE; a re-INVITE or UPDATE must be used for this purpose. SDP
in an ACK is used in some interworking scenarios with other protocols where the
media characteristics may not be known when the initial INVITE is generated
and sent.

For 2xx responses, the ACK is end-to-end, but for all other fi nal responses it
is done on a hop-by-hop basis when stateful proxies are involved. As a result, a
proxy will generate an ACK for a 3xx, 4xx, 5xx, or 6xx response to an INVITE, as
well as forwarding the response. The end-to-end nature of ACKs to 2xx responses
allows a message body to be transported. An ACK generated in a hop-by-hop ac-
knowledgment will contain just a single Via header with the address of the proxy
server generating the ACK. The difference between hop-by-hop acknowledgments
and response end-to-end acknowledgments is shown in the message fragments
of Figure 4.2.

A hop-by-hop ACK reuses the same branch ID as the INVITE since it is con-
sidered part of the same transaction. An end-to-end ACK uses a different branch
ID as it is considered a new transaction.

A stateful proxy receiving an ACK message must determine whether or not
the ACK should be forwarded downstream to another proxy or user agent. That is,
is the ACK a hop-by-hop ACK or an end-to-end ACK? This is done by comparing the
branch ID for a match pending transaction branch IDs. If there is not an exact
match, the ACK is proxied toward the UAS. Otherwise, the ACK is for this hop and
is not forwarded by the proxy. Here is an example ACK containing SDP:

ACK sip:laplace@mathematica.org SIP/2.0
Via: SIP/2.0/TCP 128.5.2.1:5060;branch=z9hG4bK1834
Max-Forwards:70
To: Marquis de Laplace <sip:laplace@mathematica.org>
 ;tag=90210
From: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>
 ;tag=887865
Call-ID: 152-45-32-N-32-23-47-W

Table 4.4
Mandatory Header Fields in a BYE

Via

To

From

Call-ID

CSeq

Max-Forwards

80 SIP: Understanding the Session Initiation Protocol

CSeq: 3 ACK
Content-Type: application/sdp
Content-Length: 172

v=0
o=bowditch 2590844326 2590944532 IN IP4 salem.ma.us
s=Bearing
c=IN IP4 salem.ma.us
t=0 0
m=audio 32852 RTP/AVP 96 0
a=rtpmap:96 SPEEX/8000
a=rtpmap:0 PCMU/8000

The mandatory and optional headers in an ACK message are shown in Table
4.5.

Figure 4.2 End-to-end versus hop-by-hop acknowledgments.

Table 4.5
Mandatory Header Fields in an ACK

Via

To

From

Call-ID

CSeq

Max-Forwards

 SIP Request Messages 81

4.1.5 CANCEL

The CANCEL method is used to terminate pending INVITEs or call attempts. It can
be generated by either user agents or proxy servers provided that a 1xx response
containing a tag has been received, but no fi nal response has been received. A
UA uses the method to cancel a pending call attempt it had initiated earlier. A
forking proxy can use the method to cancel pending parallel branches after a
successful response has been proxied back to the UAC. CANCEL is a hop-by-hop
request and receives a response generated by the next stateful element. The dif-
ference between a hop-by-hop request and an end-to-end request is shown in
Figure 4.3. The CSeq is not incremented for this method so that proxies and user
agents can match the CSeq of the CANCEL with the CSeq of the pending INVITE to
which it corresponds.

The branch ID for a CANCEL matches the INVITE that it is canceling. A
CANCEL only has meaning for an INVITE since only an INVITE may take several
seconds (or minutes) to complete. All other SIP requests complete immediately
(that is, a UAS must immediately generate a fi nal response). Consequently, the
fi nal result will always be generated before the CANCEL is received.

A proxy receiving a CANCEL forwards the CANCEL to the same set of locations
with pending requests that the initial INVITE was sent. A proxy does not wait for
responses to the forwarded CANCEL requests, but responds immediately. A UA
confi rms the cancellation with a 200 OK response to the CANCEL and replies to the
INVITE with a 487 Request Terminated response.

If a fi nal response has already been received, a UA will need to send a BYE to
terminate the session. This is also the case in the race condition where a CANCEL

Figure 4.3 End-to-end versus hop-by-hop requests.

82 SIP: Understanding the Session Initiation Protocol

and a fi nal response cross in the network, as shown in Figure 4.4. In this example,
the CANCEL and 200 OK response messages cross between the proxy and the UAS.
The proxy still replies to the CANCEL with a 200 OK, but then also forwards the 200
OK response to the INVITE. The 200 OK response to the CANCEL sent by the proxy
only means that the CANCEL request was received and has been forwarded—the
UAC must still be prepared to receive further fi nal responses. No 487 response is
sent in this scenario. The session is canceled by the UAC sending an ACK then a
BYE in response to the 200 OK.

Since it is a hop-by-hop request, a CANCEL may not contain a message body.
An example CANCEL request contains:

CANCEL sip:i.newton@cambridge.edu.gb SIP/2.0
Via: SIP/2.0/UDP 10.downing.gb:5060
 ;branch=z9hG4bK3134134
Max-Forwards:70
To: Isaac Newton <sip:i.newton@cambridge.edu.gb>
From: Rene Descartes <sip:visitor@10.downing.gb>;tag=034323
Call-ID: 23d8e0e4e2e505329299e288bbd4155a
CSeq: 32156 CANCEL
Content-Length: 0

The mandatory header fi elds in a CANCEL request are shown in Table 4.6.

4.1.6 OPTIONS

The OPTIONS method is used to query a user agent or server about its capabilities
and discover its current availability. The response to the request lists the capabili-

Figure 4.4 Race condition in call cancellation.

 SIP Request Messages 83

ties of the user agent or server. A proxy never generates an OPTIONS request. A user
agent or server responds to the request as it would to an INVITE (i.e., if it is not
accepting calls, it would respond with a 4xx or 6xx response). A success class (2xx)
response can contain Allow, Accept, Accept-Encoding, Accept-Language, and
Supported headers indicating its capabilities. Feature tags (such as audio, video
[3], and isfocus [4]) should be included with the Contact header fi eld.

An OPTIONS request may not contain a message body. A proxy determines
if an OPTIONS request is for itself by examining the Request-URI. If the Request-
URI contains the address or host name of the proxy, the request is for the proxy.
Otherwise, the OPTIONS is for another proxy or user agent and the request is
forwarded. An example OPTIONS request and response contains:

OPTIONS sip:user@carrier.com SIP/2.0
Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk
 ;branch=z9hG4bK1834
Max-Forwards:70
To: <sip:wiliamhopkins@cam.ac.uk>
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=34
Call-ID: 747469e729acd305
CSeq: 29 OPTIONS
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk;tag=512A6
 ;branch=z9hG4bK0834 ;received=192.0.0.2
To: <sip:wiliamhopkins@cam.ac.uk>;tag=432
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=34
Call-ID: 747469e729acd305
CSeq: 29 OPTIONS
Contact: <sip:william@tutors.cam.ac.uk>;audio;video
Allow: INVITE, OPTIONS, ACK, BYE, CANCEL, REFER
Supported: replaces, join
Accept-Language: en, de, fr
Content-Type: application/sdp
Content-Length: 170

v=0
o=jc 2590845378 2590945578 IN IP4 tutors.cam.ac.uk
s=-
c=IN IP4 tutors.cam.ac.uk

Table 4.6
Mandatory Header Fields in a CANCEL

Via

To

From

Call-ID

CSeq

Max-Forwards

84 SIP: Understanding the Session Initiation Protocol

t=0 0
m=audio 32852 RTP/AVP 96 0
a=rtpmap:96 SPEEX/8000
a=rtpmap:0 PCMU/8000
m=video 82852 RTP/AVP 34
a=rtpmap:34 H263/90000

The mandatory headers in an OPTIONS request is listed in Table 4.7.

4.1.7 SUBSCRIBE

The SUBSCRIBE method [5] is used by a UA to establish a subscription for the
purpose of receiving notifi cations (via the NOTIFY method) about a particular
event. A successful subscription establishes a dialog between the UAC and the
UAS. The subscription request contains an Expires header fi eld, which indicates
the desired duration of the existence of the subscription. After this time period
passes, the subscription is automatically terminated. The subscription can be
refreshed by sending another SUBSCRIBE within the dialog before the expiration
time. A server accepting a subscription returns a 200 OK response also containing
an Expires header fi eld. The expiration timer can be the same as the request, or
the server may shorten the interval, but it may not lengthen the interval. There
is no UNSUBSCRIBE method used in SIP—instead a SUBSCRIBE with Expires:0
requests the termination of a subscription and hence the dialog. A terminated
subscription (either due to timeout out or a termination request) will result in
a fi nal NOTIFY indicating that the subscription has been terminated (see Section
4.1.8 on NOTIFY). A 202 Accepted response to a SUBSCRIBE does not indicate
whether the subscription has been authorized—it merely means it has been un-
derstood by the server.

The basic call fl ow is shown in Figure 4.5. The client sends a SUBSCRIBE,
which is successful, and receives NOTIFYs as the requested events occur at the
server. Before the expiration of the subscription time, the client re-SUBSCRIBEs to
extend the subscription and hence receives more notifi cations.

Note that a client must be prepared to receive a NOTIFY before receiving a
200 OK response to the SUBSCRIBE. Also, due to forking, a client must be prepared
to receive NOTIFYs from multiple servers (the NOTIFYs will have different To tags

Table 4.7
Mandatory Header Fields in an OPTIONS

Via

To

From

Call-ID

CSeq

Max-Forwards

 SIP Request Messages 85

and hence will establish separate dialogs), although only one 200 OK response to
the SUBSCRIBE may be received.

An example SUBSCRIBE request is shown below:

SUBSCRIBE sip:ptolemy@rosettastone.org SIP/2.0
Via SIP/2.0/UDP proxy.elasticity.co.uk:5060
 ;branch=z9hG4bK348471123
Via SIP/2.0/UDP parlour.elasticity.co.uk:5060
 ;branch=z9hG4bKABDA ;received=192.0.3.4
Max-Forwards: 69
To: <sip:Ptolemy@rosettastone.org>
From: Thomas Young <sip:tyoung@elasticity.co.uk>;tag=1814
Call-ID: 452k59252058dkfj34924lk34
CSeq: 3412 SUBSCRIBE
Allow-Events: dialog
Contact: <sip:tyoung@parlour.elasticity.co.uk>
Event: dialog
Content-Length: 0

The type of event subscription is indicated by the required Event header
fi eld in the SUBSCRIBE request. Each application of the SIP Events framework [5]
defi nes a package with a unique event tag. Each package defi nes the following:

Figure 4.5 Example SUBSCRIBE and NOTIFY call fl ow.

86 SIP: Understanding the Session Initiation Protocol

Default subscription expiration interval;•

Expected • SUBSCRIBE message bodies;

What events cause a • NOTIFY to be sent, and what message body is
 expected in the NOTIFY;

Whether the • NOTIFY contains complete state or increments (deltas);

Maximum notifi cation rate.•

A protocol called PSTN and Internet Interworking (PINT) [6] defi nes
methods SUBSCRIBE, NOTIFY, and UNSUBSCRIBE, which have a similar semantic
to SIP. A server can distinguish a PINT SUBSCRIBE request from a SIP SUBSCRIBE
by the absence of an Event header fi eld in the PINT request. A server should
indicate which event packages it supports by listing them in an Allow-Events
header fi eld.

If a SUBSCRIBE refresh is sent within a dialog but receives a 481 Dialog
Does Not Exist response, this means that the server has already terminated the
subscription. The client should consider the dialog and subscription terminated
and send a SUBSCRIBE to establish a new dialog and subscription.

An event template package is a special type that can be applied to any other
package. The application of a template package to a package is shown by separat-
ing the package and template package names with a “.” as in presence.winfo,
[7] which is the application of the watcher info template package to the presence
package. Table 4.8 lists the current set of SIP event and template packages.

Table 4.9 lists the mandatory header fi elds in a SUBSCRIBE request. Packages
are standardized in the IETF based on the requirements in [5].

Table 4.8
SIP Event Packages

Package Name Use Specifi cation
conference Conferencing [7] RFC 4579
consent-pending-
additions Consent framework [8] RFC 5362

dialog SIP dialog information [9] RFC 4235
kpml Key Press Markup Language [10] RFC 4730
message-summary Voicemail [11] RFC 3842
presence Presence [12] RFC 3845
reg Registration [13] RFC 3680
refer Refer [14] RFC 3515
.winfo Watcher template [15] RFC 3857
vq-rtcpx RTCP VoIP summary [16] Draft

 SIP Request Messages 87

4.1.8 NOTIFY

The NOTIFY method [5] is used by a user agent to convey information about the
occurrence of a particular event. A NOTIFY is always sent within a dialog when a
subscription exists between the subscriber and the notifi er. However, it is pos-
sible for a subscription to be established using non-SIP means (no SUBSCRIBE is
sent) and may also be implicit in another SIP request type (for example, a REFER
establishes an implicit subscription). Since it is sent within a dialog, the NOTIFY
will contain a To tag, From tag, and existing Call-ID. A basic call fl ow showing
NOTIFY is in Figure 4.5.

A NOTIFY request normally receives a 200 OK response to indicate that it has
been received. If a 481 Dialog/Transaction Does Not Exist response is received,
the subscription is automatically terminated and no more NOTIFYs are sent.

NOTIFY requests contain an Event header fi eld indicating the package and
a Subscription-State header fi eld indicating the current state of the subscrip-
tion. The Event header fi eld will contain the package name used in the subscrip-
tion. Currently defi ned packages are listed in Table 4.8. The Subscription-State
header fi eld will either be active, pending, or terminated.

A NOTIFY is always sent at the start of a subscription and at the termination
of a subscription. If a NOTIFY contains incremental (delta) state information, the
message body will contain a state version number that will be incremented by 1
for each NOTIFY sent. This way, the receiver of the NOTIFY can tell if information
is missing or received out of sequence.

An example NOTIFY request is shown here:

NOTIFY sip:tyoung@parlour.elasticity.co.uk SIP/2.0
Via SIP/2.0/UDP cartouche.rosettastone.org:5060
 ;branch=z9hG4bK3841323
Max-Forwards: 70
To: Thomas Young <sip:tyoung@elasticity.co.uk>;tag=1814
From: <sip:ptolemy@rosettastone.org>;tag=5363956k
Call-ID: 452k59252058dkfj34924lk34
CSeq: 3 NOTIFY
Contact: <sip:ptolemy@cartouche.rosettastone.org>

Table 4.9
Mandatory Header Fields in a SUBSCRIBE

Via

To

From

Call-ID

CSeq

Max-Forwards

Contact

Event

Allow-Events

88 SIP: Understanding the Session Initiation Protocol

Event: dialog
Subscription-State: active;expires=180
Allow-Events: dialog
Content-Type: application/xml+dialog
Content-Length: ...

(XML Message body not shown...)

Table 4.10 lists the mandatory header fi elds in a NOTIFY request.

4.1.9 PUBLISH

The PUBLISH method [17] is used by a user agent to send (or publish) event state
information to a server known as an event state compositor (ESC). PUBLISH is
most useful when there are multiple sources of event information, such as a
number of devices sharing the same AOR. In this case, to fi nd the complete state,
another UA would need to subscribe individually to all the devices. Instead, the
UA can subscribe to the ESC. Individual UAs send PUBLISHes to the ESC, which
processes them and puts them together, generating NOTIFYs to watchers as shown
in Figure 4.6.

An example PUBLISH request is shown here:

PUBLISH sip:percy@lowell.edu SIP/2.0
Via SIP/2.0/UDP telescope32.lowell.edu:54620
 ;branch=z9hG4bK43d132s3
Max-Forwards: 70
To: <sip:percy@lowell.edu>
From: <sip:percy@lowell.edu>;tag=5645fg432f
Call-ID: 34jdUhwiQhd72e
CSeq: 352 PUBLISH
Contact: <sip:percy@telescope32.lowell.edu:54620>
Event: presence
Min-Expires: 1800
Expires: 3600
Allow-Events: presence
Content-Type: application/xml+pidf

Table 4.10
Mandatory Header Fields in a NOTIFY
To

Via

To

From

Call-ID

CSeq

Max-Forwards

Event

Allow-Events

Subscription-State

 SIP Request Messages 89

Content-Length: ...

(XML Message body not shown...)

A PUBLISH request is similar to a NOTIFY, except it is not sent in a dialog.
A PUBLISH request must contain an Expires header fi eld and a Min-Expires
header fi eld. The Expires header fi eld indicates the maximum time when the
ESC may discard the event state information, unless it is updated or refreshed.
The Min-Expires header fi eld indicates the minimum expiration that the ESC
may choose. In the 200 OK response to the PUBLISH, the Expires header fi eld will
indicate the value chosen by the ESC, which must be between the Min-Expires
and Expires intervals. If the Min-Expires interval is too short, the ESC may
respond with a 423 Interval Too Brief response containing a Min-Expires
interval acceptable to the ESC. The presence UA must then republish the infor-
mation using this interval.

When an ESC receives and processes a PUBLISH it generates an entity-tag,
a unique identifi er for this piece of event state information, and returns the tag
in a SIP-ETag header fi eld of the 200 OK response. For example, here is a 200 OK
response to the above PUBLISH:

SIP/2.0 200 OK
Via SIP/2.0/UDP telescope32.lowell.edu:54620
 ;branch=z9hG4bK43d132s3;received=173.34.3.1
Max-Forwards: 70
To: <sip:percy@lowell.edu>;tag=23211d
From: <sip:percy@lowell.edu>;tag=5645fg432f

Figure 4.6 PUBLISH call fl ow example.

90 SIP: Understanding the Session Initiation Protocol

Call-ID: 34jdUhwiQhd72e
CSeq: 352 PUBLISH
Event: presence
Expires: 1800
SIP-ETag: dkfi ei4RIUOwqwe23
Allow-Events: presence
Content-Length: 0

Using the entity-tag, the publisher can update a previously published state.
In this case, to refresh the previously published state, a PUBLISH containing a SIP-
If-Match header fi eld is used containing the assigned entity-tag, but not contain-
ing a body. In this way, the state can be refreshed without having to send the
information again. For example, this PUBLISH could be used to refresh the fi rst
publication, provided it is received within the 30 minute interval:

PUBLISH sip:percy@lowell.edu SIP/2.0
Via SIP/2.0/UDP telescope32.lowell.edu:54620
 ;branch=z9hG4bK743d32s3a
Max-Forwards: 70
To: <sip:percy@lowell.edu>
From: <sip:percy@lowell.edu>;tag=458234kdf
Call-ID: 739238dkd2df
CSeq: 352 PUBLISH
Contact: <sip:percy@telescope32.lowell.edu:54620>
CSeq: 353 PUBLISH
Event: presence
Min-Expires: 1800
Expires: 3600
Allow-Events: presence
SIP-If-Match: dkfi ei4RIUOwqwe23
Content-Length: 0

If the state had expired, or been updated such that the entity-tag no lon-
ger matches or is not valid, the ESC would return a 412 Conditional Request

Table 4.11
Mandatory Header Fields in a PUBLISH

To

Via

To

From

Call-ID

CSeq

Max-Forwards

Contact

Event

Allow-Events

Expires

Min-Expires

 SIP Request Messages 91

Failed response. To modify the existing state, a PUBLISH would be sent con-
taining the SIP-If-Match header fi eld and a new message body. To remove the
published state, a PUBLISH with the SIP-If-Match header fi eld with an Expires:0
and no message body would result in the information being removed. Figure 8.7
shows an example of conditional publications.

Note that entity-tags are defi ned in HTTP [18]. However, the syntax and
exact meaning are slightly different for SIP than HTTP.

Multiple presence UAs can publish for the same AOR to an ESC. In this
case, the ESC will put the information together in an event specifi c way before
generating notifi cations to subscribers. This process is referred to as state aggre-
gation or composition.

4.1.10 REFER

The REFER method [14] is used by a user agent to request another user agent to
access a URI or URL resource. The resource is identifi ed by a URI or URL in
the required Refer-To header fi eld. Note that the URI or URL can be any type of
URI: sip, sips, http, pres, and so forth. When the URI is a sip or sips URI,
the REFER is probably being used to implement a call transfer service. REFER can
also be used to implement peer-to-peer call control.

A REFER request can be sent either inside or outside an existing dialog. A
typical call fl ow is shown in Figure 4.7. In this example, a UAC sends a REFER to
a UAS. The UAS, after performing an authentication and authorization decides
to accept the REFER and responds with a 202 Accepted response. Note that this re-
sponse is sent immediately without waiting for the triggered request to complete.
This is important because REFER uses the non-INVITE method state machine,

Figure 4.7 REFER example call fl ow.

92 SIP: Understanding the Session Initiation Protocol

which requires an immediate fi nal response, unlike an INVITE which may take
several seconds (or even minutes) to complete. Since the Refer-To URI in this
example is a sip URI, the UAC sends an INVITE setting the Request-URI to the
Refer-To URI. This INVITE is successful since it receives a 200 OK response. This
successful outcome is communicated back to the UAC using a NOTIFY method
(described in Section 4.1.8). The message body of the NOTIFY contains a partial
copy of the fi nal response to the triggered request. In this case, it contains the
start-line SIP/2.0 200 OK. This part of a SIP message is described in the Content-
Type header fi eld as a message/sipfrag [19]. Note that this implicit subscrip-
tion can be cancelled by including the Refer-Sub: false [20] header fi eld in
the REFER. If the 2xx response to the REFER also contains the Refer-Sub: false
header fi eld, no NOTIFYs will be sent.

An example of a REFER message is shown here:

REFER sip:m.rejewski@biuroszyfrow.pl SIP/2.0
Via SIP/2.0/UDP lab34.bletchleypark.co.uk:5060
 ;branch=z9hG4bK932039
Max-Forwards: 69
To: <sip:m.rejewski@biuroszyfrow.pl>;tag=ACEBDC
From: Alan Turing <sip:turing@bletchleypark.co.uk>
 ;tag=213424
Call-ID: 3419fak3kFD23s1A9dkl
CSeq: 5412 REFER
Refer-To: <sip:info@scherbius-ritter.com>
Content-Length: 0

Another example is the use of REFER to “push” a Web page. In the example
of Figure 4.8, the UAC sends a REFER to the UAS with a Refer-To set to an
HTTP URL or a Web page. This causes the UAS to send a 202 Accepted then

Figure 4.8 REFER example showing Web page push.

 SIP Request Messages 93

send an HTTP GET request to the Web server identifi ed by the URL. After the
Web page has loaded, the UAS sends a NOTIFY containing a body and HTTP/1.0
200 OK.

A REFER and the SIP request triggered by the REFER may contain the
 Referred-By header fi eld, which contains information about who requested the
request.

Figure 4.9 shows an advanced use of REFER to implement a common PSTN
or PBX feature known as attended transfer [21]. In this feature, the transferor is
assumed to be in a dialog (in a session) with the transferee. The transferor sends
an INVITE to another party, called the transfer target. After the session is estab-
lished between the transferor and the transfer target, the transferor sends a REFER
to the transferee, which causes the transferee to generate a new INVITE (called

Figure 4.9 Use of REFER and Replaces to perform attended transfer feature.

94 SIP: Understanding the Session Initiation Protocol

a triggered INVITE) to the target. The successful INVITE replaces the existing ses-
sion between the transferor and the transfer target. When the transferee receives
notifi cation that the transfer was successful, the session between the transferor
and the transferee is terminated with a BYE. This application uses escaped header
fi elds in the Refer-To URI. That is, certain SIP header fi elds are specifi ed and
prepopulated in the URI, which are then copied into the triggered INVITE. In
this case, the transferor generates the Replaces header fi eld necessary in the trig-
gered INVITE to make the transfer succeed. The transferee copies the escaped
Replaces header and places it in the INVITE.

The acceptance of a REFER with a 202 Accepted response creates an im-
plicit subscription (a subscription without sending a SUBSCRIBE request; see Sec-
tion 4.1.7). After sending the 202 Accepted, the target must send an immediate
 NOTIFY with the status 100 Trying and Subscription-State: active;expires=60,
which indicates that the subscription will expire in 60 seconds (the expiration
value is chosen by the notifi er). The Subscription-State header contains the ex-
piration time of the subscription. If that time period expires before the triggered
request has completed, both sides terminate the subscription, with the notifi er
sending a fi nal notifi cation as discussed next.

The subscription is terminated when the transfer target (the party that ac-
cepted the REFER) sends a fi nal notifi cation (a NOTIFY with Subscription-State:
terminated;reason=noresource). Usually, this is after the transfer target has re-
ceived a fi nal response to the triggered request. However, a transfer target that
does not wish to establish a subscription and provide a fi nal result of the REFER
may send an immediate NOTIFY indicating that the subscription has been termi-
nated. Each REFER sent creates a separate subscription. If more than one REFER
is sent within a dialog, the resulting notifi cations (and subscriptions) are identi-
fi ed by an id parameter in the Event header fi eld. The id parameter is optional
in REFER triggered NOTIFYs except when multiple REFERs have been accepted, in
which case it is mandatory.

The optional Referred-By header fi eld can be included in a REFER request.
The Refer-To header fi eld can also contain feature tags [22] which tell the REFER
recipient about the resource being referenced. Table 4.12 lists the mandatory
header fi elds in a REFER request.

4.1.11 MESSAGE

The MESSAGE method [23] is used to transport instant messages (IM) using SIP.
IMs usually consists of short messages exchanged in near-real time by partici-
pants engaged in a text conversation. MESSAGEs may be sent within a dialog or
outside a dialog, but they do not establish a dialog by themselves. The actual
message content is carried in the message body as a MIME attachment. All UAs

 SIP Request Messages 95

that support the MESSAGE method must support plain/text format; they may
also support other formats such as message/cpim [24] or text/html, as shown in
Table 8.10.

A MESSAGE request normally receives a 200 OK response to indicate that the
message has been delivered to the fi nal destination. An IM response should not
be sent in the message body of a 200 OK, but rather a separate MESSAGE request
sent to the original sender. A 202 Accepted response indicates that the request
has reached a store-and-forward device and will likely eventually be delivered
to the fi nal destination. In neither case does the 2xx response confi rm that the
message content has been rendered to the user. For this, the delivery notifi cation
mechanism is used, which will be discussed later in Section 8.5.2.

A MESSAGE request may use the im (instant message) URI scheme [25] in a
Request-URI, although a client should try to resolve to a sip or sips URI.

An example MESSAGE call fl ow is shown in Figure 4.10.
Note that the MESSAGE method is not the only application of instant mes-

saging with SIP. It is also possible to use SIP to establish an instant message

Table 4.12
Mandatory Header Fields in a REFER

Via

To

From

Call-ID

CSeq

Max-Forwards

Refer-To

Figure 4.10 A SIP MESSAGE call fl ow showing instant message transport.

96 SIP: Understanding the Session Initiation Protocol

session in a completely analogous way that SIP is commonly used to establish a
media session. An INVITE could be used to establish the session with a SDP body
that describes the instant message protocol to be used directly between the two
users. For example, Message Sessions Relay Protocol (MSRP), covered in Section
8.5.5, can be used for this.

An example MESSAGE request is shown here:

MESSAGE sip:editor@rcs.org SIP/2.0
Via SIP/2.0/UDP lab.mendeleev.org:5060;branch=z9hG4bK3
Max-Forwards: 70
To: <editor@rcs.org>
From: “D. I. Mendeleev” <dmitry@mendeleev.org>;tag=1865
Call-ID: 93847197172049343
CSeq: 5634 MESSAGE
Subject: First Row
Contact: <sip:dmitry@lab.mendeleev.org>
Content-Type: text/plain
Content-Length: 7

H, He

Table 4.13 lists the mandatory header fi elds in a MESSAGE request.

4.1.12 INFO

The INFO [26] method is used by a UA to send call signaling information to
another UA with which it has an established media session. The request is end-
to-end and is never initiated by proxies. A proxy will always forward an INFO re-
quest—it is up to the UAS to check to see if the dialog is valid. INFO requests for
unknown dialogs receive a 481 Transaction/Dialog Does Not Exist response.

An INFO method typically contains a message body. The contents may
be signaling information, a midcall event, or some sort of stimulus. INFO has
been proposed to carry certain PSTN midcall signaling information such as
ISUP (ISDN User Part) USR messages.

The INFO method always increments the CSeq. An example INFO method
is:

Table 4.13
Mandatory Header Fields in a MESSAGE

To

Via

To

From

Call-ID

CSeq

Max-Forwards

 SIP Request Messages 97

INFO sip:poynting@mason.edu.uk SIP/2.0
Via: SIP/2.0/UDP cavendish.kings.cambridge.edu.uk
 ;branch=z9hG4bK24555
Max-Forwards: 70
To: John Poynting <sip:nting@mason.edu.uk> ;tag=3432
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=432485820183
Call-ID: e71facaa7f7c0a29276054fe4951a9b6
Content-Type: application/ISUP
Content-Length: ...

(Binary message body not shown)

The base INFO specifi cation does not have any mechanisms for negotiating
which types of INFO bodies are acceptable. An extension [27] is being developed
to add this capability. The extension defi nes packages for INFO usages, and a
mechanism to discover and declare support for packages. The Recv-Info header
fi eld is included in requests and responses listing the INFO packages that the UA
is willing to receive. The Info-Package header fi eld is included in INFO requests
indicating which package is being used.

The mandatory headers in an INFO request are shown in Table 4.14. Note
that for backwards compatibility reasons, INFO without Info-Package will need
to be accepted.

4.1.13 PRACK

The PRACK [28] method is used to acknowledge receipt of reliably transported
provisional responses (1xx). The reliability of 2xx, 3xx, 4xx, 5xx, and 6xx re-
sponses to INVITEs is achieved using the ACK method. However, in cases where a
provisional response, such as 180 Ringing, is critical in determining the call state,
it may be necessary for the receipt of a provisional response to be confi rmed.
The PRACK method applies to all provisional responses except the 100 Trying
response, which is never reliably transported.

A PRACK is generated by a UAC when a provisional response has been re-
ceived containing an RSeq reliable sequence number and a Supported: 100rel

Table 4.14
Mandatory Header Fields in an INFO

To

Via

To

From

Call-ID

CSeq

Max-Forwards

Info-Package

98 SIP: Understanding the Session Initiation Protocol

header. The PRACK echoes the number in the RSeq and the CSeq of the response
in a RAck header. The message fl ow is as shown in Figure 4.11. In this example,
the UAC sends the 180 Ringing response reliably by including the RSeq header.
When no PRACK is received from the UAC after the expiration of a timer (an “X”
is used to represent a lost message), the response is retransmitted. The receipt
of the PRACK confi rms the delivery of the response and stops all further trans-
missions. The 200 OK response to the PRACK stops retransmissions of the PRACK
request.

Reliable responses are retransmitted using the same exponential backoff
mechanism used for fi nal responses to an INVITE. The combination of Call-ID,
CSeq number, and RAck number allows the UAC to match the PRACK to the provi-
sional response it is acknowledging. As shown in Figure 4.11, the PRACK receives
a 200 OK response, which can be distinguished from the 200 OK to the INVITE by
the method contained in the CSeq header.

The PRACK method always increments the CSeq. A PRACK may contain a
message body and may be used for offer/answer exchanges. An example exchange
contains:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk
 ;branch=z9hG4bK452352;received=1.2.3.4
To: Descartes <sip:rene.descartes@metaphysics.org>;tag=12323
From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981

Figure 4.11 PRACK call fl ow example showing reliable provisional responses.

 SIP Request Messages 99

Call-ID: da6fa909f1c0188c539feb08d4496eb7
RSeq: 314
CSeq: 10 INVITE
Content-Length: 0

PRACK sip:rene.descartes@metaphysics.org SIP/2.0
Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk
 ;branch=z9hG4bKdtyw
Max-Forwards: 70
To: Descartes <sip:rene.descartes@metaphysics.org>;tag=12323
From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981
Call-ID: da6fa909f1c0188c539feb08d4496eb7
CSeq: 2 PRACK
RAck: 314 10 INVITE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP lucasian.trinity.cambridge.edu.uk
 ;branch=z9hG4bKdtyw ;received=1.2.3.4
To: Descartes <sip:rene.descartes@metaphysics.org>;tag=12323
From: Newton <sip:newton@kings.cambridge.edu.uk>;tag=981
Call-ID: da6fa909f1c0188c539feb08d4496eb7
CSeq: 2 PRACK
Content-Length: 0

The mandatory header fi elds in a PRACK request are shown in Table 4.15.

4.1.14 UPDATE

The UPDATE method [29] is used to modify the state of a session without chang-
ing the state of the dialog. A session is established in SIP using an INVITE request
(see Section 4.1.1) in an offer/answer manner, described in Chapter 13. Typi-
cally, a session offer is made in the INVITE and an answer is made in a response
to the INVITE. In an established session, a re-INVITE is used to update session pa-
rameters. However, neither party in a pending session (INVITE sent but no fi nal
response received) may re-INVITE—instead, the UPDATE method is used.

Possible uses of UPDATE include muting or placing on hold pending media
streams, performing QoS, or other end-to-end attribute negotiation prior to ses-
sion establishment.

Table 4.15
Mandatory Header Fields in a PRACK

To

Via

To

From

Call-ID

CSeq

Max-Forwards

RAck

100 SIP: Understanding the Session Initiation Protocol

Figure 4.12 and the following show an example of an UPDATE message.

UPDATE sips:beale@bufords.bedford.va.us SIP/2.0
Via SIP/2.0/TLS client.crypto.org:5061;branch=z9hG4bK342
Max-Forwards: 70
To: T. Beale <sips:beale@bufords.bedford.va.us>;tag=71
From: Blaise Vigenere <sips:bvigenere@crypto.org>;tag=19438
Call-ID: 170189761183162948
CSeq: 94 UPDATE
Contact: <sips:client.crypto.org>
Content-Type: application/sdp
Content-Length: ...

(SDP Message body not shown...)

Table 4.16 lists the mandatory header fi elds in an UPDATE request.

4.2 URI and URL Schemes Used by SIP

SIP supports a number of URI and URL schemes including sip, sips, tel,
pres, and im for SIP, secure SIP, telephone, presence, and instant message URIs
as described in the following sections. In addition, other URI schemes can be
present in SIP header fi elds as listed in Table 1.2.

Figure 4.12 An UPDATE call fl ow example showing an offer/answer exchange.

 SIP Request Messages 101

4.2.1 SIP and SIPS URIs

The addressing scheme of SIP URLs and URIs has been previously mentioned.
SIP URIs are used in a number of places including the To, From, and Contact
headers, as well as in the Request-URI, which indicates the destination. SIP
URIs are similar to the mailto URL [29] and can be used in hyperlinks on Web
pages, for example. They can also include telephone numbers. The information
in a SIP URI indicates the way in which the resource (user) should be contacted
using SIP.

An example SIP URI contains the scheme sip a “:”, then a username@host
or IPv4 or IPv6 address followed by an optional “:”, then the port number, or a
list of “;” separated URI parameters:

sip:joseph.fourier@transform.org:5060;transport=udp;user=ip;m

ethod=INVITE;ttl=1;maddr=240.101.102.103?Subject=FFT

Note that URIs may not contain spaces or line breaks, so this example
would be on a single line. Some SIP URIs, such as a REGISTER Request-URI do
not have a username, but begin with the host or IP address. In this example, the
port number is shown as 5060, the well-known port number for SIP. For a SIP
URI, if the port number is not present 5060 is assumed. For a SIPS URI, port
number 5061 is assumed. The transport parameter indicates UDP is to be used,
which is the default. TCP, TLS, and SCTP are alternative transport parameters.

The user parameter is used by parsers to determine if a telephone number
is present in the username portion of the URI. The assumed default is that it is
not, indicated by the value ip. If a telephone number is present, it is indicated
by the value phone. This parameter must not be used to guess at the characteris-
tics or capabilities of the user agent. For example, the presence of a user=phone
parameter must not be interpreted that the user agent is a SIP telephone (which
may have limited display and processing capabilities). In a telephony environ-
ment, IP telephones and IP/PSTN gateways may in fact use the reverse assump-

Table 4.16
Mandatory Header Fields in an UPDATE

To

Via

To

From

Call-ID

CSeq

Max-Forwards

Contact

102 SIP: Understanding the Session Initiation Protocol

tion, interpreting any digits in a username as digits regardless of the presence of
user=phone.

The method parameter is used to indicate the method to be used. The de-
fault is INVITE. This parameter has no meaning in To or From header fi elds or in
a Request-URI but can be used in Contact headers for registration, for example,
or in a Refer-To header fi eld.

The ttl parameter is the time-to-live, which must only be used if the maddr
parameter contains a multicast address and the transport parameter contains udp.
The default value is 1. This value scopes the multicast session broadcast.

The maddr usually contains the multicast address to which the request
should be directed, overriding the address in the host portion of the URI. It can
also contain a unicast address of an alternative server for requests.

The method, maddr, ttl, and header parameters must not be included in
To or From headers, but may be included in Contact headers or in Request-URIs.
In addition to these parameters, a SIP URI may contain other user-defi ned
parameters.

Following the “?” parameter, names can be specifi ed to be included in
the request. This is similar to the operation of the mailto URL, which allows
 Subject and Priority to be set for the request. Additional headers can be speci-
fi ed, separated by an “&”. The header name body indicates that the contents of a
message body for an INVITE request are being specifi ed in the URI.

If the parameter user=phone is present, then the username portion of the
URI can be interpreted as a telephone number. This allows additional parameters
in the username portion of the URI, which allows the parameters and structure
of a tel URL [30] to be present in the user part of the SIP URI as described in
the next section.

The sips URI scheme has the same structure as the sip URI but begins
with the sips scheme name. Note that a sips URI is not equivalent to a sip
URI with transport=tls, since the sip URI does not have the same security
requirements as the sips URI. The requirement is that TLS transport is used
end-to-end for the SIP path. The only exception is a hop between the fi nal proxy
and the UAS, which may use another security mechanism besides TLS (IPSec,
for example).

Not shown in the example is the loose route parameter lr, which can be
present in sip or sips Record-Route and Route URIs to indicate that the proxy
server identifi ed by the URI supports loose routing.

4.2.2 Telephone URLs

The telephone URI scheme, tel, [30] can be used to represent a resource identi-
fi ed by a telephone number. Telephone numbers can be of two general forms, lo-
cal or global. A local number is only valid in a particular geographic area and has

 SIP Request Messages 103

only local signifi cance. If the number is used outside of this area, it will either fail
or return the wrong resource. A global telephone number, also called an E.164
number, is one that is, in principle, valid anywhere. It contains enough informa-
tion about the country, region, and locality for the PSTN network to route calls
to the correct resource. An example of a local phone number is:

tel:411;phone-context=+1314

This indicates a call to directory assistance valid only within country code
1 and area code 314 as identifi ed in the required phone-context parameter. An
example of a global phone number is:

tel:+13145551212

Global phone numbers always begin with the “+” identifi er followed by the
country code, 1 in this case, followed by the remaining telephone digits.

A tel URL can also contain some characters and information about dial-
ing strings and patterns. For example:

tel:#70555-1212;isub=1000

In this example, the dialed digit string, interpreted by a PSTN gateway,
would be the DTMF digit # then 70 (to cancel call waiting, for example), then
the digits 555–1212. Additional parameters include an ISDN subaddress of
1000. This example shows both types of optional visual separators allowed, ei-
ther “-” or “.” as the separator.

Tel URLs can also be embedded in Web pages and can be included in
HTML as, for example:

Click here to get information
about Dallas.

The syntax and parameters of the tel URL may be used in the user portion
of a sip URI. For example, the fi rst tel example could be represented as a sip
URI as follows:

sip:411;phone-context=+1314@gateway.example.com

The SIP URI adds a domain portion which represents the domain or gate-
way that will route the request.

104 SIP: Understanding the Session Initiation Protocol

4.2.3 Presence and Instant Messaging URLs

The pres URL scheme is defi ned [25] as a URL scheme that represents a “presen-
tity” or presence agent. The im URL scheme is defi ned [25] as a URL scheme that
represents an “instant inbox” or an instant message client. Both URL schemes do
not represent a new protocol but are resolved using DNS SRV resource records,
which return another URI that indicates the actual presence or instant messaging
protocol. For example, if the presence agent reference by the presence URL:

pres:user@example.com

supports SIP presence, the DNS SRV query would return a SIP URI, for
example:

sip:user@example.com

This would then allow a presence agent to send a SUBSCRIBE to this SIP
URI to obtain the presence agent of this user.

The same procedure would be used for resolving an im URL into a SIP
URI for sending a MESSAGE request.

4.3 Tags

A tag is a cryptographically random number with at least 32 bits of random-
ness, which is added to To and From headers to uniquely identify a dialog. The
examples in Chapters 2 and 16 show the use of the tag header parameter. The
To header in the initial INVITE will not contain a tag. A caller must include a
tag in the From header, although an RFC 2543 UA generally will not do so as it
is optional in that specifi cation. Excluding 100 Trying, all responses will have
a tag added to the To header. The sending or receiving of a response containing
a From tag creates an early dialog. A tag returned in a 200 OK response is then
incorporated as a dialog identifi er and used in all future requests for this Call-ID.
A tag is never copied across calls. Any response generated by a proxy will have a
tag added by the proxy. An ACK generated by either a UA or a proxy will always
copy the From tag of the response in the ACK request.

If a UAC receives responses containing different tags, this means that the
responses are from different UASs, and the INVITE has been forked. It is up to
the UAC as to how to deal with this situation. For example, the UAC could
establish separate sessions with each of the responding UAS. The dialogs would
contain the same From, Call-ID, and CSeq, but would have different tags in the
To header. The UAC also could BYE certain legs and establish only one session.

Note that tags are not part of the To or From URI but are part of the header
and always placed outside any “<>”.

 SIP Request Messages 105

4.4 Message Bodies

Message bodies in SIP may contain various types of information. They may con-
tain SDP information, which can be used to convey media information, QoS, or
even security information.

The optional Content-Disposition header is used to indicate the intended
use of the message body. If not present, the function is assumed to be session,
which means that the body describes a media session. Besides session, the other
defi ned function is render, which means that the message body should be pre-
sented to the user or otherwise used or displayed. This could be used to pass a
small JPEG image fi le or URI.

The format of the message body is indicated by the Content-Type header.
If a message contains a message body, the message must include a Content-Type
header. All UAs must support a Content-Type of application/sdp. The encod-
ing scheme of the message body is indicated in the Content-Encoding header. If
not specifi ed, the encoding is assumed to be text/plain. The specifi cation of a
Content-Encoding scheme allows the message body to be compressed.

The Content-Length header contains the number of octets in the message
body. If there is no message body, the Content-Length header should still be
included but with a value of 0. Because multiple SIP messages can be sent in a
TCP stream, the Content-Length count is a reliable way to detect when one mes-
sage ends and another begins. If a Content-Length is not present, the UAC must
assume that the message body continues until the end of the UDP datagram, or
until the TCP connection is closed, depending on the transport protocol.

Message bodies can have multiple parts if they are encoded using Multipart
Internet Mail Extensions (MIME). Message bodies in SIP, however, should be
small enough so that they do not exceed the UDP MTU of the network. Proxies
may reject requests with large message bodies with a 413 Request Entity Too
Large response, since processing large messages can load a server. Guidelines for
SIP handling of message bodies is described in [31].

As mentioned in the previous section, SIP carries message bodies the same
way that e-mails carry attachments. It is possible to carry multiple message bod-
ies within a single SIP message. This is done using a multipart MIME body. The
Content-Type is listed as multipart/mime, and a separator is defi ned, which is
used by the parser to separate the message. Any SIP request or response that can
contain a message body may carry a multipart MIME body. An example is in
SIP-T (see Section 11.2) in which an INVITE carries both a SDP message body
(application/sdp) and an encapsulated ISUP message (application/isup). An
example multipart MIME is:

INVITE sip:refertarget@carol.example.com SIP/2.0
Via: SIP/2.0/UDP referree.example;branch=z9hG4bKffe209934aac
To: sip:refertarget@carol.example.com

106 SIP: Understanding the Session Initiation Protocol

From: <sip:referree@referree.example>;tag=2909034023
Call-ID: 9023940-a34658d
CSeq: 9823409 INVITE
Max-Forwards: 70
Contact: <sip:referree@bob.example.com>
Referred-By: sip:referror@alice.example.com
 ;cid=%3C20398823.2UWQFN309shb3@alice.example.com%3E
Content-Type: multipart/mixed; boundary=-*-boundary-*-
Content-Length: ...

—-*-boundary-*-

Content-Type: application/sdp
Content-Length: ...

v=0
o=referree 2890844526 2890844526 IN IP4 referree.example
s=Session SDP
c=IN IP4 referree.example
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

—-*-boundary-*-

Content-Type: multipart/signed;
 protocol=”application/pkcs7-signature”;
 micalg=sha1; boundary=dragons39
Content-ID: <20398823.2UWQFN309shb3@alice.example.com>
Content-Length: ...

-another-boundary-
Content-Type: message/sipfrag
Content-Disposition: auth-id; handling=optional

From: sip:referror@alice.example.com
Date: Thu, 21 Feb 2002 13:02:03 GMT
Call-ID: 2203900ef0299349d9209f023a
Refer-To: sip:refertarget@carol.example.com
Referred-By: sip:referror@alice.example.com
 ;cid=%3C20398823.2UWQFN309shb3@alice.example.com%3E

-another-boundary-
Content-Type: application/pkcs7-signature; name=smime.p7s
Content-Transfer-Encoding: base64
Content-Disposition: attachment; fi lename=smime.p7s
 ;handling=required

(S/MIME data goes here)

—-*-boundary-*—-

Between each body part is a string, in this example -*-boundary-*- which
is defi ned in the Content-Type header fi eld.

 SIP Request Messages 107

4.5 Conclusion

This chapter covered the six base methods in RFC 3261 plus the eight extension
methods defi ned in other RFCs. In addition, SIP URIs, URLs, tags, and message
bodies have been covered.

4.6 Questions

Q4.1 Explain what happens when the expiration interval in an Expires
 header fi eld in an INVITE expires.

Q4.2 For the three REGISTER requests sent (in this sequence) below,
 generate appropriate responses to each from the registrar.

REGISTER sip:registrar.athens.gr SIP/2.0
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK231U3
Max-Forwards:70
To: sip:euclid@athens.gr
From: <sip:euclid@athens.gr>;tag=543131
Call-ID: 48erl8132409wqer
CSeq: 1 REGISTER
Contact: <sip:euclid@parthenon.athens.gr>
Content-Length: 0

REGISTER sip:registrar.athens.gr SIP/2.0
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK3r13
Max-Forwards:70
To: sip:euclid@athens.gr
From: < sip:euclid@athens.gr>;tag=75653
Call-ID: 48erl8132409wqer
CSeq: 2 REGISTER
Contact: <mailto:euclid@geometry.org>
Content-Length: 0

REGISTER sip:registrar.athens.gr SIP/2.0
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK3313
Max-Forwards:70
To: sip:euclid@athens.gr
From: <sip:euclid@athens.gr>;tag=4d31f31
Call-ID: 48erl8132409wqer
CSeq: 3 REGISTER
Content-Length: 0

Q4.3 Is a message body permitted in an ACK? Give an example of this
 usage.

Q4.4 Explain what happens if a 200 OK and the CANCEL for the
 INVITE cross on the wire between a proxy and a UA.

Q4.5 If a SUBSCRIBE is forked by a proxy, and multiple subscriptions
 are established, how will the watcher know this and keep the
 subscriptions separate?

108 SIP: Understanding the Session Initiation Protocol

Q4.6 Generate a suitable PRACK message in response to the
 180 Ringing response here:

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP boyden.harvard.edu
 ;branch=z9hG4bK452352;received=1.2.3.4
To: Clyde <sip:clyde.tombaugh@lowell.edu>;tag=312323
From: Bill <sip:william.pickering@harvard.edu>
 ;tag=877s981
Call-ID: Ldfk37sfa2DF
RSeq: 17314
CSeq: 53 INVITE
Content-Length: 0

Q4.7 Explain how PUBLISH can be used to create, refresh, update, and
 delete event state.

Q4.8 Generate the SUBSCRIBE that could have caused this NOTIFY to
 be sent:

NOTIFY sip:e.hubble@mtwilson.edu SIP/2.0
Via SIP/2.0/UDP room421.caltech.edu:5060
 ;branch=z9hG4bK3841323
Max-Forwards: 70
To: <sip:e.hubble@mtwilson.edu>;tag=8311814
From: <sip:georgehale@caltech.edu>;tag=5363956k
Call-ID: 58kjeGrkre88er
CSeq: 73 NOTIFY
Contact: <sip:georgehale@room421.caltech.edu>
Event: presence
Subscription-State: active;expires=3540
Allow-Events: dialog
Content-Type: application/xml+dialog
Content-Length: ...

Q4.9 How is a subscribe-created dialog terminated?

Q4.10 Explain when a 412 response might be received in
 response to a PUBLISH. What should the presence UA do
 after receiving this response?

References

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [1]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

Rosenberg, J., “Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) [2]
in the Session Initiation Protocol (SIP),” draft-ietf-sip-gruu-15 (work in progress), October
2007.

 SIP Request Messages 109

Rosenberg, J., H. Schulzrinne, and P. Kyzivat, “Indicating User Agent Capabilities in the- [3]
Session Initiation Protocol (SIP),” RFC 3840, August 2004.

Johnston, A., and O. Levin, “Session Initiation Protocol (SIP) Call Control—Conferencing [4]
for User Agents,” BCP 119, RFC 4579, August 2006.

Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265, June [5]
2003.

Petrack, S., and L. Conroy, “The PINT Service Protocol: Extensions to SIP and SDP for IP [6]
Access to Telephone Call Services,” RFC 2848, June 2000.

Rosenberg, J., H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event [7]
Package for Conference State,” RFC 4575, August 2006.

Camarillo, G., “The Session Initiation Protocol (SIP) Pending Additions Event Package,” [8]
RFC 5362, October 2008.

Rosenberg, J., H. Schulzrinne, and R. Mahy, “An INVITE-Initiated Dialog Event Package- [9]
for the Session Initiation Protocol (SIP),” RFC 4235, November 2005.

Burger, E., and M. Dolly, “A Session Initiation Protocol (SIP) Event Package for Key Press [10]
Stimulus (KPML),” RFC 4730, November 2006.

Mahy, R., “A Message Summary and Message Waiting Indication Event Package for the [11]
Session Initiation Protocol (SIP),” RFC 3842, August 2004.

Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” RFC [12]
3856, August 2004.

Rosenberg, J., “A Session Initiation Protocol (SIP) Event Package for Registrations,” RFC [13]
3680, March 2004.

Sparks, R., “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, April [14]
2003.

Rosenberg, J., “A Watcher Information Event Template-Package for the Session [15]
InitiationProtocol (SIP),” RFC 3857, August 2004.

Clark, A., et al., “RTCP-XR Summary,” draft-ietf-sipping-rtcp-summary-06 (work in [16]
progress), March 2009.

Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC [17]
3903, October 2004.

Fielding, R., et al., “Hypertext Transfer Protocol—HTTP/1.1,” RFC 2616, June 1999. [18]

Sparks, R., “Internet Media Type message/sipfrag,” RFC 3420, November 2002 [19] .

Levin, O., “Suppression of Session Initiation Protocol (SIP) REFER Method Implicit [20]
Subscription,” RFC 4488, May 2006.

Sparks, R., and A. Johnston, “Session Initiation Protocol Call Control—Transfer,” RFC [21]
5589, June 2009.

Levin, O., and A. Johnston, “Conveying Feature Tags with the Session Initiation Protocol [22]
(SIP) REFER Method,” RFC 4508, May 2006.

110 SIP: Understanding the Session Initiation Protocol

Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,” [23]
RFC 3428, December 2002.

Klyne, G., and D. Atkins, “Common Presence and Instant Messaging (CPIM): Message [24]
Format,” RFC 3862, August 2004.

Peterson, J., “Address Resolution for Instant Messaging and Presence,” RFC 3861, August [25]
2004.

Donovan, S., “The SIP INFO Method,” RFC 2976, October 2000. [26]

Burger, E., H. Kaplan, and C. Holmberg, “Session Initiation Protocol (SIP) INFO Method [27]
and Package Framework,” draft-ietf-sip-info-events-03 (work in progress) January 2009.

Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses in Session Initiation [28]
Protocol (SIP),” RFC 3262, June 2002.

Hoffman, P., L. Masinter, and J. Zawinski, “The mailto URL Scheme,” RFC 2368, July [29]
1998.

Schulzrinne, H., “The tel URI for Telephone Numbers,” RFC 3966, December 2004. [30]

Camarillo, G., “Message Body Handling in the Session Initiation Protocol (SIP),” draft- [31]
ietf-sip-body-handling-06 (work in progress), March 2009.

111

5
SIP Response Messages
This chapter covers the types of SIP response messages. A SIP response is a mes-
sage generated by a UAS or a SIP server to reply to a request generated by a UAC.
A response may contain additional header fi elds of information needed by the
UAC, or it may be a simple acknowledgment to prevent retransmissions of the
request by the UAC. Many responses direct the UAC to take specifi c additional
steps. The responses are discussed in terms of structure and classes. Then each
request type is discussed and examined in detail.

There are six classes of SIP responses. The fi rst fi ve classes were borrowed
from HTTP; the sixth was created for SIP. The classes are shown in Table 5.1.

If a particular SIP response code is not understood by a UAC, it must be
interpreted by the class of the response. For example, an unknown 599 Server
Unplugged response must be interpreted by a user agent as a 500 Server Failure
response.

The reason phrase is for human consumption only—the SIP protocol uses
only the response code in determining behavior. Thus, a 200 Call Failed is
interpreted the same as 200 OK. The reason phrases listed here are the suggested
ones from the RFC document. They can be used to convey more information,
especially in failure class responses—the phrase is likely to be displayed to the
user. Some response codes were borrowed from HTTP, sometimes with a slightly
different reason phrase. However, not all HTTP response codes are valid in SIP,
and some even have a different meaning.

Unless otherwise referenced, the responses described here are defi ned in
RFC 3261 [1].

112 SIP: Understanding the Session Initiation Protocol

5.1 Informational

The informational class of responses, 1xx, is used to indicate call progress. Infor-
mational responses are end-to-end responses and may contain message bodies.
The exception to this is the 100 Trying response, which is only a hop-by-hop
response and may not contain a message body. Any number of informational re-
sponses can be sent by a UAS prior to a fi nal response (2xx, 3xx, 4xx, 5xx, or 6xx
class response) being sent. The fi rst informational response received by the UAC
confi rms receipt of the INVITE, and stops retransmission of the INVITE, as shown
in Figure 3.7. For this reason, servers returning 100 Trying responses minimize
INVITE retransmissions in the network. Further informational responses have no
effect on INVITE retransmissions. A stateful proxy receiving a retransmission of
an INVITE will resend the last provisional response sent to date. Informational
responses are optional—a UAS can send a fi nal response without fi rst sending
an informational response. While fi nal responses to an INVITE receive an ACK to
confi rm receipt, provisional responses are not acknowledged, except when using
the PRACK method described in Section 4.1.13.

All provisional responses with the exception of 100 Trying must contain a
Contact URI and echo all Record-Route headers received in the request. How-
ever, a RFC 2543 implementation will not do this, as it was not mandated in
that document.

5.1.1 100 Trying

This special case response is only a hop-by-hop request. It is never forwarded and
may not contain a message body. A forking proxy must send a 100 Trying re-
sponse, since the extended search being performed may take a signifi cant amount

Table 5.1
SIP Response Classes

Class Description Action

1xx Informational
This indicates the status of the call prior to completion—also
known as a provisional response.

2xx Success
The request has succeeded. If it was for an INVITE, ACK should
be sent; otherwise, stop the retransmissions of the request.

3xx Redirection
The server has returned possible locations. The client should retry
the request at another server.

4xx Client error
The request has failed due to an error by the client. The client may
retry the request if it is reformulated according to the response.

5xx
Server
failure

The request has failed due to an error by the server. The request
may be retried at another server.

6xx
Global
failure

The request has failed. The request should not be tried again at
this or other servers.

 SIP Response Messages 113

of time. This response can be generated by either a proxy server or a user agent. It
only indicates that some kind of action is being taken to process the call—it does
not indicate that the user has been located. A 100 Trying response typically does
not contain a To tag and hence does not create an early dialog.

5.1.2 180 Ringing

This response is used to indicate that the INVITE has been received by the user
agent and alerting is taking place. This response is important in the interworking
of telephony protocols, and it is typically mapped to messages such as an ISDN
progress or ISUP address complete message (ACM) [2]. When the user agent
answers immediately, a 200 OK is sent without a 180 Ringing; this scenario is
called the “fast answer” case in telephony.

A UA normally generates its own ring back tone or remote ringing indica-
tion, unless an Alert-Info header fi eld is present.

5.1.3 181 Call is Being Forwarded

This response is used to indicate that the call has been handed off to another end
point. It is sent when the information may be of use to the caller. Also, because
a forwarding operation may result in the call taking longer to be answered, this
response gives a status for the caller.

5.1.4 182 Call Queued

This response is used to indicate that the INVITE has been received and will be
processed in a queue. The reason phrase can be used to indicate the estimated
wait time or the number of callers in line, as shown in Figure 5.1.

5.1.5 183 Session Progress

The 183 Session Progress response indicates that information about the prog-
ress of the session (call state) may be present in a message body or media stream.
Unlike a 100 Trying response, a 183 is an end-to-end response and establishes a
dialog (must contain a To tag and Contact). Unlike a 180, 181, or 182 response, it
does not convey any specifi c information about the status of the INVITE. A typi-
cal use of this response is to allow a UAC to hear a ring tone, busy tone, or re-
corded announcement in calls through a gateway into the PSTN. This is because
call progress information is carried in the media stream in the PSTN. A one-
way media connection or trunk is established from the calling party’s telephone
switch to the called party’s telephone switch in the PSTN prior to the call being
answered. In SIP, the media session is established after the call is answered—after
a 200 OK and ACK have been exchanged between the UAC and UAS. If a gateway

114 SIP: Understanding the Session Initiation Protocol

uses a 180 Ringing response instead, no media path will be established between
the UAC and the gateway, and the caller will never hear a ring tone, busy tone,
or recorded announcement (e.g., “The number you have dialed has changed, the
new number is . . .”) since these are all heard in the media path prior to the call
being answered. Figure 9.1 shows an example call fl ow with early media.

5.2 Success

Success class responses indicate that the request has succeeded or has been
accepted.

5.2.1 200 OK

The 200 OK response has two uses in SIP. When used to accept a session invita-
tion, it will contain a message body containing the media properties of the UAS
(called party). When used in response to other requests, it indicates a successful
completion or receipt of the request. The response stops further retransmissions
of the request. In response to an OPTIONS, the message body may contain the
capabilities of the server. A message body may also be present in a response to a
REGISTER request. For 200 OK responses to other methods, a message body is not
permitted.

Figure 5.1 Call queuing with a call processing center.

 SIP Response Messages 115

5.2.2 202 Accepted

The 202 Accepted response [3] indicates that the UAS has received and under-
stood the request, but that the request may not have been authorized or pro-
cessed by the server. It is commonly used in responses to SUBSCRIBE (see Section
4.1.7), REFER (see Section 4.1.10), and sometimes MESSAGE (see Section 4.1.11)
methods.

5.2.3 204 No Notifi cation

The 204 No Notifi cation response [4] is used in response to a SUBSCRIBE request
that was successful but no notifi cation associated with the request will be sent.
This conditional notifi cation can be suppressed using the Suppress-If-Match
header fi eld.

5.3 Redirection

Redirection class responses are generally sent by a SIP server acting as a redi-
rect server in response to an INVITE, as described in Section 3.5.2. A UAS, how-
ever, can also send a redirection class response to implement certain types of call
forwarding features. There is no requirement that a UAC receiving a redirection
response must retry the request to the specifi ed address. The UAC can be con-
fi gured to automatically generate a new INVITE upon receipt of a redirection
class response without requiring user intervention. In addition, proxies may also
automatically send an ACK to a redirect and proxy the INVITE to the new location
provided in the Contact URI of the redirection. To prevent looping, the server
must not return any addresses contained in the request Via header fi eld, and the
client must check the address returned in the Contact header fi eld against all
other addresses tried in an earlier call attempt. Note that this type of transaction
looping is different from request looping.

5.3.1 300 Multiple Choices

This redirection response contains multiple Contact header fi elds, which indi-
cate that the location service has returned multiple possible locations for the sip
or sips URI in the Request-URI. The order of the Contact header fi elds is as-
sumed to be signifi cant. That is, they should be tried in the order in which they
were listed in the response.

116 SIP: Understanding the Session Initiation Protocol

5.3.2 301 Moved Permanently

This redirection response contains a Contact header fi eld with the new perma-
nent URI of the called party. The address can be saved and used in future INVITE
requests.

5.3.3 302 Moved Temporarily

This redirection response contains a URI that is currently valid but is not per-
manent. As a result, the Contact header fi eld should not be cached across calls
unless an Expires header fi eld is present, in which case the location is valid for
the duration of the time specifi ed.

5.3.4 305 Use Proxy

This redirection response contains a URI that points to a proxy server who has
authoritative information about the calling party. The caller should resend the
request to the proxy for forwarding. This response could be sent by a UAS that is
using a proxy for incoming call screening. Because the proxy makes the decisions
for the UAS on acceptance of the call, the UAS will only respond to INVITE re-
quests that come from the screening proxy. Any INVITE request received directly
would automatically receive this response without user intervention.

5.3.5 380 Alternative Service

This response returns a URI that indicates the type of service the called party
would like. An example might be a redirect to a voicemail server.

5.4 Client Error

This class of response is used by a server or UAS to indicate that the request
cannot be fulfi lled as it was submitted. The specifi c client error response or the
presence of certain header fi elds should indicate to the UAC the nature of the er-
ror and how the request can be reformulated. The UAC should not resubmit the
request without modifying it based on the response. The same request, however,
can be tried in other locations. A forking proxy receipt of a 4xx response does not
terminate the search. Typically, client error responses will require user interven-
tion before a new request can be generated.

5.4.1 400 Bad Request

This response indicates that the request was not understood by the server. An ex-
ample might be a request that is missing required header fi elds such as To, From,

 SIP Response Messages 117

Call-ID, or CSeq. This response is also used if a UAS receives multiple INVITE
requests (not retransmissions) for the same Call-ID.

5.4.2 401 Unauthorized

This response indicates that the request requires the user to perform authen-
tication. This response is generally sent by a user agent, since the 407 Proxy
Authentication Required (Section 5.4.8) is sent by a proxy that requires au-
thentication. The exception is a registrar server, which sends a 401 Unauthorized
response to a REGISTER message that does not contain the proper credentials. An
example of this response is:

SIP/2.0 401 Unauthorized
Via: SIP/2.0/UDP proxy.globe.org:5060;branch=z9hG4bK2311ff5d.1
 ;received=192.0.2.1;rport=3213
Via: SIP/2.0/UDP 173.23.43.1:5060;branch=z9hG4bK4545
From: <sip:explorer@geographic.org>;tag=341323
To: <sip:printer@maps-r-us.com>;tag=19424103
From: Copernicus <sip:copernicus@globe.org>;tag=34kdilsp3
Call-ID: 1g23hj45m678a7
CSeq: 1 INVITE
WWW-Authenticate: Digest realm=”globe.org”,
 nonce=”8eff88df84f1cec4341ae6e5a359”, qop=”auth”,
 opaque=””, stale=FALSE, algorithm=MD5
Content-Length: 0

The presence of the required WWW-Authenticate header fi eld is required to
give the calling user agent a chance to respond with the correct credentials. A
typical authentication exchange using SIP digest is shown in Figure 14.6. Note
that the follow-up INVITE request should use the same Call-ID as the original
request; the authentication may fail in some cases if the Call-ID is changed from
the initial request to the retried request.

5.4.3 402 Payment Required

This response is a placeholder for future defi nitions in the SIP protocol. It could
be used to negotiate call completion charges.

5.4.4 403 Forbidden

This response is used to deny a request without giving the caller any recourse.
It is sent when the server has understood the request, found the request to be
correctly formulated, but will not service the request. This response is not used
when authorization is required.

118 SIP: Understanding the Session Initiation Protocol

5.4.5 404 Not Found

This response indicates that the user identifi ed by the sip or sips URI in the
Request-URI cannot be located by the server, or that the user is not currently
signed on with the user agent.

5.4.6 405 Method Not Allowed

This response indicates that the server or user agent has received and understood
a request but is not willing to fulfi ll the request. An example might be a REGISTER
request sent to a user agent. An Allow header fi eld (Section 6.1.2) must be pres-
ent to inform the UAC as to what methods are acceptable. This is different from
the case of an unknown method, in which a 501 Not Implemented response is
returned. Note that a proxy will forward request types it does not understand
unless the request is targeted to the proxy server (i.e., the Request-URI is the
URI of the proxy server).

5.4.7 406 Not Acceptable

This response indicates that the request cannot be processed due to a require-
ment in the request message. The Accept header fi eld in the request did not
contain any options supported by the UAS.

5.4.8 407 Proxy Authentication Required

This request sent by a proxy indicates that the UAC must fi rst authenticate itself
with the proxy before the request can be processed. The response should contain
information about the type of credentials required by the proxy in a Proxy-
 Authenticate header fi eld. The request can be resubmitted with the proper cre-
dentials in a Proxy-Authorization header fi eld. Unlike in HTTP, this response
may not be used by a proxy to authenticate another proxy.

SIP/2.0 407 Proxy Authorization Required
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK6563
 ;received=65.64.140.198;rport=17234
From: Shannon <sip:shannon@sampling.org>;tag=59204
To: Schockley <sip:shockley@transistor.com>;tag=142334
Call-ID: adf8gasdd7fl d
CSeq: 1 INVITE
Proxy-Authenticate: Digest realm=”sampling.org”, qop=”auth”,
 nonce=”9c8e88df84df1cec4341ae6cbe5a359”,
 opaque=””, stale=FALSE, algorithm=MD5
Content-Length: 0

 SIP Response Messages 119

5.4.9 408 Request Timeout

This response is sent when an Expires header fi eld is present in an INVITE re-
quest and the specifi ed time period has passed. This response could be sent by a
forking proxy or a user agent. The request can be retried at any time by the UAC,
perhaps with a longer time period in the Expires header fi eld or no Expires
header fi eld at all. Alternatively, a stateful proxy can send this response after the
request transaction times out without receiving a fi nal response.

5.4.10 409 Confl ict

This response code has been removed from RFC 3261 but is defi ned in RFC
2543. It indicates that the request cannot be processed due to a confl ict in the
request. This response is used by registrars to reject a registration with a confl ict-
ing action parameter.

5.4.11 410 Gone

This response is similar to the 404 Not Found response but contains the hint
that the requested user will not be available at this location in the future. This
response could be used by a service provider when a user cancels their service.

5.4.12 411 Length Required

This response code has been removed from RFC 3261 but is defi ned in RFC
2543. This response can be used by a proxy to reject a request containing a mes-
sage body but no Content-Length header fi eld. A proxy that takes a UDP request
and forwards it as a TCP request could generate this response, since the use of
Content-Length is more critical in TCP requests. However, the response code is
not very useful since a proxy can easily calculate the length of a message body in
a UDP request (it is until the end of the UDP packet) but cannot with a stream-
oriented transport such as TCP. In this case, a missing Content-Length header
fi eld would cause the message body to go on indefi nitely, which would generate
a 513 Message Too Large response instead of a 411 Length Required.

5.4.13 412 Conditional Request Failed

This response code was added to deal with conditional SIP publications. A 2xx
response to a PUBLISH request will contain an entity tag in a SIP-ETag header
fi eld. A subsequent publish to update this information will contain this entity
tag in a SIP-If-Match header fi eld. Should the entity tag stored by the event
state compositor not match the entity tag in the SIP-If-Match header fi eld, the

120 SIP: Understanding the Session Initiation Protocol

event state compositor returns a 412 Conditional Request Failed response
[5]. A publishing UA receiving this response code knows that the stored entity
tag is no longer valid. As a result, a publication without the entity tag must be
performed.

5.4.14 413 Request Entity Too Large

This response can be used by a proxy to reject a request with a message body
that is too large. A proxy suffering congestion could temporarily generate this
response to save processing long requests.

5.4.15 414 Request-URI Too Long

This response indicates that the Request-URI in the request was too long and
cannot be processed correctly. There is no maximum length defi ned for a Re-
quest-URI in the SIP standard document.

5.4.16 415 Unsupported Media Type

This response sent by a user agent indicates that the media type contained in the
INVITE request is not supported. For example, a request for a video conference
to a PSTN gateway that only handles telephone calls will result in this response.
The response should contain header fi elds to help the UAC reformulate the
request.

5.4.17 416 Unsupported URI Scheme

The 416 Unsupported URI Scheme response is used when a UAC uses a URI
scheme in a Request-URI that the UAS does not understand. For example, if a
Request-URI contains a secure SIP (sips) scheme that a proxy does not under-
stand, it would return a 416 response. Since all SIP elements must understand the
sip scheme, the request should be retried using a sip uri in the Request-URI.

5.4.18 417 Unknown Resource Priority

A request containing Require: resource-priority and an unknown value for
Resource-Priority header fi eld will receive the 417 Unknown Resource Priority
response [6]. A 417 response may contain an Accept-Resource-Priority head-
er fi eld listing supported values. The request can be retried either without the
 Require: resource-priority header fi eld or containing a value chosen from the
Accept-Resource-Priority in the Resource-Priority header fi eld.

 SIP Response Messages 121

5.4.19 420 Bad Extension

This response indicates that the extension specifi ed in the Require header fi eld
is not supported by the proxy or UA. The response should contain a Supported
header fi eld listing the extensions that are supported. The UAC could resubmit
the same request without the extension in the Require header fi eld or submit the
request to another proxy or UA.

5.4.20 421 Extension Required

The 421 Extension Required response indicates that a server requires an exten-
sion to process the request that was not present in a Supported header fi eld in
the request. The required extension should be listed in a Required header fi eld
in the response. The client should retry the request adding the extension to a
 Supported header fi eld, or try the request at a different server that may not re-
quire the extension.

5.4.21 422 Session Timer Interval Too Small

The 422 Session Timer Interval Too Small response [7] is used to reject a re-
quest containing a Session-Expires header fi eld (with too short an interval. The
ability to reject short durations is important to prevent excessive re-INVITE or
UPDATE traffi c. The minimum allowed interval is indicated in the required Min-SE
header fi eld. The requestor may retry the request without the Session-Expires
header fi eld or with a value less than or equal to the specifi ed minimum.

5.4.22 423 Interval Too Brief

The 423 Interval Too Brief response is returned by a registrar that is reject-
ing a registration request because the requested expiration time on one or more
 Contacts is too brief. The response must contain a Min-Expires header fi eld
listing the minimum expiration interval that the registrar will accept. A client
requesting a too short interval can unnecessarily load a registrar server with reg-
istration refresh requests. This response allows a registrar to protect against this.

5.4.23 428 Use Identity Header

The 428 Use Identity Header response [8] is used by a UAS that is requiring
the use of enhanced SIP identity. The request should be resent with an Identity
header fi eld containing a signature over selected parts of the SIP message.

122 SIP: Understanding the Session Initiation Protocol

5.4.24 429 Provide Referror Identity

The 429 Provide Referror Identity response [9] is used to request that a
Referred-By header fi eld be resent with a valid Referred-By security token. The
security token is carried as an S/MIME message body. The recipient of this error
message (the UA that received and accepted the REFER) should relay this request
back to the originator of the REFER by including it in a NOTIFY. The sender of
the REFER can then generate the Referred-By security token and include it in the
REFER, which would then be copied into the triggered request.

5.4.25 430 Flow Failed

The 430 Flow Failed response [10] is part of the SIP outbound NAT traversal
extension. It is used by an edge proxy server to indicate that it has lost the fl ow
(keep alive failure or timeout) to the UA in the request. The proxy should then
resend the request using a different fl ow-id if available. This approach allows a
UA to register through multiple proxy servers as described in Section 10.11.3
with a call fl ow in Figure 10.11.

5.4.26 433 Anonymity Disallowed

The 433 Anonymity Disallowed response [11] is used to indicate that a request
has failed due to anonymity. Anonymity might be because of an invalid URI or
display name in the From header fi eld, or by the presence of a Privacy header
fi eld requesting privacy. This header fi eld provides a similar service to the anony-
mous call rejecting service in the PSTN.

5.4.27 436 Bad Identity-Info Header

The 436 Bad Identity-Info response [8] is used to indicate that the URI cannot
be accessed from an Identity-Info header fi eld. The Identity-Info header fi eld
URI is used to retrieve the certifi cate associated with the private key that was
used to generate the signature in the Identity header fi eld, used for enhanced
SIP identity.

5.4.28 437 Unsupported Certifi cate

The 437 Unsupported Certifi cate response [8] is used when the certifi cate ob-
tained using the Identity-Info header fi eld is unable to be used to verify the
signature in the Identity header fi eld. This could be because the certifi cate is
expired, not issued by a trusted certifi cate authority (CA), or for some other
reason.

 SIP Response Messages 123

5.4.29 438 Invalid Identity Header

The 438 Invalid Identity Header response [8] is used to indicate that the
identity signature in the identity header fi eld does not match the message. This
could indicate an attack, or that an intermediary server such as a Session Border
Controller (SBC) or Application Layer Gateway (ALG) has modifi ed the mes-
sage since the signature was generated.

5.4.30 439 First Hop Lacks Outbound Support

The 439 First Hop Lacks Outbound Support response [10] is used by a registrar
to indicate to a UA attempting to use the SIP outbound extension that the edge
proxy does not support the mechanism, and as a result the mechanism cannot
be used.

5.4.31 440 Max-Breadth Exceeded

The 440 Max-Breadth Exceeded response [12] is used to indicate that a forking
proxy operation cannot be carried out due to too many concurrent branches.
This is part of an extension to address an amplifi cation vulnerability in forking
proxy servers. The full description of the attack and how to protect against it is in
[12]. When the Max-Breadth count goes to zero, the 440 Max-Breadth Exceeded
response is returned.

5.4.32 470 Consent Needed

The 470 Consent Needed response [13] is used to reject a request sent to a URI
list that had at least one element requiring consent. The elements needing con-
sent will be listed in a Permission-Missing header fi eld.

5.4.33 480 Temporarily Unavailable

This response indicates that the request has reached the correct destination, but
the called party is not available for some reason. The reason phrase should be
modifi ed for this response to give the caller a better understanding of the situ-
ation. The response should contain a Retry-After header indicating when the
request may be able to be fulfi lled. For example, this response could be sent
when a telephone has its ringer turned off, or a “do not disturb” button has been
pressed. This response can also be sent by a redirect server.

5.4.34 481 Dialog/Transaction Does Not Exist

This response indicates that a response referencing an existing call or transaction
has been received for which the server has no records or state information.

124 SIP: Understanding the Session Initiation Protocol

5.4.35 482 Loop Detected

This response indicates that the request has been looped and has been routed
back to a proxy that previously forwarded the request. Each server that forwards
a request adds a Via header with its address to the top of the request. A branch
parameter is added to the Via header, which is a message digest (hash) of the
Request-URI, and the To, From, Call-ID, and CSeq number. A second part is
added to the branch parameter if the request is being forked. The branch param-
eter must be checked to allow a request to be routed back to a proxy, provided
that the Request-URI has changed. This could happen with a call forwarding
feature. In this case, the Via headers would differ by having different branch
parameters.

5.4.36 483 Too Many Hops

This response indicates that the request has been forwarded the maximum num-
ber of times as set by the Max-Forwards header in the request. This is indicated
by the receipt of a Max-Forwards: 0 header in a request. In the following example,
the UAC included a Max-Forwards: 4 header in the REGISTER request. A proxy
receiving this request fi ve hops later generates a 483 response:

REGISTER sip:registrar.timbuktu.tu SIP/2.0
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK45347.1
Via: SIP/2.0/UDP 198.20.2.4:6128;branch=z9hG4bK917a4d4.1
Via: SIP/2.0/UDP 18.56.3.1:5060;branch=z9hG4bK7154.1
Via: SIP/2.0/TCP 101.102.103.104:5060;branch=z9hG4bKa5ff4d3.1
Via: SIP/2.0/UDP 168.4.3.1:5060;branch=z9hG4bK676746
To: sip:explorer@geographic.org
From: <sip:explorer@geographic.org>;tag=341323
Call-ID: 67483010384
CSeq: 1 REGISTER
Max-Forwards: 0
Contact: sip:explorer@national.geographic.org
Content-Length: 0

SIP/2.0 483 Too Many Hops
Via: SIP/2.0/UDP 201.202.203.204:5060;branch=z9hG4bK45347.1
Via: SIP/2.0/UDP 198.20.2.4:6128;branch=z9hG4bK917a4d4.1
Via: SIP/2.0/UDP 18.56.3.1:5060;branch=z9hG4bK7154.1
Via: SIP/2.0/TCP 101.102.103.104:5060;branch=z9hG4bKa5ff4d3.1
Via: SIP/2.0/UDP 168.4.3.1:5060;branch=z9hG4bK676746
To: <sip:explorer@geographic.org>;tag=a5642
From: <sip:explorer@geographic.org>;tag=341323
Call-ID: 67483010384
CSeq: 1 REGISTER
Content-Length: 0

 SIP Response Messages 125

5.4.37 484 Address Incomplete

This response indicates that the Request-URI address is not complete. This
could be used in an overlap dialing scenario in PSTN interworking where digits
are collected and sent until the complete telephone number is assembled by a
gateway and routed [14]. Note that the follow-up INVITE requests may use the
same Call-ID as the original request. An example of overlap dialing is shown in
Figure 5.2.

5.4.38 485 Ambiguous

This request indicates that the Request-URI was ambiguous and must be
 clarifi ed in order to be processed. This occurs if the username matches a number
of registrations. If the possible matching choices are returned in Contact header
fi elds, then this response is similar to the 300 Multiple Choices response. They
are slightly different, however, since the 3xx response returns equivalent choices
for the same user, but the 4xx response returns alternatives that can be differ-
ent users. The 3xx response can be processed without human intervention, but
this 4xx response requires a choice by the caller, which is why it is classifi ed as
a client error class response. A server confi gured to return this response must
take user registration privacy into consideration; otherwise a vague or general
Request-URI could be used by a rogue UA to try to discover sip or sips URIs
of registered users.

Figure 5.2 Overlap dialing to the PSTN with SIP.

126 SIP: Understanding the Session Initiation Protocol

5.4.39 486 Busy Here

This response is used to indicate that the UA cannot accept the call at this loca-
tion. This is different, however, from the 600 Busy Everywhere response, which
indicates that the request should not be tried elsewhere. In general, a 486 Busy
Here is sent by a UAS unless it knows defi nitively that the user cannot be con-
tacted. This response is equivalent to the busy tone in the PSTN.

5.4.40 487 Request Terminated

This response can be sent by a UA that has received a CANCEL request for a pend-
ing INVITE request. A 200 OK is sent to acknowledge the CANCEL, and a 487 is sent
in response to the INVITE.

5.4.41 488 Not Acceptable Here

This response indicates that some aspect of the proposed session is not accept-
able and may contain a Warning header fi eld indicating the exact reason. This re-
sponse has a similar meaning to 606 Not Acceptable, but only applies to one
location and may not be true globally as the 606 response indicates.

5.4.42 489 Bad Event

The 489 Bad Event response [3] is used to reject a subscription request or noti-
fi cation containing an Event package that is unknown or not supported by the
UAS. The response code is also used to reject a subscription request that does not
specify an Event package, assuming that the server does not support the PINT
protocol (see Section 4.1.7).

5.4.43 491 Request Pending

The 491 Request Pending response is used to resolve accidental simultaneous re-
INVITEs by both parties in a dialog. Since both INVITEs seek to change the state
of the session, they cannot be processed at the same time. While a user agent is
awaiting a fi nal response to a re-INVITE, any re-INVITE request received must be
replied to with this response code. This is analogous to the “glare” condition in
telephony in which both ends seize a trunk at the same time. The reconsidera-
tion algorithm in SIP is for the user agent to generate a delay (randomly selected
within a range determined by if the UA sends the initial INVITE or not) then
retry the re-INVITE, assuming that another re-INVITE has not been received in the
meantime. In this way, one side or the other will “win” the race condition and
have the re-INVITE processed. An example is shown in Figure 5.3.

 SIP Response Messages 127

5.4.44 493 Request Undecipherable

The 493 Request Undecipherable response is used when an S/MIME message
body cannot be decrypted because the public key is unavailable. If the UAS does
not support S/MIME, no message body will be present in the response. If the
UAS does support S/MIME, the response will contain a message body contain-
ing a public key suitable for the UAC to use for S/MIME encryption. See Sec-
tion 14.3.4 for more details on S/MIME encryption.

5.4.45 494 Security Agreement Required

The 494 Security Agreement Required [15] response is used to reject a request
containing a Require: sec-agree header fi eld as part of the security agreement
mechanism.

Figure 5.3 Simultaneous re-INVITE resolution example.

128 SIP: Understanding the Session Initiation Protocol

5.5 Server Error

This class of responses is used to indicate that the request cannot be processed
because of an error with the server. The response may contain a Retry-After
header fi eld if the server anticipates being available within a specifi c time period.
The request can be tried at other locations because there are no errors indicated
in the request.

5.5.1 500 Server Internal Error

This server error class response indicates that the server has experienced some
kind of error that is preventing it from processing the request. The reason phrase
can be used to identify the type of failure. The client can retry the request again
at this server after several seconds.

5.5.2 501 Not Implemented

This response indicates that the server is unable to process the request because
it is not supported. This response can be used to decline a request containing an
unknown method. A proxy, however, will forward a request containing an un-
known request method. Thus, a proxy will forward an unknown SELFDESTRUCT
request, assuming that the UAS will generate this response if the method is not
known.

5.5.3 502 Bad Gateway

This response is sent by a proxy that is acting as a gateway to another network,
and indicates that some problem in the other network is preventing the request
from being processed.

5.5.4 503 Service Unavailable

This response indicates that the requested service is temporarily unavailable.
The request can be retried after a few seconds, or after the expiration of the
 Retry-After header fi eld. Instead of generating this response, a loaded server
may refuse the connection. This response code is important in that its receipt
triggers a new DNS lookup to locate a backup server to obtain the desired ser-
vice. The set of SIP DNS procedures for locating SIP servers is detailed in [16].

5.5.5 504 Gateway Timeout

This response indicates that the request failed due to a timeout encountered in
the other network to which that the gateway connects. It is a server error class

 SIP Response Messages 129

response because the call is failing due to a failure of the server in accessing re-
sources outside the SIP network.

5.5.6 505 Version Not Supported

This response indicates that the request has been refused by the server because of
the SIP version number of the request. The detailed semantics of this response
have not yet been defi ned because there is only one version of SIP (version 2.0)
currently implemented. When additional version numbers are implemented in
the future, the mechanisms for dealing with multiple protocol versions will need
to be detailed.

5.5.7 513 Message Too Large

The 513 Message Too Large response is used by a UAS to indicate that the re-
quest size was too large for it to process.

5.5.8 580 Preconditions Failure

The 580 Preconditions Failure response [17] is used to reject an SDP offer in
which the required preconditions cannot be met.

5.6 Global Error

This response class indicates that the server knows that the request will fail wher-
ever it is tried. As a result, the request should not be sent to other locations. Only
a server that has defi nitive knowledge of the user identifi ed by the Request-URI
in every possible instance should send a global error class response. Otherwise, a
client error class response should be sent. A Retry-After header fi eld can be used
to indicate when the request might be successful.

5.6.1 600 Busy Everywhere

This response is the defi nitive version of the 486 Busy Here client error response.
If there is a possibility that the call to the specifi ed Request-URI could be an-
swered in other locations, this response should not be sent.

5.6.2 603 Decline

This response has the same effect as the 600 Busy Everywhere but does not give
away any information about the call state of the server. This response could indi-
cate the called party is busy, or simply does not want to accept the call.

130 SIP: Understanding the Session Initiation Protocol

5.6.3 604 Does Not Exist Anywhere

This response is similar to the 404 Not Found response but indicates that the user
in the Request-URI cannot be found anywhere. This response should only be
sent by a server that has access to all information about the user.

5.6.4 606 Not Acceptable

This response can be used to implement some session negotiation capability in
SIP. This response indicates that some aspect of the desired session is not accept-
able to the UAS, and as a result, the session cannot be established. The response
may contain a Warning header fi eld with a numerical code describing exactly
what was not acceptable. The request can be retried with different media session
information. An example of simple negotiation with SIP is shown in Figure 5.4.
If more complicated negotiation capability is required, another protocol should
be used.

5.7 Questions

Q5.1 If a UA reboots in the middle of a SIP session and looses all state
 information, what response is it likely to send to a re-INVITE or
 BYE from the other UA?

Q5.2 In terms of the behavior of the UAC originator of the request,
 explain the difference between a 4xx and 5xx response.

Q5.3 Which response would likely be generated to this request?

Figure 5.4 Session negotiation with SIP.

 SIP Response Messages 131

REGISTER sip:registrar.munich.de SIP/2.0
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bKsdus19
Max-Forwards: 70
To: Werner Heisenberg <sip:werner.heisenberg@munich.de>
From: Werner Heisenberg <sip:werner.heisenberg@munich.de>
 ;tag=3431
Call-ID: 7ds376fd4291
CSeq: 1 REGISTER
Contact: <sip:werner.heisenberg@200.201.202.203>;expires=1
Content-Length: 0

Q5.4 Give two differences between a 100 response and a 180 response.

Q5.5 What action should be taken by a UAC that receives a 412
 response?

Q5.6 How is a 3xx response different from a REFER?

Q5.7 Generate a SIP call fl ow with two UAs and a proxy where a 408
 response is sent.

References

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [1]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, 2002.

Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to [2]
Session Initiation Protocol (SIP) Mapping,” RFC 3398, 2002.

Roach, A., “SIP Specific Events,” RFC 3265, 2002. [3]

Niemi, A., “An Extension to Session Initiation Protocol (SIP) Events for Conditional Event [4]
Notification,” draft-ietf-sipcore-subnot-etags-09 (work in progress), April 2009.

Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC [5]
3903, October 2004.

Schulzrinne, H., and J. Polk, “Communications Resource Priority for the Session Initiation [6]
Protocol (SIP),” RFC 4412, February 2006.

Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),” [7]
RFC 4028, April 2005.

Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in [8]
the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

Sparks, R., “The SIP Referred-By Mechanism,” RFC 3892, September 2004. [9]

Jennings, C., and R. Mahy, “Managing Client Initiated Connections in the Session [10]
Initiation Protocol (SIP),” draft-ietf-sip-outbound-20 (work in progress), June 2009.

Rosenberg, J., “Rejecting Anonymous Requests in the Session Initiation Protocol (SIP),” [11]
RFC 5079, December 2007.

Sparks, R., et al., “Addressing an Amplifi cation Vulnerability in Session Initiation Protocol [12]
(SIP) Forking Proxies,” RFC 5393, December 2008.

132 SIP: Understanding the Session Initiation Protocol

Rosenberg, J., G. Camarillo, and D. Willis, “A Framework for Consent-Based [13]
Communications in the Session Initiation Protocol (SIP),” RFC 5360, October 2008.

Anttalainen, T., [14] Introduction to Telecommunications Network Engineering, Norwood, MA:
Artech House, 1999.

Arkko, J., et al., “Security Mechanism Agreement for the Session Initiation Protocol (SIP),” [15]
RFC 3329, January 2003.

Rosenberg, J., and H. Schulzrinne, “Session Initiation Protocol (SIP): Locating SIP Servers,” [16]
RFC 3263, 2002.

Camarillo, G., W. Marshall, and J. Rosenberg, “Integration of Resource Management and [17]
Session Initiation Protocol (SIP),” RFC 3312, October 2002.

133

6
SIP Header Fields
This chapter describes the header fi elds present in SIP messages. The header
fi elds discussed in this chapter are categorized as request and response, request
only, response only, and message body header fi elds, depending on their usage
in SIP. Except as noted, header fi elds are defi ned in the SIP specifi cation RFC
3261 [1]. Chapter 7 also lists some special header fi elds defi ned for 3GPP IMS
and OMA.

SIP header fi elds in most cases follow the same rules as HTTP header
fi elds [2]. Header fi elds are defi ned as Header: fi eld, where Header is the case-
insensitive token (but conventionally lowercase with some capitalization) used
to represent the header fi eld name, and fi eld is the case-insensitive set of tokens
that contain the information. Except when otherwise noted, their order in a
message is not important. Header fi elds can continue over multiple lines as long
as the line begins with at least one space or horizontal tab character. Unrecog-
nized header fi elds are ignored by proxies. Many common SIP header fi elds have
a compact form where the header fi eld name is denoted by a single lower-case
character. These header fi elds are shown in Table 6.1. Header fi elds can be either
end-to-end or hop-by-hop. Hop-by-hop header fi elds are the only ones that a
proxy may insert or, with a few exceptions, modify. Because SIP typically in-
volves end-to-end control, most header fi elds are end-to-end. The hop-by-hop
header fi elds that may be inserted by a proxy are shown in Table 6.2.

134 SIP: Understanding the Session Initiation Protocol

6.1 Request and Response Header Fields

This set of header fi elds can be present in both requests and responses.

6.1.1 Accept

The Accept header fi eld is defi ned by HTTP [2] and is used to indicate ac-
ceptable message Internet media types [3] in the message body. The header
fi eld describes media types using the format type/sub-type commonly used
in the Internet. If not present, the assumed acceptable message body format is
application/sdp. A list of media types can have preferences set using q value
parameters. The wildcard “*” can be used to specify all sub-types. Examples
are given in Table 6.3.

6.1.2 Accept-Encoding

The Accept-Encoding header fi eld, defi ned in HTTP [2], is used to specify ac-
ceptable message body encoding schemes. Encoding can be used to ensure a SIP
message with a large message body fi ts inside a single UDP datagram. The use of
q value parameters can set preferences. If none of the listed schemes are accept-
able to the UAC, a 406 Not Acceptable response is returned. If not included, the
assumed encoding will be text/plain. Examples include:

Table 6.1
Compact Forms of SIP Header Fields

Header Field Compact Form
Accept-Contact a

Allow-Event u

Call-ID i

Contact m

Content-Encoding e

Content-Length l

Content-Type c

Event o

From f

Refer-To r

Referred-By b

Reject-Contact j

Subject s

To t

Via v

 SIP Header Fields 135

Table 6.2
Header Fields That May Be Inserted or Modifi ed by Proxies

Hop-by-Hop Header Fields
Alert-Info

Call-Info

Content-Length

Date

Error-Info

Max-Breadth

Max-Forwards

Organization

Priority

Proxy-Authenticate

Proxy-Authorization

Proxy-Require

Record-Route

Reason

Require

Route

Via

WWW-Authenticate

Security-Client

Security-Verify

Security-Server

Answer-Mode

Priv-Answer-Mode

History-Info

Path

Identity

Identity-Info

P-Asserted-Identity

Reason

Resource-Priority

Auth-Info

Table 6.3
Examples of an Accept Header Field

Header Field Meaning

Accept: application/sdp
This is the default assumed even if no
Accept header fi eld is present.

Accept: text/* Accept all text encoding schemes.
Accept: application/
 h.245;q=0.1,
 application/sdp;q=0.9

Use SDP if possible, otherwise, use H.245.

136 SIP: Understanding the Session Initiation Protocol

Accept-Encoding: text/plain

Accept-Encoding: gzip

6.1.3 Accept-Language

The Accept-Language header fi eld, defi ned in HTTP [2], is used to specify pref-
erences of language. The languages specifi ed can be used for reason phrases in
responses, informational header fi elds such as Subject, or in message bodies. The
HTTP defi nition allows the language tag to be made of a primary tag and an op-
tional subtag. This header fi eld could also be used by a proxy to route to a human
operator in the correct language. The language tags are registered by IANA, and
the primary tag is an ISO-639 language abbreviation. The use of q values allows
multiple preferences to be specifi ed. Examples are shown in Table 6.4.

6.1.4 Alert-Info

The Alert-Info header fi eld can be used to provide a “distinctive ring” service.
If present in an INVITE, the UAS may use the URI to fetch an alert tone to be
used in place of the default alerting tone—that is, it would be rendered to the
called party. If present in a 180 Ringing response, the UAC may use the URI to
fetch a ring-back tone to be rendered to the calling party. In both uses, the URI is
fetched and rendered without user intervention, so careful policy rules are neces-
sary to avoid unwanted sounds and noises being generated.

One use is for a trusted proxy to insert the header fi eld with a local (to the
domain of the user agent) URI. This then allows for very simple policy in the
user agent in deciding whether or not to render. Another approach is for a URN
to be used, which would tell the user agent which service tone to play for the
user.

An example is shown here:

Alert-Info: <http://www.provider.com/tones/internal_caller.pcm>

Table 6.4
Examples of an Accept-Language Header Field

Header Field Meaning

Accept-Language: fr French is the only acceptable language.

Accept-Language: en, ea
Acceptable languages include both
English and Spanish.

Accept-Language: ea; q=0.5,
 en ;q=0.9, fr ;q=0.2

Preferred languages are English, Spanish,
and French, in that order.

 SIP Header Fields 137

6.1.5 Allow

The Allow header fi eld is used to indicate the methods supported by the UA
or proxy server sending the response. The header fi eld must be present in a 405
Method Not Allowed response and should be included in a positive response to
an OPTIONS request. Allow is often present in INVITE and 200 OK responses. An
example is:

Allow: INVITE, ACK, BYE, INFO, OPTIONS, CANCEL

6.1.6 Allow-Events

The Allow-Events header fi eld [4] is used to list the event packages that are
supported. A UA that supports SIP events will then know that it may send a
 SUBSCRIBE for that event package. The list of currently defi ned packages is in
Table 4.8. The compact form is u.

Examples are shown here:

Allow-Events: dialog

u: conference

6.1.7 Answer-Mode

The Answer-Mode header fi eld [5] is used to request an immediate answer (200
OK) to an INVITE. Two values, Manual and Auto, have been defi ned. The Manual
setting is normal behavior while Auto means the request should be accepted im-
mediately without input from the user. A header fi eld parameter require is de-
fi ned to indicate that if the requested behavior is not permitted, the request
should be rejected with a 403 Forbidden response. This extension can be used for
a number of features including loopback tests, intercom, and push-to-talk. The
Answer-Mode header fi eld can be included in a 200 OK response to an INVITE to
indicate how the request was answered. For example, if the require parameter is
not present and the call is answered by the user, an Answer-Mode: Manual header
fi eld can be included in the 200 OK. The Priv-Answer-Mode is similar but requests
a privilege treatment. The SIP option tag answermode is used to indicate support
for this extension. Example:

Answer-Mode: Auto;require

6.1.8 Call-ID

The Call-ID header fi eld is mandatory in all SIP requests and responses. It is
part of the dialog used to uniquely identify a call between two user agents. A

138 SIP: Understanding the Session Initiation Protocol

Call-ID must be unique across calls, except in the case of a Call-ID in registration
requests. All registrations for a user agent should use the same Call-ID. A Call-ID
is always created by a user agent and is never modifi ed by a server.

The Call-ID must be a cryptographically random identifi er. Some security
is provided by the randomness of the Call-ID, because this prevents a third party
from guessing a Call-ID and presenting false requests. Older UAs generate Call-
IDs containing an IP address or host name. However, this is not recommended
as it forces topology hiding B2BUAs to rewrite the Call-ID. The compact form
of the Call-ID header fi eld is i.

Examples of Call-ID are shown here:

Call-ID: 34a5d553192cc35
Call-ID: 44fer23ei4291dekfer34231232

i: 35866383092031257

6.1.9 Contact

The Contact header fi eld is used to convey a URI that identifi es the resource
requested or the request originator, depending on whether it is present in a re-
quest or response. Once a Contact header fi eld has been received, the URI can
be cached and used for routing future requests within a dialog. For example, a
Contact header fi eld in a 200 OK response to an INVITE can allow the acknowledg-
ment ACK message and all future requests during this call to bypass proxies and
go directly to the called party. However, the presence of Record-Route header
fi elds in an earlier request or default proxy routing confi guration in a user agent
may override that behavior. When a Contact URI is used in a Request-URI, all
URI parameters are allowed with the exception of the method parameter, which
is ignored.

Contact header fi elds must be present in INVITE requests and 200 OK re-
sponses to invitations. In some cases, the Contact URI may not resolve directly
to the user agent. For example, a UA behind a fi rewall ALG will need to use a
Contact URI that resolves to the fi rewall ALG address. Otherwise, the use of
the user agent’s URI will result in the call failing because of the fi rewall blocking
any direct routed SIP requests. Contact header fi elds may also be present in 1xx,
2xx, 3xx, and 485 responses. Only in a REGISTER request, a special Contact:*,
along with an Expires: 0, header fi eld is used to remove all existing registra-
tions. Examples of Contact header fi elds in registrations are shown in Table 4.3.
Otherwise, wild carding is not allowed. A Contact header fi eld may contain a
display name that can be in quotes. If a display name is present, the URI will be
enclosed in < >. If any header fi eld parameters are present, the URI will also be

 SIP Header Fields 139

enclosed in < > along with any URI parameters, with the header fi eld parameters
outside the < >, even if no display name is present.

There are three additional parameters defi ned for use in Contact header
fi elds: q, action, and expires. They are placed at the end of the URI and sepa-
rated by semicolons. The q value parameter is used to indicate relative prefer-
ence, which is represented by a decimal number in the range 0 to 1. The q value
is not a probability, and there is no requirement that the q values for a given list
of Contacts add up to 1. (The action parameter defi ned in RFC 2543 has been
deprecated and is not used in RFC 3261. It was only used in registration Contact
header fi elds, and is used to specify proxy or redirect operations by the server.)
The expires parameter indicates how long the URI is valid and is also only used
in registrations. The parameter either contains an integer number of seconds or
a date in SIP form (see Section 6.1.11). Examples are shown in Table 6.5.

The Contact header fi eld may contain a feature tag [6], which can be used
to indicate the capabilities of the device identifi ed by the Contact URI. For ex-
ample, the feature tag isfocus is used to indicate that the URI in the Contact
header fi eld is a conference URI, and that the dialog is associates with a focus.
A focus is a SIP UA that hosts a particular instance of a conference, called a
“bridge” or MCU in other protocols. The presence of the isfocus feature tag
can be used by a SIP UA that supports advanced conferencing features to invoke
certain call control operations [7] or subscribe to the conference package [8].
Section 9.7 has more on SIP conferencing.

Some other common feature tags are listed in Table 6.6. The compact form
is m.

Table 6.5
Examples of Contact Header Fields

Header Field Meaning

Contact: sip:bell@telephone.com
A single SIP URI without a display
name.

Contact: Lentz <h.lentz@petersburg.edu:1234>

A display name with the URI enclosed
in < >; the display name is treated as
a token and ignored. Port 1234 is used
instead of the default 5060.

Contact: M. Faraday <faraday@effect.org>,
 “Faraday” <mailto:faraday@pop.effect.org>

Two URIs are listed, the second being
a non-SIP URI with a display name
enclosed in quotes.

m: <morse@telegraph.org;transport=tcp>;
 expires= “Fri, 13, Oct 1998 12:00:00 GMT”

The compact form of the header fi eld
contains a port number and a URI
parameter contained within the < >.
An expires header fi eld parameter
uses a SIP date enclosed in the
quotes.

140 SIP: Understanding the Session Initiation Protocol

6.1.10 CSeq

The command sequence CSeq header fi eld is a required header fi eld in every
request. The CSeq header fi eld contains a decimal number that increases for each
request. Usually, it increases by 1 for each new request, with the exception of
CANCEL and ACK requests, which use the CSeq number of the INVITE request to
which it refers.

The CSeq count is used by UASs to determine out-of-sequence requests or
to differentiate between a new request (different CSeq) or a retransmission (same
CSeq). The CSeq header fi eld is used by UACs to match a response to the request
it references. For example, a UAC that sends an INVITE request then a CANCEL
request can tell by the method in the CSeq of a 200 OK response if it is a response
to the invitation or cancellation request. Examples are shown in Table 6.7.

Each user agent maintains its own command sequence number space. For
example, consider the case where UA 1 establishes a session to UA 2 and initial-
izes its CSeq count to 1. When user agent 2 initiates a request (such as INVITE
or INFO, or even BYE) it will initialize its own CSeq space, totally independent of
the CSeq count used by UA 1. The examples of Chapter 16 show this behavior
of CSeq.

Table 6.6
Boolean Feature Tags

Feature Tag Meaning
attendant Attendant, human or automata
automata Nonhuman
image Supports images
message Supports messaging
text Supports text media
audio Supports audio media
video Supports video media
voicemail Is a voicemail server
isfocus Is a focus, a conference server

Table 6.7
CSeq Header Field Examples

Header Field Meaning
CSeq: 1 INVITE The command sequence number has been initialized to 1 for this INVITE.
CSeq: 432 REFER The command sequence number is set to 432 for this REFER request.

CSeq: 6787 INVITE

If this was the fi rst request by the user agent for this dialog, then either
the CSeq was initialized to 6787, or the previous request generated for
this Call-ID (either an INVITE or another request) would have had a
CSeq of 6786 or lower.

 SIP Header Fields 141

6.1.11 Date

The Date header fi eld is used to convey the date when a request or response is
sent. The format of a SIP date is based on HTTP dates, but allows only the pre-
ferred Internet date standard referenced by RFC 1123 [9]. To keep UA date and
time logic simple, SIP only supports the use of the GMT time zone. This allows
time entries that are stored in date form rather than second count to be easily
converted into delta seconds without requiring knowledge of time zone offsets.
Date is included in 200 OK responses to REGISTER requests. This allows UAs to
automatically set their date and time.

A Date example is shown here:

Date: Fri, 13 Oct 1998 23:29:00 GM

6.1.12 Encryption

The Encryption header fi eld was defi ned in RFC 2543 but is not included
in RFC 3261. Instead, encryption using S/MIME is defi ned as discussed in
Chapter 14.

6.1.13 Expires

The Expires header fi eld is used to indicate the time interval in which the re-
quest or message contents are valid. When present in an INVITE request, the
header fi eld sets a time limit on the completion of the INVITE request. That is,
the UAC must receive a fi nal response (non-1xx) within the time period or the
INVITE request is automatically canceled with a 408 Request Timeout response.
Once the session is established, the value from the Expires header fi eld in the
original INVITE has no effect—the Session-Expires header fi eld (Section 6.2.34)
must be used for this purpose. When present in a REGISTER request, the header
fi eld sets the time limit on the URIs in Contact header fi elds that do not contain
an expires parameter. Table 4.3 shows examples of the Expires header fi eld in
registration requests. Expires also is used in SUBSCRIBE requests to indicate the
subscription duration. The header fi eld may contain a SIP date or a number of
seconds. Examples include:

Expires: 60

Expires: Fri, 15 Apr 2000 00:00:00 GMT

6.1.14 From

The From header fi eld is a required header fi eld that indicates the originator
of the request. It is one of two addresses used to identify the dialog. The From

142 SIP: Understanding the Session Initiation Protocol

header fi eld contains a URI, but it may not contain the transport, maddr, or
ttl URI parameters. A From header fi eld may contain a tag used to identify a
particular call. A From header fi eld may contain a display name, in which case
the URI is enclosed in < >. If there is both a URI parameter and a tag, then the
URI including any parameters must be enclosed in < >. Examples are shown in
Table 6.8. A From tag was optional in RFC 2543 but is mandatory to include in
RFC 3261.

6.1.15 History Info

The History-Info header fi eld [10] is an extension header fi eld used to capture
and convey routing history associated with a SIP request. Information about a
request routing can be added whenever a request is retargeted, the Request-URI
is rewritten, and so fourth. A Reason header fi eld (Section 6.2.20) is included as
a parameter in this header fi eld. Since a request can be forwarded and retargeted
multiple times, multiple History-Info header fi elds can be present (or multiple
comma separated History-Info entries). An index parameter is used to keep
track of the order of the actions. A common application for History-Info is for
voicemail, described in Section 9.4. Below is an example showing three history-
info entries, and the escaping of the semicolon (%3B) and equals (%3D) in the
 Reason header fi eld:

History-Info: <sip:UserA@example.com?Reason=SIP%3Bcause%3D302>
 ;index=1.1,
<sip:UserB@example.com?Privacy=history&Reason=SIP%3Bcause%3D486>
 ;index=1.2, <sip:45432@vm.example.com>;index=1.3

Table 6.8
Examples of From Header Field

Header Field Meaning

From: <sip:armstrong@hetrodyne.com> ;tag=3342436 A single SIP URI with a tag.

From: Thomas Edison
 <sips:edison@electric.com>;tag=532

A secure SIP URI with a
display name.

f: “James Bardeen”
<sip:555.1313@telephone.com ;transport=tcp>;tag=3a320f03

Using the compact form of the
header fi eld, a display name
in quotes along with a SIP URI
with a parameter inside < >.

From: tel:911

A tel URI without a display
name or tag, so no <> is
required. Generated by a RFC
2543 UA.

 SIP Header Fields 143

6.1.16 Organization

The Organization header fi eld is used to indicate the organization to which the
originator of the message belongs. It can also be inserted by proxies as a message
is passed from one organization to another. Like all SIP header fi elds, it can be
used by proxies for making routing decisions and by UAs for making call screen-
ing decisions.

An example is:

Organization: MCI

6.1.17 Path

The Path header fi eld [11] is an optional header fi eld in REGISTER requests. It
can be thought of as a Record-Route mechanism for REGISTER requests, which
establishes a route set that is valid for the duration of the registration. The Path
header fi eld may be inserted by a proxy, which forwards a REGISTER request to a
registrar server. The registrar copies the Path header fi eld into the 200 OK response
to the REGISTER, which then provides the route set information to the UA that
is registering. In a mobile network, the Path header fi eld can be used to discover
and inform the UA of the proxies that can be used to populate preloaded Route
header fi elds. The ob URI parameter in a Path header fi eld can be used to indi-
cate to a UA that an edge proxy supports the SIP outbound extension, described
in Section 10.11.3.

An example is:

Path: <sip:proxy2.another.provider.com;lr;ob>

6.1.18 Priv-Answer-Mode

The Priv-Answer-Mode header fi eld is similar to the Answer-Mode header fi eld
in that it requests special handling by the recipient of the INVITE. The values
Manual and Auto and the require parameter are defi ned. The difference between
Priv-Answer-Mode and Answer-Mode relates to the policy on the UA. For exam-
ple, an intercom call between an executive and an administrator might use the
Answer-Mode header fi eld, and a do-not-disturb setting on the executive’s phone
could override this feature. However, a building-wide emergency announcement
might use the Priv-Answer-Mode header fi eld, which would override the execu-
tive’s do-not-disturb setting. Example:

Priv-Answer-Mode: Auto

144 SIP: Understanding the Session Initiation Protocol

6.1.19 Record-Route

The Record-Route header fi eld is used to force routing through a proxy for all
subsequent requests in a session (dialog) between two UAs. Normally, the pres-
ence of a Contact header fi eld allows UAs to send messages directly bypassing the
proxy chain used in the initial request (which probably involved database look-
ups to locate the called party). A proxy inserting its address into a Record-Route
header fi eld overrides this and forces future requests to include a Route header
fi eld containing the address of the proxy that forces this proxy to be included.

A proxy wishing to implement this inserts the header fi eld containing its
own URI, or adds its URI to an already present Record-Route header fi eld. The
URI is constructed so that the URI resolves back to the proxy server. The UAS
copies the Record-Route header fi eld into the 200 OK response to the request. The
header fi eld is forwarded unchanged by proxies back to the UAC. The UAC then
stores the Record-Route proxy list plus a Contact header fi eld if present in the
200 OK for use in a Route header fi eld in all subsequent requests. Because Record-
Route is bidirectional, messages in the reverse direction will also traverse the same
set of proxies. Chapter 16 contains an example of the use of the Record-Route
and Route header fi elds. The lr parameter is new to RFC 3261 and indicates that
the proxy server supports “loose routing.” Older RFC 2543 compliant proxy
servers create Record-Route URIs that instead of the lr parameter often contain
the maddr parameter with an address or host that resolves to that proxy server.

Examples are:

Record-Route: <sip:proxy1.carrier.com;lr>,
 <sip:fi rewall33.corporation.com;lr>

Record-Route:<sip:139.23.1.44;lr>

6.1.20 Recv-Info

The Recv-Info header fi eld [12] is used to indicate which INFO packages a UA is
willing to receive. Defi ned INFO event packages allow negotiation between UAs
of supported applications using INFO. For example:

Recv-Info: foo

6.1.21 Refer-Sub

The Refer-Sub header fi eld [13] is used to request a particular state for an im-
plicit REFER subscription, or to indicate the state of an existing implicit REFER
subscription. When a Refer-Sub: false header fi eld is included in a REFER, the
recipient of the REFER is requested not to create an implicit subscription and not

 SIP Header Fields 145

to send NOTIFYs about the outcome of the referred operation. If the recipient
does this, they return the Refer-Sub: false header fi eld in the 2xx response to
the REFER. A value of true or the absence of the Refer-Sub header fi eld in the 2xx
response to the REFER means that the implicit subscription has been created. The
norefsub option tag indicates that a UA supports this mechanism.

6.1.22 Retry-After

The Retry-After header fi eld is used to indicate when a resource or service may
be available again. In 503 Service Unavailable responses, it indicates when
the server will be available. In 404 Not Found, 600 Busy Everywhere, and 603
 Decline responses, it indicates when the called UA may be available again.

The header fi eld can also be included by proxy and redirect servers in re-
sponses if a recent registration was removed with a Retry-After header fi eld indi-
cating when the user may sign on again. The contents of the header fi eld can be
either an integer number of seconds or a SIP date. A duration parameter can be
used to indicate how long the resource will be available after the time specifi ed.
Examples of this header fi eld are shown in Table 6.9.

6.1.23 Subject

The optional Subject header fi eld is used to indicate the subject of the media ses-
sion. It can be used by UAs for simple call screening. The contents of the header
fi eld can also be displayed during alerting to aid the user in deciding whether to
accept the call. The compact form of this header fi eld is s. Some examples are:

Subject: More good info about SIP

s: Are you awake, yet??

Table 6.9
Examples of a Retry-After Header Field

Header Field Meaning

Retry-After: 3600
Request can be retried
again in 1 hour.

Retry-After: Sat, 21 May 2000 08:00:00 GMT
Request can be retried
after the date listed.

Retry-After: 3600
Request can be tried
after 1 hour.

Retry-After: Mon, 29 Feb 2000 13:30:00 GMT;duration=1800

Request can be retried
after the specifi ed date
for 30 minutes.

146 SIP: Understanding the Session Initiation Protocol

6.1.24 Supported

The Supported header fi eld is used to list one or more options implemented by
a UA or server. It is typically included in responses to OPTIONS requests. If no op-
tions are implemented, the header fi eld is not included. If a UAC lists an option
in a Supported header fi eld, proxies or UASs may use the option during the call.
If the option must be used or supported, the Require header fi eld is used instead.
Table 6.10 shows the current set of defi ned feature tags.

An example of the header fi eld is:

Supported: rel100

Table 6.10
Extension Feature Tags

Tag Meaning
answermode Answer-Mode and Priv-Answer-Mode header fi elds
early-session Support of early-session content disposition
eventllist Resourcelist extension
events SIP Events [4]
from-change From and To URI changes in a dialog [14]
gruu Globally Routable User Agent URI [15]
histinfo History-Info header fi eld [10]
ice Support for ICE [16]
join Join call control primitive [17]
multiple-refer REFER with resource-list [18]
norefsub REFER without implicit subscription and NOTIFYs [19]
outbound SIP outbound NAT traversal feature [20]
path Path header fi eld [21]
precondition SIP preconditions [22]
pref Caller prefs [23]
privacy Privacy mechanisms [24]
recipient-list-invite INVITE with resource list [25]
recipient-list-message MESSAGE with resource list [26]
recipient-list-subscribe SUBSCRIBE with resource list [27]
rel100 Reliable provisional response (PRACK) support [28]
replaces Replaces call control primitive [29]
resource-priority Resource-Priority header fi eld [30]
sdp-anat Alternative address for NAT (deprecated) [31]
sec-agree SIP security agreement mechanism [32]
tdialog Target-dialog header fi eld [33]
timer Session timer feature [34]

 SIP Header Fields 147

6.1.25 Timestamp

The Timestamp header fi eld is used by a UAC to mark the exact time a request
was generated in some numerical time format. A UAS must echo the header fi eld
in the response to the request and may add another numerical time entry indi-
cating the amount of delay. Unlike the Date header fi eld, the time format is not
specifi ed. The most accurate time format should be used, including a decimal
point. Examples are shown in Table 6.11. The default value of 500 ms is used for
T1.. Timestamp is not commonly used.

6.1.26 To

The To header fi eld is a required header fi eld in every SIP message used to indi-
cate the recipient of the request. Any responses generated by a UA will contain
this header fi eld with the addition of a tag. (Note that an RFC 2543 client will
typically only generate a tag if more than one Via header fi eld is present in the
request.) Any response generated by a proxy must have a tag added to the To
header fi eld. A tag added to the header fi eld in a 200 OK response is used through-
out the call and incorporated into the dialog. The To header fi eld URI is never
used for routing—the Request-URI is used for this purpose. An optional display
name can be present in the header fi eld, in which case the SIP URI is enclosed in
< >. If the URI contains any parameters or username parameters, the URI must
be enclosed in < > even if no display name is present. The compact form of the
header fi eld is t. Examples are shown in Table 6.12.

6.1.27 User-Agent

The User-Agent header fi eld is used to convey information about the UA origi-
nating the request. Based on the HTTP header fi eld of the same name [2], it
can contain manufacturer information, software version, or comments. The fi eld
may contain multiple tokens, with the ordering assumed to be from most general
to most specifi c. This information can be used for logging or for generating a
specifi c response for a specifi c UA. For security reasons, this header fi eld may be
suppressed. For example, an attacker probing a UA for vulnerabilities could learn
the particular vendor and software load that is susceptible to a particular attack

Table 6.11
Examples of a Timestamp Header Field

Header Field Meaning
Timestamp: 235.15 Client has stamped a start time for the request.

Timestamp: 235.15 .95
This header fi eld from the response has the delay time
added by the server.

148 SIP: Understanding the Session Initiation Protocol

and reuse that attack against other UAs that have the same software as identifi ed
by the User-Agent header fi eld.

Examples include:

User-Agent: Acme/v2.2

User-Agent: Carrier/Beta

6.1.28 Via

The required Via header fi eld is used to record the SIP route taken by a request
and is used to route a response back to the originator. A UA generating a request
records its own address in a Via header fi eld. While the ordering of most SIP
header fi elds is not signifi cant, the Via header fi elds order is signifi cant because it
is used to route responses. A proxy forwarding the request adds a Via header fi eld
containing its own address to the top of the list of Via header fi elds. A proxy add-
ing a Via header fi eld always includes a branch tag containing a cryptographic
hash of the To, From, Call-ID header fi elds and the Request-URI. A proxy or
UA generating a response to a request copies all the Via header fi elds from the
request in order into the response, then sends the response to the address speci-
fi ed in the top Via header fi eld. A proxy receiving a response checks the top Via
header fi eld to ensure that it matches its own address. If it does not, the response
has been misrouted and should be discarded. The top Via header fi eld is then
removed, and the response forwarded to the address specifi ed in the next Via
header fi eld.

Via header fi elds contain protocol name, version number, and transport
(SIP/2.0/UDP, SIP/2.0/TCP, etc.) and may contain port numbers and parameters
such as received, rport, branch, maddr, and ttl. A received tag is added to
a Via header fi eld if a UA or proxy receives the request from a different address
than that specifi ed in the top Via header fi eld. If an rport tag is included in a Via
in a request, a proxy will insert the port the request was received on and use this

Table 6.12
Examples of a To Header Field

Header Field Meaning

To: sip:babage@engine.org;tag=2443a8f7
A single SIP URI with a tag and without a
display name.

To: Thomas Edison <sips:edison@elec.com>
A display name is used, so the sips URI is
enclosed in < >.

t: “Jim B.” <brattain@bell.org>
A display name in quotes along with a SIP
URI enclosed within < >.

To: <+1-314-555-1212@carrier.com
 ;user=phone>;tag=8f7f7ad6675

Both a URI parameter and tag are used,
so URI is enclosed in <>. Note that no line
breaks are permitted in a URI.

 SIP Header Fields 149

port for routing the response. This indicates that a NAT or fi rewall proxy is in
the message path. If present, the received and or rport tags are used in response
routing. (The hidden parameter, deprecated in RFC 3261, was used to indicate
that the Via header fi eld has been encrypted.) A branch parameter is added to
Via header fi elds by UAs and proxies, which is computed as a hash function of
the Request-URI, and the To, From, Call-ID, and CSeq number. A second part
is added to the branch parameter if the request is being forked as shown in Figure
3.4. The maddr and ttl parameters are used for multicast transport and have a
similar meaning as the equivalent SIP URI parameters. The compact form of the
header fi eld is v. Examples are given in Table 6.13.

6.2 Request Header Fields

This set of header fi elds can only be present in a request.

6.2.1 Accept-Contact

The Accept-Contact [23] header fi eld specifi es to which URIs the request may
be proxied. Some additional parameters are also defi ned for Contact header fi elds
such as media, duplex, and language. This header fi eld is part of the caller pref-
erences extensions to SIP, which have been defi ned to give some control to the
caller in the way a proxy server processes a call. The compact form is a.

Some examples follow:

Table 6.13
Examples of a Via Header Field

Header Field Meaning

Via: SIP/2.0/UDP 100.101.102.103
 ;branch=z9hG4bK776a

IPv4 address using unicast UDP
transport and assumed port of 5060.

Via: SIP/2.0/TCP cube451.offi ce.com:60202
 ;branch=z9hG4bK776a

Domain name using TCP transport and
port number 60202.

Via: SIP/2.0/UDP 120.121.122.123
 ;branch= z9hG4bK56a234f3.1

Proxy added Via header fi eld with
branch.

v: SIP/2.0/UDP proxy.garage.org
 ;branch= z9hG4bK3423423a3.3

Compact form with domain name
using UDP; third search location of
forking proxy.

Via: SIP/2.0/TCP 192.168.1.2;received=12.4.5.50
 ;rport=42212 ;branch=z9hG4bK334

IPv4 address is nonglobally unique.
Request has been forwarded
through a NAT, which has created
a mapping with a different IP
address and port (mapped address is
12.4.5.50:42212).

150 SIP: Understanding the Session Initiation Protocol

Accept-Contact: *;language=en

a: *;media=video

6.2.2 Authorization

The Authorization header fi eld is used to carry the credentials of a UA in a
request to a server. It can be sent in reply to a 401 Unauthorized response con-
taining challenge information, or it can be sent fi rst without waiting for the
challenge if the form of the challenge is known (e.g., if it has been cached from
a previous call). The authentication mechanism for HTTP digest is described in
Section 14.4.1. Examples are shown in Table 6.14.

6.2.3 Call-Info

The Call-Info header fi eld is included in a request by a UAC or proxy to pro-
vide a URI with information relating to the session setup. It may be present in
an INVITE, OPTIONS, or REGISTER request. The header fi eld parameter purpose
indicates the purpose of the URI and may have the values icon, info, card, or
other IANA registered tokens.

An example follows:

Call-Info: <http://www.code.com/my_picture.jpg>;purpose=icon

6.2.4 Event

The Event header fi eld is used in a SUBSCRIBE (see Section 4.1.7) or NOTIFY (see
Section 4.1.8) methods to indicate which event package is being used by the
method. In a SUBSCRIBE, it lists the event package to which the client would like
to subscribe. In a NOTIFY, it lists the event package that the notifi cation contains
state information about. Currently defi ned event packages are listed in Table 4.8.
The compact form is o.

Table 6.14
Example of an Authorization Header Field

Header Field Meaning

Authorization: Digest username=”Cust1”,
 realm=”company.com”,
 nonce=”9c8e88df84f1cec4341ae6e5a359”,
 opaque=””, uri=”sip:user2@company.com”,
 response=”e56131d19580cd833064787ecc”

This HTTP digest authorization header
fi eld contains the credentials of Cust1;
the nonce was supplied by the SIP
server located at the URI specifi ed.
The response contains the hashed
username and password. No opaque
string is present.

 SIP Header Fields 151

An example follows:

Event: dialog

o: refer

6.2.5 Hide

 The Hide header fi eld was defi ned in RFC 2543 but has been deprecated (re-
moved) from RFC 3261. It was intended to be used by UAs or proxies to request
that the next hop proxy encrypts the Via header fi elds to hide message routing
path information. Encrypted Via headers were identifi ed with the hidden Via
parameter. However, the security provided and the mechanism requiring next
hop trust made the value of this header fi eld minimal.

6.2.6 Identity

The Identity header fi eld [35] is part of the enhanced SIP identity extension,
described in more detail in Chapter 14. It is inserted by a proxy server in a for-
warded request after the request has been authenticated. The header fi eld con-
tains a digital signature over certain parts of the SIP message and the entire
message body. The header fi eld is used to certify the identity in the From header
fi eld by a proxy in the domain.

6.2.7 Identity-Info

The Identity-Info header fi eld [35] is part of the enhanced SIP identity exten-
sion, and is used to convey a URI for the certifi cates containing the public key
of the signing proxy. The alg parameter indicates the algorithm used to generate
the signature in the Identity header fi eld. In this example, the certifi cate is avail-
able from the https URI and the algorithm used is RSA with SHA-1:

Identity-Info: <https://atlanta.example.com/atlanta.cer>

 ;alg=rsa-sha1

6.2.8 In-Reply-To

The In-Reply-To header fi eld is used to indicate the Call-ID that this request
references or is returning. For example, a missed call could be returned with a
new INVITE and the Call-ID from the missed INVITE copied into the In-Reply-
To header fi eld. This allows the UAS to determine that this is not an unsolicited

152 SIP: Understanding the Session Initiation Protocol

call, which could be used to override call screening logic, for example. Examples
of this header fi eld are as follows:

In-Reply-To: a8-43-73-ff-43@company.com

In-Reply-To: 12934375@persistance.org, 12934376@persistance.org

6.2.9 Info-Package

The Info-Package header fi eld [12] is a mandatory header fi eld in an INFO meth-
od used to indicate which INFO package is associated with this message. For
example:

Info-Package: foo

6.2.10 Join

The Join header fi eld [17] is used in an INVITE to request that the dialog (ses-
sion) be joined with an existing dialog (session). The parameters of the Join
header fi eld identify the dialog by the Call-ID, To tag, and From tag in a similar
way to the Replaces header fi eld.

If the Join header fi eld references a point-to-point dialog between two user
agents, the Join header fi eld is effectively a request to turn the call into a confer-
ence call. If the dialog is already part of a conference, the Join header fi eld is a
request to be added into the conference. An example call fl ow is shown in Figure
6.1 in which a two-way call is turned into a conference call.

Figure 6.1 Use of Join to create a conference call.

 SIP Header Fields 153

If the dialog referenced in the Join header fi eld does not exist, a 481 Call/
Dialog Does Not Exist response is returned. A UA supporting Join should in-
dicate this in all requests with a Supported: join header fi eld.

In the following example, the dialog:

To: <sip:moe@example.org>;tag=42312
From: <sip:larry@server.org>;tag=3443212
Call-ID: 243134123234

would match the Join header fi eld:

Join: 243134123234;to-tag=42312;from-tag=3443212

6.2.11 Priority

The Priority header fi eld is used by a UAC to set the urgency of a request. De-
fi ned values are non-urgent, normal, urgent, and emergency. This header fi eld
could be used to override screening or by servers in load-shedding mechanisms.
Because this header fi eld is set by the UA, it may not be possible for a carrier
network to use this fi eld to route emergency traffi c, for example. An example is:

Priority: emergency

6.2.12 Privacy

The Privacy header fi eld [24] is used by a UAC to request varying degrees and
types of privacy. Currently defi ned tags include critical, header, id, session,
user, or none.

An example follows:

Privacy: header;user;critical

6.2.13 Proxy-Authorization

The Proxy-Authorization header fi eld is to carry the credentials of a UA in a re-
quest to a server. It can be sent in reply to a 407 Proxy Authentication Required
response containing challenge information, or it can be sent fi rst without waiting
for the challenge if the form of the challenge is known (e.g., if it has been cached
from a previous call). The authentication mechanism for SIP digest is described
in Section 14.4.1. A proxy receiving a request containing a Proxy-Authorization
header fi eld searches for its own realm, and if found it processes the entry. If the
credentials are correct, any remaining entries are kept in the request when it is
forwarded to the next proxy. An example of this is in Figure 6.2.

Examples are shown in Table 6.15.

154 SIP: Understanding the Session Initiation Protocol

6.2.14 Proxy-Require

The Proxy-Require header fi eld is used to list features and extensions that
a UA requires a proxy to support in order to process the request. A 420 Bad
 Extension response is returned by the proxy listing any unsupported feature
in an Unsupported header fi eld. Because proxies by default ignore header fi elds
and features they do not understand, the use of a Proxy-Require header fi eld is
needed for the UAC to be certain that the feature is understood by the proxy. If
the support of this option is desired but not required, it is listed in a Supported
header fi eld instead. An example is:

Proxy-Require: timer

Figure 6.2 Multiproxy authentication example. Note: In this fi gure, P-A stands for the Proxy-
Authorization header fi eld.

Table 6.15
Example of a Proxy-Authorization Header Field

Header Field Meaning

Proxy-Authorization: Digest
 username=”Customer1”,
 realm=”company.com”,
 nonce=”9c8e88df84f1cec4341ae6e5a359”,
 opaque=””, uri=”sip:user@company.com”,
 response=”e56131d19580cd833064787ecc”

This digest authorization header fi eld
contains the credentials of Customer1.
The nonce was supplied by the SIP server
located at the URI specifi ed. The response
contains the hashed user name and
password; no opaque string is present.

 SIP Header Fields 155

6.2.15 P-OSP-Auth-Token

The P-OSP-Auth-Token header fi eld [36] is used to transport an Open Settlements
Protocol (OSP) token [37] with a SIP INVITE request. A gateway or proxy server
receiving a token can verify the token and use this information about accepting
the INVITE or rejecting the call. This approach is suitable for a clearinghouse
model of VoIP carrier interconnection.

An example is:

P-OSP-Auth-Token: 3b8a40c10b4930ff19a85766c15182a34048d9398b834d6
 ;realm=”carrier.com”

6.2.16 P-Asserted-Identity

The P-Asserted-Identity header fi eld [38] is used between trusted intermediar-
ies (proxies) to assert the identity of a UA that has been authenticated using some
means such as those described in Chapter 14. A UA receiving a request from
a proxy that it trusts will typically render the value in a P-Asserted-Identity
header fi eld to the user as a “Verifi ed Caller ID” as opposed to a From header
value which is unverifi ed. A proxy receiving a P-Asserted-Identity from an-
other proxy that it does not trust will remove the header fi eld.

An example is:

P-Asserted-Identity: <sip:user@example.com>

6.2.17 P-Preferred-Identity

The P-Preferred-Identity header fi eld [38] is used by a UA to tell a trusted in-
termediary which identity it would prefer to be asserted on its behalf when more
than one identity is associated with that UA.

An example is:

P-Preferred-Identity: <sip:alternate@example.com>

6.2.18 Max-Breadth

The Max-Breadth header fi eld [39] is part of the solution to an amplifi cation at-
tack on forking proxy servers. This header fi eld is inserted by proxy servers and
decremented based on the breadth (number of concurrent branches) of a fork-
ing operation. When the Max-Breadth count goes to zero, the 440 Max-Breadth
 Exceeded response is returned. Example:

Max-Breadth: 32

156 SIP: Understanding the Session Initiation Protocol

6.2.19 Max-Forwards

The Max-Forwards header fi eld is used to indicate the maximum number of hops
that a SIP request may take. The value of the header fi eld is decremented by each
proxy that forwards the request. A proxy receiving the header fi eld with a value
of zero discards the message and sends a 483 Too Many Hops response back to
the originator.

Max-Forwards is a mandatory header fi eld in requests generated by an RFC
3261 compliant UA. However, an RFC 2543 UA generally will not include the
header fi eld. The suggested initial value is 70 hops.

An example is:

Max-Forwards: 10

6.2.20 Reason

The Reason header fi eld [40] can be used in BYE and CANCEL messages to indi-
cate the reason why the session or call attempt is being terminated. It can carry
a SIP response code or a Q.850 cause value (from an ISUP REL message, for
example).

For example, a forking proxy could include the following header fi eld in a
CANCEL sent to a leg after one leg has answered the call.

Reason: SIP ;cause=200 ;text=”Call completed elsewhere”

6.2.21 Refer-To

The Refer-To header fi eld [41] is a required header fi eld in a REFER request,
which contains the URI or URL resource that is being referenced. It may contain
any type of URI from a sip or sips to a tel URI to an http or mailto URI. For
a sip or sips URI, the URI may contain a method or escaped header fi elds. For
example, the following Refer-To header fi eld (where a line break has been added
for display):

Refer-To: <sip:UserC@client.anywhere.com?Replaces=

sdjfdjfskdf@there.com%3Bto-tag%3D5f35a3%3Bfrom-tag%3D8675309>

contains an escaped Replaces header fi eld. The resulting INVITE message gener-
ated by this Refer-To header fi eld would have a Request-URI of

sip:UserC@client.anywhere.com

and a

 SIP Header Fields 157

Replaces: sdjfdjfskdf@there.com;to-tag=5f35a3;from-tag=8675309

header fi eld. Note that the characters “;” and “=” are replaced by their hex equiv-
alents %3B and %3D. In the next example, the header fi eld containing a method

Refer-To: <sip:UserC@client.anywhere.com?method=SUBSCRIBE>

would cause a SUBSCRIBE request to be sent instead of an INVITE, which is the
default method if none is present. An example of the Refer-To header fi eld in
compact form with an HTTP URL is:

r: <http://www.artech-house.com>

6.2.22 Referred-By

The Referred-By header fi eld [42] is an optional header fi eld in a REFER
request and a request triggered by a REFER. It provides the recipient of a
triggered request with information that the request was generated as a
result of a REFER and the originator of the REFER. This information can
be presented to the user or have policy applied in deciding how the UA
should handle the request.

As this header fi eld could be modifi ed or fabricated, a more secure usage
involves the addition of a Referred-By security token. The token is carried as
a message body whose content id (cid) is indicated in the Referred-By header
fi eld. The token is an S/MIME signature over a message/sipfrag, which con-
tains, at a minimum, the From, Date, Call-ID, Refer-To, and Referred-By
header fi elds from the REFER request. An unsigned Referred-By header fi eld may
be rejected with a request that the Referred-By security token be included using
the 429 Provide Referror Identity response code (see Section 5.4.24). The
compact form is b:

Referred-By: <sip:user@host.com>

b: <sips:friend@neighbor.org>

6.2.23 Reply-To

The Reply-To header fi eld is used to indicate a sip or sips URI, which should be
used in replying to this request. Normally, this URI is present in the From header
fi eld (the Contact is not used as it is only assumed valid for the duration of the
dialog). However, in some cases, the From cannot be populated with this infor-
mation, so the URI in this header fi eld should be used instead of the From URI.

An example is:

158 SIP: Understanding the Session Initiation Protocol

Reply-To: <sip:l.tolstoy@stpetersburg.ru>

6.2.24 Replaces

The Replaces header fi eld [29] is used in SIP call control applications. A UA in
an established dialog receiving another INVITE with a Replaces header fi eld that
matches the existing dialog must accept the INVITE, terminate the existing dialog
with a BYE, and transfer all resources and state from the existing dialog to the
newly established dialog.

If the Replaces header fi eld matches no dialog, the INVITE must be rejected
with a 481 Dialog Does Not Exist response.

In addition, Replaces has one application in pending dialogs. A UAC that
has sent an INVITE but has not yet received a fi nal response may receive an INVITE
containing a Replaces header fi eld that matches the pending INVITE. The UAC
must terminate the pending dialog with a CANCEL (and be prepared to send an
ACK and BYE if a 200 OK eventually arrives) and accept the new INVITE.

For an INVITE containing both a Require: replaces and Replaces header
fi eld, this results in the return of one of the following set of responses:

200• (if a match is found);

481• (if no match is found);

420• (if Replaces is not supported).

Figure 6.3 shows a call fl ow using Replaces to implement a feature called
“call pickup.” The early parameter means that the replacement should only be
done if the dialog is in an early state; if the dialog has transitioned to a confi rmed
state, the INVITE should be rejected. Figure 4.9 shows the use of Replaces in an
“attended transfer example.”

This example Replaces header fi eld:

Replaces: 3232904875945;to-tag=34314;from-tag=2343

would match the dialog identifi ed by:

To: <sip:moe@example.org>;tag=34314
From: <sip:larry@server.org>;tag=2343
Call-ID: 3232904875945

6.2.25 Reject-Contact

The Reject-Contact [23] header fi eld specifi es the URIs to which the request
may not be proxied. Some additional parameters are also defi ned for Contact
header fi elds such as media, duplex, and language. This header fi eld, along with

 SIP Header Fields 159

Accept-Contact and Request-Disposition are part of the SIP caller preferences
extensions. The compact form is j. Examples include:

Reject-Contact: sip:admin@boss.com

j: *;media=video

6.2.26 Request-Disposition

The Request-Disposition [23] header fi eld can be used to request servers to
either proxy, redirect, or initiate serial or parallel (forking) searches. An example
is:

Request-Disposition: redirect

6.2.27 Require

The Require header fi eld is used to list features and extensions that a UAC re-
quires a UAS to support in order to process the request. A 420 Bad Extension
response is returned by the UAS listing any unsupported features in an
 Unsupported header fi eld. If support or use of a feature is desirable but not

Figure 6.3 Call fl ow showing call pickup using Replaces.

160 SIP: Understanding the Session Initiation Protocol

required, the Supported header fi eld is used instead. See Table 6.10 for a list of
feature tags.

An example is:

Require: rel100

6.2.28 Resource-Priority

The Resource-Priority header fi eld [30] is used to convey resource priority in a
SIP request. It has been used to interwork with PSTN pre-emption and priority
queuing protocols. The header fi eld contains namespace and a resource priority
value, separated by a dot. Multiple values can be included separated by com-
mas. Defi ned namespaces for Resource-Priority are included in Table 6.16.
Resource-Priority namespaces supported can be listed in an Accept-Resource-
Priority header fi eld. The resource-priority option tag is used to indicate
support for this mechanism.

An example is:

Resource-Priority: dsn.fl ash

6.2.29 Response-Key

The Response-Key header fi eld was defi ned in RFC 2543 but was deprecat-
ed in RFC 3261 along with all PGP-based encryption in favor of S/MIME
encryption.

6.2.30 Route

The Route header fi eld is used to provide routing information for requests. RFC
3261 introduces two types of routing: strict and loose routing, which have simi-
lar meaning as the IP routing modes of the same name. In strict routing, a proxy
must use the fi rst URI in the Route header fi eld to rewrite the Request-URI,

Table 6.16
Resource-Priority Namespaces

Value Name
dsn Defense switched network
dsrn Defense RED switched network

q735
Commercial implementation of DSN multilevel
precedence and preemption (MLPP)

ets Emergency telecommunications service
wps Wireless priority service

 SIP Header Fields 161

which is then forwarded. In loose routing, a proxy does not rewrite the Request-
URI, but either forwards the request to the fi rst URI in the Route header fi eld
or to another loose routing element. In loose routing, the request must route
through every server in the Route list (but may also route through other servers)
before it may be routed based on the Request-URI. In strict routing, the request
must only route through the set of servers in the Route header fi eld with the
Request-URI being rewritten at each hop. A proxy or UAC can tell if the next
element in the route set supports loose routing by the presence of an lr param-
eter. An example is:

Route: <sip:proxy@example.com;lr>

Chapter 16 contains an example of the use of the Record-Route and Route
header fi elds. Examples of Route header fi elds constructed from the example
Record-Route header fi elds in Section 6.1.19 are:

Route: <sip:fi rewall33.corporation.com;lr>, <sip:proxy1.carrier.com;lr>

Route: <sip:139.23.1.44;lr>

6.2.31 RAck

The RAck header fi eld [10] is used within a response to a PRACK request to reliably
acknowledge a provisional response that contained an RSeq header fi eld. The
RAck header fi eld echoes the CSeq and the RSeq from the provisional response.
The reliable sequence number is incremented for each response sent reliably. A
call fl ow is shown in Figure 4.11. An example is:

RAck: 8342523 13 INVITE

6.2.32 Security-Client

The Security-Client header fi eld [32] is part of the SIP security agreement
extension used to negotiate security settings between a UA and a proxy server.
The Security-Client header fi eld is used by a UA to declare the mechanisms it
supports in a SIP request. UAs and servers compare the security mechanisms in
the Security-Client header fi eld with the mechanisms in the Security-Server
header fi eld (see Section 6.3.9) and choose the common mechanism with the
highest preference value. The SIP option tag sec-agree can be used in Supported,
Require, and Proxy-Require header fi elds. For example:

Security-Client: digest

162 SIP: Understanding the Session Initiation Protocol

6.2.33 Security-Verify

The Security-Verify header fi eld [32] is part of the SIP security agreement ex-
tension, used to negotiate security settings between a UA and a proxy server. The
Security-Verify header fi eld is used by a UA to echo the mechanisms received
in a Security-Server header (see Section 6.3.9) fi eld from a server. If the request
is sent with integrity protection, a proxy and user can detect a bid-down attack
in the security agreement negotiation. For example:

Security-Client: digest

6.2.34 Session-Expires

The Session-Expires header fi eld [21] is used to specify the expiration time
of the session. To extend the session, either UA can send a re-INVITE or UPDATE
with a new Session-Expires header fi eld. At the expiration of the interval in
the Session-Expires, either UA may send a BYE and call-stateful proxies may
destroy any state information. A proxy may shorten the expiration time by re-
ducing the interval in the header fi eld as it proxies the request. A UAS confi rms
the session timer by including the Session-Expires header fi eld in the response
to the request. A UAS may also shorten the interval by reducing the interval. An
example is:

Session-Expires: 3600

6.2.35 SIP-If-Match

The SIP-If-Match header fi eld [45] is part of the SIP publication mechanism. It
is included in a PUBLISH request meant to refresh, modify, or remove previously
published state. The header fi eld contains the entity tag of the state information
that was returned in a SIP-ETag (Section 6.3.12) header fi eld in a 2xx response
to an earlier PUBLISH. If the entity-tag is no longer valid (i.e. the state informa-
tion has expired, been deleted, replaced, or lost), the server will return a 412
 Conditional Request Failed response (Section 5.4.13). See Figure 8.5 for a
call fl ow. Example:

SIP-If-Match: 73ikd0Kw3e1D0ds

6.2.36 Subscription-State

The Subscription-State header fi eld [3] is a required header fi eld in a NOTIFY
request. It indicates the current state of the subscription. Values defi ned in-
clude active, pending, or terminated. Additional parameters include expires,

 SIP Header Fields 163

 reason, and retry-after. Values defi ned for the reason parameter include
 deactivated, giveup, probation, noresource, rejected, and timeout.

An example is:

Subscription-State: terminated ;reason=rejected

6.2.37 Suppress-If-Match

The Suppress-If-Match header fi eld [46] is an extension for conditional notifi ca-
tion. Normally, a SUBSCRIBE sent to refresh a subscription will always generate a
NOTIFY, even if no state information has changed since the last notifi cation. If a
SIP-ETag was included in a previous notifi cation, the entity tag can be included
in the Suppress-If-Match header fi eld and included in a refresh SUBSCRIBE. If the
state has not changed, a 204 No Notifi cation response is sent and no NOTIFY will
be sent. For example:

Suppress-If-Match: Lek31sd

6.2.38 Target-Dialog

The Target-Dialog header fi eld [33] is used for authenticating out of dialog SIP
requests. A common use case is for the authorization of out-of-dialog REFERs in
call transfer scenarios. The header fi eld contains the dialog identifi er of the other
dialog, which includes the Call-ID, local, and remote tags.

For example:

Target-Dialog: 3847349833;to-tag=434232;from-tag=33424212

6.2.39 Trigger-Consent

The Trigger-Consent header fi eld provided [43] is used in resource lists requests
to trigger consent lookups. For example:

Trigger-Consent: sip:alice@atlanta.example.com

6.3 Response Header Fields

These header fi elds are present only in responses.

6.3.1 Accept-Resource-Priority

The Accept-Resource-Priority header fi eld [30] is used to indicate which
 Resource-Priority namespaces are supported by the UA. It can be included in

164 SIP: Understanding the Session Initiation Protocol

a 200 OK to an OPTIONS or in a 417 Unknown Resource Priority response. An
example is:

Accept-Resource-Priority: ets

6.3.2 Authentication-Info

The Authentication-Info header fi eld can be inserted in responses when per-
forming mutual authentication using HTTP Digest. In normal HTTP Digest as
described in Section 14.4.1, the server challenges the client to provide a shared
secret, which the client then provides in a repeat of the request containing an
Authorization or WWW-Authenticate header fi eld. For mutual authentication,
the server would then provide an Authentication-Info header fi eld containing
either a next nonce or a response in an rspauth parameter. The response auth
digest is calculated by the server from the SIP response using the same algorithm
as the successful request authentication and same shared secret (client’s username
and password). In this way, the server proves that it also knows the client’s secret,
providing mutual authentication. The credentials are carried in the rspauth pa-
rameter in the header fi eld. Few SIP implementations support this header fi eld.

An example is:

Authentication-Info: rspauth=”9105jr98li459jgfp”

6.3.3 Error-Info

The Error-Info header fi eld is used in failure response to convey more informa-
tion about an error. A UAC receiving the header fi eld in a failure response may
fetch and render the URI to the user. The header fi eld can be used to give the cli-
ent the choice of how the error can be presented to the user. For example, a client
with a graphical interface will likely display the reason phrase on the response,
which should provide very specifi c information about the failure. However, an
audio-only UA does not have this capability (although a text-to-speech synthe-
sizer could be used to provide this capability). Instead, an audio-only UA could
fetch the URI and play the resulting audio stream to the user.

If the URI is a sip or sips URI, the UA may treat the Error-Info as a
 Contact in a redirection response, which would result in a SIP session established
to play the recording.

An example is:

Error-Info: <sip:recording5@announcementsrus.com>

 SIP Header Fields 165

6.3.4 Flow-Timer

The Flow-Timer header fi eld [20] is part of the SIP outbound extension de-
scribed in Section 10.11.3. The Flow-Timer header fi eld is used by a registrar to
tell a UA after how many seconds the server will consider the registration fl ow
dead if no keep alive is sent by the UA. For example:

Flow-Timer: 120

6.3.5 Min-Expires

The Min-Expires header fi eld is used in a 423 Interval Too Brief response (Sec-
tion 5.4.22) from a registrar rejecting a REGISTER request in which one or more
Contacts have an expiration time that is too short. The header fi eld contains an
integer number of seconds that represents the minimum expiration interval that
the registrar will accept. A client receiving this header fi eld can update the expi-
ration intervals of the registration request accordingly and resend the REGISTER
request.

An example is:

Min-Expires: 1200

6.3.6 Min-SE

The Min-SE header fi eld [34] is a required header fi eld in a 422 Session Timer
Interval Too Small response (Section 5.4.21). The response may also be pres-
ent in an INVITE or UPDATE containing a Session-Expires header fi eld. It con-
tains an integer number of seconds.

An example is:

Min-SE: 480

6.3.7 Permission-Missing

The Permission-Missing header fi eld [43] is part of the SIP consent framework.
It is used in a 470 Consent Needed response to indicate the URIs to which the
relay does not have permission to forward the request. An example of an instant
message relay is given in Section 8.5.4. For example:

Permission-Missing: sip:voynitch@yale.edu

166 SIP: Understanding the Session Initiation Protocol

6.3.8 Proxy-Authenticate

The Proxy-Authenticate header fi eld is used in a 407 Proxy Authentication
Required authentication challenge by a proxy server to a UAC. It contains the
nature of the challenge so that the UAC may formulate credentials in a Proxy-
Authorization header fi eld in a subsequent request. Examples are shown in Table
6.17.

6.3.9 Security-Server

The Security-Server header fi eld [32] is part of the SIP security agreement
extension, used to negotiate security settings between a UA and a proxy serv-
er. The Security-Server header fi eld is used by a server to declare the mecha-
nisms it supports in a 494 Security Agreement Required header fi eld. UAs
and servers compare the security mechanisms in the Security-Client header
fi eld (see Section 6.2.32) with the mechanisms in the Security-Server header
fi eld and choose the common mechanism with the highest preference value. The
 Security-Server header fi eld may also be present in a 421 Extension Required
response if the server requires this mechanism. The SIP option tag sec-agree can
be used in Supported, Require, and Proxy-Require header fi elds. Example:

Security-Server: tls;q=0.5, digest; q=0.4, ipsec-ike;q=0.1

6.3.10 Server

The Server header fi eld is used to convey information about the UAS generating
the response. The use and contents of the header fi eld are similar to the User-
Agent header fi eld in Section 6.1.27. An example is:

Server: Dotcom/B3

6.3.11 Service-Route

The Service-Route header fi eld [44] can be used in a 2xx response to a REGISTER
request. It can be used by a registrar server to provide to the registering UA URIs
to include in a preloaded Route header fi eld in future requests. The Service-

Table 6.17
Example of Proxy-Authenticate Header Field

Header Field Meaning
Proxy-Authenticate: Digest
 realm=”example.com”,
 nonce=”9c8e88df84f1cec4341ae6e5a359”,
 opaque=””, stale=FALSE, algorithm=MD5

HTTP digest challenge header fi eld.

 SIP Header Fields 167

Route URIs are only valid for the duration of the registration and should be
updated when the registration is refreshed.

An example is:

Service-Route: <sip:proxy23.service.provider.com;lr>

6.3.12 SIP-ETag

The SIP-ETag header fi eld [45] is part of the SIP publication mechanism. The
SIP-ETag header fi eld is returned in a 2xx response to a PUBLISH request. It con-
tains an entity tag uniquely identifying the state information that has been pro-
cessed. This entity tag can then be used to do conditional publications on this
data including refreshing, modifying, and removing, as described in Section
5.4.13. For example:

SIP-ETag: 34dw9qFl

6.3.13 Unsupported

The Unsupported header fi eld is used to indicate features that are not supported
by the server. The header fi eld is used in a 420 Bad Extension response to a
request containing an unsupported feature listed in a Require header fi eld. Be-
cause multiple features may have been listed in the Require header fi eld, the
Unsupported header fi eld indicates all the unsupported features—the rest can be
assumed by the UAC to be supported. See Table 6.8 for a list of feature tags.

An example is:

Unsupported: rel100

6.3.14 Warning

The Warning header fi eld is used in a response to provide more specifi c infor-
mation than the response code alone can convey. The header fi eld contains a
three-digit warning code, a warning agent that indicates what server inserted
the header fi eld, and warning text enclosed in quotes used for display purposes.
Warning codes in the 1xx and 2xx range are specifi c to HTTP [2]. The SIP stan-
dard defi nes 12 new warning codes in the 3xx class. The breakdown of the class
is shown in Table 6.18. The complete set of defi ned warning codes is listed in
Table 6.19. Warning is not commonly implemented.

Examples are:

Warning: 302 proxy “Incompatible transport protocol”

168 SIP: Understanding the Session Initiation Protocol

Warning: 305 room132.hotel.com:5060 “Incompatible media type”

6.3.15 WWW-Authenticate

The WWW-Authenticate header fi eld is used in a 401 Unauthorized authentica-
tion challenge by a UA or registrar server to a UAC. It contains the nature of the
challenge so that the UAC may formulate credentials in a Proxy-Authorization
header fi eld in a subsequent request. SIP supports HTTP digest authentication
mechanisms. Examples are shown in Table 6.20.

6.3.16 RSeq

The RSeq header fi eld [28] is used in provisional (1xx class) responses to INVITEs
to request reliable transport. The header fi eld may only be used if the INVITE
request contained the Supported: rel100 header fi eld. If present in a provisional

Table 6.18
SIP Warning Codes

Warning Code Range Error Type
30x, 31x, 32x SDP keywords
33x Network services
34x, 35x, 36x Reserved for future use
37x QoS parameters
38x Reserved
39x Miscellaneous

Table 6.19
SIP Warning Code List

Warning
Code

Description

300 Incompatible network protocol
301 Incompatible network address formats
302 Incompatible transport protocol
303 Incompatible bandwidth units
304 Media type not available
305 Incompatible media format
306 Attribute not understood
307 Session description parameter not understood
330 Multicast not available
331 Unicast not available
370 Insuffi cient bandwidth
399 Miscellaneous warning

 SIP Header Fields 169

response, the UAC should acknowledge receipt of the response with a PRACK
method, as described in Section 4.1.13. The RSeq header fi eld contains a reliable
sequence number that is an integer randomly initialized by the UAS. Each subse-
quent provisional response sent reliably for this dialog will have a monotonically
increasing RSeq number. The UAS will retransmit a reliably sent response until
a PRACK is received with a RAck containing the reliable sequence number and
CSeq.

An example is:

RSeq: 23452

6.4 Message Body Header Fields

These header fi elds contain information about the message body.

6.4.1 Content-Encoding

The Content-Encoding header fi eld is used to indicate that the listed encoding
scheme has been applied to the message body. This allows the UAS to determine
the decoding scheme necessary to interpret the message body. Multiple listings in
this header fi eld indicate that multiple encodings have been used in the sequence
in which they are listed. Only encoding schemes listed in an Allow-Encoding
header fi eld may be used. The compact form is e. Examples include:

Content-Encoding: text/plain

e: gzip

6.4.2 Content-Disposition

The Content-Disposition header fi eld is used to describe the function of a mes-
sage body. Defi ned values include session, icon, alert, and render. The value
session indicates that the message body contains information to describe a media
session. The value render indicates that the message body should be displayed or
otherwise rendered for the user. If a message body is present in a request or a 2xx

Table 6.20
Example of WWW-Authenticate Header Field

Header Field Meaning

WWW-Authenticate: Digest
 realm=”example.com”,
 nonce=”9c8e88df84f1cec4341ae6e5a359”,
 opaque=””, stale=FALSE, algorithm=MD5

HTTP digest challenge.

170 SIP: Understanding the Session Initiation Protocol

response without a Content-Disposition, the function is assumed to be session.
For all other response classes with message bodies, the default function is render.
An example is:

Content-Function: session

6.4.3 Content-Language

The Content-Language header fi eld [2] is used to indicate the language of a mes-
sage body. It contains a language tag, which identifi es the language.

Content-Language: en

6.4.4 Content-Length

The Content-Length is used to indicate the number of octets in the message
body. A Content-Length: 0 indicates no message body. As described in Section
2.4.2, this header fi eld is used to separate multiple messages sent within a TCP
stream. If not present in a UDP message, the message body is assumed to con-
tinue to the end of the datagram. If not present in a TCP message, the message
body is assumed to continue until the connection is closed. The Content-Length
octet count does not include the CRLF that separates the message header fi elds
from the message body. It does, however, include the CRLF at the end of each
line of the message body. An example octet calculation is in Chapter 2. The
Content-Length header fi eld is not a required header fi eld to allow dynamically
generated message bodies where the Content-Length may not be known a priori.
The compact form is l. Examples include:

Content-Length: 0

l: 287

6.4.5 Content-Type

The Content-Type header fi eld is used to specify the Internet media type [3] in
the message body. Media types have the familiar form of type/sub-type. If this
header fi eld is not present, application/sdp is assumed. If an Accept header
fi eld was present in the request, the response Content-Type must contain a listed
type, or a 415 Unsupported Media Type response must be returned. The com-
pact form is c. Specifi c MIME types that are commonly used are listed in Table
6.21, and Tables 8.4 and 8.9 list common MIME types for presence and instant
messaging.

Content indirection [50] can be used to provide a URI in place of an actual
MIME message body. An example is:

 SIP Header Fields 171

Content-Type: message/external-body; access-type=”URL”;
 URL=”http://www.example.com/”

The compact form is c. Examples are:

Content-Type: application/sdp

c: text/html

6.4.6 MIME-Version

The MIME-Version header fi eld is used to indicate the version of MIME protocol
used to construct the message body. SIP, like HTTP, is not considered MIME-
compliant because parsing and semantics are defi ned by the SIP standard, not
the MIME specifi cation [51]. Version 1.0 is the default value. An example is:

MIME-Version: 1.0

6.5 Questions

Q6.1 Show a 200 OK response to an OPTIONS that provides the maximum
 amount of information about the capabilities of the UA.

Q6.2 Generate a call fl ow that shows the use of the Reason header
 fi eld.

Q6.3 Give three examples of header fi elds that a proxy might remove
 from a request before forwarding. Explain why each header fi eld
 would be removed.

Q6.4 Give two examples of header fi elds that a proxy must modify when
 forwarding a request.

Table 6.21
Common Content-Types Present in SIP Requests and Responses

Content-Type Use
application/sdp SDP in INVITE, ACK, or UPDATE requests [47]
message/sipfrag SIP fragment in NOTIFY in refer subscription [48]
application/xml+dialog XML dialog [24]
application/xml+conf XML conference info [25]
text/plain Plain text
text/html HTML text
application/isup Encapsulated ISUP in INVITE, BYE, or INFO [49]

172 SIP: Understanding the Session Initiation Protocol

Q6.5 Which three header fi elds can be present in a REFER request but
 not in other methods?

Q6.6 Which header fi elds would a topology hiding element likely need to
 modify or remove from a request?

Q6.7 A single header fi eld is modifi ed by a UAC after receiving a 410
 response, after which the request receives a 200 response. Which
 header fi eld was modifi ed?

Q6.8 Which two header fi elds contain SIP entity tags? How are they
 typically used?

Q6.9 If a B2BUA between two UAs modifi ed the Call-ID header fi eld
 during a call setup, which header fi elds might fail to work
 properly?

Q6.10 Explain which features the Answer-Mode header fi eld can be used
 to implement.

References

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [1]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

Fielding, R., et al., “Hypertext Transfer Protocol—HTTP/1.1,” RFC 2616, June 1999. [2]

Postel, J., “Media Type Registration Procedure,” RFC 1590, 1994. [3]

Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265, [4]
2002.

Willis, D., and A. Allen, “Requesting Answering Modes for the Session Initiation Protocol [5]
(SIP),” RFC 5373, November 2008.

Rosenberg, J., H. Schulzrinne, and P. Kyzivat, “Indicating User Agent Capabilities in the [6]
Session Initiation Protocol (SIP),” RFC 3840, August 2004.

Johnston, A., and O. Levin, “Session Initiation Protocol (SIP) Call Control—Conferencing [7]
for User Agents,” RFC 4579, August 2006.

Rosenberg, J., H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event [8]
Package for Conference State,” RFC 4575, August 2006.

Braden, R., “Requirements for Internet Hosts: Application and Support,” RFC 1123, [9]
1989.

Barnes, M., “An Extension to the Session Initiation Protocol (SIP) for Request History [10]
Information,” RFC 4244, November 2005.

Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for [11]
Registering Non-Adjacent Contacts,” RFC 3327, December 2002.

Burger, E., H. Kaplan, and C. Holmberg, “Session Initiation Protocol (SIP) INFO Method [12]
and Package Framework,” draft-ietf-sip-info-events-03 (work in progress), January 2009.

 SIP Header Fields 173

Levin, O., “Suppression of Session Initiation Protocol (SIP) REFER Method Implicit [13]
Subscription,” RFC 4488, May 2006.

Elwell, J., “Connected Identity in the Session Initiation Protocol (SIP),” RFC 4916, June [14]
2007.

Rosenberg, J., “Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) [15]
in the Session Initiation Protocol (SIP),” draft-ietf-sip-gruu-15 (work in progress), October
2007.

Rosenberg, J., “Indicating Support for Interactive Connectivity Establishment (ICE) in [16]
the Session Initiation Protocol (SIP),” draft-ietf-sip-ice-option-tag-02 (work in progress),
June 2007.

Mahy, R., and D. Petrie, “The Session Initiation Protocol (SIP) Join Header,” RFC 3911, [17]
October 2004.

Camarillo, G., et al., “Referring to Multiple Resources in the Session Initiation Protocol [18]
(SIP),” RFC 5368, October 2008.

Levin, O., “Suppression of Session Initiation Protocol (SIP) REFER Method Implicit [19]
Subscription,” RFC 4488, May 2006.

Jennings, C., and R. Mahy, “Managing Client Initiated Connections in the Session [20]
Initiation Protocol (SIP),” draft-ietf-sip-outbound-20 (work in progress), June 2009.

Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for [21]
Registering Non-Adjacent Contacts,” RFC 3327, 2002.

Camarillo, G., W. Marshall, and J. Rosenberg, “Integration of Resource Management and [22]
Session Initiation Protocol (SIP),” RFC 3312, October 2002.

Rosenberg, J., H. Schulzrinne, and P. Zyzivat, “Caller Preferences for the Session Initiation [23]
Protocol (SIP),” RFC 3841, August 2004.

Peterson, J., “A Privacy Mechanism for the Session Initiation Protocol,” RFC 3323, [24]
November 2002.

Camarillo, G., and A. Johnston, “Conference Establishment Using Request-Contained [25]
Lists in the Session Initiation Protocol (SIP),” RFC 5366, October 2008.

Garcia-Martin, M., and G. Camarillo, “Multiple-Recipient MESSAGE Requests in the [26]
Session Initiation Protocol (SIP),” RFC 5365, October 2008.

Camarillo, G., A. Roach, and O. Levin, “Subscriptions to Request-Contained Resource [27]
Lists in the Session Initiation Protocol (SIP),” RFC 5367, October 2008.

Rosenberg, J., and H. Schulzrinne, “Reliability of Provisional Responses in Session Initiation [28]
Protocol (SIP),” RFC 3262, 2002.

Mahy, R., B. Biggs, and R. Dean, “The Session Initiation Protocol (SIP) Replaces Header,” [29]
RFC 3891, September 2004.

Schulzrinne, H., and J. Polk, “Communications Resource Priority for the Session Initiation [30]
Protocol (SIP),” RFC 4412, February 2006.

174 SIP: Understanding the Session Initiation Protocol

Camarillo, G., and J. Rosenberg, “Usage of the Session Description Protocol (SDP) [31]
Alternative Network Address Types (ANAT) Semantics in the Session Initiation Protocol
(SIP),” RFC 4092, June 2005.

Arkko, J., et al., “Security Mechanism Agreement for the Session Initiation Protocol (SIP),” [32]
RFC 3329, January 2003.

Rosenberg, J., “Request Authorization Through Dialog Identifi cation in the Session [33]
Initiation Protocol (SIP),” RFC 4538, June 2006.

Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol (SIP),” [34]
RFC 4028, April 2005.

Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in [35]
the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

Johnston, A., et al., “Session Initiation Protocol Private Extension for an OSP Authorization [36]
Token,” IETF Internet-Draft, Work in Progress, February 2003.

European Telecommunications Standards Institute, “Telecommunications and Internet [37]
Protocol Harmonization Over Networks (TIPHON); Open Settlement Protocol (OSP) for
Inter-Domain Pricing, Authorization, and Usage Exchange,” Technical Specifi cation 101
321, Version 2.1.0.

Jennings, C., J. Peterson, and M. Watson, “Private Extensions to the Session Initiation [38]
Protocol (SIP) for Asserted Identity Within Trusted Networks,” RFC 3325, 2002.

Sparks, R., et al., “Addressing an Amplifi cation Vulnerability in Session Initiation Protocol [39]
(SIP) Forking Proxies,” RFC 5393, December 2008.

Schulzrinne, H., D. Oran, and G. Camarillo, “The Reason Header Field for the Session [40]
Initiation Protocol (SIP),” RFC 3326, 2002.

Sparks, R., “The Session Initiation Protocol (SIP) Refer Method,” RFC 3515, 2003. [41]

Sparks, R., “The SIP Referred-By Mechanism,” RFC 3892, September 2004. [42]

Rosenberg, J., G. Camarillo, and D. Willis, “A Framework for Consent-Based [43]
Communications in the Session Initiation Protocol (SIP),” RFC 5360, October 2008.

Willis, D., and B. Hoeneisen, “Session Initiation Protocol Extension Header Field for [44]
Service Route Discovery During Registration,” RFC 3608, October 2003.

Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC [45]
3903, October 2004.

Niemi, A., “An Extension to Session Initiation Protocol (SIP) Events for Conditional Event [46]
Notifi cation,” draft-ietf-sipcore-subnot-etags-02 (work in progress), April 2009.

Handley, M., V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC [47]
4566, July 2006.

Sparks, R., “Internet Media Type message/sipfrag,” RFC 3420, November 2002. [48]

Zimmerer, E., et al., “MIME Media Types for ISUP and QSIG Objects,” RFC 3204, [49]
December 2001.

 SIP Header Fields 175

Burger, E., “A Mechanism for Content Indirection in Session Initiation Protocol (SIP) [50]
Messages,” RFC 4483, May 2006.

Freed, M., and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME). Part One: [51]
Format of Internet Message Bodies,” RFC 2045, 1996.

177

7
Wireless, Mobility, and IMS
The mobility features of SIP have been discussed in earlier chapters. In this chap-
ter, those aspects will be explored further. The Third Generation Partnership
Project (3GPP) [1] has adopted SIP as their call signaling protocol in the Intel-
ligent Multimedia Core Subsystem (IMS). Since then, a number of extensions
and usage documents have been authored describing 3GPP’s planned use of SIP;
these will be discussed in this chapter. The future direction of wireless SIP will
be discussed in Section 7.5.

7.1 IP Mobility

There are a number of different types of mobility that will be discussed in this
chapter, including terminal mobility, personal mobility, and service mobility [2].
Terminal mobility is the ability of an end device to maintain its connection to
the Internet as it moves around and possibly changes its point of connection.
Personal mobility is the ability to have a constant address (identifi er) across a
number of devices. Finally, service mobility is the ability of a user to keep the
same services when mobile.

Terminal mobility can be addressed by Mobile IP [3], which has been stan-
dardized in the IETF. It allows a terminal to keep the same IP address when
roaming as it does in its home network. While roaming, the terminal is reachable
by a “care of” address, which is registered in the home network. Packets destined
for the roaming terminal are received in the home network, then tunneled to
the terminal at the “care of” address, as shown in Figure 7.1. Mobile IP has the
advantage of hiding the mobile nature of the terminal from layer 3 protocols and
above. These protocols can then be used without any modifi cation.

For example, a TCP connection can be maintained since the terminal ap-
pears to have a constant IP address. However, Mobile IP has the disadvantage

178 SIP: Understanding the Session Initiation Protocol

that incoming packets are not routed directly, and as a result, most effi ciently.
This results in increased packet latency. While this is not a problem for nonreal-
time services such as Web browsing or e-mail, real-time media transport has
critical requirements on packet latency. A solution that has been proposed [2] is
based on the fact that a protocol such as SIP already has mobility support built
in. In addition, SIP is capable of handling some of the terminal mobility aspects
at the application layer. This can result in more effi cient RTP packet routing and
better effi ciency (as the additional overhead of IP packet encapsulation required
by Mobile IP are avoided).

HIP (Host Identity Protocol) mobility, described in Section 15.5 is an-
other way for mobility to be supported. HIP does not use the triangular routing
of Figure 7.1.

The result is that mobile SIP devices are utilizing two different architec-
tures. One is based on the use of Mobile IP and the other utilizes the built-in
mobility support in SIP. The next sections will discuss these two approaches. SIP
is ideally suited to provide both personal and service mobility.

7.2 SIP Mobility

Personal mobility is the ability to have a constant identifi er across a number of
devices. A sip or sips URI has exactly this property and is fundamentally sup-
ported by SIP. SIP can also support service mobility (the ability of a user to keep
the same services when mobile) although some conventions and extensions have
been proposed that provide this in certain architectures.

Basic personal mobility is supported by SIP using the REGISTER method,
which allows a mobile device to change its IP address and point of connection to
the Internet and still be able to receive incoming calls. As discussed in Chapters
2 and 4, registration in SIP temporarily binds a user’s AOR (Address of Record)

Figure 7.1 Triangular routing of IP packets in Mobile IP.

 Wireless, Mobility, and IMS 179

URI with a Contact URI of a particular device. As a device’s IP address changes,
registration allows this information to be automatically updated in the SIP net-
work. An end device can also move between service providers using multiple lay-
ers of registrations, in which a registration is actually performed with a Contact
as an address of record with another service provider. For example, consider the
UA in Figure 7.2, which has temporarily acquired a new SIP URI with a new
service provider. (The reasons for doing so could include security, NAT/fi rewall
traversal, or local policy.) The UA then performs a double registration as shown
in Figure 7.2. The fi rst registration is with the new service provider, which binds
the Contact URI of the device with the new service provider’s AOR URI. The
second REGISTER request is routed back to the original service provider and pro-
vides the new service provider’s AOR as the Contact URI. As shown later in the
call fl ow, when a request comes in to the original service provider’s network the
INVITE is redirected to the new service provider who then routes the call to the
user.

Figure 7.2 Precall mobility using SIP REGISTER.

180 SIP: Understanding the Session Initiation Protocol

For the fi rst registration message containing the device URI would be:

REGISTER sip:registrar.capetown.org SIP/2.0
Via: SIP/2.0/TLS 128.5.2.1:5060;branch=z9hG4bK382112
Max-Forwards: 70
To: Nathaniel Bowditch <sip:bowditch321@capetown.org>
From: Nathaniel Bowditch <sip:bowditch321@capetown.org>
 ;tag=887865
Call-ID: 54-34-19-87-34-ar-gr
CSeq: 3 REGISTER
Contact: <sip:nat@128.5.2.1>
Content-Length: 0

and the second registration message with the roaming URI would be:

REGISTER sip:registrar.salem.ma.us SIP/2.0
Via: SIP/2.0/TLS 128.5.2.1:5060;branch=z9hG4bK1834
Max-Forwards: 70
To: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>
From: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>
 ;tag=344231
Call-ID: 152-45-N-32-23-W3-45-43-12
CSeq: 6421 REGISTER
Contact: <sip:bowditch321@capetown.org>
Content-Length: 0

The fi rst INVITE that is depicted in Figure 7.2 would be sent to
sip:n.bowditch@salem.ma.us; the second INVITE would be sent to
sip:bowditch321@capetown.org, which would be forwarded to sip:nat@128.5.2.1.
It reaches Bowditch and allows the session to be established. Both registrations
would need to be periodically refreshed.

A disadvantage of this approach is that SIP does not currently have a means
to obtain a local URI. This would have to be done using a non-SIP method such
as a Web page signup, which would be coupled with the proper authentication,
authorization, and accounting mechanisms.

An optimization of this is for the local registrar to forward the registration
information on the roaming UA back to the home registrar. This has been pro-
posed in the IETF [4] but has yet to be adopted or standardized. No changes to
SIP messages are required, just a convention adopted by registrars to recognize a
roaming registration and take the appropriate action. It is possible that these con-
ventions may become standardized if the authentication and accounting systems
needed to properly process such registrations are standardized in the future.

During a session, a mobile device may also change IP address as it switches
between one wireless network and another (the Mobile IP protocol is not as-
sumed—it will be discussed in the next section). Basic SIP supports this scenario
as well, since a re-INVITE in a dialog can be used to update the Contact URI and
change media information in the SDP. This is shown in the call fl ow of Figure
7.3. Here, Bowditch detects a new wireless network, uses DHCP to acquire a

 Wireless, Mobility, and IMS 181

new IP address, then performs a re-INVITE to make the signaling and media fl ow
to the new IP address. If the UA momentarily is able to receive media from both
networks, the interruption can be almost negligible. If this is not the case, a few
media packets may be lost as the media catches up with the signaling, resulting
in a slight interruption to the call. The re-INVITE would appear as follows:

INVITE sip:laplace@client.mathematica.org SIP/2.0
Via: SIP/2.0/UDP 65.32.21.2:5060;branch=z9hG4bK34213
Max-Forwards: 70
To: Marquis de Laplace <sip:laplace@mathematica.org>
 ;tag=90210
From: Nathaniel Bowditch <sip:n.bowditch@salem.ma.us>
 ;tag=4552345
Call-ID: 413830e4leoi34ed4223123343ed21
CSeq: 5 INVITE
Contact: <sip:nat@65.43.21.2>
Content-Type: application/sdp
Content-Length: 143

v=0
o=bowditch 2590844326 2590944533 IN IP4 65.32.21.2
s=Bearing
c=IN IP4 65.32.21.2
t=0 0
m=audio 32852 RTP/AVP 96
a=rtpmap:96 iLBC/8000

Figure 7.3 Midcall mobility using a re-INVITE.

182 SIP: Understanding the Session Initiation Protocol

This contains Bowditch’s new IP address in the Via and Contact header
fi elds and SDP media information.

Note that both of the mobility scenarios in Figures 7.2 and 7.3 do not
require cooperation between the two wireless networks. As such, this is a useful
scenario in which a UA can hand off a call between, for example, a commercial
wireless network and a home or offi ce 802.11 wireless network.

For midcall mobility in which the actual route set (set of SIP proxies that
the SIP messages must traverse) must change, a re-INVITE cannot be used. For
example, if a proxy is necessary for NAT/fi rewall traversal, then more than just
the Contact URI must be changed—a new dialog must be created. The solution
to this is to send a new INVITE (which creates a new dialog and a new route set
including the new set of proxies) with a Replaces header (Section 6.2.2.4), which
identifi es the existing session. The call fl ow is shown in Figure 7.4. It is similar to
that in Figure 7.3 except that a BYE is automatically generated to terminate the
existing dialog when the INVITE with the Replaces is accepted. In this scenario,
the existing dialog between Bowditch and Laplace includes the old visited proxy

Figure 7.4 Midcall mobility using INVITE with Replaces.

 Wireless, Mobility, and IMS 183

server (the proxy Record-Routed during the initial INVITE). The new dialog using
the new wireless network requires the inclusion of the new visited proxy server.
As a result, an INVITE with Replaces is sent by Bowditch, which creates a new
dialog that includes the new visited proxy server (which Record-Routes) but not
the old visited proxy server. When Laplace accepts the INVITE, a BYE is automati-
cally sent to terminate the old dialog that routes through the old visited proxy
server that is now no longer involved in the session. The resulting media session
is established using Bowditch’s new IP address from the SDP in the INVITE.

Services in SIP can be provided in either proxies or in UAs. If the service
is resident in the UA, then there are no service mobility problems as the user
moves around. However, combining service mobility and personal mobility can
be challenging unless each of the user’s devices are identically confi gured with the
same services. Also, end-point resident services are only available when the end
point is connected to the Internet. A terminating service such as a call forward-
ing service implemented in an end point will fail if the end point has tempo-
rarily lost its Internet connection. For this and other reasons, some services are
implemented in the network using SIP proxy servers. For these services, service
mobility for a UA means that the same set of proxies are used to route incoming
and outgoing requests when mobile.

Due to the nature of the Internet, in general there is no reason why a UA
cannot use the same proxies when connected to the Internet at a different point.
That is, a UA that is normally in the United States and is confi gured to use a
set of proxies in the United States can still use those proxies when roaming in
Europe, for example. Perhaps the SIP hops will have a slightly higher latency due
to more router hops and a call setup request may take a second or two longer
to complete. However, this has no impact on the quality of the media session as
the media always fl ows directly between the two UAs and does not traverse the
SIP proxy servers. As a result, SIP can easily support service mobility over the
Internet.

However, there are some cases in which this service mobility approach will
not work. For example, if a local proxy server must be traversed in order to fa-
cilitate fi rewall or NAT traversal, or for some other security reason, then a UA
may have to use a different fi rst hop proxy when roaming. In this case, service
mobility is still possible provided that:

The roaming UA is able to discover the necessary local proxy.1.

Both incoming and outgoing requests are routed through the home 2.
proxy in addition to any local proxies.

The fi rst requirement is met by the DHCP extension to SIP [5], which al-
lows a UA to learn of a local proxy server at the same time it learns its IP address
and other IP confi guration information. The second requirement is met using a

184 SIP: Understanding the Session Initiation Protocol

preloaded Route header fi eld in requests. Normally a Route header is inserted in a
request when a proxy requests it using a Record-Route header fi eld. However, it is
possible for a confi gured UA to include a Route header fi eld. If the Route header
contains the URI of the home proxy, the request will be routed to the home
proxy after the local proxies have been traversed, meeting the requirement for
outgoing requests. For incoming requests, the double registration technique will
result in both the home and local proxies being traversed by incoming requests.
This will result in a call fl ow similar to Figure 7.2 but with the home proxy server
forwarding the INVITE instead of redirecting.

These SIP mobility capabilities are well suited to use over a wireless net-
work such as 802.11 in a home, offi ce, or public space. As roaming agreements
allow such wireless “hotspots” to be linked in metropolitan areas, this will pro-
vide a wireless service. However, commercial wireless providers plan a specifi c
purpose wireless telephony network using SIP. For some of their business and
service requirements, SIP extensions have been developed, which will be dis-
cussed in this chapter.

Wireless SIP clients may also make use of voice codecs such as the iLBC [6],
which is highly tolerant to packet loss that may be experienced in a heavily
loaded 802.11 network.

7.3 IMS and SIP

The 3GPP architecture uses SIP in the IP Multimedia Subsystem (IMS). The
main elements of the IMS architecture are listed in Table 7.1. An excellent refer-
ence text for IMS is [7].

Table 7.1
IMS Elements

Element Name
P-CSCF Proxy call session control function
I-CSCF Interrogating call session control function
S-CSCF Serving call session control function
UE User equipment
MGCF Media gateway control function
MGW Media gateway
AS Application server
MRFC Media resource function controller
BGCF Breakout gateway control function
HSS Home subscriber server

 Wireless, Mobility, and IMS 185

The 3GPP architecture relies on Mobile IP instead of the mobility aspects
of SIP described in the previous section. The reasons for doing so are primarily
business related rather then technical.

Another requirement of mobility systems is a keep alive signal, which al-
lows end points and proxies to know that a UA still has network connectivity. On
an end point to end point basis, this can be done using RTCP (see Section 12.2)
reports sent periodically, even when the media is on hold or silence suppression
is taking place. However, proxies do not have access to these direct end-to-end
reports. Instead, the session timer extension [8] and re-INVITEs can be used for
this purpose, or the SIP outbound extension described in Section 10.11.13.

Call Signaling Control Functions or CSCF are SIP proxies that also some-
times behave as a B2BUA under certain circumstances. For example, if a Proxy
or P-CSCF looses the radio link to the user equipment (UE) that contains the
SIP UA, it can send a BYE on behalf of the UE to tear down the session. The
motivation for doing this is for sessions that have a per-minute billing charge,
which the out-of-contact UE would otherwise have to pay for but not have the
ability to disconnect. To save bandwidth on the wireless connection, a P-CSCF
removes Route, Record-Route, Path, Via, Service-Route and other header
fi elds and reinserts them in the opposite direction. To prevent high bandwidth
codecs from being used by a UE, a P-CSCF may edit the list of codecs in an SDP
offer or answer, preventing the codec from being used. A P-CSCF may change
the To and From headers to provide privacy, which is a B2BUA function.

The proxy CSCF provides emergency service, triggers for local services,
and normalizes telephone numbers for the rest of the network. The P-CSCF is
used as the default outbound proxy server for a UE outside its home network.
The Interrogating CSCF queries the HSS to determine the proper service CSCF.
The I-CSCF also can do hiding of the S-CSCF network by removing or encrypt-
ing Via header fi elds. The serving CSCF provides the services for the subscriber.
It identifi es the user’s service profi le and privileges.

The 3GPP uses IPv6 addresses due to the number of mobile subscribers
envisioned and the fact that with Mobile IP, each device may use more than one
IP address at a time. SIP RFC 3261 includes full support for IPv6 addresses, and
an extension to SDP [9] adds IPv6 support to SDP.

The 3GPP also uses signaling compression [10] to compress SIP messag-
es transmitted over a wireless link. This is primarily done to minimize latency
rather than for bandwidth savings. The use of signaling compression with SIP
is described in [11], which defi nes a parameter comp=sigcomp that can be used
in Via header fi elds and as a URI parameter that can be used, for example, in a
Contact header fi eld. IMS also makes heavy use of header fi elds such as Service-
Route [13] and Path [14].

The 3GPP uses the adaptive multirate (AMR) [12] codec for the audio
encoding.

186 SIP: Understanding the Session Initiation Protocol

7.4 IMS Header Fields

Some SIP header fi elds have been developed based on 3GPP requirements. These
so-called P-headers (which stands for proprietary, preliminary, or private) are
defi ned in syntax only in an informational RFC per the old SIP change process
[16]. Some are listed in Table 7.2.

In addition, the Open Mobile Alliance (OMA) [21] has registered the P-
headers in Table 7.3, which are associated with their Push-to-Talk over Cellular
(POC) feature. As part of this feature, a SIP event package is defi ned [24].

7.5 Conclusion

It is clear that as IP networks become increasingly wireless, SIP will often be uti-
lized over wireless networks. It is well suited for such use for the reasons discussed
in this chapter: it has both built-in mobility support when Mobile IP is not used,
and can also be used with Mobile IP depending on the wireless network design.
Additional work on authentication and roaming will likely be done with SIP as
the extensions developed for the 3GPP architecture are too specifi c to be useful
in most other networks.

Table 7.2
3GPP P-Headers

Header Field Use
P-Associated-URI Lists other URIs associated with the user [15]
P-Called-Party-ID Lists the URI of the called party [15]
P-Visited-Network-ID Identifi es the visited network [15]
P-Access-Network-Info Identifi es the access network [15]
P-Charging-Function-
Addresses Contains charging information [15]
P-Charging-Vector More charging information [15]
P-User-Database Database address of user’s profi le [17]
P-Served-User Identity of served user [18]
P-Profi le-Key Key of profi le of the destination URI [19]
P-Early-Media Early media authorization [20]

Table 7.3
OMA P-Headers

Header Field Use
P-Answer-State Used in PoC for the answering mode of the handset [22]
P-Refused-URI-List Used in PoC to indicate URI-lists related to failures [23]

 Wireless, Mobility, and IMS 187

7.6 Questions

Q7.1 What types of mobility does SIP provide?

Q7.2 Show the call fl ow where SIP mobility is in use between two
 networks where SIP requests must traverse a new proxy server.

Q7.3 Which SIP methods and header fi elds can be used to implement
 various types of mobility? Give an example of each.

Q7.4 Discuss how SIP mobility and Mobile IP can provide similar and
 different functions.

References

http://www.3gpp.org. [1]

Schulzrinne, H., and E. Wedlund, “Application-Layer Mobility Using SIP,” [2] Mobility Mobile
Computing and Communications Review (MC2R), Vol. 4, No. 3, July 2000.

Perkins, C., “IP Mobility Support,” RFC 2002, 1996. [3]

Vakil, F., et al., “Supporting Mobility for Multimedia with SIP,” IETF Internet-Draft, Work [4]
in Progress, December 2000.

Schulzrinne, H., “Dynamic Host Configuration Protocol (DHCP-for-IPv4) Option for [5]
Session Initiation Protocol (SIP) Servers,” RFC 3361, 2002.

Duric, A., and S. Anderson, “RTP Payload Format for iLBC Speech,” RFC 3952, Decem- [6]
ber 2004.

Camarillo, G., and M. Garcia-Martin, [7] The 3G IP Multimedia Subsystem (IMS): Merging the
Internet and the Cellular Worlds, 3rd ed., New York: John Wiley & Sons, 2008.

Donovan, S., and J. Rosenberg, “Session Timers in the Session Initiation Protocol [8]
(SIP),”RFC 4028, April 2005.

Olson, S., G. Camarillo, and A. Roach, “Support for IPv6 in Session Description Protocol [9]
(SDP),” RFC 3266, 2002.

Price, R., et al., “Signaling Compression (SigComp),” RFC 3320, 2003. [10]

Camarillo, G., “Compressing the Session Initiation Protocol (SIP),” RFC 3486, February [11]
2003.

Sjoberg, J., et al., “Real-Time Transport Protocol Payload Format and File Storage Format [12]
for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB)
Audio Codecs,” RFC 3267, June 2002.

Willis, D., and B. Hoeneisen, “Session Initiation Protocol Extension Header Field for [13]
Service Route Discovery During Registration,” RFC 3608, October 2003.

Willis, D., and B. Hoeneisen, “Session Initiation Protocol (SIP) Extension Header Field for [14]
Registering Non-Adjacent Contacts,” RFC 3327, 2003.

188 SIP: Understanding the Session Initiation Protocol

Garcia-Martin, M., E. Henrikson, and D. Mills, “Private Header (P-Header) Extensions to [15]
the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project (3GPP),”
RFC 3255, 2003.

Mankin, A., et al., “Change Process for the Session Initiation Protocol (SIP),” RFC 3427, [16]
2002.

Camarillo, G., and G. Blanco, “The Session Initiation Protocol (SIP) P-User-Database [17]
Private-Header (P-Header),” RFC 4457, April 2006.

van Elburg, J., “The SIP P-Served-User Private-Header (P-Header) for the 3GPP IP [18]
Multimedia (IM) Core Network (CN) Subsystem,” RFC 5502, April 2009.

Camarillo, G., and G. Blanco, “The Session Initiation Protocol (SIP) P-Profi le-Key Private [19]
Header (P-Header),” RFC 5002, August 2007.

Ejzak, R., “Private Header (P-Header) Extension to the Session Initiation Protocol (SIP) for [20]
Authorization of Early Media,” RFC 5009, September 2007.

http://www.openmobilealliance.org. [21]

Allen, A., J. Holm, and T. Hallin, “The P-Answer-State Header Extension to the Session [22]
Initiation Protocol for the Open Mobile Alliance Push to Talk over Cellular,” RFC 4964,
September 2007.

Hautakorpi, J., and G. Camarillo, “The Session Initiation Protocol (SIP) P-Refused-URI- [23]
List Private-Header (P-Header),” RFC 5318, December 2008.

Garcia-Martin, M., “A Session Initiation Protocol (SIP) Event Package and Data Format for [24]
Various Settings in Support for the Push-to-Talk over Cellular (PoC) Service,” RFC 4354,
January 2006.

189

8
Presence and Instant Messaging

8.1 Introduction

This chapter will cover presence and instant messaging (IM) with SIP. First the
history of IM and presence will be covered. Then the SIP events framework will
be explored, showing how presence was added to SIP. The set of protocols known
as SIMPLE or SIP for Instant Messaging and Presence Leveraging Extensions
will be covered. The two different modes of IM will be covered: page mode and
session mode using the Message Session Relay Protocol (MSRP). The Jabber
presence and instant messaging protocol, also known as the Extensible Messag-
ing and Presence Protocol (XMPP) will also be introduced. Ongoing work to
interwork and map presence and instant messages between XMPP and SIMPLE
will also be covered.

8.2 History of IM and Presence

Presence is the ability to sense the willingness of another user to communicate.
Instant messaging (IM) is a way of exchanging short text messages in near-real
time. Presence is often used to determine when another user is available in order
to start an instant message exchange. Instant messages are usually sent when the
user hits the enter key or when the user clicks a send button. Often, messages are
grouped together in a window and shown in sequential order, turning it into a
conversation.

A very early presence tool over TCP/IP was the Unix fi nger command.
Finger allowed a user to lookup information about another user, which often
included information about the last time the user logged in and the last time
mail was read. A very early IM client used on the Internet was known as ICQ

190 SIP: Understanding the Session Initiation Protocol

(pronounced like “I seek you”) [1]. The fi rst version was released in 1996. It
provided basic instant messaging between users. America Online’s AOL Instant
Messenger (AIM) was the fi rst widely used instant messaging and presence ap-
plication [2]. It was released in 1997 and quickly became popular. It introduced
the concept of a “buddy list” or a contact list of other users, which is displayed in
a small window. Note that this contact list is stored in the network, allowing the
user to have access to the contact list regardless of which computer or device they
login from. This user interface is common to nearly all IM systems today. Many
other IM clients and systems have been developed, and nearly all are proprietary
closed systems. This has resulted in the development of multiheaded clients that
present a common user interface and contact list to the user, but log the user into
a number of separate systems on the back end.

To address IM and interoperability, the IETF standardized two IM and
presence protocols. One was a set of SIP extensions known as SIMPLE (SIP for
Instant Messaging Leveraging Extensions) and XMPP (Extensible Messaging and
Presence Protocol), which is based on the Jabber open source client. SIMPLE is
covered in Section 8.3.4, while XMPP/Jabber is described in Section 8.6. Today,
both SIMPLE and XMPP are used to interconnect various closed IM systems.
The instant messaging architecture is shown in Figure 8.1 and its elements are
in Table 8.1. Both of these systems are built on top of a basic architecture for
instant messaging and presence, which is shown in Figures 8.1 and 8.2.

Figure 8.1 IM architecture.

Table 8.1
Instant Messaging Elements

Instant messaging service Protocol used to transport IM
Sender Formats message for IM service.
Instant inbox Receives message from IM service.
Sender user agent User interface for gathering IM contents from user.
Inbox user agent User interface for rendering IM to user.

 Presence and Instant Messaging 191

8.3 SIMPLE

In 2001, the IETF chartered a new working group to develop SIP standards and
extensions for instant messaging and presence. Over the years, a set of specifi ca-
tions and protocols have been developed, with a few still under development.
The standards for presence are summarized in Table 8.3. An overview specifi -
cation is known as “SIMPLE made simple” [3], which describes how all these
protocols work together.

8.4 Presence with SIMPLE

This section will cover presence with SIMPLE. The specifi cations are summa-
rized in Tables 8.3 and 8.4.

8.4.1 SIP Events Framework

The SIP events framework was defi ned in RFC 3265 which defi ned the SUBSCRIBE
and NOTIFY methods, as described in Sections 4.1.7 and 4.1.8. SUBSCRIBE is used
to establish a dialog and ongoing association between two UAs. In the presence
architecture of Figure 8.2, the watcher sends the SUBSCRIBE request to the pre-
sentity. If the subscription is authorized, the presentity will send NOTIFYs when-
ever the state of the presentity changes, and at regular intervals. The basic call
fl ow was shown in Figure 4.5.

Figure 8.2 Presence architecture.

Table 8.2
Presence Elements

Presence service Protocol used to transport presence information
Presentity Publishes presence information to presence service.
Presence user agent User interface for gathering presence information about user.
Watcher Requests and receives presence information from presence service.
Watcher user agent Renders presence information received to the user.

192 SIP: Understanding the Session Initiation Protocol

SIP events allow any number of event packages to be defi ned. Table 4.8
lists common SIP event packages. For presence, the presence package is used,
which also uses the application/xml+presence MIME type. This XML format
is used to convey the presence state in NOTIFYs.

8.4.2 Presence Bodies

Presence information is conveyed using SIP message bodies in XML (Extensible
Markup Language) format. The basic presence document is known as Presence
Information Data Format or PIDF [12] and is shown here:

Table 8.3
SIMPLE Presence Specifi cations

Document Title Use

RFC 3265 SIP events [4]
Defi nes SUBSCRIBE and NOTIFY usage with
SIP.

RFC 3903 SIP publication [5] Defi nes PUBLISH method.
RFC 3863 PIDF [6] Presence Information Data Format.

RFC 3856 Presence event package [7]
SIP event package used in NOTIFY and
PUBLSH methods.

RFC 3857 Watcher info package [8]
SIP event package used to fi nd out who is
watching or subscribing to your state.

RFC 3858 Watcher info XML [9]
Body used for watcher info NOTIFYs and
PUBLISHes.

RFC 4480 RPID [10]
Rich Presence Information Data format PIDF
extensions.

RFC 4482 CIPID [11]
Contact information in presence information
data.

RFC 4479 Data model [12] A data model for presence.
RFC 4662 Resource list extension [13] Combining subscriptions into a resource list.
RFC 4661 Filtering [14] XML format for event notifi cation fi ltering.
RFC 4825 XCAP [15] XML confi guration access protocol.
RFC 4826 Resource list format [16] XML format for resource lists.
RFC 4827 XCAP usage for presence [17] Used for manipulating presence document.
RFC 5025 Presence authorization [18] Presence authorization rules.
RFC 5196 UA capabilities extension [19] Extensions to PIDF for UA capabilities.
RFC 5261 XML patch framework [20]
RFC 5262 Partial presence PIDF [21]
RFC 5263 Partial presence [22]
RFC 5264 Partial presence publication [23]
RFC 3861 Pres URI scheme [24] Use of SRV records for the pres URI scheme.
[25] Conditional notifi cation
[26] XCAP diff
RFC 5364 SIMPLE made simple

 Presence and Instant Messaging 193

 <?xml version=”1.0” encoding=”UTF-8”?>
 <presence xmlns=”urn:ietf:params:xml:ns:pidf”
 entity=”pres:Sophie.Germain@mathematica.org”>
 <tuple id=”34g45sfde”>
 <status>
 <basic>open</basic>
 </status>
 <contact>sip:sophie@78.34.32.1:51234</contact>
 </tuple>
 </presence>

The XML document begins with the XML declaration, then the presentity
information is contained in the <presence> element. The presence information
is that of the entity listed in the entity attribute. Presence documents consist
of <tuple> elements, which contain the <status> of the presentity and can be
either open (available) or closed (unavailable). In addition, this example shows
<contact> information. Presence information is conveyed in a SIP message us-
ing the Content-Type: application/pidf+xml. Note that this Content-Type is
also sometimes incorrectly written as application/cpim-pidf+xml.

The next example shows the inclusion of both contact information (Con-
tact Information Presence Information Data or CIPID) [11], UA capabilities
[19] , and the presence data model [12]:

<?xml version=”1.0” encoding=”UTF-8”?>
 <presence xmlns=”urn:ietf:params:xml:ns:pidf”
 xmlns:dm=”urn:ietf:params:xml:ns:pidf:data-model”
 xmlns:cipid=”urn:ietf:params:xml:ns:pidf:cipid”
 xmlns:caps=”urn:ietf:params:xml:ns:pidf:caps”
 entity=”pres:m.c.thomas@brynmawr.edu”>
 <tuple id=”54234g45sfde”>
 <status>
 <basic>open</basic>
 </status>
 <contact>sip:mc@dean.brynmawr.edu</contact>

Table 8.4
SIMPLE Instant Messaging Specifi cations

Document Title Use
RFC 3428 SIP extensions for IM [27] Defi nes MESSAGE method for page mode IM.
RFC 3994 Message composition [28] Used for “istyping” indications for IM.
RFC 5365 Multiple recipient IMs [29] Used to send an IM to a group.
RFC 4975 MSRP [30] Message Sessions Relay Protocol.
RFC 4976 Relay extensions for MSRP [31] Relays for MSRP for logging and NAT traversal.
RFC 3861 IM URI scheme [24] Use of SRV records for the IM URI scheme.
RFC 3862 CPIM [32] Common profi le for IM format.
RFC 5438 IMDN [33] IM disposition notifi cation.
Draft MSRP multiparty chat [34]
Draft Alt connection with MSRP [35]

194 SIP: Understanding the Session Initiation Protocol

 <caps:servcaps>
 <caps:audio>true</caps:audio>
 <caps:video>true</caps:video>
 </caps:servcaps>
 </tuple>

 <dm:person id=”1”>
 <cipid:card>http://brynmawr.edu/~m.c.thomas/card.vcd</c:card>
 <cipid:display-name>M. C. Thomas</c:card>
 </dm:person>
 </presence>

This document defi nes a default namespace plus three other extension
namespaces, dm, cipid, and caps. This example shows that the capabilities of the
UA identifi ed by the <contact> element include both audio and video, as indi-
cated by the <audio> and <video> subelements of <servcaps>. The data model
element <person> is used to provide personal information about the contact
entity, and includes the contact information including a vcard, display name,
homepage, icon, and map. The next example shows Rich Presence Information
Data (RIPD) [10]:

 <?xml version=”1.0” encoding=”UTF-8”?>
 <presence xmlns=”urn:ietf:params:xml:ns:pidf”
 xmlns:rpid=”urn:ietf:params:xml:ns:pidf:rpid”
 entity=”sip:skovalevsky@su.se”>
 <tuple id=”4sdf432sd”>
 <status>
 <basic>closed</basic>
 </status>
 <rpid:class>IM</rpid:class>
 <contact>im:skovalesky@su.se</contact>
 </tuple>
 <tuple id=”832thr76jk”>
 <status>
 <basic>open</basic>
 </status>
 <rpid:class>voice</rpid:class>
 <contact>tel:+465551212</contact>
 </tuple>

 </presence>

8.4.3 Resource Lists

Resource lists allow a UA to combine multiple individual subscriptions into a
single subscription and receive notifi cations about multiple individual subscrip-
tions in a single notifi cation message. Resource lists are defi ned in RFC 4662
[13] and are an extension to the SIP events framework [4]. As such, resource
lists can be used with any event package. However, the most common use is
for subscriptions to a “buddy list” in presence applications. In this application,
a contact list or “buddy list” is represented by a SIP URI and stored in a server

 Presence and Instant Messaging 195

known as a resource list server or RLS. For example, if a user’s contact list con-
tained 10 SIP URIs, this would normally require 10 separate subscriptions to
be maintained, one for each URI in the list. Each of these subscriptions would
need to be created, managed, and refreshed, resulting in a lot of overhead traffi c
messages. With the resource list extension, the list is stored in the RLS, and the
presence client creates a single subscription to the RLS over which notifi cations
of the presence of all 10 URIs would be sent. The RLS may need to initiate 10
separate subscriptions, but not the presence UA. An example event list subscrip-
tion is shown here:

SUBSCRIBE sip:beatrix-321223@lakesdistrict.co.uk SIP/2.0
Via: SIP/2.0/TCP cottage43.lakesdistrict.co.uk:5060
 ;branch=z9hG4bKwYb6QREiCL
Max-Forwards: 70
To: <sip:beatrix-321223@lakesdistrict.co.uk>
From: Beatrix Potter <sip:beatrix@lakesdistrict.co.uk>
 ;tag=6733
Call-ID: dkfj39890wssdfj2938d7
CSeq: 23822 SUBSCRIBE
Contact: <sip:beatrix@cottage.lakesdistrict.co.uk;
 transport=tcp>
Ev ent: presence
Expires: 7200
Supported: eventlist
Accept: application/pidf+xml
Accept: application/rlmi+xml
Accept: multipart/related
Content-Length: 0

In this subscription, the presence of the Supported: eventlist header fi eld
indicates that the presence UA supports the extension. The Accept: application/
rlmi+xml also indicates that it is willing to accept notifi cations that use the
resource list format described in the next section. The Event: presence and
 Accept: application/pidf+xml are to indicate that the subscription is for pres-
ence information. A NOTIFY sent during this subscription might look like:

 NOTIFY sip:beatrix@cottage43.lakesdistrict.co.uk SIP/2.0
 Via: SIP/2.0/TCP pres.vancouver.example.com
 ;branch=z9hG4bKMgRenTETmm
 Max-Forwards: 70
 From: <sip:beatrix-321223@lakesdistrict.co.uk>;tag=dkisksk3
 To: Beatrix Potter <sip:beatrix@lakesdistrict.co.uk>
 ;tag=673
 Call-ID: dkfj39890wssdfj2938d7
 CSeq: 997935768 NOTIFY
 Contact: <sip:rls34.lakesdistrict.co.uk>
 Event: presence
 Subscription-State: active;expires=7200
 Require: eventlist
 Content-Type: multipart/related;type=”application/rlmi+xml”
 ;start=”<38dk2nXYxAE@lakesdistrict.co.uk>”
 ;boundary=”0909e3ksdf893”
 Content-Length: 1560

196 SIP: Understanding the Session Initiation Protocol

 --0909e3ksdf893
 Content-Transfer-Encoding: binary
 Content-ID: <38dk2nXYxAE@lakesdistrict.co.uk>
 Content-Type: application/rlmi+xml;charset=”UTF-8”

 <?xml version=”1.0” encoding=”UTF-8”?>
 <list xmlns=”urn:ietf:params:xml:ns:rlmi”
 uri=”sip:beatrix-friends@lakesdistrict.co.uk”
 version=”1” fullState=”true”>
 <resource uri=”sip:hildegard@abbey.org”>
 <name>Hildegard von Bingen</name>
 <instance id=“juwigmtboe“ state=“active“
 cid=“K3qrtD83kj2@lakesdistrict.co.uk“/>
 </resource>
 <resource uri=”sip:juana_ines@cuidaddemexico.mx”>
 <name>Sor Juana Ines de la Crux</name>
 <instance id=”hqzsuxtfyq” state=”active”
 cid=”XdY7yhjxAEw@lakesdistrict.co.uk”/>
 </resource>
 <resource uri=”sip:mmead@amnh.org”>
 <name>Margaret Mead</name>
 </resource>
 </list>

 --0909e3ksdf893
 Content-Transfer-Encoding: binary
 Content-ID: <K3qrtD83kj2@lakesdistrict.co.uk>
 Content-Type: application/pidf+xml;charset=”UTF-8”

 <?xml version=”1.0” encoding=”UTF-8”?>
 <presence xmlns=”urn:ietf:params:xml:ns:pidf”
 entity=”sip:hildegard@abbey.org”>
 <tuple id=”93sg89ae”>
 <status>
 <basic>open</basic>
 </status>
 <contact
 priority=”1.0”>sip:hildegard@music.abbey.org</contact>
 </tuple>
 </presence>

 --0909e3ksdf893
 Content-Transfer-Encoding: binary
 Content-ID: <XdY7yhjxAEw@lakesdistrict.co.uk>
 Content-Type: application/pidf+xml;charset=”UTF-8”

 <?xml version=”1.0” encoding=”UTF-8”?>
 <presence xmlns=”urn:ietf:params:xml:ns:pidf”
 entity=”sip:juana_ines@cuidaddemexico.mx”>
 <tuple id=”4rslie74”>
 <status>
 <basic>closed</basic>
 </status>
 </tuple>
 </presence>

 --0909e3ksdf893--

 Presence and Instant Messaging 197

The notifi cation contains Require: eventlist, which indi-
cates that this is an eventlist notifi cation. The Content-Type: multipart/

related;type=”application/rlmi+xml” indicates that the message body is mul-
tipart MIME and contains application/rlmi+xml parts, which is the XML for-
mat for event lists defi ned in RFC 4662 [13]. Each part of the multipart MIME
is separated by a CRLF and a boundary string, defi ned to be 0909e3ksdf893 in
this example. The Content-Type: application/pidf+xml;charset=”UTF-8” in
each part indicates that each part is a PIDF.

A resource list stored on an RLS is not a static list—the presence user may
add or delete users from this list at any time. One way to do this is to use XCAP
to manipulate the resource list. The format for this resource list is defi ned in
RFC 4826 [16]. An example document is shown here:

<?xml version=”1.0” encoding=”UTF-8”?>
 <rls-services xmlns=”urn:ietf:params:xml:ns:rls-services”
 xmlns:rl=”urn:ietf:params:xml:ns:resource-lists”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <service uri=”sip:astronomers@lists.org”>
 <list name=”astronomers”>
 <rl:entry uri=”sip:janet.taylor@observatory.com”/>
 <rl:entry uri=”sip:Maria.Kirch.Winkelmann@comets.r.us”/>
 </list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 </rls-services>

The list is enclosed in a <rls-services> element where each <service> ele-
ment defi nes a resource list. In this example, the event list URI is sip:marketing@
example.com as defi ned by the URI attribute to the <service> element. The list
is included inside the <list> element.

Instead of using XCAP to create the list, the resource list subscribe exten-
sion [36] allows a SUBSCRIBE to create an event list. An example SUBSCRIBE is
shown here:

 SUBSCRIBE sip:beatrix-321223@lakesdistrict.co.uk SIP/2.0
 Via: SIP/2.0/TCP cottage43.lakesdistrict.co.uk
 ;branch=z9hG4bKwYb6QREiCL
 Max-Forwards: 70
 To: <sip:beatrix-321223@lakesdistrict.co.uk>
 From: Beatrix Potter <sip:beatrix@lakesdistrict.co.uk>
 ;tag=26
 Call-ID: dkfj39890wssdfj2938d7
 CSeq: 23822 SUBSCRIBE
 Contact: <sip:beatrix@cottage43.lakesdistrict.co.uk;transport=tcp>
 Event: presence
 Expires: 7200
 Require: recipient-list-subscribe
 Supported: eventlist
 Accept: application/pidf+xml

198 SIP: Understanding the Session Initiation Protocol

 Accept: application/rlmi+xml
 Accept: multipart/related
 Accept: multipart/signed
 Accept: multipart/encrypted
 Content-Type: application/resource-lists+xml
 Content-Disposition: recipient-list
 Content-Length: 337

 <?xml version=”1.0” encoding=”UTF-8”?>
 <resource-lists xmlns=”urn:ietf:params:xml:ns:resource-lists”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <list>
 <entry uri=”sip:hildegard@abbey.org” />
 <entry uri=”sip:juana_ines@cuidaddemexico.mx” />
 <entry uri=”sip:mmead@amnh.org” />
 </list>
 </resource-lists>

The presence of the Require: recipient-list-subscribe indicates
that this SUBCRIBE contains a list for the creation of an event list. Note that
the Content-Type: application/resource-lists+xml is the same format as the
list in [16]. However, this extension only allows list creation with the initial
 SUBSCRIBE. Refresh SUBSCRIBEs cannot modify the list.

An alternative is defi ned in [37] which allows a SUBSCRIBE request to cre-
ate or update an event list. Note that this specifi cation is not yet an RFC but is
implemented in industry. An example call fl ow is shown in Figure 8.3.

An example SUBSCRIBE is shown here:

 SUBSCRIBE sips:manya-friends@warszawa.pl SIP/2.0
 Via: SIP/2.0/TLS rs.warszawa.pl
 ;branch=z9hG4bKwYb6QREiCL

Figure 8.3 Ad hoc list creation and manipulation.

 Presence and Instant Messaging 199

 To: <sips:manya-friends@warszawa.pl>
 From: Manya Sklodowska <sips:manya@warszawa.pl>;tag=22222
 Call-ID: 7jh5dD3Fkifr2
 CSeq: 3 SUBSCRIBE
 Max-Forwards: 70
 Event: presence
 Require: adhoclist
 Accept: application/pidf+xml
 Accept: application/rlmi+xml
 Contact: <sips:manya@rs.warszawa.pl>
 Content-Type: application/adrl+xml
 Content-Length: ...

 <?xml version=”1.0”?>
 <adhoclist uri=”sip:manya-friends@warszawa”
 name=”Manya’s Friends”>
 <add>
 <resource
 uri=”sips:hypatia@greatlibrary.alexandria.eg”>
 <resource uri=”sips:m.g.mayer@katowice.pl”>
 <resource uri=”sips:pan.chao@imperial.org”>
 </add>
 </adhoclist>

This subscribe adds three URIs in the <resource> element contained
in the <adhoclist> element. The Require: adhoclist and Content-Type:
 application/adrl+xml indicate that this SUBSCRIBE is for an RLS that supports
adhoc lists. A later refresh SUBSCRIBE could be used to add more URIs and delete
others. For example:

 SUBSCRIBE sips:manya-friends@warszawa.pl SIP/2.0
 Via: SIP/2.0/TLS rs.warszawa.pl
 ;branch=z9hG4bKwYb6QREiCL
 To: <sips:manya-friends@warszawa.pl>;tag=32111df
 From: Manya Sklodowska <sips:manya@warszawa.pl>;tag=xz2d
 Call-ID: 7jh5dD3Fkifr2
 CSeq: 34 SUBSCRIBE
 Max-Forwards: 70
 Event: presence
 Require: adhoclist
 Accept: application/pidf+xml
 Accept: application/rlmi+xml
 Contact: <sips:manya@rs.warszawa.pl>
 Content-Type: application/adrl+xml
 Content-Length: ...

 <?xml version=”1.0”?>
 <adhoclist uri=”sip:manya-friends@warszawa”
 name=”Manya’s Friends”>
 <add>
 <resource
 uri=”sips:margaret_cavendish@dutchess.newcastle.gb”>
 </add>
 <delete>
 <resource uri=”sips:m.g.mayer@katowice.pl”>
 </delete>
 </adhoclist>

200 SIP: Understanding the Session Initiation Protocol

8.4.4 Filtering

An enhancement to SIP events is to allow the use of fi lters. A fi lter is an XML
document included in a SUBSCRIBE, which contains information about the type
and rate of notifi cations to be sent during the subscriptions. The fi lters extension
is defi ned in RFC 4660 [38] while the XML fi lter format is defi ned in RFC 4661
[14]. Filters can be defi ned to apply to a single resource, a set of resources, or all
resources in the subscription. Filtering can also be applied to specifi c domains.
Filters can be changed during a subscription by including a new fi lter in a refresh
SUBSCRIBE. A refresh SUBSCRIBE without a fi lter means continued use of the cur-
rent fi lter. Filter removal can be done using the remove=”true” attribute. Figure
8.4 shows an example of fi lter creation, manipulation, and removal.

For example, consider the SUBSCRIBE containing a fi lter here:

 SUBSCRIBE sip:c.dipisan@authors.org SIP/2.0
 Via: SIP/2.0/TCP client.example.com:5060
 ;branch=z9hG4bKxjfdsjfk
 To: <sip:c.dipisan@authors.org>
 From: <sip:jane.austen@southhampton.uk>;tag:12341111
 Call-ID: 232432udfi dfjmk342

Figure 8.4 Example event fi lter creation, manipulation, and removal.

 Presence and Instant Messaging 201

 CSeq: 1 SUBSCRIBE
 Expires: 3600
 Event: Presence
 Contact: <sip:jane@chawton.southhampton.uk;transport=tcp>
 Content-Type: application/simple-fi lter+xml
 Content-Length: ...

 <?xml version=”1.0” encoding=”UTF-8”?>
 <fi lter-set xmlns=”urn:ietf:params:xml:ns:simple-fi lter”>
 <ns-bindings>
 <ns-binding prefi x=”pidf”
 urn=”urn:ietf:params:xml:ns:pidf”/>
 <ns-binding prefi x=”rpid”
 urn=”urn:ietf:params:xml:ns:pidf:rpid”/>
 </ns-bindings>
 <fi lter id=”123” uri=”sip:c.dipisan@authors.org”>
 <what>
 <include type=“xpath“>
 //pidf:tuple/pidf:status[pidf:basic=“open“]/pidf:basic
 </include>
 <include type=“xpath“>
 //pidf:tuple[pidf:status/pidf:basic=“open“]/rpid:class
 </include>

 <include type=“xpath“>
 //pidf:tuple[pidf:status/pidf:basic=“open“]/pidf:contact
 </include>
 </what>
 </fi lter>
 </fi lter-set>

The fi lter is defi ned by the Content-Type: application/simple-fi lter+xml
message body. The fi lter is contained in the <fi lter-set> element, which in-
cludes a single <fi lter> element. This fi lter will result in notifi cations only being
sent that have either the value open inside the <status> element in the PIDF
 <basic>, <contact> elements, or the RPID <class> element. All other notifi ca-
tions would be suppressed.

8.4.5 Conditional Event Notifi cations and ETags

Another optimization involves the use of conditional notifi cations as defi ned in
[25]. In the normal operations of SIP events, every SUBSCRIBE will generate an
automatic NOTIFY. While the initial NOTIFY usually contains useful initial state,
the NOTIFYs sent to refresh SUBSCRIBEs often do not contain any new informa-
tion. NOTIFYs can be sent with the SIP-ETag header fi eld, which contains an
identifi er known as the entity-tag for the current state. A subsequent refresh
 SUBSCRIBE can then include this identifi er in a Suppress-If-Match header fi eld.
If the entity-tag in the SUBSCRIBE matches the local entity-tag, the automatic
 NOTIFY will be suppressed and a 204 No Notifi cation response sent. If the entity-
tag does not match, indicating a change in state, the NOTIFY will be generated.
This is shown in Figure 8.5.

202 SIP: Understanding the Session Initiation Protocol

This mechanism can also be used to poll for state. An example is shown in
Figure 8.6.

8.4.6 Partial Publication

Another optimization is defi ned in [23] for the partial publication of presence
information. Normally, each time presence information changes, the entire PIDF
containing full state must be sent. This extension allows the parts of the PIDF
that have changed to be sent. Figure 8.7 shows the basic operation in which fi rst
a full publication must be sent. After that, partial publications can be sent. In
this fl ow, the fi rst PUBLISH creates the state information and the second updates
it. The third attempts to update it, but the previous state has expired. The full
state is then published with the fourth PUBLISH.

For example, consider the partial publication message:

 PUBLISH sip:murasaki@kyoto.jp SIP/2.0
 Via: SIP/2.0/TCP court.kyoto.jp:15332;branch=z9hG4bKfdDsjfk1
 To: Murasaki Shikibu <sip:murasaki@kyoto.jp>

Figure 8.5 Conditional notifi cations and ETags.

 Presence and Instant Messaging 203

 From: Murasaki Shikibu <sip:murasaki@kyoto.jp>
 ;tag=v1F23d41111
 Call-ID: 8Fd3wfl dfa
 CSeq: 61 PUBLISH
 Event: presence
 SIP-If-Match: 34616386238299
 Expires: 3600
 Content-Type: application/pidf-diff+xml
 Content-Length: ...

 <?xml version=”1.0” encoding=”UTF-8”?>
 <p:pidf-diff xmlns=”urn:ietf:params:xml:ns:pidf”
 xmlns:p=”urn:ietf:params:xml:ns:pidf-diff”
 xmlns:r=”urn:ietf:params:xml:ns:pidf:rpid”
 entity=”pres:murasaki@kyoto.jp”>

 <p:add sel=”presence/note” pos=”before”>
 <tuple id=”L6erPt47”>
 <status>
 <basic>open</basic>
 </status>
 <contact priority=”0.4”>mailto:genji@tales.jp</contact>

Figure 8.6 Polling for state.

204 SIP: Understanding the Session Initiation Protocol

 </tuple>
 </p:add>

 <p:replace
 sel=”*/tuple[@id=’1d23d0d’]/status/basic/text()”>open</p:replace>
 <p:remove sel=”*/r:person/r:status/r:activities/r:busy”/>

 <p:replace
 sel=”*/tuple[@id=’Kcg23d1j’]/contact/@priority”>0.7</p:replace>

 </p:pidf-diff>

The SIP-If-Match header fi eld containing the entity-tag ensures that this
partial presence publication is applied to the correct full presence document,
which is identifi ed by the entity-tag. The Content-Type: application/pidf-

diff+xml message body is used to convey the partial presence document. The
<add> , <replace>, and <remove> elements modify the full state presence docu-
ment in the appropriate way. In each case, the tuple identifi er is used to select
the correct element.

8.4.7 Presence Documents Summary

Table 8.5 lists the various types of presence documents.

Figure 8.7 Partial publication example.

 Presence and Instant Messaging 205

8.5 Instant Messaging with SIMPLE

Instant messaging with SIP was a very early SIP extension in RFC 3428 [27]. In
addition to this simple transport, SIP extensions for “iscomposing” or “istyping”
have been standardized. Also, a standard for Instant Message Delivery Notifi ca-
tion (IMDN) has been developed. Finally, a session mode instant messaging
protocol Message Sessions Relay Protocol (MSRP) has been developed.

8.5.1 Page Mode Instant Messaging

Page mode instant messaging is done using the MESSAGE method. It provides
transport of a single message between two SIP endpoints, as described in Sec-
tion 4.1.11. Typical message body types include text/plain, text/html, and
 message/cpim [32]. Page mode is suitable for a single message exchange or a se-
ries of short messages, similar to paging or SMS on mobile phones. It is not suit-
able for a long conversation between users or as a channel for transferring fi les or
multimedia clips. For these situations, the session mode should be used.

8.5.2 Common Profi le for Instant Messaging

The Common Profi le for Instant Messaging (CPIM) [32] was developed as
the IETF recognized that multiple internet protocols have been developed for
instant messaging and a common format was needed to support interworking
between them. A common message format allows for the possibility of end-to-
end encryption and signatures to be used even when different IM protocols are
used for transport. Both SIMPLE and XMPP (described in Section 8.6) support
CPIM and defi ne mapping between their native IM transport and CPIM, which
makes mapping between them easier. An example CPIM message carried in a
MESSAGE SIP request is shown here:

 MESSAGE allesandra@bologna.it SIP/2.0
 Via: SIP/2.0/TCP lab.rss.org;branch=z9hG4bK7F6sg83dkse
 Max-Forwards: 70
 From: <sip:fl orence.nightingale@rss.org>;tag=49583

Table 8.5
Presence Document Formats

Content-Type Use Specifi cation
application/pidf+xml Basic presence document RFC 3863
application/pidf-diff+xml Partial presence document RFC 5262
application/rlmi+xml Resource list notifi cation RFC 4662
application/resource-lists+xml Resource list creation RFC 4862
application/adrl+xml Ad hoc list management [37]
application/simple-fi lter+xml Filter in a SUBSCRIBE RFC 4661

206 SIP: Understanding the Session Initiation Protocol

 To: Alessandra Giliani <allesandra@bologna.it>
 Call-ID: 43dKdas88d8V8asd77a
 CSeq: 16 MESSAGE
 Content-Type: message/cpim
 Content-Length: . . .

 From: Florence <im:fl orence.nightingale@rss.org>
 To: Alessandra <im:alessandra@bologna.it>
 DateTime: 2000-12-13T13:40:00-08:00
 Subject: Statistical Tables
 Subject:;lang=it Tabelle Statistiche
 NS: MyFeatures <mid:MessageFeatures@id.foo.com>
 Require: MyFeatures.VitalMessageOption
 MyFeatures.VitalMessageOption: Confi rmation-requested
 MyFeatures.WackyMessageOption: Use-silly-font

 Content-Type: text/xml; charset=utf-8
 Content-ID: <34do9fl sf@rss.org>

 <body>
 I have the information you requested about the
 statistical tables.
 </body>

The Content-Type: message/cpim header fi eld indicates that the message
body is a CPIM message. The next lines are the CPIM headers, followed by a
blank line, then the actual CPIM message content. The CPIM message content
is preceded by the MIME headers Content-Type and Content-ID. In this case, the
actual message is encoded as text/xml. The complete set of CPIM header fi elds
is listed in Table 8.6.

8.5.3 Instant Messaging Delivery Notifi cation

The format message/cpim was defi ned so that IM systems standardized by the
IETF could interoperate at the message layer. As a result, SIMPLE supports
CPIM as does XMPP, allowing interoperability as described in Section 8.6.2.
CPIM has also been extended to add delivery notifi cation in [33]. For example,
consider the SIP page mode IM here:

Table 8.6
CPIM Header Fields

Header Meaning
From Sender or originator of IM
To Recipient of IM
cc Courtesy copy
DateTime Date and time IM was sent
Subject Subject of IM
NS Local name space prefi x
Require Header or feature that must be implemented

 Presence and Instant Messaging 207

 MESSAGE sip:fl orence.nightingale@rss.org
 Via: SIP/2.0/TCP library.bologna.it
 ;branch=z9hG4bK6sQpg8dks9e22
 Max-Forwards: 70
 From: Alessandra Giliani <allesandra@bologna.it>;tag=6312
 To: <sip:fl orence.nightingale@rss.org>
 Call-ID: 8765-2555-2103-4723
 CSeq: 77 MESSAGE
 Content-Type: application/cpim
 Content-Length: ...

 To: Florence <im:fl orence.nightingale@rss.org>
 From: Alessandra <im:alessandra@bologna.it>
 NS: imdn <urn:ietf:params:imdn>
 imdn.Message-ID: 384jk3214jW
 DateTime: 2006-04-04T12:16:49-05:00
 imdn.Disposition-Notifi cation: positive-delivery
 ,negative-delivery
 Content-type: text/plain
 Content-length: 19

 Grazie, Florence!

The CPIM wrapper begins after the fi rst Content-Length header fi eld
and goes to the second Content-Length fi eld. The actual message then follows.
The imdn.Disposition-Notifi cation CPIM fi eld indicates that message disposi-
tion is requested for this message, and the two types of notifi cation requested
are: positive-delivery and negative-delivery. Other notifi cation options
are processing or display. An example Internet message delivery notifi cation
(IMDN) response is shown here:

MESSAGE allesandra@bologna.it SIP/2.0
Via: SIP/2.0/TCP lab.rss.org;branch=z9hG4bK83924
Max-Forwards: 70
From: <sip:fl orence.nightingale@rss.org>;tag=823123
To: Alessandra Giliani <allesandra@bologna.it>
Call-ID: 8o1eCusjwX99Sfs2M
CSeq: 9321 MESSAGE
Content-Type: application/cpim
Content-Length: ...

From: Florence <im:fl orence.nightingale@rss.org>
To: Alessandra <im:alessandra@bologna.it>
NS: imdn <urn:ietf:params:imdn>
imdn.Message-ID: 83jk4ldlf20fks
Content-type: message/imdn+xml
Content-Disposition: notifi cation
Content-length: ...

<?xml version=”1.0” encoding=”UTF-8”?>
<imdn xmlns=”urn:ietf:params:xml:ns:imdn”>
 <message-id>384jk3214jW</message-id>
 <datetime>2008-04-04T12:16:49-05:00</datetime>
 <recipient-uri>im:fl orence.nightingale@rss.org</recipient-uri>
 <delivery-notifi cation>
 <status>
 <delivered/>

208 SIP: Understanding the Session Initiation Protocol

 </status>
 </delivery-notifi cation>
</imdn>

This message is sent in the reverse direction to the IM with the IMDN
request and contains the CPIM wrapper and the Content-type: message/

imdn+xml, which conveys the actual XML IMDN message. In this case, the status
is <delivered/>. Other status values are <delivered>, <failed>, <forbidden>, or
<error>. An example exchange is shown in Figure 8.8.

8.5.4 Message Composition Indication

Another instant messaging extension is the message composition indication [28].
This extension can provide the familiar “istyping” indication meaning that the
other party in an IM conversation is currently composing media. Two states are
assumed: idle and active. Active is the state when composing or typing is taking
place. The indications are conveyed using XML objects and transported over the
IM channel. For example, if MESSAGE is used:

 MESSAGE sip:winifred@192.168.42.1 SIP/2.0
 Via: SIP/2.0/TCP mosses.nybg.org;branch=z9hG4bK2sdfds
 Via: SIP/2.0/TCP mosses.nybg.org;branch=z9hG4bK98s
 ;received=73.32.1.2
 Via: SIP/2.0/TCP mosses.nybg.org;branch=z9hG4bK76dsgFdksWe10
 ;received=128.56.42.1
 Max-Forwards: 68
 From: sip:britton@nybg.org;tag=92349583
 To: sip:goldring@paleosoc.org
 Call-ID: eifk33kfsd2as2df2389sad5lkpoef
 CSeq: 186 MESSAGE

Figure 8.8 Instant Message Delivery Notifi cation example.

 Presence and Instant Messaging 209

 Content-Type: application/im-iscomposing+xml
 Content-Length: ...

 <?xml version=”1.0” encoding=”UTF-8”?>
 <isComposing xmlns=”urn:ietf:params:xml:ns:im-iscomposing”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”urn:ietf:params:xml:ns:im-composing
 iscomposing.xsd”>
 <state>active</state>
 <contenttype>text/plain</contenttype>
 <refresh>90</refresh>

 </isComposing>

The Content-Type: application/im-iscomposing+xml header fi eld indi-
cates that this message is a message composition indication. The composing state
is conveyed in the <isComposing> element where the <state> element has the
value active. The <contenttype> element indicates that the content being com-
posed is text. The receipt of this message could be used to display an indication
of “istyping” to the user for a short period of time, after which the indication
times out and the state returns to idle.

8.5.5 Multiple Recipient Messages

An extension allows an instant message to carry a recipient list [29]. An interme-
diary server known as a relay or exploder can take such a request and replicate
the instant messaging to the recipients in the list. This operation is shown in
Figure 8.9.

For example:

Figure 8.9 Multiple recipient messages example.

210 SIP: Understanding the Session Initiation Protocol

MESSAGE sip:nancy-list@csiro.au SIP/2.0
Via: SIP/2.0/TCP unimelb.csiro.au;branch=z9hG4bKhs8asdLs83
Max-Forwards: 70
To: <sip:nancy-list@csiro.au>
From: Nancy Tyson Burbidge <sip:nancy.burbidge@csiro.au>
 ;tag=Kjd32331
Call-ID: 8uF2sfl FSsa
CSeq: 98712 MESSAGE
Require: recipient-list-message
Content-Type: multipart/mixed;boundary=”boundary2”
Content-Length: 501

--boundary2
Content-Type: text/plain

Hello Everybody!

--boundary2
Content-Type: application/resource-lists+xml
Content-Disposition: recipient-list

<?xml version=”1.0” encoding=”UTF-8”?>
<resource-lists xmlns=”urn:ietf:params:xml:ns:resource-lists”
 xmlns:cp=»urn:ietf:params:xml:ns:copycontrol”>
 <list>
 <entry uri=”sip:caroline.atkinson@smh.com.au”
 cp:copyControl=”to” />
 <entry uri=”sip:egould@ramsgate.kent.uk” cp:copyControl=”to”
 <entry uri=”sip:gmolloy@botanicals.org” cp:copyControl=”cc”/>
 <entry uri=”sip:jasminb@clearwater.tx.us” cp:copyControl=”cc”
 </list>
</resource-lists>
 --boundary2--

This MESSAGE has a multipart/mixed body which consists of a Content-
Type: text/plain instant message followed by a Content-Type: application/
resource-lists+xml body, which contains a list. Note that this list format is the
same as that used in SUBSCRIBE requests creating resource lists. The copyControl
attribute is defi ned in [26], which allows for the values of to, cc, or bcc that have
the same meaning as in e-mail.

8.5.6 Session Mode Instant Messaging

The Message Session Relay Protocol (MSRP) [30] was developed to meet the
needs of a session mode IM system. For this case, the use of the SIP MESSAGE
method was determined to be suboptimal. As a result, this is a non-SIP protocol.
MSRP uses a SIP offer/answer exchange to establish the MSRP session using
SDP. MSRP messages are either SEND requests, which carry a message or a REPORT
request which reports on the status of a previous message. MSRP allows large
messages to be sent by breaking the message into chunks which are sent in sepa-
rate SEND requests. MSRP uses a stream-based transport such as TCP. As a result,

 Presence and Instant Messaging 211

it must provide its own framing. MSRP defi nes its own URI scheme, which is
used when negotiating the session. For example, an SDP offer used to establish
an MSRP session:

 v=0
 o=nancy 2890844526 2890844527 IN IP4 unimelb.csiro.au
 s=-
 c=IN IP4 unimelb.csiro.au
 t=0 0
 m=message 7344 TCP/MSRP *
 a=accept-types:text/plain
 a=path:msrp://unimelb.csiro.au:27394/Kdsa2s93i9a;tcp

The media line contains the message media type while TCP/MSRP indicates
that MSRP protocol will be used over TCP. An example MSRP exchange is
shown in Figure 8.10.

MSRP has defi ned a number of header fi elds, listed in Table 8.7, and uses
error codes shown in Table 8.8. Table 8.9 lists MSRP message types.

The use and operation of relay with MSRP is defi ned in [31]. These relays
can be used for NAT traversal, logging, and corporate compliance. With MSRP
relays, a mechanism for discovery and authentication is defi ned. An approach
to establish MSRP sessions through NATs that uses standard ICE mechanisms
is defi ned in [35]. The usage of MSRP in a multiuser chat is described in [34],
which also defi nes a new MSRP request NICKNAME used to set a temporary name,
known as a nickname, which can be used as an alias during the multiuser chat
session. MSRP multiuser chat uses CPIM messages and the CPIM header to
identify the recipient. The recipient can either be the entire chat room or it can

Table 8.7
MSRP Header Fields

Header Specifi cation
To-Path RFC 4975
From-Path RFC 4975
Message-ID RFC 4975
Success-Report RFC 4975
Failure-Report RFC 4975
Byte-Range RFC 4975
Status RFC 4975
Expires RFC 4976
Min-Expires RFC 4976
Max-Expires RFC 4976
Use-Path RFC 4976
WWW-Authenticate RFC 4976
Authorization RFC 4976
Authentication-Info RFC 4976

212 SIP: Understanding the Session Initiation Protocol

be a single participant, in which case it is a private message addressed to a par-
ticular nickname.

Table 8.10 lists the common content types in instant messaging.

Figure 8.10 MSRP session example.

Table 8.8
MSRP Error Codes

Code Meaning
200 Successful transaction
400 Request failed
401 Authorization credentials needed
403 Request not allowed
408 Timeout
413 Stop sending
415 Unknown media type
423 Parameter out of bounds
481 Session does not exist
501 Method not understood
506 Session already in use

 Presence and Instant Messaging 213

8.6 Jabber

Jabber is the XML-based instant messaging and presence protocol invented by
Jeremie Miller as an open source software project in 1998. The fi rst public release
was in 2000, and the protocol was developed by the not for profi t Jabber Soft-
ware Foundation (JSF), which was formed in 2001 and has been renamed to the
XMPP Standards Foundation (XSF) [39].

8.6.1 Standardization as Extensible Messaging and Presence Protocol

Jabber was standardized in the IETF in 2004 as Extensible Messaging and Pres-
ence Protocol, or XMPP, a core protocol [40] and extensions for instant mes-
saging and presence [41]. Like SIMPLE, Jabber supports CPIM messages for
interoperability. The many extensions to XMPP have not been standardized in
the IETF but instead standardized by the XSF as XMP extension protocols or
XEPs. Jabber uses XML fragments, known as stanzas to communicate between
Jabber clients and Jabber servers. Jabber is a true client/server protocol—Jabber
servers are required elements in the architecture and use a server-to-server proto-
col to talk to other servers and a client-to-server protocol to talk to clients. For
addresses, Jabber uses a Jabber ID (JID) in the form of user@domain/resource.
Note that JID is not a URI or a URL.

Table 8.9
MSRP Requests

Request Specifi cation
SEND RFC 4975
REPORT RFC 4975
AUTH RFC 4976
NICKNAME [34]

Table 8.10
Common Content-Types in IM

Content Type Reference
text/plain RFC 3676
text/html RFC 2854
message/cpim RFC 3826
application/resource-lists+xml RFC 4862
application/im-iscomposing+xml RFC 3994

214 SIP: Understanding the Session Initiation Protocol

8.6.2 Interworking with SIMPLE

Currently work is underway in the IETF to standardize the interworking be-
tween SIMPLE and Jabber for both presence and IM systems [42]. A gateway
must be used to bridge the two protocols. Since XMPP utilizes permanent sub-
scriptions, the gateway must map them to the soft-state subscriptions used in
SIMPLE. While an XMPP URI scheme has been defi ned [43] that SIMPLE can
use, XMPP is unable to use URIs so the gateway must map between XMPP or
SIP URIs and XMPP JIDs. The basic IM mapping is shown in Table 8.11.

Table 8.12 shows basic presence mapping between XMPP and SIMPLE.
The mapping of group chat between SIMPLE and XMPP is defi ned in [44].

8.6.3 Jingle

Jingle [45] is an XMPP protocol extension for initiating and managing media
sessions between two XMPP entities. Jingle provides a way to perform an offer/
answer exchange of media capabilities to negotiate an RTP media session. Jingle
was designed to easily interwork with SIP [46] and have NAT traversal using
ICE, as described in Chapter 10.

8.6.4 Future Standardization of XMPP

A new working group has formed in the IETF to standardize additional aspects
of XMPP [47] and interworking with SIMPLE. Their work will include revi-
sions to the core protocol, optimizations for mobile devices, and end-to-end
encryption and security.

8.7 Conclusion

This chapter showed how presence and instant messaging services can be imple-
mented with SIP using a number of extensions. Additionally, Jabber or XMPP
can provide these services and can interwork with SIP through gateways.

Table 8.11
Instant Message Mapping Between XMPP and SIMPLE

XMPP SIMPLE
<body/> Body of MESSAGE
<subject/> Subject

<thread/> Call-ID

from From

to To

xml:lang Content-Language

 Presence and Instant Messaging 215

8.8 Questions

Q8.1 Create an example resource list creating subscription, and show the
 fi rst notifi cation. Include at least three resources in the list and show
 at least two different presence states in the notifi cation.

Q8.2 Explain the differences between page mode and session mode
 instant messaging. Which protocols are typically used for each?

Q8.3 Explain the purpose of CPIM.

Q8.4 Explain why you would not expect to see the SIP header fi eld
 Content-Type: message/imdn+xml as a header fi eld in a
 SIP MESSAGE method.

Q8.5 Map the following Jabber message into a SIP NOTIFY. Make up any
 URIs and values you might need:

 <presence
 from=’juliet@example.com/balcony’
 to=’romeo@example.net/orchard’
 xml:lang=’en’>
 <show>away</show>
 <status>be right back</status>
 <priority>0</priority>
 </presence>

Q8.6 Create a presence document for the user Bob showing his status as
 available, his contact URI as sip:bob@pc33.example.com, and his
 device as capable of both audio and video.

Q8.7 How are entity tags used in SIP?

Q8.8 Explain how partial publication works with an example.

Q8.9 What is a resource list server?

Q8.10 Explain conditional event notifi cation.

Table 8.12
Presence Mapping Between XMPP and SIMPLE

XMPP SIMPLE
<presence/> stanza Event: presence
 XMPP resource identifi er Tuple ‘id’ attribute
from From

id Call-ID

to To

type Basic status
xml:lang Content-Language

<priority/> PIDF priority for tuple

216 SIP: Understanding the Session Initiation Protocol

References

http://www.icq.com. [1]

http://www.aim.com. [2]

Rosenberg, J., “SIMPLE made Simple: An Overview of the IETF Specifications for Instant [3]
Messaging and Presence Using the Session Initiation Protocol (SIP),” draft-ietf-simple-sim-
ple-05 (work in progress), March 2009.

Roach, A., “Session Initiation Protocol (SIP)-Specific Event Notification,” RFC 3265, June [4]
2002.

Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication,” RFC [5]
3903, October 2004.

Sugano, H., et al., “Presence Information Data Format (PIDF),” RFC 3863, August [6]
2004.

Rosenberg, J., “A Presence Event Package for the Session Initiation Protocol (SIP),” RFC [7]
3856, August 2004.

Rosenberg, J., “A Watcher Information Event Template-Package for the Session Initiation [8]
Protocol (SIP),” RFC 3857, August 2004.

Rosenberg, J., “An Extensible Markup Language (XML) Based Format for Watcher Infor- [9]
mation,” RFC 3858, August 2004.

Schulzrinne, H., et al., “RPID: Rich Presence Extensions to the Presence Information Data [10]
Format (PIDF),” RFC 4480, July 2006.

Schulzrinne, H., “CIPID: Contact Information for the Presence Information Data Format,” [11]
RFC 4482, July 2006.

Rosenberg, J., “A Data Model for Presence,” RFC 4479, July 2006. [12]

Roach, A., B. Campbell, and J. Rosenberg, “A Session Initiation Protocol (SIP) Event [13]
Notifi cation Extension for Resource Lists,” RFC 4662, August 2006.

Khartabil, H., et al., “An Extensible Markup Language (XML)-Based Format for Event [14]
Notifi cation Filtering,” RFC 4661, September 2006.

Rosenberg, J., “The Extensible Markup Language (XML) Confi guration Access Protocol [15]
(XCAP),” RFC 4825, May 2007.

Rosenberg, J., “Extensible Markup Language (XML) Formats for Representing Resource [16]
Lists,” RFC 4826, May 2007.

Isomaki, M., and E. Leppanen, “An Extensible Markup Language (XML) Confi guration [17]
Access Protocol (XCAP) Usage for Manipulating Presence Document Contents,” RFC
4827, May 2007.

Rosenberg, J., “Presence Authorization Rules,” RFC 5025, December 2007. [18]

Lonnfors, M., and K. Kiss, “Session Initiation Protocol (SIP) User Agent Capability [19]
Extension to Presence Information Data Format (PIDF),” RFC 5196, September 2008.

 Presence and Instant Messaging 217

Urpalainen, J., “An Extensible Markup Language (XML) Patch Operations Framework [20]
Utilizing XML Path Language (XPath) Selectors,” RFC 5261, September 2008.

Lonnfors, M., et al., “Presence Information Data Format (PIDF) Extension for Partial [21]
Presence,” RFC 5262, September 2008.

Lonnfors, M., et al., “Session Initiation Protocol (SIP) Extension for Partial Notifi cation of [22]
Presence Information,” RFC 5263, September 2008.

Niemi, A., M. Lonnfors, and E. Leppanen, “Publication of Partial Presence Information,” [23]
RFC 5264, September 2008.

Peterson, J., “Address Resolution for Instant Messaging and Presence,” RFC 3861, August [24]
2004.

Niemi, A., “An Extension to Session Initiation Protocol (SIP) Events for Conditional Event [25]
Notifi cation,” draft-ietf-sipcore-subnot-etags-20 (work in progress), April 2009.

Garcia-Martin, M., and G. Camarillo, “Extensible Markup Language (XML) Format [26]
Extension for Representing Copy Control Attributes in Resource Lists,” RFC 5364,
October 2008.

Campbell, B., et al., “Session Initiation Protocol (SIP) Extension for Instant Messaging,” [27]
RFC 3428, December 2002.

Schulzrinne, H., “Indication of Message Composition for Instant Messaging,” RFC 3994, [28]
January 2005.

Garcia-Martin, M., and G. Camarillo, “Multiple-Recipient MESSAGE Requests in the [29]
Session Initiation Protocol (SIP),” RFC 5365, October 2008.

Campbell, B., R. Mahy, and C. Jennings, “The Message Session Relay Protocol (MSRP),” [30]
RFC 4975, September 2007.

Jennings, C., R. Mahy, and A. Roach, “Relay Extensions for the Message Sessions Relay [31]
Protocol (MSRP),” RFC 4976, September 2007.

Klyne, G., and D. Atkins, “Common Presence and Instant Messaging (CPIM): Message [32]
Format,” RFC 3862, August 2004.

Burger, E., and H. Khartabil, “Instant Message Disposition Notifi cation (IMDN),” RFC [33]
5438, February 2009.

Niemi, A., M. Garcia, and G. Sandbakken, “Multi-Party Chat Using the Message Session [34]
Relay Protocol (MSRP),” draft-ietf-simple-chat-04 (work in progress), March 2009.

Holmberg, C., and S. Blau, “An Alternative Connection Model for the Message Session [35]
Relay Protocol (MSRP),” draft-ietf-simple-msrp-acm-01 (work in progress), August 2009.

Camarillo, G., A. Roach, and O. Levin, “Subscriptions to Request-Contained Resource [36]
Lists in the Session Initiation Protocol (SIP),” RFC 5367, October 2008.

Levin, O., “Ad-Hoc Resource Lists Using SUBSCRIBE in SIMPLE,” draft-levin-simple- [37]
adhoc-list-01.txt (work in progress), November 2003.

Khartabil, H., et al., “Functional Description of Event Notifi cation Filtering,” RFC 4660, [38]
September 2006.

218 SIP: Understanding the Session Initiation Protocol

http://www.xsf.org. [39]

Saint-Andre, P., (ed.), “Extensible Messaging and Presence Protocol (XMPP): Core,” RFC [40]
3920, October 2004.

Saint-Andre, P., (ed.), “Extensible Messaging and Presence Protocol (XMPP): Instant [41]
Messaging and Presence,” RFC 3921, October 2004.

Saint-Andre, P., “Basic Messaging and Presence Interworking Between the Extensible [42]
Messaging and Presence Protocol (XMPP) and Session Initiation Protocol (SIP) for Instant
Messaging and Presence Leveraging Extensions (SIMPLE),” draft-saintandre-xmpp-
simple-10 (work in progress), August 2007.

Saint-Andre, P., “Internationalized Resource Identifi ers (IRIs) and Uniform Resource [43]
Identifi ers (URIs) for the Extensible Messaging and Presence Protocol (XMPP),” RFC
4622, July 2006.

Saint-Andre, P., S. Loreto, and F. Forno, “Interworking Between the Session Initiation [44]
Protocol (SIP) and the Extensible Messaging and Presence Protocol (XMPP): Multi-Party
Text Chat,” draft-saintandre-sip-xmpp-groupchat-01 (work in progress), March 2009.

Ludwig, S., et al., “Jingle,” XSF XEP 0166, June 2007. [45]

Saint-Andre, P., “Interworking Between the Session Initiation Protocol (SIP) and the [46]
Extensible Messaging and Presence Protocol (XMPP): Media Sessions,” draft-saintandre-
sip-xmpp-media-01.txt (work in progress), March 2009.

http://www.ietf.org/html.charters/xmpp-charter.html. [47]

219

9
Services in SIP
In this chapter, ways and techniques to implement services using SIP will be cov-
ered. Typical services include telephony gateway services, trunking, business ser-
vices, voicemail, conferencing, fax, and video. Architectures such as application
sequencing, service oriented architecture (SOA), and service delivery platforms
will also be introduced.

9.1 Gateway Services

A common application of SIP is in PSTN interworking and replacement. For
this application, the most important function is that of a gateway to the PSTN.
A gateway is an element that converts one protocol to another—a PSTN gate-
way converts a SIP and RTP session into a PSTN session. As SIP is a signaling
protocol, the gateway will map SIP messages to a PSTN signaling protocol such
as ISDN (Integrated Services Digital Network) or ISUP (ISDN User Part). The
RTP media session is converted by a gateway into a PCM trunk. Gateways are
often decomposed using media gateway protocols such as MGCP and H.248.
For more details on these PSTN protocols, see Chapter 11.

We have already seen how SIP can handle telephone numbers, either
through a telephony URI [1] or SIP URI [2] with a telephone number in the
user part. A SIP proxy server can determine when an INVITE needs to be routed
to a gateway for termination in the PSTN. Other types of SIP requests, (e.g.,
presence, instant messaging, and so fourth) do not make sense to route to the
PSTN. A proxy can also manage a dial plan for a set of UAs. A dial plan maps
a dial string (digits dialed on a telephone) into a telephone number suitable for
routing on the PSTN. For example, “dial 9 for an outside line” is an example of

220 SIP: Understanding the Session Initiation Protocol

a very simple dial plan commonly used in business telephone systems. Dial plans
also allow private dialing plans within an enterprise. An example of this is when
3 or 4 digit extensions can be used to dial other extensions within the enterprise.
A dial string is indicated in a SIP URI when the user=dialstring [3] parameter
is present.

A gateway receives incoming INVITEs and maps the telephone number dig-
its, which are then mapped to the called party number in the PSTN signaling.
Common gateway INVITE mappings and interworking are defi ned in [4].

Calls from SIP to the PSTN through a gateway often make use of early
media. Early media is RTP media sent prior to the call being answered. In SIP,
this means media sent prior to the 200 OK response. This is usually done in SIP
by the gateway sending a 183 Session Progress response, which creates an early
dialog. RTP media is then sent from the gateway to the UA. Often early me-
dia carries special ringback tones to recorded announcements and tones. This is
shown in Figure 9.1.

In the other direction, a telephone number dialed in the PSTN can be
routed and answered by a SIP UA. PSTN routing is done by assigning telephone
numbers to telephone switches. The telephone switch then sends the call to the
copper loop or PBX trunk that causes the telephone to ring. For a SIP UA to
ring, the SIP/PSTN gateway must appear to the PSTN as a local telephone
switch. When the call is routed to the gateway, instead of sending the call to the
copper loop or PBX trunk, the gateway creates an INVITE and routes it to a UA
on an IP network. The INVITE can be routed to a SIP proxy server to determine
the appropriate contact device.

Figure 9.1 Early media in SIP.

 Services in SIP 221

9.2 SIP Trunking

In the PSTN, a trunk is a dedicated connection between PSTN switches or be-
tween a PSTN switch and a Private Branch Exchange (PBX). A trunk has both
signaling and media parts. Trunks in the PSTN originally used one or two pairs
of copper wires. With digital trunking and time division multiplexing, the T-1
became the standard trunk in North America with 24 voice circuits multiplexed
over two pairs of wires. The E-1 was the European version with 32 voice circuits.
With ISDN, the T-1 trunk became a primary rate interface (PRI), which also
had 24 circuits. While there is no exact analog in SIP and Internet communica-
tions to a trunk, a SIP trunk usually means a connection between SIP telephony
devices which uses IP transport and involves RTP media transport. The SIP fo-
rum [5] has published a technical recommendation called SIPconnect [6], which
describes how SIP and RTP can be confi gured to provide SIP trunking between a
service provider and an enterprise PBX. There are some similarities between SIP
trunks and PSTN trunks:

The interconnection requires confi guration on both sides to work.•

VoIP and telephony services can be delivered over it.•

Telephone numbers or E.164 numbers are the identifi ers used.•

There are some important differences, however:

SIP trunks do not have an inherent capacity—they are limited only by •
the bandwidth of the underlying IP transport and the call setup capacity
of the SIP servers.

Media quality can be better than PSTN quality.•

SIP trunks will be extended in the future to provide presence, IM, and •
multimedia capabilities.

SIPconnect is not a profi le of the SIP protocol. Instead, it is a profi le of
the set of SIP-related protocols. For example, it references the following SIP
standards shown in Table 9.1. These references cover SIP as well as identity and
security, and RTP media. Figure 9.2 shows a typical use of SIP trunks between
an enterprise IP PBX and a service provider.

9.3 SIP Service Examples

The SIP service examples document [7] shows examples of how common PBX,
centrex, and business telephony features can be implemented using SIP. The

222 SIP: Understanding the Session Initiation Protocol

features discussed are listed in Table 9.2. For some features, the IETF has de-
veloped more detailed best current practice documents such as for call transfer
[8], automatic call completion [9], and bridged line appearance/multiple line
appearance [10].

Table 9.1
SIPconnect Trunking Specifi cations

Signaling
RFC 3261 Core SIP
RFC 3264 SIP offer/answer protocol
RFC 3263 SIP DNS usage
RFC 3265 SIP events
RFC 3311 SIP UPDATE method
RFC 3323 Privacy mechanism for SIP
RFC 3325 SIP network asserted identity
RFC 3725 Third part call control
RFC 4028 Session timer
RFC 2327 SDP
RFC 2782 DNS SRV
RFC 3262 PRACK
RFC 3311 UPDATE
RFC 3325 P-asserted-identity
E.164 Telephone numbers
RFC 3761 ENUM

Media
RFC 3550 RTP
RFC 3581 Symmetric SIP
RFC 3966 Telephony URI
RFC 4028 SIP session timer
RFC 2833 Telephone events for DTMF
T.38 Fax
G.168 ITU-T digital echo cancellation
G.711 ITU-T PCM coded

NAT Traversal
RFC 3489 STUN
RFC 3581 rport

Security
RFC 2246 TLS

QoS
RFC 2474 DiffServ QoS

 Services in SIP 223

9.4 Voicemail

Voicemail is a messaging service commonly associated with telephony applica-
tions. It can be implemented as a service in the network (such as that provided
by mobile phone providers), in a separate device, such as a home answering
machine, or incorporated in a telephony device, such as an enterprise PBX or
key system. The service involves call forwarding no answer/busy/unavailable to a

Figure 9.2 SIP trunk between enterprise and service provider.

Table 9.2
SIP Service Examples Features

Call hold
Consultation hold
Music on hold
Transfer—unattended
Transfer—attended
Transfer—instant messaging
Call forwarding unconditional
Call forwarding—busy
Call forwarding—no answer
Three-way conference
Find-me
Call management (incoming call screening)
Call management (outgoing call screening)
Call park
Call pickup
Automatic redial
Click to dial

224 SIP: Understanding the Session Initiation Protocol

storage device which plays a customizable greeting and plays a greeting. The user
is then alerted by some means that a message is waiting, and can then retrieve
the message by dialing into the system. With unifi ed messaging systems, it is
becoming increasingly common for a voicemail to be retrievable by other means
such as an audio fi le attachment to an e-mail or a speech recognition system that
generates an e-mail or text message of the contents.

In SIP terms, the call forwarding is straightforward, with either a proxy
forwarding or endpoint redirection (3xx response) used to send the call to the
voicemail server. However, some kind of SIP extension is needed to indicate to
the voicemail system which mailbox to use—that is, which greeting to play and
where to store the recorded message. There are two main ways to do this. One is
to use the Request-URI to signal this information while the other is to use a SIP
header fi eld extension. For the Request-URI method, the voicemail URI param-
eters [11] approach is used. For a voicemail system at sip:voicemail.example.
com, which is being used to provide voicemail for sip:alice@example.com, the
Request-URI of the INVITE when it is forwarded to the voicemail server could
look like:

sip:voicemail.example.com;target=sip:alice@example.com;cause=486

In this way, the Request-URI carries the mailbox identifi er as well as the
reason the call is being forwarded to voicemail. This is important if the voice-
mail system plays different prompts depending on if the user is on the phone or
doesn’t answer, for example. For the cause parameter, the following values are
standardized in Table 9.5. The feature is shown in Figure 9.3.

There are two approaches for header fi eld approach. One is a usage of the
History-Info header fi eld [12] while the other is the unstandardized Diversion
header fi eld. In this case, the History-Info is populated by the proxy server and
included when the INVITE is forwarded to the voicemail server. The Request-URI
is set to the voicemail server URI. Note that the History-Info approach pro-

Table 9.3
Voicemail URI Cause Parameter Values

Meaning Cause Value
Unknown/not available 404
User busy 486
No reply 408
Unconditional 302
Defl ection during alerting 487
Defl ection immediate response 480
Mobile subscriber not reachable 503

 Services in SIP 225

vides more information than the voicemail URI approach and allows additional
policies to be applied.

The other header fi eld approach is the Diversion header fi eld [13]. Note
that while this header fi eld is widely deployed, it has never been standardized by
the IETF.1 An example of the diversion header fi eld is:

Diversion: <sip:alice@example.com>;reason=no-answer

This approach directly maps ISDN diversion values, simplifying PSTN in-
terworking. For message notifi cation, SIP events along with the message waiting
indicator (MWI) event package can be used.

9.5 SIP Video

Establishing video sessions with SIP is essentially orthogonal to the SIP protocol
itself—nothing really needs to be changed, even in the offer/answer SDP ex-

1. The expired draft can be found by searching on the IETF tools site and other mirror sites, for
example, http://tools.ietf.org/id/draft-levy-sip-diversion-08.txt.

Figure 9.3 SIP voicemail call fl ow example.

226 SIP: Understanding the Session Initiation Protocol

change. However, there are some features and services specifi c to video that often
come up when SIP video is discussed.

For example, consider FastUpdate. This is a signaling message sent by a
video mixer to a video sender in a multimedia conference. When switching be-
tween video sources, the FastUpdate message indicates that the sender must send
a key frame (I-frame) so that subsequent P-frames and B-frames have a refer-
ence. One method uses an XML object carried in a SIP request, defi ned in [14].
Another approach is to use RTCP, defi ned in [15] using the Full Intra Request
command.

Another type of SIP video is “dual video” where multiple video streams are
sent—typically a main video and a secondary video. The far end has the ability
to switch between the two videos. These are also known as “people and content”
streams. Some initial work is underway to standardize this feature for SIP [16]
and defi ne interworking with H.239 [17]. Current proposals to standardize this
feature involve the use of the Binary Floor Control Protocol (BFCP) [18]. SDP
media content and label attributes are also proposed for this feature.

Bandwidth management is more critical with video than audio, and being
able to allocate bandwidth between both audio and video streams for best per-
formance is important. Another useful tool is the ability to signal the size of the
video and preferred frame rate received [19].

9.6 Facsimile

Facsimile or fax is a common PSTN application. Fax is the telecommunications
service for sending copies of documents across the PSTN. Fax machines have
scanners to read a document, a modem to encode the digital information over
the telephone line, and a printer to output received pages. Fax servers are also
used today that send and receive faxes over PSTN trunks but offer alternative
output including e-mail, PDF, and text-to-speech. Faxes can be implemented in
Internet communications in a number of different ways including simple trans-
port to native implementation. Faxes can be transported using G.711 or another
noncompressed codec, although delays and latency can cause problems and fail-
ures. Sending faxes directly over IP networks can be done using the T.38 [20]
fax over IP standard. The MIME type image/t38 [21] has been defi ned for the
transport of faxes over UDP, using the UDP Transport Layer (UDPTL). While
this approach is effi cient, it is better to transport faxes over RTP. This allows faxes
to utilize various RTP extensions including security, redundancy, and so fourth.
Faxes over RTP use the audio/t38 [22] MIME type. As such, the SIP offer/
answer exchange is needed to negotiate a fax session. For example, the following
media line could be used, as will be discussed in Chapter 13:

 Services in SIP 227

m=audio 38202 RTP/AVP 96
a=rtpmap:96 t38/8000
a=fmtp:96 T38FaxVersion=2;T38FaxRateManagement=transferredTCF

9.7 Conferencing

SIP conferencing is an important application of SIP. The ability to provide a bet-
ter experience than today’s conventional PSTN teleconferences is an important
driver and differentiator for SIP services and endpoints. While SIP conferenc-
ing can use the same model as the PSTN, where a centralized mixer/conference
bridge accepts media from each participant and mixes the resulting media, there
are improvements possible with SIP. Some of the alternative topologies, uses, and
applications are described in the SIP conferencing framework document [23].
The resulting SIP extensions and best current practices are described in RFC
4579 known as call control for conferencing [24].

9.7.1 Focus

The centralized point of control for a SIP conference is known as a focus. The
focus performs SIP authentication and authorization on behalf of all conference
participants, and controls the media mixing. Note that this is not exactly the
same thing as saying the focus performs media mixing. In some cases, the focus
can cause participants in the conference to perform their own mixing if there is
a full mesh of media streams among participants in the conference. However,
mixing control is done by the focus. The focus also provides information about
participants in the conference: their identities and capabilities. This information
can be shared with participants in the conference. One SIP method of doing this
is using the SIP conference event package [25]. A participant in a conference
sends a SUBSCRIBE to the focus, which creates a subscription, resulting in NOTIFYs
sent containing information about the conference.

A conference focus uses the isfocus feature tag to indicate that a particular
dialog is associated with a conference. This allows a UA to automatically learn
that a given point-to-point call is actually part of a conference. This allows be-
havior such as:

Use of a conference-specifi c user interface;•

Automatic subscription for conference events;•

Use of conferencing call control functions.•

228 SIP: Understanding the Session Initiation Protocol

Some of the conferencing call control functions are described in [24]. The
call fl ows described in this document are listed in Table 9.4.

An example call fl ow is shown in Figure 9.4 where a conference is created,
joined, and two other participants added, using automated SIP approaches.

9.7.2 Mixer

The mixer creates the media combination that allows each party to participate
in the group session. For audio, this means mixing in the loudest speakers at
any instant. For video, it can mean showing the video of the loudest speaker, or
combining all video pictures into a single screen. For text, it can mean sharing all
text messages typed by each participant with attribution. The mixer is under the
control of the focus, and often it will be a part of the focus.

9.7.3 Non-SIP Conference Control

In addition to the SIP call control means described in [24], the IETF has stan-
dardized other conference control protocols. For example, the ability to send
media to the group (i.e., act as the presenter) can been controlled as a fl oor,
with only a single fl oor holder at a time. A fl oor control protocol provides a
method for requesting and granting the fl oor. The Binary Floor Control Proto-
col (BFCP) [26] has been developed to enable shared access to a resource within
a conference. The Centralized Conference Manipulation Protocol (CCMP) [27]
has been defi ned to create, schedule, and defi ne media types and resources for
a SIP conference. CCMP also supports conference control operations during
a conference such as muting a participant, and removing or adding a partici-
pant. CCMP supports multimedia conferences including voice, video, and text
sessions, and can support a full set of multiuser chats. CCMP, along with SIP
conference aware UAs and a focus, allows a full standards-based conferencing
system to be built.

Table 9.4
Call Control for Conferencing Functions

Joining a conference, dial out and dial in
Creating a conference, manually and automatically
Adding or deleting a participant
Requesting a participant join a conference
Switching UAs during a conference
Transferring a point-to-point session into a conference
Deleting a conference
Discovery of a conference

 Services in SIP 229

9.8 Application Sequencing

Application sequencing is an approach to delivering services using SIP that has
been made popular by the IP Multimedia Subsystem (IMS) developed by 3GPP
introduced in Chapter 7. Application sequencing uses a proxy server to selec-
tively route a SIP request to multiple application servers, with each application
server providing a feature or service. For example, consider Figure 9.5, which
shows an example of application sequencing. The SIP session is established be-
tween the two SIP UAs, which are in different domains. Each domain has a
service controller, which invokes originating or terminating features on behalf of
the calling or called party.

The originating service controller sequences through three application
servers. The fi rst two are pure SIP elements, while the third receives an RTP
stream. For example, the fi rst application server could be a billing application,
the second an authentication application, and the third a recording application.
After the request has sequenced through all three application servers, the service

Figure 9.4 SIP conferencing call fl ow.

230 SIP: Understanding the Session Initiation Protocol

controller forwards the request to the other service controller, which then se-
quences the request through two application servers to implement features on
behalf of the called UA. Finally, the request is forwarded to the UA and the ses-
sion established. Each application server can choose to either stay out of subse-
quent dialog signaling (by redirecting or not including a Record-Route URI) or
to stay in the path and even act as a B2BUA. While this architecture can provide
many services in SIP, it cannot provide services that utilize new media types or
require a new user interface. For these and many other SIP features, the features
must be implemented in the endpoint UAs.

9.9 Other SIP Service Architectures

This section will briefl y introduce a number of service architectures that can be
supported with SIP including service oriented architecture (SOA), servlets, and,
the service delivery platform (SDP).

Figure 9.5 Application server sequencing example.

 Services in SIP 231

9.9.1 Service Oriented Architecture

Service oriented architecture (SOA) is architecture for integrating communica-
tions into business processes. SOA uses principles and ideas from object-oriented
programming. SOA uses a function known as orchestration, which defi nes how
services are linked together. The current preference with SOA is to have a num-
ber of roles including the service provider, service broker, and service requestor. A
number of companies and enterprises are currently experimenting with integrat-
ing SIP into SOA.

9.9.2 Servlets

Servlets are a Java programming method used to provide services in servers. For
example, Figure 9.6 shows how a SIP UA can access SIP servlet services through
a proxy server. Servlets are not scripts but actual Java function calls. SIP servlets,
defi ned as version 1.1 in [28] provide basic SIP functions. An excellent reference
for understanding and implementing SIP servlets is in [29].

9.9.3 Service Delivery Platform

The service delivery platform (SDP) is architecture for developing and deploying
network-based services. The major components include a service creation en-

Figure 9.6 SIP services thorough servlets.

232 SIP: Understanding the Session Initiation Protocol

vironment, execution environment, media, control, presence/location services,
and integration.

9.10 Conclusion

This chapter has discussed a number of common SIP services and features and
some common architectures for delivering those services.

9.11 Questions

Q9.1 Compare and contrast SIP trunks and PSTN trunks.

Q9.2 Give the role of a focus in SIP and explain how to identify a focus
 using SIP signaling messages.

Q9.3 Generate a complete SIP call fl ow for a call between two UAs with
 one sequencing application server in between that sequences
 between two SIP-only application servers (no media).

Q9.4 What are the two methods of setting up a SIP call for sending
 faxes?

Q9.5 Explain what SIP extensions are needed for voicemail, and why they
 are needed.

References

Schulzrinne, H., “The tel URI for Telephone Numbers,” RFC 3966, December 2004. [1]

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [2]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

Rosen, B., “Dial String Parameter for the Session Initiation Protocol Uniform Resource [3]
Identifier,” RFC 4967, July 2007.

Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to [4]
Session Initiation Protocol (SIP) Mapping,” RFC 3398, December 2002.

http://sipforum.org. [5]

http://sipforum.org/sipconnect. [6]

Johnston, A., et al., “Session Initiation Protocol Service Examples,” BCP 144, RFC 5359, [7]
October 2008.

Sparks, R., and A. Johnston, “Session Initiation Protocol Call Control—Transfer,” RFC [8]
5589, June 2009.

 Services in SIP 233

Worley, D., M. Huelsemann, and R. Jesske, “Call Completion for Session Initiation Proto [9]
col (SIP),” draft-ietf-bliss-call-completion-03 (work in progress), December 2008.

Johnston, A., M. Soroushnejad, and V. Venkataraman, “Shared Appearances of a [10]
SessionInitiation Protocol (SIP) Address of Record (AOR),” draft-ietf-bliss-shared-
appearances-03 (work in progress), July 2009.

Jennings, C., F. Audet, and J. Elwell, “Session Initiation Protocol (SIP) URIs for Applications [11]
such as Voicemail and Interactive Voice Response (IVR),” RFC 4458, April 2006.

Barnes, M., “An Extension to the Session Initiation Protocol (SIP) for Request History [12]
Information,” RFC 4244, November 2005.

Levy, S., J. Yang, and B. Byerly, “Diversion Indication in SIP,” draft-levy-sip-diversion-08 [13]
(work in progress), August 2004.

Levin, O., R. Even, and P. Hagendorf, “XML Schema for Media Control,” RFC 5168, [14]
March 2008.

Wenger, S., et al., “Codec Control Messages in the RTP Audio-Visual Profi le with Feedback [15]
(AVPF),” RFC 5104, February 2008.

Even, R., “People and Content Video Streams,” draft-even-xcon-pnc-02 (work in progress), [16]
March 2007.

International Telecommunication Union, “Role Management and Additional Media [17]
Channels,” ITU-T Recommendation H.239, July 2003.

Camarillo, G., J. Ott, and K. Drage, “The Binary Floor Control Protocol (BFCP),” RFC [18]
4582, November 2006.

Johansson, I., and K. Jung, “Negotiation of Generic Image Attributes in SDP,” draft-ietf- [19]
mmusic-image-attributes-02 (work in progress), April 2009.

ITU-T Recommendation T.38, “Procedures for Real-Time Group 3 Facsimile [20]
Communication over IP networks,” April 2002.

Parsons, G., “Real-Time Facsimile (T.38)—Image/t38 MIME Sub-Type Registration,” [21]
RFC 3362, August 2002.

Jones, P., and H. Tamura, “Real-Time Facsimile (T.38)—Audio/t38 MIME Sub-Type [22]
Registration,” RFC 4612, August 2006.

Rosenberg, J., “A Framework for Conferencing with the Session Initiation Protocol (SIP),” [23]
RFC 4353, February 2006.

 Johnston, A., and O. Levin, “Session Initiation Protocol (SIP) Call Control—Conferencing [24]
for User Agents,” BCP 119, RFC 4579, August 2006.

Rosenberg, J., H. Schulzrinne, and O. Levin, “A Session Initiation Protocol (SIP) Event [25]
Package for Conference State,” RFC 4575, August 2006.

Camarillo, G., J. Ott, and K. Drage, “The Binary Floor Control Protocol (BFCP),” RFC [26]
4582, November 2006.

Barnes, M., et al., “Centralized Conferencing Manipulation Protocol,” draft-ietf-xcon- [27]
ccmp-03 (work in progress), July 2009.

234 SIP: Understanding the Session Initiation Protocol

“SIP Servlet v1.1,” Java Specifi cation Request JSR-289, August 2008. [28]

Boulton, C., and K. Gronowski, [29] Understanding SIP Servlets 1.1, Norwood, MA: Artech
House, 2009.

235

10
Network Address Translation
This chapter introduces Network Address Translation (NAT) and looks at the is-
sues and challenges involved in making SIP and other Internet communications
protocols work through them. The motivations for, advantages, and disadvan-
tages of NAT are discussed. NAT classifi cation terminology is introduced. Tech-
niques for NAT traversal such as hole punching and protocols such as STUN,
ICE, and TURN are introduced. SIP and SDP extensions enabling NAT tra-
versal are discussed.

First, here is a word about terminology, which can be a bit confusing in this
chapter. While NAT usually stands for network address translation, the function
of converting or mapping an inside IP address and port to an outside IP address
and port, it also has another meaning as a network address translator, the device
which performs this function. Which meaning is used can usually be determined
by context. In this chapter, I will mainly use the abbreviation for the function,
but there are times when it is common terminology to use it for the device. NAT
is also sometimes used as a verb, that is, to NAT is to change the IP address and
ports of packets on packets as they pass on the wire. This is also known as NAT-
ting. An address which has been changed by a NAT is also known as a NATed
address. In this chapter, two other protocols also have an abbreviation used to
represent two different things—both STUN and TURN protocols have two dif-
ferent meanings.

10.1 Introduction to NAT

Network address translation (NAT) is used to interconnect IP networks that use
different IP address types. For example, in Chapter 1, the concept of private ad-
dress spaces was introduced. Typically, NAT is used to map an inside address to
an outside address. NAT operates at Layer 3 in the Internet protocol stack. Net-

236 SIP: Understanding the Session Initiation Protocol

work address and port translation (NAPT) also change the port number in IP
packets, operating at Layers 3 and 4. Typically most NAT also perform NAPT,
but are still referred to simply as NAT. The reasons for implementing NAT will
be discussed in the following sections, but the main reason has to do with the
shortage of IPv4 addresses.

The earliest discussion of NAT in the IETF is RFC 1631 [1], which dis-
cusses the pros and cons of using NAT. The need for private IP address spaces
resulted in the publication of RFC 1918 [2] in 1996 by the IETF, which reserved
three IPv4 address blocks. These addresses are not routable on the public Inter-
net—they only have meaning within a private network. RFC 2663 [3] defi ned
NAT for the fi rst time. Recently, serious discussions have started about the stan-
dardization of NAT and the architectural implications of NAT been held in the
IETF. In 2004, a working group was formed to develop terminology for NAT,
defi ne requirements, and defi ne protocols for the testing and probing of NATs.
This working group, known obtusely as BEHAVE (Behavioral Engineering for
Hindrance Avoidance) [4] has made excellent progress over the past few years
and has published a number of documents discussed in this chapter. This chapter
will make use of some this new terminology and defi nitions. The next sections
cover the advantages and the problem with NAT as discussed in RFC 2993 [5].

10.2 Advantages of NAT

A number of factors led to the development of NAT, and only a few of them re-
late to the shortage of IPv4 addresses. Many of them are aspects of management.
For example, a network can avoid having to renumber IP addresses when chang-
ing internet service providers. The management of IP addresses can be simplifi ed
if a network must use a number of small individual address blocks. The use of
a single private address range is easier to manage in the end devices, with the
complexity of the small address blocks being centralized in the NAT. Networks
can also use the basic fi ltering properties of NAT to provide some fi rewall se-
curity. Any host that does not initiate outbound connections to the Internet is
not reachable by a host on the Internet. Hosts that do initiate connections are
limited by the fi ltering rules of the NAT in receiving incoming packets.

For Internet service providers (ISPs), NAT can allow an ISP to conserve the
number of IP addresses it needs. The number of IP addresses needed is only the
maximum number of concurrent connected users rather than the total number
of users. Each user can be assigned a private address and will only be assigned
a public address when they connect. NAT also allows an ISP to segment their
network for management purposes.

 Network Address Translation 237

10.3 Disadvantages of NAT

There are many problems with NAT. The biggest problem is that they break
the end-to-end model of the Internet. The reachability of any Internet host by
any other Internet host was part of the Internet from the beginning, and many
assumptions about reachability are included in Internet protocols. NAT also
breaks the transitive reachability of hosts (e.g., host A can reach host B, host B
can reach host C, but host C cannot reach host A). NAT creates a single point
of failure in the Internet where fates are shared. For example, in a connection
without NAT between host A and host B, as long as both hosts have Internet
connectivity they can exchange packets and communicate. Any of the routers
and connections between them can fail and the connection can be maintained,
possibly with some lost packets. However, if A and B connect through a NAT,
the failure of that NAT will cause the connection to fail with no guarantee that
either A or B can re-establish it. For example, many failures experienced during
Web browsing are not failures of either the Web browser or the Web server, but
of a NAT in between. When the NAT fails, the bindings are lost and the con-
nection stalls. This continues until the user hits the refresh button on the Web
browser which closes all the TCP connections and opens new ones, creating new
bindings, which allow browsing to continue. The use of NAT also complicates
multihoming in a site, since a response must route back through the same NAT
that processed the request. NAT also inhibits the implementation of security at
the IP layer.

There are cases where NAT will not prevent IP address renumbering. For
example, when networks that use the same private address range are combined,
the address overlap will require renumbering. NAT with port mapping com-
plicates offering services that use well-known port numbers. For example, Web
servers typically use port 80 which can only be allocated once by NAT for a
particular public address. If multiple SIP clients are behind the same NAT and
share a public IP address, only one of them can be allocated the well-known SIP
port of 5060, which can result in routing failures.

NATs that operate at both layer 3 and layer 4 must understand all transport
protocols used through it. While this is not a problem for the common TCP
and UDP, it is a major problem for newer transport protocols such as the Data-
gram Congestion Control Protocol (DCCP), Stream Control Transport Protocol
(SCCP), and Host Identity Protocol (HIP). As a result NATs are an impediment
to new transport protocols.

Unfortunately, NAT usage is widespread on the Internet today. As a result,
all protocols must be aware of NAT operation and be able to overcome their
limitations. The next section will discuss how NAT works.

238 SIP: Understanding the Session Initiation Protocol

10.4 How NAT Works

NAT operates at the IP Layer 3 as shown in Figure 1.1. NAPT operates at both
the IP and transport layers 3 and 4. NAT creates mappings between inside and
outside addresses and ports. These mappings are sometimes called bindings.
Mappings are temporary, and expire either after a TCP connection is closed with
a FIN or after inactivity with UDP transport. There are multiple types of NAT
depending on the rules used for mapping and fi ltering. Older NAT terminology
classifi ed NAT in terms of full cone, restricted cone, and symmetric. However, in
this chapter, we will use more modern terminology developed by the BEHAVE
working group. Some major types of NAT are endpoint address independent,
endpoint address dependent, and endpoint address and port dependent. There
are also several behavioral options as well.

Table 10.1 lists the parts of the IPv4 and UDP/TCP header fi eld that are
modifi ed by NAT. When a request is received on the inside of a NAT and for-
warded to the outside, the source address and source port are rewritten. If this is
the fi rst packet in a fl ow, a new mapping will be created to be used for routing
responses. If this is not the fi rst packet, an existing mapping will be used. The
UDP checksum must also be rewritten. When a response packet is received from
the outside of the NAT and forwarded to the inside, the destination address and
destination port are rewritten to the inside address and port for this mapping.
Again, the UDP checksum must be rewritten.

Note that the fact that NAT operates at Layer 4 with TCP does not mean
that the resulting TCP session is no longer end-to-end—the TCP connection
is still end-to-end. NAT never maintains a transmission control block or maps
sequence numbers. NAT also never performs retransmissions or acknowledge-
ments. As a result, TCP still operates with end-to-end fl ow control and reliability
through NAT.

An example of NAT operation is shown in Figure 10.1. In this example,
a SIP client on a host sends a SIP request through a NAT, two routers, and
an Ethernet switch. The Ethernet switch operates only at the link and physical
layer while the routers operate at the IP, link, and physical layers. These de-
vices only forward the packet without making any changes to the packet. The

Table 10.1
Parts of an IPv4 and UDP/TCP Header Field Modifi ed by NAT

IP header checksum
Source address
Destination address
Source port
Desitnation port
UDP checksum

 Network Address Translation 239

NAT, however, creates a new mapping between the source inside private ad-
dress 10.0.0.1 port 42723 and the outside public address 172.34.5.1 port 34123
and rewrites the IP and transport layers with this information. When the SIP
response comes back, the NAT uses the mapping created to rewrite the IP and
transport layers with this information. As a result, the SIP server thinks the SIP
client it is communicating with it at the address 172.34.5.1:34123 while the SIP
client thinks it is using the address 10.0.0.1:42723. Since we have seen how SIP
imbeds IP addresses and ports into SIP and SDP messages, clearly this will be
problematic.

10.5 Types of NAT

NAT can be characterized by the type of address and port mapping they do,
as well as the type of fi ltering they employ. To see the different types of NAT,
we will use the notation shown in Figure 10.2 from RFC 4787 [6]. This fi gure
shows a host X behind a NAT communicating with two different hosts, host 1
and host 2. Packets sent by X have a source address and port of X:x and a des-
tination address and port of Y:y. The NAT has a number of IP addresses to use
for mapping, and they are shown as X1, X2, ... (some NATs only have a single
IP address to use for mapping such as a home NAT). Packets sent from device X
to host 1 are sent by X to Y1:y1 from X;x. As received by Y1, the packets appear

Figure 10.1 NAT example.

240 SIP: Understanding the Session Initiation Protocol

to have been received from X1’:x1’. Packets sent by X to Y2 from the same source
port x are received by Y2 and appear to have been received from X2’:x2’. That the
packets sent to Y2 are sent from the same IP address and port as Y2 is essential
for this classifi cation method. The resulting relationship between X1’:x1’ and
X2’:x2’ determines the type of NAT mapping.

Note that NAT classifi cation is not precise, and many NATs change be-
havior over time and under differing conditions. As a result, trying to predict
future NAT behavior based on past behavior is problematic. However, a good
understanding of NAT behavior is still essential to understanding how to make
SIP and Internet communications traverse NAT.

10.5.1 Endpoint Independent Mapping NAT

Endpoint independent mapping (EIM) NAT is where X1’:x1’ = X2’:x2’ for all
Y;y (Y1:y1 and Y2:y2 as shown in Figure 10.2). That is, the mapping used is
dependent only on the source address and port (X;x), independent of the destina-
tion address and port. This type of mapping is known as endpoint independent
mapping (EIM). It is important to note that x1’ does not equal x1, which means
that a NAPT can be an endpoint independent NAT. This type of NAT is best for
SIP and RTP traversal as we shall see in the next sections.

10.5.2 Address Dependent Mapping NAT

An address dependent mapping (ADM) NAT is where X1’:x1’ = X2’:x2’ if and
only if Y2 = Y1 in Figure 10.2. That is, the mapping is dependent on the destina-

Figure 10.2 NAT mapping classifi cations.

 Network Address Translation 241

tion IP address of the packet as well as the source address and port. As a result,
packets sent by X to different hosts will appear to come from different IP ad-
dresses and/or port numbers. This type of NAT is bad for SIP and RTP traversal
as we shall see in the following sections.

10.5.3 Address and Port Dependent Mapping NAT

An address and port dependent mapping (ADPM) NAT is where X1’:x1’ =
X2’:x2’ if and only if Y2:y2 = Y1:y1 as shown in Figure 10.2. That is, the map-
ping is dependent on both the destination address and port as well as the source
address and port. As a result, packets sent by X to different ports on the same host
will appear to come from different IP addresses and/or port numbers. This type
of NAT is the most problematic for SIP and RTP traversal.

10.5.4 Hairpinning Support

Hairpinning is shown in Figure 10.3. Any NAT will allow hosts on the inside
of the NAT (sometimes described as behind the same NAT) to use the private
address of the other host—these packets can be routed by the NAT without any
modifi cation. A NAT supports hairpinning if an internal host can send packets
to another internal host using the external address of the other host. Packets
routed this way double back on the NAT giving a shape similar to a hairpin. To
route these packets, the NAT must lookup two mappings to determine the des-
tination. In the example, X has a mapping X:x to X1’:x1’ while Z has a mapping
Z;z to X2’:x2’. Hairpinning is supported by the NAT if Z receives a packet sent
by X from X;x to X2’:x2’ and vice versa. Support of hairpinning is very benefi cial
to SIP and RTP traversal. Note that this property is also sometimes called trom-
boning after the shape of the slide of the instrument.

Figure 10.3 Hairpinning support in NAT.

242 SIP: Understanding the Session Initiation Protocol

10.5.5 IP Address Pooling Options

NATs that have a number of external or public IP addresses available for map-
ping have options in the way they allocate from this pool of IP addresses. Having
multiple IP addresses is common in large service provider or enterprise NATs
and is uncommon in small residential NATs. One pooling policy is known as
paired IP address pooling. This policy means that only one external IP address
is used for an internal IP address. As a result, all packets sent by this host will
appear to come from the same IP address to hosts external to the NAT. This
property is very good for SIP and RTP traversal. Another policy is known as
arbitrary IP address pooling, which means there could be multiple external IP
addresses mapped to an internal IP address. This property is very bad for SIP
and RTP transport.

10.5.6 Port Assignment Options

While only NATs that have multiple external IP addresses have address pooling
options, every NAT has port assignment options. There are a number of behav-
iors that are part of implemented NATs. Port preservation means the NAT tries
to keep the external port the same as the internal source port. This port assign-
ment approach generally only works if the NAT has a large pool of IP addresses.
Otherwise, only one inside host can use a particular port. If a NAT implement-
ing port preservation runs out of a particular port to allocate, it can use one of
two strategies. One is to switch to a nonport preservation mode. The other is to
do port overloading in which the same port can be used more than once on the
inside and outside. Port overloading is very bad for the SIP and RTP transport
because it leads to nondeterministic behavior. Another port assignment option
is port parity, which preserves the oddness or evenness of ports. This is useful for
media transport where the RTP media must be an even port while the RTCP
control must use an odd port number. Port contiguity is when the NAT attempts
to keep sequential inside ports mapped to sequential outside ports. This can help
when an RTCP port is inferred to be one higher than the RTP port. For SIP and
RTP traversal, the most important property is that the port assignment mode
does not change. Since port preservation always runs the risk of having to switch
modes or do port overloading, it is not recommended. Switching port mapping
modes makes troubleshooting diffi cult.

10.5.7 Mapping Refresh

Each time a NAT creates a mapping it uses up memory resources in storing the
information. It also uses up addressing resources since the external mapped IP
address and port cannot be reused for another endpoint. As a result, a NAT must

 Network Address Translation 243

have behavior to ensure that old mappings are expired and all resources freed up
into the pool.

TCP mappings can be created and removed based on TCP signaling. For
example, the exchange of SYN messages tells the NAT to create a new mapping
for the connection. The exchange of FIN messages tells the NAT the connection
is no longer needed and can be safely closed and the mapping state discarded.
UDP, however, has no signaling, so the NAT must infer the creation and destruc-
tion of a UDP session. Usually, this is done using an inactivity timer. If no packet
is received before this timer expires, the connection is considered terminated
and the mapping removed. The recommended value is 5 minutes [6] although
in practice some NATs use values as short as 30 seconds. Theoretically, a packet
from either the inside or outside host can refresh the mapping, although it is usu-
ally a good security policy to only allow packets generated internally to refresh
the mapping. Otherwise, an outside host could keep the mapping alive by send-
ing refresh packets even after the inside host wants the connection closed.

10.5.8 Filtering Modes

By their basic function, NATs provide fi ltering functions. If a mapping between
an external address and an internal address is not present, packets cannot be
sent to that internal host. When a mapping is active, the NAT has options on
what additional fi ltering it can provide. Essentially, these fi ltering rules control
who is permitted to use the mapping. One fi ltering mode is known as End-
point Independent Filtering. In this mode, any external endpoint is permitted
to send packets to the internal host once the mapping is created. Another mode
is called address dependent fi ltering. This mode allows only external hosts that
have received a packet from the internal host to send a packet using the binding.
A single packet sent to the external host “opens the latch” and will allow any
number of packets to fl ow in the opposite direction. This fi ltering mode provides
some fi rewall-like security. Another mode is called address and port dependent
fi ltering. This mode only allows an external endpoint to send packets from the
same external IP address and port to which the internal host has sent a packet.
Endpoint independent fi ltering is best for SIP and RTP, while address dependent
and address and port dependent fi ltering make things diffi cult. This information
is summarized in Table 10.2.

Table 10.2
NAT Filtering Mode Summary

Endpoint independent fi ltering
Address dependent fi ltering
Address and port dependent fi ltering

244 SIP: Understanding the Session Initiation Protocol

10.6 NAT Mapping Examples

Figure 10.4 shows an example of a NAT. The packet sent from 192.168.0.1:1234
to 2.73.3.2:5678 appears to host 1 to have come from 23.3.2.8:4219. The packet
sent from 192.168.0.1:1234 to 62.3.9.9:5678 appears to host 1 to have also come
from 23.3.2.8:4219. Since these two mapped addresses are the same, this indi-
cates the NAT is an endpoint independent mapping NAT. Since the internal
and external port numbers are different, no port preservation is used. Since the
even internal port maps to an odd external port, port parity is also not used by
this NAT.

Figure 10.5 shows another example of a NAT, which has two IP address-
es assigned to it, 23.3.2.8 and 23.3.2.9. A packet sent from 192.168.0.1:1234 to
2.73.3.2:5678 appears to host 1 to have come from 23.3.2.9:4219. The packet
sent from 192.168.0.1:1234 to 62.3.9.9:5678 appears to host 1 to have come from
23.3.2.9:2194. Since this is a different mapped address, this indicates an address
dependent mapping NAT.

Figure 10.6 shows another example. The packet sent from 192.168.0.1:1234
to 2.73.3.2:5678 appears to host 1 to have come from 23.3.2.8:4219. The packet
sent from 192.168.0.1:1234 to 2.73.3.2:9101 appears to host 1 to have come from
23.3.3.7:6421. Since the mapping is different despite the destination being the
same address, this indicates an address and port dependent mapping NAT.

Figure 10.7 shows another example NAT. In this example, the packet sent
from 192.168.0.1:1234 to 2.73.3.2:5678 appears to host 1 to have come from
23.3.2.8:4219. The packet sent from 192.168.0.1:1235 to 2.73.3.2:5679 appears
to host 1 to have come from 23.3.2.8:2170. Since these two packets are not sent
from the same source address and port, these data provide no information about

Figure 10.4 Example of endpoint independent mapping NAT.

 Network Address Translation 245

the type of mapping used by the NAT. However, this indicates paired IP address
pooling. No port preservation is used. No port parity or port contiguity is used.

10.7 NATs and SIP

Now that we have an understanding of what NAT is and how it works, we can
look at its impact on applications and protocols such as SIP and RTP. Over-

Figure 10.5 Example of address dependent mapping NAT.

Figure 10.6 Example of address and port dependent mapping NAT.

246 SIP: Understanding the Session Initiation Protocol

all, NATs work reasonably well with unencrypted client/server protocols such
as Web browsing, e-mail, and so forth. However, they can cause problems with
IPSec VPNs, which can fail signature checks if the signature includes address
and port information. Many NATs have application layer gateways (ALGs) for
common applications such as FTP (File Transfer Protocol). However, NAT does
cause problems for peer-to-peer protocols such as SIP. NATs also cause problems
for protocols that carry imbedded IP addresses and port numbers, such as SIP.

Guidelines for NAT-friendly protocol design were published in 2002 in
RFC 3235 [7]. However, this was much too late to be helpful for SIP. The main
recommendations were as follows:

Limit peer-to-peer applications and approaches in favor of client/server •
applications.

Don’t rely on end-to-end IPSec security.•

Use DNS names not IP addresses.•

Multicast is problematic.•

Avoid session bundles (e.g., one session controlling/establishing another •
session).

Use TCP instead of UDP.•

Unfortunately, SIP violates most of these recommendations.
Early work on SIP essentially ignored NAT or assumed that IPv6 deploy-

ments would cause them to go away. Many properties of SIP assume refl exive
routability, which is often not present with NAT. The reality of SIP deployments

Figure 10.7 Example of paired IP address pooling NAT.

 Network Address Translation 247

was that while most servers (proxies, registrars, and so forth) had public IP ad-
dresses, most UAs were behind NAT and hence had nonroutable private IP ad-
dresses. Since the SIP servers provided rendezvous service, typically the SIP ex-
change would work while the RTP media session would fail.

Early solutions that were examined included application layer gateways
(ALGs) which would effectively make NAT SIP-aware. Another early solution
was a simple discovery approach in which a UA would send test packets to de-
termine if it was behind a NAT, and to discover mapped addresses. This protocol
was STUN [8], which initially stood for simple traversal of UDP through NAT.
A STUN client sent test packets (essentially pings) to a STUN server, which
responds with the mapped address and port the packet appeared to be received
from. STUN will be described in Section 10.9. Using the mapped addresses
discovered using STUN, UAs tried to fi x the IP addresses and ports in their SIP
messages. Unfortunately, this did not work under all scenarios and with all types
of NAT. Instead, a back-to-back user agent (B2BUA) approach has developed in
the industry to ensure both SIP and RTP traverse NAT.

To overcome the defi ciencies of STUN, the IETF developed the Interactive
Communications Establishment (ICE) [9], which runs a series of end-to-end
tests using STUN between the two UAs attempting to establish communication.
This protocol used an approach known as hole punching which was developed
by peer-to-peer gamers to establish gaming connections.

10.8 Properties of a Friendly NAT or How a NAT Should BEHAVE

The basic properties of a NAT, which is friendly towards SIP and RTP, is sum-
marized in Table 10.3. The NAT should have endpoint independent mapping,
and paired IP address pooling. The port assignment should not do port preser-
vation or port overloading. Port parity preservation and contiguity is good but
not essential. The NAT should use endpoint independent or address dependent
fi ltering. The UDP refresh timer should be 5 minutes.

Table 10.3
How a NAT Should BEHAVE

Endpoint independent mapping
Address independent or address dependent fi ltering
Pair IP address pooling
Not port preservation
Not port overloading
Port parity preservation is helpful
UDP refresh timer 5 minutes

248 SIP: Understanding the Session Initiation Protocol

10.9 STUN Protocol

STUN was fi rst published as RFC 3489 [8] as Simple Traversal of UDP through
NAT. It has been signifi cantly updated and revised and published as RFC 5389
with a new acronym expansion, Session Traversal Utilities for NAT [16]. The
basic operation is shown in Figure 10.8. The main function of STUN is for a
STUN client to request a mapping request from a STUN server. The STUN
packet sent by the client traverses any number of NATs before reaching the
STUN server. The STUN server returns the mapped address in a response. Note
that this mapped address is just the one of the outer NATs —there may be many
mappings happening, but only the outermost one is visible to the STUN server.
The address must be hidden from ALGs in NATs in this response packet or the
NAT might try to fi x the address and replace it. This is done by an exclusive OR-
ing (XOR), the mapped IP address in the response.

There are four main usages of STUN. The fi rst is for basic mapping dis-
covery. The second is to perform a connectivity check with a server or a peer UA.
(This is the usage for ICE.) The third is for media relay usage. The extensions are
known as TURN and described in Section 10.14. The fourth is as a keep-alive
to refresh NAT mappings for UDP. This is used in the SIP outbound extensions.
Another usage of STUN is NAT behavior discovery. This relatively new usage is
described in [10]. This creative usage of STUN allows:

NAT address mapping;•

NAT fi ltering behavior;•

Discovery of the mapping lifetime;•

Discovery of support for hairpinning;•

Determination of fragmentation handling;•

Figure 10.8 STUN: session traversal utilities for NAT.

 Network Address Translation 249

Detecting generic ALGs, which rewrite IP addresses.•

This new usage defi nes a number of minor extensions to STUN and will
shortly be standardized. Note that this usage of STUN has some limitations in
that it can only characterize a NAT for a particular address at a particular time.
Since a NAT can change its behavior for different addresses and at a later time,
care must be taken in using the information derived from these tests.

10.10 UNSAF Requirements

With a number of peer-to-peer protocols such as SIP attempting to fi x and work
around NAT problems, the Internet Architecture Board (IAB) published RFC
3424 [11] setting the requirements and limitations on IETF solutions to deal
with NAT. These approaches are known as Unilateral Self-Address Fixing or
UNSAF approaches, the acronym being chosen to highlight the fact that these
approaches could, if not done correctly, make the NAT problem worse. Each
protocol that tries to work around NATs must clearly scope the problem and
describe the exit strategy and transition plan. The approach must discuss specifi c
issues that might make the approach “brittle” or likely to fail. The approach must
also discuss known practical issues encountered with real NAT in deployments.

10.11 SIP Problems with NAT

Consider the typical example of a SIP UA behind a NAT trying to communicate
with a SIP server outside the NAT. Since SIP has some client/server properties,
some SIP operations will work as long as the requests are originated by the UA.
Requests originated by the SIP server may be blocked by lack of mappings or
fi ltering rules. One approach used in practice is to use frequent SIP registrations
to create the mapping and then reuse the mapping for incoming requests to the
UA. However, this approach doesn’t quite work without some SIP extensions
as we shall see. Media negotiated using SIP offer answer is a big problem as the
SDP offer and answer will contain private addresses and ports in the c= and m=
lines. An example SIP message sent from behind a NAT is shown here:

INVITE sip:UserB@there.com SIP/2.0
Via: SIP/2.0/UDP 10.1.1.221:5060;branch=z9hG4bKhjh
From: TheBigGuy <sip:UserA@customer.com>;tag=343kdw2
To: TheLittleGuy <sip:UserB@there.com>
Max-Forwards: 70
Call-ID: 123456349fi joewr
CSeq: 1 INVITE
Subject: Wow! It Works...
Contact: <sip:UserA@10.1.1.221>

250 SIP: Understanding the Session Initiation Protocol

Content-Type: application/sdp
Content-Length: ...

v=0
o=UserA 2890844526 2890844526 IN IP4 UserA.customer.coms=-
t=0 0
c=IN IP4 10.1.1.221
m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

There are three main problems with this message. The Via header fi eld
contains a private IP address (10.1.1.221) and the listening port (5060) may not
have an active mapping or fi lter rule. The Contact URI is unroutable due to the
private IP address. Finally, the SDP information in the c= and m= lines will not
work behind the NAT.

Via already has a partial solution for the response routing. The use of the
received parameter will record the mapped public IP address, which is then
used for routing the response. However, this will only work for a port preserva-
tion NAT (which is not recommended NAT behavior). A normal NAT that also
changes the port will not work. The Contact URI problem is even more serious.
If the request is a REGISTER, the AOR binding will not work since the URI is
unroutable. If the request is an INVITE, the ACK and all subsequent requests such
as BYE will also fail to route.

There are three main solutions to these problems: symmetric SIP, connec-
tion reuse, and SIP outbound. Each of these will be discussed in the following
sections.

10.11.1 Symmetric SIP

Symmetric SIP operation uses the rport extension defi ned in RFC 3581 [12].
Just as the received Via parameter saves the mapped address, the rport pa-
rameter saves the mapped port number for use in routing responses. A SIP UA
indicates support for this extension by including the rport parameter (without
the “=” and an address which is not known) in the SIP request. This tells the next
hop proxy that the UA will be listening for the response on the same address and
port number that the request was sent from, instead of the address and port listed
in the Via. When the proxy receives the request, it stores the mapped port in the
rport parameter and then uses this for routing any responses back. The use of
rport is shown in Figure 10.1.

10.11.2 Connection Reuse

Connection reuse is a method in SIP to reuse existing TCP connections. It is
defi ned in [13]. Once a connection is opened, UAs can reuse the connection for
subsequent connections. If a NAT traversal approach such as ICE is used, con-

 Network Address Translation 251

nection reuse will reduce the number of times it has to be run. Connection reuse
is mainly defi ned between proxy servers. The usage of connection reuse com-
bined with registration is defi ned for UAs as SIP outbound in the next section.

10.11.3 SIP Outbound

SIP outbound is a mechanism that combines connection reuse, registration
through multiple proxies, and keep alives. It solves many of the existing prob-
lems with SIP NAT traversal, although it requires both UAs and registrars sup-
port the extension. SIP outbound is currently being fi nalized by the IETF as
[14]. The basic confi guration is shown in Figure 10.9. UAs have an instance-
id, which uniquely identifi es them. Multiple registrations by the UA through
different proxy servers will have different reg-id. STUN keep alive messages
are used between the UA and the proxy to monitor the fl ow and keep the NAT
mappings active. If the STUN checks reveal the fl ow has failed (perhaps due to
a failure in the UA, the NAT, or the registrar), the UA registers again using the
same instance-id but a new fl ow-id. This is shown in Figure 10.10.

10.12 Media NAT Traversal Solutions

There are a number of methods used for media traversal of NAT, which will be
discussed in the following sections. These solutions involve getting RTP and
RTCP negotiated using SIP to work.

10.12.1 Symmetric RTP

Symmetric RTP involves sending RTP from the same port that it is listening for
RTP. This results in a UDP connection that the NAT will understand and allow

Figure 10.9 SIP outbound.

252 SIP: Understanding the Session Initiation Protocol

Fi
gu

re
 1

0.
10

 S
IP

 o
ut

bo
un

d
ca

ll
fl o

w
.

 Network Address Translation 253

mapping and fi ltering to work. However, this is only useful if the media fl ow is
bidirectional and if at least one side can get through initially. Symmetric RTP
effectively means ignoring address and port information in the SDP, since it will
be different from the mapped addresses and ports.

10.12.2 RTCP Attribute

The normal assumption that the RTCP port is one higher than the RTP port
only works through NATs that support port contiguity. For most NATs, the
RTCP will not work even when RTP does work. A solution to this is to ex-
plicitly signal the RTCP port and address using the a=rtcp attribute defi ned in
RFC 3605 [15]. If the mapped RTCP port can be discovered, using STUN, for
example, then this approach can work.

10.12.3 Self-Fixing Approach

This approach uses NAT mapping information discovered using STUN, which
is then put into the SDP offer or answer to fi x the addresses. This works with
some NAT such as endpoint independent mapping NATs, but will fail to work
for address or port dependent mapping NATs.

The best solution for media NAT traversal is to use hole punching (and
a protocol such as ICE) with a backup such as a media relay like TURN as de-
scribed in the following sections.

10.13 Hole Punching

Hole punching is a probing approach used to discover and actually create NAT
mappings and fi ltering rules. Hole punching will work in many situations that
other approaches will fail, although it will not work in every situation—some
combinations of NAT properties just will not permit direct exchange of packets
between some hosts. Hole punching uses two clients and a rendezvous server. In
SIP, the clients are UAs and a proxy server can be the rendezvous server.

In hole punching, two clients simultaneously probe using at least two sets
of address, the private address and a discovered public address. The public ad-
dress could be discovered using a STUN server or with the help of a rendezvous
server. The rendezvous server has a public IP address and is reachable by both
clients. The rendezvous server helps the two clients exchange address candidate
lists. The clients repeatedly try both addresses until one or more work. At that
point, they utilize this working address.

Figure 10.11 shows hole punching when the clients are behind different
NATs. The private addresses fail since they are not behind the same NAT. The
initial test of the public address fails; however, it creates a fi ltering rule, which

254 SIP: Understanding the Session Initiation Protocol

allows the test from the other direction to succeed. In this way, the testing has
“punched” holes through the NATs and created mappings and fi ltering rules
where none existed prior to hole punching. Note this only works for certain
combinations of NAT mapping and fi ltering rules. For example, this works if
both NATs are endpoint independent mapping. Another possibility is that both
clients are behind the same NAT. In Figure 10.11, this would mean NAT A and
NAT B were the same NAT. Note that this situation is not as easy as it sounds
to detect—just because two clients use the same private address range does not
mean they are behind the same NAT. In this example, the private addresses work
while the public addresses fail, with the resulting connection utilizing the private
addresses. Alternatively, there could be multiple levels of NAT; ultimately both
clients are behind one NAT. While the private addresses fail (due to the multiple
levels of NAT), the public addresses work after an initial failure as long as the
common NAT supports hairpinning.

Figure 10.12 shows an example of hole punching where both NATs are
endpoint independent mapping with address and port dependent fi ltering. In
this example, host A has two address candidates, 192.168.0.1:1234, which is
host A’s private address, and 23.3.2.9:4219, which is A’s public address learned
through a STUN server. Host A shares these address candidates with host B
using the rendezvous service. Host B has two address candidates, 10.0.1.13:5678
and 2.72.3.2:31212, which it learns through a STUN server. Host B also shares
these addresses with host A through the rendezvous server. At this point, the
hole punching begins. Host A sends packets to 10.0.1.13:5678, but these pack-
ets go nowhere as this private address is not routable. Host B sends packets to
192.168.0.1:1234, but they also go nowhere as they are not routable. Host A sends

Figure 10.11 Hole punching architecture.

 Network Address Translation 255

a packet to 2.73.3.2:3122. Since NAT A is endpoint independent mapping, the
existing mapping is used, so this packet is forwarded to NAT B with a source
address of 23.3.2.9:4219. This creates a fi lter rule in NAT A that allows packets
to be received from 2.73.3.2:31212 to be forwarded to 23.3.2.9:4219. This packet
arrives at NAT B but is dropped by NAT B since there is no fi lter rule allow-
ing packets from 23.3.2.8:4219 to be received by 2.73.3.2:31212. Host B then
sends a packet from 10.0.1.13:5678 to 23.3.2.9:4219. This reuses the mapping of
10.0.1.13:5678 to 2.73.3.2:31212 and creates a fi lter rule that allows packets from
23.3.2.9:4219 to be forwarded to 2.73.3.2:31212. The packet is forwarded to NAT
A. At NAT A, there is an active mapping for 23.73.3.2:31212 and also a fi lter rule
that allows packets to be received from 2.73.3.2:31212. As a result, the packet is
forwarded to host A and the hole punching has succeeded. Note that without
the failed packet sent by host A, which created this fi lter rule, this packet would
have been blocked. Now host A can send to host B at 2.73.3.2:31212 using the
two mappings and two fi lter rules in place. Note that hole punching also works
if Host B sends a packet fi rst, which fails, then Host A sends a packet, which
then succeeds.

Figure 10.13 shows another example of hole punching. In this example,
NAT A is endpoint independent mapping NAT with endpoint independent
fi ltering, while NAT B is address and port dependent mapping with address and
port dependent fi ltering. A packet sent from host A 192.168.0.1:1234 creates a
mapping of 23.3.2.9:4219.

Figure 10.12 Hole punching example.

256 SIP: Understanding the Session Initiation Protocol

A packet sent from host B 10.0.1.13:5678 creates a mapping of 2.73.3.2:31212.
A packet sent from host A 192.168.0.1:1234 to 2.73.3.2:31212 creates a fi ltering
rule in NAT A. The packet reaches NAT B but is dropped due to fi ltering. A
packet sent from host B 10.0.1.13:5678 to 23.3.2.9:4219 creates a new mapping to
2.73.4.1:5732 and creates a new fi ltering rule in NAT B. The packet reaches NAT
A. Since NAT A has endpoint independent fi ltering, the packet is forwarded
and host A receives packet. Host A then sends a packet to 2.73.4.1:5732, which
reaches host B due to the two mapping and fi ltering rules. Hole punching works
in this case despite the address and port dependent mapping and fi ltering in
NAT B since NAT A has endpoint independent fi ltering.

Figure 10.14 shows an example where hole punching fails. NAT A is ad-
dress and port dependent mapping with address dependent fi ltering while NAT
B is address and port dependent mapping with address dependent fi ltering. A
packet sent from host A 192.168.0.1:1234 creates a mapping of 23.3.2.9:4219. A
packet sent from host B 10.0.1.13:5678 creates a mapping of 2.73.3.2:31212. A
packet sent from A 192.168.0.1:1234 to 2.73.3.2:31212 creates a new mapping of
23.3.3.2:7876 and creates a new fi ltering rule in NAT A. The packet reaches NAT
B but is dropped due to fi ltering. A packet sent from host B 10.0.1.13:5678 to
23.3.2.9:4219 creates a new mapping of 2.73.4.1:5732 and creates a new fi ltering
rule in NAT B. The packet reaches NAT A but is dropped due to fi ltering.

Additional packets sent will also fail due to fi ltering, and hole punching
fails for this confi guration.

Figure 10.13 Hole punching example.

 Network Address Translation 257

Typically hole punching will fail due to a combination of address or port
mapping and address or port dependent fi ltering, such as that shown in Figure
10.14. When hole punching fails, a media relay must be used that is in the pub-
lic Internet and reachable by both hosts. TURN is a protocol used by a UA to
acquire a media relay transport address to use as a fall back when hole punching
fails.

10.14 TURN: Traversal Using Relays Around NAT

TURN is a protocol extension of STUN used for acquiring and confi guring a re-
mote relay. TURN has been in development in the IETF for many years. Earlier
versions were quite different, and even had a different title: traversal using relay
NAT. The current version is [16] and will soon be published as an RFC.

A server operating as a TURN relay uses signifi cant resources on the server.
For one thing, each media stream relayed uses up double the bandwidth of the
stream (incoming bandwidth + outgoing bandwidth). Also, the relay must pro-
cess and forward each packet. Media relays also introduce delay (latency) and
add extra IP routing hops, which increase the chance of packet loss. As a result,
the use of TURN should be minimized for an effi cient Internet communication
or VoIP system.

Figure 10.14 Hole punching example.

258 SIP: Understanding the Session Initiation Protocol

10.15 ICE: Interactive Connectivity Establishment

Interactive connectivity establishment (ICE) is the solution to the problem of
when to use hole punching and when to use a media relay. ICE is an IETF
protocol that standardizes hole punching and is an optimal methodology. Users
of ICE gather as many transport addresses as they can (the private and public
address pairs in the previous section on hole punching are only a minimum).
They are listed in the order so the most preferred are tested fi rst. A media relay
(TURN) address is included as the lowest priority address. After the candidate
addresses are exchanged using a SIP offer answer exchange, both sides begin
hole punching and noting successes and failures at the end. Both sides choose
the highest priority working transport pairs. In the worst case, this might be the
media relay address if the NATs in the path make hole punching fail. The basic
call fl ow is shown in Figure 10.15.

The following is an example set of address candidates in SDP. You can
see the two candidate addresses used by Host A in the previous hole punching
examples.

v=0
o=hosta 2890844526 2890842807 IN IP4 192.168.0.1
s=-
c=IN IP4 23.3.2.9

Figure 10.15 ICE call fl ow.

 Network Address Translation 259

t=0 0
a=ice-pwd:a8fgdfpdd777uzjYhagZg
a=ice-ufrag:88fgdhhY
m=audio 4219 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=candidate:1 1 UDP 13d0706431 192.168.0.1 1234 typ host
a=candidate:2 1 UDP 69d4498152 23.3.2.9 4219 typ srfl x raddr
 192.168.0.1 rport 1234

Besides NAT traversal, ICE has other benefi ts. For example, address candi-
dates can include both IPv4 and IPv6 addresses for dual stack UAs. As such, ICE
can help in the transition between IPv4 and IPv6. ICE also includes keep alives
to ensure that UDP mappings do not expire through NATs. ICE also provides
a level of media authorization. When both UAs use ICE, media will only fl ow
after a successful ICE check exchange. This ensures that both UAs are willing
to send and receive media. Compare this to the case without ICE where a UA
will start sending media to the address listed in the SDP without any check or
verifi cation. For example, a denial of service packet fl ood could be introduced by
sending a high defi nition video server an INVITE and include the address of the
target. The target will then receive the video stream without the ability to stop
or understand.

10.16 Conclusion

This chapter has looked at the history, justifi cation, and operation of Network
Address Translation. The effect of NAT on SIP and RTP has also been discussed.
Various approaches to the traversal of SIP and RTP through NAT have been
covered including hole punching, relays, STUN, TURN, and ICE. These are
summarized in Table 10.4. For more examples of SIP NAT traversal, see the Best
Current Practices for SIP NAT Traversal document [17].

Table 10.4
Summary of SIP and RTP NAT Traversal

SIP Symmetric Routing (rport)
Symmetric RTP
Outbound
STUN
ICE
TURN
RTCP port attribute

260 SIP: Understanding the Session Initiation Protocol

10.17 Questions

Q10.1 In a few paragraphs, explain how NATs came to be and why they are
 popular today.

Q10.2 Explain the operation of an address and port dependent mapping
 NAT that has two IP addresses (19.34.2.1 and 19.34.2.2)
 assigned to it. Use three examples of UDP packets sent from
 192.168.1.101 port 42194 to 204.32.44.21 port 413,
 31.32.56.5 port 443, and 204.32.44.21 port 9753. Use port
 parity preservation in your examples.

Q10.3 Is an endpoint independent mapping NAT or an address
 dependent mapping NAT more friendly to Internet communica-
 tions? Why?

Q10.4 Deduce as many properties of the NAT below as you can based on
 the information in the following tables.

X = 10.0.100.1
X1 = 73.42.4.1
X2 = 73.42.4.8
Y1 = 118.3.4.2
Y2 = 65.65.4.3

Active NAT Mapping Table
10.0.100.1:8080 maps to 73.42.4.1:3420

10.0.100.1:4343 maps to 73.42.4.1:7433

10.0.100.1:8080 maps to 73.42.4.8:3212

Filtering Table
73.42.4.8:3212 ⇔ 118.3.4.2:*

73.42.4.8:7433 ⇔ 118.3.4.2:*

73.42.4.1:3420 ⇔ 65.65.4.3:*

Q10.5 Explain the advantages and disadvantages of a SIP user agent
 supporting ICE.

Q10.6 For the packets of Question Q10.2, assume that each UDP packet
 contains a SIP OPTIONS request. Show the Via header fi eld in
 each of the three 200 OK responses, assuming that the user agent
 has implemented appropriate SIP NAT traversal extensions.

Q10.7 Consider the hole punching scenario shown next.

 Network Address Translation 261

NAT B is endpoint independent mapping NAT with endpoint
dependent fi ltering.
NAT A is address and port dependent mapping with
endpoint independent fi ltering.

Packet sent from A 192.168.0.1:1234 to a STUN server at
15.1.2.3 creates a mapping of 23.3.2.8:4219
Packet sent from B 10.0.1.13:5678 to a STUN server at
15.1.2.3 creates a mapping of 2.73.3.2:31212

Assume NAT A has only a single IP address. Assume NAT
A and B do not implement port preservation.

Show the fi lter rules created as A and B begin hole
punching. Will hole punching succeed?

Q10.8 Repeat Question Q10.7 with everything the same except:

NAT B is address dependent mapping NAT with endpoint
dependent fi ltering.
NAT A is address and port dependent mapping with endpoint
dependent fi ltering.

Show the fi lter rules created as A and B begin hole punching.
Will hole punching succeed?

Q10.9 For a SIP message sent by host A (hostname of hosta.

 mappings.org) to host Y1 in Question Q10.4, show the Via header in
 the response assuming the rport extension is used.

Q10.10 Explain the relationship between hole punching and ICE.

References

Egevang, K., and P. Francis, “The IP Network Address Translator (NAT),” RFC 1631, May [1]
1994.

Rekhter, Y., et al., “Address Allocation for Private Internets,” BCP 5, RFC 1918, February [2]
1996.

Srisuresh, P., and M. Holdrege, “IP Network Address Translator (NAT) Terminology and [3]
Considerations,” RFC 2663, August 1999.

http://www.ietf.org/html.charters/behave-charter.html. [4]

Hain, T., “Architectural Implications of NAT,” RFC 2993, November 2000. [5]

Audet, F., and C. Jennings, “Network Address Translation (NAT) Behavioral Requirements [6]
for Unicast UDP,” BCP 127, RFC 4787, January 2007.

Senie, D., “Network Address Translator (NAT)-Friendly Application Design Guidelines,” [7]
RFC 3235, January 2002.

262 SIP: Understanding the Session Initiation Protocol

Rosenberg, J., et al., “STUN—Simple Traversal of User Datagram Protocol (UDP) Through [8]
Network Address Translators (NATs),” RFC 3489, March 2003.

Rosenberg, J., “Interactive Connectivity Establishment (ICE): A Protocol for Network Ad- [9]
dress Translator (NAT) Traversal for Offer/Answer Protocols,” draft-ietf-mmusic-ice-19
(work in progress), October 2007.

MacDonald, D., and B. Lowekamp, “NAT Behavior Discovery Using STUN,” draft-ietf- [10]
behave-nat-behavior-discovery-05 (work in progress), November 2008.

Daigle, L., and IAB, “IAB Considerations for Unilateral Self-Address Fixing (UNSAF) [11]
Across Network Address Translation,” RFC 3424, November 2002.

Rosenberg, J., and H. Schulzrinne, “An Extension to the Session Initiation Protocol (SIP) [12]
for Symmetric Response Routing,” RFC 3581, August 2003.

Gurbani, V., R. Mahy, and B. Tate, “Connection Reuse in the Session Initiation Protocol [13]
(SIP),” draft-ietf-sip-connect-reuse-14 (work in progress), August 2009.

Jennings, C., and R. Mahy, “Managing Client Initiated Connections in the Session Initiation [14]
Protocol (SIP),” draft-ietf-sip-outbound-16 (work in progress), October 2008.

Huitema, C., “Real Time Control Protocol (RTCP) Attribute in Session Description [15]
Protocol (SDP),” RFC 3605, October 2003.

Rosenberg, J., R. Mahy, and P. Matthews, “Traversal Using Relays Around NAT (TURN): [16]
Relay Extensions to Session Traversal Utilities for NAT (STUN),” RFC 5389, October
2008.

Boulton, C., et al., “Best Current Practices for NAT Traversal for Client-Server SIP,” [17]
Internet Draft draft-ietf-sipping-nat-scenarios-09 (work in progress), September 2008.

263

11
Related Protocols
This chapter will introduce some related protocols to SIP. Telephony protocols
from the PSTN will be discussed such as circuit associated signaling, ISDN, and
ISUP. Media gateway control protocols such as MGCP and H.248 will be intro-
duced. Finally, H.323 will be discussed. Note that Jabber and Jingle are covered
in Chapter 8.

11.1 PSTN Protocols

Three types of PSTN signaling protocols are mentioned in this text: channel as-
sociated signaling (CAS), integrated services digital network (ISDN), and ISDN
user part (ISUP). They will be briefl y introduced and explained. How these pro-
tocols work in the PSTN today are covered in other references [1].

11.1.1 Circuit Associated Signaling

Circuit associated signaling (CAS), also known as channel associated signaling is
a legacy technology still used in the PSTN today. The signaling information uses
the same audio circuit as the voice path, with digits and characters represented
by audio tones. These are the tones that used to be barely discernible at the be-
ginning of some long-distance calls before the ringtone was heard. The tones are
called multifrequency (MF) tones. They are somewhat similar to the tones used
to signal between a telephone and a central offi ce switch, which are known as
dualtone multifrequency (DTMF) tones. Long postdial delay can be introduced
because of the time taken to outpulse long strings of digits. Also, CAS was sus-
ceptible to fraud, as fraudulent tones could be generated by the caller to make
free telephone calls. This type of signaling is still used in trunk circuits between a
central offi ce and a corporation’s private branch exchange (PBX) switch. DTMF
signaling is still commonly used in the PSTN.

264 SIP: Understanding the Session Initiation Protocol

11.1.2 ISDN Signaling

Integrated services digital network (ISDN) signaling was developed in the 1980s
for all digital telephone connections to the PSTN. The most common types of
interfaces are the basic rate interface (BRI) and the primary rate interface (PRI). A
BRI can contain two 64-Kbps B-channels for either voice or data and a 16-Kbps
D-channel for signaling. BRI was designed as a replacement for conventional
telephone lines but requires an ISDN telephone or terminal adapter. PRI was
designed for higher volume applications such as PBX trunks. In North America,
PRI uses a 1.544 Mbps link called a T-1 or a DS-1, which is divided up into 23
B-channels and one D-channel, with each channel being 64 Kbps. In Europe
and much of the rest of the world, it uses a 2.048 Mbps with 30 B-channels
and one D channel. The H.323 protocol, described later in this chapter, reuses a
subset of the ISDN Q.931 signaling protocol used over the D-channel.

11.1.3 ISUP Signaling

ISDN user part (ISUP) is the part of the signaling system no. 7 (SS7) protocol
stack used between telephone switches in the PSTN for call signaling. SS7 is a
dedicated packet-switched network used all over the world in the PSTN. This
signaling method was developed to overcome some of the delay and security
problems with CAS. There are examples of ISUP signaling in the call fl ow ex-
amples of Chapter 17. The adoption of this out-of-band signaling protocol was
the fi rst step taken by telecommunications carriers away from circuit-switched
networks and towards packet-switched networks. The fi nal step will likely be
moving the bearer channels onto a packet-switched network as providers move
towards an all-VoIP network using SIP.

11.2 SIP for Telephones

SIP for telephones (SIP-T) is a framework for SIP interworking with the
PSTN [2]. It includes two approaches: translation and encapsulation. Translation
is the direct mapping between PSTN protocols and SIP. The mapping between
common PSTN protocols such as ISUP [3], Q.SIG [4], and others has been de-
fi ned. Examples of SIP interworking with PSTN protocols including ISDN and
CAS are in the SIP PSTN call fl ows document [5]. In this approach, as much
of the information that is common to each protocol are mapped between them,
with the remaining values being set to confi gurable defaults. A SIP call from a
PSTN gateway is indistinguishable from a SIP call from a native device, and is
handled such by the protocol. However, since not every single parameter in a
PSTN signaling message has a counterpart (or has any meaning) in SIP, some
information is lost if the call routes back to a PSTN termination point.

 Related Protocols 265

Encapsulation is another approach that is only useful for SIP/PSTN gate-
ways. Using this approach, PSTN-to-SIP translation is done to construct the
appropriate SIP message, then the PSTN protocol message is encapsulated
and included with the SIP message as a message body. If the SIP message is
received by another SIP/PSTN gateway, the resulting PSTN signaling message
is constructed from both the SIP message and the encapsulated PSTN message
that was received by the other gateway. This approach offers the possibility of
transparency (i.e., no loss of PSTN information as a call is carried across a SIP
network). However, this only works in a network in which only one variation
of PSTN protocol is used. Unlike Internet protocols, PSTN protocols vary by
region and are not compatible without a special type of PSTN switch capable of
converting one message format to another. There are many dozens of protocol
variants used throughout the world.

Another disadvantage of encapsulation is that the PSTN message bodies
must be encrypted if they are transported over the public Internet, or used in a
network with native SIP devices. This is because private information can be car-
ried in PSTN messages because PSTN protocols assume a different trust model
than an Internet protocol such as SIP. To prevent accidental disclosure of this
information, the message bodies must be encrypted by the originating gateway
and decrypted by the terminating gateway, which adds signifi cant processing
requirements and call setup delay.

Encapsulated PSTN messages are carried as MIME bodies, which have
been standardized for both ISUP and QSIG [6].

11.3 Media Gateway Control Protocols

There are a number of protocols used to decompose the operation of a gateway,
which are often used in SIP/PSTN gateways. These protocols are known gener-
ally as media gateway control protocols. Their relation to a signaling protocol
such as SIP is shown in Figure 11.1. Media gateway control protocols are not
peer-level signaling protocols—they do not perform the rendezvous and nego-
tiation functions of a signaling protocol such as SIP. Instead, they allow a gate-
way to be decomposed into a signaling element and a media component. The
media component, a media gateway (MG), can provide PSTN trunks or RTP/
SRTP connections, which are under the control of the media gateway control-
ler (MGC). The MGC in turn uses a signaling protocol such as SIP or PSTN
signaling to setup connections with other elements. Media gateway controllers
used to be called softswitches. Often, a single or pair of media gateway controllers
will control a number of media gateways. Media gateway control protocols are
master/slave protocols—the MGC tells the MG what to do—there is no nego-
tiation between them. Some common media gateway control protocols include

266 SIP: Understanding the Session Initiation Protocol

MGCP [7] and H.248 [8]. H.248 was initially jointly published by the ITU-T
as H.248 and in the IETF as MEGACO [9]. The current version is maintained
by the ITU-T as H.248.1 version 1 [10].

11.4 H.323

A related Internet communications protocol is the ITU recommendation H.323,
entitled “Packet-Based Multimedia Communication.” H.323 is introduced as a
related protocol to SIP for signaling VoIP and multimedia communication.

11.4.1 Introduction to H.323

H.323 [11] is an umbrella recommendation that covers all aspects of multimedia
communication over packet networks. It is part of the H.32x series of protocols
that describes multimedia communication over ISDN, broadband (ATM), tele-
phone (PSTN), and packet (IP) networks, as shown in Table 11.1. Originally
developed for video conferencing over a single LAN segment, the protocol has
been extended to cover the general problem of telephony over the Internet. The
fi rst version was approved by the ITU in 1996 and was adopted by early IP tele-
phony networks. Version 2 was adopted in 1998 to fi x some of the problems and
limitations in version 1. Version 3 was adopted in 1999 and includes modifi ca-
tions and extensions to enable communications over a larger network. Version 4
was adopted in 2000 with some major changes to the protocol. Versions 5 and 6
made very small changes to the protocol.

Figure 11.1 SIP and media gateway control protocols.

 Related Protocols 267

H.323 references a number of other ITU and IETF protocols to com-
pletely specify the environment. Each element of the network is defi ned and
standardized. Figure 11.2 shows the main elements: terminals, gatekeepers, gate-
ways, and multipoint control units (MCUs). Terminals, gateways, and MCUs
are network end-devices, often called end points. An end point originates and
terminates media streams that could be audio, video, or data, or a combination
of all three. At a minimum, all H.323 end points must support basic G.711
PCM audio transmission. Support of video and data are optional. An H.323
gatekeeper is a server that controls a zone, which is the smallest administrative
domain in H.323. If a gatekeeper is present, all end points within that zone must
register with and defer to the gatekeeper on authorization decisions to place or
accept a call. A gatekeeper also provides services to terminals in a zone, such as
gateway location, address translation, bandwidth management, feature imple-
mentation, and registration. A gatekeeper is not a required element in an H.323
network, but a terminal’s capabilities without one are severely limited. A gate-
way is another optional element in an H.323 network. It interfaces the H.323

Figure 11.2 Elements of an H.323 network.

Table 11.1
TU H.32x Family of Standards

Protocol Title
H.320 Communication over ISDN networks
H.321 Communication over broadband ISDN (ATM) networks
H.322 Communication over LANs with guaranteed QoS
H.323 Communication over LANs with nonguaranteed QoS (IP)
H.324 Communication over PSTN (V.34 modems)

268 SIP: Understanding the Session Initiation Protocol

network with another protocol network, such as the PSTN. An MCU provides
conferencing services for terminals.

Some of the protocols referenced by H.323 are shown in Table 11.2. H.225
is used for registration, admission, and status (RAS), which is used for terminal-
to-gatekeeper communication. A modifi ed subset of Q.931 is used for call setup
signaling between terminals. (The H.323 usage of Q.931 is not compatible with
Q.931 as used in an ISDN network.) H.245 is used for control signaling or
media negotiation and capability exchange between terminals. T.120 is used for
multipoint graphic communications. H.323 audio codecs are specifi ed in the
ITU G.7xx series. Video codecs are specifi ed in the H.26x series. H.323 also
references two IETF protocols, RTP and RTCP, for the media transport which
are described in Chapter 12. The H.235 recommendation covers privacy and
encryption, while H.450 covers supplementary services such as those commonly
found in the PSTN (e.g., call forwarding, call hold, and call park).

11.4.2 Example of H.323

Figure 11.3 shows a basic call fl ow involving two terminals and a gatekeeper. The
fl ow shows the interaction between the various elements and the various proto-
cols used to establish the session. The call begins with an exchange of H.225.0
RAS messages between the calling terminal and the gatekeeper. All RAS mes-
sages are transported using UDP. It is assumed that both terminals have already
registered with the gatekeeper using the registration request (RRQ) message. The
calling terminal sends an admission request (ARQ) message to the gatekeeper con-
taining the address of the called terminal and the type of session desired. The
address could be specifi ed as an H.323 alias, E.164 telephone number, e-mail ad-
dress, or URL [12]. The gatekeeper knows about all calls in the zone it controls;
it decides if the user is authorized to make a call and if there is enough bandwidth
or other resources available. In this example, there is enough bandwidth, so the
gatekeeper allows the call to continue by sending an admission confi rmation

Table 11.2
Protocols Referenced by H.323

Protocol Description
H.225 Registration, admission, and status (RAS) and call signaling
H.245 Control signaling (media control)
T.120 Multipoint graphic communication
G.7xx Audio codecs
H.26x Video codecs
RTP Real-time transport protocol (RFC 3550)
RTCP RTP control protocol (RFC 3550)
H.235 Privacy and encryption
H.450 Supplementary services

 Related Protocols 269

(ACF) message. The ACF indicates to the calling terminal that end-point mes-
sage routing, or the direct exchange of H.225 call signaling messages with the
called terminal, is to be used. Alternatively, the gatekeeper can require gatekeeper
routed signaling, where the gatekeeper acts like a proxy and forwards all signaling
messages between the terminals. The gatekeeper has also translated the destina-
tion in the ARQ into a transport address that was returned in the ACF.

The calling terminal is now able to open a TCP connection to the called
terminal using the transport address returned in the ACF and send a Q.931
 Setup message to the called terminal. The called terminal responds with a Call
 Proceeding response to the calling terminal. The called terminal must also get
permission from the gatekeeper before it accepts the call, so an ARQ is sent to the
gatekeeper. When it receives the ACF from the gatekeeper, the called terminal
begins alerting the user and sends an Alerting message to the calling terminal.
When the user at the calling terminal answers, a Connect message is sent. There
is no acknowledgment of messages because all these messages are sent using TCP,
which provides reliable transport. These call signaling messages used in H.323
are a subset of the Q.931 protocol that covers ISDN D-channel signaling.

Figure 11.3 shows the use of H.323 FastStart, in which the Setup message
contains the TerminalCapabilitySet information. This saves multiple messages
and round trips compared to opening a second TCP connection between the

Figure 11.3 H.323 call fl ow example.

270 SIP: Understanding the Session Initiation Protocol

terminals. In H.245 tunneling, a separate H.245 control channel is not opened.
Instead, H.245 messages are encapsulated in Q.931 messages in the call signaling
channel. This saves overhead in opening and closing a second TCP connection.
Now, the terminals begin sending RTP media packets and also RTCP control
packets using the IP addresses and port numbers exchanged in the OpenLogical-
Channel messages.

Figure 11.4 shows a call tear down sequence, which either terminal may
initiate. In this example, the called terminal sends an EndSessionCommand mes-
sage in the H.245 control signaling channel. The other terminal responds with
an EndSessionCommand message in the H.245 control signaling channel, which
can now be closed. The called terminal then sends a disengage request (DRQ) mes-
sage and receives a disengage confi rmation (DCF) message from the gatekeeper.
This way, the gatekeeper knows that the resources used in the call have now been
freed up. A call detail record (CDR) or other billing record can be written and
stored by the gatekeeper. Next, a Q.931 release complete message is sent in the
call signaling connection, which can then be closed. Finally, the other terminal
sends a DRQ to the gatekeeper over UDP and receives a DCF response.

The call fl ows in Figures 11.3 and 11.4 show direct end-point signaling,
in which the calling terminal opens TCP connections to the called terminal and
exchanges H.225.0 and H.245 messages. In the ACF response to the calling ter-
minal, the gatekeeper can require gatekeeper routed signaling, where the call sig-
naling and control signaling channels are opened with the gatekeeper, who then
opens the channels with the called terminal. In this way, the gatekeeper stays in

Figure 11.4 H.323 call teardown sequence.

 Related Protocols 271

the signaling path and proxies all signaling messages. This allows the gatekeeper
to know the exact call state and be able to invoke features.

11.4.3 Versions

There are six versions of H.323, which refl ect the evolution of this protocol.
H.323 is fully backwards compatible, so gatekeepers and terminals must sup-
port fl ows and mechanisms defi ned in all previous versions. Version 1 was ap-
proved in 1996 and was titled “Visual Telephone Systems over Networks with
Non-Guaranteed Quality of Service.” Version 2 included alternative call setup
schemes to speed up the call setup. Two schemes were added to H.323, called
FastStart and H.245 tunneling. Versions 3 and 4 added more features to H.323
and additional annexes. Of interest to Internet devices is the support for H.323
URLs [12], full UDP support instead of TCP, and also the standardization of the
use of DNS by H.323 in Annex O. Version 6 is the current version of H.323.

H.323 has carved out two niche areas in current deployed systems—it
is widely deployed in small PSTN replacement networks for handling simple
phone calls, and it dominates the IP videoconferencing market. Simple PSTN
replacement networks that only originate and terminate phone calls without
even basic features do not use most of the key advantages of SIP. As a result,
they have little incentive to upgrade to SIP until the widespread adoption of SIP
eventually makes SIP gateway ports much cheaper than H.323 ports. However,
since SIP is earlier in its development cycle than H.323, this is not likely to
happen for a number of years. New implementations of these types of systems
will likely deploy SIP from the start, seeking to “future proof” the investment,
but there is little incentive for deployed systems to upgrade. Also, the availabil-
ity of commercial SIP to H.323 signaling gateways based on [13] allows both
networks to work together and complete calls. The videoconferencing market
is dominated by PSTN ISDN devices, which have been deployed since 1990.
Since H.323 shares the same heritage, it was designed to easily interwork with
these existing systems.

References

Anttalainen, T., [1] Introduction to Telecommunications Network Engineering, Norwood, MA:
Artech House, 1999.

Vemuri, A., and J. Peterson, “Session Initiation Protocol for Telephones (SIP-T): Context [2]
and Architectures,” BCP 63, RFC 3372, September 2002.

Camarillo, G., et al., “Integrated Services Digital Network (ISDN) User Part (ISUP) to [3]
Session Initiation Protocol (SIP) Mapping,” RFC 3398, December 2002.

Elwell, J., et al., “Interworking Between the Session Initiation Protocol (SIP) and QSIG,” [4]
BCP 117, RFC 4497, May 2006.

272 SIP: Understanding the Session Initiation Protocol

Johnston, A., et al., “Session Initiation Protocol (SIP) Public Switched Telephone Network [5]
(PSTN) Call Flows,” BCP 76, RFC 3666, December 2003.

Zimmerer, E., et al., “MIME Media Types for ISUP and QSIG Objects,” RFC 3204, De- [6]
cember 2001.

Arango, M., et al., “Media Gateway Control Protocol (MGCP) Version 1.0,” RFC 2705, [7]
October 1999.

International Telecommunication Union, “Implementors’ Guide for Recommendation [8]
H.248.1 Version 1 (03/2002) (‘Media Gateway Control Protocol’),” ITU-T Recommenda
tion H.248.1, April 2006.

Cuervo, F., et al., “Megaco Protocol Version 1.0,” RFC 3015, November 2000. [9]

Taylor, T., “Reclassifi cation of RFC 3525 to Historic,” RFC 5125, February 2008. [10]

“Packet-Based Multimedia Communications Systems,” ITU Recommendation H.323, [11]
2006.

Levin, O., “H.323 Uniform Resource Locator (URL) Scheme Registration,” RFC 3508, [12]
April 2003.

Schulzrinne, H., and C. Agboh, “Session Initiation Protocol (SIP)-H.323 Interworking [13]
Requirements,” RFC 4123, July 2005.

273

12
Media Transport
Establishing media sessions is one of the most important applications of SIP
in Internet communications. An understanding of the issues relating to media
transport of voice, video, DTMF, and text helps motivate the media negotiation
capabilities of SIP. In this chapter, the Real-Time Transport Protocol (RTP) will
be introduced as the protocol that transports actual media samples. The basic
steps in audio and video media encoding and decoding are discussed, along with
the effects of common Internet impairments. The RTP header format is cov-
ered along with common RTP topologies. The RTP Control Protocol (RTCP)
is introduced as a way to monitor call quality. RTP profi les and common codes
are discussed—both PSTN codecs and Internet codecs. Common audio and
video codecs are discussed. Finally, DTMF transport and conversational text are
covered.

12.1 Real-Time Transport Protocol (RTP)

Real-Time Transport Protocol [1] was developed to enable the transport of real-
time datagrams containing voice, video, or other information over IP. RTP was
not the fi rst VoIP protocol used on the Internet. Network Voice Protocol (NVP)
[2] was implemented in 1973 to carry real-time voice communications over the
Internet. Early versions of RTP, fi rst implemented in 1992, were used to trans-
port voice over the Internet’s multicast backbone (MBONE). Both H.323 and
SIP use RTP for media transport, making it the most common standard for
Internet communications.

RTP is defi ned by the IETF proposed standard RFC 3550 (which updates
the original RFC 1889). RTP does not provide any quality of service over the
IP network—RTP packets are handled the same as all other packets in an IP

274 SIP: Understanding the Session Initiation Protocol

network. However, RTP allows for the detection of some of the impairments
introduced by an IP network, such as:

Packet loss;•

Variable transport delay;•

Out of sequence packet arrival;•

Asymmetric routing.•

Here is how RTP fi ts into the common media processing steps.

Coding.1. The coding step involves analog to digital conversion (A/D),
which is implemented by low pass fi ltering, followed by sampling. The
determination of how many bits per sample is specifi c to a particular
codec (coder/decoder) algorithm. The particular codec used is trans-
ported by RTP in the payload type fi eld. The sampling rate is carried in
the offer/answer exchange in SDP, which negotiates the media session.

Packetization.2. The packetization step involves breaking the codec sam-
ple data into individual datagrams for transport. The determination
of packet size is based on a tradeoff between packetization delay (how
many sampling intervals must pass before enough data is ready for the
datagram) and transport effi ciency (each datagram has the fi xed over-
head of the RTP header and lower layer headers). Typically, packet sizes
are chosen to be small so that packetization time is around 20 ms to
30 ms. Packetization involves adding the RTP header to the codec pay-
load.

Tranport.3. RTP, as the name suggests, has a real-time nature, which re-
quires a minimum latency (delay) across the Internet. There is never
time to detect a missing packet, signal the loss, and wait for a retrans-
mission. This might be possible for nonreal-time streaming media, but
not real-time media. As a result, RTP does not usually use TCP trans-
port but instead uses UDP transport. As a result, datagrams may be lost
or may arrive out of sequence. Various fi elds in the RTP header fi eld
allow the detection of this.

Depacketization.4. The depacketization step involves removing the RTP
header from the codec payload.

Buffering.5. The buffering step involves storing or buffering the codec
samples before beginning playback. The choice of the buffer size for
this step is critical for media quality. Too short a buffer will result in
the buffer emptying and gaps in the media playback, while too long a
buffer will introduce unpleasant latency. Adapting the size of the play-

 Media Transport 275

back buffer when jitter or delay variation is occurring is best for media
quality.

Decoding.6. The decoding step involves sending the codec packets to the
codec algorithm. The right codec is chosen based on the received pay-
load type in the RTP header.

Playback. 7. The playback step involves rendering the media to the user
as audio, video, or perhaps text (as we shall see in real-time text or text
over IP, ToIP).

In terms of media quality, the two most important factors are the packet
loss rate and the end-to-end latency. Lost packets mean gaps in the playback
stream that the codec algorithm must try to compensate for. Different codecs
use different techniques for packet loss concealment (PLC). For example, in-
terpolation can be used to try to predict the missing samples based on received
samples either side of the lost ones. A simple replay algorithm can be useful for
some media types. Silence or comfort noise insertion can be used to prevent
users noticing the dead air of lost samples. Some codecs employ forward error
correction (FEC), which allows partial reconstruction of missing packets under
low loss conditions. Note that packets aren’t really “lost” on the Internet, instead
they are discarded by routers in the Internet due to congestion, or discarded by
the RTP stack due to out of order arrival or late arrival resulting in missing their
playback interval.

The end-to-end latency of real-time communications in general must be
kept less than 150 ms. Longer latency than this affects the perceived quality of
the call, resulting in users interrupting each other and starting and stopping
when both parties speak at the same time. There are many sources of delay in the
media path. The codec itself introduces delay as it gathers at least one sample or
frame before beginning coding and decoding. The packetization step introduces
a delay of around 20 ms, the time it takes to gather a full packet’s worth of data
before sending it over the Internet. Transport delays are added by the routers and
switches that forward and process the IP packets across the Internet. And fi nally,
the buffering delay of the receiver to deal with jitter or delay variation also intro-
duces latency. Some of these sources are shown in Figure 12.1.

Real-Time Transport Protocol (RTP) is an application layer protocol that
uses UDP for transport over IP. RTP is not text encoded, but uses a bit-oriented
header similar to UDP and IP. RTP version 0 is only used by the vat audio tool
for MBONE broadcasts. Version 1 was a pre-RFC implementation and is not in
use. The current RTP version 2 packet header has 12 octets. RTP was designed
to be very general; most of the headers are only loosely defi ned in the standard;
the details are left to profi le documents. The header contains:

Version (• V): This 2-bit fi eld is set to 2, the current version of RTP.

276 SIP: Understanding the Session Initiation Protocol

Padding (• P): If this bit is set, there are padding octets added to the end of
the packet to make the packet a fi xed length. This is most commonly used
if the media stream is encrypted.

Extension (• X): If this bit is set, there is one additional extension follow-
ing the header (giving a total header length of 14 octets). Extensions are
defi ned by certain payload types.

CSRC count (• CC): This 4-bit fi eld contains the number of content source
identifi ers (CSRC) that are present following the header. This fi eld is only
used by mixers that take multiple RTP streams and output a single RTP
stream.

Marker (• M): This single bit is used to indicate the end of a complete frame
in video, or the start of a talk-spurt in silence-suppressed speech.

Payload type (• PT): This 7-bit fi eld defi nes the codec in use. The value of
this fi eld matches the profi le number listed in the SDP.

Sequence Number: This 16-bit fi eld is incremented for each RTP packet •
sent and is used to detect missing/out of sequence packets.

Timestamp: This 32-bit fi eld indicates in relative terms the time when •
the payload was sampled. This fi eld allows the receiver to remove jit-
ter and to play back the packets at the right interval assuming suffi cient
buffering.

Synchronization source identifi er (• SSRCI): This 32-bit fi eld identifi es
the sender of the RTP packet. At the start of a session, each participant
chooses an SSRC number randomly. Should two participants choose the
same number, they each choose again until each party is unique.

Figure 12.1 Sources of latency and packet loss on the Internet.

 Media Transport 277

Contributing source identifi er (• CSRC): There can be none or up to 15 in-
stances of this 32-bit fi eld in the header. The number is set by the CSRC
count (CC) header fi eld. This fi eld is only present if the RTP packet is
being sent by a mixer, which has received RTP packets from a number
of sources and sends out combined packets. A nonmulticast conference
bridge would utilize this header.

RTP allows detection of a lost packet by a gap in the Sequence Number.
Packets received out of sequence can be detected by out-of-sequence Sequence
Numbers. Note that RTP allows detection of these transport-related problems
but leaves it up to the codec to deal with the problem. For example, a video
codec may compensate for the loss of a packet by repeating the last video frame,
while an audio codec may play background noise for the interval. Variable delay
or jitter can be detected by the Timestamp fi eld. A continuous bit rate codec
such as PCM will have a linearly increasing Timestamp. A variable bit rate co-
dec, however, which sends packets at irregular intervals, will have an irregularly
increasing Timestamp, which can be used to play back the packets at the correct
interval.

RTP media sessions are unidirectional—they defi ne how media is sent
from the media source to the media sink. As such, a normal bidirectional media
session is actually two RTP sessions, one in each direction.

In a multimedia session established with SIP, the information needed to
select codecs and send the RTP packets to the right location is carried in the SDP
message body. Under some scenarios, it can be desirable to change codecs during
an RTP session. An example of this relates to the transport of dual tone multiple
frequency (DTMF) digits. A low bit rate codec that is optimized for transmitting
vocal sounds will not transport the superimposed sine waves of a DTMF signal
without introducing signifi cant noise, which may cause the DTMF digit receiver
to fail to detect the digit. As a result, it is useful to switch to another codec when
the sender detects a DTMF tone. Because an RTP packet contains the payload
type, it is possible to change codecs on the fl y without any signaling information
being exchanged between the UAs. On the other hand, switching codecs in gen-
eral should probably not be done without a SIP signaling exchange (re-INVITE)
because the call could fail if one side switches to a codec that the other does not
support. The SIP re-INVITE message exchange allows this change in media ses-
sion parameters to fail without causing the established session to fail.

The use of random numbers for SSRC provides a minimal amount of se-
curity against “media spamming” where a literally uninvited third party tries to
break into a media session by sending RTP packets during an established call.
Unless the third party can guess the SSRC of the intended sender, the receiver
will detect a change in SSRC number and either ignore the packets or inform the
user that something is going on. This behavior for RTP clients, however, is not

278 SIP: Understanding the Session Initiation Protocol

universally accepted, because in some scenarios (wireless hand-off, announce-
ment server, call center, and so forth) it might be desirable to send media from
multiple sources during the progress of a call.

RTP supports encryption of the media through the secure RTP (SRTP)
profi le discussed in Chapter 14. RTP supports a number of different topolo-
gies [3] including unicast (point-to-point) and multicast (point-to-multipoint).
They are summarized in Table 12.1. In RTP, a translator is an element that
converts the codec or sampling rate of an RTP stream. An RTP mixer is an ele-
ment that combines multiple RTP streams into a single RTP stream in a media
specifi c way.

At the start of an RTP session, the sender randomly chooses an initial value
of the timestamp and SSRC. If both the sender and receiver happen to choose
the same SSRC, both sides choose again to ensure each have a different SSRC.
Media samples are encoded by the codec. Based on the packetization interval,
once a complete frame of media data is available, the RTP header is populated
and the packet sent. The sampling instant is used to update the timestamp. The
sequence number is updated for each RTP packet sent. The receiver fi rst vali-
dates the RTP header, using the sequence number to determine if any packets
have been lost or received out of sequence. The timestamp is used to playout the
media sample by the codec.

12.2 RTP Control Protocol (RTCP)

The RTP Control Protocol (RTCP) is a related protocol also defi ned in RFC
3550 that allows participants in an RTP session to send each other quality re-
ports and statistics, and exchange some basic identity information. The fi ve types
of RTCP packets are shown in Table 12.2. RTCP has been designed to scale for
very large conferences. Because RTCP traffi c is all overhead, the bandwidth al-
located to these messages remains fi xed regardless of the number of participants.
That is, the more participants in a conference, the less frequently RTCP packets

Table 12.1
RTP Topologies

Point to point
Point to multipoint using multicast
Point to multipoint using an RTP translator
Point to multipoint using an RTP mixer
Point to multipoint using video switching MCUs
Point to multipoint using RTCP-terminating MCU
Nonsymmetric mixer/translators
Combined topologies

 Media Transport 279

are sent. For example, in a basic two-participant audio RTP session, the RTP/
AVP profi le states that RTCP packets are to be sent about every 5 seconds; for
four participants, RTCP packets can be sent every 10 seconds. Sender reports
(SR) or receiver reports (RR) packets are sent the most frequently, with the other
packet types being sent less frequently. The use of reports allows feedback on the
quality of the connection including information such as:

Number of packets sent and received;•

Number of packets lost;•

Packet jitter. •

By default, RTCP uses the next highest port from the RTP port, although
this can be changed in the offer/answer exchange as discussed in Chapter 13.

12.2.1 RTCP Reports

RTCP is always sent as a compound packet. This means that every RTCP packet
starts with a sender report (SR) or receiver report (RR), then any additional pack-
ets. As their name suggests, sender reports are sent by media senders while re-
ceiver reports are sent by media receivers. Since RTP is unidirectional, a bidirec-
tion media session will have two RTP sessions and two RTCP sessions. A source
description (SDES) packet is used to exchange information about the sender or
receiver. A bye (BYE) packet is used to leave a multicast session. An application
specifi c (APP) packet is used for RTCP extensions. An important RTCP exten-
sion is described in the next section.

12.2.2 RTCP Extended Reports

RTCP extended reports (RTCP-XR) [4] defi nes seven additional report blocks.
They were defi ned due to limitation of the basic SR and RR. For example, the
receiver report contains information about the average packet loss rate. However,
for call quality, information about burst packet loss is much more important
than average packet loss, since a good codec can cope with individual lost packets
but not a long sequence of lost packets. In addition, RTCP-XR defi nes a way to

Table 12.2
RTCP Reports

Sender report (SR)
Receiver report (RR)
Source description (SDES)
Bye (BYE)
Application specifi c (APP)

280 SIP: Understanding the Session Initiation Protocol

estimate actual voice call quality and exchange this information. Deriving this
information from existing receiver reports is not possible. As a result, the defi ni-
tion of RTCP extended reports has driven additional implementation of RTCP.

12.3 Compression

RTP does not provide very effi cient transport of media. For example, consider
the iLBC codec used in the 12.2 kb/s mode with 20 ms packetization time
(ptime) transported over RTP, UDP, IPv4, and Ethernet. The size in octets of
each frame of codec data can be calculated using the formula:

*

8
bw ptime

frame =

where frame is the frame size in octets (8 bits, or a byte), bw is the codec band-
width, and ptime is the packetization time. For this example, each frame would
contain 38 octets of codec data. RTP has a 12 octet header, UDP adds a 16
octet header, while IPv4 with no options adds 20 octets. Ethernet (IEEE 802.3)
adds a 13-octet header and a 3-octet footer. As a result, the header overhead for
this example is 60 octets! Overhead makes up over 60% of the total packet size.
For normal Internet communications, this is how RTP is utilized. However, for
some applications where RTP is to be used over low bit rate or wireless links,
compression is performed. Note that saving bandwidth is only one reason to
do compression. Compression can also reduce serialization delays when sending
packets over very low speed links.

One method of compression is compressed RTP (CRTP) [5]. This method
only compresses the RTP header fi elds, using the fact that many parts of the
header are identical in every packet. For example, V, P, X, CC, PT, and SSRC
typically do not change once a session has been setup, so they do not need to
be sent every packet. Other parts of the header such as sequence numbers and
timestamps can be sent as deltas, resulting in saved bandwidth.

Another method that compresses the entire RTP/UDP/IP stack is robust
header compression (ROHC) [6]. ROHC can compress 40 octets of overhead
into 2 octets. To do this, codebooks are used to encode and decode common
elements. Codebooks can be either static—predefi ned for a given protocol—or
dynamic—constructed and used during a given session. ROHC can also be used
to compress SIP and the stack below SIP.

Although UDP is normally used, it is possible to transport RTP over a
stream transport such as TCP. To do this, a framing method is used, which is
defi ned in [7]. If TCP is used, the retransmissions of TCP must be carefully
managed or the latency of the session will increase with every retransmission,
resulting in very poor performance. Also, when using TCP for media, the roles

 Media Transport 281

of each endpoint must be negotiated. One endpoint will be active, and initiate
opening the TCP connection, while the other endpoint will be passive, listening
on a port for an open request.

12.4 RTP Audio Video Profi les

The use of profi les enables RTP to be an extremely general media transport
protocol. The current audio video profi les defi ned by RFC 3551 [8] and others
are listed in Table 12.3. Four are defi ned, although only the fi rst one is widely
implemented. As secure Internet communications are deployed, the use of the
secure audio and video profi le (SAVP) is increasing, as described in Chapter 14.
The most common profi le is the RTP profi le for audio and video conferences
with minimal control, also known as the RTP/AVP profi le. RTP/AVP makes the
following specifi cations for RTP:

UDP is used for underlying transport.•

RTP port numbers are always even—the corresponding RTCP port •
number is the next highest port, which is always an odd number.

No header extensions are used.•

Some common audio and video codecs are listed in Tables 12.4 and 12.5.
The codecs listed with a payload number in the tables use a static payload num-
ber. The RTP/AVP profi le document lists details of these codecs, or a reference
for the details is provided. Codecs shown with a payload number of dynamic
must use a dynamic payload in the range 96–127. Dynamic payloads must be
defi ned dynamically during a session. The minimum payload support is defi ned
as 0 (PCMU) and 5 (DVI4) (although in practice, most only support PCM).
The document recommends dynamically assigned UDP port numbers, although
ports 5004 and 5005 have been registered for use of the profi le and can be used
instead. The standard also describes the process of registering new payload types
with IANA.

Table 12.3
Defi ned RTP Profi les

Profi le Name Specifi cation
RTP profi le for audio and video RTP/AVP RFC 3551
Conferences with minimal control
The secure real-time transport protocol RTP/SAVP RFC 3711
RTP audio-visual profi le with feedback RTP/AVPF RFC 4585
Extended secure RTP profi le for RTCP-based
feedback

RTP/SAVPF RFC 5124

282 SIP: Understanding the Session Initiation Protocol

12.4.1 Audio Codecs

There are two main types of audio codecs—PSTN codecs and Internet codecs.
PSTN codecs were developed for the circuit-switched world of the PSTN. They
have been designed to minimize bandwidth but were not designed to function
over a packet switched network such as the Internet. In particular, their quality
rapidly degrades under conditions of packet loss, delay variation (jitter), and
other common Internet impairments. Typically, these codecs are only usable
when packet loss is less than 1%. Some examples include G.711 (PCM), G.721,
G.723, and G.729A. G.711 is also known as pulse coded modulation (PCM)
which has two variants, μ-law companding used mainly in the United States
and Japan or A-law companding used in the rest of the world. G.711 is uncom-
pressed, with 8 bits samples at 8,000 samples per second resulting in a 64 kb/s
data stream. The others implement compression or linear prediction to reduce
the bandwidth requirement. However, this compression makes their perfor-
mance more sensitive to packet loss. For example, a single RTP packet of G.711
lost only affects that sampling interval while a single packet of G.729A can affect

Table 12.4
Common RTP/AVP Audio Payload Types

Payload Codec Bit Rate
 0 PCMU 64 kb/s
 3 GSM 13 kb/s
 4 G.723 5.3 or 6.3 kb/s
 5 DVI4 32 kb/s
 8 PCMA 64 kb/s
 9 G.722 128 kb/s
18 G.729 8 kb/s
Dynamic iLBC 13.33 or 15.2 kb/s
Dynamic AMR 1.8–12.2 kb/s
Dynamic AMR-WB 6.6–23.85 kb/s
Dynamic SPEEX 2–44 kb/s
Dynamic MP3 8–320 kb/s

Table 12.5
Common RTP/AVP Video Payload Types

Payload Codec Type
26 JPEG JPEG video
31 H261 H.261
32 MPV MPEG-I and MPEG-II
34 H263 H.263
Dynamic H264 MPEG-4

 Media Transport 283

audio quality for a number of sampling intervals. These codecs typically require
less than 1% packet loss. PSTN codecs are designed based on 8 kHz sampling
due a design limitation of the PSTN network which is not present on the Inter-
net. Many of these codecs also have signifi cant intellectual property (IPR) fees
and licensing associated with them. Some modern PSTN codecs overcome some
of these problems. For example, the adaptive multirate codec (AMR) [9] was
developed by the mobile phone industry with packet transport in mind. As a
result, it has reasonable performance under packet loss. There is also a wideband
version known as AMR-WB. However, AMR still has signifi cant intellectual
property and licensing costs.

In contrast, Internet audio codecs were designed with the Internet in mind.
They are designed to give good performance even under conditions of packet
loss and delay variation. Also, many provide better-than-PSTN quality by ignor-
ing the 8 kHz sampling limitation. Internet codecs that provide this higher qual-
ity are often known as wideband codecs. Examples of Internet codecs include the
Internet low bit rate codec (iLBC) [10] and SPEEX [11]. Both of these codecs
have no intellectual property or licensing costs, and open source implementa-
tions can be found on the Internet. These codecs still have reasonable quality
even under conditions of up to 10% packet loss.

12.4.2 Video Codecs

Many of the considerations that apply to audio media transport also apply to
video transport. However, there are some key differences. For example, the large
amount of information present in every video frame, and the frequency of frame
updates means that video requires very high bandwidth. Sending uncompressed
video is essentially impractical over the Internet. There are two main techniques
in video compression. One is intraframe compression, where information in a
single frame is compressed. These frames are called I-frames or key frames. For
example, a lossy compression technique such as JPEG could be used. A frame
will often be transported in multiple RTP packets. In this case, the marker (M)
bit is set on the last packet of a frame to indicate to the codec that the frame is
ready for processing and rendering. The other compression technique is inter-
frame compression, where successive frames are compared and differences and
predictions made. Predicted frames are known as P-frames and are made relative
to a key frame or I-frame. Since often only a small amount of the entire screen
changes between each frame, this can result in very compressed, relatively static
images. For example, in a telepresence video conference, the I-frame would en-
code the background image and the face of the person while P-frames could
carry their moving lips, blinking eyes, and waving hands. In addition bipredicted
frames which are based on multiple P-frames can be used to increase compres-
sion. For moving objects in an image, motion vectors of macroblocks can be used

284 SIP: Understanding the Session Initiation Protocol

to achieve excellent compression. As a result, a typical video media stream will
consist of combinations of I-frames, P-frames, and B-frames.

Since a frame is typically sent over a number of packets, a single lost packet
may cause an entire frame to be discarded by the codec. The effect on the qual-
ity of the picture depends on the type of frame lost. If it was an I-frame, the
loss will have a major impact on quality, and future P-frames and B-frames will
result in an incomplete picture until another I-frame is sent. If the lost frame was
a P-frame or B-frame, the impact will be less and for a shorter duration. Video
codecs employ a number of loss concealment techniques. For example, some use
repetition of previous frames, which can work for stationary or slowly moving
images. Spatial and frequency interpolation can be used to try to generate lost
frames. Also, sending frames using interleaving can provide protection against
burst errors. In this approach, parts of different frames are sent out of sequence.

The most common standard video codecs are the H.26x series. H.261 was
a very early codec used for video conferencing. H.262 is essentially the same as
MPEG-2 which is used in DVDs and HDTV broadcasts. H.263 is commonly
used on the Internet today through the Flash Player plugin used by video sharing
sites. Many video systems are moving to H.264, which uses MPEG-4 encoding.
H.264 is the recommended codec by YouTube [12]. Motion JPEG is a high
quality video codec that only uses I-frames with JPEG compression within each
frame. It uses much more bandwidth than H.26x codecs but provides a high
quality picture even during fast action and motion sequences. In addition, there
are many proprietary video codecs in use over the Internet.

12.5 Conferencing

Audio conferencing and videoconferencing are important applications that utilize
media transport. Each of these applications has their own media requirements.
The details of SIP conferencing are covered in Section 9.7. Audio conferencing
requires an audio mixer: a device which combines multiple RTP audio streams
into a single stream. A mixer in RTP synchronizes the input media streams then
combines them together. The SSRC of each media stream, which was included
(mixed) into the resulting stream, will be copied into the contributing SSRC
(CSSRC) fi eld of the header. This allows speaker identifi cation during the con-
ference. A typical mixing strategy uses N − 1 mixing—that is, the N loudest
speakers will have their media combined and shared, but each speaker will not
hear themselves—they get the N − 1 mix. Thus for N = 3, the mixer will produce
four distinct mixes, one with all three speakers that is received by nonspeakers,
and three with only two of the speakers. Each speaker will get a version of this
mix. An audio mixer is sometimes called a multipoint control unit (MCU).

 Media Transport 285

Video mixing can involve combining multiple video streams into a single
stream known as tiling (sometimes called “Hollywood squares” if they are pre-
sented in a checkerboard arrangement), or by just selecting a video streaming. If
video follows audio is used, the video will switch to the loudest speaker. In other
cases, users in a videoconference can select which video stream or streams they
view, sometimes from a set of thumbnail images. When video switching is occur-
ring, the new video stream needs an I-frame or key frame to be sent immediately,
otherwise, the sequence of P-frames and B-frames being sent will not provide a
complete image without the I-frame they reference. This is accomplished using
fast update signaling between the video mixer and the video source. One method
uses an XML message [13] to convey this signaling. Another method uses a spe-
cial RTCP message [14] and the audio video profi le with feedback (AVPF).

12.6 ToIP—Conversational Text

Conversational text, or text over IP (ToIP), is a bidirectional real-time exchange
of text characters. Unlike e-mail where the message is only sent when the user
hits send, or instant messaging where the message is sent when the user press-
es enter or return, conversational text messages are sent character by character,
usually in full duplex (i.e., both sides can type at the same time). Devices in
the PSTN to accomplish this are known as telecommunications devices for the
deaf (TDD). Sometimes they are used only for one direction of the call; a hu-
man relay operator receives the conversational text messages from one party and
speaks the words to the other party. The PSTN uses many different standards
and devices for this communication. T.140 [15] is an International Telecom-
munications Union (ITU) format for encoding conversational text. RTP has a
payload for transporting T.140 information [16] over UDP. This payload can
use redundant transmission so that individual lost RTP packets will not result
in dropped characters. For conversational text to be truly conversational, the
end-to-end latency must be less than 300 ms. An industry group known as the
Real-Time Text Taskforce (R3TF) [17] has been formed to help the adoption of
this technology to the Internet.

12.7 DTMF Transport

Dual tone multifrequency (DTMF) tones are commonly used on the PSTN for
dialing telephone numbers. Although Internet communications do not utilize
dialing, DTMF still must be transported and supported for user signaling—for
example, when entering a personal identifi cation number (PIN) or password to
access voicemail or interactive voice response (IVR) systems. Calling card, tele-
phone banking, and many other systems use DTMF tones for signaling. DTMF,

286 SIP: Understanding the Session Initiation Protocol

as the name suggests, generates two superimposed sine waves at particular fre-
quencies to send a particular digit (0–9, *, #, or, less commonly, A–F). In the
PSTN, DTMF is typically encoded the same way as voice. However, low bit rate
codecs, which are optimized for encoding voice, often do not reliably encode
DTMF tones. As a result, there is a need to transport DTMF not as sine waves
but as actual digits. This is especially appealing for devices such as SIP phones
and mobile phones which only need to generate DTMF. A payload known as
telephone-events [18] has been defi ned for transport over RTP. This approach
is commonly known in the industry as RFC 2833 tones, where RFC 2833 [19]
was the original RFC specifi cation for telephone-events.

The payload contains:

Event: an octet used to encode the event such as the DTMF key •
pressed;

End (E) bit: a bit used to indicate the end of the event;•

Reserved (R) bit: a bit reserved for future use, set to zero and ignored;•

Volume: 6 bits for the level of the tone in dBm0;•

Duration: 16 bits used for a timestamp for the event duration.•

When a user presses a DTMF key, or a gateway detects a DTMF tone in
band, an RTP telephone-events packet is created and sent. The marker (M) bit
in the RTP header is set to indicate that this is the fi rst packet sent. If the key is
still being pressed or detected, the duration fi eld will not be valid but should be
set to a value higher than the update time. Update RTP telephone-events are sent
typically every 50 ms. The RTP timestamp for these update packets will be the
same as the fi rst RTP packet but the duration will increase for each. When the
key is released or the DTMF tone is no longer detected, a fi nal RTP telephone-
event packet is created. The end (E) bit will be set and the duration fi eld will
contain the actual tone duration. This fi nal RTP packet will be resent two more
times for redundancy. If the DTMF keypress or tone duration is less than the
update time, only three RTP telephone events will be sent. The fi rst will have
the M bit set, all will have the E bit sent and the duration fi eld will indicate the
duration.

12.8 Questions

Q12.1 List the purpose of packet loss concealment. List some methods
 for packet loss concealment in audio codecs.

Q12.2 Why does RTP usually use UDP transport?

 Media Transport 287

Q12.3 Explain the purpose of the sequence and SSRC fi elds in an RTP
 packet.

Q12.4 Calculate the bandwidth required for the SPEEX codec operating
 at 7.5 kb/s, 25 ms packetization time, assuming transport over
 UDP, IPv4 (no extensions), and 100BaseT Ethernet.

Q12.5 Explain the differences between RTCP receiver reports and RTCP
 extended reports.

Q12.6 Describe the three different types of video frames. Explain the
 need for fast update in a video conferencing system. Which types
 of frames does motion JPEG use?

Q12.7 How many telephone events packets will be sent if the DTMF key
 # is pressed and held for 185 ms? Assume the recommended up-
 date interval. How many bits in total will be sent, assuming trans-
 port over UDP, IPv4 (no extensions), and 1000BaseT Ethernet?

Q12.8 Explain the difference between instant messaging and conversa-
 tional text.

Q12.9 Describe common audio and video mixing techniques.

Q12.10 Explain the need for the payload type fi eld in the RTP header.
 Use an example with the iLBC codec and telephone-events to
 make your point.

References

Schulzrinne, H., et al., “RTP: A Transport Protocol for Real-Time Applications,” STD 64, [1]
RFC 3550, July 2003.

Cohen, D., “Specifications for the Network Voice Protocol (NVP),” RFC 741, November [2]
1976.

Westerlund, M., and S. Wenger, “RTP Topologies,” RFC 5117, January 2008. [3]

Friedman, T., R. Caceres, and A. Clark, “RTP Control Protocol Extended Reports (RTCP [4]
XR),” RFC 3611, November 2003.

Casner, S., and V. Jacobson, “Compressing IP/UDP/RTP Headers for Low-Speed Serial [5]
Links,” RFC 2508, February 1999.

Bormann, C., et al., “Robust Header Compression (ROHC): Framework and Four Profiles: [6]
RTP, UDP, ESP, and Uncompressed,” RFC 3095, July 2001.

Lazzaro, J., “Framing Real-Time Transport Protocol (RTP) and RTP Control Protocol [7]
(RTCP) Packets over Connection-Oriented Transport,” RFC 4571, July 2006.

Schulzrinne, H., and S. Casner, “RTP Profile for Audio and Video Conferences with Mini- [8]
mal Control,” STD 65, RFC 3551, July 2003.

288 SIP: Understanding the Session Initiation Protocol

Sjoberg, J., et al., “Real-Time Transport Protocol (RTP) Payload Format and File Storage [9]
Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-
WB) Audio Codecs,” RFC 3267, June 2002.

Andersen, S., et al., “Internet Low Bit Rate Codec (iLBC),” RFC 3951, December 2004. [10]

Herlein, G., et al., “RTP Payload Format for the Speex Codec,” draft-ietf-avt-rtp-speex-05 [11]
(work in progress), February 2008.

YouTube, http://www.youtube.com. [12]

Levin, O., R. Even, and P. Hagendorf, “XML Schema for Media Control,” RFC 5168, [13]
March 2008.

Wenger, S., et al., “Codec Control Messages in the RTP Audio-Visual Profi le with Feedback [14]
(AVPF),” RFC 5104, February 2008.

ITU-T Recommendation T.140 (1998)—Text Conversation Protocol for Multimedia [15]
Application, with Amendment 1, (2000).

Hellstrom, G., and P. Jones, “RTP Payload for Text Conversation,” RFC 4103, June 2005. [16]

http://www.realtimetext.org/. [17]

Schulzrinne, H., and T. Taylor, “RTP Payload for DTMF Digits, Telephony Tones, and [18]
Telephony Signals,” RFC 4733, December 2006.

Schulzrinne, H., and S. Petrack, “RTP Payload for DTMF Digits, Telephony Tones and [19]
Telephony Signals,” RFC 2833, May 2000.

289

13
Negotiating Media Sessions
One of the most important uses of SIP is to negotiate the setup of sessions, as
the name suggests. To do this, SIP uses another protocol, Session Description
Protocol, to describe the actual parameters of the media session. This includes
information such as media type, codec, bit rate, and the IP address and port
numbers for the media session. In short, negotiating media sessions is all about
exchanging the data necessary to begin the RTP media sessions described in
Chapter 12 or SRTP media sessions described next in Chapter 14. This chapter
will introduce the Session Description Protocol (SDP) and the Offer/Answer
protocol, which is the way SIP uses SDP to negotiate sessions.

13.1 Session Description Protocol (SDP)

The Session Description Protocol, originally defi ned by RFC 2327 [1], was de-
veloped by the IETF MMUSIC working group. It is more of a description syn-
tax than a protocol in that it does not provide a full-range media negotiation
capability. The original purpose of SDP was to describe multicast sessions set
up over the Internet’s multicast backbone, the MBONE. The fi rst application of
SDP was by the experimental Session Announcement Protocol (SAP) [2] used
to post and retrieve announcements of MBONE sessions. SAP messages carried
an SDP message body, and were the template for SIP’s use of SDP. Even though
it was designed for multicast, SDP has been applied to the more general problem
of describing general multimedia sessions established using SIP. SDP is current
specifi ed by RFC 4566 [3], which is mostly compatible with RFC 2327.

As seen in the examples of Chapter 2, SDP contains the following informa-
tion about the media session:

IP address (IPv4 or IPv6 address or host name);•

290 SIP: Understanding the Session Initiation Protocol

RTP profi le (usually RTP/AVP although there are others such as RTP/•
SAVP);

Port number (used by UDP or TCP for transport);•

Media type (audio, video, interactive whiteboard, and so forth);•

Media encoding scheme (PCM A-Law, MPEG II video, and so forth).•

In addition, SDP contains information about the following:

Subject of the session;•

Start and stop times;•

Contact information about the session.•

Like SIP, SDP uses text coding. An SDP message is composed of a series
of lines, called fi elds, whose names are abbreviated by a single lower-case letter,
and are in a required order to simplify parsing. The set of SDP fi elds from RFC
4566 is shown in Table 13.1. The order in this table is the required order in SDP.
Optional fi elds can be skipped, but must be in the correct order if present.

SDP was not designed to be easily extensible, and parsing rules are strict.
The only way to extend or add new capabilities to SDP is to defi ne a new at-
tribute type. However, unknown attribute types can be silently ignored. An SDP

Table 13.1
SDP Fields

Field Name
Mandatory/
Optional

v= Protocol version number m
o= Owner/creator and session identifi er m
s= Session name m
i= Session information o
u= Uniform Resource Identifi er o
e= E-mail address o
p= Phone number o
c= Connection information m
b= Bandwidth information o
t= Timer session starts and stops m
r= Repeat times o
z= Time zone corrections o
k= Encryption key (deprecated) o
a= Attribute lines o
m= Media information o
a= Media attributes o

 Negotiating Media Sessions 291

parser must not ignore an unknown fi eld, a missing mandatory fi eld, or an out-
of-sequence line. An example SDP message containing many of the optional
fi elds is shown here:

v=0
o=johnston 2890844526 2890844526 IN IP4 43.32.1.5
s=IETF Update
i=This broadcast will cover the latest from the IETF
u=http://www.sipstation.com
e=Alan Johnston alan@avaya.com
p=+1-314-555-3333 (Daytime Only)
c=IN IP4 225.45.3.56/236
b=CT:144
t=2877631875 2879633673
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=video 23422 RTP/AVP 31
a=rtpmap:31 H261/90000

The general form of a SDP message is:

x=parameter1 parameter2 ... parameterN

The line begins with a single lower-case letter, for example, x. There are
never any spaces between the letter and the =, and there is exactly one space be-
tween each parameter. Each fi eld has a defi ned number of parameters. Each line
ends with a CRLF. The individual fi elds will now be discussed in detail.

13.1.1 Protocol Version

The v= fi eld contains the SDP version number. Because the current version of
SDP is 0, a valid SDP message will always begin with v=0.

13.1.2 Origin

The o= fi eld contains information about the originator of the session and session
identifi ers. This fi eld is used to uniquely identify the session. The fi eld contains:

o=username session-id version network-type address-type address

The username parameter contains the originator’s login or host or - if
none. The session-id parameter is a Network Time Protocol (NTP) [4] time-
stamp or a random number used to ensure uniqueness. The version is a numeric
fi eld that is increased for each change to the session, also recommended to be a
NTP timestamp. The network-type is always IN for Internet. The address-type

292 SIP: Understanding the Session Initiation Protocol

parameter is either IP4 or IP6 for IPv4 or IPv6 address either in dotted decimal
form or a fully qualifi ed host name.

13.1.3 Session Name and Information

The s= fi eld contains a name for the session. It can contain any nonzero number
of characters. The optional i= fi eld contains information about the session. It can
contain any number of characters.

13.1.4 URI

The optional u= fi eld contains a uniform resource indicator (URI) with more
information about the session.

13.1.5 E-Mail Address and Phone Number

The optional e= fi eld contains an e-mail address of the host of the session. If a
display name is used, the e-mail address is enclosed in <>. The optional p= fi eld
contains a phone number. The phone number should be given in globalized
format, beginning with a +, then the country code, a space or −, then the local
number. Either spaces or - are permitted as spacers in SDP. A comment may be
present inside brackets().

13.1.6 Connection Data

The c= fi eld contains information about the media connection. The fi eld
contains:

c=network-type address-type connection-address

The network-type parameter is defi ned as IN for the Internet. The address
type is defi ned as IP4 for IPv4 addresses and IP6 for IPv6 addresses. The con-
nection-address is the IP address or host that will be sending the media packets,
which could be either multicast or unicast. If multicast, the connection-address
fi eld contains:

connection-address=base-multicast-address/ttl/number-of-addresses

where ttl is the time-to-live value, and number-of-addresses indicates how many
contiguous multicast addresses are included starting with the base-multicast-
address.

 Negotiating Media Sessions 293

13.1.7 Bandwidth

The optional b= fi eld contains information about the bandwidth required. It is
of the form:

b=modifi er:bandwidth-value

The modifi er is either CT for conference total or AS for application specifi c.
CT is used for multicast session to specify the total bandwidth that can be used
by all participants in the session. AS is used to specify the bandwidth of a single
site. The bandwidth-value parameter is the specifi ed number of kilobytes per
second.

13.1.8 Time, Repeat Times, and Time Zones

The t= fi eld contains the start time and stop time of the session.

t=start-time stop-time

The times are specifi ed using NTP [4] timestamps. For a scheduled session,
a stop-time of zero indicates that the session goes on indefi nitely. A start-time
and stop-time of zero for a scheduled session indicates that it is permanent.
The optional r= fi eld contains information about the repeat times that can be
specifi ed in either in NTP or in days (d), hours (h), or minutes (m). The optional
z= fi eld contains information about the time zone offsets. This fi eld is used if a
reoccurring session spans a change from daylight savings to standard time, or
vice versa.

13.1.9 Encryption Keys

The optional k= fi eld was used to carry encryption keys. However, its use is no
longer recommended and was included in RFC 4566 for parser compatibility
reasons. Instead, a=crypto or a=key-mgt should be used, whose use is described
in Chapter 14.

13.1.10 Media Announcements

The optional m= fi eld contains information about the type of media session. The
fi eld contains:

m=media port transport format-list

The media parameter is either audio, video, text, application, message,
image, or control. The port parameter contains the port number. The transport

294 SIP: Understanding the Session Initiation Protocol

parameter contains the transport protocol or the RTP profi le used. The set of
defi ned RTP profi les is in Table 15.3. The format-list contains more informa-
tion about the media. Usually, it contains media payload types defi ned in RTP
audio video profi les. More than one media payload type can be listed, allowing
multiple alternative codecs for the media session. For example, the following
media fi eld lists three codecs:

m=audio 49430 RTP/AVP 0 6 8 99

One of these three codecs can be used for the audio media session. If
the intention is to establish three audio channels, three separate media fi elds
would be used. For non-RTP media, Internet media types should be listed in the
 format-list. For example,

m=application 52341 udp wb

could be used to specify the application/wb media type. Common SDP media
types are listed in Table 13.2.

13.1.11 Attributes

The optional a= fi eld contains attributes of the preceding media session. This
fi eld can be used to extend SDP to provide more information about the media. If
not fully understood by a SDP user, the attribute fi eld can be ignored. There can
be one or more attribute fi elds for each media payload type listed in the media

Table 13.2
Common SDP Media Types

Example Type Specifi ciation

m=audio 49122 RTP/AVP 0
Audio media, also used for
telephone-events (DTMF)

RFC 3551

m=video 52134 RTP/SAVP 24 Video media RFC 3551
m=text 11000 RTP/AVP 98 Real-time text (T.140) RFC 4103
m=application 12454 wb udp
m=application 3422 TCP/TLS/BFCP *
m=application 554 TCP/RTSP rtsp

Application media, used
for white board (wb), BFCP,
RTSP, and others

RFC 4566

m=message 12763 TCP/MSRP * Message media for MSRP RFC 4975

m=image 54111 TCP t38
Fax (T.38) Note: Fax can also
use a m=audio media type

RFC 3362
RFC 4612

m=control Control media RFC 2327

 Negotiating Media Sessions 295

fi eld. For the media line example in Section 13.1.9, the following three attribute
fi elds could follow the media fi eld:

a=rtpmap:0 PCMU/8000
a=rtpmap:6 DVI4/16000
a=rtpmap:8 PCMA/8000
a=rtpmap:99 iLBC

Other attributes are shown in Table 13.3. Full details of the use of these
attributes are in the standard document [2]. The details of the iLBC (Internet
low bit rate) codec are in [5].

Attributes can be either session level or media level in SDP. Session level
means that the attribute is listed before the fi rst media line in the SDP. If this is
the case, the attribute applies to all the media lines below it. Media level means it
is listed after a media line. In this case, the attribute only applies to this particular
media stream. SDP can include both session level and media level attributes. If
the same attribute appears as both, the media level attribute overrides the session
level attribute for that particular media stream.

Note that the connection data fi eld can also be session level or media level.
There are three possibilities:

Table 13.3
SDP Attribute Values Defi ned in RFC 4566

Attribute Name
a=rtpmap: RTP/AVP list.
a=fmtp: Format transport.
a=ptime: Length of time in milliseconds for each packet.
a=maxptime: Maximum ptime.
a=cat: Category of the session.
a=keywds: Keywords of session.
a=tool: Name of tool used to create SDP.
a=orient: Orientation for whiteboard sessions.
a=type: Type of conference.
a=charset: Character set used for subject and information fi elds.
a=sdplang: Language for the session description.
a=lang: Default language for the session.
a=framerate: Maximum video frame rate in frames per second.
a=quality: Suggests quality of encoding.
a=direction: Direction for symmetric media.
a=inactive Inactive mode.
a=recvonly Receive only mode.
a=sendrecv Send and receive mode.
a=sendonly Send only mode.

296 SIP: Understanding the Session Initiation Protocol

A single • c= fi eld at the session level. This is the mos t common case.

A session level • c= fi eld and some media level c= fi elds.

Each media level fi eld with no session level stream.•

The same rules for attributes apply when both session and media level c=
fi elds are present; the media fi eld overrides the session level for that particular
media stream.

13.2 SDP Extensions

There are a number of SDP extensions that have been defi ned. Common ones
are summarized in Table 13.4.

The RTCP IP address and port attribute, a=rtcp [6] is covered in Chapter
10. The a=setup and a=connection attributes are used for connection oriented
media, such as TCP. Section 8.5.2 shows the use of these attributes in establish-
ing MSRP sessions. Another example is shown below of Binary Floor Control

Table 13.4
Common SDP Extensions

Attribute Name Reference
a=rtcp Port and IP address for RTCP [6] RFC 3605
a=mid
a=group

Media session identifi er and grouping of
media streams [7]

RFC 3388

a=setup
a=connection

Connection-oriented media using as TCP
transport [8]

RFC 4145

a=key-mgt Key management for MIKEY [9] RFC 4567
a=crypto Key management for SRTP [10] RFC 4568
a=fl oorctrl
a=confi d
a=userid
a=fl oorid

Binary Floor Control Protocol (BFCP)
information [11]

RFC 4583

a=fi ngerprint Connection-oriented media using TLS [12] RFC 4572
a=label Media label [13] RFC 4574
a=accept-types
a=accept-wrapped-types
a=max-size
a=path

Message Session Relay Protocol (MSRP)
information [14]

RFC 4975

a=ice-pwd
a=ice-ufrag
a=ice-lite
a=ice-mismatch
a=ice-options

Interactive connectivity establishment (ICE) [15] [15]

a=chatroom Chat room name for MSRP [16]

 Negotiating Media Sessions 297

Protocol (BFCP) [11] session establishment, which shows the use of many of
these SDP attributes. The fi rst m= media line is for a BFCP stream running over
TLS over TCP. The a=connection:new indicates that a new TCP connection
needs to be opened and that this endpoint will do a passive open (the other end-
point will do the active open). The a=fi ngerprint contains a fi ngerprint of the
certifi cate to be exchanged during the TLS handshake, as described in Section
14.6 the a=confi d and a=userid attributes contain the conference ID and user
ID of the user. The a=fl oorid attributes indicate that fl oor 1 is associated with
a=label:1, which is associated with the m=audio stream while fl oor 2 is associated
with a=label:2, which is associated with the m=video stream.

v=0
o=bob 2808844564 2808844564 IN IP4 130.43.2.1
s=
t=0 0
c=
m=application 54052 TCP/TLS/BFCP *
a=setup:passive
a=connection:new
a=fi ngerprint:SHA-1 AD:9B:B1:3F:72:18:00:3B:54:02:12:DF:3E:5F:49
:1B:19:E5:DC:AB
a=fl oorctrl:s-only
a=confi d:38921838776
a=userid:bob
a=fl oorid:1 m-stream:1
a=fl oorid:2 m-stream:2
m=audio 54026 RTP/AVP 0
a=label:1
m=video 54042 RTP/AVP 31
a=label:2

13.3 The Offer Answer Model

The use of SDP with SIP is given in the SDP offer answer RFC 3264 [17]. The
default message body type in SIP is application/sdp. The calling party lists the
media capabilities that they are willing to receive in SDP, usually in either an IN-
VITE or in an ACK. The called party usually lists their media capabilities in the 200
OK response to the INVITE. More generally, offers or answers may be in INVITEs,
PRACKs, or UPDATEs or in reliably sent 18x or 200 responses to these methods.

Because SDP was developed with scheduled multicast sessions in mind,
many of the fi elds have little or no meaning in the context of dynamic sessions
established using SIP. In order to maintain compatibility with the SDP protocol,
however, all required fi elds are included. A typical SIP use of SDP includes the
version, origin, subject, time, connection, and one or more media and attribute
fi elds is shown in Table 13.1. The subject and time fi elds are not used by SIP
but are included for compatibility. In the SDP standard, the subject fi eld is a

298 SIP: Understanding the Session Initiation Protocol

required fi eld and must contain at least one character, suggested to be s=- if there
is no subject. The time fi eld is usually set to t=0 0.

SIP uses the connection, media, and attribute fi elds to set up sessions be-
tween UAs. The origin fi eld has limited use with SIP. Usually, the session-id
is kept constant throughout a SIP session and the version is incremented each
time the SDP is changed. If the SDP being sent is unchanged from that sent
previously, the version is kept the same.

Because the type of media session and codec to be used are part of the con-
nection negotiation, SIP can use SDP to specify multiple alternative media types
and to selectively accept or decline those media types. The offer answer specifi ca-
tion, RFC 3264 [17], recommends that an attribute containing a=rtpmap: be
used for each media fi eld. A media stream is declined by setting the port number
to zero for the corresponding media fi eld in the SDP response. In the following
example, the caller Tesla wants to set up an audio and video call with two pos-
sible audio codecs and a video codec in the SDP carried in the initial INVITE:

v=0
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org
s=-
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0 8
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
m=video 49172 RTP/AVP 32
a=rtpmap:32 MPV/90000

The codecs are referenced by the RTP/AVP profi le numbers 0, 8, and 32.
The called party Marconi answers the call, chooses the second codec for the fi rst
media fi eld, and declines the second media fi eld, only wanting a PCM A-Law
audio session.

v=0
o=Marconi 2890844526 2890844526 IN IP4 tower.radio.org
s=-
c=IN IP4 200.201.202.203
t=0 0
m=audio 60000 RTP/AVP 8
a=rtpmap:8 PCMA/8000
m=video 0 RTP/AVP 32

If this audio-only call is not acceptable, then Tesla would send an ACK then
a BYE to cancel the call. Otherwise, the audio session would be established and
RTP packets exchanged. As this example illustrates, unless the number and order
of media fi elds is maintained, the calling party would not know for certain which
media sessions were being accepted and declined by the called party.

The offer/answer rules are summarized in the following sections.

 Negotiating Media Sessions 299

13.3.1 Rules for Generating an Offer

An SDP offer must include all required SDP fi elds (this includes v=, o=, s=, c=,
and t=). It usually includes a media fi eld (m=) but it does not have to. The media
lines contain all codecs listed in preference order. The only exception to this is if
the endpoint supports a huge number of codecs, the most likely to be accepted
or most preferred should be listed. Different media types include audio, video,
text, MSRP, BFCP, and so forth.

13.3.2 Rules for Generating an Answer

An SDP answer to an offer must be constructed according to these rules. The
answer must have the same number of m= lines in the same order as the an-
swer. Individual media streams can be declined by setting the port number to 0.
Streams are accepted by sending a nonzero port number. The listed payloads for
each media type must be a subset of the payloads listed in the offer. Note that for
dynamic payloads, the same dynamic payload number does not need to be used
in each direction. Usually, only a single payload is selected. More than one may
be selected, but endpoints doing this must be capable of dynamically switching
between them without signaling. Since many simple endpoints can only have
one codec running at a time, this should be avoided. One common exception
is to accept a media codec and also telephone-events (Section 12.7). This allows
the codec to be used except when a DTMF key is pressed when a telephone-
events payload is used.

13.3.3 Rules for Modifying a Session

Either party can initiate another offer/answer exchange to modify the session.
When a session is modifi ed, the following rules must be followed. The origin (o=)
line version number must either be the same as the last one sent, which indicates
that this SDP is identical to the previous exchange, or it may be incremented by
one, which indicates new SDP that must be parsed. The offer must include all
existing media lines and they must be sent in the same order. Additional media
streams can be added to the end of the m= line list. An existing media stream can
be deleted by setting the port number to 0. This media line must remain in the
SDP in this and all future offer/answer exchanges for this session. For an existing
media stream, any aspect can be changed.

13.3.4 Special Case—Call Hold

One party in a call can temporarily place the other on hold (i.e., suspending the
media packet sending). This is done by sending an INVITE with an identical SDP
to that of the original INVITE but with a=sendonly attribute present. The call is

300 SIP: Understanding the Session Initiation Protocol

made active again by sending another INVITE with the a=sendrecv attribute
present. (Note that older RFC 2543 compliant UAs may initiate hold using
c=0.0.0.0.) For further examples of SDP use with SIP, see the SDP offer answer
examples document [18].

13.4 Static and Dynamic Payloads

The payload type (PT) is used to identify the media codec in the media line of
SDP as described in Section 13.1.10. This same payload type is also carried in
individual RTP media packets sent during the media session. RFC 3551 defi nes
some static payload types. These payloads are considered static because a given
payload number defi ned in the specifi cation always refers to that particular co-
dec. For example, PT 0 for audio always means G.711 PCM codec. The use of
a=rtpmap attribute for static payloads is optional, although it is considered good
practice to include it. However, static payloads are no longer allocated by the
IETF. Instead, all new codecs must make use of dynamic payload types. Dynamic
payload types are in the range of 96–127. Payloads in this range do not refer to
a particular codec; instead the required a=rtpmap attribute must be used to indi-
cate the payload. There are a number of rules associated with the use of dynamic
payloads in the SDP offer answer exchange. They are:

Dynamic payloads must be negotiated with SDP.•

The • a=rtpmap attribute is mandatory.

Dynamic payload numbers cannot be redefi ned within a session. •

Dynamic payload numbers do not need to be the same in both directions •
of a bidirectional session.

The last rule means that it is possible that payload 97 means one codec in
one direction but another codec in a different direction.

13.5 SIP Offer Answer Exchanges

The main offer answer exchanges with SIP are in the INVITE/200 OK exchange
or in the 200 OK/ACK exchange, if the INVITE did not contain an offer. There are
other offer/answer modes, summarized in Table 13.5, which is taken from [19].
Support of the specifi cation listed implies that the user agent supports this ad-
ditional offer/answer exchange mode.

 Negotiating Media Sessions 301

13.6 Conclusion

This chapter has covered the use of SDP in the Offer/Answer Protocol to nego-
tiate the establishment and modifi cation of media sessions. Core SDP and the
Offer/Answer Protocol allow basic media sessions to be established. Some SDP
extensions are required for more advanced media setup and control.

13.7 Questions

Q13.1 Create an SDP offer for Bob offering audio and video with the
 following audio codecs: iLBC, GSM and video codecs: MPV, and
 H.261. Bob wants to receive audio media on port 60322, video on
 port 60324, and RTCP on port 60326. Bob would prefer a pack-
 etization time of 30 ms for audio.

Q13.2 Create an SDP answer for Alice to Bob’s offer from the previous
 question, accepting video but declining audio. You can choose
 whichever ports and codecs you like.

Q13.3 Find the three syntax errors in this SDP example.
v=0
o=alice 289084526 28904529 IP4 231.3.43.1
s=-
c=IN IP4 231.3.43.1
m=audio 49170 RTP/AVP 0 97 98
a=rtpmap:97 iLBC/8000

Q13.4 Create an SDP offer by Alice that could have resulted in the
 following SDP answer.

v=0
o=bob 2808844564 2808844564 IN IP4 130.43.2.1
s=-
t=0 0

Table 13.5
SIP Offer/Answer Exchange Modes

Offer Answer Specifi cation
INVITE 2xx to INVITE RFC 3261

2xx to INVITE ACK RFC 3261
INVITE Reliable 1xx to INVITE RFC 3262

Reliable 1xx to INVITE PRACK RFC 3262
PRACK 200 to PRACK RFC 3262
UPDATE 2xx to UPDATE RFC 3311

Source: [19].

302 SIP: Understanding the Session Initiation Protocol

m=audio 49174 RTP/AVP 0
c=IN IP4 130.43.2.1
a=rtpmap:0 PCMU/8000
a=recvonly
m=text 49176 RTP/AVP 96
c=IN IP4 130.43.2.2
a=rtpmap:96 t140/1000

Q13.5 Indicate the IP address and port number associated with each of
 the three media streams.

v=0
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org
s=-
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0 8
c=IN IP4 101.102.103.106
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
m=video 49172 RTP/AVP 34
a=rtpmap:34 H263/90000
m=video 53132 RTP/AVP 26
c=IN IP4 100.102.103.4
a=rtpmap:26 JPEG/90000

Q13.6 Describe in words the offer and answer in the SDP below.

 Offer:
v=0
o=alice 2890844526 2890844526 IN IP4 host.atlanta.example.com
s=
c=IN IP4 host.atlanta.example.com
t=0 0
m=audio 49170 RTP/AVP 0 8 97
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:97 iLBC/8000
m=video 51372 RTP/AVP 31 32
a=rtpmap:31 H261/90000
a=rtpmap:32 MPV/90000

 Answer:
v=0
o=bob 2808844564 2808844564 IN IP4 host.biloxi.example.com
s=
c=IN IP4 host.biloxi.example.com
t=0 0
m=audio 49174 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=video 49172 RTP/AVP 32
c=IN IP4 otherhost.biloxi.example.com
a=rtpmap:32 MPV/90000

 Negotiating Media Sessions 303

Q13.7 Find two errors in the offer/answer exchange:

 Offer:
v=0
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org
s=-
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0 8
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
m=video 49172 RTP/AVP 32
a=rtpmap:32 MPV/90000

 Answer:
v=0
o=Marconi 2890844526 2890844526 IN IP4 tower.radio.org
s=-
c=IN IP4 200.201.202.203
t=0 0
m=audio 60000 RTP/AVP 98
a=rtpmap:98 iLBC/8000

Q13.8 Is it permissible to defi ne payload 98 as iLBC codec in one
 direction and payload 97 as iLBC in the other direction?

Q13.9 A user agent supports RFC 3261 and RFC 3262, but does not
 support RFC 3311. Which offer/answer modes does this user agent
 support? Which is likely to be the most commonly used?

Q13.10 For the offer/answer exchange below, generate a new offer answer
 exchange between Marconi and Tesla where Marconi puts the
 audio stream on hold.

 Offer:
v=0
o=Tesla 2890844526 2890844526 IN IP4 lab.high-voltage.org
s=-
c=IN IP4 100.101.102.103
t=0 0
m=audio 49170 RTP/AVP 0 8
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
m=video 49172 RTP/AVP 32
a=rtpmap:32 MPV/90000

 Answer:
v=0
o=Marconi 2890844526 2890844526 IN IP4 tower.radio.org
s=-
c=IN IP4 200.201.202.203
t=0 0
m=audio 60000 RTP/AVP 8
a=rtpmap:8 PCMA/8000
m=video 0 RTP/AVP 32

304 SIP: Understanding the Session Initiation Protocol

References

Handley, M., and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, April [1]
1998.

Handley, M., C. Perkins, and E. Whelan, “Session Announcement Protocol,” RFC 2974, [2]
October 2000.

Handley, M., V. Jacobson, and C. Perkins, “SDP: Session Description Protocol,” RFC [3]
4566, July 2006.

Mills, D., “Network Time Protocol (Version 3): Specification, Implementation, and Analy- [4]
sis,” RFC 1305, March 1992.

Duric, A., and S. Andersen, “Real-Time Transport Protocol (RTP) Payload Format for [5]
Internet Low Bit Rate Codec (iLBC) Speech,” RFC 3952, December 2004.

Huitema, C., “Real Time Control Protocol (RTCP) Attribute in Session Description Pro- [6]
tocol (SDP),” RFC 3605, October 2003.

Camarillo, G., et al., “Grouping of Media Lines in the Session Description Protocol (SDP),” [7]
RFC 3388, December 2002.

Yon, D., and G. Camarillo, “TCP-Based Media Transport in the Session Description Pro- [8]
tocol (SDP),” RFC 4145, September 2005.

Arkko, J., et al., “Key Management Extensions for Session Description Protocol (SDP) and [9]
Real Time Streaming Protocol (RTSP),” RFC 4567, July 2006.

Andreasen, F., M. Baugher, and D. Wing, “Session Description Protocol (SDP) Security [10]
Descriptions for Media Streams,” RFC 4568, July 2006.

Camarillo, G., “Session Description Protocol (SDP) Format for Binary Floor Control [11]
Protocol (BFCP) Streams,” RFC 4583, November 2006.

Lennox, J., “Connection-Oriented Media Transport over the Transport Layer Security [12]
(TLS) Protocol in the Session Description Protocol (SDP),” RFC 4572, July 2006.

Levin, O., and G. Camarillo, “The Session Description Protocol (SDP) Label Attribute,” [13]
RFC 4574, August 2006.

Campbell, B., R. Mahy, and C. Jennings, “The Message Session Relay Protocol (MSRP),” [14]
RFC 4975, September 2007.

Rosenberg, J., “Interactive Connectivity Establishment (ICE): A Protocol for Network [15]
Address Translator (NAT) Traversal for Offer/Answer Protocols,” draft-ietf-mmusic-ice-19
(work in progress), October 2007.

Niemi, A., M. Garcia-Martin, and G. Sandbakken, “Multi-Party Chat Using the Message [16]
Session Relay Protocol (MSRP),” draft-ietf-simple-chat-03 (work in progress), October
2008.

 Negotiating Media Sessions 305

Rosenberg, J., and H. Schulzrinne, “An Offer/Answer Model with Session Description [17]
Protocol (SDP),” RFC 3264, June 2002.

Johnston, A., and R. Sparks, “Session Description Protocol (SDP) Offer/Answer Examples,” [18]
RFC 4317, December 2005.

Sawada, T., and P. Kyzivat, “SIP (Session Initiation Protocol) Usage of the Offer/Answer [19]
Model,” Internet-Draft, draft-ietf-sipping-sip-offeranswer-10 (work in progress), January
2009.

307

14
SIP Security
SIP security is a large and complicated topic, and there are entire books on the
topic. This chapter will introduce the basics of security and apply them to the
SIP protocol and common applications such as establishing secure multimedia
sessions. A number of potential attacks on SIP and SIP-related protocols will
also be discussed. While the discussion in this chapter will focus on protocol
security, it is important to realize that security is an all-encompassing area that
needs attention at all levels. For example, besides protocol security, there is physi-
cal security, general server security, operating system security, local area network
security, password security, and so on. For a detailed analysis and description of
SIP security, see [1].

14.1 Basic Security Concepts

Three important security concepts will be briefl y introduced here: authentica-
tion, confi dentiality, and integrity protection. Authentication is the proof of
identity of a party in communication. Authentication is usually performed in a
protocol by use of a credential: a shared secret that is known by both parties but
not known to others. After authentication is performed, authorization policy
can be performed. For example, consider a user attempting to subscribe to the
presence of another user. Once authentication has been performed and the user
knows who it is that is requesting the presence subscription, the subscription can
be authorized or denied, and the level of detail of presence information to be
shared can be determined and implemented.

Confi dentiality is about keeping a communication exchange private. This
privacy usually applies to the content of the information exchanged; that is,
a third party should not be able to inspect messages, read text, view presence
information, or listen in to exchanged media. However, a third party may be

308 SIP: Understanding the Session Initiation Protocol

able to determine that two users are exchanging IP packets, and hence make
some deductions about users exchanging information. Approaches that attempt
to conceal and obfuscate the fact that two users are even communicating over IP
are much more diffi cult and will not be discussed in this book.

Integrity protection is the ability to determine that a message in a commu-
nication has not been modifi ed or tampered with between the creator and the
viewer. Note that integrity is only useful when combined with authentication
Knowing that a packet has not been modifi ed since it was sent by an attacker is
not a very useful property!

14.1.1 Encryption

Cryptography is the science of encryption. There are excellent historical texts [2]
and technical overviews [3]. Here, only a very high-level view will be provided.

Encryption is a common tool used to provide confi dentiality over the In-
ternet. Encryption provides confi dentiality by turning plain text into ciphertext
using a key and a mathematical algorithm, known as a cipher. Typically, while
the encryption algorithm may be known, the key is kept secret. The plaintext is
the input to the encryption algorithm, which could be a protocol message, text
message, or media samples. The ciphertext is the output, and appears to essen-
tially be random numbers, white noise, or gibberish, which provide no informa-
tion to a third party monitoring the ciphertext. Without knowing the key, it is
very diffi cult to turn the ciphertext back into plaintext. The key length is chosen
to be large so that it is diffi cult for an attacker to simply try every possible key
to decrypt the message. This is known as a brute force attack. For example, an
early encryption algorithm DES, which used a 56 bit key, was considered secure
when it was fi rst used on the Internet. Today, however, a brute force attack on
this is feasible, as all possible keys can be tried in a relatively short period of time.
Most encryption algorithms today use much longer keys in the range of 128
bits to 4,096 bits, making this type of attack currently infeasible. As advances in
computing continue, it is likely that longer key lengths will be needed to provide
adequate levels of security.

There are two common encryption algorithms used today on the Internet,
and they relate to the way in which keys are used to encrypt and decrypt the
data. Symmetric key encryption uses the same key to encrypt and decrypt. This
is shown in Figure 14.1. Note that the encryption and decryption algorithms
are different, but related mathematically. Some common examples of symmetric
ciphers include Advanced Encryption Standard (AES) [4], Triple Data Encryp-
tion Standard (3DES) [5], Rivest Cipher 4 (RC4) [6], and so fourth. Symmetric
key encryption requires a key management protocol to securely distribute the
secret key among all parties in a communication. If this key is not kept secret,
no confi dentiality will be provided. This type of encryption is commonly used

 SIP Security 309

today for media encryption such as in the Secure Real-Time Transport Protocol
(SRTP), discussed in Section 14.7.2.

14.1.2 Public Key Cryptography

Public key cryptography, also known as asymmetric key cryptography, uses one
key to encrypt and a different key to decrypt. This approach uses a pair of keys,
a public key, which is freely available and known to others, and a private key,
which is kept secret. The private and public keys have a mathematical relation-
ship between them, but it is computationally infeasible to derive the private key
from the public key. Consider two users Alice and Bob. Alice wants to send a
message to Bob that is encrypted so only Bob can decrypt it. Alice creates the
message, then encrypts it using Bob’s public key. Bob’s public key could be deter-
mined by Alice from a directory listing or database, or having it from a previous
exchange with Bob. The resulting message can only be decrypted using Bob’s
private key. Since this key is only known to Bob, only Bob can decrypt the mes-
sage. This is shown in Figure 14.2. An example of public key encryption is Rivest
Shamir Adellmann algorithm (RSA) [7]. This type of encryption is commonly
used on the Internet today with SIP as part of transmission layer security (TLS),
discussed in Section 14.3.2.

14.1.3 Diffi e-Hellman Cryptography

Diffi e-Hellman [8] is another type of public key cryptography. It is a very clever
scheme that allows two parties to generate the same secret key independently.
This is done by exchanging a few parameters between the parties, but this secret
key is never transmitted from one party to the other. A third party able to view
all the messages exchanged is still not able to generate the same secret key. Diffi e-
Hellman is defi ned for Internet protocols in [9] and is used in key agreement
protocols such as ZRTP [10], discussed in Section 14.7.5.

14.1.4 Message Authentication

A common fi rst step to provide authentication of messages is to use a message
digest function. A message digest is a one-way mathematical function that pro-

Figure 14.1 Symmetric key cryptography.

310 SIP: Understanding the Session Initiation Protocol

duces a fi xed length output from a variable length input string. MD5 (message
digest 5) and SHA-1 (secure hash 1) are examples of message digest algorithms.
There are two important properties of a message digest. The fi rst is that it be
very diffi cult to reverse (i.e., determine the input string based knowing only the
message digest output). The other is for it to be diffi cult to generate two input
strings that have the same output message digest. This condition is known as a
hash collision and is a method used to try to attack message digest algorithms.

A keyed hashed message authentication code (HMAC) is a message digest
function followed by encryption. For example, HMAC-SHA-1 uses the SHA-1
message digest followed by encryption, as shown in Figure 14.3. HMACs can
provide message authentication—if both the sender and receiver know the secret
key, the sender can calculate the HMAC of a message and send it with the mes-
sage. The receiver can then do its own calculation of the HMAC using the secret
key. If the two HMACs match, the message has not been changed or modifi ed
since the sender calculated the HMAC. If the key used is the private key of a
public key pair, the HMAC can be used as a digital signature. A receiver can
verify that only the holder of the private key could have generated and signed
this message.

14.1.5 Digital Certifi cates

A digital certifi cate is a data object that makes assertions about identity. A com-
mon data format is known as X.509 [11]. Certifi cates utilize a chain of trust in
which a certifi cate authority issues and signs a certifi cate and the user employs
the certifi cate to prove that a particular public key is associated with an identity.
By proving they know the private key associated with the public key of the cer-
tifi cate, the user can prove that they have the identity indicated in the certifi cate.

Figure 14.2 Public key cryptography.

Figure 14.3 HMAC.

 SIP Security 311

There are three important issues to be considered when a certifi cate is used for
authentication:

Is the certifi cate trustworthy? For example, Web browsers have a list 1.
of CAs they inherently trust, and administrators can add additional
trusted CAs. A browser will only trust a certifi cate issued and signed by
a CA that is trusted. Otherwise, anyone could make up a certifi cate and
use it for authentication.

Is the certifi cate valid? The certifi cate signature can be validated using 2.
the CA public key, which needs to be stored locally in the browser.
Also, the certifi cate can be checked for revocation or replacement by
consulting a certifi cate revocation list (CRL) or another certifi cate vali-
dation protocol. A certifi cate also must be checked to ensure that it has
not expired.

What identity assertion does the certifi cate make? In its simplest form, 3.
the certifi cate will assert an identity, such as a DNS name, or a business
name or address. A certifi cate issued by a trustworthy CA that is valid
can only be used for authentication if the identity assertion matches the
context in which the certifi cate is used. For example, if a Web browser
opens a secure Web (https) connection for example.com, and during the
TLS handshake receives a certifi cate asserting the identity of the Web
server as example.net, authentication has not succeeded.

While this section has discussed certifi cates in terms of their common us-
age in Web browsing, the SIP usage of certifi cates is similar to the Web usage,
and is discussed in Section 14.4.2.

14.2 Threats

A security analysis of a protocol or application is usually done by fi rst compiling
a list of threats, then examining how security mechanisms can be used to defend
against them. This section will briefl y discuss a few of them for SIP. With SIP
and Internet communications, two of the biggest threats are denial of service
(DOS) and man in the middle (MitM).

Denial of service is an attack by a third party who tries to interrupt service of
a protocol or a service. For example, a simple denial of service attack is a packet
fl ood, where an attacker sends a fl ood of IP packets, which overloads the tar-
get. This type of DOS attack is not specifi c to SIP or Internet communication.
When launched from multiple hosts, the attack is called a distributed denial of
service attack (DDOS).

312 SIP: Understanding the Session Initiation Protocol

A man in the middle (MitM) attack is when an attacker is in the middle of
communications between two parties and is able to modify any message, delete
any message, and inject any message into the communication. A MitM attack is
diffi cult to launch, although it is possible if an attacker has control of a router or
wireless hub that packets are routing through. A MitM attacker can introduce
false messages, change parts of messages, and introduce new messages into the
session. A MitM attacker can usually prevent communication from taking place,
and can hijack or misdirect communication.

Theft of service is when an attacker uses resources that would normally be
chargeable or have limitations. For example, calls to a PSTN gateway usually in-
volve changes, so an attacker presenting false authentication credentials to place
calls to the PSTN is a theft of service attack.

Eavesdropping is an attack that involves monitoring or listening in to a ses-
sion. This could be the signaling, indicating who is communicating with whom,
or it could be the actual conversation itself. As such, this can be a signaling (SIP)
or media (RTP) attack. Impersonation is pretending to be someone else in a com-
munication. An attacker could pretend to be either a SIP user or a server, de-
pending on the attack. DNS poisoning is when an attacker modifi es or gives false
DNS records for the purpose of disrupting communications. Credential theft is
when an attacker steals the credentials of a user. These credentials could then be
used in an impersonation attack or theft of service attack, for example. Redirec-
tion or hijacking is when an attacker redirects a call or session. Session disruption
is when an attacker attempts to disrupt a session by injecting false or misleading
packets or messages. A replay attack is when an attacker stores and then resends
valid packets or messages in a session in an attempt to disrupt a session.

Most of these threats apply regardless of whether SIP is used to establish a
session or to exchange presence or instant messaging information. The next sec-
tion will introduce some security protocols that SIP can use to protect against
these threats.

14.3 Security Protocols

This section will cover common security protocols including IPSec, TLS, DNS-
Sec, and S/MIME.

14.3.1 IPSec

IPSec or IP security [12] is a protocol that operates at the IP layer of the protocol
stack. As a result, it works with any transport protocol above it in the protocol
stack, such as TCP and UDP, and protocols such as SIP and RTP run over it
without any changes. In general, an IPSec session needs to be established be-
tween hosts on the Internet. Sometimes, this session is called a virtual private

 SIP Security 313

network or VPN. IPSec can provide just authentication and integrity protection,
or confi dentiality and authentication. Key management can be a diffi cult issue
with IPSec since it needs symmetric keys in both hosts. IPSec is commonly used
between hosts or between gateways where there is signifi cant traffi c exchanged.
For example, it is commonly used between an enterprise and a service provider,
or between enterprise locations. The fact that a single IPSec VPN tunnel can
protect both SIP signaling and RTP media for multiple sessions and users is a
distinct advantage. However, for general SIP communications, which might go
to multiple hosts, establishing multiple VPNs to all hosts prior to sending SIP or
RTP is diffi cult. Also, since IPSec is commonly done in the OS or kernel layer,
SIP and other applications often are unaware if they are riding on top of IPSec or
if IPSec has been disabled or failed to be setup. As a result, there are advantages
for security at layers above the IP layer, as in the next protocol.

14.3.2 TLS

Transmission layer security (TLS) [13] is a security protocol that operates at
a shim layer between the application layer and the TCP transport layer. The
current version of TLS is 1.1, although versions 1.0 [14] and earlier versions,
known as secure sockets layer (SSL), are also sometimes used. TLS provides con-
fi dentiality, authentication, and integrity protection. Because it operates above
the transport layer, applications, such as SIP, are aware of whether a connection
has been successfully secured with TLS or not. TLS is widely used on the In-
ternet today for secure Web browsing. TLS is actually two protocols, one being
a handshake protocol used to setup connections, perform authentication, and
generate a shared secret. The other protocol is the transport protocol, which uses
the shared secret for bulk data encryption. The handshake protocol usually uses
digital certifi cates for authentication while the transport protocol uses a symmet-
ric cipher such as AES or 3DES to encrypt the data. TLS is often used to secure
SIP on a hop by hop basis, as will be described in Section 14.4.2. Datagram TLS
or DTLS [15] is a version of TLS that uses UDP transport and may be used to
secure SIP in the future.

14.3.3 DNSSec

DNS security (DNSSec) [16] is a security protocol, which provides authentica-
tion and integrity to DNS queries. DNSSec adds four new resource records listed
in Table 14.1. Today, nearly all users of DNS employ it without any security, and
must trust DNS servers to give correct answers to queries. In the future when
resolvers and servers support DNSSec, a user of DNS will be able to validate
responses received. However, DNSSec only works if the entire DNS hierarchy is
signed, which represents a signifi cant deployment hurdle. So far, DNSSec is only
used in limited environments.

314 SIP: Understanding the Session Initiation Protocol

14.3.4 Secure MIME

Secure MIME or S/MIME (secure multipart Internet mail exchange) is a secu-
rity protocol developed to secure e-mail. It provides authentication, integrity,
and confi dentiality services on an end-to-end basis. S/MIME usually uses digital
certifi cates for keying, and the management of these certifi cates in endpoints
makes deployment diffi cult.

14.4 SIP Security Model

This section will introduce the security model for SIP. Security begins with au-
thentication, and there are a number ways a SIP message can be authenticated.
One way is if it is received over an IPSec or VPN tunnel that has previously
been authenticated. Another method is if it is received over a TLS connection
that has been properly authenticated. The method by which TLS can provide
SIP authentication will be discussed in Section 14.4.2. SIP messages can also
include a digital signature, done using S/MIME. In addition, SIP can utilize
HTTP digest authentication for a challenge/response authentication mecha-
nism. This approach, discussed in Section 14.4.1, uses a simple shared secret for
authentication.

14.4.1 SIP Digest Authentication

SIP digest authentication is based on HTTP digest [17]. A SIP server or UA
can challenge a UA to resend a request proving knowledge of a shared secret.
The shared secret is never sent in the SIP message, but instead a message digest
5 (MD5) hash is sent instead. This challenge can be done statelessly to prevent
denial of service attacks. An example is shown in Figure 14.4. The initial INVITE
receives a 401 Unauthorized response, which contains a WWW-Authenticate head-
er fi eld. The UA sends an ACK to complete the SIP transaction, then resends the
INVITE with an Authorization header fi eld. Usually, the same Call-ID and From
tag is used, but a different branch ID and incremented CSeq. The Authorization
header fi eld contains the credential. If authentication succeeds, the INVITE is
processed or forwarded. Note that a 401 response is usually sent by a UAS such

Table 14.1
DNSSec Resource Records

RRSIG Resource record signature
DNSKEY DNS public key
DS Delegation signer
NSEC Next secure record

 SIP Security 315

as another UA or a redirect server or registrar server. Figure 14.5 shows a proxy
authentication challenge with a 407 response containing a Proxy-Authenticate
header fi eld. The resent INVITE contains a Proxy-Authorization header fi eld.

Although HTTP digest has a mode that provides integrity protection, few
SIP UAs and proxies implement this. As a result, requests authenticated using
digest are susceptible to hijacking and redirection. For example, a REGISTER that
has passed a digest authentication challenge could have the Contact URI modi-
fi ed by an attacker, resulting in the hijacking of all incoming INVITEs. Alterna-
tively, a digest authenticated INVITE could have the SDP IP addresses changed so
that media is sent to another party.

Figure 14.4 SIP authentication using digest.

Figure 14.5 Proxy authentication using digest.

316 SIP: Understanding the Session Initiation Protocol

For mutual authentication, the Authentication-Info header fi eld can be
used, although this header fi eld is rarely supported in UAs. Also, this approach
relies on a shared secret in the server. Since a server can support thousands of
clients, this approach does not scale well.

Also note that digest can only be used to authenticate requests. Responses
cannot be challenged so they cannot be authenticated using digest. Also, ACK
and CANCEL messages cannot be authenticated using digest since they cannot be
challenged.

It is perhaps surprising in light of these shortcomings that often SIP digest
is the only authentication used in some SIP deployments and environments.

14.4.2 SIP Authentication Using TLS

SIP can use TLS for authentication, confi dentially, and integrity protection in
a similar way that HTTP uses TLS for secure Web browsing. The registered
SIP port for TLS is 5061, although using NAPTR and SRV records, other port
numbers can be used. A client opens a TLS connection on this port and can
request the server produce a certifi cate. If the certifi cate is signed by a certifi cate
authority recognized by the client, the certifi cate can be used to authenticate the
public key of the server. By producing a signature using the associated private
key during the TLS handshake, the server can be authenticated. It is also possible
for the server to request a certifi cate from the client. However, unless the client is
another proxy server, it is not likely a SIP UA will have a certifi cate. As a result,
TLS typically only provides one-way authentication. A digest challenge by the
server can be done over the TLS connection, which provides a level of mutual
authentication.

A SIP message can be authenticated if it is received over an authenticat-
ed TLS connection. In particular, if the domain of the From URI matches the
 subjectAltName (SAN) in the certifi cate presented during the TLS handshake,
the request can be considered authenticated. Figure 14.6 shows how this can be
done. TLS also provides integrity protection on a hop-by-hop basis. When a TLS
connection is used for routing a SIP response, the response can also be authenti-
cated over this single hop.

However, TLS cannot provide authentication over more than one hop.
Consider the examples of Figure 14.4 and 14.5 where there are two SIP hops
between the UAs. Each UA can only examine the certifi cate of the proxy it con-
nects to. On receipt of a request, a UA can verify by examining the Via header
fi elds that TLS has been used on every hop, but it must trust these Via header
fi elds are accurate, and that each hop proxy has properly authenticated the con-
nection and the certifi cate.

There are two types of connection reuse with SIP. One is sending a re-
sponse over the same connection as the request. The other is reusing an existing

 SIP Security 317

connection for a new SIP transaction or dialog. For example, in Figure 14.6, the
TLS connection opened by the client for registration is reused by the server to
send an incoming INVITE. Two work-in-progress SIP extensions relating to this
are [18] and [19].

14.4.3 Secure SIP

Secure SIP or SIPS is a URI scheme for SIP that requires the use of TLS for every
hop. As such, a proxy receiving a request with a SIPS Request-URI must either
forward the request over a TLS connection or return an error message. This addi-
tion to SIP security has unfortunately seen little actual deployment due to some
confusion in the specifi cation and lack of support for TLS in some SIP systems
and service providers. A working document describing clarifi cations and correc-
tions in [20] may rectify this in the future.

14.4.4 Identity

Identity is another major issue in Internet communications that will be briefl y
covered in this section. In SIP, an identity is a SIP or SIPS URI. The identity of
the originator of a SIP request will be the From header fi eld URI. Note that this
is not the same as the Contact URI, which may be the identity of the device or
endpoint rather than the user. A response to a request in SIP does not carry the
identity of the responder, as the To header fi eld URI was set by the originator of

Figure 14.6 SIP authentication using TLS.

318 SIP: Understanding the Session Initiation Protocol

the request and may not be the actual destination of the request (due to forward-
ing, redirection, and so forth).

Another issue with SIP identity is that sometimes the From URI set by
the initiator may not be the appropriate identity for a request. For example,
a SIP user may have a SIP identity (SIP URI) and also a PSTN identity (tel
URI). When the request routes over SIP, the SIP identity is the correct one to be
presented. However, if the call routes over the PSTN, the PSTN identity is the
correct one to assert.

Another issue is that a UA may intentionally or unintentionally set an
incorrect identity in a From URI. As such, there is no protocol way for this to
be discovered or detected. This could be done within a domain in the following
way. A proxy for the example.com domain could challenge all SIP requests sent
by UAs in the example.com domain. This would make this proxy a default out-
bound proxy for these UAs. After the authentication challenge, the proxy could
compare the authenticated identity (username and password of the digest chal-
lenge) with the From header fi eld URI. If they did not match, the request could
be rejected with a 400 Bad Request response. The proxy would only forward
requests in which they matched. If a proxy in another domain trusted that the
proxy in the other domain did this authentication and checking, the From URI
could be trusted and treated as an authenticated identity.

A solution for these identity issues led to the development of the
 P-Asserted-Identity header fi eld. This header fi eld, which may carry one SIP or
SIPS URI and one tel URI is inserted by a proxy after authentication, and may
be different from the From URI. It is commonly used in PSTN interworking sce-
narios. However, this approach still requires proxies to trust each other. A better
extension is described in the next section.

14.4.5 Enhanced SIP Identity

The enhanced SIP identity [21] extension attempts to improve on the
 P-Asserted-Identity by providing a cryptographically verifi able SIP identity as-
sertion. The approach was developed specifi cally for the interdomain intercon-
nection context. A new SIP header fi eld, Identity, is inserted by a proxy server
when forwarding a request. The proxy fi rst authenticates the request to make
sure it is being sent by the identity in the From header fi eld. If it was, specifi c parts
of the request are signed and the signature included in the Identity header fi eld.
An Identity-Info header fi eld is used to provide a link to the certifi cate used
to sign the message. As such, a small number of proxy servers within a domain
using a small number of CA-signed certifi cates can provide verifi able identity
assertions for many users in the domain.

When a UA or proxy receives a request containing the Identity and
 Identity-Info header fi elds, the UA or proxy fi rst fetches the certifi cate of the

 SIP Security 319

proxy that signed the request. After the certifi cate is validated, the signature can
be checked. If the signature validates, the From URI can be treated as an authen-
ticated identity. This exchange is shown in Figure 14.7.

The parts of a SIP message that are protected by the identity signature are
listed in Table 14.2.

14.5 SIP Certifi cate Service

The combination of certifi cates and TLS provides good security for SIP. How-
ever, there is signifi cant diffi culty in managing certifi cates in endpoints. These
issues include:

Figure 14.7 Enhanced SIP identity call fl ow.

Table 14.2
Parts of a SIP Message Protected by Enhanced SIP Identity

To URI Original destination of the request.
From URI Identity of the sender of the request.
Call-ID Uniquely identifi es the particular dialog.
CSeq Uniquely identifi es the transaction within the dialog.
Date Used to prevent replay attacks.
Contact URI Identifi es the device used.
Message body Identifi es the SDP, message, or other end-to-end SIP message content.

320 SIP: Understanding the Session Initiation Protocol

How to issue certifi cates in UAs without incurring typical costs of com-1.
mercial CA-signed certifi cates. While it is reasonable to have a CA-
signed certifi cate in a few proxies and servers in a domain, having them
in every UA is cost prohibitive.

How to install and manage certifi cates in endpoints. Getting a user-2.
name and password installed on a SIP phone or soft client is easy, but
securely importing a certifi cate is diffi cult.

How users of UA certifi cates can validate the certifi cates if they are not 3.
commercial CA-signed certifi cates. Without this validation step, their
use is limited.

A SIP user of multiple devices will need to synchronize private keys 4.
across multiple devices. When keys are reissued, the new private key
needs to be distributed in real time to all devices of the user.

An approach to solve this problem is a SIP certifi cate service for SIP [22].
This approach uses SIP to store, retrieve, and validate certifi cates. Each of the
issues has a solution in this approach.

The approach makes so-called self-signed certifi cates usable. A self-1.
signed certifi cate does not incur any per year or per user costs. How-
ever, the approach relies on enhanced SIP identity, so proxy servers in
the domain will need to have a CA-signed certifi cate.

The approach defi nes how a certifi cate can be retrieved using SIP. A 2.
SUBSCRIBE to the SIP certifi cate server results in a NOTIFY, which con-
tains the certifi cate in a message body. In addition, the subscription
allows any changes or updates to the certifi cate to be applied in real-
time, via an additional NOTIFY. When used to store private keys, the key
can be encrypted by a pass phrase, so that only the user can utilize the
private key even if the certifi cate server has been compromised.

A self-signed SIP certifi cate can be validated not by the certifi cate itself 3.
but by the method the certifi cate was fetched. In particular, when deliv-
ered in a NOTIFY that has an Identity header fi eld that can be validated,
the public key in the certifi cate can be trusted.

Multiple devices utilized by a user can all subscribe to the certifi cate 4.
server of the user. If one device generates a new public/private key pair
and hence a new certifi cate, a PUBLISH is sent to the server, which then
sends NOTIFYs to the other devices. As a result, the devices can all syn-
chronize on the same certifi cate.

Figure 14.8 shows a call fl ow showing certifi cate management UA1 and
UA2 are associated with the same user, so they use the same public and private

 SIP Security 321

keys. UA3 is another user who only accesses the user’s public key. An example
NOTIFY is shown here:

NOTIFY alice@atlanta.example.com SIP/2.0
Subscription-State: active; expires=7200
....
From: <sip:bob@biloxi.example.com>;tag=1234
Identity: “NJguAbpmYXjnlxFmlOkumMI+MZXjB2iV/NW5xsFQqzD/”
Identity-Info: <https://atlanta.example.com/cert>;alg=rsa-sha1

Event: certifi cate
Content-Type: application/pkix-cert
Content-Disposition: signal

< certifi cate data >

An example PUBLISH is shown here:

 PUBLISH sips:alice@atlanta.example.com SIP/2.0
 ...
 Event: credential
 Content-Type: multipart/mixed;boundary=boundary
 Content-Disposition: signal

Figure 14.8 SIP certifi cate service.

322 SIP: Understanding the Session Initiation Protocol

 --boundary
 Content-ID: 123
 Content-Type: application/pkix-cert

 < Public certifi cate for Alice >
 --boundary
 Content-ID: 456
 Content-Type: application/pkcs8

 < Private Key for Alice >

 --boundary

14.6 Media Security

While SIP security relates to authentication, confi dentiality, and integrity pro-
tection of the signaling information, the ability to establish secure media sessions
is a related and equally important issue, which is discussed in this section. While
potentially each media type can have unique security issues, they can be analyzed
in two groups: non-RTP media and RTP media. To secure non-RTP media, the
security challenge is how to establish a security protocol connection using SIP.
For RTP media, the challenge is how to signal and key secure RTP or SRTP.
These will be discussed in the following sections.

14.6.1 Non-RTP Media

The two most common security protocols for IP are IPSec and TLS as discussed
in Sections 14.3.1 and 14.3.2. It is possible to use SIP to establish both of these
protocols, although only the approach for TLS has been fully standardized by the
IETF. The TLS approach is defi ned in [23] and is an extension of the approach
used to establish connection-oriented media such as TCP using the offer/answer
exchange. A partial example SDP offer is:

m=image 54111 TCP/TLS t38
c=IN IP4 192.0.2.2
a=setup:passive
a=connection:new
a=fi ngerprint:SHA-1 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49
:6B:19:E5:7C:AB

As defi ned in [24] the a=setup attribute is used to indicate the active/
passive role in the exchange, while the a=connection:new is used to indicate a
new TCP connection should be opened instead of reusing an existing one. The
a=fi ngerprint attribute is used to send a SHA-1 hash of the certifi cate to be
used for authentication. This is designed to allow the use of certifi cates that are
not signed by a trusted CA (i.e., a so-called self signed certifi cate). Note that
this fi ngerprint only has value in authentication if the offer/answer exchange is

 SIP Security 323

authenticated and has integrity protection. In SIP terms, this means it is signed
using S/MIME and received over a single TLS connection hop, which has been
authenticated, or a method such as enhanced SIP identity is used, as described
in Section 14.4.5. Without these approaches, a self-signed certifi cate cannot be
used, but a SIP certifi cate service, for example, could be used.

The approach for establishing IPSec defi ned in [25] uses SDP to establish
an IKE (Internet key exchange) [26] session, which is then used to key IPSec.
As with the connection-oriented media approach, the active/passive status must
be negotiated and the certifi cate fi ngerprint exchanged in the offer/answer. An
example SDP offer is:

m=application 500 UDP ike-esp
c=IN IP4 192.0.2.10
a=udp-setup:passive
a=fi ngerprint:SHA-1 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49
:6B:19:E5:7C:AB

14.6.2 Secure RTP

Secure RTP or SRTP [27] is a secure profi le of RTP that provides authentica-
tion, confi dentiality, and integrity protection for the media. It is designed to be
effi cient in terms of bandwidth and to minimize processing and latency. In addi-
tion, Secure RTP Control Protocol or SRTCP [27] has been defi ned. SRTP uses
symmetric keys and ciphers, which must be negotiated during the offer/answer
exchange with SIP. In addition, SRTP options such as the length of authentica-
tion tags and other properties must be negotiated. SRTP uses the AES algorithm
for encryption in counter mode (AES-CTR), utilizing 128 bit or newly defi ned
256 bit keys [28]. The design of AES-CTR generates an encrypted key stream,
which is Exclusive to ORed (XOR) with the plaintext media payload. This al-
lows encryption to be done in parallel with codec media processing, reducing vi-
tal latency. The media SSRC allows a single SRTP master key to be used in both
directions and in multiple media streams. The SRTP master key and master salt
is used to generate the session encryption key, the session authorization key, and
a session salt key. The SRTP packet header is identical to RTP by design, but the
payload is encrypted, and the optional authorization tag covers the payload and
the SRTP header. The optional master key index (MKI) is rarely used for Inter-
net communications sessions. The next section will discuss the keying options
for SRTP and how they are supported in the SIP offer/answer exchange.

14.6.3 Keying SRTP

A number of protocols have been developed to key SRTP. Common ones are
listed in Table 14.3. This list does not include the SDP k= fi eld [29], which has

324 SIP: Understanding the Session Initiation Protocol

been deprecated in the current version of SDP since it is not able to negotiate all
the parameters needed for SRTP. The fi rst key management protocol developed
was MIKEY (multimedia internet keying) [30]. However, the use of MIKEY
in Internet communications with SIP was diffi cult, if not impossible, and the
resulting deployment has been very limited. When transported with SIP in an
offer/answer exchange, MIKEY uses the a=key-mgt SDP attribute [31]. A more
deployable approach known as SDES (SDP security descriptions) was also stan-
dardized, which uses the a=crypto SDP attribute [32]. An example is shown
below:

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.example.com/seminars/sdp.pdf
 e=j.doe@example.com (Jane Doe)
 c=IN IP4 161.44.17.12/127
 t=2873397496 2873404696
 m=video 51372 RTP/SAVP 31
 a=crypto:1 AES_CM_128_HMAC_SHA1_80
 inline:d0RmdmcmVCspeEc3QGZiNWpVLFJhQX1cfHAwJSoj|2^20|1:32
 m=audio 49170 RTP/SAVP 0
 a=crypto:1 AES_CM_128_HMAC_SHA1_32
 inline:NzB4d1BINUAvLEw6UzF3WSJ+PSdFcGdUJShpX1Zj|2^20|1:32
 m=application 32416 udp wb
 a=orient:portrait

This example shows the specifi cation of AES-CM with 128 bits keys and
80 bit HMAC SHA-1 authentication, a 2^20 key lifetime, and an MKI value
of 1 and length of 32 bits. The SRTP master key and salt are included in base64
format. Since this approach effectively involves sending the SRTP key openly in
the SDP offer or answer, SIP must provide confi dentiality, authorization, and
integrity protection for the keying material. While normal security requirements
would mean that this required end-to-end S/MIME encryption of the SDP, in
practice, many deployments rely instead on hop-by-hop transport over TLS.
However, this does expose keying material to each SIP proxy server that forwards
the INVITE request or 200 OK response.

Table 14.3
SRTP Keying Protocols

MIKEY RFC3830 Multimedia Internet keying
SDES RFC4568 SDP security descriptions
DTLS-SRTP [33] DTLS SRTP key management
ZRTP [10] ZRTP media path key management for SRTP

 SIP Security 325

Note the use of a secure audio video profi le for RTP (SAVP) in the m=
line.

Both MIKEY and SDES keying approaches have limitations when used
in actual SIP deployments. For example, when SIP forking, redirection, for-
warding, and other features are invoked, the resulting security properties are
problematic. Many of these issues are described in [34], which introduced new
requirements for a media path keying method for SRTP. As a result, two new
keying methods have been developed: DTLS-SRTP [33] and ZRTP [10]. Both
of these keying methods perform the keying in the media path and thus solve
many of the problems discussed in [34]. DTLS-SRTP uses the SIP offer/answer
exchange to establish a DTLS connection between the SIP UAs over the same
address and port as the media session. A secret from the DTLS handshake is
used to derive SRTP keying material. The same methods described in Section
14.7.1 to establish TLS are used to establish the DTLS session. The same limita-
tions of this method also apply to this keying approach—unless the SDP offer/
answer exchange has end-to-end integrity protection, the DTLS session cannot
be properly authenticated and as a result the SRTP keying is susceptible to an
active MitM attack. ZRTP keying is described in Section 14.7.5.

14.6.4 Best Effort Encryption

The offer/answer exchange using SDP was designed to allow many media pa-
rameters to be negotiated, as described in Chapter 13. However, it was never
designed to allow RTP profi les to be negotiable. As a result, an offered media
stream must be declared as either secure (SAVP profi le) or nonsecure (AVP pro-
fi le). If the other UA does not support the chosen RTP profi le, the media line
must be declined. As a result, a UA offering a secure media call to another UA
that does not support secure media will result in a call failure. While this may be
a desired outcome in some cases, in many cases, a graceful fallback to a nonse-
cure media call is more desirable. This is especially true during the transition in
current deployments in Internet communication where almost no UAs support
secure media, to a future when hopefully all UAs will support secure media. This
feature, which was invented by Phil Zimmermann and implemented fi rst in the
ZRTP protocol, has become know as best effort encryption. ZRTP inherently
supports this mode of operation without any extensions or support from other
protocols. For other keying approaches, an SDP extension known as SDP media
capabilities negotiation [35] is being developed to allow other keying methods
besides ZRTP to support best effort encryption. However, this extension rep-
resents a major change to SDP offer/answer negotiation and is very complex.
As a result, it is likely to be sometime after this extension is fi nished before it is
deployed in SIP networks.

326 SIP: Understanding the Session Initiation Protocol

14.6.5 ZRTP

ZRTP [10] is a self-contained media path keying protocol invented by Phil Zim-
mermann, the inventor of “pretty good privacy” or PGP encryption protocol
[36]. ZRTP does not require an offer/answer exchange using the SAVP profi le,
and instead does discovery and negotiation in the media path. Early versions of
ZRTP were actually RTP header extensions. However, the current version is a
separate protocol that is multiplexed over the same transport address as the re-
sulting media stream. ZRTP performs a Diffi e-Hellman key agreement to derive
the SRTP master secret. ZRTP uses a short authentication string (SAS) rendered
to each UA, and compared by human users, to authenticate the Diffi e-Hellman
exchange and protect against a MitM attack. As a result, ZRTP does not require
even an integrity protected signaling channel. Also, ZRTP does not require the
same signaling protocol be used between the endpoints. For example, endpoints
that support SIP, H.323, and Jingle without any extensions can all negotiate secure
media sessions if the endpoints all support ZRTP. The ZRTP key agreement
exchange is shown in Figure 14.9.

Figure 14.9 ZRTP key agreement.

 SIP Security 327

14.7 Questions

Q14.1 List the main differences between IPSec and TLS. Give an example
 of a common usage of each protocol on the Internet today.

Q14.2 Describe how mutual authentication can be achieved between a
 SIP UA and a SIP proxy. Clearly show how secrets and credentials
 are being shared.

Q14.3 Which parts of the SIP message shown below are protected by the
 identity signature? Give an example attack that could be launched
 for each part that is protected (e.g., if a particular header fi eld is
 protected, explain what an attacker could do if they modifi ed the
 header fi eld).

INVITE sip:913145551212@siptest.mci.com SIP/2.0
From: sip:alan.johnston@siptest.mci.com;tag=1c31657
To: sip:913145551212@siptest.mci.com
Call-ID: call-1087694972-1
CSeq: 2 INVITE
Contact: <sip:alan.johnston@161.44.17.12>
Content-Type: application/sdp
Content-Length: 306 Accept-Language: en
Allow: INVITE, ACK, CANCEL, BYE, REFER, OPTIONS, NOTIFY,
 REGISTER, SUBSCRIBE
Supported: replaces, join
User-Agent: Pingtel/2.1.11 (VxWorks)
Date: Wed, 16 Apr 2008 01:29:40 GMT
Proxy-Authorization: DIGEST USERNAME=”alanjohnston”, REALM=”MCI”,
 NONCE=”f9d26bd9c4766eacd3101d8d2dc5f38d.1087694984”,
 URI=”sip:913145551212@siptest.mci.com”,
 RESPONSE=”fe1545a816d698b993b83bade8428c0f”
Via: SIP/2.0/UDP 161.44.17.12:5060;branch=dk32234df

v=0
o=jdoe 2890844526 2890842807 IN IP4 161.44.17.12
s=-
i=A Seminar on the session description protocol
u=http://www.example.com/seminars/sdp.pdf
e=j.doe@example.com (Jane Doe)
c=IN IP4 161.44.17.12
t=0 0
m=video 51372 RTP/SAVP 31
a=crypto:1 AES_CM_128_HMAC_SHA1_80
inline:d0RmdmcmVCspeEc3QGZiNWpVLFJhQX1cfHAwJSoj|2^20|1:32

Q14.4 Which type of attack on SIP do you think is the most damaging?
 Give an example of a security mechanism to defend against this
 attack.

Q14.5 Give an example of parameters that need to be confi gured in order
 to use SRTP. (Hint: look at the contents of SDP extensions used
 to carry SRTP information.)

Q14.6 Explain how best effort encryption works and why it is
 important.

328 SIP: Understanding the Session Initiation Protocol

Q14.7 How does the SIP certifi cate service simplify key provisioning in
 UAs?

Q14.8 What are the differences in packet format between RTP and
 SRTP?

Q14.9 What are the advantages and disadvantages of TLS and IPSec for
 securing SIP sessions?

Q14.10 Give examples of replay, impersonation, and hijacking attacks on
 a SIP session.

References

Johnston, A., and D. Piscatello, [1] Understanding VoIP Security, Norwood, MA: Artech House,
2006.

Singh, S., [2] The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptogra-
phy, New York: Anchor, 2000.

Schnier, B., [3] Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd ed., New
York: John Wiley & Sons, 1996.

Advanced Encryption Standard (AES), “Federal Information Processing Standard 197,” [4]
November 2001.

ANSI X3.106, “American National Standard for Information Systems—Data Link Encryp- [5]
tion,” American National Standards Institute, 1983.

Rivest, R. L., [6] The RC4 Encryption Algorithm, RSA Data Security, Inc., 1992.

Rivest, R. L., A. Shamir, and L. M. Adleman, “A Method for Obtaining Digital Signatures [7]
and Public-Key Cryptosystems,” Communications of the ACM, Vol. 21, No. 2, February
1978, pp. 120–126.

Diffie, W., and M. E. Hellman, “New Directions in Cryptography,” [8] IEEE Transactions on
Information Theory, Vol. 22, 1976, pp. 644–684.

Rescorla, E., “Diffie-Hellman Key Agreement Method,” RFC 2631, June 1999. [9]

Zimmermann, P., A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement for Secure [10]
RTP,” draft-zimmermann-avt-zrtp-15 (work in progress), March 2009.

Housley, R., “Internet X.509 Public Key Infrastructure and CRL Profi le,” RFC 2459, [11]
November 1998.

Kent, S., and R. Atkinson, “Security Architecture for the Internet Protocol,” RFC 2401, [12]
November 1998.

Dierks, T., and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.1,” [13]
RFC 4346, April 2006.

Dierks, T., and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246, January 1999. [14]

 SIP Security 329

Rescorla, E., and N. Modadugu, “Datagram Transport Layer Security,” RFC 4347, April [15]
2006.

Arends, R., et al., “DNS Security Introduction and Requirements,” RFC 4033, March [16]
2005.

Franks, J., et al, “HTTP Authentication: Basic and Digest Access Authentication,” RFC [17]
2617, June 1999.

Jennings, C., and R. Mahy, “Managing Client Initiated Connections in the Session [18]
Initiation Protocol (SIP),” draft-ietf-sip-outbound-20 (work in progress), June 2009.

Gurbani, V., R. Mahy, and B. Tate, “Connection Reuse in the Session Initiation Protocol [19]
(SIP),” draft-ietf-sip-connect-reuse-13 (work in progress), March 2009.

Audet, F., “The Use of the SIPS URI Scheme in the Session Initiation Protocol (SIP),” [20]
draft-ietf-sip-sips-09 (work in progress), November 2008.

Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in [21]
the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

Jennings, C., and J. Fischl, “Certifi cate Management Service for The Session Initiation [22]
Protocol (SIP),” draft-ietf-sip-certs-07 (work in progress), November 2008.

Lennox, J., “Connection-Oriented Media Transport over the Transport Layer Security [23]
(TLS) Protocol in the Session Description Protocol (SDP),” RFC 4572, July 2006.

Yon, D., and G. Camarillo, “TCP-Based Media Transport in the Session Description [24]
Protocol (SDP),” RFC 4145, September 2005.

Saito, M., and D. Wing, “Media Description for IKE in the Session Description Protocol [25]
(SDP),” draft-saito-mmusic-sdp-ike-04 (work in progress), March 2009.

Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” RFC 4306, December 2005. [26]

Baugher, M., et al., “The Secure Real-time Transport Protocol (SRTP),” RFC 3711, March [27]
2004.

McGrew, D., “The Use of AES-192 and AES-256 in Secure RTP,” draft-ietf-avt-srtp-big- [28]
aes-01.txt (work in progress), July 2009.

Handley, M., and V. Jacobson, “SDP: Session Description Protocol,” RFC 2327, April [29]
1998.

Arkko, J., et al., “MIKEY: Multimedia Internet KEYing,” RFC 3830, August 2004. [30]

Arkko, J., et al., “Key Management Extensions for Session Description Protocol (SDP) and [31]
Real Time Streaming Protocol (RTSP),” RFC 4567, July 2006.

Andreasen, F., M. Baugher, and D. Wing, “Session Description Protocol (SDP) Security [32]
Descriptions for Media Streams,” RFC 4568, July 2006.

McGrew, D., and E. Rescorla, “Datagram Transport Layer Security (DTLS) Extension to [33]
Establish Keys for Secure Real-Time Transport Protocol (SRTP),” draft-ietf-avt-dtls-srtp-07
(work in progress), February 2009.

330 SIP: Understanding the Session Initiation Protocol

Wing, D., et al., “Requirements and Analysis of Media Security Management Protocols,” [34]
RFC 5479, April 2009.

Gilman, R., R. Even, and F. Andreasen, “SDP Media Capabilities Negotiation,” draft-ietf- [35]
mmusic-sdp-media-capabilities-07 (work in progress), February 2009.

Callas, J., et al., “OpenPGP Message Format,” RFC 4880, November 2007. [36]

331

15
Peer-to-Peer SIP
Peer-to-peer (P2P) technologies have been becoming an important part of In-
ternet applications. This chapter will introduce P2P technologies and ideas de-
veloped from fi le sharing applications and show how they can be applied to an
Internet communications protocol such as SIP. Finally, emerging work in stan-
dardizing P2P SIP will be covered including the RELOAD Peer Protocol and
Host Identity Protocol (HIP).

15.1 P2P Properties

P2P applications became popular on the Internet with the advent of fi le sharing
applications. Today P2P concepts are used in other applications such as content
delivery, distributed computing, application layer multicast, and also Internet
communications. The most important properties of P2P systems are:

Self organizing;•

Decentralized control;•

Direct unmediated communication.•

A good overview of P2P architectures and how they relate to common
P2P applications such as content delivery networks, distributed computing, and
communications is in [1].

P2P systems have these properties to varying degrees. For example, some
P2P systems still use a centralized server for authentication; others use central-
ized servers for NAT and fi rewall traversal, or use a hierarchy in which peers at
the same level communicate but use other protocols (i.e., client-server) between
levels in the hierarchy. The next section will discuss some P2P properties of SIP.

332 SIP: Understanding the Session Initiation Protocol

15.2 P2P Properties of SIP

SIP [2] by design already has many P2P aspects and properties. For example, the
only required element in a SIP network is a UA. UAs can communicate directly
with peers: other UAs. In fact, all servers, including proxy, registrar, and redirect
servers are optional in the SIP architecture. Compare this to other protocols such
as H.323, where a gatekeeper is a required element, or Jabber, where a Jabber
server is required—Jabber clients cannot communicate directly with another Jab-
ber client without a server in the middle. Some other fundamental aspects of SIP
are also P2P in nature. The dialog identifi er—To tag, From tag, and Call-ID—is
generated by and under the control of UAs. Servers play no role in its creation.
SIP also has P2P call control modes, such as those enabled by the REFER method.
Many features which can be implemented by UAs alone using REFER require the
use of servers in other telephony architectures. The basic SIP call control model
is inherently P2P [3].

However, for all these P2P properties, nearly all SIP deployments use vari-
ous types of servers. The reason for this is that SIP servers, especially proxy serv-
ers, perform very essential roles in discovery, rendezvous, and NAT traversal, as
discussed in previous chapters. For example, a SIP UA that uses DHCP and has
a dynamic IP address does not have a constant SIP URI that can be used to reach
it. While technologies such as dynamic DNS can be used to enable this, sending
regular registrations to a SIP proxy is an excellent solution to this. Also, for a SIP
UA behind a NAT, the proxy server serves the role of rendezvous server, allowing
UAs to discover each other, and exchange candidate addresses for hole punch-
ing. Finally, servers must provide fallback for NAT traversal as TURN servers or
media relays when hole punching fails.

In addition to proxy servers, many networks also employ B2BUAs as well,
which greatly reduce the P2P functionality of SIP. An alternative architecture
for SIP, known as simple SIP [4] shows how nearly all features and services can
be implemented using P2P approaches and a small set of SIP extensions. This
architecture only uses servers for rendezvous functionality. As a result, most SIP
exchanges occur over a single SIP hop. Besides simplifying and reducing latency
and complexity, this also greatly enhances security. Much of the complexity dis-
cussed in the previous chapter on security relate to having proxy servers and
B2BUAs in the path between two UAs. For example, if TLS is used in a single
hop between UAs, certifi cates can be used for mutual authentication. In addition,
the resulting exchange has end-to-end integrity protection and confi dentiality.

If a P2P approach could be developed to replace these discovery, rendez-
vous, and NAT traversal functions, SIP could be operated in a pure P2P manner,
providing all the advantages of P2P systems.

 Peer-to-Peer SIP 333

15.3 P2P Overlays

P2P networks form a network known as an overlay, which sits on top of the
usual Internet connections. When joining the P2P network, the host, known
as a node or a peer, becomes a part of the overlay network. Messages are routed
between nodes using overlay routing, which sits on top of normal IP routing.
The protocol used to route and map messages across the overlay is known as a
peer protocol.

P2P systems need an algorithm for distributing data across the overlay.
Often, this is done using a distributed hash table or DHT. For an example of a
DHT algorithm used to build a P2P overlay, consider the Chord Protocol [5].
Chord uses a ring architecture, where nodes organize themselves in the overlay
using their node number n. If m bits are used for the node number, then there
are a maximum of 2^m nodes in the overlay. For Chord, typically m = 160 is
used, which can support an enormous number of nodes. A node in the overlay
keeps track of the two closest nodes in the overlay: the predecessor node, the clos-
est node with a lower node number; and the successor node, the closest node with
a higher node number. Chord provides a distributed database function for nodes
in the overlay. Each node stores a small amount of information on behalf of
other nodes in the overlay. To locate information in the overlay, the search index
for the information (confusingly known as a “key” in Chord even though it has
nothing to do with encryption) is hashed to determine the node number of the
node responsible for storing this information. For example, to fi nd informa-
tion about a fi le or service named “voicemail,” the message digest of the string
“voicemail” would be calculated, and the result would point to the node in the
overlay where information about this service or fi le would be located. Chord uses
m = 160 and SHA-1 as the hash function, which returns a 160 bit value, so the
hash will always return a valid node number in the overlay. Since not every node
number in the overlay is occupied by a peer, the actual node responsible will be
the successor node to that node location. As a result, a node in the overlay is re-
sponsible for storing data about all nodes between its own node number and the
node number of the predecessor node. If a new node joins the overlay between
the node and its predecessor node, the responsibility will shift, the new node will
take over responsibility for the nodes between it and the old predecessor node,
and the node will now have the new node as its predecessor.

This distributed database maintains the dynamic mapping between data
elements and the Chord node number. The other part of the Chord algorithm
is for routing messages between nodes in the overlay. There are two distinct
problems:

How to fi nd the actual node responsible for a piece of data that is going 1.
to be stored or retrieved, given that in most cases there will not be a

334 SIP: Understanding the Session Initiation Protocol

node in the overlay with that exact node ID. As a result, the problem is
to fi nd the nearest node.

Having found that node ID, the problem becomes how to contact that 2.
node (i.e., node number to IP address resolution).

For the fi rst problem, each node in Chord maintains a small routing table
known as a fi nger table. A fi nger table is only a small subset of the entire routing
table for the overlay. Chord does not attempt to build a complete routing table
for the overlay since it would likely be too large and too dynamic to be useful.
Instead, each node maintains a fi nger table with m entries. The table starts with
the successor node, and the kth element in the fi nger table is the actual node in
the overlay closest to the 2k + n, where n is node’s number. For example, consider
the tiny Chord overlay in Figure 15.1 where m = 8. The chord fi nger table for
node 27 is shown in Table 15.1.

In this example, node 27 wants to fi nd the content whose location in the
overlay is 210. The node consults the fi nger table and fi nds the closest node is
node 159. Node 27 then queries node 159 for the location of node 210. Node
159 consults its fi nger table and returns node 202. Node 27 then contacts node
202 directly who returns node 215. Node 27 then contacts node 215 who re-
sponds indicating that it is responsible for node 210. At this point, node 27 can
query node 215 for the desired information. Note that this type of routing is
known as iterative routing, in that a number of iterations or steps are performed
at the source to get to the destination. The source is always in control and can
verify routing integrity. An alternative approach is recursive routing where the
request goes around the overlay in hops until it gets to the destination. This is

Figure 15.1 Chord routing example.

 Peer-to-Peer SIP 335

typically faster than iterative routing and involves less processing on the source.
The differences are shown in Figure 15.2.

This routing method in Chord can be shown to allow messages to be rout-
ed across the overlay in the order of log(m) hops. Since this number only grows
logarithmically with the size of the overlay, Chord scales very well. In addition,
the queries across the overlay, appearing geometrically as chords on a circle, give
Chord its name.

The second aspect of overlay routing is the mapping of Node IDs to IP ad-
dresses. Most academic Chord networks assume that all nodes have a public IP
address and hence are addressable. They then hash the host IP address (assumed
to be unique due to the uniqueness of IP addresses on the Internet) to get the
host number. Obviously, for most real Internet applications, the assumption of
a public IP address is not realistic, and the IP address cannot be used to gener-
ate node IDs. Also, one cannot assume the transitivity of connections across an

Figure 15.2 Iterative verses recursive routing on an overlay.

Table 15.1
Chord Finger Table for Node 27 in Figure 15.1

k
Node
Closest to

Actual
Node

0 20 + 27 89
1 21 + 27 89
2 22 + 27 89
3 23 + 27 89
4 24 + 27 89
5 25 + 27 89
6 26 + 27 128
7 27 + 27 159

336 SIP: Understanding the Session Initiation Protocol

overlay due to NAT. This is one reason why often recursive routing is used on
overlays instead of iterative routing.

On real overlays, during the bootstrap process (an example of which is de-
scribed for the RELOAD protocol in the next section), a node learns its successor
and predecessor nodes and establishes connections to them using the bootstrap
server for rendezvous. The node then requests the fi nger tables of the neighbor
elements and copies information about the node ID that it would use to popu-
late its own fi nger table. For the nodes that should be in the new node’s fi nger
table, the node uses the other node as a rendezvous server so that it can contact
the other nodes, perhaps running ICE for hole punching. Once established, this
connection is maintained through keep alives. The node can then request the
fi nger table from this node, and continue in this way until it has a complete fi n-
ger table and connections established to each of these nodes. As nodes join and
leave the overlay, the node will make adjustments to the fi nger table.

By having nodes in the overlay provide this rendezvous service to other
nodes, establishing and maintaining connections, the overlay can work even
though nodes are behind NATs.

15.4 RELOAD

The RELOAD (Resource Location and Discovery) Protocol [6] is a P2P proto-
col being developed in the P2PSIP working group of the IETF. Currently, the
protocol is defi ned in an Internet Draft and still needs signifi cant work before it
will be fi nalized and published as an RFC. Another peer protocol which is not
progressing as a standard but is being implemented and deployed is P2PP [7].
Some of the protocol details presented in this section may have changed. Readers
interested in peer protocols should check for the latest Internet Drafts and RFCs
at the P2PSIP working group charter page [8].

RELOAD attempts to provide a self-organizing overlay network with rout-
ing between nodes and service discovery. RELOAD can be used for a number of
applications, each of which is defi ned in separate usage documents. For example,
the SIP usage of RELOAD is defi ned in [9]. In RELOAD, nodes join the over-
lay by establishing connections to a small number of other nodes in the overlay.
Each node in the overlay has a node identifi er (Node-ID), which is a 128 bit
value used for routing messages across the overlay. Node-IDs are assigned by a
centralized enrollment server. The enrollment server also issues credentials (cer-
tifi cates containing the Node-ID) used to authenticate nodes in the overlay. A
node joins the overlay using a bootstrap node: a stable node in the overlay with
a public IP address that is discoverable based on the name of the overlay. A new
node forms new connections to other nodes in the overlay and builds a routing
table. The node then actually joins the overlay by inserting itself into the routing

 Peer-to-Peer SIP 337

tables of surrounding nodes and storing the data associated with that part of the
overlay. Information is stored and retrieved in the overlay distributed database
using store and fetch requests. The functions of different types of peers in the
overlays are discussed in Table 15.2.

RELOAD uses a combination of binary encoding and TLV (tag length
value) encoding; messages are routed over TLS or DTLS. Table 15.3 summa-
rizes some of the diverse function of RELOAD that are grouped together in this
protocol.

The SIP usage of RELOAD provides two main functions: registration and
rendezvous. The registration function is the ability of a UA to store the mapping
between their address of record (AOR) and their Node-ID. This allows another
UA in the overlay to do a lookup of their AOR URI to determine their Node-
ID. The rendezvous function is to use RELOAD to establish a direct connection
between two UAs in the overlay so they can exchange SIP messages. Without
NAT, this function would not be needed, and instead the registration function
could provide a mapping between an AOR and an IP address and port. However,
since many peers will be behind NAT, this rendezvous functionality allows them
to perform hole punching using ICE in order to establish a direct TLS or DTLS
connection between the UAs. At that point, normal SIP messages including IN-
VITE, ACK, and BYE can be exchanged. To complete the NAT traversal, the SIP
exchange can provide rendezvous functionality for the media, and hence ICE
will be run again. Both the RELOAD ICE and SIP ICE applications need to

Table 15.2
Roles in an Overlay

Peer node
A full member of the overlay that stores information and routes overlay
requests.

Client node Not a full member of the overlay, but it can query the overlay for information.
Joining peer A peer attempting to join the overlay.
Bootstrap peer A stable peer with a public IP address used to join the overlay.
Admitting peer The fi rst peer contacted by joining peer after the bootstrap peer.
Proxy peer A SIP proxy server that is also a peer in the overlay. It helps route SIP

messages to and from the outside of the overlay.
Enrollment server It issues credentials used by peers for authentication in the overlay.

Table 15.3
RELOAD Protocol Functions

Usage layer An application that uses RELOAD, such as SIP.
Message transport Provides end-to-end reliability of overlay messages.
Storage Provides database functions for overlay users.
Topology plug-in Supports different topologies based on overlay algorithm.

338 SIP: Understanding the Session Initiation Protocol

have a fallback, and that means TURN transport relay addresses. The method
of discovering and using TURN servers is still under development. RELOAD
can use different overlay protocols. The current version uses a modifi ed version
of Chord.

15.5 Host Identity Protocol

RELOAD as a protocol reimplements many layers of the protocol stack. It pro-
vides many transport layer and routing layer services, including reliability and
fragmentation. An alternative approach to building an overlay is to reuse the
existing parts of the IP stack by inserting shim layers. One example of this is the
usage of Host Identity Protocol (HIP) [10] over an overlay. The protocol stack of
HIP is shown in Figure 15.3. The HIP architecture separates the identifi er and
locator roles of an IP address. An HIP host has a constant host identity, while its
IP address can change in real-time and over time. The host identity is a public
private key pair. HIP uses a Host Identity Tag (HIT) as an identifi er. A HIT is
a self-certifying identity because it is formed as a prefi xed, truncated hash of the
public key, ORCHID (Overlay Routable Cryptographic Hash Identifi er) [11]
as an identifi er, which is a 128-bit address that has the same format as an IPv6
address, but is not routable using IPv6. To claim a particular HIT, a host uses the
private key associated with the public key of the HIT. The use of an ORCHID
means that the IPv6 APIs can be used with HIP without any changes.

HIP may one day be run natively as a transport on top of IP. However,
today it is tunneled over UDP so that it can traverse NAT.

HIP exchanges messages between hosts by fi rst establishing connections
known as HIP associations. An HIP association is secured using an IPSec tun-
nel, which is keyed using a DH exchange authenticated by the public keys as-
sociated with the host HITs. The HIP base exchange is used to signal the HIP

Figure 15.3 Host Identity Protocol stack.

 Peer-to-Peer SIP 339

association, and is currently being extended to support ICE hole punching for
NAT traversal.

 HIP needs a way to map an HIT to an IP address used to establish HIP
connections. This can be done with either DNS, a registration method (a HIP
rendezvous server), or an overlay routing protocol. This usage of HIP is de-
scribed in [12]. Currently, the IETF HIP working group is working on taking
parts of the RELOAD protocol and using them for discovery and rendezvous for
HIP. Adding HIP to RELOAD would have the following advantages:

Since HIP uses ICE, all other protocols that run on top of HIP, including •
RELOAD, SIP, and RTP would all get the benefi ts of ICE without having
to implement it. For example, consider two peers who need to establish a
RELOAD connection, exchange SIP messages, and then exchange RTP
media. The RELOAD messages would be run over HIP and ICE would
be run to establish the secure HIP association between the hosts; then
RELOAD messages could be exchanged. Next, SIP could be sent over
the same HIP association and fi nally RTP, all without having to run ICE
again.

Minimal changes to SIP and RTP would be required to use HIP. HITs •
would be carried as IPv6 addresses in SIP URIs and in SDP offer/answer
exchanges for RTP media negotiation. This allows direct HIP usage for
SIP and RTP without major changes to the protocols. The only change
is the way URIs are resolved. In normal SIP, routing is based on the host
part, and the user part is only resolved within the domain. In P2PSIP
with HIP, the entire user and host part of the URI would need to be re-
solved. One solution to this would be to only use the domain part of the
URI—the user part would essentially be ignored. While both a RELOAD
and an HIP approach require this change to SIP, RELOAD requires even
more extensive changes.

The complete set of HIP experimental specifi cations is listed in Table 15.4.
For more details of HIP, see [19].

15.6 Conclusion

P2P SIP is an area with quite a lot of activity, both in industry and in standards.
P2P has advantages in some applications and scenarios. Protocols such as RE-
LOAD and HIP will likely be used to implement some of these applications and
scenarios.

340 SIP: Understanding the Session Initiation Protocol

15.7 Questions

Q15.1 List some P2P properties of SIP.

Q15.2 Explain how an overlay uses a DHT.

Q15.3 For the Chord overlay in Figure 15.4, fi ll in the missing entries in
 the fi nger tables of Tables 15.5 and 15.6.

Q15.4 Explain how HITs are self-certifying.

Q15.5 Why does the use of peer protocol require changes in the way a
 SIP URI is resolved?

Figure 15.4 Chord overlay for Question Q15.3.

Table 15.4
HIP References

RFC 5201 HIP Base Protocol [10]
RFC 5202 ESP transport of HIP [13]
RFC 5203 HIP registration extension [14]
RFC 5204 HIP rendezvous extension [15]
RFC 5205 HIP DNS extension [16]
RFC 5206 HIP mobility and multihoming [17]

RFC 5207
HIP NAT traversal [18] (specifi cation does not use
hole punching and has limited utility)

 Peer-to-Peer SIP 341

References

Camarillo, G., “Peer-to-Peer (P2P) Architectures,” draft-iab-p2p-archs-01 (work in prog- [1]
ress), April 2009.

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [2]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

Mahy, R., R. Sparks, J. Rosenberg, D. Petrie, and A. Johnston, “A Call Control and Multi- [3]
Party Usage Framework for the Session Initiation Protocol (SIP),” draft-ietf-sipping-cc-
framework-11 (work in progress), March 2009.

Sinnreich, H., A. Johnston, and E. Shim, “Simple SIP Usage Scenario for Applications in [4]
the Endpoints,” draft-sinnreich-sip-tools-07 (work in progress), June 2009.

Table 15.5
Chord Finger Table for Node 27 in Figure 15.4

k Node
Closest to
Actual Node

0 20 + 27 53

1 21 + 27 53

2 22 + 27 53

3 23 + 27 53

4 24 + 27 ?

5 25 + 27 ?

6 26 + 27 ?

7 27 + 27 159

Table 15.6
Chord Finger Table for Node 180 in Figure 15.4

k Node
Closest to
Actual Node

0 20 + 180 192

1 21 + 180 192

2 22 + 180 ?

3 23 + 180 ?

4 24 + 180 202

5 25 + 180 ?

6 26 + 180 27

7 27 + 180 ?

342 SIP: Understanding the Session Initiation Protocol

Stoica, I., et al., “Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications,” [5]
ACM SIGCOMM 2001, San Diego, CA, August 2001, pp. 149-160.

Jennings, C., et al., “Resource Location and Discovery (RELOAD) Base Protocol,” draft- [6]
ietf-p2psip-base-02 (work in progress), March 2009.

Baset, S., H. Schulzrinne, and M. Matuszewski, “Peer-to-Peer Protocol (P2PP),” draft- [7]
baset-p2psip-p2pp-01 (work in progress), November 2007.

http://www.ietf.org/html.charters/p2psip-charter.html. [8]

Jennings, C., et al., “A SIP Usage for RELOAD,” draft-ietf-p2psip-sip-01 (work in prog- [9]
ress), March 2009.

Moskowitz, R., et al., “Host Identity Protocol,” RFC 5201, April 2008. [10]

Nikander, P., J. Laganier, and F. Dupont, “An IPv6 Prefi x for Overlay Routable Cryptographic [11]
Hash Identifi ers (ORCHID),” RFC 4843, April 2007.

Camarillo, G., et al., “HIP BONE: Host Identity Protocol (HIP) Based Overlay Networking [12]
Environment,” draft-ietf-hip-bone-01 (work in progress), March 2009.

Jokela, P., R. Moskowitz, and P. Nikander, “Using the Encapsulating Security Payload (ESP) [13]
Transport Format with the Host Identity Protocol (HIP),” RFC 5202, April 2008.

Laganier, J., T. Koponen, and L. Eggert, “Host Identity Protocol (HIP) Registration [14]
Extension,” RFC 5203, April 2008.

Laganier, J., and L. Eggert, “Host Identity Protocol (HIP) Rendezvous Extension,” RFC [15]
5204, April 2008.

Nikander, P., and J. Laganier, “Host Identity Protocol (HIP) Domain Name System (DNS) [16]
Extensions,” RFC 5205, April 2008.

Nikander, P., et al., “End-Host Mobility and Multihoming with the Host Identity Protocol,” [17]
RFC 5206, April 2008.

Stiemerling, M., J. Quittek, and L. Eggert, “NAT and Firewall Traversal Issues of Host [18]
Identity Protocol (HIP) Communication,” RFC 5207, April 2008.

Gurtov, A., [19] Host Identity Protocol (HIP): Towards the Secure Mobile Internet, Wiley Series
on Communications Networking & Distributed Systems, New York: John Wiley & Sons,
2008.

343

16
Call Flow Examples
In this chapter, many of the concepts and details presented in the preceding
chapters will be illustrated with examples. Each example includes a call fl ow
diagram and a discussion of the example, followed by the message details. Each
message is labeled in the fi gure with a message number for easy reference. For
more examples of the protocol, refer to the SIP specifi cation [1], the SIP call
fl ows [2, 3] documents, and the SIP service examples document [4].

The purpose of the examples in this chapter is to illustrate aspects of the
SIP protocol. The interoperation scenarios with the PSTN are not intended to
fully defi ne the interworking or show a complete parameter mapping between
the protocols. Likewise, simplifi cations such as minimal authentication and di-
rect client-to-gateway messaging are used to make the examples more clear.

16.1 SIP Call with Authentication, Proxies, and Record-Route

Figure 16.1 shows a basic SIP call between two SIP UAs involving two proxy
servers. Rather than perform a DNS query on the SIP URI of the called party,
the calling SIP phone sends the INVITE request to a proxy server for address
resolution. The proxy server requires authentication to perform this service and
replies with a 407 Proxy Authorization Required response. Using the nonce
from the challenge, the caller resends the INVITE with the caller’s username and
password credentials. The proxy checks the credentials, and fi nding them to be
correct, performs the DNS lookup on the Request-URI. The INVITE is then
forwarded to the proxy server listed in the DNS SRV record that handles the
language.org domain. That proxy then looks up the Request-URI and locates a
registration for the called party. The INVITE is forwarded to the destination UAS,
a Record-Route header having been inserted to ensure that the proxy is present in

344 SIP: Understanding the Session Initiation Protocol

all future requests by either party. This is because a directly routed SIP message
to Ada would be blocked by the fi rewall.

The called party receives the INVITE request and sends 180 Ringing and
200 OK responses, which are routed back to the caller using the Via header chain
from the initial INVITE. The ACK sent by the caller includes a Route header built
from the Record-Route header fi eld in the 200 OK response. This routing skips
the fi rst proxy but includes the fi rewall proxy. The media session begins with the
UAs exchanging RTP and RTCP packets.

The call terminates when the called party, Ada, sends a BYE, which includes
a Route header generated from the Record-Route header fi eld in the INVITE. Note
that the CSeq for the called user agent is initialized to 1000. The acknowledg-
ment of the BYE with a 200 OK response causes both sides to stop sending media
packets.

Figure 16.1 SIP-to-SIP call with authentication, proxies, and Record-Route.

 Call Flow Examples 345

M1 INVITE sip:ada@language.org SIP/2.0 Request-URI
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6329a3491e7
CSeq: 1 INVITE CSeq initialized to 1
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: DifferenceEngine/1
Content-Type: application/sdp
Content-Length: 137

v=0
o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0
c=IN IP4 12.26.17.91 Babbage’s IP address
m=audio 49170 RTP/AVP 0 Port number
a=rtpmap:0 PCMU/8000 Codec info

M2 SIP/2.0 407 Proxy Authentication Required
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=34q4356g
Call-ID: f6329a3491e7
CSeq: 1 INVITE
Proxy-Authenticate: Digest Authentication challenge
 realm=”language.org”,
 nonce=”9c8e88df84f1cec4341ae6e5a359”,
 opaque=””, stale=FALSE, algorithm=MD5

M3 ACK sip:ada@language.org SIP/2.0
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK454
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=34q4356g
Call-ID: f6329a3491e7
CSeq: 1 ACK CSeq not incremented Method set to ACK

M4 INVITE sip:ada@language.org SIP/2.0 INVITE resent with credentials
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID:f6329a3491e7 Call-ID unchanged
CSeq: 2 INVITE CSeq incremented
Proxy-Authorization: Digest
 username=”Babbage”, Credentials
 realm=”language.org”,
 nonce=”9c8e88df84f1cec4341ae6e5a359”,
 opaque=””, response=”e56131d19580cd833064787ecc”
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: DifferenceEngine/1
Content-Type: application/sdp
Content-Length: 137

v=0

346 SIP: Understanding the Session Initiation Protocol

o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0
c=IN IP4 12.26.17.91
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M5 SIP/2.0 100 Trying Credentials accepted
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6329a3491e7
CSeq: 2 INVITE

M6 DNS Query:

SRV lookup on _udp._sip.language.org

M7 DNS Response:

_sip._udp.language.org. 300 IN SRV 0 100 5060 proxy.languagel.org.
proxy.language.org. 3600 IN A 10.14.92.1

M8 INVITE sip:ada@language.org SIP/2.0
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
Max-Forwards: 69
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6329a3491e7
CSeq: 2 INVITE
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: DifferenceEngine/1
Content-Type: application/sdp
Content-Length: 137

v=0
o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0
c=IN IP4 12.26.17.91
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M9 SIP/2.0 100 Trying Not Forwarded
Via:SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6329a3491e7
CSeq: 2 INVITE

M10 Location Service Query: ada?

M11 Location Service Response: sip:ada@1.2.3.4

M12 INVITE sip:ada@1.2.3.4 SIP/2.0

 Call Flow Examples 347

Via: SIP/2.0/UDP proxy.language.org:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
Max-Forwards: 68
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: sip:ada@language.org
Call-ID: f6329a3491e7
CSeq: 2 INVITE
Contact: <sip:babbage@client.analyticalsoc.org>
Subject: RE: Software
User-Agent: DifferenceEngine/1
Record-Route: <sip:10.14.92.1;lr> Record-Route added by proxy
Content-Type: application/sdp
Content-Length: 137

v=0
o=Babbage 2890844534 2890844534 IN IP4 12.26.17.91
s=-
t=0 0
c=IN IP4 12.26.17.91
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M13 SIP/2.0 180 Ringing
Via : SIP/2.0/UDP proxy.language.org:5060;branch=z9hG4bK24105.1
 ;received=10.14.92.1
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3 Tag added by called party
Call-ID: f6329a3491e7
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>

M14 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6329a3491e7
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>

M15 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6329a3491e7
CSeq: 2 INVITE

M16 SIP/2.0 200 OK Call accepted
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6329a3491e7

348 SIP: Understanding the Session Initiation Protocol

CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>
Content-Type: application/sdp
Content-Length: 126

v=0
o=Ada 2890844536 2890844536 IN IP4 1.2.3.4
s=-
t=0 0
c=IN IP4 1.2.3.4 Ada’s IP address
m=audio 52310 RTP/AVP 0 Port number
a=rtpmap:0 PCMU/8000 Codec information

M17 SIP/2.0 200 OK
Via: SIP/2.0/UDP 15.16.17.18:5060;branch=z9hG4bK3f31049.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6329a3491e7
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>
Content-Type: application/sdp
Content-Length: 126

v=0
o=Ada 2890844536 2890844536 IN IP4 1.2.3.4
s=-
t=0 0
c=IN IP4 1.2.3.4
m=audio 52310 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M18 SIP/2.0 200 OK
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK221
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6329a3491e7
CSeq: 2 INVITE
Contact: sip:ada@drawingroom.language.org
Record-Route: <sip:10.14.92.1;lr>
Content-Type: application/sdp
Content-Length: 126

v=0
o=Ada 2890844536 2890844536 IN IP4 1.2.3.4
s=-
t=0 0
c=IN IP4 1.2.3.4
m=audio 52310 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M19 ACK sip:ada@drawingroom.language.org SIP/2.0 Sent to ALG
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK789
Max-Forwards: 70
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6329a3491e7

 Call Flow Examples 349

CSeq: 2 ACK
Route: <sip:10.14.92.1;lr>

M20 ACK sip:ada@drawingroom.language.org SIP/2.0
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 12.26.17.91:5060;branch=z9hG4bK789
Max-Forwards: 69
From: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
To: <sip:ada@language.org>;tag=65a3547e3
Call-ID: f6329a3491e7
CSeq: 2 INVITE

M21 BYE sip:babbage@client.analyticalsoc.org SIP/2.0
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
Max-Forwards: 70
From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6329a3491e7
CSeq: 1000 BYE CSeq initialized to 1000
Route: <sip:10.14.92.1;lr> From Record-Route header

M22 BYE sip:babbage@client.analyticalsoc.org SIP/2.0
Via: SIP/2.0/UDP 10.14.92.1:5060;branch=z9hG4bK24105.1
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
Max-Forwards: 69
From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6329a3491e7
CSeq: 1000 BYE

M23 SIP/2.0 200 OK
Via: SIP/2.0/UDP 10.14.92.1:5060;branch= z9hG4bK24105.1
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6329a3491e7
CSeq: 1000 BYE

M24 SIP/2.0 200 OK
Via: SIP/2.0/UDP 1.2.3.4:5060;branch=z9hG4bK543
From: Ada Lovelace <sip:ada@language.org>;tag=65a3547e3
To: Charles Babbage <sip:babbage@analyticalsoc.org>;tag=9382
Call-ID: f6329a3491e7
CSeq: 1000 BYE

16.2 SIP Call with Stateless and Stateful Proxies with Called Party
Busy

Figure 16.2 shows an example of a SIP with a stateless proxy server and a state-
ful proxy server. The call is not completed because the called party is busy. The
called UA initially sends a 180 Ringing response but then sends a 600 Busy

 Everywhere response containing a Retry-After header to indicate that the call
is being rejected. The stateful proxy returns a 100 Trying response to the IN-

350 SIP: Understanding the Session Initiation Protocol

VITE, and also acknowledges the 600 Busy Everywhere response with an ACK.
The stateless proxy does not send a 100 Trying and forwards the 600 Busy

 Everywhere and the ACK sent by the caller UA. Also note that the initial INVITE
does not contain a message body.

M1 INVITE sip:schockley@transistor.org SIP/2.0
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 70
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>
Call-ID: 83727119273913
CSeq: 1 INVITE
Contact: <sip:Shannon@discrete.sampling.org>
Date: Sat, 8 Jul 2000 08:23:00 GMT Optional date header
Content-Length: 0 Optional content-length header

M2 INVITE sip:schockley@transistor.org SIP/2.0 X Stateless proxy
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1 does not send 100
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 69
From: Shannon <sip:shannon@sampling.org>
To: Schockley <sip:shockley@transistor.com>
Call-ID: 83727119273913
CSeq: 1 INVITE
Contact: <sip:Shannon@discrete.sampling.org>
Date: Sat, 8 Jul 2000 08:23:00 GMT
Content-Length: 0

M3 SIP/2.0 100 Trying Stateful proxy does send 100
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1XX X
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4

Figure 16.2 SIP call example with stateless and stateful proxies and a busy called party.

 Call Flow Examples 351

To: Schockley <sip:shockley@transistor.com>
Call-ID: 83727119273913
CSeq: 1 INVITE
Content-Length: 0
M4 INVITE sip:schockley@transistor.org SIP/2.0
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bkff7d.1
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 68
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>
Call-ID: 83727119273913
CSeq: 1 INVITE
Contact: <sip:Shannon@discrete.sampling.org>
Date: Sat, 8 Jul 2000 08:23:00 GMT
Content-Length: 0

M5 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bKff7d.1
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 INVITE
Contact: <sip:shockley@4.5.6.7>
Content-Length: 0

M6 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 INVITE
Contact: <sip:shockley@4.5.6.7>
Content-Length: 0

M7 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 INVITE
Contact: <sip:shockley@4.5.6.7>
Content-Length: 0

M8 SIP/2.0 600 Busy Everywhere Schockley is busy
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bKff7d.1
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 INVITE
Retry-After: Sun, 9 Jul 2000 11:59:00 GMT
Content-Length: 0

352 SIP: Understanding the Session Initiation Protocol

M9 ACK sip:schockley@transistor.com SIP/2.0 Stateful proxy does ACK
Via: SIP/2.0/UDP 10.9.8.7:52103;branch=z9hG4bK5f7e.1
Max-Forwards: 70
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 ACK
Content-Length: 0

M10 SIP/2.0 600 Busy Everywhere
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK1.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 INVITE
Retry-After: Sun, 9 Jul 2000 11:59:00 GMT
Content-Length: 0
Call Flow Examples 163

M11 SIP/2.0 600 Busy Everywhere Stateless proxy does not ACK response
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 INVITE
Retry-After: Sun, 9 Jul 2000 11:59:00 GMT
Content-Length: 0

M12 ACK sip:schockley@transistor.com SIP/2.0
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 70
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 ACK
Content-Length: 0

M13 ACK sip:schockley@transistor.com SIP/2.0
Via: SIP/2.0/UDP 9.8.7.6:5060;branch=z9hG4bK5.1
Via: SIP/2.0/UDP discrete.sampling.org:5060;branch=z9hG4bK5654
Max-Forwards: 69
From: Shannon <sip:shannon@sampling.org>;tag=cgdf4
To: Schockley <sip:shockley@transistor.com>;tag=1
Call-ID: 83727119273913
CSeq: 1 ACK
Content-Length: 0

16.3 SIP to PSTN Call Through Gateways

In the example shown in Figure 16.3, the calling SIP phone places a telephone
call to the PSTN through a PSTN gateway. The SIP phone collects the dialed
digits and puts them into a SIP URI used in the Request-URI and the To header.
The caller may have dialed either the globalized phone number 1-202-555-1313
or they may have just dialed a local number 555-1313, and the SIP phone added

 Call Flow Examples 353

the assumed country code and area code to produce the globalized URI using
the built-in dial plan. The SIP phone has been preconfi gured with the IP address
of the PSTN gateway, so it is able to send the INVITE directly to gw.carrier.com.
The gateway initiates the call into the PSTN by selecting an SS7 ISUP trunk to
the next telephone switch in the PSTN. The dialed digits from the INVITE are
mapped into the ISUP IAM. The ISUP address complete message (ACM) is sent
back by the PSTN to indicate that the trunk has been seized. Progress tones are
generated in the one-way audio path established in the PSTN. In this example,
ringtone is generated by the far end telephone switch. The gateway maps the
ACM to the 183 Session Progress response containing an SDP indicating the
RTP port that the gateway will use to bridge the audio from the PSTN. Upon
reception of the 183, the caller’s UAC begins receiving the RTP packets sent
from the gateway and presents the audio to the caller so they know that the call
is progressing in the PSTN.

The call completes when the called party answers the telephone, which
causes the telephone switch to send an answer message (ANM) to the gateway.

Figure 16.3 SIP to PSTN call fl ow through a gateway.

354 SIP: Understanding the Session Initiation Protocol

The gateway then cuts the PSTN audio connection through in both directions
and sends a 200 OK response to the caller. Because the RTP media path is already
established, the gateway echoes the SDP in the 183 but causes no changes to the
RTP connection. The UAC sends an ACK to complete the SIP signaling exchange.
Because there is no equivalent message in ISUP, the gateway absorbs the ACK.

The call terminates when the caller sends the BYE to the gateway. The gate-
way maps the BYE to the ISUP release message (REL). The gateway sends the 200
OK to the BYE and receives an RLC from the PSTN. These two messages have no
dependency on each other; if, for some reason, either the SIP or PSTN network
does not respond properly, one does not want resources held in the other net-
work as a result.

M1 INVITE sip:+12025551313@gw.carrier.com;user=phone SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545
Max-Forwards: 70
From: <sip:fi lo.farnsworth@television.tv>;tag=12
To: <sip:+12025551313@gw.carrier.com;user=phone>
Call-ID: 49235243082018498
CSeq: 1 INVITE
Supported: 100rel
Contact: sip:fi lo.farnsworth@studio.television.tv
Content-Type: application/sdp
Content-Length: 154

v=0
o=FF 2890844535 2890844535 IN IP4 8.19.19.06
s=-
t=0 0
c=IN IP4 8.19.19.06
m=audio 5004 RTP/AVP 0 8 Two alternative codecs, PCM μ-Law or PCM A-Law
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000

M2 IAM
CdPN=202-555-1313, NPI=E.164,
NOA=National Gateway maps telephone into called party number

M3 ACM

M4 SIP/2.0 183 Session Progress
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545
From: <sip:fi lo.farnsworth@television.tv>;tag=12
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=37 Tag and
Call-ID: 49235243082018498 brackets
CSeq: 1 INVITE
RSeq: 08071
Contact: <sip:50.60.70.80>
Content-Type: application/sdp
Content-Length: 139

v=0
o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80
s=-
t=0 0

 Call Flow Examples 355

c=IN IP4 50.60.70.80
m=audio 62002 RTP/AVP 0 Gateway selects μ-Law codec
a=rtpmap:0 PCMU/8000

M5 PRACK sip:50.60.70.80 SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK454
Max-Forwards: 70
From: <sip:fi lo.farnsworth@television.tv>;tag=37
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=12
Call-ID: 49235243082018498
CSeq: 2 PRACK
Contact: sip:fi lo.farnsworth@studio.television.tv
RAck: 08071 1 INVITE
Content-Length: 0

M6 SIP/2.0 200 OK
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK454
From: <sip:fi lo.farnsworth@television.tv>;tag=37
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=12
Call-ID: 49235243082018498
CSeq: 2 PRACK

M7 ANM

M8 SIP/2.0 200 OK
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK4545
From: <sip:fi lo.farnsworth@television.tv>;tag=12
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498
CSeq: 1 INVITE
Contact: <sip:50.60.70.80>
Content-Type: application/sdp
Content-Length: 139

v=0
o=Port1723 2890844535 2890844535 IN IP4 50.60.70.80
s=-
t=0 0
c=IN IP4 50.60.70.80
m=audio 62002 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M9 ACK sip:50.60.70.80 SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bKfgrw
Max-Forwards: 70
From: <sip:fi lo.farnsworth@television.tv>;tag=12
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498
CSeq: 1 ACK

M10 BYE sip:50.60.70.80 SIP/2.0
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK321
Max-Forwards: 70
From: <sip:fi lo.farnsworth@television.tv>;tag=12
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498
CSeq: 3 BYE CSeq incremented

356 SIP: Understanding the Session Initiation Protocol

M11 REL CauseCode=16 Normal Clearing

M12 SIP/2.0 200 OK
Via: SIP/2.0/UDP 8.19.19.06:5060;branch=z9hG4bK321
From: <sip:fi lo.farnsworth@television.tv>;tag=12
To: <sip:+12025551313@gw.carrier.com;user=phone>;tag=37
Call-ID: 49235243082018498
CSeq: 3 BYE

M13 RLC

16.4 PSTN to SIP Call Through a Gateway

Figure 16.4 shows a call originating from a telephone in the PSTN that termi-
nates on a SIP phone in the Internet. The compact form of SIP is used through-
out the example. Note that there is no compact form for CSeq or Max-Forwards.

M1 Setup
CdPN=6512345, NPI=E.164
NOA=International Dialed telephone number
CgPN=4567890, NPI=E.164,
NOA=International PSTN caller’s number

Figure 16.4 PSTN to SIP call fl ow through a gateway.

 Call Flow Examples 357

M2 INVITE sip:+6512345@incoming.com;user=phone SIP/2.0
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343 Compact form of
Max-Forwards: 70 headers includes tag
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>
i: a3-65-99-1d
CSeq: 1 INVITE
m: 65.3.4.1
c: application/sdp
l: 126

v=0
o=- 2890844535 2890844535 IN IP4 65.3.4.1
s=-
t=0 0
c=IN IP4 65.3.4.1
m=audio 62432 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M3 SIP/2.0 100 Trying
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: sip:+65.12345@incoming.com;user=phone
i: a3-65-99-1d
CSeq: 1 INVITE

M4 Service Query: +65-12345

M5 Location Service Response:
sip:user@home.com Number maps to SIP URI

M6 INVITE sip:user@home.com SIP/2.0
v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
Max-Forwards: 69
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: sip:+65.12345@incoming.com;user=phone
i: a3-65-99-1d
CSeq: 1 INVITE
m: 65.3.4.1
c: application/sdp
l: 126

v=0
o=- 2890844535 2890844535 IN IP4 65.3.4.1
s=-
t=0 0
c=IN IP4 65.3.4.1
m=audio 62432 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M7 SIP/2.0 180 Ringing
v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d
m: sip:user@client.home.com
CSeq: 1 INVITE

358 SIP: Understanding the Session Initiation Protocol

M8 SIP/2.0 180 Ringing
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d
CSeq: 1 INVITE

M9 Alerting

M10 SIP/2.0 200 OK
v: SIP/2.0/UDP 176.5.8.2:5060;branch=z9hG4bK942834822.1
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d
CSeq: 1 INVITE
m: sip:user@client.home.com
c: application/sdp
l: 125

v=0
o=- 2890844565 2890844565 IN IP4 7.8.9.10
s=-
t=0 0
c=IN IP4 7.8.9.10
m=audio 5004 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M11 SIP/2.0 200 OK
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK343
f: <sip:+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip:+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d
CSeq: 1 INVITE
M: sip:user@home.com
c: application/sdp
l: 125

v=0
o=- 2890844565 2890844565 IN IP4 7.8.9.10
s=-
t=0 0
c=IN IP4 7.8.9.10
m=audio 5004 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M12 Connect

M13 ACK sip:user@home.com SIP/2.0
v: SIP/2.0/UDP 65.3.4.1:5060;branch=z9hG4bK453
Max-Forwards: 70
f: <sip+45.67890@incoming.com;user=phone>;tag=6a589b1
t: <sip+65.12345@incoming.com;user=phone>;tag=8657
i: a3-65-99-1d
CSeq: 1 ACK

 Call Flow Examples 359

16.5 Parallel Search

In this example the caller receives multiple possible locations for the called party
from a redirect server. Instead of trying the locations one at a time, the UA
implements a parallel search for the called party by simultaneously sending the
INVITE to three different locations, as shown in Figure 16.5. The SIP specifi ca-
tion gives an example of this behavior in a proxy server, which is called a forking
proxy.

In this example the fi rst location responds with a 404 Not Found response.
The second location responds with a 180 Ringing response, while the third loca-
tion returns a 180 Ringing then a 200 OK response. The caller then sends an ACK
to the third location to establish the call. Because one successful response has
been received, a CANCEL is sent to the second location to terminate the search.

Figure 16.5 Parallel search example call fl ow.

360 SIP: Understanding the Session Initiation Protocol

The second location sends a 200 OK to the CANCEL and a 487 Request Terminated
to the INVITE. This example shows some customized reason phrases in messages
M7, M10, and M11. This example also shows a Call-ID with an IP address
which is not recommended.

M1 INVITE sip:faraday@effect.org SIP/2.0
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK3 Port
 ;received=7.9.18.12 60000 is used
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>;
 tag=4
To: <sip:faraday@effect.org>
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 54 INVITE CSeq initialized to 54
Contact:<sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp
Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12
s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 96
a=rtpmap:96 iLBC/8000

M2 SIP/2.0 300 Multiple locations Redirect server returns three locations
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK3
 ;received=7.9.18.12
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=4
To:<sip:faraday@effect.org>;tag=1024
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 54 INVITE
Contact: <sip:faraday@lab.royalsoc.gb>
Contact: <sip:+44.555.1212@sip-phone.effect.org;user=phone>
Contact: <sip:michael.faraday@commonroom.club.gb>

M3 ACK sip:faraday@effect.org
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK3
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=4
To: <sip:faraday@effect.org>;tag=1024
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 54 INVITE

M4 INVITE sip:faraday@lab.royalsoc.gb SIP/2.0
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK1
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org> Tag is not copied
Call-ID: mNjdwWjkBfWrd@7.9.18.12 Call-ID unchanged
CSeq: 55 INVITE CSeq incremented
Contact: <sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp

 Call Flow Examples 361

Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12
s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 96
a=rtpmap:96 iLBC/8000

M5 INVITE sip:+44.555.1212@sip-phone.effect.org;user=phone SIP/2.0
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK2
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE
Contact: <sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp
Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12
s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 96
a=rtpmap:96 iLBC/8000

M6 INVITE sip:faraday@commonroom.club.gb SIP/2.0
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK3
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE
Contact: <sip:james.maxwell@kings.cambridge.edu.uk>
Content-Type: application/sdp
Content-Length: 129

v=0
o=max 2890844521 2890844521 IN IP4 7.9.18.12
s=-
t=0 0
c=IN IP4 7.9.18.12
m=audio 32166 RTP/AVP 96
a=rtpmap:96 iLBC/8000

M7 SIP/2.0 404 The member you have requested is not available
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK1
 ;received=7.9.18.12
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=f6
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE

362 SIP: Understanding the Session Initiation Protocol

M8 ACK sip:faraday@lab.royalsoc.gb SIP/2.0
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000z9hG4bK1
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=f6
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 ACK

M9 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK2
 ;received=7.9.18.12
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
Contact: <sip:+44.555.1212@sip-phone.effect.org>
CSeq: 55 INVITE

M10 SIP/2.0 180 Please wait while we locate Mr. Faraday
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK3
 ;received=7.9.18.12
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=531
Call-ID: mNjdwWjkBfWrd@7.9.18.12
Contact: <sip:faraday@commonroom.club.gb>
CSeq: 55 INVITE

M11 SIP/2.0 200 Mr. Faraday at your service?
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK3
 ;received=7.9.18.12
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=531
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE
User-Agent: PDV/v4
Contact: <sip:faraday@commonroom.club.gb>
Content-Type: application/sdp
Content-Length: 131

v=0
o=max 2890844521 2890844521 IN IP4 6.22.17.89
t=0 0
c=IN IP4 6.22.17.89
m=audio 43782 RTP/AVP 4
a=rtpmap:4 DVI/8000

M12 ACK sip:faraday@commonroom.club.gb;user=ip SIP/2.0
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK3
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=531
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 ACK

M13 CANCEL sip:+44.555.1212@sip-phone.effect.org;user=phone SIP/2.0

 Call Flow Examples 363

Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK2 Cancels search
Max-Forwards: 70
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
To: <sip:faraday@effect.org>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 CANCEL CSeq not incremented
 Method set to CANCEL

M14 SIP/2.0 200 OK CANCEL acknowledged
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK2
 ;received=7.9.18.12
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 CANCEL

M15 SIP/2.0 487 Request Terminated Final response to INVITE
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK2
 ;received=7.9.18.12
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 INVITE

M16 ACK SIP/2.0
Via: SIP/2.0/UDP kings.cambridge.edu.uk:60000;branch=z9hG4bK2
From: J.C. Maxwell <sip:james.maxwell@kings.cambridge.edu.uk>
 ;tag=5
To: <sip:faraday@effect.org>;tag=6321
Call-ID: mNjdwWjkBfWrd@7.9.18.12
CSeq: 55 ACK

16.6 Call Setup with Two Proxies

This section contains the complete message fl ow shown in Figure 2.2.

M1 INVITE sip:werner.heisenberg@munich.de SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Subject: Where are you exactly?
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
t=0 0
c=IN IP4 100.101.102.103

364 SIP: Understanding the Session Initiation Protocol

m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M2 INVITE sip:werner.heisenberg@200.201.202.203 SIP/2.0
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
Max-Forwards: 69
To: Heisenberg <sip:werner.heisenberg@munich.de>
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:schroed5244@pc33.aol.com>
Content-Type: application/sdp
Content-Length: 159

v=0
o=schroed5244 2890844526 2890844526 IN IP4 100.101.102.103
s=Phone Call
c=IN IP4 100.101.102.103
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M3 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
 ;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

M4 SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Length: 0

M5 SIP/2.0 200 OK
Via: SIP/2.0/UDP proxy.munich.de:5060;branch=z9hG4bK83842.1
 ;received=100.101.102.105
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg7 <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: <sip:werner.heisenberg@200.201.202.203>
Content-Type: application/sdp
Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
s=Phone Call
c=IN IP4 200.201.202.203

 Call Flow Examples 365

t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M6 SIP/2.0 200 OK
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKmp17a
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 INVITE
Contact: sip:werner.heisenberg@200.201.202.203
Content-Type: application/sdp
Content-Length: 159

v=0
o=heisenberg 2890844526 2890844526 IN IP4 200.201.202.203
c=IN IP4 200.201.202.203
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

M7 ACK sip:werner.heisenberg@200.201.202.203 SIP/2.0
Via: SIP/2.0/UDP 100.101.102.103:5060;branch=z9hG4bKka42
Max-Forwards: 70
To: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
From: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
Call-ID: 4827311-391-32934
CSeq: 1 ACK
Content-Length: 0

M8 BYE sip:schroed5244@pc33.aol.com SIP/2.0
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
Max-Forwards: 70
To: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
Call-ID: 4827311-391-32934
CSeq: 2000 BYE
Content-Length: 0

M9 SIP/2.0 200 OK
Via: SIP/2.0/UDP 200.201.202.203:5060;branch=z9hG4bK4332
To: E. Schroedinger <sip:schroed5244@aol.com>;tag=42
From: Heisenberg <sip:werner.heisenberg@munich.de>;tag=314159
Call-ID: 4827311-391-32934
CSeq: 2000 BYE
Content-Length: 0

16.7 SIP Presence and Instant Message Example

This section contains the call fl ow details of Figure 2.4.

M1 SUBSCRIBE sip:poisson@probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK348471123
Max-Forwards: 70
To: M. Poisson <sip:poisson@probability.org>

366 SIP: Understanding the Session Initiation Protocol

From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520
CSeq: 3412 SUBSCRIBE
Allow-Events: presence
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:pafnuty@lecturehall21.academy.ru;transport=tcp>
Event: presence
Content-Length: 0

M2 SIP/2.0 200 OK
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK348471123;received=19.34.3.1
To: M. Poisson <sip:poisson@probability.org>;tag=25140
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
Call-ID: 58dkfj34924lk34452k592520
CSeq: 3412 SUBSCRIBE
Allow-Events: presence
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Event: presence
Expires: 3600
Content-Length: 0

M3 NOTIFY sip:pafnuty@lecturehall21.academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4321
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: dialog
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=3600
Event: presence
Content-Type: application/pidf+xml
Content-Length: 244

<?xml version=”1.0” encoding=”UTF-8”?>
<presence xmlns=”urn:ietf:params:xml:ns:pidf”
 entity=”sip:poisson@probability.org”>
 <tuple id=”452426775”>
 <status>
 <basic>closed</basic>
 </status>
 </tuple>
</presence>

M4 SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4321;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1026 NOTIFY
Content-Length: 0

 Call Flow Examples 367

M5 NOTIFY sip:pafnuty@lecturehall21.academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK334241
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Allow-Events: presence
Contact: <sip:s.possion@dist.probability.org;transport=tcp>
Subscription-State: active;expires=1800
Event: presence
Content-Type: application/pidf+xml
Content-Length: 325

<?xml version=”1.0” encoding=”UTF-8”?>
<presence xmlns=”urn:ietf:params:xml:ns:pidf”
 entity=”sip:poisson@probability.org”>
 <tuple id=”452426775”>
 <status>
 <basic>open</basic>
 </status>
 <contact>sip:s.possion@dist.probability.org;transport=tcp
 </contact>
 </tuple>
</presence>

M6 SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK334241;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=21171
From: M. Poisson <sip:poisson@probability.org>;tag=25140
Call-ID: 58dkfj34924lk34452k592520
CSeq: 1027 NOTIFY
Content-Length: 0

M7 MESSAGE sip:s.possion@dist.probability.org SIP/2.0
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK3gtr2
Max-Forwards: 70
To: M. Poisson <sip:s.possion@dist.probability.org>
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 9

Hi There!

M8 SIP/2.0 200 OK
Via SIP/2.0/TCP lecturehall21.academy.ru:5060
 ;branch=z9hG4bK3gtr2;received=19.34.3.1
To: M. Poisson <sip:s.possion@dist.probability.org>;tag=2321
From: P. L. Chebychev <sip:chebychev@academy.ru>;tag=4542
Call-ID: 9dkei93vjq1ei3
CSeq: 15 MESSAGE
Content-Length: 0

368 SIP: Understanding the Session Initiation Protocol

M9 MESSAGE sip:chebychev@academy.ru SIP/2.0
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4526245
Max-Forwards: 70
To: P. L. Chebychev <sip:chebychev@academy.ru>
From: M. Poisson <sip:s.possion@dist.probability.org>;tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Allow: ACK, INVITE, CANCEL, BYE, NOTIFY, SUBSCRIBE, MESSAGE
Content-Type: text/plain
Content-Length: 30

Well, hello there to you, too!

M10 SIP/2.0 200 OK
Via SIP/2.0/TCP dist.probablilty.org:5060
 ;branch=z9hG4bK4526245;received=24.32.1.3
To: P. L. Chebychev <sip:chebychev@academy.ru>;tag=mc3bg5q77wms
From: M. Poisson <sip:s.possion@dist.probability.org>;tag=14083
Call-ID: lk34452k592520
CSeq: 2321 MESSAGE
Content-Length: 0

References

Rosenberg, J., H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Hand- [1]
ley, and E. Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June 2002.

Johnston, A., et al., “Session Initiation Protocol (SIP) Basic Call Flow Examples,” BCP 75, [2]
RFC 3665, December 2003.

Johnston, A., et al., “Session Initiation Protocol (SIP) Public Switched Telephone Network [3]
(PSTN) Call Flows,” BCP 76, RFC 3666, December 2003.

Johnston, A., et al., “Session Initiation Protocol Service Examples,” BCP 144, RFC 5359, [4]
October 2008.

369

17
Future Directions
SIP is still an evolving protocol. New extensions and applications are being de-
veloped every day. Also, the SIP ecosystem continues to grow within the service
provider and vendor communities. This chapter will discuss some future areas
of work in SIP-related working groups in the IETF. Instead of attempting to
list and discuss a snapshot of current activity in the IETF, the reader should
gather the information directly from the IETF. Table 17.1 lists the most impor-
tant SIP-related working groups. Note that the closed SIP [1] and SIPPING
[2] working groups are not listed as they have been replaced by the SIPCORE
[3] and DISPATCH [4] working groups, respectively. The charter page for each
working group (given in References) lists the deliverables of the group along
with RFCs (fi nished documents) and Internet Drafts (works in progress). Only
Internet Drafts that have been adopted as offi cial work group items are listed on
these Web pages—these are the documents most likely to become RFCs in the
near future. The Web page also contains information about joining the working
group e-mail list, which discusses the listed set of Internet Drafts. Finally, one
can search the IETF Internet Draft archives for documents relating to SIP at
http://www.ietf.org. However, be warned: There are many, many documents and
most will likely never be published as an RFC—always consult someone familiar
with the working group activity before assuming that an Internet Draft not listed
on a working group charter page is likely to ever become an Internet standard.

The following sections will discuss some active topics of standardization
and development in SIP-related working groups including: bug fi xes and
clarifi cation of RFC 3261, additional extensions to SIP, more work on SIP
identity, interdomain SIP, emergency calling, P2P and HIP, security, and better
feature interoperability.

370 SIP: Understanding the Session Initiation Protocol

17.1 Bug Fixes and Clarifi cations

In the new SIPCORE working group in the IETF, there will be continuing
discussion about bug fi xes and clarifi cations to the base specifi cation RFC 3261.
There is a database of bugs and issues with the specifi cation [5]. Some of these
will fi nd their way into Internet Drafts that will eventually update RFC 3261.
In addition there is discussion about progressing SIP from proposed standard
to draft standard in the IETF standards ladder. This would require extensive
documentation of existing interoperability and also a major rewrite of the base
specifi cation. However, work towards this goal is underway. For the status on this
and other changes to the core SIP protocol, visit the IETF SIPCORE working
group’s charter page [3].

17.2 More Extensions

There continues to be a steady stream of SIP extensions being proposed to the
IETF. Some extensions add new functionality and features to the protocol, re-
fl ecting the continued deployment of the protocol. For example, the use of SIP

Table 17.1
SIP-Related IETF Working Groups

Working Group Area

SIPCORE Session Initiation Protocol Core
Maintenance and development of
core SIP

DISPATCH Dispatch Examine proposals for new SIP work

SIMPLE
SIP for Instant Messaging and Presence
Leveraging Extensions

Presence and IM extensions for SIP

BLISS Basic Level of Interoperability for SIP Services Feature interoperability for SIP

ECRIT
Emergency Context Resolution with Internet
Technologies

Emergency calling

XCON Centralized Conferencing Conferencing

BEHAVE Behavior Engineering for Hindrance Avoidance
NAT behaviors and traversal
protocols

P2PSIP Peer-to-Peer SIP
Peer protocol and SIP usage of P2P
overlays

ENUM E.164 Telephone Number Mapping Telephone number to URI resolution

SPEERMINT Session Peering for Multimedia Interconnect SIP Peering best current practices

DRINKS Data for Reachability of Inter/tra-Network SIP Provisioning for SIP interconnection

MMUSIC Multiparty Multimedia Session Control
Session description protocol and
extensions

 Future Directions 371

in contact centers (call centers) will require more SIP extensions to be developed.
Fixes and clarifi cations to the core SIP protocol are done in SIPCORE, while the
DISPATCH working group is used to help plan future SIP extension working
groups.

17.3 Better Identity

Identity continues to be an active area of discussion. Most deployed systems use
P-Asserted-Identity, which provides only the same level of identity assurance
as the PSTN. Enhanced SIP identity [6] provides a better identity assurance,
but has been very slow to deploy. One possible reason is the integrity protection
of the SDP message body used to negotiate the media session. Many service
providers and intermediaries modify the SDP information for “media steering”
(NAT traversal) or media quality monitoring. Some proposals to allow these in-
termediaries to perform this function without compromising security have been
made. In addition, enhanced SIP identity is mainly only useful for e-mail style
identities—when telephone numbers (E.164 numbers) are used, the properties
are greatly reduced. This future work might be done in a working group orga-
nized in DISPATCH.

17.4 Interdomain SIP

The usage of SIP between multiple service providers, between multiple enter-
prises, and between a service provider and a domain is on the rise. A num-
ber of IETF working groups are tackling various aspects of the problem space.
For example, E.164 Telephone Number Mapping (ENUM) [7] is working on
the resolution of telephone numbers to URIs for lookup and routing. The Ses-
sion Peering for Multimedia Interconnect (SPEERMINT) [8] working group
is working on policies and best current practices for SIP peering. The Data for
Reachability of Inter/tra-Network SIP (DRINKS) [9] working group is working
on provisioning issues relating to SIP peering.

17.5 Making Features Work Better

Many telephony features have been defi ned for SIP including those discussed in
Chapter 9. However, due to the fl exibility and “building block” nature of SIP,
some features can be implemented in more than one way. As a result, features in
clients and servers can be implemented using different SIP standards, but will
not be able to interoperate. The Basic Level of Interoperability of SIP Services
(BLISS) working group [10] has been formed by the IETF to address this is-

372 SIP: Understanding the Session Initiation Protocol

sue. The approach of the working group is described in the problem statement
draft [11]. In addition, BLISS is fi lling in the gaps for feature provisioning and
activation.

17.6 Emergency Calling

Emergency calling is a very important application for Internet communica-
tions and SIP. The Emergency Context Resolution with Internet Technolo-
gies (ECRIT) working group [12] has been working on various aspects of this
 problem, along with location-based solutions from the Geographic Location
(GEOPRIV) [13] working group. Eventually, public service answering points
(PSAPs) will be enabled to receive VoIP and multimedia calls.

17.7 More SIP Trunking

Today’s SIP trunking seeks to replicate PSTN trunking by providing voice-only
services and features. As of the writing of this book, SIPconnect version 1.1 [14]
is currently under development by the SIP Forum. This work should be com-
pleted in 2009. Work is expected to begin on a SIPconnect 2.0 recommendation
which will likely include multimedia and presence capabilities.

17.8 P2P and HIP

As both P2PSIP and Host Identity Protocol (HIP) are developed, they are likely
to be implemented together in order to utilize the benefi ts of both. The use of
P2P approaches will be driven by market forces and competition, and the desire
for highest reliability and scalability.

17.9 Improved NAT Traversal

With the fi nalization of hole punching protocols such as ICE [15] and a better
understanding of NAT behavior and operation, NAT traversal for SIP should
improve dramatically in the future. SIP extensions such as outbound [16] should
also improve the reliability of UA connections through NATs.

17.10 Security Deployment

Many current SIP deployments use minimal security or no media security at all.
As deployable methods to securely key SRTP are used, hopefully secure media

 Future Directions 373

will become the norm. Making secure media deployable in an incremental way
means utilizing best effort encryption, which was discussed in Chapter 14. Best
effort encryption can be done using either ZRTP [17] or SDP capability nego-
tiation [18].

17.11 Better Interoperability

SIP needs to continually improve its interoperability. Some kind of certifi cation
might even be implemented by the SIP Forum in the future. Currently, regularly
attending SIPit SIP interoperability test events [19] is still the best way to ensure
your product or service will interoperate with others.

References

http://www.ietf.org/html.charters/OLD/sip-charter.html. [1]

http://www.ietf.org/html.charters/OLD/sipping-charter.html. [2]

http://www.ietf.org/html.charters/sipcore-charter.html. [3]

http://www.ietf.org/html.charters/dispatch-charter.html. [4]

http://bugs.sipit.net/. [5]

Peterson, J., and C. Jennings, “Enhancements for Authenticated Identity Management in [6]
the Session Initiation Protocol (SIP),” RFC 4474, August 2006.

http://www.ietf.org/html.charters/enum-charter.html. [7]

http://www.ietf.org/html.charters/speermint-charter.html. [8]

http://www.ietf.org/html.charters/drinks-charter.html. [9]

http://www.ietf.org/html.charters/bliss-charter.html. [10]

Rosenberg, J., “Basic Level of Interoperability for Session Initiation Protocol (SIP) Services [11]
(BLISS) Problem Statement,” draft-ietf-bliss-problem-statement-04 (work in progress),
March 2009.

http://www.ietf.org/html.charters/ecrit-charter.html [12]

http://www.ietf.org/html.charters/geopriv-charter.html [13]

http://www.sipforum.org/sipconnect [14]

Rosenberg, J., “Interactive Connectivity Establishment (ICE): A Protocol for Network [15]
Address Translator (NAT) Traversal for Offer/Answer Protocols,” draft-ietf-mmusic-ice-19
(work in progress), October 2007.

Jennings, C., and R. Mahy, “Managing Client Initiated Connections in the Session Initiation [16]
Protocol (SIP),” draft-ietf-sip-outbound-16 (work in progress), October 2008.

374 SIP: Understanding the Session Initiation Protocol

Zimmermann, P., A. Johnston, and J. Callas, “ZRTP: Media Path Key Agreement for Secure [17]
RTP,” draft-zimmermann-avt-zrtp-15 (work in progress), March 2009.

Gilman, R., R. Even, and F. Andreasen, “SDP Media Capabilities Negotiation,” draft-ietf- [18]
mmusic-sdp-media-capabilities-07 (work in progress), February 2009.

 http://www.sipit.net/. [19]

375

Appendix
Introduction to ABNF and XML
Augmented Backus-Naur Form (ABNF) and Extensible Markup Language
(XML) are used to represent nearly all the protocols discussed in this book.
However, syntax is explained in this book by example rather than using ABNF
rules or XML schemas or DTDs. This appendix provides an introduction to help
when reading the actual RFC specifi cations.

A.1 ABNF Rules

Augmented Backus-Naur Form is a computer science metasyntax used to defi ne
many Internet protocols including SIP. It defi nes how text messages are parsed,
and was initially defi ned in RFC 822; the latest version is defi ned in RFC 5234
[1]. ABNF uses a 7-bit ASCII character set and defi nes rules for matching char-
acter strings.

For example:

Message = Request / Response

Defi nes a rule named Message in terms of two other rules Request and
 Response. The “/” indicates an alternative, meaning that a message can be either
a request or a response. A basic rule in ABNF has the form:

Name = elements; Comment CRLF

376 SIP: Understanding the Session Initiation Protocol

where Name is the name of the rule, and the elements follow after the equal sign.
Comments begin after a semicolon (;) and continue until the end of the line, ter-
minated with a carriage return line feed (CRLF). Elements can be simple strings.
For example:

Element = “test”
Element2 = “Test”
Element3 = “TEST”

Rules defi ned using literal strings are actually case-insensitive. As a result
Element, Element2, and Element3 are all equivalent. Terminals, or individual
ASCII characters, in ABNF can be expressed using a percent sign and are often
encoded in hexadecimal. For example:

value1 = %x61 ; a
value2 = %x65 ; A

Rule value1 matches the lowercase a, while value2 matches uppercase A.
Value ranges can be defi ned using a dash:

Digit = %x30-39 ; Digits “0” through “9”

Concatenation in ABNF is done by listing rules together:

Element5 = value1 value2 ; aA

Groupings in ABNF are enclosed by parenthesis () and are treated as a
single element. Optional rules are enclosed by square brackets []. Rules can be
invoked numerous times as shown in Table A.1.

The precedence rules of ABNF are given in Table A.2. For example:

“a” / “b” “c” matches “a” or “bc” but not “ac”
(“a” / “b”) “c” matches “ac” or “bc” but not “a”
*(“a” “b”) “c” matches “ababc” but not “aaabc”

Table A.3 has an example ABNF, which is a simplifi ed version of the host
rule in SIP.

Table A.1
ABNF Examples of Repetition

2*3Rule Rule appears between two and three times.
*4Rule Rule can appear up to four times.
3Rule Rule must appear three times.
*Rule Rule can appear any number of times including zero times.

 Appendix 377

This rule allows a host to be either a domain name or an IPv4 address or
IPv6 address. For example, ese.wustl.edu matches this rule but ese..edu does
not. Example.com3 matches this rule but example.3com does not (this is due to
a rule in DNS that top level domain names may not begin with a digit and en-
forced by the rule toplabel). For IPv4 addresses, any four sets of three digits
separated by a “.” will match the rule IPv4address.

A.2 Introduction to XML

XML [2] is a simplifi cation of the Standardized Generalized Markup Language
(SGML). It is very similar to the Hypertext Markup Language (HTML) used
to represent documents on the World Wide Web (WWW). While SIP does not
use XML encoding, many bodies used with SIP do. XML is standardized by the
World Wide Web Consortium (W3C). Elements in XML are known as tags or

Table A.2
ABNF Order of Precedence
Strings, names formation
Comment
Value range
Repetition
Grouping, optional
Concatenation
Alternative

Table A.3
ABNF Example for Host

host = hostname / IPv4address / IPv6ref

hostname = *(domainlabel “.”) toplabel [“.”

domainlabel = alphanum/alphanum *(alphanum / “-”) alphanum

toplabel = ALPHA / ALPHA *(alphanum / “-”) alphanum

IPv4address = 1*3DIGIT “.” 1*3DIGIT “.” 1*3DIGIT “.” 1*3DIGIT

IPv6ref = “[” IPv6address “]”

IPv6address = hexpart [“:”IPv4address]

hexpart = hexseq / hexseq “::”[hexseq] / “::”[hexseq]

hexseq = hex4 *(„:“ hex4)

hex4 = 1*4HEXDIG

alphanum = ALPHA / DIGIT

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

DIGIT = %x30-39 ; 0-9

HEXDIG = DIGIT / “A” / “B” / “C” / “D” / “E” / “F”

378 SIP: Understanding the Session Initiation Protocol

elements and are enclosed in <>. Here is an example tag, which contains a single
value:

<tag>value</tag>

For every element opened in XML (<tag> in the above example), the tag
must be closed (</tag>). An XML document is said to be well-formed if every
opened tag is also closed. The value, which is enclosed by the open and closed
tags, is the value associated with that element. In addition to values, elements can
also have attributes inside the <>. For example:

<tag attribute=”another value”>value</tag>

is the same as the previous element but with the addition of the information
in the attribute. Attribute values can be enclosed in either double quotes (“) or
single quotes (‘). Elements can also be opened and closed at the same time:

<tag attribute=’information’ />

This element has no value but does have the single attribute, which is en-
closed in single quotes. Elements can also be enclosed in other elements:

<address>
 <number>402</number>
 <street>Wildwood Ave</street>

</address>

In this example, the <number> and <street> elements are subelements in-
side the <address> element.

XML documents can be validated by another document, which indicates
what elements, information, and attributes may be present. Two common meth-
ods of defi ning XML documents are XML schema and a document type defi ni-
tion (DTD). Both schema and DTD are XML documents. A complete XML
document begins with an XML declaration, which indicates the current version
of XML (1.0) and the encoding (commonly UTF-8):

<?xml version=”1.0” encoding=”UTF-8”>

Table A.4 shows some common entity values in XML. Comments begin
with <!-- and end with -->. XML documents usually use the fi le extension .xml.
XML is commonly used for encoding information in SIP message bodies. A
key advantage of XML over, for example, ABNF, is that a general purpose XML
parser can be used to parse and validate an XML document. XML documents

 Appendix 379

can also be used to write IETF Internet Drafts using the XML document format
[3] and the XML2RFC tool [4].

Namespaces are an XML extension used to manage XML extensions while
avoiding name collisions. For example, it is common for elements to defi ne a
namespace using the xmlns attribute. Additional namespace attributes can also
be defi ned. If a particular namespace is not understood, it can be ignored by the
XML parser. For example,

<presence xmlns=”urn:ietf:params:xml:ns:pidf”
 xmlns:dm=”urn:ietf:params:xml:ns:pidf:data-model”
 xmlns:cipid=”urn:ietf:params:xml:ns:pidf:cipid”
 xmlns:caps=”urn:ietf:params:xml:ns:pidf:caps”
 entity=”pres:someone@example.com”>
 <tuple id=”34g45sfde”>
 <status>
 <basic>open</basic>
 </status>
 <contact>sip:someone@pc29.example.com</contact>
 <caps:servcaps>
 <caps:audio>true</caps:audio>
 <caps:video>true</caps:video>
 </caps:servcaps>
 </tuple>

</presence>

This presence element has a default namespace, which is the IETF URN
for PIDF, and three other namespaces of dm, cipid, and caps. The subelements
tuple, status, and contacts are all defi ned in the default namespace while the
elements servcaps, audio, and video are defi ned in the caps namespace.

Note that the line breaks and indentation tabs often shown with XML are
optional, but are a good idea to help with the readability of XML. XML elements
and values are case sensitive.

References

Crocker, D., and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” STD 68, [1]
RFC 5234, January 2008.

Table A.4
Entity Values in XML

Value Meaning
& ampersand
< less than
> greater than
&apos apostrophe
" quotation mark
 escaped ASCII space

380 SIP: Understanding the Session Initiation Protocol

World Wide Web Consortium, “Extensible Markup Language (XML) 1.0,” W3C XML, [2]
February 1998.

Rose, M., “Writing I-Ds and RFCs Using XML,” RFC 2629, June 1999. [3]

http://xml.resource.org. [4]

381

About the Author
Alan B. Johnston is an engineer in Avaya’s CTO offi ce and has been involved
with SIP and VoIP since the mid-1990s. While at MCI, he served as an archi-
tect of the fi rst enterprise SIP VoIP product in the United States. He is also an
adjunct professor of electrical systems engineering at Washington University in
St. Louis. Dr. Johnston is a coauthor of the SIP protocol specifi cation RFC 3261
and editor of the basic and PSTN call fl ows BCP (Best Current Practices) docu-
ments, RFC 3665 and RFC 3666, and several other RFCs. His recent areas of
work include the SIP Service Examples, Peer-to-Peer (P2P) SIP, and security,
where he has couthored the ZRTP protocol. He is also the cochair of the IETF
(Internet Engineering Task Force) Centralized Conferencing Working Group,
and is a former member of the board of directors of the international SIP Fo-
rum. Dr. Johnston has been awarded several U.S. and European patents in VoIP
technology. He holds a bachelor’s of engineering degree with honours from the
University of Melbourne, Australia, and a Ph.D. in electrical engineering from
Lehigh University, Bethlehem, Pennsylvania.

383

Index
Accept-Contact header fi eld, 149–50
Accept-Encoding header fi eld, 134–36
Accept header fi eld, 134
Accept-Language header fi eld, 136
Accept-Resource-Priority header fi eld,
 163–64
ACK method, 78–80
 defi ned, 78
 header fi elds, 80
 hop-by-hop, 79, 80
Acknowledgment of messages, 65–66
Ada, 344
Adaptive multirate (AMR) codec, 185
Address and port dependent mapping
 (ADPM)
 NAT, 241, 245
Address dependent mapping (ADM) NAT,
 240–41, 245
Advanced Encryption Standard (AES), 308
Advanced Encryption Standard (AES) for
encryption in counter mode (AES-CTR), 323
Alert-Info header fi eld, 136
Allow-Events header fi eld, 137
Allow header fi eld, 137
American Registry for Internet Numbers
 (ARIN), 3–4
Answer-Mode header fi eld, 137
Application layer, 9
Application layer gateways (ALGs), 246
Application sequencing, 229–30
Audio codecs, 282–83
Audio conferencing, 284

Audio video profi le with feedback (AVPF),
 285
Augmented Backus-Naur Form (ABNF), 11,
 375–77
 basic rule, 375–76
 character set, 375
 defi ned, 375
 example for host, 377
 examples of repetition, 376
 groupings, 376
 order of precedence, 377
 percent sign, 376
Authentication
 certifi cates for, 311
 defi ned, 307
 digest, 314–16
 message, 309–10
 mutual, 316
 performance of, 307
 proxy, 315
 with TLS, 316–17
Authentication-Info header fi eld, 164
Authorization header fi eld, 150

Back-to-back user agents (B2BUAs), 53–54
 defi ned, 53
 as device part, 53–54
 uses, 53
 See also User agents (UAs)
Backus Naur Format (BNF), 11
Bandwidth management, 226
Basic Level of Interoperability of SIP Services
 (BLISS), 371
Best effort encryption, 325

384 SIP: Understanding the Session Initiation Protocol

Chord
 fi nger table, 334, 335
 routing, 334
Circuit associated signaling (CAS), 263
Client error responses, 116–28
 400 Bad Request, 116–17
 401 Unauthorized, 117
 402 Payment Required, 117
 403 Forbidden, 117
 404 Not Found, 118
 405 Method Not Allowed, 118
 406 Not Acceptable, 118
 407 Proxy Authentication Required,
 118
 408 Request Timeout, 119
 409 Confl ict, 119
 410 Gone, 119
 411 Length Required, 119
 412 Conditional Request Failed,
 119–20
 413 Request Entity Too Large, 120
 414 Request-URI Too Long, 120
 415 Unsupported Media Type, 120
 416 Unsupported URI Scheme, 120
 417 Unknown Resource Priority, 120
 420 Bad Extension, 121
 421 Extension Required, 121
 422 Session Timer Interval Too

 Small, 121
 423 Interval Too Brief, 121
 428 Use Identity Header, 121
 429 Provide Referror Identity, 122
 430 Flow Failed, 122
 433 Anonymity Disallowed, 122
 436 Bad Identity-Info Header, 122
 437 Unsupported Certifi cate, 122
 438 Invalid Identity Header, 123
 439 First Hop Lacks Outbound

 Support, 123
 440 Max-Breadth Exceeded, 123
 470 Consent Needed, 123
 480 Temporarily Unavailable, 123
 481 Dialog/Transaction Does Not

 Exist, 123
 482 Loop Detection, 124
 483 Too Many Hops, 124
 484 Address Incomplete, 125
 485 Ambiguous, 125
 486 Busy Here, 126
 487 Request Terminated, 126

Binary Floor Control Protocol (BFCP), 228,
 296–97
Brute force attack, 308
Buffering, 274–75
Bug fi xes, 370
BYE method, 78, 79
Bytes, 2

Call agents, 55
Call cancellation, race condition in, 82
Call fl ows, xxiv, 343–68
 call setup with two proxies, 363–65
 conferencing, 229
 examples, 343–68
 H.323, 269
 ICE, 258
 identity, 319
 MESSAGE method, 95
 parallel search, 359–63
 PRACK method, 98
 PSTN to SIP call through gateway,
 356–58
 PUBLISH method, 89
 SIP call with authentication, proxies, and
 record-route, 343–49
 SIP call with stateless and stateful proxies
 with called party busy, 349–52
 SIP outbound, 252
 SIP presence and instant message, 365–68
 SIP to PSTN call through gateways,
 352–56
 SUBSCRIBE method, 85
 voicemail, 225
Call-ID header fi eld, 137–38
Call-Info header fi eld, 150
Call Signaling Control Functions (CSCF),
 185
Call state information, 35
CANCEL method, 81–82
 defi ned, 81
 header fi elds, 83
 in hop-to-hop request, 82
 See also Request messages
Centralized Conference Manipulation
 Protocol (CCMP), 228
Certifi cates, 310–11
 for authentication, 311
 defi ned, 310
 TLS with, 319
Certifi cate service, 319–22

 Index 385

 488 Not Acceptable Here, 126
 489 Bad Event, 126
 491 Request Pending, 126
 493 Request Undecipherable, 127
 494 Security Agreement Required,
 127
 See also Response messages
Coding, 274
Common Presence and Instant Message
 Presence Information Data Format
 (CPIM PIDF), 41, 42
Common Profi le for Instant Messaging
 (CPIM), 205–6
 header fi elds, 206–8
 wrapper, 207
Compressed RTP (CRTP), 280
Compression, 280–81
Conditional notifi cations, 201–2
Conferencing, 227–29, 284–85
 audio, 284
 call control functions, 228
 call fl ow, 229
 defi ned, 227
 focus, 227–28
 mixer, 228
 non-SIP control, 228
 video, 284–85
 See also Services
Confi dentiality, 307–8
Connection reuse, 250–51
Contact header fi eld, 35, 138–39
Content-Disposition header fi eld, 169–70
Content-Encoding header fi eld, 169
Content-Language header fi eld, 170
Content-Length header fi eld, 45, 170
Content-Type header fi eld, 170–71
Credential theft, 312
Cryptography
 defi ned, 308
 Diffi e-Hellman, 309
 public key, 309
 symmetric key, 309
CSeq header fi eld, 140

Data for Reachability of Inter/tra-Network
 SIP (DRINKS), 371
Datagram Congestion Control Protocol
 (DCCP), 9, 237
Data/link layer, 2
Date header fi eld, 141

Decoding, 275
Denial of service (Dos), 311
Depacketization, 274
Diffi e-Hellman cryptography, 309
Digest authentication, 314–16
Digital certifi cates, 310–11
DISPATCH, 369
Distributed denial of service (DDOS), 311
DNS security (DNSSec), 313–14
Domain Name Service (DNS), xxxiii, 1,
 13–17
 address resource records, 15
 defi ned, 13
 lookups, 32, 33, 48
 naming authority pointer resource records
 (NAPTR), 16
 records, 13–14
 resolvers, 16–17
 resource records, 14–15
 servers, 13
 service resource records (SRV), 15–16
Draft archives, 369
Dual tone multifrequency (DTMF), 277,
 285–86
 encoding, 286
 keypresses, 286
 tones, 285, 286
Dynamic Host Confi guration Protocol
 (DHCP), 4, 9
Dynamic payloads, 300

E.164 Telephone Number Mapping
 (ENUM), 371
Eavesdropping, 312
Emergency calling, 372
Emergency Context Resolution with Internet
 Technologies (ECRIT), 372
Encryption
 best effort, 325
 defi ned, 308
Encryption header fi eld, 141
Endpoint independent mapping (EIM) NAT,
 240
Enhanced identity, 318–19
Error-Info header fi eld, 164
ETags, 202
Ethernet, 2
Event header fi eld, 150–51
Events
 framework, 191–92

386 SIP: Understanding the Session Initiation Protocol

Hashed message authentication code
 (HMAC), 310
Header fi elds, 133–71
 Accept, 134
 Accept-Contact, 149–50
 Accept-Encoding, 134–36
 Accept-Language, 136
 Accept-Resource-Priority, 163–64
 Alert-Info, 136
 Allow, 137
 Allow-Events, 137
 Answer-Mode, 137
 Authentication-Info, 164
 Authorization, 150
 Call-ID, 137–38
 Call-Info, 150
 compact forms, 134
 Contact, 35, 138–39
 Content-Disposition, 169–70
 Content-Encoding, 169
 Content-Language, 170
 Content-Length, 45, 170
 Content-Type, 170–71
 CSeq, 140
 Date, 141
 Encryption, 141
 Error-Info, 164
 Event, 150–51
 Expires, 75, 141
 Flow-Timer, 165
 From, 141–42
 Hide, 151
 History Info, 142
 Identity, 151
 Identity-Info, 151
 Info-Package, 152
 In-Reply-To, 151–52
 Join, 152–53
 Max-Breadth, 155
 Max-Forwards, 156
 message body, 169–71
 MIME-Version, 171
 Min-Expires, 165
 Min-SE, 165
 Organization, 143
 P-Asserted Identity, 155
 Path, 143
 Permission-Missing, 165
 P-OSP-Auth-Token, 155
 P-Preferred Identity, 155

Events (continued)
 notifi cations, conditional, 201–2
 packages, 8, 192
Expires header fi eld, 75, 141

Facsimile, 226–27
Filtering, 200–201
 defi ned, 200
 example, 200–201
 NAT modes, 243
 notifi cations from, 201
Finger tables, 334
Flow-Timer header fi eld, 165
Forking proxy server, 59, 60
From header fi eld, 141–42
Future directions, 369–73

Gateways, 54–55
 application layer (ALGs), 246
 defi ned, 54
 illustrated, 55
 media, (MG), 55
 proxy servers versus, 57
 PSTN, 353
 PSTN to SIP call through, 356–58
 services, 219–20
 SIP to PSTN call through gateways,
 352–56
Global error responses, 129–30
 600 Busy Everywhere, 129
 603 Decline, 129
 604 Does Not Exist Anywhere, 130
 606 Not Acceptable, 130
 See also Response messages

H.26x series, 284
H.245, 270
H.323, 266–71
 audio codecs, 268
 call fl ow example, 269
 call signaling messages in, 269
 call teardown sequence, 270
 defi ned, 266
 in deployed systems, 271
 example, 268–71
 introduction to, 266–68
 network elements, 267
 protocol references, 267, 268
 versions, 271
Hairpinning support, 241
Hash collisions, 310

 Index 387

 Priority, 153
 Privacy, 153
 Priv-Answer-Mode, 143
 Proxy-Authenticate, 166
 Proxy-Authorization, 153–54
 Proxy-Require, 154
 RAck, 161
 Reason, 156
 Record-Route, 144
 Recv-Info, 144
 Referred-By, 94, 157
 Referred-To, 94
 Refer-Sub, 144–45
 Refer-To, 156–57
 Reject-Contact, 158–59
 Replaces, 158
 Reply-To, 157–58
 request, 149–63
 request and response, 134–49
 Request-Disposition, 159
 Require, 159–60
 Resource-Priority, 160
 response, 163–69
 Response-Key, 160
 Retry-After, 145
 Route, 160–61, 184
 RSeq, 168–69
 rules, 133
 Security-Client, 161
 Security-Server, 166
 Security-Verify, 162
 Server, 166
 Service-Route, 166–67
 Session-Expires, 162
 SIP-ETag, 167
 SIP-If-Match, 162, 204
 Subject, 145
 Subscription-State, 162–63
 Supported, 146
 Suppress-If-Match, 163
 Target-Dialog, 163
 Timestamp, 147
 To, 147
 Trigger-Consent, 163
 Unsupported, 167
 User-Agent, 147–48
 Via, 34, 148–49
 Warning, 167–68
 WWW-Authenticate, 168
Hide header fi eld, 151

Hijacking, 312
History Info header fi eld, 142
Hole punching, 253–57
 architecture, 254
 defi ned, 253
 examples, 255–56, 257
 failure, 257
 process, 253
Host Identity Protocol (HIP), 237, 338–39
 advantages, 339
 defi ned, 338
 future directions, 372
 message exchange, 338
 stack, 338
Hypertext Markup Language (HTML), 377
Hypertext Transport Protocol (HTTP), 20
 digest, 315
 use of, 20

Identity, 317–18
 better, 371
 call fl ow, 319
 enhanced, 318–19
 as issue, 317–18
 solutions, 318
Identity header fi eld, 151
Identity-Info header fi eld, 151
I-frames, 283
INFO method, 96–97
 base specifi cation, 97
 defi ned, 96
 example, 96–97
 header fi elds, 97
 See also Request messages
Info-Package header fi eld, 152
Informational responses, 112–14
 100 Trying, 112–13
 180 Ringing, 113
 181 Call is Being Forward, 113
 182 Call Queued, 113
 183 Session Progress, 113–14
 See also Response messages
In-Reply-To header fi eld, 151–52
Instant messaging (IM)
 architecture, 190
 call fl ow example, 365–68
 delivery notifi cation, 206–8
 elements, 190
 history of, 189–91
 page mode, 205

388 SIP: Understanding the Session Initiation Protocol

 mobility, 177–78
 packets, 4
 version 4 (IPv4), 3
 version 6 (IPv6), 3
 See also IP addresses
Internet Research Task Force (IRTF), 19
Internet service providers (ISPs), 236
Interoperability, 373
INVITE method, 73–76
 defi ned, 73
 example request, 75
 header fi elds, 75–76
 reliability example, 68
 triggered, 93–94
 without SDP offer, 74
IP addresses, 3–4, 239
 assignment, 3
 pooling options, 242
 private, 4
IPSec, 312–13, 323
IPTV, 11
ISDN User Part (ISUP), 17–18, 54, 264

Jabber, 213–14
 defi ned, 213
 ID (JID), 213
 interworking with SIMPLE, 214
Jingle, 214, 326
Join header fi eld, 152–53

Man in the middle (MitM) attack, 312
Mapping
 address and port dependent (ADPM), 241
 address dependent (ADM), 240–41
 instant message, 214
 NAT, examples, 244–45
 presence, 215
 refresh, 242–43
 TCP, 243
Marconi’s media information, 28–29
Max-Breadth header fi eld, 155
Max-Forwards header fi eld, 156
Media gateway controllers (MGC), 55, 265
Media gateway control protocols (MGCP),
 265–66
Media gateways (MG), 55
Media security, 322–26
 best effort encryption, 325
 keying SRTP, 323–25
 non-RTP media, 322–23
 secure RTP (SRTP), 323

Instant messaging (continued)
 SIMPLE, 205–13
 SIMPLE specifi cations, 193
Integrated Services Digital Network (ISDN),
 54, 264
Integrity protection, 308
Intelligent Multimedia Core Subsystem
 (IMS), 177
 elements, 184
 header fi elds, 186
 SIP and, 184–85
Interactive Communications Establishment
 (ICE), 247, 258–59
 benefi ts, 259
 call fl ow, 258
 defi ned, 258
 in IP transition, 259
Interdomain SIP, 371
International SIP Forum, 19
Internet
 audio codecs, 283
 multicast backbone (MBONE), 10, 273,
 275, 289
 names, 11
Internet Architecture Board (IAB), 19
Internet Assigned Names Association
 (IANA), 4, 19
Internet Control Message Protocol (ICMP),
 defi ned, 10
Internet Engineering Steering Group (IESG),
 19
Internet Engineering Task Force (IETF), xxvi,
 xxvii, 1, 18–20
 defi ned, 18
 IAB, 19
 MMUSIC, 20
 working groups, 370
Internet Group Management Protocol
 (IGM), 10
Internet message delivery notifi cation
 (IMDN), 207–8
Internet multimedia protocol stack, 2–11
 application layer, 9
 data/link layer, 2
 multicast, 10–11
 network layer, 3–4
 physical layer, 2
 transport layer, 4–9
 utility applications, 9–10
Internet Protocol (IP), 1, 3

 Index 389

 ZRTP, 326
 See also Security
Media support, 273–86
Message bodies
 header fi elds, 169–71
 parts, 105
 request messages, 105–6
Message composition indication, 208–9
Message digest 5 (MD5), 314
MESSAGE method, 94–96
 call fl ow, 95
 defi ned, 94
 response, 95
 See also Request messages
Messages
 acknowledgment of, 65–66
 authentication, 309–10
 multiple recipient, 209–10
 request, 73–107
 response, 111–30
Message Session Relay Protocol (MSRP), 96,
 210–13
 defi ned, 210
 error codes, 212
 header fi elds, 211
 requests, 213
 session example, 212
 sessions, 210, 211
Message transport, 43–47
 SCTP, 46–47
 TCP, 45–46
 TLS, 46
 UDP, 43–44
Midcall mobility, 181, 182
MIKEY (multimedia Internet keying), 324,
 325
MIME-Version header fi eld, 171
Min-Expires header fi eld, 165
Min-SE header fi eld, 165
Mobility
 capabilities, 184
 IP, 177–78
 midcall, 181, 182
 personal, 178–84
 precall, 179
 service, 183
Multicast, 10–11
 support, 68–69
 transport, 10–11
Multicast backbone (MBONE), 10, 273, 275

 defi ned, 10
 sessions, 289
Multihoming, 47
Multipart Internet Mail Extensions (MIME),
 105
Multiple recipient messages, 209–10
Multipoint control units (MCU), 284
Mutual authentication, 316

Namespaces, 379
Naming authority pointer resource records
(NAPTR), 16
Network address and port translation
 (NAPT), 235–36, 238
Network Address Translation (NAT), xxiv,
 235–59
 address and port dependent mapping
 (ADPM), 241, 245
 address dependent mapping (ADM),
 240–41, 245
 advantages, 236
 behavior, 247
 defi ned, 235
 disadvantages, 237
 endpoint independent mapping (EIM),
 240
 examples, 239, 244–45
 fi ltering modes, 243
 friendly, 247
 function, 4
 functioning of, 238–39
 hairpinning support, 241
 hole punching, 253–57
 improved traversal, 372
 introduction to, 235–36
 IP addresses, 239
 IP address pooling, 242, 246
 mapping classifi cations, 240
 mapping refresh, 242–43
 media traversal solutions, 251–57
 port assignment options, 242
 protocol design guidelines, 246
 SIP and, 245–47
 SIP problems with, 249–51
 traversal, 235
 types of, 239–43
Network layer, 3–4
NOTIFY method, 87–88
 defi ned, 87
 example request, 87–88

390 SIP: Understanding the Session Initiation Protocol

NOTIFY method (continued)
 header fi elds, 88
 See also Request messages

Offer answer exchanges, 300–301
Offer answer model, 297–300
 call hold and, 299–300
 defi ned, 297–98
 rules for generating answer, 299
 rules for generating offer, 299
 rules for modifying sessions, 299
 See also Session Description Protocol
 (SDP)
Open Mobile Alliance (OMA), 186
Open Settlement Protocol (OSP), 155
OPTIONS method, 82–84
 defi ned, 82–83
 header fi elds, 84
 request generation, 83
Organization, this book, xxiii–xxiv
Organization header fi eld, 143

Packetization, 274
Page mode instant messaging, 205
Parallel search, 359–63
Partial publication, 202–4
P-Asserted Identity header fi eld, 155
Path header fi eld, 143
Payload type (PT), 300
Peer-to-peer (P2P), xxiv, 331–40
 future directions, 372
 overlays, 333–36
 properties, 331
 properties of SIP, 332
Permission-Missing header fi eld, 165
Personal mobility, 178–84
P-frames, 283
Physical layer, 2
PINT, 20
Playback, 275
Polling, for state, 203
Port assignment, 242
Port numbers, 7, 45
P-OSP-Auth-Token header fi eld, 155
P-Preferred Identity header fi eld, 155
PRACK method, 97–99
 call fl ow example, 98
 defi ned, 97
 example exchange, 98–99
 generation, 97
 header fi elds, 99

 See also Request messages
Precall mobility, 179
Presence
 agents (PAs), 52–53
 architecture, 191
 call fl ow example, 365–68
 defi ned, 189
 documents summary, 204–5
 elements, 191
 history, 189–91
 server, 39, 40
 with SIMPLE, 191–205
 UAs, 91
Presence information, 38
 collection, 53
 defi ned, 38
Priority header fi eld, 153
Privacy header fi eld, 153
Priv-Answer-Mode header fi eld, 143
Private IP addresses, 4
Proxy-Authenticate header fi eld, 166
Proxy authentication, 315
Proxy-Authorization header fi eld, 153–54
Proxy-Require header fi eld, 154
Proxy servers
 access, 57
 defi ned, 56
 forking, 59, 60
 SIP call with, 31–36
 stateful, 58, 349–52
 stateless, 57, 349–52
 user agents/gateways versus, 57
 See also SIP servers
PSTN and Internet Interworking (PINT), 86
Publication, partial, 202–4
Public key cryptography, 309
Public service answering points (PSAPs), 372
Public Switched Telephone Network (PSTN),
 54–55
 codecs, 282
 protocols, 263–64
 signaling, 230
PUBLISH method, 88–91
 call fl ow example, 89
 defi ned, 88
 example request, 88–89
 header fi elds, 90
 See also Request messages

RAck header fi eld, 161

 Index 391

Real-Time Text Taskforce (R3TF), 285
Real-Time Transport Protocol (RTP), xxiv,
 xxviii, 9, 273–78
 audio video profi les, 281–84
 client behavior, 277–78
 in common media processing steps,
 274–75
 compressed (CRTP), 280
 defi ned, 273
 encryption support, 278
 header, 275–77
 impairment detection, 274
 implementation, 273
 lost packet detection, 277
 media sessions, 277
 port, 253
 secure (SRTP), 323
 sessions, 278
 symmetric, 251–53
 topologies, 278
 UDP use, 275
Reason header fi eld, 156
Record-Route header fi eld, 144
Recv-Info header fi eld, 144
Redirection, 312
Redirect servers, 45
 defi ned, 61
 example, 61
 See also SIP servers
REFER method, 91–94
 acceptance, 94
 for attended transfer feature, 93
 defi ned, 91
 header fi elds, 95
 message example, 92
 with Web page push, 92
 See also Request messages
Referred-By header fi eld, 94, 157
Referred-To header fi eld, 94
Refer-Sub header fi eld, 144–45
Refer-To header fi eld, 156–57
Regional internet registries (RIR), 3
REGISTER method, 76–78
Registrar servers, 63–64
Registration
 as additive process, 38
 defi ned, 36
 example, 36–38
 illustrated, 37
 third-party, 77

 user agent, 52
 wireless phone, 37
Reject-Contact header fi eld, 158–59
Reliability, 66–68
 example, 67
 mechanisms, 66
RELOAD (Resource Location and Discovery)
 protocol, xxiv, 336–38
 binary encoding/TLV combination, 337
 defi ned, 336
 functions, 337
 HIP advantages, 339
 overlay protocols, 338
 SIP usage, 337
 uses, 336
Rendezvous, 35
Replaces header fi eld, 158
Replay attack, 312
Reply-To header fi eld, 157–58
Request and response header fi elds, 134–49
Request-Disposition header fi eld, 159
Request header fi elds, 149–63
Request messages, 73–107
 ACK, 78–80
 BYE, 78, 79
 CANCEL, 81–82
 INFO, 96–97
 INVITE, 73–76
 MESSAGE, 94–96
 message bodies, 105–6
 methods, 73–100
 NOTIFY, 87–88
 OPTIONS, 82–84
 PRACK, 97–99
 PUBLISH, 88–91
 REFER, 91–94
 REGISTER, 76–78
 SUBSCRIBE, 84–87
 tags, 104
 UPDATE, 99–100
 URI schemes, 101–2
 URL schemes, 102–4
Require header fi eld, 159–60
Resource lists, 194–99
 ad hoc creation and manipulation, 198
 defi ned, 194
 extension, 195
 stored on RLS, 197
Resource-Priority header fi eld, 160
Response header fi elds, 163–69

392 SIP: Understanding the Session Initiation Protocol

 media, 322–26
 model, 314–19
 protocols, 312–14
 public key cryptography and, 309
 threats, 311–12
Security-Client header fi eld, 161
Security-Server header fi eld, 166
Security-Verify header fi eld, 162
Self-fi xing approach, 253
Server error responses, 128–29
 500 Server Internal Error, 128
 501 Not Implemented, 128
 502 Bad Gateway, 128
 503 Service Unavailable, 128
 504 Gateway Timeout, 128–29
 505 Version Not Supported, 129
 513 Message Too Large, 129
 580 Preconditions Failure, 129
 See also Response messages
Server header fi eld, 166
Service delivery platform (SDP), 230,
 231–32
Service mobility, 183
Service oriented architecture (SOA), 230, 231
Service resource records (SRV), 15–16
Service-Route header fi eld, 166–67
Services, 219–32
 application sequencing, 229–30
 architectures, 230–32
 certifi cate, 319–22
 conferencing, 227–29
 examples, 221–23
 facsimile, 226–27
 gateway, 219–20
 video, 225–26
 voicemail, 223–25
Servlets, 230, 231
Session Description Protocol (SDP), xxviii,
 289–96
 attributes, 294–96
 bandwidth, 293
 common media types, 294
 connection data, 292
 contents, 29
 defi ned, 289
 e-mail address and phone number, 292
 encryption keys, 293
 extensions, 296–97
 fi elds, 290
 media announcements, 293–94

Response-Key header fi eld, 160
Response messages, 111–30
 classes, 27, 111, 112
 client error, 116–27
 defi ned, 111
 global error, 129–30
 informational, 112–14
 server error, 128–29
 success, 114–16
Responses, 27
Retry-After header fi eld, 145
RFC 822, 11
RFC 2327, 289
RFC 2543, 68
RFC 3235, 246
RFC 3261, 68
RFC 3264, 297
RFC 3489, 248
RFC 3550, 273
RFC 3551, 300
RFC 4662, 194
Rich Presence Information Data (RIPD), 194
Rivest Cipher 4 (RC4), 308
Rivest Shamir Adellmann (RSA) algorithm,
 309
Robust header compression (ROHC), 280
Roundtrip time (RTT), 67
Route header fi eld, 160–61, 184
RSeq header fi eld, 168–69
RTP Control Protocol (RTCP), 278–80
 defi ned, 278
 extended reports (RTCP-XR), 279–80
 packets, 278, 279
 port, 253
 reports, 279

Secure audio and video profi les (SAVP), 281
Secure MIME (S/MIME), 314
Secure RTP (SRTP), xxiv, 323
 defi ned, 323
 keying, 323–25
Secure SIP, 317
Secure sockets layer (SSL), 313
Security, 307–26
 authentication and, 307, 314–17
 basic concepts, 307–11
 confi dentiality and, 307–8
 deployment, 372–73
 digital certifi cates and, 310–11
 encryption and, 308–9

 Index 393

 media session information, 289–90
 offer answer model, 297–300
 origin, 291–92
 protocol version, 291
 session name and information, 292
 in SIP session establishment, 26–27
 time, repeat times, time zones, 293
 URI, 292
Session-Expires header fi eld, 162
Session Initiation Protocol Investigation
 (SIPPING), 20, 369
Session Initiation Protocol (SIP)
 call with proxy server, 31–36
 defi ned, 1
 evolution, 369
 as global open standard, 17–18
 history, 20–21
 interdomain, 371
 Internet and, 1–21
 introduction to, 23–48
 peer-to-peer (P2P), 331–40
 popularity, 20
 presence and instant message example,
 38–43
 presence information functions, 2
 registration example, 36–38
 security, 307–26
 services, 219–32
 session establishment example, 23–31
 signaling functions, 1–2
 simplicity, xxviii
 symmetric, 250
 for telephones, 264–65
 as text-encoded protocol, 24
 trunking, 221
 See also SIP clients; SIP servers
Session Peering for Multimedia Interconnect
 (SPEERMINT), 371
Session timer extension, 60
Signaling protocols, 1–2
SIMPLE, xxiii, 20, 191
 defi ned, 191
 IM specifi cations, 193
 IM with, 205–13
 Jabber interworking with, 214
 presence specifi cations, 192
 presence with, 191–205
 XMPP and, 214, 215
Simple Mail Transport Protocol (SMTP),
 20–21

 host/system independent name, 31
 text encoding scheme, 21
Simple Traversal of UDP through NAT.
 See STUN
SIP clients, 30
SIPconnect, 221, 222
SIPCORE, 20, 369
SIP-ETag header fi eld, 167
SIP-If-Match header fi eld, 162, 204
SIP outbound, 251
 call fl ow, 252
 defi ned, 251
 illustrated, 251
SIP servers, 29, 56–64
 defi ned, 56
 proxy, 56–61
 redirect, 45, 61–63
 registrar, 63–64
SPIRITS, 20
Standardized Generalized Markup Language
 (SGML), 377
Stateful proxies, 58, 349–52
Stateless proxies, 57, 349–52
Static payloads, 300
Stream Control Transmission Protocol
 (SCTP), 8–9, 237
 message level delineation, 46
 multihoming support, 47
 transport, 46–47
STUN, 248–49
 clients, 247
 defi ciencies, 247, 249
 defi ned, 248
 usages, 248–49
Subject header fi eld, 145
SUBSCRIBE method, 84–87
 defi ned, 84
 example call fl ow, 85
 header fi elds, 87
 See also Request messages
Subscription-State header fi eld, 162–63
Success messages, 114–16
 200 OK, 114
 202 Accepted, 115
 204 No Notifi cation, 225
 300 Multiple Choices, 115
 301 Moved Permanently, 116
 302 Moved Temporarily, 116
 305 Use Proxy, 116
 380 Alternative Service, 116

394 SIP: Understanding the Session Initiation Protocol

 UDP, 7–8
Transport protocol selection, 47–48
Trigger-Consent header fi eld, 163
Triple Data Encryption Standard (3DES),
 308
Trunking, 221
 between enterprise and service provider,
 223
 future directions, 372
 SIPconnect specifi cations, 222
TURN protocol, 257

Uniform Resource Indicators (URIs), 12,
 64–65
 categories, 32
 device, 32
 embedded, 103
 example, 64
 instant messaging, 104
 parameters, 65
 presence, 104
 request messages, 101–2, 102–3
 SIP, 101
 in SIP session establishment, 25
 telephone, 102–3
 in telephone number encoding, 65
 user, 32
Uniform Resource Locators (URLs), xxiii, 11
 qualifi ers, 12
 schemes, 12, 13
Uniform Resource Names (URNs), 12–13
UNSAF requirements, 249
Unsupported header fi eld, 167
UPDATE method, 99–100
 defi ned, 99
 example, 100
 header fi elds, 101
 See also Request messages
User-Agent header fi eld, 147–48
User agents (UAs), 51–52
 back-to-back (B2BUAs), 53–54
 client (UAC), 52
 defi ned, 51
 functions, 51–52
 presence, 91
 proxy servers versus, 57
 registration, 52
 server (UAS), 52
User Datagram Protocol (UDP), 1, 7–8
 congestion control and, 44

Success messages (continued)
 See also Response messages
Supported header fi eld, 146
Suppress-If-Match header fi eld, 163
Symmetric RTP, 251–53
Symmetric SIP, 250

Tags
 extension feature, 146
 request messages, 104
Target-Dialog header fi eld, 163
Telephones, SIP for, 264–65
Telephony Gateway Registration Protocol
 (TGREP), 55
Telephony Routing over IP (TRIP) protocol,
 55
Text over IP (ToIP), 285
Theft of service, 312
Third Generation Partnership Project
 (3GPP), xxv, 177
 adaptive multirate (AMR) codec, 185
 headers, 186
 IPv6 addresses, 185
 signaling compression, 185
Threats, 311–12
Timestamp header fi eld, 147
To header fi eld, 147
Transaction stateful proxy, 58
Transmission Control Protocol (TCP), 1, 5–7
 congestion control, 7
 connections, 46
 defi ned, 5
 fl ow control, 5–6, 7
 handshake example, 6
 header fi eld, 7
 mappings, 243, 245
 reliability example, 6
 segments, 5
 sequence numbers, 5
 transmission illustration, 45
 transport, 45–46
Transmission Layer Security (TLS), 8, 313
 authentication with, 316–17
 transport, 46
Transport layer, 4–9
 DCCP, 9
 port numbers, 7
 SCTP, 8–9
 TCP, 5–7
 TLS, 8

 Index 395

 datagrams, 44
 multicast, support, 68
 refresh timer, 247
 transmission illustration, 44
 transport, 43–44
Utility applications, 9–10

Via header fi elds, 34, 148–49
Video, 225–26
Video codecs, 283–84
Videoconferencing, 284–85
Video mixing, 285
Voicemail, 223–25
 call fl ow, 225
 defi ned, 223
 URI cause parameter values, 224
 See also Services

Warning header fi eld, 167–68
World Wide Web Consortium (W3C), 377
World Wide Web (WWW), 377
WWW-Authenticate header fi eld, 168

XML (Extensible Markup Language), 377–79
 defi ned, 377
 documents, 378
 elements opened in, 378
 for encoding information in SIP message
 bodies, 378
 entity values in, 379
 extensions, 379
 format, 192
 introduction to, 377–79
 parser, 379
XMPP, 214
 instant message mapping and, 214
 presence mapping and, 215

ZRTP protocol
 defi ned, 325, 326
 implementation, 325
 key agreement, 326

	SIP: Understanding the Session Initiation Protocol Third Edition
	Contents
	Foreword to the First Edition
	Preface to the Third Edition
	Preface to the Second Edition
	Preface to the First Edition
	1 SIP and the Internet
	1.1 Signaling Protocols
	1.2 Internet Multimedia Protocol Stack
	1.2.1 Physical Layer
	1.2.2 Data/Link Layer
	1.2.3 Network Layer
	1.2.4 Transport Layer
	1.2.5 Application Layer
	1.2.6 Utility Applications
	1.2.7 Multicast

	1.3 Internet Names
	1.4 URLs, URIs, and URNs
	1.5 Domain Name Service
	1.5.1 DNS Resource Records
	1.5.2 Address Resource Records (A or AAAA)
	1.5.3 Service Resource Records (SRV)
	1.5.4 Naming Authority Pointer Resource Records (NAPTR)
	1.5.5 DNS Resolvers

	1.6 Global Open Standards
	1.7 Internet Standards Process
	1.8 A Brief History of SIP
	1.9 Conclusion
	References

	2 Introduction to SIP
	2.1 A Simple Session Establishment Example
	2.2 SIP Call with a Proxy Server
	2.3 SIP Registration Example
	2.4 SIP Presence and Instant Message Example
	2.5 Message Transport
	2.5.1 UDP Transport
	2.5.2 TCP Transport
	2.5.3 TLS Transport
	2.5.4 SCTP Transport

	2.6 Transport Protocol Selection
	2.7 Conclusion
	2.8 Questions
	References

	3 SIP Clients and Servers
	3.1 SIP User Agents
	3.2 Presence Agents
	3.3 Back-to-Back User Agents
	3.4 SIP Gateways
	3.5 SIP Servers
	3.5.1 Proxy Servers
	3.5.2 Redirect Servers
	3.5.3 Registrar Servers

	3.6 Uniform Resource Indicators
	3.7 Acknowledgment of Messages
	3.8 Reliability
	3.9 Multicast Support
	3.10 Conclusion
	3.11 Questions
	References

	4 SIP Request Messages
	4.1 Methods
	4.1.1 INVITE
	4.1.2 REGISTER
	4.1.3 BYE
	4.1.4 ACK
	4.1.5 CANCEL
	4.1.6 OPTIONS
	4.1.7 SUBSCRIBE
	4.1.8 NOTIFY
	4.1.9 PUBLISH
	4.1.10 REFER
	4.1.11 MESSAGE
	4.1.12 INFO
	4.1.13 PRACK
	4.1.14 UPDATE

	4.2 URI and URL Schemes Used by SIP
	4.2.1 SIP and SIPS URIs
	4.2.2 Telephone URLs
	4.2.3 Presence and Instant Messaging URLs

	4.3 Tags
	4.4 Message Bodies
	4.5 Conclusion
	4.6 Questions
	References

	5 SIP Response Messages
	5.1 Informational
	5.1.1 100 Trying
	5.1.2 180 Ringing
	5.1.3 181 Call is Being Forwarded
	5.1.4 182 Call Queued
	5.1.5 183 Session Progress

	5.2 Success
	5.2.1 200 OK
	5.2.2 202 Accepted
	5.2.3 204 No Notifi cation

	5.3 Redirection
	5.3.1 300 Multiple Choices
	5.3.2 301 Moved Permanently
	5.3.3 302 Moved Temporarily
	5.3.4 305 Use Proxy
	5.3.5 380 Alternative Service

	5.4 Client Error
	5.4.1 400 Bad Request
	5.4.2 401 Unauthorized
	5.4.3 402 Payment Required
	5.4.4 403 Forbidden
	5.4.5 404 Not Found
	5.4.6 405 Method Not Allowed
	5.4.7 406 Not Acceptable
	5.4.8 407 Proxy Authentication Required
	5.4.9 408 Request Timeout
	5.4.10 409 Confl ict
	5.4.11 410 Gone
	5.4.12 411 Length Required
	5.4.13 412 Conditional Request Failed
	5.4.14 413 Request Entity Too Large
	5.4.15 414 Request-URI Too Long
	5.4.16 415 Unsupported Media Type
	5.4.17 416 Unsupported URI Scheme
	5.4.18 417 Unknown Resource Priority
	5.4.19 420 Bad Extension
	5.4.20 421 Extension Required
	5.4.21 422 Session Timer Interval Too Small
	5.4.22 423 Interval Too Brief
	5.4.23 428 Use Identity Header
	5.4.24 429 Provide Referror Identity
	5.4.25 430 Flow Failed
	5.4.26 433 Anonymity Disallowed
	5.4.27 436 Bad Identity-Info Header
	5.4.28 437 Unsupported Certifi cate
	5.4.29 438 Invalid Identity Header
	5.4.30 439 First Hop Lacks Outbound Support
	5.4.31 440 Max-Breadth Exceeded
	5.4.32 470 Consent Needed
	5.4.33 480 Temporarily Unavailable
	5.4.34 481 Dialog/Transaction Does Not Exist
	5.4.35 482 Loop Detected
	5.4.36 483 Too Many Hops
	5.4.37 484 Address Incomplete
	5.4.38 485 Ambiguous
	5.4.39 486 Busy Here
	5.4.40 487 Request Terminated
	5.4.41 488 Not Acceptable Here
	5.4.42 489 Bad Event
	5.4.43 491 Request Pending
	5.4.44 493 Request Undecipherable
	5.4.45 494 Security Agreement Required

	5.5 Server Error
	5.5.1 500 Server Internal Error
	5.5.2 501 Not Implemented
	5.5.3 502 Bad Gateway
	5.5.4 503 Service Unavailable
	5.5.5 504 Gateway Timeout
	5.5.6 505 Version Not Supported
	5.5.7 513 Message Too Large
	5.5.8 580 Preconditions Failure

	5.6 Global Error
	5.6.1 600 Busy Everywhere
	5.6.2 603 Decline
	5.6.3 604 Does Not Exist Anywhere
	5.6.4 606 Not Acceptable

	5.7 Questions
	References

	6 SIP Header Fields
	6.1 Request and Response Header Fields
	6.1.1 Accept
	6.1.2 Accept-Encoding
	6.1.3 Accept-Language
	6.1.4 Alert-Info
	6.1.5 Allow
	6.1.6 Allow-Events
	6.1.7 Answer-Mode
	6.1.8 Call-ID
	6.1.9 Contact
	6.1.10 CSeq
	6.1.11 Date
	6.1.12 Encryption
	6.1.13 Expires
	6.1.14 From
	Untitled
	6.1.15 History Info
	6.1.16 Organization
	6.1.17 Path
	6.1.18 Priv-Answer-Mod
	6.1.19 Record-Route
	6.1.20 Recv-Info
	6.1.21 Refer-Sub
	6.1.22 Retry-After
	6.1.23 Subject
	6.1.24 Supported
	6.1.25 Timestamp
	6.1.26 To
	6.1.27 User-Agent
	6.1.28 Via

	6.2 Request Header Fields
	6.2.1 Accept-Contact
	6.2.2 Authorization
	6.2.3 Call-Info
	6.2.4 Event
	6.2.5 Hide
	6.2.6 Identity
	6.2.7 Identity-Info
	6.2.8 In-Reply-To
	6.2.9 Info-Package
	6.2.10 Join
	6.2.11 Priority
	6.2.12 Privacy
	6.2.13 Proxy-Authorization
	6.2.14 Proxy-Require
	6.2.15 P-OSP-Auth-Token
	6.2.16 P-Asserted-Identity
	6.2.17 P-Preferred-Identity
	6.2.18 Max-Breadth
	6.2.19 Max-Forwards
	6.2.20 Reason
	6.2.21 Refer-To
	6.2.22 Referred-By
	6.2.23 Reply-To
	6.2.24 Replaces
	6.2.25 Reject-Contact
	6.2.26 Request-Disposition
	6.2.27 Require
	6.2.28 Resource-Priority
	6.2.29 Response-Key
	6.2.30 Route
	6.2.31 RAck
	6.2.32 Security-Client
	6.2.33 Security-Verify
	6.2.34 Session-Expires
	6.2.35 SIP-If-Match
	6.2.36 Subscription-State
	6.2.37 Suppress-If-Match
	6.2.38 Target-Dialog
	6.2.39 Trigger-Consent

	6.3 Response Header Fields
	6.3.1 Accept-Resource-Priority
	6.3.2 Authentication-Info
	6.3.3 Error-Info
	6.3.4 Flow-Timer
	6.3.5 Min-Expires
	6.3.6 Min-SE
	6.3.7 Permission-Missing
	6.3.8 Proxy-Authenticate
	6.3.9 Security-Server
	6.3.10 Server
	6.3.11 Service-Route
	6.3.12 SIP-ETag
	6.3.13 Unsupported
	6.3.14 Warning
	6.3.15 WWW-Authenticate
	6.3.16 RSeq

	6.4 Message Body Header Fields
	6.4.1 Content-Encoding
	6.4.2 Content-Disposition
	6.4.3 Content-Language
	6.4.4 Content-Length
	6.4.5 Content-Type
	6.4.6 MIME-Version

	6.5 Questions
	References

	7 Wireless, Mobility, and IMS

	7.1 IP Mobility
	7.2 SIP Mobility
	7.3 IMS and SIP
	7.4 IMS Header Fields
	7.5 Conclusion
	7.6 Questions
	References

	8 Presence and Instant Messaging
	8.1 Introduction
	8.2 History of IM and Presence
	8.3 SIMPLE
	8.4 Presence with SIMPLE
	8.4.1 SIP Events Framework
	8.4.2 Presence Bodies
	8.4.3 Resource Lists
	8.4.4 Filtering
	8.4.5 Conditional Event Notifi cations and ETags
	8.4.6 Partial Publication
	8.4.7 Presence Documents Summary

	8.5 Instant Messaging with SIMPLE
	8.5.1 Page Mode Instant Messaging
	8.5.2 Common Profi le for Instant Messaging
	8.5.3 Instant Messaging Delivery Notifi cation
	8.5.4 Message Composition Indication
	8.5.5 Multiple Recipient Messages
	8.5.6 Session Mode Instant Messaging

	8.6 Jabber
	8.6.1 Standardization as Extensible Messaging and Presence Protocol
	8.6.2 Interworking with SIMPLE
	8.6.3 Jingle
	8.6.4 Future Standardization of XMPP

	8.7 Conclusion
	8.8 Questions
	References

	9 Services in SIP
	9.1 Gateway Services
	9.2 SIP Trunking
	9.3 SIP Service Examples
	9.4 Voicemail
	9.5 SIP Video
	9.6 Facsimile
	9.7 Conferencing
	9.7.1 Focus
	9.7.2 Mixer
	9.7.3 Non-SIP Conference Control

	9.8 Application Sequencing
	9.9 Other SIP Service Architectures
	9.9.1 Service Oriented Architecture
	9.9.2 Servlets
	9.9.3 Service Delivery Platform

	9.10 Conclusion
	9.11 Questions
	References

	10 Network Address Translation
	10.1 Introduction to NAT
	10.2 Advantages of NAT
	10.3 Disadvantages of NAT
	10.4 How NAT Works
	10.5 Types of NAT
	10.5.1 Endpoint Independent Mapping NAT
	10.5.2 Address Dependent Mapping NAT
	10.5.3 Address and Port Dependent Mapping NAT
	10.5.4 Hairpinning Support
	10.5.5 IP Address Pooling Options
	10.5.6 Port Assignment Options
	10.5.7 Mapping Refresh
	10.5.8 Filtering Modes

	10.6 NAT Mapping Examples
	10.7 NATs and SIP
	10.8 Properties of a Friendly NAT or How a NAT Should BEHAVE
	10.9 STUN Protocol
	10.10 UNSAF Requirements
	10.11 SIP Problems with NAT
	10.11.1 Symmetric SIP
	10.11.2 Connection Reuse
	10.11.3 SIP Outbound

	10.12 Media NAT Traversal Solutions
	10.12.1 Symmetric RTP
	10.12.2 RTCP Attribute
	10.12.3 Self-Fixing Approach

	10.13 Hole Punching
	10.14 TURN: Traversal Using Relays Around NAT
	10.15 ICE: Interactive Connectivity Establishment
	10.16 Conclusion
	10.17 Questions
	References

	11 Related Protocols
	11.1 PSTN Protocols
	11.1.1 Circuit Associated Signaling
	11.1.2 ISDN Signaling
	11.1.3 ISUP Signaling

	11.2 SIP for Telephones
	11.3 Media Gateway Control Protocols
	11.4 H.323
	11.4.1 Introduction to H.323
	11.4.2 Example of H.323
	11.4.3 Versions

	References

	12 Media Transport
	12.1 Real-Time Transport Protocol (RTP)
	12.2 RTP Control Protocol (RTCP)
	12.2.1 RTCP Reports
	12.2.2 RTCP Extended Reports

	12.3 Compression
	12.4 RTP Audio Video Profi les
	12.4.1 Audio Codecs
	12.4.2 Video Codecs

	12.5 Conferencing
	12.6 ToIP—Conversational Text
	12.7 DTMF Transport
	12.8 Questions
	References

	13 Negotiating Media Sessions
	13.1 Session Description Protocol (SDP)
	13.1.1 Protocol Version
	13.1.2 Origin
	13.1.3 Session Name and Information
	13.1.4 URI
	13.1.5 E-Mail Address and Phone Number
	13.1.6 Connection Data
	13.1.7 Bandwidth
	13.1.8 Time, Repeat Times, and Time Zones
	13.1.9 Encryption Keys
	13.1.10 Media Announcements
	13.1.11 Attributes

	13.2 SDP Extensions
	13.3 The Offer Answer Model
	13.3.1 Rules for Generating an Offer
	13.3.2 Rules for Generating an Answer
	13.3.3 Rules for Modifying a Session
	13.3.4 Special Case—Call Hold
	13.4 Static and Dynamic Payloads
	13.5 SIP Offer Answer Exchanges

	13.6 Conclusion
	13.7 Questions
	References

	14 SIP Security
	14.1 Basic Security Concepts
	14.1.1 Encryption
	14.1.2 Public Key Cryptography
	14.1.3 Diffi e-Hellman Cryptography
	14.1.4 Message Authentication
	14.1.5 Digital Certifi cates

	14.2 Threats
	14.3 Security Protocols
	14.3.1 IPSec
	14.3.2 TLS
	14.3.3 DNSSec
	14.3.4 Secure MIME

	14.4 SIP Security Model
	14.4.1 SIP Digest Authentication
	14.4.2 SIP Authentication Using TLS
	14.4.3 Secure SIP
	14.4.4 Identity

	14.4.5 Enhanced SIP Identity
	14.5 SIP Certifi cate Service
	14.6 Media Security
	14.6.1 Non-RTP Media
	14.6.2 Secure RTP
	14.6.3 Keying SRTP
	14.6.4 Best Effort Encryption
	14.6.5 ZRTP

	14.7 Questions
	References

	15 Peer-to-Peer SIP
	15.1 P2P Properties
	15.2 P2P Properties of SIP
	15.3 P2P Overlays
	15.4 RELOAD
	15.5 Host Identity Protocol
	15.6 Conclusion
	15.7 Questions
	References

	16 Call Flow Examples
	16.1 SIP Call with Authentication, Proxies, and Record-Route
	16.2 SIP Call with Stateless and Stateful Proxies with Called Party Busy
	16.3 SIP to PSTN Call Through Gateways
	16.4 PSTN to SIP Call Through a Gateway
	16.5 Parallel Search
	16.6 Call Setup with Two Proxies
	16.7 SIP Presence and Instant Message Example
	References

	17 Future Directions
	17.1 Bug Fixes and Clarifi cations
	17.2 More Extensions
	17.3 Better Identity
	17.4 Interdomain SIP
	17.5 Making Features Work Better
	17.6 Emergency Calling
	17.7 More SIP Trunking
	17.8 P2P and HIP
	17.9 Improved NAT Traversal
	17.10 Security Deployment
	17.11 Better Interoperability
	References

	Appendix Introduction to ABNF and XML
	A.1 ABNF Rules
	A.2 Introduction to XML
	References

	About the Author
	Index

