

Simulation of
Dynamic Systems
with MATLAB® and Simulink®

S E C O N D E D I T I O N

Harold Klee
Randal Allen

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the
accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2011 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4398-3674-3 (Ebook-PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.copyright.com
http://www.copyright.com/
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

To Andrew, Cassie and in loving memory
of their mother and devoted wife, Laura.

Harold Klee

To Dave Lundquist and Steve Roemerman who believed in me.

Randal Allen

This page intentionally left blank

Contents
Foreword .. xiii
Preface... xv
Authors... xix

Chapter 1 Mathematical Modeling... 1
1.1 Introduction... 1

1.1.1 Importance of Models ... 1
1.2 Derivation of a Mathematical Model ... 4
Exercises.. 8
1.3 Difference Equations .. 10

1.3.1 Recursive Solutions ... 11
Exercises.. 12
1.4 First Look at Discrete-Time Systems ... 13

1.4.1 Inherently Discrete-Time Systems .. 17
Exercises.. 20
1.5 Case Study: Population Dynamics (Single Species) 21
Exercises.. 28

Chapter 2 Continuous-Time Systems... 31
2.1 Introduction... 31
2.2 First-Order Systems .. 31

2.2.1 Step Response of First-Order Systems.. 32
Exercises.. 36
2.3 Second-Order Systems.. 38

2.3.1 Conversion of Two First-Order Equations to a Second-Order
Model... 43

Exercises.. 46
2.4 Simulation Diagrams .. 47

2.4.1 Systems of Equations .. 53
Exercises.. 55
2.5 Higher-Order Systems .. 56
Exercises.. 58
2.6 State Variables .. 59

2.6.1 Conversion from Linear State Variable Form to Single
Input–Single Output Form .. 64

2.6.2 General Solution of the State Equations ... 65
Exercises.. 65
2.7 Nonlinear Systems.. 68

2.7.1 Friction .. 70
2.7.2 Dead Zone and Saturation... 72
2.7.3 Backlash .. 73
2.7.4 Hysteresis... 73
2.7.5 Quantization... 77
2.7.6 Sustained Oscillations and Limit Cycles... 78

v

Exercises.. 82
2.8 Case Study: Submarine Depth Control System ... 85
Exercises.. 89

Chapter 3 Elementary Numerical Integration .. 91
3.1 Introduction... 91
3.2 Discrete-Time System Approximation of a Continuous-Time Integrator...... 92
Exercises.. 94
3.3 Euler Integration ... 96

3.3.1 Backward (Implicit) Euler Integration .. 99
Exercises.. 101
3.4 Trapezoidal Integration... 102
Exercises.. 106
3.5 Numerical Integration of First-Order and Higher Continuous-Time

Systems ... 107
3.5.1 Discrete-Time System Models from Simulation Diagrams 107
3.5.2 Nonlinear First-Order Systems.. 111
3.5.3 Discrete-Time State Equations .. 114
3.5.4 Discrete-Time State System Matrices ... 118

Exercises.. 119
3.6 Improvements to Euler Integration... 122

3.6.1 Improved Euler Method .. 122
3.6.2 Modified Euler Integration .. 125

Exercises.. 135
3.7 Case Study: Vertical Ascent of a Diver ... 138

3.7.1 Maximum Cable Force for Safe Ascent.. 144
3.7.1.1 Trial and Error ... 144
3.7.1.2 Analytical Solution .. 145

3.7.2 Diver Ascent with Decompression Stops.. 145
Exercises.. 147

Chapter 4 Linear Systems Analysis ... 151
4.1 Introduction... 151
4.2 Laplace Transform.. 151

4.2.1 Properties of the Laplace Transform... 153
4.2.2 Inverse Laplace Transform.. 159
4.2.3 Laplace Transform of the System Response................................... 160
4.2.4 Partial Fraction Expansion .. 161

Exercises.. 167
4.3 Transfer Function.. 168

4.3.1 Impulse Function... 168
4.3.2 Relationship between Unit Step Function and Unit Impulse

Function... 169
4.3.3 Impulse Response.. 171
4.3.4 Relationship between Impulse Response and Transfer Function ... 175
4.3.5 Systems with Multiple Inputs and Outputs 178
4.3.6 Transformation from State Variable Model to Transfer

Function... 184
Exercises.. 187

vi Contents

4.4 Stability of Linear Time Invariant Continuous-Time Systems 189
4.4.1 Characteristic Polynomial.. 190
4.4.2 Feedback Control System.. 194

Exercises.. 198
4.5 Frequency Response of LTI Continuous-Time Systems.............................. 200

4.5.1 Stability of Linear Feedback Control Systems Based
on Frequency Response... 210

Exercises.. 213
4.6 z-Transform... 215

4.6.1 Discrete-Time Impulse Function ... 221
4.6.2 Inverse z-Transform... 225
4.6.3 Partial Fraction Expansion .. 226

Exercises.. 233
4.7 z-Domain Transfer Function... 234

4.7.1 Nonzero Initial Conditions .. 236
4.7.2 Approximating Continuous-Time System Transfer Functions 238
4.7.3 Simulation Diagrams and State Variables....................................... 244
4.7.4 Solution of Linear Discrete-Time State Equations 248
4.7.5 Weighting Sequence (Impulse Response Function)........................ 253

Exercises.. 257
4.8 Stability of LTI Discrete-Time Systems... 259

4.8.1 Complex Poles of H(z) .. 263
Exercises.. 269
4.9 Frequency Response of Discrete-Time Systems .. 272

4.9.1 Steady-State Sinusoidal Response... 272
4.9.2 Properties of the Discrete-Time Frequency Response Function..... 274
4.9.3 Sampling Theorem .. 278
4.9.4 Digital Filters... 284

Exercises.. 289
4.10 Control System Toolbox .. 292

4.10.1 Transfer Function Models ... 293
4.10.2 State-Space Models ... 293
4.10.3 State-Space=Transfer Function Conversion..................................... 295
4.10.4 System Interconnections.. 298
4.10.5 System Response... 299
4.10.6 Continuous-=Discrete-Time System Conversion............................. 302
4.10.7 Frequency Response.. 303
4.10.8 Root Locus .. 305

Exercises.. 309
4.11 Case Study: Longitudinal Control of an Aircraft... 312

4.11.1 Digital Simulation of Aircraft Longitudinal Dynamics 325
4.11.2 Simulation of State Variable Model.. 327

Exercises.. 329
4.12 Case Study: Notch Filter for Electrocardiograph Waveform....................... 330

4.12.1 Multinotch Filters .. 331
Exercises.. 338

Chapter 5 Simulink® .. 341
5.1 Introduction... 341
5.2 Building a Simulink® Model.. 341

Contents vii

5.2.1 Simulink® Library ... 342
5.2.2 Running a Simulink® Model... 345

Exercises.. 347
5.3 Simulation of Linear Systems .. 349

5.3.1 Transfer Fcn Block.. 350
5.3.2 State-Space Block.. 353

Exercises.. 362
5.4 Algebraic Loops ... 363

5.4.1 Eliminating Algebraic Loops .. 364
5.4.2 Algebraic Equations .. 367

Exercises.. 369
5.5 More Simulink® Blocks ... 371

5.5.1 Discontinuities ... 377
5.5.2 Friction .. 377
5.5.3 Dead Zone and Saturation... 377
5.5.4 Backlash .. 379
5.5.5 Hysteresis... 380
5.5.6 Quantization... 381

Exercises.. 382
5.6 Subsystems ... 385

5.6.1 PHYSBE.. 386
5.6.2 Car-Following Subsystem ... 386
5.6.3 Subsystem Using Fcn Blocks.. 389

Exercises.. 392
5.7 Discrete-Time Systems ... 393

5.7.1 Simulation of an Inherently Discrete-Time System........................ 394
5.7.2 Discrete-Time Integrator.. 397
5.7.3 Centralized Integration .. 398
5.7.4 Digital Filters... 402
5.7.5 Discrete-Time Transfer Function .. 404

Exercises.. 408
5.8 MATLAB® and Simulink® Interface ... 411
Exercises.. 417
5.9 Hybrid Systems: Continuous- and Discrete-Time Components 420
Exercises.. 423
5.10 Monte Carlo Simulation ... 424

5.10.1 Monte Carlo Simulation Requiring Solution
of a Mathematical Model .. 428

Exercises.. 434
5.11 Case Study: Pilot Ejection.. 437
Exercises.. 441
5.12 Case Study: Kalman Filtering .. 442

5.12.1 Continuous-Time Kalman Filter.. 442
5.12.2 Steady-State Kalman Filter.. 443
5.12.3 Discrete-Time Kalman Filter... 443
5.12.4 Simulink® Simulations .. 444
5.12.5 Summary.. 455

Exercise ... 456

viii Contents

Chapter 6 Intermediate Numerical Integration... 457
6.1 Introduction... 457
6.2 Runge–Kutta (RK) (One-Step Methods).. 457

6.2.1 Taylor Series Method .. 458
6.2.2 Second-Order Runge–Kutta Method... 459
6.2.3 Truncation Errors... 461
6.2.4 High-Order Runge–Kutta Methods ... 466
6.2.5 Linear Systems: Approximate Solutions Using RK Integration 467
6.2.6 Continuous-Time Models with Polynomial Solutions 469
6.2.7 Higher-Order Systems ... 471

Exercises.. 478
6.3 Adaptive Techniques .. 481

6.3.1 Repeated RK with Interval Halving.. 481
6.3.2 Constant Step Size (T¼ 1 min)... 485
6.3.3 Adaptive Step Size (Initial T¼ 1 min) .. 485
6.3.4 RK–Fehlberg ... 486

Exercises.. 490
6.4 Multistep Methods.. 492

6.4.1 Explicit Methods ... 493
6.4.2 Implicit Methods ... 495
6.4.3 Predictor–Corrector Methods .. 498

Exercises.. 502
6.5 Stiff Systems... 503

6.5.1 Stiffness Property in First-Order System .. 504
6.5.2 Stiff Second-Order System.. 506
6.5.3 Approximating Stiff Systems with Lower-Order Nonstiff

System Models .. 509
Exercises.. 522
6.6 Lumped Parameter Approximation of Distributed Parameter Systems 526

6.6.1 Nonlinear Distributed Parameter System .. 531
Exercises.. 534
6.7 Systems with Discontinuities.. 535

6.7.1 Physical Properties and Constant Forces Acting
on the Pendulum BOB .. 543

Exercises.. 549
6.8 Case Study: Spread of an Epidemic... 552
Exercises.. 559

Chapter 7 Simulation Tools ... 561
7.1 Introduction... 561
7.2 Steady-State Solver... 562

7.2.1 Trim Function.. 564
7.2.2 Equilibrium Point for a Nonautonomous System 565

Exercises.. 574
7.3 Optimization of Simulink® Models.. 576

7.3.1 Gradient Vector ... 585
7.3.2 Optimizing Multiparameter Objective Functions Requiring

Simulink® Models ... 587

Contents ix

7.3.3 Parameter Identification... 590
7.3.4 Example of a Simple Gradient Search .. 591
7.3.5 Optimization of Simulink® Discrete-Time System Models............ 599

Exercises.. 605
7.4 Linearization ... 610

7.4.1 Deviation Variables ... 611
7.4.2 Linearization of Nonlinear Systems in State Variable Form 619
7.4.3 Linmod Function ... 623
7.4.4 Multiple Linearized Models for a Single System 627

Exercises.. 633
7.5 Adding Blocks to the Simulink® Library Browser 637

7.5.1 Introduction ... 637
7.5.2 Summary.. 645

Exercise ... 645
7.6 Simulation Acceleration ... 645

7.6.1 Introduction ... 645
7.6.2 Profiler ... 647
7.6.3 Summary.. 647

Exercise ... 648

Chapter 8 Advanced Numerical Integration .. 649
8.1 Introduction... 649
8.2 Dynamic Errors (Characteristic Roots, Transfer Function).......................... 649

8.2.1 Discrete-Time Systems and the Equivalent
Continuous-Time Systems... 650

8.2.2 Characteristic Root Errors ... 653
8.2.3 Transfer Function Errors ... 664
8.2.4 Asymptotic Formulas for Multistep Integration Methods............... 669
8.2.5 Simulation of Linear System with Transfer Function H(s) 672

Exercises.. 677
8.3 Stability of Numerical Integrators .. 680

8.3.1 Adams–Bashforth Numerical Integrators .. 680
8.3.2 Implicit Integrators .. 687
8.3.3 Runga–Kutta (RK) Integration .. 692

Exercises.. 700
8.4 Multirate Integration ... 702

8.4.1 Procedure for Updating Slow and Fast States:
Master=Slave¼RK-4=RK-4 .. 706

8.4.2 Selection of Step Size Based on Stability 707
8.4.3 Selection of Step Size Based on Dynamic Accuracy 708
8.4.4 Analytical Solution for State Variables... 712
8.4.5 Multirate Integration of Aircraft Pitch Control System 714
8.4.6 Nonlinear Dual Speed Second-Order System 717
8.4.7 Multirate Simulation of Two-Tank System 723
8.4.8 Simulation Trade-Offs with Multirate Integration 725

Exercises.. 728
8.5 Real-Time Simulation... 730

8.5.1 Numerical Integration Methods Compatible
with Real-Time Operation... 733

8.5.2 RK-1 (Explicit Euler) .. 734

x Contents

8.5.3 RK-2 (Improved Euler) ... 734
8.5.4 RK-2 (Modified Euler) .. 735
8.5.5 RK-3 (Real-Time Incompatible) ... 735
8.5.6 RK-3 (Real-Time Compatible).. 736
8.5.7 RK-4 (Real-Time Incompatible) ... 736
8.5.8 Multistep Integration Methods .. 736
8.5.9 Stability of Real-Time Predictor–Corrector Method....................... 738
8.5.10 Extrapolation of Real-Time Inputs.. 740
8.5.11 Alternate Approach to Real-Time Compatibility: Input Delay....... 746

Exercises.. 753
8.6 Additional Methods of Approximating Continuous-Time

System Models ... 754
8.6.1 Sampling and Signal Reconstruction .. 754
8.6.2 First-Order Hold Signal Reconstruction.. 759
8.6.3 Matched Pole-Zero Method... 760
8.6.4 Bilinear Transform with Prewarping... 763

Exercises.. 765
8.7 Case Study: Lego Mindstormse NXT .. 767

8.7.1 Introduction ... 767
8.7.2 Requirements and Installation ... 769
8.7.3 Noisy Model .. 769
8.7.4 Filtered Model ... 773
8.7.5 Summary.. 779

Exercise ... 779

References .. 781

Index ... 785

Contents xi

This page intentionally left blank

Foreword
As the authors point out in the preface, there is not yet extant a universally accepted definition of the
term simulation. Another approach to defining the field would be ‘‘the art of reproducing the behavior
of a system for analysis without actually operating that system.’’ The authors have written a seminal
text covering the simulation design and analysis of a broad variety of systems using two of the most
modern software packages available today. The material is presented in a particularly adept fashion
enabling students new to the field to gain a thorough understanding of the basics of continuous
simulation in a single semester and providing, at the same time, a more advanced treatment of the
subject for researchers and simulation professionals. The authors’ extensive treatment of continuous
and discrete linear system fundamentals opens the door to simulation for individuals without formal
education in a traditional engineering curriculum.

However defined, simulation is becoming an increasingly important component of curricula in
engineering, business administration, the sciences, applied mathematics, and the like. This text will
be a valuable resource for study in courses using simulation as a tool for understanding processes
that are not amenable to study in other ways.

Chris Bauer, PhD, PE, CMSP
Orlando, Florida

Simulation has come a long way since the days analog computers filled entire rooms. Yet, it is more
important than ever that simulations be constructed with care, knowledge, and a little wisdom, lest
the results be gibberish or, worse, reasonable but misleading. Used properly, simulations can give us
extraordinary insights into the processes and states of a physical system. Constructed with care,
simulations can save time and money in today’s competitive marketplace.

One major application of simulation is the simulator, which provides interaction between a
model and a person through some interface. The earliest simulator, Ed Link’s Pilot Maker aircraft
trainer, did not use any of the simulation techniques described in this book. Modern simulators,
however, such as the National Advanced Driving Simulator (NADS), cannot be fully understood
without them.

The mission of the NADS is a lofty one: to save lives on U.S. highways through safety research
using realistic human-in-the-loop simulation. This is an example of the importance simulation has
attained in our generation. The pervasiveness of simulation tools in our society will only increase
over time; it will be more important than ever that future scientists and engineers be familiar with
their theory and application.

The content for Simulation of Dynamic Systems with MATLAB® and Simulink® is arranged to
give the student a gradual and natural progression through the important topics in simulation.
Advanced concepts are added only after complete examples have been constructed using funda-
mental methods. The use of MATLAB and Simulink provides experience with tools that are widely
adopted in industry and allow easy construction of simulation models.

May your experience with simulation be enjoyable and fruitful and extend throughout your
careers.

Chris Schwarz, PhD
Iowa City, Iowa

xiii

This page intentionally left blank

Preface
In the first article of SIMULATIONmagazine in the Fall of 1963, the editor John McLeod proclaimed
simulation to mean ‘‘the act of representing some aspects of the real world by numbers or symbols
which may be easily manipulated to facilitate their study.’’ Two years later, it was modified to ‘‘the
development and use of models for the study of the dynamics of existing or hypothesized systems.’’
More than 40 years later, the simulation community has yet to converge upon a universally accepted
definition. Either of the two cited definitions or others that followed convey a basic notion, namely,
that simulation is intended to reinforce or supplement one’s understanding of a system. The
definitions vary in their description of tools and methods to accomplish this.

The field of simulation is experiencing explosive growth in importance because of its ability to
improve the way systems and people perform, in a safe and controllable environment, at a reduced
cost. Understanding the behavior of complex systems with the latest technological innovations in
fields such as transportation, communication, medicine, aerospace, meteorology, etc., is a daunting
task. It requires an assimilation of the underlying natural laws and scientific principles that govern
the individual subsystems and components. A multifaceted approach is required, one in which
simulation can play a prominent role, both in validation of a system’s design and in training of
personnel to become proficient in its operation.

Simulation is a subject that cuts across traditional academic disciplines. Airplane crews spend
hours flying simulated missions in aircraft simulators to become proficient in the use of onboard
subsystems during normal flight and possible emergency conditions. Astronauts spend years train-
ing in shuttle and orbiter simulators to prepare for future missions in space. Power plant and
petrochemical process operators are exposed to simulation to obtain peak system performance.
Economists resort to simulation models to predict economic conditions of municipalities and
countries for policymakers. Simulations of natural disasters aid in preparation and planning to
mitigate the possibility of catastrophic events.

While the mathematical models created by aircraft designers, nuclear engineers, and economists
are application specific, many of the equations are analogous in form despite the markedly different
phenomena described by each model. Simulation offers practitioners from each of these fields the
tools to explore solutions of the models as an alternative to experimenting with the real system.

This book is meant to serve as an introduction to the fundamental concepts of continuous system
simulation, a branch of simulation applied to dynamic systems whose signals change over a
continuum of points in time or space. Our concern is with mathematical models of continuous-
time systems (electric circuits, thermal processes, population dynamics, vehicle suspension, human
physiology, etc.) and the discrete-time system models created to simulate them. The continuous
system mathematical models consist of a combination of algebraic and ordinary differential
equations. The discrete-time system models are a mix of algebraic and difference equations.

Systems that transition between states at randomly occurring times are called discrete-event
systems. Discrete-event simulation is a complementary branch of simulation, separate from con-
tinuous system simulation, with a mathematical foundation rooted in probability theory. Examples
of discrete-event systems are facilities such as a bank, a tollbooth, a supermarket, or a hospital
emergency room, where customers arrive and are then serviced in some way. A manufacturing plant
involving multiple production stages of uncertain duration to generate a finished product is another
candidate for discrete-event simulation.

Discrete-event simulation is an important tool for optimizing the performance of systems that
change internally at unpredictable times due to the influence of random events. Industrial engineer-
ing programs typically include a basic course at the undergraduate level in discrete-event simulation.

xv

Not surprisingly, a number of excellent textbooks in the area have emerged for use by the academic
community and professionals.

In academia, continuous simulation has evolved differently than discrete-event simulation.
Topics in continuous simulation such as dynamic system response, mathematical modeling, differ-
ential equations, difference equations, and numerical integration are dispersed over several courses
from engineering, mathematics, and the natural sciences. In the past, the majority of courses in
modeling and simulation of continuous systems were restricted to a specific field like mechanical,
electrical, and chemical engineering or scientific areas like biology, ecology, and physics.

A transformation in simulation education is underway. More universities are beginning to offer
undergraduate and beginning graduate courses in the area of continuous system simulation designed
for an interdisciplinary audience. Several institutions now offer master’s and PhD programs in
simulation that include a number of courses in both continuous and discrete-event simulation.
A critical mass of students are now enrolled in continuous simulation–related courses and there is a
need for an introductory unifying text.

The essential ingredient needed to make simulation both interesting and challenging is the
inclusion of real-world examples. Without models of real-world systems, a first class in simulation
is little more than a sterile exposition of numerical integration applied to differential equations.

Modeling and simulation are inextricably related. While the thrust of this text is continuous
simulation, mathematical models are the starting point in the evolution of simulation models.
Analytical solutions of differential equation models are presented, when appropriate, as an alterna-
tive to simulation and a simple way of demonstrating the accuracy of a simulated solution. For the
most part, derivations of the mathematical models are omitted and references to appropriate texts are
included for those interested in learning more about the origin of the model’s equations.

Simulation is best learned by doing. Accordingly, the material is presented in a way that permits
the reader to begin exploring simulation, starting with a mathematical model in Chapter 1.
A detailed derivation of the mathematical model of a tank with liquid flowing in and out leads to
a simulation model in the form of a simple difference equation. The simulation model serves as the
vehicle for predicting the tank’s response to various inputs and initial conditions. Additionally,
the derivation illustrates the process of obtaining a mathematical model based on the natural laws
of science.

Chapters 2 and 4 present a condensed treatment of linear, continuous-time, and discrete-time
dynamic systems, normally covered in an introductory linear systems course. Coverage is limited to
basic topics that should be familiar to a simulation practitioner. Section 2.7 is extended to include a
discussion of additional common nonlinear elements, namely, dead zone, quantization, relay, and
saturation. The instructor can skip some or all of the material in these chapters if the students’
background includes a course in signals and systems or linear control theory.

Numerical integration is at the very core of continuous system simulation. Instead of treating the
subject in one exhaustive chapter, coverage is distributed over three chapters. Elementary numerical
integration in Chapter 3 is an informal introduction to the subject, which includes discussion of
several elementary methods for approximating the solutions of first-order differential equations. The
material in Chapters 2 through 4 is a prerequisite for understanding general purpose, continuous
simulation programs that are popular in the engineering and scientific community.

Simulink®, from The MathWorks, is the featured simulation program because of its tight
integration with MATLAB®, the de facto standard for scientific and engineering analysis, and
data visualization software. Chapter 5 takes the reader through the basic steps of creating and
running Simulink models. Section 5.5 includes new material related to simulation implementation
of nonlinear systems using specific blocks from the Simulink library. Due to the popularity of the
Kalman filter, a case study has been added in Section 5.12 on this topic. The continuous-time
Kalman filter equations are developed and modeled in Simulink, including simulated output.
Subsequently, the steady-state continuous-time Kalman filter equations are developed and modeled
in Simulink. The steady-state results are compared with the continuous-time results. Finally, the

xvi Preface

discrete-time Kalman filter equations are developed and modeled in Simulink. The discrete-time
results are compared with the continuous-time results.

Chapter 6 delves into intermediate-level topics of numerical integration, including a formal
presentation of One-Step (Runge–Kutta) and multistep methods, adaptive techniques, truncation
errors, and a brief mention of stability.

Chapter 7 highlights some advanced features of Simulink useful in more in-depth simulation
studies. A new section (Section 7.5) on S-blocks is introduced and an example is presented showing
how to make the discrete-time Kalman filter available for drag-and-drop from the Simulink library.
Other simulation programs offer similar features and the transition from Simulink to other simula-
tion software is straightforward.

Chapter 8 is for those interested in more advanced topics on continuous simulation. Coverage
includes a discussion of dynamic errors, stability, real-time compatible numerical integration, and
multi-rate integration algorithms for simulation of systems with fast and slow components. Due to
the popularity of Lego’s Mindstormse NXT, a case study has been added in Section 8.7 on this
topic.

All but two chapters conclude with a case study illustrating one or more of the topics discussed in
that chapter. The featured text examples and case studies are analyzed using MATLAB script files
and Simulink model files, all of which are available from CRC Press.

The text has been field-tested in the classroom for several years in a two-semester sequence of
continuous simulation courses. Despite numerous revisions based on the scrutiny and suggestions
of students and colleagues, it is naïve to think the final product is free of errors. Further suggestions
for improvement and revelations of inaccuracies can be brought to the attention of the authors at
rallen397@cfl.rr.com and klee@mail.ucf.edu.

Numerous individuals deserve our thanks and appreciation for helping to make this book
possible. In particular, a sincere ‘‘thank you’’ to Nora Konopka at Taylor & Francis=CRC Press
for committing to the second edition and seeing it through to fruition.

For MATLAB® and Simulink® product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Preface xvii

www.mathworks.com

This page intentionally left blank

Authors
Dr. Harold Klee received his PhD in systems science from Polytechnic Institute of Brooklyn in
1972, his MS in systems engineering from Case Institute of Technology in 1968, and his BSME
from The Cooper Union in 1965.

Dr. Klee has been a faculty member in the College of Engineering at the University of Central
Florida (UCF) since 1972. During his tenure at UCF, he has been a five-time recipient of the
college’s Outstanding Teacher Award. He has been instrumental in the development of simulation
courses in both the undergraduate and graduate curricula. He is a charter member of the Core
Faculty, which is responsible for developing the interdisciplinary MS and PhD programs in
simulation at UCF. Dr. Klee served as graduate coordinator in the Department of Computer
Engineering from 2003 to 2006. Two of his PhD students received the prestigious Link Foundation
Fellowship in Advanced Simulation and Training. Both are currently enjoying successful careers in
academia.

Dr. Klee has served as the director of the UCF Driving Simulation Lab for more than 15 years.
Under the auspices of the UCF Center for Advanced Transportation Systems Simulation, the lab
operates a high-fidelity motion-based driving simulator for conducting traffic engineering–related
research. He also served as editor-in-chief for the Modeling and Simulation magazine for three
years, a publication for members of the Society for Modeling and Simulation International.

Dr. Randal Allen is an aerospace and defense consultant working under contract to provide 6DOF
aerodynamic simulation modeling, analysis, and design of navigation, guidance, and control
systems. His previous experience includes launch systems integration and flight operations for
West Coast Titan-IV missions, propulsion modeling for the Iridium satellite constellation, and field
applications engineering for MATRIXx. He also chairs the Central Florida Section of the American
Institute of Aeronautics and Astronautics (AIAA).

Dr. Allen is certified as a modeling and simulation professional (CMSP) by the Modeling and
Simulation Professional Certification Commission (M&SPCC) under the auspices of the National
Training and Simulation Association (NTSA). He is also certified to deliver FranklinCovey’s Focus
and Execution track, which provides training on achieving your highest priorities.

Dr. Allen’s academic background includes a PhD in mechanical engineering from the University
of Central Florida, an engineer’s degree in aeronautical and astronautical engineering from Stanford
University, an MS in applied mathematics, and a BS in engineering physics from the University of
Illinois (Urbana-Champaign). He also serves as an adjunct professor at the University of Central
Florida in Orlando, Florida.

xix

This page intentionally left blank

1 Mathematical Modeling

1.1 INTRODUCTION

1.1.1 IMPORTANCE OF MODELS

Models are an essential component of simulation. Before a new prototype design for an automobile
braking system or a multimillion dollar aircraft is tested in the field, it is commonplace to ‘‘test
drive’’ the separate components and the overall system in a simulated environment based on some
form of model. A meteorologist predicts the expected path of a tropical storm using weather models
that incorporate the relevant climatic variables and their effect on the storm’s trajectory. An
economist issues a quantitative forecast of the U.S. economy predicated based on key economic
variables and their interrelationships with the help of computer models. Before a nuclear power
plant operator is ‘‘turned loose’’ at the controls, extensive training is conducted in a model-based
simulator where the individual becomes familiar with the plant’s dynamics under routine and
emergency conditions. Health care professionals have access to a human patient simulator to receive
training in the recognition and diagnosis of disease. Public safety organizations can plan for
emergency evacuations of civilians from low-lying areas using traffic models to simulate vehicle
movements along major access roads.

The word ‘‘model’’ is a generic term referring to a conceptual or physical entity that resembles,
mimics, describes, predicts, or conveys information about the behavior of some process or system.
The benefit of having a model is to be able to explore the intrinsic behavior of a system in an
economical and safe manner. The physical system being modeled may be inaccessible or even
nonexistent as in the case of a new design for an aircraft or automotive component.

Physical models are often scaled-down versions of a larger system of interconnected components
as in the case of a model airplane. Aerodynamic properties of airframe and car body designs for
high-performance airplanes and automobiles are evaluated using physical models in wind tunnels.
In the past, model boards with roads, terrain, miniaturized models of buildings, and landscape, along
with tiny cameras secured to the frame of ground vehicles or aircraft, were prevalent for simulator
visualization. Current technology relies almost exclusively on computer-generated imagery.

In principle, the behavior of dynamic systems can be explained by mathematical equations and
formulae, which embody either scientific principles or empirical observations, or both, related to the
system. When the system parameters and variables change continuously over time or space, the
models consist of coupled algebraic and differential equations. In some cases, lookup tables
containing empirical data are employed to compute the parameters. Equations may be supplemented
by mathematical inequalities, which constrain the variation of one or more dependent variables. The
aggregation of equations and numerical data employed to describe the dynamic behavior of a system
in quantitative terms is collectively referred to as a mathematical model of the system.

Partial differential equation models appear when a dependent variable is a function of two or
more independent variables. For example, electrical parameters such as resistance and capacitance
are distributed along the length of conductors carrying electrical signals (currents and voltages).
These signals are attenuated over long distances of cabling. The voltage at some location xmeasured
from an arbitrary reference is written v(x, t) instead of simply v(t), and the circuit is modeled
accordingly.

1

A mathematical model for the temperature in a room would necessitate equations to predict
T(x, y, z, t) if a temperature probe placed at various points inside the room reveals significant
variations in temperature with respect to x, y, z in addition to temporal variations. Partial differential
equations describing the cable voltage v(x, t) and room temperature T(x, y, z, t) are referred to as
‘‘distributed parameter’’ models.

The mathematical models of dynamic systems where the single independent variable is ‘‘time’’
comprise ordinary differential equations. The same applies to systems with a single spatial inde-
pendent variable; however, these are not commonly referred to as dynamic systems since variations
of the dependent variables are spatial as opposed to temporal in nature. Ordinary differential
equation models of dynamic systems are called ‘‘lumped parameter’’ models because the spatial
variation of the system parameters is negligible or else it is being approximated by lumped sections
with constant parameter values. In the room temperature example, if the entire contents of the room
can be represented by a single or lumped thermal capacitance, then a single temperature T(t) is
sufficient to describe the room. We focus exclusively on dynamic systems with lumped parameter
models, hereafter referred to simply as mathematical models.

A system with a lumped parameter model is illustrated in Figure 1.1. The key elements are the
system inputs u1(t), u2(t), . . . , ur(t), which make up the system input vector u(t), the system outputs
y1(t), y2(t), . . . , yp(t), which form the output vector y(t), and the parameters p1, p2, . . . , pm consti-
tuting the parameter vector p. The parameters are shown as constants; however, they may also vary
with time.

Our interest is in mathematical models of systems consisting of coupled algebraic and differential
equations relating the outputs and inputs with coefficients expressed in terms of the system
parameters. For steady-state analyses, transient responses are irrelevant, and the mathematical
models consist of purely algebraic equations relating the system variables.

An example of a mathematical model for a system with two inputs, three outputs, and several
parameters is

p1
d2

dt2
y1(t)þ p2 p3

d

dt
y1(t)þ p4y1(t)þ p5

d

dt
y2(t)þ p6y2(t) ¼ p7u1(t) (1:1)

p8
d

dt
y2(t)þ p9

p10
y2(t)þ p11y1(t)y2(t) ¼ p12

d

dt
u1(t)þ p13u1(t)þ p14u2(t) (1:2)

p15y3(t) ¼ p16y
p17
1 (t)

y2(t)
(1:3)

The order of a model is equal to the sum of the highest derivatives of each of the dependent variables,
in this case y1(t), y2(t), y3(t), and the order is therefore 2þ 1þ 0¼ 3. Equation 1.1 is a linear
differential equation. Equation 1.2 is a nonlinear differential equation because of the term
involving the product of y1(t) and y2(t). The mathematical model is nonlinear due to the presence

System

u2(t)

ur(t)

u1(t) y1(t)
y2(t)

yp(t)

Input Output

pmp1 p2

u(t)= y(t)=

. . .

.
.

.

.
.

.

FIGURE 1.1 A system with a lumped parameter model.

2 Simulation of Dynamic Systems with MATLAB® and Simulink®

of the nonlinear differential equation and the nonlinear algebraic equation (Equation 1.3). It is to be
borne in mind that it is the nature of the equations that determines whether a math model is linear or
nonlinear. An adjective such as linear or nonlinear applies to the mathematical model as opposed to
the actual system.

It is important to distinguish between the system being modeled and the model itself. The former
is unique, even though it may exist only at the design stage, while the mathematical model may
assume different forms. For example, a team of modelers may be convinced that the lead term in
Equation 1.1 is likely to be insignificant under normal operating conditions. Consequently, two
distinct models of the system exist, one third order and the other second order. The third-order
model includes the second derivative term to accurately reflect system behavior under unusual or
nontypical conditions (e.g., an aircraft exceeding its flight envelope or a ground vehicle performing
an extreme maneuver). The simpler second-order model ignores what are commonly referred to as
higher-order effects. Indeed, there may be a multitude of mathematical models to represent the same
system under different sets of restricted operating conditions. Regardless of the detail inherent in a
mathematical model, it nevertheless represents an incomplete and inexact depiction of the system.

A model’s intended use will normally dictate its level of complexity. For example, models for
predicting vehicle handling and responsiveness are different from those intended to predict ride
comfort. In the first case, accurate equations describing lateral and longitudinal tire forces are
paramount in importance, whereas passenger comfort relies more on vertical tire forces and
suspension system characteristics.

Mathematical modeling is an inexact science, relying on a combination of intuition, experience,
empiricism, and the application of scientific laws of nature. Trade-offs between model complexity
and usefulness are routine. Highly accurate microclimatic weather models that use current atmos-
pheric conditions to predict the following day’s weather are of limited value if they require 48 h on a
massively parallel or supercomputer system to produce results. At the extreme opposite, overly
simplified models can be grossly inaccurate if significant effects are overlooked.

The difference between a mathematical model and a simulation model is open to interpretation.
Some in the simulation community view the two as one and the same. Their belief is that a
mathematical model embodies the attributes of the actual system and simulation refers to solutions
of the model equations, albeit generally approximate in nature. Exact analytical solutions of
mathematical model equations are nonexistent in all but the simplest cases.

Others maintain a distinction between the two and express the view that simulation model(s)
originate from the mathematical model. According to this line of thinking, simulating the dynamics
of a system requires a simulation model that is different in nature from a mathematical model.
A reliable simulation model must be capable of producing numerical solutions in reasonably close
agreement with the actual (unknown) solutions to the math model. Simulation models are com-
monly obtained from discrete-time approximations of continuous-time mathematical models. Much
of this book is devoted to the process of obtaining simulation models in this way. More than one
simulation model can be developed from a single mathematical model of a system.

Stochastic models are important when dealing with systems whose inputs and parameters are best
modeled using statistical methods. Discrete event models are used to describe processes that transit
from one state to another at randomly spaced points in time. Probability theory plays a significant
role in the formulation of discrete event models for describing the movement of products and service
times at different stages in manufacturing processes, queuing systems, and the like. In fact, the two
pillars of simulation are continuous system simulation, the subject of this book, and discrete event
simulation.

There is a great deal more to be said about modeling. Entire books are devoted to properly
identifying model structure and parameter values for deterministic and stochastic systems. Others
concentrate more on derivation of mathematical models from diverse fields and methods of
obtaining solutions under different circumstances. The reader is encouraged to check the references
section at the end of this book for additional sources of material related to modeling.

Mathematical Modeling 3

Modeling is essential to the field of simulation. Indeed, it is the starting point of any simulation
study. The emphasis, however, in this book is on the presentation of simulation fundamentals.
Accordingly, derivation of mathematical models is not a prominent component. For the most part,
the math models are taken from documented sources listed in the references section, some of which
include step-by-step derivations of the model equations. The derivation is secondary to a complete
understanding of the model, that is, its variables, parameters, and knowledge of conditions that may
impose restrictions on its suitability for a specific application.

Simulation of complex systems requires a team effort. The modeler is a subject expert respon-
sible for providing the math model and interpreting the simulation results. The simulationist
produces the simulation model and performs the simulation study. For example, an aerodynamicist
applies principles of boundary layer theory to obtain a mathematical model for the performance of
a new airfoil design. Starting with the math model, simulation skills are required to produce a
simulation model capable of verifying the efficacy of the design based on numerical results.
Individuals with expert knowledge in a particular field are oftentimes well versed in the practice
of simulation and may be responsible for formulation of alternative mathematical models of the
system in addition to developing and running simulations.

A simple physical system is introduced in the next section, and the steps involved in deriving an
idealized math model are presented. In addition to benefiting from seeing the process from start
to finish, the ingredients for creating a simulation model are introduced. Hence, by the end of this
chapter, the reader will be able to perform rudimentary simulation.

1.2 DERIVATION OF A MATHEMATICAL MODEL

We begin our discussion of mathematical modeling with a simple derivation of the mathematical
model representing the dynamic behavior of an open tank containing a liquid that flows in the top
and is discharged from the bottom. Referring to Figure 1.2, the primary input is the liquid flow rate
F1(t), an independent variable measured in appropriate units such as cubic feet per minute (volu-
metric flow rate) or pounds per hour (mass flow rate). Responding to changes in the input are
dependent variables H(t) and F0(t) the fluid level, and flow rate from the tank.

Once the derivation is completed, we can use the model to predict the outflow and fluid level
response to a specific input flow rate F1(t), t � 0. Note that we have restricted the set of possible
inputs to F1(t) and in the process relegated the remaining independent variables, that is, other
variables which affect F0(t) and H(t), to second-order importance. Our assumption is that the
eventual model will be suitable for its intended application. It must be borne in mind that if
extremely accurate predictions of the level H(t) are required, it may be necessary to include
second-order effects such as evaporation and hence introduce additional inputs related to ambient
conditions, namely, temperature, humidity, air pressure, wind speed, and so forth.

The derivation is based on conditions of the tank at two discrete points in time, as if snapshots of
the tank were available at times ‘‘t’’ and ‘‘tþDt,’’ as shown in Figure 1.3.

The following notation is used with representative units given for clarity:

F1(t): Input flow at time t, ft3=min
H(t): Liquid level at time t, ft
F0(t): Output flow at time t, ft3=min
A: Cross-sectional area of tank, ft2

H (t)
TankF1(t)

F0(t)

FIGURE 1.2 Tank as a dynamic system with input and outputs.

4 Simulation of Dynamic Systems with MATLAB® and Simulink®

At time tþDt, from the physical law of conservation of volume,

V(t þ Dt) ¼ V(t)þ DV (1:4)

where
V(t) is the volume of liquid in the tank at time t
DV is the change in volume from time t to tþDt

The volume of liquid in the tank at times t and tþDt is given by

V(t) ¼ AH(t) (1:5)

V(t þ Dt) ¼ AH(t þ Dt) (1:6)

Equations 1.5 and 1.6 assume constant cross-sectional area of the tank, that is, A is independent ofH.
The change in volume from t to tþDt is equal to the volume of liquid flowing in during the

interval t to tþDtminus the volume of liquid flowing out during the same period of time. The liquid
volumes are the areas under the input and output volume flow rates from t to tþDt as shown in
Figure 1.4.

Expressing these areas in terms of integrals,

DV ¼
ðtþDt
t

F1(t)dt �
ðtþDt
t

F0(t)dt (1:7)

ΔH

A

F1(t)

F0(t)

F1(t + Δt)

F0(t + Δt)

H(t + Δt)H(t)

Time: t Time: t + Δt

A

FIGURE 1.3 A liquid tank at two points in time.

ttt t + Δtt + Δtt + Δt

ΔH

H (t)
F0(t)

F1(t)

FIGURE 1.4 Volumes of liquid flowing in and out of tank from t to tþDt.

Mathematical Modeling 5

The integrals in Equation 1.7 can be approximated by assuming F1(t) and F0(t) are constant over the
interval t to tþDt (see Figure 1.4). Hence,

ðtþDt
t

F1(t)dt � F1(t)Dt (1:8)

ðtþDt
t

F0(t)dt � F0(t)Dt (1:9)

Equations 1.8 and 1.9 are reasonable approximations provided Dt is small. Substituting Equations
1.8 and 1.9 into Equation 1.7 yields

DV � F1(t)Dt � F0(t)Dt (1:10)

Substituting Equations 1.5, 1.6, and 1.10 into Equation 1.4 gives

AH(t þ Dt) � AH(t)þ [F1(t)� F0(t)]Dt (1:11)

) A[H(t þ Dt)� H(t)] � [F1(t)� F0(t)]Dt (1:12)

) A
DH

Dt

� �
� F1(t)� F0(t) (1:13)

where DH is the change in liquid level over the interval (t, tþDt). Note that DH=Dt is the average
rate of change in the level H over the interval (t, tþDt). It is the slope of the secant line from pt A to
pt B in Figure 1.5.

Consider what happens as pt B gets closer to pt A; that is, Dt gets smaller.

End pt DH=Dt

B
H(t þ Dt)� H(t)

Dt
: Slope of line AB

B0
H(t þ Dt0)� H(t)

Dt0
: Slope of line AB0

A [t, H (t)]

B [t + Δt, H (t + Δt)]

B́ [t + Δt́ , H (t + Δt΄)]

A

B΄
B

H

Tangent

Δt

ΔH

t t + Δt́ t + Δt

Pt Coordinates

FIGURE 1.5 Average rate of change DH=Dt as Dt gets smaller.

6 Simulation of Dynamic Systems with MATLAB® and Simulink®

In the limit as Dt approaches zero, pt B approaches pt A, and the average rate of change in H over the
interval (t, tþDt) becomes the instantaneous rate of change in H at time t, that is,

lim
Dt!0

DH

Dt
¼ dH

dt
(1:14)

where dH=dt is the first derivative of H(t). From the graph, it can be seen that dH=dt is equal to the
slope of the tangent line of the function H(t) at t (pt A).

Taking the limit as Dt approaches zero in Equation 1.13 and using the definition of the derivative
in Equation 1.14 give

limA
Dt!0

DH

Dt

� �
¼ lim

Dt!0
[F1(t)� F0(t)] (1:15)

) A
dH

dt

� �
¼ F1(t)� F0(t) (1:16)

Since there are two dependent variables, a second equation or constraint relating F0 and H is
required in order to solve for either one given the input function F1(t). It is convenient at this point to
assume that F0 is proportional to H, that is, F0¼ constant�H (see Figure 1.6). The constant of
proportionality is expressed as 1=R where R is called the fluid resistance of the tank. At a later point,
we will revisit this assumption.

F0 ¼ 1
R
H (1:17)

Equations 1.16 and 1.17 constitute the mathematical model of the liquid tank, namely,

A
dH

dt
þ F0 ¼ F1 and F0 ¼ 1

R
H

where F1, F0, H, and dH=dt are short for F1(t), F0(t), H(t), and (d=dt)H(t).
In this example, the model is a coupled set of equations. One is a linear differential equation and

the other is an algebraic equation, also linear. The differential equation is first order since only the
first derivative appears in the equation and the tank dynamics are said to be first order.

The outflow F0 can be eliminated from the model equations by substituting Equation 1.17 into
Equation 1.16 resulting in

A
dH

dt
þ 1
R
H ¼ F1 (1:18)

Before a particular solution to Equation 1.18 for some F1(t), t � 0 can be obtained, the initial tank
level H(0) must be known.

There are several reasons why an analytical approach to solving
Equation 1.18 may not be the preferred method. Even when the
analytical solution is readily obtainable, for example, when the
system model is linear, as in the present example, the solution may
be required for a number of different inputs or forcing functions.
Recall from studying differential equations what happens when the
right-hand side of the equation changes. A new particular solution
is required that can be time-consuming, especially if the process is
repeated for a number of nontrivial forcing functions.

F0

1

R

H

F0= — H1
R

FIGURE 1.6 A tank with out-
flow proportional to fluid level.

Mathematical Modeling 7

Second, the input F1(t) may not even be available in analytical form. Suppose the input function
F1(t) is unknown except as a sequence of measured values at regularly spaced points in time. An
exact solution to the differential equation model is out of the question since the input is not
expressible as an analytic function of time.

EXERCISES

1.1 A system consists of two tanks in series in which the outflow from the first tank is the inflow to
the second tank as shown in Figure E1.1:

F1(t)

F0(t)

F2(t)

H2(t)A2
H1(t)A1

FIGURE E1.1

(a) Find the algebraic and differential equations that form the mathematical model of the two-
tank system. Assume both tanks are linear, that is, the outflows are proportional to the
liquid levels, and R1 and R2 are the fluid resistances of the tanks.

(b) Eliminate the flows F0(t) and F2(t) from the model to obtain a model in the form of two
differential equations involving the system input F1(t) and the tank levels H1(t) and H2(t).

(c) Obtain the model differential equations when F0(t) and F2(t) are present instead of H1(t)
and H2(t).

(d) The initial fluid levels in the tanks are H1(0) and H2(0). Suppose that the flow into the first
tank is constant, F1(t)¼F1, t � 0. Obtain expressions for H1(1) and H2(1), the eventual
fluid levels in Tanks 1 and 2, respectively. Do H1(1) and H2(1) depend on the initial fluid
levels? Explain.

(e) Find the ratio of tank resistances R1=R2 if H1(1)¼ 2H2(1).
(f) Suppose the flow between the two tanks is reduced to zero by closing the valve in the line.

Show that this is equivalent to R1¼1 and determine the values of H1(1) and H2(1)
assuming the inflow to the first tank is still constant.

1.2 The two tanks in Exercise 1.1 are said to be noninteracting because the flow rate from the first
tank only depends on the fluid level in the first tank and is independent of the fluid level in the
second tank. Suppose the discharged fluid from the first tank enters the second tank at the
bottom instead of the top as shown in Figure E1.2.

F1(t)

A1 A2

H1(t)

F0(t)
F2(t)

H2(t)

FIGURE E1.2

8 Simulation of Dynamic Systems with MATLAB® and Simulink®

The flow between the tanks is now a function of the fluid levels in both tanks. The driving force
for the intertank flow is the difference in fluid levels, and, for the time being, we can assume
that the two quantities are proportional. That is,

F0(t) / [H1(t)� H2(t)]) F0(t) ¼ H1(t)� H2(t)

R12

where R12 represents a fluid resistance involving both tanks. The fluid resistance of the second
tank is still R2.

(a) The general form of the differential equation model for the system of interacting tanks is

dH1

dt
þ a11H1 þ a12H2 ¼ b1F1

dH2

dt
þ a21H1 þ a22H2 ¼ b2F1

Note: H1, H2, and F1 are short for H1(t), H2(t), and F1(t).

Find expressions for a11, a12, a21, a22, b1, and b2 in terms of the system parameters A1,
A2, R12, and R2.

(b) The tanks are initially empty, H1(0)¼ 0 and H2(0)¼ 0. The flow into the first tank is
constant, F1(t)¼F1, t � 0. Show that the final fluid levels in both tanks after a sufficient
period of time has elapsed, H1(1) and H2(1), can be obtained from the solution of the
following system of equations:

a11H1(1)þ a12H2(1) ¼ b1F1

a21H1(1)þ a22H2(1) ¼ b2F1

(c) Solve for H1(1) and H2(1) in terms of the system parameters A1, A2, R12, and R2 and
the constant inflow F1. Are the results different if the tanks are not initially empty?
Explain.

(d) Using the following baseline values unless otherwise stated:

A1 ¼ A2 ¼ 25 ft2, R12 ¼ 3 ft per ft3=min

R2 ¼ 1 ft per ft3=min, F1 ¼ 5 ft3=min

find the eventual fluid levels H1(1) and H2(1) and flows F0(1) and F2(1).
(e) Repeat part (d) with A2¼ 75 ft2.
(f) The valve between the tanks is opened, some resulting in R12¼ 2 ft per ft3=min. The

remaining baseline values remain the same. Find H1(1), H2(1), and flows F0(1) and
F2(1).

(g) Suppose Tank 1 initially holds 10 ft of liquid and Tank 2 has 4 ft. Find the initial rates of
change in level for both tanks.

(h) Is it possible for the fluid level in Tank 2 to exceed the level in Tank 1? Explain.
(i) How does the model change if there is a separate flow, say F3(t), directly into the top of

Tank 2?

Mathematical Modeling 9

1.3 Consider a cone-shaped tank with circular cross-sectional area like the one shown in
Figure E1.3.

H(t)

F1(t)

H0

Radius= r

F0(t)

R

FIGURE E1.3

(a) How does this affect the derivation of the mathematical model?
(b) Find the math model for this case.

1.3 DIFFERENCE EQUATIONS

Looking back at Figures 1.3 and 1.4, recall that the level of fluid in the tank at time tþDt is equal to
the level at time t plus the change in liquid level over the interval (t, tþDt). Thus,

H(t þ Dt) ¼ H(t)þ DH (1:19)

From Figure 1.5, it is apparent that the change in level DH is simply the product of the average rate
of change DH=Dt and the time interval Dt, that is,

H(t þ Dt) ¼ H(t)þ DH

Dt
Dt (1:20)

Solving for DH=Dt in Equation 1.13 and substituting the result into Equation 1.20 give

H(t þ Dt) ¼ H(t)þ 1
A
[F1(t)� F0(t)]Dt (1:21)

Keep in mind that Equation 1.21 is approximate because of the approximations to the integrals in
Equations 1.8 and 1.9. Assuming the output flow F0 is proportional to the level H, as we did to
obtain Equation 1.17, gives

H(t þ Dt) ¼ H(t)þ 1
A

F1(t)� 1
R
H(t)

� �
Dt (1:22)

) H(t þ Dt) ¼ 1� Dt

AR

� �
H(t)þ Dt

A
F1(t) (1:23)

10 Simulation of Dynamic Systems with MATLAB® and Simulink®

Since Equation 1.23 is only approximate, H(t) is replaced by HA(t) to distinguish it from the actual
solution H(t). From Equation 1.23 with H(t) replaced by HA(t),

HA(t þ Dt) ¼ 1� Dt

AR

� �
HA(t)þ Dt

A
F1(t) (1:24)

Equation 1.24 is a difference equation that can be solved for the approximate solution HA(t) when
F1(t), t � 0 and HA(0) are known. As we shall see, the approximate solution HA(t) can only be
determined at discrete times, namely, t¼ 0, Dt, 2Dt, 3Dt,

1.3.1 RECURSIVE SOLUTIONS

Difference equations are easily solved because of their inherent structure. The solution values
HA(nDt), n¼ 1, 2, 3, . . . are obtained in a sequential fashion by repeated application of the difference
equation. The process begins with initial conditions HA(0) and F1(0) and proceeds as follows.

Starting with t¼ 0, from Equation 1.24

HA(Dt) ¼ 1� Dt

AR

� �
HA(0)þ Dt

A
F1(0) (1:25)

Choosing HA(0) in Equation 1.25 equal to the known initial level H(0) produces the first computed
value for the approximate level, namely,

HA(Dt) ¼ 1� Dt

AR

� �
H(0)þ Dt

A
F1(0) (1:26)

The process can be repeated to obtain HA(2Dt) by letting t¼Dt in Equation 1.24, resulting in the
following equation:

HA(2Dt) ¼ 1� Dt

AR

� �
HA(Dt)þ Dt

A
F1(Dt) (1:27)

Substituting HA(Dt) from Equation 1.26 into the right-hand side of Equation 1.27 yields

HA(2Dt) ¼ 1� Dt

AR

� �
1� Dt

AR

� �
H(0)þ Dt

A
F1(0)

� �
þ Dt

A
F1(Dt) (1:28)

Expanding Equation 1.28 gives

HA(2Dt) ¼ 1� Dt

AR

� �2

H(0)þ 1� Dt

AR

� �
Dt

A
F1(0)þ Dt

A
F1(Dt) (1:29)

Another iteration of Equation 1.24 with t¼ 2Dt and HA(2Dt) from Equation 1.29 leads to HA(3Dt).
The result is

HA(3Dt) ¼ 1� Dt

AR

� �3

H(0)þ 1� Dt

AR

� �2
Dt

A
F1(0)þ 1� Dt

AR

� �
Dt

A
F1(Dt)þ Dt

A
F1(2Dt) (1:30)

Figure 1.7 illustrates the process up to this point.

Mathematical Modeling 11

Following the nth iteration, HA(nDt) is known. The next iteration uses it and F1(nDt) to generate a
numerical value for HA([nþ 1]Dt) from

HA([nþ 1]Dt) ¼ 1� Dt

AR

� �
HA(nDt)þ Dt

A
F1(nDt) (1:31)

Equation 1.31 is amore common form of the difference equation than Equation 1.24. The solution to the
difference equation isHA(nDt), n¼ 0, 1, 2, 3, It represents an approximation to the actual levelH(t)
only at discrete times t¼ 0,Dt, 2Dt, 3Dt, The accuracy of the approximate solution depends on the
size of Dt because the difference equation is based on the use of DH=Dt as a suitable approximation for
the first derivative dH=dt. As the step sizeDt is reduced, the approximation is improved at the expense of
more computations required to approximate H(t) for a fixed period of time.

In order to find a solution H(t), t � 0 to the mathematical model of the tank, F1(t) is required for
t � 0. However, the solution HA(nDt), n¼ 0, 1, 2, 3, . . . to Equation 1.31 requires knowledge of the
input F1(t) only at the discrete times t¼ 0, Dt, 2Dt, 3Dt, Similarly, calculating a single value of
the approximate solution, for example, HA(25Dt), requires only a finite number of discrete inputs,
namely, F1(nDt), n¼ 0, 1, 2, . . . , 24.

EXERCISES

1.4 Find the difference equation, similar to Equation 1.31, relating F0,A([nþ 1]Dt) to F0,A(nDt)
and F1(nDt).

1.5 A tank with cross-sectional area A¼ 5 ft2 is initially filled to a level of 10 ft. The flow out is
given by F0¼H=R, R¼ 1 ft per ft3=min. There is no flow into the tank.
(a) Find HA(nDt), n¼ 0, 1, 2, . . . , 10 when Dt¼ 2.5 min.
(b) Find HA(nDt), n¼ 0, 1, 2, . . . , 25 when Dt¼ 1 min.
(c) Find HA(nDt), n¼ 0, 1, 2, . . . , 100 when Dt¼ 0.25 min.
(d) Plot the results and comment on the differences.

1.6 Repeat Exercise 1.5 for the case where the outflow is described by F0¼ cH1=2, c¼ 3
ft3=min per ft1=2.

H(t)

t

Δt 2Δt 3Δt0

Δt 2Δt 3Δt0

t

HA(3Δt)

F1(2Δt)

F1(Δt)

F1(0)

HA(0)

F1(t)

HA(2Δt)
HA(Δt)

FIGURE 1.7 Illustration of the method for solving a difference equation.

12 Simulation of Dynamic Systems with MATLAB® and Simulink®

1.4 FIRST LOOK AT DISCRETE-TIME SYSTEMS

The variables F1(t), F0(t), and H(t) in the liquid tank shown in Figure 1.3 are referred to as
continuous-time (or simply continuous) signals. The reason is because there is a continuum of
values between any two points along the t-axis where the variables are defined. Equation 1.18 is a
continuous-time model and the system is a continuous-time system because it involves only
continuous-time variables.

In contrast to the continuous-time signals F1(t), F0(t), and H(t), the sequence of sampled input flow
values, F1(nDt), n¼ 0, 1, 2, . . . and the sequence of approximate tank levelsHA(nDt), n¼ 0, 1, 2, . . . are
classified as discrete-time (discrete for short) signals because the independent variable ‘‘n’’ is discrete in
nature. The difference equation (Equation 1.31) is classified as a discrete-timemodel, and the underlying
system with purely discrete-time input and output signals is likewise a discrete-time system.

Figure 1.8 portrays the liquid tank continuous-time system with dependent variable H(t) con-
sidered as the output.

A complete description of the system includes the following:

System: Continuous time
Independent variable: t � 0
Input: F1(t), t � 0
Dependent variables: H(t), F0(t), t � 0
Output: H(t), t � 0

Model: A
dH

dt
þ F0(H) ¼ F1(t)

The differential equation model is shown with a term F0(H) representing an algebraic function
relating the outflow F0(t) to the fluid level H(t). We have assumed this function to be linear;
however, a more accurate description will be introduced later.

Figure 1.9 is a comparable diagram of the liquid tank discrete-time system with discrete-time
input F1(n) and output HA(n). F1(n) is short for F1(nDt), n¼ 0, 1, 2, . . . the sampled values of
the input flow. HA(n) is short for HA(nDt), n¼ 0, 1, 2, . . . , the values computed from the difference
equation in Equation 1.31. Note that HA(n), n¼ 0, 1, 2, . . . differs from H(nDt), n¼ 0, 1, 2, . . . , the
sampled values of the continuous-time level H(t).

A complete description of the system includes the following:

System: Discrete time
Independent variable: n¼ 0, 1, 2, . . .
Input: F1(n), n¼ 0, 1, 2, . . .
Dependent variables: HA(n), F0,A(n), n¼ 0, 1, 2, . . .
Output: HA(n), n¼ 0, 1, 2, . . .

Model: HA(nþ 1) ¼ 1� Dt

AR

� �
HA(n)þ Dt

A
F1(n)

Tank
model H(t)F1(t)

FIGURE 1.8 Liquid tank continuous-time system.

F1(t)

Δt
F1(n)

HA(n)
Tank
model

FIGURE 1.9 Liquid tank discrete-time system.

Mathematical Modeling 13

Difference equations can always be solved recursively. Expressions for the first three values HA(n),
n¼ 1, 2, 3 are given in Equations 1.26, 1.29, and 1.30. It is sometimes possible to recognize
a general pattern for HA(n) from results of the first several iterations. In this example, HA(n) is

HA(n) ¼ 1� Dt

AR

� �n

HA(0)þ Dt

A
1� Dt

AR

� �n�1
F1(0)þ Dt

A
1� Dt

AR

� �n�2
F1(1)

þ Dt

A
1� Dt

AR

� �n�3
F1(2)þ � � � þ Dt

A
1� Dt

AR

� �
F1(n� 2)þ Dt

A
F1(n� 1), n ¼ 1, 2, 3, . . .

(1:32)

Using summation notation, the general solution with HA(0) replaced by H(0) is

HA(n) ¼ 1� Dt

AR

� �n

H(0)þ Dt

A

Xn�1
k¼0

1� Dt

AR

� �n�k�1
F1(k), n ¼ 1, 2, 3, . . . (1:33)

Equation 1.33 is the general solution to the difference equation model in Equation 1.31. When
specific values of HA(n) are required, say HA(100), it eliminates the need for recursive solution of the
previous 99 values HA(n), n¼ 1, 2, 3, . . . , 99. The summation in Equation 1.33 requires some effort;
however, the z-transform introduced in Chapter 4 provides a way to avoid the sum altogether.

Examination of Equation 1.33 reveals several important features of the approximate solution.
First of all, notice the influence of the initial tank level H(0) on the estimated level HA(n) at the
current time n. The first term on the right-hand side of Equation 1.33 is the only term in the
expression involving H(0). Furthermore, the effect of H(0) on HA(n) is reduced as the discrete-time
variable n increases, provided the term in parenthesis, 1�Dt=AR, is less than 1 in magnitude. This
appears reasonable if we ask ourselves, ‘‘How important is the initial tank level with respect to the
current level after a significant amount of time has elapsed?’’ Clearly, the answer is ‘‘not very
significant at all,’’ and so we should not be surprised to see the only term containing H(0) in the
expression for HA(n) monotonically decreasing as n increases.

The second point of interest relates to the ‘‘memory’’ inherent in the system. By this, we mean
how far back in discrete-time inputs must we go when calculating the current discrete-time output
HA(n). Based on Equation 1.32, the answer is ‘‘all the way back’’ to the initial input F1(0). As a
result, the discrete-time system is said to have infinite memory because the current discrete-time
output HA(n) depends on all past values of the discrete-time input F1(k), k¼ 0, 1, 2, . . . , n� 1. The
nature of this dependency is a weighted sum with the most recent inputs receiving the higher
weights, as expected.

The following example illustrates the use of Equation 1.33 to obtain an approximate solution to
the level in the tank when the input flow is constant.

Example 1.1

A tank with cross-sectional area of 10 ft2 receives a constant input flow of 5 ft3=min. The fluid
resistance of the tank is 2 ft=(ft3=min), and the tank is initially filled to a level of 4 ft.

(a) Find the difference equation for obtaining an approximate solution for the level H(t) using a
time step Dt¼ 0.25 min.

(b) Solve the difference equation recursively to obtain the approximate fluid level HA(n), n¼ 1,
2, 3.

(c) Use the general solution to findHA(3) directly and compare your answer with the result from
part (b).

14 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a)
Dt
A
¼ 0:25

10
¼ 0:025, 1� Dt

AR
¼ 1� 0:25

10(2)
¼ 0:9875

HA(0) ¼ H(0) ¼ 4, F1(n) ¼ 5, n ¼ 0, 1, 2, 3, . . .

The difference equation (Equation 1.31) (with Dt omitted) becomes

HA(nþ 1) ¼ 0:9875HA(n)þ (0:025)5, n ¼ 0, 1, 2, 3, . . .

(b) HA(n), n¼ 1, 2, 3 are easily computed.

n ¼ 0) HA(1) ¼ 0:9875HA(0)þ 0:025(5)

¼ 0:9875(4)þ 0:125

¼ 4:0750

n ¼ 1) HA(2) ¼ 0:9875HA(1)þ 0:025(5)

¼ 0:9875(4:075)þ 0:125

¼ 4:1491

n ¼ 2) HA(3) ¼ 0:9875HA(2)þ 0:025(5)

¼ 0:9875(4:1491)þ 0:125

¼ 4:2222

(c) From Equation 1.33 with n¼ 3,

HA(3) ¼ (0:9875)3(4)þ 0:025
X2
k¼0

(0:9875)3�k�1(5)

¼ 3:8519þ 0:025[(0:9872)2(5)þ (0:9875)(5)þ (5)]

¼ 4:2222

Due to the simple nature of the input, that is, F1(t)¼F, t � 0, the analytical solution of the
differential equation model

A
dH

dt
þ 1
R
H ¼ F (1:34)

is easily obtained. The solution is

H(t) ¼ RF þ [H(0)� RF]e�t=AR (1:35)

It is instructive to compare the approximate solution based on the difference equation approach with
the exact solution shown in Equation 1.35. The results are shown in Table 1.1, which includes both
solutions at equally spaced intervals for the first 2 min of the response.

Graphs of the continuous-time output H(t) and discrete-time output HA(n), n¼ 0, 8, 16, . . . are
shown in Figure 1.10.

By observation of Figure 1.10, it appears that the exact and approximate solutions for the
tank level are in close agreement. The step size Dt is the determining factor in terms of
how close the two solutions are at the discrete points in time where the approximate solution

Mathematical Modeling 15

is defined. Choosing the step size Dt is generally a trade-off between the accuracy of
the approximate solution and the computational effort required to obtain the approximate
solution values.

Generally speaking, an assessment of whether the numerical value selected for Dt is reasonable
cannot be made on the basis of comparing the approximate solution with the exact solution to the
continuous-time model. Analytical solutions are rare due to the complexity of most real-world
system models. A logical approach to finding an acceptable step size is to obtain approximate
solutions with different step sizes (an order of magnitude apart) and comparing the results. If
the approximate solutions are substantially identical, the smaller step size is eliminated from

TABLE 1.1
Comparison of Approximate
and Exact Solutions

N tn¼ nDt HA(n) H(tn)

0 0 4.0 4.0

1 0.25 4.0750 4.0745

2 0.5 4.1491 4.1481

3 0.75 4.2222 4.2208

4 1.0 4.2944 4.2926

5 1.25 4.3657 4.3635

6 1.5 4.4362 4.4335

7 1.75 4.5057 4.5027

8 2.0 4.5744 4.5710

0
0 10 20 30 40 50 60 70 80 10090

1

2

3

4

5

6

7

8

9

10

11

t (min)

H
 (f
t)

HA(n), n =0, 8, 16, …
H(t)

Δt =0.25 min

FIGURE 1.10 Exact and approximate solutions for tank level vs. time.

16 Simulation of Dynamic Systems with MATLAB® and Simulink®

consideration. Conversely, if the approximate solutions are not close, the larger value of Dt is
discarded. Eventually, a value of Dt will be found, which balances accuracy and computational
requirements. This point will be revisited in greater detail after the subject of numerical integration
is discussed.

1.4.1 INHERENTLY DISCRETE-TIME SYSTEMS

The dynamics of the liquid tank considered in Section 1.2 were classified as continuous because
the variables associated with the tank’s dynamic behavior were continuous time in nature. The
continuous-time model of Equation 1.18 governs the relationship between physical quantities, that
is, the flow in F1(t) and the liquid level H(t).

Later on we learned that a discrete-time model (see Figure 1.9) could be obtained relating the
approximate tank level and the sampled input flow. Both signals F1(n) and HA(n) were defined only
at the discrete times tn¼ nDt, n¼ 1, 2, 3,

Inherently discrete-time systems involve discrete-time signals, which are not the result of
sampling a continuous-time signal. For example, consider the discrete-time system model given by

y(n) ¼ 1
2

y(nþ 1)þ u(n)

y(n� 1)

� �
, n ¼ 0, 1, 2, 3, . . . (1:36)

Equation 1.36 is simply a rule for transforming a discrete-time input signal u(n) into an appropriate
output signal y(n). Is this discrete-time system useful? Let us investigate its behavior for the case
where the input u(n) is constant, for example, u(n)¼ 25, n¼ 0, 1, 2, 3,. . . . First of all, we notice that
the initial condition y(�1) must be given before we can proceed to calculate subsequent output
values y(0), y(1), y(2), etc. Choosing y(�1)¼ 1 and solving for the first several outputs,

y(0) ¼ 1
2

y(�1)þ u(0)
y(n� 1)

� �
¼ 1

2
1þ 25

1

� �
¼ 13

y(1) ¼ 1
2

y(0)þ u(1)
y(0)

� �
¼ 1

2
13þ 25

13

� �
¼ 7:4615

y(2) ¼ 1
2

y(1)þ u(2)
y(1)

� �
¼ 1

2
7:4615þ 25

7:4615

� �
¼ 5:4060

y(3) ¼ 1
2

y(2)þ u(3)
y(2)

� �
¼ 1

2
5:4060þ 25

5:4060

� �
¼ 5:0152

y(4) ¼ 1
2

y(3)þ u(4)
y(3)

� �
¼ 1

2
5:0152þ 25

5:0152

� �
¼ 5:0000

Using different positive constants for u(n) and other starting values for y(�1) will reveal an
interesting property of the system, namely, limn!1 y(n) ¼ ffiffiffi

u
p

. The discrete-time signals u(n) and
y(n) are plotted in Figure 1.11. Hence, the primary purpose of the discrete-time system governed by
Equation 1.36 is to compute the square root of its positive-valued constant input u(n).

Another inherently discrete-time system is one we are all familiar with, namely, an interest-
bearing account such as a bank account. The discrete-time signals of interest are y(k), the account
balance at the end of the kth interest period, and u(k), the net deposit for the kth interest period
(Figure 1.12). For this simple example, the net deposit during the kth interest period is assumed to
have occurred at the end of the period.

Mathematical Modeling 17

Consider an account with an interest rate i (per interest period). The balance at the end of the kth
interest period, y(k), is the sum of

. The balance at the end of the (k� 1)st period: y(k� 1)

. The interest earned for the kth interest period: i � y(k �1)

. The net deposit for the period: u(k)

Therefore, the model for this inherently discrete-time system is

y(k) ¼ y(k � 1)þ iy(k � 1)þ u(k), k ¼ 1, 2, 3, . . . (1:37)

Example 1.2

A college trust fund is set up with $5000 on January 1, 2000. Starting on January 1, 2001, and
every year thereafter, $1000 is added to the fund, which earns 7.5% interest annually.

(a) Track the end of year fund balance for the first several years.
(b) Find the account balance at the end of 18th year.

(a) The discrete-time model is

y(k) ¼ y(k� 1)þ 0:075y(k� 1)þ u(k), k ¼ 1, 2, 3, . . .

with input u(k)¼ 1000, k¼ 1, 2, 3, . . . and initial condition y(0)¼ 5000.

−1(a)

(b)

0 1 2 3 4 5 6
24

24.5

25

25.5

26

u(
n)

y(
n)

−1 0 1 2 3 4 5 6
0

5

10

15

n

FIGURE 1.11 Discrete-time (a) input and (b) output of inherently discrete-time system for finding the square
root of a positive number.

Savings
accountu(k) y(k)

FIGURE 1.12 Example of an inherently discrete-time system.

18 Simulation of Dynamic Systems with MATLAB® and Simulink®

The account balance at the end of years 1, 2, and 3 are worked out as follows:

k ¼ 1: y(1) ¼ y(0)þ 0:075y(0)þ u(1)

¼ 5000þ 0:075(5000)þ 1000

¼ 6375

k ¼ 2: y(2) ¼ y(1)þ 0:075y(1)þ u(2)

¼ 6375þ 0:075(6375)þ 1000

¼ 7853:13

k ¼ 3: y(3) ¼ y(2)þ 0:075y(2)þ u(3)

¼ 7853:13þ 0:075(7853:13)þ 1000

¼ 9442:11

(b) The recursive solution could be continued for k¼ 4, 5, 6, . . . , 18, resulting in the fund’s
balance at the end of the 18th year. However, a general solution of the discrete-time model is
preferable since it can be evaluated for any value of the discrete-time variable k.

For the discrete-time model,

y(k) ¼ y(k� 1)þ iy(k� 1)þ u(k), k ¼ 1, 2, 3, . . . (1:38)

¼ (1þ i)y(k� 1)þ A (1:39)

¼ ay(k� 1)þ A (1:40)

where a¼ 1þ i and A is the constant net deposit each interest period. The first several outputs are

y(1) ¼ ay(0)þ A

y(2) ¼ ay(1)þ A

¼ a[ay(0)þ A]þ A

¼ a2y(0)þ aAþ A

y(3) ¼ ay(2)þ A

¼ a[a2y(0)þ aAþ A]þ A

¼ a[a3y(0)þ a2Aþ aA]þ A

suggesting the general expression for y(k) is

y(k) ¼ y(0), k ¼ 0

aky(0)þ (1þ aþ a2 þ a3 þ � � � þ ak�1)A, k ¼ 1, 2, 3, . . .

�
(1:41)

Further simplification is possible using the closed form of the finite geometric series in the previous
equation. The general solution for y(k) is

y(k) ¼ aky(0)þ 1� ak

1� a
A, k ¼ 1, 2, 3, . . . (1:42)

The account balance after 18 years is easily computed from the general solution above with
a¼ 1.075, y(0)¼ 5,000, and A¼ 1,000.

y(18) ¼ (1:075)18(5,000)þ 1� (1:075)18

1� 1:075

� �
1,000 ¼ 54,056:41

The results from part (a) can be verified using the general solution.

Mathematical Modeling 19

EXERCISES

1.7 Rework Example 1.1 using the trial-and-error method for determining a suitable value of Dt.
Start with Dt¼ 10 min and calculate HA(n), n¼ 0, 1, 2, . . . , nf where nf Dt¼ 100 min. Repeat
the steps with Dt¼ 5, 2.5, 1.25 min, and so forth until the approximations of H(10), H(20),
H(30), . . . , H(100) are in agreement to at least one place after the decimal point. Use the
following table for comparisons. Extend the table to smaller values of Dt if necessary.

HA(n) HA(n) HA(n) HA(n)

n Dt¼10 n Dt¼ 5 N Dt¼2.5 N Dt¼ 1.25

0 0 0 0

1 2 4 8

2 4 8 16

3 6 12 24

4 8 16 32

5 10 20 40

6 12 24 48

7 14 28 56

8 16 32 64

9 18 36 72

10 20 40 80

1.8 Prove that the output of the discrete-time system in Equation 1.36 will approach the square root
of the input, any positive constant ‘‘A.’’ In other words, show that

lim
n!1 y(n) ¼

ffiffiffi
A
p

where u(n)¼A, n¼ 0, 1, 2, 3,
1.9 An alternate model of the tank relates the outflow and liquid level according to

F0(t) ¼ a[H(t)]1=2

(a) Develop a new discrete-time model of the tank using the above relationship in conjunction
with the differential equation A(dH=dt)þF0¼F1. The tank cross-sectional area is 10 ft2

and the input flow is constant at 5 ft3=min. The tank is initially filled to a level of 4 ft.
Assume a¼ 2 ft3=min per ft1=2.

(b) Calculate the approximate tank level for the first minute using a step size Dt¼ 0.25 min.
(c) Consider the same tank with zero in flow and an initial fluid level of 25 ft. Write a program

to calculate the approximate level of the tank as it empties. Choose Dt¼ 0.1 min.
(d) The analytical solution for the level H(t) when F1(t)¼ 0, t � 0 is given by

H(t) ¼ H1=2
0 � at

2A

� 	2
where H0 is the initial tank level. Compare the results from part (c) to the exact solution.
Present the comparison of results in tabular and graphical form.

20 Simulation of Dynamic Systems with MATLAB® and Simulink®

1.10 A holding tank serves as an effective way of smoothing variations in the flow of a liquid. For
example, suppose the liquid flow rate from an upstream process is

F1(t) ¼(
F þ f sin

2pt
T

� �
, t � 0

where
(
F is an average flow
f is the fluctuation about the average flow
T is the period of the fluctuations

Nominal parameter values for the input flow rate are F¼ 250 ft3=min, f¼ 50 ft3=min, and
T¼ 15 min.

A holding tank is placed between the source F1(t) and a downstream process that requires a
more constant input flow rate, F0(t), as shown in Figure E1.10. The downstream process
requires that the sustained fluctuations in the flow F0(t) be no larger than 10 ft3=min. Assume
the tank is linear and the fluid resistance R¼ 0.25 ft per ft3=min.

F1(t)

F0(t)

A

From upstream

To downstream process

H(t)

FIGURE E1.10

(a) Find the difference equation for F0,A(n), n¼ 0, 1, 2, 3, Leave the tank cross-sectional
area A as a parameter.

(b) Write a program to solve the difference equation with Dt¼ 0.5 min for a starting value
of A¼ 100 ft2. Graph both F0,A(n) and HA(n), n¼ 0, 1, 2, . . . for a period of time
sufficient to determine if the design criterion is satisfied. Assume that the tank is
initially empty.

(c) Repeat part (b) with a new value of A until the design criterion is satisfied.
(d) Graph the discrete-time signals F1(n) and F0,A(n), n¼ 0, 1, 2, 3, . . . for the tank whose

area is the value determined in part (c).

1.5 CASE STUDY: POPULATION DYNAMICS (SINGLE SPECIES)

The population of a country is under investigation. Unlike the liquid tank example, there is no
scientific principle to serve as a foundation for deriving a mathematical model that can be used to
predict future populations. Instead, empirical observations of historical birth and death rates,
immigration and emigration patterns, and a host of other pertinent data are utilized.

Mathematical Modeling 21

One hundred years of observed population data, recorded at intervals
of 10 years, are given in Table 1.2.

Based on the available data, researchers are convinced that the popu-
lation is adequately modeled by the following differential equation,
referred to in the literature as logistic growth (Haberman 1977).

dP

dt
¼ cP(Pm � P) (1:43)

P¼P(t) is the population ‘‘t’’ years after the initial population was
recorded. The parameters c and Pm influence the specific growth pattern
behavior. The model ignores immigration and emigration and all other
external inputs, which influence dP=dt, the rate at which the population
changes. The system model in Equation 1.43 is said to be autonomous,
meaning there are no additional terms independent of P as might be
the case if immigration or emigration inputs as a function of time
were considered. The dynamics depend solely on initial conditions and
the system parameters. It is also referred to as an unforced system since
there are no external inputs.

Statistical analyses of the population data have resulted in estimated values for c and Pm to be
1.25� 10�9 and 25 million, respectively. It is now 100 years since the initial population was
measured. Government planners are interested in determining what the likely population will be
over the next several decades. A method is needed to obtain an approximate solution of the model,
that is, a difference equation for PA(n)�P(nDt), n¼ 0, 1, 2, . . . is required.

When the continuous-time model is a first-order differential equation, a difference equation for
approximating the dynamics at discrete points in time is easily obtained. Simply replace the first
derivative term with an appropriate finite difference approximation, remembering to rename the
dependent variable in some way since we are now dealing with an approximate solution. This is
precisely the way a difference equation for approximating the liquid tank dynamics was obtained in
Section 1.3.

Substituting a first-order finite difference approximation for dP=dt in Equation 1.43,

PA(nþ 1)� PA(n)

Dt
¼ cPA(n)[Pm � PA(n)] (1:44)

Note the appearance of PA(n) on the right-hand side of the equation in place of P(t). Solving for
PA(nþ 1) produces the following difference equation:

PA(nþ 1) ¼ PA(n)þ cPA(n)[Pm � PA(n)]Dt, n ¼ 0, 1, 2, 3, . . . (1:45)

Simplifying Equation 1.45 produces the following desired form:

PA(nþ 1) ¼ {1þ cDt[Pm � PA(n)]}PA(n), n ¼ 0, 1, 2, 3, . . . (1:46)

Since our interest is in predicting populations for 101 years and beyond, we need to solve Equation
1.46 over a suitable range of values for the discrete-time variable ‘‘n.’’ The appropriate integer
values depend on the size of our time step Dt. For simplicity, we shall choose Dt equal to 1 year,
necessitating the calculation of PA(101), PA(102), . . . , PA(130) to obtain predictions for a 30 year
time span.

TABLE 1.2
Population Data for
100 Years

t (Years) Pobs(t), Millions

0 3.0000

10 3.2276

20 4.5759

30 6.9570

40 8.7618

50 9.1536

60 11.2669

70 14.5153

80 16.5059

90 17.9563

100 19.5078

22 Simulation of Dynamic Systems with MATLAB® and Simulink®

A recursive solution seems like our only alternative, since a general solution is not easily
achievable. A computer program to generate the recursive solution is the way to proceed. We are
starting from a known population Pobs(0), so PA(0)¼Pobs(0)¼ 3 million. The results are computed
in the MATLAB® script file ‘‘Chap1_CaseStudy.m’’ and shown in Table 1.3. A casual observation
of this table indicates that the modelers were justified in choosing the logistic growth equation to
model the country’s population over the time period of one century. Naturally, this assumes that the
approximate solution values PA(n) are reasonably close to the exact solution P(t) for tþ nDt, n¼ 0,
10, 20, 30,

Ordinarily, models used to represent the dynamics of continuous-time systems are not amenable
to exact solutions, even with the simplest types of input. However, an analytical solution to
Equation 1.43 is as follows:

P(t) ¼ PmP(0)
P(0)þ Pm � P(0)½ �e�cPmt

, t � 0 (1:47)

The solution can be verified by differentiation and substitution back into Equation 1.43. A quick
glance at the solution shows the initial condition P(0) results when t is equal to zero on the right-
hand side of Equation 1.47. Knowing the exact solution to the continuous-time model, we can
evaluate it at t¼ 0, 10, 20, . . . , 100 years for comparison with the discrete-time model output to
determine if our step size needs to be adjusted. The exact solution results are tabulated in the final
column of Table 1.3.

Comparing the last two columns in the table should convince us that the step size Dt does not
need to be reduced. While it is possible to reduce the discrepancy between the approximate and
exact solutions by lowering Dt, it is hardly justified in view of the fact that the continuous-time
model, Equation 1.43, is itself only an approximate representation of the true population dynamics.

The data in Table 1.3 are presented in graphical form in Figure 1.13. The discrete-time system
model is used to predict future populations. The projected populations for Years 110, 120, and 130
are included in Table 1.3 and appear as data points in Figure 1.13.

The previous point relating to the accuracy of the approximate solution is worth reiterating.
Extremely accurate solutions of nonlinear differential equation models are generally not warranted

TABLE 1.3
Comparison of Observed, Discrete-Time, and Continuous-Time
Populations

t (Years) Pobs(t), Millions N (at¼ 1 Year) PA(n), Millions P(t), Millions

0 3.0000 0 3.0000 3.0000

10 3.2276 10 3.9161 3.9276

20 4.5759 20 5.0493 5.0759

30 6.9570 30 6.4129 6.4570

40 8.7618 40 8.0003 8.0618

50 9.1536 50 9.7778 9.8536

60 11.2669 60 11.6834 11.7669

70 14.5153 70 13.6325 13.7153

80 16.5059 80 15.5321 15.6059

90 17.9563 90 17.2976 17.3563

100 19.5078 100 18.8671 18.9078

110 — 110 20.2076 20.2310

120 — 120 21.3139 21.3226

130 — 130 22.2012 22.1990

Mathematical Modeling 23

unless the continuous-time models were formulated to account for higher-order effects. Even then,
one must limit the accuracy requirements in order to keep the computations manageable.

Exact solutions to continuous-time models are rare. How can we be certain if the solution of the
discrete-time model is in agreement with the exact solution? There is no simple answer; however,
there are some things we can do to check the validity of the approximate solution. We know the
difference equations in the discrete-time model converge to the differential equations of the
continuous-time model in the limiting case when the step size Dt approaches zero. Furthermore,
the discrete-time solutions will approach the exact solutions of the continuous-time model as Dt is
reduced to zero.

Systematically reducing the step size until the changes in the discrete-time outputs are within
some tolerance demonstrates this convergence and is an effective way of selecting the step size Dt
for future runs. We touched on this in the previous section as a way of choosing an appropriate value
for the step size Dt. A word of caution—the step size may have to be readjusted as conditions of the
discrete-time system model change.

Our intuition about the continuous-time system response may suggest we take a closer look at the
discrete-time system model. For example, consider the tank model

A
dH

dt
¼ F1(t)� F0(t) (1:48)

) d

dt
H(t) ¼ 1

A
[F1(t)� F0(t)] (1:49)

Using the simple first-order difference approximation formula

d

dt
H(t) � HA(nþ 1)� HA(n)

Dt
(1:50)

) HA(nþ 1) ¼ HA(n)þ Dt

A
F1(n)� F0(n)½ � (1:51)

0
0 20 40 60 80 100 120 140

5

10

15

20

25

Time, t (year number)

Pobs(t)
PA(n), n =0, 10, 20, ..., 130
P(t)

Δt =1 year

Po
pu

la
tio

n
(m

ill
io
ns
)

FIGURE 1.13 Observed, discrete-time (approximate), and continuous-time populations.

24 Simulation of Dynamic Systems with MATLAB® and Simulink®

) HA(nþ 1)
> HA(n), when F1(n) > F0(n)
¼ HA(n), when F1(n) ¼ F0(n)
< HA(n), when F1(n) > F0(n)

8<: (1:52)

Equation 1.52 is consistent with our expectation that the level in a tank is rising (dH=dt> 0) when
the liquid is coming in faster than it is leaving and falling when the opposite is true. Consequently, a
change in tank level like the one shown in Figure 1.14 is the reason to double check the calculations
or the code that produced them.

Another check on the integrity of an approximate solution to a continuous-time model is to see
whether the differential equation itself is satisfied within some tolerance. Since the logistic growth
model in Equation 1.43 governs population growth at all times, it must apply at the discrete times
tn¼ nDt, n¼ 0, 1, 2, 3, Therefore,

d

dt
P(t)

t¼nDt

¼ cP(nDt) Pm � P(nDt)½ �, n ¼ 0, 1, 2, 3, . . . (1:53)

We can approximate the first derivative term on the left-hand side of Equation 1.53 using a more
accurate difference formula than the first-order difference quotient used to approximate dH=dt in the
case of the liquid tank. Referring to Figure 1.15, dP=dt at t¼ nDt is approximated using an average
of first-order difference approximations resulting in

d

dt
P(t)

t¼nDt

� 1
2

PA(nþ 1)� PA(n)

Dt
þ PA(n)� PA(n� 1)

Dt

� �
¼ PA(nþ 1)� PA(n� 1)

2Dt
(1:54)

) d

dt
P(t)

t¼50Dt

� PA(51)� PA(49)
2Dt

� 9:9638� 106 � 9:5930� 106

2(1)

� 0:1854� 106 people=year

F0(n)

HA(n)

F1(n)

HA(n +1)

n n +1

n n +1

Level dropping

Level rising

F1(n)> F0(n) HA(n +1)> HA(n)

FIGURE 1.14 Change in discrete-time approximation of H(t) in violation of Equation 1.52.

Mathematical Modeling 25

The right-hand side of Equation 1.53 with P(50Dt) replaced by PA(50) becomes

cP(nDt)[Pm � P(nDt)] ¼ cPA(50)[Pm � PA(50)]

¼ 1:25� 10�9(9:7778� 106)[25� 106 � 9:7778 � 106]

¼ 0:1860� 106 people=year (1:55)

in close agreement with the estimate of (d=dt)P(t)jt¼50Dt.
Further scrutiny of the logistic growth model, Equation 1.43, reveals several important and

noteworthy characteristics of the underlying population dynamics. Expressing the model in a
slightly different form

g(P) ¼ 1
p

dP

dt
¼ c(Pm � P) (1:56)

where g(P), the rate of change in population dP=dt divided by the population P, is called the
population growth rate. Different population models are normally characterized by the term(s)
appearing on the right-hand side of Equation 1.56.

The growth rate function is plotted in Figure 1.16.
We expect the population to be increasing whenever the growth rate is positive, since a positive

growth rate implies the instantaneous rate of change in the population, that is, the first derivative is
also positive. The logistic population growth rate declines linearly with increasing population,
eventually reaching zero when the population reaches Pm or 25 million in this case. In logistic
growth models, Pm is called the carrying capacity.

Observe from Figure 1.13 that the discrete-time and continuous-time model outputs for 130 years
ranged from the initial population of 3 million people to somewhere around 22 million people.
Looking at the heavier line segment in Figure 1.16, corresponding to this range of populations,
we notice that the growth rate is positive, and, hence, the population should be monotonically
increasing, as indeed it was.

(n −1)Δt (n +1)ΔtnΔt

P(t)

t

Slope of tangent= — P(t)
t=nΔt

d
dt

Approximated by

2Δt
PA (n +1) PA(n −1)

PA(n)

PA(n +1)

PA(n –1)

PA(n +1)− PA(n −1)

2Δt

FIGURE 1.15 Second-order approximation of first derivative dP=dt.

26 Simulation of Dynamic Systems with MATLAB® and Simulink®

Is it possible for a population P(t) governed by a logistic growth model to ever assume values on
both sides of its carrying capacity? For example, is the population growth shown in Figure 1.13
capable of exceeding Pm¼ 25 million if we wait long enough? Figure 1.17 shows population time
histories for the logistic model considered previously (c¼ 1.25� 10�9, Pm¼ 25� 106) with differ-
ent starting populations.

It is clear that the population approaches its carrying capacity from below or above in asymptotic
fashion. We should not be surprised if we consider what happens to the population growth rate g(P)
as the population P(t) approaches the carrying capacity from either direction (see Figure 1.16).

0 5 10 15 20 25 30 35 40 45 50−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

P (millions)

g(
P)

 m
ill
io
ns

 o
f i
nd

iv
id
ua
ls
pe

r y
ea
r p

er
 in

di
vi
du

al
g[P(0)]

g[P(130)]

Pm =25 million

FIGURE 1.16 Plot of population growth rate g(P) vs. population (P).

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

t (Year number)

Carrying capacity: Pm =25 million

Po
pu

la
tio

n
(m

ill
io
ns
)

FIGURE 1.17 Logistic growth with different initial populations.

Mathematical Modeling 27

A discrete-time response PA(n) like the one appearing in Figure 1.18 is inconsistent with the
properties of continuous-time logistic growth. However, crossing over the carrying capacity for one
or two time increments is not inconsistent with the discrete-time nature of the approximate solution.
Why not?

EXERCISES

1.11 Assume that the logistic growth population model accurately predicts future populations.
(a) Some time in the future, the population will reach 98% of its carrying capacity. Find how

many more years this will take by using the difference equation given in Equation 1.46.
Does it make a difference whether you start from PA(0)¼ 3 million or PA(130)¼ 22.2012
million from Table 1.3.

(b) Compare the answer obtained in part (a) with the analytical solution for P(t).
(c) The population growth rate g(P) vs. P in Figure 1.16 does not explicitly involve time.

Label the points on the growth rate curve corresponding to {t, P(ti)} where t0¼ 0, t1¼ 25,
t2¼ 50, t3¼ 75, and t4¼ 100.

(d) The carrying capacity Pm in a logistic growth model is an equilibrium population,
meaning that if the population at some point in time were equal to Pm, it would remain
there forever. Investigate whether it is stable or not by supposing the population is slightly
less or slightly more than Pm, and determine whether the population returns to the
carrying capacity. Obtain several approximate solutions corresponding to different initial
populations reasonably close to Pm.

(e) Find the other equilibrium population of the logistic growth model and determine if it is
stable.

1.12 A simpler model for population growth of a species is one in which the growth rate is assumed
constant, that is, independent of the population. Mathematically, this is represented by

Growth rate ¼ g(P) ¼ 1
P

dP

dt
¼ k

1.13 Suppose a culture of bacteria is increasing in size according to the constant growth rate model
above. The initial bacteria population is P0.
(a) Develop the difference equation for the discrete-time system approximation of the

continuous-time model. Denote the discrete-time population as PA(n).
(b) Find the general solution for PA(n), n¼ 0, 1, 2, 3, Leave your answer in terms of k

and P0.
The constant growth rate k¼ 0.01 bacteria=min per bacteria and the initial number of

bacteria is 10,000.

Pm

P

t

FIGURE 1.18 Discrete-time population model output inconsistent with logistic growth.

28 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) Solve the difference equation recursively using a step size Dt¼ 1 min for PA(n), n¼ 1, 2,
3, 4, 5. Compare the result for PA(5) to the value obtained from the general solution found
in part (b).

(d) The analytical solution to the continuous-time model is P(t)¼P0e
kt, t� 0. How long does

it take for the population to reach 1 million?
(e) On the same graph, plot the continuous-time model output P(t), 0 � t � 500 and the

discrete-time model output PA(n), n¼ 0, 50, 100, 150, . . . , 1000 when Dt¼ 0.5 min.
(f) Explain what would happen to a population with constant growth rate k, if k were

negative.

Mathematical Modeling 29

This page intentionally left blank

2 Continuous-Time Systems

2.1 INTRODUCTION

Before we start our exploration of simulation, it is important for us to have some basic knowledge of
how linear time-invariant (LTI) dynamic systems behave. The analysis of linear systems and how
they respond to elementary types of inputs is straightforward. Linear systems appear as building
blocks in more complex systems. Our intuitive understanding of the entire system is enhanced by
recognizing the fundamental behavior of its linear components. Control systems, for example, are
oftentimes composed of linear continuous-time components interconnected to produce a desirable
response to commanded as well as uncontrollable or disturbance inputs.

Speaking of control systems, the mathematical model of the process being controlled is often
nonlinear; however, a properly designed regulatory control system will limit excursions of the
process variables. In fact, the design of the controller may be based on a linearized model of
the nonlinear process owing to the wealth of tools available in the field of linear control theory.
Simulation can play a valuable role here by shedding light on the validity of using a linearized
mathematical model to approximate a nonlinear system model.

Modern simulation software contains user interfaces employing graphical icons that serve as
building blocks for representing the linear continuous- and discrete-time components within a
system. In order to exploit this feature, the simulation builder must understand the meaning and
differences between the assortment of linear system blocks (integrators, first-order lags, second-
order systems, transfer functions, and state space models) at his or her disposal. The material on
first- and second-order system response, and state variables covered in this chapter and Chapter 4, is
intended as an introduction (or possibly a review) to the topic of linear continuous-time systems.
There are literally dozens of excellent books on the subject of linear systems theory and linear
control systems. Several are included in the references and the reader is encouraged to consult one or
more as necessary.

In addition to the focus on linear systems in this chapter, one section includes several examples
of nonlinear systems as well. A graphical illustration of how to linearize a nonlinear system model is
presented as a preview of what is to come in Chapter 7 where the subject is revisited in more detail.

Simulation of continuous-time systems is not discussed in detail until Chapter 3 where the
subject of numerical integration is introduced. However, a simulation model based on numerical
differentiation, similar to what was done in Chapter 1, is presented. At the conclusion of this
chapter, the reader will be capable of representing simple continuous-time systems in state variable
form and generate discrete-time model approximations of them, which can be solved in a recursive
fashion.

2.2 FIRST-ORDER SYSTEMS

Continuous-time dynamic systems are said to be first order if the highest derivative of the
dependent variable appearing in the mathematical model is first order. Systems in which a quantity
of material or energy changes at a rate dependent on the amount of material or energy present are
typically first order in nature. The general representation of a scalar first-order system is

dy

dt
¼ f (t, y, u) (2:1)

31

where
t is the continuous-time variable
u¼ u(t) is the system input
y¼ y(t) is the system output
f(t, y, u) is the derivative function, which relates the rate of change in y to all three arguments

Not all three arguments will be present in every first-order model. Furthermore, it is possible for
multiple inputs u1(t), u2(t), . . . , ur(t) to be present.

We begin our discussion of first-order systems with a special case, namely, where the derivative
function is an explicit linear function of the input and output given by

f (t, y, u) ¼ b0u(t)� a0y(t) (2:2)

where a0 and b0 are constants. Combining Equations 2.1 and 2.2 gives

d

dt
y(t)þ a0y(t) ¼ b0u(t) (2:3)

Equation 2.3 is an LTI, ordinary differential equation. In the time-varying case, one or both of the
linear system parameters a0 and b0 are functions of the independent variable t. Equation 2.3 is
commonly expressed as

t
d

dt
y(t)þ y(t) ¼ Ku(t) (2:4)

where t and K are easily related to a0 and b0 by

t ¼ 1
a0

and K ¼ b0
a0

(2:5)

Many simple real-world dynamic systems are modeled by the first-order differential equation
(Equation 2.4). More complex systems often behave similarly to first-order systems under
certain conditions. Furthermore, higher-order system models can be reduced to a system of coupled
first-order models. Familiarity with first-order system response will prove useful later on when
we undertake the task of simulating higher-order linear and nonlinear systems. For this reason, we
explore some basic properties of first-order systems modeled by Equation 2.4.

2.2.1 STEP RESPONSE OF FIRST-ORDER SYSTEMS

When the input u(t) is constant, that is, u(t)¼A, t � 0, the solution to Equation 2.4 for y(t) is
obtained using Laplace transform or classical time-domain methods. It is given below:

y(t) ¼ y(0)e�t=t þ KA(1� e�t=t), t � 0 (2:6)

where y(0) is the initial value of the output y(t). Several graphs of y(t) are shown in Figure 2.1 for the
cases where y(0)¼ 0, K¼ 5, A¼ 2, and t¼ 0.5, 2, 5, and 10.

The graphs of y(t) shown in Figure 2.1 are called the step response because the input resembles a
step (changing from 0 to A at t¼ 0). Note that the initial condition is zero in all the step responses.

32 Simulation of Dynamic Systems with MATLAB® and Simulink®

The constant A measures the amplitude of the input and is not an inherent system parameter. The
system parameters are K and t (or a0 and b0 from which they are computed). The first parameter K is
called the system DC or steady-state gain. It is so named because the final value of the output, y(1),
is easily computed from

y(1) ¼ K � u(1) ¼ K � A (2:7)

which in this case is y(1)¼ 5 � 2¼ 10 (see Figure 2.1). The final value y(1) is unaffected by the
initial condition y(0). However, the graph of y(t) in Equation 2.6 certainly depends on y(0), since
that is where it starts. A first-order system like the one in Equation 2.4 is called a first-order lag
because of the way the step response in Figure 2.1 lags the step input.

There are situations when the input to a first-order system is not a step; however, the input remains
constant for a period of time that is largely relative to the parameter t. Equation 2.7 enables us to readily
compute the final output value prior to a change in the input. In essence, we are tracking the first-order
system from one steady-state level to another, and the transient response (portion of the overall step
response that decays to zero) is ignored. Evenwithout knowledge of the transient response, it is possible
to predict the amount of time necessary for the new steady state to be established.

In the first-order system modeled by Equation 2.4, the first derivative vanishes when the system
is at steady state, leaving yss¼K�u, where yss is the output at steady state in response to the constant
input �u. A similar result is obtained from Equation 2.6 with A replaced by and t approaching 1.

The first-order system step responses shown in Figure 2.1 correspond to four distinct values for
the parameter t. It is apparent that while all approach the limiting value y(1)¼ 10, there is a
noticeable difference in the amount of time required for each to get there. The individual step
responses are correlated with the system parameter t. This parameter is called the time constant of
the first-order system. It is a measure of the speed of the step response as well as an indicator of the
overall speed of the first-order system’s dynamics. A ‘‘rule of thumb’’ for first-order systems is that
the transient response vanishes after four or five time constants. The transient response component
of the step response in Equation 2.6 with y(0)¼ 0 is

ytr(t) ¼ �KAe�t=t, t � 0 (2:8)

0 5 10 15 20 25 30 35 40 45 50

0
1
2
3
4
5
6
7
8
9

10

Input u(t) = 2, t ≥ 0

t

y(
t)

Increasing τ

y(∞) = K .A = 10

First-order system step response for τ = 0.5, 2, 5 and 10

τ = 10

FIGURE 2.1 Step response of first-order system with different values of t.

Continuous-Time Systems 33

when t¼ 5t,

ytr(5t) ¼ �KAe�5 ¼ �KA(0:0067) (2:9)

and the step response

y(5t) ¼ KA(1� e�5) ¼ 0:9933KA (2:10)

is more than 99% complete. After four time constants have elapsed, the step response is slightly over
98% of its final value (see Figure 2.1).

First-order system models are commonplace in science, engineering, economics, business, etc.
The liquid storage tank model in Section 1.2 and the population models considered in Section 1.5
are examples of first-order system models. Another example of a physical system described in terms
of a first-order model is the simple electric circuit shown in Figure 2.2 along with the tank.

The circuit components are a capacitor C, a resistor R, and a voltage source e0(t). There is also a
switch that connects the source to the rest of the circuit when it is in the closed position. Like the
tank that stores its energy as a column of liquid, the circuit’s capacitor stores energy in the form of
electric charge. The potential energy of the fluid varies as the tank level changes and the electrical
energy stored in the circuit varies with the amount of electrical charge stored in the capacitor. Both
systems have a mechanism for dissipating energy. The tank does so whenever the level of fluid is
dropping and the circuit dissipates energy in the resistor whenever there is current flowing.

The fluid resistance of the tank tells us the amount of effort, that is, height of liquid, required to
produce a unit of flow from the tank. A typical unit for fluid resistance is ft per ft3=min. The
electrical counterpart is the electrical resistor that also measures the driving force, in this case, the
voltage applied to the resistor, necessary to produce a unit of current flow, measured in amperes.
The unit of electric resistance is volts=ampere, commonly called ohms.

Choosing the voltage across the capacitor vc(t) as the output, the circuit model is easily derived
using basic principles of electrical circuits. The result is

RC
d

dt
vc(t)þ vc(t) ¼ e0(t) (2:11)

Comparison of Equation 2.11 with the standard form introduced in Equation 2.4 reveals the time
constant of the circuit t¼RC and the steady-state gain K¼ 1(V=V). Hence, the transient response
lasts for a period of time equal to approximately 5RC. For a constant voltage applied to the circuit,
that is, e0(t)¼E0, t � 0, the steady-state voltage vc(1) is numerically equal to E0 since vc(1)¼
KE0¼ 1 � E0.

C

R

(a) (b)

i(t) vc(t)

F1(t)

R

A

F0(t)

e0(t)H(t)

FIGURE 2.2 Examples of systems with first-order system models: (a) storage tank and (b) RC circuit.

34 Simulation of Dynamic Systems with MATLAB® and Simulink®

The step response is obtained from Equation 2.6 with y(0)¼ vc(0)¼ 0, t¼RC, K¼ 1, and
A¼E0. The result is

vc(t) ¼ E0(1� e�t=RC), t � 0 (2:12)

The step response consists of the steady-state component

vc(1) ¼ E0 (2:13)

and the transient component

vc(t)tr ¼ �E0e
�t=RC, t � 0 (2:14)

The transient response involves the exponential e�t=RC, which is called the natural mode of the
system. To understand this, consider the circuit response with zero applied voltage (E0¼ 0) and a
nonzero initial voltage across the capacitor vc(0). From Equation 2.6, the solution for vc(t) is

vc(t) ¼ vc(0)e
�t=RC, t � 0 (2:15)

a constant times the natural mode. Natural modes of linear systems are exponential functions of time
involving the parameters of the system, in this case, R and C. The natural modes do not depend on
the system inputs. The unforced response of higher-order system models is referred to as the natural
response of the system. It contains a linear combination of the natural modes (only one for the first-
order system model). In general, the natural modes of linear system models appear in the transient
response independent of whether the system is being forced (excited by inputs) or simply respond-
ing to initial conditions as in the case of an autonomous system.

Example 2.1

A 12 V battery is used to charge the capacitor in the circuit shown in Figure 2.2. When the switch
is closed at t¼ 0, the capacitor voltage is zero. Numerical values of the circuit parameters are
R¼ 5000 V and C¼ 0.125� 10�6 F (1 F¼ 1 A per V=s).

(a) Find the time constant t, steady-state gain K, and natural mode of the circuit.
(b) Find the steady-state voltage vc(1) across the capacitor.
(c) Determine how long it takes for the capacitor to charge up to 50% of vc(1).
(d) Find and graph the transient component, steady-state component, and the complete

response for the case where the capacitor is initially charged to 3 V.

(a) t¼RC¼ (5000 V)� 0.125� 10�6 F¼ 0.000625 s (625� 10�6 s)

K ¼ 1 V=V

Natural mode: e�t=RC¼ e�t=0.000625, t � 0

(b) vc(1)¼KE0¼ (1 V=V)� 12 V¼ 12 V

(c) vc(t)¼ E0(1� e�t=RC)) 6¼ 12(1� e�t=625�10
�6
), which can be solved using natural logarithms

to give t¼ 0004332 s

(d) From Equation 2.6 with initial condition vc(0)¼ 3 V, the complete response is

vc(t) ¼ vc(0)e�t=RC þ KE0(1� e�t=RC), t � 0

¼ 3e�t=625�10
�6 þ (1)(12)(1� e�t=625�10

�6
)

Continuous-Time Systems 35

The transient component is

vc(t)tr ¼ [vc(0)� KE0]e�t=RC, t � 0

¼ [3� (1)(12)]e�t=625�10
�6

¼ �9e�t=625�10�6

and the steady-state component is

vc(1) ¼ KE ¼ 1
V
V
(12 V) ¼ 12 V

Graphs of the steady-state, transient, and complete responses are shown in Figure 2.3.
Note that the transient response has decayed to essentially zero after five time constants

(5� 625� 10�6¼ 3.125� 10�3) have elapsed.

EXERCISES

2.1 The tank shown in Figure 2.2 has a constant cross-sectional area A and fluid resistance R.
(a) Find expressions for the time constant t and steady-state gain K of the tank in terms of the

physical parameters A and R.
(b) The empty tank is subject to a constant flow in of F ft3=min. Obtain an expression for the

liquid level step response of the tank.
(c) The cross-sectional area of the tank is 20 ft2, and the fluid resistance is 0.5 ft per ft3=min.

How high must the tank be if the inflow is constant at F¼ 15 ft3=min for it not to overflow.
(d) How long will it take for the tank level to reach 50% of its final height?
(e) What size tank is needed if the time required to fill up is increased by 10%?

0 0.5 1 1.5 2 2.5 3
×10−3

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

t (s)

v(
t)

(V
)

vc(∞) = 12 V

vc(t) = vc(∞) + vc(t)tr

vc(t)tr = −9e−t/τ
τ = 0.625 ms

vc(0) = 3 V

FIGURE 2.3 Steady-state, transient, and total response of an RC circuit.

36 Simulation of Dynamic Systems with MATLAB® and Simulink®

2.2 Consider the first-order system: (d=dt)y(t)þ a0y(t)¼ b0u(t)
(a) Under what conditions does this system reduce to a pure integrator?
(b) For the continuous-time integrator in part (a), express the output y(t) in terms of the input

u(t). Assume the initial condition is y(0)¼ y0.
(c) When is a liquid storage tank a pure integrator?

2.3 The amount of salt Q in a well-stirred tank shown in Figure E2.3 depends on c1, the
concentration of salt in the brine solution entering the tank, as well as the flow rates F1 and F0

into and out of the tank. The continuous-time model is based on conservation of salt. It equates
dQ=dt, the instantaneous rate of change in the amount of salt in the tank to the difference in
the rate of salt entering the tank, c1F1, and the rate of salt flowing out of the tank, cF0.

The tank initially contains 100 lb of salt-free water. The concentration of salt in the brine
solution flowing in is 0.25 lb=ft3. Both the flow into and the flow out of the tank are both
1 ft3=min. Note that 1 ft3 of water weighs approximately 62.4 lb.
(a) Find Q(t), the amount of salt in the tank as a function of time.
(b) Find the amount of salt in the tank at steady state.

2.4 A temperature-controlled chamber is shown in Figure E2.4:
The air temperature inside the chamber is assumed to be the same everywhere, namely, T(t).

The chamber walls are insulated to reduce heat loss or gain with its surroundings. Temperature
control is achieved by circulating hot or cold water through pipes located inside the chamber.
Heat exchange occurs between the air inside the chamber and the circulating water in the pipes.
The heat flow from the circulating hot water is Qh(t), and Qc(t) is the heat flow to the cold water.
Heat exchange Q0(t) also occurs between the air inside and outside the chamber. Ambient
temperature outside the chamber is denoted T0(t).

c1, F1

c, Q
= c1F1 – cF0

dQ
dt

c, F0

FIGURE E2.3

Qc(t)

T(t)

Cold
water

Hot
water

T0(t)
Q0(t)

Qh(t)

mc, Tc mh, Th

mh, Thmc, Tc

FIGURE E2.4

Continuous-Time Systems 37

A suitable model for this thermal system is based on the conservation of energy.

cAV
dT

dt
¼ Qh � Qc � Q0

V is the volume (ft3) of air in the chamber, and cA is the thermal capacitance of air
(0.01375 Btu=8F=ft3). The heat flow terms on the right-hand side are given by

Qh ¼ _mhcp(Th � T)

Qc ¼ _mccp(T � Tc)

Q0 ¼ 1
R
(T � T0)

where
_mh and _mc are the mass flow rates (lb=min) of the hot and cold water
cp is the specific heat of water (1 Btu=lb=8F)
R is the thermal resistance (8F=Btu=min) of the chamber walls

The expressions for Qh and Qc assume that the flow rates of the circulating fluids are great
enough that both fluids exit at the same temperature at which they entered the chamber.

(a) Express the mathematical model in the form of a differential equation relating the output T
and its derivative to the inputs Th, Tc, and T0.

(b) Find the time constant and the three steady-state gains of the system. Check the units to
verify that the time constant is in minutes and the steady-state gains are dimensionless
(8F=8F).

(c) Show that the air temperatures inside and outside the chamber eventually equalize after
both the hot and cold circulating water flows are turned off.

(d) Suppose the chamber air temperature is required to be higher than the outside ambient air
temperature, which remains constant, that is, T0(t)¼ T0, t � 0. The hot water temperature
entering the chamber is three times greater than the ambient temperature. The initial air
temperature inside the chamber is the same as the outside ambient temperature. Find the
analytical solution for T(t), t � 0, the air temperature inside the chamber.

(e) Graph the solution for T(t), t � 0 in part (d) using the following values:

V ¼ 5000 ft3, R ¼ 0:025	F=Btu=min, _mh ¼ 50 lb=min, and T0 ¼ 60	F

2.3 SECOND-ORDER SYSTEMS

Input–output models of continuous-time dynamic systems where the highest derivative of the
dependent variable is second order are classified as second-order systems. Second-order systems
result when there are two energy storage elements present. Our interest for now is in linear second-
order systems, which can be manipulated into the form shown in Equation 2.16 relating an output
y(t) to an input u(t) involving generic system parameters z, vn, and K.

d2

dt2
y(t)þ 2zvn

d

dt
y(t)þ v2

ny(t) ¼ Kv2
nu(t) (2:16)

For an actual second-order system (mechanical, electrical, biological, etc.), the generic parameters
can be expressed in terms of the system’s physical parameters. The importance of each will be
explained shortly.

38 Simulation of Dynamic Systems with MATLAB® and Simulink®

The unit step response of the second-order system is the solution for y(t) in Equation 2.16 when
y(0)¼ 0 and the input u(t)¼ 1, t � 0, hereafter denoted by û(t). It can be found in any text related to
linear systems or controls (Palm 1983; Franklin et al. 2002; Dorf and Bishop 2005). The unit step
response assumes one of three forms depending on the location of the roots of the algebraic equation

s2 þ 2zvnsþ v2
n ¼ 0 (2:17)

known as the characteristic equation of the system. The characteristic roots are the solution to
Equation 2.17 and are given by

s1, s2 ¼ �zvn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1vn

q
(2:18)

The natural modes of the second-order system are es1t and es2t. The step response depends on the
value of the parameter z. There are three cases to consider.

Case 1: z> 1
If we let s1 ¼ �zvn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1vn

p
and s2 ¼ �zvn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1vn

p
, then both roots are negative

(assuming vn> 0) and s1< s2< 0. Introducing time constants t1 and t2 as the reciprocals of the
characteristic roots s1 and s2, respectively,

t1 ¼ � 1
s1
, t2 ¼ � 1

s2
(2:19)

The unit step response is

y(t) ¼ K 1þ t2e
�t=t2 � t2e

�t=t1

t1 � t2

� �
, t � 0 (2:20)

Case 2: 0< z< 1
The characteristic roots are complex conjugates and can be expressed as

s1, s2 ¼ �zvn
 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2vn

q
(2:21)

It is convenient to define a new quantity vd in terms of z and vn according to

vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2vn

q
(2:22)

The unit step response is

y(t) ¼ K 1� e�zvnt cosvdt þ zvn

vd
sinvdt

� �� �
, t � 0 (2:23)

An alternate form of Equation 2.23 is

y(t) ¼ K 1� vn

vd
e�zvnt sin (vdt þ w)

� �
, t � 0 (2:24)

Continuous-Time Systems 39

where the phase angle term w is given by

w ¼ tan�1
vd

zvn
¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
z

 !
(2:25)

Case 3: z¼ 1
From Equation 2.18, the characteristic roots are repeated, s1¼ s2¼�vn. The unit step response is

y(t) ¼ K 1� e�vnt(vnt þ 1)½ �, t � 0 (2:26)

A graph of the unit step responses given in Equations 2.20, 2.23, and 2.26 with K¼ 1 is shown in
Figure 2.4. The abscissa is vnt, a dimensionless variable, which allows us to visualize the effect of
the parameter z on the step response independent of vn. Note that all three step responses start
from zero. Furthermore, the initial slope given by dy(0)=dt is also zero for all three cases (see
Exercise 2.6).

There are no oscillations in Case 1 (z> 1), that is, the response is monotonically increasing
without overshooting the final value y(1)¼K � �u¼ 1 for a unit step input. The transient period
increases with increasing z. The system is said to be overdamped.

An oscillatory step response occurs in Case 2 (0< z< 1), and the system is referred to as
underdamped. As the value of z decreases, the oscillations become more pronounced, and the
settling time for the transient component to die out becomes larger.

The case when z¼ 1 represents the transition from Case 1 to Case 2 (or vice versa). The second-
order system is called critically damped in this situation.

The graph in Figure 2.4d is the unit step response for the case when z¼ 0. From Equation 2.23
with z¼ 0,

y(t) ¼ K(1� cosvnt), t � 0 (2:27)

0 0 5
(a) (b)

(c) (d)

St
ep

 re
sp

on
se

St
ep

 re
sp

on
se

St
ep

 re
sp

on
se

St
ep

 re
sp

on
se

10 15 20 0 5 10 15 20

0 5 10 15 20 0 5 10 15 20

0.2

0.4

0.6

0.8

1

Increasing ζ

Decreasing ζ

0

1

2

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

ωnt ωnt

ωnt ωnt

FIGURE 2.4 Unit step response of second-order system in Equation 2.16. (a) Overdamped, z ¼ 1:5, 2, 3.
(b) Underdamped, z ¼ 0:1, 0.3, . . . , 0.9. (c) Critically damped, z ¼ 1. (d) Zero damping, z ¼ 0.

40 Simulation of Dynamic Systems with MATLAB® and Simulink®

resulting in sustained oscillations from 0 to 2 when K¼ 1. The differential equation of the unforced
system is

d2

dt2
y(t)þ v2

ny(t) ¼ 0 (2:28)

and the natural response resulting from the presence of initial conditions is that of harmonic motion,
that is, sustained oscillations about zero at a frequency of vn rad=s.

Except for the case when z¼ 0, the unit step response approaches the limiting or steady-state
value y(1)¼K, which means that K is the DC or steady-state gain of the second-order system in
Equation 2.16. The parameter z, which determines the existence and extent of the oscillations as
well as the duration of the transient response, is called the damping ratio of the system. The last two
parameters vn and vd are the natural frequency and damped natural frequency of the second-order
system, respectively. The first, vn, is the frequency of the sustained oscillations (z¼ 0) in Equation
2.27, and the second, vd, is the frequency of the decaying oscillations (0< z< 1) in Equation 2.24.
It follows from Equation 2.22 that vd<vn. The natural frequency vn is an indication of the speed of
the step response (and the system in general) since the oscillatory natural modes are damped by the
exponential term with time constant 1=zvn in Equation 2.23.

Example 2.2

Figure 2.5 shows a delicate instrument placed on a table that moves as a result of a vertical force
acting on it. Springs and dampers connect the table to the ground to limit the table’s movement.

The combined mass of the table and instrument is m. The total stiffness of the springs is k and
the total damping is c. The mechanical system is modeled by

m
d2

dt2
x(t)þ c

d
dt

x(t)þ kx(t) ¼ f (t) (2:29)

where
x(t) is the displacement of the table (from its static equilibrium position)
f(t) is the force acting on the platform resulting in the motion x(t)

(a) Find expressions for the steady-state gain K, the damping ratio z, and the natural frequency
vn in terms of the physical parameters m, c, and k.

(b) Numerical values of the physical parameters are m¼ 40 lbm, k¼ 45 lbf=ft, and c¼ 4 lbf s=ft.
Find the response of the table when the platform is subjected to a sudden deflection due to a
force of 12 lbf.

(c) Graph the solution and estimate the duration of the transient.
(d) The instrument is not usable if it is moving faster than 0.04 ft=s. How long a period of time

must pass after the force is applied before the instrument will function properly?

mT

mI

k
2

c

x(t)

m = mT + mI

f (t)
k
2

FIGURE 2.5 Mechanical system for Example 2.2.

Continuous-Time Systems 41

(a) Dividing Equation 2.29 by m for comparison with the standard form of a second-order system
in Equation 2.16 gives

d2

dt2
x(t)þ c

m
d
dt

x(t)þ k
m
x(t) ¼ 1

m
f (t) (2:30)

) 2zvn ¼ c
m
, v2

n ¼
k
m
, Kv2

n ¼
1
m

(2:31)

Solving for the parameters K, vn, and z yields

vn ¼
ffiffiffiffi
k
m

r
, z ¼ c

2
ffiffiffiffiffiffiffi
km
p , K ¼ 1

k
(2:32)

(b) Substituting the given values for m (in slugs), k, and c,

vn ¼
ffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45

40=32:2

s
¼ 6:0187 rad=s

z ¼ c

2
ffiffiffiffiffiffiffi
km
p ¼ 4

2
ffi
45:40=32:2

p ¼ 0:2675

K ¼ 1
45
¼ 0:0222 in=lbf

The damping ratio z¼ 0.2675 indicates the system is underdamped. From Equation 2.22, the
damped natural frequency is

vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2vn

q
¼

ffi
1� 0:26752
p� 	

6:0187 ¼ 5:7994 rad=s

and the response to a step input f(t)¼ F¼ 12 lbf, t � 0 is

x(t) ¼ K�F 1� e�zvnt cosvdt þ zvn

vd
sinvdt

� �� �
, t � 0 (2:33)

Substituting the numerical values for K, F, z, vn, and vd results in

x(t) ¼ 0:2667 1� e�1:6100t(cos 5:7994t þ 0:2776 sin 5:7994t)
� �

, t � 0 (2:34)

(c) A graph of the step response is generated in the script file ‘‘Chap2_Ex3_1.m’’ and shown in
Figure 2.6.

The transient period can be approximated from the graph as roughly 3 s, or it can be computed
from the time constant of the exponential envelope as

Transient period � 5� 1
zvn
¼ 5� 1

0:2675(6:0187)
¼ 3:1056 s

(d) The first derivative is obtained by differentiation of the underdamped step response in Equation
2.24. The result is

d
dt

y(t) ¼ K
vnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zvnt sinvdt, t � 0 (2:35)

Substituting the numerical values for the system parameters K, z, vn, and vd gives

d
dt

y(t) ¼ 0:1388e�1:61t sin 5:7994t, t � 0 (2:36)

42 Simulation of Dynamic Systems with MATLAB® and Simulink®

The first derivative is graphed in the lower half of Figure 2.6. From the graph, it appears that
approximately 0.77 s must elapse for the instrument to be usable, that is, the instrument is moving
at less than 0.04 ft=s in either direction after that period of time. (A closeup of the response in the
neighborhood of dx=dt¼�0.04 ft=s reveals that the instrument’s velocity actually falls a bit short
of �0.04 ft=s.)

2.3.1 CONVERSION OF TWO FIRST-ORDER EQUATIONS TO A SECOND-ORDER MODEL

A linear second-order system is sometimes represented as a system of two first-order differential
equations like those in Equations 2.37 and 2.38:

dx

dt
¼ axþ byþ f (t) (2:37)

dy

dt
¼ cxþ dyþ g(t) (2:38)

Suppose a single equation relating the dependent variable x¼ x(t) and the inputs f¼ f(t) and g¼ g(t)
is required. The first step is to solve for y¼ y(t) in Equation 2.37,

y ¼ 1
b

dx

dt
� ax� f

� �
(2:39)

Differentiating Equation 2.39,

dy

dt
¼ 1

b

d2x

dt2
� a

dx

dt
� df

dt

� �
¼ cxþ dyþ g (2:40)

0
0 0.5 1 1.5(a)

(b)

2 2.5 3

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

x(
t)

(ft
)

dx
/d

t (
ft/

s)

−0.05

0

0.05

0.1

t (s)

0.04 ft/s

−0.04 ft/s

FIGURE 2.6 (a) Position and (b) velocity response of table and instrument (F¼ 12 lbf).

Continuous-Time Systems 43

Replacing y in Equation 2.40 with Equation 2.39 gives

1
b

d2x

dt2
� a

dx

dt
� df

dt

� �
¼ cxþ d

1
b

dx

dt
� ax� f

� �� �
þ g (2:41)

and simplifying leads to the second-order differential equation,

d2x

dt2
� (aþ d)

dx

dt
þ (ad � bc)x ¼ df

dt
� df þ bg (2:42)

A similar procedure is used to eliminate x from Equations 2.37 and 2.38 to give a second-order
differential equation in y.

Example 2.3

The well-mixed tanks shown in Figure 2.7 contain uniform salt concentrations of c1¼ c1(t) and
c2¼ c2(t), respectively. Concentration of salt in the input to the first tank is c¼ c(t). The flow rates
between the tanks are Q1 and Q2, where Q1>Q2> 0. The liquid volumes in both tanks remain
constant at V1 and V2.

(a) Write the differential equations for the conservation of salt in each tank.
(b) Find the differential equation relating c2(t) and the input c(t).
(c) Find expressions for the damping ratio, natural frequency, and steady-state gain.
(d) Find and plot the step response for c2 under the following conditions:

Q1 ¼ 10 gal=min, Q2 ¼ 5 gal=min, V1 ¼ 15 gal, and V2 ¼ 15 gal

c1(0) ¼ c2(0) ¼ 0 lb of salt=gal, c(t) ¼ c ¼ 0:25 lb salt=gal, t � 0

(a) Equating the accumulation of salt in each tank to the difference between the rates of salt in and
out of the tanks,

d
dt

(c1V1) ¼ QincþQ2c2 �Q1c1 (2:43)

d
dt

(c2V2) ¼ Q1c1 �Q2c2 �Qoutc2 (2:44)

Since the holdup of liquid in both tanks is constant, the flows Qin and Qout are equal,

Qin ¼ Qout ¼ Q1 �Q2 (2:45)

∞
Qin, c1(t) Qout, c2(t)

∞
c1(t) c2(t)

V1 V2

Q1

Q2

FIGURE 2.7 Two-tank mixing system.

44 Simulation of Dynamic Systems with MATLAB® and Simulink®

And, therefore, Equations 2.43 and 2.44 become

V1
dc1
dt
¼ (Q1 �Q2)cþQ2c2 �Q1c1 (2:46)

V2
dc2
dt
¼ Q1c1 �Q2c2 � (Q1 �Q2)c2 (2:47)

(b) Rearranging Equations 2.46 and 2.47 into the form of Equations 2.37 and 2.38,

dc2
dt
¼ �Q1

V2
c2 þQ1

V2
c1 (2:48)

dc1
dt
¼ Q2

V1
c2 �Q1

V1
c1 þ (Q1 �Q2)

V1
c (2:49)

Comparing Equations 2.48, 2.49, and 2.37, Equation 2.38 implies

a ¼ �Q1

V2
, b ¼ Q1

V2
, c ¼ Q2

V1
, d ¼ �Q1

V1
, f (t) ¼ 0, g(t) ¼ (Q1 �Q2)

V1
c(t) (2:50)

From Equation 2.42, the second-order differential equation relating c2 and c is

d2c2
dt2
þQ1

1
V1
þ 1
V2

� �
dc2
dt
þQ1(Q1 �Q2)

V1V2
c2 ¼ Q1(Q1 �Q2)

V1V2
c (2:51)

(c) Comparing the left-hand side of Equation 2.51 with the standard form in Equation 2.16 gives

2zvn ¼ Q1
1
V1
þ 1
V2

� �
, v2

n ¼
Q1(Q1 �Q2)

V1V2
(2:52)

) vn ¼ Q1(Q1 �Q2)
V1V2

� �1=2
, z ¼ (V1 þ V2)

2
Q1

(Q1 �Q2)V1V2

� �1=2
(2:53)

For c(t)¼ �c, the steady-state value of c2 is obtained from Equation 2.51 by setting the derivatives
equal to zero resulting in

Q1(Q1 �Q2)
V1V2

(c2)ss ¼ (Q1 �Q2)
V1

Q1

V2
c

� �
(2:54)

) (c2)ss ¼ c (2:55)

Hence, the steady-state gain K¼ 1 lb salt=lb salt as expected.

(d) For the given conditions, that is, Q2¼Q¼ 5, Q1¼ 2Q¼ 10, and V1¼V2¼V¼ 15

vn ¼ 2Q(2Q�Q)
VV

� �1=2
¼ (2)1=2

Q
V
¼ (2)1=2

5
15
¼ 0:4714 rad=min (2:56)

z ¼ (V þ V)
2

2Q
(2Q�Q)VV

� �1=2
¼ (2)1=2 ¼ 1:4142 (2:57)

Continuous-Time Systems 45

From Equation 2.18, the characteristic roots of the overdamped system are

s1, s2 ¼ �zvn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1vn

q
¼ �1:1381 rad=min, �0:1953 rad=min (2:58)

The time constants in Equation 2.19 are t1¼�1=s1¼ 0.8787 min and t2¼�1=s2¼ 5.1213 min,
and from the unit step response in Equation 2.20, the response to a step of magnitude �c is

c2(t) ¼ Kc 1þ t2e�t=t2 � t1e�t=t1

t1 � t2

� �
(2:59)

¼ 0:25 1� 5:1213e�t=5:1213 � 0:8787e�t=0:8787

4:2426

� �� �
, t � 0 (2:60)

The second-order differential equation in Equation 2.51 is in standard form; however, the second-
order differential equation for c1(t) contains the first derivative dc=dt on the right-hand side of the
equation (see Exercise 2.6). The implication of input derivatives in the system model will be
discussed in a later section. A graph of the step response is shown in Figure 2.8.

EXERCISES

2.5 Starting with Equations 2.37 and 2.38, obtain the second-order differential equation relating the
output y¼ y(t) and its derivatives to the inputs f¼ f(t) and g¼ g(t).

2.6 In Example 2.3,
(a) Find the differential equation relating c1(t) and the input c(t).
(b) Find the step response in c1(t) for the same initial conditions, system parameters, and input

c(t). Graph the step response for c1(t) and c2(t).
(c) Show that the first derivative dc1=dt is discontinuous at t¼ 0 while the first derivative

dc2=dt is continuous at t¼ 0.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

t (min)

c(t)

c2(t)

c = 0.25 lb salt per gal

c 2
(t)

, l
b

sa
lt

pe
r g

al

_

FIGURE 2.8 Response of salt concentration in second tank to step input c(t)¼ 0.25, t � 0.

46 Simulation of Dynamic Systems with MATLAB® and Simulink®

2.7 The two-tank system in Exercise 1.2 is second order.
(a) Convert the model of the system from two first-order differential equations to one second-

order differential equation with input F1(t) and output H2(t).
(b) Find expressions for the damping ratio, natural frequency, and steady-state gain in terms of

the physical parameters A1, A2, R1, and R2.
(c) Use the results from part (b) to express the damping ratio in terms of the tank time

constants t1¼A1R1 and t2¼A2R2.
(d) Show that the system can never be underdamped.

For parts (e) and (f), assume the following values for the system parameters:

A1¼ 100 ft2, R1¼ 0.25 ft per ft3=min, A2¼ 50 ft2, and R2¼ 0.1 ft per ft3=min

(e) Find and graph the response H2(t) of the unforced system, that is, F1(t)¼ 0, t � 0 starting
from H1(0)¼ 40 ft and H2(0)¼ 0 ft.

(f) Find and graph the step response of H2(t) when F1(t)¼ 75 ft3=min. Both tanks are initially
empty. Does the first tank achieve steady state in roughly 5t1? Does the second tank
achieve steady state in roughly 5t2? Explain.

2.8 A fundamental difference between the step response of first- and second-order linear systems in
standard form is the initial rate of change, that is, the first derivative at t¼ 0.
(a) Show that the first-order system step response undergoes the maximum rate of change at

t¼ 0.
(b) Show that the initial derivative of the second-order system step response is zero regardless

of whether the system is underdamped, critically damped, or overdamped.

2.4 SIMULATION DIAGRAMS

In many cases, dynamic systems are composed of individual components and subsystems. The
relationship of a system’s components to each other and the role they serve in the overall system
design are oftentimes easier to comprehend when presented in visual form rather than by inspection
of the mathematical models. Control systems for ground vehicles, aircraft, robotic devices, building
environments, and so forth are typically presented in graphical form as block diagrams. The blocks
are both static and dynamic depending on the component it represents. Modern continuous-time
system simulation languages include extensive libraries of special purpose blocks to represent the
dynamics of commonly occurring components.

It is useful to reduce the blocks in a block diagram of a continuous-time dynamic system to a level
that exposes the pure integrators. The simulationist is then given the flexibility of approximating
individual integrators using different numerical algorithms. This is especially useful in applications
where simulation code is developed manually instead of relying on a general purpose simulation
language. This point will be revisited in Chapter 3 following a discussion of numerical integration.

A block diagram of a continuous-time dynamic system comprising algebraic blocks and inte-
grators is referred to as a simulation diagram. We begin with the first-order system of Equation 2.61:

d

dt
y(t)þ a0y(t) ¼ b1

d

dt
u(t)þ b0u(t) (2:61)

Equation 2.61 is a more general form than the first-order models introduced in Section 2.2 due to the
presence of the first derivative term on the right-hand side.

If we introduce a new variable z¼ z(t) where

d

dt
z(t)þ a0z(t) ¼ u(t) (2:62)

Continuous-Time Systems 47

the output y is related to z by

y(t) ¼ b0z(t)þ b1
d

dt
z(t) (2:63)

It is left as an exercise to show that Equations 2.62 and 2.63 are equivalent to Equation 2.61.
In addition to the blocks required to implement Equations 2.62 and 2.63, an integrator block is
needed to integrate the first derivative dz=dt to generate z(t), that is,

z(t) ¼
ð
dz

dt
dt (2:64)

The simulation diagram in Figure 2.9 is constructed by first drawing an integrator block and labeling
the input dz=dt and output z corresponding to Equation 2.64. Next, we solve for the derivative term
dz=dt in Equation 2.62 and draw a portion of the diagram to implement the result. Finally, the output
y is generated from Equation 2.63 using the b0 and b1 gain blocks and a summing block.

The simulation diagram representation of the first-order system’s dynamics involves a single
dynamic block, namely, the integrator. The remaining blocks are sum blocks and gains that are
algebraic in nature.

A block diagram for the same first-order system is shown in Figure 2.10. The block diagram is a
direct implementation of Equation 2.61 after solving for the first derivative dy=dt. An additional
variable z is not required in this case. The diagram in Figure 2.10 is not a simulation diagram
because of the presence of the differentiator. In digital simulation, the differentiator (like the
integrator) must be implemented using a numerical approximation. Numerical methods for approxi-
mating the derivative of a continuous-time function are available. However, they are rarely
implemented in simulation applications due to their sensitivity to high-frequency noise components
often present in continuous-time signals.

u

b1

∫

−a0

dz/dt z
yb0

FIGURE 2.9 Simulation diagram of first-order system: (d=dt)y(t)þ a0y(t)¼ b1(d=dt)u(t)þ b0u(t).

y

b1

b0u

−a0

d
dt

dy/dt
∫

FIGURE 2.10 Block diagram of first-order system: (d=dt)y(t)þ a0y(t)¼ b1(d=dt)u(t)þ b0u(t).

48 Simulation of Dynamic Systems with MATLAB® and Simulink®

A final observation relates to the special case when b1 in Equation 2.61 is zero. The input
derivative is absent, and the first-order system assumes the simpler form of Equation 2.3 or 2.4.
Recall that this form was sufficient to model the dynamics of the linear tank in Chapter 1 and the
simple RC circuit of Example 2.1.

Example 2.4

Draw a simulation diagram of the linear tank modeled by

A
d
dt

H(t)þ 1
R
H(t) ¼ F1(t) (2:65)

The diagram is shown in Figure 2.11.
Dividing Equation 2.65 by the parameter A and comparing the result to Equation 2.61 show

a0 ¼ 1
AR

, b0 ¼ 1
A
, b1 ¼ 0

leading to the simulation diagram shown in Figure 2.11.
The simulation diagram in Figure 2.11 is not unique. The ‘‘1=A’’ block can be moved from the

location where z is its input to the left of the summer where F1 becomes its input. In that case,
z and H are identical. The alternate simulation diagram can be obtained directly by solving the
differential equation of the tank for the first derivative,

d
dt

H(t) ¼ 1
A

F1(t)� 1
R
H(t)

� �
(2:66)

and implementing Equation 2.66 directly. Integrating the derivative dH=dt to get H completes the
diagram.

Example 2.5

Suppose the current i(t) in the RC circuit of Figure 2.2 is considered the output. The differential
equation for the circuit becomes

d
dt

i(t)þ 1
RC

i(t) ¼ 1
R

d
dt

e0(t) (2:67)

Draw the simulation diagram for the circuit described by Equation 2.67.
From Equation 2.61, a0, b0, and b1 are

a0 ¼ 1
RC

, b0 ¼ 0, b1 ¼ 1
R

and the simulation diagram is drawn in Figure 2.12.

1
A

1
AR−

F1
dz/dt z H∫

FIGURE 2.11 Simulation diagram of linear tank: A(d=dt)H(t)þ (1=R)H(t)¼F1(t).

Continuous-Time Systems 49

When the differential equation model of a first-order system contains a term involving the first
derivative of the input, a direct link or coupling exists from the input directly to the output. In other
words, when b1 6¼ 0 in Equation 2.61, sudden changes in the input are immediately reflected in
the output. Notice the path of heavy solid lines in Figure 2.9 illustrating this point. A similar path in
Figure 2.12 indicates the direct coupling from the applied voltage e0(t) to the output current i(t).

In contrast, there is no direct connection from input to output in the simulation diagram shown
in Figure 2.11 for the linear tank model. This is expected since changes in the inflow F1(t) must
work their way through the tank dynamics, that is, the integrator, prior to affecting the output level
H(t). Hence, the tank prevents abrupt changes like a step or other inputs with high-frequency
components from immediately causing any significant changes in the output H(t). The tank
behaves like a low-pass filter (see Exercise 1.10).

Obtaining a simulation diagram for a second-order system in the standard form

d2

dt2
y(t)þ 2zvn

d
dt

y(t)þ v2
nu(t) ¼ Kv2

nu(t) (2:68)

is straightforward. We begin by drawing two consecutive integrators, labeling the input and output
of the first with d2y=dt2 and dy=dt, respectively. The second integrator integrates the first derivative
dy=dt producing y and is labeled accordingly. The next step is to solve for the second derivative
term in Equation 2.68 resulting in

d2

dt2
y(t) ¼ Kv2

nu(t)� 2zvn
d
dt

y(t)� v2
ny(t) (2:69)

Algebraic blocks (gains and summers) are used to implement Equation 2.69 leading to the
simulation diagram shown in Figure 2.13.

The simulation diagram for a second-order system with first- or second-order derivatives of
the input appearing in the differential equation model is not as straightforward. Starting with
Equation 2.70

d2

dt2
y(t)þ a1

d
dt

y(t)þ a0y(t) ¼ b0u(t)þ b1
d
dt

u(t)þ b2
d2

dt2
u(t) (2:70)

e0
z

i

1
RC

−

∫

1
R

FIGURE 2.12 Simulation diagram for an RC circuit: (d=dt)i(t)þ (1=RC)i(t)¼ (1=R)(d=dt)e0(t).

Kωn
2

−2ζωn

−ωn
2

u y
d2y/dt2 dy/dt∫ ∫

FIGURE 2.13 Simulation diagram of a second-order system in standard form.

50 Simulation of Dynamic Systems with MATLAB® and Simulink®

an approach similar to the method used for first-order systems with an input derivative term
present is employed. An artificial variable z(t) is introduced, and the output y(t) is expressed as a
linear combination of z(t) and its two derivatives. The result is

d2

dt2
z(t)þ a1

d
dt

z(t)þ a0z(t) ¼ u(t) (2:71)

y(t) ¼ b0z(t)þ b1
d
dt

z(t)þ b2
d2

dt2
z(t) (2:72)

The simulation diagram of the second-order system in Equation 2.70 is shown in Figure 2.14. Note
the use of the dot notation, short for differentiation with respect to time. It is clear that a direct
connection from the input u(t) to the output y(t) exists only when b2, the coefficient of the input
second derivative in Equation 2.70, is nonzero.

Looking at the simulation diagrams in Figures 2.9 and 2.14 for the first- and second-order
systems in Equations 2.61 and 2.70, a general pattern emerges for creating the simulation diagram
of an nth-order system modeled by

dyn

dtn
þ an�1

dyn�1

dtn�1
þ � � � þ a1

dy
dt
þ a0y ¼ b0uþ b1

du
dt
þ � � � þ bn�1

dun�1

dtn�1
þ bn

dun

dtn
(2:73)

The two equations equivalent to Equation 2.73 are

dzn

dtn
þ an�1

dzn�1

dtn�1
þ � � � þ a1

dz
dt
þ a0z ¼ u (2:74)

y ¼ b0zþ b1
dz
dt
þ � � � þ bn�1

dzn�1

dtn�1
þ bn

dzn

dtn
(2:75)

The simulation diagram follows directly from Equations 2.74 and 2.75.

Example 2.6

A unicycle is traveling over an uneven road as shown in Figure 2.15.
The input is the road elevation xr(t) above some reference. The output is the vertical movement

x(t) of the rider and seat combination (with respect to its equilibrium position). Ignoring the
compliance of the tire makes the wheel deflection xw(t)¼ xr(t). Assume that the wheel remains

u y

b1

z b0∫∫

b2

−a0

−a1

z.. .z

FIGURE 2.14 Simulation diagram for a second-order system with input derivatives present.

Continuous-Time Systems 51

in contact with the road surface. The mass of the rider and seat is m, and c and k are suspension
parameters.

(a) Find the differential equation relating the output x(t) and input xr(t).
(b) Draw a simulation diagram of the system.
(c) Is there a direct coupling between the input and output? Explain.

(a) The differential equation is obtained by equating the sum of the suspension forces acting on
the rider and seat to the product of its mass and acceleration.

m ¼ d2

dt2
x(t) ¼ c

d
dt

xw (t)� d
dt

x(t)
� �

þ k xw (t)� x(t)½ � (2:76)

Replacing xw(t) with xr(t) gives

m
d2

dt2
x(t) ¼ c

d
dt

xr(t)� d
dt

x(t)
� �

þ k xr(t)� x(t)½ � (2:77)

(b) Rearranging terms in Equation 2.77 gives

d2

dt2
x(t)þ c

m
d
dt

x(t)þ k
m
x(t) ¼ k

m
xr(t)þ c

m
d
dt

xr(t) (2:78)

Comparing Equations 2.78 and 2.70 leads to expressions for a0, a1, b0, b1, and b2 in terms of the
system parameters,

a0 ¼ k
m
, a1 ¼ c

m
, b0 ¼ k

m
, b1 ¼ c

m
, b2 ¼ 0 (2:79)

and eventually the simulation diagram shown in Figure 2.16.

(c) Since both paths from xr to x contain an integrator, there is no direct coupling between input
and output. Consequently, an abrupt change in xr such as a vertical jump in the road surface
height does not result in a similar type of displacement of the rider and seat combination.

xr(t)

m x(t)

k c
xw(t)

FIGURE 2.15 Unicycle traveling along an uneven road surface.

c
m

k
m−

z xk
m∫∫

c
m−

zxr
z.. .

FIGURE 2.16 Simulation diagram for a unicycle suspension.

52 Simulation of Dynamic Systems with MATLAB® and Simulink®

2.4.1 SYSTEMS OF EQUATIONS

System models can assume the form of coupled differential and algebraic equations. The simulation
diagram representation is straightforward.

Example 2.7

A two-room building with temperatures T1(t) and T2(t) is shown in Figure 2.17.
The simplified model relating the uniform room temperatures T1(t) and T2(t) to the heat supplied

from the furnace Qf(t) and outside temperature T0(t) is based on conservation of energy. It consists
of the following differential and algebraic equations:

C1
d
dt

T1(t) ¼ Qf (t)�Q1(t)�Q12(t) (2:80)

C2
d
dt

T2(t) ¼ Q12(t)�Q2(t) (2:81)

Q12(t) ¼ T1(t)� T2(t)
R12

(2:82)

Q1(t) ¼ T1(t)� T0(t)
R1

(2:83)

Q2(t) ¼ T2(t)� T0(t)
R2

(2:84)

where C1, C2, R1, R2, and R12 are thermal parameters of the system. The simulation diagram
shown in Figure 2.18 follows directly from Equations 2.80 through 2.84.

Combining Equations 2.80 through 2.84 and solving for the first derivatives give

d
dt

T1(t) ¼ 1
C1

Qf (t)� T1(t)� T0(t)
R1

� T1(t)� T2(t)
R12

� �
(2:85)

¼ 1
C1
� 1

R1
þ 1
R12

� �
T1(t)þ 1

R12
T2(t)þ 1

R1
T0(t)þQf (t)

� �
(2:86)

d
dt

T2(t) ¼ 1
C2

T1(t)� T2(t)
R12

� T2(t)� T0(t)
R2

� �
(2:87)

¼ 1
C2

1
R12

T1(t)� 1
R2
þ 1
R12

� �
T2(t)þ 1

R2
T0(t)

� �
(2:88)

Equations 2.86 and 2.88 are of the form

_x1 ¼ a11x1 þ a12x2 þ b11u1 þ b12u2
_x2 ¼ a21x1 þ a22x2 þ b21u1 þ b22u2

(2:89)

T0(t)

Qf(t)
Q1(t)

T1(t)

Q12(t)

T2(t)

Q2(t)

T0(t)

FIGURE 2.17 Heat flows and temperatures in a two-room building.

Continuous-Time Systems 53

where x1¼ T1, x2¼ T2, u1¼ T0, and u2¼Qf and the coefficients aij and bij (j¼ 1, 2) depend on the
system parameters according to

a11 ¼ � 1
C1

1
R1
þ 1
R12

� �
, a12 ¼ 1

R12C1
, b11 ¼ 1

R1C1
, b12 ¼ 1

C1
(2:90)

a21 ¼ 1
R12C2

, a22 ¼ 1
C2

1
R2
þ 1
R12

� �
, b21 ¼ 1

R2C2
, b22 ¼ 0 (2:91)

Suppose we need to draw a simulation diagram for the system in Equation 2.89 with only x1 or x2
present. Using an approach similar to the one presented in Section 2.2 for converting two coupled
first-order differential equations into a second-order differential equation, the second-order system
in Equation 2.89 is equivalent to

€x1 þ a1 _x1 þ a0x1 ¼ b11 _u1 þ b10u1 þ b21 _u2 þ b20u2 (2:92)

where

a1 ¼ �(a11 þ a22), a0 ¼ a11a22 � a12a21 (2:93)

b11 ¼ b11, b10 ¼ a12b21 � a22b11, b21 ¼ b12, b20 ¼ a12b22 � a22b12 (2:94)

The simulation diagram for Equation 2.92 is constructed in two steps. From superposition, the
output x1 can be viewed as the sum of x11 and x12 where

€x11 þ a1 _x11 þ a0x11 ¼ b11 _u1 þ b10u1 (2:95)

€x12 þ a1 _x12 þ a0x12 ¼ b21 _u2 þ b20u2 (2:96)

Simulation diagrams for Equations 2.95 and 2.96 are drawn separately, and outputs x11 and x12 are
added to yield the complete output x1. The result is shown in Figure 2.19.

Do not be misled into thinking that the simulation diagram shown in Figure 2.19 corresponds
to a fourth-order system due to the presence of four integrators. There are two decoupled second-
order systems, one with input u1 and output x11 and the other with input u2 and output x12.

T1

Q1

T2

T0

Qf
–
–

–

–

–

–

Qf −Q1−Q12

Q12 − Q2

1
R1

1
C1

Q12

Q2

T1 − T2

T2 − T0

T1 − T0

T21
C2

1
R12

1
R2

∫

∫
T1

.

.

FIGURE 2.18 Simulation diagram for building room temperature model.

54 Simulation of Dynamic Systems with MATLAB® and Simulink®

In reality, they are the same system, that is, the second-order system governed by the second-order
model in Equation 2.92.

On the other hand, if the feedback coefficients in the two systems are not identical, that is, a0

and a1 in both cases, the result is indeed a fourth-order system (see Exercise 2.13).

EXERCISES

2.9 Show that the system of equations

d

dt
z(t)þ a0z(t) ¼ u(t) and y(t) ¼ b0z(t)þ b1

d

dt
z(t)

used to construct the simulation diagram for the first-order system

d

dt
y(t)þ a0y(t) ¼ b1

d

dt
u(t)þ b0u(t)

is equivalent to the first-order differential equation above.

Hint: The variable z(t) must be eliminated from the two equations.

2.10 An alternate simulation diagram for the second-order system

d

dt2
y(t)þ 2zvn

d

dt
y(t)þ v2

ny(t) ¼ Kv2
nu(t)

when it is critically damped or overdamped is shown in Figure E2.10:
Find expressions for K1, a, and b in terms of the parameters z, vn, and K.

u1

u2

−α1

−α0

−α0

β20

β21

x1

x12

x11

∫∫

∫∫ β10

β11

−α1

FIGURE 2.19 Simulation diagram for second-order system in Equation 2.92.

u yK1

−α

∫ ∫

−β

FIGURE E2.10

Continuous-Time Systems 55

2.11 The circuit shown in Figure E2.11 is governed by the differential equation:

RC
d2

dt2
vC þ d

dt
vC þ R

L
vC ¼ d

dt
eS

Draw a simulation diagram for the circuit.

2.12 Consider the building temperature example with room temperatures described by Equations
2.86 and 2.88.
(a) Find the second-order differential equation relating T2(t) and the system inputs T0(t)

and Qf (t).
(b) Draw a simulation diagram like the one shown in Figure 2.19.

2.13 Simulation diagrams are shown in Figure E2.13a through c.
(a) Find the differential equation relating x and inputs u1 and u2 in Figure E2.13a.
(b) Find the differential equation relating x and input u in Figure E2.13b.
(c) Find the differential equation relating x and inputs u1 and u2 in Figure E2.13c.
(d) Comment on the differences between the systems represented by each diagram.

x

u1

u2

∫

∫

−a0

−a0

(a) (c)(b)

u

∫

∫ x

−a0

−a1

x

u1

u2

∫

∫

−a1

−a0

FIGURE E2.13

2.5 HIGHER-ORDER SYSTEMS

To this point, we have looked at linear continuous-time systems with first- and second-order
dynamics only. Linear systems and linear controls texts include extensive coverage of lower-
order system response. In particular, the response of first- and second-order systems to impulse,
step, and sinusoidal inputs is fully developed.

The dynamics of complex systems with linear differential equation models are invariably higher
than second order. One may question why so much attention is devoted to first- and second-order
systems. The explanation is simple.

eS νC

R

C L
+
_

+
_

FIGURE E2.11

56 Simulation of Dynamic Systems with MATLAB® and Simulink®

High-order linear systems are oftentimes a collection of components or subsystems that are
intrinsically first or second order. An electrical circuit with several capacitors and inductors is a
good example. The circuit dynamics will depend on the number of these energy storage elements
and their location in the circuit. In general, its order will be equal to the number of energy storage
elements since each element is itself modeled as a first-order component. With n nonredundant
energy storage elements, an nth-order differential equation involving an output (a voltage or current
in the circuit) and an input (if an independent source is present) governs the behavior of the circuit.
The same principle applies to fluid, thermal, mechanical, chemical, and so forth, systems made up of
components analogous to the resistor, capacitor, and inductor of the electrical circuit.

The block diagram of a simple feedback control system is shown in Figure 2.20. The controller,
process, and sensor are the subsystem components, which are individually modeled as either first or
second order.

The control system model comprises the three coupled differential equations

t2
du

dt
þ u ¼ Kc t1

de

dt
þ e

� �
(2:97)

d2x

dt2
þ 2zvn

dx

dt
þ v2

nx ¼ Kpv
2
nu (2:98)

ts
dxs
dt
þ xs ¼ Ksx (2:99)

and the summer equation

e ¼ xc � xs (2:100)

The command input xc¼ xc(t) is the control system input, and the output of the process x¼ x(t) is the
control system output. Dependent variables e(t), the error signal, u(t), the output from the controller
and input to the process, and xs(t), the sensor output are internal to the control system. Eliminating
these variables produces a single fourth-order (1þ 2þ 1) differential equation model of the control
system in the form

d4x

dt4
þ a3

d3x

dt3
þ a2

d2x

dt2
þ a1

dx

dt
þ a0x ¼ b4

d4xc
dt4
þ b3

d3xc
dt3
þ b2

d2xc
dt2
þ b1

dxc
dt
þ b0xc (2:101)

where several of the coefficients ai, i¼ 0, 1, 2, 3 and bi, i¼ 0, 1, 2, 3, 4 may be zero.
A simulation diagram of the control system can be obtained from Equation 2.101 using the

procedure from the previous section. Alternatively, simulation diagrams can be developed for the
individual components in Figure 2.20 and properly connected to produce a simulation diagram for
the control system. Simulation of the system based on a simulation diagram using the second
approach is preferable since the internal variables are readily identifiable. We can check the
simulation results to verify that inputs and outputs of the controller and sensor remain within
proper operating ranges.

e
–

u
x

xs

ProcessController

du
dt + u = Kc

d2x
dt2

dx
dt

+ 2ζωn + ωn
2x = Kpωn

2uxc
τ2

de
dt + eτ1

dxs
dt + xs = Ks xτs

FIGURE 2.20 A control system consisting of first- and second-order components.

Continuous-Time Systems 57

Example 2.8

The control system for the pitch of an aircraft is shown in Figure 2.21.
Draw a simulation diagram for the aircraft pitch control system block diagram.
Simulation diagrams of each component are connected to produce the simulation diagram of

the entire control system shown in Figure 2.22.

EXERCISES

2.14 For the control system shown in Figure 2.20.
(a) Find the coefficients ai, i¼ 0, 1, 2, 3 and bi, i¼ 0, 1, 2, 3, 4 in Equation 2.101 in terms of

the system parameters t1, t2, Kc, z, vn, Kp, ts and Ks.

Hint: The use of Laplace transforms (see Chapter 4) significantly reduces the amount of
work necessary to eliminate the variables e, u, and xs.

(b) Draw a simulation diagram based on the fourth-order differential equation model.

θcom e
–

uc

Controller Actuator Aircraft

ua θθ + 2ζωnθ + ωn
2 θ = K (τua + ua)τ2uc + uc = Kc (τ1e + e). τaua + ua = Ka uc

.

FIGURE 2.21 Control system for an aircraft pitch.

−2ζωn

∫

−ωn
2

∫

Kτ

Kcτ1
τ2

∫

τ2
1−

ucKc
τ2

1
τa

−

τa
Ka

e ua
θcom

K
θ

∫

–1

FIGURE 2.22 Simulation diagram for an aircraft pitch control system.

58 Simulation of Dynamic Systems with MATLAB® and Simulink®

2.15 Find the differential equation for the control system in Figure 2.21 relating the output u and its
derivatives to the input ucom and its derivatives. Draw the simulation diagram based on the
resulting differential equation.

Hint: The use of Laplace transforms (see Chapter 4) significantly reduces the amount of work
necessary to eliminate the variables e, uc, and ua.

2.16 For the railroad cars shown in Figure E2.16,
(a) Write the differential equation expressing

P
k Fi,k ¼ mi€xi, i ¼ 1, 2, 3 for each car where

Fi,k is the kth force acting on the ith car.
(b) Draw a simulation diagram of the system with integrators for xi, _xi, i¼ 1, 2, 3.
(c) Find the differential equation relating the input F(t) and output x1(t).

Hint: The use of Laplace transforms (see Chapter 4) significantly reduces the amount of work
necessary to eliminate the variables x2 and x3.

2.6 STATE VARIABLES

In everyday terms, one’s state of mind on a given day is determined by the history of numerous
psychological factors that influence our mental well-being. The state of the national economy (weak,
moderate, strong) depends on numerous factors such as energy prices, inflation, trade balances,
employment, productivity, housing, tax policies, corporate earnings, transportation, agriculture, and
so forth. Imagine that all the economic factors (inputs) affecting the national economy were
measurable and the complex interrelationships among those variables that determine the state of
the economy were fully understood. If the state of the economy were known at some point in time
and the complete set of aforementioned economic factors were observed from that time forward,
knowledgeable economists would (in principle) be able to predict the state of the national economy
at future times.

The essential point is that if we know the state of a system at some point in time and wish to
predict its future, then knowledge of the system inputs only from that time onward is required. The
current state of a system reflects the effect of prior inputs that are responsible for the system’s
transition from some previous state to the current state.

Consider a simple spring-mass-damper system subject to an applied force acting on the mass like
the one shown in Figure 2.23. The spring and mass are both capable of storing energy. At any time,

m

kc

f (t)

x
dx
dt

E = — kx2 + — m1
2

1
2

dx
dt

2

FIGURE 2.23 A spring-mass-damper system with applied force f(t).

m3 m2 m1

k

B

k

B

F (t)

x3(t) x2(t) x1(t)

FIGURE E2.16

Continuous-Time Systems 59

the instantaneous energy E(t) stored in the system is given in Equation 2.102 where x is the position
of the mass (relative to its equilibrium position) and dx=dt is the velocity of the mass.

E ¼ 1
2
kx2 þ 1

2
m

dx

dt

� �2

(2:102)

A possible choice of state variables for the mechanical system is x and dx=dt. Given both state
variables at time t0 determines the energy E(t0). The applied force f(t) for t � t0 must be known to
solve the initial value problem

m
d2x

dt2
(t)þ c

dx

dt
(t)þ kx(t) ¼ f (t) given x(t0) and

dx

dt
(t0) (2:103)

and determine both state variables x and dx=dt as well as E(t) for t � t0. The same cannot be said if
only the position or the velocity of the mass were known at t0. In that case, the initial energy in the
system E(t0) would be unknown, and it would be impossible to predict future values of x and dx=dt
even if the force f(t) were known for t � t0. Consequently, x or dx=dt alone is not a suitable choice
for the state of the system.

The situation is illustrated for the general case of a system with two state variables x1(t) and x2(t)
and single input u(t) in Figure 2.24. Given x1(t0), x2(t0), and u(t), t � t0, both states can be
determined from t0 on.

The choice of state variables for a dynamic system model is not unique; however, the number of
state variables is limited to the minimum number of variables, which satisfy the requirement of
predicting future states given the current state and future inputs. This number of state variables is
equal to the number of independent energy storage components present in the system. It is
advantageous to choose physical (measurable) quantities as in the case of the mechanical system
in Figure 2.23 whenever possible.

A simulation diagram is a valuable tool when it comes to choosing the state variables of a system.
The outputs of each integrator in a simulation diagram representation of a system is a valid choice
for the state variables. The choice of which integrator output is x1, x2, and so forth is arbitrary.

Consider a second-order system governed by

d2

dt2
y(t)þ a1

d

dt
y(t)þ a0y(t) ¼ b0u(t) (2:104)

Given: x1(t0), x2 (t0)
 and u(t), t ≥ t0

t0

t0

t0

t

u(t)

t

t

x2(t)

x1(t)

FIGURE 2.24 Dynamic system with state variables x1(t) and x2(t).

60 Simulation of Dynamic Systems with MATLAB® and Simulink®

A simulation diagram like the one shown in Figure 2.25 is easily constructed. State variables x1 and
x2 are chosen as the output y and first derivative dy=dt, respectively.

The second-order system is critically damped or overdamped if a21 � 4a0 � 0. In this case, it is
equivalent to two cascaded first-order systems as shown in Figure 2.26.

The parameters K, a, and b are related to a0, a1, and b0 according to

K ¼ b0, a ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0

p
2

, b ¼ a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a0

p
2

(2:105)

State variable x1 is again the system output y; however, the second state variable x2 is no longer the
output derivative dy=dt.

For an nth-order linear system model with constant coefficients, the state derivatives are
expressible as a linear combination of the state variables and input(s). For example, from Figure
2.25, the state derivatives are equal to

dx1
dt
¼ x2

dx2
dt
¼ b0u� a0x1 � a1x2

(2:106)

whereas in Figure 2.26, the appropriate expressions are

dx1
dt
¼ x2 � bx1

dx2
dt
¼ Ku� ax2

(2:107)

In the general linear case with n states x1, x2, . . . , xn and r inputs,

dx1
dt
¼ f1(x, u) ¼ a11x1 þ a12x2 þ � � � þ a1nxn þ b11u1 þ b12u2 þ � � � þ b1rur (2:108)

dx2
dt
¼ f2(x, u) ¼ a21x1 þ a22x2 þ � � � þ a2nxn þ b21u1 þ b22u2 þ � � � þ b2rur (2:109)

dxn
dt
¼ fn(x, u) ¼ an1x1 þ an2x2 þ � � � þ annxn þ bn1u1 þ bn2u2 þ � � � þ bnrur (2:110)

b0
u x1 = y

∫ ∫

−a1

−a0

x2 = dy/dt

FIGURE 2.25 Simulation diagram of second-order system with state x1¼ y and x2¼ dy=dt.

Ku yx2 x1∫ ∫

−α −β

FIGURE 2.26 Simulation diagram for critically damped or overdamped second-order system using two first-
order systems in a series.

Continuous-Time Systems 61

where

x is the n� 1 state vector

x1
x2
..
.

xn

26664
37775

u is the r � 1 input vector

u1
u2
..
.

ur

26664
37775

and fi(x, u), i¼ 1, 2, 3, . . . , n is the state derivative function of the ith state variable.
Equations 2.108 through 2.110 can be written in the compact form

_x ¼ f (x, u) ¼ Ax þ Bu (2:111)

where

_x ¼

dx1
dt
dx2
dt

..

.

dxn
dt

26666666664

37777777775
, A ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

� � � � � �
� � � � � �
� � � � � �
an1 an2 � � � ann

26666666664

37777777775
, B ¼

b11 b12 � � � b1r

b21 b22 � � � b2r

� � � � � �
� � � � � �
� � � � � �
bn1 bn2 � � � bnr

26666666664

37777777775
The n� n matrix A is called the system matrix, and the n� r matrix B is the input matrix.

Multivariable, LTI systems involve multiple inputs u1, u2, . . . , ur and outputs y1, y2, . . . , yp. The
outputs are linearly related to the states and the inputs according to

y ¼ Cxþ Du (2:112)

where

y ¼

y1
y2

..

.

yp

26664
37775, C ¼

c11 c12 � � � c1n
c21 c22 � � � c2n
� � � � � �
� � � � � �
� � � � � �
cp1 cp2 � � � cpn

266666664

377777775
, D ¼

d11 d12 � � � d1r
d21 d22 � � � d2r
� � � � � �
� � � � � �
� � � � � �
dp1 dp2 � � � dpr

266666664

377777775
The p� n constant matrix C is called the output matrix, and the p� r matrix D is the direct
transmission matrix.

Equations 2.111 and 2.112 taken together are the state equations of the system. Note that the
states x1, x2, . . . , xn are internal to the system as shown in Figure 2.27. Multivariable systems are
easier to analyze in terms of state variables compared to the input–output model description of the
system, that is, dyi=dt¼ fi(y, u), i¼ 1, 2, . . . , n.

62 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 2.9

Interacting tanks with inflows into both tanks are shown in Figure 2.28. Choose the states to be the
levels H1¼H1(t) and H2¼H2(t) and the single output as the volume of liquid in both tanks. Write
the state equations for the system.

The continuous-time model of the linear tanks consists of the following equations:

A1
dH1

dt
þ F0,1 ¼ F1 (2:113)

F0,1 ¼ 1
R12

(H1 �H2) (2:114)

A2
dH2

dt
þ F0,2 ¼ F0,1 þ F2 (2:115)

F0,2 ¼ 1
R2

H2 (2:116)

Eliminating F0,1 and F0,2 from Equations 2.113 and 2.115 yields

A1
dH1

dt
þ 1
R2

(H2 �H2) ¼ F1 (2:117)

A2
dH2

dt
þ 1
R2

H2 ¼ 1
R12

(H1 �H2)þ F2 (2:118)

Solving for the state derivatives in Equations 2.117 and 2.118

dH1

dt
¼ � 1

A1R12
H1 þ 1

A1R12
H2 þ 1

A1
F1 (2:119)

dH2

dt
¼ � 1

A2R12
H1 � 1

A2R2
þ 1
A2R12

� �
H2 þ 1

A2
F2 (2:120)

x
u yx = Ax + Bu y = Cx + Du–––– –––

–
–

.

FIGURE 2.27 Dynamic system with input u, output y, and state x.

R2

R12
H1(t)

A1

F1(t) F2(t)

A2

F0,1(t)

H2(t)

F0,2(t)

FIGURE 2.28 A system of interacting tanks.

Continuous-Time Systems 63

Writing Equations 2.119 and 2.120 in matrix form gives the first part of the state equations,

dH1

dt
dH2

dt

2664
3775 ¼ � 1

A1R12

1
A1R12

1
A2R12

� 1
A2R2

� 1
A2R12

2664
3775 H1

H2

" #
þ

1
A1

0

0
1
A2

2664
3775 F1

F2

" #
(2:121)

The single output VT, which represents the volume of liquid in both tanks, is

VT ¼ A1H1 þ A2H2 ¼ [A1A2]
H1

H2

� �
(2:122)

The transmission matrix D is a 1� 2 matrix of zeros due to the absence of a direct coupling from
either input F1 or F2 to the output VT.

2.6.1 CONVERSION FROM LINEAR STATE VARIABLE FORM TO SINGLE INPUT–SINGLE

OUTPUT FORM

In Section 2.3, an example was presented illustrating the conversion of a second-order state variable
model into a second-order differential equation by eliminating one of the state variables (see
Equations 2.37, 2.38, and 2.42). The procedure involved manipulation and substitution of terms
in the time domain, an approach that quickly becomes unwieldy as the number of state variables
increases. Simpler methods are described in Chapter 4.

For a linear, third-order system with a single input, the starting point is the state variable model
consisting of three coupled first-order differential equations expressing the state derivatives as a
linear function of the states and input

_x1 ¼ a11x1 þ a12x2 þ a13x3 þ b1u

_x2 ¼ a21x1 þ a22x2 þ a23x3 þ b2u

_x3 ¼ a31x1 þ a32x2 þ a33x3 þ b3u

(2:123)

where the output y is x1, x2, or x3.
A third order, input–output differential equation model equivalent to Equation 2.123 is

€y_þ a2€yþ a1 _yþ a0y ¼ b2€uþ b1 _uþ b0u (2:124)

Expressions for the system coefficients a2, a1, and a0 and input coefficients b2, b1, and b0 are
summarized in Equations 2.125 through 2.127 and Table 2.1.

TABLE 2.1
Input Coefficients on Right-Hand Side of Equation 2.125 for y¼ x1, x2, x3

y b2 b1 b0

x1 b1 � (a22þ a33)b1þ (a12b2þ a13b3) (a22a33� a23a32)b1þ (a13a32� a12a33)b2þ (a12a23� a13a22)b3
x2 b2 a21b1� (a11þ a33)b2þ a23b3 (a23a31� a21a33)b1þ (a11a33� a13a31)b2þ (a13a21� a11a23)b3
x3 b3 a31b1þ a32b2� (a11þ a22)b3 (a21a32� a22a31)b1þ (a12a31� a11a32)b2þ (a11a22� a12a21)b3

64 Simulation of Dynamic Systems with MATLAB® and Simulink®

a2 ¼ �(a11 þ a22 þ a33) (2:125)

a1 ¼ a11(a22 þ a33)� a12a21 � a13a31 þ a22a33 � a23a32 (2:126)

a0 ¼ a11(a23a32 � a22a33)þ a12(a21a33 � a23a31)þ a13(a22a31 � a21a32) (2:127)

2.6.2 GENERAL SOLUTION OF THE STATE EQUATIONS

A solution to the state equation, Equation 2.111 can be found in any one of the texts on linear
control theory listed in References. The solution is expressed in terms of an n� nmatrixF(t), called
the transition matrix of the system.

x(t) ¼ F(t)x(0)þ
ðt
0

F(t � t)Bu(t)� dt (2:128)

The transition matrix depends solely on the system matrix A. One method for finding F(t) uses a
definition based on an infinite series,

F(t) ¼ I þ (tA)þ 1
2!
(tA)2 þ 1

3!
(tA)3 þ � � � (2:129)

As an illustration of how the transition matrix is used to solve the linear state equations, suppose the
system matrix for an autonomous system (u¼ 0) is

A ¼ 0 1
�2 �3
� �

Using the infinite series expansion in Equation 2.129 or some other method (see Chapter 4) for
finding F(t), the result is

F(t) ¼ 2e�t � e�2t e�t � e�2t

�2e�t þ 2e�2t �e�t þ 2e�2t

� �
(2:130)

and from Equation 2.128, the state x(t), t � 0 is

x1(t)
x2(t)

� �
¼ 2e�t � e�2t e�t � e�2t

�2e�t þ 2e�2t �e�t þ 2e�2t

� �
x1(0)
x2(0)

� �
(2:131)

The state trajectory or state portrait is a plot showing the path of the state vector in state space. In the
general case, there is a separate coordinate axis for each of the state variables. The time variable ‘‘t’’
does not appear explicitly; however, each point along the state trajectory corresponds to a specific
point in time. Figure 2.29 shows four different state trajectories starting from different initial states.
Note that the four state trajectories all terminate at the origin, the equilibrium point of the system.

EXERCISES

2.17 For the system of interacting tanks in Example 2.9.
(a) Draw the simulation diagram of the system.
(b) Choose a new set of state variables as

z1 ¼ H1 þ H2, z2 ¼ H1 � H2

Continuous-Time Systems 65

and find the new system and input matrices A and B where

_z1
_z2

� �
¼ A

z1
z2

� �
þ B

F1

F2

� �
Hint: Find H1 and H2 in terms of z1 and z2.

(c) Find the new output matrix C where

VT ¼ C
z1
z2

� �
2.18 Write the state equations for the system of three railroad cars in Exercise 2.16. Choose the

outputs to be the positions of each car.
2.19 An ecosystem consists of three species whose populations are denoted by F, S, and G. The

growth rates of each specie are given by

Growth rate of F ¼ 1
F

dF

dt
¼ a� cS� uF

Growth rate of S ¼ 1
S

dS

dt
¼ �k þ lF � mG � uS

Growth rate of G ¼ 1
G

dG

dt
¼ �eþ sSþ uG

Write the system in state variable form _x¼ f(x, u) y¼ g(x, u) with the state x¼ [F S G]T, input
u¼ [uF uS uG]

T, and output chosen as y¼Fþ SþG.
2.20 Limestone is reduced to calcium oxide (CaO), magnesium oxide (MgO), and carbon dioxide

(CO2) by heating it in a reaction vessel maintained at a constant high temperature
(McClamroch 1980). The limestone is made up of a fixed fraction b of calcium carbonate

−5 −2.5 2.5 50
−5

−2.5

0

2.5

5

x1

−5 −2.5 2.5 50
x1

x 2

−5

−2.5

0

2.5

5

x 2
=x2(0) = 4

x1(0) = 3

x2(0) = –3
x1(0) = –4

−5 −2.5 2.5 50
x1

−5 −2.5 2.5 50
x1

−5

−2.5

0

2.5

5

x 2

−5

−2.5

0

2.5

5

x 2

x2(0) = –4
x1(0) = 3

x1(0) = –4
x2(0) = –2

FIGURE 2.29 State trajectory in Equation 2.131 for different initial states.

66 Simulation of Dynamic Systems with MATLAB® and Simulink®

(CaCO3), and the rest is magnesium carbonate (MgCO3). The process is described by the first-
order irreversible chemical reactions

CaCO3�!k1 CaOþ CO2

MgCO3�!
k2

MgOþ CO2

where k1 and k2 are the rate constants for the two reactions.
Limestone is added to the reaction vessel at a rate of u mol=h. The mass (in moles) of

CaCO3, MgCO3, CaO, and MgO in the vessel are denoted by x1, x2, x3, and x4, respectively
(see Figure E2.20).

Since each mole of reactant that decomposes yields one mole of product (plus one mole of
carbon dioxide), the state equations are

_x1 ¼ �k1x1 þ bu

_x2 ¼ �k2x2 þ (1� b)u

_x3 ¼ k1x1
_x4 ¼ k2x2

(a) Draw a simulation diagram of the system. What is the order of the system?
(b) Find the matrices A, B, C, and D in the state equation model if the outputs are y1¼ x3 and

y2¼ x4.
(c) Find the differential equation relating y1 and u. Comment on the result.
(d) Repeat part (c) for y2 and u.
(e) The vessel is initially empty and u(t)¼A, t � 0. Find analytic expressions for the state

variables.
2.21 The populations of three species in a restricted area are governed by the differential equations

_P1(t) ¼ a11P1(t)þ a12P2(t)þ a13P3(t)þ c1u(t)

_P2(t) ¼ a21P1(t)þ a22P2(t)þ a23P3(t)þ c2u(t)

_P3(t) ¼ a31P1(t)þ a32P2(t)þ a33P3(t)þ c3u(t)

0 � c1 � 1, 0 � c2 � 1, 0 � c3 � 1, and c1 þ c2 þ c3 ¼ 1

where u(t) is the total immigration rate for all species. The constants c1, c2, and c3 represent
the fraction of u(t) immigrating to each of the species populations.
(a) Draw a simulation diagram of the system.
(b) Find the third-order differential equation relating P1(t) and u(t).
(c) Draw a simulation diagram of the system containing three integrators in series where the

input to the first integrator is €P_1(t)

MgCO3(x2) CaCO3(x1)

CaO(x3)MgO(x4)

 CO2

u

FIGURE E2.20

Continuous-Time Systems 67

2.7 NONLINEAR SYSTEMS

Real-world dynamic systems exhibit nonlinear behavior. The continuous-time models that relate
inputs and outputs of actual systems are (entirely or partially) composed of nonlinear algebraic and
differential equations. We may well choose to employ a linear model as an approximation of a
nonlinear system because it is far simpler to work with. A unified approach to solving nonlinear
algebraic equations does not exist, to say nothing of nonlinear differential equations.

The principle of superposition states that if a system responds to inputs u1(t) and u2(t) with
outputs y1(t) and y2(t), then the system’s response to a linear combination of the inputs u(t)¼
c1u1(t)þ c2u2(t) is y(t)¼ c1y1(t)þ c2y2(t). Superposition is a property of linear system models. It is
not applicable to models of nonlinear systems.

Unlike linear system models, a nonlinear system model exhibits dynamic response properties
whose nature is dependent on the magnitude of its inputs and the initial state. Consider the two
simple first-order systems, one linear and the other nonlinear, in Figure 2.30. Both systems are
driven by the identical input.

Discrete-time system approximations for both continuous-time systems can be obtained by
replacing the first derivative terms with divided differences, that is,

dy

dt
� yA[(nþ 1)T]� yA[(nT)]

(nþ 1)T � nT
¼ yA(nþ 1)� yA(n)

T
(2:132)

dz

dt
� zA[(nþ 1)T]� zA[(nT)]

(nþ 1)T � nT
¼ zA(nþ 1)� zA(n)

T
(2:133)

resulting in difference equations

yA(nþ 1) ¼ yA(n)þ T[u(n)� yA(n)] (2:134)

zA(nþ 1) ¼ zA(n)þ T[u(n)� z2A(n)] (2:135)

Equations 2.134 and 2.135 can be solved recursively for yA(n) and zA(n), n¼ 1, 2, 3, . . . given initial
values for yA(0) and zA(0). The results (every third point) are plotted in Figure 2.31 when the initial
condition is zero for inputs u(t)¼ 1 and u(t)¼ 10.

Approximate responses yA(nT) for both inputs are typical linear first-order system step responses,
namely, they each require roughly four to five time constants (t¼ 1 s) to reach steady state.
Furthermore, the response yA(nT) in the lower left corner where u(t)¼ 10 is 10 times the response
yA(nT) in the upper left corner where u(t)¼ 1. For a constant input u(t)¼ �u, the steady-state value is
yA(1)¼ �u for the linear system.

In contrast to the linear system, the transient period of the nonlinear system is shorter when the
input u(t)¼ 10 compared to when u(t)¼ 1. Furthermore, zA(1) ¼ �u

1
2 for the nonlinear system when

the input is u(t)¼ �u, in violation of the principle of superposition.

y(t)

u(t)
dz
dt = u−z2 z(t)

dy
dt = u−y

FIGURE 2.30 Linear and nonlinear system subject to identical input.

68 Simulation of Dynamic Systems with MATLAB® and Simulink®

A linear model approximation of a nonlinear system is often acceptable provided the system
variables (inputs, states, outputs) are confined to a restricted operating region. A simple example
serves to illustrate the point. Consider a system with input u¼ u(t) and state x¼ x(t) described by

dx

dt
þ 0:2x1=2 ¼ u (2:136)

The state derivative function is a nonlinear function of x, that is,

dx

dt
¼ f (x, u) ¼ �0:2x1=2 þ u (2:137)

For arbitrary input u(t), the solution to Equation 2.137 can be approximated in a way similar to what
we did in Chapter 1 using difference equations. However, suppose the input u(t) is confined to a range
that results in the state x(t) varying between xl and xu as shown in Figure 2.32. It is reasonable to
assume the term 0.2x1=2 in Equation 2.136 could be replaced by a linear function of x resulting in a
simpler model. Wewill have more to say about linearization of nonlinear systemmodels in Chapter 7.

Another distinguishing property of linear systems is the way they respond to sinusoidal inputs.
At steady state, the output of a linear system forced by a sinusoidal input with radian frequency v0 is
itself a sinusoid at the same frequency. In general, the output is shifted in time (out of phase) with
respect to the input, and the amplitude is either attenuated or amplified compared to the amplitude of
the input. This property is the foundation of linear AC steady-state analysis and the design of linear
control systems by the method of frequency response. In the case of nonlinear systems, the output
includes harmonics (sinusoidal terms at frequencies nv0, n¼ 1, 2, 3, . . .).

The type of nonlinearity portrayed in Figure 2.32 has been classified as ‘‘progressive’’ (Buckley
1964). The distinguishing characteristics of progressive nonlinearities are their monotonic continuous
nature over the range of input and output values of interest. Furthermore, state derivative functionswhich
are progressive nonlinearities can be approximated by linearization methods. ‘‘Essential’’ nonlinearities
are those that cannot be represented by a simple continuous analytical function. Phenomena such as
friction, dead zone and saturation in valves, and backlash in gears in mechanical systems; hysteresis in
electrical components; and analog-to-digital quantization are examples of essential nonlinearities.

0 1 2 3 4 5
0

0.25

0.5

0.75

1

u(t) = 1
T = 0.05

u(t) = 10
T = 0.05

0 1 2 3 4 5
0

2
4

6

8
10

t

y A
(n

T
)

y A
(n

T
)

u(t) = 1
T = 0.05

u(t) = 10
T = 0.05

0 0.5 1 1.5 2 2.5 3
0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3
0

1

2

3

t
z A

(n
T

)
z A

(n
T

)

FIGURE 2.31 Approximation of linear and nonlinear system step responses.

Continuous-Time Systems 69

2.7.1 FRICTION

The first example illustrates a type of friction called coulomb friction. An object of mass m, resting
on a flat surface, is subject to an external horizontal force f(t) and a resisting frictional force fm as
shown in Figure 2.33. The velocity of the mass obeys the relation in Equation 2.138

m
dv

dt
þ fm ¼ f (2:138)

The friction force fm is equal in magnitude to the force f until a breakaway force fB is applied (see
Figure 2.34), and the mass begins to slide along the surface. The breakaway force fB depends on the
coefficient of static friction m0 and the object’s weight,

fB ¼ m0mg (2:139)

0 2.5 5 7.5 10 12.5 15 17.5 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

y = x
1/2

xl xu

Region of
linear

approximation

x

FIGURE 2.32 Linearizing the nonlinear function 0.2x1=2 in an interval xl � x � xu.

m fμf m + fμ = fdv
dt

FIGURE 2.33 Nonlinear system example—coulomb friction.

fB
f

fμ
fB

0

v = 0 v > 0

A

B

C Dμ s
 m

g fμ =
f when f ≤ fB (v = 0)
μs mg when f > fB (v > 0)

FIGURE 2.34 Friction force fm vs. increasing f applied to a mass initially at rest.

70 Simulation of Dynamic Systems with MATLAB® and Simulink®

While in motion, the friction force fm is a constant dependent on the coefficient of sliding friction ms

and the weight mg of the object as seen in Equation 2.140. Note that fm is also equal to msmg when
f � fB and v> 0.

fm ¼
f when f � fB (v ¼ 0)

msmg when f > fB (v > 0)

(
(2:140)

Example 2.10

The applied force f(t) is shown in Figure 2.35. Find the velocity of the object.

f (t) ¼
2fB

t
t1

� �
0 � t < t1

2fB 2� t
t1

� �� �
t1 � t < 2t1

0 t � 2t1

8>>>>><>>>>>:
(2:141)

The difference equation resulting from the substitution of the divided difference [vA(nþ 1)�
vA(n)]=T for the first derivative dv=dt in Equation 2.138 is

vA(nþ 1) ¼ vA(n)þ T
m
[f (n)� fm(n)] (2:142)

A recursive solution for vA(n), n¼ 1, 2, 3, . . . given vA(0)¼ v(0)¼ 0 is not as straightforward as it
was in previous examples owing to the nature of the friction force. The MATLAB® M-file ‘‘Chap2_
Ex7_1.m’’ includes the necessary conditional statements to handle the discontinuity in fm. Results
are shown in Figure 2.36.

The analytical solution for the velocity v(t) is plotted along with the approximate solution vA(n).
It can be found by integrating the differential equation (Equation 2.138) over consecutive intervals
using the appropriate value for the friction force (f or msmg) and the correct initial velocity for each
interval. The details are left for an exercise; the results are as follows.

v(t) ¼

0, 0 � t � 0:5t1

gt1 m0
t
t1

� �2

�ms
t
t1

� �
þ 2ms � m0

4

" #
, 0:5t1 � t < t1

gt1 �m0
t
t1

� �2

þ (4m0 � ms)
t
t1

� �
� 9m0 � 2ms

4

" #
, t1 � t < 2t1

gt1 �ms
t
t1

� �
þ 7m0 þ 2ms

4

� �
, 2t1 � t < Tf

0, Tf < t

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(2:143)

f (t) =

t

2fB

t1 2t1

f (t)

0.5t1

fB

2fB (t/t1) 0 ≤ t < t1

2fB [2 − (t/t1)] t1 ≤ t < 2 t1

0 t ≥ 2t1

FIGURE 2.35 Applied force f(t) vs. t.

Continuous-Time Systems 71

The time Tf when the velocity returns to zero is obtained from

Tf ¼ t1
4ms

(7m0 þ 2ms) (2:144)

2.7.2 DEAD ZONE AND SATURATION

The next example of mechanical (pneumatic) nonlinearity is a valve that contains two nonlinear
elements, dead zone and saturation. First, consider the nonlinear elements individually. An ideal
dead zone nonlinearity is shown in Figure 2.37. The dead zone is the region between t1 and t2.

f (t) ¼
f3

t � t2
t3 � t2

� �
t2 � t

0 t1 < t < t2

f0
t � t1
t0 � t1

� �
t � t1

8>>>>><>>>>>:
(2:145)

An ideal saturation nonlinearity is shown in Figure 2.38.

f (t) ¼ fs
t

ts

� �
jtj � ts

sgn(fs) jtj > ts

8<: (2:146)

The saturated regions are when jtj> ts, that is, for t<�ts, the
value of �f (t) does not change and for t> ts, the value of f(t)
does not change.

Together, these nonlinearities (saturation and dead zone) form
an approximation to the pneumatic behavior of a valve shown in
Figure 2.39.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

10

20

30

40

f (
lb

)

m = 2 slugs, μ0 = 0.3, μs = 0.1

t1 = 1 s
fB = μ0 mg

Applied force

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

2.5

5

7.5
10

12.5

t (s)

v A
(n

) (
ft/

s)

T = 0.025 s

Velocity

vA(n), n = 0, 4, 8,...
v(t)

FIGURE 2.36 Approximate solution vA(n), n¼ 0, 4, 8, . . . and exact solution v(t), t � 0.

t0 t1

t2 t3

t

f3

f(t)

f0

FIGURE 2.37 Dead zone non-
linearity.

72 Simulation of Dynamic Systems with MATLAB® and Simulink®

Io is the opening current, that is, the current needed to open
the valve.
Is is the saturation current where any additional
current (more than Is or less than �Is) does not open the valve
any further. The region between Io and Is(�Io and �Is) is appro-
priately called the active region. The region between �Io and Io is
called the dead zone. However, in practice, leakage occurs below
the opening current.

2.7.3 BACKLASH

Backlash nonlinearity often occurs in gears due to the spacing
between individual teeth. The spacing is needed for the gears to
mesh without binding. This spacing (d) is shown in Figure 2.40.

Figure 2.41 shows a plot of the backlash nonlinearity.
Assume the space d exists in the initial condition as in Figure

2.40. As the leading gear moves in one direction, the following
gear does not move until contact is made after the leading gear is
displaced by d. Then, the following gear tracks the leading gear as
indicated by section 1 of Figure 2.41. When the leading gear
reverses direction, it must be displaced by a distance 2d before
contact is reestablished with the following gear, as indicated by
section 2 of Figure 2.41. Similar to before, the following gear
tracks the leading gear as indicated by section 3 of Figure 2.41.
Another reversal of directions leads to section 4 in Figure 2.41.

2.7.4 HYSTERESIS

The graph of fm vs. f in Figure 2.34 is applicable so long as the
applied force f and resulting velocity v are increasing along the
path A-B-C-D. Once the block is in motion and the applied force
f diminishes to zero, the return path does not follow D-C-B-A.
That is, the sliding block does not abruptly stop when the
applied force is reduced to fB. Rather, the friction force remains
at msmg until the block decelerates to zero velocity. This type of
nonlinear phenomenon is referred to as hysteresis.

An example of a real system with hysteresis, present by
design, is a thermostatically controlled furnace supplying heat
to a building. A simplified diagram of the system is depicted in
Figure 2.42. An energy balance on the building interior space
relates the accumulation of thermal energy to the heat flow from
the furnace and heat loss to the outside.

The equation is

C
dT

dt
¼ Q� Q0 (2:147)

where C is the thermal capacitance of the air and contents inside the building, all of which are
assumed to be at temperature T. The heat loss Q0 is assumed proportional to the temperature
difference T� T0, that is,

Q0 ¼ T � T0
R

(2:148)

ts

–ts
t

f

f(t)

–f

FIGURE 2.38 Saturation non-
linearity.

i
I3I0

–I0

Q

–I3

FIGURE 2.39 Valve flow vs.
current.

d

Leading
gear Following

gear

FIGURE 2.40 Backlash in gear
teeth.

Continuous-Time Systems 73

with R the overall thermal resistance of the exterior walls and
insulation. Combining Equations 2.147 and 2.148 and introdu-
cing the thermal system time constant t¼RC result in the first-
order model

t
dT

dt
þ T ¼ RQþ T0 (2:149)

The furnace operates in one of two modes, on or off, depending
on whether the building temperature T is below or above some
tolerance D about a desired temperature Td and whether the
building temperature is increasing or decreasing. When it is
on, a constant amount of heat Q is supplied; conversely, no
heat is produced when the furnace is off. In mathematical terms,

Q ¼ Q, T � Td � D or Td � D < T < Td þ D and dT=dt > 0

0, T > Td þ D or Td � D < T < Td þ D and dT=dt < 0

(
(2:150)

The hysteresis effect is evident from the graph in Figure 2.43 (McClamroch 1980).
From Equations 2.149 and 2.150, it follows that the state derivative dT=dt depends not only on

the input T0 and the state T but also on its own sign. Furthermore, since the furnace output Q in
Figure 2.43 is multi-valued whenever the building temperature T falls within Td�D to TdþD, the
initial state T(0) and the initial state of the furnace (on=off) must be specified to simulate or obtain
analytical solutions for T(t), t � 0.

F

L
d–d

4

3

2

1

FIGURE 2.41 Backlash non-
linearity.

Outside temperature: T0(t)

Heat loss: Q0(t)

Heat from furnace: Q(t)

Building temperature: T(t)

Furnace

R

FIGURE 2.42 Temperature regulation in a building.

T

Q
–

Td − Δ

Q

dT
dt

> 0

< 0

Td + Δ

dT
dt

FIGURE 2.43 Hysteresis in furnace output vs. building temperature.

74 Simulation of Dynamic Systems with MATLAB® and Simulink®

The example that follows illustrates a method for obtaining an approximate solution and the
exact solution for the building temperature T(t) when the outside temperature T0(t) is constant.

Example 2.11

A building’s thermostat has been off for a period of time sufficient to allow the inside and outside
temperatures to equalize. The thermostat is then set to 758F. It is programmed to turn off when the
interior temperature reaches 788F and back on when it falls below 728F. The furnace produces
36,000 Btu=h. Thermal capacitance of the occupied space and interior furnishings is 300 Btu=8F,
and the thermal resistance of the walls is 8� 10�48F per Btu=h. The outside temperature is a
constant 508F.

(a) Find the time constant of the system.
(b) Show that the furnace is capable of raising the building temperature to 788F.
(c) Find the temperature response and the time required for the building temperature to

reach 788F.
(d) Find the temperature response and the time required for the building temperature to cool

down to 728F.
(e) Find the temperature response and the time required for the building temperature to go back

to 788F.
(f) Simulate the temperature responses in parts (c), (d), and (e) by solving a difference

equation with appropriate step size and compare the approximate and exact solutions.

(a) The time constant, a measure of the speed of the system’s dynamics is

t ¼ RC ¼ 8� 10�4
	F

Btu=h
� 300 Btu

	F
¼ 0:24 h

(b) The steady-state temperature differential (inside minus outside) that the furnace is capable of
maintaining is obtained from the first-order differential equation model in Equation 2.149 with the
derivative set to zero and the furnace on, that is, Q(t)¼Q.

Tss ¼ RQþ T0 (2:151)

) Tss � T0 ¼ RQ (2:152)

where
T0 is the constant outside temperature
Tss is the steady-state inside temperature

In this example,

Tss � T0 ¼ RQ ¼ 8� 10�4
	F

Btu=h
� 36,000 Btu

h
¼ 28:8	F

Hence, the furnace is capable of raising the inside temperature from 508F to 78.88F, which is
slightly higher than the 788F shutoff setting of the thermostat.

(c) From Equation 2.6, the step response of the first-order system is

T(t) ¼ T(0)e�t=t þ (T0 þ RQ)(1� e�t=t) (2:153)

which describes the building temperature from time t¼ 0 up to t¼ t1 where

T(t1) ¼ Td þ D ¼ 75	Fþ 3	F ¼ 78	F (2:154)

Continuous-Time Systems 75

Solving for t1 gives

t1 ¼ t ln
(T0 þ RQ)� T(0)

(T0 þ RQ)� (Td þ D)

� �

¼ 0:24 ln
(50þ 28:8)� 50

(50þ 28:8)� (75þ 3)

� �
¼ 0:86 h (2:155)

From Equation 2.153 with T(0)¼ 508F, the temperature response is

T(t) ¼ 50e�t=0:24 þ 78:8(1� e�t=0:24), 0 � t � 0:86 (2:156)

(d) The furnace shuts off when the temperature reaches TdþD¼ 788F and the subsequent cooling
from 788F to Td�D¼ 728F follows the step response in Equation 2.153 with Q¼ 0 and T(0)¼
TdþD¼ 788F. Thus,

T(t) ¼ (Td þ D)e�(t�t1)=t þ T0[1� e�(t�t1)=t], t1 � t � t2 (2:157)

¼ 78e�(t�0:86)=0:24 þ 50[1� e�(t�0:86)=0:24], 0:86 � t � t2 (2:158)

where t2 is the time when the building temperature is Td�D� 728F. Note the (t� t1) in the
exponent of Equation 2.157 since t1 is the initial time of the step response. From Equation 2.157
with t¼ t2, T(t2)¼ Td�D, the time t2 is given by

t2 ¼ t1 þ t ln
(Td þ D)� T0

(Td � D)� T0

� �

¼ 0:86þ 0:24 ln
(75þ 3)� 50
(75� 3)� 50

� �
¼ 0:92 h (2:159)

(e) The cycle is completed when the building temperature returns to TdþD¼ 788F. Using the
same approach as before, the result is

T(t) ¼ (Td � D)e�(t�t2)=t þ (T0 þ RQ) 1� e�(t�t2)=t
h i

, t2 � t � t3

¼ 72e�(t�0:92)=t þ 78:8[1� e�(t�0:92)=t], 0:92 � t � t3 (2:160)

Setting T(t3)¼ TdþD and solving for t3,

t3 ¼ t2 þ t ln
(T0 þ RQ)� (Td � D)
(T0 þ RQ)� (Td þ D)

� �

¼ 0:92þ 0:24 ln
(50þ 28:8)� (75� 3)
(50þ 28:8)� (75þ 3)

� �
¼ 1:43 h (2:161)

(f) The approximate solution for the building temperature is based on the difference equation
obtained by replacing the first derivative dT=dt in Equation 2.149 with the finite difference
[TA (nþ 1)� TA (n)]=T. The result is

TA(nþ 1) ¼ 1� DT
t

� �
TA(n)þ DT

t
[RQ(n)þ T0] (2:162)

whereQ(n) is based on the logic in Equation 2.150. TheMATLABM-file ‘‘Chap2_Ex7_2.m’’ evaluates
the exact and approximate solutions and generates the graph shown in Figure 2.44.

The building temperature experiences periodic fluctuations between Td�D¼ 728F and
TdþD¼ 788F as long as the outside temperature remains constant. The period is equal to
t3� t1¼ 1.43� 0.86¼ 0.57 h.

76 Simulation of Dynamic Systems with MATLAB® and Simulink®

2.7.5 QUANTIZATION

In digital control, it is often desired to discretize the continuous signal of a sensor for use by a
computer or microprocessor. Conversion of this signal is achieved by an analog-to-digital converter
(ADC) where the signal is quantized.

The quantization nonlinearity is shown in Figure 2.45. In this example, a voltage range between
V0 and V1 is designated as state zero, S0; a voltage range between V1 and V2 is designated as state
one, S1; and so on. Each state is represented by a binary expression according to the number of bits
used by the data type assigned to the state. For example, an 8-bit representation for state zero is
00000000, while state one is represented by 00000001. The more bits that are available for
quantization yield a better resolution of the sensor’s range, in this case, voltage. There are 2n states
where n is the number of bits. Therefore, an 8-bit ADC has 256 states, 0–255. The resolution is the
sensor’s range divided by the number of states. For example, a sensor with a voltage range from 0 to
10 V has a resolution of 0.04 V for an 8-bit ADC.

0 0.25 0.5 0.75 1 1.25 1.5
50

55

60

65

70

75

80

t (h)

T
(°F

)

Step size ΔT = 0.001 h

Td + Δ

Td – Δ

t1 t3

t2

TA(n), n = 0, 25, 50, ...
T(t), t ≥ 0

FIGURE 2.44 Exact and approximate solutions for building temperature.

S2

S1

S0

V0 V1 V2 V3 V4

S3

FIGURE 2.45 Quantization.

Continuous-Time Systems 77

2.7.6 SUSTAINED OSCILLATIONS AND LIMIT CYCLES

Both linear and nonlinear system differential equation models are capable of producing solutions
involving sustained oscillations of the state variables. This comes as no surprise for linear systems.
Indeed, we have already seen how the natural response of an undamped second-order system continues
to oscillate forever (see Figure 2.4). Examples will be presented in Chapter 4 of forced linear systems
with sustained sinusoidal oscillations in the output after the transient response has died out.

State trajectories of the autonomous system governed by the differential equation

€xþ v2
nx ¼ 0 subject to x(0) ¼ x0, _x(0) ¼ _x0 (2:163)

are closed orbits in the _x vs. x state space. Figure 2.46 shows state trajectories, also known as orbits,
for the undamped system in Equation 2.163 with vn¼ 1 rad=s starting from four different initial
points in the state space.

The orbits are typically elliptical; however, those in Figure 2.46 are circular because the natural
frequency vn¼ 1 rad=s. Sustained oscillations of the state components x and dx=dt are shown in
Figure 2.47.

Nonlinear systems can experience two types of sustained oscillations. The first class is similar to
the case of linear systems. In the unforced case, the oscillations are sensitive to the initial conditions.
That is, the particular points along the closed path of the state trajectory vary depending on the
location of the initial point in state space. The initial point is always on the closed orbit. The
amplitude and period of the oscillations depend on the system parameters and initial conditions.

The state trajectories of the nonlinear system described by the coupled first-order differential
equations

_x1 ¼ x1(a� bx2) (2:164)

_x2 ¼ x2(cx1 � d) (2:165)

x

State trajectories of undamped second-order systems

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

dx
/d

t

ωn= 1 rad/s

Initial state: x(0), x(0).

a
b

c

d

FIGURE 2.46 Closed orbits for the system €xþ v2
nx ¼ 0 (vn¼ 1 rad=s).

78 Simulation of Dynamic Systems with MATLAB® and Simulink®

are concentric closed curves ‘‘spun out’’ in a clockwise rotation from the initial point. The center of
rotation is the equilibrium point located at (d=c, a=b). The MATLAB M-file ‘‘Chap2_Figs7_
13and14.m’’ uses a difference quotient with step size T¼ 5�10�5 to approximate the first deriva-
tives in Equations 2.164 and 2.165. The approximate solutions in Figure 2.48 show four orbits
starting from different initial states.

Time histories of the state variables are shown in Figure 2.49. In contrast to the sinusoidal
oscillations of the LTI system governed by Equation 2.163, the oscillations of the nonlinear system
in Equations 2.164 and 2.165 are not of a sinusoidal nature.

0 1 2 3 4 5 6 7 8 9 10 11 12
−1

−0.5

0

0.5

1

a

t

dx
/d

t

b
c

d

0(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12
−1

−0.5

0

0.5

1

a

x

b
c

d

FIGURE 2.47 Sustained oscillations of x (a) and dx=dt (b) for undamped second-order systems.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

18

20

x1

x 2

a = 10, b = 2, c = 4, d = 12
x1,e = d/c = 3, x2,e = a/b = 5

a b c d+

Initial state: x1(0), x2(0)

(x1,e, x2,e)

FIGURE 2.48 Closed orbits and sustained oscillations for the nonlinear system.

Continuous-Time Systems 79

Another type of sustained oscillation is possible for an unforced nonlinear system. In this case,
there is a single closed orbit in the state space independent of the initial conditions. If the initial state
is located on this closed path, the state vector remains on it forever, periodically returning to the
starting point. When the initial state is inside the closed curve, the state trajectory may be
asymptotically attracted to the closed curve or repelled from it towards a stable equilibrium point
in its interior. Should the initial state be located outside the closed curve, the state trajectory either
converges to it in a finite time period or else spirals outward from it.

Sustained oscillations of this nature are called limit cycles. If the initial state is not on the limit
cycle, the state trajectory is either attracted to or repelled from it. Limit cycles are either stable or
unstable depending on which of the two situations applies.

An autonomous mechanical system with a stable limit cycle is given in Tse et al. (1963).
Referring to Figure 2.50, the mass m is acted upon by a linear spring force Fk, a nonlinear damping
force Fc, and a self-excitation force F, that is, a force with explicit dependence solely on the internal
state of the system.

Note that there are no external forces present. The differential equation model is

m€x ¼ F � Fc � Fk ¼ F0 _x� (cx2) _x� kx (2:166)

) m€xþ (cx2 � F0) _xþ kx ¼ 0 (2:167)

The effective damping force is (cx2�F0) _x. In the neighborhood of the equilibrium point x¼ 0,
_x¼ 0, the term (cx2�F0)< 0. The negative damping results in an increase of energy in the system

0 0.25 0.5 0.75 1 1.25 1.5
0

2.5

5

7.5

10

ax 1
b

c
d

0
(b)

(a)

0.25 0.5 0.75 1 1.25 1.5
0

5

10

15

20

a

t

x 2

b
c

d

FIGURE 2.49 Sustained oscillations of x1 (a) and x2 (b) for nonlinear second-order system.

m Fk = kx
Fc = (cx2)xF = F (x, x) = F0x. .

.

FIGURE 2.50 An autonomous nonlinear system with self-excitation force.

80 Simulation of Dynamic Systems with MATLAB® and Simulink®

making the equilibrium point inherently unstable. Consequently, the state trajectory will move
outwards from the origin in state space.

The reverse is true whenever (cx2�F0)> 0. In this case, the damping term is positive and energy
is dissipated from the system. The state trajectory spirals inward to points where the total energy in
the system is lower. Clearly, a locus of points must exist in state space to function as a transition
between the two phenomena. The locus must be a closed curve, namely, the limit cycle.

Example 2.12

For the mechanical system described by Equation 2.167

(a) Convert the system model to state variable form.
(b) Numerical values of the system parameters are m¼ 1, k¼ 2, c¼ 0.5, and F0¼ 3. Approxi-

mate the state derivatives numerically with appropriate step size to determine the state
trajectories when the initial state is located at
(i) x(0)¼�1, _x(0)¼�5
(ii) x(0)¼ 2, _x(0)¼ 5
(iii) x(0)¼�2, _x(0)¼ 15
(iv) x(0)¼ 5, _x(0)¼�20
Plot the trajectories in the state space.

(c) Estimate the period of the limit cycle.

(a) Choosing the state vector as x1¼ x, x2¼ _x yields the state derivative functions

_x1 ¼ f1(x1, x2) ¼ x2 (2:168)

_x2 ¼ f2(x1, x2) ¼ � 1
m
[kx1 þ (cx21 � F0)x2] (2:169)

(b) Replacing _x1 and _x2 by difference quotients leads to the following difference equations for the
discrete-time system

x1,A(nþ 1) ¼ x1,A(n)þ Tf1[x1,A(n), x2,A(n)] (2:170)

¼ x1,A(n)þ Tx2,A(n) (2:171)

x2,A(nþ 1) ¼ x2,A(n)þ Tf2[x1,A(n), x2,A(n)] (2:172)

¼ x2,A(n)� T
m

kx1,A(n)þ cx21,A(n)� F0
n o

x2,A(n)
h i

(2:173)

The difference equations are solved recursively in ‘‘Chap2_Ex7_3.m’’ for the given initial states.
The limit cycle and the four state trajectories are shown in Figure 2.51. As expected, the state
trajectories eventually converge to the limit cycle.

(c) Figure 2.52 shows the time responses for the state components starting from the initial
state x1(0)¼ 5, x2(0)¼�20. The period of sustained oscillations can be approximated from
the graph by estimating the difference in successive zero crossings of either state component
once the state ‘‘locks into’’ the limit cycle. By zooming in on Figure 2.46, the period is approxi-
mated as 11.94� 6.43¼ 5.51. Can you determine the approximate time the state enters the
limit cycle?

Continuous-Time Systems 81

EXERCISES

2.22 Examine the effect of changing the initial condition on the unit step response of the nonlinear
system

dx

dt
þ x2 ¼ u, u(t) ¼ 1, � 0

Plot xA(n), n¼ 0, 1, 2, 3, . . . when x(0)¼�2, �1, 0, 1, 5 on the same graph. Use T¼ 0.05.

Nonlinear system with limit cycle

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−20

−15

−10

−5

0

5

10

15

20

25

x1

x 2

m = 1, k = 2, c = 0.5, F0 = 3

(−1, −5)

(−2, 15)

(2, 5)

(5, −20)

Limit cycle

FIGURE 2.51 Approaches to limit cycle from several initial states.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−5

−2.5

0

2.5

5

x 1
x 2

Period

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−20

−10

0

10

t

x1 vs. t for system with limit cycle starting at (5, −20)

x2 vs. t for system with limit cycle starting at (5, −20)

FIGURE 2.52 Time histories of state components [initial state: x1(0)¼ 5, x2(0)¼�20].

82 Simulation of Dynamic Systems with MATLAB® and Simulink®

2.23 In Example 2.10, suppose instead of a constant friction force applied to the object as it slides,
there is a variable friction force given by

fm ¼ avb

Find and plot vA(n), n¼ 1,2,3, . . . in response to the force f(t) in Example 2.10 when
(i) a¼ 2, b¼ 0.5
(ii) a¼ 1, b¼ 1
(iii) a¼ 2, b¼ 2

2.24 Nonlinear dynamic system is shown in the figure below. The input u(t)¼ sin 100pt, t � 0.
(a) Is the output y(t) a sinusoidal function of the same frequency as the input like it would be

in a linear system? Explain
(b) Is the output y(t) a periodic function? If so, what is the frequency?

u(t) y(t)y1/2 = u

2.25 In Example 2.10, find the displacement of the mass, x(t), t � 0.
2.26 In Example 2.10, the applied force is

f (t) ¼ 2fB sin 0:25pt, 0 � t < 4

0, t � 4

(

(a) Formulate a difference equation for vA(n) similar to Equation 2.142 and solve recursively.
(b) Determine the analytical solution for v(t).
(c) Plot the approximate and analytical solutions on the same graph.

2.27 In Example 2.11, find the exact and approximate solutions for the building temperature T(t)
and furnace output Q(t) if the desired setting Td and tolerance D are
(a) Td¼ 728F, D¼ 38F
(b) Td¼ 788F, D¼ 1.58F

2.28 In Example 2.11, investigate the effect of lowering the desired temperature Td on the
thermostat and its effect on the furnace cycle time and the duty cycle, that is, percentage of
time the furnace is on. Plot the results for Td¼ 688F, 698F, . . . , 758F.

2.29 In Example 2.11, suppose the outside temperature T0(t) varies in a sinusoidal fashion with
average value of 508F and amplitude of 58F as shown in Figure E2.29. The thermal capaci-
tance of the room is C¼ 500 Btu=8F. The initial room temperature at 6 AM is 508F.
(a) The thermostat is set at Td¼ 658F. Simulate the building temperature long enough to

show several cycles of T(t) after the initial transient response vanishes.
(b) Find the energy cost per day if the cost of heating is 1.75c= per 1000 Btu’s.
(c) Repeat parts (a) and (b) for Td¼ 708F and 758F.

2.30 The coulomb damping force acting on the mass shown in Figure E2.30 is given by
fm ¼ �sgn(_x)mmg. The initial condition is x(0) ¼ x0 ¼ �1 m, _x(0) ¼ 0 m=s. The equation
of motion is

€xþ v2
nx ¼

1
m
fm, v2

n ¼
k

m
(g ¼ 9:81 m=s2)

The system parameters are m¼ 6 kg, k¼ 300 N=m, m¼ 0.2
(a) Define the state as x1¼ x, x2¼ _x and find difference equations for x1,A(n) and x2,A(n).
(b) Solve the difference equation for four cycles of x1,A(n) and x2,A(n) using a step size of

T¼ 0.001s. Plot the results.

Continuous-Time Systems 83

(c) The exact solution for x(t) over the first cycle (0 � t � t2) is

x(t) ¼
x0 þ mmg

k

� 	
cosvnt � mmg

k
, 0 � t � t1

x1 � mmg

k

� 	
cosvn(t � t1)þ mmg

k
, t1 � t � t2

8><>:
where

t1 ¼ p

vn

t2 ¼ t1 þ p

vn

x1 ¼ �x0 � 2
mmg

k

Plot the exact solution for x(t) over the first cycle and compare it to the approximate
solution.

2.31 For the undamped second-order system modeled by

€xþ v2
nx ¼ 0 subject to x(0) ¼ x0, _x(0) ¼ _x0

show the equation of the closed trajectories are ellipses in the x� _x plane that reduce to the
circular orbits in Figure 2.40 when vn¼ 1 rad=s.

Outside temperature vs. time of day
58

56

54

52

50

48

T 0
(t)

, °
F

Simulation starts at t = 0

46

44

42
0 2 4 6 8 10 12 14 16 18 20 22 24 t (h)

6 AM Noon 6 PM Midnite 6 AM

FIGURE E2.29

W

x0
k

x(0)

fμ
x > 0 .

fμ

x

−μmg

μmg

FIGURE E2.30

84 Simulation of Dynamic Systems with MATLAB® and Simulink®

2.32 Generate the state trajectory shown in Figure 2.45 starting at (�2,15) by finding an approxi-
mate solution to the differential equation

dx2
dx1
¼ � 1

m
k
x1
x2
þ cx21 � F0

� �
obtained as a result of dividing dx2=dt in Equation 2.169 by dx1=dt in Equation 2.168.

2.33 Generate 500 state trajectories starting from initial points randomly selected in the region
�10 � x(0) � 10, �10 � _x(0) � 10 for the system governed by

m€xþ (F0 � cx2) _xþ kx ¼ 0

with the same parameter values as those in Example 2.12. Comment on the existence of a limit
cycle and its effect on the trajectories.

2.34 Find the period of oscillations for the system modeled by

_x1 ¼ x1(10� 2x2)

_x2 ¼ x2(4x1 � 12)

when the initial state is (i) x1(0)¼ 10, x2(0)¼ 15 and (ii) x1(0)¼ 4, x2(0)¼ 6.

2.8 CASE STUDY: SUBMARINE DEPTH CONTROL SYSTEM

Automatic depth control of a submarine is the focus of this section. Figure 2.53 illustrates a
representative situation, where the actual depth of the submarine, denoted c(t), is measured by a
sensor and compared with the desired depth r(t).

A simplified block diagram of the depth control system is shown in Figure 2.54. The error signal
e(t) is the difference between the commanded depth r(t) and the actual depth c(t). It is fed back to the
controller that sends a signal to the stern plane actuator motor that controls the stern plane actuator
angle u(t). The submarine depth responds to changes in the stern plane angle.

The controller and stern plane actuator combination are modeled by

u ¼ KCeþ KI

ð
e dt (2:174)

Submarine axis

Center of gravity

θ(t)

Stern planeVelocity

c(t)

FIGURE 2.53 Depth control of a submarine.

Continuous-Time Systems 85

and the submarine dynamics are approximated by the simple first-order model

t
dv

dt
þ v ¼ K _u

du

dt
þ Kuu (2:175)

where v¼ v(t) is the depth rate of the submarine. Integrating the depth rate yields the depth of the
submarine

c ¼
ð
v dt (2:176)

The error signal is output from the summer as

e ¼ r � c (2:177)

Equations 2.174 through 2.177 constitute the mathematical model of the simplified submarine depth
control system. The goal is to choose the parameters KC and KI, so that the submarine responds to
step changes in commanded depth in an acceptable manner.

A simulation diagram of the control system is a useful first step in helping choose a set of state
variables. Employing the technique discussed in Section 2.4 for drawing a simulation diagram with
input derivative terms present, the diagram is shown in Figure 2.55.

From the simulation diagram, the state equations are

_x1 ¼ v ¼ Kux2 þ K _u _x2 (2:178)

¼ Kux2 þ K _u

1
t
(u� x2)

� �
(2:179)

The stern plane angle u is expressible in terms of the states x1, x2, and x3 and input r by

u ¼ KCeþ KIx3 ¼ KC(r � x1)þ KIx3 (2:180)

Desired
depth

Controller and
stern plane

actuator

θ(t)
r(t)

Actual
depth

Submarine
dynamics

e(t)

–
c(t)

FIGURE 2.54 Block diagram of a submarine depth control system.

r x1x2 νx3 c

KC

e KI
1
τ Kθ

−1

∫∫∫

−1

Kθ
.

θ

FIGURE 2.55 Simulation diagram of a submarine depth control system.

86 Simulation of Dynamic Systems with MATLAB® and Simulink®

Combining Equations 2.179 and 2.180 gives

_x1 ¼ Kux2 þ K _u

1
t
{KC(r � x1)þ KIx3 � x2}

� �
(2:181)

) _x1 ¼ �K _uKC

t

� �
x1 þ Ku � K _u

t

� �
x2 þ K _uKI

t

� �
x3 þ K _uKC

t

� �
r (2:182)

_x2 ¼ 1
t
(u� x2)

� �
(2:183)

¼ 1
t
{KC(r � x1)þ KIx3 � x2}

� �
(2:184)

) _x2 ¼ �KC

t

� �
x1 � 1

t

� �
x2 þ K1

t

� �
x3 þ KC

t

� �
r (2:185)

_x3 ¼ r � x1 (2:186)

Equations 2.182, 2.185, and 2.186 represent the dynamic portion of the state variable model, that is,
_x ¼ Axþ Br. Choosing the outputs as y1¼ u, y2¼ v, and y3¼ c determines the matrices C and D in
the output equation y ¼ Cxþ Dr.

y1 ¼ u ¼ KC(r � x1)þ KIx3 (2:187)

¼ �KCx1 þ KIx3 þ KCr (2:188)

y2 ¼ v ¼ _x1 ¼ �K _uKC

t

� �
x1 þ Ku � K _u

t

� �
x2 þ K _uKI

t

� �
x3 þ K _uKC

t

� �
r (2:189)

y3 ¼ c ¼ x1 (2:190)

In summary, the state equations are

_x1

_x2

_x3

2664
3775 ¼

�K _uKC

t
Ku � K _u

t

K _uKI

t

�KC

t

�1
t

KI

t

�1 0 0

2666664

3777775
x1

x2

x3

2664
3775þ

K _uKC

t

KC

t

1

2666664

3777775r (2:191)

u

v

c

2664
3775 ¼

�KC 0 KI

�K _uKC

t
Ku � Ku

t

K _uKI

t

1 0 0

26664
37775

x1

x2

x3

2664
3775þ

KC

K _uKC

t

0

26664
37775r (2:192)

The exact solution for the outputs u, v, and c in response to a given depth command r can be
approximated by solving a system of difference equations obtained using the same approach we
employed on previous occasions, that is, the first derivatives _x1, _x2, _x3 in Equation 2.191 are replaced

Continuous-Time Systems 87

by first-order difference quotients, and the resulting difference equations are solved recursively for
x1,A(n), x2,A(n), x3,A(n). The result is

1
T
{x1,A(nþ 1)� x1,A(n)}

1
T
{x2,A(nþ 1)� x2,A(n)}

1
T
{x3,A(nþ 1)� x3,A(n)}

26666664

37777775 ¼
�K _uKC

t
Ku � K _u

t

K _uKI

t

�KC

t

�1
t

KI

t

�1 0 0

266664
377775

x1,A(n)

x2,A(n)

x3,A(n)

264
375þ

K _uKC

t

KC

t

1

266664
377775r(n)
(2:193)

The difference equations are updated according to

x1,A(nþ 1) ¼ x1,A(n)� K _uKCT

t

� �
x1,A(n)þ K _u �

K _u

t

� �
Tx2,A(n)

þ K _uKIT

t

� �
x3,A(n)þ K _uKCT

t

� �
r(n) (2:194)

x2,A(nþ 1) ¼ x2,A(n)� KCT

t

� �
x1,A(n)� T

t

� �
x2,A(n)þ KIT

t

� �
x3,A(n)þ KCT

t

� �
r(n) (2:195)

x3,A(nþ 1) ¼ x3,A(n)� Tx1,A(n)þ Tr(n) (2:196)

From Equation 2.192, the discrete-time outputs are

uA(n)

vA(n)

cA(n)

2664
3775 ¼

�KC 0 K1

�K _uKC

t
Ku � K _u

t

K _uK1

t

1 0 0

26664
37775

x1,A(n)

x2,A(n)

x3,A(n)

2664
3775þ

KC

K _uKC

t

0

26664
37775r(n) (2:197)

Equations 2.194 through 2.197 are solved recursively in the M-file ‘‘Chap2_Case_Study.m’’ for the
case where r(t)¼ 100, t � 0. The baseline parameter values are

Sub dynamics: t¼ 10 s, K _u ¼ 20 ft=s per deg=s, Ku¼ 10 ft=s per deg
Controller gains: KC¼ 0.6 deg=ft, KI¼ 0.1 deg=ft s
Step size: T¼ 0.0025 s

Graphs of the discrete-time outputs uA(n), vA(n), cA(n) are shown in Figure 2.56. For clarity,
every 100th value of discrete-time output is plotted.

The discontinuity in stern plane angle u at t¼ 0 is a consequence of lumping the controller and
stern plane actuator dynamics into a single equation as we did in Equation 2.174. The first term KCe
is responsible for the direct (strictly algebraic) connection from the error e to the stern plane angle u
and ultimately from r to u in Figure 2.55. The discontinuity is calculated from

u(0) ¼ KCe(0) ¼ KC[r(0)� c(0)] ¼ 0:6 deg=ft� (100 ft� 0) ¼ 60 deg (2:198)

There is a direct connection from u to v and, therefore, a direct path from r to v explaining the initial
jump in depth rate as well. Figure 2.55 shows the term involving K _u in the sub dynamics is
responsible for this. Exercise 2.36 presents an alternate representation of the stern plane actuator
that eliminates the discontinuity in both u and v.

88 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

2.35 Suppose the model of the controller and stern plane actuator in Equation 2.174 is replaced by
the following equation:

u ¼ KCeþ K1

ð
e(t)dt þ KD

d

dt
e(t)

The differential equation relating the control system output c(t) and input r(t) is

a3cþ a2€cþ a1 _cþ a0c ¼ b3r þ b2€r þ b1 _r þ b0r

a3 ¼ tþ KDK _u b3 ¼ KDK _u

a2 ¼ 1þ KCK _u þ KDK _u b2 ¼ KCK _u þ KDKu

a1 ¼ KCKu þ KIK _u b1 ¼ KCKu þ KIK _u

a0 ¼ KIKu b0 ¼ KIKu

(a) Draw a simulation diagram of the system with three integrators in series.
(b) Choose the state variables as x1¼ z, x2¼ _z, x3¼ __z where z, _z, __z are the outputs of the

integrators. Define the output as y¼ c. Find the matrices A, B, C, and D in the state
equations.

(c) Find the difference equations for the discrete-time states x1,A(nþ 1), x2,A(nþ 1),
x3,A(nþ 1) and discrete-time output cA(n) similar to Equations 2.194 through 2.197.

(d) Choose the same values for KC and KI used to generate Figure 2.56 along with KD¼ 0.
Solve the difference equations recursively to obtain the sub response y(n) for the same
input r(t) and compare your result with the graph for cA(n) in Figure 2.56.

(e) Experiment with new values for KC, KI, and KD. Plot the results for cA(n).

0 1 2 3 4 5 6 7 8 9 10 11 12
−50

0

50

100

θ A
 (d

eg
)

v A
 (f

t/s
)

c A
 (f

t)

0 1 2 3 4 5 6 7 8 9 10 11 12
−100

0

100

200

0 1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

t (s)

FIGURE 2.56 Discrete-time approximation of subdepth control system step response.

Continuous-Time Systems 89

2.36 The controller and stern plane actuator are modeled separately as shown Figure E2.36:

(a) Redraw the simulation diagram of the subdepth control system. Comment on whether m,
u, or v is discontinuous at t¼ 0 when the commanded depth r(t) is a step input.

(b) Determine the state variables and find the new matrices A, B, C, and D in the state
equations assuming the output vector y¼ [m u v c]T.

Controller Stern plane actuator

e mm = KCe + KI ∫ e dt dθ
dt

τA + θ = KAm θ

FIGURE E2.36

90 Simulation of Dynamic Systems with MATLAB® and Simulink®

3 Elementary Numerical
Integration

3.1 INTRODUCTION

Dynamic systems with continuous-time models in the form of differential equations possess
memory. For systems with memory, knowledge of the system’s inputs at a given point in time is
insufficient to determine the state of the system at the same time. For example, a circuit with
capacitors and inductors possesses memory. The instantaneous energy stored in the circuit is a
function of the current state (capacitor voltages and inductor currents), which depends on the history
of its sources (inputs) from the time when the complete state was last known.

An nth-order dynamic system with state variables x1, x2, . . . , xn and input u1, u2, . . . , um is
modeled by expressions for the state derivatives, that is,

_x(t) ¼

dx1
dt
dx2
dt

..

.

dxn
dt

266666666664

377777777775
¼ f (x, u) (3:1)

where

x ¼
x1
x2
..
.

xn

26664
37775, u ¼

u1
u2
..
.

um

26664
37775, f (x, u) ¼

f1(x, u)
f2(x, u)

..

.

fn(x, u)

26664
37775 (3:2)

In a formal sense, n distinct integrations are required to obtain the state x, namely

x1(t) ¼ x1(t0)þ
ðt
t0

f1(x, u)dt
0 (3:3)

x2(t) ¼ x2(t0)þ
ðt
t0

f2(x, u)dt
0 (3:4)

xn(t) ¼ xn(t0)þ
ðt
t0

fn(x, u)dt
0 (3:5)

91

For time-varying systems, a number of the system parameters are explicit functions of time. For
example, the amount of fuel in a rocket or aircraft diminishes with time, thereby affecting its
dynamic properties. The state derivative vector is generally denoted by f(t, x, u), and Equations 3.3
through 3.5 are more appropriately expressed as

x1(t) ¼ x1(t0)þ
ðt
t0

f1(t
0, x, u)dt0 (3:6)

x2(t) ¼ x2(t0)þ
ðt
t0

f2(t
0, x, u)dt0 (3:7)

xn(t) ¼ xn(t0)þ
ðt
t0

fn(t
0, x, u)dt0 (3:8)

Equations 3.3 through 3.8 remind us that if we know the complete state at some initial time t0, then at
some future time t, the state can be determined provided we know the inputs from t0 to t. The n
integrals to be evaluated in Equations 3.3 through 3.8 constitute the process of advancing or updating
the state through time. This chapter looks at various alternatives for approximating these integrals.

3.2 DISCRETE-TIME SYSTEM APPROXIMATION
OF A CONTINUOUS-TIME INTEGRATOR

The continuous-time integrator shown in Figure 3.1 is a special case of a first-order dynamic system
in which the state derivative function is equal to the system input.

dx

dt
¼ f (x, u) ¼ f (u) ¼ u(t) (3:9)

Alternatively, it can be thought of as the simple linear first-order system

d

dt
x(t)þ a0x(t) ¼ Ku(t) (3:10)

discussed in Section 2.2 where a0¼ 0 and K¼ 1. The solution for x(t) is given by

x(t) ¼ x(t0)þ
ðt
t0

u(t0)dt0 (3:11)

where
t0 is some initial time
x(t0) is the initial state

= u(t)dx
dtu(t) x(t)

FIGURE 3.1 A continuous-time integrator.

92 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 3.1

The input to an integrator is u(t)¼A sin vt, t � 0. Find the output if x(0)¼ 0.

x(t) ¼ 0þ
ðt
0

u(t0)dt0 (3:12)

¼
ðt
0

A sinvt0dt0 (3:13)

¼ A � 1
v
cosvt0

� �t
0
¼ A

v
(1� cosvt) (3:14)

The continuous-time input u(t) and the integrator output are graphed in Figure 3.2 for the case
where the amplitude A is unit and the radian frequency v¼ 2p rad=s. The integrator output at any
point in time t1 is simply the area under the input from t¼ 0 to t¼ t1. The output and correspond-
ing area are shown in Figure 3.2 for t1¼ 0.4.

System simulation using analog computers was popular years ago. They were capable of
implementing Equation 3.11 using electronic components (operational amplifiers, resistors, capa-
citors, and potentiometers). In fact, an analog computer simulation diagram is similar to the
simulation diagram presented in the previous chapter. However, there are a number of hard-
ware-related issues inherent in analog simulation, not present with digital simulation. The popu-
larity and widespread use of digital computers has produced a shift from analog to digital as the
primary means of continuous-time system simulation.

Digital computers, however, are sequential machines. Unlike analog computers, they are not
capable of solving Equations 3.3 through 3.5 in a continuous fashion. Digital simulation of
continuous-time systems relies on numerical algorithms to approximate the integral of the state
derivative function using sampled values at discrete points in time. Figure 3.3 illustrates the
process for the simple integrator in Equation 3.9.

The approximation block in Figure 3.3 is a discrete-time system with input u(nT) and output
xA(nT) designed to approximate the output of the continuous-time integral x(t). A difference
equation for the discrete-time system is needed.

−1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

1

u(
t)

x(
t)

Integrator input u(t) = sin 2πt

0

0.1

0.2

0.3

0.4

t

Area under input
from t = 0 to t = 0.4

Integrator output x(t) = (1−cos 2πt)/2π

FIGURE 3.2 Continuous-time integrator u(t)¼ sin 2pt, x(t)¼ (1� cos 2pt)=2p.

Elementary Numerical Integration 93

We begin by dividing the interval 0 to (nþ 1)T into nþ 1 equal subintervals of width T as
shown in Figure 3.4. Note that u(n) and u(nþ 1) are short for u(nT) and u[(nþ 1)]T.

The integral of a continuous-time function u(t) over the interval 0 to (nþ 1)T is equal to the area
bounded by the function and the t-axis. Dividing the area into two pieces gives

ð(nþ1)T

0

u(t)dt ¼
ðnT
0

u(t)dt þ
ð(nþ1)T

nT

u(t)dt (3:15)

The integrals in Equation 3.15 with lower limits of zero represent the output of a continuous
integrator with input u(t) and both t0 and x(t0) equal to zero (see Equation 3.11).

Consequently, Equation 3.15 is expressible as

x[(nþ 1)T] ¼ x(nT)þ
ð(nþ1)T

nT

u(t)dt (3:16)

Several algorithms for approximating the integral in Equation 3.16 (shaded area in Figure 3.4) are
presented in the following section. Each algorithm will result in a unique difference equation
relating the discrete-time input u(nT) and discrete-time output xA(nT) shown in Figure 3.3. The
resulting discrete-time systems are the foundation of our venture into the field of numerical
integration.

EXERCISES

3.1 Consider the first-order system

d

dt
y(t)þ a0y(t) ¼ u(t)

(a) Find the response of the system to a step input u(t)¼ 1, t � 0.
(b) Find the response of the system to a ramp input u(t)¼ t, t � 0.
(c) In the limit as a0 approaches zero, the first-order system reduces to a pure integrator. Show

that the step and ramp responses in parts (a) and (b) approach
Ð t
0 1 � dt0 and

Ð t
0 t
0dt0,

respectively.

∫u(t) x(t) = ∫u(t)dt

xA(nT), n = 0, 1, 2, 3, ...
Discrete-time
approximation

of integral

u(nT)
T

FIGURE 3.3 A continuous-time integrator and a discrete-time approximation.

0 nT2TT (n + 1)T

u(t)
u(n)

u(n + 1)

FIGURE 3.4 Interval of integration with subintervals of width T.

94 Simulation of Dynamic Systems with MATLAB® and Simulink®

3.2 The signal u(t)¼ c0þ c1(t� t0)
2, t � 0 in Figure E3.2 is input to a system governed by

dy=dt¼ u(t), that is, a continuous-time integrator:

0

5

10

15

t
1 2 3 4 5 6 7 8 9 100

u(
t)

EA

B

C

D

F

Input u(t)

FIGURE E3.2

The change in output y(t) from t¼ t0 to t¼ t0þD1 to t¼ t0þD2 is of interest. Using
the values c0¼ 2, c1 ¼ 1=2 t0¼ 5, D1¼ 3, and D2¼ 2, approximate the difference
y(t0þD2)� y(t0�D1)
(a) By replacing u(t) with a piecewise linear function u1(t) through points B and C, and C and

D and then integrating u1(t) between appropriate limits
(b) As the areas of trapezoids ABCF and CDEF
(c) By comparing your answers in parts (a) and (b) to the true value

y(t0 þ D2)� y(t0 � D1) ¼
ðt0þD2

t0�D1

u(t)dt

3.3 A tank with cross-sectional area A1 and resistance R1 empties into a second tank with cross-
sectional area A2. The first tank has no inflow and is initially filled to a height h1(0). The second
tank is initially empty and has no outflow. The flow between the tanks is denoted by f1(t), and
the tank levels are h1(t) and h2(t).
(a) Find the first-order differential equations for f1(t) and h2(t).
(b) Show that the second tank is an integrator.
(c) Find expressions for the transient responses of f1(t) and h2(t).
(d) For system parameter values A1¼ 100 ft2, R1¼ 0.25 ft per ft3=min, A2¼ 50 ft2,

and h1(0)¼ 20 ft, the responses f1(t) and h2(t) are plotted in Figure E3.3. Estimate
the level in tank 2 after 50 min by approximating the area under f1(t), 0 � t � 50 and
dividing by A2. Approximate the area using simple geometric shapes like rectangles
and trapezoids.

(e) Compare your answer from part (d) with the true value h2(50).

Elementary Numerical Integration 95

0
0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

f 1(
t),

 (c
u

ft
pe

r m
in

)
h 2

(t)
, (

ft)

20

40

60

80

f1(t) vs. t

h2(t) vs. t

0

10

20

30

40

t (min)

h2(50)

0

t
Area = ∫ f1(t)dt

1
A2

h2(50) = × Area

FIGURE E3.3

3.3 EULER INTEGRATION

The previous section presented a framework for finding a discrete-time system approximation of a
continuous-time integrator. An approximation to the integral term in Equation 3.16 is needed. The
simplest approach assumes the integrator input u(t) is constant over the interval, that is, u(t)� u(n),
nT � t � (nþ 1)T where u(n) is short for u(nT) as shown in Figure 3.5.

The exact area under the function u(t), nT� t� (nþ 1)T is being approximated by the area of the
rectangle shown in Figure 3.5. Hence, Equation 3.16 becomes

x[(nþ 1)T] � x(nT)þ Tu(n) (3:17)

A difference equation results if we denote the approximation to x(nT) by xA(n). By implication,
x[(nþ 1)T] is approximated by xA(nþ 1) and the difference equation reads

xA(nþ 1) ¼ xA(n)þ Tu(n) (3:18)

nT
t

u(n − 1)
u(t)u(n) u(n + 1)

(n − 1)T (n + 1)T

Approximation of u(t)dt
(n+1)T

∫
nT

FIGURE 3.5 Approximation of area under u(t) assuming u(t)� u(nT).

96 Simulation of Dynamic Systems with MATLAB® and Simulink®

Equation 3.18 is the difference equation of a numerical integrator that can be solved recursively to
generate an approximation to the continuous-time integrator output x(t) at discrete points in time,
that is,

xA(n) � x(nT), n ¼ 0, 1, 2, . . . (3:19)

The discrete-time system modeled in Equation 3.18 is commonly referred to as an Euler or
rectangular integrator. The subinterval width T is termed the integration step size.

Euler integration can be derived by means other than approximating the integral in Figure 3.5 as
the area of a rectangle. Alternatively, Euler integration is a consequence of assuming that the state
derivative function is constant during each integration step. The starting point is the equation for the
state derivative of a pure integrator

dx

dt
¼ f (x, u) ¼ u(t) (3:20)

with initial condition x(0) and input u(t) known at the beginning of each integration step. Calculating
the initial state derivative,

dx

dt
(0) ¼ f [x(0), u(0)] ¼ u(0) (3:21)

The approximation to the continuous-time state x(t) is updated under the assumption the derivative
dx(0)=dt remains constant over the integration time step, that is,

xA(T) ¼ x(0)þ T
dx

dt
(0) (3:22)

¼ x(0)þ Tu(0) (3:23)

The situation is illustrated in Figure 3.6. The estimate xA(T) is the result of ‘‘riding’’ the tangent to
x(t) from the initial point x(0) to the end of the interval.

The process is repeated to generate the updated states xA(2T), xA(3T), etc. A similar graphical
interpretation applies with the exception that subsequent movements along the computed directions
start from the approximate values xA(T), xA(2T), . . . as opposed to the actual points x(T), x(2T), . . .
on the solution x(t).

The result for xA(2T) is

xA(2T) ¼ xA(T)þ T
dx

dt
(T) (3:24)

¼ xA(T)þ Tu(T) (3:25)

Based on Equations 3.23 and 3.25, it follows that the (nþ 1)st state update is

xA[(nþ 1)T] ¼ xA(nT)þ Tu(nT) (3:26)

Dropping T from the arguments in Equation 3.26 yields a result identical to Equation 3.18.
The two ways of deriving the difference equation for Euler integration are essentially the same.

Approximating the shaded area in Figure 3.5 by a rectangle stems from assuming that the integrator
input u(t) is constant over each integration step. However, the derivative is equal to the input for a
pure integrator. Hence, assuming that the input is constant is equivalent to making the same
assumption about the derivative.

Elementary Numerical Integration 97

According to Equation 3.18, the Euler integrator simply adds a rectangular area Tu(n) to the
current state xA(n) to produce the updated state xA(nþ 1). A general formula for xA(nþ 1) is easily
obtained by observing

xA(1) ¼ xA(0)þ Tu(0) (3:27)

xA(2) ¼ xA(1)þ Tu(1) (3:28)

¼ [xA(0)þ Tu(0)]þ Tu(1) (3:29)

¼ xA(0)þ T[u(0)þ u(1)] (3:30)

leading to the general result

xA(nþ 1) ¼ x(0)þ T[u(0)þ u(2)þ � � � þ u(n� 1)þ u(n)] (3:31)

¼ x(0)þ T
Xn
k¼0

u(k) (3:32)

The simplistic nature of Equation 3.32 results from the simple model describing the state derivative
of a pure integrator, that is, dx=dt¼ u(t).

(0)dx
dt

dx
dt
dx
dt(2T)dx

dt
(T)dx

dt dx
dt

u(0)

x(0)

xA(T) = x(0) + T · u(0)
xA(2T) = xA(T) + T · u(T)
xA(3T) = xA(2T) + T · u(2T)

x(t)
xA(3T)

xA(2T)

xA(T)

u(T)

u(t)

t

t

t

(0) = f [x(0), u(0)] = u(0)

(T) = f [x(T), u(T)] = u(T)

(2T) = f [x(T), u(2T)] = u(2T)

u(2T)

u(3T)

T0 2T 3T

FIGURE 3.6 Euler approximation of continuous-time integrator dx=dt¼ u(t).

98 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 3.2

The input to a continuous-time integrator is a sinusoidal function u(t)¼ sin 2pt, 0 � t � 0.5. The
initial condition is x(0)¼ 0.

(a) Use Euler integration with a step size T¼ 0.05 s to approximate the integrator output x(t) at
t¼ 0.1, 0.2, . . . , 0.5 s.

(b) Compare your answers for xA(n) from part (a) with the continuous-time integrator output x(t)
at t¼ 0.1, 0.2, . . . , 0.5 s.

(a) xA(nþ 1) ¼ xA(n)þ Tu(n), n ¼ 0, 1, 2, 3, . . .

¼ xA(n)þ T sin (2p nT) n ¼ 0, 1, 2, 3, . . .

n ¼ 0: xA(1) ¼ xA(0)þ Tu(0)

¼ 0þ 0:05{[sin (2p)(1)(0:05)]}

¼ 0

n ¼ 1: xA(2) ¼ xA(1)þ Tu(1)

¼ 0þ 0:05{[sin (2p)(1)(0:05)]}

¼ 0:0155

n ¼ 2: xA(3) ¼ xA(2)þ Tu(2)

¼ 0:0155þ 0:05{[sin (2p)(2)(0:05)]}

¼ 0:0448

The process is continued for n¼ 3, 4, . . . , 9 in order to obtain the required estimates of x(t) at 0.1 s
intervals. The results are tabulated in column 3 of Table 3.1.

(b) The exact values for x(t) are calculated using Equation 3.14 with A¼ 1 and v¼ 2p (see last
column in Table 3.1).

3.3.1 BACKWARD (IMPLICIT) EULER INTEGRATION

If we can approximate the integrator input u(t) by its numerical value at the beginning of an
integration interval (see Figure 3.5), then we should be able to choose another value of the input
at a different point in time within the interval. Two other points on the interval appear to be logical
choices. One is the midpoint and the other is the endpoint of the interval. The latter choice will now
be explored.

TABLE 3.1
Outputs of Euler Integrators (T¼ 0.05)
and Continuous-Time Integrator

N
Forward Euler

tn¼ nT
Backward Euler

xA(n)
Continuous-Time

xA(n) x(tn)

0 0 0 0 0

2 0.1 0.0155 0.0448 0.0304

4 0.2 0.0853 0.1328 0.1100

6 0.3 0.1828 0.2304 0.2083

8 0.4 0.2708 0.3002 0.2879

10 0.5 0.3157 0.3157 0.3183

Elementary Numerical Integration 99

Referring to Figure 3.5, suppose the input u(t) is assumed equal to u(nþ 1) instead of u(n) in the
interval nT � t � (nþ 1)T. The area of the rectangular strip intended to approximate the true area
under the input is now Tu(nþ 1), that is,

ð(nþ1)T

nT

u(t)dt � Tu(nþ 1) (3:33)

resulting in the numerical integrator

xA(nþ 1) ¼ xA(n)þ Tu(nþ 1) (3:34)

Since the input is assumed constant over the integration interval, Equation 3.34 is also a difference
equation for an Euler integrator. It differs from the previous Euler integrator in Equation 3.18 in that
u(nþ 1) replaces u(n) in the calculation of the new state xA(nþ 1). The numerical integrator in
Equation 3.18 is referred to as forward Euler whereas the difference equation in Equation 3.34 is
that of a backward Euler integrator.

Unlike a pure continuous-time integrator, the derivative dx=dt of first and higher order systems is
dependent on the state x(t) and possibly one or more inputs. Difference equations for updating the
discrete-time state using Euler integration depend on whether forward or backward integration is
used. The two cases are

Forward Euler: xA(nþ 1) ¼ xA(n)þ Tf [(xA(n), u(n)] (3:35)

Backward Euler: xA(nþ 1) ¼ xA(n)þ Tf [(xA(nþ 1), u(nþ 1)] (3:36)

Equation 3.36 leads to implicit algebraic equations involving xA(nþ 1), which, depending on the
state derivative function f (x, u), may be difficult or impossible to solve analytically. For this reason,
the backward Euler integrator in Equation 3.34 is also known as implicit Euler integration and the
forward Euler integrator in Equation 3.18 is called explicit Euler integration.

Example 3.3

Rework Example 3.2 using the backward Euler integrator.

xA(nþ 1) ¼ xA(n)þ Tu(nþ 1), n ¼ 0, 1, 2, 3, . . .

¼ xA(n)þ T sin [2p(nþ 1)T], n ¼ 0, 1, 2, 3, . . .

n ¼ 0: xA(1)þ xA(0)þ Tu(1)

¼ 0þ 0:05{ sin [(2p)(1)(0:05)]}

¼ 0:0155

n ¼ 1: xA(2) ¼ xA(1)þ Tu(2)

¼ 0:0155þ 0:05{[sin (2p)(2)(0:05)]

¼ 0:0448

The remaining values are presented in column 4 of Table 3.1.
Both numerical integrators produce significant errors in comparison to the analytical solution.

Greater accuracy is possible by reducing the integration step size. The trade-off is, of course, the
additional computations required.

100 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

3.4 In Examples 3.2 and 3.3,
(a) Explain why the implicit Euler integrator produces higher estimates of the continuous-time

integrator output than the explicit Euler integrator. Is this true in general?
(b) Find xA(5) for both numerical integrators and compare the results to x(0.25). Explain why

both integrators incur the maximum error jx(nT)� xA(n)j for n¼ 5.
(c) Repeat Examples 3.2 and 3.3 with a step size T¼ 0.01. Enter the numerical results in a

table rounded to six places after the decimal point.
3.5 The RC circuit shown in Figure E3.5 is a first-order low-pass filter. The differential equation

relating the output voltage v0(t) and input voltage vi(t) is

RC
dv0
dt
þ v0 ¼ vi

A discrete-time integrator is used to approximate the continuous output v0(t) when the input
vi(t) is an AC signal sinvt.

νi(t) ν0(t)

R = 10 kΩ

C = 0.1 μF

FIGURE E3.5

(a) Find the difference equation used to obtain v0,A(n) if forward Euler integration is used with
a step size of T.

(b) For vi(t)¼ sin vt, find and plot v0,A(n) corresponding to 0 � n � 4 p=vT when (i) v¼ 100
rad=s, T¼RC=10 (ii) v¼ 1000 rad=s, T¼RC=100.

3.6 The flow out of the tank shown in Figure E3.6 is given by F0¼ cH1=2. The cross-sectional area
of the tank A¼ 50 ft2 and the constant c¼ 2 ft3=min per ft1=2. The tank is 25 ft in height and the
initial level in the tank H(0)¼ 16 ft.

F0(t)

H(t)

F1(t)

A

FIGURE E3.6

(a) The flow into the tank is F1(t)¼F1 ¼ 10 ft3=min, t � 0. Find the steady-state height of
liquid in the tank, H(1).

(b) Use forward Euler integration with a suitable step size and compare limn!1 HA(n) with the
result from part (a).

(c) The flow into the tank is F1(t)¼ 4þ (t=10), t � 0. Use forward Euler integration with a step
size T and find the difference equation for updating the state HA(n). Leave your answer in
terms of c, A, and T.

Elementary Numerical Integration 101

(d) For the input flow rate in part (c), using forward Euler integration with T¼ 0.1 min, find nf,
where nfT is the time required to fill the tank, that is, HA(nf� 1)< 25 and HA(nf)� 25. Plot
the results.

3.7 The input to the integrator shown in Figure E3.7 is the continuous-time signal u(t)¼ 1=(tþ 1),
t � 0:

u(t) x(t)∫

FIGURE E3.7

(a) Find the difference equation for computing the state xA(n) recursively when implicit Euler
integration with a step size T is used.

(b) Find xA(1), xA(2), and xA(3) if T¼ 0.1.
(c) Compare your answer for xA(3) to the exact value x(3T).

Note:

ðt
0

1
(t0 þ 1)dt0

¼ 1n(1þ t):

3.4 TRAPEZOIDAL INTEGRATION

Of the numerical integrators, the Euler integrators are the simplest to implement; however, for a
given integration step size, they are also the least accurate. This is not necessarily a reason to choose
another integrator since any desired level of accuracy is achievable with Euler integrators (in
principle) simply by reducing the step size and performing additional calculations. Indeed, the
simplicity of Euler integration is responsible for its widespread use in far-ranging applications.

There may be circumstances that dictate the integration step size in a simulation study and thus
compel the developer to consider other methods for approximating the dynamics of a continuous-
time system. Accordingly, we shall investigate other formulas and algorithms for numerical
integration.

Starting with

xA(nþ 1) ¼ xA(n)þ estimate of

ð(nþ1)T

nT

u(t)dt (3:37)

a more accurate (compared with Euler integration) estimate of the integral in Equation 3.37 is
attainable by approximating the input u(t) by a piecewise linear function u1(t) where

u1(t) ¼ u(n)þ u(nþ 1)� u(n)

T

� �
(t � nT), nT � t � (nþ 1)T (3:38)

as shown in Figure 3.7.
It is left as an exercise to show that

ð(nþ1)T

nT

u1(t)dt ¼ T

2
[u(n)þ u(nþ 1)] (3:39)

102 Simulation of Dynamic Systems with MATLAB® and Simulink®

The shaded area in Figure 3.7 used to approximate the true area under the input u(t) is a trapezoid
(rotated 908) with bases u(n) and u(nþ 1) and height of T. The expression on the right-hand side of
Equation 3.39 is simply the area of the corresponding trapezoid. Using the trapezoidal approxima-
tion, Equation 3.37 becomes

xA(nþ 1) ¼ xA(n)þ T

2
[u(n)þ u(nþ 1)] (3:40)

Equation 3.40 is known as trapezoidal integration. Similar to backward Euler integration, the
difference equation leads to an implicit algebraic equation in xA(nþ 1) for all continuous-time
systems other than a pure integrator.

Example 3.4 demonstrates the use of trapezoidal integration to approximate a definite
integral. The integrand can be thought of as the input u(t) to a continuous-time integrator, while
xA(n) n¼ 0, 1, 2, 3, . . . represents the discrete-time approximation to the output x(t), at t¼ nT,
n¼ 0, 1, 2, 3, . . .

Example 3.4

Approximate the definite integral x(t) ¼ Ð t0 e�2t0dt0 at t¼ 0, 1, 2, 3, . . . , 1.0 using trapezoidal
integration with an integration step size T¼ 0.1.

u(n) ¼ utjt¼nT ¼ e�2t

t¼nT ¼ e�2nT (3:41)

u(nþ 1) ¼ u(t)jt¼(nþ1)T ¼ e2t

t¼(nþ1)T ¼ e�2(nþ1)T (3:42)

From Equation 3.40,

xA(nþ 1) ¼ xA(n)þ T
2

e�2nT þ e�2(nþ1)T
� �

(3:43)

Setting xA(0)¼ x(0)¼ 0,

n ¼ 0: xA(1) ¼ 0þ 0:1
2

e�2(0)(0:1) þ e�2(0þ1)(0:1)
� � ¼ 0:09093654

n ¼ 1: xA(2) ¼ xA(1)þ 0:1
2

e�2(1)(0:1) þ e�2(1þ1)(0:1)
� � ¼ 0:16538908

u(n − 1)

u(n)u(t)

u(n + 1)

Approximation of u(t)dt
(n+1)T

∫
nT

nT
t

(n − 1)T (n + 1)T

FIGURE 3.7 Trapezoidal approximation of area under u(t), nT � t � (nþ 1)T.

Elementary Numerical Integration 103

The remaining values xA(3), xA(4), . . . , xA(10) are calculated in the same manner and shown in
Table 3.2, which also includes the results obtained using both types of Euler integrators. The last
column contains the exact values of the definite integral,

x(t) ¼
ðt
0

e�2t
0
dt0 ¼ e�2t

0

�2
� �t

0
¼ 1

2
(1� e�2t) (3:44)

For the same step size, the trapezoidal integrator is superior to the Euler integrators. An advantage
of trapezoidal integration compared with Euler is the increased step size that can be used while
maintaining comparable accuracy.

The following example illustrates the use of trapezoidal integration for a first-order system
modeled by a differential equation with time-varying parameters.

Example 3.5

A nonlinear, time-varying dynamic system is modeled by the differential equation

t2
dy
dt
þ y

dy
dt
þ 2ty ¼ u(t) (3:45)

(a) Find the difference equation of the discrete-time system based on trapezoidal integration for
approximating the response of the continuous-time system.

(b) Solve the difference equation for yA(n), n¼ 0, 1, 2, . . . when the continuous-time input is
u(t)¼�3t2=2. The initial condition is y(0)¼ 1 and the step size is T¼ 0.01.

(c) Plot the discrete-time response yA(n), n¼ 0, 1, 2, . . . , 100 and the exact solution y(t)¼�t 2þ
(t4� t3þ 1)1=2, 0 � t � 1 on the same graph.

TABLE 3.2
Approximations to a Definite Integral Using Three Numerical Integrators
(Explicit and Implicit Euler, Trapezoidal) and the Exact Solution

n tn¼ nT

Euler
(Explicit)
xA(n)

Euler
(Implicit)
xA(n)

Trapezoidal
xA(n)

Exact
x(tn)

0 0.0 0.0 0.0 0.0 0.0

1 0.1 0.10000000 0.08187308 0.09093654 0.09063462

2 0.2 0.18187308 0.14890508 0.16538908 0.16483998

3 0.3 0.24890508 0.20378624 0.22634566 0.22559418

4 0.4 0.30378624 0.24871914 0.27625269 0.27533552

5 0.5 0.34871914 0.28550708 0.31711311 0.31606028

6 0.6 0.38550708 0.31562651 0.35056679 0.34940289

7 0.7 0.41562651 0.34028620 0.37795635 0.37670152

8 0.8 0.44028620 0.36047585 0.40038103 0.39905174

9 0.9 0.46047585 0.37700574 0.41874080 0.41735056

10 1.0 0.47700574 0.39053927 0.43377251 0.43233236

104 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) Solving for the state derivative,

dy
dt
¼ f (t, y, u) ¼ 1

t2 þ y(t)
[u(t)� 2ty(t)] (3:46)

From Equation 3.40 with u replaced by the derivative function f(t, y, u), the difference equation for
trapezoidal integration is

yA(nþ 1) ¼ yA(n)þ T
2
{f [nT, yA(nT), u(nT)]þ f [nT þ T, yA(nT þ T), u(nT þ T)]} (3:47)

¼ yA(n)þ T
2

1
(nT)2 þ yA(n)

[u(n)� 2(nT)yA(n)]
�

þ 1
[(nþ 1)T]2 þ yA(nþ 1)

[u(nþ 1)� 2[(nþ 1)T]yA(nþ 1)]

(3:48)

(b) Equation 3.48 is an implicit equation for yA(nþ 1), which generally means some type of
iterative, numerical root-solving algorithm is required to find yA(nþ 1) at each time step. This
can increase the computational requirements dramatically, not to mention the additional pro-
gramming required to implement the algorithm. In this example, however, Equation 3.48 can be
manipulated to produce a quadratic function of the form

a[yA(nþ 1)]2 þ byA(nþ 1)þ c ¼ 0 (3:49)

where a, b, and c are expressible in terms of u(n), yA(n), and u(nþ 1), all of which can be
calculated at time tn¼ nT. ‘‘Chap3_Ex4_2.m’’ includes the statements to determine a, b, and c
and solve Equation 3.49 at each time step for the positive root.

(c) The approximate and exact solutions are shown in Figure 3.8. The exact continuous-time
response y(t) and the approximate discrete-time response yA(n) are indistinguishable from each
other at times tn¼ nT, n¼ 0, 1, 2, . . . , 100. Let us not forget that the discrete-time signal yA(n) is
defined solely at the discrete times 0, T, 2T, 3T, . . . , which explains why discrete-time signals
should always be plotted as discrete data points. A dotted line should be used whenever the points
are connected to emphasize this point.

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1

t

T = 0.01

yA(n)
y(t)

FIGURE 3.8 Graph of approximate (trapezoidal integration) and exact solutions.

Elementary Numerical Integration 105

EXERCISES

3.8 Referring to Figure 3.7,
(a) Find the equation of the linear approximation u1(t) through the end points [nT, u(n)] and

[(nþ 1)T, u(nþ 1)].
(b) Verify Equation 3.39 by integrating u1(t) from nT to (nþ 1)T.

3.9 The first-order system dx=dt¼ lx with initial condition x(0)¼ x0 is to be simulated using
trapezoidal integration with step size T. The truncation error after n steps is en¼ xA(n)�
x(nT), where x(t), t � 0 is the exact solution and xA(n), n¼ 0, 1, 2, . . . is the approximate
(simulated) solution, that is, xA(n)� x(nT), n¼ 0, 1, 2, 3, Suppose the truncation error after
the first step is equal to a fraction of the initial condition, that is,

e1 ¼ xA(1)� x(T) ¼ ax0 (0 < a� 1)

lT satisfies the condition

elT ¼ alT þ b

lT þ c

Express the constants a, b, and c in terms of a and x0.
3.10 The population of a city P(t) is modeled by the differential equation dP=dt¼ kP.

(a) Find the equation for updating PA(n), the approximate population at the end of
year nT, using trapezoidal integration with step size T. Leave your answer in terms of
k and T.

(b) Suppose k¼ 0.01 people=year per person, the initial population is one million people and
the step size T¼ 1 year. Find PA(1) and PA(2) to the nearest person.

(c) Find the general solution for PA(n) and use it to find PA(100).
(d) Compare the result from part (c) to the exact value P(100).

3.11 The mass m in Figure E3.11 is subjected to a time-varying damping force fd (t). The
differential equation describing the motion is m(d=dt)v(t)¼ fd (t) where v(t) is the velocity of
the mass and fd (t)¼ [�t=(1þ t)]v(t).
(a) Use trapezoidal integration with suitable step size T to approximate the velocity v(t),

t � 0. Note that m¼ 1 slug and the initial velocity v(0)¼ 10 ft=s.
(b) Compare the simulated response vA(n), n¼ 0, 1, 2, . . . in part (a) to the exact solution

v(t)¼ 10(1þ t)e�t, t � 0.

v(t)

fd(t)m

FIGURE E3.11

3.12 Find the largest step size T in Example 4.5 for which

jy(nT)� yA(n)j < 0:005, n ¼ 0, 1, 2, . . . , 1=T

106 Simulation of Dynamic Systems with MATLAB® and Simulink®

3.5 NUMERICAL INTEGRATION OF FIRST-ORDER AND HIGHER
CONTINUOUS-TIME SYSTEMS

The trapezoidal and two Euler integrators developed in the previous two sections were used to
approximate the dynamics of the first-order system described by

dx

dt
¼ f (x, u) ¼ u (3:50)

that is, a continuous-time integrator. We now consider the more general case when the state
derivative function f (x, u) is a function of the state x as well as the input u. For example,

dx

dt
¼ f (x, u) ¼ b0u� a0x (3:51)

In the case of Euler integrators, the state derivative function f (x, u) is assumed constant over the time
interval corresponding to a single integration step. This assumption is responsible for Equations
3.35 and 3.36, which are repeated in Equations 3.52 and 3.55. The two equations are the starting
points for deriving the difference equations for Euler integration to approximate the first-order
system in Equation 3.51.

Explicit Euler: xA(nþ 1) ¼ xA(n)þ Tf [xA(n), u(n)] (3:52)

¼ xA(n)þ T[b0u(n)� a0xA(n)] (3:53)

) xA(nþ 1)� (1� a0T)xA(n) ¼ b0Tu(n) (3:54)

Implicit Euler: xA(nþ 1) ¼ xA(n)þ Tf [xA(nþ 1), u(nþ 1)] (3:55)

¼ xA(n)þ T[b0u(nþ 1)� a0xA(nþ 1)] (3:56)

) (1þ a0T)xA(nþ 1)� xA(n) ¼ b0Tu(nþ 1) (3:57)

Note that xA(nþ 1) in Equation 3.52 is expressed explicitly in terms of xA(n) in contrast to Equation
3.55, which is an implicit equation with xA(nþ 1) appearing on both sides. In the case of nonlinear
systems, f (x, u) is a nonlinear function of x, and the implicit equation is more of a challenge to solve
for xA(nþ 1) than is the explicit equation. For a linear first-order system, Equation 3.57 is easily
solvable for xA(nþ 1) resulting in

xA(nþ 1) ¼ 1
1þ a0T

[xA(n)þ b0Tu(nþ 1)] (3:58)

3.5.1 DISCRETE-TIME SYSTEM MODELS FROM SIMULATION DIAGRAMS

Recall that a simulation diagram represents the dynamics of a continuous-time system as a
connection of algebraic blocks and integrators. Discrete-time systems for approximating the behav-
ior of continuous-time systems can be obtained by replacing the continuous-time integrators with
discrete-time (numerical) integrators. The continuous-time signals are converted to discrete-time
signals.

To illustrate the process, consider the first-order system modeled by Equation 3.51. The
simulation diagram is shown in Figure 3.9.

Elementary Numerical Integration 107

The discrete-time system approximation is shown in Figure 3.10. The continuous-time integrator
is replaced by a discrete-time integrator, and all signals are discrete time. The input to the discrete-
time integrator is labeled z(n) for convenience.

The difference equation of the discrete-time integrator in Figure 3.10 depends on which numer-
ical integrator is chosen to approximate the continuous-time integrator. For an explicit Euler
integrator with input z(n) and output xA(n),

xA(nþ 1) ¼ xA(n)þ Tz(n) (3:59)

where z(n) is given by

z(n) ¼ b0u(n)� a0xA(n) (3:60)

Substitution of Equation 3.60 into Equation 3.59 results in the explicit Euler integrator in Equation
3.53. For an implicit Euler integration, the continuous-time integrator is replaced by a discrete-time
integrator block described by

xA(nþ 1) ¼ xA(n)þ Tz(nþ 1) (3:61)

With z(n) given by Equation 3.60, it follows that

z(nþ 1) ¼ b0u(nþ 1)� a0xA(nþ 1) (3:62)

Combining Equations 3.61 and 3.62 leads to the implicit Euler integrator Equation 3.56.
If trapezoidal integration is preferred, the discrete-time integrator in Figure 3.10 with input z(n)

and output xA(n) is governed by

xA(nþ 1) ¼ xA(n)
T

2
[z(n)þ z(nþ 1)] (3:63)

Eliminating z(n) and z(nþ 1) from Equations 3.60, 3.62, and 3.63 results in the implicit relation

xA(nþ 1) ¼ 1� a0T

2

� �
xA(n)� a0T

2
xA(nþ 1)þ b0T

2
[u(n)þ u(nþ 1)] (3:64)

b0u(t)

−a0

x(t)∫x(t).

FIGURE 3.9 Simulation diagram of first-order system: dx=dt¼ f(x, u)¼ b0u� a0x.

b0u(n)

−a0

z(n) xA(n)Discrete-time
integrator

FIGURE 3.10 Discrete-time system approximation of first-order continuous-time system.

108 Simulation of Dynamic Systems with MATLAB® and Simulink®

Solving Equation 3.64 for xA(nþ 1) enables the state to be updated explicitly with trapezoidal
integration according to

xA(nþ 1) ¼ (1� a0T=2)
(1þ a0T=2)

xA(n)þ b0T=2
(1þ a0T=2)

[u(n)þ u(nþ 1)] (3:65)

Example 3.6

The velocity v¼ v(t) of an object sinking in a body of water is described by

dv
dt
þ cg
W

v ¼ g
W

(W � FB) (3:66)

where
W is the weight of the object
c is the drag coefficient
FB is the buoyant force
g is the gravitational constant (32.2 ft=s2)

The buoyant force is a constant that equals the weight of the volume of water displaced by the
object. The object is a drum full of hazardous materials (Braun 1978) weighing 350 lb, and its
volume is such that the buoyant force is 275 lb. The drag coefficient c was determined experi-
mentally to be 0.8 lb=(ft=s). The drum is released at the surface with zero velocity.

(a) Find a difference equation based on trapezoidal integration to approximate the dynamics of
the sinking drum. Choose a step size of T¼ 0.5 s.

(b) Find the approximate velocity, vA(nT), n¼ 0, 10, 20, 30, . . . , 150.
(c) Find the true velocity v(t). Use it to find the terminal velocity v(1) and v(nT), n¼ 0, 10, 20,

30, . . . , 150.
(d) Graph the approximate and true velocity over a period of time sufficient for the drum to

reach its terminal velocity.
(e) If the drum impacts the ocean floor, 1 mi below the surface, at greater than 60 mph, it will

break apart. Comment on the possibility of this happening.

(a) Equation 3.66 can be expressed in the form

dv
dt
¼ f (v, u) ¼ b0u� a0v (3:67)

where

a0 ¼ cg
W
¼ 0:8(32:2)

350
¼ 0:0736, b0 ¼ g

W
(W � FB) ¼ 32:2

350
(350� 275) ¼ 6:9

and the input u treated as the function u(t)¼ 1, t � 0.
Evaluating the coefficient terms in Equation 3.65,

1� a0T
2
¼ 1� 0:0736(0:5)

2
¼ 0:9816, 1þ a0T

2
¼ 1þ 0:0736(0:5)

2
¼ 1:0184,

b0T
2
¼ 6:9(0:5)

2
¼ 1:725

From Equation 3.65, the difference equation for approximating the dynamics of the sinking drum
using trapezoidal integration is

vA(nþ 1) ¼ 0:9816
1:0184

vA(n)þ 1:725
1:0184

[1þ 1]

¼ 0:9639vA(n)þ 3:3877, n ¼ 0, 1, 2, 3, . . .

Elementary Numerical Integration 109

(b) Table 3.3 shows the results for vA(n) at discrete times n¼ 0, 1, 2, 3, . . . The numerical values
were generated by running ‘‘Chap3_Ex5_1.m.’’

(c) The exact solution of Equation 3.67 is

v(t) ¼ b0

a0
(1� e�a0t) (3:68)

¼W � FB
c

[1� e�(cg=W)t] (3:69)

The terminal velocity from Equation 3.69 is

v(1) ¼W � FB
c

¼ 350� 275
0:8

¼ 93:75 ft=s (3:70)

The analytical solution v(t) is evaluated at t¼ 0, 5, 10, . . . , 75 s and the values entered in
Table 3.3.

(d) Graphs of v(t) and the approximate solution (every fifth point) are shown in Figure 3.11.

(e) Since the terminal velocity of the drum exceeds 88 ft=s (60 mph), the possibility exists of it
breaking when it reaches the ocean floor. It remains to be determined what the velocity of the
drum is at the 1 mi depth of the ocean floor.

From Table 3.3, it is apparent that trapezoidal integration with a step size of T¼ 0.5 s results in a
very accurate approximation of the true solution. However, in most simulation studies, an exact
solution is not available. In that case, what can we do to assure accurate simulation results?

An iterative method to determine an acceptable integration step size requires that the simula-
tion be executed with different values of T until changes in the output are deemed insignificant.
For example, the step size can be continually reduced (say by one half, or a factor of 10) until
graphs of consecutive outputs appear to coincide. The next to last step size is used in subsequent

TABLE 3.3
Data Points from Trapezoidal Integration
(T¼ 0.5 s) and Exact Solution

n tn¼ nT vA(n) v(tn)

0 0 0.0 0.0

10 5 28.8667 28.8640

20 10 48.8450 48.8413

30 15 62.6718 62.6679

40 20 72.2411 72.2376

50 25 78.8640 78.8609

60 30 83.4475 83.4450

70 35 86.6198 86.6177

80 40 88.8153 88.8136

90 45 90.3347 90.3334

100 50 91.3863 91.3853

110 55 92.1141 92.1134

120 60 92.6178 92.6173

130 65 92.9664 92.9660

140 70 93.2077 93.2074

150 75 93.3747 93.3745

110 Simulation of Dynamic Systems with MATLAB® and Simulink®

investigations. The method is not foolproof and should be repeated if the simulation conditions
change as a result of significant changes in the system inputs or initial conditions. We will have
more to say about how to select the integration step size in Chapters 6 and 8 when we investigate
the subject of truncation errors and dynamic errors.

3.5.2 NONLINEAR FIRST-ORDER SYSTEMS

We now turn our attention to nonlinear first-order systems, that is, systems in which the state
derivative f (x, u) is a nonlinear function of the state x. The implicit numerical integrators produce
implicit difference equations for updating the state.

Consider a first-order system governed by

dx

dt
þ N(x) ¼ Ku (3:71)

where N(x) is a nonlinear function of the state x. The derivative function is

f (x, u) ¼ Ku� N(x) (3:72)

and the equation for updating the state using implicit Euler integration is from Equation 3.55

xA(nþ 1) ¼ xA(n)þ T{Ku(nþ 1)� N[xA(nþ 1)]} (3:73)

Rearranging Equation 3.73 gives

xA(nþ 1)þ TN[xA(nþ 1)] ¼ xA(n)þ KTu(nþ 1) (3:74)

a nonlinear equation that may prove difficult or impossible to solve for xA(nþ 1). To complicate
matters further, multiple solutions may exist. The situation is illustrated in the following example.

0
0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70
v(

t),
 v A

(n
) f

t/s

80

90

100

t (s)

vA(n), n = 0, 5, 10, ..., 150
v(t), 0 ≤ t ≤ 75

T = 0.5 s
v(t) = 93.75(1 − e–t/13.587)

FIGURE 3.11 Approximate solution vA(n), n¼ 0, 5, 10, . . . , 150 using trapezoidal integration (T¼ 0.5 s) and
exact solution v(t), 0 � t � 75.

Elementary Numerical Integration 111

Example 3.7

The continuous-time model for the sinking drum in Example 3.6 governed its motion v(t) as a
function of time t. A relationship between its velocity v¼ v(t) and depth y¼ y(t) is obtained by
solving the differential equation (Braun 1978)

W
g
v
dv
dy
þ cv ¼W � FB (3:75)

(a) Find the difference equation to approximate the velocity of the drum as a function of depth
using an implicit Euler integrator. Choose the integration step T¼ 1 ft.

(b) Find the approximate velocity vA(n) at depths of 0, 1000, 2000, 3000, 4000, 5000, and
6000 ft.

(c) Compare the results from part (b) to the true velocities v(nT) at depths of 0, 1000, 2000,
3000, 4000, 5000, and 6000 ft.

(a) Dividing both sides of Equation 3.75 by Wv=g gives

dv
dy
þ g
W

(FB �W)
1
v
¼ � gc

W
u (3:76)

where the input u¼ u(y)¼ 1, y � 0. Comparing Equations 3.71 and 3.76, it follows that the
nonlinear function N(v) is

N(v) ¼ g
W

(FB �W)
1
v

(3:77)

and the constant K is expressible as

K ¼ � gc
W

(3:78)

According to Equation 3.74, the implicit equation for vA(nþ 1) is

vA(nþ 1)þ T
g
W

(FB �W)
1

vA(nþ 1)
¼ vA(n)� gc

W
T(1) (3:79)

Substituting the values g¼ 32.2, c¼ 0.8, W¼ 350, FB¼ 275, and T¼ 1 ft yields

vA(nþ 1)� 6:9
1

vA(nþ 1)
¼ vA(n)� 0:0736 (3:80)

(b) Multiplying Equation 3.80 by vA(nþ 1) and collecting terms give

v2A(nþ 1)þ [0:0736� vA(n)]vA(nþ 1)� 6:9 ¼ 0 (3:81)

which can be solved using the quadratic formula. The result is

vA(nþ 1) ¼ [vA(n)� 0:0736]

ffi
[vA(n)� 0:0736]2 þ 27:6

p
2

(3:82)

112 Simulation of Dynamic Systems with MATLAB® and Simulink®

Hence, in this case, we are still able to update the state vA(nþ 1) explicitly in terms of the previous
state vA(n). The first two iterations are illustrated in the following.

Starting from vA(0)¼ v(0)¼ 0,

n ¼ 0: vA(1) ¼ [vA(0)� 0:0736]

ffi
[vA(0)� 0:0736]2 þ 27:6

p
2

¼ 0� 0:0736þ
ffi
[0� 0:0736]2 þ 27:6

p
2

¼ 2:5902

n ¼ 1: vA(2) ¼ [vA(1)� 0:0736]

ffi
[vA(1)� 0:0736]2 þ 27:6

p
2

¼ 2:5902� 0:0736þ
ffi
[2:5902� 0:0736]2 þ 27:6

p
2

¼ 4:1709

Note that since the velocity is increasing, the negative root of Equation 3.82 was discarded.
The M-file ‘‘Chap3__Ex5_2.m’’ generates the values of vA(n) for n¼ 1–6000. The approximate

velocities at depths yn¼ nT (n¼ 0, 1000, 2000, 3000, 4000, 5000, and 6000) are listed in
Table 3.4.

(c) An exact solution to Equation 3.75, v¼ v(y), is not possible. However, it is possible to obtain
an exact solution for depth y as a function of the velocity v, namely

y ¼ �W
g

v
c
þW � FB

c2
ln

W � FB � cv
W � FB

� �� �
(3:83)

We are interested in the depths corresponding to velocities up to the terminal velocity of
93.75 ft=s. Equation 3.83 can be evaluated for 0 � v � 93.75 and the results plotted with
depth y along the abscissa and velocity v along the ordinate axis as in Figure 3.12.

From an observation of Figure 3.12, the true velocities at the required depths, 0, 1000, 2000,
3000, 4000, 5000, and 6000 ft, agree with the approximate values in Table 3.4.

The question in part (e) of Example 3.6 can now be answered. From Figure 3.12, the velocity of
the drum at a depth of 1 mi (5280 ft) does exceed 60 mph (88 ft=s).

In the majority of cases, difference equations resulting from the use of implicit numerical
integrators can only be solved by iterative schemes for finding the roots of nonlinear algebraic

equations. For example, consider an object falling in a viscous
medium where the drag force is a nonlinear function of velocity
as shown in Figure 3.13. The continuous-time model describ-
ing the object’s velocity v(t) is given in Equation 3.87.

m
dv
dt
¼W � fD (3:84)

dv
dt
¼W

m
� 1
m
f (v) (3:85)

dv
dt
¼ g� 1

m
cvp (3:86)

dv
dt
¼ g� avp, a ¼ c

m
(3:87)

A simulation diagram of the system is shown in Figure 3.14.

TABLE 3.4
Data Points from Implicit
Euler Integration (T¼ 1 ft)
of Continuous-Time Model
in Equation 3.75

n yn¼nT (ft) vA(n) (ft=s)

0 0 0

1000 1000 74.3629

2000 2000 85.9310

3000 3000 90.3467

4000 4000 92.2281

5000 5000 93.0618

6000 6000 93.4373

Elementary Numerical Integration 113

Replacing the continuous-time integrator with an implicit Euler
integrator and making all the signals discrete time lead to a dis-
crete-time system with difference equation

vA(nþ 1) ¼ vA(n)þ T g� a[vA(nþ 1)]pf g (3:88)

) vA(nþ 1)þ aT[vA(nþ 1)]p ¼ vA(n)þ Tg (3:89)

Unless p is numerically equal to 1 or 2, a root-solving algorithm is
required to solve Equation 3.89 for vA(nþ 1) once vA(n) has been
determined. This process can dramatically increase the amount of
computational overhead in comparison to what would be required
for an explicit numerical integrator.

3.5.3 DISCRETE-TIME STATE EQUATIONS

Given the linear state equations

+_x ¼)
f ()x,)u) ¼ A)xþ Bu (3:90)

)
y ¼

)
g()x,)u) ¼ C)xþ D)u (3:91)

for a continuous-time dynamic system, a discrete-time model approximation can be obtained in a
straightforward manner. The approximation to the continuous-time state x(t) is)xA(nT) or simply

)xA(n) for short. Difference equations for the discrete-time state)xA(n) using one of the numerical

0
0 1000 2000 3000 4000 5000 6000

10

20

30

40

50

v (
ft/

s)
60

70

80

90

100

y (ft)

Actual velocity v vs. depth y

FIGURE 3.12 Graph of points obtained from exact solution, Equation 3.83.

W

fD

v

FIGURE 3.13 Object falling
in a viscous medium with non-
linear drag force fd¼ cv p.

g

−α()p

νdv/dt ∫

FIGURE 3.14 Simulation diagram for a falling object modeled by dv=dt¼ g�av p.

114 Simulation of Dynamic Systems with MATLAB® and Simulink®

integrators are obtained in exactly the same way as before. For example, using explicit Euler
integration, the state derivative vector _x is assumed constant over the integration interval. Thus,

xA(nþ 1) ¼ xA(n)þ Tf [xA(n), u(n)] (3:92)

¼ xA(n)þ T[AxA(n)þ Bu(n)] (3:93)

¼ (I þ TA)xA(n)þ TBu(n) (3:94)

The discrete-time output is determined from

y
A
(n) ¼ CxA(n)þ Du(n) (3:95)

An example involving the discrete-time state equations follows.

Example 3.8

A circuit used in control systems is the RC lead-lag network shown in Figure 3.15.
The differential equation relating the output v0(t) and input vi (t) is

R1C1R2C2€v0 þ (R1C1 þ R1C2 þ R2C2) _v0 þ v0 ¼ R1C1R2C2€vi þ (R1C1 þ R2C2) _vi þ vi (3:96)

(a) Represent the circuit in state variable form.
(b) Find the discrete-time state equations for approximating the circuit dynamics based on the

use of explicit Euler integration.
(c) The capacitor voltages are initially zero and the input is a step vi (t)¼ 1 V, t � 0. Approximate

the step response using explicit Euler integration with step size T¼ 0.001 s. The circuit param-
eter values are R1¼ 10,000V, R2¼ 5,000V, C1¼ 7.5� 10�6 F, and C2¼ 2.5� 10�6 F.

(d) An alternate form of the state equations is given by

dvC1

dt
¼ � 1

C1

1
R1
þ 1
R2

� �
vC1 �

1
R2C1

vC2 þ
1

R2C1
vi (3:97)

dvC2

dt
¼ � 1

R2C2
vC1 �

1
R2C2

vC2 þ
1

R2C2
vi (3:98)

Find the matrices A, B, C, and D in the state variable model with the states equal to the
capacitor voltages.

(e) Repeat part (c) using the new state equations. Compare the results in parts (c) and (e).

+

–
–

νi(t)
νC2

ν0(t)

+

–
C2

C1

R2

+ –

R1

νC1

+

FIGURE 3.15 A lead-lag network.

Elementary Numerical Integration 115

(a) Dividing through by the lead coefficient term R1, C1, R2, and C2 and introducing new constants
a1, a2, b0, b1, and b2 give

€v0 þ a1 _v0 þ a0v0 ¼ b2€vi þ b1 _vi þ b0vi (3:99)

where

a0 ¼ 1
R1C1R2C2

, a1 ¼ R1C1 þ R1C2 þ R2C2

R1C1R2C2
(3:100)

b0 ¼ 1
R1C1R2C2

, b1 ¼ R1C1 þ R2C2

R1C1R2C2
, b2 ¼ 1 (3:101)

Constructing the simulation diagram for the system starts with the following two equations, which
are equivalent to Equation 3.99 (see Section 2.4):

€zþ a1 _zþ a0z ¼ vi (3:102)

v0 ¼ b0zþ b1 _zþ b2€z (3:103)

Solving for €z in Equation 3.102 and substituting the result in Equation 3.103 yield

v0 ¼ b0zþ b1 _zþ b2[vi � a0z� a1 _z] (3:104)

¼ (b0 � a0b2)zþ (b1 � a1b2) _zþ b2vi (3:105)

The simulation diagram follows directly from Equations 3.102 and 3.105. It is presented in Figure
3.16. Choosing the outputs of the integrators in Figure 3.16 as the states results in

_x1 ¼ x2 (3:106)

_x2 ¼ a0x1 � a1x2 þ vi (3:107)

v0 ¼ (b0 � a0b2)x1 þ (b1 � a1b2)x2 þ b2vi (3:108)

From Equations 3.106 through 3.108, the matrices A, B, C, and D in the linear state equations
_x ¼ Axþ Bu, y ¼ CxþDu are

A ¼ 0 1
�a0 �a1

� �
, B ¼ 0

1

� �
, C ¼ b0 � a0b2 b1 � a1b2½ �, D ¼ [b2] (3:109)

b2

∫
νi ∫

ν0

b1 − a1b2

b0 − a0b2
z

x2 x1

−a1

−a0

z.. z.

FIGURE 3.16 Simulation diagram for circuit in Figure 3.15.

116 Simulation of Dynamic Systems with MATLAB® and Simulink®

In terms of the electrical parameters

A ¼
0 1
�1

R1C1R2C2
� R1C1 þ R1C2 þ R2C2

R1C1R2C2

� �24 35, B ¼ 0

1

" #
, C ¼ 0

�1
R2C1

� �
, D ¼ [1] (3:110)

(b) From Equations 3.94 and 3.95, the discrete-time state equations are

xA(nþ 1) ¼
1 T
�T

R1C1R2C2
1� T

R1C1 þ R1C2 þ R2C2

R1C1R2C2

� �24 35xA(n)þ 0

T

" #
vi(n) (3:111)

yA,1(n) ¼ v0(n) 0
�1
R2C1

� �
xA(n)þ vi(n) (3:112)

(c) Equation 3.111 is solved recursively in ‘‘Chap3_Ex5_3.m’’ for the state xA(n), which is used
in Equation 3.112 to find the discrete-time step response v0(n), n¼ 0, 1, 2,. . . . The first 25 discrete
points and every 10th point after that until steady state are plotted in the top window in
Figure 3.17.

(d) Solving Equations 3.97 and 3.98 for the state derivatives _vC1 and _vC2 leads to

_vC1

_vC2

" #
¼
� 1
C1

1
R1
þ 1
R2

� �
� 1
R2C1

� 1
R2C2

� 1
R2C2

26664
37775 vC1

vC2

" #
þ

1
R2C1

1
R2C2

2664
3775vi (3:113)

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

v 0
 (V

)
v 0

 (V
)

v0(t) vs. t

v0(t) vs. t

0.85

0.9

0.95

1

States: x1, x2 from simulation diagram

0.8

0.85

0.9

0.95

1

t (s)

States: vC1, vC2

FIGURE 3.17 Discrete-time step response of a circuit using explicit Euler integration.

Elementary Numerical Integration 117

From the circuit, the output equation is

v0 ¼ vi � vC1 (3:114)

¼ �1 0½ �
vC1

vC2

" #
þ [1]vi (3:115)

The matrices A, B, C, and D follow directly from Equations 3.113 and 3.115.

(e) The new state equations are discretized based on the use of explicit Euler integration and
solved recursively in ‘‘Chap3_Ex5_3.m.’’ The result is shown in the bottom window of Figure
3.17. The two step responses are identical.

The second choice of the state variables, namely, the capacitor voltages, is more intuitive than the
state definition based on the simulation diagram in Figure 3.16. The output vector could be
modified to include additional outputs y2 ¼ vC1 and y3 ¼ vC2 making y ¼ [v0 vC1 vC2]

T to allow
visualizing the capacitor voltages (see Exercise 3.21).

A recursive solution to Equation 3.111 requires the initial discrete-time state vector
xA(0) ¼ [x1,A(0) x2,A(0)]T ¼ [x1(0) x2(0)]T . Since the states x1 and x2 are not physical quantities,
their initial values must be calculated from knowledge of the initial capacitor voltages vC1 (0) and
vC2(0).

3.5.4 DISCRETE-TIME STATE SYSTEM MATRICES

If either of the two implicit numerical integrators is used instead of the explicit Euler integrator,
Equation 3.92 is replaced with one of the following two equations:

Implicit Euler: xA(nþ 1) ¼ xA(n)þ Tf [xA(nþ 1), u(nþ 1)] (3:116)

Trapezoidal: xA(nþ 1) ¼ xA(n)þ
T

2
{f [xA(n), u(n)]þ f [xA(nþ 1), u(nþ 1)]} (3:117)

If the continuous-time system is linear, Equations 3.116 and 3.117 can be solved explicitly for
xA(nþ 1) in terms of xA(n) and u(nþ 1). For the implicit Euler integrator,

xA(nþ 1) ¼ xA(n)þ T[AxA(nþ 1)þ Bu(nþ 1)] (3:118)

Solving for xA(nþ 1) gives

xA(nþ 1) ¼ (I þ TA)�1[xA(n)þ TBu(nþ 1)] (3:119)

The state xA(n) is updated recursively without the need to solve an implicit equation for xA(nþ 1);
however, the computations are more extensive than with explicit Euler integration because of the
requirement to invert the matrix I� TA.

Using trapezoidal integration to update the state,

)xA(nþ 1) ¼)xA(n)þ
T

2
[A)xA(n)þ B)u (n)þ A)xA(nþ 1)þ B)u (nþ 1)] (3:120)

Solving Equation 3.120 for x A(nþ 1) gives

xA(nþ 1) ¼ I � 1
2
TA

� ��1
I þ 1

2
TA

� �
xA(n)þ

1
2

I � 1
2
TA

� ��1
TB[u(n)þ u(nþ 1)] (3:121)

118 Simulation of Dynamic Systems with MATLAB® and Simulink®

In summary, the use of the explicit Euler integrator to approximate the continuous-time system
_x ¼ Axþ Bu resulted in a discrete-time state variable model of the form

xA(nþ 1) ¼ GxA(n)þ Hu(n) (3:122)

y
A
(nþ 1) ¼ CxA(n)þ Du(n) (3:123)

A similar result occurred for the two implicit numerical integrators, with the exception of u(nþ 1)
appearing on the right-hand side of Equation 3.122 in place of u(n) with implicit Euler integration.
Both u(n) and u(nþ 1) are present on the right-hand side in the case of trapezoidal integration. The
matrices G and H are the discrete-time counterparts to A and B, the system and input matrices for the
continuous-time case.

For a stable discrete-time system with state equations given by Equations 3.122 and 3.123, the
steady-state response to a constant input u(n)¼ u0, n¼ 0, 1, 2, . . . is obtained from Equation 3.122
by setting xA(n)¼ xA(nþ 1)¼ xA(1) resulting in

xA(1) ¼ GxA(1)þ Hu0 (3:124)

¼ (I � G)�1Hu0 (3:125)

The general solution of the scalar version of Equation 3.122 was given in Section 1.4. A similar
approach using recursion works when the state and inputs are vectors and the coefficients of each are
matrices. The result is (Ogata 1995)

xA(n) ¼ F(n)xA(0)þ
Xn�1
k¼0

F(n� k � 1)Hu(k) (3:126)

y
A
(n) ¼ CF(n)xA(0)þ C

Xn�1
k¼0

F(n� k � 1)Hu(k)þ Du(n) (3:127)

where the matrix F(n) is called the discrete-time state transition matrix. It is expressed in terms of
the discrete-time system matrix G according to

F(n) ¼ Gn (3:128)

From Equations 3.94, 3.119, and 3.121, the discrete-time state transition matrices for the three
numerical integrators already considered are

Explicit Euler: F(n) ¼ (I þ TA)n (3:129)

Implicit Euler: F(n) ¼ [(I � TA)�1]n (3:130)

Trapezoidal: F(n) ¼ I � 1
2
TA

� ��1
I þ 1

2
TA

� �" #n
(3:131)

EXERCISES

3.13 Show that an approximate solution of the first-order continuous-time model

dx

dt
¼ f (x, u)

based on replacing the derivative dx=dt with the finite difference [x(nþ 1)� x(n)]=T is
equivalent to using forward (explicit) Euler integration.

Elementary Numerical Integration 119

3.14 In Example 3.6, find the largest step size T for which

Maxjv(nT)� vA(nT)j � 0:1

Start with T¼ 0.025 s and keep incrementing by 0.025 s until the condition is no longer
satisfied.

3.15 Rework Example 3.6 using forward Euler integration. Choose the integration step size as
T¼ 0.5 s, the same value used for trapezoidal integration. Prepare a similar table of results for
the approximate and exact solutions.

3.16 The position of the sinking drum in Example 3.6 is related to its velocity by

y(t) ¼ y(0)þ
ðt
0

v(t0)dt0

Using trapezoidal integration and a step size T¼ 2 s, find the approximate solution vA(n) for
100 s and feed this discrete-time signal to another trapezoidal integrator to generate yA(n), the
approximation to the actual position of the drum.

3.17 Consider the case of a liquid discharged from a tank at a rate proportional to the square root of
the level in the tank. The continuous-time model is

A
dH

dt
þ aH1=2 ¼ F1

where H¼H(t) is the continuous-time tank level, F1¼F1(t) is the flow in, and a is a
constant dependent on the physical characteristics of the tank.

(a) Use implicit Euler integration to find a difference equation involving the discrete-time
signals HA(n) and F1(nþ 1) where HA(n)�H(nT) and F1(n)¼F1(nT). Write the equation
in implicit form with HA(nþ 1) on both sides.

(b) Show that the implicit equation can be solved explicitly for HA(nþ 1) in terms of HA(n)
and F1(nþ 1) by making the substitution x¼ [HA(nþ 1)]1=2 and solving the resulting
quadratic equation in x.

3.18 Suppose a¼ 0.5 and p¼ 1.2 in the example of the object falling in a viscous medium. The
object is initially at rest.
(a) Find the approximate velocity of the object after 5 s. Use an explicit Euler integrator with

an appropriate step size.
(b) Repeat part (a) using an implicit Euler integrator.

Hint: Use a root-solving routine like the single point iteration or bisection method to solve the
implicit equation.

3.19 Verify the solution for xA ¼ (nþ 1) in Equation 3.121, which gives the updated state in the
approximate solution of _x ¼ Axþ Bu by trapezoidal integration.

3.20 Find the discrete-time state equations for the circuit in Example 3.8 using
(a) Implicit Euler integration
(b) Trapezoidal integration

3.21 In the lead-lag circuit of Example 3.8, the outputs are y1¼ v0, y2 ¼ vC1 , and y3 ¼ vC2 .
(a) Choose the states as the capacitor voltages vC1 and vC2 . Find expressions for the

matrices A, B, C, and D in the state equations in terms of the electrical parameters
R1, R2, C1, and C2.

(b) Find the difference equations based on trapezoidal integration with step size T for
approximating the continuous-time system outputs to input vi(t).

120 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) The capacitor voltages are both initially zero, and the input is a step voltage of 12 V
applied at t¼ 0. Solve the difference equations recursively, and plot the discrete-time
outputs in the output vector yA(n)¼ [y1,A(n)y2,A(n)y3,A(n)]

T.
(d) The initial capacitor voltages are vC1 (0) ¼ 1 V vC2(0) ¼ 0 V, and the input vi(t)¼ 0 V,

t � 0. Solve the difference equations recursively and plot the discrete-time outputs in the
output vector y

A
(n) ¼ [y1,A(n)y2,A(n)y3,A(n)]T .

3.22 For the circuit in Example 3.8 described by Equations 3.97 and 3.98
(a) Use the technique presented in Section 2.3 for converting two first-order differential

equations into a single second-order differential equation to eliminate vC2(t) from the two
equations and obtain

€vC1 þ a1 _vC1 þ a0vC1 ¼ b2€vi þ b1 _vi þ b0vi

Express the coefficients a1, a0, b2, b1, and b0 in terms of the electrical parameters R1, R2,
C1, and C2.

(b) The circuit output is v0(t). Find the matrices A, B, C, and D in the continuous-time state
equation model. Express your answers in terms of the circuit parameters R1, R2,C1, andC2.

(c) Find the matrices G and H in the discrete-time state equations resulting from the use of
explicit Euler integration to approximate the continuous-time response of the circuit.

(d) The input vi(t)¼ 1 V, t � 0. Find and plot the discrete-time response v0(n), n¼ 0, 1, 2, . . .
based on explicit Euler integration with step size T¼ 0.001 s and compare your answer to
the results shown in Figure 3.17.

3.23 The dynamic interaction of rabbit and fox populations in a forest is under investigation. The
predator–prey ecosystem is illustrated in Figure E3.23:

Rabbit and fox
ecosystem

hF(t)

hR(t) R(t)

F(t)

FIGURE E3.23

R(t) is the population of rabbits after ‘‘t’’ weeks
F(t) is the population of foxes after ‘‘t’’ weeks
hR(t) is the rate of rabbit hunting (rabbits=week)
hF (t) is the rate of fox hunting (foxes=week)

The mathematical model consists of the following coupled differential equations:

dR

dt
¼ aR� bF � hR

dF

dt
¼ �cF þ dR� hF

a, b are constant parameters defining the growth rate of rabbits
c, d are constant parameters defining the growth rate of foxes
(a) Find the equilibrium point (Re, Fe) when hR(t) ¼ �hR, t � 0 and hF(t) ¼ �hF , t � 0.

Express your answers for Re and Fe in terms of the system parameters a, b, c, and d
and constant hunting rates �hR, �hF .

Elementary Numerical Integration 121

(b) Baseline values of the system parameters are given as follows:

a ¼ 0:04
rabbits=week

rabbit
, b ¼ 0:2

rabbits=week

fox
,

c ¼ 0:1
foxes=week

fox
, d ¼ 0:0075

foxes=week

rabbit

Foxes are endangered and hunting foxes is forbidden. Rabbits are hunted at a constant rate,
and after a long period of time, the fox population stabilizes at 750. Find the constant rate
of rabbit hunting. Find the rabbit population at the same time.

(c) Let the state be defined as x(t) ¼ R(t)
F(t)

� �
and the input vector u be defined as

u(t) ¼ hR(t)
hF(t)

� �
. Find the matrices A and B in the state equation _x ¼ Axþ Bu.

(d) Suppose neither rabbits nor foxes are hunted. Using explicit Euler integration with step size
T¼ 1 week, find the 2� 2 matrix G such that

R(nþ 1)
F(nþ 1)

� �
¼ G

R(n)
F(n)

� �
, n ¼ 0, 1, 2, 3, . . .

(e) Find the 2� 2 transition matrix F(n) in the general solution

R(n)
F(n)

� �
¼ F(n)

R(0)
F(0)

� �
, n ¼ 0, 1, 2, 3, . . .

(f) The initial populations of rabbits and foxes are R(0)¼ 10,000 and F(0)¼ 1,000. Use the
general solution to find R(10) and F(10).

3.6 IMPROVEMENTS TO EULER INTEGRATION

Euler integration is popular in large measure due to its simplicity. A graphical interpretation of
either explicit or implicit Euler integration is straightforward. A discussion of error characteristics
for Euler integrators is deferred until a later chapter. However, it is apparent that serious errors can
propagate as the discrete-time variable ‘‘n’’ increases with Euler integration as a result of the
underlying assumption that the state derivative remains constant for an entire integration step. For
systems in which one or more of the state variables experience frequent fluctuations (relative to the
integration step size), this assumption is unjustified.

3.6.1 IMPROVED EULER METHOD

The inherent weakness of Euler integration can be overcome in ways other than by simply reducing
the integration step size, which may not always be practical. An improved way of determining the
new state xA(nþ 1) with explicit Euler integration is illustrated in Figure 3.18. Keep in mind that the
current state xA(n) is generally not on the solution curve x(t) as is shown in the figure.

With explicit Euler integration, advancing the state xA(n) is equivalent to projecting line segment
L1, whose slope is f [xA(n), u(n)], until it reaches the end of the interval at (nþ 1)T. The updated state
is shown as x̂A(nþ 1). From there, another forward Euler integration step would proceed along the
line segment L2 whose slope is f [x̂A(nþ 1), u(nþ 1)].

122 Simulation of Dynamic Systems with MATLAB® and Simulink®

Recognizing that L1 may not be the most judicious direction to move along for approximating the
continuous-time state x[(nþ 1)T], the question to be asked is ‘‘Is there a better choice for deter-
mining the path from xA(n) to xA(nþ 1)?’’ The line segment L starting from xA(n) with slope equal to
the average of the slopes of L1 and L2 appears to be a more prudent choice.

The rationale for choosing the new direction along L is that the average of the slopes of L1 and L2
is more likely to reflect the direction of the chord from xA(n) to x[(nþ 1)T] than the slope of line L1
does. Alternatively, Euler integration is predicated on the assumption that the derivative function
f (x, u) is constant, which is true only when the solution x(t) is a linear function of t. It makes sense to
base the constant on evaluations of f (x, u) at more than one point.

In summary, a new method for computing xA(nþ 1) consists of the following:

1. Prediction of the new state using forward Euler integration, that is, moving from xA(n) to
x̂A(nþ 1) along the line segment with slope L1.

x̂A(nþ 1) ¼ xA(n)þ Tf [xA(n), u(n)] (3:132)

2. Computing the derivative function f [x̂A(nþ 1), u(nþ 1)] at x̂A(nþ 1), that is, the slope of
line segment L2.

3. Improving the predicted value x̂A(nþ 1), that is, moving from xA(n) along a line segment
whose slope is the average of the slopes of line segments L1 and L2 to the new updated state
xA(nþ 1).

xA(nþ 1) ¼ xA(n)þ T

2
{ f [xA(n), u(n)]þ f [x̂A(nþ 1), u(nþ 1)]} (3:133)

The numerical integrator based on Equations 3.132 and 3.133 is called improved Euler integration,
also known as Heun’s method.

When the state is a vector and the system model is linear, that is,

_x ¼ f (x, u) ¼ Axþ Bu (3:134)

nT (n + 1)T

xA(n)

xA(n + 1)

L1

L2

t

x(t)

L

Slope of L1 = f [xA(n), (n)]
Slope of L2 = f [x̂A(n + 1), u(n + 1)]

x = f (x, u)

x [(n + 1)T]
.

Slope of L = (Slope of L1 + Slope of L2)1
2

xA(n + 1)ˆ

FIGURE 3.18 Illustration of improved Euler method.

Elementary Numerical Integration 123

the predicted state using forward Euler integration is given by Equation 3.94 of the previous
section as

x̂ A(nþ 1) ¼ (I þ TA)xA(n)þ TBu(n) (3:135)

The improved state estimate is computed from

xA(nþ 1) ¼ xA(n)þ
T

2
{f [xA(n), u(n)]þ f [x̂ A(nþ 1), u(nþ 1)]} (3:136)

Substituting Equation 3.135 into Equation 3.136 results in

xA(nþ 1) ¼ I þ TAþ 1
2
(TA)2

� �
xA(n)þ

1
2
T(I þ TA)Bu(n)þ 1

2
TBu(nþ 1) (3:137)

The discrete-time system matrix using improved Euler integration is therefore

G ¼ I þ TAþ 1
2
(TA)2 (3:138)

and the improved Euler discrete-time state transition matrix is from Equation 3.128

f(n) ¼ Gn ¼ I þ TAþ 1
2
(TA)2

� �n
(3:139)

The difference in transition matrices between explicit Euler given in Equation 3.129 and improved

Euler is the additional term
1
2
(TA)2 in Equation 3.139.

The following example demonstrates the improved accuracy with improved Euler integration
compared with ordinary Euler integration (explicit or implicit).

Example 3.9

Consider the autonomous second-order system

€xþ v2x ¼ 0 (3:140)

Choosing state variables x1(t)¼ x(t) and x2(t) ¼ _x(t) leads to the state equations

_x1 ¼ f1(x1, x2) ¼ x2 (3:141)

_x2 ¼ f2(x1, x2) ¼ �v2x1 (3:142)

The initial conditions are x1(0)¼ x(0)¼ x0 and x2(0) ¼ _x(0) ¼ _x0.

(a) Find the system matrix A.
(b) Find the discrete-time state transition matrices for explicit and improved Euler integration.
(c) Find the general solution of the discrete-time state equations using both Euler integrators.
(d) Find the transient response using explicit and improved Euler integrators when v¼ 1 rad=s,

x0¼ 1 ft, _x0 ¼ 0 ft=s, and T¼ 0.25 s. Plot the results.
(e) Find the exact solution for the transient response of the continuous-time system and

compare it with the approximate solutions in part (d).

124 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) From Equations 3.141 and 3.142, the system matrix is

A ¼ 0 1
�v2 0

� �
(3:143)

(b) The discrete-time state transition matrices are

Explicit Euler: F(n) ¼ (Iþ TA)n (3:144)

¼
1 T

�v2T 1

" #n
(3:145)

Improved Euler: F(n) ¼ Iþ TAþ 1
2
(TA)2

� �n
(3:146)

¼
1� 1

2
(vT)2 T

�v2T 1� 1
2
(vT)2

2664
3775
n

(3:147)

(c) General solutions for the discrete-time states for each integrator are

Explicit Euler:)xA(n) ¼ F(n))x(0) ¼
1 T
�v2T 1

� �n x0
_x0

� �
(3:148)

Improved Euler:)xA(n) ¼ F(n))x(0) ¼
1� 1

2
(vT)2 T

�v2T 1� 1
2
(vT)2

264
375
n

x0
_x0

� �
(3:149)

(d) The transient responses of the discrete-time states x1,A(n) and x2,A(n) when v¼ 1 rad=s,
x0¼ 1 ft, _x0 ¼ 0 ft=s, and T¼ 0.25 s are plotted in Figures 3.19 and 3.20 for the explicit and
improved Euler integrators.

(e) The exact solution for the continuous-time states of the undamped second-order system in
Equation 3.140 is given in the following and plotted in Figures 3.19 and 3.20.

x1(t) ¼ x0 cosvt, x2(t) ¼ �vx0 sinvt (3:150)

Note the considerable improvement in accuracy obtained with the improved Euler integrator. The
discrete-time state)xA(n) ¼ [x1,A(n) x2,A(n)]T based on explicit Euler integration is a poor approxi-
mation to the continuous-time state x(t), to say the least. This is not surprising in light of the fact that
the state derivatives _x1 and _x2 vary significantly over the interval T in violation of the basic
assumption underlying explicit Euler integration. (See graph of x2 ¼ _x1 in Figure 3.19.)

In Chapter 8, we will learn that explicit Euler integration of an undamped second-order system
is never stable and should not be used. However, lightly damped second-order systems, that is,
those with high natural frequencies, require smaller integration steps for accurate results. The
controlling parameter for dynamic accuracy is vT, the product of natural frequency and the
integration time step.

3.6.2 MODIFIED EULER INTEGRATION

In general, forward Euler integration does not result in the ‘‘best’’ direction for advancing the state
from xA(n) to xA(nþ 1) (see Figure 3.18). As the name suggests, improved Euler integration

Elementary Numerical Integration 125

−2

0

2

4

t (s)
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

x1,A(n), n = 0, 1, 2, ..., 50
x1(t), 0 ≤ t ≤ 2π

x 1

−2

0

2

4

x 2

t (s)

x2, A(n), n = 0, 1, 2, ..., 50

x2(t), 0 ≤ t ≤ 2π

FIGURE 3.19 Continuous-time solution and approximate solution using explicit Euler integration (T¼ 0.25 s)
to second-order system €xþ v2x ¼ 0, v¼ 1 rad=s.

−2

0

2

4

t (s)

t (s)
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

x1,A(n), n = 0, 1, 2, ..., 50
x1(t), 0 ≤ t ≤ 2π

x 1

−2

0

2

4

x 2

x2,A(n), n = 0, 1, 2, ..., 50
x2(t), 0 ≤ t ≤ 2π

FIGURE 3.20 Continuous-time solution and approximate solution using improved Euler integration
(T¼ 0.25 s) to second-order system €xþ v2x ¼ 0,v ¼ 1 rad=s.

126 Simulation of Dynamic Systems with MATLAB® and Simulink®

represents an improvement although it comes with a penalty of requiring twice as many state
derivative function evaluations compared with explicit Euler integration for the identical step size.

Another method for finding a better direction (compared with explicit Euler integration) to
proceed from the current state xA(n) is portrayed in Figure 3.21. It is called the midpoint or modified
Euler method because the line segment L, which determines the new approximate state, is based on
a state derivative calculation at the midpoint of the interval.

A forward Euler step is taken along line segment L1 ending up at the point
[(nþ 1=2)T , xA(nþ 1=2)]. A new direction is calculated, namely, f [xA(nþ 1=2), u(nþ 1=2)],
which represents the slope of line L2. Finally, the updated state xA(nþ 1) is obtained by starting
from the current state xA(n) and moving in the direction of line segment L, which is parallel to line
segment L2, until the end of the interval.

A discrete-time state equation can be obtained for the modified Euler integration solution of
_x ¼ Axþ Bu in the same way it was obtained for the improved Euler integrator. First, the state
xA(nþ 1=2) is calculated from

xA nþ 1
2

� �
¼ xA(n)þ

T

2
f [xA(n), u(n)] (3:151)

The updated state xA(nþ 1) is based on the derivative function f (x, u) evaluated at the point
[(nþ 1=2)T , xA(nþ 1=2)]. The updated state is therefore

xA(nþ 1) ¼ xA(n)þ Tf xA nþ 1
2

� �
, u nþ 1

2

� �� �
(3:152)

From Equations 3.151, 3.152, and f (x, u) ¼ Axþ Bu, the discrete-time state equation is

xA(nþ 1) ¼ I þ (TA)þ 1
2
(TA)2

� �
xA(n)þ

1
2
T2ABu(n)þ TBu nþ 1

2

� �
(3:153)

and the discrete-time state transition matrix using the modified Euler method is

F(n) ¼ I þ (TA)þ 1
2
(TA)2

� �n
(3:154)

nT (n + 1)T

xA(n)

xA(n + 1)

x[(n + 1)T]

L2

L1

t

x(t)

L

Slope of L1 = f [xA(n), u(n)]

Slope of L = slope of L2

Slope of L2 = f [xA(n +), u(n +)]1
2–

1
2–

(n +)T1
2–

xA(n +)1
2–

x = f (x, u).

FIGURE 3.21 Illustration of the modified Euler method.

Elementary Numerical Integration 127

Hence, the state transition matrices with improved Euler integration, Equation 3.139, and modified
Euler integration, Equation 3.154, are identical. The modified Euler integrator requires input
sampling at twice the normal frequency of 1=T due to the presence of the term u(nþ 1=2) in
Equation 3.153.

Trapezoidal, improved, and modified Euler integrators are roughly comparable in accuracy and
are superior to the explicit and implicit Euler integrators. The state transition matrices for improved
and modified Euler integration are only slightly more involved than the state transition matrix for
forward Euler integration, the difference being the additional term 1=2(TA)2. The added computa-
tions necessary to include the squared term depend on the dimension of the square matrix A, which
in turn is related to the size of the state vector.

The discrete-time transition matrices for the explicit integrators (forward Euler, improved Euler,
and modified Euler) bear a striking similarity to the transition matrix for the continuous-time state
equations. The state transition matrix F(t) for the system _x ¼ Axþ Bu was introduced in Equation
2.129. It was expressed in terms of an infinite series of matrices, that is,

F(t) ¼ I þ (tA)þ 1
2!
(tA)2 þ 1

3!
(tA)3 þ � � � (3:155)

At the end of a single integration step, the exact solution to _x ¼ Ax is

x(T) ¼ F(T)x(0) ¼ I þ (TA)þ 1
2!
(TA)2 þ 1

3!
(TA)3 þ � � �

� �
x(0) (3:156)

With improved or modified Euler integration, the discrete-time state vector approximation at the
same time is

xA(1) ¼ F(1)xA(0) ¼ I þ TAþ 1
2
(TA)2

� �
x(0) (3:157)

The difference or error in the discrete-time state approximation is therefore

xA(1)� x(T) ¼ � 1
3!
(TA)3 þ 1

4!
(TA)4 þ � � �

� �
x(0) (3:158)

The importance of choosing T small is evident from Equation 3.158.

Example 3.10

In Section 2.6, a second-order system with system matrix A and transition matrix F(t) was given.
They are repeated as follows:

A ¼ 0 1
�2 �2
� �

, F(t) ¼ 2e�t � e�2t e�t � e�2t

�2e�t þ 2e�2t �e�t þ 2e�2t

� �
(3:159)

The initial state is x(0)¼ [x1(0) x2(0)]
T. Modified Euler integration is to be used to compute

xA(1) ¼ [x1,A(1) x2,A(1)]T .

(a) Find the continuous-time state transition matrix at t¼ T, that is, F(t)jt¼T.
(b) Find the discrete-time state transition matrix at n¼ 1, that is, F(n)jn¼1.

For parts (c) and (d), the initial state x(0)¼ [1 1]T and the step size T¼ 0.25 s.
(c) Find F(t)jt¼1 and x(T)
(d) Find F(n)jn¼1 and xA(1).

128 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) From Equation 3.159,

F(t)jt¼T ¼ 2e�Te�2T e�T � e�2T

�2e�T þ 2e�2T �e�T þ 2e�2T

� �
(3:160)

(b) From Equation 3.154,

F(n)jn¼1 ¼ Iþ TAþ 1
2
(TA)2 (3:161)

¼ Iþ T
0 1

�2 �3

" #
þ 1
2

T
0 1

�2 �3

" # !2

(3:162)

¼
1� T2 T 1� 3

2
T

� �
T(� 2þ 3T) 1� 3T þ 7

2
T2

2664
3775 (3:163)

(c) F(t)jt¼0:25¼ 2e�0:25 � e�2(0:25) e�(0:25) � e�2(0:25)

�2e�0:25 þ 2e�2(0:25) �e�0:25 þ 2e�2(0:25)

� �
¼ 0:9511 0:1723
�0:3445 0:4343

� �
x1(0:25)

x2(0:25)

� �
¼ F(t)jt¼0:25x(0)

¼ 0:9511 0:1723

�0:3445 0:4343

� �
1

1

� �
¼ 1:1234

0:0898

� �
(3:164)

(d) F(n)jn¼1¼
1� (0:25)2 0:25 1� 3

2
(0:25)

�
0:25[�2þ 3(0:25)] 1� 3(0:25)þ 7

2
(0:25)2

264
375 ¼ 0:9375 0:1563

�0:3125 0:4688

� �

x1,A(1)

x2,A(1)

� �
¼ F(n)jn¼1xA(0)

¼ 0:9375 0:1563

�0:3125 0:4688

� �
1

1

� �
¼ 1:0938

0:1563

� �
(3:165)

The discrete-time state transition matrixF(n) for n¼ 1 and the continuous-time state transition matrix
F(t) at t¼ T differ significantly. The discrepancy is attributable to the integration step size T, which
must be reduced to make [x1,A(1) x2,A(1)]

T closer to the exact solution [x1(0.25) x1(0.25)]
T and assure

substantial agreement of subsequent vectors [x1,A(n) x2,A(n)]
T and [x1(nT) x2(nT)]

T, n¼ 2, 3, 4,. . . .
Table 3.5 shows the effect of reducing the step size T on the discrete-time state transition matrix

and state vector. As expected, the difference between the discrete- and continuous-time quantities
diminishes as the step size is reduced.

The next example looks at the transient and steady-state responses of a second-order system
using modified Euler integration.

Example 3.11

The input to the second-order system in Figure 3.22 is a unit step u(t)¼ 1, t � 0.
System parameters are z¼ 0.5, vn¼ 0.4 rad=s, and K¼ 2. Both initial conditions are zero.

(a) Write state equations for the system if x1¼ y and x2¼ dy=dt and the output y1¼ y.
(b) Find the discrete-time system matrix G based on the use of modified Euler integration to

approximate the solution of the continuous-time state equations. Leave your answers in
terms of the system parameters z, vn, and K and integration step size T.

Elementary Numerical Integration 129

(c) Find the continuous-time response for x1(t).
(d) Find the steady state x(1).
(e) Choose the integration step T¼ 0.5 s and find the discrete-time system matrix G.
(f) Find the steady-state vector xA(1). Compare the results from parts (d) and (f).
(g) Find the discrete-time signal x1,A(n) and compare it with x1(t).

(a) The state equations for this second-order system are easily found from a simulation diagram
using cascaded integrators with outputs dy=dt and y. The result is

dx1
dt
¼ x2 (3:166)

dx2
dt
¼ Kv2

nu� v2
nx1 � 2zvnx2 (3:167)

Since y1¼ y¼ x1, the matrices A, B, C, and D in the state equations are

A ¼ 0 1
�v2

n �2zvn

� �
, B ¼ 0

Kv2
n

� �
, C ¼ 1 0½ �, D ¼ [0] (3:168)

(b) From Equation 3.153, the discrete-time system matrix is

G ¼ Iþ (TA)þ 1
2
(TA)2 (3:169)

¼ Iþ T
0 1

�v2
n �2zvn

" #
þ 1
2
T2

0 1

�v2
n �2zvn

" #2
(3:170)

¼
1� 1

2
(vnT)2 T(1� zvnT)

�v2
nT(1� zvnT) 1� 2zvnT þ 1

2
(vnT)2(4z2 � 1)

2664
3775 (3:171)

u(t) d
dt

y(t) + zζωn
d2

dt2 y(t)y(t)+ωn
2 y(t) = Kωn

2 u(t)

FIGURE 3.22 A second-order system with a unit step input.

TABLE 3.5
Effect of Reduced Step Size on the Continuous-Time and Discrete-Time
State Transition Matrices and State Vectors

T F(t)jt¼T x(T) F(n)jn¼1 x A(n)

0.5
0:9511 0:1723

�0:3445 0:4343

� �
1:1233

0:0898

� �
0:9375 0:1563

�0:3125 0:4688

� �
1:0938

0:1563

� �
0.05

0:9976 0:4664

�0:0928 0:8584

� �
1:0440

0:7657

� �
0:9975 0:0462

�0:0925 0:8588

� �
1:0438

0:7662

� �
0.01

0:9999 0:0099

�0:0197 0:9703

� �
1:0098

0:9506

� �
0:9999 0:0098

�0:0197 0:9703

� �
1:0097

0:9506

� �

130 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) The unit step response is (see Equation 2.23)

x1(t) ¼ K 1� e�zvnt cos vdt þ zvn

vd
sin vdt

� �� �
, t � 0 (3:172)

The damped natural frequency vd is computed from its definition

vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q� �
vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:52
p� 	

0:4 ¼
ffiffiffi
3
p

5
rad=s

Substituting the system parameter values into Equation 2.23 and simplifying lead to

x1(t) ¼ 2 1� e�t=5 cos

ffiffiffi
3
p

5

� �
t þ

ffiffiffi
3
p

3

� �
sin

ffiffiffi
3
p

5

� �
t

� � �
, t � 0 (3:173)

(d) The continuous-time state vector at steady state x(1) is obtained from

_x(1) ¼ Ax(1)þ Bu(1) ¼ 0 (3:174)

x(1) ¼ �A�1Bu(1) (3:175)

where

A ¼ 0 1

�v2
n �2zvn

� �
¼ 0 1

�(0:4)2 �2(0:5)(0:4)

� �
¼ 0 1

�0:16 �0:4

� �

B ¼ 0

Kv2
n

� �
¼ 0

2(0:4)2

� �
¼ 0

0:32

� �

) x(1) ¼ � 0 1

�0:16 �0:4
� ��1 0

0:32

� �
[1] ¼ 2

0

� �
(e) The discrete-time system matrix is computed from Equation 3.171 as

G ¼
1� 1

2
[0:4(0:5)]2 0:5[1� 0:5(0:4)(0:5)]

�(0:4)20:5[1� 0:5(0:4)(0:5)] 1� 2(0:5)(0:4)(0:5)þ 1
2
[0:4(0:5)]2[4(0:5)2 � 1]

264
375

¼ 0:980 0:45

�0:072 0:80

� �

(f) The discrete-time state is updated using Equation 3.153.

xA(nþ 1) ¼ GxA(n)þ
1
2
T2ABu(n)þ TBu nþ 1

2

� �
(3:176)

¼
0:980 0:45

�0:072 0:80

" #
xA(n)þ

1
2
(0:5)2

0 1

�0:16 �0:4

" #
0

0:32

" #
[1]

þ (0:5)
0

0:32

" #
[1] (3:177)

xA(nþ 1) ¼
0:980 0:45

�0:072 0:80

" #
xA(n)þ

0:040

0:144

" #
[1] (3:178)

Note that u(n) and u(nþ 1=2) in Equation 3.176 are both equal to the 1� 1 vector [1].

Elementary Numerical Integration 131

The discrete-time state vector at steady state xA(1) is obtained by substituting xA(nþ 1)¼ xA(n)¼
xA(1) in the previous equation.

) xA(1) ¼ I� 0:980 0:45
�0:072 0:80

� �� ��1 0:040
0:144

� �
[1] ¼ 2

0

� �

in agreement with the continuous-time state vector at steady state x(1).

(g) The difference equation for xA(n) in Equation 3.178 is solved recursively in the MATLAB®

script file ‘‘Chap3_Ex6_3.m.’’ The continuous-time state variable x1(t) and the discrete-time state
variable x1,A(n) are plotted in Figure 3.23.

A sample of the results for x1,A(n) along with the exact solution for x1(t) are compiled in Table 3.6.
Our last example is that of a nonlinear second-order system. The equations developed in this

and previous sections for linear systems are not applicable; however, the implementation of
numerical integration is nonetheless straightforward. A state variable model of the nonlinear
system is required. The discrete-time state is updated using the state derivative functions in
accordance with the desired numerical integration routine.

TABLE 3.6
Summary of Results for x1(t) and x1,A(n)

n x1,A(n) tn x1(t1) N x1,A(n) tn x1(tn)

0 0 0 0 30 2.0038 15 2.0046

5 0.6904 2.5 0.6806 35 1.9509 17.5 1.9487

10 1.7046 5 1.6989 40 1.9604 20 1.9580

15 2.2447 7.5 2.2487 45 1.9869 22.5 1.9859

20 2.2979 10 2.3062 50 2.0042 25 2.0043

25 0.1434 12.5 2.1492 55 2.0080 27.5 2.0086

0
0 3 6 9 12 15 18 21 24 27

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

t (s)

x 1
 (f

t)

x1,A(n), n = 0, 1, 2, 3, ..., 55
x1(t), 0 ≤ t ≤ 27.5

Modified Euler integration (T = 0.5 s)

FIGURE 3.23 Continuous- and discrete-time step responses.

132 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 3.12

A simple pendulum is shown in Figure 3.24. The mass of the rod is negligible compared to the
mass m of the sphere. Linear damping at the fixed end is assumed.

The angular position of the rod u(t) satisfies the nonlinear differential equation

J€uþ c _uþmgr sin u ¼ 0 (3:179)

(a) Find the nonlinear state equations when x1¼ u and x1 ¼ _u.
(b) Find the difference equations for updating the discrete-time state components x1,A(n) and

x2,A(n) when explicit Euler integration is used.

Suppose the system parameters are m¼ 0.25 slugs, r¼ 0.75 ft, and c¼ 0.1 ft lb per rad=s. The
moment of inertia J¼mr2¼ 0.1406 ft lb s2. Find a suitable value for T and solve the discrete-time
state equations recursively under the following conditions:

(c) u(0)¼p=6 rad, _u(0) ¼ 0 rad=s. Graph x1,A(n) and x2,A(n).
(d) u(0)¼ 0 rad, _u(0) ¼ 0:5 rad=s. Graph x1,A(n) and x2,A(n).

(a)

_x1 ¼ _u ¼ x2 (3:180)

_x2 ¼ €u ¼ 1
J
[�mgr sin u� c _u] (3:181)

¼ 1
J
(�mgr sin x1 � cx2) (3:182)

The continuous-time state equations are

_x1 ¼ f1(x1, x2) ¼ x2 (3:183)

_x2 ¼ f2(x1, x2) ¼ 1
J
(�mgr sin x1 � cx2) (3:184)

(b) Using explicit Euler integration, the difference equations for updating the discrete-time state are

x1,A(nþ 1) ¼ x1,A(n)þ Tf1[x1,A(n), x2,A(n)] (3:185)

) x1,A(nþ 1) ¼ x1,A(n)þ Tx2,A(n) (3:186)

x2,A(nþ 1) ¼ x2,A(n)þ Tf2[x1,A(n), x2,A(n)] (3:187)

) x2,A(nþ 1) ¼ x2,A(n)� T
J
[mgr sin x1,A(n)þ cx2,A(n)] (3:188)

(c) Choosing T¼ 0.0025 s, a recursive solution of Equations 3.186 and
3.188 is easily obtained. The initial state is x1,A(0)¼ x1(0)¼p=6 rad and
x2,A(0)¼ x2(0)¼ 0 rad=s. Tomake it easier to visualize the discrete nature
of the response, graphs of x1,A(n) and x2,A(n) are shown for n¼ 0, 20,
40, . . . , 4000 in Figure 3.25 corresponding to approximations of each
state at times tn¼ 0, 0.05, 0.1, . . . , 10 s. As expected, the pendulum
returns to its equilibrium position.

(d) Simulation results for x1,A(0)¼ 0 rad and x2,A(0)¼ 0.5 rad=s are
shown in Figure 3.26.

m

r
θ

FIGURE 3.24 A sim-
ple nonlinear pendulum
with damping.

Elementary Numerical Integration 133

Exact solutions for the state components are not easily obtained owing to the nonlinearity in
Equation 3.179. A ‘‘quasi exact’’ solution could be found by choosing an exceedingly small value
of T and plotting the results on the same graph for comparison with the discrete-time approxima-
tions shown in Figures 3.25 and 3.26. It is left as an exercise to show that the discrete-time and
‘‘quasi exact’’ responses are in basic agreement.

Looking at the graphs in Figures 3.25 and 3.26, we might be inclined to believe that
the integration step size T¼ 0.0025 s is a ‘‘one size fits all’’ value for simulating the
pendulum dynamics. However, Figure 3.27 will quickly dispel this thinking. The results shown

−0.5
0 1 2 3 4 5 6 7 8 9 10

−0.25

0

0.25

0.5

x 1
,A

(n
),

ra
d

x 2
,A

(n
),

ra
d/

s

x1, A(0) = x(0) = π/6 rad

−2

0

2

1

t (s)

0 1 2 3 4 5 6 7 8 9 10
t (s)

x2, A(0) = dx(0)/dt = 0 rad/s

FIGURE 3.25 Nonlinear pendulum simulation with x1(0)¼p=6 rad and x2(0)¼ 0 rad=s.

−0.08
0 1 2 3 4 5 6 7 8 9 10

−0.04x 1
,A

(n
),

ra
d

x 2
,A

(n
),

ra
d/

s

0

0.04

0.08

t (s)

0 1 2 3 4 5 6 7 8 9 10
t (s)

−0.5

−0.25

0

0.25

0.5
x2, A(0) = dx(0)/dt = 0.5 rad/s

x1, A(0) = x (0) = 0 rad

FIGURE 3.26 Nonlinear pendulum simulation with x1(0)¼ 0 rad and x2(0)¼ 0.5 rad=s.

134 Simulation of Dynamic Systems with MATLAB® and Simulink®

in Figure 3.27 correspond to an undamped pendulum (c¼ 0) with the same initial conditions as in
part (c) and the same step size of 0.0025 s. Every 20th point of the discrete-time state responses
is plotted.

Clearly, explicit Euler integration using a step size of T¼ 0.0025 s is not advisable since the
discrete-time state responses bear no resemblance whatsoever to the real (continuous-time) system
responses. A valuable lesson of this example is the need to exercise caution when choosing the
integration step size for numerical integration. If we are not careful, the integrators may be
‘‘unstable’’ under certain conditions. This point is revisited in detail in Chapter 8.

EXERCISES

3.24 A mass is suspended from a stationary support by a spring as shown in Figure E3.24. The
mass is displaced from its equilibrium position 1 ft and released with zero velocity. The
continuous-time model of the system is m€xþ kx ¼ 0.

m

k

x

FIGURE E3.24

2

1
x1,A(0) = x(0) = π/6 rad

c = 0 ft lb/rad/s

t (s)
0 2 4 6 8 10 12 14 16 18 20

0

−1x 1
,A

(n
),

ra
d

−2

x2,A(0) = dx(0)/dt = 0 rad/s

c = 0 ft lb/rad/s

t (s)
0 2 4 6 8 10 12 14 16 18 20

x 2
,A

(n
),

ra
d/

s

10

5

0

−5

−10

FIGURE 3.27 Undamped pendulum simulation with x1(0)¼p=6 rad and x2(0)¼ 0 rad=s.

Elementary Numerical Integration 135

(a) Find the matrix A in the state equations _x ¼ Ax for the continuous-time model.
(b) Find the matrix G in the discrete-time state equations xA(nþ 1)¼GxA(n) resulting from

the use of improved Euler integration to approximate the response of the continuous-time
system.

(c) The system parameters are k¼ 4 lb=ft and m¼ 1 slug. Fill in the following table:

N xA(n) T¼ 0.05 s x(nT) n xA(n) T¼001 s x(nT)

0 0

1 5

2 10

3 15

4 20

5 25

6 30

7 35

8 40

9 45

10 50

3.25 By trial and error, determine an acceptable value for the step size T in simulating the nonlinear
pendulum response in Example 3.12 using implicit Euler integration. The initial conditions
are x1(0)¼p=6 rad and x2(0)¼ 0.5 rad=s. Plot the discrete-time state x1,A(n), n¼ 0, 1, 2, . . . , nf
where nfT¼ 10 s for each value of T.

3.26 Repeat Exercise 3.25 using trapezoidal integration instead of implicit Euler.
3.27 Choose a very small time step, for example, T¼ 0.0001 s, in Example 3.12 to obtain the

‘‘quasi exact’’ solution and plot the results on the same graph with the discrete-time responses
in Figures 3.25 and 3.26. Comment on the results.

3.28 The nonlinear pendulum model in Example 3.12 is often approximated by

J€uþ c _uþ mgru ¼ 0

when the angular displacement u is small, that is, the small angle approximation u¼ sin u is
used resulting in the linear differential equation model above. Compare the results of
simulating the linear and nonlinear models using modified Euler integration. The initial
angle u(0)¼ 58 and the initial angular velocity _u(0) ¼ 08=s.

3.29 A logistic population growth model

dP

dt
¼ cP(Pm � P)

is to be simulated in order to approximate the population P(t) for a period of time.
(a) Find the difference equation for PA(n) intended to approximate P(t) based on the use of

the following numerical integrators:
(i) Explicit Euler (T¼ 0.25 year)
(ii) Trapezoidal (T¼ 0.5 year)
(iii) Improved Euler (T¼ 0.5 year)

136 Simulation of Dynamic Systems with MATLAB® and Simulink®

(b) Fill in the following table with the simulated populations based on the three numerical
integrators and the exact solution. Note that c¼ 1.25� 10�9, Pm¼ 25 million, and
P(0)¼ 5 million. The exact solution is given by

P(t) ¼ PmP(0)
P(0)þ [Pm � P(0)]e�cPmt

, t � 0

t (Years) 0 50 100 150 200 250

Explicit Euler 5.0000

Trapezoidal 5.0000

Improved Euler 5.0000

Exact 5.0000

3.30 The tank in Figure E3.30 has a brine solution flowing into it. The solution is stirred well to
ensure that the concentration of salt in the tank is uniform.

c1, F1

c, F0

c, QA

H

FIGURE E3.30

c1 is the brine concentration (lb=gal)
F1 is the brine flow (gal=min)
c is the salt concentration in tank (lb=gal)
Q is the quantity of salt in tank (lb)
H is the liquid level in tank (ft)
V is the volume of liquid in tank (gal)
F0 is the flow rate from tank (gal=min)

The mathematical model consists of the following equations:

dQ

dt
¼ c1F1 � cF0

c
Q

V
, V ¼ AH

A
dH

dt
þ F0 ¼ F1, K F0 ¼ aH1=2

The system baseline parameter values are A¼ 25 ft2 and a¼ 0.75 gal=min per ft1=2.

Note: 1 ft3 of water is roughly 8.3 gal.

Elementary Numerical Integration 137

(a) Draw a simulation diagram of the system.
(b) Choose the state variables as x1¼Q and x2¼H and the outputs y1¼ c, y2¼Q, and y3¼V.

Write the state equations in the form

_x1 ¼ f1(x1, x2, c1,F1), y1 ¼ g1(x1, x2, c1,F1)

_x2 ¼ f2(x1, x2, c1,F1) y2 ¼ g2(x1, x2, c1,F1)

y3 ¼ g3(x1, x2, c1,F1)

(c) Find expressions for the steady-state values of the states x1(1) and x2(1) and the outputs
y1(1), y2(1), and y3(1) assuming c1 and F1 are constant.

(d) The tank is initially filled with 100 gal of water (no salt). Brine starts flowing in to the tank
at a rate of 2 gal=min. The salt concentration of the brine is 0.25 lb=gal. Both the flow rate
and salt concentration of the brine flow remain constant. Using explicit Euler and improved
Euler integration, find the discrete-time state equations.

xA(nþ 1) ¼ f [(xA(n), u(n)]

y
A
(n) ¼ g[xA(n), u(n)]

which are used to obtain an approximate solution for the continuous-time states and
outputs.

(e) Solve the discrete-time state equations recursively for the discrete-time states and x1,A(n)
and x2,A(n) and outputs y1,A(n), y2,A(n), and y3,A(n). Graph the transient responses.
Comment on the values of T used for each type of numerical integrator.

(f) Compare the steady-state results obtained in part (e) with the predicted values from part (c).
Comment on the results.

3.7 CASE STUDY: VERTICAL ASCENT OF A DIVER

As a diver submerges, pressure increases in direct proportion to the depth. This pressure is caused by
the combined weight of the surrounding water and the atmosphere above and is called ambient
pressure. At a depth of 70 ft, ambient pressure is equal to more than three atmospheres (three times
the atmospheric pressure at sea level). In order to overcome this pressure and fill his lungs with vital
air, the diver must breathe air supplied to him at the ambient pressure.

The air is a mixture of approximately 20% vital oxygen and 80% inert nitrogen. The oxygen
component of the air is used by the body, and waste carbon dioxide is exhaled. Under normal
atmospheric conditions, the nitrogen component of the mixture has no effect. But under pressure, it
dissolves in the bloodstream and in tissues and remains there after the diver begins to ascend. If the
diver ascends too quickly, the nitrogen expands and equalizes with the decreasing ambient pressure.
Nitrogen bubbles form in the bloodstream and the tissues, leading to an extremely painful condition
known as decompression sickness (DCS), more commonly known as the ‘‘bends,’’ which can cause
paralysis and even death.

The focus of this study is an investigation of the types of cable forces that can be used to bring a
deep-sea diver safely to the surface. The mathematical model governing the diver’s ascent consists
of differential equations relating the forces acting on the diver and the dynamics of the diver’s
internal body pressure (McClamroch 1980). The following notation is used:

h¼ h(t) is the depth of diver below sea level, ft
_h¼ (d=dt)h(t) is the velocity of diver, ft=s
€h¼ (d2=dt2)h(t) is the acceleration of diver, ft=s2

138 Simulation of Dynamic Systems with MATLAB® and Simulink®

p¼ p(t) is the internal body pressure of diver, relative to atmospheric pressure at sea level, lb=ft2

_p¼ (d=dt)p(t) is the rate of change of diver’s internal body pressure, lb=ft2 per s
Dp¼Dp(t) is the difference between body pressure and local underwater pressure, lb=ft2

fc¼ fc(t) is the external cable force on diver, lb
fd¼ fd(t) is the drag force on diver, lb
fB is the buoyant force on diver, lb
m is the mass of diver, slugs
W is the weight of diver and gear at sea level, lb
V is the volume of diver and gear, ft3

K is the body tissue constant of diver, s�1

m is the drag coefficient of diver under water, lb s=ft
g is the weight density of water (62.4 lb=ft3)
g is the gravitational constant (32.2 ft=s2)

The forces acting on the diver are a cable force fc, a drag force fd, a buoyant force fB, and the diver’s
weight W. From Newton’s second law with h and all forces measured positive in the downward
direction,

m€h ¼ W � fB þ fd � fc (3:189)

The drag force is modeled by

fd ¼ �m _h (3:190)

The buoyant force is equal to the weight of water displaced by the diver and gear

fB ¼ gV (3:191)

Combining Equations 3.189, 3.190, and 3.191 gives

W

g
€hþ m _h ¼ (W � gV)� fc (3:192)

The right-hand side of Equation 3.192 is the difference between the diver’s effective weight in the
water (W� gV) and the cable force fc. Denoting the net cable force by

fn ¼ (W � gV)� fc (3:193)

leads to the second-order differential equation

W

g
€hþ m _h ¼ fn (3:194)

The rate of change of the diver’s internal body pressure is assumed proportional to the difference
between the local underwater (ambient) pressure and the diver’s internal body pressure. That is,

_p ¼ K(gh� p) (3:195)

We are interested in h, the diver’s depth below the surface, and Dp, the difference between the
internal body pressure of the diver and the ambient underwater pressure. The dynamic system under
investigation is portrayed in Figure 3.28.

Elementary Numerical Integration 139

The third-order linear dynamic system can be modeled in state variable form. The state variables
are chosen as

x1 ¼ h, x2 ¼ _h, x3 ¼ p (3:196)

Solving for the state derivatives

_x1 ¼ _h ¼ x2 (3:197)

_x2 ¼ €h ¼ �mg

W
_hþ g

W
fn (3:198)

¼ �mg

W
x2 þ g

W
fn (3:199)

_x3 ¼ _p ¼ Kgx1 � Kx3 (3:200)

)
_x1

_x2

_x3

2664
3775 ¼

0 1 0

0
�mg
W

0

Kg 0 �K

2664
3775

x1

x2

x3

2664
3775þ

0
g

W

0

2664
3775[fn] (3:201)

The outputs are expressed in terms of the states as

y1 ¼ h ¼ x1 (3:202)

y2 ¼ P� gh ¼ x3 � gx1 (3:203)

)
y1

y2

" #
¼

1 0 0

�g 0 1

" # x1

x2

x3

2664
3775 (3:204)

The state equation matrices A, B, C, and D are given by

A ¼
0 1 0

0
�mg
W

0

Kg 0 �K

2664
3775, B ¼

0
g

W
0

2664
3775, C ¼ 1 0 0

�g 0 1

" #
, D ¼ 0

0

" #
(3:205)

In order to obtain a numerical solution to the state equations, the initial conditions, that is, the initial
state x(0), must be known. Assuming the diver is initially in equilibrium with his or her surround-
ings leads to

_h(0) ¼ x2(0) ¼ 0 (3:206)

_p(0) ¼ K[gh(0)� p(0)] (3:207)

¼ K[gx1(0)� x3(0)] (3:208)

Diverfn
h
Δp

FIGURE 3.28 Dynamic system with input fn and outputs h and Dp.

140 Simulation of Dynamic Systems with MATLAB® and Simulink®

Setting _p equal to zero in Equation 3.208 gives

x3(0) ¼ gx1(0) (3:209)

Initial depth x1(0) is arbitrary; however, to be in equilibrium, the diver’s effective weight in the
water W� gV must be counterbalanced by the initial cable force fc(0).

fc(0) ¼ W � gV (3:210)

Note that the initial net force to maintain the diver in equilibrium is

fn(0) ¼ (W � gV)� fc(0) ¼ 0 (3:211)

A simulation of the diver’s ascent subject to a constant cable force in excess of fc(0) in Equation
(3.210) is needed. The discrete-time state equation is

xA(nþ 1) ¼ GxA(n)þ Hu(n) (3:212)

where G and H depend on the choice of numerical integrator. Using trapezoidal integration for now
and leaving the other discrete-time integrators for the exercise problems, the discrete-time state is
updated according to Equation 3.121

xA(nþ 1) ¼ I þ 1
2
TA

� ��1
I þ 1

2
TA

� �
xA(n)þ

1
2

I � 1
2
TA

� ��1
TB[u(n)þ u(nþ 1)] (3:213)

With a constant cable force fc ¼ �fc, t � 0, the input fn is likewise constant, that is,

fn ¼ �fn ¼ (W � gV)�fc, t � 0 (3:214)

The second term in Equation 3.213 can be simplified, that is,

1
2

I � 1
2
TA

� ��1
TB[u(n)þ u(nþ 1)] ¼ 1

2
I � 1

2
TA

� ��1
TB[�fn þ �fn] (3:215)

¼ T I � 1
2
TA

� ��1
B�fn (3:216)

Hence, for the special case where the input u(n) is constant for all n, the discrete-time matrices
G and H in Equation 3.212 using trapezoidal integration are

G ¼ I � 1
2
TA

� ��1
I þ 1

2
TA

� �
(3:217)

H ¼ T I ¼ 1
2
TA

� ��1
B (3:218)

Baseline numerical values for the system parameters are K¼ 0.2, m¼ 6.5, W¼ 300, V¼ 3, and the
step size T¼ 0.25 s. Evaluating matrices A and B,

A ¼
0 1 0
0 �0:6977 0

12:48 0 �0:2

24 35, B ¼
0

0:1073
0

24 35

Elementary Numerical Integration 141

The discrete-time matrices G and H are obtained from Equations 3.217 and 3.218.

G ¼
1 0:2299 0
0 0:8396 0

3:0439 0:3500 0:9512

24 35, H ¼
0:0031
0:0247
0:0047

24 35
The discrete-time state equation, Equation 3.212, is

xA(nþ 1) ¼
1 0:2299 0
0 0:8396 0

3:0439 0:3500 0:9512

24 35xA(n)þ 0:0031
0:0247
0:0047

24 35�fn (3:219)

Before simulating the diver’s ascent to the surface, we can make the cable force equal to its
equilibrium value in Equation 3.210 and observe whether the system remains in equilibrium. Setting
fc¼W� gV¼ 112.8 lb makes the net force �fn ¼ 0. Additionally, we must remember to make
x3(0)¼ gx1(0) where x1(0) is the arbitrary initial depth.

Figure 3.29 shows the results of solving Equation 3.219 under these conditions with the diver
starting at 500 ft below the surface. As expected, the system remains in an equilibrium state.

Suppose the cable force is increased by 10% above its equilibrium value to 1.1(W� gV)¼ 1.1
(112.8)¼ 124.08 lb. The MATLAB script file ‘‘Chap3_CaseStudy.m’’ generates a recursive solu-
tion to the discrete-time system difference equations in Equation 3.219. The results are plotted in
Figure 3.30 for a duration of time sufficient to bring the diver to the surface. The integration step
size T could be varied an order of magnitude in either direction and the results compared with those
in Figure 3.30 to determine if the current value T¼ 0.25 s needs to be adjusted.

Since the system dynamics are linear, analytical solutions for the continuous-time state variables
in Equation 3.201 are easily determined and given in Equations 3.220 through 3.222.

0
0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

200x 1
 (f

t)
x 2

 (f
t/s

)
x 3

 (I
b/

sq
 ft

)

400

600
Discrete-time state variables for diver at equilibrium

0
2.5

5
7.5
10

0
1
2

3
4

×104

t (s)

x1(n), n = 0, 1, 2, ...
x1(t)

x3(n), n = 0, 1, 2, ...
x3(t)

x2(n), n = 0, 1, 2, ...
x2(t)

FIGURE 3.29 System at equilibrium: x1(0)¼ 500 ft, x2(0)¼ 0 ft=s, x3(0)¼ gx1(0)¼ 3120 lb=ft2, fc¼
W� gV¼ 112.8 lb.

142 Simulation of Dynamic Systems with MATLAB® and Simulink®

The derivation is left as an exercise problem at the end of this section.

x1(t) ¼ h(0)þ gfn
aW

t � 1� e�at

a

� �
(3:220)

x2(t) ¼ gfn
aW

(1� e�at) (3:221)

x3(t) ¼ g h(0)þ gfn
aW

t þ K(1� e�at)
a(a� K)

� a(1� e�Kt)
K(a� K)

� � �
(3:222)

where the constant a¼mg=W. The analytical solutions for the states are plotted in Figure 3.30 along
with the discrete-time states. There is close agreement between the numerical (discrete time) and
analytical solutions for each of the state variables. Notice that after about 6 s, the diver is surfacing at
a constant velocity, and both depth and internal body pressure are decreasing linearly with time.

Equation 3.220 can be used to estimate the time required for the diver to surface. If the initial
depth is great enough, at the time the diver surfaces, the exponential term will have died out.
Consequently, the time to surface ts can be estimated from

0 ¼ h(0)þ gfn
aW

ts � 1
a

� �
(3:223)

) ts ¼ W

mg
� mh(0)

fn
¼ W

mg
� mh(0)
(W � gV)� fc

¼ 300
6:5(32:2)

� 6:5(500)
�0:1(112:8) ¼ 289:6 (3:224)

in agreement with the graphs of x1,A(n) and x1(t) shown in Figure 3.30.

0
0 50 100 150 200 250 300

0 50 100 150 200 250 300

50 100 150 200 250 300

200x 1
 (f

t)
x 2

 (f
t/s

)
x 3

 (I
b/

sq
 ft

)

400

600

−2
−1.5

−1
−0.5

0

0
1
2
3
4

×104

t (s)

x1(n), n = 0, 25, 50, ...
x1(t)

x2(n), n = 0, 25, 50, ...
x2(t)

x3(n), n = 0, 25, 50, ...
x3(t)

FIGURE 3.30 State variables for diver’s ascent: fc¼ 1.1 (W� gV).

Elementary Numerical Integration 143

We have yet to look at the differential pressure Dp¼ p� gh, the second component of the output
vector y2 in Equation 3.203. The discrete-time output y

A
(n) is a linear combination of the discrete-

time state xA(n) and input u(n), that is,

y
A
(n) ¼ CxA(n)þ Du(n) (3:225)

The second component of yA(n) reduces to

y2,A(n) ¼ C2,1x1,A(n)þ C2,2x2,A(n)þ C2,3x3,A(n) (3:226)

since the direct transmission matrix D is zero. Substituting the components of C in Equation 3.205
into Equation 3.226 gives

y2,A(n) ¼ �gx1,A(n)þ x3,A(n) (3:227)

3.7.1 MAXIMUM CABLE FORCE FOR SAFE ASCENT

Suppose a safe ascent implies that the differential pressure Dp is never to exceed a value denoted by
Dpmax. The maximum cable force for a safe ascent (fc)max can be obtained in one of two ways.

3.7.1.1 Trial and Error
The constant cable force can be initialized to a value slightly more than the equilibrium force
Weff ¼W� gV and the diver’s ascent simulated. If the maximum differential pressure during the
ascent is less than Dpmax, the ascent is simulated again with a larger cable force. The reverse is true if
the maximum differential pressure exceeds Dpmax. The process is repeated until the cable force
producing a maximum differential pressure of Dpmax (within some tolerance) is obtained. Figure
3.31 shows the result of simulating several ascents to find (fc)max for the case when Dpmax¼ 4 psi.

The discrete-time differential pressure responses are labeled and graphed as if they were
continuous time in nature; however, the points along each plot were obtained by recursive solution
of difference equations. Note the dramatic increase in ascent time as the cable force approaches the
equilibrium value of 112.8 lb.

0
0 250 500 750 1000 1250 1500

0.5

1

1.5

2

2.5

3

3.5

D
iff

er
en

tia
l p

re
ss

ur
e Δ

p(
t),

 (p
si)

4

4.5

t (s)

Δpmax = 4 psi fc = 125 lb

fc = 123 lb

fc = 121 lb

fc = 119 lb

fc = 117 lb

fc = 115 lb

FIGURE 3.31 Differential pressure during ascent of a diver for different cable forces.

144 Simulation of Dynamic Systems with MATLAB® and Simulink®

3.7.1.2 Analytical Solution
Asecond approach tofinding themaximumcable force for a safe ascent is based on analytical solutions
for the state variables x1(t) and x3(t). From Equations 3.220 and 3.222, the steady-state responses are

x1(t)ss ¼ h(0)þ g�fn
aW

t � 1
a

� �
(3:228)

x3(t)ss ¼ g h(0)þ g�fn
aW

t þ K

a(a� K)
� a

K(a� K)

� � �
(3:229)

where �fn is the constant net force applied during ascent of the diver. The differential pressure at
steady state is

Dpss ¼ x3(t)ss � gx1(t)ss (3:230)

Substituting Equations 3.228 and 3.229 into Equation 3.230 and simplifying the expression result in

Dpss ¼ � g�fn
mK

(3:231)

The cable force (
(
fc)max responsible for Dpss¼Dpmax is obtained from

Dpmax ¼ � g�fn
mK
¼ � g (W � gV)� (�fc)max½ �

mK
(3:232)

) (�fc)max ¼ (W � gV)þ mKDpmax
g

¼ [300� 62:4(3)]þ 6:5(0:2)(4� 144)
62:4

¼ 124:8 lb (3:233)

in agreement with the response shown in Figure 3.31.

3.7.2 DIVER ASCENT WITH DECOMPRESSION STOPS

Ordinarily, a deep-sea diver ascending from several 100 ft or more down makes several decom-
pression stops to allow the nitrogen gas to be released in a slow and controlled manner. His internal
pressure is given time to equalize with the ambient pressure at different depths. A typical cable force
for accomplishing this is shown in Figure 3.32.

Alternating the cable force between a value larger than the diver’s effective weight, that is,
(1þb)Weff, b> 0, and the diver’s effective weight Weff results in the diver remaining at certain
depths for a fixed period of time before continuing the ascent to the surface.

To illustrate, suppose the diver is initially at a depth of 500 ft and is to be brought to the ocean
surface in stages allowing for decompression. The difference in ambient water pressure and his internal
pressure is not to exceed 4 psi. Figure 3.33 shows the results of a simulation for the same diver as before
brought up by a periodic cable force of 124 lb for L¼ 100 s followed by a value of 112.8 lb for 200 s
and then repeated. Once again, the discrete-time signals are plotted as if they were continuous time.

Elementary Numerical Integration 145

Referring toFigure3.31orEquation3.233, it follows that a constant cable force of 124 lb for the entire
ascent would bring the diver to the surface with a differential pressure never exceeding the safe limit of 4
psi. The ascentwould beconsiderably faster than the 691.75 s shown inFigure 3.33.However, the profile
of Dp(t) shown in Figure 3.33 is a safer alternative than the exponential rise shown in Figure 3.31.

It may appear from Figure 3.33 that the diver’s depth becomes constant when the cable force is
switched from fc¼ 124 lb to fc¼Weff ¼ 112.8 lb. Realistically, the diver cannot come to an abrupt
stop when the cable force changes in step fashion. A close-up look at the net cable force fn(t) in
Equation 3.193 and the diver’s velocity during a portion of the ascent is shown in Figure 3.34.

It is clear from observing the velocity that the diver continues moving toward the surface for a
short period of time immediately following the change in cable force from 124 to 112.8 lb (or
equivalently the net force changing from �11.2 to 0 lb).

The explanation of decompression and the plots shown in Figure 3.33 oversimplify the problem.
Onset of the ‘‘bends’’ is causedbyanexcessof dissolvednitrogen in the blood to the pointwhere it cannot
be disposed of in a normal manner. The amount of nitrogen that dissolves in the blood is related to the
timeadiver remains at a givendepth.That is, it takes longer to absorb a dangerous amount of nitrogen at a
shallow depth compared to a depth further down from the surface. Reference tables provide empirical
data relating required decompression times with duration of time spent at a given depth (Reseck 1990).

A final observation about the diver model is relevant. The coupling between the second-order
differential equation for h in Equation 3.192 and the first-order differential equation for p in

fc(t)

(1 + β)Weff

Weff

t
L P P + L 2P0

FIGURE 3.32 Cable force profile for raising a diver with decompression stops.

100

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

110
120
130 124

112.8

L = 100 s, P = 300 s

0

200

400

600

0

2

4

Δp
(t)

, p
si

h(
t),

 ft
f c(

t),
 Ib

s

t (s)

Δpmax = 4 psi

FIGURE 3.33 Diver ascent with stops for decompression.

146 Simulation of Dynamic Systems with MATLAB® and Simulink®

Equation 3.195 is one way, that is, the diver’s internal pressure p does not affect the depth h, and a
second-order state model is suitable if the pressure is not of interest. On the other hand, the depth h
influences the diver’s internal pressure p, and hence the first-order differential Equation (3.195)
cannot be solved independently of the second-order differential Equation (3.192).

EXERCISES

3.31 A simple study can be conducted to find the ‘‘best’’ value for T, the integration step size. Since
a graph of the analytical solutions for the continuous-time state variables and the discrete-time
state approximation are in close agreement (Figure 3.30) when T¼ 0.25 s, we would like to
know if a larger value of T can be used without sacrificing significant accuracy. With this in
mind, for T¼ 0.5, 1, 2, 4,
(a) Find the system and input matrices G and H of the discrete-time system using trapezoidal

integration.
(b) Solve the resulting discrete-time state equations for the discrete-time state vector

xA(n) ¼ [x1,A(n), x2,A(n), x3,A(n)]T and plot the results on the same graph as the continu-
ous- time solution, similar to Figure 3.30. Stop when a noticeable difference between xA(n)
and x(nT) occurs.

3.32 Using the baseline conditions for the system parameters unless stated otherwise,
(a) Find the cable force (fc)max to bring up divers (plus gear) weighing 200, 250, 300, 350, and

400 lb while not exceeding a maximum differential pressure DPmax¼ 4 psi. Enter the
results in the following table. Prepare a graph of (fc)max vs. W. Comment on the results.

(b) In part (a), record the time required for the diver to surface ts and enter in the following
table. Plot a graph of ts vs. W.

W (lb) 200 250 300 350 400

(fc)max
ts (s)

(c) Suppose the volume V of the diver and gear vary with the diver’s weight according to
V¼ 1þ (W=150). Repeat parts (a) and (b).

−12
100 150 200 250 300

−11
−10

−9
−8
−7
−6
−5
−4
−3
−2
−1

0

dh/dt

fn(t)

t (s)

FIGURE 3.34 Net cable force fn(t) in lbs and diver velocity dh=dt in ft=s with decompression stops.

Elementary Numerical Integration 147

3.33 For the velocity during diver with baseline conditions, find the ‘‘best’’ step size T for
simulating the diver’s ascent from 250 ft using
(i) Explicit Euler integration
(ii) Improved Euler integration
(iii) Modified Euler integration
Specify your criterion for determining the ‘‘best’’ step size.

3.34 Derive the analytical solutions for the continuous-time states given in Equation 3.220 through
3.222.

Hint: It may be necessary to defer this problem until after reading Section 4.2 on the Laplace
transform.

3.35 Using the baseline conditions given for the diver, simulate the response using explicit Euler
integration when the constant cable force is 15% below the equilibrium value. Prepare plots of
the continuous-time and discrete-time states for a duration of 100 s.

3.36 It is suggested that a sinusoidal cable force fc(t) ¼ F þ A sin(2pt=p) be more effective in
bringing the diver to the surface safely, that is, Dp(t) � Dpmax, t � 0, and in less time
compared to a constant force. Using the baseline system parameters, choose a numerical
integration method to approximate the system dynamics with the suggested type of cable
force, that is, experiment with different values of F, A, and P, and comment on the validity of
the claim about using the sinusoidal cable force.

3.37 Suppose the diver with baseline condition parameter values is initially at a depth of 750 ft at
equilibrium conditions.
(a) The cable force bringing the diver to the surface is as shown in Figure 3.32 with b¼ 0.1

and P¼ 300 s. Vary the duty cycle 100� (L=P) from 20% to 100% in increments of 20%,
and simulate the diver’s ascent using a numerical integrator with appropriate step size. Fill
in the following table and plot the results.

Duty Cycle (%) Time to Surface (s) Maximum Differential Pressure (psi)

20

40

60

80

100

(b) Repeat part (a) with the duty cycle fixed at 50% and vary the parameter b as shown in the
table and fill in the table.

b Time to Surface (s) Maximum Differential Pressure (psi)

0.03

0.06

0.09

0.12

0.15

3.38 For a diver with system parameters W¼ 300, K¼ 0.2, m¼ 6.5, and V¼ 3,
(a) Plot the inverse relationship in Equation 3.233, that is, Dpmax vs. (fc)max.
(b) Simulate several diver ascents from different initial depths using constant cable forces and

compare the simulated maximum differential pressure with the values from the graph.

148 Simulation of Dynamic Systems with MATLAB® and Simulink®

3.39 A 250 lb diver with gear weighing another 100 lb is 400 ft below the surface in equilibrium
with his surroundings. A winch cable begins bringing him to the surface using a constant
force.
(a) Using the analytical solution for the state variables, find the required force needed for the

diver to be ascending at a constant rate of 1.5 ft=s (_h ¼ �1:5 ft=s) when he reaches the
surface. The remaining parameter values are K¼ 0.25, m¼ 5, and V¼ 3.25.

(b) Simulate the diver ascent using the force determined in part (a) to verify the result. Use
Euler integration with step size T¼ 0.1 s.

(c) Plot the state variables for the simulation in part (b).
3.40 A diver initially in equilibrium at a depth of 150 ft is ascending to the surface under the

influence of a constant cable force equal to 10% greater than the equilibrium force. The cable
snaps when the diver is 50 ft from the surface. Simulate the diver’s depth, velocity, and
differential pressure for 120 s. Use any of the numerical integrators presented.

System parameters are W¼ 325, K¼ 0.23, m¼ 4.8, and V¼ 3.15.

Elementary Numerical Integration 149

This page intentionally left blank

4 Linear Systems Analysis

4.1 INTRODUCTION

Chapter 2 introduced first- and second-order linear time-invariant (LTI) systems in a very superficial
way. A general form for the family of step responses, in the absence of input derivative terms, was
presented for both types of systems. Alternate representations of LTI systems, namely, simulation
diagrams and state-space models, were also discussed.

Chapters 1 and 3 outlined methods for transforming continuous-time differential equation models
into discrete-time system models comprising difference equations. In doing so, the grounds were
laid for the foundation of continuous-time system simulation.

A natural question that arises is ‘‘How accurate is the simulation?’’ In the case of continuous-time
systems with LTI models, it helps to have a solid grasp of how LTI systems respond to elementary
inputs such as a step, polynomials, exponentials, and periodic functions. The analytical solutions
serve as a benchmark in comparing different simulation (discrete-time system) models.

This chapter begins with a review of the Laplace transformation and its use in finding the free and
forced response of continuous-time LTI system models. The counterpart of the Laplace transform
for discrete-time systems is the z-transform, and it is covered in the later sections along with
examples of how it facilitates the process of finding the response of discrete-time LTI systems.
Time and frequency domain characteristics of continuous- and discrete-time LTI system models are
discussed. Mappings from the s-plane to the z-plane corresponding to specific numerical integrators
are introduced as a quick way of obtaining discrete-time model approximations of continuous-time
systems.

4.2 LAPLACE TRANSFORM

The Laplace transform, as the name implies, is a transformation of functions between two domains.
The independent variables in the two domains are commonly denoted ‘‘t’’ and ‘‘s’’ as shown in
Figure 4.1, and the domains are referred to as the time domain (or t-domain) and s-domain,
respectively.

A class of functions f(t) defined for t � 0 in the time domain are transformed into functions F(s)
in the s-domain according to

F(s) ¼
ð1
0

f (t)e�stdt (4:1)

Equation 4.1 is the definition of the one-sided Laplace transform of a function f(t). The definition of
f(t) for t< 0 is irrelevant since the interval of integration in Equation 4.1 is 0 to 1. It is valid for
functions f(t), which are said to be of exponential order, that is, functions that are bounded by
increasing exponentials as t!1, assuring the convergence of the integral in Equation 4.1. This
includes all real-world signals as well as certain functions for which limt!1 f(t)¼1.

The notation L{f (t)} is interpreted as the Laplace transform of f(t), that is, the function of ‘‘s’’
resulting from evaluating the integral in Equation 4.1. The function f(t) and its Laplace transform

151

F(s) are referred to as a Laplace transform pair using the symbol, with the function f(t) on one side
and its transform F(s) on the other side. To illustrate, consider the unit step function û(t) that equals
1 for t � 0 and zero for t< 0.

Û(s) ¼ L{û(t)} ¼
ð1
0

û(t)e�stdt ¼
ð1
0

1e�stdt ¼ e�st

�s

1
0

¼ 0� 1
�s
� �

¼ 1
s

(4:2)

The contribution from the upper limit, e�s(1) in Equation 4.2, is zero provided s> 0. More
specifically, Re(s)> 0 because s is a complex variable s¼sþ jv. Therefore,

L{û(t)} ¼ 1
s
, Re(s) > 0 (4:3)

indicating the integral in Equation 4.2 converges so long as the complex variable s is located in the
right half of the complex plane. Note that the constant function u(t)¼ 1, �1< t<1 is identical to
û(t) for t � 0 and consequently has the same Laplace transform.

Henceforth, we shall omit reference to the region of convergence for the integral in Equation 4.1
and simply be concerned with the result. The region of convergence is only of interest when we
perform the inverse Laplace transformation using an integration formula to transform F(s) into f(t).
Returning to the example of the unit step function, the Laplace transform pair is

û(t), 1
s

(4:4)

The Laplace transform of other continuous-time functions f(t),
t � 0 is handled in the same manner. For example, the exponential
function f(t)¼ eat has a Laplace transform

F(s) ¼ L{f (t)} ¼ L{eat} ¼
ð1
0

eate�stdt ¼
ð1
0

e�(s�a)tdt ¼ 1
s� a

(4:5)

Additional time signals of importance are f(t)¼ tn (n¼ 0, 1, 2, . . .)
along with the trigonometric functions f(t)¼ cosvt and f(t)¼
sinvt. Applying the definition for the Laplace transform of f(t)
in Equation 4.1 produces the results shown in Table 4.1.

t-domain s-domain

f(t) F(s)

F(s) = { f(t)}

f (t) = −1{F(s)}

FIGURE 4.1 The Laplace transform L{f (t)} ¼ F(s) and its inverse f (t) ¼ L�1{F(s)}.

TABLE 4.1
Table of Laplace Transform
Pairs for Elementary
Continuous-Time Signals

f(t) F (s) ¼ L{f (t)}

û(t) ¼ 0, t < 0
1, t � 0

�
1
s

e
at
1

s� a

tn
n

s(nþ1)

cosvt
s

s2 þ v2

sinvt
v

s2 þ v2

152 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.2.1 PROPERTIES OF THE LAPLACE TRANSFORM

Certain properties of the Laplace transform enable F(s) to be determined without resorting to the
definition in Equation 4.1. Several of these properties are presented without proof. The first is the
linearity property, which states that the Laplace transform of a linear combination of continuous-
time functions is equal to the same linear combination of respective transforms.

P1:

Given L {f1(t)} ¼ F1(s) and L{f2(t)} ¼ F2(s)

) L{a1f1(t)þ a2f2(t)} ¼ a1L{f1(t)}þ a2L{f2(t)} ¼ a1F1(s)þ a2F2(s) (4:6)

In properties P2 to P6 that follow, we start with L{f(t)}¼F(s).

P2:

L{e
atf (t)} ¼ F(s� a) (4:7)

P3:

L{f (t � t0)û(t � t0)} ¼ e�t0sF(s) (4:8)

P2 and P3 are shifting theorems with P2 applying to a function f(t) multiplied by an exponential time
function e
at. Its Laplace transform F(s) is shifted by an amount ‘‘a’’ in the s-domain. P3 applies to
functions f(t) delayed t0 units, that is, shifted an amount t0 to the right. Note the presence of the delayed
unit step function û(t� t0) that zeros out the portion of the signal f(t), �t0 � t< 0 shifted from the
negative to the positive t-axis. The û(t� t0) can be omitted in P3 if f(t)¼ 0, t< 0 (see Figure 4.2).

P4 applies to continuous-time functions in the t-domain expressible in product form when one of
the factors is tn.

P4:

L{tnf (t)} ¼ (�1)n dn

dsn
F(s) (4:9)

t

f (t − t0)

tt0 t0

f (t) = 0, t < 0

f (t)

t−t0

f (t) f (t − t0) f (t − t0)u (t − t0)ˆ

tt
t0 t0

FIGURE 4.2 Illustration of the shifting property P3.

Linear Systems Analysis 153

P5 shows that integration of functions in the t-domain is equivalent to division by the Laplace
variable ‘‘s’’ in the s-domain.

P5:

L
ðt
0

f (t0)dt0

8<:
9=; ¼ F(s)

s
(4:10)

P6 expresses the Laplace transform of derivatives of f(t) in terms of F(s) and initial conditions. This
property is central to solving linear differential equations using algebraic techniques in contrast to
the classical time-domain approach.

P6:

L dn

dtn
f (t)

�
¼ snF(s)� sn�1f (0)� sn�2

d

dt
f (0)� � � � � s

dn�2

dtn�2
f (0)� dn�1

dtn�1
f (0) (4:11)

Periodic signals occur frequently as inputs to dynamic systems. The following property applies to
functions that are periodic for t � 0.

P7:
If f(t) is periodic with period T, that is, f(t� T)¼ f(t), t � 0

F(s) ¼ 1
1� e�Ts

ðT
0

e�stf (t)dt (4:12)

The convolution of two functions f(t) and g(t) is defined in terms of an integral

f (t) * g(t) ¼
ðt
0

f (t � t)g(t)dt (4:13)

where f(t) * g(t) denotes the operation of convolving the two continuous-time functions f(t) and g(t).
The convolution g(t) * f(t) is equivalent to f(t) * g(t) because a change of variable l¼ t� t in
Equation 4.13 leads directly to

ðt
0

f (t � t)g(t)dt ¼
ðt
0

g(t � l)f (l)dl ¼ g(t) * f (t) (4:14)

It will be shown in the following section that convolution can be used to represent the response of an
LTI system to an arbitrary input, and the following property is useful in determining the response
of LTI systems.

P8:

L{f (t) * g(t)} ¼ L
ðt
0

f (t � t)g(t)dt

8<:
9=; ¼ F(s)G(s) (4:15)

154 Simulation of Dynamic Systems with MATLAB® and Simulink®

The convolution property P8 is a useful reminder that

L{f (t)g(t)} 6¼ F(s)G(s) (4:16)

that is, the Laplace transform of the product of two functions is not equal to the product of the
individual Laplace transforms. To illustrate, suppose g(t) is the unit step function.

L{f (t)g(t)} ¼ L{f (t)û(t)} ¼ L{f (t)} ¼ F(s) (4:17)

If Equation 4.16 were an equality, Equation 4.17 would lead to

F(s)G(s) ¼ F(s) (4:18)

) G(s) ¼ 1 (4:19)

Equation 4.19 is false and the inequality in Equation 4.16 is correct. Several examples are presented
to illustrate the use of these properties.

Example 4.1

Find L{4e�2t sin 3t � 5t cos 3t}.

L{4e�2t sin 3t � 5t cos 3t} ¼ 4L{e�2t sin 3t}� 5L{t cos 3t} (P1) (4:20)

L{ sin 3t} ¼ 3
s2 þ 9

(4:21)

) L{e�2t sin 3t} ¼ 3
s2 þ 9

s sþ2

¼ 3
(sþ 2)2 þ 9

(P2) (4:22)

L{ cos 3t} ¼ s
s2 þ 9

(4:23)

) L{t cos 3t} ¼ � d
ds

s
s2 þ 9

� �
¼ s2 � 9

(s2 þ 9)2
(P3) (4:24)

Hence,

L{4e�2t sin 3t � 5t cos 3t} ¼ 4
3

(sþ 2)2 þ 9

� �
� 5

s2 � 9
(s2 þ 9)2

� �

Example 4.2

f(t)¼ (t� 2)û(t� 2). Graph f(t) and find F(s).

First, the ramp function t, �1< t<1 is delayed (right shifted) two units of time to the right to
produce the function t �2, �1< t<1. Second, the shifted function is zeroed out for t � 2 as a
result of the multiplicative term û(t � 2). The result is shown in Figure 4.3.

Shifting property P3 is used to find the Laplace transform of f(t).

t, 1
s2
) (t � 2)û(t � 2), e�2s

1
s2

� �
(4:25)

Linear Systems Analysis 155

Example 4.3

Find the Laplace transform of the signal f(t) shown in Figure 4.4.

The piecewise continuous function f(t) is defined in different intervals by

f (t) ¼

0, t < 1

2(t � 1), 1 � t < 2

3, 2 � t < 4

�t þ 7, 4 � t < 7

0, 7 � t

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
(4:26)

Next, we write the function f(t) in a single expression using unit step functions. The procedure is
straightforward. The first nonzero term in Equation 4.26 is multiplied by the appropriate step
function, so that it ‘‘turns on’’ at the correct time. This gives

f (t) ¼ 2(t � 1)û(t � 1) (4:27)

that is valid for the first two intervals t< 1 and 1 � t< 2. The description of f(t) changes for t � 2
necessitating a new term that is activated (goes from 0 to 1) for t � 2. Suppose we write

f (t) ¼ 2(t � 1)û(t � 1)þ []û(t � 2) (4:28)

t
2 3 4 5 61

1

2

3

4

5

00

f(t)

FIGURE 4.3 Graph of f(t)¼ (t� 2)û(t� 2).

t

1

0
0 1 2 3 4 5 6 7 8

2

3

4

f (t)

FIGURE 4.4 A piecewise continuous-time function.

156 Simulation of Dynamic Systems with MATLAB® and Simulink®

The missing term in brackets must subtract out the previous expression for f(t), that is, 2(t� 1) and
add the expression that holds for 2 � t< 4—in this case the constant 3.

f (t) ¼ 2(t � 1)û(t � 1)þ [�2(t � 1)þ 3]û(t � 2) (4:29)

that is correct for t< 1, 1 � t< 2, and 2 � t< 4. You should check this yourself by choosing values
of t from �1< t< 4. The same procedure is repeated until the function f(t) is defined as follows:

f (t) ¼ 2(t � 1)û(t� 1)þ [�2(t � 1)þ 3]û(t � 2)þ [�3þ (�t þ 7)]û(t � 4)

þ [�(�t þ 7)þ 0]û(t � 7) (4:30)

Simplifying Equation 4.30 yields

f (t) ¼ 2(t � 1)û(t � 1)þ (�2t þ 5)û(t � 2)� (t � 4)û(t � 4)þ (t � 7)û(t � 7) (4:31)

The first, third, and fourth terms in Equation 4.31 have the form f(t� t0)û(t� t0) and can be Laplace
transformed using property P3. The second term in Equation 4.31 can be manipulated into a
similar form by doing the following:

(�2t þ 5)û(t � 2) ¼ [�2(t � 2)þ 1]û(t � 2) (4:32)

¼ �2(t � 2)û(t � 2)þ û(t � 2) (4:33)

Consequently, f(t) is expressible as

f (t) ¼ 2(t � 1)û(t � 1)� 2(t � 2)û(t � 2)þ û(t � 2)� (t � 4)û(t � 4)þ (t � 7)û(t � 7) (4:34)

Using property P3, the Laplace transform of f(t) in Equation 4.34 is

F(s) ¼ 2
e�s

s2
� 2

e�2s

s2
þ e�2s

s
� e�4s

s2
þ e�7s

s2
(4:35)

Note that the second term in Equation 4.31, the only one not of the form f(t� t0)û(t� t0), is present
due to the discontinuity in f(t) at t¼ 2.

Example 4.4

Find the Laplace transform of the periodic signal u(t) shown in Figure 4.5.

The signal u(t) is periodic for t � 0 with period T¼ 3. Let u1(t) represent the first cycle of u(t),
that is,

0 1 2 3 4 5 6 7 8 t

2

3

u(
t)

0

1

FIGURE 4.5 Graph of signal u(t), periodic for t � 0.

Linear Systems Analysis 157

u1(t) ¼

2t þ 1, 0 � t < 1

�2t þ 5, 1 � t < 2

1, 2 � t < 3

0, 3 � t

8>>><>>>: (4:36)

From property P7,

U(s) ¼ 1
1� e�3s

ð3
0

e�stu(t)dt (4:37)

Since u(t)¼ u1(t), 0 � t< 3, Equation 4.37 can be written with u(t) replaced by u1(t),

U(s) ¼ 1
1� e�3s

ð1
0

e�stu1(t)dt (4:38)

¼ 1
1� e�3s

U1(s) (4:39)

Using the same approach as in Example 4.3, the piecewise continuous function u1(t) is decom-
posed into a sum of terms involving step functions.

u1(t) ¼ (2t þ 1)û(t)þ [�(2t þ 1)þ (�2t þ 5)]û(t � 1)þ [�(�2t þ 5)þ 1]û(t � 2)� û(t � 3) (4:40)

¼ 2tû(t)þ û(t)� 4(t � 1)û(t � 1)þ 2(t � 2)û(t � 2)� û(t � 3) (4:41)

The shifting property P3 is used repeatedly to obtain the Laplace transform of u1(t) in Equation 4.41.

U1(s) ¼ 2
s2
þ 1

s
� 4

e�s

s2
þ 2

e�2s

s2
� e�3s

s
(P3) (4:42)

From Equation 4.39, U(s) is therefore

U(s) ¼ 1
1� e�3s

1� e�3s

s
þ 2� 4e�s þ 2e�2s

s2

� �
(4:43)

An alternate approach to finding U(s) is to evaluate the integral in Equation 4.37 in pieces, namely

U(s) ¼ 1
1� e�3s

ð1
0

e�st(2t þ 1)dt þ
ð2
1

e�st(�2t þ 5)dt þ
ð3
2

e�st(1)dt

24 35 (4:44)

In general, the second approach is more time-consuming because of the need to evaluate definite
integrals.

Example 4.5

Find the function y(t) whose Laplace transform is Y(s)¼ 1=(s2(sþ 2)).

Y(s) is expressed as a product of terms,

Y(s) ¼ 1
s2
� 1
(sþ 2)

¼ F(s) �G(s) (4:45)

158 Simulation of Dynamic Systems with MATLAB® and Simulink®

where

F(s) ¼ 1
s2
, G(s) ¼ 1

(sþ 2)
(4:46)

From Table 4.1, the functions f(t) and g(t) are

f (t) ¼ t, t � 0, and g(t) ¼ e�2t, t � 0 (4:47)

From the convolution property P8, y(t) is the convolution of f(t) and g(t).

y(t) ¼ f * g ¼
ðt
0

f (t � t)g(t)dt ¼
ðt
0

(t � t)e�2tdt (4:48)

Evaluating the definite integral in Equation 4.48 gives

y(t) ¼ t
ðt
0

e�2tdt�
ðt
0

te�2tdt ¼ 1
4
(2t � 1þ e�2t), t � 0 (4:49)

The same result is obtained using the alternate form of the convolution integral,

y(t) ¼ g * f ¼
ðt
0

g(t � t)f (t)dt ¼
ðt
0

e�2(t�t)tdt ¼ e�2t
ðt
0

te2tdt (4:50)

4.2.2 INVERSE LAPLACE TRANSFORM

The last example required us to find the function y(t) satisfying L{y(t)}¼ y(s). In this context, y(t) is
referred to as the inverse Laplace transform of Y(s). In general, given a Laplace transform
F(s) ¼ L{f (t)}, f(t) can be determined using the inverse function L�1{F(s)} (Ogata 1998),

f (t) ¼ L�1{F(s)} ¼ 1
2pj

ðzcþj1

zc�j1
F(s)estds, t > 0 (4:51)

where zc is a real constant chosen to assure convergence of the integral. Finding f(t) in Equation 4.51
requires evaluating an integral of a function of a complex variable over a contour in the s-plane.
Fortunately, there is a simpler approach to performing the inverse Laplace transformation when F(s)
involves a ratio of polynomials in s. To illustrate, suppose we are asked to find the inverse Laplace
transform of F(s) where

F(s) ¼ 1=2
s2
� 1=4

s
þ 1=4
sþ 2

(4:52)

Linear Systems Analysis 159

Inverse Laplace transforming both sides of Equation 4.52 and using the linearity property P1, we
can write

f (t) ¼ L�1{F(s)} ¼ L�1 1=2
s2
� 1=4

s
þ 1=4
sþ 2

�
(4:53)

¼ L�1 1=2
s2

�
� L�1 1=4

s

�
þ L�1 1=4

sþ 2

�
(4:54)

¼ 1
2
L�1 1

s2

�
� 1
4
L�1 1

s

�
þ 1
4
L�1 1

sþ 2

�
(4:55)

From Table 4.1,

L�1 1
s2

�
¼ t, t � 0, L�1 1

s

�
¼ 1, t � 0, L�1 1

sþ 2

�
¼ e�2t, t � 0 (4:56)

) f (t) ¼ 1
2
t � 1

4
þ 1
4
e�2t, t � 0 (4:57)

Note y(t) in Equation 4.49 and f(t) in Equation 4.57 are the same functions. Therefore, Y(s) in
Equation 4.45 and F(s) in Equation 4.52 are equal, that is,

1
s2(sþ 2)

¼ 1=2
s2
� 1=4

s
þ 1=4
sþ 2

(4:58)

This suggests that the inverse Laplace transform of a quotient like the one on the left-hand side of
Equation 4.58 can be found by first expressing it as a summation of terms and then resorting to a
table of Laplace transform pairs. This method is termed partial fraction expansion and will be
discussed shortly. First, we establish the need for inverting Laplace transforms expressed in terms of
proper fractions with polynomials in ‘‘s’’ in the numerator and denominator.

4.2.3 LAPLACE TRANSFORM OF THE SYSTEM RESPONSE

The significance of Laplace transforms in the analysis of LTI dynamic systems is in large part a
consequence of property P6, which relates the Laplace transform of df(t)=dt and higher derivatives
to F(s), the Laplace transform of f(t). For example, consider a linear second-order system with input
u(t) and output y(t) with initial conditions y(0), _y(0) modeled by

d2

dt2
y(t)þ a1

d

dt
y(t)þ a0y(t) ¼ b2

d2

dt2
u(t)þ b1

d

dt
u(t)þ b0u(t) (4:59)

Laplace transforming both sides of Equation 4.59, with L{u(t)} ¼ U(s) and L{y(t)} ¼ Y(s)
results in

s2Y(s)� sy(0)� _y(0)þ a1[sY(s)� y(0)]þ a0Y(s)

¼ b2[s
2U(s)� su(0)� _u(0)]þ b1[sU(s)� u(0)]þ b0U(s) (4:60)

where u(0) and _u(0) are the initial values of the input and its first derivative.

160 Simulation of Dynamic Systems with MATLAB® and Simulink®

Collecting terms and solving for Y(s) give

Y(s) ¼ b2s2 þ b1sþ b0
s2 þ a1sþ a0

� �
U(s)� b2u(0)sþ b2 _u(0)þ b1u(0)

s2 þ a1sþ a0

� �
|ffl{zffl}

terms involving input u(t)

þ y(0)sþ _y(0)þ a1y(0)
s2 þ a1sþ a0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

term involving initial state, [y(0), _y(0)]T

(4:61)

The complete response y(t) consists of two components. The first,

yzs(t) ¼ L�1 b2s2 þ b1sþ b0
s2 þ a1sþ a0

� �
U(s)� b2u(0)sþ b2 _u(0)þ b1u(0)

s2 þ a1sþ a0

�
(4:62)

is called the zero-state response, so named because it represents the system’s response when the
initial state is zero, that is, y(0)¼ _y(0)¼ 0. The terms in Equation 4.62 result from the presence of a
forcing function u(t), which explains why the zero-state response is also referred to as the forced
response.

The second component is the zero-input response, which is the response of the unforced system,
that is, u(t)¼ 0, t � 0. It is also known as the free response.

yzi(t) ¼ L�1 y(0)sþ _y(0)þ a1y(0)
s2 þ a1sþ a0

�
(4:63)

For an elementary type of input u(t), its Laplace transform U(s) will be a ratio of polynomials in s
(see Table 4.1) with the order of the denominator higher than the order of the numerator by at least
one. Thus, the terms inside the brackets in Equations 4.62 and 4.63 are also proper fractions with
numerator and denominator polynomials in s.

For example, suppose y(0)¼ y0, _y(0)¼ _y0 and u(t)¼ sin vt, t � 0. Since u(0)¼ 0 and _u(0)¼v,
Y(s) becomes

Y(s) ¼ b2s2 þ b1sþ b0
s2 þ a1sþ a0

� �
v

s2 þ v2
� b2v

s2 þ a1sþ a0

� �
þ y0sþ _y0 þ a1y0

s2 þ a1sþ a0
(4:64)

¼ y0s3 þ (a1y0 þ _y0)s2 þ v(b1 þ y0v)sþ v(a1y0vþ _y0vþ b0 � b2v2)

s4 þ a1s3 þ (a0 þ v2)s2 þ a1v2sþ a0v2
(4:65)

Inverting Y(s) is facilitated by decomposing the right-hand side of Equation 4.65 into a sum of terms
for which the inverse Laplace transform is readily determined from tables such as Table 4.1. The
same applies for higher order systems with arbitrary inputs.

4.2.4 PARTIAL FRACTION EXPANSION

The second-order system example demonstrates that Y(s) will ordinarily be a proper fraction with
polynomials in ‘‘s’’ in the numerator and denominator, that is,

Y(s) ¼ N(s)

D(s)
¼ amsm þ am�1sm�1 þ � � � þ a1sþ a0

sn þ bn�1sn�1 þ � � � þ b1sþ b0
, (n > m) (4:66)

We begin the process of expanding Y(s) into a sum of terms by determining the roots of D(s)¼ 0.
The nature of the n roots will dictate the form of the expansion. A number of cases will be
considered.

Linear Systems Analysis 161

Case I: All roots of D(s)¼ 0 are real and distinct
Let the n distinct roots be the real numbers p1, p2, . . . , pn obtained by factoring the denominator
D(s) into

D(s) ¼ (s� p1)(s� p2) � � � (s� pn) (4:67)

) Y(s) ¼ N(s)

D(s)
¼ amsm þ am�1sm�1 þ � � � þ a1sþ a0

(s� p1)(s� p2) � s(s� pn)
(4:68)

p1, p2, . . . , pn are called the poles of Y(s). The partial fraction expansion of Y(s) is

Y(s) ¼ amsm þ am�1sm�1 þ � � � þ a1sþ a0
(s� p1)(s� p2) � � � (s� pn)

¼ c1
s� p1

þ c2
s� p2

þ � � � þ cn
s� pn

(4:69)

where the constants ci, i¼ 1, 2, . . . , n, referred to as the residues of Y(s) at the respective poles pi,
i¼ 1, 2, . . . , n, are obtained from

ci ¼ (s� pi)
N(s)

D(s)

� �
s¼pi

(4:70)

¼ amsm þ am�1sm�1 þ . . .þ a1sþ a0
(s� p1)(s� p2) . . . (s� pi�1)(s� piþ1) . . . (s� pn)

� �
s¼pi

, i ¼ 1, 2, . . . , n (4:71)

Example 4.6

Find the inverse Laplace transform of

Y(s) ¼ s2 þ 1
s3 þ 10:5s2 þ 14sþ 4:5

(4:72)

Factoring the denominator leads to the partial fraction expansion as follows:

Y(s) ¼ s2 þ 1
(sþ 0:5)(sþ 1)(sþ 9)

¼ c1
sþ 0:5

þ c2
sþ 1

þ c3
sþ 9

(4:73)

The constants c1, c2, and c3 are obtained from Equation 4.71 as follows:

c1 ¼ (s ¼ 0:5)
s2 þ 1

(sþ 0:5)(sþ 1)(sþ 9)

� �
s¼�0:5

¼ (�0:5)2 þ 1
(�0:5þ 1)(�0:5þ 9)

¼ 5
17

(4:74)

c2 ¼ (sþ 1)
s2 þ 1

(sþ 0:5)(sþ 1)(sþ 9)

� �
s¼�1
¼ (�1)2 þ 1

(�1þ 0:5)(�1þ 9)
¼ �1

2
(4:75)

c3 ¼ (sþ 9)
s2 þ 1

(sþ 0:5)(sþ 1)(sþ 9)

� �
s¼�9
¼ (�9)2 þ 1

(�9þ 0:5)(�9þ 1)
¼ 41

34
(4:76)

) Y(s) ¼ 5=17
sþ 0:5

� 1=2
sþ 1

þ 41=34
sþ 9

(4:77)

y(t) is obtained by inverse Laplace transforming the terms in Equation 4.77,

y(t) ¼ L�1 5=17
sþ 0:5

� 1=2
sþ 1

þ 41=34
sþ 9

�
(4:78)

¼ 5
17

e�0:5t � 1
2
e�t þ 41

34
e�9t, t � 0 (4:79)

162 Simulation of Dynamic Systems with MATLAB® and Simulink®

Case II: All roots of D(s)¼ 0 are real and at least one is a multiple root
Suppose p1 has multiplicitym1 and p2 multiplicitym2. There are a total of n�m1�m2þ 2 distinct
pole values, that is, p1, p2, p3, . . . , pn�m1�m2þ2. In factored form, D(s) is

D(s) ¼ (s� p1)m1 (s� p2)m2 (s� p3) � � � s� pn�m1�m2þ2ð Þ (4:80)

The partial fraction expansion of Y(s) is

Y(s) ¼ am1

(s� p1)m1
þ am1�1
(s� p1)m1�1 þ � � � þ

a1
(s� p1)

þ bm2

(s� p2)m2
þ bm2�1
(s� p2)m2�1 þ � � � þ

b1

(s� p2)

þ c1
s� p3

þ c2
s� p4

þ � � � þ cn�m1�m2

s� pn�m1�m2þ2
(4:81)

Note the number of terms in the expansion corresponding to a particular pole is identical to the
order (multiplicity) of the pole. The constants ci, i¼ 1, 2, . . . , n�m1�m2 are evaluated in the
same way as in Case I. For example, c1 is obtained from

c1 ¼ (s� p3)
N(s)
D(s)

� �
s¼p3

¼ amsm þ am�1sm�1 þ � � � þ a1sþ a0
(s� p1)m1 (s� p2)m2 � � � (s� p4)(s� p5) � � � (s� pn�m1�m2þ2)

� �
s¼p3

(4:82)

The constants am1 , am1�1, . . . , a2, a1 are evaluated using

ak ¼ 1
(m1 � k)

dm1�k

dsm1�k (s� p1)m1
N(s)
D(s)

� �
s¼p1

, k ¼ m1, m1 � 1, . . . , 2, 1 (4:83)

A similar formula applies for the constants bm2 , bm2�1, . . . ,b2, b1.

Example 4.7

Y(s) ¼ 1
s5 þ 14s4 þ 75s3 þ 194s2 þ 244sþ 120

(4:84)

(a) Find the partial fraction expansion of Y(s).
(b) Find y(t).

(a) The poles of Y(s) are found by using a root-solving program such as the MATLAB® function
‘‘roots’’ that returns the roots of a polynomial. The call is ‘‘roots(a)’’where ‘‘a’’ is the array of
coefficients in descending order of the polynomial. With a¼[1 14 75 194 244 120], ‘‘roots
(a)’’ returns �5, �3, �2, �2, �2. Y(s) is written with its denominator in factored form and then
expanded as follows:

Y(s) ¼ 1
(sþ 2)3(sþ 3)(sþ 5)

¼ a3
(sþ 2)3

þ a2
(sþ 2)2

þ a1
sþ 2

þ c1
sþ 3

þ c2
sþ 5

(4:85)

Linear Systems Analysis 163

Evaluating c1 and c2 first,

c1 ¼ (sþ 3)
1

(sþ 2)3(sþ 3)(sþ 5)

� �
s¼�3
¼ 1

(�3þ 2)3(�3þ 5)

� �
¼ �1

2
(4:86)

c2 ¼ (sþ 5)
1

(sþ 2)3(sþ 3)(sþ 5)

� �
s¼�5
¼ 1

(�5þ 2)3(�5þ 3)

� �
¼ 1

54
(4:87)

Next, the coefficients a3, a2, and a1 are computed from Equation 4.83

a3 ¼ 1
(3� 3)

d3�3

ds3�3
(sþ 2)3

1
(sþ 2)3(sþ 3)(sþ 5)

� �
s¼�2

¼ 1
(�2þ 3)(�2þ 5)

� �
¼ 1

3
(4:88)

a2 ¼ 1
(3� 2)

d3�2

ds3�2
(sþ 2)3

1
(sþ 2)3(sþ 3)(sþ 5)

� �
s¼�2

(4:89)

¼ d
ds

1
(sþ 3)(sþ 5)

� �
s¼�2
¼ �1(2sþ 8)

(s2 þ 8sþ 15)2

� �
s¼�2
¼ � 4

9
(4:90)

a1 ¼ 1
(3� 1)!

d3�1

ds3�1
(sþ 2)3

1
(sþ 2)3(sþ 3)(sþ 5)

� �
s¼�2

(4:91)

¼ 1
2

d2

ds2
1

(sþ 3)(sþ 5)

� �
s¼�2
¼ 3s2 þ 24sþ 49

(s2 þ 8sþ 15)3

� �
s¼�2
¼ 13

27
(4:92)

An alternative approach to finding the constants c1, c2, a3, a2, and a1 is to use the ‘‘residue’’
function in MATLAB that finds the poles of Y(s) and the residues as well. Y(s) is defined by
arrays n¼[1], d¼[1 14 75 194 244 120], and the statement ‘‘[R, P]¼residue (n, d)’’
returns the poles �5, �3, �2, �2, �2 in array ‘‘P’’ and the residues 1=54, �1=2, 13=27, �4=9, 1=3
in array ‘‘R.’’

(b) From Table 4.1 and property P2, the inverse transform of Y(s) in Equation 4.85 is

y(t) ¼ a3e�2t
t2

2
þ a2e�2t t þ a1e�2t þ c1e�3t þ c2e�5t (4:93)

Substituting the values for c1 and c2 from Equations 4.86 and 4.87 as well as a3, a2, and a1 from
Equations 4.88, 4.90, and 4.92 into Equation 4.93 gives

y(t) ¼ 1
6
e�2t t2 � 4

9
e�2t t þ 13

27
e�2t � 1

2
e�3t þ 1

54
e�5t (4:94)

Case III: Complex roots of D(s)¼ 0
When the polynomial D(s) possesses nonrepeated complex roots, it is possible to apply Case I or II
and obtain the partial fraction expansion. However, the coefficients will be complex numbers, and
the partial fraction expansion will include complex exponentials, which have to be combined in a
way to produce real-valued functions. There are two alternatives that eliminate the need for
complex number arithmetic. Both are presented followed by an illustrative example.

Suppose the denominator of Y(s) in Equation 4.66 has a single pair of complex roots. Factoring
the denominator into a product of linear factors and a quadratic factor,

Y(s) ¼ N(s)
D(s)
¼ amsm þ am�1sm�1 þ � � � þ a1sþ a0

(s� p1)(s� p2) � � � (s� pn�2)(as2 þ bsþ c)
(4:95)

164 Simulation of Dynamic Systems with MATLAB® and Simulink®

where p1, p2, . . . , pn�2 are real and as2þbsþ c¼ 0 has complex roots a
 jb (b> 0). For
simplicity, assume the poles p1, p2, . . . , pn�2 are distinct. The partial fraction expansion is

Y(s) ¼ N(s)
D(s)
¼ c1

s� p1
þ c2
s� p2

þ � � � þ cn�2
s� pn�2

þ d1sþ d2

as2 þ bsþ c
(4:96)

The constants c1, c2, c3, . . . , cn�2 are obtained as before (Case I). The constants d1 and d2
are obtained by recombining the terms on the right-hand side of Equation 4.96 and then
equating the coefficients of powers of s in the numerator with the coefficients of like powers of s
in the original form of the numerator N(s). The inverse Laplace transform of the last term in
Equation 4.96 is

L�1 d1sþ d2

s2 þ asþ b

�
¼ eat d1 cosbt

d1aþ d2
b

� �
sinbt

� �
(4:97)

To illustrate, consider

Y(s) ¼ sþ 1
s4 þ 5s3 þ 11s2 þ 15s

¼ sþ 1
s(sþ 3)(s2 þ 2sþ 5)

(4:98)

¼ c1
s
þ c2
sþ 3

þ d1sþ d2

s2 þ 2sþ 5
(4:99)

From the quadratic formula, the roots of s2þ 2sþ 5 are �1
 j2. Thus, a¼�1 and b¼ 2. The
constants c1 and c2 are calculated from

c1 ¼ s
sþ 1

s(sþ 3)(s2 þ 2sþ 5)

� �
s¼0
¼ sþ 1

(sþ 3)(s2 þ 2sþ 5)

s¼0
¼ 1

15
(4:100)

c2 ¼ (sþ 3)
sþ 1

s(sþ 3)(s2 þ 2sþ 5)

� �
s¼�3
¼ sþ 1

s(s2 þ 2sþ 5)

s¼�3
¼ 1

12
(4:101)

Combining terms in Equation 4.99 over a common denominator and equating the numerator to
sþ 1, the numerator in Equation 4.98 gives

sþ 1 ¼ 1
15

(sþ 3)(s2 þ 2sþ 5)þ 1
12

s(s2 þ 2sþ 5)þ (d1sþ d2)s(sþ 3) (4:102)

) sþ 1 ¼ 1
15
þ 1
12
þ d1

� �
s3 þ 1

3
þ 1
6
þ 3d1 þ d2

� �
s2 þ 11

15
þ 5
12
þ 3d2

� �
sþ 1 (4:103)

Equating coefficients of like powers of s on both sides of Equation 4.103,

s3: 0 ¼ 1
15
þ 1
12
þ d1) d1 ¼ � 1

15
� 1
12
¼ � 3

20

s2: 0 ¼ 1
3
þ 1
6
þ 3d1 þ d2) d2 ¼ � 1

3
� 1
6
� 3d1 ¼ � 1

2
� 3 � 3

20

� �
¼ � 1

20

s1: 1 ¼ 11
15
þ 5
12
þ 3d2) d2 ¼ 1

3
1� 11

15
� 5
12

� �
¼ � 1

20

s0: 1 ¼ 1

Note, only two of the first three equations are needed to solve for d1 and d2, and the remaining two
equations serve as a check. Solving for c1 and c2 directly in Equations 4.100 and 4.101 eliminates

Linear Systems Analysis 165

the need to solve four simultaneous equations for the unknown constants c1, c2, d1, and d2.
Substituting the values for c1, c2, d1, and d2 into Equation 4.99 yields

Y(s) ¼ 1=15
s
þ 1=12
sþ 3

þ (�3=20)s� 1=20
s2 þ 2sþ 5

(4:104)

¼ 1
15

1
s

� �
þ 1
12

1
sþ 3

� �
� 1
20

3sþ 1
s2 þ 2sþ 5

� �
(4:105)

The last term is inverted using Equation 4.97 with d1¼ 3, d2¼ 1, a¼�1, and b¼ 2.

Y(t) ¼ 1
15
þ 1
12

e�3t � 1
20

e�t 3 cos 2t þ 3(�1)þ 1
2

� �
sin 2t

� �
(4:106)

¼ 1
15
þ 1
12

e�3t � 1
20

e�t(3 cos 2t � sin 2t) (4:107)

The second method for inverse Laplace transforming terms like the one in Equation 4.97 is based on
decomposing it into two terms that can be readily inverted. Starting with an expression containing a
quadratic in the denominator with complex roots, the first step is to complete the square as illustrated
in the following equations:

F(s) ¼ d1sþ d2
s2 þ asþ b

(4:108)

¼ d1sþ d2
(s2 þ asþ a2=4)þ (b� a2=4)

(4:109)

¼ d1sþ d2
(sþ a=2)2 þ v2

v2 ¼ b� a2

4

� �
(4:110)

After completing the square in the denominator, Equation 4.110 is expressed as the sum of two
terms that are the Laplace transforms of shifted trigonometric functions.

F(s) ¼ d1[(sþ a=2)� a=2]þ d2
(sþ a=2)2 þ v2

(4:111)

¼ d1
(sþ a=2)

(sþ a=2)2 þ v2
þ d2 � (a=2)d1

v

� �
v

(sþ a=2)2 þ v2
(4:112)

From Table 4.1 and the shifting property P2, f (t) ¼ L�1{F(s)} is

f (t) ¼ d1e
�(a=2)t cosvt þ d2 � (a=2)d1

v

� �
e�(a=2)t sinvt (4:113)

Returning to the previous example,

1
20

3sþ 1
s2 þ 2sþ 5

� �
¼ 1

20
d1sþ d2

s2 þ asþ b

� �
(4:114)

making d1¼ 3, d2¼ 1, a¼ 2, b¼ 5, and v2¼ b� a2=4¼ 4. Substituting the values for d1, d2, a, b,
and v into Equation 4.113 leads to the inverse Laplace transform,

1
20

d1e
�(a=2)t cosvt þ d2 � (a=2)d1

v

� �
e�(a=2)t sinvt

�
¼ 1

20
(3e�t cos 2t � e�t sin 2t) (4:115)

in agreement with the result shown in Equation 4.107.

166 Simulation of Dynamic Systems with MATLAB® and Simulink®

Rather than having to remember

L�1 d1sþ d2
s2 þ asþ b

�
¼ d1e

�(a=2)t cosvt þ d2 � (a=2)d1
v

� �
e�(a=2)t sinvt (4:116)

the inverse Laplace transform in the last example can be obtained directly by completing the square,
that is,

F(s) ¼ 1
20

3sþ 1
s2 þ 2sþ 5

� �
(4:117)

¼ 1
20

3[(sþ 1)� 1]þ 1

(sþ 1)2 þ 22

�
(4:118)

¼ 1
20

3(sþ 1)� 2

(sþ 1)2 þ 22

� �
(4:119)

¼ 1
20

3
(sþ 1)

(sþ 1)2 þ 22
� 2

(sþ 1)2 þ 22

� �
(4:120)

Inverse Laplace transformation of F(s) gives the same f(t) in Equation 4.115.

EXERCISES

4.1 Find the Laplace transforms of the functions f(t) given below. Note that û(t� t0) is the unit step
function delayed t0 units of time.
(a) t2 sin 2t (b) tû(t � 1) (c) (t � 1)û(t) (d) 2[û(t � 1)� û(t � 4)]
(e) (d=dt)(te�t) (f) sin(2tþp=4) (g) (1� 3t)e�3t (h) e�3t

Ð t
0 sin 2t cos 2tdt

(i) sin2 t (j) te�2t sin 3t (k)
Ð t
0 te

�2t cos 3(t � t)dt
4.2 Find the inverse Laplace transforms of the functions F(s) given in the following:

(a)
1

(s2 � 1)
(b)

1

(sþ 2)2 þ 9
(c)

sþ 1
(sþ 2)(sþ 3)

(d)
sþ 1

s(s2 � 4)3

(e)
e�s � e�3s

s(sþ 1)
(f)

sþ 1
s2 þ 1

(g)
2sþ 1

(s2 þ sþ 1)2
(h)

s

(s2 þ 2sþ 5)(s2 þ 5sþ 6)
4.3 Find the Laplace transform of the functions f(t) in Figure E4.3a and b. In Figure E4.3b, the

function is parabolic over the intervals 0 � t< 2 and 4 � t< 6 and passes through the points
(0, 0), (1, 3), (2, 4) and (4, 4), (5, 3), (6, 0).

f (t)

21 3 4 5 6

1
2
3
4
5

0
0 t

(a) (b)
21 3 4 5 6

1
2
3
4
5

0
0 t

f (t)

FIGURE E4.3

Linear Systems Analysis 167

4.4 Graph the function f(t) defined by

f (t) ¼ tû(t)þ (t � 1)û(t � 1)� 2tû(t � 2)þ û(t � 3)

and find its Laplace transform.
4.5 Find the Laplace transform of the periodic function f(t) shown in Figure E4.5:

0 1 2 3 4 5 6 7 8
t

2

3

f (t)

0

1

f (t) = f (t – 2), 0 ≤ t < ∞

FIGURE E4.5

4.3 TRANSFER FUNCTION

Before we introduce the transfer function, the concept of an impulse function is presented because
of its relevance to the response of LTI systems.

4.3.1 IMPULSE FUNCTION

An impulse function at t¼ t0, denoted d(t� t0), is defined by its property of sifting the value of a
function f(t) at t0 inside an integral, that is,

ð1
�1

d(t � t0)f (t)dt ¼ f (t0), �1 < t0 <1 (4:121)

f * g

The impulse function d(t� t0) is equal to zero wherever t 6¼ t0 and is not finite at t¼ t0. No such
function exists in a physical sense; however, it can be used to approximate real signals x(t), which
occur over a very short duration D and satisfy the condition

ðt0þD
t0

x(t)dt ¼ 1 (4:122)

as illustrated in Figure 4.6.

Area = 1

t t0 + Δ t0

x(t)

t t

Unit impulse function
lim
Δ 0 δ(t − t0)

FIGURE 4.6 The unit impulse function d(t� t0) as a limit of a real function x(t).

168 Simulation of Dynamic Systems with MATLAB® and Simulink®

From Equation 4.121, the Laplace transform of d(t� t0) is given by

ð1
0

d(t � t0)e
�stdt ¼ e�st0, t0 > 0 (4:123)

When t0¼ 0, Equation 4.123 with lower limit 0� reduces to

L{d(t)} ¼ 1 (4:124)

4.3.2 RELATIONSHIP BETWEEN UNIT STEP FUNCTION AND UNIT IMPULSE FUNCTION

The unit step function û(t) that equals 1 for t> 0 and 0 for t> 0 is discontinuous at t¼ 0. Although it
cannot be implemented in a physical sense, it serves as an approximation to actual signals, which
switch from one level to another in a very short period of time. The first derivative of a unit step
function is zero everywhere except at the origin where it fails to exist as a result of the discontinuity.
The unit impulse function d(t) is likewise zero for all values of t except t¼ 0 where it is infinite.

The unit impulse function d(t) can be thought of as the derivative of the unit step function û(t).
This provides a framework for analyzing systems with discontinuous inputs that result when input
derivatives are present in the mathematical model (Ogata 1998). To illustrate, consider the first-
order system differential equation model

dy

dt
þ 2y ¼ du

dt
þ u (4:125)

where the input u¼ û(t) and the system is initially at rest, that is, y(0�)¼ 0. Note that the initial time
is taken as 0� to indicate the initial state value prior to application of the step input at t¼ 0.
Substituting û(t) for u in Equation 4.125 and replacing (d=dt)û(t) with d(t),

dy

dt
þ 2y ¼ d

dt
û(t)þ û(t) ¼ d(t)þ û(t) (4:126)

We learned in Chapter 2 that differential equations, where the highest order derivatives of the input
and output are identical, possess a direct path between the input and output. We should therefore
expect the output y(t) in Equation 4.125 to be discontinuous at t¼ 0, that is, y(0þ) 6¼ y(0�) when the
input is a unit step û(t). The impulse function on the right-hand side of Equation 4.126 is infinite at
t¼ 0 accounting for the jump in y(t) over the infinitesimal time period from t¼ 0� to t¼ 0þ.

It is possible to demonstrate this behavior without actually solving Equation 4.126 for y(t).
Solving for dy=dt in Equation 4.126,

dy

dt
¼ d(t)û(t)� 2y (4:127)

Integrating both sides of Equation 4.127 from 0� to t,

y(t) ¼
ðt
0�

[d(l)þ û(l)� 2y(l)]dl (4:128)

Linear Systems Analysis 169

Decomposing the integral in Equation 4.128 into two separate integrals,

y(t) ¼
ð0þ
0�

[d(l)þ û(l)� 2y(l)]dlþ
ðt
0þ

[d(l)þ û(l)� 2y(l)]dl (4:129)

The first integral simplifies because û(t) and y(t) are both finite at t¼ 0. The second integral
simplifies by virtue of d(t)¼ 0 and û(t)¼ 1 for t � 0þ. Equation 4.129 becomes

y(t) ¼
ð0þ
0�

d(l)dlþ
ðt
0þ

[1� 2y(l)]dl (4:130)

From the sifting property of the impulse function, Equation 4.121, the first term on the right-hand
side of Equation 4.130 is 1. Evaluating y(t) at t¼ 0þ,

y(0þ) ¼ 1þ
ð0þ
0þ

[1� 2y(l)]dl ¼ 1 (4:131)

proving that y(t) is discontinuous at t¼ 0 since y(0�)¼ 0.
For functions that are discontinuous at the origin, the initial conditions in the differentiation

property of Laplace transforms (P6) apply at t¼ 0�. Hence, for n¼ 1

L dy

dt

�
¼ sY(s)� y(0�) (4:132)

Returning to Equation 4.126, Laplace transformation of both sides yields

sY(s)� y(0�)þ 2Y(s) ¼ 1þ 1
s

(4:133)

) Y(s) ¼ sþ 1
s(sþ 2)

þ y(0�)
sþ 2

¼ sþ 1
s(sþ 2)

¼ 1
2

1
s
þ 1
sþ 2

� �
(4:134)

) Y(t) ¼ 1
2
(1þ e�2t), t � 0þ (4:135)

Substituting t¼ 0þ in Equation 4.135 gives y(0þ)¼ 1 in agreement with Equation 4.131.
The initial condition y(0þ) can be obtained by applying the initial value property of Laplace

transforms that states

P9:

y(0þ) ¼ lim
t!0þ

y(t) ¼ lim
s!1 sY(s) (4:136)

In this example,

y(0þ) ¼ lim
s!1 sY(s) ¼ lim

s!1 s
sþ 1

s(sþ 2)

� �
¼ 1 (4:137)

170 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.3.3 IMPULSE RESPONSE

The response of LTI systems to an impulse forcing function is of great interest. We shall see why
momentarily, but first an example is presented illustrating the process of finding the response of a
simple system to an ‘‘impulse-like’’ input and comparing it with the true impulse response of the
system.

Example 4.8

A spring-mass-damper system is struck by a hammer resulting in a force f(t) like the one shown in
Figure 4.7.

(a) Find and graph the response x(t) for T¼ 1, 0.5, 0.1, 0.01 s.
(b) Find and graph the impulse response.

(a) The differential equation model of the system is

m€xþ c _xþ kx ¼ f) €xþ 2 _xþ 4x ¼ 1
T
[û(t)� û(t � T)] (4:138)

Laplace transforming Equation 4.138 with zero initial conditions,

(s2 þ 2sþ 4)X(s) ¼ 1
T

1
s
� e�Ts

s

� �
(4:139)

X(s) ¼ 1
T

1� e�Ts

s(s2 þ 2sþ 4)

� �
(4:140)

Inverse Laplace transformation of Equation 4.140 eventually results in

x(t) ¼ 1
4T

1� e�t cos
ffiffiffiffiffi
3t
p
þ 1ffiffiffi

3
p sin

ffiffiffiffiffi
3t
p� �� �

� 1
4T

1� e�(t�T) cos
ffiffiffi
3
p

(t � T)þ 1ffiffiffi
3
p sin

ffiffiffi
3
p

(t � T)
� � �

û(t � T) (4:141)

which is simply a linear combination of the step response and a delayed version of the step
response. Graphs of Equation 4.141 for T¼ 1, 0.5, 0.1, 0.01 s are generated in the M-file
‘‘Chap4_Ex3_1.m’’ and shown in Figure 4.8.

c = 2

m = 1

f(t)

x

k = 4

T0

1
T

t

f(t)

FIGURE 4.7 Mechanical system with pulse input f(t).

Linear Systems Analysis 171

(b) The true impulse response is obtained by Laplace transforming

€xþ 2 _xþ 4x ¼ d(t) (4:142)

) (s2 þ 2sþ 4)X(s) ¼ 1 (4:143)

Solving for X(s) followed by inverse Laplace transformation results in

ximpulse response(t) ¼ 1ffiffiffi
3
p e�t sin

ffiffiffiffiffi
3t
p

, t � 0 (4:144)

It is graphed in Figure 4.8 and appears identical to the response x(t) when the pulse width T¼ 0.01 s.
Hence, the impulse response provides an accurate approximation of how the mechanical system
responds to inputs of short (relative to the time constants of the system’s natural modes) duration.

In Section 4.4.2, a mathematical model of a second-order system with input u(t) and output y(t)
was introduced as an example of how Laplace transforms can be used to solve for the system
response. The second-order LTI system shown in Figure 4.9 is referred to as a single input–single
output (SISO) system. The mathematical model is given by

d2

dt2
y(t)þ a1

d
dt

y(t)a0y(t) ¼ b2
d2

dt2
u(t)þ b1

d
dt

u(t)þ b0u(t) (4:145)

Laplace transforming Equation 4.145, with zero initial conditions for the input, output, and their
derivatives, leads to

Y(s) ¼ b2s2 þ b1sþ b0

s2 þ a1sþ a0

� �
U(s) (4:146)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
− 0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

t (s)

x(
t)

T = 0.01 s

Impulse response

T = 0.1 s

T = 0.5 s

T = 1 s

Pulse response for different pulse widths and impulse response

FIGURE 4.8 Pulse response of mechanical system for T¼ 1, 0.5, 0.1, 0.01 s and the impulse response.

Linear
time-invariant

second-order system
u(t) y(t)

FIGURE 4.9 Second-order system with input u(t) and output y(t).

172 Simulation of Dynamic Systems with MATLAB® and Simulink®

The ratio of Y(s) to U(s), when all initial conditions are identically zero, is called the transfer
function of the system. Denoting it by H(s),

H(s) ¼ Y(s)
U(s)
¼ b2s2 þ b1sþ b0

s2 þ a1sþ a0

� �
(4:147)

Consider an nth-order LTI system with transfer function expressible as the ratio of two polynomials
in proper fraction form, that is, the denominator polynomial is higher order than the numerator
polynomial as in

H(s) ¼ bmsm þ bm�1sm�1 þ � � � þ b1sþ b0

sn þ an�1sn�1 þ � � � þ a1sþ a0
(n > m) (4:148)

The transfer function in Equation 4.148 is an alternative to the differential equation model
representation of the system dynamics. It offers a convenient way of determining the forced
response of an LTI system. From Equation 4.147, Y(s) is equal to the product of the system transfer
function H(s) and the Laplace transform of the input,

Y(s) ¼ H(s)U(s) (4:149)

and the response is obtained by inverse Laplace transformation y(t)¼L�1{Y(s)}.
The following examples illustrate the use of the transfer function to obtain the forced response

of an LTI system.

Example 4.9

A first-order system is governed by the differential equation

dy
dt
þ 2y ¼ u, y(0) ¼ 0 (4:150)

(a) Find H(s), the transfer function of the system.
(b) Find y(t), the response when u(t) is (i) sin 3t, t � 0 and (ii) û(t).

(a) From Equation 4.148 with n¼ 1, m¼ 0, b0¼ 1, and a0¼ 2

H(s) ¼ b0

sþ a0
¼ 1

sþ 2
(4:151)

(b) For u(t)¼ sin 3t, U(s)¼ 3=(s2þ 9) and Equation 4.149 becomes

Y(s) ¼ H(s)U(s) ¼ 1
sþ 2

� 3
s2 þ 9

(4:152)

¼ 3
13

1
sþ 2

� s� 2
s2 þ 9

� �
(4:153)

¼ 3
13

1
sþ 2

� s
s2 þ 9

þ 2
3

3
s2 þ 9

� �
(4:154)

y(t) ¼ L�1{Y(s)} ¼ 3
13

e�2t � cos 3t þ 2
3
sin 3t

� �
, t � 0 (4:155)

Linear Systems Analysis 173

For u(t)¼ û(t), U(s)¼ 1=s and Equation 4.149 reduces to

Y(s) ¼ H(s)U(s) ¼ 1
sþ 2

� 1
s
¼ 1

2
1
s
� 1
sþ 2

� �
(4:156)

y(t) ¼ L�1{Y(s)} ¼ 1
2
(1� e�2t), t � 0 (4:157)

Example 4.10

For the system with transfer function,

H(s) ¼ s2 þ 3sþ 1
(sþ 1)(sþ 3)(sþ 5)

(4:158)

(a) Find the differential equation model of the system.
(b) Find the forced response to the input u(t)¼ t, t � 0.

(a) The differential equation of the system is obtained from H(s) as follows:

H(s) ¼ Y(s)
U(s)
¼ s2 þ 3sþ 1

(sþ 1)(sþ 3)(sþ 5)
¼ s2 þ 3sþ 1

s3 þ 9s2 þ 23sþ 15
(4:159)

) (s3 þ 9s2 þ 23sþ 15)Y(s) ¼ (s2 þ 3sþ 1)U(s) (4:160)

) s3Y(s)þ 9s2Y(s)þ 23sY(s)þ 15Y(s) ¼ s2U(s)þ 3sU(s)þU(s) (4:161)

Performing the inverse Laplace transformation of the individual terms with all initial conditions
zero results in the differential equation

d3

dt3
y(t)þ 9

d2

dt2
y(t)þ 23

d
dt

y(t)þ 15y(t) ¼ d2

dt2
u(t)þ 3

d
dt

u(t)þ u(t) (4:162)

(b) Substituting U(s)¼ 1=s2 in Equation 4.149 gives

Y(s) ¼ s2 þ 3sþ 1
s3 þ 9s2 þ 23sþ 15

� 1
s2

(4:163)

The MATLAB statements

n¼[1 3 1]; d¼[1 9 23 15 0 0];
[R,P]¼residue(n,d)

result in the residues and poles of the partial fraction expansion leading to the following expansion
for Y(s),

Y(s) ¼ 1
15

1
s2

� �
þ 22
225

1
s

� �
� 1
8

1
sþ 1

� �
� 1
36

1
sþ 3

� �
þ 11
200

1
sþ 5

� �
(4:164)

and the forced response is obtained by inverse Laplace transformation of Y(s),

y(t) ¼ 1
15

t þ 22
225
� 1
8
e�t � 1

36
e�3t þ 11

200
e�5t, t � 0 (4:165)

174 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.3.4 RELATIONSHIP BETWEEN IMPULSE RESPONSE AND TRANSFER FUNCTION

The impulse response function and the transfer function of an LTI system are related. Suppose the
input to an LTI system is a unit impulse function as illustrated in Figure 4.10.

Since Y(s)¼H(s)U(s)¼H(s) � 1¼H(s), it follows that

yimpulse response(t) ¼ L�1{H(s)} ¼ h(t) (4:166)

In other words, the impulse response of an LTI system is simply the inverse Laplace transform of
the system transfer function. It is denoted h(t) and referred to as the impulse response function. The
impulse response function serves as alternative way of describing the dynamics of an LTI system.
It can be used to find the forced response to an arbitrary input by first finding the transfer function
H(s)¼L{h(t)} and then proceeding in a similar manner to Example 4.10.

Alternatively, the forced response of an LTI system can be obtained directly from

y(t) ¼ L�1{H(s)U(s)} ¼
ðt
0

h(t � t)u(t)dt (4:167)

that is, by convolution of the impulse response function h(t) and the input u(t). To illustrate, the unit
step response of the third-order system in Example 4.10 is obtained using the convolution integral in
Equation 4.167.

H(s) ¼ s2 þ 3sþ 1
(sþ 1)(sþ 3)(sþ 5)

¼ 1
8
� 1
sþ 1

� 2
sþ 3

þ 11
sþ 5

� �
(4:168)

h(t) ¼ L�1{H(s)} ¼ 1
8
(�e�t � 2e�3t þ 11e�5t) (4:169)

y(t) ¼
ðt
0

h(t)u(t � t)dt ¼
ðt
0

1
8
(�e�t � 2e�3t þ 11e�5t) � 1dt (4:170)

¼ 1
8

e�t þ 2
3
e�3t � 11

5
e�5t

� �� �t
0

(4:171)

¼ 1
15
þ 1
8
e�t þ 1

12
e�3t � 11

40
e�5t, t � 0 (4:172)

The initial condition y(0�)¼ 0 and from Equation 4.172, y(0þ)¼ 0 as well. The response y(t) is
therefore continuous at t¼ 0 despite the discontinuity in the step input. In other words, a direct
coupling from the input to the output does not exist. We should expect this result by observing that
the third-order differential equation in Equation 4.162 does not contain a term on the right-hand side
involving the third derivative of the input. If we express the system model in state variable form, the
1� 1 direct coupling matrix D would be zero.

H(s)
u(t) = δ(t) y(t) = yimpulse response(t)

U(s) = 1 Y(s) = H(s) . 1

FIGURE 4.10 Linear time-invariant system with unit impulse input.

Linear Systems Analysis 175

A simulation diagram for an LTI system offers a convenient way of defining the states and
revealing whether a direct path (no integrators) exists from the input to the output. Figure 4.11
shows a simulation diagram for the third-order system

d3

dt3
y(t)þ a2

d2

dt2
y(t)þ a1

d

dt
y(t)þ a0y(t) ¼ b3

d3

dt3
u(t)þ b2

d2

dt2
u(t)þ b1

d

dt
u(t)þ b0u(t) (4:173)

in what is known as observer canonical form (Ogata 1998). This form clearly shows the direct path
from the input u to the output y when b3 6¼ 0. For the case when b3¼ 0, the state x3 is equal to the
output y and a direct path exists from u to _x3. For a unit step input, the following is true if b3¼ 0:

y(0þ) ¼ y(0�), _y(0þ) ¼ _y(0�)þ (b2 � a2b3)u(0
þ) ¼ _y(0�)þ b2 (4:174)

Consider the third-order system with transfer function given in Equation 4.159 and modeled by the
differential equation in Equation 4.162. Comparing Equations 4.162 and 4.173 implies a2¼ 9,
a1¼ 23, and a0¼ 15 and b3¼ 0, b2¼ 1, b1¼ 3, and b0¼ 1. Assuming zero initial conditions, the
first derivative jumps from _y(0�) ¼ 0 to _y(0þ) ¼ _y(0�)þ b2 ¼ 1 at t¼ 0.

Differentiating the solution for the unit step response y(t) in Equation 4.172 gives

dy

dt
¼ 1

40
(�5e�t � 10e�3t þ 55e�5t) (4:175)

At t¼ 0þ,

dy

dt
(0þ) ¼ 1

40
(�5� 10þ 55) ¼ 1 (4:176)

The system transfer function provides a convenient way of finding the forced response of an SISO
LTI system. However, finding the transfer function can be a challenge when the mathematical model
of the system consists of coupled algebraic and differential equations as opposed to a single
nth-order differential equation relating the system input and output. Fortunately, the Laplace
transform can be used to reduce the problem of finding the transfer function into one of an algebraic
nature. The alternative, namely, eliminating dependent signals and their derivatives in the time
domain, is far more cumbersome.

b0 − a0b3 b1 − a1b3 b2 − a2b3 b3

∫∫

−a0 −a1 −a2

x1 x2 x3 y
∫

u

FIGURE 4.11 Simulation diagram of third-order system in observer canonical form.

176 Simulation of Dynamic Systems with MATLAB® and Simulink®

For example, consider the bridged-T network shown in Figure 4.12.
The node voltage method for analyzing the circuit results in the following equations:

ei � v

R
¼ C1

dv

dt
þ v� v0

R
(4:177)

C2
d

dt
(ei � v0)þ v� v0

R
¼ 0 (4:178)

Rearranging Equations 4.177 and 4.178 with node voltage terms on one side and the input terms on
the other gives

RC1
dv

dt
þ 2v� v0 ¼ ei (4:179)

RC2
dv0
dt
þ v0 � v ¼ RC2

dei
dt

(4:180)

The node voltage v must be eliminated from Equations 4.179 and 4.180 to arrive at a second-order
differential equation involving ei and v0. Laplace transforming both equations with initial conditions
set to zero and collecting terms produces the algebraic system of equations

(RC1sþ 2)V(s)� V0(s) ¼ Ei(s)

�V(s)þ (RC2sþ 1)V0(s) ¼ RC2sEi(s)
(4:181)

Using Cramer’s rule, the solution for V0(s) is

V0(s) ¼
RC1sþ 2 Ei(s)
�1 RC2sEi(s)

RC1sþ 2 �1
�1 RC2sþ 1

 ¼
R2C1C2s2 þ 2RC2sþ 1

R2C1C2s2 þ R(C1 þ 2C2)sþ 1
Ei(s) (4:182)

The transfer function is

V0(s)

Ei(s)
¼ R2C1C2s2 þ 2RC2sþ 1

R2C1C2s2 þ R(C1 þ 2C2)sþ 1
(4:183)

Inverse Laplace transformation of Equation 4.183 leads to the differential equation

R2C1C2
d2v0
dt2
þ R(C1 þ 2C2)

dv0
dt
þ v0 ¼ R2C1C2

d2ei
dt
þ 2RC2

dei
dt
þ ei (4:184)

RR C1

C2

ei
v0

v

FIGURE 4.12 Circuit with input ei and output v0.

Linear Systems Analysis 177

4.3.5 SYSTEMS WITH MULTIPLE INPUTS AND OUTPUTS

In general, linear systems (and nonlinear systems) have more than a single input and output. Those
systems and their models are designated multiple input–multiple output, abbreviated as MIMO. The
transfer function concept still applies.

Suppose, for example, an LTI system such as an electric circuit is driven by independent voltage
sources e1(t) and e2(t), and signals iR(t), vC(t), and vload(t) appearing at various points in the circuit
are defined as outputs. A total of six transfer functions exist, one from each of two inputs to each of
three outputs. We can write

IR(s) ¼ G1,1(s)E1(s)þ G1,2(s)E2(s) (4:185)

VC(s) ¼ G2,1(s)E1(s)þ G2,2(s)E2(s) (4:186)

Vload(s) ¼ G3,1(s)E1(s)þ G3,2(s)E2(s) (4:187)

where

G1,1(s) ¼ IR(s)

E1(s)

E2(s)¼0

, G1,2(s) ¼ IR(s)

E2(s)

E1(s)¼0

(4:188)

G2,1(s) ¼ VC(s)

E1(s)

E2(s)¼0

, G2,2(s) ¼ VC(s)

E2(s)

E1(s)¼0

(4:189)

G3,1(s) ¼ Vload(s)

E1(s)

E2(s)¼0

, G3,2(s) ¼ Vload(s)

E2(s)

E1(s)¼0

(4:190)

The notation Gij(s) denotes the transfer function from the jth input to the ith output.
Equations 4.185 through 4.187 are a consequence of the principle of superposition that applies to

linear systems. Superposition implies that the response of a system to multiple inputs applied
simultaneously is equivalent to the sum of the system responses to the individual inputs applied
one at a time.

An MIMO system and a method for finding its transfer functions are the focus of the following
example.

Example 4.11

The amount of solute (drug or metabolite) introduced to or produced in the human body is often
assumed to be stored in different compartments of the body. A separate equation for each
compartment relates the rate of solute removal to the amount or concentration of the solute in
the compartment. The solute can either be transported to another compartment or eliminated from
the body by metabolism or excretion. Consider the linear compartment model described in Riggs
(1970) for describing the quantities of iodine in humans. The state variables are

x1: Amount of inorganic iodine in the thyroid gland
x2: Amount of organic iodine in the thyroid gland
x3: Amount of hormonal iodine in the extrathyroidal tissue
x4: Amount of iodine in the inorganic iodide compartment

and the inputs are

q3: Rate of entry of exogenous iodide
q4: Rate of entry of exogenous hormonal iodine

178 Simulation of Dynamic Systems with MATLAB® and Simulink®

The model equations are summarized by the diagram illustrated in Figure 4.13, where k12, k13,
k21, k24, k31, k43, ku, and kf are the rate constants governing the transfer of iodine between the
compartments and its excretion from the body.

The outputs are

y1¼ x1þ x2þ x3þ x4, total iodine in the body
y2¼ kfx3þ kux4, rate of iodine excretion from the body

(a) Write the state equations for the system and find the matrices A, B, C, and D.
(b) Draw a block diagram of the system, and label the Laplace transforms of the states x1, x2, x3,

and x4 and outputs y1 and y2.
(c) Find the transfer function Y2(s)=Q4(s).
(d) Baseline values of the system parameters are

k12 ¼ 0:8=day, k21 ¼ 0:005=day, k23 ¼ 0:01=day, and k34 ¼ 0:3=day

k14 ¼ 0:15=day, k41 ¼ 0:5=day, kf ¼ 0:02=day, and ku ¼ 1:2=day

Find the steady-state iodine levels in each compartment in response to a daily intake of
iodine, q4¼ 150 mg=day. Assume q3¼ 0 mg=day.

(e) Find and graph the step response of x2(t) if the daily intake of iodine drops from 150 (where it
has been for a long time) to 50 mg=day.

(a) From Figure 4.13, the state equations are

_x1 ¼ �(k12 þ k14)x1 þ k21x2 þ k41x4

_x2 ¼ k12x1 � (k21 þ k23)x2

_x3 ¼ k23x2 � (k34 þ kf)x3 þ q3

_x4 ¼ k14x1 þ k34x3 � (k14 þ ku)x4 þ q4

9>>>>=>>>>; (4:191)

y1 ¼ x1 þ x2 þ x3 þ x4

y2 ¼ kf x3 þ kux4

)
(4:192)

x3

x2x1

x4

k12

k21

k41
k14

k34

k23

kfku

FecesUrine

q4 q3

FIGURE 4.13 Compartmental model for iodine distribution in a human.

Linear Systems Analysis 179

The matrices A, B, C, and D in _x¼AxþBu and y¼CxþDu where u¼ [q3 q4]
T are

A ¼

�(k12 þ k14) k21 0 k41
k12 �(k21 þ k23) 0 0

0 k23 �(k34 þ kf) 0

k14 0 k34 �(k41 þ ku)

26664
37775, B ¼

0 0

0 0

1 0

0 1

26664
37775 (4:193)

C ¼ 1 1 1 1
0 0 kf ku

� �
, D ¼ 0 0

0 0

� �
(4:194)

(b) The block diagram is obtained by Laplace transforming the state Equations 4.193 and 4.194,
then solving for X1(s), X2(s), X3(s), and X4(s) in the respective equations. Introducing the notation
k1¼ k12þ k14, k2¼ k21þ k23, k3¼ k34þ kf, and k4¼ k41þ ku yields

X1(s) ¼ 1
sþ k1

[k21X2(s)þ k41X4(s)] (4:195)

X2(s) ¼ k12
sþ k2

� �
X1(s) (4:196)

X3(s) ¼ 1
sþ k3

[k23X2(s)þQ3(s)] (4:197)

X4(s) ¼ 1
sþ k4

[k14X1(s)þ k34X3(s)þQ4(s)] (4:198)

The block diagram follows immediately from Equations 4.195 through 4.198 and Equation 4.192.
It is shown in Figure 4.14.

(c) The transfer function Y2(s)=Q4(s) can be obtained by graphical methods from the block diagram
or directly from the model equations. The latter approach is illustrated. Laplace transforming the
second output equation in Equation 4.192 followed by division of each term by Q4(s),

Y2(s) ¼ kf X3(s)þ kuX4(s) (4:199)

) Y2(s)
Q4(s)

¼ kf
X3(s)
Q4(s)

þ ku
X4(s)
Q4(s)

(4:200)

k23

kf

k12
s + k2

1
s + k3

Q3(s) X3(s)

k34

Y2(s)

ku

1
s + k4

Q4(s) X4(s) X1(s)
k41

k14

1
s + k1

X2(s)

k21

Y1(s)

FIGURE 4.14 Block diagram of system modeled by Equations 4.195 through 4.198 and 4.192.

180 Simulation of Dynamic Systems with MATLAB® and Simulink®

Setting Q3(s)¼ 0 in Equation 4.197 and solving Equations 4.195 through 4.198 for X3(s) and X4(s),

X3(s) ¼

sþ k1 �k21 0 �k41
�k12 sþ k2 0 0

0 �k23 0 0

�k14 0 Q4(s) sþ k4

sþ k1 �k21 0 �k41
�k12 sþ k2 0 0

0 �k23 sþ k3 0

�k14 0 �k34 sþ k4

(4:201)

X4(s) ¼

sþ k1 �k21 0 0

�k12 sþ k2 0 0

0 �k23 sþ k3 0

�k14 0 �k34 Q4(s)

sþ k1 �k21 0 �k41
�k12 sþ k2 0 0

0 �k23 sþ k3 0

�k14 0 �k34 sþ k4

(4:202)

Evaluation of the determinants in Equations 4.201 and 4.202 is a tedious process left as an exercise
problem. The results are as follows:

X3(s) ¼ a0

s4 þ a3s3 þ a2s2 þ a1sþ a0

� �
Q4(s) (4:203)

X4(s) ¼ s3 þ b2s
2 þ b1sþ b0

s4 þ a3s3 þ a2s2 þ a1sþ a0

� �
Q4(s) (4:204)

a0 ¼ k12k23k41, b0 ¼ k1k2k3 � k12k21k3
b1 ¼ k1k2 þ k1k3 þ k2k3 � k12k21, b2 ¼ k1 þ k2 þ k3

(4:205)

a0 ¼ k1k2k3k4 � k14k41k2k3 � k12k21k3k4 � k12k23k34k41
a1 ¼ k1k2k3 þ k1k2k4 þ k1k3k4 þ k2k3k4 � k12k21(k3 þ k4)� k14k41(k2 þ k3)

a2 ¼ k1k2 þ k1k3 þ k1k4 þ k2k3 þ k2k4 þ k3k4 � k12k21 � k14k41
a3 ¼ k1 þ k2 þ k3 þ k4

9>>>=>>>; (4:206)

Combining Equations 4.200, 4.203, and 4.204 produces the desired transfer function,

Y2(s)
Q4(s)

¼ kfa0 þ ku(s3 þ b2s
2 þ b1sþ b0)

s4 þ a3s3 þ a2s2 þ a1sþ a0
(4:207)

(d) The steady-state iodine levels in each compartment are obtained from the state equations
_x¼AxþBu with _x¼ 0.

xss ¼ �A�1Buss where uss ¼ (q3)ss
(q4)ss

� �
¼ 0

150 mg=day

� �
(4:208)

Linear Systems Analysis 181

For the given values of the rate constants,

xss ¼ �
�0:95 0:005 0 0:5
0:8 �0:015 0 0
0 0:01 �0:32 0

0:15 0 0:3 �1:7

26664
37775
�1 0 0

0 0
1 0
0 1

26664
37775 0

150

� �
¼

89:6
4780:9
149:4
122:5

26664
37775 (4:209)

(e) Using the same method we employed to find X3(s)=Q4(s) and X4(s)=Q4(s), the transfer function
X2(s)=Q4(s) is

X2(s)
Q4(s)

¼ g1sþ g0
s4 þ a3s3 þ a2s2 þ a1sþ a0

(4:210)

g0 ¼ k12k41k3, g1 ¼ k12k41 (4:211)

Working backward from the transfer function X2(s)=Q4(s), the differential equation relating x2(t) and
q4(t) is

::::
x2 þ a3€x2

: þ a2€x2 þ a1 _x2 þ a0x2 ¼ g1 _q4 þ g0q4 (4:212)

Once the initial conditions are established, Equation 4.212 can be solved to find the complete step
response.

Let us assume the input q4(t) has been constant at 150 mg=day long enough for the system to
reach the steady-state levels given in Equation 4.209. It is possible to redefine t¼ 0 as the instant
when q4(t) switches from 150 to 50 mg=day. Figure 4.15 shows the input dropping from q4(0

�)¼
150 mg=day to q4(0

þ)¼ 50 mg=day.
With the system at steady-state at t¼ 0�, the initial conditions are x2(0

�)¼ 4780.9 mg,
_x2(0�) ¼ €x2(0�) ¼ €x2

:
(0�) ¼ 0. Laplace transforming Equation 4.212,

s4X2(s)� s3x2(0�)þ a3[s3X2(s)� s2x2(0�)]þ a2[s2X2(s)� sx2(0�)]
þ a1[sX2(s)� x2(0�)]þ a0X2(s) ¼ g1[sQ4(s)� q4(0�)]þ g0Q4(s) (4:213)

Solving for X2(s),

X2(s) ¼ g1sþ g0
s4 þ a3s3 þ a2s2 þ a1sþ a0

Q4(s)þ x2(0�)(s3 þ a3s2 þ a2sþ a1)� g1q4(0�)
s4 þ a3s3 þ a2s2 þ a1sþ a0

(4:214)

where

Q4(s) ¼ L{q4(t)} ¼ q4(0þ)
s

(4:215)

M-file ‘‘Chap3_Ex3_4.m’’ uses the ‘‘residue’’ function to evaluate the partial fraction expansion of
each term on the right-hand side of Equation 4.214. The final expression for X2(s) is of the form

X2(s) ¼
X5
i¼1

ci
s� pi

(4:216)

150 μg/day

50 μg/day

q4(t)

t0

FIGURE 4.15 Step change in input q4(t).

182 Simulation of Dynamic Systems with MATLAB® and Simulink®

where the system poles are p1¼�1.7901, p2¼�0.8621, p3¼�0.3248, and p4¼�0.0080 and
the input pole p5¼ 0. The residues are c1¼ 13.6, c2¼�59.1, c3¼ 2.4, c4¼ 3230.4, and
c5¼ 1593.6. The partial fraction expansion of X2(s) is

X2(s) ¼ 13:6
sþ 1:7901

� 59:1
sþ 0:8621

þ 2:4
sþ 0:3248

þ 3230:4
sþ 0:0080

þ 1593:6
s

(4:217)

Inverting X2(s) gives

x2(t) ¼ 13:6e�1:7901t � 59:1e�0:8621t þ 2:4e�0:3248t þ 3230:4e�0:0080t þ 1593:6 (4:218)

Note that a convenient check of x2(t) in Equation 4.218 is

x2(0�) ¼ 13:6� 59:1þ 2:4þ 3230:4þ 1593:6 ¼ 4780:9

which agrees with the initial condition. The step response is shown in Figure 4.16.
The natural modes of the system are e�1.7901t, e�0.8621t, e�0.3248t, and e�0.0080t and the

dominant time constant tdominant¼ 1=0.008¼ 125 days. It takes approximately 5� tdominant¼ 625
days for x2 to attain the new steady-state value of 1593.6 mg.

There is another property of Laplace transforms that is particularly useful when it comes to
finding the steady-state response of a system. Known as the Final Value Theorem, it relates the
steady state or final value of a signal to its Laplace transform, that is,

P10:
Given Y(s)¼L{y(t)}, if a final value y(1) exists, it is given by

y(1) ¼ lim
t!1 y(t) ¼ lim

s!0
sY(s) (4:219)

For a system with transfer function G(s), the steady-state response to a step input of
magnitude U0 is

y(1) ¼ lim
s!0

sY(s) ¼ lim
s!0

sG(s)U(s) ¼ lim
s!0

sG(s)
U0

s
¼ G(0)U0 (4:220)

15000 100 200 300 400 500 600

2000

2500

x 2
(t)

, m
g

3000

3500

4000

4500

5000

t (days)

FIGURE 4.16 Step response for x2(t) following step change in q4(t) from 150 to 50 mg=day.

Linear Systems Analysis 183

G(0) is referred to as the steady-state gain of the system. The final value property makes it possible
to determine the final value y(1) from Y(s) without having to find y(t). This is particularly useful
when trying to find the steady-state response of a system to a constant input. The input must be
constant long enough to allow the transient response to vanish. Practically speaking, this is
roughly four to five times the largest effective time constant of the system.

In Example 4.11, the transfer function Y1(s)=Q4(s) can be expressed as

Y1(s)

Q4(s)
¼ X1(s)þ X2(s)þ X3(s)þ X4(s)

Q4(s)
(4:221)

¼ X1(s)

Q4(s)
þ X2(s)

Q4(s)
þ X3(s)

Q4(s)
þ X4(s)

Q4(s)
(4:222)

where the last three terms on the right-hand side are obtained from Equations 4.210, 4.203, and
4.204. The remaining term is left as an exercise. The result is

X1(s)

Q4(s)
¼ d2s2 þ d1sþ d0

s4 þ a3s3 þ a2s2 þ a1sþ a0
(4:223)

d0 ¼ k41k2k3, d1 ¼ k41(k2 þ k3), d2 ¼ k41 (4:224)

making the transfer function

G(s) ¼ Y1(s)

Q4(s)
¼ s3 þ (b2 þ d2)s2 þ (b1 þ g1 þ d1)sþ a0 þ b0 þ g0 þ d0

s4 þ a3s3 þ a2s2 þ a1sþ a0
(4:225)

The final value y1(1)¼ x1(1)þ x2(1)þ x3(1)þ x4(1) when q4(t)¼ 150, t � 0 (same initial
input in Example 4.11) is

y1(1) ¼ G(0) � 150 ¼ a0 þ b0 þ g0 þ d0
a0

� �
� 150

¼ 0:004þ 0:00328þ 0:128þ 0:0024
0:004016

� �
� 150 ¼ 5142:4 mg (4:226)

in agreement with the sum of the components of xss in Equation 4.209.
A word of caution when applying the final value property. A function y(t) could theoretically

grow without bound, that is, limt!1y(t)¼1 or have an undamped oscillatory component, and the
final value property will nevertheless produce a finite value. Clearly, the result does not represent a
final or steady-state value. We shall investigate the conditions that produce theoretical unbounded
outputs of a linear system in a future section.

4.3.6 TRANSFORMATION FROM STATE VARIABLE MODEL TO TRANSFER FUNCTION

The state-space representation offers several advantages over the input–output transfer function
method of describing the dynamics of a linear system. For one, it is a more complete representation
since the states provide useful information about the internal behavior of the system. Properties of
linear systems such as observability and controllability as well as system identification and state
feedback are topics normally covered in modern control theory, which rely on state-space models.

184 Simulation of Dynamic Systems with MATLAB® and Simulink®

However, there are times when the transfer function of an SISO system (or transfer functions if the
system is MIMO) is required for a system modeled in state variable form.

Consider an MIMO system with inputs u1, u2, . . . , ur and outputs y1, y2, . . . , ym modeled in state
space by

_x ¼ Axþ Bu (4:227)

y ¼ Cxþ Du (4:228)

where x is the n-dimensional state vector [x1 x2 . . . xn]
T and the matrices A, B, C, and D are

appropriately dimensioned. Laplace transformation of Equation 4.227 with x(0)¼ 0 gives

sX(s) ¼ AX(s)þ BU(s) (4:229)

) X(s) ¼ (sI � A)�1BU(s) (4:230)

Laplace transforming y¼CxþDu and substituting X(s) from Equation 4.230 gives

Y(s) ¼ [C(sI � A)�1Bþ D]U(s) (4:231)

¼ G(s)U(s) (4:232)

where G(s), known as the transfer matrix, is a matrix of transfer functions from each of the r inputs
to each of the m outputs, that is,

Gij(s) ¼ Yi(s)

Uj(s)
, i ¼ 1, 2, . . . ,m, j ¼ 1, 2, . . . , r (4:233)

To illustrate, let us revisit the state variable model for iodine storage in Example 4.11 where the
matrices A, B, C, and D are given in Equations 4.193 and 4.194. There are two inputs u1(t)¼ q3(t)
and u2(t)¼ q4(t), and outputs y1(t) and y2(t) are defined in Equation 4.192. One of the four transfer
functions, namely, Y1(s)=Q4(s), is given in Equation 4.225. Using the baseline parameter values in
Example 4.11 results in

Y1(s)

Q4(s)
¼ s3 þ 1:785s2 þ 0:88655sþ 0:13768

s4 þ 2:985s3 þ 2:42855s2 þ 0:52054sþ 0:004016
(4:234)

The matrix F(s)¼ (sI�A)�1 in Equation 4.231 is computed according to

F(s) ¼ (sI � A)�1 ¼ sI �

�0:95 0:005 0 0:5

0:8 �0:015 0 0

0 0:01 �0:32 0

0:15 0 0:3 �1:7

266664
377775

0BBBB@
1CCCCA
�1

(4:235)

¼

sþ 0:95 �0:005 0 �0:5
�0:8 sþ 0:015 0 0

0 �0:01 sþ 0:32 0

�0:15 0 �0:3 sþ 1:7

266664
377775
�1

(4:236)

Linear Systems Analysis 185

F(s) is the Laplace transform of the continuous-time system transition matrix F(t), used to obtain
the state response in the time domain. Inverting (sI�A) results in

F(s) ¼

f11(s) f12(s) f13(s) f14(s)

f21(s) f22(s) f23(s) f24(s)

f31(s) f32(s) f33(s) f34(s)

f41(s) f42(s) f43(s) f44(s)

266664
377775 (4:237)

where

f11(s) ¼
1

D(s)
[(sþ 0:015)(sþ 0:32)(sþ 1:7)] (4:238)

f12(s) ¼
1

D(s)
[�0:003(sþ 1:2)] (4:239)

f13(s) ¼
1

D(s)
[0:15(sþ 0:015)] (4:240)

f14(s) ¼
1

D(s)
[0:5(sþ 0:015)(sþ 0:32)] (4:241)

f21(s) ¼
1

D(s)
[0:8(sþ 0:32)(sþ 1:7)] (4:242)

f22(s) ¼
1

D(s)
[s3 þ 2:97s2 þ 2:388sþ 0:4928] (4:243)

f23(s) ¼
1

D(s)
[�0:12] (4:244)

f24(s) ¼
1

D(s)
[0:4(sþ 0:32)] (4:245)

f31(s) ¼
1

D(s)
[0:008(sþ 1:7)] (4:246)

f32(s) ¼
1

D(s)
[0:01(s2 þ 2:65sþ 0:865)] (4:247)

f33(s) ¼
1

D(s)
[s3 þ 2:665s2 þ 1:57575sþ 0:0163] (4:248)

f34(s) ¼
1

D(s)
[0:004] (4:249)

¼ Akx0 þ
Xk�1
i¼0

Ak�i�1Bui, k ¼ 0, 1, 2, 3, . . . (4:250)

f42(s) ¼
1

D(s)
¼ [0:00375(sþ 0:824)] (4:251)

f43(s) ¼
1

D(s)
[0:3(s2 þ 0:965sþ 0:01025)] (4:252)

f44(s) ¼
1

D(s)
[s3 þ 1:285s2 þ 0:31905sþ 0:00328] (4:253)

D(s) ¼ jsI � Aj ¼ s4 þ 2:985s3 þ 2:42855s2 þ 0:52054sþ 0:004016 (4:254)

186 Simulation of Dynamic Systems with MATLAB® and Simulink®

Finally, the transfer function matrix G(s) in Equation 4.232 is given by

G(s) ¼ CF(s)Bþ D (4:255)

¼ 1 1 1 1

0 0 kf ku

" # f11(s) f12(s) f13(s) f14(s)

f21(s) f22(s) f23(s) f24(s)

f31(s) f32(s) f33(s) f34(s)

f41(s) f42(s) f43(s) f44(s)

266664
377775

0 0

0 0

1 0

0 1

266664
377775þ 0 0

0 0

" #
(4:256)

¼ f13(s)þ f23(s)þ f33(s)þ f43(s) f14(s)þ f24(s)þ f34(s)þ f44(s)

kff33(s)þ kuf43(s) kff34(s)þ kuf44(s)

" #
(4:257)

The component G12(s) in Equation 4.257 is the transfer function Y1(s)=Q4(s) previously obtained in
Equation 4.234. The reader can verify that the two are identical.

EXERCISES

4.6 Show that the step response of a system whose impulse response function h(t)¼ 3e�2tþ 5d(t)
is discontinuous at t¼ 0.

4.7 The differential equation of an LTI system is

d3y

dt3
þ 5

d2y

dt2
þ 11

dy

dt
þ 15y ¼ 2

d3u

dt3
þ u

(a) Find the transfer function H(s)¼ Y(s)=U(s) of the system.
(b) Find the impulse response function h(t) for the system.
(c) Find the step response when the initial conditions at t¼ 0� are identically zero.
(d) Find y(1) using the final value property, and check your answer with the result obtained

in part (c) as t!1.
(e) Find y(0þ) using the initial value property and check your answer with the result obtained

in part (c) as t! 0þ.
(f) Find the step response by convolution and compare your answer to the step response

found in part (c).
(g) Draw a simulation diagram for the system in observer canonical form.
(h) Represent the system in state variable form _x¼AxþBu, y¼CxþDu.
(i) Find the 1� 1 transfer function G(s)¼ Y(s)=U(s) using Equation 4.255.

4.8 Repeat Exercise 4.7 when the system differential equation is

(a)
dy

dt
þ 5y ¼ 10u

(b)
d2y

dt2
þ 5

dy

dt
þ 6y ¼ u

(c)
d3y

dt3
þ 5

d2y

dt2
þ 11

dy

dt
þ 15y ¼ u

4.9 Use convolution to find the response of the systems with transfer functions

(a) H(s) ¼ sþ 3
s2 þ 2sþ 1

, (b) H(s) ¼ 1
s2 þ 3sþ 2

, (c) H(s) ¼ sþ 1
s2 þ 2sþ 2

to the following inputs: (i) u(t)¼ û(t), (ii) u(t)¼ û(t)� û(t� 2), and (iii) u(t)¼ tû(t).
4.10 The circuit in Figure E4.10 is governed by the differential equation

d2v0
dt2
þ 1
RC

dv0
dt
þ 1
LC

v0 ¼ 1
C

dig
dt

Linear Systems Analysis 187

Rig ν0L = 25 mH C = 25 nF

FIGURE E4.10

Find the impulse response function and plot the results when (a) R¼ 400 V, (b) R¼ 500 V,
and (c) R¼ 625 V.

4.11 Repeat Example 4.10 with H(s)¼ 1=[(sþ 1)(sþ 3)(sþ 5)].
4.12 Find the transfer function of the bridged-T circuit in Figure 4.12 using equations in the time

domain only to find the differential equation of the circuit.
4.13 For the system of interacting tanks shown in Figure E4.13:

Fi,1(t) Fi,2(t)

H1(t)
H2(t)

1

1F2(t) = H2(t)R2
H1(t) − H2(t)

R12
F12(t) =

R12 A2A1 A2

FIGURE E4.13

(a) Find the transfer functions
H2(s)

Fi,1(s)
,
H1(s)

Fi,2(s)
,
H1(s)

Fi,1(s)
,
F2(s)

Fi,2(s)

(b) Find the differential equation relating H1(t) and Fi,2(t).
4.14 The unit step response of a system is

y(t) ¼ 1þ e�2t(cos 3t þ 4 sin 3t)

(a) Find the transfer function of the system.
(b) Find the impulse response of the system.
(c) Find the differential equation of the system.

4.15 In Example 4.11, find x3(1) and x4(1) when q4(t)¼ 150 mg=day, t � 0 and q3(t)¼ 0, t � 0
using the final value property and the expressions for X3(s) and X4(s) in Equations 4.203 and
4.204. Compare your answer with the results in Equation 4.209.

4.16 In Example 4.11, find X1(s)=Q4(s) and compare your answer with the expression in Equation
4.223.

4.17 In Example 4.11,
(a) Find the transfer functions Y1(s)=Q3(s), Y2(s)=Q3(s) in a form similar to Equation 4.225.
(b) Find the step responses for y1(t) and y2(t) to inputs q4(t)¼ 50 mg=day, t � 0 and q3(t)¼ 0,

t � 0. Assume the initial state is xss in Equation 4.209.
4.18 In Example 4.11, verify that the transfer function Y2(s)=Q4(s) in Equation 4.207 is the same as

G22(s) in Equation 4.257.

188 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.4 STABILITY OF LINEAR TIME INVARIANT CONTINUOUS-TIME SYSTEMS

In order for a physical system to operate as intended, it must be capable of generating output(s) in a
stable fashion. Regulation of a process temperature is unsatisfactory if the heat source cycles
continuously between extremes, that is, off or operating at maximum output, unless it is designed
to operate that way like a room thermostat. A control system for maintaining a fixed amount of
material in a storage tank in the presence of a fluctuating input may not be performing as intended if
the regulating valve in the input line continually cycles between its limits. Each is a real-world
example of a control system operating in an unstable manner.

The starting point of an investigation concerning the stability of a system is its mathematical
model. The discussion is confined to LTI systems. Excluding nonlinear systems may appear to
significantly limit the range of systems considered. However, nonlinear systems can be linearized
about specific operating points and stability analyses performed with respect to each operating point.
The subject of linearization is treated in Chapter 7.

Consider the second-order system model from the previous section,

d2

dt2
y(t)þ a1

d

dt
y(t)þ a0y(t) ¼ b2

d2

dt2
u(t)þ b1

d

dt
u(t)þ b0u(t) (4:258)

Applying the differentiation property of the Laplace transform and collecting terms, the Laplace
transform of the system output is

Y(s) ¼ H(s)U(s)� b2u(0�)sþ b2 _u(0�)þ b1u(0�)
s2 þ a1sþ a0

� �
þ y(0�)sþ _y(0�)þ a1y(0�)

s2 þ a1sþ a0
(4:259)

where H(s) is the transfer function

H(s) ¼ Y(s)

U(s)
¼ b2s2 þ b1sþ b0

s2 þ a1sþ a0
(4:260)

For zero input, Y(s) reduces to the Laplace transform of the free response, that is,

Yfree(s) ¼ y(0)sþ _y(0)þ a1y(0)
s2 þ a1sþ a0

(4:261)

Note that in the absence of an input, the ‘‘�’’ superscript on the initial conditions is no longer
necessary. The free response yfree(t) ¼ L�1{Yfree(s)} depends on the roots of the equation s2þ a1sþ
a0¼ 0. Denoting the roots as p1 and p2, yfree(t) assumes one of the forms in

yfree(t) ¼
c1ep1t þ c2ep2t, p1, p2 real and distinct

est[c1 cosvt þ c2 sinvt], p1, p2 complex

(c1 þ c2t)ept, p1 ¼ p2 ¼ p

8><>: (4:262)

Constants c1 and c2 depend on the initial conditions y(0) and _y(0). The constants s, v, p1, p2, and p
depend on the values of a0 and a1, which are related to the physical parameters of the system. For
example, a0 and a1 depend on M, B, and K in a mechanical system or R, L, and C for an electrical
circuit. The free response in Equation 4.262 is also referred to as the natural response of the system.
It consists of a linear combination of the system’s natural modes.

Linear Systems Analysis 189

4.4.1 CHARACTERISTIC POLYNOMIAL

The denominator of the transfer function H(s) in Equation 4.260 is

D(s) ¼ s2 þ a1sþ a0 ¼ (s� p1)(s� p2) (4:263)

It is called the characteristic polynomial of the system and D(s)¼ 0 is the characteristic equation.
The roots of the characteristic polynomial are referred to as the poles of the system transfer function,
and from Equations 4.260 and 4.263, H(p1)¼H(p2)¼1.

The stability of the system is related to the free response, specifically the limit L¼ limt!1yfree(t)
when one or both initial conditions are nonzero. The following possibilities exist:

1. L¼ 0.
2. L¼ constant 6¼ 0.
3. L fails to exist because the free response oscillates with constant amplitude.
4. L fails to exist because the magnitude of the free response approaches infinity.

The system is said to be asymptotically stable in the first case, marginally stable in the second and
third cases, and unstable in the last case.

Since the poles p1 and p2 dictate the behavior of the free response, they also determine the nature
of the system’s stability. As a result, we can infer that the stability of the second-order linear system
in Equation 4.258 is an inherent system property, that is, it depends on the values of the system
parameters and not on the system inputs. The previous statement is entirely general and not
restricted to the second-order system under consideration. The different possibilities for the poles
of H(s) in Equation 4.260 are illustrated in Figure 4.17.

Im

Re

Im

Re

Im

Re

Im

Re

(a) (b) (c)

(d) (e)

Im

Re

Im

Re

Im

Re

Im

Re

(i) (j) (k)

Im

Re

Im

Re

Im

(f) (g) (h)

Re

FIGURE 4.17 Possible locations for transfer function poles of a second-order system.

190 Simulation of Dynamic Systems with MATLAB® and Simulink®

In (a), (b), (c), (d), and (e), the poles p1 and p2 are real and distinct. From Equation 4.262, the free
response is the linear combination of natural modes ep1t and ep2t. Since

lim
t!1 ept ¼

0, p < 0

1, p ¼ 0

1, p > 0

8><>: (4:264)

the two natural modes decay to zero in (a), and the limit L¼ 0. Therefore, (a) corresponds to an
asymptotically stable system. In (b), one of the natural modes grows monotonically over time and
L fails to exist. Hence, (b) represents an unstable system. A similar analysis of the remaining cases
(c) through (k) leads to the results shown in Table 4.2.

In summary, the second-order system with transfer function in Equation 4.260 is asymptotically
stable provided the two poles are located entirely in the left half of the complex plane. The system is
unstable if one or both of its poles lie in the right half of the complex plane or if it has a double pole
at the origin. Lastly, it is marginally stable if there is a single pole at the origin and the other pole is
negative or there exists a pair of purely imaginary poles located on the imaginary axis. The Routh–
Hurwitz stability condition is a simple test for the presence of right-half-plane poles of the transfer
function for an nth order LTI system (Dorf and Bishop 2005).

An alternate definition of asymptotic stability is based on the system’s forced response. It states
that for a system to be asymptotically stable, its response to any bounded input must remain
bounded over time. The same conclusions with respect to the pole locations of an asymptotically
stable system shown in Table 4.2 apply to this alternate definition as well.

Systems that are not asymptotically stable according to this definition, that is, bounded input–
bounded output (BIBO), are classified as marginally stable or unstable. In the case of a marginally
stable system, the forced response to a bounded input may or may not be bounded depending on the
input. Consider case (d) in Figure 4.17 where one of the poles is s¼ 0 and the other is located along
the negative real axis. In particular, suppose the second pole is s¼�2 and the second-order system
transfer function is

H(s) ¼ sþ 3
s(sþ 2)

(4:265)

TABLE 4.2
Poles, Natural Modes, and Stability
for a Second-Order System

Poles Natural Modes System Stability

(a) p1< 0, p2< 0 e p1t , e p2 t Asymptotically stable

(b) p1< 0, p2> 0 e p1t , e p2 t Unstable

(c) p1> 0, p2> 0 e p1t , e p2 t Unstable

(d) p1< 0, p2¼ 0 e p1t , 1 Marginally stable

(e) p1¼ 0, p2> 0 1, e p2 t Unstable

(f) p1¼ p2¼ p< 0 e pt , te pt Asymptotically stable

(g) p1¼ p2¼ p¼ 0 1, t Unstable

(h) p1¼ p2¼ p> 0 e pt , te pt Unstable

(i) p1, p2¼s
 jv (s< 0) est cos vt, est sin vt Asymptotically stable

(j) p1, p2¼
jv cos vt, sin vt Marginally stable

(k) p1, p2¼s
 jv (s> 0) est cos vt, est sin vt Unstable

Linear Systems Analysis 191

The forced response to input u1(t)¼ sin t, t � 0 is obtained as follows:

Y1(s) ¼ H(s)U1(s) ¼ sþ 3
s(sþ 2)

1
s2 þ 1

¼ 1:5
s
� 0:1
sþ 2

� 1:4s
s2 þ 1

� 0:2
s2 þ 1

(4:266)

y1(t) ¼ 1:5� 0:1e�2t � 1:4 cos t � 0:2 sin t, t � 0 (4:267)

The forced response to input u2(t)¼ 1, t � 0 is obtained in similar fashion.

Y2(s) ¼ H(s)U2(s) ¼ sþ 3
s(sþ 2)s

¼ 1:5
s2
� 0:25

s
þ 0:25
sþ 2

(4:268)

y2(t) ¼ 1:5t � 0:25þ 0:25e�2t, t � 0 (4:269)

In both instances, the input is a bounded function of time. The output y1(t) remains bounded while
the system response y2(t) is unbounded as a result of the first term. Careful examination of the
system transfer function in Equation 4.265 reveals that the only bounded inputs capable of
producing an unbounded output are those whose Laplace transform contains a pure ‘‘s’’ term in
the denominator. In other words, the input must either be a constant or a sum of bounded time
functions containing a constant.

The forced response of an unstable system to a bounded input is always unbounded due to the
presence of an unstable natural mode (see Table 4.2) which appears in the response. For example,
the forced response of a second-order system with a double pole at s¼ 0 (case [g] in Figure 4.17) to
any bounded input contains the unstable mode ‘‘t’’ and is always unbounded.

A higher order LTI system is unstable if the transfer function contains one or more right-half-
plane poles, the same as for a second-order system. It is not surprising since the characteristic
polynomial of an nth-order system can always be factored into a number of linear and quadratic
factors with real coefficients. Using partial fraction expansion, the transfer function with factored
denominator can be decomposed into a sum of first- and second-order systems. For example,
consider the fifth-order system with transfer function given by

H(s) ¼ Y(s)

U(s)
¼ 7s4 þ 19s3 þ 45s2 þ 62sþ 52

s5 þ 5s4 þ 12s3 þ 26s2 þ 32sþ 24
(4:270)

With the help of the MATLAB ‘‘residue’’ function,

H(s) ¼ s

s2 þ 4
þ sþ 1
s2 þ 2sþ 2

þ 5
sþ 3

(4:271)

and the output Y(s)¼H(s)U(s) of the fifth-order system can be expressed as

Y(s) ¼ s

s2 þ 4
U(s)þ sþ 1

s2 þ 2sþ 2
U(s)þ 5

sþ 3
U(s) (4:272)

The system is marginally stable as a result of the complex poles at s¼
 j2 located on the imaginary
axis. The remaining poles at s¼�1
 j and s¼�3 are associated with stable natural modes. The
step response of the system with transfer function in Equation 4.270 remains bounded. However, the
bounded inputs u(t)¼ sin 2t or u(t)¼ cos 2t result in an (s2þ 4)2 term in the denominator of Y(s) and
t sin 2t or t cos 2t terms in the output y(t). Hence, a bounded step response is necessary but not a
sufficient condition for asymptotic stability of LTI systems.

192 Simulation of Dynamic Systems with MATLAB® and Simulink®

For MIMO systems, the number of transfer functions can grow quickly. However, since stability
is an intrinsic property of the system, that is, independent of the system inputs, it is not necessary to
investigate each and every transfer function to determine if the system is stable. We shall soon see
that the denominator polynomial of each transfer function is identical and, therefore, must be the
characteristic polynomial of the system, D(s).

The transfer function matrix G(s) of an MIMO system is the matrix whose ijth element is the
transfer function Yi(s)=Uj(s). From the previous section,

G(s) ¼ C(sI � A)�1Bþ D ¼ CF(s)Bþ D (4:273)

where
A is the n� n coefficient matrix
B, C, and D are the other matrices in the state variable model description

The inverse of sI�A is F(s), which can be expressed in terms of the adjoint of matrix sI�A and its
determinant according to

F(s) ¼ (sI � A)�1 ¼ 1
jsI � AjAdj(sI � A) (4:274)

It follows from Equations 4.273 and 4.274 that every component transfer function of G(s) has the
same denominator, that is, the nth-order polynomial

jsI � Aj ¼ sn þ an�1sn�1 þ an�2sn�2 þ � � � þ a1sþ a0 (4:275)

Hence, the stability of a linear system described by the state variable model _x¼AxþBu, y¼Cxþ
Du depends solely on the coefficient matrix A. Furthermore, it is immaterial whether the system is
SISO with one transfer function or MIMO with several transfer functions; the coefficient matrix A is
all we need to determine whether the system is asymptotically stable, marginally stable, or unstable.

This is consistent with the earlier statement that the stability of the second-order system modeled
by the differential equation in Equation 4.258 depends strictly on the constants a0 and a1. After all,
the 2� 2 coefficient matrix A, while not unique, is determined entirely by a0 and a1. One choice for
the states is x1¼ y and x2¼ _y that leads to

A ¼ 0 1
�a0 �a1
� �

(4:276)

The characteristic polynomial in Equation 4.263 and the nth-order polynomial in Equation 4.275
with n¼ 2 are identical, that is,

D(s) ¼ s2 þ a1sþ a0 ¼ jsI � Aj (4:277)

A compartment model for iodine storage in humans was presented in Example 4.11. The M-file
‘‘Chap4_iodine.m’’ computes the coefficient matrix

A ¼

�0:95 0:005 0 0:5

0:8 �0:015 0 0

0 0:01 �0:32 0

0:15 0 0:3 �1:7

26664
37775

The characteristic polynomial was given as

D(s) ¼ s4 þ 2:985s3 þ 2:42855s2 þ 0:52054sþ 0:004016 (4:278)

Linear Systems Analysis 193

It is left as an exercise (Exercise 4.21) to show that expansion of the determinant jsI�Aj produces
the characteristic polynomial given in Equation 4.278. The characteristic roots (poles of the system
transfer functions) can be obtained by finding the roots of D(s)¼ 0 in Equation 4.278 or equivalently
the roots of

D(s) ¼ jsI � Aj ¼ 0 (4:279)

that are also referred to as the eigenvalues of matrix A. The MATLAB functions ‘‘roots(1 2.985
2.43855 0.52054 0.004016)’’ and ‘‘eig(A)’’ both return the characteristic roots �1.7901,
�0.8621, �0.3248, and�0.0080. Since all the characteristic roots are in the left half of the complex
plane, the system is asymptotically stable.

4.4.2 FEEDBACK CONTROL SYSTEM

Real-world processes are nonlinear and may possess one or more equilibrium states. Linear models
used to approximate the dynamics in the neighborhood of the equilibrium points are for the most
part stable. However, control systems designed to improve some aspect of the system’s performance
may in fact produce the opposite effect. An example is presented of a stable open-loop system under
closed-loop control, which can produce unstable modes in the natural response if the control system
parameters are chosen incorrectly.

Figure 4.18 shows a simplified block diagram of a feedback control system for controlling the
heading or yaw angle of a small ship. The open-loop system consists of the power converter (motor
and gears that control the ship’s rudder) modeled by a first-order lag with gain KP¼ 108 (rudder)=V
and time constant tp¼ 0.2 s. The ship’s yaw dynamics include a gain KS¼ 0.58 (heading)=s=8
(rudder) and time constant tS¼ 7.5 s resulting in a sluggish response to changes in rudder position.
A feedback closed-loop control system is implemented to improve the response. ucom(s) and u(s) are
Laplace transforms of the commanded and actual ship headings, respectively. E(s) is the Laplace
transform of the error signal input to the controller.

The closed-loop system transfer function u(s)=ucom(s) is obtained by eliminating E(s) and U(s)
from the following three equations:

E(s) ¼ ucom(s)� u(s) (4:280)

U(s) ¼ KC
sþ 1
sþ 10

� �
E(s) (4:281)

u(s) ¼ 0:5
s(7:5sþ 1)

� �
10

(0:2sþ 1)

� �
U(s) (4:282)

U(s)

Power converter
and rudder

Ship yaw dynamics

Open-loop system

Controller
and power
amplifier

E (s)

– deg
(rudder)

deg
(heading)

deg
(heading)

KS
s (τS s + 1)(τp s + 1)

KP

Volts

θcom(s)
KC

s + 1
s + 10

R(s) θ(s)

FIGURE 4.18 Block diagram of control system for ship heading.

194 Simulation of Dynamic Systems with MATLAB® and Simulink®

The result is

u(s)

ucom(s)
¼ 5KC(sþ 1)

1:5s4 þ 22:7s3 þ 78s2 þ 5(KC þ 2)sþ 5KC
(4:283)

The characteristic polynomial is

D(s) ¼ 1:5s4 þ 22:7s3 þ 78s2 þ 5(KC þ 2)sþ 5KC (4:284)

For every value of controller gain KC, there are four closed-loop system poles, which are the
solutions to the characteristic equation, D(s)¼ 0. Root-locus (Dorf and Bishop 2005) is a graphical
design method used by control system engineers to plot the poles as the gain parameter KC varies
from 0 to1. There are four branches or loci, each containing one of the poles.

The M-file ‘‘Chap4_ feedback_yaw.m’’ produces a root-locus plot shown in Figure 4.19a. When
the gain KC¼ 10, D(s) has two linear factors with real poles at s¼�3.922 and s¼�10.525 and a
quadratic factor with a pair of complex poles located at �0.343
 j0.831 (see Figure 4.19b).

The quadratic factor damping ratio, natural frequency, damped natural frequency, and effective
time constant are shown in Table 4.3.

−1.25 −1 −0.75−0.5 −0.25 0 0.25 0.5 0.75 1 1.25

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

−0.343 + j0.831

−0.343−j0.831

−30 −25 −20 −15 −10 −5 0 5 10−20

−15

Im
ag

in
ar

y a
xi

s

Im
ag

in
ar

y a
xi

s

−10

−5

0

5

10

15

20

Real axis

Kcrit

(a) Real axis(b)

FIGURE 4.19 (a) Root-locus plot. (b) Zoom in near complex poles where KC¼ 10.

TABLE 4.3
Closed-Loop System Properties (KC¼ 10)

Characteristic polynomial D(s) ¼ 1:5s4 þ 22:7s3 þ 78s2 þ 60sþ 50

Poles p1 ¼ �10:525, p2 ¼ �3:922, p3, p4 ¼ �0:343
 j0:831

Factory s2 þ 0:686sþ 0:808, sþ 10:53, sþ 3:92

Damping ratio z¼ 0.382

Natural frequency vn¼ 0.899 rad=s

Damped natural frequency vd¼ 0.831 rad=s

Time constants t1 ¼¼ 1
�p1 ¼ 0:095 s, t2 ¼ 1

�p2 ¼ 0:255 s, t ¼ 1
zvn
¼ 2:914 s

Linear Systems Analysis 195

The natural response of the closed-loop system (KC¼ 10) is given by

unat(t) ¼ c1e
�t=0:095 þ c2e

�t=0:255 þ e�t=2:914[c3 cos (0:831t)þ c4 sin (0:831t)] (4:285)

The closed-loop system response, when KC¼ 10, is faster than the open-loop system as evidenced
by the reduction in dominant time constant from 7.5 to 2.914 s.

Suppose the ship is maintaining a heading of 08 (with the rudder angle at 08) when it becomes
necessary to increase the heading by 58. In the open-loop system, a pulse input to the power
converter and rudder subsystem is selected to produce the new desired heading. A pulse is specified
rather than a step input because the rudder angle must return to zero once the new heading is
achieved. What would happen if a step input were applied? For a pulse input of magnitude A and
duration T,

u(t) ¼ A� Au(t � T), t � 0 (4:286)

the ship’s heading is from Equation 4.282

uopen-loop(s) ¼ 0:5
s(7:5sþ 1)

� �
10

(0:2sþ 1)

� �
A(1� e�Ts)

s
(4:287)

The inverse Laplace transform, uopen-loop(t) ¼ L�1{uopen-loop(s)}, is obtained by partial fraction
expansion of Equation 4.287 without the 1� e�Ts followed by the shifting property P3 introduced
in Section 4.4.2. It is left as an exercise to find uopen-loop(t) and show that the final value, that is, new
heading, is

uopen-loop(1) ¼ KPKSAT ¼ 5AT (4:288)

The closed-loop system response with KC¼ 10 to a command heading of 58 is obtained from
Equation 4.283 as

uclosed-loop(s) ¼ 50(sþ 1)
1:5s4 þ 22:7s3 þ 78s2 þ 60sþ 50

� 5
s

(4:289)

Using the MATLAB ‘‘residue’’ function to find the residues (partial fraction expansion coeffi-
cients) and poles of uclosed-loop(s) in Equation 4.289 results in

R1 ¼ �0:2188, R2 ¼ 1:3934, R3, R4 ¼ �3:0873� j0:6270, R5 ¼ 5

p1 ¼ �10:5254, p2 ¼ �3:9215, p3, p4 ¼ �0:3432� j0:8305, p5 ¼ 0

enabling uclosed-loop(s) to be expressed as the sum

uclosed-loop(s) ¼
X5
i¼1

Ri

s� pi

� �
(4:290)

Invert Laplace transforming Equation 4.290 gives the time domain response

uclosed-loop(t) ¼
X5
i¼1

Rie
pit, t � 0 (4:291)

196 Simulation of Dynamic Systems with MATLAB® and Simulink®

The third and fourth terms involve complex coefficients and complex exponentials,

R3e
p3t þ R4e

p4t ¼ (�3:087� j0:627)e(�0:343þj0:831)t þ (�3:087þ j0:627)e(�0:343�j0:831)t (4:292)

It is inadvisable to express the real-valued closed-loop response uclosed-loop(t) in terms of complex
exponentials with complex coefficients. However, computing and plotting the response using
MATLAB to evaluate the terms in Equation 4.292 produce real numbers because R3e

p3t þ R4e
p4t is

real-valued for all values of t. In fact, it is easily shown that uclosed-loop(t) reduces to the real expression

uclosed-loop(t) ¼ �0:2188 e�10:5254t þ 1:3934 e�3:9215t

�e�0:3432t[6:175 cos (0:8305t)� 1:254 sin (0:8305t)]þ 5, t � 0 (4:293)

The open-loop response with A¼ 0.1, T¼ 10 s and closed-loop response with KC¼ 10 are plotted in
Figure 4.20.

Figure 4.19a shows that the quadratic factor poles migrate to the right-half plane producing a pair
of unstable modes when the gain KC is larger than the critical gain Kcrit. An approximation of Kcrit is
possible by varying KC in Equation 4.284 until the MATLAB ‘‘roots’’ function indicates the
presence of a pair of imaginary poles located on the imaginary axis. After several attempts at
locating the critical gain, the approximate result is KC¼ 166.19, and the poles of the marginally
stable closed-loop system are located at approximately �14.0705, �0.000011
 j6.086566, 1.0627.

Increasing KC further produces an unstable system. Figure 4.21 shows the heading response for
the closed-loop system with KC¼ 166.19. Note the sustained oscillations in the marginally stable
system. An unstable response corresponding to KC¼ 175 is also shown in Figure 4.21. The
increasing magnitude of oscillations in the unstable system results from a pair of complex poles
in the right-half plane at 0.0601
 j6.2285.

Applying the final value property to the closed-loop transfer function in Equation 4.283 gives

uss ¼ lim s
s!0

5KC(sþ 1)
1:5s4 þ 22:7s3 þ 78s2 þ 5(KC þ 2)sþ 5KC

�
ucom
s
¼ ucom (4:294)

Equation 4.294 holds as long as the control system is asymptotically stable, that is, KC<Kcrit.

0 5 10 15 20 25 30 35 40
−1

θ(
t)

(d
eg

)

0

1

2

3

4

5

6

7

8

t (s)

Closed-loop, KC = 10

Open-loop, A = 0.1, T = 10

FIGURE 4.20 Ship heading response with open- and closed-loop control.

Linear Systems Analysis 197

The previous example illustrates the concept of stability for an LTI system. The results are
predicated on the system response being confined to a range of values for which the linear model is
an accurate representation of the actual system’s dynamics. Furthermore, limitations on power
consumption, component displacements, velocities, etc., must also be satisfied. For example, the
design of the ship heading control system using the proportional controller with gain KC¼ 10 could
result in an unrealizable rudder response. A strong argument for simulation is that it allows us to
check and monitor such assumptions.

EXERCISES

4.19 For the systems governed by the following differential equations:
(a) _y ¼ u (an integrator) (b) €y ¼ u (a double integrator)
(c) _yþ 2y ¼ u (d) _y� 2y ¼ u
(e) €yþ 1:5_yþ 0:5y ¼ u (f) €yþ 4y ¼ u
(g) €y� 9y ¼ u (h) €€yþ 4€yþ 6€yþ 5 _yþ 2y ¼ u
(i) €€yþ 2:5 _€yþ 2€yþ 2:5 _yþ y ¼ u
determine whether the system is asymptotically stable, marginally stable, or unstable, and find
the natural response, that is, a linear combination of the natural modes.

4.20 Find the characteristic polynomial and characteristic roots of the system with state equations

(a) _x ¼ 0 1
2 �3
� �

xþ 0
1

� �
u, y ¼ [1 0]x

(b) _x ¼
0 0 1
0 1 0
�2 �1 �2

24 35xþ 0 0
1 0
0 1

24 35 u1
u2

� �
, y ¼ 1 0

0 1

� �
x1
x2

� �

(c) _x ¼
20 �4 8
�40 8 �20
�60 12 �26

24 35x, y ¼ [1 0 1]x

−2

0 0.5 1 1.5 2 2.5 3 3.5 4

θ(
t)

(d
eg

)

0

2

4

6

8

10

t (s)

KC = 166.19 KC = 175

FIGURE 4.21 Heading response for marginally stable and unstable closed-loop system.

198 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.21 Show that jsI�Aj ¼ s4þ 2.985s3þ 2.42855s2þ 0.52054s þ0.004016 when A is the coeffi-
cient matrix given by

A ¼

�0:95 0:005 0 0:5

0:8 �0:015 0 0

0 0:01 �0:32 0

0:15 0 0:3 �1:7

26664
37775

4.22 Derive the expression for the closed-loop transfer function u(s)=ucom(s) in Equation 4.283.
4.23 Starting with the Laplace transform uopen-loop(s) of the open-loop system

uopen-loop(s) ¼ KP

s(tPsþ 1)

� �
KS

(tSsþ 1)

� �
U(s)

(a) Find uopen-loop(t) in response to the pulse input given in Equation 4.286. Leave your
answer in terms of the KP, KS, tP, tS and the pulse parameters A and T.

(b) Verify Equation 4.288 for the final value uopen-loop(1).
(c) Verify the open-loop pulse response shown in Figure 4.20.
(d) Find and plot the open-loop step response

(i) As the limit as T!1 of the open-loop pulse response.
(ii) By inverse Laplace transformation of uopen-loop(s) when U(s)¼A=s.

4.24 In the ship heading example, the input to the ship yaw dynamics in Figure 4.18 is R(s), the
rudder angle in degree.
(a) Find the transfer function R(s)=ucom(s).
(b) Find and plot a graph of r(t) for the case where ucom(t)¼ 58, t � 0 and KC¼ 10. Comment

on the results.
(c) For the same command input ucom(t)¼ 58, t � 0 as in part (b), find the maximum

controller gain KC for which the rudder deflection never exceeds 308. Plot r(t) and u(t)
for a time sufficient for the system to reach steady state.

4.25 For the closed-loop system to control the ship’s heading
(a) Find the fourth-order differential equation relating the output u(t) and input ucom(t).
(b) Find a suitable choice for matrices A, B, C, and D in the state variable form _x¼AxþBu,

y¼Cx where u¼ ucom and y¼ u. Leave your answers in terms of the system parameters
KC, KP, KS, tP, and tS.

Hint: Draw a simulation diagram.

(c) Choose the same values for KP, KS, tP, and tS as in the example. Find the characteristic
polynomial D(s) as a function of KC by evaluating jsI�Aj.

(d) Prepare a table with two columns. The first column contains values of KC¼ 1, 5, 10, 25,
50, 75, . . . , 200 V=deg heading, and the second column lists the four closed-loop system
poles.

(e) Use the MATLAB M-file ‘‘Chap4_ feedback_yaw.m’’ or write your own to find the
value(s) of KC that results in an underdamped quadratic factor of D(s) with damping ratio
equal to 0.5.

4.26 The water current speed vW(t) influences the angle of the ship’s rudder and is considered a load
variable or disturbance. The open-loop system is redrawn to reflect the disturbance input in
Figure E4.26:

Linear Systems Analysis 199

Power converter
and rudder

Ship yaw dynamics

deg (rudder) deg (heading)

R (s)
(τP s + 1)

KP
S(τS s + 1)

KS

KLVW(s)

U(s)

Open-loop system

Volts

Knots

θ(s)

FIGURE E4.26

The load gain KL can be assumed constant if the angle between the ship’s rudder and the water
current direction is relatively constant.

(a) Find the closed-loop transfer functions
u(s)

ucom(s)

VW (s)¼0

and
u(s)

VW (s)

ucom(s)¼0

where

u(s) ¼ u(s)

ucom(s)

VW (s)¼0

" #
ucom(s)þ u(s)

VW (s)

ucom(s)¼0

" #
VW (s)

(b) Find u(t) when ucom(t)¼ 0, t � 0 and vW(t)¼ 2 kn, t � 0. Assume the parameter values
KP, KS, tP, and tS are the same as in the example. The controller gain KC¼ 7.5 V=deg
heading and the load gain KL¼ 0.58 rudder=kn.

4.27 A ship with parameters KP, KS, tP, and tS given in the text is traveling in its intended
direction, due North as shown in Figure E4.27. The ship cruising speed is 20 kn. The ocean
current suddenly switches from zero to five knots in an east-to-west direction. Find the ship’s
heading u(t) with the control system gain KC¼ 5 V=deg heading.

N

θ
νship

νcurrent

νship

FIGURE E4.27

Hint: Find the new command heading to keep the ship traveling due north.

4.5 FREQUENCY RESPONSE OF LTI CONTINUOUS-TIME SYSTEMS

The response of LTI continuous-time systems to sinusoidal inputs is of interest because it provides
an alternative to time domain methods based on the impulse response function to characterize the
system’s dynamics. A nonperiodic signal f(t) can be resolved into sinusoidal functions over a
continuum of frequencies according to Jackson (1991)

f (t) ¼ 1
2p

ð1
�1

F(jv)e jvtdv (4:295)

200 Simulation of Dynamic Systems with MATLAB® and Simulink®

where the sinusoidal functions are the complex exponentials

e jvt ¼ cosvt þ j sinvt (�1 < v <1) (4:296)

and the function F(jv) is given by

F(jv) ¼
ð1
�1

f (t)e�jvtdt (4:297)

The complex-valued function F(jv) is called the Fourier integral or Fourier transform of the signal
f(t). Entire books have been written on the Fourier transform and its applications (Papoulis 1962;
Bracewell 1986) while other books in the area of signals and systems (Kailath 1980; Jackson 1991;
Kraniauskas 1992) include considerable coverage of the topic. F(jv) is a function that assumes
complex values over the frequency range (�1,1). In polar form, F(jv) is written as

F(jv) ¼ A(jv)e jf(jv), A(jv) ¼ jF(jv)j and f(jv) ¼ Arg[F(jv)] (4:298)

where the magnitude A(jv) is called the Fourier spectrum of f(t).
In rectangular form,

F(jv) ¼ R(jv)þ jX(jv), R(jv) ¼ Re{F(jv)}, X(jv) ¼ Im{F(jv)} (4:299)

If f (t) is causal, that is, f(t)¼ 0, t< 0, it can be expressed as a continuum of the real sinusoidal
functions cos vt or sin vt (Papoulis 1962)

f (t) ¼ 2
p

ð1
0

R(jv) cosvt dv ¼ � 2
p

ð1
0

X(jv) sinvt dv, t > 0 (4:300)

implying that R(jv) and X(jv) are not independent.
Suppose an LTI system with transfer function H(s) is subjected to an input u(t) with Fourier

transform U(jv). By a convolution property similar to the one for Laplace transforms, the Fourier
transform of the output y(t) is given by

Y(jv) ¼ H(jv)U(jv) (4:301)

where H(jv) is the system transfer function with s replaced by jv. H(jv) is called the frequency
response function of the system. It follows from Equation 4.295

y(t) ¼ 1
2p

ð1
�1

H(jv)U(jv)e jvtdv (4:302)

and, therefore, each input component (1=2p)U (jv)e jvt in the continuum of frequencies from �1
to1 is scaled by H(jv) and integrated over (�1,1) to form the output y(t). If the input u(t)¼U0

cosv0t, its Fourier transform is (Jackson 1991)

U(jv) ¼ U0p[d(vþ v0)þ d(vþ v0)] (4:303)

Linear Systems Analysis 201

and Equation 4.302 reduces to (see Exercise 4.28)

y(t) ¼ U0 � jH(jv0)j cos {v0t þ Arg[H(jv0)]} (4:304)

The amplitude of the output is equal to the amplitude of the input multiplied by the magnitude of the
frequency response function evaluated at v0. The phase angle (with respect to the input) equals the
argument of the frequency response function at v0. Equation 4.304 is an essential property of linear
systems and the foundation of AC steady-state analysis of electric circuits. Equation 4.304, valid for
stable LTI systems, applies only in the steady state, that is, after the system’s natural response has
vanished.

In the case of nonlinear systems, the steady-state output in response to a sinusoidal input with
frequency v0 contains sinusoids at harmonic frequencies 2v0, 3v0, 4v0, . . . along with a sinusoidal
component at the fundamental frequency v0. Example 4.12 illustrates the property in Equation
4.304 for a simple first-order system.

Example 4.12

For the first-order system in Figure 4.22,

(a) Find the transient and steady-state responses to the input u(t)¼A sin v0t. Leave your answer
in terms of the system parameters K and t and input parameters A and v0.

(b) Find the frequency response function of the system.
(c) A¼ 1, v0¼ 2 rad=s, K¼ 3, and t¼ 0.5 s. Plot u(t) and y(t) on the same graph.
(d) Find the time lag between the input and output at steady state, and verify the result from the

graphs of u(t) and y(t).

(a) For input u(t)¼A sinv0t, Y(s) is given by

Y(s) ¼ K
tsþ 1

U(s) ¼ K
tsþ 1

Av0

s2 þ v2
0

� �
¼ KAv0

t

1
(sþ 1=t)(s2 þ v2

0)

� �
(4:305)

Performing a partial fraction expansion of the last term in Equation 4.305 and simplifying,

Y(s) ¼ KAv0

1þ (v0t)2
t

sþ 1=t
þ 1
s2 þ v2

0
� ts
s2 þ v2

0

� �
(4:306)

The inverse Laplace transform of Y(s) is

y(t) ¼ KAv0

1þ (v0t)2
[te�t=t þ 1

v0
sinv0t � t cosv0t] (4:307)

Using the trigonometric relationship

A cosv0t þ B sinv0t ¼ C sin (v0t þ w) (4:308)

where

C ¼ (A2 þ B2)1=2, w ¼ tan�1 (A=B) (4:309)

K
τs + 1 Y(s)U(s)

FIGURE 4.22 First-order system (K> 0).

202 Simulation of Dynamic Systems with MATLAB® and Simulink®

the sinv0t and cosv0t terms in Equation 4.307 may be combined into a single term, that is,

y(t) ¼ KA
v0t

1þ (v0t)2
e�t=t þ 1

[1þ (v0t)]1=2
sin (v0t þ w)

�
(4:310)

where

w ¼ � tan�1 (v0t) (4:311)

From Equation 4.310, the transient and steady-state responses are

ytr(t) ¼ KAv0t

1þ (v0t)2
e�t=t (4:312)

yss(t) ¼ KA

[1þ (v0t)2]1=2
sin (v0t þ w) (4:313)

(b) The frequency response function is

H(jv) ¼ H(s)js¼jv ¼
K

tsþ 1

s¼jv

(4:314)

¼ K
1þ jvt

(4:315)

From Equation 4.314, the magnitude and phase angle of H(jv) are

jH(jv)j ¼ K
1þ jvt

 (4:316)

¼ K

[1þ (vt)2]1=2
(K > 0) (4:317)

ArgH(jv) ¼ � tan�1(vt) (4:318)

(c) Substituting the given values for A, K, t, and v¼v0 gives

ytr(t) ¼ (3)(1)(2)(0:5)
1þ [(2)(0:5)]2

e�t=t ¼ 1:5e�2t (4:319)

yss(t) ¼ (3)(1)

{1þ [(2)(0:5)]2}1=2
sin {2t � tan�1[(2)(0:5)]} (4:320)

¼ 1:5
ffiffiffi
2
p

sin 2t � p

4

� 	
(4:321)

The input u(t)¼ sin 2t and output y(t)¼ 1.5e�2tþ 1.5
ffiffiffi
2
p

sin(2t�p=4) are shown in Figure 4.23.
The transient response dies out in approximately 5t¼ 5(0.5)¼ 2.5 s.

(d) Figure 4.24 is a close-up of Figure 4.23 near the peaks of u(t) and y(t). The lag time T is
estimated as T� 4.31� 3.92¼ 0.39 s in agreement with the exact value

v0T ¼ w) T ¼ w

v0
¼ p=4

2
¼ p

8
¼ 0:393 s (4:322)

Linear Systems Analysis 203

This example illustrates how the steady-state sinusoidal response of an LTI system can be obtained
considerably faster using the frequency response function compared to methods that determine the
complete response.

Graphical tools exist for conveying the magnitude and phase properties of an LTI continuous-
time system with transfer function H(s). The simplest one consists of graphs of jH(jv)j and Arg H
(jv) vs. v. The graphs are typically plotted over a frequency range of interest. Control systems
engineers and analog filter designers prefer a variation of the frequency response plots in which
20 logjH(jv)j, the magnitude measured in decibels (db), is plotted vs. v on a logarithmic scale. The
result (along with the phase plot) is called a Bode diagram or Bode plot.

−2.5
0 1 2 3 4 5 6 7 8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t (s)

u(t) = sin 2t

y(t) = 1.5e−2t + 1.5√2sin(2t – π/2)

Sinusoidal response of first-order system, H(s) = K/(τs + 1)

FIGURE 4.23 Graph of input u(t) and output y(t).

0
3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

t (s)

T

Close-up showing output lag time T

Input u(t)

Output y(t)

FIGURE 4.24 Close-up of input and response near peaks.

204 Simulation of Dynamic Systems with MATLAB® and Simulink®

To illustrate, consider a system with transfer function

H(s) ¼ v3
b

(sþ vb)(s2 þ vbsþ v2
b)

(4:323)

which describes a third-order low-pass Butterworth filter designed to pass frequencies in the band 0
(DC) to vb and reject all others. The M-file ‘‘Chap4_Fig5_4.m’’ includes statements to evaluate the
magnitude and phase of H(s) when vb¼ 100 rad=s for frequencies between 100 and 104 rad=s. The
Bode plot is shown in Figure 4.25.

The control system toolbox, a complementary suite of utilities designed for use with the
MATLAB environment, includes a function ‘‘bode’’ for drawing the Bode plot of an LTI system.
The control system toolbox is covered later in Section 4.4.10.

The magnitude measured in db (sometimes referred to as the gain) is close to zero, and, hence,
the magnitude is close to 1 over a considerable portion of the interval 0 � v � vb. At v¼vb,

H(jvb)j j ¼ v3
b

(sþ vb)(s2 þ vbsþ v2
b)

s¼jvb

¼ 1
j�1þ jj ¼

1ffiffiffi
2
p (4:324)

) 20 log jH(jvb)j ¼ 20 log
1ffiffiffi
2
p � �3 db (4:325)

The gain is �3 db at v¼vb and starts falling off from vb at approximately 60 db for every 10-fold
increase in frequency (decade) (see Figure 4.25).

The frequency response function of a system dictates the extent to which sinusoidal inputs at
specific frequencies are passed or rejected by the system, and coupled with the fact that input time
signals can be resolved into sinusoids over a continuum of frequencies, explains why linear systems
are often called linear filters.

100 101 102 103 104
−150

−100

−50

0

ω (rad/s)

100 101 102 103 104

ω (rad/s)

|H
(jω

)|,
 d

b
A

rg
 [H

(jω
)],

 d
eg

−300

−200

−100

0

FIGURE 4.25 Bode plot for third-order Butterworth low-pass filter (vb¼ 100 rad=s).

Linear Systems Analysis 205

The individual components in a linear feedback control system such as sensors, controllers, and
power converters are examples of continuous-time filters, which transmit the range of frequencies in
the input according to their frequency response function. Control system design based on frequency
response relies on assumptions related to the frequency content of the command inputs and the
uncontrollable inputs, referred to as load variables or disturbances.

A simple unity feedback control system is shown in Figure 4.26. R(s) and D(s) are the reference
(command) and disturbance inputs.

The open-loop system model is

Y(s) ¼ GP(s)[U(s)þ GD(s)D(s)] (4:326)

The control system output Y(s) can be written as

Y(s) ¼ TR(s)R(s)þ TD(s)D(s) (4:327)

where

TR(s) ¼ GC(s)GP(s)

1þ GC(s)GP(s)
, TD(s) ¼ GD(s)GP(s)

1þ GC(s)GP(s)
(4:328)

It frequently happens that the command input r(t) is a slow varying signal compared to the
disturbance input d(t). Assuming GP(s) and GD(s) are fixed, proper design entails selecting a
controller transfer function GC(s) to simultaneously make jTR(jv)j close to 1 at the lower frequen-
cies contained in r(t) and jTD(jv)j close to zero for the frequencies present in d(t). Suppose the
command input is band-limited from 0 to 0.25 Hz (1.57 rad=s) and the disturbance frequencies start
at roughly 10 Hz (62.8 rad=s) and the open-loop system transfer functions are

GP(s) ¼ K

s2 þ 2zvnsþ v2
n

¼ 1
s2 þ 2:25sþ 0:5625

(4:329)

GD(s) ¼ KD ¼ 40 (4:330)

The controller is of the proportional plus integral (P-I) type,

GC(s) ¼ KC þ K1

s
¼ 5þ 2

s
(4:331)

Bode plots of TR(jv) and TD(jv) are generated in ‘‘Chap4_Fig5_6.m’’ and shown in Figure 4.27.
The frequency content of the command input r(t) is confined primarily to frequencies below 1.57
rad=s. The output will track the input closely since the gain 20 log jTR(jv)j is roughly 0 db,

GC(s) GP(s)

GD(s)

Y(s)

D(s)

R(s)
U(s)

Open-loop system

−

FIGURE 4.26 A feedback control system with command and disturbance inputs.

206 Simulation of Dynamic Systems with MATLAB® and Simulink®

corresponding to a magnitude of 1 from DC (v¼ 0) to approximately 1 rad=s. The phase angle Arg
[TR(jv)] is close to 08 from v¼ 0 to v� 0.5 rad=s and is �36.18 at v¼ 1.57 rad=s.

Conversely, the gain 20 log jTD(jv)j ¼�40 db, which is equivalent to a magnitude of 0.01 at
approximately 62 rad=s. The control system effectively filters out the disturbances by attenuating all
frequencies above 62.8 rad=s.

The steady-state error, ess¼ y(1)� r(1), is zero when r(t) or d(t) is constant. This can be
demonstrated by showing that the DC gains TR(j0)¼ 1 and TD(j0)¼ 0, a direct consequence of the
open-loop gain GC(0)GP(0)¼1. The infinite open-loop gain results from the presence of the
integrator in GC(s). While zero steady-state error is a desirable condition, we must still be mindful
of the location of the control system’s characteristic roots since it determines the transient response.

The transfer functions of real-world components and complete systems possess Bode plots in
which the gain ‘‘rolls off’’ at high frequencies. Properly designed closed-loop control systems track
low-frequency command inputs reasonably well. Further increases in frequency require excessive
power be delivered to control system components, thus limiting the system’s ability to track higher
frequency command inputs.

Any component or system with transfer function G(s) given by the ratio of polynomials in proper
fraction form, that is, numerator polynomial, is lower order than denominator will satisfy

lim
v!currency

jG(jv)j ¼ 0) lim
v!1 20 log jG(jv)j ¼ �1 (4:332)

A common measure of the frequency where ‘‘roll off’’ begins is vb and the interval (0, vb) is called
the bandwidth of the system. The frequency vb satisfies

jG(jvb)j ¼ 1

21=2
jG(j0)j) 20 log jG(jvb)j ¼ 20 log jG(j0)j � 3 db (4:333)

Consequently, vb is the (lowest) frequency at which the gain (magnitude function measured in db) is
3 db below the DC gain of the system.

10−2 10−1 100 101 102

−60
−40G

ai
n

(d
b)

Ph
as

e a
ng

le
 (d

eg
)

−20
0

20

|TR(jω)|

Arg (TR(jω))

Arg [TD(jω)]

|TD(jω)|

ω (rad/s)

10−2 10−1 100 101 102

ω (rad/s)

−200

−100

0

100

FIGURE 4.27 Bode plot for closed-loop frequency response functions TR(jv) and TD(jv).

Linear Systems Analysis 207

Consider the first-order system in Figure 4.22 with magnitude function jH(jv)j given in Equation
4.316. The frequency vb is obtained from

jH(jvb)j ¼ K

[1þ (vbt2)
1=2]
¼ 1

21=2
� jH(j0)j ¼ 1

21=2
� K (4:334)

) 1þ (vbt)
2 ¼ 2 (4:335)

) vb ¼ 1
t

(4:336)

Equation 4.336 is important because it relates vb, a frequency domain parameter to the time constant t,
which characterizes the system’s transient response in the time domain. Furthermore, being inversely
proportional to the system, time constant tells us that the bandwidth frequency vb is a measure of the
speed of response of the first-order system. Hence, first-order systems like the one in Figure 4.22 with a
fast natural mode (t small) exhibit larger bandwidths.

For a second-order system with transfer function

G(s) ¼ Kv2
n

s2 þ 2zvnsþ v2
n

(4:337)

increasing the natural frequency vn (with z constant) decreases the transient response time regard-
less of whether the system is underdamped, overdamped, or critically damped (see expressions for
step response in Section 2.3). It is left as an exercise to show that the bandwidth frequency vb for the
system with transfer function in Equation 4.337 is proportional to vn. Specifically,

vb ¼ 1� 2z2 þ (2� 4z2 þ 4z4)1=2
h i1=2

vn, (K ¼ 1) (4:338)

and, therefore, vb is a measure of the speed of response for a second-order system as well.
A Bode plot for three second-order systems, all with vn¼ 1 rad=s and damping ratios of z¼ 0.25,

1, 2, is shown in Figure 4.28. Also shown is an enlargement of the plots for the purpose of

10−2 100 102

10−2 100 102

10–1 100

10–1 100

−80

|G
(jω

)|
(d

b)

|G
(jω

)|
(d

b)

A
rg

 [G
(jω

)]
(d

eg
)

A
rg

 [G
(jω

)]
(d

eg
)

−60

−0

−20

0

ω (rad/s)

ω (rad/s) ω (rad/s)

ω (rad/s)

Bode plots of three
second-order systems

ζ = 2

ζ = 2

ζ = 2

ζ = 1

ζ = 1ζ = 2

ζ = 1

ζ = 1

ζ = 0.25 ζ = 0.25

ζ = 0.25ζ = 0.25

−150

−100

−50

0

−5

0

5

Close-up of Bode plots

−3

−150

−100

−50

0

FIGURE 4.28 Bode plots for second-order systems (vn¼ 1 rad=s) with z¼ 0.25, 1, 2.

208 Simulation of Dynamic Systems with MATLAB® and Simulink®

estimating the corresponding bandwidths. The calculated values of vb from Equation 4.338 are
1.4845 rad=s (z¼ 0.25), 0.6436 rad=s (z¼ 1), and 0.2666 rad=s (z¼ 2) in agreement with the values
estimated from Figure 4.28.

Figure 4.28 shows a peak in the gain (and magnitude function) for the underdamped system
indicating the presence of a resonant frequency. The resonant frequency is vr¼ 0.935 rad=s with
jG(jvr)j ¼ 2.0656 (6.3 db). Not all underdamped second-order systems exhibit resonance (see
Exercise 4.32).

The Bode plots and bandwidth calculations are handled in the MATLAB script file
‘‘Chap4_Fig5_7.m.’’

The step responses of the three second-order systems are shown in Figure 4.29. The rise time is
defined as tr¼ t0.9� t0.1, where t0.1 and t0.9 are the times required for the step response to reach 10%
and 90% of its final value, respectively. The rise time is another measure of the system’s speed of
response. The times t0.1 and t0.9 and the approximate rise times are shown on the zoomed-in plots of
the step responses. As expected, the lightly damped system (z¼ 0.25) with the greatest bandwidth
responds the quickest (shortest rise time) while the overdamped system (z¼ 2) with the smallest
bandwidth is the most sluggish and least responsive.

The step responses are generated in the M-file ‘‘Chap4_Fig5_8.m.’’
LTI systems modeled by transfer functions where the order of the numerator and that of the

denominator polynomials are equal, that is, a direct connection exists from the input to the output,
exhibit finite gain at frequencies approaching infinity. That is,

lim
v!1 jH(jv)j ¼ lim

v!1
ansn þ an�1sn�1 þ � � � þ a1sþ a0

bnsn þ bn�1sn�1 þ � � � þ b1sþ b0

s¼jv
¼ an

bn
(4:339)

Since a real system cannot respond in a way suggested by Equation 4.339, the transfer function H(s)
with equal order polynomials in the numerator and denominator, or equivalently the same number of
finite zeros and poles, is an ideal approximation that breaks down above a certain frequency.
Nonetheless, it is a useful approximation to the transfer function of a system that readily passes

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

0

0.5

1

1.5

y(
t)

y(
t)

y(
t)

y(
t)

y(
t)

y(
t)

ζ = 0.25

ζ = 1

ζ = 2

0 0.4 0.8 1.2 1.6 2
0.1

0.9

tr = 1.25 s

0

0.5

1

0 1 2 3 5
0.1

0.9

tr = 3.32 s

0

0.5

1

t (s)
0 1 2 3 4 6 7 8 9 10

0.1

0.9

t (s)

tr = 8.24 s

4

5

FIGURE 4.29 Step responses and rise times for three second-order systems.

Linear Systems Analysis 209

high-frequency components present in its input(s), as in the case of a high-pass filter. Of course, when
the high-frequency signals represent unwanted noise, which is invariably present in control systems,
the closed-loop transfer function should be designed to attenuate the noise (see Exercise 4.34).

The simple RC circuit in Figure 4.30 with the voltage vR(t) as output is an example of a high-pass
filter. The transfer function is

H(s) ¼ VR(s)

E0(s)
¼ RCs

RCs þ 1
(4:340)

At high frequencies (v 1=RC), the magnitude jH(j1)j � 1 (0 db). Note that the capacitor
behaves like a short circuit at high frequencies.

4.5.1 STABILITY OF LINEAR FEEDBACK CONTROL SYSTEMS BASED ON FREQUENCY RESPONSE

Linear control systems are a class of LTI systems, and the basic premises of stability presented in the
previous section are applicable. The following is a brief introduction to stability, as it applies to
simple feedback control systems from the viewpoint of frequency response. For a more detailed
discussion of the subject, the reader is encouraged to refer to any of the texts in linear feedback
control systems listed in the References.

Figure 4.31 is a block diagram of a servo control system with transfer functions for the controller,
actuator, plant, and sensor=transmitter.

Insight into the stability of the system can be ascertained by tracking the response to the error
signal e(t) ¼ L�1{E(s)} as it propagates around the loop. Suppose the loop is broken immediately
following the transmitter and a test signal e(t)¼ sinvt is inserted at the controller input. Each
component along the open-loop path processes a sinusoidal input and delivers a sinusoidal output
(both at radian frequency v) to the next component. Magnitude and phase shift of the individual
sinusoids are determined by the frequency response functions of each component at radian fre-
quency v.

R

C

e0(t)

vc(t)

+
_

+

_
vR(t)

FIGURE 4.30 Circuit with high-pass filter transfer function.

Transmitter

OutputActuator PlantControllerCommand
input

R(s)
E(s)

–
GC(s) GA(s)

GT (s)

GP(s)
UC(s)

UT (s)

UA(s)
Y(s)

FIGURE 4.31 Block diagram of representative linear feedback control system.

210 Simulation of Dynamic Systems with MATLAB® and Simulink®

The closed-loop control system is unstable if �uT (t) ¼ �L�1{UT (s)} is ever in phase with e(t)
and its amplitude is greater than one. When this occurs, the error signal propagates around the loop
and increases in magnitude while doing so. Conversely, when e(t) and �uT(t) are in phase and
j�uT(t)j ¼ juT(t)j< 1, a stable system results. Finally, a marginally stable system exists when e(t)
and �uT(t) are in phase and j�uT(t)j ¼ juT(t)j ¼ 1.

Since the negative sign in �uT(t) is equivalent to �1808 phase shift, �uT(t) will be in phase with
e(t) whenever uT(t) lags e(t) by �1808, that is, there is a combined total of �1808 phase lag in the
open-loop system. The frequency at which this occurs is called the phase crossover frequency vcp.
Hence, for a closed-loop, negative feedback control system to be marginally stable (or unstable),
there must exist at least one frequency where the open-loop phase lag is equal to �1808.

The open-loop transfer function is

GOL(s) ¼ GC(s)GA(s)GP(s)GT (s) (4:341)

For this example, assume the dynamics of each component are described by

GC(s) ¼ KC, GA(s) ¼ KA

tAsþ 1
, GP(s) ¼ KP

s(tPsþ 1)
, GT (s) ¼ KT

tTsþ 1
(4:342)

where KC¼ 0.25, KA¼ 2, tA¼ 0.25, KP¼ 8, tP¼ 4, KT¼ 0.1, and tT¼ 0.003.
The open-loop transfer function becomes

GOL(s) ¼ KC
KA

tAsþ 1
� KP

s(tPsþ 1)
� KT

tTsþ 1
(4:343)

¼ (0:25)
2

0:25sþ 1
� 8
s(4sþ 1)

� 0
0:003sþ 1

(4:344)

¼ 0:4
s(0:25sþ 1)(4sþ 1)(0:003sþ 1)

(4:345)

A Bode plot of the open-loop transfer function is shown in Figure 4.32.

10−2 10−1 100 101 102 103

10−2 10−1 100 101 102 103

−200

G
ai

n
(d

b)
Ph

as
e (

de
g)

−100

0

100

ωcg = 0.271 rad/s

Bode plot of open-loop transfer function (KC = 0.25)

−400

−300

−200

−100

0

ω (rad/s)

ωcp = 0.994 rad/s

FIGURE 4.32 Bode plot of GOL(s) for stable system (KC¼ 0.25).

Linear Systems Analysis 211

Inspection of Equation 4.345 reveals the open-loop phase varies from �908 at v¼ 0 to �3608 at
v!1 indicating the possibility of a marginally stable or unstable system.

The phase crossover frequency vcp was determined by trial and error to be approximately 0.9936
rad=s. As a check,

Arg[GOL(j0:9936)] � �180	 (4:346)

The magnitude function evaluated at vcp� 0.9936 rad=s is

jGOL(jvcp)j ¼ GOL(j0:9936)j ¼ 0:0953(�20:4 db) (4:347)

The system is stable since the magnitude function is less than one, or equivalently the gain is less
than 0 db, at the phase crossover frequency. The gain of �20.4 db is a measure of stability. Control
engineers would say the ‘‘gain margin’’ is 20.4 db.

Another indicator of stability, the ‘‘phase margin,’’ is the difference between the open-loop phase
lag and �1808 at the frequency where the gain is 0 db. This frequency, called the gain crossover
frequency vcg, is approximately 0.271 rad=s for the stable system in Figure 4.32. Since Arg
[GOL(jvcg)]¼Arg[GOL(j0.271)]¼�141.28, the phase margin is equal to �142.1� (�180)¼
37.98. Higher phase margins imply a greater measure of relative stability.

Increasing the controller gain KC generally makes the system more responsive. Consider raising
the gain KC by an amount sufficient to make the system marginally stable, that is, jGOL(jvcp)j ¼ 1)
20 log jGOL(jvcp)j ¼ 0 db. From Equation 4.347, it follows that if we multiply the current gain
KC¼ 0.25 by 1=jGOL(jvcp)j ¼ 1=0.0953, the new open-loop gain will be equal to 0 db at vcp (which
remains unchanged at 0.9936 rad=s). The Bode plot of the open-loop system transfer function when
KC¼ 0.25(1=0.0953)¼ 2.62 is shown in Figure 4.33.

The gain crossover frequency is identical to the phase crossover frequency, and the two stability
margins have been reduced to zero. The control system is marginally stable, and there will be
persistent oscillations at the crossover frequency 0.9936 rad=s in the natural response of the system.

10−2 10−1 100 101 102 103

10−2 10−1 100 101 102 103

−200

G
ai

n
(d

b)
Ph

as
e (

de
g)

−100

0

100

ωcg = 0.994 rad/s

Bode plot of open-loop transfer function (KC = 2.62)

−400

−300

−200

−100

0

ω (rad/s)

ωcp = 0.994 rad/s

FIGURE 4.33 Bode plot of GOL(s) for marginally stable system.

212 Simulation of Dynamic Systems with MATLAB® and Simulink®

The closed-loop transfer function is

GCL(s) ¼ GC(s)GA(s)GP(s)

1þ GC(s)GA(s)GP(s)GT (s)
(4:348)

and the closed-loop system poles are the roots of

1þ GC(s)GA(s)GP(s)GT (s) ¼ 1þ (2:6224)
2

0:25sþ 1
� 8
s(4sþ 1)

� 0:1
0:003sþ 1

¼ 0 (4:349)

) (0:25sþ 1)s(4sþ 1)(0:003sþ 1)þ (2:6224)(2)(8)(0:1) ¼ 0 (4:350)

) 0:003s4 þ 1:01275s3 þ 4:253s2 þ sþ 4:1958 ¼ 0 (4:351)

Solving the characteristic equation above produces the four closed-loop system poles,

s1 ¼ �333:3, s2 ¼ �4:25, s3 ¼ j0:9936, s4 ¼ �j0:9936

demonstrating the marginal stability (poles on the imaginary axis) of the system as well as the
frequency of sustained oscillations, namely, vcp¼ 0.9936 rad=s.

Further increase in controller gain KC produces an unstable system resulting in negative stability
margins (gain and phase) as well as closed-loop system poles in the right-half plane. Superior
performance requires a different type of controller, that is, one which provides sufficient phase lead
in the vicinity of the gain crossover frequency for adequate stability and possibly phase lag at lower
frequencies to improve steady-state response. Indeed, this is the essence of synthesizing controllers
for feedback control systems using frequency response methods. Simulation is an indispensable tool
for verifying control system design.

EXERCISES

4.28 Use Equations 4.302 and 4.303 to derive Equation 4.304.
4.29 The Fourier spectrum jF(jv)j of a signal f(t) can be used to find the energy in the signal in the

frequency spectrum (v1, v2) according to

Ef (v1,v2) ¼
ðv2

v1

F(jv)j j2dv

(a) Find the Fourier transform of the exponential f (t) ¼ 0, t < 0
e�at, t � 0

�
.

(b) Find and graph jF(jv)j.
(c) Find v0 such that Ef (0,v0) ¼ 1=2Ef (0,1).

4.30 For the third-order Butterworth filter in Equation 4.323 with vb¼ 2p rad=s, find
(a) The poles of H(s).
(b) The impulse response function h(t).
(c) The filter output at steady state when the input is u(t)¼ sin(0.5vbt)þ sin(2vbt).

4.31 Derive Equation 4.338 relating the bandwidth and natural frequency of a second-order system
in standard form.

4.32 For a second-order system with natural frequency vn¼ 1 rad=s, find
(a) The maximum value of z for which the system has a resonant frequency.
(b) The resonant frequency if z¼ 0.
(c) The response when z¼ 0 to a sinusoidal input at the resonant frequency.

Linear Systems Analysis 213

4.33 The circuit shown in Figure E4.33 is designed to block 60 Hz noise in the input vi(t) from
appearing in the output vo(t).

R = 10 Ω

C = 100 μF

νi(t) νo(t)
+
_

+

_

L

FIGURE E4.33

(a) Show that the transfer function H(s)¼Vo(s)=Vi(s)¼ (R(LCs2þ 1))=(RLCs2þ LsþR).
(b) Find the frequency response function H(jv).
(c) Find the inductance L for which jH(j2p � 60)j ¼ 0.
(d) Write an M-file to draw a Bode plot for 102 � v � 104 rad=s.
(e) Find and graph vo(t) when vi(t)¼ sin(2p � 55)tþ sin(2p � 60)t.
(f) Find and graph vo(t) when vi(t)¼ sin(2p � 100)tþ sin(2p � 60)t.

4.34 A system for controlling the attitude of a rigid satellite is shown Figure E4.34:

1
τF s + 1

GF(s) =

N(s)

θcom(s) θ(s)T(s)

Filter

Controller Satellite

Sensor

Ks

1
Js2 + Bs

E(s)

–
GC(s) = KC + +

1
S/N + 1TIs

K

VF(s)

VS (s)

TDs

FIGURE E4.34

The controller determines the torque T(t) developed by a pair of thrusters to control the
satellite’s attitude u(t). The controller input is an error voltage signal e(t), which is the
difference between the commanded attitude ucom(t) converted to a voltage and the filtered
sensor output vF(t). The sensor output voltage vS(t) contains an additive noise component n(t).

A low-pass filter is inserted between the comparator and the sensor output to attenuate the
noise in the feedback signal. The gain K converts the commanded angle (deg) to a voltage for
comparison to the output voltage from the filter vF(t). The numerical value of K is the same as
the sensor gain KS.

The command and noise inputs are

ucom(t) ¼
0, t < 0

At, 0 � t < t0
At0, t � t0

8<:
n(t) ¼ N0 sinv0t, t � 0

214 Simulation of Dynamic Systems with MATLAB® and Simulink®

Baseline parameter values are

K ¼ KS ¼ 0:1V=deg,

J ¼ 150 ft lb=deg=s2, B ¼ 15 ft lb=deg=s

KC ¼ 10 ft lb=V, T1 ¼ 60 s, TD ¼ 30 s, N ¼ 10

A ¼ 1:2 8=s, t0 ¼ 2:5 s

N0 ¼ 1V, v0 ¼ 50Hz

In parts (a) through (d), assume the filter is not present, that is, VS(s) is input to the summer.
(a) Find the transfer functions Hcom(s) ¼ u(s)=ucom(s) and HN(s) ¼ u(s)=N(s). Leave your

answers in terms of the parameters K,KS, J,KC,TI ,TD,N.
(b) Obtain Bode Plots for Hcom(jv) and HN(jv).
(c) Find and graph u(t), t � 0.
(d) Find and graph the torque T(t), t � 0.

In parts (e) through (i) the filter is present.

(e) Find the filter time constant tF if the filter gain is �40 db at the noise frequency.
(f) Find the transfer functions Hcom(s) ¼ u(s)=ucom(s) and HN(s) ¼ u(s)=N(s). Leave your

answers in terms of K,KS, J,KC, TI ,TD,N, tF .
(g) Obtain Bode Plots for Hcom(jv) and HN(jv) using the value for tF .
(h) Find and graph u(t), t � 0.
(i) Find the gain and phase margins of the closed-loop system.

4.35 For the control system shown in Figure 4.31,
(a) Use the given baseline parameter values (except KC), and fill in the missing values in the

following table:

KC¼0.1 KC¼0.25 KC¼1 KC¼ 2.5

Phase margin

Gain margin

Band margin

(b) Compare the step responses for each of the cases in the table.

4.6 z-TRANSFORM

Difference equations result from approximation of continuous-time differential equation models.
Inputs to the difference equations are commonly discrete-time signals resulting from sampling a
continuous-time signal (sample data systems). Inherently discrete-time systems are modeled by
difference equations relating inputs and outputs that change only at discrete points in time, as in the
case of a numeric processor with a fixed cycle time or a loan balance with monthly payments to
reduce the outstanding balance.

In the same way, we characterized continuous-time signals and continuous-time systems;
discrete-time counterparts (signals and systems) can be analyzed with the help of a mathematical
transformation. Instead of an integral transformation from a continuous-time signal f(t), t � 0 to its
Laplace transform F(s), a different type of mapping is applied to a discrete-time function f(k) or fk,
k¼ � � � �3, �2, �1, 0, 1, 2, 3,. . . . Similar to F(s), the z-transform F(z) is a complex-valued
function, that is, s and z are both complex variables. Only causal signals, those that satisfy fk¼ 0,
k¼ � � ��3, �2, �1, will be considered.

Linear Systems Analysis 215

The z-transform of a causal discrete-time signal fk, k¼ 0, 1, 2, 3, . . . denoted F(z) or z{fk} is
defined by the infinite series

F(z) ¼ z{fk} ¼
X1
k¼0

fkz
�k (4:352)

The region of convergence of F(z) in the z-plane is all complex numbers greater than a certain
distance from the origin, that is, jzj>R where R depends on the particular sequence of numbers
(discrete-time signal) fk (Kuo 1980). As in the case of the Laplace transformation, the region of
convergence of the z-transform for a particular discrete-time signal is of passing interest. The main
consideration is that the sum in Equation 4.352 converges to a complex number somewhere in the
z-plane. Several simple discrete-time signals and their z-transforms follow. The derivations follow
directly from the definition in Equation 4.352.

Example 4.13

Find the z-transform of the unit step ûk¼ 1, k¼ 0, 1, 2, 3, . . . shown in Figure 4.34.

U(z) ¼ z{ûk} ¼
X1
k¼0

1 � z�k ¼ 1þ z�1 þ (z�1)2 þ (z�1)3 þ � � � (4:353)

The infinite series converges to a sum, that is,

U(z) ¼
X1
k¼0

(z�1)k ¼ 1
1� z�1

¼ z
z� 1

(4:354)

provided jz�1j< 1 or equivalently jzj> 1. Hence, the region of convergence is outside the Unit
Circle, jzj ¼ 1. A closed form for U(z) is preferable to the infinite series and often easy to recognize
when uk is a simple expression.

Example 4.14

(a) Find the z-transform of the discrete-time signal uk resulting from sampling the continuous-
time function u(t)¼ e�at, t � 0 every T s.

(b) Suppose u(t) and uk are as shown in Figure 4.35. Find U(z).

(a) Sampling a continuous-time signal u(t) every T s results in a discrete-time signal uk where
uk¼ u(t)jt¼kT¼ u(kT), k¼ 0, 1, 2, 3,. . . . Hence, from the definition of the z-transform and
uk¼ e�akT, k¼ 0, 1, 2, . . . ,

U(z)¼
X1
k¼0

e�akTz�k¼
X1
k¼0

(e�aTz�1)k¼ 1
1�e�akTz�1

¼ z
z�e�aT

, jzj> e�aT (4:355)

Note the dependence of U(z) on the sampling interval T.

k1 2 3 4 5 60

1
…….

…….

ukˆ

FIGURE 4.34 The discrete-time unit step.

216 Simulation of Dynamic Systems with MATLAB® and Simulink®

(b) For a¼ 1, T¼ 0.25,

U(z) ¼ z
z� e�0:25

, jzj > e�0:25 (4:356)

The next example looks at a discrete-time signal, which occurs frequently in the analysis of linear
discrete-time systems, namely, the geometric sequence.

Example 4.15

Find the z-transform of the discrete-time signal

uk ¼ ak, k ¼ 0, 1, 2, 3, . . . (4:357)

Once again, our starting point is the definition of the z-transform in Equation 4.352.

U(z) ¼
X1
k¼0

akz�k ¼
X1
k¼0

(az�1)k ¼ 1
1� az�1

¼ z
z� a

, jzj > jaj (4:358)

The result is easily checked by long division, that is, if the denominator in Equation 4.358 is
divided into the numerator, the result is

z
z� a

¼ 1þ az�1 þ a2z�2 þ a3z�3 þ � � � þ akz�k þ � � � (4:359)

From the definition of U(z) as an infinite series,

U(z) ¼
X1
k¼0

ukz�k ¼ u0 þ u1z�1 þ u2z�2 þ u3z�3 þ � � � þ ukz�k þ � � � (4:360)

0 1 2 3 4 5 6

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t (s)

u0

u1

u2

u3

k

u(t) = e−at, t ≥ 0

a = 1

uk = e−akT, k = 0, 1, 2, 3, ...

T = 0.25 s

4

FIGURE 4.35 Uniform sampling of a continuous-time exponential function.

Linear Systems Analysis 217

Comparing Equation 4.359 and Equation 4.360, it follows that u0¼ 1, u1¼ a, u2¼ a2, u3¼ a3, . . . ,
and, therefore, uk¼ ak, k¼ 0, 1, 2, 3,. . . . The long division method provides a quick check on
U(z) for a discrete-time signal uk, k¼ 0, 1, 2, 3,. . . . Typically, the first several coefficients in the
infinite series expression for U(z) are compared to the corresponding values of the discrete-time
signal uk with an equivalence necessary (but not sufficient) for U(z)¼ z{uk}.

Depending on the numerical value of the constant ‘‘a,’’ the discrete-time signal uk in Equation
4.357 can asymptotically approach zero in magnitude (jaj< 1), remain constant in magnitude
(jaj ¼ 1), or increase in magnitude without bound (jaj> 1). All six cases are shown in Figure 4.36.
Note that when a¼ 1, the discrete-time unit step (Figure 4.34) results and Equation 4.358 reduces
to Equation 4.354.

The exponential sequence in Example 4.14 is also a geometric sequence. This is evident by
expressing it in a slightly different way, that is,

uk ¼ e�akT ¼ (e�aT)k ¼ (b)k, k ¼ 0, 1, 2, 3, . . . where b ¼ e�aT (4:361)

The sequences resulting from uniform sampling of continuous-time sine and cosine functions are
fundamental discrete-time signals with z-transforms that follow directly from the basic definition.
The results are

sin kvT , (sinvT)z
z2 � (2 cosvT)zþ 1

(4:362)

cos kvT , z(z� cosvT)
z2 � (2 cosvT)zþ 1

(4:363)

where the symbol, denotes a z-transform pair, that is, a discrete-time signal and its z-transform.
The discrete-time signals in Equations 4.362 and 4.363 produce interesting results when the

sampling occurs at certain frequencies as shown in Example 4.16.

−0.5

0

0.5

1

k

a = −0.5

−1

−0.5

0

0.5

1

a = −1

−500

0

500

1000
a = −2

0

0.25

0.5

0.75

1

a = 0.5

0

0.5

1

1.5

2

a = 1

0 2 4 6 8 10
k

0 2 4 6 8 10
k

0 2 4 6 8 10

k
0 2 4 6 8 10

k
0 2 4 6 8 10

k
0 2 4 6 8 10

0

250

500

750

1000 a = 2

FIGURE 4.36 Discrete-time signal uk¼ ak, k¼ 0, 1, 2, 3, . . . for a¼�0.5, �1, �2, 0.5, 1, 2.

218 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 4.16

Find the z-transform of the discrete-time signal obtained from sampling

(a) x(t)¼ sin 3t, t � 0 when T¼p=6 s
(b) x(t)¼ sin 3t, t � 0 when T¼p=3 s
(c) x(t)¼ cosvt, t � 0 when T¼ 2p=v s

From Equations 4.362 and 4.363,

(a) xk ¼ sin 3kT , (sin 3 � p=6)z
z2 � (2 cos 3 � p=6)zþ 1

¼ (sinp=2)z
z2 � (2 cosp=2)zþ 1

¼ z
z2 þ 1

(4:364)

(b) xk ¼ sin 3kT , (sin 3 � p=3)z
z2 � (2 cos 3 � p=3)zþ 1

¼ (sinp)z
z2 � (2 cosp)zþ 1

¼ 0 (4:365)

(c) cos kvT , z(z� cosv � 2p=v)
z2 � (2 cosv � 2p=v)zþ 1

¼ z(z� cos 2p)
z2 � (2 cos 2p)zþ 1

¼ z(z� 1)
z2 � 2zþ 1

¼ z
z� 1

(4:366)

Figure 4.37 shows the continuous-time signal x(t)¼ sin 3t, t � 0 and the discrete-time signals
xk¼ sin 3kT, k¼ 0, 1, 2, 3, . . . resulting from sampling in parts (a) and (b).

Note, in part (a), the frequency of sampling vs¼ 2p=T¼ 12 rad=s is four times the frequency of
the signal x(t). The result given in Equation 4.364 is easily verified by long division of z2þ 1 into z
giving the infinite series

U(z) ¼ z
z2 þ 1

z�1 � z�3 þ z�5 � z�7 þ z�9 � z11 þ � � � (4:367)

) uk ¼
0, k ¼ 0, 2, 4, 6, . . .

1, k ¼ 1, 5, 9, . . .

�1, k ¼ 3, 7, 11, . . .

8<: ¼ 0, k ¼ 0, 2, 4, 6, . . .

(�1)(kþ3)=2, k ¼ 1, 3, 5, 7, . . .

�
(4:368)

1

0.5

0

−0.5

−1

1

0.5

0

−0.5

−1

0

0 1 2 3 4 5 6 7 8 9 10 11 k

x(t)

x(t) = sin 3t, t ≥ 0 and xk = x (kT), k = 0, 1, 2, 3,... T = π/3 s

x(t) = sin 3t, t ≥ 0 and xk = x (kT), k = 0, 1, 2, 3,... T = π/6 s

xk

1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 k

t (s)

x(t)
xk

FIGURE 4.37 Uniform sampling of x(t)¼ sin 3t (T¼p=6 s and T¼p=3 s).

Linear Systems Analysis 219

At the slower sampling frequency of 6 rad=s in part (b), the discrete-time signal is identically zero
for all k. In part (c), the cosine function is sampled once per cycle resulting in the discrete-time unit
step function shown in Figure 4.38.

Table 4.4 is a brief listing of elementary continuous-time functions and their Laplace transforms
along with the discrete-time signals resulting from uniform sampling of the continuous-time signals
and the corresponding z-transforms (Jacquot 1981).

−1

−0.5

0

0.5

1

0 1 2 3 4 5 k

t (s)

x(t) = cos ωt, t ≥ 0 and xk = x(kT), k = 0, 1, 2, 3,... T = 2π/ω s

x(t)
xk

FIGURE 4.38 Uniform sampling of cosvt (T¼ 2p=v s).

TABLE 4.4
Table of Laplace and z-Transforms

f(t), t � 0 F(s) ¼ L{f (t)} fk¼ f(kT), k¼0, 1, 2, . . . F(z) ¼ z{fk}

1
1
s

1
z

z� 1

T
1
s2

KT
Tz

(z� 1)2

e�at
1

sþ a
e�akT

z

z� e�aT

te�at
1

(sþ a)2
kTe�akT

Te�aT z
(z� e�aT)2

sinvt
v

s2 þ v2
sin kvT

(sinvT)z

z2 � 2(cosvT)zþ 1

cosvt
s

s2 þ v2
cos kvT

z2 � (cosvT)z

z2 � 2(cosvT)zþ 1

e�at sinvt
v

(sþ a)2 þ v2
e�akT sin kvT

(e�aT sinvT)z
z2 � 2(e�aT cosvT)zþ e�2at

e�at cosvt
sþ a

(sþ a)2 þ v2
e�akT cos kvT

z2 � (e�aT cosvT)z
z2 � 2(e�aT cosvT)zþ e�2aT

220 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.6.1 DISCRETE-TIME IMPULSE FUNCTION

We now introduce a discrete-time function, which plays a prominent role in analyzing the behavior
of linear discrete-time systems. The unit strength discrete-time impulse occurring at discrete-time
k¼ 0 is defined by

dk ¼ 1, k ¼ 0
0, k ¼ 1, 2, 3, . . .

�
(4:369)

Delaying the discrete-time impulse by n units of discrete-time produces

dk�n ¼ 1, k ¼ n
0, k ¼ 0, 1, 2, . . . , n� 1, nþ 1, . . .

�
(4:370)

It follows directly from the definition of the z-transform that

z{dk} ¼ 1 and z{dk�n} ¼ z�n (4:371)

An arbitrary discrete-time signal fk, k¼ 0, 1, 2, . . . can be expressed as a weighted sum of unit
discrete-time impulses, that is,

fk ¼
X1
i¼0

fidk�i ¼ f0dk þ f1dk�1 þ f2dk�2 þ f3dk�3 þ k ¼ 0, 1, 2, 3, . . . (4:372)

The output of a linear discrete-time system subject to a unit discrete-time impulse is termed the unit
impulse response. Just like in the case of continuous-time systems, the discrete-time impulse
response reflects the natural dynamics of the system. This will be demonstrated after the z-domain
transfer function is introduced.

Example 4.17

Represent the discrete-time signal uk, k¼ 0, 1, 2, 3, . . . shown in Figure 4.39 in terms of discrete-
time impulses and find U(z).

uk ¼
0, k ¼ 0, 1, 2, 6, 7, . . .
1, k ¼ 3, 5
2, k ¼ 4

8<: (4:373)

From Equation 4.372,

uk ¼ 1 � dk�3 þ 2 � dk�4 þ 1 � dk�5 (4:374)

U(z) ¼ z{uk} ¼ z{dk�3 þ 2dk�4 þ dk�5} ¼ z�3 þ 2z�4 þ z�5 ¼ z2 þ 2zþ 1
z5

(4:375)

k
1 2 3 4 5 60

1

…….

…….

uk

7

2

FIGURE 4.39 Graph of discrete-time signal uk, k¼ 0, 1, 2, 3,. . . .

Linear Systems Analysis 221

Note in Equation 4.375 we employed the linearity property of z-transforms, that is,

z{dk�3 þ 2dk�4 þ dk�5} ¼ z{dk�3}þ 2z{dk�4}þ z{dk�5} (4:376)

In the general case,

zz{auk þ byk} ¼
X1
k¼0

(auk þ byk)z�k ¼ a
X1
k¼0

ukz�k þ b
X1
k¼0

ykz�k ¼ aU(z)þ bY(z) (4:377)

Other useful properties (analogous to those of the Laplace transform) of the z-transform are
included in Table 4.5.

The ‘‘delay’’ property is especially important. Suppose a discrete-time signal uk for which
uk¼ 0 when k< 0 is delayed n units of discrete-time. The delayed signal, denoted uk�n, is
expressed in terms of uk in Table 4.5. The case where n¼ 1 and 2 along with the general case
is illustrated in Figure 4.40a through d.

The unit-delay operator, as the name suggests, delays its input by one unit of discrete-time. The
symbol for a unit-delay operator is a block with z�1 inside. If the input to a unit-delay operator is
the discrete-time signal uk shown in Figure 4.40a, the output would be uk�1 in Figure 4.40b. A pair
of unit-delay operators in series is shown in Figure 4.41.

The outputs xk and yk are related to the input uk by

xk ¼ uk�1 ¼
0, k ¼ 0

u0 , k ¼ 1

u1, k ¼ 2

.

8>>><>>>: (4:378)

TABLE 4.5
Useful Properties of the z-Transform

Description Discrete-Time Signal Property

Linearity uk¼ axkþ byk U(z)¼ aX(z)þ bY(z)

Delay (right shifting) Given uk, k¼ 0, 1, 2, 3, . . . , where uk¼ 0 for k< 0 z{uk�n}¼ z�nU(z)

uk�n ¼

0, k ¼ 0, 1, 2, . . . , n� 1

u0, k ¼ n

u1, k ¼ nþ 1

u2, k ¼ nþ 2

etc:

8>>>>><>>>>>:
Summation yk ¼

Pk
i¼0

ui Y(z) ¼ z

z� 1
U(z)

Multiplication by geometric sequence yk¼ akuk Y(z) ¼ U
z

a

� 	
Multiplication by k property yk¼ kuk Y(z) ¼ �z d

dz
U(z)

Initial value property fk ¼
P1
i¼0

fidk�i, k ¼ 0, 1, 2, 3, . . . f0 ¼ lim
jzj!1

F(z)

Final value property fk ¼
P1
i¼0

fidk�i, k ¼ 0, 1, 2, 3, . . . f1 ¼ lim
jzj!1

(z� 1)F(z)

Periodic signal fk ¼ fkþn, k ¼ 0, 1, 2, 3, . . .

F(z) ¼ zn

zn � 1
F̂(z)

where F̂(z) ¼
Xn�1
k¼0

fkz
�k

222 Simulation of Dynamic Systems with MATLAB® and Simulink®

yk ¼ xk�1 ¼ uk�2 ¼
0, k ¼ 0, 1

u0, k ¼ 2

u1, k ¼ 3

.

8>>><>>>: (4:379)

In a later section when we introduce simulation diagrams for discrete-time systems, it will be
apparent that the unit delay is the counterpart to a continuous-time integrator in the simulation
diagram of continuous-time systems.

Several examples illustrating the properties in Table 4.5.

Example 4.18

A unit alternating sequence (a¼�1 in Figure 4.36) is the input to a summer as shown in
Figure 4.42.

(a) Find the output yk, k¼ 0, 1, 2, 3,. . . .
(b) Find Y(z).

k
−1 0 1 2 3 4−2 …….

…….

uk

5

−1 0 1 2 3 4−2 5 6 7

−1 0 1 2 3 4−2 …….5

−1 0 1 2 3 4−2 5

…….

uk−1

uk−n

k
…

….

uk−2

k

k
n n+1 n+2 n+3 n+4

(a) (b)

(c) (d)

z{uk} = U(z)
z{uk–1} = z–1U(z)

z{uk−2} = z−2U(z)
z{uk−n} = z−nU(z)

FIGURE 4.40 Illustration of the delay property in Table 4.5.

xk ykuk
z−1 z−1

FIGURE 4.41 Unit-delay operators in series.

uk = (−1)k, k = 0, 1, 2, 3, ...
k

i=0
yk = ui∑ ∑

FIGURE 4.42 A summer with a unit alternating sequence input.

Linear Systems Analysis 223

(a) Referring to the graphs of the geometric sequence in Figure 4.36 for the case when a¼�1, it is
apparent that the output of the summer is

yk ¼
1, k ¼ 0, 2, 4, . . .

0, k ¼ 1, 3, 5, . . .

�
(4:380)

(b) From the definition of the z-transform as an infinite series in z�1,

Y(z) ¼ 1þ 1 � z�2 þ 1 � z�4 þ 1 � z�6 þ � � � (4:381)

¼ 1þ (z�2)þ (z�2)2 þ (z�2)3 þ � � � (4:382)

¼ 1
1� (z�2)

(4:383)

¼ z2

z2 � 1
(4:384)

Alternatively, from the summation property in Table 4.5 and knowing z{ak}¼ z=(z� a),

Y(z) ¼ z
z� 1

U(z) ¼ z
z� 1

z
zþ 1

� �
¼ z2

z2 � 1
(4:385)

Example 4.19

Find the z-transform of the discrete-time signal resulting from sampling the output of a half-wave
rectifier whose input is the continuous-time function sinv0t. Sampling starts at t¼ 0 at a frequency
of 8v0, where v0¼ 2p rad=s.

The output of the half-wave rectifier is

v(t) ¼ sinv0t, kp=v0 � t � (kþ 1)p=v0 for k ¼ 0, 2, 4, . . .

0, (kþ 1)p=v0 � t � (kþ 2)p=v0 for k ¼ 1, 3, 5, . . .

(
(4:386)

Both v(t) and vk¼ v(kT), k¼ 0, 1, 2, 3, . . . are shown in Figure 4.43. The discrete-time signal vk is
periodic, and the period is n¼ 8, that is, vkþ8¼ vk, k¼ 0, 1, 2, 3,. . . .

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 k

t (s)

v(t) = sin 2πt, k/2 ≤ t ≤ (k + 1)/2, n = 0, 2, 4, ...

elsewhere

T = 1/8 s

v(t)
vk

0,

FIGURE 4.43 Sampling the continuous-time output of a half-wave rectifier with input sin 2pt.

224 Simulation of Dynamic Systems with MATLAB® and Simulink®

The z-transform of the first cycle of vk is

V̂ (z) ¼
X7
k¼0

vkz
�k ¼

X3
k¼0

sin (2pkT)z�k þ
X7
k¼4

0 � z�k ¼
X3
K¼0

sin
kp
4

� �
z�k (4:387)

¼ 0þ sin
p

4

� 	
z�1 þ sin

p

2

� 	
z�2 þ sin

3p
4

� �
z�3 (4:388)

¼ 0þ
ffiffiffi
2
p

2
z�1 þ z�2 þ

ffiffiffi
2
p

2
z�3 (4:389)

Applying the property in Table 4.5 for periodic signals gives

V (z) ¼ zn

zn � 1
V̂ (z) ¼ z8

z8 � 1

ffiffiffi
2
p

2
z�1 þ z�2 þ

ffiffiffi
2
p

2
z�3

� �
(4:390)

¼ z5

z8 � 1

ffiffiffi
2
p

2
z2 þ zþ

ffiffiffi
2
p

2

� �
(4:391)

Long division of z8� 1 into (
ffiffiffi
2
p

=2)z7 þ z6 þ (
ffiffiffi
2
p

=2)z5 will generate a power series in z�1 with
coefficients corresponding to the sampled values shown in Figure 4.43.

4.6.2 INVERSE z-TRANSFORM

The analysis of discrete-time system dynamics requires the capability of inverting a z-transform F(z)
to find the discrete-time signal fk,, k¼ 0, 1, 2, 3,. . . . It is similar to the way in which the inverse
Laplace transform was obtained, that is, by exploiting the basic properties of the z-transform,
referring to tables of z-transform pairs, partial fraction expansion, and using one additional method
not applicable to continuous-time systems, namely, long division. A simple example of finding the
inverse z-transform based on some of the methods outlined above follows.

Example 4.20

Find the inverse z-transform of

F(z) ¼ zþ 1
z(zþ 2)

(4:392)

(a) Using properties of the z-transform along with the lookup table of z-transform pairs.
(b) By the method of long division.

(a) F(z) ¼ zþ 1
z(zþ 2)

¼ z�1
zþ 1
zþ 2

� �
(4:393)

¼ z�1
z

zþ 2

� �
þ z�2

z
zþ 2

� �
(4:394)

From Table 4.4, the term (z=(zþ 2)) is the z-transform of the discrete-time signal gk¼ (�2)k, k¼ 0,
1, 2, 3,. . . . From the delay property in Table 4.5, fk is the sum of gk delayed one unit of time and gk
delayed two units of discrete-time. Denoting the delayed signals by ~gk,1 and ~gk,2, we can write

fk ¼ ~gk,1 þ ~gk,2 k ¼ 0, 1, 2, 3, . . . (4:395)

Linear Systems Analysis 225

where

~gk,1 ¼ 0, k ¼ 0
(�2)k�1, k ¼ 1, 2, 3, . . .

�
(4:396)

~gk,2 ¼ 0, k ¼ 0, 1
(�2)k�2, k ¼ 2, 3, 4, . . .

�
(4:397)

Combining Equations 4.395 and 4.396, the inverse z-transform is

fk ¼
0, k ¼ 0
1, k ¼ 1
(�2)k�1 þ (�2)k�2, k ¼ 2, 3, 4, . . .

8<: (4:398)

Simplifying the expression in Equation 4.398 when k¼ 2, 3, 4, . . . gives

fk ¼
0, k ¼ 0
1, k ¼ 1
�(� 2)k�2, k ¼ 2, 3, 4, . . .

8<: (4:399)

(b) Long division of the denominator in Equation 4.392 into the numerator results in an infinite
series. The first few terms are

zþ 1
z2 þ 2z

¼ z�1 � z�2 þ 2z�3 � 4z�4 þ 8z�5 � � � � (4:400)

Looking at Equation 4.400, it is possible to recognize a pattern in the coefficients starting with the
z�2 term. This pattern results in the expression in the third line of the general solution in Equation
4.399. The reader should verify that Equations 4.399 and 4.400 generate identical values for fk,
k¼ 0, 1, 2, 3, . . . as they must.

4.6.3 PARTIAL FRACTION EXPANSION

Causal signals, that is, discrete-time signals fk that are identically zero for negative values of
discrete-time k, possess z-transforms of the form

F(z) ¼ N(z)

D(z)
¼ b0zn þ b1zn�1 þ � � � þ bmzn�m

zn þ a1zn�1 þ � � � þ an�1zþ an
(n � m) (4:401)

The partial fraction expansion of F(z) depends on the nature of the roots of D(z). Equation 4.401 is
rewritten with the denominator D(z) in factored form,

F(z) ¼ b0zn þ b1zn�1 þ � � � þ bmzn�m

(z� p1)(z� p2) � � � (z� pn)
(n � m) (4:402)

where p1, p2, . . . , pn are the poles of F(z). Three cases are considered for finding the inverse
z-transform of F(z) by partial fractions.

Case I: Poles of F(z) are real and distinct
When the poles p1, p2, . . . , pn are real and unequal, F(z) in partial fraction form is

F(z) ¼ c0 þ c1
z

z� p1

� �
þ c2

z

z� p2

� �
þ � � � þ cn

z

z� pn

� �
(4:403)

226 Simulation of Dynamic Systems with MATLAB® and Simulink®

The constant c0 is easily determined by substituting z¼ 0 in Equations 4.402 and 4.403.

c0 ¼ F(z) z¼0j ¼ F(0) ¼
0, n > m

bn
(�p1)(�p2) � � � (�pn) , n ¼ m

(
(4:404)

The remaining coefficients c1, c2, . . . , cn are obtained from (Cadzow 1973)

ci ¼ z� pi
z

� �
F(z)

z¼pi

, i ¼ 1, 2, 3, . . . , n (4:405)

From the z-transform pairs dk, 1, ak, z=(z� a) and the linearity property of the z-transform, the
inverse z-transform of F(z) in Equation 4.403 is

fk ¼ c0dk þ c1p
k
1 þ c2p

k
2 þ � � � þ cnp

k
n, k ¼ 0, 1, 2, 3, . . . (4:406)

Example 4.21

Find the discrete-time signal with z-transform given by

F(z) ¼ z2 þ zþ 1
z2 � 4

(4:407)

Factoring the denominator leads to the partial fraction expansion

z2 þ zþ 1
z2 � 4

¼ z2 þ zþ 1
(z� 2)(zþ 2)

¼ c0 þ c1

�
z

z� 2

�
þ c2

z
zþ 2

� �
(4:408)

where

c0 ¼ F(0) ¼ z2 þ zþ 1
(z� 2)(zþ 2)

z¼0

: ¼ � 1
4

(4:409)

c1 ¼ z� 2
z

� �
F(z)

z¼2
¼ z2 þ zþ 1

z(zþ 2)

z¼2
¼ 7

8
(4:410)

c2 ¼ zþ 2
z

� �
F(z)

z¼�2
¼ z2 þ zþ 1

z(z� 2)

z¼�2
¼ 3

8
(4:411)

) F(z) ¼ �1
4
þ 7
8

z
z� 2

� 	
þ 3
8

z
zþ 2

� �
(4:412)

) fk ¼ � 1
4
dk þ 7

8
(2)k þ 3

8
(�2)k, k ¼ 0, 1, 2, 3, . . . (4:413)

It is left as an exercise to show that the first several values of fk, k¼ 0, 1, 2, 3, . . . are in agreement
with the values obtained by long division of z2� 4 into z2þ zþ 1.

If the denominator D(z) in Equation 4.401 has a factor zp, the inverse z-transform of zp F(z)
should be determined first, followed by use of the delay property to obtain the final result. To
illustrate, suppose F(z) is given by

F(z) ¼ z2 þ zþ 1
z3(z2 � 4)

(4:414)

Linear Systems Analysis 227

We start by inverting z3 F(z),

z3F(z) ¼ z2 þ zþ 1
z2 � 4

(4:415)

From Example 4.21, we know

z�1
z2 þ zþ 1
z2 � 4

�
¼ � 1

4
dk þ 7

8
(2)k þ 3

8
(�2)k (4:416)

Hence, the inverse z-transform of F(z) in Equation 4.414 is the discrete-time signal in Equation
4.416 delayed three units of discrete-time, that is,

fk ¼
0, k ¼ 0, 1, 2,

� 1
4
dk�3 þ 7

8
(2)k�3 þ 3

8
(�2)k�3, k ¼ 3, 4, 5, . . .

8<: (4:417)

Case II: Repeated real poles of F(z)
Suppose the pole p1 has multiplicity m1. The partial fraction expansion contains the m1 terms

c1
z

z� p1

� �
þ � � � þ cm1�1

z

z� p1

� �m1�1
þ cm1

z

z� p1

� �m1

(4:418)

associated with the factor (z� p1)
m1 in the denominator of F(z). Simultaneous equations are

developed for the constants c1, c2, . . . , cm1�1. An illustrative example follows.

Example 4.22

Find fk, k¼ 0, 1, 2, 3, . . . when

F(z) ¼ 2z2 þ z
(z� 1)3(zþ 1)

(4:419)

The partial fraction expansion of F(z) is

F(z) ¼ 2z2 þ z
(z� 1)3(zþ 1)

¼ c0 þ c1
z

z� 1

� 	
c2

z
z� 1

� 	2
þ c3

z
z� 1

� 	3
þ c4

z
zþ 1

� �
(4:420)

The constants c0 and c4 are obtained as they would in Case I, that is,

c0 ¼ F(0) ¼ 0 (4:421)

c4 ¼ zþ 1
z

� �
F(z)

z¼�1
¼ 2zþ 1

(z� 1)3

z¼�1
¼ 1

8
(4:422)

The coefficient of the highest order term is evaluated directly from

c3¼ z� 1
z

� �3

F(z)

z¼1
¼ 2zþ 1

z2(zþ 1)

z¼1
¼ 3

2
(4:423)

228 Simulation of Dynamic Systems with MATLAB® and Simulink®

Substituting the values for c0, c3, and c4 into Equation 4.420 yields

F(z) ¼ 2z2 þ z
(z� 1)3(zþ 1)

¼ c1
z

z� 1

� 	
þ c2

z
z� 1

� 	2
þ 3
2

z
z� 1

� 	3
þ 1
8

z
zþ 1

� �
(4:424)

Combining the terms on the right-hand side of Equation 4.424 into a single term with common
denominator (z� 1)3(zþ 1) and then equating the numerators give

2z2 þ z ¼ c1z(z� 1)2(zþ 1)þ c2z2(z� 1)(zþ 1)þ 3
2
z3(zþ 1)þ 1

8
z(z� 1)3 (4:425)

Expanding the right-hand side of Equation 4.425 and equating coefficients of like powers of z on
both sides lead to

z4: 0 ¼ c1 þ c2 þ 3
2
þ 1
8

z3: 0 ¼ �c1 þ 3
2
� 3
8

z2: 2 ¼ �c1 � c2 þ 3
8

z: 1 ¼ c1 � 1
8

8>>>>>>>>>>><>>>>>>>>>>>:
(4:426)

Selecting two of the above equations for simultaneous solution results in c1¼ 9=8 and c2¼�11=4.
Substituting the known values for c1 and c2 in Equation 4.424 gives

F(z) ¼ 9
8

z
z� 1

� 	
� 11

4
z

z� 1

� 	2
þ 3
2

z
z� 1

� 	3
þ 1
8

z
zþ 1

� �
(4:427)

Inverting F(z) is accomplished using Table 4.6 (Cadzow 1973)

fk ¼ 9
8
� 11

4
(kþ 1)þ 3

2
(kþ 1)(kþ 2)

2

� �
þ 1
8
(�1)k, k ¼ 0, 1, 2, 3, . . . (4:428)

TABLE 4.6
Table for Inverting z-Transforms of the
Form [z=(z� a)]n, n¼ 1, 2, 3, . . .

F(z) fk, k¼0, 1, 2, 3, . . .
z

(z� a)
ak

z

(z� a)

� �2
(k þ 1)ak

z

(z� a)

� �3
(k þ 1)(k þ 2)

2
ak

z

(z� a)

� �4
(k þ 1)(k þ 2)(k þ 3)

3
ak

z

(z� a)

� �5
(k þ 1)(k þ 2)(k þ 3)(k þ 4)

4
ak

Linear Systems Analysis 229

Evaluating the first several values of fk gives

f0 ¼ 9
8
� 11

4
þ 3
2
þ 1
8
¼ 0, f1 ¼ 9

8
� 22

4
þ 18

4
� 1
8
¼ 0, f2 ¼ 9

8
� 33

4
þ 36

4
þ 1
8
¼ 2

f3 ¼ 9
8
� 44

4
þ 60

4
� 1
8
¼ 5, f4 ¼ 9

8
� 55

4
þ 90

4
þ 1
8
¼ 10, f5 ¼ 9

8
� 66

4
þ 126

4
� 1
8
¼ 16

Checking the above by long division confirms the numerical values above.

2z�2 þ 5z�3 þ 10z�4 þ 16z�5

z4 � 2z3 þ 0z2 þ 2z� 1j2z2 þ z

2z2 � 4zþ 0 þ 4z�1 � 2z�2

5zþ 0 � 4z�1 þ 2z�2

5z� 10 þ 0z�1 þ 10z�2 � 5z�3

10 � 4z�1 � 8z�2 þ 5z�3

10 � 20z�1 � 0z�1 þ 20z�3 � 10z�4

16z�1 � 8z�2 � 15z�3 þ 10z�4

Case III: Complex poles of F(z)
When F(z) possesses complex poles, the partial fraction expansion is dictated by the last two
z-transform pairs in Table 4.4. An example serves to illustrate the procedure.

F(z) ¼ z2 þ z
(z� 1)(z2 � 3zþ 9)

(4:429)

The first step is to decompose F(z) in two parts,

F(z) ¼ Az2 þ Bz
(z2 � 3zþ 9)

þ C
z

z� 1

� 	
(4:430)

The constant C is evaluated from

C ¼ z� 1
z

� �
z2 þ z

(z� 1)(z2 � 3zþ 9)

z¼1
¼ zþ 1

z2 � 3zþ 9

z¼1
¼ 2

7
(4:431)

Constants A and B are obtained by combining the terms in Equation 4.430 into a single term with
common denominator (z� 1) (z2� 3zþ 9) and then equating the numerator to z2þ z the numer-
ator in Equation 4.429. The resulting expression for F(z) is

F(z) ¼ �(2=7)z
2 þ (11=7)z

z2 � 3zþ 9
þ 2
7

z
z� 1

� 	
(4:432)

¼ �1
7

2z2 � 11z
z2 � 3zþ 9

� �
þ 2
7

z
z� 1

� 	
(4:433)

The quadratic factor in the denominator of Equation 4.433 implies that inverting F(z) will require a
linear combination of e�akT sin kvT and e�akT cos kvT (see Table 4.4). Comparing the standard form
of the denominator in the last row of Table 4.4 and the quadratic denominator in Equation 4.433,

z2 � 2(e�aT cosvT)zþ e�2aT ¼ z�2 � 3zþ 9 (4:434)

230 Simulation of Dynamic Systems with MATLAB® and Simulink®

Equating like powers of z and solving for e�aT and vT,

e�2aT ¼ 9) e�aT ¼ 3 (4:435)

�2(e�aT cosvT) ¼ �3) cos (vT) ¼ 1
2
) vT ¼ p

3
(4:436)

The quadratic numerator in F(z) in Equation 4.433 must be expressed as a linear combination of
the standard numerator forms in the last two rows of Table 4.4, that is,

2z2 � 11z ¼ c1(e�aT sinvT)zþ c2[z2 � (e�aT cosvT)z] (4:437)

Solving for c1 and c2 in Equation 4.437 leads to c1¼�16
ffiffiffiffiffiffiffiffi
3=9

p
, c2 ¼ 2: F(z) is now written in a

form where Table 4.4 can be used to find fk.

F(z) ¼ �1
7

c1(e�aT sinvT)z
z2 � 2(e�aT cosvT)zþ e�2aT

þ c2[z2 � (e�aT cosvT)z]
z2 � 2(e�aT cosvT)zþ e�2aT

�
þ 2
7

z
z� 1

� 	
(4:438)

f (k)� 1
7
[c1e�akT sin kvT þ c2e�aT cos kvT]þ 2

7
, k ¼ 0, 1, 2, 3, . . . (4:439)

¼ �1
7
�16 ffiffiffi

3
p

9
(3)k sin

kp
3

� �
þ 2(3)k cos

kp
3

� �� �
þ 2
7
, k ¼ 0, 1, 2, 3, . . . (4:440)

By observation of F(z) in Equation 4.429, it follows that f0¼ 0 and f1¼ 1. The reader can readily
verify these values from Equation 4.440 with k¼ 0, 1.

An alternative approach when F(z) contains complex poles is to proceed the same way as in
Case 1 where all the poles were real and distinct. The key is appropriate conversion between
rectangular and polar representations of the complex roots of F(z) and the complex coefficients
arising from partial fraction expansion.

Suppose F(z) is of the form

F(z) ¼ N(z)
D(z)

¼ N(z)
(z� p1)(z� p2)

(4:441)

where the complex poles expressed in polar form are p1¼Re ju, p2¼Re�ju.
Expanding F(z) as we did in Case 1 (real and distinct poles),

F(z) ¼ A1
z

z� p1

� �
þ A2

z
z� p2

� �
(4:442)

where

A1 ¼ (z� p1)
z

N(z)
(z� p1)(z� p2)

� �
z¼p1
¼ N(p1)

p1(p1 � p2)
(4:443)

and A2 is the conjugate of A1. In polar form, A1¼Ce jf, A2¼Ce�jf Equation 4.442 becomes

F(z) ¼ Ce jf z
z� Re ju

� 	
þ Ce�jf

z
z� Re�ju
� 	

(4:444)

Linear Systems Analysis 231

The inverse z-transform of F(z) in Equation 4.444 is

fk ¼ Ce jf(R e ju)k þ Ce�jf(Re�ju)k (4:445)

¼ CRk[e jf(e ju)k þ e�jf(e�ju)k] (4:446)

¼ 2CRk e j(kuþf) þ e�j(kuþf)

2

� �
(4:447)

¼ 2CRk cos (kuþ f), k ¼ 0, 1, 2, . . . (4:448)

Thus, F(z) in Equation 4.441 can be inverted simply by finding polar coordinates of the poles
p1, p2, and complex coefficients A1, A2.

Example 4.23

Find the inverse z-transform of F(z) ¼ z2 � z z2 � 0:6zþ 0:25:
�

Factoring the denominator to find the poles p1 and p2,

F(z) ¼ z2 � z
z2 � 0:6zþ 0:25

¼ z2 � z
(z� p1)(z� p2)

, p1,2 ¼ 0:3
 j0:4 (4:449)

Converting the complex poles to polar form gives

p1,2 ¼ 0:3
 j0:4 ¼ Re
ju (4:450)

where

R ¼ [(0:3)2 þ (0:4)2]1=2 ¼ 0:5

u ¼ tan�1
4
3

� �
¼ 0:9273 rad

From Equation 4.443, the constant A1 in the partial fraction expansion of F(z) is

A1 ¼ N(p1)
p1(p1 � p2)

¼ p2
1 � p1

p1(p1 � p2)
¼ p1 � 1

p1 � p2

¼ 0:3þ j0:4� 1
0:3þ j0:4� (0:3� j0:4)

¼ 1
2
þ j

7
8

(4:451)

Converting A1 polar form,

C ¼ jA1j ¼ 1
2
þ j

7
8

 ¼
ffiffiffiffiffiffi
65
p

8
(4:452)

f ¼ Arg(A1) ¼ Arg
1
2
þ j

7
8

� �
¼ tan�1

7
4

� �
¼ 1:0517 rad (4:453)

232 Simulation of Dynamic Systems with MATLAB® and Simulink®

From Equation 4.448, the discrete-time signal fk is

fk ¼ 2

ffiffiffiffiffiffi
65
p

8
(0:5)k cos (0:9273kþ 1:0517), k ¼ 0, 1, 2, . . . (4:454)

¼ 2:0156(0:5)k cos (0:9273kþ 1:0517), k ¼ 0, 1, 2, . . . (4:455)

The reader should check that the first several values of fk obtained from Equation 4.455 agree with
the numerical values obtained by long division of the denominator z2� 0.6zþ 0.25 of F(z) into the
numerator z2� z.

EXERCISES

4.36 Find the z-transforms of the following causal sequences fk, k¼ 0, 1, 2, 3,. . . . Use long
division to check the first two nonzero values of fk.
(a) kak (b) k2(�1)k (c) dkþ (0.5)k (d) sin kp (e) (�1)k cos(2kp=3)

(f) (kþ 1)dk�1 (g) fk ¼
0, k ¼ 0, 2, 4, 6, . . .

1, k ¼ 0, 1, 3, 5, . . .

�
(h) fk ¼

0, k ¼ 0, 1, 2, 3, . . .

k, k ¼ 4, 5, 6, . . .

�

(i) fk ¼
1, k ¼ 0

0, k ¼ 0, 1, 3, 5, 7, . . .
1
2
(�2)k=2, k ¼ 2, 4, 6, . . .

8>><>>:
4.37 Find the inverse z-transform of the expressions below. Use long division to check the first two

nonzero values of fk.

(a)
zþ a

zþ b
(b)

z2 þ 1
z2(z2 � 1)

(c)
z2

(z� 3)3
(d)

z2 þ 1

(zþ 1)2

(e)
z3 þ z

(z2 � 1)2
(f)

z2 þ 1
z3 þ z2

(g)
zþ 2

z2 � zþ 4
(h)

z(z� 2)
z2 � zþ (3=4)

(i)
z4

z4 � 1
(j)

z2 þ 1
z2 þ 2

(k)
zþ 1

z(z2 þ zþ 2)

4.38 Find the z-transforms of the discrete-time signals resulting from uniform sampling of the
continuous-time functions below. All functions are zero for t< 0.
(a) 1þ 2t (b) te�2t (c) e�at� e�bt (d) t2 sin 2t (e) e�2t cos t (f) 1=2t

4.39 (a) Find the z-transforms U(z) and F(z) of the discrete-time signals pictured in Figure E4.39.

k
0 1 2 3 4 5 6

1

…….

…….

uk

k
1

…….

…….

−1 7654321

fk

0

FIGURE E4.39

(b) Express the signal uk in Figure E4.39 as uk¼aþb(�1)k, k¼ 0, 1, 2, 3, . . . and determine
a and b. Use the linearity property and the z-transforms of the unit step and unit
alternating sequence, that is, z{ûk}¼ z=(z� 1) and z{(�1)k}¼ z=(zþ 1), to find U(z).

Linear Systems Analysis 233

4.40 Graph the discrete-time signals fk, k¼ 0, 1, 2, 3, . . . below and find F(z).

(a) fk ¼
P1
i¼0

dk�i (b) fk ¼
Pk
i¼0

1 (c) fk ¼
Pk
i¼0

i (d) fk ¼
Pk
i¼0

(�1)i

4.41 Use the two methods discussed for inverting z-transforms with complex poles to find the
discrete-time signal fk, k¼ 0, 1, 2, . . . with z-transform

F(z) ¼ 3z2 þ z

(z� 1)(z2 þ 2zþ 2)

4.42 Write a MATLAB function to invert

F(z) ¼ b3z3 þ b2z2 þ b1zþ b0
(z� p1)(z2 þ a1zþ a0)

where the quadratic term z2þ a1zþ a0¼ (z� p2)(z� p3), p2, p3¼a
 jb.
The inverse z-transform is given by

fk¼F0dkþA1(p1)
kþ 2CRk cos(kuþf), k¼ 0, 1, 2, 3,. . . .

The function input parameters are p1, a1, a0, b3, b2, b1, and b0 and the outputs are A1, C, R,
u, f, and F0. The function declaration line is

[A1, C, R, theta, phi, F0]¼invert(p1,a1,a0,b3,b2,b1,b0)

Check the function by running it for

(i) F(z) ¼ 3z2 þ z

(z� 1)(z2 þ 2zþ 2)

(ii) F(z) ¼ 2z3 þ z2 þ 4zþ 5
(z� 3)(z2 þ 2zþ 4)

and comparing the first several values of fk, k ¼ 0, 1, 2, . . . with the values obtained by long
division of the cubic denominator into the quadratic numerator.

4.7 z-DOMAIN TRANSFER FUNCTION

We have seen how the transfer function of a linear continuous-time system is used to find the
system’s response to elementary inputs. Stability and frequency response characteristics of the
system can be inferred from the transfer function as well. A discrete-time system transfer function
does the same for linear discrete-time systems. We begin with the nth-order, linear, constant
coefficient difference equation

yk þ a1yk�1 þ � � � þ anyk�n ¼ b0uk�1 þ � � � þ bmuk�m, n � m (4:456)

z-Transforming both sides and applying the linearity property gives

z{yk}þ a1z{yk�1}þ � � � þ anz{yk�n} ¼ b0z{uk}þ b1z{uk�1}þ � � � þ bmz{uk�m} (4:457)

Assuming the input is applied at k¼ 0 and the initial values y�1, y�2, . . . , y�n are zero, we can use
the delay property in Table 4.5 in the previous section to arrive at

Y(z)þ a1z
�1Y(z)þ � � � þ anz

�nY(z) ¼ b0U(z)þ b1z
�1U(z)þ � � � þ bmz

�mU(z) (4:458)

234 Simulation of Dynamic Systems with MATLAB® and Simulink®

The z-domain transfer function is defined as the ratio of Y(z) to U(z). Thus,

H(z) ¼ Y(z)

U(z)
¼ b0 þ b1z�1 þ � � � þ bmz�m

1þ a1z�1 þ � � � þ an�1z�nþ1 þ anz�n
, n � m (4:459)

¼ b0zn þ b1zn�1 þ � � � þ bmzn�m

zn þ a1zn�1 þ � � � þ an�1zþ an
, n � m (4:460)

Depending on the application, one of the two forms given in Equations 4.459 and 4.460 for the
transfer function, also called the pulse transfer function, is usually preferable. A good example to
illustrate how to find the z-domain transfer function of a discrete-time system is an Euler integrator.
Recall from Section 3.3 that the difference equation for approximating a continuous-time integrator
using explicit Euler integration is

xA(nþ 1) ¼ xA(n)þ Tu(n), n ¼ 0, 1, 2, . . . (4:461)

where u(n) and xA(n) are the discrete-time input and outputs and xA(0)¼ 0. Employing the notation
of this chapter, the difference equation is written

xk � xk�1 ¼ Tuk�1, k ¼ 1, 2, 3, . . . (4:462)

where uk¼ u(kT), k¼ 0, 1, 2, . . . are sampled values of the input signal and xk, k¼ 0, 1, 2, . . . is the
discrete-time output intended to approximate the continuous-time integrator output x(t) at the end of
each integration step. The initial condition is x0¼ x(0)¼ 0 and the first computed value is x1.

z-transforming Equation 4.462,

z{xk}� z{xk�1} ¼ Tz{uk�1} (4:463)

Since xk and uk are both zero for k< 0, the delay property in Table 4.5 applies.

X(z)� z�1X(z) ¼ Tz�1U(z) (4:464)

H(z) ¼ X(z)

U(z)
¼ Tz�1

1� z�1
¼ T

z� 1
(4:465)

Example 4.24

The input to a continuous-time integrator is u(t)¼ sin pt.

(a) Approximate the output x(t) using Euler integration with step size T¼ 0.1 s.
(b) Find the exact solution x(t) and plot on the same graph with xk.

(a) Solving for X(z) in Equation 4.465 and looking up U(z)¼ z{uk}¼ z{sin kvT} from Table 4.4 give

X(z) ¼ H(z)U(z) ¼ T
z� 1

(sin vT)z
z2 � 2(cos vT)zþ 1

� �

T¼0:1,v¼p

(4:466)

¼ 0:1
z� 1

(sin 0:1p)z
z2 � 2(cos 0:1p)zþ 1

� �
(4:467)

Linear Systems Analysis 235

Using the method of partial fraction expansion presented in Section 4.4.6, the inverse z-transform
of X(z) is (details are left as an exercise)

xk ¼ 0:05
sin 0:1p

1� cos 0:1p
(1� cos 0:1kp)� sin 0:1kp

� �
, k ¼ 0, 1, 2, 3, . . . (4:468)

(b) The continuous-time integrator output is obtained by integration of the input u(t),

x(t) ¼
ðt
0

u(l)dl ¼
ðt
0

sinpl dl ¼ 1
p
(1� cospt) (4:469)

The discrete-time signal xk and the continuous-time integrator output x(t) are plotted in Figure 4.44
for one cycle of the input.

4.7.1 NONZERO INITIAL CONDITIONS

Using the z-transform to solve a difference equation with nonzero initial conditions requires
additional terms to account for the nonzero values. Suppose yk is a discrete-time signal for which
y�1 6¼ 0 like the one shown in Figure 4.45. Also shown is yk�1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 k

t (s)

x(t) = (1/π)(1–cos πt)

T = 0.1 s

Explicit Euler integration of u(t) = sin πt

x(t), 0 ≤ t ≤ 2
xk, k = 0, 1, 2, ... , 20

FIGURE 4.44 Continuous- and discrete-time (explicit Euler) integrator outputs.

k−1 0 1 2 3 4−2

…….

yk

5

…….

yk−1

y−1

y0

y−1

y0

k−1 0 1 2 3 4−2 5 6

FIGURE 4.45 Discrete-time signals yk and yk�1(y�1 6¼ 0).

236 Simulation of Dynamic Systems with MATLAB® and Simulink®

z{yk�1} is obtained from the basic definition of the z-transform, that is,

z{yk�1} ¼
X1
k¼0

yk�1z�k ¼ y�1 þ y0z
�1 þ y1z

�2 þ y2z
�3 þ � � � (4:470)

¼ y�1 þ z�1[y0 þ y1z
�1 þ y2z

�2 þ � � �] (4:471)

¼ y�1 þ z�1Y(z) (4:472)

Consider the first-order difference equation

yk ¼ buk þ ayk�1, k ¼ 0, 1, 2, 3, . . . (4:473)

with input uk applied at k¼ 0 and nonzero initial condition y�1. It will be shown later that Equation
4.473 is the difference equation of a low-pass digital filter. z-transforming Equation 4.473 and using
the result in Equation 4.472 give

Y(z) ¼ bU(z)þ a[y�1 þ z�1Y(z)] (4:474)

Multiplying Equation 4.474 by z and solving for Y(z) give

Y(z) ¼ bz

z� a
U(z)þ ay�1

z

z� a

� �
(4:475)

The first term on the right-hand side of Equation 4.475 is H(z) U(z). The additional term results from
the nonzero initial condition. A similar procedure is employed for higher order difference equations
with several nonzero initial conditions.

Example 4.25

For the discrete-time system described by Equation 4.473,

(a) Find the response to a unit step when the initial condition y�1 6¼ 0.
(b) Find the response to a unit alternating input when y�1 6¼ 0.
(c) For a¼ 0.9 and b¼ 0.1, graph the responses in parts (a) and (b) when y�1¼ 2.

(a) uk¼ 1, k¼ 0, 1, 2, 3, . . . , and U(z)¼ z=(z� 1).

Y(z) ¼ bz
z� a

z
z� 1

� 	
þ ay�1

z
z� a

� 	
(4:476)

¼ b

1� a

z
z� 1

� a
z

z� a

h i
þ ay�1

z
z� a

� 	
(4:477)

yk ¼ b

1� a
(1� akþ1)þ y�1akþ1, k ¼ 0, 1, 2, . . . (4:478)

(b) uk¼ (�1)k, k¼ 0, 1, 2, 3, . . . , and U(z)¼ z=(zþ 1).

Y(z) ¼ bz
z� a

z
zþ 1

� �
þ ay�1

z
z� a

� 	
(4:479)

¼ b

1þ a

z
zþ 1

þ a
z

z� a

� �
þ ay�1

z
z� a

� 	
(4:480)

Linear Systems Analysis 237

yk ¼ b

1þ a
[(� 1)k þ akþ1]þ y�1akþ1 , k ¼ 0, 1, 2, . . . (4:481)

Note that the solutions in Equations 4.478 and 4.481 reduce to the given initial condition y�1 for
k¼�1.

(c) Graphs of yk, k¼�1, 0, 1, 2, . . . in Equations 4.478 and 4.481 are shown in Figure 4.46.
Note how the system passes the low-frequency unit step and effectively blocks the higher

frequency unit alternating sequence once the transient component akþ 1 dies out. Setting b¼ 1�a,
the normalized unit step and unit alternating steady-state responses are

(yk)ss ¼ 1 for uk ¼ 1, k ¼ 0, 1, 2, 3, . . . (4:482)

(yk)ss ¼ 1�a

1þa
(�1)k ¼ 1�0:9

1�0:9
(�1)k ¼ 1

19
(�1)k for uk ¼ (�1)k, k¼ 0,1,2,3, . . . (4:483)

4.7.2 APPROXIMATING CONTINUOUS-TIME SYSTEM TRANSFER FUNCTIONS

It is common practice to start with a block diagram representation of a continuous-time system and
transform it to a block diagram of a discrete-time system with comparable dynamics. The discrete-
time signals are intended to approximate the corresponding signals in the continuous-time system at
discrete points in time. To illustrate, suppose we have a need to approximate the behavior of a
second-order system

H(s) ¼ Y(s)

U(s)
¼ Kv2

n

s2 þ 2zvnsþ v2
n

(4:484)

A simulation diagram is shown in Figure 4.47.
The continuous-time integrator blocks with transfer function H1(s)¼ 1=s are replaced by discrete-

time (numerical) integrators with z-domain transfer functions H1(z), and the signals become
discrete-time in nature (see Figure 4.48).

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

Unit step and unit alternating responses of yk = βuk + αyk−1 with y−1 = 2

yk, for uk = (−1)k, k = 0, 1, 2, ... and y−1 = 2

yk , for uk = 1, k = 0, 1, 2, ... and y−1 = 2

a = 0.9, b = 1 – a = 0.1

FIGURE 4.46 Responses of discrete-time system with nonzero initial condition.

238 Simulation of Dynamic Systems with MATLAB® and Simulink®

Block diagram reduction or any other suitable method, for example, Mason’s Gain Formula
(Dorf and Bishop 2005), using signal flow graphs or solution of simultaneous equations results in
the pulse transfer function of the discrete-time system given in Equation 4.485.

H(z) ¼ Y(z)

U(z)
¼ Kv2

nH
2
I (z)

v2
nH

2
I (z)þ 2zvnH1(z)þ 1

(4:485)

Choosing HI(z) as the z-domain transfer function for an explicit Euler integrator (see Equation 4.465)
gives

H(z) ¼ Y(z)

U(z)
¼ Kv2

n(T=(z� 1))2

v2
n(T=(z� 1))2 þ 2zvn(T=(z� 1))þ 1

(4:486)

Simplifying the above expression yields

H(z) ¼ Y(z)

U(z)
¼ K(vnT)

2

z2 � 2(1� zvnT)zþ 1� 2zvnT þ (vnT)
2 (4:487)

The difference equation for the discrete-time system is obtained directly from the z-domain transfer
function expressed in terms of negative power of z.

Y(z)

U(z)
¼ K(vnT)

2z�2

1� 2(1� zvnT)z�1 þ [1� 2zvnT þ (vnT)
2]z�2

(4:488)

) Y(z)� 2(1� zvnT)z
�1Y(z)þ [1� 2zvnT þ (vnT)

2]z�2Y(z) ¼ K(vnT)
2z�2U(z) (4:489)

) Yk�2(1� zvnT)yk � 1þ [1� 2zvnT þ (vnT)
2]yk�2 ¼ K(vnT)

2uk�2 (4:490)

Kωn
2

−2ζωn

−ωn
2

u yy.. .y
x2

1HI(s)= s HI(s) = 1
s x1

FIGURE 4.47 Simulation diagram for second-order system in Equation 4.484.

uk
x2,k x1,k

Y(z)U(z)
Kωn

2

–ωn
2

−2ζωn

yk
.. yk

. ykHI(z) HI(z)

FIGURE 4.48 Discrete-time system with numerical integrator z-domain transfer functions.

Linear Systems Analysis 239

Assuming the initial conditions are y�1 and y0, the discrete-time variable k in Equation 4.490
assumes the values k¼ 1, 2, 3,. . . . The first computed value is y1.

Initial conditions in the discrete-time system model are based on the initial conditions for the
continuous-time system, y(0) and _y(0). Figure 4.49 illustrates a derivation for y�1 using backward
extrapolation from the point y(0) along the line with slope _y(0). Note the dependence on T in the
result for y�1. A similar approach is used to extrapolate y1 when the initial conditions are y0 and y1.
The first computed value is y2. What is the starting value for k in Equation 4.490?

Example 4.26

Consider a second-order system with parameters K¼ 1, vn¼ 2 rad=s, and z¼ 0.5.

(a) Using explicit Euler integration with step size T¼ 0.025 s, find a difference equation that
can be solved recursively to approximate the unit step response of the continuous-time
system.

(b) Find the analytical solution for the step response of the continuous-time system.
(c) Plot the continuous- and discrete-time responses on the same graph.

(a) A recursive solution for yk, k¼ 1, 2, 3, . . . is obtained from Equation 4.490 as follows.

yk ¼ 2(1� zvnT)yk�1� [1�2zvnTþ (vnT)2]yk�2þK(vnT)2uk�2, k¼ 1,2,3, . . . (4:491)

) yk ¼ 1:95yk�1�0:9525yk�2þ0:0025uk�2, k¼ 1,2,3, . . . (4:492)

(b) The continuous-time step response can be obtained from the transfer function of the second-
order system by inverse Laplace transformation of Y(s)¼H(s)U(s). Alternatively, we can use
Equation 2.23 or 2.24 for the step response of an underdamped second-order system. Adopting
the latter approach,

y(t) ¼ K 1� e�zvnt cosvdt þ zvn

vd
sinvdt

� �� �
, t � 0 vd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
vn

� �
(4:493)

) y(t) ¼ 1� e�t cos
ffiffiffiffiffi
3t
p
þ 1ffiffiffi

3
p sin

ffiffiffiffiffi
3t
p� �

(4:494)

(c) Graphs of the solution to Equations 4.492 (every other point) and 4.494 are plotted in Figure
4.50, and selected values are presented in Table 4.7 for comparison (see MATLAB M-file
‘‘Chap4_Ex7_3.m’’).

From the numerical values in Table 4.7, it appears that the discrete- and continuous-time
transient responses are in agreement to one place after the decimal point. Greater accuracy
requires we reduce the step size or consider a more accurate numerical integrator like the ones
discussed in Chapter 3.

−T 0
k = 1

y0 = y(0)

t
T

k = −1 k = 0

1
y(0).

.y−1 = y(0)−Ty(0)

FIGURE 4.49 Initial conditions y0, y�1 obtained from y(0) and _y(0).

240 Simulation of Dynamic Systems with MATLAB® and Simulink®

A general approach to deriving the z-domain transfer function H(z) for a discrete-time system
intended to approximate a linear continuous-time system with transfer function H(s) is now given.
Starting with a simulation diagram of the continuous-time system, each integrator block with
transfer function HI(s)¼ 1=s is replaced by a discrete-time transfer function blockHI(z) correspond-
ing to a specific numerical integrator. For example, replacing HI(s) by HI(z) for explicit Euler
integration,

1
s
 HI(z) ¼ T

z� 1
) s 1

HI(z)
¼ z� 1

T
(4:495)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t (s)

yk, k = 0, 2, 4, 6, ..., 200
y(t), 0 ≤ t ≤ 5

Explicit Euler integration, T = 0.025 s

FIGURE 4.50 Continuous- and discrete-time (Euler integration) second-order system step responses (K¼ 1,
vn¼ 2 rad=s, z¼ 0.5).

TABLE 4.7
Continuous- and Discrete-Time
(Euler Integration) Responses

K yk tk y(tk)

0 0 0 0

10 01170 0.25 0.1044

20 0.3643 0.5 0.3403

30 0.6425 0.75 0.6105

40 0.8845 1.0 0.8494

50 1.0562 1.25 1.0234

60 1.1506 1.5 1.1244

70 1.1787 1.75 1.1616

80 1.1605 2.0 1.1531

90 1.1174 2.25 1.1184

100 1.0677 2.5 1.0746

Linear Systems Analysis 241

Hence, when explicit Euler integration is used to approximate the continuous-time integrators in
an LTI system with transfer function H(s), the z-domain transfer function of the discrete-time
system is obtained by replacing s in H(s) with (z� 1)=T. That is,

H(z) ¼ H(s)js (z�1)=T (4:496)

For the continuous-time second-order system of Equation 4.484,

H(z) ¼ Kv2
n

s2 þ 2zvnsþ v2
n

s (z�1)=T

¼ Kv2
n

((z� 1)=T)2 þ 2zvn((z� 1)=T)þ v2
n

(4:497)

Simplifying Equation 4.497 results in Equation 4.487.

Example 4.27

Use trapezoidal integration in place of explicit Euler to approximate the unit step response of the
second-order system in Example 4.26.

Approximating a continuous-time integrator with input u(t) and output y(t) using trapezoidal
integration results in (see Equation 3.40)

yk ¼ yk�1 þ T
2
[uk�1 þ uk] (4:498)

z-transforming Equation 4.498,

Y(z)� z�1Y(z) ¼ T
2
[z�1U(z)þU(z)] (4:499)

and solving for HI(z) give

HI(z) ¼ Y(z)
U(z)

¼ T
2

1þ z�1

1� z�1

� �
(4:500)

¼ T
2

zþ 1
z� 1

� �
(4:501)

The z-domain transfer function of the discrete-time system is therefore

H(z) ¼ H(s)js 1
HI (z)
¼ Kv2

n

s2 þ 2zvnsþ v2
n

s (2=T)((z�1)=(zþ1))

(4:502)

Replacing s by (2=T)((z� 1)=(zþ 1)) in Equation 4.502 and simplifying result in

H(z) ¼ K(vnT)2(z2 þ 2zþ 1)
[4(1þ zvnT)þ (vnT)2]z2 þ 2[(vnT)2 � 4]zþ 4(1� zvnT)þ (vnT)2

(4:503)

Multiplying the numerator and denominator of H(z) in Equation 4.503 by z�2 leads to the
difference equation of the discrete-time system,

[4(1þ zvnT)þ (vnT)2]yk þ 2[(vnT)2 � 4]yk�1 þ [4(1� zvnT)þ (vnT)2yk�2
¼ K(vnT)2(uk þ 2uk�1 þ uk�2) (4:504)

242 Simulation of Dynamic Systems with MATLAB® and Simulink®

Substituting the given values for K, z, and vn gives

yk ¼ 1
4:1025

[7:995yk�1 � 3:9025yk�2 þ 0:0025(uk þ 2uk�1 þ uk�2)], k ¼ 1, 2, 3, . . . (4:505)

where uk¼ 1, k¼ 0, 1, 2, 3, . . . (zero otherwise) and y�1¼ y0¼ 0.
The unit step responses of the continuous- and discrete-time system approximation in Equation

4.505 are calculated in the M-file ‘‘Chap4_Ex7_4.m.’’ The results are graphed in Figure 4.51 and
tabulated in Table 4.8. As expected, the trapezoidal integrator is more accurate than the
explicit Euler.

Trapezoidal integration, T = 0.025 s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t (s)

y(t), 0 ≤ t ≤ 5
yk, k = 0, 2, 4, 6, ..., 200

FIGURE 4.51 Continuous- and discrete-time (trapezoidal integration) second-order system step responses
(K¼ 1, vn¼ 2 rad=s, z¼ 0.5).

TABLE 4.8
Continuous- and Discrete-Time
(Trapezoidal Integration) Responses

K yk tk y(tk)

0 0 0 0

10 0.1090 0.25 0.1044

20 0.3468 0.5 0.3403

30 0.6169 0.75 0.6105

40 0.8546 1.0 0.8494

50 1.0268 1.25 1.0234

60 1.1261 1.5 1.1244

70 1.1620 1.75 1.1616

80 1.1526 2.0 1.1531

90 1.11175 2.25 1.1184

100 1.0736 2.5 1.0746

Linear Systems Analysis 243

4.7.3 SIMULATION DIAGRAMS AND STATE VARIABLES

When a discrete-time system is modeled by one or more difference equations, a simulation
diagram represents a more visual description of the system’s dynamics. Furthermore, a
simulation diagram leads directly to an equivalent discrete-time state-space model, in much the
same way a continuous-time state variable model was developed from a simulation diagram of the
continuous-time system. As in the continuous-time case, the simulation diagram and state-space
models of a discrete-time system are not unique.

The dynamic block in a simulation diagram representation of a continuous-time system is the
integrator or 1=s block. In a discrete-time system, delaying yk for one time step results in yk�1.
If y�1¼ 0, the delay property states z{yk�1}¼ z�1z{yk}. For a discrete-time system, the unit-delay
block is the counterpart to the integrator block. Figure 4.52 shows several common ways of
representing a unit-delay block.

A block diagram implementation of the nth-order difference Equation 4.456 is shown in
Figure 4.53.

The block diagram shown in Figure 4.53 contains nþm unit delays to implement the nth-order
discrete-time system governed by the difference equation in Equation 4.456. Only block diagrams
with the minimum number of n delays are classified as simulation diagrams. A simulation diagram
serves as a convenient way of identifying the discrete-time states in much the same way continuous-
time simulation diagrams were used to define the continuous-time states. The discrete-time states
x1,k, x2,k, . . . , xn,k are chosen as the outputs of the n unit delays. As in the case of continuous-time
systems, the simulation diagram and, hence, the states are not unique.

When the past input terms uk�1, uk�2, . . . , uk�m are not present in Equation 4.456, the constants
b1 ¼ b2 ¼ � � � ¼ bm ¼ 0 and the block diagram in Figure 4.53 reduces to a simulation diagram.

Unit
delay T z−1uk−1 uk−1 uk−1uk uk uk

FIGURE 4.52 Graphical representation of the delay property.

−a1 −a2 −an

uk

yk

uk−1 uk−2 uk−m
z−1 z−1 z−1

z−1 z−1 z−1

b2 bmb1b0

.

....

.

FIGURE 4.53 Block diagram for nth-order discrete-time system in Equation 4.456.

244 Simulation of Dynamic Systems with MATLAB® and Simulink®

When one or more past input terms appear in the difference equation, a simulation diagram can be
constructed by starting with the z-domain transfer function in Equation 4.459 expressed as

Y(z)

U(z)
¼ Y(z)

W(z)

W(z)

U(z)
(4:506)

where

W(z)

U(z)
¼ 1

1þ a1z�1 þ a2z�2 þ � � � þ anz�n
(4:507)

Y(z)

W(z)
¼ b0 þ b1z

�1 þ � � � þ bmz
�m (4:508)

Difference equations corresponding to Equations 4.507 and 4.508 are

wk ¼ uk � a1wk�1 � a2wk�2 � � � � � anwk�n (4:509)

yk ¼ b0wk þ b1wk�1 þ � � � þ bmwk�m (4:510)

Implementation of Equations 4.509 and 4.510 results in the simulation diagram shown in Figure 4.54.
Discrete-time state equations relate the state vector at time kþ 1 to the discrete-time state vector and
input vector at time k. In the single input case with the states as shown in Figure 4.54, the result is

x1,kþ1 ¼ x2,k
x2,kþ1 ¼ x3,k
..
.

xn�1,kþ1 ¼ xn,k
xn,kþ1 ¼ wk ¼ �anx1,k � � � � � a2xn�1,k � a1xn,k þ uk

8>>>><>>>>: (4:511)

x1,k

b1

b0

yk

wk−2 wk−m wk−n

b2

....

....

....

bm

z−1z−1 z−1xn,k

wk−1z−1
wkuk

−a1

−a2

−am

−an

xn−m+1,kxn−1,k

FIGURE 4.54 Simulation diagram for nth-order system showing states x1,k, x2,k, . . . , xn,k.

Linear Systems Analysis 245

The output yk is expressed in terms of the state and input according to

yk ¼ bmxn�mþ1,k þ � � � þ b2xn�1,k þ b1xn,k þ b0wk (4:512)

¼ bmxn�mþ1,k þ � � � þ b2xn�1,k þ b1xn,k þ b0[uk � anx1,k � � � � a2xn�1,k � a1xn,k] (4:513)

yk ¼

�anb0x1,k � an�1b0x2,k � � � � � a1b0xn,k þ b0uk, m ¼ 0

�anb0x1,k � an�1b0x2,k � � � � amþ1b0xn�m,k
þ(bm � amb0)xn�mþ1,k þ � � � þ (b1 � a1b0)xn,k þ b0uk, m ¼ 1, . . . , n� 1

(bn � anb0)x1,k þ (bn�1 � an�1b0)xn�1,k þ � � � þ (b1 � a1b0)xn,k þ b0uk, m ¼ n

8>>><>>>:
(4:514)

In the general case of a linear discrete-time system with r inputs and p outputs, the discrete-time
state equations are of the form

x kþ1 ¼ Ax k þ Bu k , y
k
¼ Cx k þ Du k (4:515)

where the system matrix A is n� n, the input matrix B is n� r, the output matrix C is p� n, and the
direct coupling matrix D is p� r. For the discrete-time system described by Equations 4.511 and
4.514, the system matrix A and input matrix B are

A ¼

0 1 0 � � � 0 0
0 0 1 � � � 0 0
..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 � � � 0 1
�an �an�1 �an�2 � � � �a2 �a1

266664
377775, B ¼

0
0
..
.

0
1

266664
377775 (4:516)

and the output matrix C and direct transmission matrix D are

C ¼
[� anb0 � an�1b0 � � � � a1b0], m ¼ 0

[� anb0 � an�1b0 � � � � amþ1b0 bm � amb0 � � � b1 � a1b0], m ¼ 1, . . . , n� 1

[bn � anb0 bn�1 � an�1b0 � � � b1 � a1b0], m ¼ n

8><>:
(4:517)

D ¼ [b0] (4:518)

The simulation diagram is redrawn for the case where m¼ n in Figure 4.55.
To illustrate the use of the state equations, consider the discrete-time approximation to a second-

order continuous-time system using trapezoidal integration. From Equation 4.504, the difference
equation is

yk þ a1yk�1 þ a2yk�2 ¼ b0uk þ b1uk�1 þ b2uk�2 (m ¼ n ¼ 2) (4:519)

a1 ¼ 2[(vnT)
2 � 4]

4(1þ zvnT)þ (vnT)
2 , a2 ¼ 4(1� zvnT)þ (vnT)

2

4(1þ zvnT)þ (vnT)
2 (4:520)

b0 ¼ K(vnT)
2

4(1þ zvnT)þ (vnT)
2 , b1

2K(vnT)
2

4(1þ zvnT)þ (vnT)
2 , b2 ¼ K(vnT)

2

4(1þ zvnT)þ (vnT)
2 (4:521)

The simulation diagram is shown in Figure 4.56.

246 Simulation of Dynamic Systems with MATLAB® and Simulink®

The state equations follow directly from Figure 4.56.

x1, k þ 1 ¼ x2, k

x2, k þ 1 ¼ �a2x1,k � a1x2,k þ uk

�
(4:522)

yk ¼ (b2 � a2b0)x1,k þ (b1 � a1b0)x2,k þ b0uk (4:523)

and the matrices A, B, C, and D in Equation 4.515 are

A ¼ 0 1
�a2 �a1

� �
¼

0 1

� 4(1� zvnT)þ (vnT)
2

4(1þ zvnT)þ (vnT)
2 � 2[(vnT)

2 � 4

4(1þ zvnT)þ (vnT)
2

24 35, B ¼ 0
1

� �
(4:524)

C ¼ [b2 � a2b0 b1 � a1b0] ¼ 8K
vnT

4(1þ zvnT)þ (vnT)
2

� �2

[zvnT 2þ zvnT] (4:525)

D ¼ [b0] ¼ K(vnT)
2

4(1þ zvnT)þ (vnT)
2

� �
(4:526)

Using the same second-order system parameter values as in Examples 4.26 and 4.27, recursive
solution of Equations 4.522 and 4.523 produces identical results to those shown in Figure 4.51 and
Table 4.8 (see M-file ‘‘Chap4_trapezoidal_state.m’’).

b2 − a2b0

bn − anb0

b1 − a1b0

b0

xn,k+1 xn,k xn–1,k x1,k
z−1

–a1

–a2

z−1 z−1
ykuk

−an

FIGURE 4.55 Simulation diagram for nth-order discrete-time system in Equation 4.456 (m¼ n).

yk
x2,k

−a2

−a1

b0

x1,k
z−1

b1 − a1b0

b2 − a2b0uk z−1

FIGURE 4.56 Simulation diagram for trapezoidal integration of second-order system.

Linear Systems Analysis 247

Discrete-time approximations to the step responses of two additional continuous-time second-
order systems, one with light damping (K¼ 1, z¼ 0.1, vn¼ 1 rad=s) and the other heavily
damped (K¼ 1, z¼ 2.5, vn¼ 1 rad=s) are shown in Figure 4.57. Results are based on recursive
solution of the state equations for trapezoidal integration (see M-file ‘‘Chap4_Fig7_14.m’’).
Agreement between the exact and approximate solutions for both systems appears to be accept-
able. More detailed comparisons require numerical outputs from the continuous- and discrete-time
systems.

4.7.4 SOLUTION OF LINEAR DISCRETE-TIME STATE EQUATIONS

A general solution to the discrete-time state equations gives the state xk for any value of discrete-
time k without resorting to a recursive (sequential) solution. Solving for the first several values of xk
in Equation 4.515 leads to the observation

xk ¼ Akx0 þ Ak�1Bu0 þ Ak�2Bu1 þ � � � þ ABuk�2 þ Buk�1, k ¼ 0, 1, 2, 3, . . . (4:527)

¼ Akx0 þ
Xk�1
i¼0

Ak�i�1Bui, k ¼ 0, 1, 2, 3, . . . (4:528)

Equation 4.528 for the state xk is substituted in Equation 4.515 to obtain the general solution for the
output yk, k¼ 0, 1, 2, 3,. . . . The result is

y
k
¼ CAkx 0 þ C

Xk�1
i¼0

Ak�i�1Bu i

 !
þ Du k, k ¼ 0, 1, 2, 3, . . . (4:529)

0 2 4
(a)

(b)

6 8 10 12 14 16 18 20
0

0.4

0.8

1.2

1.6

2

t (s)

0 2 4 6 8 10 12 14 16 18 20
t (s)

K = 1, ωn = 1 rad/s, ζ = 0.1

K = 1, ωn = 1 rad/s, ζ = 2.5

T = 0.025 s

T = 0.025 s

0

0.2

0.4

0.6

0.8

1

yk, k = 0, 10, 20, ..., 800
y(t), 0 ≤ t ≤ 20

yk, k = 0, 10, 20, ..., 800
y(t), 0 ≤ t ≤ 20

FIGURE 4.57 Trapezoidal integration of (a) light and (b) heavily damped second-order systems.

248 Simulation of Dynamic Systems with MATLAB® and Simulink®

The discrete-time state transition matrix Fk is defined as

Fk ¼ Ak, k ¼ 0, 1, 2, 3, . . . (4:530)

Solutions for xk and yk, in terms of Fk, are

xk ¼ Fkx0 þ
Xk�1
i¼0

Fk�i�1Bui, k ¼ 0, 1, 2, 3, . . . (4:531)

y
k
¼ CFkx0 þ C

Xk�1
i¼0

(Fk�i�1Bui)þ Duk, k ¼ 0, 1, 2, 3, . . . (4:532)

Observe that an unforced system (uk¼ 0, k¼ 0, 1, 2, 3, . . .) transitions from its initial state x0 to a
new state xk at time k according to xk¼Fkx0. The discrete-time state equations and solutions are
analogous to the results for continuous-time systems.

An expression for evaluating the discrete-time transition matrix can be obtained by
z-transforming the first equation in Equation 4.515 resulting in

z{xkþ1} ¼ z{Axk þ Buk} ¼ AX(z)þ BU(z) (4:533)

It is left as an exercise to show that

z{xkþ1} ¼ z[X(z)� x0] (4:534)

Combining Equations 4.533 and 4.534 gives

z[X(z)� x0] ¼ AX(z)þ BU(z) (4:535)

(zI � A)X(z) ¼ zx0 þ BU(z) (4:536)

X(z) ¼ (zI � A)�1[zx0 þ BU(z)] (4:537)

xk ¼ z�1{(zI � A)�1(zx0)}þ z�1{(zI � A)�1BU(z)} (4:538)

Comparison of Equations 4.531 and 4.538 with uk¼ 0, k¼ 0, 1, 2, . . . implies

Fk ¼ z�1{F(z)} ¼ z�1{z(zI � A)�1} (4:539)

An example using the discrete-time state equations follows.

Example 4.28

The yearly increase in a monetary fund is a weighted sum of the increases over the prior 2 years
plus an end-of-year (EOY) deposit. The fund starts with an initial amount P0.

(a) Write the difference equation for yk, k¼ 0, 1, 2, 3, . . . the fund balance at the end of the kth
year. Let uk, k¼ 0, 1, 2, 3, . . . be the EOY deposit in the fund. The weights are a (previous
year increase) and b (increase 2 years ago).

(b) Draw a simulation diagram and convert the difference equation to state variable form.

Linear Systems Analysis 249

(c) Given a¼ 0.5, b¼ 0.25, and P0¼ $100, and all EOY deposits are zero, find the components
of the discrete-time state transition matrix needed to solve for yk, k¼ 0, 1, 2, 3,. . . .

(d) Find and plot the fund balance yk, k¼ 0, 1, 2, 3,. . . .

(a) The time line in Figure 4.58 shows the relationship between the discrete-time variable k and
the EOY marker. Note that the initial fund amount is y�1.

The difference equation for yk, k¼ 0, 1, 2, 3, . . . is

yk � yk�1 ¼ a(yk�1 � yk�2)þ b(yk�2yk�3)þ uk, k ¼ 0, 1, 2, 3, . . . (4:540)

The initial conditions are y�1¼ P0, y�2¼ y�3¼ 0.
Rewriting Equation 4.540 in the standard from introduced in Equation 4.456

yk þ a1yk�1 þ a2yk�2 þ a3yk�3 ¼ b0uk, k ¼ 0, 1, 2, 3, . . . (4:541)

where a1¼�(1þa), a2¼a�b, a3¼b, and b0¼ 1.

(b) Referring to Figure 4.53 or 4.54 with n¼ 3, m¼ 0, and b0¼ 1, the simulation diagram reduces
to Figure 4.59.

The state equations follow from the simulation diagram.

x1, kþ 1 ¼ x2, k
x2, kþ 1 ¼ x3, k
x3, kþ 1 ¼ �a3x1, k� a2x2, k� a1x3, kþ uk

8<: (4:542)

yk ¼ �a3x1,k � a2x2,k � a1x3,k þ uk (4:543)

A ¼
0 1 0
0 0 1
�a3 �a2 �a1

24 35 ¼ 0 1 0
0 0 1
�b b� a 1þ a

24 35, B ¼
0
0
1

24 35 (4:544)

C ¼ [�a3 �a2 �a1] ¼ [�b b� a 1þ a], D ¼ [1] (4:545)

y1

0 1 2 3−1−2−3 k
0 1 2 3−1−2 EOY

y−1

y0

4

FIGURE 4.58 Relationship between discrete-time variable k and end of year.

x3,k x2,k x1,k

−a3

−a2

−a1

z−1 z−1 z−1

yk

uk

FIGURE 4.59 Simulation diagram for monetary fund example.

250 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) a1¼�(1þa)¼�(1þ 0.5)¼�1.5, a2¼a�b¼ 0.5� 0.25¼ 0.25, a3¼b¼ 0.25

zI� A ¼ z

1 0 0

0 1 0

0 0 1

2664
3775�

0 1 0

0 0 1

�a3 �a2 �a1

2664
3775 (4:546)

¼
z �1 0

0 z �1
a3 a2 zþ a1

2664
3775 ¼

z �1 0

0 z �1
0:25 0:25 z� 1:5

2664
3775 (4:547)

F(z) ¼ z(zI� A)�1 (4:548)

Inverting (zI�A) followed by multiplication by z results in

F(z) ¼ z
z3 � 1:5z2 þ 0:25zþ 0:25

z2 � 1:5zþ 0:25 z� 1:5 1

�0:25 z(z� 1:5) z

�0:25z �0:25(zþ 1) z2

2664
3775 (4:549)

From Equation 4.532, with uk¼ 0, k¼ 0, 1, 2, . . . the solution for yk is

yk ¼ CFkx0 (4:550)

where the initial state

x0 ¼
y�3

y�2

y�1

2664
3775 ¼

0

0

P0

2664
3775

The transition matrix Fk is obtained by inverse z-transforming F(z) in Equation 4.549. The last
column of Fk is all that is necessary to determine yk as a result of the zeros in the first and second
rows of x0. The last column of Fk comprises

(Fk)1, 3 ¼ z�1{F1, 1(z)} ¼ z�1
z

z3 � 1:5z2 þ 0:25zþ 0:25

�
(4:551)

(Fk)2, 3 ¼ z�1{F2, 1(z)} ¼ z�1
z2

z3 � 1:5z2 þ 0:25zþ 0:25

�
(4:552)

(Fk)3, 3 ¼ z�1{F3, 1(z)} ¼ z�1
z3

z3 � 1:5z2 þ 0:25zþ 0:25

�
(4:553)

The roots of z3� 1.5z2þ 0.25zþ 0.25¼ 0 are p1¼ 1, p2¼ 0.8090, p3¼�0.3090. (Fk)1,3, (Fk)2,3,
(Fk)3,3 are linear combinations of the geometric sequences (p1)

k, p2
k, (p3)

k, that is,

(Fk)1,3 ¼ A1(p1)k þ A2(p2)k þ A3(p3)k (4:554)

(Fk)2,3 ¼ B1(p1)k þ B2(p2)k þ B3(p3)k (4:555)

(Fk)3,3 ¼ C1(p1)k þ C2(p2)k þ C3(p3)k (4:556)

Linear Systems Analysis 251

The partial fraction expansion coefficients are evaluated inM-file ‘‘Chap4_Ex7_5.m.’’ The results are

A1 ¼ 4, A2 ¼ �4:6833, A3 ¼ 0:6833

B1 ¼ 4, B2 ¼ �3:7889, B3 ¼ �0:2111
C1 ¼ 4, C2 ¼ �3:065, C3 ¼ 0:0652

(d) From Equations 4.545 and 4.550, the fund balance is

yk ¼ [�a3 �a2 �a1]
(Fk)1,3

(Fk)2,3

(Fk)3,3

2664
3775P0 (4:557)

¼ [�b b� a 1þ a]

A1(p1)k þ A2(p2)k þ A3(p3)k

B1(p1)k þ B2(p2)k þ B3(p3)k

C1(p1)k þ C2(p2)k þ C3(p3)k

2664
3775P0 (4:558)

¼ {�b[A1(p1)k þ A2(p2)k þ A3(p3)k]þ (b� a)[B1(p1)k þ B2(p2)k þ B3(p3)k]

þ (1þ a)[C1(p1)k þ C2(p2)k þ C3(p3)k]}P0 (4:559)

A graph of yk, k¼�3, �2, �1, 0, 1, 2, . . . is show in Figure 4.60.
The limiting value, y1¼ $400 from the root p1¼ 1. Since the magnitude of roots p2 and p3 are

less than 1, it follows from Equation 4.559 at steady state that the output y1 is given by

y1 ¼ lim
k!1

yk ¼ [�bA1 þ (b� a)B1 þ (1þ a)C1]P0

¼ [�(0:25)(4)þ (0:25� 0:5)(4)þ (1þ 0:5)(4)]100 ¼ 400 (4:560)

We will have a lot more to say about the location of these roots in the next section on stability.

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

50

100

150

200

250

300

350

400

k

y k
, $

Fund value vs. time

y−1

y0

y1

y2

y−2y−3

yk, k = −3, −2, −1, 0, 1, 2, ...

y∞

FIGURE 4.60 Discrete-time system output in Example 4.28.

252 Simulation of Dynamic Systems with MATLAB® and Simulink®

The complete transition matrix is left as an exercise problem. However, a suitable check on the
correctness of Fk is that it satisfies F0, where I is the n� n identity matrix. This follows from
Equation 4.530 with k¼ 0 as well as Equation 4.531 with zero input and k¼ 0. A quick glance at
F(z) in Equation 4.549 should be enough to convince you that F(z) (Hint: only the diagonal terms
ofF(z) contain cubic polynomials in z in the numerator). Keep in mind that F0¼ I is necessary but
not sufficient for Fk to be correct.

4.7.5 WEIGHTING SEQUENCE (IMPULSE RESPONSE FUNCTION)

A difference equation and a z-domain transfer function are but two of several different ways of
characterizing a discrete-time system. A third approach is based on the system’s impulse response
function, similar to the case of continuous-time systems. Recall from our discussion of linear
continuous-time systems that the response to an arbitrary input u(t), t � 0 is expressible in the
form of a convolution integral, that is,

y(t) ¼
ðt
0

h(t)u(t � t)dt (4:561)

where h(t), t� 0 is the impulse response function. It is related to the continuous-time system transfer
function H(s) according to h(t)¼L�1{H(s)}.

We now demonstrate the existence of a sequence, hk, k¼ 0, 1, 2, 3, . . . which allows us to find
the forced response of a linear discrete-time system to an arbitrary input uk, k¼ 0, 1, 2, 3, . . . similar
to the convolution integral in Equation 4.561 for linear continuous-time systems. The only restric-
tion is that the initial conditions prior to application of the input, namely, y�1, y�2, . . . , y�n, are zero
for an nth-order linear discrete-time system.

Consider the first-order system

yk þ a1yk�1 ¼ b0uk þ b1uk�1 (4:562)

where y�1¼ 0 and the input uk¼ 0, k< 0. Evaluating the first several values of yk,

k ¼ 0: y0 ¼ b0u0 (4:563)

k ¼ 1: y1 þ a1y0 ¼ b0u1 þ b1u0 (4:564)

y1 ¼ b0u1 þ (b1 � a1b0)u0 (4:565)

k ¼ 2: y2þ ¼ a1y1 ¼ b0u2 þ b1u1 (4:566)

y2 ¼ b0u2 þ (b1 � a1b0)u1 � a1(b1 � a1b0)u0 (4:567)

k ¼ 3: y3 þ a0y2 ¼ b1u3 þ b0u2 (4:568)

y3 ¼ b0u3 þ (b1 � a1b0)u2 � a1(b1 � a1b0)u1 þ a21(b1 � a1b0)u0 (4:569)

By induction, a general solution for yk, k¼ 0, 1, 2, 3, . . . is

yk ¼
Xk
i¼0

hiuk�i, k ¼ 0, 1, 2, 3, . . . (4:570)

Linear Systems Analysis 253

where

hi ¼ b0, i ¼ 0
(b1 � a1b0)(�a1)i�1, i ¼ 1, 2, 3, . . .

�
(4:571)

The discrete-time variable in Equation 4.571 is written as ‘‘i’’ instead of ‘‘k’’ to avoid confusion;
however, it is helpful to think of the sequence as hk, k¼ 0, 1, 2, 3,. . . . Equation 4.570 reveals that
the current output yk is a linear combination of the current and past inputs, that is, writing out the
terms in the sum

yk ¼ h0uk þ h1uk�1 þ h2uk�2 þ � � � þ hku0, k ¼ 0, 1, 2, 3, . . . (4:572)

The weights are in fact the numerical values of the sequence hk, k¼ 0, 1, 2, 3, . . . with the current
input uk weighted by h0, the previous input uk�1 weighted by h1 up to the oldest input u0 with a
weight of hk. The sequence hk, k¼ 0, 1, 2, 3, . . . in Equations 4.570 and 4.572 is called the weighting
sequence of the discrete-time system.

The sum in Equation 4.570 is called the convolution sum, the counterpart to the convolution
integral for continuous-time systems in Equation 4.561. The weighting sequence and convolution
sum representation are not restricted to the simple first-order discrete-time system in Equation 4.562.
They are applicable to nth-order LTI discrete-time systems. Fortunately, a more efficient technique
for determining the weighting sequence than was previously illustrated exists. The method is
deferred until after the following example.

Example 4.29

The low-pass filter in Equation 4.473 is a first-order discrete-time system.

(a) Find the weighting sequence hk, k¼ k¼ 0, 1, 2, 3,. . . .
(b) Graph the weighting sequence for a¼ 0.9 and b¼ 0.1.
(c) Find the unit step response by convolution, and compare the result with the response in

Equation 4.478 with y�1¼ 0.

(a) For the discrete-time system in Equation 4.473, a1¼�a, b0¼b, and b1¼ 0. The weighting
sequence given in Equation 4.571 reduces to

hk ¼
b, k ¼ 0

(ab)(a)k�1, k ¼ 1, 2, 3, . . .

�
(4:573)

¼ b(a)k, k ¼ 0, 1, 2, 3, . . . (4:574)

(b) The weighting sequence with a¼ 0.9 and b¼ 0.1 is graphed in Figure 4.61.

(c) From Equation 4.570 with uk¼ 1, k¼ 0, 1, 2, 3, . . . , the unit step response is

yk ¼
Xk
i¼0

hiuk�i ¼
Xk
i¼0

hi ¼
Xk
i¼0

bai (4:575)

¼ b
1� akþ1

1� a

� �
(4:576)

¼ 1� (0:9)kþ1, k ¼ 0, 1, 2, 3, . . . (4:577)

in agreement with the unit step response obtained from Equation 4.478 with y�1¼ 0.

254 Simulation of Dynamic Systems with MATLAB® and Simulink®

The memory and transient response of a stable linear discrete-time system are reflected in its
weighting sequence. Loosely speaking, the memory in a discrete-time system depends on how far
back past inputs affect the current output in a significant way, that is, if the current output is
predominantly influenced by only the last several inputs, then the system is said to exhibit a
relatively short memory. Conversely, if distant inputs are influential in determining the current
output, the system possesses a longer memory.

From the convolution sum representation for the current output yk in Equation 4.572, it is
readily apparent that the amount of memory in the system is directly related to how fast the
weighting sequence approaches zero. (Discrete-time systems with weighting sequences that do
not approach zero as k approaches infinity are considered in the next section dealing with
stability.) Transient and steady-state response will also be considered at the same time; how-
ever, it should be clear even now that a fast responding system, that is, one with a short
transient response must have a weighting sequence that approaches zero quickly and is,
therefore, characterized as a system with a short memory.

For the first-order system considered in Example 4.29, the rate of decay to zero in the weighting
sequence depends solely on the parameter a. Figure 4.62 shows the unit step responses of three first-
order systems with different values of a and b¼ 1�a.

One is a fast responding system (a¼ 0.3), one with moderate speed (a¼ 0.7), and the last one is
seen to have a sluggish response (a¼ 0.9).

The response of an LTI discrete-time system to an impulse dk is quite significant. From the
convolution sum in Equation 4.570, the unit impulse response is

(yk)impulse response ¼
Xk
i�0

hidk�i ¼ hk, k ¼ 0, 1, 2, 3, . . . (4:578)

In other words, the impulse response is identical to the weighting sequence. Furthermore, for a
system with z-domain transfer function H(z), the z-transform of the impulse response is given by

Yimpulse response(z) ¼ H(z)z{dk} ¼ H(z) � 1 ¼ H(z) (4:579)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

k

h k

yk = βuk + αyk−1, k = 0, 1, 2, 3, ...
(α = 0.9, β = 0.1)

hk = β(α)k, k = 0, 1, 2, 3, ...

FIGURE 4.61 Weighting sequence hk, k¼ 0, 1, 2, 3, . . . for first-order system in Equation 4.473.

Linear Systems Analysis 255

Invert z-transforming Equation 4.579,

(yk)impulse response ¼ hk ¼ z�1{H(z)} (4:580)

Equation 4.580 tells us the impulse response of an LTI discrete-time system is equal to the inverse
z-transform of the z-domain transfer function of the system. Henceforth, the impulse response
sequence will be denoted hk, k¼ 0, 1, 2,. . . . This most important property of discrete-time systems
is illustrated in Figure 4.63.

The z-domain transfer function of the first-order system in Example 4.29 is

H(z) ¼ Y(z)

U(z)
¼ bz

z� a
(4:581)

0

0.2

0.4

0.6

0.8

h k

0 5 10 15 20
0

0.5

1

k

y k

α = 0.3 (fast)
α = 0.7 (moderate)
α = 0.9 (slow)

α = 0.3 (fast)
α = 0.7 (moderate)
α = 0.9 (slow)

Unit step response of yk = βuk + αyk−1, k = 0, 1, 2, 3, (β = 1−α)

0 5 10 15 20 k

Weighting sequence hk = βαk, k = 0, 1, 2, 3, (β = 1−a)

FIGURE 4.62 Weighting sequences and unit step responses of three first-order discrete-time systems
governed by yk¼ (1�a)ukþayk�1, k¼ 0, 1, 2,. . . .

U(z) Y(z) = H(z) U(z)
Input

1. δk (Impulse)
2. uk (Arbitrary)

Output
1. yk = hk (Impulse response)

2. yk = ∑ hiuk−i (Convolution sum)
i=0

Linear
discrete-time

system
hk = Z−1{H(z)}

k

FIGURE 4.63 Relationship of impulse response to z-domain transfer function.

256 Simulation of Dynamic Systems with MATLAB® and Simulink®

hk ¼ z�1{H(z)} (4:582)

¼ z�1
bz

z� a

�
(4:583)

¼ bak , k ¼ 0, 1, 2, 3, . . . (4:584)

The impulse response (weighting sequence) is therefore the same as in Equation 4.574.
The impulse response is fundamental to the design of digital filters implemented by linear

difference equations. The two major categories of such filters are FIR and IIR, which stand for ‘‘finite
impulse response’’ and ‘‘infinite impulse response,’’ respectively (Orfanidis 1996).

EXERCISES

4.43 Find the z-domain transfer function of the discrete-time system, which results from an
approximation to a continuous-time integrator using
(a) Implicit Euler integration
(b) Improved Euler integration

4.44 Find the z-domain transfer function H(z) of the discrete-time system resulting from approxi-
mation of the first-order system t _y(t)þ y(t) ¼ ku(t) using the following numerical integrators:
(a) Explicit Euler
(b) Implicit Euler
(c) Trapezoidal

4.45 Let uk, k¼ 0, 1, 2, 3, . . . be uniformly spaced samples of an input u(t) and yk, k¼ 0, 1, 2,
3, . . . be an approximation to y(t) ¼ Ð t0 u(t)dt based on trapezoidal integration.
(a) Find a difference equation relating uk and yk.
(b) Solve the difference equation recursively using an appropriate step size to approximate

the area under
(i) u(t) ¼ te�t=2, 1 � t � 2
(ii) u(t) ¼ (1=

ffiffiffiffiffiffi
2p
p

)e�t
2=2, 0 � t � 5

4.46 Prove Equation 4.534 for the scalar case, that is, show that z{xkþ1}¼ z[X(z)� x0], where x0 is
the value of xk at k¼ 0.

4.47 In Example 4.28, find the complete transition matrix and verify that F0¼ I.
4.48 In Example 4.28,

(a) Find Y(z), the z-transform of the response, by z-transforming the difference equation of the
system with appropriate initial conditions.

(b) Find y1 by applying the final value property (see Table 4.5).
(c) Find y0 by applying the initial value property (see Table 4.5).
(d) Find y k¼ z� 1{Y(z)}.

4.49 In Example 4.28, assume the initial conditions y�3¼ y�2¼ y�1¼ 0.
(a) Find H(z)¼ Y(z)=U(z), the z-domain transfer function of the system.
(b) The input is uk¼A0dkþA1dk�1þA2dk�2 and y�1¼ y�2¼ y�3¼ 0. Find A0, A1, A2 if the

response is identical to the case when uk¼ 0, k¼ 0, 1, 2, . . . and y�1¼P0, y�2¼ y�3¼ 0.
4.50 The unit step response of a discrete-time system is yk¼�1þ 3kþ1, k¼ 0, 1, 2, 3,. . . .

(a) Find the difference equation relating uk and yk.
(b) Find the impulse response, hk, k¼ 0, 1, 2, 3,. . . .

4.51 The discrete-time signal uk¼ 1þ k, k¼ 0, 1, 2, 3, . . . is delayed one unit of discrete-time and
then input to a discrete-time system with z-domain transfer function H(z)¼ Y(z)=U(z)¼
z2=(zþ 1)2. Find the output yk at k¼ 3 and k¼ 6.

Linear Systems Analysis 257

4.52 A discrete-time system with input uk and output yk is governed by the difference equation
yk¼a1yk�1þb1uk�1þb0uk, k¼ 0, 1, 2, 3, . . .
(a) Find the z-domain transfer function of the system
(b) Find the impulse response sequence hk, k¼ 0, 1, 2, 3, . . .

(i) By inverse z-transformation of H(z)
(ii) By recursive solution of the difference equation with uk¼ dk

(c) Find the final value of the unit step response in terms of a1, b0, and b1.
(i) By letting k!1 in the unit step response
(ii) By applying the final value property
(iii) By setting uk¼ 1, k¼ 0, 1, 2, 3, . . . and solving for y1¼ limk!1 yk¼ limk!1 yk�1

in the difference equation
4.53 Use the same approach for finding z{yk�1} when y�1 6¼ 0 resulting in Equation 4.472 to find

(a) z{yk�2}, y�1, y�2 6¼ 0
(b) z{yk�n}, y�1, y�2, . . . , y�n 6¼ 0

4.54 A discrete-time system is described by ykþ a1yk�1þ a2yk�2¼ 0, k¼ 0, 1, 2, 3, . . .
(a) Find Y(z) for the case when y�1¼ 0 and y�2¼ 0.
(b) Find Y(z) for the case when the right-hand side is b0dkþ b1dk�1 and y�1¼ y�2¼ 0.
(c) Find expressions for the weights b0 and b1 in terms of a1, a2, y�1, and y�2, so that the

response yk, k¼ 0, 1, 2, 3, . . . is the same in parts (a) and (b). Comment on the implication
of replacing initial conditions with impulse forcing functions.

4.55 A simulation diagram for an M-B-K mechanical system governed by the second-order
differential equation M€y(t)þ B _y(t)þ Ky(t) ¼ f (t) is shown in Figure E4.55:

−K

−B

yf 1
M

1
s

1
s

y.. .y

FIGURE E4.55

(a) Find a difference equation relating yk and fk based on the use of explicit Euler integration.
Convert the difference equation to state variable form.

(b) Find a difference equation relating yk and fk based on the use of implicit Euler integration.
Convert the difference equation to state variable form.

(c) Find a difference equation relating yk and fk based on the use of trapezoidal Euler
integration. Convert the difference equation to state variable form.

(d) Find a difference equation relating yk and fk based on the use of explicit Euler integration
for the first integrator (_y) and implicit Euler integration for the second integrator (y).
Convert the difference equation to state variable form.

(e) Approximate the unit step response of the system for parts (a) through (d) when M¼ 1,
B¼ 2, and K¼ 1, and compare each with the continuous-time response.

4.56 Consider the double integrator shown in Figure E4.56:

∫ ∫u(t)

HI(z)HI(z)

T
uk yk

y(t)

FIGURE E4.56

258 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) Write the differential equation relating y(t) and u(t).
(b) Find the difference equation relating yk and uk if both numerical integrators are based on

explicit Euler integration.
(c) Find dy=dt and y(t) when the initial conditions are y(0) ¼ 0, _y(0) ¼ 1 and the input u(t)¼

10� e�t=2, t � 0.
(d) Find the z-domain transfer function and impulse response of the discrete-time system.
(e) Find the output yk, k¼ 1, 2, 3, . . . when the integration step size T¼ 0.1 s.
(f) Plot the continuous- and discrete-time outputs on the same graph, and comment on the

results.
4.57 A discrete-time system is described by yk þ a1yk�1 þ a2yk�2 ¼ 0, k ¼ 0, 1, 2, 3,

(a) Find Y(z) for the case when y�1 6¼ 0, y�2 6¼ 0.
(b) Find Y(z) for the case when the right-hand side is b0dk þ b1dk�1 and y�1 ¼ y�2 ¼ 0.
(c) Find expressions for the weights b0 and b1 in terms of a1, a2, y�1, y�2 so that the response

yk , k ¼ 0, 1, 2, 3, . . . is the same in Parts (a) and (b). Comment on the implication of
replacing initial conditions with impulse forcing functions.

4.58 Show that the unit step response of a discrete-time system with z-domain transfer function H
(z) is given by

yk ¼ z�1
z

z� 1
H(z)

�
, k ¼ 0, 1, 2, . . .

4.8 STABILITY OF LTI DISCRETE-TIME SYSTEMS

One way of characterizing the stability of a discrete-time system is by the way it responds to a
bounded input. When the response remains bounded, the system is said to exhibit BIBO stability.
The implications of BIBO stability on the system’s z-domain transfer function, impulse response
(weighting sequence), and natural response will be explored.

Consider an nth-order LTI discrete-time system described by Equation 4.456 in the previous
section. The z-domain transfer function is

H(z) ¼ Y(z)

U(z)
¼ b0zn þ b1zn�1 þ � � � þ bmzn�m

zn þ a1zn�1 þ � � � þ an�1zþ an
, n � m (4:585)

Suppose the poles of H(z) are real and distinct. Then

Y(z) ¼ H(z)U(z) ¼ b0zn þ b1zn�1 þ � � � þ bmzn�m

(z� p1)(z� p2) � � � (z� pn)
U(z) (4:586)

In the case where the poles of U(z) are different from p1, p2, . . . pn,

Y(z) ¼ A0 A1
z

z� p1
þ A2

z

z� p2
þ � � � þ An

z

z� pn

�
þ terms due poles of U(z)z�1{U(z)} (4:587)

The response yk k¼ 0, 1, 2, 3, . . . is therefore

yk ¼ A0dk þ A1p
k
1 þ A2p

k
2 þ � � � þ Anp

k
n

� �
þ terms generated from z�1{U(z)} terms generated from z�1{U(z)} (4:588)

Linear Systems Analysis 259

The bracketed expression is the natural response, that is, a linear combination of the natural modes
pk1, p

k
2, � � � , pkn, while the terms arising from the inverse z-transformation ofU(z) are similar in nature to

the input and comprise the forced component of the overall response. Since the natural response is
excited by the presence of an input, it must obviously be a bounded sequence for aBIBO stable system.

The impulse response hk¼ z�1{H(z)} is also a linear combination of the system’s natural modes
pk1, p

k
2, . . . , p

k
n, (plus in some cases, a weighted impulse at the origin). Imagine a discrete-time

system with impulse response hk, k¼ 0, 1, 2, . . . subject to a unit step input uk¼ 1, k¼ 0, 1,
2,. . . . Using the convolution sum form of the output,

jykj ¼
Xk
i¼0

hiuk�i

 ¼ Xk

i¼0
hi

 <Xk

i¼0
hij j, k ¼ 0, 1, 2, . . . (4:589)

From Equation 4.589, the step response at discrete-time k remains finite provided the sum of the first
kþ 1 values of the magnitude of the impulse response satisfies

Xk
i¼0
jhij <1, k ¼ 0, 1, 2, 3, . . . (4:590)

It follows that the entire response yk, k¼ 0, 1, 2, 3, . . . is bounded whenever the impulse response
sequence satisfies

X1
k¼0
jhkj <1 (4:591)

While Equation 4.591 was derived for the case where the input is a unit step, it applies to any
bounded input. Equation 4.591 is a necessary and sufficient condition for the output of an LTI
discrete-time system to remain bounded in response to any bounded input. A consequence of
Equation 4.591 is that the weighting sequence of a BIBO stable system must decay to zero as
k!1.

From Equation 4.588, an nth-order LTI discrete-time system with z-domain transfer function
having real and distinct poles is BIBO stable when the poles satisfy

�1 < pi < 1, i ¼ 1, 2, 3, . . . , n (4:592)

The expression for the output yk in Equation 4.588 assumed that the poles of H(z) were real and
distinct. A real pole p with multiplicity m generates a weighted sum of the natural modes pk, kpk, . . . ,
km�1pk in the output; however, Equation 4.592 still applies for BIBO stability.

When a pair of complex poles of H(z) is present, yk contains trigonometric terms like Rk cos
(kuþw) where R is the magnitude of the complex poles. In order to include the possibility of
complex poles of H(z), Equation 4.592 is appropriately expressed as

jpij < 1, i ¼ 1, 2, . . . , n (4:593)

Consequently, a sufficient condition for BIBO stability of LTI discrete-time systems is that all of its
z-domain transfer function poles have a magnitude less than 1, that is, all poles are located inside the
Unit Circle in the complex plane.

In Example 4.30, we look at a second-order system with real and distinct poles subject to a
bounded input. The effect of moving one of the poles is investigated. Following that, we consider
the ramifications of various locations of the z-domain transfer function’s poles in the complex plane.

260 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 4.30

A discrete-time system is described by the difference equation

yk þ a1yk�1 þ a2yk�2 ¼ b0uk, k ¼ 0, 1, 2, 3, . . . (4:594)

Initial conditions y�1¼ y�2¼ 0. The input sequence is given by

uk ¼ 1þ (0:1)k, k ¼ 0, 1, 2, 3, . . . (4:595)

Find the z-domain transfer function H(z) and its poles, the impulse response hk, k¼ 0, 1, 2, 3, . . . ,
the total response yk, k¼ 0, 1, 2, 3, . . . , and the natural and forced components of the total
response, and comment on stability for the following cases:

(a) a1 ¼ 0, a2 ¼ �0:25, b0 ¼ 1

(b) a1 ¼ �0:5, a2 ¼ �0:5, b0 ¼ 1

(c) a1 ¼ �1:5, a2 ¼ �1, b0 ¼ 1

(a) z-transforming the difference equation yk� 0.25yk�2¼ uk, k¼ 0, 1, 2, 3, . . . yields

H(z) ¼ Y(z)
U(z)

¼ z2

z2 � 0:25
¼ z2

(z� 0:5)(zþ 0:5)
(4:596)

with poles p1¼�0.5, p2¼ 0.5. The impulse response is obtained from

hk ¼ z�1{H(z)} ¼ z�1
z2

(zþ 0:5)(z� 0:5)

�
(4:597)

¼ z�1
0:5z

zþ 0:5
þ 0:5z
z� 0:5

�
(4:598)

¼ 0:5[(�0:5)k þ (0:5)k], k ¼ 0, 1, 2, 3, . . . (4:599)

¼ (0:5)kþ1[(�1)k þ 1], k ¼ 0, 1, 2, 3, . . . (4:600)

¼ (0:5)k, k ¼ 0, 2, 4, 6, . . . (4:601)

The complete response yk, k¼ 0, 1, 2, . . . is determined by inverse z-transformation of

Y(z) ¼ z2

(z2 � 0:25)
z

z� 1
þ z
z� 0:1

h i
(4:602)

¼ z3(2z� 1:1)
(zþ 0:5)(z� 0:5)(z� 1)(z� 0:1)

(4:603)

¼ 7
12

z
zþ 0:5

� �
þ 1
8

z
z� 0:5

� 	
þ 4
3

z
z� 1

� 	
� 1
24

z
z� 0:1

� 	
(4:604)

) yk ¼ 7
12

(�0:5)k þ 1
8
(0:5)k þ 4

3
� 1
24

(0:1)k, k ¼ 0, 1, 2, 3, . . . (4:605)

Linear Systems Analysis 261

From Equation 4.605, the natural (free) response and forced response are

(yk)natural ¼ 7
12

(� 0:5)k þ 1
8
(0:5)k, k ¼ 0, 1, 2, . . . (4:606)

(yk)forced ¼ 4
3
� 1
24

(0:1)k, k ¼ 0, 1, 2, . . . (4:607)

The system is stable as evidenced by the natural response decaying to zero as k!1. This
was expected since the two poles of H(z) are located between �1 and þ1. Can you show
that Equation 4.591 is satisfied as well? Note the similarity between the natural response in
Equation 4.606 and the impulse response in Equation 4.599.

(b) The difference equation becomes yk� 0.5yk�1� 0.5yk�2¼ uk, k¼ 0, 1, 2, 3,. . . . The results
for this system are obtained in an analogous fashion to part (a).

H(z) ¼ z2

z2 � 0:5z� 0:5
¼ z2

(zþ 0:5)(z� 1)
(p1 ¼ �0:5,p2 ¼ 1) (4:608)

hk ¼ 1
3
[(�0:5)k þ 2], k ¼ 0, 1, 2, 3, . . . (4:609)

yk ¼ 7
18

(� 0:5)k þ 44
27
þ 2
3
k� 1

54
(0:1)k, k ¼ 0, 1, 2, 3, . . . (4:610)

(yk)nat ¼ 7
18

(� 0:5)k þ 44
27

, k ¼ 0, 1, 2, 3, . . . (4:611)

(yk)forced ¼ 2
3
k� 1

54
(0:1)k, k ¼ 0, 1, 2, 3, . . . (4:612)

The forced response also contains a constant component resulting from the pole of U(z) at
z¼ 1. This constant is combined with the constant in the natural response, and the sum of
44=27 is shown entirely in the natural response in Equation 4.611.

The second pole of H(z), namely, p2¼ 1, does not satisfy Equation 4.592, and the system
is not BIBO stable. In this case, a bounded input produced an unbounded output. The
impulse response in Equation 4.609 does not asymptotically decay to zero.

(c) The difference equation is yk� 1.5yk�1� yk�2¼ uk, k¼ 0, 1, 2, 3,. . . .

H(z) ¼ z2

z2 � 1:5z� 1
¼ z2

(zþ 0:5)(z� 2)
, (p1 ¼ �0:5,p2 ¼ 2) (4:613)

hk ¼ 1
5
(�0:5)k þ 4

5
(2)k, k ¼ 0, 1, 2, 3, . . . (4:614)

yk ¼ 7
30

(�0:5)k þ 232
95

(2)k � 2
3
� 1
114

(0:1)k, k ¼ 0, 1, 2, 3, . . . (4:615)

(yk)natural ¼ 7
30

(�0:5)k þ 232
95

(2)k, k ¼ 0, 1, 2, 3, . . . (4:616)

(yk)forced ¼ � 2
3
� 1
114

(0:1)k, k ¼ 0, 1, 2, 3, . . . (4:617)

Once again, the system is unstable. The natural response and, by implication, the impulse
response are unbounded as k!1.

The real poles of an nth-order LTI discrete-time system transfer function are located on the real
axis in the complex plane. Figure 4.64 shows real poles located at (from right to left) 1.25, 1, 0.75,
�0.5, �1, and �1.5 along the real axis.

262 Simulation of Dynamic Systems with MATLAB® and Simulink®

There are six distinct regions for location of real poles along the real axis, each with a different
type of natural mode. According to Equation 4.592, only the poles at 0.75 and �0.5 located inside
the Unit Circle correspond to stable natural modes. The impulse response hk, k¼ 0, 1,
2, . . . approaches zero as k!1 in both cases. When the poles are located on the Unit Circle at
þ1 and 1, the impulse response sequence remains finite as k!1; however, a linear discrete-time
system with a pole at either location is not BIBO stable.

The remaining two cases correspond to real poles located outside the Unit Circle, either in the
region p> 1 or p<�1. The natural response of an LTI discrete-time system with poles located in
either region is unbounded, and, hence, the system is not BIBO stable.

Figure 4.65 illustrates the natural modes corresponding to each of the real poles.

4.8.1 COMPLEX POLES OF H(Z)

Three pairs of complex poles are also shown in Figure 4.64. The z-domain transfer function H(z)
possesses a pair of complex poles if there is a quadratic factor in its denominator with complex
roots. Figure 4.66 illustrates the case where H(z) has complex poles at z¼ a
 jb. The transform-
ation to polar form z¼ re
ju is shown as well.

Re

Im

Unit Circle

FIGURE 4.64 The Unit Circle and various locations of real and complex poles.

1210

0.8

0.6

0.4

0.2

0

1.5

1

0.5

0

8

6

4

2

0

1

1

0

0.75
0.5

0.25
0

−0.25
−0.5 −1

−50

−25

0

25

50

75

100

0 2

Pole of H(z), p > 1 Pole of H(z), p = 1 Pole of H(z), 0 < p < 1

Pole of H(z), –1 p < 0 Pole of H(z), p = –1 Pole of H(z), p < –1

4

(1.25)k

(−0.5)k

(−1)k

(−1.5)k

(0.75)k1k

6 8 10 0 2 4 6 8 10

0 2 4 6 8 10
k

0 2 4 6 8 10
k

0 2 4 6 8 10
k

0 4 8 12 16 20

FIGURE 4.65 Natural modes corresponding to real poles of H(z).

Linear Systems Analysis 263

In terms of polar coordinates, the quadratic factor is

Q(z) ¼ (z� re ju)(z� re�ju) ¼ z2 � (2r cos u)zþ r2 (4:618)

Consider a second-order discrete-time system with z-domain transfer function

H(z) ¼ Az2 þ Bz

z2 � (2r cos u)zþ r2
(4:619)

For reasons that will soon become apparent, H(z) is expressed as

H(z) ¼ c1(r sin u)zþ c2[z2 � (r cos u)z]

z2 � (2r cos u)zþ r2
(4:620)

where c1 and c2 are obtained by equating like powers of z in the numerators of Equations 4.619 and
4.620. The result is

c1 ¼ Ar cos uþ B

r sin u
, c2 ¼ A (4:621)

H(z) in Equation 4.620 is expressed as

H(z) ¼ c1
(r sin u)z

z2 � (2r cos u)zþ r2

� �
þ c2

z2 � (r cos u)z

z2 � (2r cos u)zþ r2

� �
(4:622)

Referring to Table 4.4 with e�aT¼ r and vT¼ u suggests the impulse response hk¼ z�1{H(z)} is

hk ¼ c1r
k sin kuþ c2r

k cos ku ¼ rk(c1 sin kuþ c2 cos ku), k ¼ 0, 1, 2, 3, . . . (4:623)

There are three cases to consider, which are illustrated in Figure 4.64. The three cases correspond to
the region inside the Unit Circle (r< 1), all points on the Unit Circle (r¼ 1), and the exterior of the
Unit Circle (r> 1). It follows from Equation 4.623 that the impulse response satisfies the necessary
condition for BIBO stability in Equation 4.591 only in the first case, r< 1, that is, when the poles are
located inside the Unit Circle. The natural response, being of similar form to the impulse response,
decays to zero as k!1. Hence, the system is BIBO stable.

When the poles are either on the Unit Circle or outside, Equation 4.591 is not satisfied, and the
system is therefore not BIBO stable. The natural response consists of sustained oscillations when
r¼ 1 and oscillations of increasing magnitude when r> 1.

Re

Im

a + jb

a – jb

r

r

×

×

θ = tan−1(b/a)

r = (a2 + b2)1/2

−θ
θ

FIGURE 4.66 Complex poles of discrete-time system transfer function H(z).

264 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 4.31

A second-order discrete-time system has a z-domain transfer function given by

H(z) ¼ z2 þ 3z
Q(z)

(4:624)

where Q(z) is a quadratic with complex roots located in the three different regions like the ones
shown in Figure 4.64. Suppose the roots are

(a) �0.25
 j0.5 (b) 0:5(1
 j
ffiffiffi
3
p

) (c) 1
 j

(a) Find the z-domain transfer function H(z) for each case.
(b) Find the impulse response hk, k¼ 0, 1, 2, 3, . . . for each case.
(c) Graph the impulse response for each case.

(a)
(i) (a¼�0.25, b¼ 0.5). The polar coordinates of the transfer function poles are

r ¼ [(�0:25)2 þ (0:5)2]1=2 ¼ 0:5990, u ¼ tan�1
0:5
�0:25
� �

¼ 2:0344 rad

Q(z) ¼ z2 � (2r cos u)zþ r2

¼ z2 � [2(0:5990) cos (2:0344)]zþ (0:5990)2

¼ z2 þ 0:5zþ 0:3125

) H(z) ¼ z2 þ 3z
Q(z)

¼ z2 þ 3z
z2 þ 0:5zþ 0:3125

(4:625)

(ii) (a ¼ 0:5, b ¼ 0:5
ffiffiffi
3
p

)) r ¼ 1, u ¼ 1:0472 rad, H(z) ¼ z2 þ 3z
z2 � zþ 1

(4:626)

(iii) (a ¼ 1,b ¼ 1)) r ¼
ffiffiffi
2
p

, u ¼ p

4
rad, H(z) ¼ z2 þ 3z

z2 � 2zþ 2
(4:627)

(b)

(i) c1 ¼ Ar cos uþ B
r sin u

¼ 1(0:5990) cos (2:0344)þ 3
0:5990 sin (2:0344)

¼ 5:5, c2 ¼ A ¼ 1

The constants c1 and c2 for (ii) and (iii) are determined in similar fashion. From Equation 4.623, the
impulse responses are

(i) hk ¼ (0:5990)k[5:5 sin (2:0344k)þ cos (2:0344k)], k ¼ 0, 1, 2, 3, � � � (4:628)

(ii) hk ¼ 4:0415 sin (1:0472k)þ cos (1:0472k), k ¼ 0, 1, 2, 3, � � � (4:629)

(iii) hk ¼ (
ffiffiffi
2
p k

) 4 sin
kp
4

� �
þ cos

kp
4

� �� �
, k ¼ 0, 1, 2, 3, � � � (4:630)

(c) Graphs of the impulse responses in Equations 4.628 through 4.630 are shown in Figure 4.67.
The discrete-time system with poles located inside the Unit Circle is BIBO stable. The impulse

response given in Equation 4.628 satisfies the necessary and sufficient condition for BIBO stability
in Equation 4.591. Poles of the transfer functions in Equations 4.626 and 4.627 are situated on the
Unit Circle and outside it, respectively. Neither system is BIBO stable.

Linear Systems Analysis 265

Consider a system with a pair of complex poles ofH(z) on the Unit Circle at e
ju. Its response to
the bounded input uk¼ sin ku, k¼ 0, 1, 2, 3, . . . is obtained from

Y(z) ¼ H(z)U(z) ¼ N(z)
(z� e ju)(z� e�ju)

� sin u � z
z2 � (2 cos u)zþ 1

(4:631)

¼ N(z)
(z� e ju)(z� e�ju)

� sin u � z
(z� e ju)(z� e�ju)

(4:632)

¼ sin u � zN(z)
(z� e ju)2(z� e�ju)2

(4:633)

It is left as an exercise to show that yk contains a linear combination of the terms, cos ku,
sin ku, k cos ku, and k sin ku. Consequently, the response is unbounded, and the system is not
BIBO stable.

When a real pole of H(z) is located on the Unit Circle at z¼�1 or z¼þ1, and the input is
uk¼ (�1)k, k¼ 0, 1, 2, 3, or the unit step uk¼ 1, k¼ 0, 1, 2, 3, . . . , respectively, the response is
unbounded due to the presence of (zþ 1)2 or (z� 1)2 in the denominator of the output Y(z). The
first case results in the term k(�1)k (multiplied by a constant) appearing in the output. In the second
case, yk contains a term proportional to k(1)k¼ k (see Example 4.30, part [b]).

We conclude this section with a simulation of the continuous-time control system in
Figure 4.68.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

h k
h k

h k

Poles of H(z) at z = −0.25 ± j0.5

−5

0

5 Poles of H(z) at z = 0.5 ± j0.5√3

−50

0
50

100
150

k

Poles of H(z) at z = 1 ± j

FIGURE 4.67 Impulse responses for discrete-time systems with different complex poles of H(z).

GC(s)

s2+2ζωns+ωn
2

Kωn
2KI

sKP +
R(s) E(s)

–

G(s)

U(s) Y(s)

FIGURE 4.68 P–I control of a second-order continuous-time process.

266 Simulation of Dynamic Systems with MATLAB® and Simulink®

The analog P–I (Proportional–Integral) controller GC(s) is approximated by a discrete-time
controller with transfer function GC(z) based on the use of trapezoidal integration. It was shown
in Section 4.4.7 that the z-domain transfer function of a trapezoidal integrator is

HI(z) ¼ T
2

zþ 1
z� 1

� �
(4:634)

And, therefore, GC(z) is obtained by replacing s with 1=HI(z), that is,

GC(z) ¼ KP þ KI

s

s (2=T)((z�1)=(zþ1))

¼ (2KP þ KIT)z� 2KP þ KIT
2(z� 1)

(4:635)

Several discrete-time approximations to the second-order system in Figure 4.68 were developed in
Section 4.4.7. Explicit Euler approximation resulted in

G(z) ¼ Y(z)
U(z)

¼ K(vnT)2

z2 � 2(1� zvnT)zþ 1� 2zvnT þ (vnT)2
(4:636)

The block diagram of the discrete-time system intended to simulate the continuous-time control
system is shown in Figure 4.69.

The closed-loop transfer function is

H(z) ¼ Y(z)
R(z)
¼ GC(z)G(z)

1þGC(z)G(z)
(4:637)

and the poles of H(z) are the roots of the characteristic equation

D(z) ¼ 1þGC(z)G(z) ¼ 0 (4:638)

Substituting Equations 4.635 and 4.636 into Equation 4.638 yields

D(z) ¼ z3 þ a1z2 þ a2zþ a3 ¼ 0 (4:639)

where

a1 ¼ �3þ 2zvnT
a2 ¼ 3� 4zvnT þ (vnT)2[1þ K(Kp þ 0:5K1T)]
a3 ¼ �12zvnT þ (vnT)2[�1þ K(�Kp þ 0:5K1T)]

9=; (4:640)

Table 4.9 summarizes the results for different combinations of continuous-time second-order
systems, controllers, and integration step size.

The continuous-time system and discrete-time poles are shown in Figure 4.70. All three
continuous-time control systems are stable since the poles are located in the left-half plane. The
discrete-time systems for simulating them, however, are not all BIBO stable. In fact, the discrete-
time systems in Rows 2 and 3 in Table 4.9 possess a pair of complex poles located on the Unit
Circle and outside it, respectively.

G(z)
R(z) GC(z)

E(z)
–

U(z) Y(z)

FIGURE 4.69 Block diagram of discrete-time system.

Linear Systems Analysis 267

It is important to keep in mind that while the discrete-time system approximation in Row 1 of
Table 4.9 is stable, its accuracy in approximating the continuous-time system response to various
inputs is another matter. Suppose the input to the control system in Figure 4.68 is r(t), t � 0 and the
output is y(t), t � 0. If the discrete-time system response to rk¼ r(kT), k¼ 0, 1, 2, . . . is yk, k¼ 0, 1,
2, . . . , an accurate simulation requires that yk� y(kT), k¼ 0, 1, 2,. . . .

The locations of the continuous- and discrete-time poles corresponding to Row 1 in Figure 4.70
imply that the natural responses consist of a monotonically decaying and damped oscillatory
modes. The question still remains whether the time constants and damped natural frequencies are
comparable. A thorough examination of this point is deferred to a later chapter; however, we can
gain insight by looking at the step responses of each system.

TABLE 4.9
Continuous- and Discrete-Time Control System Poles

System Parameters and Integration
Step Size Poles of H(s) Poles of H(z)

Mag of H(z)
Complex Poles

K ¼ 1,vn ¼ 10, z ¼ 1:0

KP ¼ 0:5,KI ¼ 2 �9:1616
 j5:9448 0:5398
 j0:3201 0:628

T ¼ 0:05 �1:6768 0:9205

K ¼ 1,vn ¼ 5, z ¼ 0:5124

KP ¼ 1,KI ¼ 3 �1:7133
 j6:4225 0:8674
 j0:4979 1.000

T ¼ 0:075 �1:6975 0.8808

K ¼ 1,vn ¼ 20, z ¼ 0:15

KP ¼ 1,KI ¼ 3 �2:2436
 j28:0745 0:9436
 j0:7085 1:180

T ¼ 0:025 �1:5128 0:9629

−10 −5 0 5

−5

0

5

H(s) poles, row 1

Im
ag

in
ar

y a
xi

s
Im

ag
in

ar
y a

xi
s

−1 0 1

−1

0

1

−1

0

1

−1

0

1

Real axis
−1 0 1

Real axis
−1 0 1

Real axis

−5

0

5

H(s) poles, row 2

− 20

0

20

H(s) poles, row 3

H(z) poles, row 1 H(z) poles, row 2 H(z) poles, row 3

Real axis
−10 −5 0 5

Real axis
−10 −5 0 5

Real axis

FIGURE 4.70 Continuous- and discrete-time system poles for rows 1, 2, 3 in Table 4.9.

268 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 4.32

Find and graph the unit step response of the continuous-time system in Figure 4.68 (K¼ 1, vn¼ 10,
z¼ 1.0, KP¼ 0.5, KI¼ 2) and the discrete-time system shown in Figure 4.69 with integration step
size T¼ 0.01, 0.05, 0.1 s.

The step responses are computed in M-file ‘‘Chap8_Ex8_3.m’’ and shown in Figure 4.71. The
top graph is a plot of every fourth point of the discrete-time system step response.

The discrete-time system is stable for all three values of integration step size T and the steady-
state values are identical to the continuous-time steady-state value. However, the transient
response of the discrete-time system when T¼ 0.1 s varies considerably from the continuous-
time system transient response.

EXERCISES

4.59 Find the poles of the z-domain transfer functions H(z) below, and comment on the stability of
the corresponding discrete-time systems.

(a)
z2 þ 2z

32z3 � 16z2 � 22zþ 1
(b)

4z2

z3 � (3=2)z2 þ (3=4)z� (1=8)
(c)

3zþ 1
4z3 � 3zþ 1

(d)
z4 � z

16z4 � 28z3 þ 22z2 � 8zþ 1
(e)

1
4z4 þ 3z2 � 1

(f)
z3 þ 2z2 þ z

2z3 � 5z2 þ 6z� 2

4.60 Prove
P1

k¼0 jhkj <1 is a sufficient condition for BIBO stability of an LTI discrete-time
system.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

0

0.25
0.5

0.75
1

T = 0.01 s
Continuous-time
Discrete-time

0

0.25
0.5

0.75
1

T = 0.05 s

0

0.25
0.5

0.75
1

T = 0.1 s

Time (s)

Continuous-time
Discrete-time

Continuous-time
Discrete-time

FIGURE 4.71 Unit step response of continuous-time system (Figure 4.68) and discrete-time system (Figure
4.69) with T¼ 0.01, 0.05, 0.1 s.

Linear Systems Analysis 269

4.61 A discrete-time system is described by the difference equation

4yk � 3yk�2 þ yk�3 ¼ uk , k ¼ 0, 1, 2, 3, . . . (y�1 ¼ y�2 ¼ y�3 ¼ 0)

(a) Find the weighting sequence hk, k¼ 0, 1, 2, 3, . . . of the system.
(b) Check whether the condition

P1
k¼0 jhkj <1 is satisfied. Is the system stable?

(c) Find and graph the system response to the input uk¼ 1þ 2(�1)k, k¼ 0, 1, 2, 3,. . . .
4.62 Show the work required to establish Equations 4.608 through 4.610 in part (b) and Equations

4.613 through 4.615 in part (c) of Example 4.30.

4.63 Find the inverse z-transform of Y(z) ¼ (sin u � zN(z))
((z� e ju)2(z� e�ju)2)

in Equation 4.633.

4.64 For a discrete-time system with z-domain transfer function given by

H(z) ¼ Y(z)

U(z)
¼ z2 þ zþ 1

z3 � 0:5z2 � zþ 0:5

(a) Find the zeros and poles of H(z).
(b) Find the impulse response sequence hk, k¼ 0, 1, 2, 3,
(c) Find the unit step response.
(d) Find the forced response to uk¼ (�1)k, k¼ 0, 1, 2, 3,

4.65 For the control system in Figure 4.68,
(a) Find the transfer function HE(s)¼E(s)=R(s).
(b) Use explicit Euler integration with integration step T to obtain HE(z), an approximation to

the continuous-time transfer function HE(s).
(c) Assume K¼ 1, vn¼ 10, z¼ 1.0, KP¼ 0.5, KI¼ 2, and T¼ 0.05, and find the poles of

HE(z). Compare your answer with the results shown in Table 4.9 for the same parameter
values.

(d) Find the difference equation relating ek and rk, k¼ 0, 1, 2, 3,
(e) Solve the difference equation when rk¼ 1, k¼ 0, 1, 2, 3,

4.66 For the control system in Figure 4.69 with baseline parameters specified in the last row of
Table 4.9, find the poles of H(z) and plot the magnitude of the most distant pole(s) from the
origin when
(a) z varies from 0 to 2
(b) T varies from 0.01 to 0.5 s
(c) KP varies from 0.5 to 5
(d) vn varies from 5 to 50 rad=s

4.67 End-of-month deposits dk, k¼ 0,1, 2, 3, . . . are placed in an investment account paying interest
at a rate of i per month. The initial account balance is P0. The difference equation for Pk, the
account balance after k months, is

Pkþ1 ¼ (1þ i)Pk þ dkþ1, k ¼ 0, 1, 2, 3, . . .

(a) Find the z-domain transfer function H(z)¼P(z)=D(z) and its pole.

Hint: Use the left shifting property, z{Pkþ1}¼ zP(z)� zP0. Comment on the stability of
the discrete-time system.

(b) Sketch Pk, k¼ 0, 1, 2, 3, . . . when no deposits are made and i> 0. Repeat for i< 0.

270 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) Find the general solution for Pk, k¼ 1, 2, 3, . . . when

(i) dk ¼ 0, k ¼ 0
D, k ¼ 1, 2, 3, . . .

�
(ii) dk ¼ 0, k ¼ 0, 2, 4, . . .

D, k ¼ 1, 3, 5, . . .

�
(iii) dk ¼

0, k ¼ 0
2D, k ¼ 1, 3, 5, . . .
�D, k ¼ 2, 4, 6, . . .

(

4.68 Figure E4.68 shows the relationship between acceleration, velocity, and position of a particle
moving along a straight line.

A(s) V(s) X(s)1
s

1
s

0

t
v(t) =∫a(t΄) dt΄

0

t
x(t) =∫ ν(t΄) dt΄

FIGURE E4.68

(a) Write the differential equations relating v(t) and a(t), x(t) and v(t), and x(t) and a(t).
(b) Use trapezoidal integration to approximate the three differential equations. That is, find

the difference equations relating vk and ak, xk and vk, and xk and ak.
(c) Find the poles of the three transfer functions V(z)=A(z), X(z)=V(z), and X(z)=A(z). Com-

ment on the stability of each.
(d) Suppose the acceleration is given by

a(t) ¼
t, 0 � t < 1
1, 1 � t < 2
3� t, 2 � t < 3
0, 3 < t

8><>:
Find analytical expressions for v(t) and x(t).

(e) Solve the difference equations recursively for a suitable value of T. Plot v(t), t � 0 along
with vk, k¼ 0, 1, 2, 3, . . . on the same graph, and do the same for x(t), t � 0 and xk, k¼ 0,
1, 2, 3,. . . .

4.69 The motion of a mass suspended from a spring without friction is governed by md2x=dt2þ
kx¼ f, where f¼ f(t) is the applied force acting on the mass.
(a) Find the transfer function H(s)¼X(s)=F(s) in terms of the natural frequency vn ¼

ffiffiffiffiffiffiffiffiffi
k m=

p
and the constant c¼ 1=m. Where are the poles located?

(b) Use explicit Euler, implicit Euler, and trapezoidal integration to obtain discrete-time
approximations, that is, find H(z)¼X(z)=F(z). Leave your answers in terms of c, vn,
and the integration step size T.

(c) Find the poles for each z-domain transfer function H(z) in part (b). Comment on the
stability in each case.

(d) Let m¼ 1 slug, k¼ 0.5 lb=in., x(0)¼ 2 in., _x(0)¼ 0 in.=s, and f(t)¼ 0, t � 0. Find and
graph the continuous-time response x(t).

(e) Choose the integration step T, so that vnT¼ 0.01. Find the poles of each transfer function
H(z) and the discrete-time responses xk, k¼ 0, 1, 2, 3, . . . for the same conditions in part
(d). Plot the discrete-time responses on the same graph as x(t).

Linear Systems Analysis 271

4.9 FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS

By now, it should be apparent that the methods for describing and analyzing the behavior of LTI
continuous-time and discrete-time systems are similar. Indeed, both types of systems possess a
natural response, independent of the system’s input (or inputs), and similar in form to the impulse
response of the system. The impulse response and the system transfer function form a Laplace
transform pair for continuous-time systems and a z-transform pair in the case of discrete-time
systems. The forced response of each is expressible by convolution, an integral for continuous-
time systems and a sum for discrete-time systems.

BIBO stable systems are characterized by the location of transfer function poles in the s and z
complex planes. Alternatively, the impulse response function of the continuous-time system and the
impulse response (weighting sequence) of the discrete-time system satisfy equivalent types of
constraints (in integral or summation form) when the systems are stable. In both instances, stability
is an inherent property requiring the asymptotic decay of the natural modes.

The analogy continues into the realm of frequency response. The response of discrete-time
systems to sinusoidal inputs characterizes the system dynamics in the same way as it does for
continuous-time systems. Moreover, methods based on frequency response often play a critical role
in the overall design of a discrete-time system.

4.9.1 STEADY-STATE SINUSOIDAL RESPONSE

We begin by considering the response of a stable LTI discrete-time system with z-domain transfer
function H(z) to the sinusoidal input

uk ¼ sin kvT , k ¼ 0, 1, 2, . . . (4:641)

The z-transform of the output yk, k¼ 0, 1, 2, . . . , is expressed as

Y(z) ¼ H(z)U(z) ¼ H(z)
(sinvT)z

z2 � (2 cosvT)zþ 1

� �
(4:642)

¼ H(z)
(sinvT)z

(z� e jvT)(z� e�jvT)

� �
(4:643)

A partial fraction expansion of Y(z) in Equation 4.643 includes the first two terms shown in Equation
4.644 along with additional terms resulting from the poles of H(z).

Y(z) ¼ c1
z

z� e jvT
þ c2

z

z� e�jvT
þ {terms due to poles of H(z)} (4:644)

where c1and c2 are a complex conjugate pair. The constant c1 is obtained from

c1 ¼ z� e jvT

z
H(z)

(sinvT)z

(z� e jvT)(z� e�jvT)

� �
z¼e jvT

¼ H(e jvT)
sinvT

e jvT � e�jvT
(4:645)

From Euler’s identity, e ju¼ cos uþ j sin u, the denominator reduces to 2j sinvT, and the constants
c1 and c2 become

c1 ¼ H(e jvT)

2j
, c2 ¼ c1 ¼ H(e�jvT)

�2j (4:646)

272 Simulation of Dynamic Systems with MATLAB® and Simulink®

Combining Equations 4.644 and 4.646 yields

Y(z) ¼ H(e jvT)

2j
z

z� e jvT

� �
� H(e�jvT)

2j
z

z� e�jvT

� �
þ {terms due to poles of H(z)} (4:647)

H(e jvT) and H(e�jvT) are complex conjugates. In polar form,

H(e jvT) ¼ Me ju, H(e�jvT) ¼ Me�ju (4:648)

where

M ¼ jH(e jvT)j, u ¼ Arg{H(e jvT)} (4:649)

Substituting both parts of Equation 4.648 into Equation 4.647 gives

Y(z) ¼ M

2j
e juz

z� e jvT
� e�juz
z� e�jvT

� �
þ {terms to poles of H(z)} (4:650)

Inverting Y(z) produces the discrete-time system response

yk ¼ M

2j
[e ju(e jvT)k � e�ju(e�jvT)k]þ z�1 {terms due to poles of H(z)} (4:651)

¼ M
e j(kvTþu) � e�j(kvTþu)

2j

� �
þ z�1 {terms due to poles of H(z)} (4:652)

The first term is equal to M sin(kvTþ u), and z�1 {terms due to poles of H(z)} is the transient
response, which decays to zero at steady state for a stable system. Hence, at steady state, the
response of a stable LTI discrete-time system with transfer function H(z) to the sinusoidal input in
Equation 4.641 is

(yk)ss ¼ M sin (kvT þ u) (4:653)

¼ H(e jvT)

 sin [kvT þ Arg{H(e jvT)}] (4:654)

H(e jvT) is the discrete-time frequency response function of the system. Note the dependence of
M and u in Equation 4.649 on the period T as well as on the frequency v.

An expression similar to Equation 4.654 applies to LTI continuous-time systems (see Equation
4.304). Once the transient response has vanished, the steady-state response consists of a sinusoid at
the same frequency as the input. The frequency response function, H(jv), in the case of continuous-
time systems, and H(e jvT) for discrete-time systems, establishes the frequency dependent amplitude
and phase shift in the steady-state response.

Linear systems are effectively filters that pass certain frequency components in their inputs
more readily than others. Analog and digital filters are examples of how a system designer can
exploit frequency response to produce a system with desirable frequency discrimination charac-
teristics.

Frequency response is important in the study of continuous-time system simulation. It allows us to
characterize the dynamic errors of a discrete-time system model intended to approximate (simulate)
the dynamics of a continuous-time system. In particular, the frequency response function H1(e

jvT)
of a numerical integrator can be compared with the frequency response function of a

Linear Systems Analysis 273

continuous-time integrator HI(jv)¼ (1=s)js¼ jv¼ 1=jv. For the most part, this is deferred until
Chapter 8; however, we will lay some of the groundwork for what is to come later in this section.

4.9.2 PROPERTIES OF THE DISCRETE-TIME FREQUENCY RESPONSE FUNCTION

There are several important properties of H(e jvT) worthy of discussion. First and foremost is its
periodic nature. The argument e jvT is a unit vector beginning at (1,0) in the complex plane when
v¼ 0. As the frequency v increases, the vector rotates counterclockwise around the Unit Circle as
shown in Figure 4.72. At the sampling frequency vs¼ 2p=T, the unit vector has completed one
revolution, that is,

H(e jvsT) ¼ H(e j(2p=T)T) ¼ H(e j2p) ¼ H(e j0) ¼ H(1) (4:655)

The complex values of H(e jvT) generated by the first revolution around the Unit Circle are repeated
during subsequent revolutions, that is, as v increases from kvs to (kþ 1)vs, k¼ 1, 2, 3, In
mathematical terms, the periodicity property is

H(e j(vþkvs)T) ¼ H(e jvT), k ¼ 1, 2, 3, . . . (4:656)

Another property of the frequency response function is the symmetry of jH(e jvT)j about the angles
vT¼p, 3p, 5p, . . . , that is, the magnitude of H(e jvT) is symmetric or folded about the frequencies
v¼p=T, 3p=T, 5p=T,. . . . jH(e jvT)j is referred to as ‘‘even’’ function about the radian frequencies
v¼ 0.5vs, 1.5vs, 2.5vs,. . . . In mathematical terms,

H(e j[nvsþD])

 ¼ H(e j[nvs�D])

, n ¼ 0:5, 1:5, 2:5, . . . (4:657)

The phase of H(e jvT) is an ‘‘odd’’ function about the same frequencies, that is,

Arg H(e j[nvsþD]) ¼ �Arg H(e j[nvs�D]), n ¼ 0:5, 1:5, 2:5, . . . (4:658)

Due to the periodic behavior of H(e jvT), it is unnecessary to plot jH(e jvT)j and Arg [H(e jvT)] outside
(0 � v<vs). In fact, it is customary to draw a Bode plot of H(e jvT) from a lower frequency (greater
than or equal to zero) up to the so-called Nyquist frequency vN¼ 0.5vs, from the theory of
sampling. We shall have more to say about the sampling theorem after the following example,
which illustrates the frequency response function of a discrete-time system and its aforementioned
properties.

Re
(1, 0)

Im

Unit Circle

Δ
Δ

e jωT

ωT = π + Δ, 3π+Δ, 5π + Δ, ...

ωT = π−Δ, 3π − Δ, 5π−Δ, ...

ωT = π, π3, π5, ... ωT = 0, 2π, 4π, ...ωT

FIGURE 4.72 Rotation of unit vector ejvT around the Unit Circle.

274 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 4.33

A first-order system described by tdy=dtþ y¼ u is to be simulated using explicit Euler integration
with a step size T.

(a) Find the z-domain transfer function H(z) of the resulting discrete-time system.
(b) Plot the magnitude (in db) and phase components of the frequency response function

H(e jvT) over the interval 0.1 � v � 0.5vs. The system time constant t is 0.25 s, and the
step size T is chosen according to T=t¼ 0.1.

(c) Find the transient and steady-state response of the continuous-time system when the input is
given by u(t)¼ 2sin 3t, t � 0.

(d) Use the discrete-time frequency response function H(e jvT) to determine the steady-state
output of the simulated (discrete-time) system. Verify the results graphically.

(e) Compare the steady-state sinusoidal responses of the continuous- and discrete-time systems.

(a) The transfer function of the continuous-time system is

H(s) ¼ 1
tsþ 1

(4:659)

The z-domain transfer function of the discrete-time system approximation obtained by the use of
explicit Euler integration is

H(z) ¼ 1
tsþ 1

s (z�1)=T

¼ T=t
z� 1þ (T=t)

(4:660)

(b) The frequency response function of the discrete-time system is given by

H(e jvT) ¼ T=t
z� 1þ (T=t)

z e jvT

¼ 0:1
e jvT � 0:9

(4:661)

¼ 0:1
(cosvT � 0:9)þ j sinvT

(4:662)

The magnitude function is

H(e jvT)

 ¼ 0:1

[(cosvT � 0:9)2 þ sin2 vT]1=2
(4:663)

Using the trigonometric identity sin2 uþ cos2 u¼ 1, the magnitude function becomes

H(e jvT)

 ¼ 0:1

[1:81� 1:8 cosvT]1=2
(4:664)

From Equation 4.662, the phase angle of H(ejvT) is

Arg[H(e jvT)] ¼ � tan�1
sinvT

cosvT � 0:9

� �
(4:665)

The sampling frequency vs¼ 2p=T¼ 80p rad=s. The Nyquist frequency vN¼ 0.5vs¼
40p¼ 125.67 rad=s. ‘‘Chap4_Ex9_1.m’’ contains the MATLAB code to generate the Bode plot
shown in Figure 4.73.

Linear Systems Analysis 275

(c) The continuous-time response y(t) to the input u(t)¼ 2 sin 3t, t � 0 is obtained from the transfer
function of the continuous-time system

H(s) ¼ Y(s)
U(s)
¼ 1

tsþ 1
¼ 1

0:25sþ 1
(4:666)

Y(s) ¼ H(s)U(s) ¼ 1
0:25sþ 1

2
3

s2 þ 9

� �� �
(4:667)

¼ 24
(sþ 4)(s2 þ 9)

(4:668)

Inverting Y(s) by partial fractions leads to

y(t) ¼ 24
25

e�t=0:25 þ 4
3
sin 3t � cos 3t

� �
(4:669)

The transient and steady-state components of y(t) are

ytr ¼ 24
25

e�t=0:25, yss ¼ 24
25

4
3
sin 3t � cos 3t

� �
(4:670)

(d) The magnitude and phase of the discrete-time frequency response function at v¼ 3 rad=s and
T¼ 0.025 s are obtained from Equations 4.664 and 4.665, respectively.

jH(e j3(0:025))j ¼ 0:1

[1:81� 1:8 cos 3(0:025)]1=2
¼ 0:815 (4:671)

Arg[H(e j3(0:025))] ¼ � tan�1
sin 3(0:025)

cos 3(0:025)� 0:9

� �
¼ �0:657 rad (4:672)

10−1 100 101 102

−20|H
(e

jω
T)|

(d
b)

A
rg

 |H
(e

jω
T)|

(d
eg

)
−10

0

ω (rad/s)

10−1 100 101 102

ω (rad/s)

T = 0.025 s
ωs = 2π/T = 80π rad/s
ωN = 0.5ωs = 40π rad/s

ω = 3 rad/s

ω = 3 rad/s−150

−100

−50

0

FIGURE 4.73 Bode plot for system with frequency response function H(ejvT) in Equation 4.661.

276 Simulation of Dynamic Systems with MATLAB® and Simulink®

The dashed lines in Figure 4.73 show the gain 20 log(0.815)¼�1.78 db and phase angle �0.657
rad¼�37.638 at v¼ 3 rad=s. For a sinusoidal input with magnitude ju(t)j ¼ 2, the discrete-time
system output at steady state is from Equation 4.654

(yk)ss ¼ 2[0:815 sin (0:075k� 0:657)] (4:673)

A graph of uk and (yk)ss is shown in Figure 4.74.
The steady-state output component lags the input by 37.638, and its amplitude is

2jH e j3(0:025)� �j ¼ 2(0:815) ¼ 1:63:

In order to verify the frequency response values in Equations 4.671 and 4.672, a blown-up portion
of Figure 4.74 near consecutive peaks is shown in Figure 4.75.

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

uk

k

(yk)ss

FIGURE 4.74 Sinusoidal input and steady-state sinusoidal output of discrete-time system.

90 95 100 105 110 115 120 125
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2

max(yk)ss

uk

(yk)ss

Δk = 114−105 = 9

FIGURE 4.75 Graphical enlargement of Figure 4.74 for verifying frequency response characteristics.

Linear Systems Analysis 277

The amplitude of (yk)ss is in agreement with the predicted value of 1.63. The peak amplitudes
occur at approximately k¼ 105 for uk and k¼ 114 for (yk)ss. The measured phase lag is DkvT¼
(114� 105)(3 rad=s)(0.025 s)¼ 0.675 rad, which compares favorably with the analytical value of
0.657 rad.

(e) The continuous-time system response y(t) in Equation 4.669 for 0 � t � 5 and (yk)ss, the steady-
state component of the discrete-time system output, are plotted in Figure 4.76.

Note the agreement between the two outputs once the continuous-time transient response has
vanished.

The discrete-time system transient component cannot be obtained solely from the discrete-
time frequency response function H(e jvT). However, from Equation 4.660, we know it
has the form cpk where p¼ 1� T=t¼ 0.9. Finding the constant c requires partial fraction
expansion of Y(z)¼H(z)U(z) where U(z) is the z-transform of the discrete-time input
uk¼ 2 sin kvT, k¼ 0, 1, 2,

4.9.3 SAMPLING THEOREM

The Bode plot in Figure 4.73 displays the frequency response characteristics of the discrete-time
system used to simulate a first-order continuous-time system. H(e jvT) is a periodic function with
period vs¼ 2p=T. The maximum frequency on Bode plots of discrete-time systems is generally
limited to vN¼vs=2¼p=T, where vN is called the Nyquist frequency. The limitation is based on
the sampling theorem, which we shall explore in a very rudimentary fashion.

First, let us verify the periodic nature of H(e jvT) as well as its symmetry about the frequencies
0.5vs, 1.5vs, 2.5vs, . . . or equivalently vN, 3vN, 5vN,. . . . Figure 4.77 shows the magnitude
jH(e jvT)j and phase Arg[H(e jvT)] corresponding to the frequency response function H(e jvT) in
Equation 4.662. The sampling frequency vs¼ 2p=T¼ 251.3 rad=s and the plots in Figure 4.77
extend for three periods, that is (0 � v � 3vs). The symmetry of H(e jvT) in both magnitude and
phase about the Nyquist frequency, vN¼vs=2¼ 125.7 rad=s, 3vN, 5vN, 7vN, . . . is evident.

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
−1.6

−1.2

−0.8

−0.4

0

0.4

0.8

1.2

1.6
y(t)
(yk)ss

t (s)

Transient
period

(4τ = 1 s)

FIGURE 4.76 Continuous-time system response and sinusoidal steady-state response of discrete-time system
obtained using frequency response function.

278 Simulation of Dynamic Systems with MATLAB® and Simulink®

The sampling theorem, as the name suggests, applies to sample data systems where a continuous-
time signal is periodically sampled. The theorem, however, has important ramifications for discrete-
time systems and continuous system simulation.

Continuous-time sinusoids sinvt are sampled every T s as shown in Figure 4.78. In the top
frame, the frequency of the sinusoid is v¼ 0.2p rad=s, and sampling occurs at a rate of one sample
per second (vs¼ 2p rad=s). The period of the sinusoid is 2p=v¼ 10 s, and the sampling rate of 10
samples per period is sufficient to reconstruct the original sinusoid.

In the middle plot, the frequency of the continuous-time sinusoid is 1.4p rad=s while the
sampling remains fixed at 2p rad=s. The sampled points appear to come from the lower frequency
(v¼ 0.4p rad=s) continuous-time sinusoid shown in dashed form. In the bottom graph, the
continuous-time sinusoid has a frequency of 2.2p rad=s. Sampling it at the rate of 2p rad=s produces
the identical set of data points obtained in the top graph making it appear as if the continuous-time
sinusoid being sampled is the one at v¼ 0.2p rad=s.

There is no ambiguity in identifying the correct sinusoid being sampled provided sampling
occurs more than twice as fast as the frequency of the sinusoid, that is, vs> 2v. In other words, the
sampled points uniquely determine any continuous-time sinusoid whose frequency is less than one
half the sampling frequency, that is, v<vs=2.

By definition, the Nyquist frequency is vN¼vs=2. Hence, for a given sampling frequency vs,
only sinusoids with frequency less than the Nyquist frequency can be distinguished from lower
frequency sinusoids. A sinusoid with frequency greater then the Nyquist frequency will be
‘‘aliased’’ into a lower frequency sinusoid as in the last two cases shown in Figure 4.78. This
explains why Bode plots of discrete-time frequency response functions range from a lower fre-
quency up to the Nyquist frequency vN.

The sampling theorem applies to sampling of continuous-time signals in general. Aliasing occurs
when vs � 2v0, where v0 represents the highest frequency present in the band-limited signal.

0(a)

(b)

100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

0

0.2

0.4

0.6

0.8

1

|H
(e

jω
T)|

A
rg

 H
(e

jω
T) (

de
g)

ωN 3ωN 2ωs 5ωN 3ωsωs

ω (rad/s)

−180

−90

0

90

180

FIGURE 4.77 (a) Periodic nature and (b) symmetry of frequency response function H(ejvT).

Linear Systems Analysis 279

In terms of the sampling period, T<p=v0 to prevent aliasing. The sampling theorem presents a
formula, albeit difficult to implement, for reconstructing the band-limited continuous-time signal
from the numerical values of the samples (Cadzow 1973).

The sampling theorem extends to simulation of continuous-time systems. The sampling interval
T becomes the integration step size. Continuous-time inputs to the differential equations are sampled
in the process of generating the discrete-time inputs to the difference equations. Consequently, the
frequency content of the continuous-time input signals influences the choice of appropriate step size
in the simulation.

Example 4.34

The continuous-time first-order system in Example 4.33 is to be simulated using trapezoidal
integration

(a) Find the z-domain transfer function of the discrete-time system and the difference equation.
Leave your answers in terms of the continuous-time system time constant t and the
integration step size T.

(b) Find the sampling frequency and Nyquist frequency when t¼ 5 s and T¼ 0.25 s.
(c) Find the continuous-time output y(t) when the input u(t)¼ sinvt, t � 0.
(d) Plot the continuous-time and discrete-time outputs on the same graph when

(i) v¼p rad=s v¼ 7p rad=s v¼ 8p rad=s.

(e) Compare H(jv) and H(e jvT) at v¼p, 7p, and 8p rad=s.

0 5 10 15 20

0 5 10 15 20

0 5 10 15 20

−1

0

1

−1

0

1

−1

0

1

Effect of sampling sin ωt (ω = 0.2π, 1.4π, 2.2π rad/s) at ωs = 2π rad/s

t (s)

FIGURE 4.78 Illustration of aliasing of a sampled sinusoid.

280 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) The z-domain transfer function of the discrete-time system is

H(z) ¼ H(s)js (2=T)((z�1)=(zþ1)) ¼
1

tsþ 1

s (2=T)((z�1)=(zþ1))

(4:674)

¼ 1
t[(2=T)((z� 1)=(zþ 1))]þ 1

(4:675)

¼ T(zþ 1)
(2tþ T)z� (2t� T)

(4:676)

) H(z) ¼ Y(z)
U(z)

¼ T(1þ z�1)
(2tþ T)� (2t� T)z�1

(4:677)

Inverting Equation 4.677 produces the difference equation

(2tþ T)yk � (2t� T)yk�1 ¼ T(uk þ uk�1), k ¼ 1, 2, 3, . . . (4:678)

(b) vs¼ 2p=T¼ 2p=0.25¼ 8p rad=s, vN¼vs=2¼ 8p=2¼ 4p rad=s.

(c) The continuous-time output y(t) is obtained by inverse Laplace transformation of

Y(s) ¼ H(s)U(s) ¼ 1
tsþ 1

v

s2 þ v2

� �
(4:679)

Following partial fraction expansion and inverse Laplace transformation, the result is

y(t) ¼ tv

1þ (tv)2
e�t=t � cosvt þ 1

tv
sinvt

� �
(4:680)

(d) Substituting t¼ 5 s, v¼p, 7p, and 8p rad=s gives the continuous-time output for the three
cases enumerated. The simulated output is obtained by recursive solution of the difference
equation after solving explicitly for yk in Equation 4.678.

yk ¼ 1
2tþ T

[(2t� T)yk�1 þ T(uk þ uk�1)], k ¼ 1, 2, 3, . . . (4:681)

The continuous- and discrete-time outputs are evaluated in ‘‘Chap4_Ex9_2.m.’’ Plots of y(t), t � 0
and yk, k¼ 0, 1, 2,. . . . for the three input sinusoids are presented in Figures 4.79 through 4.81
along with the continuous- and discrete-time inputs.

In Figure 4.79, the input frequency v¼p rad=s is well below the Nyquist frequency vN¼ 4p
rad=s. Sampled values of the discrete-time input uk¼ sin(kvT) are an accurate reflection of the
continuous-time sinusoidal input u(t)¼ sinvt. As a result, the continuous-time response y(t) and
simulated response yk are in close agreement at the sample times tk¼ kT, k¼ 0, 1, 2,. . . .

In Figure 4.80, v¼ 7p rad=s exceeds the Nyquist frequency vN¼ 4p rad=s. The simulated
output is the response to the alias term whose frequency is p rad=s (shown dotted in Figure 4.80).
Understandably, the simulated response yk bears no resemblance to the continuous-time
response y(t).

In Figure 4.81, the sampling frequency is the same as the frequency of the sinusoid, that is,
vs¼v¼ 8p rad=s. The same value of zero is sampled once per cycle making the effective input to
the discrete-time system uk¼ 0, k¼ 0, 1, 2,. . . . The simulated (discrete-time) output is identically
zero as well. The continuous-time response is also shown.

Linear Systems Analysis 281

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−1

−0.5

0

0.5

1

u(t) = sin(ωt), uk = sin(ωkT), ω = π rad/s, T = 0.25 s

u(t)
uk

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−0.05

0

0.05

0.1

t (s)

Continuous-time output y(t) and discrete-time output yk

y(t)
yk

FIGURE 4.79 Continuous- and discrete-time inputs and outputs (v¼p rad=s).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1

−0.5

0

0.5

1

u(t) = sin(ωt), uk = sin(ωkT), ω = 7π rad/s, T = 0.25 s

u(t)
uk

−0.1

−0.05

0

t (s)

Continuous-time outputy (t) and discrete-time output yk

u(t)
uk

FIGURE 4.80 Continuous- and discrete-time inputs and outputs (v¼ 7p rad=s).

282 Simulation of Dynamic Systems with MATLAB® and Simulink®

(e) There are several ways to determine the magnitude and phase of the continuous-time and
discrete-time frequency response functions. One is to start with H(jv) and H(e jvT) and express the
magnitude and phase components in terms of v with t and T (in the discrete-time case) as
parameters.

H(jv) ¼ H(s)js¼jv ¼
1

tsþ 1

s¼jv
¼ 1

tjvþ 1
(4:682)

¼ 1

[(tv)2 þ 1]1=2
ff �tan�1 (tv) (4:683)

H(e jvT) ¼ H(z)jz¼e jvT ¼ T(zþ 1)
(2tþ T)z� (2t� T)

z¼e jvT

(4:684)

¼ T(e jvT þ 1)
(2tþ T)e jvT � (2t� T)

(4:685)

¼ T(cosvT þ j sinvT þ 1)
(2tþ T)(cosvT þ j sinvT)� (2t� T)

(4:686)

jH(e jvT)j ¼ T[(1þ cosvT)2 þ sin2 vT]1=2

{[(2tþ T) cosvT � (2t� T)]2 þ [(2tþ T) sinvT]2}1=2
(4:687)

Arg[H(e jvT)] ¼ tan�1
sinvT

1þ cosvT

� �
� tan�1

(2tþ T) sinvT
(2tþ T) cosvT � (2t� T)

� �
(4:688)

A simpler alternative for computing either frequency response function for a given frequency v is
by direct substitution of s¼ jv and z¼ e jvT. The resulting complex numbers in rectangular form

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
−1

−0.5

0

0.5

1

u(t) = sin(ωt), uk = sin(ωkT), ω = 8π rad/s, T = 0.25 s

u(t)
uk

−5

0

5

10

15

×10–3

t (s)

Continuous-time output y(t) and discrete-time output yk

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

y(t)
yk

FIGURE 4.81 Continuous- and discrete-time system inputs and outputs (v¼ 8p rad=s).

Linear Systems Analysis 283

are then expressed in polar form. To illustrate, consider the continuous-time frequency response
function H(jv) when v¼p rad=s.

H(jp) ¼ 1
5jpþ 1

¼ 1� j5p
1� j5p

� 1
1þ j5p

(4:689)

¼ 1
1þ (5p)2

� j
5p

1þ (5p)2
(4:690)

¼ 0:0040� j0:0634

jH(jp)j ¼ [(0:0040)2 þ (�0:0634)2]1=2 ¼ 0:0635

Arg[H(jp)] ¼ tan�1
�0:0634
0:0040

� �
¼ �1:5072 rad (�86:4)

The discrete-time frequency response function is evaluated in the same fashion.

H(e jp0:25) ¼ 0:25(e jp0:25 þ 1)
[(2)(5)þ 0:25]e jp0:25 � [(2)(5) � 0:25)]

 (4:691)

jH(e jp0:25)j ¼ 0:0036� j0:0601 ¼ [(0:0036)2 þ (�0:0601)2]1=2 ¼ 0:0602

Arg[H(e jp0:25)] ¼ tan�1
�0:0601
0:0036

� �
¼ �1:5105 rad (�86:6)

Table 4.10 lists the magnitude and phase of the continuous-time and discrete-time frequency
response functions evaluated at v¼p, 7p, and 8p rad=s. The DC (v¼ 0) values are also included.
It follows from Equation 4.682 that the DC gain and phase of the continuous-time system are 18
and 08, respectively. For the discrete-time system, the DC gain and phase are obtained from
H(e j0T)¼H(1)¼ 1. The period of H(e jvT) is vs¼ 8p rad=s and its symmetric about the Nyquist
frequency vN¼ 4p rad=s.

In order to verify the magnitudes shown in Table 4.10, it is necessary to extend the time scale in
Figures 4.79 through 4.81. For example, in Figure 4.79, when the input is u(t)¼ sin pt, t � 0, the
continuous- and discrete-time steady-state responses are sinusoids with amplitudes in the neigh-
borhood of 0.06 (see Table 4.10). Looking at Figure 4.79, the continuous- and discrete-time
responses have yet to reach steady state. Figure 4.82 shows both responses for a period of time
equal to five time constants (5t¼ 25 s). The steady-state amplitudes are in agreementwith the values
in the table.

4.9.4 DIGITAL FILTERS

Linear discrete-time systems process signals with known frequency content in a predictable fashion.
Digital filters are designed to block or pass selected frequencies present in the discrete-time inputs.

TABLE 4.10
Continuous- and Discrete-Time Frequency Response
(v¼ 0, p, 7p, 8p)

v, rad=s jH(jv)j Arg[H(jv)] (8) jH(ejv0.25)j Arg[H(ejv0.25)] (8)

0 1 0 1 0

p 0.0635 �86.36 0.0602 �86.54
7p 0.0091 �89.48 0.0602 �86.54
8p 0.0080 �89.54 1 0

284 Simulation of Dynamic Systems with MATLAB® and Simulink®

Numerous references in the area of digital signal processing are available for further reading about
digital filters (Oppenheim 1999; Parks 1987).

Low-pass filters, as the name suggests, are intended to readily pass low frequencies and attenuate
all others. Figure 4.73 showed the discrete-time frequency response function of a low-pass filter.
The cutoff frequency (bandwidth) of a low-pass filter with DC gain of 0 db is the frequency at which
the gain equals �3 db. A low-pass filter can be thought of as passing those frequencies within its
bandwidth.

Two ways of implementing a low-pass digital filter are illustrated next.

Example 4.35

Twenty-five years of end-of-month lake water temperature readings Tk, k¼ 0, 1, 2, 3,. . . . , 300
months, are stored in MATLAB data file ‘‘Chap4_LakeTemp.mat.’’ Researchers would like to
determine if the lake temperature, adjusted for monthly variations, has changed over that time.

(a) A moving average of the past 12 readings is used to smooth the seasonal temperature
variations, that is,

T̂k ¼ 1
12

[Tk�1 þ Tk�2 þ � � � þ Tk�12], k ¼ 12, 13, . . . , 300 (4:692)

where T̂k is the seasonally adjusted end-of-month lake temperature starting with end-of-
month 12. (Note that T0 is the lake temperature on December 31 of a given year and T̂12
represents the seasonally adjusted lake temperature on December 31 of the following year.)
Find the z-domain transfer functionH(z) ¼ T̂(z)=T(z), and plot the magnitude of the discrete-
time frequency response function.

(b) The period of the seasonal variation is P¼ 12 months. The frequency is v0¼ 2p=P¼p=6
rad=month. Find H(ejv0T)

 where T¼ 1 month (sampling period).
(c) Find T̂k, k¼ 12, 13, . . . , 300 and plot the values on the same graph with Tk, k¼ 0, 1, 2, . . . ,

300. Estimate the yearly increase in lake temperature.

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
y(t)
yk

t (s)

Continuous-time response y(t) and discrete-time response yk

u(t) = sin πt
H(s) = 1/(5s + 1)

FIGURE 4.82 Continuous- and discrete-time responses showing steady state.

Linear Systems Analysis 285

(d) A first-order low-pass digital filter with z-domain transfer function

H(z) ¼ T̂(z)
T(z)
¼ (1� a)z

z� a
¼ (1� a)

1� az�1
(4:693)

is used to filter the monthly temperature variations and pass any low-frequency lake
temperature variation with time. Plot the discrete-time frequency response magnitude and
phase for a¼ 0.99. Find the cutoff frequency and determine whether it is less or greater than
v0¼p=6 rad=month. In addition, find jH(e jv0T)j.

(e) Find the difference equation relating T̂k and Tk. Solve it recursively for T̂k, k¼ 1, 2, . . . , 300
and plot both input and output on the same graph.

(a) Taking the z-transform of Equation 4.692 gives

T̂(z) ¼ 1
12

[z�1T(z)þ z�2T(z)þ � � � þ z�12T(z)] (4:694)

) H(z) ¼ T̂(z)
T(z)
¼ 1

12
(z�1 þ z�2 þ � � � þ z�12) (4:695)

The magnitude function is shown in Figure 4.83. The data points for generating the graph in
Figure 4.83 are computed in M-file ‘‘Chap4_Ex9_3.m.’’

(b) From Figure 4.83, we see that the zeros of jH(e jvT)j are located at v0¼p=6 and multiples of
v0, namely, 2p=6, 3p=6, 4p=6, 5p=6, p,. . . .

(c) The smoothing algorithm, Equation 4.692, is applied to the monthly lake temperature data,
and the results T̂k, k¼ 12, 13, . . . , 300 are plotted along with the discrete-time input Tk, k¼ 0, 1,
2, . . . , 300 in Figure 4.84.

The estimated annual increase in lake temperature is

m1 ¼ T̂300 � T̂12
24

¼ 71:016� 65:353
24

¼ 0:236
	F
year

(4:696)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

π/6 2π/6 3π/6 4π/6 5π/6 π
ω (rad/month)

|H
(e

jω
T)|

Magnitude function vs. frequency for smoothing
filter (T = 1 month)

H(z) = (1/12) [z−1+ z−2 + ... + z−12]

FIGURE 4.83 Magnitude function for smoothing filter.

286 Simulation of Dynamic Systems with MATLAB® and Simulink®

(d) The gain of the filter with z-domain transfer function in Equation 4.693 and a¼ 0.99 is shown
in Figure 4.85.

The cutoff frequency vc is obtained from

20 log jH(e jvcT)j ¼ �3 (4:697)

It is left as an exercise problem to show that

vc ¼ 1
T
cos�1

1þ a2 � 100:3þ2 log (1�a)

2a

� �
(4:698)

0 50 100 150 200 250 300
58

60

62

64

66

68

70

Te
m

pe
ra

tu
re

 (°
F)

72

74

76

78

Month

Digital filtering using moving average

Tk (monthly temperature)

Tk (filter output) ˆ

FIGURE 4.84 Input Tk, k¼ 0, 1, 2, . . . , 300 and smoothing filter output T̂k , k ¼ 12, 13, . . . , 300.

10−3 10−2 10−1 100
−39
−36
−33
−30
−27
−24

20
 lo

g
|H

(e
jωT

)|
(d

b)

−21
−18
−15
−12

−9
−6
−3

0

ω (rad/month)

Gain of first-order digital filter (α = 0.99)

ωc = 0.01 ω0 = π/6

FIGURE 4.85 Gain of first-order low-pass filter with H(z) in Equation 4.693.

Linear Systems Analysis 287

Substituting a¼ 0.99, T¼ 1 into Equation 4.698 yields vc¼ 0.01 rad=month. Referring to Figure
4.85, v0¼p=6 rad=month is well beyond the cutoff frequency, and we should expect the seasonal
fluctuations to be removed by the digital filter. The magnitude of H(e jv0T) is 0.0194 (�34.2 db).

(e) The difference equation is obtained from Equation 4.693 by inverse z-transformation.

T̂k � aT̂k�1 ¼ (1� a)Tk, k ¼ 1, 2, 3, . . . , 300 (4:699)

where T̂0 ¼ T0. Equation4.699 is solved recursively for T̂k,k¼ 1,2,3, . . . , 300 in ‘‘Chap4_Ex9_3.m.’’
The discrete-time input and output are shown in Figure 4.86.

Example 4.35 illustrates the use of FIR and IIR filters. From Equation 4.695, the FIR smoothing
filter impulse response is

hk ¼ 1
12

(dk�1 þ dk�2 þ � � � þ dk�12) (4:700)

¼
0, k ¼ 0

1
12

, k ¼ 1, 2, . . . , 12

0, k ¼ 13, 14, . . .

8>><>>: (4:701)

From Equation 4.693, the first-order IIR low-pass digital filter impulse response is

hk ¼ (1� a)ak, k ¼ 0, 1, 2, 3, . . . (4:702)

Based on the convolution sum for the output of a discrete-time system, the FIR filter output depends
solely on the past 12 inputs (not surprising) while the infinite memory IIR filter output relies on the
entire set of past inputs.

0 50 100 150 200 250 300
58

60

62

64

Te
m

pe
ra

tu
re

 (°
F)

66

68

70

72

74

76

78

Month

Digital filtering using first-order filter (α = 0.99)

Tk (monthly temperature)

T̂k (filter output)

FIGURE 4.86 Input Tk, k¼ 0, 1, 2, . . . , 300 and first-order filter output T̂k, k ¼ 1, 2, . . . , 300.

288 Simulation of Dynamic Systems with MATLAB® and Simulink®

Choosing a¼ 0.99 places the pole of H(z) precariously close to the Unit Circle, the stability
boundary in the z-plane. As a consequence, discrete-time input signals with poles near z¼ 0.99, for
example, a step input with pole at z¼ 1, are readily passed.

The transient response period is considerable since the natural mode ak¼ 0.99k takes a long
while to decay to zero. In Figure 4.86, if we arbitrarily assume the transient period to be 150 months
[0.99150¼ 0.22], the estimated slope of the linear rise in lake temperature is computed as

m2 ¼ (T̂300� T̂150)
	F

(300� 150) months � 1=12 year=month
¼ 69:179� 66:649

12:5
¼ 0:202

	F
year

(4:703)

which is close to the value obtained using the FIR smoothing filter.

EXERCISES

4.70 Repeat Example 4.33 using implicit Euler instead of explicit Euler integration for approxi-
mating the continuous-time system.

4.71 A second-order system with damping ratio z and natural frequency vn is simulated using
trapezoidal integration. The DC gain of the system is unity.
(a) Find the discrete-time frequency response function H(e jvT). Leave your answer in terms

of z, vn, T, and v.
(b) Draw a Bode plot of H(e jvT) when the continuous-time system poles are as shown in

Figure E4.71. Assume vnT¼ 0.1.

−1

j2

j1

Im

Re

(a) (b) (c)

Im

Re

Im

Re
−1−5

j4

−j4

FIGURE E4.71

4.72 The electrical circuit shown in Figure E4.72 is that of a biquad filter, so named because the
transfer function from the input to the output contains quadratic factors in the numerator and
denominator. The differential equation of the circuit is

R

C1
e0e1

+

−

+

−

R

C2

FIGURE E4.72

a2€e0 þ a1 _e0 þ a0e0 ¼ b2€e1 þ b1 _e1 þ b0e1

where the constants a0, a1, a2 and b0, b1, b2 are related to R, C1, C2 by

a0 ¼ 1, a1 ¼ RC1 þ 2RC2, a2 ¼ RC1RC2, b0 ¼ 1, b1 ¼ 2RC2, b2 ¼ RC1RC2

Linear Systems Analysis 289

(a) Find the transfer function G(S)¼E0(S)=E1(S).
(b) A discrete-time system approximation based on trapezoidal integration has a z-domain

transfer function G(z) given by

G(z) ¼ b2z
2 þ b1zþ b0

a2z2 þ a1zþ a0

Show that

b0 ¼ 4t1t2 � 4t2T þ T2, b1 ¼ �8t1t2 þ 2T2, b2 ¼ 4t1t2 þ 4t2T þ T2

a0 ¼ 4t1t2 � 2(t1 þ 2t2)T þ T2, a1 ¼ �8t1t2 þ 2T2

a2 ¼ 4t1t2 þ 2(t1 þ 2t2)T þ T2

where t1¼RC1 and t2¼RC2 and T is the integration step size.
(c) Draw a Bode plot for the discrete-time frequency response G(e jvT) when t1¼ 0.1 s,

t2¼ 0.001 s, and T¼ 2� 10�4 s.
(d) Fill in the following table.

v, rad=s jG(jv)j Arg[G(jv)] jG(e jvT)j Arg[G(e jvT)]

0

5

100

5000

4.73 An analog signal r(t) is the command input to a digital control system, part of which is shown
in Figure E4.73. The signal r(t) must be sampled and converted to a discrete-time signal for
use by the digital controller. The command input consists of a signal component s(t) and a
high-frequency (compared to the sampling rate 1=Ts) noise component n(t). An antialiasing
filter is inserted before sampling to eliminate aliasing in r̂k the input to the controller.

Ts

Ts
n(t) = N sin ωt

s(t)
Digital

controller

Sensor

rkˆ

yk

Antialiasing
filter uk

r(t) r (t)ˆ

y(t)

FIGURE E4.73

A fourth-order Butterworth low-pass filter is chosen. The transfer function is

G(s) ¼ R̂(s)

R(s)
¼ v2

n

s2 þ 2 cos (pvn=8)sþ v2
n

� �
v2
n

s2 þ 2 cos (3pvn=8)sþ v2
n

� �
(a) The control system sampling rate is 1000 Hz. Find the Nyquist frequency vN.
(b) Find vn, so that the magnitude of G(jv) is �60 db at the Nyquist frequency.

Hint: Use trial and error guesses for vn along with Bode plots until the condition
jG(jvN)j ¼�60 db is approximately satisfied.

290 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) The signal and noise components of the command input r(t) are s(t)¼ 1, t � 0 and n(t)¼
5� 10�3 sin(2� 106t), t � 0. Find the filter output r̂(t) at steady state.

(d) Find G(z), the z-domain transfer function of the discrete-time system approximation to
G(s) using explicit Euler integration. Leave your answer in terms of the integration step
size T.

(e) Comment on the choice of T necessary to simulate the filter response by recursive solution
of the difference equation corresponding to G(z).

4.74 A method for approximating a continuous-time system with transfer function G(s) is illus-
trated in Figure E4.74. A continuous-time input u(t) is sampled every T s to produce the
discrete-time input uk. A zero-order hold (ZOH) reconstructs a piecewise continuous approxi-
mation to u(t) denoted û(t), which is the input to the continuous-time system. The continuous-
time output y(t) is sampled every T s resulting in the discrete-time output yk. The discrete-time
system with input uk and output yk serves as an approximation to the continuous-time system
with input u(t) and output y(t). The z-domain transfer function of the discrete-time system is
(Jacquot)

ZOH G(s)
Tk

uk

uk

u(t) u(t)ˆ

t t t

yk

yk

G(z)

y(t)

FIGURE E4.74

G(z) ¼ Y(z)

U(z)
¼ z� 1

z

� �
z L�1 G(s)

s

� ��
where z{L�1[G(s)=s]} stands for the z-transform of the discrete-time signal resulting from
sampling the continuous-time signal L�1[G(s)=s].

(a) Find the z-domain transfer function using the ZOH approximation method when the
continuous-time system is first order with transfer function G(s)¼ 1=(tsþ 1). Leave
your answer in terms of the time constant t and sampling period T.

(b) Find the discrete-time frequency response function G(e jvT), and obtain expressions for
the magnitude jG(e jvT)j and phase Arg[G(e jvT)].

(c) Plot the magnitude and phase of G(e jvT) when t¼ 1 s and T¼ 0.1 s.
(d) Compare the continuous- and discrete-time unit step responses and comment on the

results.
(e) Find jG(e jvT)j and Arg[G(e jvT)] and compare with the values given in Table 4.10 where

t¼ 5 s and T¼ 0.25 s.
4.75 Derive Equation 4.698 for the cutoff frequency of the first-order low-pass digital filter with

z-domain transfer function H(z)¼ (1�a)z=(z�a).
4.76 A notch filter is designed to attenuate input signals at one specific frequency called the notch

frequency. The transfer function of a notch filter is

G(s) ¼ s2 þ v2
n

s2 þ 2Bvnsþ v2
n

(vn is notch frequency)

Linear Systems Analysis 291

(a) Find G(z), the z-domain transfer function of a digital filter obtained by approximation of
G(s) using trapezoidal integration. Leave your answer in terms of z, vn and the integration
step size T.

(b) The digital filter is to be used to filter out the monthly lake temperature fluctuations in
Example 4.35. The notch frequency is vn¼p=6 rad=month and the sampling period is
T¼ 1 month. On the same graph, plot jG(e jvT)j vs. v from zero to the Nyquist frequency
for z¼ 0.25, 0.5, 0.75.

(c) Choose the value of z, which produces the largest attenuation at the notch frequency, and
use the digital notch filter to filter out the monthly lake temperature fluctuations in the
dataset ‘‘Chap4_LakeTemp.mat.’’ Prepare a graph similar to the ones in Figures 4.84
and 4.86.

4.77 The design of a digital filter calls for the placement of a pair of poles and zeros as shown in
Figure E4.77.

p1

p2

z1

z2

rp
rz

Unit Circle

φ θ

FIGURE E4.77

(a) Find the difference equation relating the filter’s input u(n) and output y(n). The filter
coefficients should be expressed in terms of rp, u, rz, and f.

(b) Express the magnitude function jH(e jvT)j in terms of the parameters rp, u, rz,f and the
sampling time T.

(c) Plot the magnitude function for the case when T ¼ 1 s, rp ¼ 0:9, rz ¼ 2,f ¼ p=4 and
u ¼ 0:2, 0:4, 0:6, 0:8, 1 rad. Comment on the results.

4.10 CONTROL SYSTEM TOOLBOX

This chapter has emphasized analytical methods for obtaining continuous- and discrete-time system
response to elementary types of inputs. In this section, we explore the use of MATLAB functions in
the control system toolbox designed to facilitate the process of modeling and simulation of LTI
dynamic systems. The control system toolbox is a supplement to MATLAB. The reader is
encouraged to check out the entire suite of available functions either online or in the control system
toolbox lab manual (from The Mathworks, Inc.). Many of the functions are discussed and illustrated
in recent linear controls texts and companion lab manuals (D’Azzo and Houpis, 1995; Ogata 1998;
Nekoogar 1999; Dorf and Bishop 2005).

Continuous- and discrete-time transfer functions are defined by specifying numerator and denom-
inator polynomials in vector form. SISO and MIMO dynamic systems portrayed in block diagram
form can be reduced to obtain specific transfer functions, which can be analyzed (by other control
system toolbox functions) in the time and frequency domain. Impulse and step responses as well as
responses to arbitrary inputs of both types of systems are easily obtained. The z-domain transfer
functions for simulating continuous-time systems based on various methods of approximation

292 Simulation of Dynamic Systems with MATLAB® and Simulink®

are available. Conversion between state-space and transfer function descriptions of a system is
accomplished using specific toolbox commands.

This section contains some relatively simple examples of the control system toolbox functions.
Exposition is kept to a minimum. For more information, the reader should check out the robust set
of online interactive demos, tutorials, and case studies illustrating how the toolbox can be used to
support modeling and simulation functions.

4.10.1 TRANSFER FUNCTION MODELS

Continuous- and discrete-time transfer functions are constructed using ‘‘tf’’ with proper arguments
and stored as a named MATLAB object such as ‘‘sys.’’ For example, the transfer function

G1(s) ¼ 25
(10sþ 1)(sþ 2)

2s4 þ 5s3 þ 4sþ 1

� �
(4:704)

is implemented by the following statements:

num¼25*conv([10 1],[1 2])
den¼[2 5 0 4 1]
sys_G1¼tf (num, den)

Note conv([10 1],[1 2]) produces the numerator vector [10 21 2]. A more intuitive way of
creating the same transfer function is

s¼tf(’s’)
sys_G1¼25*(10*s^2þ21*sþ2)=(2*s^4þ5*s^3þ4*sþ1)

A discrete-time system with sampling period T¼ 0.01 s and pulse (z-domain) transfer function

G2(z) ¼ 5z2 þ 3zþ 2
z2 þ 10zþ 4

(4:705)

is created from either of the two sets of statements below:

num¼[5 3 2]; den¼[1 10 4]
sys_G2¼tf (num, den, 0.01)
z¼tf(’z’,0.01)
sys_G2¼(5*z^2þ3*zþ2)=(z^2þ10*zþ2)

The poles and zeros of a continuous- or discrete-time system transfer function are obtained using the
‘‘pzmap (sys)’’ command where ‘‘sys’’ refers to the MATLAB description of the transfer
function. A pole-zero map of the transfer function G1(s) in Equation 4.704 is obtained from the
command ‘‘pzmap (sys_G1)’’ and shown in Figure 4.87.

The numerical values of the poles and zeros shown in Figure 4.87 are returned in ‘‘P’’ and ‘‘Z’’
after issuing the command ‘‘[P,Z]¼pzmap (sys_G1).’’ The result is

P ¼ �2:7418, 0:2385þ 0:8475i 0:2385 � 0:8475i, � 0:2353

Z ¼ �2:0000, � 0:1000

4.10.2 STATE-SPACE MODELS

State-space models of continuous-time systems are described by matrices A, B, C, and D appearing
in the state equations. The same holds for a discrete-time system, which also requires a sampling

Linear Systems Analysis 293

time T for a complete representation. State-space models for continuous-time systems are created
using ‘‘sys¼ss(A,B,C,D),’’ while discrete-time models in state space are generated by

‘‘sys¼ss(A,B,C,D,T).’’

A continuous-time second-order system with damping ratio z¼ 0.5 and natural frequency vn¼ 2
rad=s was approximated using trapezoidal integration with step size T¼ 0.025 s in Section 4.7
resulting in discrete-time system state equations

xkþ1 ¼ Axk þ Buk (4:706)

y
k
¼ Cxk þ Duk (4:707)

with A, B, C, and D given in Equations 4.516 through 4.518.
The resulting matrices A, B, C, and D and sampling time T appear in the M-file ‘‘Chap4_Tustin.m’’

statement ‘‘sys¼ss(A,B,C,D,T)’’ to create a discrete-time system state-space model with
numerical values

a ¼
x1 x2

x1 1.949 �0.9512
x2 1 0

b ¼
u1

x1 1
x2 0

c ¼
x1 x2

y1 0.002406 2.971e-005
d ¼

u1
y1 0.0006094

Sampling time: 0.025 discrete-time model.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Im

ag
in

ar
y a

xi
s

0.4

0.6

0.8

1

Real axis

FIGURE 4.87 Pole-zero map for G1(s) in Equation 4.704.

294 Simulation of Dynamic Systems with MATLAB® and Simulink®

The object ‘‘sys’’ can be referenced by other control system toolbox commands to investigate
frequency response characteristics of the discrete-time system as well as dynamic response to
specific types of forcing functions. It is also instrumental in the process of converting a state-
space model to a transfer function representation, the next subject of discussion.

4.10.3 STATE-SPACE=Transfer Function Conversion

The state equations for a submarine depth control system were developed in Section 2.8. The
closed-loop control system is third order with three outputs, u (stern plane angle), v (depth rate),
c (depth), and a single input r (commanded depth). The MATLAB file ‘‘Chap4_sub.m’’ below
illustrates several commands for converting between state-space models of the system and the
transfer function form.

% Chap4_sub.m
KC¼0.6; KI¼0.1;
tau¼10; Kthd¼20; Kth¼10;
a11¼–Kthd*KC=tau; a12¼(Kth– (Kthd=tau)); a13¼Kthd*KI=tau;
a21¼–KC=tau; a22¼–1=tau; a23¼KI=tau;
a31¼–1; a32¼0; a33¼0;
b1¼Kthd*KC=tau; b2¼KC=tau; b3¼1;
c11¼–KC; c12¼0; c13¼KI;
c21¼–Kthd*KC=tau; c22¼Kth– (Kthd=tau); c23¼Kthd*KI=tau;
c31¼1; c32¼0; c33¼0;
d1¼KC; d2¼Kthd*KC=tau; d3¼0;
A1¼[a11 a12 a13; a21 a22 a23; a31 a32 a33];
B1¼[b1; b2; b3];
C1¼[c11 c12 c13; c21 c22 c23; c31 c32 c33];
D1¼[d1; d2; d3];

sys_ss_1¼ss(A1,B1,C1,D1)% creates state-space system
object for (A1,B1,C1,D1)

sys_tf¼tf(sys_ss_1)% converts state-space
system object to transfer
function system object

[num1,den1]¼ss2tf(A1,B1,C1,D1)% alternate method for
converting state space
(A1,B1,C1,D1) to transfer
function

sys_ss_2¼ss(sys_tf)% converts transfer function
object to state-space
object

[A3,B3,C3,D3]¼tf2ss(num1,den1)% converts transfer function
to state-space control
canonical form with
matrices (A3,B3,C3,D3)

[num2,den2]¼ss2tf(A3,B3,C3,D3)% converts state-space (A3,
B3,C3,D3) to transfer
functions

Linear Systems Analysis 295

Numerical values are assigned to matrices A1, B1, C1, and D1 using the baseline system parameter
values from Section 2.8. The system matrices are

A1 ¼ �1.2000 8.0000 0.2000
�0.0600 �0.1000 0.0100
�1.0000 0 0

B1 ¼ 1.2000
0.0600
1.0000

C1 ¼ �0.6000 0 0.1000
�1.2000 8.0000 0.2000
1.0000 0 0

D1 ¼ 0.6000
1.2000
0

The statement ‘‘sys_ss_1¼ss(A1,B1,C1,D1)’’ creates the object ‘‘sys_ss_1’’ associated
with the continuous-time system matrices A1, B1, C1, and D1. The next statement ‘‘sys_tf’’
(sys_ss_1)’’ creates the transfer function object ‘‘sys_tf’’ with embedded information about
the three system transfer functions, one each from the command input to the three outputs. The
transfer functions are displayed as

Transfer function from input to output...

0.6 s^3þ 0.16 s^2þ 0.01 s� 1.506e-018
#1: —————————-

s^3þ 1.3 s^2þ 0.8 sþ 0.1
1.2 s^3þ 0.8 s^2þ 0.1 s� 3.474e-017

#2: —————————–

s^3þ 1.3 s^2þ 0.8 sþ 0.1
1.2 s^2þ 0.8 sþ 0.1

#3: —————————–

s^3þ 1.3 s^2þ 0.8 sþ 0.1

Note that the first two transfer functions are consistent with the control system simulation
diagram (Figure 2.55), which shows direct paths from the input r to outputs u and v. The
numerator of transfer function #3 is second order due to the presence of the integrator in the path
from r to c.

An alternative approach to finding the same three transfer functions uses ‘‘[num1,den1]¼
ss2tf(A1,B1,C1,D1).’’ Output matrix ‘‘num1’’ (with three rows, one for each output) stores
the coefficients of the three numerator polynomials, and row vector ‘‘den1’’ contains the coeffi-
cients of the denominator, that is, characteristic polynomial. The result is

numl ¼ 0.6000 0.1600 0.0100 0.0000
1.2000 0.8000 0.1000 0.0000
0 1.2000 0.8000 0.1000

denl ¼ 1.0000 1.3000 0.8000 0.1000

296 Simulation of Dynamic Systems with MATLAB® and Simulink®

Converting the transfer function of an SISO system to a state-space model is achieved using either
‘‘ss’’ or ‘‘tf2ss.’’ The command ‘‘sys_ss_2¼ss(sys_tf)’’ computes a state-space real-
ization of the transfer function object ‘‘sys_tf’’ displayed as

a ¼
x1 x2 x3

x1 �1.3 �0.4 �0.1
x2 2 0 0
x3 0 0.5 0

b ¼
u1

x1 1
x2 0
x3 0

c ¼
x1 x2 x3

y1 �0.62 �0.235 �0.06
y2 �0.76 �0.43 �0.12
y3 1.2 0.4 0.1

d ¼
u1

y1 0.6
y2 1.2
y3 0

Referring to the above matrices as A2, B2, C2, and D2, it is not surprising that they differ from A1, B1,
C1, and D1 since the state-space model representation of a continuous-time system is not unique.

An alternative method for creating a state-space model from a transfer function is to use
‘‘[A3,B3,C3,D3]¼tf2ss(num1,den1)’’ where ‘‘num1’’ and ‘‘den1’’ are the numerator
and denominator arrays, respectively, created previously by the command ‘‘ss2tf.’’ This results
in creation of output matrices A3, B3, C3, and D3 given below:

A3 ¼ �1.3000 �0.8000 �0.1000
1.0000 0 0
0 1.0000 0

B3 ¼ 1
0
0

C3 ¼ �0.6200 �0.4700 �0.0600
�0.7600 �0.8600 �0.1200
1.2000 0.8000 0.1000

D3 ¼ 0.6000
1.2000
0

State-space models created by ‘‘tf2ss’’ are in controller canonical form (Ogata 1998).
The last statement [num2,den2]¼ss2tf(A3,B3,C3,D3) in ‘‘Chap4_sub.m’’ converts

the state-space model in controller canonical form back to the three transfer functions.

Linear Systems Analysis 297

The state-space models for the submarine control system are summarized in Table 4.11. A good
way of checking the results is to compute the eigenvalues of the coefficient matrices A1, A2, and A3

in the table. The MATLAB command ‘‘eig(A)’’ returns the same characteristic roots, namely,
�0.5687
 j0.5400 and �0.1626, for all three matrices.

4.10.4 SYSTEM INTERCONNECTIONS

Block diagrams can be systematically reduced in complexity using control system toolbox functions
such as ‘‘parallel,’’ ‘‘series,’’ and ‘‘feedback.’’ Consider the block diagram shown in
Figure 4.88.

Gc(s) ¼ 5
10sþ 1
2sþ 1

� �
, H(s) ¼ 1

50sþ 1
(4:708)

G1(s) ¼ 8
3sþ 1

, G2(s) ¼ sþ 5
s2 þ 12sþ 25

, G3(s) ¼ 1
0:2sþ 1

, G4(s) ¼ 1
s

(4:709)

Using block diagram algebra, the transfer function Y(s)=R(s) can be found by executing the
statements below found in M-file ‘‘Chap4_block_diagram.m.’’

1. s¼tf(’s’);
2. Gc¼5*(10*sþ1)=(2*sþ1);
3. G1¼8=(3*sþ1);
4. G2¼(sþ5)=(s^2þ12*sþ25);
5. G3¼1=(0.2*sþ1);

TABLE 4.11
Three Different State-Space Models of Submarine Depth Control System

i Ai Bi Ci Di

1
�1:2 8 0:2
�0:06 �0:1 0:01
�1 0 0

24 35 1:2
0:06
1

24 35 �0:6 0 0:1
�1:2 8 0:2
1 0 0

24 35 0:6
1:2
0

24 35

2
�1:3 �0:4 �0:1
2 0 0
0 0:5 0

24 35 1
0
0

24 35 �0:62 �0:235 �0:06
�0:76 �0:43 �0:12
1:2 0:4 0:1

24 35 0:6
1:2
0

24 35

3
�1:3 �0:8 �0:1
1 0 0
0 1 0

24 35 1
0
0

24 35 �0:62 �0:47 �0:06
�0:76 �0:86 �0:12
1:2 0:80 0:1

24 35 0:6
1:2
0

24 35

R(s)

– –
Gc(s) G1(s)

G3(s)

G2(s) G4(s)

H(s)

X(s) Y(s)

FIGURE 4.88 Block diagram of a continuous-time system.

298 Simulation of Dynamic Systems with MATLAB® and Simulink®

6. G4¼1=s;
7. H¼1=(50*sþ1);
8. G1G2¼series(G1,G2);
9. G1G2_plus_G3¼parallel(G1G2,G3);

10. TF_inner_loop¼feedback(G1G2_plus_G3,H)
11. G¼series(Gc,TF_inner_loop);
12. G_forward_path_1¼series(G,G4);
13. TF_outer_loop_1¼feedback(G_forward_path_1,1)

The inner loop transfer function ‘‘TF_inner_loop’’ and outer loop transfer function
TF_outer_loop_1 are

Transfer function:

150 s^4þ 1933 s^3þ 5189 s^2þ 3353 sþ 65

30 s^5þ 520.6 s^4þ 2733 s^3þ 4693 s^2þ 1445 sþ 90

Transfer function:
7500 s^5þ 97400 s^4þ 269095 s^3þ 193593 s^2þ 20015 sþ 325

60 s^7þ 1071 s^6þ 1.349e004 s^5þ 1.095e005 s^4þ 276678 s^3þ 195218
s^2þ 20105 sþ 325

Other transfer functions may be obtained by proper use of the three system interconnection
commands. For example, X(s)=R(s) in Figure 4.88 can be found by deleting statement 11
and changing statements 12 and 13 to read

14. G_forward_path_2¼series(Gc,TF_inner_loop);
15. TF_outer_loop_2¼feedback(G_forward_path_2,G4)

An alternate implementation of the transfer function X(s)=R(s) is possible by expressing it
in terms of Y(s)=R(s). Starting with

Y(s) ¼ G4(s)X(s) (4:710)

) Y(s)

R(s)
¼ G4(s)

X(s)

R(s)
(4:711)

) X(s)

R(s)
¼ 1

G4(s)

Y(s)

R(s)
(4:712)

The transfer function X(s)=R(s) can now be obtained by statement 14 below:
16. TF_outer_loop_2¼series(1=G4,TF_outer_loop_1)

The functions ‘‘parallel,’’ ‘‘series,’’ and ‘‘feedback’’ to reduce a system with forward and
feedback connections apply to discrete-time system block diagrams as well.

4.10.5 SYSTEM RESPONSE

The impulse and step response of continuous- and discrete-time LTI systems can be generated in
either graphical form or stored in an array of data points. To illustrate, suppose we are interested
in the step response of the submarine depth control system considered earlier. Unit step responses
of the stern plane angle u, depth rate v, and depth c are obtained by appending ‘‘step
(sys_ss_1)’’ or ‘‘step(sys_tf)’’ at the end of M-file ‘‘Chap4_sub.m.’’ The graphs are
shown in Figure 4.89.

Linear Systems Analysis 299

Step and impulse responses of the system in Figure 4.88 with y(t) as output are obtained by
issuing the control system toolbox commands ‘‘step(TF_outer_loop_1)’’ and ‘‘impulse
(TF_outer_loop_1)’’ in M-file ‘‘Chap4_block_diagram.m.’’ The step and impulse responses
are shown in Figure 4.90.

The response of an LTI system to an arbitrary input is obtained using ‘‘LSIM(SYS,U,T)’’
where ‘‘SYS’’ represents a MATLAB system object. ‘‘U’’ and ‘‘T’’ are arrays used to define the input
(s) values and corresponding regularly spaced values of time, respectively.

−0.2

To
: O

ut
(1

)
To

: O
ut

(2
)

To
: O

ut
(3

)
0

0.2
0.4
0.6

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

Time (s)

FIGURE 4.89 Unit-step response in u, v, and c.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5

Time (s) (a)

(b)

−5

A
m

pl
itu

de
A

m
pl

itu
de

0

5

10

Time (s)

FIGURE 4.90 (a) Step and (b) impulse response of continuous-time system in Figure 4.88.

300 Simulation of Dynamic Systems with MATLAB® and Simulink®

The case study in Section 3.7 involved the ascent of a diver subject to a vertical cable force fc.
A state-space model was formulated and repeated as follows:

_x1

_x2

_x3

2664
3775 ¼

0 1 0

0
�mg
W

0

Kg 0 �K

2664
3775

x1

x2

x3

2664
3775þ

0
g

W

0

2664
3775[fn] (4:713)

y1

y2

24 35 ¼ 1 0 0

�g 0 1

" # x1

x2

x3

2664
3775 (4:714)

The input fn¼W� gV� fc is the net force (weight – buoyant force – cable force) acting on the
diver. The output y1 is depth below the surface, and y2 is the difference between the internal body
pressure of the diver and the local (same depth as diver) underwater pressure. The states x1, x2,
and x3 are depth, velocity, and internal pressure of the diver, respectively. The system parameters are
m, W, and K; and g and g are physical constants.

Suppose the diver’s ascent from an initial equilibrium state x1,e¼ 500 ft, x2,e¼ 0 ft=s, and
x3,e¼ gx1,e¼ 62.4 lb=ft3� 500 ft¼ 31,200 lb=ft2 (216.7 psi) is required. A cable force

fc(t) ¼ (W � gV)þ F(1� e�t=t), t � 0 (4:715)

where F and t are design parameters is under investigation. The cable force fc(t) and the resulting
net force fn(t) are plotted in Figure 4.91 for the case where F ¼ 25 lb and t¼ 40 s (see M-file
‘‘Chap4_diver.m.’’)

The M-file ‘‘Chap4_diver.m’’ includes a statement to create the state-space object ‘‘sys’’ from
matrices A, B, C, and D in Equations 4.713 and 4.714. The time vector ‘‘t’’ is defined and input

0(a)

(b)

10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

110
115
120
125
130
135
140

F = 25 lb, τ = 40 s
_

Effective weight = W − γV = 112.8 lb

−24

f n
(lb

)
f c

(lb
)

−20
−16
−12

−8
−4

0

t (s)

FIGURE 4.91 (a) Cable force and (b) net force on diver vs. time.

Linear Systems Analysis 301

vector ‘‘fn’’ is calculated from the equation fn¼ (W� gV)� fc. The statement ‘‘y¼LSIM(sys,
fn,t,x0),’’ where ‘‘x0’’ is the initial state vector, returns data points for outputs y1 and y2 in the
array ‘‘y.’’ Graphs of y1(t) and y2(t) are shown in Figure 4.92.

4.10.6 CONTINUOUS-=DISCRETE-TIME SYSTEM CONVERSION

We are well aware of the need to approximate the dynamics of continuous-time systems using
discrete-time systems. Replacing the differential equations of LTI continuous-time system models
with difference equations is an important aspect of continuous system simulation. Section 4.4.7
introduced a technique for accomplishing the task based on substitution of a suitable function of z
for the Laplace variable s in the continuous-time system transfer function. Examples were presented
illustrating how to obtain the z-domain transfer function of the discrete-time system based on the use
of explicit Euler integration and trapezoidal integration, also known as Tustin’s method.

Additional transformations s¼ f (z) for other methods are discussed in a later chapter. For all but
the simplest continuous-time systems, the algebraic manipulation required to obtain the z-domain or
pulse transfer function in a suitable form is unwieldy at best. The MATLAB control system toolbox
‘‘c2d’’ function expedites the process of converting continuous-time models to discrete-time
approximations. The required arguments are a MATLAB system object for the continuous-time
system, the sample time (integration step size), and an optional string to select one of the five
available approximation methods listed below:

‘zoh’ Zero–order hold on the inputs.
‘foh’ Linear interpolation of inputs (triangle appx.).
‘imp’ Impulse–invariant discretization.
‘tustin’ Bilinear (Tustin) approximation.
‘prewarp’ Tustin approximation with frequency prewarping. The crit-

ical frequency Wc (rad=sec) is specified as 4th input by SYSD¼C2D
(SYSC,Ts,‘prewarp’,Wc)

‘matched’ Matched pole-zero method (for SISO systems only).

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140
0

100

y 1
(t)

, f
t

y 2
(t)

, p
si

200

300

400

500

Depth of diver vs. time

0
2
4
6
8

10
12
Differential pressure (internal diver pressure minus water pressure) vs. time

t (s)

FIGURE 4.92 Outputs y1 and y2 from diver state-space model with input fn.

302 Simulation of Dynamic Systems with MATLAB® and Simulink®

To illustrate, consider the problem of approximating a second-order system with natural fre-
quency vn¼ 2 rad=s, z¼ 0.5, and DC gain of unity. Example 4.27 presented solutions based on the
use of explicit Euler integration and trapezoidal integration (Tustin’s method), also known as the
bilinear transform method. The following statements are from the M-file ‘‘Chap4_Tustin.m,’’ which
creates the continuous-time transfer function ‘‘H_s’’ and generates the discrete-time system transfer
function ‘‘H_z’’ using Tustin’s method.

T¼0.025; wn¼2; zeta¼0.5; K¼1;
H_s¼tf(K*wn^2,[1 2*zeta*wn wn^2])
H_z¼c2d(H_s,T,’tustin’)

The continuous- and discrete-time transfer functions appear in the MATLAB Command
Window as

Transfer function:
4

s^2þ2 sþ4

Transfer function
0.0006094 z^2þ0.001219 zþ0.0006094

z^2 – 1.949 zþ0.9512
Sampling time: 0.025

The pulse transfer function approximation of the continuous-time second-order system using
Tustin’s method is (see Equation 4.503)

H(z) ¼ K(vnT)
2(z2 þ 2zþ 1)

4(1þ zvnT)þ (vnT)
2

� �
z2 þ 2 (vnT)

2 � 4
� �

zþ 4(1� zvnT)þ (vnT)
2 (4:716)

Substituting the numerical values vn¼ 2, z¼ 0.5, K¼ 1, and T¼ 0.025 for the system parameters
gives

H(z) ¼ 0:0025(z2 þ 2zþ 1)
4:1025z2 � 7:9950zþ 3:9025

(4:717)

¼ 0:00060938z2 þ 0:0012187zþ 0:00060938
z2 � 1:9488zþ 0:9512

(4:718)

in agreement with the result from using the ‘‘c2d’’ function.
There is also a function called ‘‘d2c’’ for converting a discrete-time transfer function previously

created as an object ‘‘sysd’’ to an equivalent continuous-time transfer function object ‘‘sysc.’’
The syntax is ‘‘SYSC¼D2C(SYSD,METHOD)’’ where the second argument is a string signifying
the method of approximation.

4.10.7 FREQUENCY RESPONSE

The magnitude and gain of a system transfer function at a particular frequency v were evaluated in
earlier sections by substituting jv for s in continuous-time transfer functions and e jvT for z in
discrete-time transfer functions. Choosing a range of values for v led to plots of magnitude,
gain¼ 20(log[magnitude]) and phase vs. frequency.

Linear Systems Analysis 303

The control system toolbox provides an easier way of obtaining the frequency response charac-
teristics of both continuous- and discrete-time system models. Assuming an LTI model object called
‘‘sys’’ has been created using ‘‘tf’’ or possibly ‘‘ss,’’ a Bode plot is drawn by execution of the
command ‘‘BODE(sys).’’ If ‘‘sys’’ represents a discrete-time system, the call is modified to include
an additional argument for the sampling time T, namely, ‘‘BODE(sys,T).’’

Optional arguments permit specifying multiple systems with different line plot characteristics
and a user selectable range of frequencies. To illustrate, consider the two blocks in series shown in
Figure 4.93.

The first component is a low-pass filter with transfer function

G1(s) ¼ X1(s)

U(s)
¼ 1

(t1sþ 1)n
(4:719)

and break frequency v1¼ 1=t1. The second component transfer function

G2(s) ¼ X2(s)

X1(s)
¼ s

t2sþ 1

� �n
(4:720)

represents a high-pass filter with break frequency v2¼ 1=t2. The frequency response characteristics
of the series combination with transfer function

G12(s) ¼ 1
(t1sþ 1)n

s

t2sþ 1

� �n
(4:721)

¼ s

(t1sþ 1)(t2sþ 1)

� �n
(4:722)

are obtained using the ‘‘BODE’’ function for a model object ‘‘sys’’ corresponding to Equation
4.722. The following M-file statements generate plots of the gain (magnitude in db) for the low-pass
filter (t1¼ 1 s), high-pass filter (t2¼ 0.01 s), and the band-pass filter with pass band (v1 � v � v2)
resulting from the combination of the two filters in series. The plots are shown in Figure 4.94. The
exponent n was chosen to be three.

tau1¼1; tau2¼0.01; n¼3;
sys1¼tf(1,[tau1 1])
sys2¼tf([1 0],[tau2 1])
for i¼1:n-1
sysG1¼SERIES(sys1,sys1)
sysG2¼SERIES(sys2,sys2)
end
sysG12¼SERIES(sysG1,sysG2)
BODEMAG(sysG1,‘b’,sysG2, ‘r’,sysG12, ‘k’)

1
(τ1s + 1)nU(s) X2(s)

X1(s)
τ2s + 1

s n

FIGURE 4.93 Low- and high-pass filters in series.

304 Simulation of Dynamic Systems with MATLAB® and Simulink®

A discrete-time approximation of the continuous-time band-pass filter using Tustin’s method is
obtained by adding the statements

T¼pi=1e4; % sample time to make wN¼10^4 rad=sec
sysG12_d¼C2D(sysG12,T, ‘tustin’);% converts continuous-time filter

% to discrete-time filter using Tustin’s method
BODEMAG(sysG12_d, ‘r’) % plot gain of discrete-time filter
BODEMAG(sysG12, ‘b’) % plot gain of continuous-time filter

The sample time should be at least an order of magnitude less than t2¼ 0.01 s and
possibly smaller depending on the frequency content of the continuous-time input. A value of
T¼p=104 s was chosen to make the Nyquist frequency vN¼p=T¼ 104 s, the same as the upper
limit in Figure 4.94. Selecting appropriate values of T for discrete-time models is deferred
until Chapter 8.

A comparison of the continuous-time and discrete-time band-pass filter gains for (10�2 � v �
vN¼ 104) is shown in Figure 4.95. The two gains are nearly identical for v up to 103 rad=s.
Frequency response includes phase characteristics as well as gain. The phase properties of the two
filters are left for an exercise problem.

4.10.8 ROOT LOCUS

For simple feedback control systems with a controller gain KC, the closed-loop system poles depend
on the value of KC. A root-locus plot displays the location of all the poles as the design parameter KC

varies from zero to infinity. The starting point is creation of the open-loop system model ‘‘sys’’
followed by a call to the control system toolbox function ‘‘rlocus(sys).’’ The following
example illustrates the use of ‘‘BODE’’ and ‘‘rlocus’’ to determine the limits of stability for a
simple control system.

10−2 10−1 10−0 101 102 103 104
−150

M
ag

ni
tu

de
 (d

B)

−125

−100

−75

−50

−25

0

25

50

75

100

Bode diagram

Frequency (rad/s)

|G1(jω)| |G12(jω)|

|G2(jω)|

FIGURE 4.94 Gain of individual and combined blocks in Figure 4.93.

Linear Systems Analysis 305

Example 4.36

An overdamped second-order system is subject to proportional control as shown in Figure 4.96.
A sensor is present in the feedback loop.

Baseline values of the system and sensor parameters are

Kp ¼ 15, t1 ¼ 3 s, t2 ¼ 15 s, KT ¼ 0:1, tT ¼ 0:25 s

(a) Create a model ‘‘sys’’ for the open-loop system with KC¼ 1.
(b) Use the control system toolbox to draw a Bode plot of the open-loop system.
(c) Determine the stability margins of the control system and the critical gain Kcr.
(d) Find v0, the frequency of oscillations for the marginally stable system.
(e) Check the results for Kcr using a root-locus plot and the characteristic equation.
(f) Plot step responses of the closed-loop system for KC¼ 0.25Kcr, 0.5Kcr, 0.75Kcr, Kcr.

(a) The model object ‘‘sys’’ is created in ‘‘Chap4_Ex10_1.m’’ with the statements

KP¼15; tau1¼3; tau2¼15; KT¼0.5; tauT¼0.25; KC¼1;
denG¼conv([tau1 1],[tau2 1])
G¼tf(KP,denG); % process transfer function
denH¼[tauT 1];
H¼tf(KT,denH); %sensor transfer function
sys¼KC*SERIES(G,H)

10−2 10−1 100 101 102 103 104

−120

−100

M
ag

ni
tu

de
 (d

B)

−80

−60

−40

−20

0

Bode diagram

Frequency (rad/s)

|G12(jω)|

|G12(ejωT)|

FIGURE 4.95 Gain of continuous- and discrete-time band-pass filters.

R(s) KC
KP

(τ1s + 1) (τ2s + 1)

(τT s + 1)
KT

Y(s)

FIGURE 4.96 Feedback control system with proportional control.

306 Simulation of Dynamic Systems with MATLAB® and Simulink®

(b) The command ‘‘BODE(sys)’’ results in the Bode plot in Figure 4.97.

(c) The stability margins were defined in Section 4.4.5. The gain margin is the open-loop system
gain at the frequency where the phase of the open-loop system equals �1808. The phase margin is
the difference between the open-loop phase and �1808 at the frequency where the gain is 0 db.
Figure 4.97 shows the gain margin is 20.5 db and the phase margin is 50.58. Increasing the
controller gain KC by the equivalent of 20.5 db moves the gain plot in a vertical direction to a point
where the system is marginally stable, that is, the new gain margin is 0 db. Solving for Kcr in
magnitude,

20 logKcr ¼ 20:5) Kcr ¼ 1020:5=20 ¼ 10:5925

(d) The 0 db gain margin would occur at the same frequency as the 20.5 db gain margin in Figure
4.97, that is, 1.27 rad=s, which is also v0, the frequency of oscillations of the marginally stable
system.

(e) The root-locus plot is shown in Figure 4.98. The approximate value of Kcr is 10.6, that is, the
value of KC where the locus intersects the imaginary axis. Note that the imaginary part
of the complex pole is v0¼ 1.27 rad=s, in agreement with the crossover frequency shown in
Figure 4.97.

As a check on the value of Kcr from part (c), the statement

[R,K]¼rlocus(sys,Kcr)

returns the three closed-loop poles in array R¼ [�4.4006, 0.003
 j1.2747]. The real part of the
complex poles should be zero when Kc¼Kcr; however, 0.003 results because of the round-off in
the gain margin value of 20.5 shown in Figure 4.97.

The exact values of Kcr and v0 can be obtained from the characteristic equation

KCKPKT þ (t1sþ 1)(t2sþ 1)(tT þ 1) ¼ 0 (4:723)

−150

−100

−50

0

50

System: sys
Gain margin (dB): 20.5
At frequency (rad/s): 1.27
Closed-loop stable? Yes

10−3 10−2 10−1 100 101 102

Frequency (rad/s)

−270

−180

−90

M
ag

ni
tu

de
 (d

B)
Ph

as
e (

de
g)

0

Bode diagram

System: sys
Phase margin (deg): 50.5
At frequency (rad/s): 0.342
Closed-loop stable? Yes

FIGURE 4.97 Bode plot for control system in Figure 4.96.

Linear Systems Analysis 307

with KC¼Kcr and s¼ jv0. Setting the real and imaginary components of the resulting equation to
zero leads to the following two equations:

v2
0 ¼

t1 þ t2 þ tT
t1t2tT

(4:724)

Kcr ¼ [t1t1 þ tT (t1 þ t2)]v2
0 � 1

KPKT
(4:725)

The solution is (see ‘‘Chap4_Ex10_1.m’’) Kr ¼ 10:5733, v0¼ 1.273665 rad=s.

−12 −10 −8 −6 −4 −2 0 2 4
−8

−6

−4

Im
ag

in
ar

y a
xi

s

−2

0

2

4

6

8
System: sys
Gain: 10.6
Pole: 0.00995 + 1.27i
Damping:−0.00784
Overshoot (%): 102
Frequency (rad/s): 1.27

Real axis

FIGURE 4.98 Root-locus plot for control system in Figure 4.96.

0 6

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

12 18 24 30
0

1

2

3

0 10 20 30 40 50
0

1

2

3

0 15 30 45 60 75
0

1

2

3

4

0 5 10 15 20 25
0

1

2

3

4

Step response: KC = 0.25Kcr Step response: KC = 0.5Kcr

Step response: KC = 0.75Kcr Step response: KC = Kcr

Time (s) Time (s)

Time (s) Time (s)

FIGURE 4.99 Step responses of control system in Figure 4.96.

308 Simulation of Dynamic Systems with MATLAB® and Simulink®

(f) Step responses of the closed-loop system with KC¼ 0.25Kcr, 0.5Kcr, 0.75Kcr, Kcr are generated
by the statements

for i¼1:4
subplot(2,2,i)
sys_cl¼FEEDBACK(0.25*i*KCR*G,H); % closed-loop system
step(sys_cl) % step response
end

where ‘‘KCR’’ is the exact value for Kcr. The step responses, shown in Figure 4.99, exhibit less
damping as the controller gain increases. The step response of the marginally stable system
(KC¼Kcr) contains an oscillatory component at the frequency v0¼ 1.27 rad=s.

EXERCISES

Use the control system toolbox whenever possible to do the following problems:

4.78 The block diagram of a typical feedback control system was presented in Figure 4.31 and
redrawn below (Figure E4.78):

Transmitter

Actuator PlantController

R(s)
Command

input
GC(s) GA(s)

GT(s)

GP(s)
UC(s)

UT(s)

UA(s)E(s)
–

Y(s)
Output

FIGURE E4.78

Use the transfer functions given in Section 4.4.5 and the baseline parameter values unless
stated otherwise.
(a) Find the magnitude and phase of each component GC(s), GA(s), GP(s), and GT(s) at the

open-loop system phase crossover frequency v0¼ 0.9936 rad=s. Compare the results to
the magnitude and phase of the open-loop transfer function GOL(s)¼GC(s)GA(s)GP(s)
GT(s) at the same frequency.

(b) Input to the open-loop system (feedback path broken at summer) is r(t)¼ sinv0t.
Generate graphs of e(t)¼ r(t), along with uC(t), uA(t), y(t), and uT (t). Comment on the
stability of the closed-loop system.

Hint: Recall the closed-loop system is unstable if the magnitude of uT (t) is greater than
or equal to 1 at the phase crossover frequency v0, that is, the frequency where uT (t) lags
e(t) by 1808.

(c) Graph the step response of the closed-loop system.
(d) Repeat parts (a), (b), and (c) using KC¼ (KC)max¼ 2.62.

4.79 The block diagram of a heading control system for a ship, presented in Section 4.4.4, is shown
in Figure E4.79. The baseline parameter values are
KC¼ 10 V=8 (heading)
KP¼ 108 (rudder)=volt, tP¼ 0.2 s,
KS¼ 0.58 (heading)=s=8 (rudder), tS¼ 7.5 s
(a) Find the closed-loop transfer functions

E(s)

ucom(s)
,

U(s)

ucom(s)
,

R(s)

ucom(s)
, and

u(s)

ucom(s)

(b) For a step input ucom¼ 58, t � 0 graph e(t), u(t), r(t), and u(t).

Linear Systems Analysis 309

θcom(s) U(s) θ(s)

Power converter
and rudder Ship yaw dynamics

Controller
and power
amplifier

E(s)
– deg

rudder
deg

heading
deg

heading

R(s) KS
s(τS s + 1)(τP s + 1)

KP
Volts

KC
s + 1
s + 10

FIGURE E4.79

4.80 A system of two interacting tanks is shown in Figure E4.80a:

F1(t)

F0,2(t)
F0,1(t)

R12

H1(t)
H2(t)

F2(t)

A1 A2

R2

FIGURE E4.80a

The state equations are given as

dH1=dt

dH2=dt

� �
¼
� 1
A1R12

1
A1R12

1
A2R12

� 1
A2R12

� 1
A2R12

2664
3775 H1

H2

" # 1
A1

0

0
1
A2

2664
3775 F1

F2

" #

H1

H2

H3

264
375¼ 1 0

0 1

A1 A2

264
375 H1

H2

� �

The parameter values are

A1¼ 25 ft2, A2¼ 100 ft2, R12¼ 0.1 ft=ft3=min, R2¼ 0.4 ft=ft3=min

(a) Find the transfer functions VT (s)=F1(s) and VT (s)=F2(s).
(b) With both tanks initially empty, find and graph H1(t) and H2(t) in response to

(i) F1(t)¼ 12 ft3=min, F2(t)¼ 0 ft3=min
(ii) F1(t)¼ 0 ft3=min, F2(t)¼ 12 ft3=min
(iii) F1(t)¼ 12 ft3=min, F2(t)¼ 12 ft3=min
(iv) F1(t) in Figure E4.80b

5 10 150
t, min

F1(t), ft3/min

50

F2(t) = 0, t ≥ 0

FIGURE E4.80b

310 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.81 The transfer function for the circuit in Figure E4.81 is (see Equation 4.183)

R = 0.2 Ω R = 0.2 Ω

C2 = 2.5 × 10–3 F

C1 = 0.1 × 10–3 Fei v0

v

FIGURE E4.81

V0(s)

Ei(s)
¼ R2C1C2s2 þ 2RC2sþ 1

R2C1C2s2 þ R(C1 þ 2C2)sþ 1

(a) Convert the system transfer function to a state variable model with output v0.
(b) Use the state variable model to find and plot the impulse response.
(c) Find the unit step response of the circuit by inverse Laplace transforming V0(s).
(d) Repeat part (c) using the control system toolbox to find the unit step response. Compare

the results from parts (c) and (d).
(e) Approximate the continuous-time transfer function with a discrete-time z-domain transfer

function based on Tustin’s method. Choose an appropriate integration step size.
(f) Find and plot the unit step response of the discrete-time system. Compare the step

responses of the continuous-time and discrete-time systems.
4.82 Use ‘‘BODE’’ instead of ‘‘BODEMAG’’ to plot the magnitude and phase plots for the filters

with transfer functions in Equations 4.719 through 4.721.
4.83 Compare the phase characteristics of the continuous- and discrete-time band-pass filters

introduced in this section.
4.84 A simple control system block diagram is shown in Figure E4.84:

Controller

R(s) KC = 1
–

G(s) = 25(s + 10)
s(s2 + 4s + 29)

0.1
0.05s + 1H(s) =

Y(s)

FIGURE E4.84

(a) Find the closed-loop transfer function of the system using block diagram reduction.
(b) Check your answer to part (a) using the control system toolbox.
(c) Draw a simulation diagram of the system.
(d) Represent the system in state variable form based on your simulation diagram.
(e) Use the control system toolbox to find a state variable model for the system.
(f) Compare the eigenvalues (characteristic poles) of the coefficient matrix A in parts (d)

and (e).
(g) Use ‘‘BODE’’ to plot the frequency response of the open-loop system transfer function.

Find the gain and phase margins of the system.

Linear Systems Analysis 311

(h) Compute the maximum gain (KC)crit which makes the system marginally stable. Redraw
the Bode plot for KC ¼ (KC)crit .

(i) Check your answer to part (h) using a root-locus plot and identifying the value of gain KC

where the locus is on the Imaginary axis.
4.85 A continuous-time system is modeled by the differential equation

d3y

dt3
þ 5

d2y

dt3
þ 33

dy

dt
þ 29y ¼ u

(a) Find the transfer function H(s)¼ Y(s)=U(s) of the system.
(b) Create a model object ‘‘sys’’ to represent H(s).
(c) Use the control system toolbox to plot the impulse and step response of the system.
(d) Approximate the continuous-time transfer function H(s) with a discrete-time z-domain

transfer function H(z)¼ Y(z)=U(z) using Tustin’s method with appropriate sample time T.
(e) Find the difference equation for the discrete-time system approximation.
(f) Write a MATLAB M-file to find and plot the step response of the discrete-time system.
(g) Use the control system toolbox to plot the step response of the discrete-time system, and

compare the result with your answer in part (f).

4.11 CASE STUDY: LONGITUDINAL CONTROL OF AN AIRCRAFT

The equations of motion for an aircraft are derived using a moving coordinate system fixed to the
aircraft as shown in Figure 4.100. The x–y–z axes are referred to as body axes. The x-axis is aligned
with the longitudinal axis of the airplane. The equations are based on Newton’s laws of motion for a
rigid body in translation and rotation. The result is a system of six coupled nonlinear differential
equations. Three of the six equations express accelerations _u, _v, _w in terms of body axis velocities
u, v, w, angular velocities p, q, r, and external, aerodynamic, and gravitational forces acting on the
plane. The remaining three equations relate the angular accelerations _p, _q, _r to p, q, r and moments
produced by the external and aerodynamic forces about the plane’s center of mass.

z, w

y, v

x, u

v

ψ, r

θ, q

φ, p

Elevators, δe

Rudder, δr Aileron, δa

u, v, w: velocities in x, y, z directions

p: roll rate
q: pitch rate (about y-axis)
r : yaw rate (about z-axis)

Flight path

Earth-fixed coordinate system

y΄

z΄

x΄

FIGURE 4.100 Body axis coordinates (x, y, z) and Euler angles (c, u, f).

312 Simulation of Dynamic Systems with MATLAB® and Simulink®

The position and orientation of the airplane are referenced to an inertial (earth-fixed) coordinate
system x0–y0–z0 also shown in Figure 4.100. The horizontal x 0-axis is in the vertical plane containing
the initial velocity vector, and the plane’s center of mass is located at the origin of the x 0–y0–z0

system at t¼ 0. The plane’s attitude is fixed by three rotations of the x–y–z axes starting from an
orientation initially aligned with the x0–y0–z0 axes of the inertial coordinate system. The angular
rotations c, u, and w are called Euler angles and denote the roll, pitch, and yaw of the plane,
respectively.

Solution to the flight dynamics equations yields u, v, w in the x–y–z body axis coordinate system.
The velocity vector v is converted from body axis components u, v, w to inertial components _x0, _y0, _z0

by a transformation matrix Cb
e (Etkin 1982),

_x0

_y0

_z0

24 35 ¼ Cb
e

u

v

w

24 35 (4:726)

Cb
e ¼

cos u cosc sinf sin u cosc� cosf sinc cosf sin u coscþ sinf sinc

cos u sinc sinf sin u sincþ cosf cosc cosf sin u sinc� sinf cosc

� sin u sinf cos u cosf cos u

264
375 (4:727)

The position of the plane’s center of mass in inertial coordinates x0, y0, z0 is obtained by integration of
the respective velocities in Equation 4.726.

Solving the equations of motion also yields the angular velocities p, q, r, which are transformed
into _c, _u, _f by

_c

_u

_f

264
375 ¼ 0 sinf sec u cosf sec u

0 cosf � sinf

1 sinf tan u cosf tan u

264
375 p

q

r

264
375 (4:728)

The Euler angles c, u, and f are obtained by integration of the respective velocities in
Equation 4.728.

Solution of the nonlinear flight dynamics equations is complicated by the dependency of the
aerodynamic forces and moments on the variable flight conditions, for example, altitude, cruising
speed, weight, angle of attack, side slip, and control surface positions. A simpler approach is based
on a linearized model that describes the aircraft’s motion provided the excursions in flight from a
known steady state are small. The subject of linearization is treated in some detail in Chapter 7.

When the conditions for linearization of the flight equations are satisfied, the linearized model
can be decoupled into two sets of equations. One set describes the longitudinal dynamics of the
aircraft, and the remaining equations apply to the lateral dynamics. The longitudinal dynamics
involve changes in u and w, the plane’s velocity in the x- and z-directions, and the pitch rate q about
the y-axis. Lateral dynamics involve changes in side velocity v and the yaw and roll rates r and p
about the z- and x-axes, respectively.

Figure 4.100 shows the velocity vector v aligned differently from the x-axis. The projection of v
in the x–z plane is vxz shown in Figure 4.101. The angle between vxz and the x-axis (longitudinal axis
of plane) is called the angle of attack. Note that when the lateral dynamics of the plane are zero, the
flight path is confined to the x–z plane, v¼ vxz, and the instantaneous direction of flight is given by g
in Figure 4.101, the angle between the velocity vector and the horizontal direction. The thrust (dT)
from the engine, the aerodynamic forces, lift (L) and drag (D), and the gravitational force (W) are
also shown in Figure 4.101.

The primary control surfaces for controlling the aircraft’s position and attitude are the elevators,
ailerons, and rudder. The longitudinal dynamics respond to changes in elevator deflection de and

Linear Systems Analysis 313

thrust dT. Elevator deflection and thrust result from changes to the
yoke and throttle by the pilot (or autopilot). The rudder and ailerons
are used primarily to control the lateral response for banking and
turning maneuvers.

Our interest is solely in the longitudinal dynamics, specifically
pitch and altitude response of the aircraft to changes in elevator
deflection when the plane is flying at a constant cruising speed in
horizontal flight under steady-state conditions. From Figure 4.101,
for the plane to be in level flight, the velocity vector v must be
horizontal, the flight angle g¼ 0, and the pitch is equal to the angle
of attack. The plane is pitched slightly in order for the wings to develop sufficient lift to overcome
gravity. The steady-state conditions are shown in Figure 4.102 with v0 (horizontal cruising speed),
�u (longitudinal speed), w (speed in z-direction), u (pitch), and a (angle of attack). The elevator input
and engine thrust necessary to maintain these conditions are de and dT , respectively.

The deviations in u, a, u, w, and q from their steady-state operating levels are

Du ¼ u� u, Dw ¼ w� w ¼ w, Da ¼ a� a, Du ¼ u� u, Dq ¼ q� q ¼ q (4:729)

Since we are considering only changes in elevator deflection,

Dde ¼ de � de, DdT ¼ dT � dT ¼ 0 (4:730)

The state vector Dx in a linearized model of the longitudinal dynamics can be chosen as either
[Du Dw Dq Du]T or [Du Da Dq Du]T. The relationship between u, w, and a is (see Figure
4.101)

tana ¼ w

u
(4:731)

For small angles of attack, tan a¼ sin a=cos a�a. Replacing tan a in Equation 4.731 with a and
solving for w give

w ¼ ua (4:732)

Solving for u, a, and w in Equation 4.729 and substituting the results into Equation 4.732,

wþ Dw ¼ (uþ Du)(aþ Da) ¼ uaþ uDaþ aDuþ DuDw (4:733)

z

D

L

W

c.m.

x

δT

w

u

αθ

γ

νxz

FIGURE 4.101 Illustration of angle of attack (a) and forces influencing flight dynamics.

v0

x

z
w

u–

–

–

–θ = α

FIGURE 4.102 Initial steady-
state conditions of aircraft.

314 Simulation of Dynamic Systems with MATLAB® and Simulink®

Recognizing that w ¼ ua and ignoring the high-order term DuDw lead to

Dw ¼ uDaþ aDu (4:734)

Suppose the linearized model of an aircraft cruising in level flight under steady-state conditions with
v0¼ 500 ft=s and a ¼ u ¼ 0:05 rad (2.868) is

d

dt

Du
Da
Dq
Du

2664
3775 ¼

�0:04 11:59 0 �32:2
�0:00073 �0:65 1 0
0:000048 �0:49 �0:58 0

0 0 1 0

2664
3775

Du
Da
Dq
Du

2664
3775þ

0 0:1
0 0

�0:014 0
0 0

2664
3775 Dde

DdT

� �

(4:735)

where
Du has units of ft=s
Da, Du are in rad
Dq is in rad=s
Dde is in degree of elevator deflection
DdT is in lb of thrust

Choosing the output Dy ¼ Dx ¼ [Du DaDqDu]T leads to the system of state equations D _x¼ADxþ
BDu, Dy¼C�DxþDDu with A and B the matrices in Equation 4.735, C equal to the 4� 4 identity
matrix and D is a 4� 2 matrix of zeros. Note that Du¼ [Dde DdT]

T is the input vector, not to be
confused with Du, the first component of the state vector.

The linearized equations in state variable form can be converted to a transfer function matrix
relating the four outputs Du(s), Da(s), q(s), and Du(s) to the two inputs Dde(s) and DdT (s). The
transfer function matrix can be found using Equation 4.231, repeated again for convenience in
Equation 4.736.

G(s) ¼

Du(s)

Dde(s)

Du(s)

DdT (s)

Da(s)

Dde(s)

Da(s)

DdT (s)

q(s)

Dde(s)

q(s)

DdT (s)

Du(s)

Dde(s)

Du(s)

DdT (s)

2666666666666664

3777777777777775
¼ C(sI � A)�1Bþ D (4:736)

The control system toolbox inMATLAB contains a function ‘‘ss2tf’’ for expediting the process
of converting from the state-spacemodel to the transfer function description of an LTI system. Calling
this function with arguments (A, B, C, D, i), where i¼ 1 designates the first input Dde and i¼ 2
specifies the second input DdT, generates the eight transfer functions in Equation 4.736.

The MATLAB statement ‘‘[numG denG]¼ ss2tf (A, B, C, D, 1)’’ returns

numG¼0 0.0000 �0.0000 0.2906 0.2951
0 0.0000 �0.0141 �0.0006 �0.0003
0 �0.0141 �0.0097 �0.0005 0.0000
0 0.0000 �0.0141 �0.0097 0.0125

denG¼1.0000 1.2700 0.9247 0.0406 0.0125

Linear Systems Analysis 315

The transfer function relating elevator input to aircraft pitch is therefore

GDu
Dde(s) ¼

Du(s)

Dde(s)
¼ �0:0141s2 � 0:0097s� 0:0005

s4 þ 1:2700s3 þ 0:9247s2 þ 0:0406sþ 0:0125
(4:737)

Factoring the numerator and denominator gives

GDu
Dde(s) ¼

Du(s)

Dde(s)
¼ Ku(sþ c1)(sþ c2)

(s2 þ a1sþ b1)(s2 þ a2sþ b2)
(4:738)

The constants in Equation 4.738, computed in M-file ‘‘Chap4_CaseStudy1.m,’’ are

Ku ¼ �0:0141, c1 ¼ 0:6358, c2 ¼ 0:0542, a1 ¼ 1:2440, a2 ¼ 0:0260,

b1 ¼ 0:8780, b2 ¼ 0:0143

The quadratic factors in the denominator of Equation 4.738 are both underdamped, regardless of
whether the aircraft is a small passenger plane, a commercial jet, or a high-performance military
aircraft. However, as we shall soon learn, the natural frequencies and damping ratios of each
quadratic are quite different.

We begin by finding the pitch response to a step change in elevator input of ‘‘A’’ deg. The
Laplace transform of the response is

Du(s) ¼ Ku(sþ c1)(sþ c2)

(s2 þ a1sþ b1)(s2 þ a2sþ b2)
� A
s

(4:739)

Using partial fraction expansion, Equation 4.739 is written as

Du(s) ¼ KuA
R1

s� p1
þ R2

s� p2
þ R3

s� p3
þ R4

s� p4
þ R5

s

� �
(4:740)

where p1 and p2 are the poles from the quadratic s2þ a1sþ b1, and p3 and p4 are the poles associated
with the quadratic s2þ a2sþ b2. R1, R2, R3, R4, and R5 are the constants (residues) in the partial
fraction expansion. Letting p1 ¼ a1 þ jb1, p3 ¼ a3 þ jb3 and recognizing that p2 ¼ p1 ¼
a1 � jb1, p4 ¼ p3 ¼ a3 � jb3 as well as R2 ¼ R1,R4 ¼ R3 give

Du(t) ¼ L�1{u(s)} ¼ KuA[R1 ep1t þ R1 ep1t þ R3 ep3t þ R3 ep3t þ R5], t � 0 (4:741)

It is left as an exercise to show that

Rept þ Rept ¼ 2eat[Re(R) cosbt � Im(R) sinbt] (4:742)

where

p ¼ aþ jb, p ¼ a� jb, R ¼ Re(R)þ jIm(R), R ¼ Re(R)� jIm(R)

The pitch response (in rad) to an A¼ 18 elevator deflection is given by

Du(t) ¼ Ku{2e
a1t[Re(R1) cosb1t � Im(R1) sinb1t]

þ 2ea3t[Re(R3) cosb3t � Im(R3) sinb3t]þ R5} (4:743)

Assuming the aircraft’s natural dynamics are stable, the poles are located in the left-half plane, that
is, a1< 0 and a3< 0. From Equation 4.739 and the final value theorem and Equation 4.743 with
t!1, the steady-state pitch response to a unit step input is

316 Simulation of Dynamic Systems with MATLAB® and Simulink®

Duss ¼ Kuc1c2
b1b2

¼ KuR5 (4:744)

The poles and residues are obtained in ‘‘Chap4_CaseStudy1.m.’’

p1,2 ¼ �0:6220
 j0:7008, p3,4 ¼ �0:0130
 j0:1187

R1,2 ¼ �0:0331
 j0:5586, R3,4 ¼ �1:3429
 j2:9777, R5 ¼ 2:7519

From Equation 4.743, the pitch step response is

Du(t) ¼� 0:0141{2e�0:6220t[�0:0331 cos 0:7008t � 0:5586 sin 0:7008t]

þ 2e�0:0130t[�1:3429 cos 0:1187t � 2:9777 sin 0:1187t]þ 2:7519} (4:745)

The two damped oscillatory components are referred to as the short period and phugoid modes.
The natural frequencies, damping ratios, and exponential envelope time constants are given in
Table 4.12.

The complete step response is shown in Figure 4.103. The steady-state pitch is from Equation
4.744, uss¼�0.0388 rad (�2.22328).

The short period and phugoid mode oscillation components of the step response are shown in
Figure 4.104.

TABLE 4.12
Short Period and Phugoid Mode Parameters

Mode vn (rad=s) Z tenvelope ¼ 1=zvn (s)

Short period 0.9370 0.6638 1.6077

Phugoid 0.1194 0.1089 76.9042

0 50 100 150 200 250 300 350 400
−0.12

−0.1

Δu
(t)

 (r
ad

)

−0.08

−0.06

−0.04

−0.02

0

0.02

t (s)

v0 = 500 ft/s
– –a = u = 0.05 rad

FIGURE 4.103 Linearized aircraft pitch response due to 18 step change in elevator deflection.

Linear Systems Analysis 317

Shortly, we will look at the design of an autopilot to control the plane’s altitude. Before doing so,
a way of determining altitude is needed. From Equations 4.726 and 4.727,

_z0 ¼ (�sin u)uþ (sinw cos u)vþ (cosw cos u)w (4:746)

where _z0 is the rate of change of altitude, a positive value indicating that the plane is descending. For
small values of u and motion in the longitudinal direction only, v ¼ 0, f ¼ 0, sin u � u,
cos u � 1, sinf ¼ 0, cosf ¼ 1 and Equation 4.746 simplifies to

_z0 ¼ �uuþ w (4:747)

In terms of steady-state values and deviations, Equation 4.747 becomes

d

dt
(z(þ Dz 0) ¼ �(uþ Du)(uþ Du)þ wþ Dw (4:748)

) d

dt
(z0)þ d

dt
(Dz0) ¼ �(uuþ uDuþ uDuþ DuDu)þ wþ Dw (4:749)

) d

dt
(z(0)þ d

dt
(Dz 0) ¼ �(�uuþ w)� uDu� uDu� DuDuþ Dw (4:750)

Equation 4.747 evaluated at steady state is

d

dt
(z0) ¼ �(uuþ w) (4:751)

Subtracting Equation 4.751 from Equation 4.750, ignoring the higher order term Du Du, and
recognizing that dDz0=dt ¼ d(z0 � z0)=dt ¼ dz0=dt yield

dz0

dt
¼ �uDu� uDuþ Dw (4:752)

0 1 2 3
(a)

(b)

4 5 6 7 8 9 10

0

2

4

6

×10−3

Δδe = 1°

Δδe = 1°

0 50 100 150 200 250 300 350 400
−0.075

Δu
ph

ug
oi

d
(t)

 (r
ad

)

Δu
sh

or
t p

er
io

d(
t)

(r
ad

)

−0.05

−0.025

0

0.025

0.05

t (s)

FIGURE 4.104 (a) Short period and (b) phugoid oscillations of elevator unit step response.

318 Simulation of Dynamic Systems with MATLAB® and Simulink®

Substituting Dw in Equation 4.734 into Equation 4.752 gives

dz0

dt
¼ �uDu� uDuþ (uDaþ aDu) (4:753)

¼ �(u� a)Du� u(Du� Da) (4:754)

¼ �u(Du� Da) (4:755)

Laplace transforming Equation 4.755,

_z0(s) ¼ �u[Du(s)� Da(s)] (4:756)

The transfer function from elevator input Dde(t) to output _z0(t) is

G_z0 (s) ¼ _z0(s)
Dde(s)

¼ �u Du(s)

Dde(s)
� Da(s)

Dde(s)

� �
(4:757)

The transfer function Da(s)=Dde(s) is obtained in the same way we found Du(s)=de(s) in Equation
4.738. The result is

Da(s)

Dde(s)
¼ Ka(s2 þ d1sþ d0)

(s2 þ a1sþ b1)(s2 þ a2sþ b2)
(4:758)

where Ka¼�0.141, d1¼ 0.0400, and d0¼ 0.0235 are from ‘‘Chap4_CaseStudy1.m.’’
Substituting Equations 4.738 and 4.758 into Equation 4.757 gives

G_z0 (s) ¼ �u Ku(sþ c1)(sþ c2)

(s2 þ a1sþ b1)(s2 þ a2sþ b2)
� Ka(s2 þ d1sþ d0)

(s2 þ a1sþ b1)(s2 þ a2sþ b2)

� �
(4:759)

) G_z0(s) ¼ �u[(Ku � Ka)s2 þ {Ku(c1 þ c2)� Kad1}sþ Kuc1c2 � Kad0]

(s2 þ a1sþ b1)(s2 þ a2sþ b2)
(4:760)

) G_z0(s) ¼ l2s2 þ l1sþ l0
(s2 þ a1sþ b1)(s2 þ a2sþ b2)

(4:761)

l2 ¼ �u(Ku � Ka), l1 ¼ �u[Ku(c1 þ c2)� Kad1], l0 ¼ �u(Kuc1c2 � Kad0) (4:762)

From ‘‘Chap4_CaseStudy1.m,’’ l2¼ 0, l1¼ 4.5768, and l0¼ 0.0771.
For a step input in elevator deflection of A8, Equation 4.761 and l2¼ 0 give

_z0(s) ¼ l1sþ l0
(s2 þ a1sþ b1)(s2 þ a2sþ b2)

A

s

� �
(4:763)

The partial fraction expansion of _z0(s) is

_z0(s) ¼ A
R1

s� p1
þ R2

s� p2
þ R3

s� p3
þ R4

s� p4
þ R5

s

� �
(4:764)

where the residues, evaluated in ‘‘Chap4_CaseStudy1.m,’’ are

R1,2 ¼ 3:7283
 j0:4124, R3,4 ¼ �6:8081
 j21:2231, R5 ¼ 6:1596

Linear Systems Analysis 319

From Equations 4.763 and 4.764, the final value of _z0 is given by

_z0ss ¼
Al0
b1b2

¼ AR5 (4:765)

The step response is from Equation 4.764,

_z0(t) ¼ A[R1e
p1t þ R2e

p2t þ R3e
p3t þ R4e

p4t þ R5] (4:766)

Equation 4.766 is converted to a trigonometric form with real coefficients and real exponents similar
to Equation 4.743 for Du(t). The unit step response is graphed in Figure 4.105. According to
Equation 4.765, the steady-state value _z0ss ¼ AR5 ¼ 1� 6:1596 ft=s.

The change in altitude Dz(t) resulting from a step change in elevator input is obtained by
integration of _z0(t). From Equation 4.763,

Dz0(s) ¼ 1
s
_z0(s) ¼ 1

s

l1sþ l0
(s2 þ a1sþ b1)(s2 þ a2sþ b2)

� �
A

s
(4:767)

¼ A(l1sþ l0)

s2(s2 þ a1sþ b1)(s2 þ a2sþ b2)
(4:768)

The inverse transform of Equation 4.768 is left as an exercise problem. The change in altitude Dz0(t)
is graphed in Figure 4.105 below the derivative d_z0=dt.

The phugoid mode is an undesirable fact of life when it comes to control of an aircraft. In the
previous example, it takes 300–400 s for the plane to establish a new steady-state pitch and rate of
descent following a step change in the elevator position.

Consider a scenario where the plane is required to decrease its cruising altitude by some amount.
One approach is for the pilot to pull back on the yoke to increase the elevator deflection from its
neutral position, which produces steady-state level flight conditions. The plane will begin a descent
similar to the one shown in Figure 4.105. The actual descent will depend on the magnitude of the
elevator deflection. Some time later, the yoke is returned to the neutral position, and the plane

0 50 100 150 200 250 300 350 400

0 50 100 150 200 250 300 350 400

−20

dz
/́d

t (
ft/

s)
Δz

΄(t
) (

ft)

0

20

40

Rate of change of altitude vs. time

Δδe = 1°

Δδe = 1°

v0 = 500 ft/s
α = θ = 0.05 rad
_ _

v0 = 500 ft/s
α = θ = 0.05 rad
_ _

0

750

1500

2250

3000

t (s)

Change in altitude from steady-state vs. time

FIGURE 4.105 Changes in altitude rate and altitude from steady-state flight conditions.

320 Simulation of Dynamic Systems with MATLAB® and Simulink®

returns to level flight conditions at a reduced altitude. To illustrate, suppose the pilot’s action results
in an elevator deflection of Dd̂e degree for a period of Tpulse s. The aircraft’s altitude response to the
pulse input in elevator deflection is obtained as the difference between the step response and the
delayed step response, that is,

Dzp(t) ¼ Dd̂eDz1(t)� Dd̂eDz1(t � Tpulse)û(t � Tpulse) (4:769)

where
Dz1(t) is the change in altitude response to a unit step elevator deflection
û(t � Tpulse) is the unit step function starting at t¼ Tpulse
Dzp(t) is the change in altitude response to a pulse elevator deflection of Dd̂e deg lasting Tpulse s

For a 58 elevator pulse input of 30 s, the aircraft’s descent is computed according to Equation 4.769
in ‘‘Chap4_CaseStudy1.m’’ and shown in Figure 4.106. The label ‘‘open-loop’’ refers to the lack of
feedback used to determine the control surface deflection Dde(t).

The open-loop response settles at a value of approximately 927.5 ft once the phugoid oscillations
have disappeared. Some form of corrective action is necessary to dampen the excessive phugoid
mode oscillations. A feedback control system or autopilot can automate the process without relying
on human input.

Figure 4.107 is a simplified block diagram of a control system for regulating an aircraft’s altitude.
Sensors convert the plane’s altitude and rate of descent (or ascent) to voltages, which are transmitted

0 50 100 150 200 250 300 350 400 450 500

−1000

−500

0

500

1000Δz
 (f

t) 1500

2000

2500

3000

3500

4000

t (s)

Open-loop response: Δδe = 5° pulse of 30 s duration
Δzss = 927.5 ft

Closed-loop response: Δzcom = 927.5 ft
K̂C = 0.001
Δzss = 927.5 ft

FIGURE 4.106 Open- and closed-loop altitude response vs. time.

Δz(s)Δδe(s)Δzcom(s)

Actuator

Ga(s)

Aircraft dynamicsController

U(s)

ft Volts ––

Volts

deg ftft

eΔz(s)
KzGc(s)

ft/sec
1
s

Sensor

Kz

Gz(s)
z(s).

.

FIGURE 4.107 Block diagram for altitude control system.

Linear Systems Analysis 321

to the autopilot. In Figure 4.107, the gain of the altitude sensor Kz is shown combined with the
controller transfer function GC(s), allowing the command signal Dzcom to be in ft rather than volts.
(Note that the ’ symbol designating inertial coordinates is dropped from here on.)

The inner loop provides feedback of the altitude rate, which improves the damping and speed of
the outer altitude control loop. There are several ways of obtaining the closed-loop transfer function
Dz(s)=Dzcom(s). The inner loop can be reduced to

_z(s)

U(s)
¼ Ga(s)G_z(s)

1þ K_zGa(s)G_z(s)
(4:770)

Using the same block diagram reduction formula for the outer loop gives

Dz(s)

Dzcom(s)
¼ KzGc(s)[_z(s)=U(s)]1=s

1þ KzGc(s)[_z(s)=U(s)]1=s
(4:771)

¼ KzGc(s)[Ga(s)G_z(s)=(1þ K_zGa(s)G_z(s))]1=s
1þ KzGc(s)[Ga(s)G_z(s)=(1þ K_zGa(s)G_z(s))]1=s

(4:772)

¼ KzGc(s)Ga(s)G_z(s)

[1þ K_zGa(s)G_z(s)]sþ KzGc(s)Ga(s)G_z(s)
(4:773)

To start with, a proportional controller Gc(s)¼Kc is considered. The product of the gain Kz and
controller gain Kc is K̂C, that is, K̂C ¼ KzKc is the effective controller gain for design purposes. For
now, we ignore the actuator dynamics and let Ga(s)¼Ka measured in deg=volt. Equation 4.773
becomes

Dz(s)

Dzcom(s)
¼ K̂CKaG_z(s)

[1þ K_zKaG_z(s)]sþ K̂CKaG_z(s)
(4:774)

The DC gain of the autopilot is

lim
s!0

Dz(s)

Dzcom(s)
¼ lim

s!0

K̂CKaG_z(s)

[1þ K_zKaG_z(s)]sþ K̂CKaG_z(s)
¼ 1 (4:775)

Substituting Equation 4.761 with l2¼ 0 for G_z(s) into Equation 4.774 gives

Dz(s)

Dzcom(s)
¼ K̂CKa(l1sþ l0)

s5 þ m4s4 þ m3s3 þ m2s2 þ m1sþ m0
(4:776)

m4 ¼ a1 þ a2
m3 ¼ a1a2 þ b1 þ b2
m2 ¼ a1b2 þ a2b1 þ K_zKal1
m1 ¼ b1b2 þ K_zKal0 þ K̂CKal1
m0 ¼ K̂CKal0

9>>>>=>>>>; (4:777)

‘‘Chap4_CaseStudy1.m’’ creates a system object for the control system transfer function in Equation
4.776 and then issues the MATLAB ‘‘step’’ command to acquire the unit step response values,
which are multiplied by Dzcom and then plotted. The statements are

num_cs_z¼Kc_hat*Ka*[lambda1 lambda0];
den_cs_z¼[1 mu4 mu3 mu2 mu1 mu0];
sys_cs_z¼tf(num_cs_z, den_cs_z)

322 Simulation of Dynamic Systems with MATLAB® and Simulink®

T¼linspace(0, 500, 1000); % t array for step response
[Y,T]¼step(sys_cs_z,T); %Y is unit step response of control system
z_com¼927.5; % command input (ft)
z_cs¼z_com*Y; % control system response to z_com
plot(T,z_cs,’r’)

Numerical values used to obtain the closed-loop response in Figure 4.106 were Dzcom¼ 927.5 ft,
Ka¼ 18=V, K_z ¼ 0:1 volt=ft=s, and K̂C ¼ 0:001. The closed-loop transfer function corresponding to
those values is

Dz(s)

Dzcom(s)
¼ 0:004577sþ 0:00007713

s5 þ 1:27s4 þ 0:9247s3 þ 0:08634s2 þ 0:01787sþ 0:00007713
(4:778)

Both responses in Figure 4.106 approach 927.5 ft; however, the closed-loop response is far
superior to the open-loop pulse response. The elevator deflection in the closed-loop system
response must be small enough to justify the use of the linearized model in Equation 4.735,
which assumes small deviations in u, a, q, and u. The small angle approximations and omission of
high-order terms, key to the linearized model’s accuracy, may not hold if there are sizable changes
in any of the responses. We must look at a graph of Dde(t) responsible for the closed-loop
response in Figure 4.106.

Dde(s)=Dzcom(s) can be obtained by observing from Figure 4.107 that

Dz(s) ¼ 1
s
G_z(s)Dde(s) (4:779)

Solving Equation 4.779 for Dde(s) and then dividing both sides by Dzcom(s) lead to

Dde(s)

Dzcom(s)
¼ s

G_z(s)

Dz(s)

Dzcom(s)
(4:780)

Substituting for G_z(s) the expression in Equation 4.761 gives

Dde(s)

Dzcom(s)
¼ K̂CKas(s2 þ a1sþ b1)(s2 þ a2sþ b2)

s5 þ m4s4 þ m3s3 þ m2s2 þ m1sþ m0
(4:781)

The closed-loop elevator and altitude step responses for K̂C ¼ 0:001, 0:003, and 0.005 along with
the open-loop response are shown in Figures 4.108 and 4.109.

Looking at Figure 4.108, it is clear that the closed-loop system elevator input Dde(t), t � 0
remains less than the 58 pulse amplitude in the open-loop system. It is left as an exercise problem to
investigate the deviations Du, Da, q, and Du as well.

The proportional gain compensator for the autopilot is far too simplistic; however, the results are
fairly dramatic even for this simple design. One of the problems with this design is related to
stability. The sluggish response (K̂C ¼ 0:001) in Figure 4.109 is the most stable, yet the location of
the closed-loop system poles, which determine the transient response, is far from optimal. Table
4.13 lists the location of the closed-loop system poles corresponding to the values of K̂C.

The reader should consult one of the numerous control system texts for a discussion of
more sophisticated compensators to achieve superior dynamic response with increased stability
margins.

Linear Systems Analysis 323

The gain (magnitude in db) of the open- and closed-loop frequency response functions is shown
in Figure 4.110. The open-loop j_z(jv)=Dde(jv)j is obtained from the transfer function in Equation
4.761, (recall l2¼ 0). The open-loop jDz(jv)=Dde(jv)j comes from the transfer function

GDz(s) ¼ Dz(s)

Dde(s)
¼ l1sþ l0

s(s2 þ a1sþ b1)(s2 þ a2sþ b2)
(4:782)

0 50 100 150 200 250 300 350 400

−1

0

1

Δδ
e(t

) (
de

g)

2

ˆ

ˆ

ˆ

3

4

5

KC = 0.001

KC = 0.003

KC = 0.005

Open-loop

t (s)

Open- and closed-loop elevator deflections for different controller gains

v0 = 500 ft/s
– –a = u = 0.05 rad
Δzcom = 927.5 ft

FIGURE 4.108 Elevator response for open- and closed-loop control of altitude.

0 50 100 150 200 250 300 350 400

−1000

−500

0

500

1000

1500

2000

2500

3000

3500

4000

t (s)

Δz
 (f

t)

Open- and closed-loop altitude responses for different controller gains

Open-loop
v0 = 500 ft/s
–

KC = 0.005ˆ

KC = 0.003ˆ KC = 0.001ˆ

–
α = θ = 0.05 rad
Δzcom = 927.5 ft

FIGURE 4.109 Altitude response for open- and closed-loop control.

324 Simulation of Dynamic Systems with MATLAB® and Simulink®

The closed-loop jDz(jv)=Dzcom(jv)j is based on the transfer function in Equation 4.776 with
K̂C ¼ 0:005.

Note that the resonant frequency in the open-loop functions at the natural frequency of the
phugoid vn¼ 0.1194 rad=s (see Table 4.12). The closed-loop system gain is close to 0 db from DC
to somewhat less than the resonant frequency. The bandwidth of the control system is approximately
0.28 rad=s.

4.11.1 DIGITAL SIMULATION OF AIRCRAFT LONGITUDINAL DYNAMICS

A digital simulation of longitudinal dynamics requires z-domain transfer functions to approximate
the corresponding continuous-time transfer functions. A z-domain transfer function to approximate
the continuous-time transfer function in Equation 4.776 based on explicit Euler integration is

Dz(z)

Dzcom(z)
¼ K̂CKa(l1sþ l0)

s5 þ m4s4 þ m3s3 þ m2s2 þ m1sþ m0

s¼(z�1)=T

(4:783)

TABLE 4.13
Closed-Loop System Poles for Autopilot
with Proportional Control

K̂C Closed-Loop Poles

0.001 �0:5981
 j0:6759, �0:0347
 j0:1424, �0:0044
0.003 �0:6066
 j0:6748, �0:0240
 j0:1772, �0:0088
0.005 �0:6150
 j0:6742, �0:0145
 j0:2055, �0:0109

10−3 10−2 10−1 100 101
−120

−100

−80

−60

−40M
ag

ni
tu

de
 (d

B)

−20

0

20

40

60

80

|Δz(jω)/Δδe(jω)|
.|z(jω)/Δδe(jω)|

|Δz(jω)/Δzcom(jω)|
ωBW = 0.28 rad/s

ωBW

K̂C = 0.005

Bode diagram

Frequency (rad/s)

FIGURE 4.110 Open- and closed-loop magnitude functions.

Linear Systems Analysis 325

Substituting (z� 1)=T for s in Equation 4.783 leads to

Dz(z)

Dzcom(z)
¼ K̂CKaT

4 l1z� (l1 � l0T)

z5 þ g4z4 þ g3z3 þ g2z2 þ g1zþ g0

� �
(4:784)

where

g4 ¼ �5þ m4T

g3 ¼ �10� 4m4T þ m3T
2

g2 ¼ �10þ 6m4T � 3m3T
2 þ m2T

3

g1 ¼ 5� 4m4T þ 3m3T
2 � 2m2T

3 þ m1T
4

g0 ¼ �1þ m4T � m3T
2 þ m2T

3 � m1T
4 þ m0T

5

9>>>>>>>=>>>>>>>;
(4:785)

To simulate the altitude response to a step input command of magnitude Dzcom¼A, we need the
difference equation relating Dzk and (Dzcom)k. Cross multiplying Equation 4.784 after multiplying
numerator and denominator by z�5 gives

(1þ g4z
�1 þ g3z

�2 þ g2z
�3 þ g1z

�4 þ g0z
�5)Dz(z)

¼ K̂CKaT
4[l1z

�4 � (l1 � l0T)z
�5]Dzcom(z) (4:786)

Invert z-transforming both sides of Equation 4.786 and solving for Dzk give

Dzk ¼ �g4Dzk�1 � g3Dzk�2 � g2Dzk�3 � g1Dzk�4 � g0Dzk�5
þ K̂CKaT

4[l1(Dzcom)k�4 � (l1 � l0T)(Dzcom)k�5] (4:787)

The first several values of Dzk are evaluated sequentially from Equation 4.787 as

k ¼ 0, 1, 2, 3: Dzk ¼ 0 (4:788)

k ¼ 4: Dz4 ¼ K̂CKaT
4l1(Dzcom)0 ¼ K̂CKaT

4l1A (4:789)

k ¼ 5: Dz5 ¼ �g4Dz4 þ K̂CKaT
4[l1(Dzcom)1 � (l1 � l0T)(Dzcom)0] (4:790)

¼ �g4(K̂CKaT
4l1A)þ K̂CKaT

4[l1A� (l1 � l0T)A] (4:791)

¼ K̂CKaT
4A(� g4l1 þ l0T) (4:792)

Dzk, k¼ 6, 7, 8, . . . is computed by recursion according to

Dzk ¼ �g4Dzk�1 � g3Dzk�2 � g2Dzk�3 � g1Dzk�4 � g0Dzk�5 þ K̂CKaT
5Al0 (4:793)

‘‘Chap4_CaseStudy1.m’’ contains statements to implement Equations 4.788, 4.789, 4.792, and
4.793. The simulated altitude response of the closed-loop system with K̂C ¼ 0:003 to the altitude
command previously considered (Dzcom¼ 927.5 ft) is shown in Figure 4.111. The analytical
solution previously plotted in Figure 4.109 is also presented. For purposes of clarity, the simulated
points are plotted 1 s apart, that is, every 10th point is plotted. The exact and simulated responses are
in close agreement.

326 Simulation of Dynamic Systems with MATLAB® and Simulink®

4.11.2 SIMULATION OF STATE VARIABLE MODEL

The linearized model describing the longitudinal dynamics of an aircraft was given in state variable
form in Equation 4.735. Subsequent analysis of dynamic response, however, was done using
transfer function descriptions relating a specific input, namely, Dde(t), and a certain output, for
example, Du(t), _z(t), and Dz(t). The conversion from a state-space description to input–output
models is accomplished using Equation 4.736 or the MATLAB function ‘‘ss2tf’’ available in the
control system toolbox. The remainder of this section is devoted to simulation of the aircraft
dynamics based on the continuous-time state-space model

Dx ¼ ADxþ BDu, Dy ¼ CDxþ DDu (4:794)

where
A, B, Dx, Du are evident from Equation 4.735
Dy is the output vector, which determines C and D

Suppose a simulation of the state equations using trapezoidal integration is required. Equation
3.121 is the difference equation for updating the discrete-time state based on trapezoidal integration.
It is repeated below (using the deviation variable notation) along with the equation for computing
the output vector.

Dx(nþ 1) ¼ I � 1
2
TA

� ��1
I þ 1

2
TA

� �
Dx(n)þ 1

2
I � 1

2
TA

� ��1
TB[Du(n)þ Du(nþ 1)] (4:795)

Dy(n) ¼ CDx(n)þ DDu(n) (4:796)

Equations 4.795 and 4.796 represent a straightforward approach to simulation of the state equations
using trapezoidal integration. The equations are implemented in the script file ‘‘Chap4_CaseStudy1.m’’

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

1000

t (s)

Δz
(t)

 (f
t)

Analytical and simulated (Euler T = 0.1 s) closed-loop system altitude response

v0 = 500 ft/s
– –α = θ = 0.05 rad
Δzcom = 927.5 ft
K̂C = 0.003

Analytical (continuous-time)
Simulated (discrete-time)

FIGURE 4.111 Altitude step responses of analytical and simulated closed-loop system.

Linear Systems Analysis 327

for the case where Du¼ [Dde DdT]
T¼ [58 0 lb]T, Dy ¼ [Du Da Dq Du]T . Accordingly, C is the

4� 4 identity matrix and D is a 4� 2 matrix of zeros. The simulated output Dy(n)¼ [Du(n) Da
(n) Dq(n) Du(n)]T was recorded for T¼ 1, 5, 10 s and the results graphed for T¼ 1 and 10 s in
Figure 4.112.

There was very little difference in the outputs for T¼ 1 and 5 s suggesting that the higher value is
appropriate for further simulation studies using trapezoidal integration.

Setting D _x¼ 0 in Equation 4.794 and solving for Dx at steady state give

Dxss ¼ �A�1BDu (4:797)

)

Duss

Dass

Dqss

Duss

266664
377775 ¼ �

�0:04 11:59 0 �32:2
�0:00073 �0:65 1 0

0:000048 �0:49 �0:58 0

0 0 1 0

266664
377775
�1 0 0:1

0 0

�0:014 0

0 0

266664
377775 5

0

" #

¼

117:83 ft=s

�0:13 rad

0 rad=s

�0:19 rad

266664
377775 (4:798)

Setting Dx(nþ 1)¼Dx(n)¼Dx(1) in Equation 4.795,

Dx(1) ¼ I � 1
2
TA

� ��1
I þ 1

2
TA

� �
Dx(1)

þ 1
2

I � 1
2
TA

� ��1
TB[Du(1)þ Du(1)] (4:799)

0 100 200 300 400
0

50

100

150

200

t (s)

Δu
 (f

t/s
)

T = 1 s

T = 1 s

T = 1 s T = 1 s

T = 10 s
T = 10 s

T = 10 s T = 10 s

0 100 200 300 400
−0.2

−0.15

−0.1

−0.05

0

t (s)

0 100 200 300 400
−0.1

−0.05Δq
 (r

ad
/s

)

0

0.05

t (s)
0 100 200 300 400

−0.6
Δθ

 (r
ad

)
Δα

 (r
ad

)

−0.4

−0.2

0

t (s)

FIGURE 4.112 Simulation of state vector using trapezoidal integration (de¼ 5 deg).

328 Simulation of Dynamic Systems with MATLAB® and Simulink®

Solving for the steady-state vector Dx(1) gives

Dx(1) ¼ I � I � 1
2
TA

� ��1
I þ 1

2
TA

� �" #�1
I � 1

2
TA

� ��1
TBDu(1)

¼ [117:83 ft=s � 0:13 rad 0 rad=s � 0:19 rad]T (4:800)

The continuous-time Dxss and discrete-time (simulated) Dx(1) are identical, in agreement with the
values observed in Figure 4.112.

EXERCISES

4.86 Prove the relationship in Equation 4.742 involving complex numbers.
4.87 Use the control system toolbox to

(a) Find the transfer functions Du(s)=DdT (s),Da(s)=DdT (s), q(s)=DdT (s),Du(s)=DdT (s):
(b) Plot the unit step responses for the linearized model in Equation 4.735 with Dy¼Dx.

4.88 Find Dz0(t) by inversion of Dz0(s) in Equation 4.768.
4.89 (a) Use a similar approach to the one for finding Dz0(s)=Dde(s) to determine Dx0(s)=Dde(s).

(b) Use the control system toolbox to plot Dx0(t) in response to a step change in elevator input
of 58.

(c) Find the response Dz0(t) to the same input.
(d) Plot the aircraft’s flight trajectory Dz0 vs. Dx0 for (0 � Dx0 � 25,000 ft).

4.90 Find the time duration of a �58 elevator pulse input required to increase the plane’s elevation
by 1500 ft.

4.91 The actuator that controls elevator deflection was assumed to exhibit negligible dynamics in
the typical range of frequencies encountered. The actuator transfer function is first-order with
gain Ka¼ 18=V and time constant ta¼ 0.4 s.
(a) Find the closed-loop transfer functions Dz(s)=Dzcom(s) and Dde(s)=Dzcom(s) with the

actuator dynamics included. Express both transfer functions as a ratio of polynomials
similar to Equations 4.776 and 4.781.

(b) Find the closed-loop system (K̂C ¼ 0:005) poles with and without the actuator dynamics.
Comment on the results.

With K̂C ¼ 0:005, verify the assumption of negligible actuator dynamics by
(c) Plotting the frequency response of the open-loop transfer function with and without

actuator dynamics.
(d) Comparing the elevator deflection response when Dzcom¼ 500 ft with and without the

actuator dynamics.
(e) Comparing the aircraft altitude response when Dzcom¼ 500 ft with and without the

actuator dynamics.
4.92 For the conditions in Figure 4.111, find the maximum deviation between the analytical and

simulated altitude responses when using Euler integration with the step sizes shown in the
table below. Fill in the table.

Step Size T¼0.025 s T¼ 0.05 s T¼ 0.1 s T¼0.25 s

MaxjDzanal�Dzsimj

4.93 Starting with the open-loop transfer function GDu
Dde

(s) ¼ Du(s)=Dde(s) in Equation 4.738,
(a) Use Tustin’s method with a sample time of T¼ 1 s to obtain a discrete-time system

approximation GDu
Dde

(z). Use the control system toolbox function ‘‘c2d’’ if available,
otherwise be prepared for some tedious algebraic work.

Linear Systems Analysis 329

(b) Use the pulse transfer function GDu
Dde

(z) to find the difference equation relating Duk and
(Dde)k.

(c) Find the aircraft’s pitch response to a unit step change in elevator position by recursive
solution of the difference equation.

(d) Compare the simulated pitch step response in part (c) to the continuous-time pitch step
response shown in Figure 4.103.

4.12 CASE STUDY: NOTCH FILTER FOR ELECTROCARDIOGRAPH WAVEFORM

An electrocardiograph (ECG) signal is corrupted with 60 Hz noise from an electrical power source.
A portion of the noisy signal, sampled regularly at 0.004 s intervals, is shown in Figure 4.113.

A notch filter is needed to remove the noise. One realization of a second-order filter transfer
function is given by (Orfanidis 1996)

H(z) ¼ Y(z)

U(z)
¼ b

1� 2(cosv0T)z�1 þ z�2

1� 2b(cosv0T)þ (2b� 1)z�2

� �
(4:801)

where v0 is the notch frequency (in rad=s). The filter parameter Q relates the notch frequency v0 to
the width of the 3 db interval Dv on a plot of jH(e jvT)j2 vs. v.

Q ¼ v0

Dv
(4:802)

The higher Q is, the narrower is the 3 db interval Dv. The filter parameter b is obtained from

b ¼ 1
1þ tan (v0T=2Q)

(4:803)

Two notch filters will be investigated. One with Q¼ 10 and the other with Q¼ 50. The M-file
‘‘Chap4_CaseStudy2.m’’ computes the filter coefficients and plots both jH(e jvT)j2 vs. v and the
magnitude function (in db), jH(e jvT)j vs. v (see Figures 4.114 through 4.117).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t (s)

u(
t)

Filter input: ECG + noise

FIGURE 4.113 ECG signal corrupted with 60 Hz noise sampled at T¼ 0.004 s intervals.

330 Simulation of Dynamic Systems with MATLAB® and Simulink®

Note, when jH(e jvT)j2¼ 0.5 it is 3 db below the DC value jH(e j0T)j2¼ 1.
The filtered outputs are shown in Figures 4.118 and 4.119. There is little difference in the outputs

of the two filters except for the longer transient period of the filter with Q¼ 50.

4.12.1 MULTINOTCH FILTERS

When more than one notch frequency exists, a multinotch filter design is required. The previous
reference includes several methods of designing a multinotch filter. One approach is to simply use
the singlenotch design for each notch frequency and cascade the respective filters. To illustrate,
suppose the ECG signal contains a 25 Hz square wave noise signal like the one shown in
Figure 4.120.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δω = 63 Hz − 57 Hz = 6 Hz

ω0 = 60 Hz

3 db

ω (Hz)

|H
(e

jω
T)|2

FIGURE 4.114 Magnitude squared function for notch filter (Q¼ 10).

100 101 102

−60

−50

−40

−30

−20

−10

0

ω0 = 60 Hz

ω (Hz)

|H
(e

jω
T)|

(d
b)

FIGURE 4.115 Magnitude function (in db) for notch filter (Q¼ 10).

Linear Systems Analysis 331

The noise n(t) contains harmonics at multiples of the fundamental frequency v0¼ 2pf0¼ 50p
rad=s. The Fourier Series expansion of n(t) is given by (see Exercise 4.95)

n(t) ¼ 1
p

sinv0t þ 1
3p

sin 3v0t þ 1
5p

sin 5v0t þ � � � (4:804)

Example 4.37

A clean ECG signal, 10 s in duration, is sampled every Ts¼ 0.004 s and stored in the data file
‘‘clean_ecg_10sec.mat.’’ The time and signal data are stored in arrays ‘‘t’’ and ‘‘s.’’

(a) Sample the square wave noise shown in Figure 4.120 at the sampling frequency vs¼ 1=Ts
and plot the sampled noise n(t) and the noisy ECG signal s(t)þ n(t).

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Δω = 60.6 Hz − 59.4 Hz = 1.2 Hz

ω0 = 60 Hz

3 db

ω (Hz)

|H
(e

jω
T)|2

FIGURE 4.116 Magnitude squared function for notch filter (Q¼ 50).

100 101 102

−50

−45

|H
(e

jω
T)|

(d
b)

−40

−35

−30

−25

−20

−15

−10

−5

0

5

ω0 = 60 Hz

ω (Hz)

FIGURE 4.117 Magnitude function (in db) for notch filter (Q¼ 50).

332 Simulation of Dynamic Systems with MATLAB® and Simulink®

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

u(
t)

y(
t)

Filter input: ECG + noise

0

0.5

1

1.5

t (s)

Filter output (Q = 10)

FIGURE 4.118 Output of notch filter (Q¼ 10).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

u(
t)

y(
t)

Filter input: ECG + noise

0

0.5

1

1.5

t (s)

Filter output (Q = 50)

FIGURE 4.119 Output of notch filter (Q¼ 50).

Linear Systems Analysis 333

(b) Design notch filters:
(i) Hv0(z) to remove the fundamental frequency
(ii) H3v0(z) to remove the first nonzero harmonic term
(iii) H5v0(z) to remove the second nonzero harmonic term
Choose the Q values such that the 3 db width Dv for jH(e jvT)j2 vs. v is the same for each
filter.

(c) Draw the magnitude function (in db) for the following filters:
(i) Hv0(z) (ii) Hv0 (z)H3v0 (z) (iii) Hv0 (z)H3v0 (z)H5v0 (z)

(d) Filter the noisy ECG signal in part (a) using the three filters in part (c) and graph the results.

(a) Figure 4.121 shows 5 s of the noise square wave n(t) and the combined signal plus noise
s(t)þ n(t).

(b) The filter parameter Q was chosen as 10 for the first filter. From Equation 4.802 the 3 db width
Dv¼ 2.5 Hz. Using this value for notch frequencies 3v0¼ 75 Hz and 5v0¼ 125 Hz in Equation
4.802 gives

Q ¼ 3v0

Dv
¼ 3(25)

2:5
¼ 30, Q ¼ 5v0

Dv
¼ 5(25)

2:5
¼ 50 (4:805)

The M-file ‘‘Chap4_Ex12_1.m’’ computes the filter coefficients for the three notch filters with Q
values 10, 30, and 50 using Equations 4.801 and 4.803. The results are

Hv0 (z) ¼ 0:9695
1� 1:6180z�1 þ z�2

1� 1:5687z�1 þ 0:9391

� �
(Q ¼ 10) (4:806)

H3v0 (z) ¼ 0:9695
1þ 0:6180z�1 þ z�2

1þ 0:5992z�1 þ 0:9391

� �
(Q ¼ 30) (4:807)

H5v0 (z) ¼ 0:9695
1þ 2z�1 þ z�2

1þ 1:9391z�1 þ 0:9391

� �
(Q ¼ 50) (4:808)

(c) ‘‘Chap4_Ex12_1.m’’ includes statements to plot the magnitude functions of Hv0 (z) and the
cascaded filters Hv0 (z)H3v0 (z) and Hv0 (z)H3v0 (z)H5v0 (z). The results are shown in Figures 4.122
through 4.124.

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

−0.25

0

0.25

t (s)

n(
t)

Noise f0 = 25 Hz

FIGURE 4.120 Square wave noise component of ECG signal.

334 Simulation of Dynamic Systems with MATLAB® and Simulink®

(d) The three filters are shown in Figure 4.125 with their corresponding inputs and outputs. Output
of the filter with transfer function Hv0 (z) in Equation 4.806 is shown in Figure 4.126. The simple
notch filter was designed to remove the fundamental frequency term in Equation 4.804.

Output of the first filter y1(k) is passed to the notch filter with transfer function H3v0 (z) in
Equation 4.807. Output y2(k) of the multinotch filter Hv0 (z)H3v0 (z) is shown in Figure 4.127.
Finally, the output of the middle filter in Figure 4.125 is the input to the third filter in the series of
cascaded filters. The output of the last filter y3(k) is plotted as y3(t) in Figure 4.128.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0.4

n(
t)

25 Hz square wave noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5s(t
)+

n(
t) 1

1.5

t (s)

ECG signal with 25 Hz square wave noise

FIGURE 4.121 Square wave noise and noise-corrupted ECG signal.

100 101 102
−35

−30

−25

|H
(e

jω
T s)|

 (d
b)

−20

−15

−10

−5

0

5

ω (Hz)

ω0 = 25 Hz

Ts = 0.004 s
Q = 10

FIGURE 4.122 Magnitude function (db) for notch filter Hv0 (z).

Linear Systems Analysis 335

100 101 102

−35

−30

−25

|H
(e

jω
T s)|

 (d
b)

−20

−15

−10

−5

0

5

ω (Hz)

ω0 = 25 Hz

3ω0 = 75 Hz

Ts = 0.004 s

FIGURE 4.123 Magnitude function (db) for multinotch filter Hv0 (z)H3v0 (z).

100 101 102

−35

−30

−25

−20

|H
(e

jω
T s)|

 (d
b)

−15

−10

−5

0

5

ω (Hz)

ω0 = 25 Hz

3ω0 = 75 Hz

5ω0 = 125 HzTs = 0.004 s

FIGURE 4.124 Magnitude function (db) for multinotch filter Hv0 (z)H3v0 (z)H5v0 (z).

Hω0
(z) H3ω0

(z) H5ω0
(z)

u(k) = s(k) + n(k) y1(k) y2(k) y3(k)

FIGURE 4.125 Multinotch filter for removing fundamental frequency and first two nonzero harmonics.

336 Simulation of Dynamic Systems with MATLAB® and Simulink®

The multinotch filter output in Figure 4.128 is similar in appearance to the single notch filter
outputs shown in Figures 4.118 and 4.119 (after the transient response has vanished) when the
noise was a pure sinusoid at 60 Hz. Even though the square wave noise contains an infinite
number of harmonics, that is, odd multiples of the fundamental frequency (see Equation 4.804), all
but the first two nonzero harmonics 3v0¼ 75 Hz and 5v0¼ 125 Hz are above the Nyquist

0 0.5 1 1.5 2 2.5 3.5 4 4.5 5
0

0.5s(t
)+

n(
t)

1

1.5

ECG signal with 25 Hz square wave noise

0

0.5

y 1
(t) 1

1.5

t (s)

Output of notch filter Hω0
(z)

3

0 0.5 1 1.5 2 2.5 3.5 4 4.5 53

FIGURE 4.126 Input and output of notch filter Hv0 (z).

0 1 2 3 4 5

0 1 2 3 4 5

0

0.5s(t
)+

n(
t)

1

1.5

ECG signal with 25 Hz square wave noise

t (s)

0

0.5

1

1.5

y 2
 (t

)

Output of multinotch filter Hω0
(z)H3ω0

(z)

FIGURE 4.127 Input and output of multinotch filter Hv0 (z)H3v0 (z).

Linear Systems Analysis 337

frequency vnyq¼ 0.5vs¼ 0.5� (1=Ts)¼ 125 Hz. Consequently, the harmonics at 7v0¼ 175 Hz,
9v0¼ 225 Hz, and so forth, are aliased back to the lower frequencies which are effectively
removed by the multinotch filter in Figure 4.125.

EXERCISES

4.94 Create a noisy ECG signal u(tk) by starting with the clean signal s(tk), where tk¼ kTs, k¼ 0, 1,
2, . . . (Ts¼ 0.004 s) in ‘‘clean_ecg_10sec.mat.’’ Add a 50 Hz sinusoidal noise n(tk) with
amplitude of 0.75.
(a) Design and implement an appropriate notch filter to remove the noise.
(b) Graph the filter input u(tk) and its output y(tk) below it.
(c) Compare the clean ECG signal s(tk) and the filter output y(tk).

4.95 The clean ECG signal described in Exercise 4.94 is corrupted by the periodic noise n(t) shown
in Figure E4.95. The period P ¼ 1=30 s (v0 ¼ 30 Hz) and amplitude A¼ 1.

n(t)

t
0 P 2PP/2−P/2

A

FIGURE E4.95

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5s(t
)+

n(
t)

1

1.5

ECG signal with 25 Hz square wave noise

0

0.5

y 3
(t) 1

1.5

t (s)

Output of multinotch filter Hω0
(z)H3ω0

(z)H3ω0
(z)

FIGURE 4.128 Input and output of multinotch filter Hv0 (z)H3v0 (z)H5v0 (z).

338 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) Sample the noise at the frequency vs¼ 250 Hz (Ts¼ 0.004 s), and add it to the clean ECG
signal. Denote the corrupted signal by u(tk), where tk¼ kTs, k¼ 0, 1, 2, 3,. . . .

(b) Expand the noise in a Fourier series expansion,

n(t) ¼ a0
2
þ

X
k¼1, 2,...

(ak cos kv0t þ bk sin kv0t),

v0 ¼ 2p
P
¼ 2p

1=30
¼ 60p rad=s

ak ¼ 2
P

ðP=2
�P=2

n(t) cos kv0t dt, k ¼ 0, 1, 2, � � �

bk ¼ 2
P

ðP=2
�P=2

n(t) sin kv0t dt, k ¼ 1, 2, � � �

(c) Design and implement a multinotch filter to remove all the frequency components (except
DC) below the Nyquist frequency vnyq¼ 0.5vs¼ 125 Hz.

(d) Graph the filter input u(tk) and its output y(tk) below it.
(e) Compare the clean ECG signal s(tk) and the filter output y(tk).

Linear Systems Analysis 339

This page intentionally left blank

5 Simulink®

5.1 INTRODUCTION

This chapter serves as an introduction to the continuous simulation program, Simulink®. It is similar
in many ways to its predecessors such as CSMP (Continuous System Modeling Program), ACSL
(Advanced Continuous Simulation Language), TUTSIM (Twente University of Technology Simu-
lator), MATRIX-X, STELLA, and EASY5. The major advantage of Simulink stems from its tight
integration with MATLAB®, the data analysis and visualization program with its own structured
programming language. The numerous (37 at the time of this printing) MATLAB toolboxes in
diverse areas of engineering, science, and business extend the capabilities of Simulink.

In addition to the toolboxes, there are a number of Simulink blocksets that extend Simulink into
various disciplines such as aerospace, communications, signal processing, image processing, and so
forth. A complete list of toolboxes and blocksets with descriptions of each can be found at http:==
www.mathworks.com=products=product_listing=index.html.

Chapters 1 through 4 cover some basic essentials of linear continuous- and discrete-time systems.
Elementary simulation techniques based on numerical integration are also introduced. In all but the
simplest cases, the simulated solutions were programmed in MATLAB M-files.

The early continuous-time system simulation languages (CSSLs) consisted of individual
sections, for example, ‘‘Initial,’’ ‘‘Dynamic,’’ ‘‘Derivative,’’ and ‘‘Terminal’’ with special demarca-
tion headers for inputting constants and system parameters, calculating new parameters, setting
initial conditions for the states, evaluating inputs over time, numerically integrating the state
derivative vector, and computing the system outputs (Korn 1978). The continuous-time system
dynamics were confined to a section containing expressions for the state derivatives. Lookup tables
(in one or more dimensions) were often included in the section to evaluate the state derivatives.
Crucial savings in simulation development time resulted from the built-in numerical integration
routines and graphing capabilities.

Despite minor variations among the CSSLs, they were classified as ‘‘equation-oriented’’ because
expressions for the state derivatives, difference equations, and outputs were entered on one or more
lines in equation format. Later, general-purpose, block-oriented simulation programs emerged with
powerful graphical user interfaces (GUIs). Dragging and dropping blocks from libraries containing
blocks of similar functionality is the most intuitive way for creating a simulation model. Even more
so than equation-oriented CSSLs, block-oriented simulation programs such as Simulink free the
simulationist from the tedious grunt work required to develop a model structure, implement
numerical integration, and produce useful output.

Our initial exploration of Simulink in this chapter is merely the ‘‘tip of the iceberg.’’ Later
chapters will delve further into the world of Simulink and its capabilities.

5.2 BUILDING A SIMULINK® MODEL

To begin our introduction to Simulink, we will demonstrate the procedure for creating a model of a
simple system and run the model to obtain useful information about its dynamic response. Our
purpose here is to get comfortable with the Simulink user interface at a macroscopic level.
Mastering Simulink (Dabney 2001) and The Math Works Web page http:==www.mathworks.
com=access=helpdesk=help=toolbox=simulink=ug=ug.html are excellent references for the beginner
interested in getting started with Simulink. The Simulink models in this text were developed using
Simulink Version 6.

341

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/ug.html
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/ug.html
http://www.mathworks.com/products/product_listing/index.html
http://www.mathworks.com/products/product_listing/index.html

5.2.1 SIMULINK
® LIBRARY

The Simulink library contains blocks for representing the mathematical models of commonly
occurring components in dynamic systems. The blocks are grouped in sublibraries according to
function. The standard Simulink sublibraries are shown in the left pane of Figure 5.1. The blocks
residing in the selected ‘‘Continuous’’ sublibrary are shown in the right pane. The ‘‘Integra-
tor’’ block is selected, and there is a brief description of it in the top pane. The transfer function,
1=s, is used to designate the integrator.

Building a Simulink model of a system consists of selecting the appropriate blocks and
connecting them in a way that represents the mathematical model. Inputs, when present, are
implemented using blocks from the ‘‘Sources’’ sublibrary, which can generate a host of input
signals. Simulation output is saved and displayed using various blocks such as ‘‘Scopes,’’ ‘‘XY
Graphs,’’ and ‘‘Displays’’ from the ‘‘Sinks’’ sublibrary.

Our first Simulink model will simulate the dynamics of the linear second-order system model
introduced in Chapter 2. The differential equation is

d2

dt2
y(t)þ 2zvn

d

dt
y(t)þ v2

ny(t) ¼ Kv2
nu(t) (5:1)

Assuming for the moment that the second derivative term d2y=dt2 is present in a new model window,
it can be twice integrated as shown in Figure 5.2 where ‘‘ydd,’’ ‘‘yd,’’ and ‘‘y’’ are the Simulink
variable names. The ‘‘Integrator’’ blocks are dragged or copied from the ‘‘Continuous’’
sublibrary into the model window.

By inspection of Equation 5.1, the second derivative term is a linear combination of the input
u(t), the output y(t), and its first derivative dy=dt. The Simulink library browser allows us to search
the standard sublibraries for the blocks needed to ‘‘build’’ the second derivative and, thus, complete
the Simulink model.

FIGURE 5.1 The Simulink® Library Browser.

342 Simulation of Dynamic Systems with MATLAB® and Simulink®

The system parameters K, vn, and z and the literal constant ‘‘2’’ are generated using a ‘‘Con-
stant’’ block found in the ‘‘Sources’’ sublibrary. The ‘‘Math’’ sublibrary provides the
additional blocks for addition and multiplication of the signals.

We have yet to specify an input or forcing function, assuming there is one. For now, let us pick a
simple step input applied at t¼ 0. Looking in the ‘‘Sources’’ sublibrary, the step input can be
implemented with a ‘‘Constant’’ or ‘‘Step’’ block; however, the latter is more flexible should we
later decide to delay the time at which the step is applied.

Numerical values of the system parameters are set by selecting the individual blocks and typing
in the appropriate values in a properties dialog box. Some Simulink blocks contain several
parameters, all of which should be specified or else the default values will be used. For example,
the ‘‘Step’’ block generally requires values for ‘‘Step time,’’ ‘‘Initial value,’’ and
‘‘Final value’’ as shown in Figure 5.3, and the ‘‘Integrator’’ block requires an ‘‘Initial
condition.’’

Figure 5.4 shows a Simulink diagram for simulation of the unit step response of the second-order
system. The choice of Simulink blocks and their location in a Simulink diagram is not unique. The
appearance or layout of blocks depends to a large extent on individual user preferences. Some prefer

FIGURE 5.2 Integrating the second derivative ‘‘ydd’’ twice to obtain the first derivative ‘‘yd’’ and output ‘‘y.’’

FIGURE 5.3 Dialog box for specifying input step parameter values.

Simulink® 343

that the diagram be the most economical in terms of Simulink blocks used. Others are more
concerned with layout style, striving to make the diagram visually appealing.

Oftentimes, the mathematical model of the system is available in block diagram form, as in the
case of a control system. A Simulink diagram of the system will be strikingly similar, especially
when Simulink blocks for modeling actual system components are available.

An alternate Simulink diagram for the second-order system in Equation 5.1 is shown in Figure 5.5.
A ‘‘Gain’’ block with a parameter value equal to the product 2zvn replaces the ‘‘Product’’ block in
the inner feedback loop and the three constant blocks feeding it. Another ‘‘Gain’’ block is inserted in
the outer feedback loop with a parameter value numerically equal to v2

n replacing the ‘‘Product’’
and ‘‘Constant’’ blocks in Figure 5.4. The third ‘‘Gain’’ block is employed to multiply the input
u(t) by Kv2

n, further reducing the number of blocks required.

FIGURE 5.4 Simulink® diagram for step response of a second-order system.

FIGURE 5.5 Alternate Simulink® diagram for a second-order system step response.

344 Simulation of Dynamic Systems with MATLAB® and Simulink®

Note the similarity between the Simulink diagram in Figure 5.5 and the simulation diagram of the
system in Figure 2.13. In fact, the thought process for preparing a simulation diagram of a system is
nearly identical to the steps required to arrive at a Simulink diagram.

Before we delve further into the Simulink library, let us run one of the Simulink models for
simulating the step response of the second-order system.

5.2.2 RUNNING A SIMULINK
® MODEL

The Simulink model is similar to a conventional block diagram of a system. For a system with
analog components, it embodies the algebraic and differential equations of the continuous-time
math model. For inherently discrete-time systems, the Simulink model encapsulates algebraic and
difference equations governing the system’s behavior. Simulink models of hybrid systems contain-
ing analog and discrete-time components implement solutions to algebraic, differential, and differ-
ence equations.

A computer program is created from the Simulink model to solve the equations that comprise the
mathematical model of the system. Some of its functions include initialization of state variables,
calculation of state derivatives, solution of algebraic equations, updating the state variables, and
calculation of the system’s outputs. Simulink offers a variety of numerical integrators to advance the
continuous-time state vector over an integration step. The user has the option of choosing a
particular integrator and step size (applicable for fixed-step size algorithms), tolerances for satisfy-
ing accuracy requirements, the simulation start and stop times, and exchanging simulation data with
MATLAB via The MATLAB Workspace.

Clicking on ‘‘Simulation’’ in the model window menu followed by ‘‘Configuration
Parameters’’ leads to a dialog box like the one shown in Figure 5.6 where the simulation is
configured according to the user’s preferences as previously described. The improved Euler
integrator (Heun’s method) with a fixed-step size of 0.01 s and simulation time of 5 s has been
selected.

After configuring the simulation, the ‘‘Simulation’’ pull-down menu is reopened and
‘‘Start’’ is selected. The simulation terminates when the simulation time reaches the selected
‘‘stop time’’ of 5 s.

The simplest way to view simulation output is to select one of the scopes and observe the time
history of its input. The output of the second integrator ‘‘y’’ is displayed in several ways, as shown
in Figures 5.7 through 5.9. Figure 5.7 is a screen capture of the scope labeled ‘‘y(t)’’ after running
the simulation and viewing the scope output by double clicking on it.

FIGURE 5.6 Dialog box for configuring simulation.

Simulink® 345

Figure 5.8 is a screen shot of the edited scope output made possible by running an M-file
‘‘SimScopeControl.m,’’ which brings up the MATLAB Property Editor for editing graphs.

Figure 5.9 is the result of copying the edited scope output to the clipboard and pasted into the
text. Scope outputs throughout the text will be shown in one of the three formats.

As expected, the step response reflects a moderately underdamped second-order system.
The simulation results can also be imported to the MATLAB Workspace several different ways.

In this example, the scopes were configured to communicate the results in named arrays specified
in the parameters dialog box, which opens after clicking on the icon shown in Figure 5.10.

FIGURE 5.7 Screen capture of scope output.

FIGURE 5.8 Screen capture of edited scope output.

346 Simulation of Dynamic Systems with MATLAB® and Simulink®

The ‘‘Data history’’ tab in Figure 5.11 was used to save the second integrator’s output in the
array ‘‘t_y,’’ which consists of two columns. The first consists of the time values for the simulation,
and the second column contains the associated y(t) values output from the integrator.

Once in the MATLAB Workspace, the various signals can be graphed as shown in Figure 5.12.

EXERCISES

5.1 For the first-order system modeled by

t
dy

dt
þ y ¼ Ku, y(0) ¼ 0 (t ¼ 3 s, K ¼ 0:1)

u(t) ¼ 0, t � 0

A, t > 0 (A ¼ 5)

�

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

y(
t) 0.6

0.8

1

t

FIGURE 5.9 Simulink® plot of unit step response of a second-order system.

FIGURE 5.10 Icon to open the parameter dialog box of ‘‘y(t)’’ scope.

Simulink® 347

with initial condition y(0)¼ 0,
(a) Prepare a Simulink diagram for simulating the response.
(b) Plot y(t)=yss vs. t where yss ¼ limt!1 y(t) is the steady-state response.
(c) Compare the results from part (b) with the exact solution.
(d) Repeat parts (b) and (c) for y(0)¼ 0.5yss, yss, and 1.5yss.

5.2 Simulate the second-order system unit step response for vn¼ 25 rad=s and z¼ 0.1 and
(a) Prepare a MATLAB plot of y(t) vs. the dimensionless independent variable vnt.
(b) Repeat part (a) for z¼ 0.7, 1, 2.

FIGURE 5.11 Parameter dialog box for saving output to the MATLAB® Workspace.

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4
0

0.1
0.2
0.3
0.4
0.5
0.6y(

t)

0.7
0.8
0.9

1
1.1
1.2

t (s)

K = 1, ωn = 4 rad/s, ζ = 0.5 u(t)

y(t)

FIGURE 5.12 MATLAB® plot of a second-order system unit step response.

348 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.3 The temperature T(t), in 8F, of a turkey baking in an oven is approximately governed by the
differential equation

C
d

dt
T(t) ¼ Qi(t)� Q0(t)

where
C is the thermal capacity in (Btu=8F) of the turkey
Qi(t) is the heat input to the turkey
Q0(t) is the heat loss due to conduction and convection from the oven, both in Btu=h

Expressions for Qi(t) and Q0(t) are as follows:

Qi(t) ¼ �Q, t � 0

Q0(t) ¼ 1
R
[T(t)� T0(t)]

R is the overall thermal resistance (8F=Btu=h) of the oven, and T0(t) is the room temperature
surrounding the oven. Simulate the baking of a 15 lb turkey in an oven with thermal resistance
R¼ 0.0258F=Btu=h and constant heat input �Q ¼ 4000 Btu=h. The room temperature is a
constant 758F.

Note that the specific heat of turkey is c¼ 1.25 Btu=lb=8F, and the thermal capacity of the
turkey is given by C¼mc where m is the mass (in lb) of the turkey.

Assume the initial temperature of the turkey is 408F.
(a) Plot the temperature T(t) on one graph and heat flows Qi(t) and Q0(t) on separate graphs.

Be sure to run the simulation for a period of time sufficient to examine the complete
transient response.

(b) Estimate the final temperature of the turkey if left unattended in the oven.
(c) Estimate the time required to heat the turkey to 1608F.
(d) Compare the results in parts (a), (b), and (c) with results obtained using the solution to the

continuous-time differential equation model for T(t).
(e) What size turkey can be heated to 1508F in 2 h?

5.3 SIMULATION OF LINEAR SYSTEMS

Simulink offers the user a variety of approaches when it comes to simulation of linear continuous-
time systems. The form of the system model generally dictates the choice of blocks from the
‘‘Continuous’’ sublibrary to be used in the Simulink model. For example, a linear second-order
system comprising two first-order systems in series like that shown in Figure 5.13 suggests an
overall Simulink model constructed using Simulink models of the individual first-order systems.

The Simulink diagram of the system is shown in Figure 5.14. Note that the two integrators are
not in series like they were when the system model was a second-order differential equation. The
state variables are x and y.

A Simulink model of the cascaded first-order systems employing consecutive ‘‘Integrator’’
blocks is easily obtained once the variable x is eliminated from the coupled first-order differential
equations in Figure 5.13. The resulting second-order differential equation in y and the Simulink
diagram is left as an exercise.

u x ydx
dtτ1 + x = K1u dx

dtτ2 + y = K2x

FIGURE 5.13 A second-order system comprised of two cascaded first-order systems.

Simulink® 349

5.3.1 TRANSFER FCN BLOCK

A glimpse of the Simulink blocks in the ‘‘Continuous’’ sublibrary reveals additional options for
simulation of linear system models. The ‘‘Transfer Fcn’’ and ‘‘Zero–Pole’’ blocks provide
alternative representations for the dynamics of a linear continuous-time component. The n individual
integrators and arithmetic blocks for a system component with nth-order dynamics are collapsed into
a single block, incorporating the higher-order dynamics. The ‘‘Transfer Fcn’’ and ‘‘Zero–
Pole’’ blocks correspond to transfer function models in polynomial and factored form, respectively.

To illustrate the use of the ‘‘Transfer Fcn’’ block, consider a variation of the case study in
Section 2.8 for the submarine depth control system. The reference signal vcom(t) for the control loop
is the command depth rate and the controlled variable is the actual depth rate v(t) as shown in
Figure 5.15. The depth y(t) is obtained by integrating the depth rate v(t).

The submarine is assumed initially to be in steady state at the surface when the command depth
rate is suddenly increased to 25 ft=s and held constant for 30 s and then returned to zero. The transfer
function for the controller and stern plane actuator is

GC(s) ¼ u(s)

E(s)
¼ KCsþ KI

s
(KC ¼ 0:6,KI ¼ 0:1) (5:2)

and the submarine dynamics is modeled by the transfer function

GP(s) ¼ V(s)

u(s)
¼ K _usþ Ku

tsþ 1
(K _u ¼ 20,Ku ¼ 10, t ¼ 10) (5:3)

The Simulink diagram is shown in Figure 5.16. A ‘‘Transfer Fcn’’ block was used to model the
controller and submarine dynamics.

Note the use of two step blocks with the same amplitude (25 ft=s), the first commencing at t¼ 0
and the second starting at t¼ 30 s along with the summation block to implement the overall
command depth rate signal. The command and actual depth rates are multiplexed and fed to the
scope in the upper right corner of the diagram. The submarine depth is captured by the scope
directly below. The simulation was configured using Simulink’s fixed-step ‘‘ode4’’ numerical
integrator with step size 0.01 s. The ‘‘ode4’’ numerical integrator belongs to a family of numerical

FIGURE 5.14 Simulink® diagram of a second-order system shown in Figure 5.13.

ft/s ft

y(t)θ(t) ν(t)vcom(t) e(t)

– degft/s ft/s

Controller and
stern plane

actuator

Submarine
dynamics

1
s

FIGURE 5.15 Submarine depth rate control system.

350 Simulation of Dynamic Systems with MATLAB® and Simulink®

integrators collectively referred to as Runga–Kutta. Chapter 6 includes a discussion of Runga–Kutta
integration.

The command and actual depth rate signals are shown in Figure 5.17. Note the discontinuity in
the actual depth rate at t¼ 0 and t¼ 30 s. This implies the existence of a direct path from the
command depth rate vcom to the actual depth rate v without integrators present. The direct path is not
apparent in Figure 5.16; however, it would be evident on a simulation diagram of the system.

The stern plane angle (8) and the actual submarine depth (ft) are shown in Figure 5.18.
The presence of a direct path with only algebraic blocks from command input vcom to the actual

submarine depth rate v is easier to visualize if we express the transfer functions in Figure 5.16
differently, that is,

GC(s) ¼ u(s)

E(s)
¼ KC þ KI

s
(5:4)

GP(s) ¼ V(s)

u(s)
¼ K _usþ Ku

tsþ 1
(5:5)

¼ K _u

t
þ (Ku � (K _u=t))

tsþ 1
(5:6)

FIGURE 5.16 Simulink® diagram for sub depth control using transfer function blocks.

0 10 20 30 40 50 60

0

5

Ve
lo

ci
ty

 (f
t/s

)

10

15

20

25

Time (s)

FIGURE 5.17 Command and actual submarine depth rates.

Simulink® 351

Hence, the direct path starts from ‘‘v_com’’ through the summer and on through constant blocks
with gains ‘‘KC’’ and ‘‘Kthd=tau’’ to the output ‘‘v.’’ The Simulink diagram in Figure 5.16 can be
modified to implement the controller and submarine dynamics transfer functions as given in
Equations 5.4 and 5.6 (see Exercise 5.5).

The submarine depth, shown in Figure 5.16, is continuous at t¼ 0 due to the presence of the
integrator between ‘‘v’’ and ‘‘y.’’

Referring to Figure 5.15, the closed-loop transfer function is

V(s)

Vcom(s)
¼ GC(s)GP(s)

1þ GC(s)GP(s)
(5:7)

¼ ((KCsþ KI)=s)((K _usþ Ku)=(tsþ 1))
1þ ((KCsþ KI)=s)((K _usþ Ku)=(tsþ 1))

(5:8)

¼ (KCsþ KI)(K _usþ Ku)

s(tsþ 1)þ (KCsþ KI)(K _usþ Ku)
(5:9)

The steady-state value v(1) resulting from the step input ucom(t)¼ 25, t � 0 is obtained from the
final value theorem (Section 4.2),

v(1) ¼ lim
s!0

sV(s) ¼ lim
s!0

s
(KCsþ KI)(K _usþ Ku)

s(tsþ 1)þ (KCsþ KI)(K _usþ Ku)

� �
25
s
¼ 25 (5:10)

confirmed in Figure 5.17, which shows the depth rate v(t) approaching the commanded 25 ft=s once
the transient response has vanished.

The discontinuity in depth rate at t¼ 0 shown in Figure 5.17 can also be verified. According to
the initial value; theorem,

v(0þ) ¼ lim
s!1 sV(s) ¼ lim

s!1 s
(KCsþ KI)(K _usþ ku)

s(tsþ 1)þ (KCsþ KI)(K _usþ Ku)

� �
25
s

(5:11)

¼ lim
s!1

(KC þ (KI=s))(K _u þ (Ku=s))

(tþ (1=s))þ (KC þ (KI=s))(K _u þ (Ku=s))

� �
25 (5:12)

¼ 25KCK _u

tþ KCK _u

¼ 25(0:6)(20)
10þ (0:6)(20)

¼ 13:64 ft=s (5:13)

is in agreement with the graph of v(t) shown in Figure 5.17.
The following example further illustrates the use of the ‘‘Transfer fcn’’ block.

0
(a) (b)

u
(d

eg
)

y (
ft)

10 20 30 40 50 60
−4

−2

0

2

4

6

Time (s)
0 10 20 30 40 50 60

Time (s)

0

200

400

600

800

FIGURE 5.18 Simulated (a) stern plane angle (deg) and (b) sub depth (ft).

352 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 5.1

For the submarine depth rate control system shown in Figure 5.15,

(a) Find the analytical solution for the submarine depth rate v(t), 0< t � 30 in response to the
command input vcom(t)¼ 25, t � 0.

(b) Model the closed-loop control system dynamics using a ‘‘Transfer fcn’’ block for V(s)=
Vcom(s) and use it to simulate the depth rate response to the command depth rate shown in
Figure 5.17. Compare the simulated and analytical depth rate responses for v(t), 0< t � 30.

(a) From Equation 5.9,

V(s) ¼ (KCsþ KI)(K _usþ Ku)
s(tsþ 1)þ (KCsþ KI)(K _usþ Ku)

� �
Vcom(s) (5:14)

¼ KCK _us
2 þ (KCKu þ KIK _u)sþ KIKu

(tþ KCK _u)s2 þ (1þ KCKu þ KIK _u)sþ KIKu

� �
25
s

(5:15)

¼ 12s2 þ 8sþ 1
22s2 þ 9sþ 1

� �
25
s

(5:16)

¼ 25
22

12s2 þ 8sþ 1
s{s2 þ (9=22)sþ 1=22}

� �
(5:17)

Using partial fraction expansion of the right-hand side of Equation 5.17 followed by inverse
Laplace transformation, the solution for v(t), 0< t � 30 becomes

v(t) ¼ 25� 25
22

e�9t=44 10 cos

ffiffiffi
7
p

44
t

� �
� 47ffiffiffi

7
p sin

ffiffiffi
7
p

44
t

� �� �
, 0 < t � 30 (5:18)

(b) The analytical solution for v(t) in Equation 5.18 is incorporated in Simulink using a ‘‘Sine
Wave’’ block from the ‘‘Sources’’ sublibrary and a ‘‘Math Function’’ block from the ‘‘Math’’
sublibrary for the exponential term. The Simulink diagram appears in Figure 5.19.

The ‘‘Sine Wave’’ parameters dialog box for the cosine term cos (
ffiffiffiffiffiffiffiffiffiffiffi
7=44

p
t) in the analytical

solution, Equation 5.18, is shown in Figure 5.20. Note that the phase angle is p=2 rad to produce
the cosine function.

The control system loop with input vcom(t) and output v(t) in Figure 5.15 is replaced with the
equivalent closed-loop transfer function V(s)=Vcom(s) in Figure 5.21.

The Simulink diagram shown in Figure 5.22 includes a ‘‘Transfer fcn’’ block for imple-
menting the closed-loop transfer function. The simulated and analytical depth rates for a time
period 0< t � 12 s are shown in Figure 5.23. The graphs were generated in the MATLAB M-file
‘‘Chap5_Fig3_11.m’’ by saving the data in the scope shown with the heavy line multiplexed input
in Figure 5.22. The complete set of time values along with the simulated and analytical results is
saved in the MATLAB Workspace in a named array set in the scope dialog box. Also shown is the
difference between the two depth rates. It is clear from looking at the difference that the simulated
depth rate is nearly identical to the analytical solution.

5.3.2 STATE-SPACE BLOCK

The process of transforming models consisting of linear algebraic and differential equations into
state variable form was demonstrated in Section 2.6. Conversion of SISO (single input–single
output) or MIMO (multiple input–multiple output) system transfer functions to state-space

Simulink® 353

FIGURE 5.19 Simulink® diagram with simulated and analytical submarine depth rate.

FIGURE 5.20 ‘‘Sine Wave’’ parameter box to generate cosine term in analytical solution.

354 Simulation of Dynamic Systems with MATLAB® and Simulink®

Vcom(s) V(s)
V(s) =

Vcom(s)
(KCs + KI) (Kθ

. s + Kθ)
s(τs + 1) + (KCs + KI) (Kθ

. s + Kθ)

FIGURE 5.21 Closed-loop transfer function of submarine depth rate control system.

FIGURE 5.22 Simulink® diagram using ‘‘Transfer fcn’’ block for submarine closed-loop depth rate
control system dynamics.

0

10

20

30
Simulated depth rate vs. time

0

10

20

30
Analytical depth rate vs. time

0 1 2 3 4 5 6 7 8 9 10 11 12
−5V s

im
–V

an
al

 (f
t/s

)
V a

na
l (

ft/
s)

V s
im

 (f
t/s

)

0

5
×10−3 Simulated–analytical depth rate vs. time

Time (s)

FIGURE 5.23 Analytical and simulated depth rate using ‘‘Transfer fcn’’ for V(s)=Vcom(s).

Simulink® 355

models and vice versa was illustrated using the control system toolbox in Section 4.10. Simulink
provides a mechanism for incorporating state variable models of system components using the
‘‘State-Space’’ block located in the ‘‘Continuous’’ sublibrary. A partial description of
the ‘‘State-Space’’ block is shown in Figure 5.24. The next example illustrates its use.

Example 5.2

An automobile traveling along a level road at a constant speed v0 encounters a speed bump
shown in Figure 5.25. The vehicle’s suspension system (front and rear springs and shock absorb-
ers) is modeled by linear springs and dampers, and the compliance of the tires is modeled by front
and rear springs. The vehicle cab motion is limited to heave in the y-direction and a small amount
of pitch u of the vehicle’s longitudinal axis. The tires are assumed to remain in contact with the
road surface at all times.

The road profile is responsible for the system’s input u ¼ [uf ur]
T, where uf and ur are the height

of the road (with respect to some reference) underneath the front and rear tires, respectively. The
system has three translational degrees of freedom, y, yf, yr, which are the vertical displacements of
the vehicle cab and both front and rear axles from their equilibrium positions. The lone rotational
degree of freedom is the pitch angle u.

Three of the four model equations are obtained by equating the sum of suspension and
tire forces acting on the three masses to the appropriate acceleration term, M€y,Mf €yf , and Mr€yr.
The fourth equation sets the torques about the vehicle cab’s center of gravity created by the
suspension forces equal to the inertial acceleration I€u.

The model equations are listed as follows:

M€y ¼ Kfs[yf � (y þ Lfu)]þ Bf [_yf � (_y þ Lf _u)]þ Krs[yr � (y � Lru)]þ Br[_yr � (_y � Lr _u)] (5:19)

¼ �(Kfs þ Krs)y � (Bf þ Br) _y þ Kfsyf þ Bf _yf þ Krsyr þ Br _yr

þ (KrsLr � KfsLf)uþ (BrLr � Bf Lf) _u (5:20)

FIGURE 5.24 The Simulink® ‘‘State-Space’’ block.

356 Simulation of Dynamic Systems with MATLAB® and Simulink®

Mf €yf ¼ �Kfs[yf � (y þ Lfu)]� Bf [_yf � (_y þ Lf _u)]þ Kft(uf � yf) (5:21)

¼ �(Kfs þ Kft)yf � Bf _yf þ Kfsy þ Bf _y þ KfsLfuþ Bf Lf _uþ Kftuf (5:22)

Mr€yr ¼ �Krs[yr � (y � Lru)]� Br[_yr � (_y � Lr _u)]þ Krt(ur � yr) (5:23)

¼ �(Krs þ Krt)yr � Br _yr þ Krsy þ Br _y � KrsLru� BrLr _uþ Krtur (5:24)

I€u ¼ {Kfs[yf � (y þ Lfu)]þ Bf [_yf � (_y þ Lf _u)]}Lf

� {Krs[yr � (y � Lru)]þ Br[_yr � (_y � Lr _u)]}Lr (5:25)

¼�(KfsL
2
f þ KrsL2r)u� (Bf L

2
f þ BrL2r) _uþ (KrsLr � KfsLf)y

þ (BrLr � Bf Lf) _y þ KfsLf yf � KrsLryr þ Bf Lf _yf � BrLr _yr (5:26)

Note that the equations are linear as a result of assuming small pitch angles, allowing the
approximations sin u� u and cos u� 1.

(a) Introduce state variables

x1 ¼ y, x3 ¼ yf , x5 ¼ yr, x7 ¼ u,

x2 ¼ _y, x4 ¼ _yf , x6 ¼ _yr, x8 ¼ _u,

and solve for the state derivatives, that is, find the matrices A and B in _x ¼ Axþ Bu.
(b) Define the outputs as y1¼ y, y2¼ yf, y3¼ yr, and y4¼ u and find matrices C and D in

y ¼ CxþDu.
(c) Simulate and plot the vehicle dynamics using the following values for the weight of the

vehicle and tires, suspension parameters, forward speed, and speed bump profile.

u
π

x

y

yf yr

v0

ur

D0

LrLfuf

−L L

2LAb cos x

y

Kfs Bf

yf

uf

Mf
Krs Br

yrMr

ur

M

Kft

Krt

x

θ

θ

FIGURE 5.25 Moving vehicle and suspension system model.

Simulink® 357

W ¼ 4,200 lb, Wf ¼ 125 lb, Wr ¼ 125 lb, Kfs ¼ 120 lb=in, Krs ¼ 180 lb=in,

Bf ¼ 25 lb s=in, Br ¼ 35 lb s=in, Kft ¼ 1,100 lb=in, Krt ¼ 1,100 lb=in,

I ¼ 40,000 in: lb s2, Lf ¼ 55 in:, Lr ¼ 65 in:, v0 ¼ 20mph, Ab ¼ 4 in:, L ¼ 1 ft

(a) Using the definition of the state variables and solving for the state derivatives in Equations 5.19
through 5.26 give

_x1 ¼ x2 (5:27)

_x2 ¼ �(Kfs þ Krs)
M

x1 � (Bf þ Br)
M

x2 þ Kfs

M
x3 þ Bf

M
x4 þ Krs

M
x5 þ Br

M
x6

þ (KrsLr � KfsLf)
M

x7 þ (BrLr � Bf Lf)
M

x8 (5:28)

_x3 ¼ x4 (5:29)

_x4 ¼ Kfs

Mf
x1 þ Bf

Mf
x2 � (Kfs þ Kft)

Mf
x3 � Bf

Mf
x4 þ KfsLf

Mf
x7 þ Bf Lf

Mf
x8 þ Kft

Mf
uf (5:30)

_x5 ¼ x6 (5:31)

_x6 ¼ Krs

Mr
x1 þ Br

Mr
x2 � (Krs þ Krt)

Mr
x5 � Br

Mr
x6 � KrsLr

Mr
x7 � BrLr

Mr
x8 þ Krt

Mr
ur (5:32)

_x7 ¼ x8 (5:33)

_x8 ¼ (KrsLr � KfsLf)
I

x1 þ (BrLr � Bf Lf)
I

x2 þ KfsLf
I

x3 þ Bf Lf
I

x4

� KrsLr
I

x5 � BrLr
I

x6 � (KfsL2f þ KrsL2r)
I

x7 � (Bf L2f þ BrL2r)
I

x8 (5:34)

The system matrix A and input matrix B are

A ¼

0 1 0 0
�(Kfs þ Krs)

M
�(Bf þ Br)

M
Kfs

M
Bf

M
0 0 0 1
Kfs

Mf

Bf

Mf

�(Kfs þ Kft)
Mf

�Bf

Mf

0 0 0 0
Krs

Mr

Br

Mr
0 0

0 0 0 0
KrsLr � KfsLf

1
BrLr � Bf Lf

1
KfsLf
1

Bf Lf
1

0 0 0 0
Krs

M
Br

M
KrsLr � KfsLf

M
BrLr � Bf Lf

M
0 0 0 0

0 0
KfsLf
Mf

Bf Lf
Mf

0 1 0 1
�(Krs þ Krt)

Mr

�Br

Mr

�KrsLr
Mr

�BrLr
Mr

0 0 0 1

�KrsLr
I

�BrLr
I

�(KfsL2f þ KrsL2r)
I

�(Bf L2r þ Bf L2r)
I

26664

37775

(5:35)

358 Simulation of Dynamic Systems with MATLAB® and Simulink®

B ¼

0 0

0 0

0 0
Kft

Mf
0

0 0

0
Kft

Mr

0 0

0 0

2666666666666666664

3777777777777777775

(5:36)

(b) The output matrix C and direct transmission matrix D are given by

C ¼

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

26664
37775, D ¼

0 0

0 0

0 0

0 0

26664
37775 (5:37)

The direct transmissionmatrixD is all zeros, since the system inputs uf and ur are not directly coupled
to the outputs, that is, step changes in either input are integrated before influencing the outputs, and,
hence, the outputs are continuous at the time the step input(s) is applied.

(c) The Simulink diagram for simulating the vehicle’s response as it travels over the speed bump is
shown in Figure 5.26. The ‘‘State-Space’’ block parameters are the matrices A, B, C, and D of
Equations 5.35 through 5.37, which have been defined in a MATLAB M-file ‘‘Chap5_VehParams.
m’’ for convenience.

The input displacements uf and ur are based on the speed bump profile shown in Figure 5.25
and the forward speed of the car. The front tire displacement is given by

uf ¼

0, t <
D0 � L
v0

Ab cos
p

2L
(D0 � v0t),

D0 � L
v0

� t � D0 þ L
v0

0, t >
D0 þ L
v0

8>>>>>>><>>>>>>>:
(5:38)

FIGURE 5.26 Simulink® diagram for vehicle response traveling over a speed bump.

Simulink® 359

The Simulink blocks to implement uf (and ur) are shown in the top left (and lower left) corner of
Figure 5.26. Note the use of the ‘‘Clock’’ from the ‘‘Sources’’ sublibrary to generate the
simulation time variable ‘‘t.’’ Also, the wider (and heavier) arrows in and out of the ‘‘State-
Space’’ block designate the presence of nonscalar signals, and the ‘‘2’’ and ‘‘4’’ indicate the
number of components in each.

The inputs uf and ur are captured in a scope and plotted for 1.75< t � 2.5 s in the M-file
‘‘Chap5_Figs3_15and3_16.m’’ (see Figure 5.27).

The output vector ‘‘y’’ of the ‘‘State-Space’’ block is decomposed in a ‘‘Demux’’ block and
sent to a scope with four input channels (one for each output). It is also saved for use by the M-file
‘‘Chap5_Figs3_15and3_16.m.’’ The results are plotted for the interval 1.5 � t � 3.5 s in
Figure 5.28.

The vehicle cab displacement varies from �0.189 to 0.627 in. despite the 4 in. height of the
speed bump. Also, the pitch of the vehicle is constrained to �0.4038 � u � 0.3588.

The ‘‘Data history’’ tab in the ‘‘Scope’’ with multiplexed input containing ‘‘uf’’ and ‘‘ur’’
is shown in Figure 5.29. Simulation time values and front and rear tire displacements are saved to
the MATLAB Workspace in array ‘‘uf_ur.’’

The following MATLAB statements placed at the beginning of M-file ‘‘Chap5_
Figs3_15and3_16.m’’ store the saved values of the time array and tire displacements in arrays
‘‘t,’’ ‘‘uf,’’ and ‘‘ur’’ and produce the graph shown in Figure 5.27.

Chap5_VehParams
sim(‘CarDynamics’)
t¼uf_ur(:,1);
uf¼uf_ur(:,2);
ur¼uf_ur(:,3);
figure(1) % begin Figure 5.27
subplot(2,1,1)
plot(t,uf)
ylabel(‘uf (in)’,‘Font Size’,11)
title(‘Front Tire Displacement vs. Time’, ‘FontSize’,11)
subplot(2,1,2)
plot(t,ur)

Front tire displacement vs. time

Rear tire displacement vs. time

t (s)

4

3

2
u f

 (i
n.

)
u r

 (i
n.

)
1

0

1.75

4

3

2

1

0

2.452.42.352.31.75

2.452.12.0521.95

FIGURE 5.27 Inputs uf and ur for vehicle traveling at constant speed v0.

360 Simulation of Dynamic Systems with MATLAB® and Simulink®

ylabel(‘ur (in)’,‘FontSize’,11)
xlabel(‘\itt \rm(sec)’,‘FontSize’,11)
title(‘Rear Tire Displacement vs. Time’,‘FontSize’,11)

The first statement runs another M-file ‘‘Chap5_VehParams.m,’’ which loads the parameter
values. The next command sim(‘‘CarDynamics’’) causes execution of the Simulink model
‘‘CarDynamics.mdl.’’

1.75 2 2.25 2.5 2.75 3 3.25 3.5

1.75 2 2.25 2.5 2.75 3 3.25 3.5

1.75 2 2.25 2.5 2.75 3 3.25 3.5

1.75 2 2.25 2.5 2.75 3 3.25 3.5

0
y (

in
.)

y f
 (i

n.
)

y r
 (i

n.
)

1
2
3

Vehicle c.g. displacement vs. time

0
1
2
3

Front axle displacement vs. time

0
1
2
3

Rear axle displacement vs. time

−0.4

0

0.4

θ
(d

eg
)

Vehicle pitch angle vs. time

t (s)

FIGURE 5.28 Outputs y, yf, yr, and u of vehicle suspension system for 1.5 � t � 4 s.

FIGURE 5.29 Saving ‘‘uf’’ and ‘‘ur’’ for plotting in M-file ‘‘Chap5_Figs3_15and3_16.m.’’

Simulink® 361

EXERCISES

5.4 For the second-order system shown in Figure 5.13,
(a) Find the second-order differential equation relating the output y and input u.
(b) Draw a Simulink diagram of the system with two integrators in series.

5.5 For the submarine depth control system shown in Figure 5.15,
(a) Draw a simulation diagram. Is there a direct connection from vcom to v?
(b) Redraw the Simulink diagram in Figure 5.16 using the alternate expressions for the

controller and submarine dynamics transfer functions in Equations 5.4 and 5.6.
(c) Run the Simulink model and compare the responses for v(t), y(t), and u(t) with those shown

in the text.
5.6 Two linear tanks are arranged in series as shown in Figure E5.6:

F1(t)

H1(t)

F2(t)

H2(t)
A1

R2R1

F0(t)

A2

FIGURE E5.6

(a) Write the differential equation models for the tanks.
(b) The system parameters are

A1¼ 50 ft2, A2¼ 100 ft2, R1¼ 0.2 ft=ft3=min, and R2¼ 0.3 ft=ft3=min
Prepare a Simulink diagram of the system, and simulate the response of both tank levels

under the following conditions:
(i) H1(0)¼ 0, H2(0)¼ 0, F1(t)¼ 40 ft3=min, t � 0
(ii) H1(0)¼ 0, H2(0)¼ 10, F1(t)¼ 0, t � 0

(iii) H1(0)¼ 0, H2(0)¼ 0, F1(t) ¼
5t, 0 � t � 5

�5t þ 50, 5 < t � 10

0, t > 0

8>><>>:
Obtain one graph with time histories of H1(t) and H2(t) and a second graph with F0(t),
F1(t), and F2(t).

(c) Eliminate H1(t) from the two first-order differential equations in part (a) to obtain a second-
order differential equation relating H2(t) and F1(t).

(d) Prepare a Simulink diagram based on the continuous-time model in part (c).
(e) Run the Simulink model for the same conditions in part (b), and compare the response for

H2(t) with the one obtained in part (b).
(f) Find the analytical solution [H2(t)]anal when both tanks are initially empty and F1(t)¼ 40

ft3=min, t � 0. Compare the analytical solution [H2(t)]anal with the simulated solution
[H2(t)]sim obtained in part (b).

Hint: Use Simulink to implement the analytical solution and feed both [H2(t)]sim and [H2(t)]anal
into a summer to obtain the difference.

5.7 Solve Exercise 2.3 using Simulink.
5.8 Solve Exercise 2.4 using Simulink.

362 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.4 ALGEBRAIC LOOPS

Execution of the Simulink model in this chapter, Figure 5.16, poses a dilemma often encountered
when simulating dynamic systems with feedback loops. A runtime warning (default) or error
appears in the MATLAB Command Window stating

Warning:Block diagram ‘SubDepth_A’ contains 1 algebraic loop(s).
Found algebraic loop containing block(s):
‘SubDepth_A=Controller and Stern Plane Actuator Transfer Fcn’
‘SubDepth_A=Sub Dynamics Transfer Fcn’
‘SubDepth_A=Sum1’ (algebraic variable)

An algebraic loop is any closed loop appearing in the Simulink diagram composed of strictly
algebraic and implicit blocks such as the implicit discrete-time numerical integrators (discussed in
Section 5.6). Consequently, the output of any block in an algebraic loop is ultimately an implicit
function of itself. In large scale simulations with several 100 blocks, it is nearly impossible to
identify the presence of an algebraic loop by visual inspection. The Simulink diagrams of even
relatively simple simulations with only a handful of blocks may contain algebraic loops, which
escape detection. Simulink (and other block-oriented continuous simulation languages) detects the
presence of an algebraic loop and reports the blocks comprising it.

Before we discuss its implications, let us confirm the existence of an algebraic loop in the
Simulink model ‘‘SubDepth_A.mdl’’ consisting of the two ‘‘Transfer fcn’’ blocks and the
‘‘Sum’’ block. Referring to Figure 5.16, the controller and stern plane actuator transfer function
can be rewritten as follows:

GC(s) ¼ 0:6sþ 0:1
s

¼ 0:6þ 0:1
s

(5:39)

and the submarine dynamics transfer function is expressible as

GP(s) ¼ 20sþ 10
10sþ 1

¼ 2þ 8
10sþ 1

(5:40)

leading to an equivalent block diagram shown in Figure 5.30.
The algebraic loop is shown in bold, and a similar algebraic loop is present in the Simulink

diagram for ‘‘SubDepth_A.mdl.’’ Note that if the controller and stern plane actuator transfer function
were replaced by a pure gain, the diagram would still have an algebraic loop due to the direct path
from the input to the output in the submarine dynamics transfer function.

θ(t)e(t)

Controller and
stern plane

actuator

Submarine
dynamics

0.6
v(t) y(t)

2

10s + 1
80.1

s

vcom 1
s−

FIGURE 5.30 Block diagram for submarine depth control showing algebraic loop.

Simulink® 363

The dilemma posed by algebraic loops can be demonstrated by looking at the equations the
Simulink program is attempting to solve in the submarine example at the time t¼ 0. After
initializing the state u(0) and v(0) and evaluating the input vcom(0), Simulink calculates e(0)
according to

e(0) ¼ vcom(0)� v(0) (5:41)

Existence of direct paths, that is, pure gain (zero-order dynamics), from e(t) to u(t) and u(t) to
v(t) implies

v(0) ¼ 2u(0) (5:42)

u(0) ¼ 0:6e(0) (5:43)

Substituting u(0) in Equation 5.43 into Equation 5.42 gives

v(0) ¼ 2[0:6e(0)] ¼ 1:2e(0) (5:44)

Replacing e(0) in Equation 5.44 with e(0) in Equation 5.41 results in

v(0) ¼ 1:2[vcom(0)� v(0)] (5:45)

The circular nature of algebraic loops is demonstrated by Equation 5.45, an implicit equation with
v(0) on both sides. In the general case, the implicit equation is nonlinear. Simulink attempts to solve
the implicit equations associated with an algebraic loop using the iterative Newton–Raphson
method (Chapra 2002). Solving implicit equation(s) at each iteration, especially nonlinear ones,
can dramatically decrease the simulation execution speed. Further, the method can fail to converge
to a solution.

The initial depth rate value, more precisely, the value at t¼ 0þ in the submarine example, is
easily verified from Equation 5.45.

v(0þ) ¼ 1:2[vcom(0)� v(0þ)] (5:46)

) v(0þ) ¼ 1:2
2:2

vcom(0) ¼ 1:2
2:2

(25) ¼ 13:64 (5:47)

in agreement with the value given in Equation 5.13 as well as the graph for v(t) shown in
Figure 5.17.

5.4.1 ELIMINATING ALGEBRAIC LOOPS

The most desirable method for eliminating an algebraic loop is by means of algebraic manipulation
of the loop equations to produce an equivalent system explicit in nature. It is up to the user to obtain
an explicit solution, if one exists, and modify the Simulink diagram accordingly. Simulink does not
perform the symbolic math operations necessary to obtain the solution shown in Equation 5.47.

To illustrate, consider the block diagram of a system shown in Figure 5.31. The algebraic loop is
shown in bold.

By algebraic manipulation or similar block diagram reduction techniques, the transfer function
Y(s)=R(s) is obtained as

Y(s)

R(s)
¼ K þ (1þ K)G(s)

(1þ K)þ (2þ K)G(s)
(5:48)

364 Simulation of Dynamic Systems with MATLAB® and Simulink®

Suppose the constant K¼ 1 and the transfer function G(s)¼ 1=(sþ 10). The transfer function
Y(s)=R(s) reduces to

Y(s)

R(s)
¼ 0:5(sþ 12)

sþ 11:5
(5:49)

It is left as an exercise to demonstrate that a Simulink diagram based on the block diagram in
Figure 5.31 and one with a single ‘‘Transfer Fcn’’ to implement Equation 5.49 produce identical
outputs.

Unfortunately, the dynamic model equations rarely permit this approach. In most cases, the
algebraic loop entails nonlinear blocks, making it difficult or impossible to reformulate the equa-
tions to produce a new block diagram with the algebraic loop removed. Several algebraic loops with
shared blocks may exist, complicating matters even further.

A second approach to dealing with algebraic loops consists of inserting a ‘‘Memory’’ block into
the loop. A ‘‘Memory’’ block is equivalent to a one-integration step delay. Its output is the input
from the previous time step. This allows Simulink to calculate outputs of all the blocks in the
algebraic loop in the proper sequence.

The system shown in Figure 5.32 consists of a cart with an inverted pendulum. The position of
the cart x(t) and the angle of the pendulum from the vertical u(t) are of interest. The pendulum is free
to rotate without friction in a plane, and the cart moves along a frictionless surface. The input is a
horizontal force u. The outputs are x and u.

From Newton’s second law (translation and rotation), the equations of motion are

(M þ m)€x� ml _u2 sin uþ ml€u cos u ¼ u (5:50)

m€x cos uþ ml€u ¼ mg sin u (5:51)

where
l is the length of the pendulum
m is the pendulum mass (assumed to be concentrated at the end)
M is the mass of the cart
g is the gravitational constant

K

R(s)
– –

Y(s)G(s)

FIGURE 5.31 Block diagram of system with algebraic loop.

u M

x

m

θ
l

FIGURE 5.32 Inverted pendulum.

Simulink® 365

Later, in Section 5.6, Equations 5.50 and 5.51 will be converted into a pair of equations, one for €x
and the other with €u where both are explicit functions of the state variables u and _u.

A Simulink diagram of the system is shown in Figure 5.33.
The algebraic loop shown in bold is broken by the insertion of a ‘‘Memory’’ block, eliminating

the need for the Newton–Raphson iterative root solving at each integration step.
A simulation of the inverted pendulum when u(t)¼ 0, t � 0 was run for a period of 10 s using a

fixed-step numerical integrator. All initial conditions are zero except the initial pendulum deflection,
u(0)¼p=2 rad. The output u(t) is shown in Figure 5.34.

It is important to verify the results obtained when ‘‘Memory’’ blocks are employed to break
algebraic loops. The delay introduced by the ‘‘Memory’’ block adversely affects the numerical
accuracy and stability of the simulation. A considerable reduction in the time required to execute a
simulation is hardly a suitable trade-off for inaccurate results. In other words, if the integration step
size has to be reduced significantly to combat the existence of the ‘‘Memory’’ block, then the overall
savings in execution time may be insignificant, or worse yet, the net result might be an overall
increase in time of execution. A ‘‘Memory’’ block is worth considering when Simulink reports
difficulty in converging to a solution of the implicit equations arising from an algebraic loop.

FIGURE 5.33 Simulink® model of inverted pendulum with ‘‘Memory’’ block.

0 1 3 4 6 7
50

100

150θ(
t)

(d
eg

) 200

250

300

t (s)

Angular displacement (deg) vs. time (s)

52

FIGURE 5.34 Simulink® output for u(t), t � 0 using a ‘‘Memory’’ block.

366 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.4.2 ALGEBRAIC EQUATIONS

While Simulink is generally used for simulating dynamic systems described by ordinary differential
equations, it can also be used to solve a system of algebraic equations. For example, the algebraic
equations

y ¼ f (x)
x ¼ g(y)

(5:52)

comprise an algebraic loop. Consider the dynamic system modeled by

dy

dt
¼ F(x, y) ¼ f (x)� y

x ¼ g(y)

9=; (5:53)

The two parts of Equation 5.53 represent the model of a first-order autonomous system, that is,

dy

dt
þ y� f [g(y)] ¼ 0 (5:54)

Suppose we are able to find an equilibrium point y0 of the system described by Equation 5.54. Then
(x0, y0), where x0¼ g(y0), constitutes a solution to the system of algebraic equations in Equation
5.52. To illustrate, let us attempt to find a point that lies on the circle x2þ y2¼ 100 and the curve
x¼ y2=5. In this case,

y ¼ f (x) ¼ (100� x2)1=2

x ¼ g(y) ¼ y2

5

(5:55)

The Simulink diagram in Figure 5.35 incorporates an integrator for solution to

dy

dt
¼ f (x)� y ¼ (100� x2)1=2 � y (5:56)

along with the block to generate x from the second of the two equations in Equation 5.55.

FIGURE 5.35 Simulink® diagram for solving algebraic equations in Equation 5.55.

Simulink® 367

The search for the solution to the algebraic equations in Equation 5.55 begins at (x(0), y(0))
where y(0) is the initial condition of the integrator and x(0)¼ g[y(0)]. Starting from the point (0, 0),
the approach to the equilibrium point y0 and corresponding value of x0 is viewable by clicking on
the ‘‘Scope’’ block. The edited output is shown in Figure 5.36.

The solution x0¼ 7.804, y0¼ 6.247 is visible in the respective ‘‘Display’’ blocks shown in
the Simulink diagram. The ‘‘XY Graph’’ block allows a view of the trajectory x¼ g(y)¼ y2=5 from
(0, 0) up to the solution (x0, y0), as shown in Figure 5.37.

If the simulation fails to converge to an equilibrium point, restarting from a new point (x(0), y(0))
may help. Only stable equilibrium points of Equation 5.53 can be discovered. Keep in mind that
nonlinear algebraic equations may possess none, one, or several equilibrium points, and the number
of such points may not be known beforehand.

0
2
4
6
8

x

x vs. t

0 0.5 1 1.5 2 2.5
0
2
4
6
8

t

y

y vs. t

FIGURE 5.36 Graph of x(t) and y(t) from Simulink® scope block.

FIGURE 5.37 Trajectory from initial point x(0)¼ 0, y(0)¼ 0 to solution (x0, y0).

368 Simulation of Dynamic Systems with MATLAB® and Simulink®

A more direct approach to solving nonlinear algebraic equations with Simulink involves the use
of an ‘‘Algebraic Constraint’’ block. This block changes its output in an iterative manner
until its input approaches zero indicating that the algebraic constraint equation is satisfied, that is,
the existence of a solution. Note that a feedback path must exist from the output to the input.

The previous system of algebraic equations is solved using ‘‘Algebraic Constraint’’
blocks as shown in Figure 5.38. Initial guesses for the variables x and y are required. Note that
the inputs to both ‘‘Algebraic Constraint’’ blocks have converged to zero and the algebraic
states x and y are in agreement with the previous solution.

The ‘‘Algebraic Constraint’’ block is an effective tool for locating the equilibrium points
of a nonlinear dynamic system.

EXERCISES

5.9 Run the Simulink model in Figure 5.33 using the ‘‘ode1’’ Euler integrator, and determine the
largest step size possible for simulating the inverted pendulum dynamics with u(t)¼ 0, t � 0,
and u(0)¼p=2 for a period of 10 s. Repeat without the ‘‘Memory’’ block.

5.10 Starting with Equations 5.50 and 5.51 for the inverted pendulum,
(a) Find explicit functions f(u, _u, u) and g(u, _u, u) where

€x ¼ f (u, _u, u) and €u ¼ g(u, _u, u)

(b) Introduce state variables x1, x2, x3, and x4 where x1¼ x, x2 ¼ _x, x3¼ u, and x4 ¼ _u, and
find the state derivative functions f1(x1, x2, x3, x4, u), f2(x1, x2, x3, x4, u), f3(x1, x2, x3, x4, u),
and f4(x1, x2, x3, x4, u), where

_x1 ¼ f1(x1, x2, x3, x4, u)

_x2 ¼ f2(x1, x2, x3, x4, u)

_x3 ¼ f3(x1, x2, x3, x4, u)

_x4 ¼ f4(x1, x2, x3, x4, u)

FIGURE 5.38 Using algebraic constraint blocks to solve algebraic equations in Equation 5.55.

Simulink® 369

(c) The outputs are y1¼ x and y2¼ u. Find the output functions g1(x1, x2, x3, x4, u) and
g2(x1, x2, x3, x4, u), that is,

y1 ¼ g1(x1, x2, x3, x4, u)

y2 ¼ g2(x1, x2, x3, x4, u)

(d) Prepare a Simulink diagram of the system based on the nonlinear state equations obtained
in parts (b) and (c). Is an algebraic loop present?

(e) Compare outputs for u(t), t � 0 using the Simulink diagram from Figure 5.33 and a
Simulink diagram based on the state equations _x ¼ f (x, u), y ¼ g(x, u) for the following
cases:
(i) u(t)¼ 0, t � 0 and x1(0)¼ x2(0)¼ 0, x3(0)¼ 18, x4(0)¼ 0
(ii) u(t)¼ 0, t � 0 and x1(0)¼ x2(0)¼ x3(0)¼ 0, x4(0)¼ 108=s

5.11 Rework the example designed to find the first quadrant solution to

y ¼ f (x) ¼ (100� x2)1=2 and x ¼ g(y) ¼ y2

5

by looking for an equilibrium point of

dx

dt
¼ G(x, y) ¼ g(y)� x

y ¼ f (x)

5.12 Find both solutions to the algebraic equations

y ¼ ex � 1, y ¼ 5� (x� 1)2

using ‘‘Algebraic Constraint’’ blocks.
5.13 Consider the system represented in block diagram form in Figure 5.31 and the equivalent

closed-loop transfer function in Equation 5.48.
(a) Find the differential equation relating the output y(t) and input r(t) when

G(s) ¼ K1

tsþ 1
(i)

G(s) ¼ K1(t1sþ 1)
t2sþ 1

(ii)

G(s) ¼ K1

s2 þ 2zvnsþ 1
(iii)

(b) Prepare Simulink diagrams to simulate the block diagram and transfer function represen-
tations of the system when G(s)¼ 2=(0.5sþ 1) and K¼ 10. Find and plot the responses to
the following inputs:
(i) r(t)¼ û(t), the unit step input
(ii) r(t)¼ e�t=2, t � 0
(iii) See graph of r(t) in Figure E5.13

370 Simulation of Dynamic Systems with MATLAB® and Simulink®

r(t)
2

1

0.5 1 20
t

FIGURE E5.13

5.5 MORE SIMULINK® BLOCKS

In this section, we introduce additional Simulink blocks to extend the simulation capabilities
developed so far. The next example is a common one from the field of traffic engineering. The
objective is to formulate a mathematical model suitable for describing the characteristics of
a driver=vehicle attempting to follow a lead vehicle in a single lane of traffic. The result is referred
to as a microscopic car-following model. Car-following models are an essential component of traffic
simulation software used to predict traffic flows in tunnels and other roads where passing is
restricted.

The basic situation is illustrated in Figure 5.39, which shows a lead vehicle (n� 1) and
a following vehicle (n), each of length L.

The system, comprised of the lead and following vehicle, is driven (no pun intended) by the
speed of the lead vehicle _xn�1, and the outputs include {xn�1, xn, _xn,€xn} in addition to the following
quantities, which relate directly to the combination of lead and following vehicle movements.

Vehicle spacing: sn ¼ xn�1 � xn (5:57)

Vehicle following distance: dn ¼ (xn�1 � L)� xn (5:58)

Speed difference: D _xn ¼ _xn�1 � _xn (5:59)

Vehicle gap: gn ¼ xn�1 � xn
_xn

(5:60)

The subscripts ‘‘n� 1’’ and ‘‘n’’ are used, so that we can model a platoon consisting of a lead vehicle
and several following vehicles. Except for the platoon leader and the last vehicle in the platoon, each
vehicle operates in a following and lead vehicle mode as depicted in Figure 5.39. Platoon dynamics
is considered in the next section.

We have yet to formulate a mathematical model that governs the motion of the following vehicle
in the case of small-to-moderate vehicle spacing. Note that car-following models are not applicable
at low traffic densities since each vehicle is essentially a leader moving independently of the
preceding vehicle.

xn xn−1

L L

xn
. xn−1

.

FIGURE 5.39 Diagram showing lead and following vehicles.

Simulink® 371

Standard practice is to postulate an equation for the acceleration of the following vehicle in
response to certain stimuli that are based on the relative movements of the two vehicles, that is,

€xn(t þ T) ¼ f (xn�1(t), xn(t), _xn�1(t), _xn(t)) (5:61)

The acceleration response is delayed by an amount T, which represents the sum of the driver’s
cognition and reaction times in addition to the vehicle response time. The literature is replete with
articles and chapters in books describing suitable candidates for the function ‘‘f ()’’ in Equation 5.61
(Bender and Fenton 1966; Haberman 1977; Mesterton-Gibbons 1988; Aycin and Benekohal 2001).

The block diagram in Figure 5.40 represents a specific function developed by the author used to
simulate realistic traffic in a driving simulator.

The driver=vehicle combination behaves like a regulatory controller with output €xn(t þ T), a
function of two error terms e1, eg and the following vehicle’s speed _xn. The first error term e1 is
the difference between 0 and _xn � _xn�1 weighted by the reciprocal of the spacing (xn�1 � L)� xn.
The second term eg represents a gap error, that is, the difference between some desirable gap G
and the actual gap g. The driver=vehicle controller attempts to drive both errors to zero by
implementation of the control law

€xn(t þ T) ¼ K1(e1, _xn) � e1 þ Kg(eg, _xn) � eg (5:62)

Note that when _xn�1 is constant and both errors are zero, the
following vehicle is traveling at the same speed with a separation
xn�1 � xn ¼ G _xn�1.

The functions K1(e1, _xn) and Kg(eg, _xn) are implemented as shown in
Tables 5.1 and 5.2. The constants K1,a, K1,d, Kg,d, and Kg,a are gain
parameters reflecting driver aggressiveness, SL is the speed limit, and
D is a threshold above the speed limit.

A block diagram of the system is shown in Figure 5.41. The blocks
to limit the acceleration and speed are self-explanatory. The spacing
limiter assures that the minimum vehicle separation xn�1 � xn is greater
than one car length at all times.

A Simulink diagram of the system is shown in Figure 5.42. The
M-file ‘‘Chap5_cfparams1.m’’ assigns values to the system parameters
referenced in a number of the Simulink blocks. Accordingly, it must be
run prior to executing the simulation model file ‘‘car_ following.mdl.’’
The new Simulink blocks in Figure 5.42 and their function are
described briefly as follows.

eg

e1

–

–

G

0

Driver/vehicle

xn−1 − xng = xn

Kg (eg, xn).

xn
.

(xn−1 − L) − xn
xn − xn−1

.. K1 (e1, xn).

.

..xn(t + T)

FIGURE 5.40 Block diagram of a car-following model.

TABLE 5.1
Function K1(e1, _xn)

_xn
e1 �SLþ D >SLþ D

>0 K1,a 0

�0 K1,d K1,d

TABLE 5.2
Function Kg(eg, _xn)

_xn
eg �SLþ D >SLþ D

>0 Kg,d Kg,d

�0 Kg,a 0

372 Simulation of Dynamic Systems with MATLAB® and Simulink®

1. ‘‘Clock’’: Outputs the simulation time variable ‘‘t’’ for the ‘‘Lookup Table’’ block.
2. ‘‘Lookup Table’’: Linearly interpolates between specified data points to generate the

lead car speed profile.
3. ‘‘MATLAB fcn’’: Passes the inputs ‘‘x1d,’’ ‘‘e1,’’ and ‘‘eg’’ to the MATLAB function

‘‘acc.m,’’ which computes the vehicle’s acceleration response.
4. ‘‘Saturation’’: Sets limits for minimum and maximum vehicle acceleration.
5. ‘‘Transport Delay’’: Delays vehicle acceleration by T, the driver=vehicle reaction time.

Spacing
limiter

egG

g

xn–

–

–
–

–÷

÷

e1

Driver/vehicle Speed
limiter

L

xn

L

L

(xn−1 − L) − xn

xn−1

xn−1 − xn

xn−1

xn−1
.

. .xn−1 − xn

.xn

..xn
.xn

∫

∫∫

Acceleration
limiter

FIGURE 5.41 Block diagram of a car-following system.

FIGURE 5.42 Simulink® diagram for a car-following system.

Simulink® 373

6. ‘‘Limited Integrator’’: An integrator configured to limit vehicle speed between zero
and a maximum value of ‘‘vmax.’’

7. ‘‘Switch’’: Logical blocks that limit the spacing ‘‘x0–x1’’ to at least Lþ 1 ft and the
speed ‘‘x1d’’ to at least 1 ft=s for calculation of the gap g.

Access to theMATLABWorkspace during execution allows Simulink block parameters to be variables
specified in MATLAB script files. For example, The ‘‘Lookup Table’’ block parameters ‘‘T0,’’
‘‘T1,’’ ‘‘T2,’’ ‘‘A1,’’ and ‘‘A2’’ shown in Figure 5.43 are set in the M-file ‘‘Chap5_cfparams1.m.’’

The ‘‘MATLAB Function’’ block is a powerful feature of Simulink, which exploits the tight
integration between MATLAB and Simulink. The Simulink block outputs ‘‘x1d,’’ ‘‘e1,’’ and ‘‘eg’’
are accessible as inputs to the MATLAB function M-file ‘‘acc.m,’’ which implements the car-
following algorithm in Equation 5.62. The computed output is sent to the ‘‘Acceleration
Limiter’’ block in Figure 5.42.

The M-file ‘‘acc.m’’ is listed as follows.

% function acc.m computes the temporary commanded acceleration
function y¼acc(x1d,e1,eg,K1d,K1a,Kgd,Kga,SL,delta)
if e1<¼0

y1¼K1d*e1;
elseif x1d<¼SLþdelta

y1¼K1a*e1;
else

y1¼0
end
if eg>0

yg¼Kgd*eg;
elseif x1d<¼SLþdelta

yg¼Kga*eg;
else

yg¼0;
end

y¼y1þyg;

FIGURE 5.43 ‘‘Lookup Table’’ block parameters.

374 Simulation of Dynamic Systems with MATLAB® and Simulink®

The results of simulating a pair of initially stopped vehicles, with one car length separation,
followed by the lead vehicle accelerating (with constant acceleration) to 60 mph in 30 s are obtained
by running the M-file ‘‘Chap5_Figs5_6thru5_10.m’’ and shown in Figures 5.44 through 5.48. The
commanded gap G is 2 s, the value recommended for highway driving by The American Automo-
bile Association.

0 10 20 30 40 50 60 70 80 90
0

1500

3000

4500

6000

Lead car displacement vs. time

0 10 20 30 40 50 60 70 80 90
0

1500

3000x 1
 (f

t)
x 0

 (f
t)

4500

6000

Following car displacement vs. time

Time (s)

FIGURE 5.44 Lead and following vehicle positions.

0

15

v 0
 (m

ph
)

v 1
 (m

ph
)

30

45

60

Lead car speed vs. time

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

0

15

30

45

60

Following car speed vs. time

Time (s)

FIGURE 5.45 Lead and following vehicle speeds.

Simulink® 375

The initial blip in speed of the following vehicle (see Figure 5.45) is due to the excessive gap g
that results whenever the following vehicle is moving at very low speeds. The car-following model,
Equation 5.62, implemented in the M-file ‘‘acc.m’’ is not robust, that is, it is not valid at following
vehicle speeds close to zero, which occurs when the simulation begins. Similar artifacts are present
in the gap (Figure 5.46) and acceleration (Figure 5.48) plots. One of the exercise problems addresses
this point further.

0 10 20 30 40 50 60 70 80 90
0

0.3

0.6

0.9

1.2

1.5

g,
G(

s)

1.8

2.1

2.4

2.7

3
Actual and desired gap vs. time

Time (s)

Actual gap

Desired gap

FIGURE 5.46 Desired and actual gaps.

0

x 0
–

x 1
 (f

t)

10 20 30 40 50 60 70 80 90
0

25

50

75

100

125

150

175

200

225
Following distance vs. time

Time (s)

FIGURE 5.47 Following distance.

376 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.5.1 DISCONTINUITIES

Each of the nonlinear elements presented in Section 2.7 are available as blocks in Simulink. From
within the Simulink Library Browser, click on ‘‘Discontinuities’’ to display the element
blocks as shown in Figure 5.49.

In the right-hand column are nonlinear blocks for friction, dead zone, saturation, backlash,
hysteresis (relay), and quantization.

5.5.2 FRICTION

Figure 5.50 shows the ‘‘Coulomb and Viscous Friction’’ parameter dialog box.
While the default conditions are shown in Figure 5.50, a more practical way to use the block is

to assign a scalar value to the Coulomb friction value (Offset). This would represent
the coefficient of static friction as in the case of initiating the motion of a sliding mass. Of course,
the Coefficient of viscous friction (Gain) corresponds to the kinetic friction as the
coefficient of the velocity term in the dynamic equations of motion.

A detailed description of the ‘‘Coulomb and Viscous Friction’’ block can found by
clicking on Help from the dialog box.

5.5.3 DEAD ZONE AND SATURATION

Figure 5.51 shows the ‘‘Dead Zone’’ parameter dialog box.
The parameter dialog box for the dead zone block is rather intuitive. The user simply sets the

beginning and the end of the dead zone according to the input being sent to the block. In the default
example, the output is zero if the input signal is between �0.5 and 0.5. Otherwise, the output tracks
the input.

A detailed description of the ‘‘Dead Zone’’ block can found by clicking on Help from the
dialog box.

Figure 5.52 shows the ‘‘Saturation’’ parameter dialog box.

0 10 20 30 40 50 60 70 80 90
−5

−2.5

0

2.5

a 1
 (f

t/s
2)

5

7.5

10

Following vehicle acceleration vs. time

Time (s)

FIGURE 5.48 Simulink® output of following vehicle acceleration.

Simulink® 377

The parameter dialog box for the saturation block is also intuitive. The user simply sets the
beginning and the end of the saturation limits according to the input being sent to the block. In the
default example, the output is �0.5 for input values less than �0.5, the output tracks the input
between �0.5 and 0.5, and the output is 0.5 for input values greater than 0.5.

A detailed description of the ‘‘Saturation’’ block can found by clicking on Help from the
dialog box.

FIGURE 5.50 ‘‘Coulomb and Viscous Friction’’ parameter dialog box.

FIGURE 5.49 Simulink® Library Browser—Discontinuities.

378 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.5.4 BACKLASH

Figure 5.53 shows the ‘‘Backlash’’ parameter dialog box.
For the backlash block, the user sets the Deadband width and the Initial output. If the

defaults are taken, the output of the backlash block is split evenly between upper and lower values of
the input. For example, if the input is a square wave with an upper limit of þ1 and a lower limit
of �1, the deadband width is centered on zero (the Initial output default), and half of the
Deadband width (0.5) is taken from the upper limit while the other half of the Deadband
width is taken from the lower limit yielding an output of þ0.5 (when the input is þ1) and an
output of �0.5 (when the input is �1).

FIGURE 5.51 ‘‘Dead Zone’’ parameter dialog box.

FIGURE 5.52 ‘‘Saturation’’ parameter dialog box.

Simulink® 379

Clarifying, if the Deadband width is 0.4, then 0.2 will be taken from each of the input values,
that is, the output is a square wave between þ0.8 and �0.8 (using the input square wave between
þ1 and �1).

If the Initial output is nonzero and exceeds the input value, then the backlash block can be
used to simulate gears that have yet to be engaged. Continuingwith the same squarewave input between
þ1 and �1, if the Initial output is set to 2, then the output is þ1 plus half of the Deadband
width orþ1.2. It is only when the gears engage that the output returns to the limits ofþ0.8 and�0.8.

A detailed description of the ‘‘Backlash’’ block can found by clicking on Help from the
dialog box.

5.5.5 HYSTERESIS

One of the examples in Section 2.7 on nonlinear systems dealt with maintaining the temperature
inside a building using a thermostat to control the heat from a furnace. The building temperature and
thermostat control are governed by the equations repeated as follows.

t
dT

dt
þ T ¼ RQþ T0 (5:63)

Q ¼
�Q, T � Td � D or Td � D < T < Td þ D and

dT

dt
> 0

0, T > Td þ D or Td � D < T < Td þ D and
dT

dt
< 0

8>><>>: (5:64)

where
T is the building temperature (8F)
Q is the heat input from furnace (Btu=h)
T0 is the outside temperature (8F)
R is the thermal resistance of building (8F=Btu=h)
t is the time constant of building temperature response (h)
�Q is the rating of furnace (Btu=h)
Td is the thermostat setting (8F)
D is the dead zone parameter for thermostat

FIGURE 5.53 ‘‘Backlash’’ parameter dialog box.

380 Simulation of Dynamic Systems with MATLAB® and Simulink®

The hysteresis effect associated with the thermostat, Equation 5.64, is illustrated graphically in Figure
2.38. This type of nonlinear behavior is readily simulated using a ‘‘Relay’’ block from the Simulink
‘‘Discontinuities’’ sublibrary. A description of the ‘‘Relay’’ block can be found in the online
Simulink Reference, which contains detailed documentation for each block (see Figure 5.54).

A Simulink diagram for simulating building temperature with conditions as described in
Example 2.11 is shown in Figure 5.55. The ‘‘Relay’’ block parameter box is also shown.

The furnace output and building temperature are shown in Figure 5.56. The building temperature
increases from 508F, the constant outside temperature. The hysteresis kicks in once the temperature
exceeds ‘‘Td-del’’ ¼ 75� 3 ¼ 72 8F. The initial portion of the building temperature response in
Figure 5.56 is identical to the temperature response graphed in Section 2.7.

5.5.6 QUANTIZATION

Figure 5.57 shows the ‘‘Quantization’’ parameter dialog box.
To demonstrate the use of the quantization block, use the default value given for the Quant-

ization interval, that is, 0.5, where the input is a ramp with a slope of 0.5. When the input is
between 0 and 0.5, the quantized output is 0; between 0.5 and 1, the quantized output is 0.5;
et cetera.

FIGURE 5.54 Description of the Simulink® ‘‘Relay’’ block.

FIGURE 5.55 Simulink® diagram for a simulation of building temperature using the ‘‘Relay’’ block for
thermostat.

Simulink® 381

Following the example from Section 2.7, the Quantization interval is set to 10=256.
This corresponds to the analog input range of 0–10 V for an 8-bit microprocessor with 28¼ 256
states, 0–255.

A detailed description of the ‘‘Quantization’’ block can be found by clicking on Help from
the dialog box.

EXERCISES

5.14 Simulate the motion of a lead vehicle and following vehicle for a period of time sufficient to
reach steady state for the conditions given in Table E5.14. The lead vehicle speed is

_x0(t) ¼
v0, 0 � t � P=4

v0 þ A sin
2pt
P

, P=4 < t � 5P=4

v0, t > 5P=4

8>>><>>>:
Plot graphs similar to the ones shown in Figures 5.44 through 5.48.

FIGURE 5.56 Furnace output and building temperature.

FIGURE 5.57 ‘‘Quantization’’ parameter dialog box.

382 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.15 Consider the second column of Table E5.14 as baseline numerical values for simulation of a
pair of vehicles. Perform a simulation study to analyze the effect of the desirable gap G on
the following vehicle’s ability to follow at or near the desirable gap. Run the simulation for
G¼ {1, 1.5, 2, 2.5, 3, 3.5, 4} for a duration of 3P s, and record the value of the average
absolute gap error, that is,

jegjave ¼
1
2P

ð3P
P

jg(t)� Gjdt

Plotjegjave vs: G

5.16 Improve the robustness of the car-following simulation to make the output more realistic at
very low vehicle speeds. Specifically, modify the code in ‘‘acc.m’’ and add additional blocks
as necessary to the Simulink diagram in Figure 5.42. Use the baseline values from Table
E5.14 to simulate the following vehicle’s response to a lead car with speed profile shown in
Figure E5.16.

0 20 80 100
t, s

60

. x 0
(t)

, m
ph

FIGURE E5.16

5.17 The Simulink diagram in Figure 5.42 contains a ‘‘Switch’’ block to maintain the vehicle
separation xn � xn�1 greater than Lþ 1. This effectively eliminates the possibility of a rear end
collision.

TABLE E5.14

Parameters Case I Case II Case III

v0 50 mph 60 mph 70 mph

A 5 mph 5 mph 10 mph

P 30 s 30 s 60 s

G 2 s 2.5 s 3 s

x0(0) Gv0 Gv0 Gv0
_x1(0) v0 v0 v0
x1(0) 0 ft 0 ft 0 ft

SL v0 v0 v0
D 5 mph 10 mph 55 mph

amin �10 ft=s2 �12 ft=s2 �15 ft=s2

amax 10 ft=s2 12 ft=s2 15 ft=s2

vmax 90 mph 90 mph 90 mph

K1,a 3 ft=s 4 ft=s 5 ft=s

K1,d 3 ft=s 4 ft=s 5 ft=s

Kg,a �5 ft=s3 �5 ft=s3 �5 ft=s3

Kg,d �4 ft=s3 �4 ft=s3 �4 ft=s3

T (delay) 0.5 s 0.75 s 1 s

L 15 ft 15 ft 15 ft

Simulink® 383

(a) Remove the ‘‘Switch’’ block and add the necessary Simulink blocks to detect the
existence of a collision and halt the simulation.

(b) Use the lead car profile in Figure E5.16 and adjust the parameters D and
K1,a,K1,d ,Kg,a, Kg,d to force a rear-end collision.

5.18 Flow into the tank shown in Figure E5.18a is either on or off. It turns on when the level falls
below 20 ft and remains on when the tank is filling until there is 25 ft of liquid in the tank. It
remains off as the tank empties until the level falls below 20 ft. In the on condition, the flow
rate is 18 ft3=min. The tank dynamics are described by

A
dH

dt
þ F0 ¼ F1, F0 ¼ aH1=2

where A ¼ 50 ft2, a ¼ 3 ft3=min=ft1=2, and H(0) ¼ 0 ft.
(a) Develop your own Simulink diagram or use the one shown in Figure E5.18b to simulate

the tank dynamics for a period of time sufficient to see several cycles of filling and
emptying. Plot the tank level and the two flows vs. time.

(b) What is the minimum flow necessary to assure the tank is capable of filling to a level of
25 ft? Find the answer analytically and verify with Simulink.

(c) Supplement your Simulink diagram with additional blocks to measure the percentage of
time during a cycle in which the tank is filling up.

(d) Instead of switching the flow off and on immediately when the level reaches 25 and 20 ft,
respectively, suppose the flow switches off 30 s after the tank level reaches 25 ft and
switches on 30 s after the tank level falls to 20 ft. The tank is 25 ft tall. Add Simulink
blocks to account for spillover from the tank. Plot the flow in, flow out, spillover, and tank
level vs. time.

F1(t)

F0(t)

H(t)

H

F1

20 ft 25 ft

18 ft3/min

A

FIGURE E5.18a

FIGURE E5.18b

384 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.19 Cascading the dead zone and saturation blocks, model the valve described in Section 2.7.2.
Set the dead zone block’s parameters to model opening currents of �0.5 and 0.5 amp (default
settings) and set the saturation block’s parameters to model saturation currents of �1.0 and
1.0 amp. Verify that the valve is modeled correctly by using a ramp input and observing the
characteristics shown in Figure 2.39.

5.6 SUBSYSTEMS

As the physical systems we model become progressively more complex, the Simulink representa-
tion increases in size, that is, the number of blocks required to model the systems’ dynamics grows
significantly. A Simulink diagram with hundreds of blocks makes it difficult, if not impossible, to
understand the interactions among the systems’ components. A more instructive approach consists
of grouping specific blocks associated with various subsystems into single entities. At the highest
level, the system is viewed in terms of the interactions between these entities.

This hierarchical approach is illustrated for the case of modeling the dynamics of an automobile.
Figure 5.58 shows a block diagram of the top level description for modeling the dynamics. At this
level, the important interconnections between individual subsystems are identified.

The next step requires the development of concrete descriptions of the individual subsystems,
either in mathematical or block diagram form. The mathematical models are transformed into
Simulink models that are reusable, much in the same way a procedural function is used in high-
level programming languages. Multiple levels are possible in this modeling hierarchy. Moving
down one or more levels from the top subsystem level provides more of a microscopic, that is,
detailed, description involving low-level components.

An advantage of this approach is the distribution of the modeling effort to individuals with
expertise necessary for modeling the individual subsystems. For example, the ‘‘Tire Model’’
subsystem is a critical component in modeling vehicle response. A person knowledgeable in
tire=road surface interaction phenomena and the properties of specific tires is needed to develop
models that will produce correct tire forces required by the equations of motion.

Suppose a question arises concerning the handling characteristics of a vehicle with different
classes of tires. The existing vehicle subsystem models are already in place and can be reused with a
‘‘Tire Model’’ developed specifically for the class of tire under consideration.

Road
curvature

Road
grade

Brake
system

Path error feedback

Motion
feedback

Throttle
δT

Brake pressure

Torque feedback

u, v
ψ
.

MZ FY

FX

S

Steering, δSW

Tire
model

Vehicle-road
kinematics

Vehicle
dynamics

TB

FX

TP ωT
FY

Power
train

Wheel
spin

modes

Driver or
automatic
controller

Steering
system

δW

.
γ, v, u, ψ, FZ

FIGURE 5.58 Top-level description of vehicle dynamics model. (From Allen, R.W. and Rosenthal, T.
Systems technology=requirements for vehicle dynamics simulation models, Society of Automotive Engineers,
SAE 941075, 1994.)

Simulink® 385

5.6.1 PHYSBE

PHYSBE is a benchmark simulation of the human circulatory system. It was first introduced by
John Mcleod in 1966 in an article titled ‘‘PHYSBE . . . a Physiological Simulation Benchmark
Experiment.’’ Over the years, it has appeared in numerous references involving modeling and
simulation. The underlying dynamics have been simulated using the popular continuous simulation
programs including Simulink.

The human circulatory system is represented by three main components: the lungs (pulmonary
circulation), heart (coronary circulation), and the rest of the body (systemic circulation). Coronary
and systemic circulations were further divided into subsystems as shown in the Simulink diagram in
Figure 5.59 (provided by The Mathworks, Inc.).

The simulation computes pressures, blood flows, volumes, temperatures, and heat flows after a
number of parameters describing the physical nature of each subsystem have been specified. The
dynamics of each subsystem are hidden in the macroscopic view of the human circulatory system in
Figure 5.59. A detailed description of the individual subsystem models is accessible by ‘‘looking
inside’’ each of the blocks. For example, the LUNGS subsystem opens up to reveal the components
used in modeling the blood flow, blood temperature, heat content, and heat dissipation within the
lungs (see Figure 5.60).

The modular structure of the overall system makes it relatively simple to simulate, for example,
the effects of partial blockages in the blood vessels of the systemic regions or the effect of changes
in vascular compliance on blood pressure.

5.6.2 CAR-FOLLOWING SUBSYSTEM

The next example of Simulink subsystems involves the dynamic behavior of a platoon of vehicles,
that is, a lead car (platoon leader) followed by several vehicles whose motion is governed by the
dynamics of the preceding vehicle. The Simulink diagram in Figure 5.42 was used to simulate car-
following behavior. Deleting the ‘‘Scope’’ blocks, the ‘‘Clock’’ and ‘‘Lookup’’ blocks for
generating the lead vehicle speed profile, and the integrator block for creating the lead vehicle
position leaves the essential blocks for defining a Simulink car-following subsystem.

FIGURE 5.59 Simulink® diagram of PHYSBE model.

386 Simulation of Dynamic Systems with MATLAB® and Simulink®

Input and output ports to the subsystem are created using Simulink ‘‘In’’ and ‘‘Out’’ blocks
from the ‘‘Ports and Subsystems’’ sublibrary. A certain amount of discretion is possible when
choosing subsystem inputs and outputs. For example, ‘‘In’’ blocks can be connected to the lead
vehicle speed ‘‘x0d’’ and position ‘‘x0,’’ while the following vehicle speed ‘‘x1d’’ and position
‘‘x1’’ are selected as outputs by connecting them to ‘‘Out’’ blocks. Alternatively, the subsystem
could be described in terms of a single input, namely, vehicle speed ‘‘x0d,’’ and a single output
such as vehicle acceleration ‘‘x1dd.’’

A ‘‘car–following’’ subsystem is created by enclosing selected blocks in the Simulink
diagram with a bounding box and choosing ‘‘Edit: Create Subsystem’’ from the menu.
The selected blocks collapse into the ‘‘car–following’’ subsystem with renamed inputs and
outputs as shown in Figure 5.61. Opening (double clicking) the subsystem reveals the underlying
Simulink blocks that can be edited at any time.

The ‘‘car–following’’ subsystem constituent blocks are shown in Figure 5.62. Note that
conversion factors from mph to fps (3600=5280) and vice versa were added (see ‘‘Gain’’ blocks in
Figure 5.62) to maintain the vehicle speeds in and out of the subsystem in mph, while internal to the
subsystem, vehicle speeds are in fps. Simulation of a platoon of vehicles is accomplished by
repeated use of the ‘‘car–following’’ subsystem block.

Supposewewish to simulate the dynamics of afive-vehicle platoon in response to a lead vehicle that
decelerates and then accelerates back to a constant steady-state speed. In particular, our interest will
focus on the induced perturbations in the stream of traffic. At the beginning of the simulation, each
vehicle is traveling at the speed ‘‘SL,’’ separated in time by the desired gapG, as shown in Figure 5.63.

FIGURE 5.60 Subsystem model description of LUNGS.

x_in x_out

v_in v_out

Car-following

FIGURE 5.61 ‘‘Car–following’’ subsystem with lead vehicle inputs ‘‘x_in,’’ ‘‘v_in’’ and following
vehicle outputs ‘‘x_out,’’ ‘‘v_out.’’

Simulink® 387

FIGURE 5.62 Simulink® blocks comprising the car-following subsystem.

#4 #3 #2 #1 #0
SLSLSLSLSL

L0 L + G · SL L + 2G · SL L + 3G · SL L + 4G · SL

FIGURE 5.63 Initial conditions of the platoon vehicles.

FIGURE 5.64 Simulink® diagram with multiple instances of the ‘‘car–following’’ subsystem.

388 Simulation of Dynamic Systems with MATLAB® and Simulink®

The file ‘‘Chap5_cfparams2.m’’ loads the parameters required by the Simulink subsystems and
‘‘Lookup Table’’ block for setting the lead vehicle speed. A top-level view of the model
‘‘car_following_platoon.mdl’’ is shown in Figure 5.64.

Initial conditions, namely, speeds and positions, of the trailing vehicles are set in the integrators of
the appropriate subsystemblocks.The initial positionof the leadvehicle is determinedby the parameter
of the integrator block feeding the first subsystem. The ‘‘Mux’’ block (lower right) multiplexes the five
vehicle speeds on a single line for input to a ‘‘Scope’’ block that draws the five plots on a single set of
axes. The heavy arrow emanating from the ‘‘Mux’’ indicates the presence of multiple signals.

Speeds of the lead vehicle and four following vehicles are shown in Figure 5.65. Figure 5.66 is a
graph of the successive gaps between the vehicles of the platoon. The responses in Figures 5.65 and
5.66 indicate that the platoon achieves a new steady state identical to the initial one after the
perturbations die out.

The ‘‘Car–following’’ subsystem can be daisy-chained as shown in Figure 5.64 to simulate
the response of platoons of vehicles of any size. Furthermore, the following vehicles can be
individualized by including a vector of randomly chosen driver=vehicle parameters as an additional
input to each ‘‘Car–following’’ subsystem block.

5.6.3 SUBSYSTEM USING FCN BLOCKS

The ‘‘Fcn’’ block is a convenient time saver when the mathematical model of the system consists
primarily of algebraic and differential equations. Lengthy expressions are evaluated in equation
form instead of being constructed from Simulink blocks. To illustrate, the frictionless inverted
pendulum introduced in Section 5.4 can be treated as a subsystem with the governing equations for
€x and €u implemented by the use of ‘‘Fcn’’ blocks. Equations 5.50 and 5.51 are implicit in nature as a
result of €x and €u appearing in both equations. (Recall the presence of an algebraic loop in the
Simulink diagram.) This can be overcome by solving for the second derivative terms explicitly
leading to Equations 5.65 and 5.66.

20
40
60

20
40
60

20

v2
v3

v4
v1

v0

40
60

20
40
60

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

20
40
60

t (s)

FIGURE 5.65 Speeds (mph) of platoon leader and following vehicles vs. time (s).

Simulink® 389

€x ¼ ml _u2 sin u� mg cos u sin uþ u

M þ m sin2 u
(5:65)

€u ¼ �ml
_u2 cos u sin uþ (mþM)g sin u� u cos u

l(M þ m sin2 u)
(5:66)

Figure 5.67 shows the top layer with the ‘‘cart model’’ subsystem.
It includes Simulink blocks to generate the input u, decompose the state vector [x, _x, u, _u] into its

components, and feed the components to individual ‘‘scope’’ blocks. Note the use of the Simulink
supplied ‘‘R2D’’ block for converting from radians to degrees. It is found in the ‘‘Simulink
Extras’’ sublibrary under the ‘‘Transformations’’ heading. A number of useful coordinate
transformation blocks are available there.

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0
1
2
3

1
2g2

g3
g4

g1

3

0
1
2
3

0
1
2
3

t (s)

FIGURE 5.66 Gaps (s) of following vehicles vs. time (s).

FIGURE 5.67 Top layer of a Simulink® diagram for simulating an inverted pendulum.

390 Simulation of Dynamic Systems with MATLAB® and Simulink®

Opening the ‘‘cart model’’ subsystem reveals the blocks shown in Figure 5.68. Note that the
‘‘Display option’’ of the ‘‘Mux’’ parameter blocks is set to ‘‘signals’’ in order to identify its
inputs. The parameters of the two ‘‘Fcn’’ blocks are expressions relating the accelerations ‘‘xdd’’
and ‘‘thetadd’’ to the inputs ‘‘x,’’ ‘‘xd,’’ ‘‘u,’’ ‘‘thetad,’’ and ‘‘theta’’ (from the ‘‘mux’’
block). The ‘‘Fcn’’ block input notation is u[1], u[2],... ,u[5] where u[1] is the first input
‘‘x,’’ u[2] is ‘‘xd,’’ and so forth.

From Equation 5.65, the ‘‘Fcn’’ block parameter expression for ‘‘xdd’’ is

(m*l*u[4]^2*sin(u[5])–m*g*cos(u[5])*sin(u[5])þu[3])=
(Mþm*sin(u[5])^2)

Referring to Equation 5.66, the ‘‘Fcn’’ block parameter expression for ‘‘thetadd’’ is

(–m*l*u[4]^2*cos(u[5])*sin(u[5])þ(mþM)*g*sin(u[5])–u[3]*
cos(u[5])=(l*(Mþm*sin(u[5])^2))

The angular position of the pendulum u(t) is plotted in Figure 5.69 for the case when the cart and
pendulum are initially at rest, that is, x(0)¼ _x(0)¼ u(0)¼ _u (0)¼ 0, and the input u(t) is the triangular
pulse shown in Figure 5.70. The numerical values of the system parameters areM¼ 2 kg,m¼ 0.1 kg,
and l¼ 0.5 m.

FIGURE 5.68 Cart subsystem using ‘‘Fcn’’ blocks.

0 5 10 15 20 25
−400

Th
et

a (
de

g)

−200

0

200

400

600

800

Time (s)

Angular position theta vs. time

FIGURE 5.69 u(t) vs. t for u(t) shown in Figure 5.70.

Simulink® 391

EXERCISES

5.20 Randomize the car-following behavior by assuming that the desired gap G and driver=vehicle
delay T are both normally distributed random variables, that is,

T � N(mT ,sT), mT ¼ 0:75 s, sT ¼ 0:15 s

G � N(mG,sG), mG ¼ 2:5 s, sG ¼ 0:3 s

Use MATLAB to generate {Gi,Ti}, i¼ 1, 2, 3, 4 for four following vehicles, and repeat the
simulation of the five vehicles shown in Figure 5.63.

5.21 Six vehicles are stopped at a traffic light with a distance of L feet from the rear bumper of the
car in front to the front bumper of the following vehicle. The lead car accelerates uniformly
from zero mph to the speed limit SL¼ 45 mph in 30 s and continues traveling at the speed
limit. Use the robust car-following model developed in Exercise 5.16 to simulate the transient
response of the platoon. Use the baseline conditions in the second column of Table E5.14 for
the parameters, or choose a new set of appropriate values. Obtain time history plots of
(a) Vehicle positions
(b) Vehicle speeds
(c) Vehicle gaps
(d) Vehicle-following distances

5.22 A total of 11 cars are traveling at the speed limit SL with initial spacing similar to those in
Figure 5.63. At t¼ 0, the lead car speed begins to vary sinusoidally with amplitude of 3 mph
and period of 20 s. Determine the peak amplitude in speed of the following vehicles for the
nine combinations: SL¼ 30, 45, 60 mph and G¼ 1.5, 2, 3 s.

5.23 Starting with Equations 5.65 and 5.66 for the cart and inverted pendulum,
(a) Develop a state variable model of the system, that is, _x ¼ f (x, u) and y ¼ g(x, u) where the

state x ¼ [x, _x, u, _u]T and output y ¼ [x, u]T .
(b) Find the state equations for updating the discrete-time state xA(n) and computing y

A
(n)

using forward Euler integration with step size T.
(c) Solve the equations in part (b) recursively to find xA(n) and y

A
(n), n¼ 1, 2, . . . , nf where

T¼ 0.05 s, Tfinal¼ nfT¼ 5 s, u(t)¼ 0, t � 0, and x(0)¼ [0, 0, p=6, 0].
(d) Plot the discrete-time state vector xA(n), n¼ 0, 5, 10, . . . , nf.
(e) Simulate the response with Simulink for the same conditions in part (c) using the ode1

(Euler) integrator. Plot the state vector and compare the results to part (d).
5.24 Show that the frictionless cart and pendulum have two equilibrium points when the input

u(t)¼ 0, t � 0, namely,

x1,e ¼ 0m, x2,e ¼ 0m=s, x3,e ¼ 0 rad, x4,e ¼ 0 rad=s

x1,e ¼ 0m, x2,e ¼ 0m=s, x3,e ¼ p rad, x4,e ¼ 0 rad=s

and verify by using Simulink that the first equilibrium point is unstable and the second one is
stable. Is the second equilibrium point asymptotically stable?

5 10 150

u(
t),

 N

t, s

0.275

FIGURE 5.70 Force u(t) applied to cart.

392 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.25 Develop a subsystem model of the cart and pendulum where the pendulum rotation is opposed
by a damping torque TD ¼ c _u and the cart motion is subject to a constant friction force

fm ¼
�m(mþM)g � sgn(_x), _x 6¼ 0

0, _x ¼ 0

�

Simulate the response of the cart and pendulum, starting from the stable equilibrium point, to
the input

u(t) ¼
0, 0 � t < 1

U0, 1 � t < 3

0, 3 � t

8<:
Numerical values of the system parameters are m¼ 0.25 kg, M¼ 10 kg, l¼ 1 m,
c¼ 0.5 N �m=rad=s, m¼ 0.015, and U0¼ 10 N.

5.7 DISCRETE-TIME SYSTEMS

Up to this point, we have focused on using Simulink for simulation of systems with continuous-
time mathematical models. Discrete-time systems evolve as approximate representations of con-
tinuous-time systems at specific points in time. The numerical integrators already considered as
well as those to come are predicated on some form of discrete-time approximation to the
derivative function. Digital processors that manipulate streams of sampled numerical data are
likewise discrete time in nature. Indeed, much of the first part of this book deals with methods for
obtaining discrete-time model approximations of continuous-time systems. In the case of linear
time-invariant (LTI) discrete-time systems, methods for finding solutions to specific inputs were
presented as well.

Alternatively, some discrete-time systems process information, which by its very nature is
allowed to change only at discrete instants of time. In that case, the systems are inherently discrete
time. The difference equations are solved either recursively or by the use of a general solution
(if one exists), resulting in an output sequence of numbers defined solely at discrete times 0, T,
2T, 3T,

Simulink is well suited to obtain solutions of discrete-time system models regardless of whether
they are approximations of continuous-time systems or inherently discrete time to begin with. The
procedure for obtaining a Simulink diagram of a discrete-time system is similar to the way Simulink
diagrams of continuous-time systems were developed. With discrete-time systems, the goal is to
express the highest order difference term as an explicit function of the lower order terms. For
example, suppose an nth-order discrete-time system with output y(k) and input u(k) is modeled by
the nth-order difference equation,

g[y(k þ n), y(k þ n� 1), . . . , y(k þ 1), y(k), u(k þ p), . . . , u(k þ 1), u(k)] ¼ 0 (5:67)

with initial conditions y(0), y(1), . . . , y(n� 1). Oftentimes it is possible to solve Equation 5.67
explicitly for y(kþ n), giving

y(k þ n) ¼ f [y(k þ n� 1), . . . , y(k þ 1), y(k), u(k þ p), . . . , u(k þ 1), u(k)] (5:68)

Starting with y(kþ n) and u(kþ p), delayed signals y(kþ n� 1), . . . , y(kþ 1), y(k) and u(kþ
p� 1), . . . , u(kþ 1), u(k) are generated using the ‘‘Unit Delay’’ block and combined according
to Equation 5.68 to complete the simulation diagram of the discrete-time system.

Simulink® 393

5.7.1 SIMULATION OF AN INHERENTLY DISCRETE-TIME SYSTEM

We begin with an inherently discrete-time system most of us are familiar with, namely, a fixed
interest loan with constant periodic payments. An amount of money is borrowed for a specified
period of time, and equally spaced installments are paid to the lender until the loan is completely
repaid. The interest rate on the loan is established at the time of the loan. Furthermore, each payment
consists of a portion that reduces the loan principal and the remaining portion that is interest on the
outstanding balance. The situation is illustrated in Figure 5.71.
The system parameters consist of

P0: Loan amount
i: Interest rate per period (fixed for the duration of the loan)
n: Number of interest periods for duration of loan

The discrete-time input

u(k) ¼ 0, k ¼ 0
A, k ¼ 1, 2, 3, . . . , n

�
(5:69)

is the constant payment A made at the end of the kth interest period. The discrete-time outputs are

y(k): Outstanding balance of loan immediately following the kth payment
P(k): Portion of kth payment used to reduce the outstanding balance
I(k): Interest portion of kth payment

The unpaid balance after the (kþ 1)st payment is simply the unpaid balance following the kth
payment plus the interest accrued for one period on the unpaid balance minus the amount of the
(kþ 1)st payment. Thus,

y(k þ 1) ¼ y(k)þ iy(k)� u(k þ 1), k ¼ 0, 1, 2, . . . , n� 1 (5:70)

¼ (1þ i)y(k)� u(k þ 1), k ¼ 0, 1, 2, . . . , n� 1 (5:71)

P(kþ 1), the portion of u(kþ 1) used for loan principal reduction, is equal to the reduction in
outstanding balance from the kth to the (kþ 1)st payment, that is,

P(k þ 1) ¼ y(k)� y(k þ 1), k ¼ 0, 1, 2, . . . , n� 1 (5:72)

I(k), the interest portion of u(k), is obtained from

P(k)þ I(k) ¼ u(k) ¼ A, k ¼ 1, 2, . . . , n (5:73)

) I(k) ¼ A� P(k), k ¼ 1, 2, . . . , n (5:74)

It can be shown (Thuesen 1971) that the constant payment A necessary to fully repay the loan in n
periods, that is, make y(n)¼ 0, is given by

Loan

P0 i n

I(k)

P(k)u(k)
y(k)

FIGURE 5.71 Repayment and amortization of a loan.

394 Simulation of Dynamic Systems with MATLAB® and Simulink®

A ¼ P0
i(1þ i)n

(1þ i)n � 1

� �
(5:75)

Equations 5.71, 5.72, and 5.74 are the difference equations for the first-order discrete-time system in
Figure 5.71. A Simulink diagram of the system is shown in Figure 5.72. Note the use of a single
‘‘Unit Delay’’ block to generate the signal y(k) and the sum block in the upper right corner
producing y(kþ 1) as the difference of (1þ i)y(k) and the payment amount u(kþ 1) according to
Equation 5.71.

The ‘‘Simulation Parameters’’ dialog box is shown in Figure 5.73. A ‘‘Fixed–step’’
integrator with ‘‘Fixed-step size’’ of 1 is selected to force the simulation to step through
integer values of discrete time. Since there is no continuous-time integration present in an inherently
discrete-time system, the ‘‘discrete (no continuous states)’’ option is chosen from the
drop-down menu of integrators.

The numerical values shown in Figure 5.72 correspond to a $125,000 loan at 8% interest per
annum repaid over 30 years. The monthly payment A is calculated inside the ‘‘Fcn’’ block and
appears in the ‘‘Display’’ as $917.20. The unpaid balance y(k) is shown in Figure 5.74. As
expected, the loan balance is zero following the 360th monthly payment.

FIGURE 5.72 Simulink® diagram for loan repayment.

FIGURE 5.73 Simulation parameters dialog box for loan simulation.

Simulink® 395

The total monthly payment A, interest portion I(k), and principal portion P(k) are shown in Figure
5.75. Note that the early payments consist almost entirely of interest with only a small amount going
towards principal reduction. As the loan progresses, the portion of each monthly installment used to
reduce the outstanding balance increases. Conversely, the interest portion of each subsequent
payment is less than the previous one.

The total interest paid over the life of the loan is computed in two different ways. The simplest
approach is to compute nA�P0, the result shown in the ‘‘Display’’ block on the left side of the
Simulink diagram. The second method employs a ‘‘Discrete–Time Integrator’’ situated in
the lower right corner of Figure 5.72.

0 50 100 150 200 250 300 350
0
1
2
3
4
5

y(
k)

 ($
)

6
7
8
9

10
11
12
13

×104

k (month)

P0 = $125,000
i = 8% per year
n = 360 months

FIGURE 5.74 Unpaid balance y(k) vs. interest period k.

1 50 100 150 200 250 300 350
0

100

200

300

400

500

600

700

800

900

1000

($
)

k (month)

A

I(k)

P(k)

FIGURE 5.75 Monthly installment A, interest portion I(k), and principal portion P(k) vs. k.

396 Simulation of Dynamic Systems with MATLAB® and Simulink®

5.7.2 DISCRETE-TIME INTEGRATOR

A ‘‘Discrete–Time Integrator’’ is a numerical integrator from the ‘‘Discrete’’ sublibrary
reserved for discrete-time systems. The ‘‘Discrete–Time Integrator’’ can be configured as
a forward (explicit) Euler, backward (implicit) Euler, or trapezoidal integrator. The z-domain
transfer functions derived in Section 4.7 for each of the discrete-time integrators are placed inside
the appropriate block shown in Figure 5.76.

The two discrete-time integrators in Figure 5.72 function as summing devices, one for the total
interest and the other for the computation of the total of all the principal payments. To understand
why, consider a discrete-time backward (implicit) Euler integrator with input signal I(k) and output
IT (k). The difference equation is

IT (k þ 1) ¼ IT (k)þ T � I(k þ 1) (5:76)

With T¼ 1 and IT (0)¼ 0, it follows that IT (1)¼ I(1), IT (2)¼ I(1)þ I(2), . . . and

IT (n) ¼
Xn
k¼1

I(k) (5:77)

Simulink’s fixed-step integrators ‘‘ode1’’ (Euler), ‘‘ode2’’ (Heun) through ‘‘ode5’’ are all explicit.
Thus, if we elect to use a fixed-step implicit integrator, our choice is limited to either ‘‘Backward
Euler’’ or ‘‘Trapezoidal’’ from the ‘‘Discrete’’ sublibrary. In this case, the Simulink
diagram is similar to the simulation diagram representation of the continuous-time system with
the exception that the continuous-time integrators (1=s blocks) are replaced by the preferred implicit
discrete-time integrator.

To illustrate, consider the vehicle of weight W lb in Figure 5.77 rolling backwards down an
incline (u) subject to an aerodynamic drag force FD, a rolling friction force Fm (Fm=4 on each tire),
and a gravitational component of weight FW. The vehicle travels a length L along the inclined
section and then continues on a level section of road.

FIGURE 5.76 Simulink® discrete-time integrators.

x = L

FD
Fμ

θ W

x = 0
x·

FIGURE 5.77 Vehicle rolling down an incline.

Simulink® 397

Summing the forces on the vehicle in the direction of travel gives

m€x ¼ �FD � Fm þ FW (5:78)

¼ �0:5CDrA _x2 � mW cos uþW sin u, x � L

�0:5CDrA _x2 � mW , x > L

�
(5:79)

where
m is the mass of the vehicle
CD is the aerodynamic drag coefficient
r is the density of air
A is the exposed vehicle front area
m is the coefficient of rolling friction between the tires and the road

A Simulink diagram using trapezoidal integration for both integrators is shown in Figure 5.78.
The first is a limited integrator with the lower limit set to zero. The ‘‘Switch’’ block guarantees that
the friction force is zero when the vehicle is stopped.

Numerical values of the system parameters are shown in the ‘‘Con’’ and ‘‘Gain’’ blocks except
for L¼ 200 ft and u¼ 108, which appear in the ‘‘Lookup table’’ parameters. Results are shown
in Figures 5.79 through 5.81 for the case when the vehicle is released from a stopped position and
starts rolling down the incline.

Implicit integrators like the ‘‘Backward Euler’’ and ‘‘Trapezoidal’’ may lead to algebraic
loops, which require additional computational effort to resolve at each discrete-time step. In fact, an
‘‘Algebraic Loop Warning’’ appears in executing the simulation corresponding to the Simulink
diagram in Figure 5.78. Algebraic loops never include a continuous-time integrator because all of
Simulink’s continuous-time integrators are implemented by explicit numerical integration algorithms.

Typical of all Simulink blocks in the ‘‘Discrete’’ sublibrary, the discrete-time integrator
outputs are clamped or held constant for the duration of the sample time (integration step), 0.01 s,
in this example (see Figure 5.82).

5.7.3 CENTRALIZED INTEGRATION

The simulation diagram of an nth-order continuous-time systemmodel will contain n distinct integra-
tors. The Simulink diagramwill contain one integrator for each continuous-time state or equivalently a
‘‘State-Space,’’ ‘‘Transfer Fcn,’’ or ‘‘Zero–Pole’’ block from the ‘‘Continuous’’

FIGURE 5.78 Simulink® diagram for vehicle rolling down incline.

398 Simulation of Dynamic Systems with MATLAB® and Simulink®

sublibrary tomodel components with one ormore continuous-time states. In either case, the numerical
integrator selected from the choice of fixed-step and variable-step integrators in the ‘‘Simulation
Parameters’’ dialog box will be applied to all the continuous-time state derivatives.

For ‘‘One–Step’’ numerical integration algorithms (discussed in Chapter 6), which includes the
explicit Euler integrator, all state derivatives are calculated at tn¼ nT prior to updating a single state
at tnþ1¼ (nþ 1)T. The entire collection of continuous-time states are updated at tnþ1 based on the
state derivatives at tn, which in turn depend on the values of the states and inputs (if present) at
tn¼ nT. This is referred to as centralized integration.

There are situations when centralized integration is not the most advantageous approach when it
comes to updating the states. For example, when the state derivatives are themselves states, some of
the states can be updated at time tnþ1¼ (nþ 1)T based on calculated values of other states at tnþ1.

Figure 5.83 is a simulation diagram of a mechanical system with inertia. It contains an
acceleration term that is twice integrated to produce velocity and position.

FIGURE 5.79 Fm, FW, FD vs. t.

FIGURE 5.80 €x, _x, x vs: t.

Simulink® 399

FIGURE 5.81 u vs. t.

FIGURE 5.82 Close-up of discrete-time integrator output illustrating discrete-time nature (sample time equal
0.01 s).

−B

−K

F 1
M

·· ·x = x2
· · x1 = xx2 = x = x1∫ ∫

FIGURE 5.83 Simulation diagram of second-order system with sequential integrators.

400 Simulation of Dynamic Systems with MATLAB® and Simulink®

With centralized explicit Euler integration, the discrete-time states x1,A(n) and x2,A(n) are updated
at time tnþ1¼ (nþ 1)T in the sequence of steps as follows:

_x2(n) ¼ €x(n) ¼ 1
M

[F(n)� Kx1,A(n)� Bx2,A(n)] (5:80)

_x1(n) ¼ x2,A(n) (5:81)

x2,A(nþ 1) ¼ x2,A(n)þ T _x2(n) (5:82)

) x2,A(nþ 1) ¼ x2,A(n)þ T

M
[F(n)� Kx1,A(n)� Bx2,A(n)] (5:83)

x1,A(nþ 1) ¼ x1,A(n)þ T _x1(n) (5:84)

) x1,A(nþ 1) ¼ x1,A(n)þ Tx2,A(n) (5:85)

Instead of starting with Equation 5.84 to update x1,A(n), the implicit Euler form can be used, that is,
the updated state x1,A(nþ 1) is obtained from

x1,A(nþ 1) ¼ x1,A(n)þ T€x1(nþ 1) (5:86)

) x1,A(nþ 1) ¼ x1,A(n)þ Tx2,A(nþ 1) (5:87)

Equations 5.83 and 5.87 form the basis of a noncentralized integration scheme, which uses explicit
Euler integration to update x2,A(n) and implicit Euler integration to update x1,A(n) at tnþ1¼ (nþ 1)T.
The explicit Euler=implicit Euler combination is superior to explicit Euler=explicit Euler integration
by virtue of its using the updated velocity x2,A(nþ 1) in the computation for the new state x1,A(nþ 1)
in Equation 5.87.

With Simulink, explicit Euler=implicit Euler (or explicit Euler=trapezoidal) integration of a
second-order component is straightforward. Figure 5.84 is a Simulink diagram for simulating the
unit step response of the second-order system

€xþ 2Bvn _xþ v2
n _x ¼ v2

nu (5:88)

FIGURE 5.84 Simulink® diagram with explicit Euler=explicit Euler integration, explicit Euler=trapezoidal
integration and exact solution of second-order system unit step response (z¼ 0.15, vn¼ 5 rad=s), sample time
T¼ 0.02 s.

Simulink® 401

The explicit Euler=explicit Euler and explicit Euler=trapezoidal integration routines are implemen-
ted, and the exact solution is generated for comparison. The lightly damped system step responses
are shown in Figure 5.85. The response obtained using noncentralized integration (explicit Euler=
trapezoidal) is closer to the exact solution.

5.7.4 DIGITAL FILTERS

Digital filters were introduced in this chapter. A digital filter is a discrete-time system designed to
process discrete-time data for the purpose of extracting useful information. In many cases, the data is
comprised of a useful signal and an unwanted component such as noise. When the frequency
components in the signal and noise are confined to distinct regions in the frequency spectrum, a
properly designed digital filter can remove a significant portion of the noise without appreciable
degradation of the signal component. The following example (Cadzow 1973) illustrates a notch
filter designed to remove 60 Hz (v0¼ 2p� 60 rad=s) noise from a signal.

The sixth-order digital filter with input u(k) and output y(k) is represented as a cascaded system of
second-order filters governed by the following difference equations:

y1(k) ¼ u(k)þ b1u(k � 1)þ u(k � 2)� a1y1(k � 1)� a2y1(k � 2) (5:89)

y2(k) ¼ y1(k)þ b1y1(k � 1)þ y1(k � 2)� a3y2(k � 1)� a4y2(k � 2) (5:90)

y3(k) ¼ y2(k)þ b1y2(k � 1)þ y2(k � 2)� a5y3(k � 1)� a6y3(k � 2) (5:91)

y(k) ¼ by3(k) (5:92)

Parameters a1, a2, . . . , a6 and b1 influence the location of the six poles and two zeros of the filter’s
z-domain transfer function H(z). The first requirement is for the magnitude function at the noise
frequency, H(ejv0T)j j ¼ 0:

The constant b is selected to make the magnitude function approximately one at other frequen-
cies. Numerical values of the filter’s constants are listed in the Simulink diagram shown in
Figure 5.86. A sampling period of T¼ 0.001 s is used.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

y(
t)

1

1.2

1.4

1.6

1.8

Comparison of centralized, noncentralized integration,
and exact step response

t

Exact

Explicit Euler/explicit Euler

Explicit Euler/implicit trapezoidal

ζ = 0.15
ωn = 5 rad/s
T = 0.02 s

FIGURE 5.85 Results of centralized integration and noncentralized integration.

402 Simulation of Dynamic Systems with MATLAB® and Simulink®

The continuous-time signal u(t) consists of a sinusoidal component s(t)¼ 2.5 sinvt and 60 Hz
noise component n(t)¼ sin 120pt. Figure 5.87 shows the sampled input signal u(k) with a low
frequency 5 Hz (v¼ 10p rad=s) signal component. Also shown is the filter output y(k) at steady
state following the transient period. Figure 5.88 shows that the signal component s(k) and the
discrete-time filter output y(k) are nearly identical.

Figures 5.89 and 5.90 show the steady-state response of the filter when the frequency of the
signal component is closer to the noise frequency, that is, 57.5 Hz (v¼ 115p rad=s).

The reader should try running the simulation for the case when the signal frequency is higher
than the notch frequency (but less than the Nyquist frequency p=T¼ 1000p rad=s) to verify similar
results.

FIGURE 5.86 Simulink® diagram for a notch filter (notch frequency¼ 60 Hz).

FIGURE 5.87 u(k), y(k), v¼ 10p rad=s.

Simulink® 403

5.7.5 DISCRETE-TIME TRANSFER FUNCTION

Simulink is capable of simulating the response of linear discrete-time systems based on the
knowledge of the system’s discrete-time transfer function. Similar to continuous-time systems
with transfer function H(s) in pole-zero form or a ratio of polynomials, the response of a discrete-
time system with transfer function H(z) to a discrete-time input is obtained by using one of the
blocks shown in Figure 5.91.

The ‘‘Discrete Filter’’ block is used primarily for digital filters where the numerator and
denominator are polynomials in z�1. It is easily obtained from either of the other two forms by

FIGURE 5.88 s(k), y(k), v¼ 10p rad=s.

FIGURE 5.89 u(k), y(k), v¼ 115p rad=s.

404 Simulation of Dynamic Systems with MATLAB® and Simulink®

multiplying numerator and denominator by z�n where n is the order of the denominator polynomial.
The following example illustrates the use of the ‘‘Discrete Zero–Pole’’ block for a low-pass
digital filter obtained by approximating the dynamics of a continuous-time filter.

The RC circuit in Figure 5.92 was shown to exhibit the characteristics of a low-pass filter in
Chapter 4.

The continuous-time transfer function H(s) is given by

H(s) ¼ Kvc

sþ vc
(5:93)

FIGURE 5.90 s(k), y(k), v¼ 115p rad=s.

FIGURE 5.91 Simulink® discrete-time transfer function blocks.

vS

RS

RL vLC
–

+

–

+

FIGURE 5.92 Circuit for a low-pass filter.

Simulink® 405

0.5 1.51 2 2.5 3

vS(t)

t, ms

5v

FIGURE 5.93 Input signal vS(t), t � 0.

FIGURE 5.94 Simulink® diagram for continuous- and discrete-time low-pass filters.

FIGURE 5.95 Low-pass continuous-time filter input and output.

406 Simulation of Dynamic Systems with MATLAB® and Simulink®

where vc, the cutoff frequency, and DC gain K are related to circuit parameters RS, RL, and C
according to

vc ¼ (1=RS)þ (1=RL)

C
(5:94)

K ¼ RL

RS þ RL
(5:95)

Suppose the signal vS(t) is the square wave shown in Figure 5.93.
The capacitor in the circuit of Figure 5.92 removes high-frequency components from vS(t),

resulting in smoother pulse transitions in vL(t).
For values of RS¼ 50 V and RL¼ 200 V, the capacitance C is selected to make the cutoff

frequency 5 kHz (vc¼ 5� 103� 2p rad=s). The initial design calls for the Nyquist frequency p=T
to be twice the cutoff frequency making the sample time T¼ 50 ms (20 kHz sampling rate).

The discrete-time filter transfer function H(z) is to be synthesized from the continuous-time filter
transfer function H(s) using the bilinear transform (see Chapter 4).

H(z) ¼ H(s)js¼(2=T)((z�1)=(zþ1)) (5:96)

¼ Kvc

(2=T)((z� 1)=(zþ 1))þ vc
(5:97)

) H(z) ¼ KvcT

2þ vcT

zþ 1
z� ((2� vcT)=(2þ vcT))

� �
(5:98)

Figure 5.94 shows the Simulink diagram for simulating the response of the continuous-time filter
when the input is vS(t), t � 0 and the digital filter when the discrete-time input is vS(kT), k¼ 0, 1,
2,. . . . The ‘‘Zero–Order Hold’’ block is required when the discrete-time system sample time T
exceeds the integration step size (10 ms) for the continuous-time ‘‘Transfer Fcn’’ block. The
continuous-time signals are shown in Figure 5.95.

The discrete-time signals are shown in Figure 5.96 (T¼ 50 ms) and Figure 5.97 (T¼ 10 ms). As
expected, the digital filter response vL(K) is closer to the output vL(t)of the analog circuit at the
higher sampling rate.

FIGURE 5.96 Digital filter input and output (T¼ 50 ms).

Simulink® 407

EXERCISES

5.26 A car loan in the amount of $25,000 is to be paid off in 5 years with an annual interest rate of
8%. Use the Simulink loan simulation to find
(a) The monthly installment
(b) The unpaid balance after the 30th payment
(c) The principal portion of the 12th payment
(d) The total interest paid over the life of the loan
(e) The time required for the unpaid balance to equal $12,500

5.27 A prospective home buyer is considering purchasing a $200,000 house with a 10% down
payment and financing the balance over 30 years. He is able to afford monthly payments of
$1,450.
(a) What is the maximum interest rate per annum on the mortgage for which the house is

affordable?
(b) Repeat part (a) for a 15 year mortgage.

5.28 A college savings account is created on January 1, 2000 with a deposit of $1000. The account
earns 4% per year. End-of-month deposits in the amount of $150 are made for a period of
18 years with the last deposit scheduled for December 31, 2017.
(a) Write a difference equation for y(k), k¼ 1, 2, 3, . . . the account balance after the kth

deposit. Note that y(0)¼ 1000 and u(k)¼ 150, k¼ 1, 2, 3, . . . , 216.
(b) Find the account balance after the last deposit.

5.29 Numerical differentiation is a procedure for approximating the derivatives of a mathematical
function based on sampled values from it. The following backward difference formulas
estimate the first three derivatives of a signal f(t) at time ti:

f 0(ti) ¼ 1
2T

[f (ti � 2T)� 4f (ti � T)þ 3f (ti)]

f 00(ti) ¼ 1
T2

[�f (ti � 3T)þ 4f (ti � 2T)� 5f (ti � T)þ 2f (ti)]

f 000(ti) ¼ 1
2T3

[3f (ti � 4T)� 14f (ti � 3T)þ 24f (ti � 2T)� 18f (ti � T)þ 5f (ti)]

FIGURE 5.97 Digital filter input and output (T¼ 10 ms).

408 Simulation of Dynamic Systems with MATLAB® and Simulink®

Develop a Simulink program to approximate
(a) f 0(ti), ti ¼ 2T , 3T , 4T , . . . given f(0), f(T)
(b) f 00(ti), ti ¼ 3T , 4T , 5T , . . . given f(0), f(T), f(2T)
(c) f 000(ti), ti ¼ 4T , 5T , 6T , . . . given f(0), f(T), f(2T), f(3T)

where the function f(t) is obtained from an ‘‘Fcn’’ block
as shown in Figure E5.29:

(d) Run the simulations for approximating the derivatives for the following cases:

f (t) ¼ A sin vt, A ¼ 1, v ¼ 2p, T ¼ 0:01
2p
v

(i)

f (t) ¼ Ke�t=t, K ¼ 10, t ¼ 1, T ¼ 0:01t (ii)

f (t) ¼ K 1� vn

vd
e�zvnt sin (vdt þ w)

� �
, K ¼ 1, z ¼ 0:25, vn ¼ 4, T ¼ 0:01

1
zvn

� �
(iii)

where
vd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
vn

w ¼ tan�1 (vd=zvn)

Run the simulations for a period of time sufficient to include two cycles of the sine
function and the transient periods of the second and third functions.

(e) Compare the approximate and exact values of f 0(ti), f
00
(ti), and f

000
(ti) for each function at

10 equally spaced points.
5.30 A second-order system is governed by the differential equation

€y(t)þ 2zvn _y(t)þ v2
ny(t) ¼ Kv2

nu(t)þ b1 _u(t)þ b2€u(t)

(a) Draw a simulation diagram of the system and label the states x1 and x2.
(b) Draw a Simulink diagram using ‘‘Forward Euler’’ and ‘‘Trapezoidal’’ discrete-

time integrators to calculate x2,A(n) and x1,A(n), respectively.
(c) Use the values z¼ 0.5, vn¼ 4, K¼ 2, b1¼ 0, and b2¼ 1 to simulate y(t) in response to the

input

u(t) ¼ 9� t2, 0 � t < 3

0, t � 3

(

with y(0) ¼ _y(0) ¼ 0.
(d) Find the analytical solution for y(t). Use an ‘‘Fcn’’ block in the Simulink diagram with

input t and output the analytical solution for y(t). Compare the simulated and analytical
solutions.

5.31 For the notch filter given by Equations 5.89 through 5.92, find an expression for the constant b
in Equation 5.92 if the DC gain of the filter is one.

5.32 An electronic sensor is used to measure ambient temperature Tamb(t), which varies over a 24 h
period in sinusoidal fashion about 458F with amplitude of 158F (Figure E5.32a). The sensor
output Ts(t) is corrupted with an additive white noise component (power¼ 0.01). A Simulink
diagram for generating Tamb(t) and Ts(t) is shown in Figure E5.32b, along with time histories
of each signal.

Clock Fcn

f(u)t

FIGURE E5.29

Simulink® 409

FIGURE E5.32a

0 4 8 12 16 20 24
0

10

20T a
m

b(
t),

 T
s(t

) (
°F

)

30

40

50

60

t (h)

Ambient temperature and sensor output over a 24 h period

FIGURE E5.32b

A simple low-pass digital filter is required to smooth the output signal without seriously
degrading the signal component. The first-order filter difference equation is

Tf (k þ 1) ¼ (1� a)Ts(k þ 1)þ aTf (k), k ¼ 0, 1, 2, . . .

where
Ts(k) is the sampled output of the sensor
Tf (k) is the filter output

Note that the initial filter output Tf (0)¼ Tamb(0)¼ 458F.

410 Simulation of Dynamic Systems with MATLAB® and Simulink®

The filter sample time is T¼ 0.01 h. The parameter a is related to the bandwidth of the
filter v0 by

a ¼ 2� cosv0T �
ffi
(3� cosv0T)(1� cosv0T)

p
Choose v0 as the frequency of the ambient temperature (in rad=h), and simulate the filter’s
response over a 24 h period. Plot Tamb(t), Ts(t), and Tf (k) on the same graph.

5.33 Differentiation of noisy analog signals in continuous-time systems is often accomplished by
first removing the high-frequency components. To illustrate, suppose the signal x(t)¼ s(t)þ
n(t) where s(t)¼ 2t, t � 0, and n(t)¼ 0.25 sin 120pt is fed to a differentiator as shown in
Figure E5.33. A series of low-pass filters with H(z)¼ (1� a)z=(z� a) like the ones shown
in Figure E5.33 are inserted between the signal x(t) and another differentiator. Vary the
number of low-pass filters and the constant ‘‘a’’ and compare

FIGURE E5.33

(a) The noisy analog signal ‘‘x’’ and the filtered signal ‘‘xf’’
(b) The outputs ‘‘xd’’ and ‘‘xfd’’ of the two differentiators

5.8 MATLAB® AND SIMULINK® INTERFACE

While it is possible to work with signals and systems exclusively within the MATLAB environ-
ment, it is far more efficient to utilize Simulink and the MATLAB toolboxes to solve problems in
specific disciplines. Sharing of data between MATLAB and Simulink is a seamless process,
enabling MATLAB’s extensive capabilities in data analysis and visualization to be utilized.

The following example illustrates how to effectively exploit the MATLAB and Simulink
interface. It deals with the Fourier Series and its application to frequency response of linear systems.

A periodic signal u(t) is shown in Figure 5.98. Equation 5.99 describes the signal over one period
from �T=2 to T=2. It is periodic as a result of u(tþ T)¼ u(T), �1< t <1.

0

u(t)

t
T 2T

A

−T/2 T/2 T/2

FIGURE 5.98 Periodic signal u(t).

Simulink® 411

u(t) ¼
0, � T

2
� t < 0

A, 0 � t <
T

2

8>><>>: (5:99)

Its Fourier Series expansion (O’Neil 1983) is

u(t) ¼ a0 þ
X1

n¼1,3,5,...
an sin nv0t (5:100)

where
v0¼ 2p=T is called the fundamental frequency
un(t)¼ an sin nv0t, n¼ 1, 3, 5, . . . is the nth harmonic

the Fourier coefficients are

a0 ¼ A

2
, an ¼ 2

np
, n ¼ 1, 3, 5, . . . (5:101)

Suppose u(t) is the input to a second-order system with transfer function

G(s) ¼ Y(s)

U(s)
¼ v2

n

s2 þ 2zvnsþ v2
n

(5:102)

By the principle of superposition, y(t) is equal to the sum of the second-order system response to
the constant a0 and the responses to the harmonic components un(t), n¼ 1, 3, 5, . . . Fourier
coefficients of the truncated series a0 þ

P19
n¼1,3,5,... an sin nv0t are evaluated in the M-file ‘‘Chap5_

Fourier_Series.m,’’ a portion of which is listed as follows:

% MATLAB Script File Chap5_Fourier_Series.m
% Fourier Series of periodic function u(t)
% f(t)¼ A, 0 <¼ t<T=2
%¼0, T=2 <¼ t<T
n¼19; % order of truncated Fourier Series of u(t)
k¼1:2:n; % harmonics of u(t)
A¼10; % amplitude of u(t)
a¼2*A.=(k.*pi); % Fourier Series coefficients a(k), k¼1,3,5,...,n
a0¼0.5*A; % ave value of u(t)
T¼0.1; % period of u(t)
w0¼2*pi=T; % input frequency
wh¼k*w0; % harmonic frequencies
wr¼wh(5); % Set resonant frequency equal to freq of 9th harmonic
wn¼1.01*wr; % calculate natural frequency
zeta¼sqrt((1– (wr=wn)^2)=2); % calculate damping ratio
w¼linspace(0,1500,500); % range of freq for jG(jw)j plot
s¼j*w; % complex freqs
magG_w¼(wn.^2).=abs(s.^2þ2*zeta*wn*sþwn^2); % jG(jw)j
plot(w,magG_w)
hold on,s¼j*wh;
magG_wh¼(wn.^2).=abs(s.^2þ2*zeta*wn*sþwn^2); % jG(jwh)j
plot(wh,magG_wh,‘‘.’’,‘‘MarkerSize’’,12)
num¼[wn^2]; % numerator of G(s)
denom¼[1 2*zeta*wn wn^2]; % denominator of G(s)

412 Simulation of Dynamic Systems with MATLAB® and Simulink®

SYS¼TF (num, denom); % transfer function of G(s)
Figure, bode(SYS,{50, 1500})
[MAG, PHASE, wh] ¼BODE (SYS, wh); % Evaluate jG(jwh)j and Angle(G(jwh))
sim(‘‘resonance’’) % call Simulink model ‘‘resonance.mdl’’
subplot(4, 2, 1); plot(t, harmonics (:,1))
subplot (4, 2, 3); plot(t, harmonics (:,2))

The truncated series expansion of u(t) is evaluated and compared to the input u(t) as part of a
Simulink simulation shown in Figure 5.99. The Fourier coefficients and harmonic frequencies are
used to set the parameters in the ‘‘Sine Wave’’ blocks. A comparison of the signal u(t) and the
truncated Fourier Series is shown in Figure 5.100.

FIGURE 5.99 Simulink® diagram for finding the response to u(t) and truncated Fourier Series of u(t).

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
−2

0

2

4

6

8

10

12

t

u(t) and its truncated Fourier Series

Truncated Fourier Series of u(t)

u(t)

FIGURE 5.100 Periodic signal u(t) (t¼ 0.1 s) and 19th-order truncated series.

Simulink® 413

The resonant frequency vr of the second-order system with transfer function G(s) is set equal to
the frequency of the ninth harmonic 9v0¼ 9(2p=T)¼ 565.49 rad=s. The natural frequency vn is
chosen slightly higher, that is, vn¼ 1.01vr producing a lightly damped system with damping ratio
of approximately 0.1 calculated from (Ogata 1988)

z ¼
ffi
1� (vr=vn)

2

2

s
(5:103)

The second-order system response to u(t) and its response to the truncated Fourier Series represen-
tation of u(t) are shown in Figure 5.101.

Clearly, enough harmonics of u(t) have been retained in the truncated Fourier Series to accurately
predict the response of the second-order system under consideration.

Next, we discuss how MATLAB and Simulink can be used effectively to demonstrate the
phenomenon of resonance. The M-file ‘‘Chap5_Fourier_Series.m’’ evaluates the magnitude func-
tion jG(jv)j over the frequency range 0 � v � 1500 rad=s and plots the results with the harmonic
frequencies shown in Figure 5.102. Note that the resonant frequency vr where the peak amplitude of
jG(jv)j occurs is in fact equal to the frequency of the ninth harmonic. A similar finding is possible
using the control system toolbox to specify the transfer function and draw a Bode plot or merely
compute the magnitude function with ‘‘MAG’’ at selected frequencies and plot the results.

The Fourier coefficients of the truncated series expansion of u(t) are shown in Table 5.3. Also
listed are the frequency response characteristics of the second-order system at the harmonic
frequencies.

The peak magnitude at the resonant frequency is

Max
v�0
jG(jv)j ¼ jG(jvr)j ¼ 5:0624 (5:104)

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
−10

−5

0

5

10

15

20
Second-order system response y(t) to input u(t)

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
−10

−5

0

5

10

15

20

t

Second-order system response to truncated Fourier Series of u(t)

FIGURE 5.101 Response of a second-order system to u(t) and its truncated Fourier Series.

414 Simulation of Dynamic Systems with MATLAB® and Simulink®

The harmonic components un(t), n¼ 1, 7, 9, 11 in the truncated series expansion of u(t) in Figure
5.98 are given by

u1(t) ¼ a1 sinv0t ¼ 6:3662 sin 62:8t (5:105)

u7(t) ¼ a7 sin 7v0t ¼ 0:9095 sin 439:8t (5:106)

u9(t) ¼ a9 sin 9v0t ¼ 0:7074 sin 565:5t (5:107)

u11(t) ¼ a11 sin 11v0t ¼ 0:5787 sin 691:2t (5:108)

0 250 500 750 1000 1250 1500
0

1

|G
 (

jω
)|

2

3

4

5

6

ω (rad/s)

G(s): second order
ωn = 571.14 rad/s
ζ = 0.1
ωr = 565.49 rad/s

ω0 3ω0
5ω0

7ω0 11ω0

9ω0

13ω0

19ω0

Harmonic frequencies

FIGURE 5.102 Magnitude function of a second-order system.

TABLE 5.3
Fourier Coefficients and Magnitude Function
at Selected Frequencies

n nv0 (rad=s) an jG(jnv0)j ffG(jnv0) (rad)

0 0 5 1 0

1 v0¼ 62.8 6.3662 1.0120 �0.0221
3 3v0¼ 188.5 2.1221 1.1192 �0.0734
5 5v0¼ 314.2 1.2732 1.4166 �0.1553
7 7v0¼ 439.8 0.9095 2.3002 �0.3593
9 9v0¼ 565.5 0.7074 5.0624 �1.4709
11 11v0¼ 691.2 0.5787 1.9126 �2.6642
13 13v0¼ 816.8 0.4897 0.9232 �2.8764
15 15v0¼ 942.5 0.4244 0.5702 �2.9537
17 17v0¼ 1068.1 0.3745 0.3960 �2.9940
19 19v0¼ 1193.8 0.3351 0.2946 �3.0190

Simulink® 415

The second-order system response to the above components is

y1(t) ¼ jG(jv0)ja1 sin [v0t þ ffG(jv0)] (5:109)

¼ 1:0120(6:3662) sin (62:8t � 0:0221) (5:110)

¼ 6:4426 sin (62:8t � 0:0221) (5:111)

y7(t) ¼ jG(j7v0)ja7 sin [7v0t þ ffG(j7v0)] (5:112)

¼ 2:3002(0:9095) sin (439:8t � 0:3593) (5:113)

¼ 2:0920 sin (439:8t � 0:3593) (5:114)

y9(t) ¼ jG(j9v0)ja9 sin [9v0t þ ffG(j9v0)] (5:115)

¼ 5:0624(0:7074) sin (565:5t � 1:4709) (5:116)

¼ 3:5811 sin (565:5t � 1:4709) (5:117)

y11(t) ¼ jG(j11v0)ja11 sin [11v0t þ ffG(j11v0)] (5:118)

¼ 1:9126(0:5787) sin (691:2t � 2:6642) (5:119)

¼ 1:1068 sin (691:2t � 2:6642) (5:120)

The Simulink data for the signals in Equations 5.105 through 5.108, 5.111, 5.114, 5.117, and 5.120
are returned to the MATLAB Workspace (see Figure 5.99) for use by M-file ‘‘Chap5_Fourier_
Series.m’’ in preparing the graph shown in Figure 5.103. The input and output components can be
identified by referring to the amplitudes in Equations 5.105 through 5.120.

Note that y1(t) has a larger amplitude than y9(t), the system response to the harmonic component at
the resonant frequency. This results from jG(jv0)ja1¼ 6.4426 being larger than jG(j9v0)ja9¼ 3.5811.

As a final comment, the line in ‘‘Chap5_Fourier_Series.m’’

sim(‘resonance’) % call Simulink model ‘resonance.mdl’

enables the MATLAB script file ‘‘Chap5_Fourier_Series.m’’ to initiate execution of the Simulink
model file ‘‘resonance.mdl.’’ With additional parameters in the ‘‘sim’’ command, the user has
control of many of the settings entered in the Simulink ‘‘Simulation Parameters’’ dialog box.

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5

−5

−2.5

0

2.5

5
ω0 = 62.8 rad/s

u1(t) and y1(t)

u9(t) and y9(t) u11(t) and y11(t)

7ω0 = 439.8 rad/s

u7(t) and y7(t)

ωr = 9ω0 = 565.5 rad/s

t (s)

11ω0 = 691.2 rad/s

t (s)

0 0.025 0.05 0.75 0.1

0 0.025 0.05 0.75 0.1 0 0.025 0.05 0.075 0.1

0 0.025 0.05 0.075 0.1

FIGURE 5.103 Several harmonic components of u(t) and response of second-order system.

416 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

5.34 A spring mass system described by m€yþ ky ¼ F is subject to an external periodic force F(t)
shown in Figure E5.34:

T
2

−

F(t)

t
T

A

0T
4

T
2

T
4

−

FIGURE E5.34

(a) The Fourier series expansion of F(t) is

f (t) ¼ a0
2
þ
X1
n¼1

an cos nv0t, v0 ¼ 2p
T

a0 ¼ 2
T

ðT=2
�T=2

F(t)dt, an ¼ 2
T

ðT=2
�T=2

F(t) cos
2npt
T

� �
dt, n ¼ 1, 2, 3, . . .

Find expressions for the Fourier coefficients an, n¼ 0, 1, 2, 3,. . . .
(b) The mass m¼ 1 slug and the natural frequency of the system is vn¼ 25 rad=s. The period

of the forcing function T is related to the natural frequency according to T¼ 2Np=cvn

where N is a positive integer and c is a constant. Write a MATLAB script file that reads
values of c and N and computes the period T and Fourier coefficients an, n¼ 0, 1, 2,
3, . . . , 3N.

For A¼ 1, c¼ 1, and N¼ 5, use the MATLAB script file to
(c) Plot on the same graph F(t) and the truncated Fourier Series

fFS(t) ¼ a0
2
þ
X3N
n¼1

an cos nv0t

for 0 � t � 3T. Comment on the results.
(d) Prepare a Simulink diagram for simulating the response of the system with zero initial

conditions. Call the simulation from the script file using the same values for c and N.
Return the values of {t, y(t)} to the MATLAB Workspace and plot the response. (The
simulation should run long enough to recognize the steady-state response.) Comment on
the results.

5.35 The dynamic interaction of rabbit and fox populations in a forest is under investigation. The
predator–prey ecosystem is illustrated in block diagram form in Figure E5.35a:

Rabbit and fox
ecosystem

hR (t)

hF (t)

R (t)

F (t)

FIGURE E5.35a

Simulink® 417

R(t)¼ Population of rabbits after ‘‘t’’ weeks
F(t)¼ Population of foxes after ‘‘t’’ weeks
hR(t)¼Rate of rabbit hunting (rabbits=week)
hF(t)¼Rate of fox hunting (fox=week)

A Simulink diagram of the system is shown in Figure E5.35b:

1 1/s bR

vF

cR

2 1/s bF

aF

++
dF/dt F bF *F aF – bF *F + cF *R

hF

cR*F

cF *R

aR

aR – bR – cR*F

R xhR

dR/dt R bR*R

+
−
+

F
x

FIGURE E5.35b

aR, bR, cR¼ constant parameters defining the growth rate of rabbits
aF, bF, cF¼ constant parameters defining the growth rate of foxes
(a) Find the mathematical model governing the system dynamics.
(b) Find the nontrivial equilibrium points (Re, Fe) when hR(t)¼ 0, t � 0 and hF(t)¼ 0, t � 0.
(c) Write a MATLAB script file to set the following baseline parameter values:

aR ¼ 0:05
rabbits=week

rabbit2
, bR ¼ 5� 10�7

rabbits=week

rabbit3
, cR ¼ 1:25� 10�5

rabbits=week

rabbit2 � fox

aF ¼ 0:04
foxes=week

fox2
, bF ¼ 2� 10�5

foxes=week

fox3
, cF ¼ 8� 10�7

foxes=week

foxes2 � rabbit

hR(t) ¼ 0, t � 0 hF(t) ¼ 0, t � 0

R(0) ¼ 50, 000 F(0) ¼ 1,000

(d) Run the simulation and plot R(t) and F(t) vs. t until the system reaches equilibrium.
(e) Obtain a solution trajectory R vs. F. Place a vertical line at F¼Fe and a horizontal line at

R¼Re. This will allow you to verify by inspection if the solution trajectory approaches
the theoretical equilibrium.

418 Simulation of Dynamic Systems with MATLAB® and Simulink®

(f) Investigate the effect of changes in cR, a parameter that measures the interaction between
foxes and rabbits. Plot families of appropriate responses corresponding to 0%–50%
change in cR.

(g) Establish a policy for hunting rabbits that makes the number of foxes equal to approxi-
mately 2500 at equilibrium.

(h) Establish a policy for hunting foxes that makes the number of rabbits equal to approxi-
mately 35,000 at equilibrium.

5.36 The tank shown in Figure E5.36 has a brine solution flowing into it. The solution is stirred
well enough, so that the concentration of salt in the tank is uniform.

c1: Brine concentration (lbs/gal)
F1: Brine flow (gal/min)

c: Salt concentration in tank (lbs/gal)
Q: Quantity of saltin tank (lbs)
H: Liquid level in tank (ft)
V: Volume of liquid in tank (gal)
F0: Flow rate from tank (gal/min)

c1, F1

c, F0

c, QA

H

FIGURE E5.36

The mathematical model consists of the following equations:

dQ

dt
¼ c1F1 � cF0

c ¼ Q

V
, V ¼ AH

A
dH

dt
þ F0 ¼ F1, F0 ¼ aH1=2

The system baseline parameter values are A¼ 20 ft2 and a¼ 6 gal=min per ft1=2.

Note: 1 ft3 of water is roughly 8.3 gal.

(a) Draw a simulation diagram of the system.
(b) Choose the state variables as x1¼Q and x2¼H and the outputs y1¼ c, y2¼Q, and y3¼V.

Write the state equations in the form

_x1 ¼ f1(x1, x2, c1,F1), y1 ¼ g1(x1, x2, c1,F1)

_x2 ¼ f2(x1, x2, c1,F1), y2 ¼ g2(x1, x2, c1,F1)

y3 ¼ g3(x1, x2, c1,F1)

(c) Find expressions for the steady-state values of the states x1(1) and x2(1) and the outputs
y1(1), y2(1), and y3(1) assuming c1 and F1 are constant.

(d) The tank is initially filled with 100 gal of water (no salt). Brine starts flowing into the tank
at the rate of 12 gal=min. The salt concentration of the brine is 0.25 lb=gal. Both the flow
rate and salt concentration of the brine flow remain constant. Using explicit Euler
integration, find the discrete-time state equations

Simulink® 419

xA(nþ 1) ¼ f [(xA(n), u(n)]

y
A
(n) ¼ g[(xA(n), u(n)]

used to obtain an approximate solution for the continuous-time states and outputs.
(e) Solve the discrete-time state equations recursively for the discrete-time states x1,A (n) and

x2,A(n) and the outputs y1,A(n), y2,A(n), and y3,A(n). Graph the transient responses.
Comment on the value of T used for the numerical integrator.

(f) Compare the steady-state results obtained in part (e) with the predicted values from part
(c). Comment on the results.

(g) Use Simulink to verify the responses obtained in part (e).

5.9 HYBRID SYSTEMS: CONTINUOUS- AND DISCRETE-TIME COMPONENTS

Hybrid systems consist of continuous- and discrete-time components and the interfaces bridging the
gap between them. A good example is a digital controller (microprocessor or general-purpose digital
computer) determining discrete-time input(s) to a continuous-time process.

Figure 5.104 shows a digital controller used to regulate the temperature inside a chamber. The
DC voltage input to the heater v(t) is determined by a digital control algorithm represented by
discrete-time transfer function D(z). The heat input to the chamber is assumed proportional to the
square of the heater voltage. A temperature sensor with gain KS produces a voltage signal vS(t) for
comparison with a reference voltage vR(t). The reference voltage is based on the commanded
temperature TR(t) (not shown in Figure 5.104).

The error signal e(t) is sampled every T s in an analog-to-digital (A=D) converter. The A=D
converter functions as an interface between the continuous-time inputs (sensor and reference
voltage) and the discrete-time digital controller. The error signal e(k) is processed by the digital
controller, resulting in an output v(k), the intended voltage to the heater. A digital-to-analog (D=A)
converter, operating synchronously with the A=D, produces the voltage. Internal circuitry in the
D=A latches the discrete-time input for the duration of the sampling period, resulting in a stepwise
constant voltage v(t) applied to the heater. The D=A converter serves as an interface between
the discrete-time and continuous-time components. It is modeled by a zero-order hold (ZOH) in
Figure 5.104.

The digital controller implements a linear difference equation for v(k) in terms of past values
v(k� 1), v(k� 2), . . . , v(k� n) as well as present and past values e(k), e(k� 1), . . . , e(k� p). Digital
controllers are often synthesized by approximating continuous-time controllers. For example, the
transfer function of a continuous-time proportional-integral-derivative (PID) controller is

V(s)

E(s)
¼ KP þ KI

s
þ KDs (5:121)

Sensor

v(k) QH(t)

Btu/min

Volts

vS(t)

Chamber

°F

°F
v(t) T(t)

Process

T0(t)

Digital
controllerSampler

vR(t)

Volts Volts Volts Volts Volts

e(t)

–

e(k)
D(z)A/D

KS

HeaterZero-order
hold

D/A

FIGURE 5.104 Digital control of chamber temperature.

420 Simulation of Dynamic Systems with MATLAB® and Simulink®

Approximating the integral by trapezoidal integration and the derivative by a backward difference
equation leads to the equivalent digital transfer function (Jacquot 1981)

D(z) ¼ c1z2 þ c2zþ c3
z2 � z

(5:122)

where

c1 ¼ KP þ KIT

2
þ KD

T
, c2 ¼ KIT

2
� KP � 2KD

T
, c3 ¼ KD

T
(5:123)

The continuous-time process model is (see Section 2.7)

C
dT

dt
þ 1
R
T ¼ 1

R
T0 þ QH (5:124)

where
C is the thermal capacitance of the interior space (objects and volume of air assumed to be at the

same temperature)
R is the effective thermal resistance of the material separating the inside and outside of the

chamber

The heater output is

QH(t) ¼ v2(t)

Re

(5:125)

where Re is the electrical resistance of the heater coil. A temperature sensor produces a voltage
proportional to the interior temperature

vs(t) ¼ KsT(t) (5:126)

A Simulink diagram of the system is shown in Figure 5.105. The commanded reference temperature
TY is converted to a reference voltage input with a Units Converter, that is, a ‘‘Gain’’ block with

FIGURE 5.105 Simulink® diagram of a digital control system for chamber temperature.

Simulink® 421

parameter equal to KS. A ‘‘Saturation’’ block limits the actual voltage v(t) to the heater. The
‘‘Zero–Order Hold’’ and ‘‘Rate Transition’’ blocks are included to resolve timing issues
related to the faster simulation execution rate (based on the integration step) and the slower
sampling rate of the digital controller.

System parameters were set in the MATLAB script file ‘‘Chap5_dig_cont.m.’’
Chamber: R¼ 0.1758F=Btu=min, C¼ 50 Btu=8F
Sensor: KS¼ 0.25 V=8F
Controller: KP¼ 2, KI¼ 2, KD¼ 0.25
Heater: Re¼ 1.25 V, vmax¼ 100 V
Inputs: TR(t)¼ 1258F, t � 5, T0(t)¼ 758F, t � 0
Timing: T¼ 0.02 min (sample time), Dt¼ 0.002 min (integration step size)

Figure 5.106 shows the voltage v(k) computed from the digital control algorithm and the actual
voltage v(t) to the heater. Note the initial spike due to the presence of the proportional control and
derivative action in the controller. The initial continuous-time voltage to the heater is ‘‘maxed out’’
at a 100 V, the upper limit of the saturation block.

Figure 5.107 shows the heat flows to and from the chamber. Note the constant heat flow to the
chamber when the heater is at saturation. At the end of the transient response period, the heat flows
have equalized, and the chamber interior is in thermal equilibrium with its surroundings.

Figure 5.108 is a graph of the chamber temperature increasing from its initial value of 758F to the
commanded value of 1258F. The step response is typical of a slightly underdamped second-order
system with a settling time between 50 and 60 min.

The thermal time constant of the chamber is

t ¼ RC ¼ 0:175
	F

Btu=min
� 50

Btu
	F
¼ 8:75 min

The sampling time T¼ 0.02 min of the A=D converter is chosen several orders of magnitude less
than the process time constant in order to capture the transient behavior of the chamber temperature.
A more precise way of determining the sampling rate will be discussed in a subsequent chapter.

The control system is nonlinear as a consequence of Equation 5.125. Laplace transforms cannot
be used to find an analytical solution for the system variables. Simulation is the only viable approach
to examining the system dynamics.

FIGURE 5.106 Digital controller output v(k) and heater input v(t).

422 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

In Exercises 5.37 through 5.40, use baseline values for the system parameters found in ‘‘Chap5_
dig_cont.m’’ unless otherwise stated.

5.37 Plot the simulated chamber temperature responses (on the same graph) corresponding to a
range of sampling intervals from 0.01 to 0.25 min. Comment on the results.

5.38 The maximum output from the chamber heater in watts is (QH)max¼ v2max=Re.
(a) Find Tmax, the maximum temperature achievable in the chamber.
(b) Note: 1 kW¼ 56.896 Btu=min.

FIGURE 5.107 Heater input QH(t) and heat loss Q0(t) from chamber to surroundings.

FIGURE 5.108 Chamber temperature response T(t) to reference input TR(t)¼ 1258F, t � 5.

Simulink® 423

(c) Simulate the chamber temperature when the commanded temperature is set to
(i) Tmax

(ii) 10% higher than Tmax

(iii) 25% higher than Tmax

5.39 Simulate the temperature response of the control system with proportional control only, that
is, KI¼ 0 and KD¼ 0. The set point temperature is 2008F. Vary KP from 1 to 10 and plot the
responses on the same graph.

5.40 Suppose the chamber temperature has been constant at TR¼ 1258F for some time. Simulate
the chamber temperature T(t) when
(a) the heater is turned off
(b) the reference temperature is set to 1508F

5.41 Simulate the chamber temperature using a digital controller obtained by approximating the
continuous controller in Equation 5.121 using Tustin’s method (trapezoidal integration).
Compare the results with those shown in Figures 5.106 through 5.108.

5.10 MONTE CARLO SIMULATION

The dynamic systems, which have been simulated to this point, were all deterministic, that is, there
have been no random components associated with either the system’s parameters or inputs. In reality,
knowledge of the values of a system’s parameters is inexact for a number of reasons. Precise
measurement or observation of the parameters may be difficult, or it is possible that the numerical
values drift over time as the components age. Quantitative descriptions of the input signals a priori
may be probabilistic in nature. The existence of random inputs and uncertain system parameter values
leads to stochastic differential equation models with solutions in the form of stochastic processes.

An alternate approach is based on the technique of Monte Carlo simulation. An empirical rather
than analytical method, its name stems from the random nature of gambling and associated probabil-
ities. The underlying premise in Monte Carlo simulation is that by repeatedly sampling from known
probability distributions, the probabilities of events or probability distributions of functions of a
random variable(s) can be approximated. Sampling from the probability distribution of a random
variable (or random variables) to generate random deviates is substituted for the process of making
observations of the random variable(s) from the real world or physical process itself. In other words,
random samples obtained by actual measurements or observations of a random variable are replaced by
simulated random samples based on random number generators and known probability distributions.

Consider a simple mechanical system with massM, spring constant K, and damping coefficient B
described by

M€yþ B _yþ Ky ¼ f (t) (5:127)

where
y is the displacement of the mass from equilibrium
f(t) is a force acting on the mass

Suppose M, B, and K are continuous random variables with known probability density functions
(pdf’s) fM(u), fB(u), and fK(u), respectively. The damping ratio z

z ¼ z(M,B,K) ¼ B

2
ffiffiffiffiffiffiffiffi
MK
p (5:128)

is a new random variable, which, along with the natural frequency, characterizes the system’s
natural dynamics. Finding the theoretical probability distribution of z, that is, its pdf fz(u), is a
formidable task despite the relative simplicity of Equation 5.128. The following example demon-
strates a Monte Carlo simulation to obtain what we shall refer to as an empirical probability density

424 Simulation of Dynamic Systems with MATLAB® and Simulink®

function denoted f̂z(u) to distinguish it from the true pdf fz(u). The empirical pdf can be used to
approximate probability distributions of other random variables functionally related to the damping
ratio such as the overshoot in the step response of underdamped second-order systems.

The parameters M, B, and K are each assumed to vary uniformly between specified limits. The
pdf for random variableM is the uniform pdf, denoted U(Ml,Mu) whereMl andMu are the lower and
upper limits of M, respectively. In mathematical terms, the pdf is given by

fM(u) ¼
1

Mu �Ml
, Ml � u � Mu

0, elsewhere

8<: (5:129)

Similar expressions apply for the pdfs of random variables B and K, that is,

fB(u) ¼
1

Bu � Bl
, Bl � u � Bu

0, elsewhere

8<: (5:130)

fK(u) ¼
1

Ku � Kl
, Kl � u � Ku

0, elsewhere

8<: (5:131)

A random variable, uniformly distributed between 0 and 1, also referred to as a random number, is
generated by the MATLAB function ‘‘rand.’’ To be more precise, the generated numbers are
actually pseudo random numbers, which depend on the specific algorithm implemented for gener-
ation. A random number Ri uniformly distributed U(0, 1) is transformed to a new random variable Xi

with pdf U(A, B) by

Xi ¼ Aþ (B� A)Ri (5:132)

The MATLAB M-file ‘‘Chap5_MonteCarlo_damping_ratio.m’’ generates 100,000 random vectors
(Mi, Bi, Ki), i¼ 1, 2, . . . , 100,000 using lower and upper limits Ml¼ 0.9, Mu¼ 1.1, Bl¼ 1.75,
Bu¼ 2.25, Kl¼ 3.8, and Ku¼ 4.2. The corresponding 100,000 damping ratios zi, i¼ 1, 2, . . . ,
100,000 computed from Equation 5.128 are segregated into equal intervals of width 0.005, several
of which are shown in Table 5.4.

TABLE 5.4
Monte Carlo Simulation Results for Damping Ratio

Interval
(zi�1 � z � zi) Center of Interval �zi

Frequency of
Occurrence ni

Normalized Frequency
of Occurrence fi

(0.3975, 0.4025) 0.4000 0 0

(0.4025, 0.4075) 0.4050 0 0

(0.4075, 0.4125) 0.4100 33 0.0660

(0.4875, 0.4925) 0.4900 4053 8.1060

(0.4925, 0.4975) 0.4950 4098 8.1960

(0.4975, 0.5025) 0.5000 4062 8.1240

(0.5025, 0.5075) 0.5050 4033 8.0660

(0.5075, 0.5125) 0.5100 3986 7.9720

(0.5875, 0.5925) 0.5900 341 0.6820

(0.5925, 0.5975) 0.5950 164 0.3280

(0.5975, 0.6025) 0.6000 59 0.1180

Simulink® 425

A histogram based on the first and third columns of the complete table is shown in the left graph of
Figure 5.109. The empirical probability density function f̂z(u) is obtained by connecting the points
(�zi, ni) and rescaling the ordinate values to fi using Equation 5.133 to make the area under the resulting
curve equal to 1.

fi ¼ ni
Number of trials� width of interval

¼ ni
100,000� 0:005

¼ ni
500

(5:133)

Finally, a data point is added at �zi ¼ 0:6050, fi ¼ 0 to assure the pdf f̂z(u) returns to zero at the
upper tail. The result is shown in the right graph of Figure 5.109.

The theoretical probability of z falling in a certain interval is the area under fz(u) for that interval.
It is approximated by the area under the empirical pdf f̂z(u) for the same interval. For example, the
estimate of Pr(0.45 � z � 0.5) is computed in the M-file ‘‘Chap5_MonteCarlo_damping_ratio.m’’
to be 0.4105.

The empirical pdf f̂z(u) can be used to approximate probabilities involving various performance
measures related to the damping ratio. For example, the percent overshoot in the unit step response
and the peak amplitude of the frequency response

P:O: ¼ f1(z) ¼ 100e�zp=
ffiffiffiffiffiffiffiffi
1�z2
p

(5:134)

Mpv ¼ f2(z) ¼ 1

2z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p (5:135)

How shall we go about determining the empirical pdf f̂Mpv(u)? A table similar to Table 5.4 with
equally spaced intervals ofMpv and frequencies of occurrence is needed. The first step is to generate
a random sample from a population with pdf f̂z(u). The random sample (z1, z2, . . . , zn) and Equation
5.135 are used to generate the sample [(Mpv)1, (Mpv)2, . . . , (Mpv)n] needed for the new table.

0

500

1000

1500

2000

Fr
eq

ue
nc

y o
f o

cc
ur

re
nc

e,
n i

Ap
pr

ox
im

at
io

n
of

 f ζ
(u

)

2500

3000

3500

4000

Damping ratio, u Damping ratio, u

Histogram of damping ratio values

100,000 trials

0.4 0.45 0.5 0.55 0.6 0.4 0.45 0.5 0.55 0.6
0

1

2

3

4

5

6

7

8

Damping ratio pdf

Ml = 0.9, Mu = 1.1

Bl = 1.75, Bu = 2.25

Kl = 3.8, Ku = 4.2

fi
Empirical pdf

FIGURE 5.109 Histogram of z values and empirical pdf f̂z(u).

426 Simulation of Dynamic Systems with MATLAB® and Simulink®

The random sample (z1, z2, . . . , zn) can be generated in several ways. One method relies on the
use of random numbers (R1, R2, . . . , Rn) and the cumulative probability distribution function (cdf),
F̂z(u) given by

F̂z(u) ¼
ðu
�1

f̂z(x)dx, �1 < u <1 (5:136)

The empirical pdf f̂z(u) is numerically integrated in ‘‘Chap5_MonteCarlo_damping_ratio.m,’’
resulting in F̂z(u) shown in Figure 5.110. A random damping ratio zi is obtained as the solution
to the equation

Ri ¼ F̂z(zi) (5:137)

where Ri is a random number uniformly distributed between 0 and 1. That is, zi is obtained from

zi ¼ F̂�1z (Ri) (5:138)

where F̂�1z (Ri) is the inverse function. The Inverse Transformation Method (Gordon 1978) based on
Equation 5.138 is illustrated in Figure 5.110.

After the random sample [(Mpv)1, (Mpv)2, . . . , (Mpv)n] is generated from (z1, z2, . . . , zn) and
Equation 5.135, the empirical pdf f̂Mpv(u) is obtained in the same way f̂z(u) was determined.

Suppose we have reason to estimate Pr[1.1 � Mpv � 1.3]. The area under f̂Mpv(u) between 1.1
and 1.3 is easily computed. Alternatively, we could numerically integrate f̂Mpv (u) to obtain F̂Mpv(u)
and estimate the required probability from

Pr [1:1 � Mpv � 1:3] ¼ F̂Mpv(1:3)� F̂Mpv(1:1) (5:139)

The details are left for an exercise at the end of the section.

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Em

pi
ric

al
 cu

m
ul

at
iv

e d
ist

rib
ut

io
n

fu
nc

tio
n

1

Damping ratio, u

Generation of random ζi values

Ri

ζi

Fζ(u)ˆ

FIGURE 5.110 Illustration of method for generating zi using cdf F̂z(u).

Simulink® 427

5.10.1 MONTE CARLO SIMULATION REQUIRING SOLUTION OF A MATHEMATICAL MODEL

In the previous example, the parameters M, B, and K of a second-order system were random
variables with known probability density functions fM(u), fB(u), and fK(u). Additional random
variables were introduced, namely, z and Mpv in Equations 5.128 and 5.135. Using Monte Carlo
simulation, the theoretical probability density functions fz(u) and fMpv(u) were approximated by
empirical pdfs f̂z(u) and f̂Mpv(u) without ever solving the differential equation model, Equation
5.127. In the next example, simulation of the mathematical model is an integral component of the
overall Monte Carlo simulation study.

Suppose an archer is attempting to hit a falling target as shown in Figure 5.111.
Considering the aerodynamic drag forces on the arrow and target, the differential equations

governing the motions of each are

mA€xA ¼ �aA _x
nA
A (5:140)

mA€yA ¼ �mAg� sgn(_yA) � aAj _yAjnA (5:141)

mT€yT ¼ �mTgþ aT j _yT jnT (5:142)

where
mA and mT are masses of the arrow and target
aA, nA, aT and nT are parameters for modeling arrow and target drag forces
xA(t), yA(t), xT and yT(t) are the x–y coordinates of the center of the arrow and center of the

circular target

The sgn (_yA) function

sgn(_yA) ¼ _yA
j(_yA)j ¼

1, _yA > 0

�1, _yA < 0

�
(5:143)

is required to produce the proper sign on the arrow drag term for both upward and downward flights.
Absolute values appear in Equations 5.141 and 5.142 to avoid raising negative speeds to noninteger
powers.

The velocity of the arrow is uniquely determined by its speed vA(t) and direction u(t), that is, the
angle between the arrow and the horizontal axis. The speed is calculated from

vA(t) ¼ _x2A(t)þ _y2A(t)
� �1=2

(5:144)

0
x

y

θ(0)
xT

yT

0

Released at t = 0

xA(t), yA(t)
xT , yT (t)

FIGURE 5.111 Arrow fired at a falling target.

428 Simulation of Dynamic Systems with MATLAB® and Simulink®

and the angle u(t) is determined from

tan u(t) ¼ _yA(t)

_xA(t)
(5:145)

) u(t) ¼ tan�1
_yA(t)

_xA(t)

� �
(5:146)

Baseline parameter values for the system are

mA ¼ 0:125=g slugs, aA ¼ 4:75� 10�6, nA ¼ 1:85

mT ¼ 1=g slugs, aT ¼ 3� 10�6, nT ¼ 2:3

xA(0) ¼ 0 ft, yA(0) ¼ 0 ft, vA(0) ¼ 80 ft=s

xT ¼ 100 ft, yT (0) ¼ 150 ft

The arrow is 2.4 ft in length and the target is 3 ft in diameter.
A Simulink diagram for simulating the trajectories of the arrow and target is shown in Figure

5.112. The Simulink model ‘‘arrow.mdl’’ is called from the M-file ‘‘Chap5_MonteCarlo_arrow.m.’’
Initially, the aerodynamic drag forces were zeroed out (aA¼aT¼ 0) and the arrow’s angle of

departure u(0) was set to the angle of the line of sight to the target because the archer knows, from
Physics, that the target will be struck (in the absence of aerodynamic drag forces) under those
conditions. The flight path of the arrow and its position at 0.25 s increments is shown in Figure
5.113. The target is captured at 0.25 s increments starting at 2 s and shown as well. Figure 5.113
confirms that the arrow and target appear to be at the same point after approximately 2.25 s.

Figure 5.114 is a close-up snapshot of the arrow and target when the arrow has traveled the
horizontal distance to the target. The arrow strikes the target after 2.25 s have elapsed. The arrow
and target coordinates at impact are (xA¼ 100 ft, yA¼ 68.32 ft) and (xT¼ 100 ft, yT¼ 68.39 ft),
respectively. How do you explain the slight difference between yA and yT? Note that the simulation
is halted when the arrow strikes the ground after 4.15 s (see ‘‘display’’ in Figure 5.112).

FIGURE 5.112 Simulink® diagram of arrow and target simulation.

Simulink® 429

The reader should experiment with different target heights and arrow initial velocities to confirm
the result whereby the arrow always intercepts the target. Naturally, the time and location where the
arrow hits the target will depend on the new initial conditions.

A natural question to ask is ‘‘What happens when the drag forces are accounted for
and an element of randomness associated with the archer’s aim and initial speed of
the arrow is introduced?’’ To answer the question, let us assume that the arrow’s angle

90
Trajectories of arrow and target

80

70

60

50

40

30

20

10

H
ei

gh
t a

bo
ve

 g
ro

un
d,

 y
(ft

)

90
0 20 40 60

Flight of arrow
Arrow location at t = 0, 0.25, 0.5 s...
Target location at t = 2, 2.25, 2.5 s...

80 100
Horizontal distance, x (ft)

120 140 160 180

FIGURE 5.113 Path of the arrow and target at selected times.

Close-up of arrow striking target

Path of falling target

80

75

70

65

60

H
ei

gh
t a

bo
ve

 g
ro

un
d,

 y
(ft

)

55
85 90

t = 2.25 s
Arrow height = 68.32 ft
Target height = 68.39 ft

95 100
Horizontal distance, x (ft)

105 110 115

FIGURE 5.114 Close-up of the arrow and target.

430 Simulation of Dynamic Systems with MATLAB® and Simulink®

of departure u(0)¼ u0 and its initial velocity v(0)¼ v0 off the bow are random variables
with probability density functions

fu0(u) � N(mu0
,su0), �1 < u <1 (5:147)

fv0 (u) � U[(v0)L, (v0)U], (v0)L � v � (v0)U (5:148)

where
mu0

and su0 are the mean and standard deviation of the Normal population
(v0)L and (v0)U are the lower and upper limits of the Uniform population

A Monte Carlo experiment can be designed to estimate the probability of hitting the target.
‘‘Chap5_MonteCarlo_arrow.m’’ uses the MATLAB functions ‘‘rand’’ and ‘‘randn’’ to generate
random deviates Ri� U(0, 1) and zi� N(0, 1). Ri and zi are transformed to random deviates from the
desired populations, Equations 5.147 and 5.148 by

(u0)i ¼ mu0 þ zisu0 (5:149)

(v0)i ¼ (v0)L þ [(v0)U � (v0)L]Ri (5:150)

For now, let us assume that the mean angle of departure of the arrow is equal to the sight angle to the
target and the standard deviation is 18. Further, assume that the initial velocities are uniformly
distributed between 75 and 85 ft=s. Two Monte Carlo experiments were performed, each with a total
of 50,000 random vectors [(u0)i, (v0)i] generated and 50,000 Simulink simulation runs executed.
During each run, the occurrence of a ‘‘hit’’ or ‘‘miss’’ is determined and recorded. A ‘‘hit’’ occurs at
time t ¼ t̂ when the arrow has traveled a horizontal distance xT, that is, xA (̂t) ¼ xT provided

yT (̂t)� rT � yA(̂t) � yT (̂t)þ rT (5:151)

where rT¼ 1.5 ft is the radius of the target. The vertical separation between the arrow and target at
t ¼ t̂ is the distance D,

D ¼ yA (̂t)� yT (̂t) (5:152)

Results of both experiments are saved in MATLAB data files ‘‘arrowdata1.mat’’ and
‘‘arrowdata2.mat.’’ Histograms of the separations Di, i¼ 1, 2, . . . 50,000 for both Monte
Carlo runs are plotted in M-file ‘‘Chap5_ plot_arrow_histogram.m’’ and shown in Figure 5.115
along with the estimated probability of hitting the target.

The histograms suggest that the separation D is approximately normally distributed with mean
zero. Since more than 99% of the total area under a Normal pdf lies within the mean plus and minus
three standard deviations, the standard deviation of D is approximately 5 ft.

A question that naturally arises with Monte Carlo simulation is ‘‘How many random trials are
needed to accurately estimate an unknown theoretical probability?’’ Figure 5.116 is a plot of the
estimated probability of hitting the target computed after 100, 200, . . . , 1000 trials from the first data
file ‘‘arrowdata1.mat.’’

After 1000 trials, an estimate of the true (unknown) probability of hitting the target, under the
conditions given for u(0) and v(0), is accurate to one place after the decimal point. Figure 5.117 is a
similar plot showing the estimated probability of hitting the target computed after every 1000 trials.
The estimated probability of a hit based on 50,000 trials is now accurate to three places after the
decimal point.

Figure 5.118 shows arrow and target locations from four of the random trials. Note the
correlation between the height of the arrow and the initial speed v(0). The arrow is located at a
higher elevation when the initial speed is greater. Also, D, the separation between the arrow and

Simulink® 431

target, should be dependent on the angle of departure u(0), specifically its relationship to the line of
sight angle uLS (see Figure 5.111).

uLS ¼ tan�1
yT (0)
xT

� �
¼ tan�1

150
100

� �
¼ 0:9828 rad (56:31) (5:153)

In the first run (upper left graph in Figure 5.118), the angle of departure (55.998) is slightly less
than the line of sight angle, and the arrow strikes the target just below its center. In the second run

−25 −20 −15 −10 −5 0 5 10 15 20 25

−25 −20 −15 −10 −5 0 5
Δ = yA – yT (ft)

10 15 20 25

0

500

Fr
eq

. o
f o

cc
ur

re
nc

e
Fr

eq
. o

f o
cc

ur
re

nc
e

1000

1500

Histogram of vertical separation between arrow and target

θ(0) ~ N (56.31º, 1º)

v(0) ~ U (75 fps, 85 fps)

50,000 runs

Pr(Hit) = 0.2087
Arrowdata1.mat

Pr(Hit) = 0.2087
Arrowdata2.mat

0

500

1000

1500

θ(0) ~ N (56.31º, 1º)

v(0) ~ U (75 fps, 85 fps)

50,000 runs

Histogram of vertical separation between arrow and target

FIGURE 5.115 Estimated Pr(hit) and histogram of separations.

0 100 200 300 400 500 600 700 800 900 1000
0.205

0.21

Es
tim

at
ed

 p
ro

ba
bi

lit
y o

f a
 h

it

0.215

0.22

0.225

0.23

0.235

0.24

Number of trials

Effect of number of trials on estimated probability of hitting target

Arrowdata1.mat

FIGURE 5.116 Estimated probability of a hit after 100, 200, . . . , 1000 trials.

432 Simulation of Dynamic Systems with MATLAB® and Simulink®

(upper right), the initial angle u(0) is even less and the arrow passes under the target. In the last two
runs, the angle of departure is significantly greater (lower left) and significantly less (lower right)
than uLS, and the corresponding separations are greater and in the expected direction.

The arrow speed v(t) and pitch angle u(t) for the last case (lower right corner) are shown in Figure
5.119. When the arrow is directly below the target at t¼ 2.13 s, the speed is 45.22 ft=s and the pitch
angle is �2.938.

0 1 2 3 4 5
×104

0.206

0.208

Es
tim

at
ed

 p
ro

ba
bi

lit
y o

f a
 h

it

0.21

0.212

0.214

0.216

Number of trials

Effect of number of trials on estimated
probability of hitting target

Arrowdata1.mat

FIGURE 5.117 Estimated probability of a hit after 1000, 2000, . . . , 50,000 trials.

90 95 100 105 110

90 95 100 105 110

45

50

55

60
v(0) = 75.21 ft/s

t = 2.46 s

40

45

50

55

Horizontal distance, x (ft)

H
ei

gh
t a

bo
ve

 g
ro

un
d,

 y
(ft

)
H

ei
gh

t a
bo

ve
 g

ro
un

d,
 y

(ft
)

t = 2.54 s

Horizontal distance, x (ft)

v(0) = 75.39 ft/s

u(0) = 55.99º

u(0) = 57.28º

90 100 110

65

70

75

80

t = 2.22 s

90 95 100 105 110
Horizontal distance, x (ft)

H
ei

gh
t a

bo
ve

 g
ro

un
d,

 y
(ft

)
H

ei
gh

t a
bo

ve
 g

ro
un

d,
 y

(ft
)

70

75

80

85

t = 2.13 s

Horizontal distance, x (ft)

v(0) = 83.85 ft/s

v(0) = 87.67 ft/s

u(0) = 54.59º

u(0) = 55.65º

FIGURE 5.118 Arrow and target positions from four runs.

Simulink® 433

EXERCISES

In Exercises 5.42 and 5.43, M, B, and K are randomly distributed according to Equations 5.129
through 5.131 with the same limits given in the text.

5.42 Use ‘‘Chap5_MonteCarlo_damping_ratio.m’’ or write your own program to find and graph
the approximate pdf f̂Mpv(u) and cdf F̂Mpv (u). Find Pr[1.1 � Mpv � 1.3].

5.43 The resonant frequency of a second-order system depends on the damping ratio and natural
frequency according to

vr ¼ vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z2

q
, z � 0:707

(a) Use Monte Carlo simulation to approximate the true pdf and cdf for vr.
(b) Graph f̂vr (u) and F̂vr (u).

(c) Estimate Pr[vr>
ffiffiffi
2
p

rad=s].
5.44 Repeat Exercise 5.43 if the mass M is normally distributed with mean mM¼ 1 slug

and standard deviation sM¼ 0.25 slugs. Assume B and K are no longer random, instead
B¼ 2 lb s=ft and K¼ 4 lb=ft.

5.45 Suppose the arrow and target with mass and aerodynamic properties given in the text are
dropped from an airplane in level flight at a cruising speed of vcr¼ 600 ft=s.
(a) Find expressions for the terminal velocities of both.
(b) Simulate their descent from an altitude of 10,000 ft with zero initial velocity.
(c) Plot the acceleration of each during their descent.

5.46 Neglecting aerodynamic damping forces and assuming that the initial firing angle of the arrow
is equal to the sight angle to the target, perform a simulation study to produce the missing
graphs in Figure E5.46:

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

40

50

60

70

80

Speed of arrow

−50

θ(
t),

 d
eg

v(
t),

 ft
/s

−25

0

25

50

t (s)

Pitch angle of arrow

FIGURE 5.119 Arrow speed v(t) and pitch u(t) for v(0)¼ 83.85 ft=s, u(0)¼ 54.598.

434 Simulation of Dynamic Systems with MATLAB® and Simulink®

Elevation at
which target is

struck

Initial speed of arrow

Time required for
arrow to strike target

Initial speed of arrow

FIGURE E5.46

5.47 A boy is throwing rocks, aiming at a circular target with diameter D. The center of the target is
xT ft down range from where he is located (see Figure E5.47). The aerodynamic drag force is
proportional to the speed of the rock with drag constant a. The rocks are launched from a
height of y0 at an angle w(0) and initial speed v(0). The weight of the rock is W. The distance
downrange where the rock lands is R.

xT

(0)
y0

W = mg

fD = αv

x
0

v(0)

y
v

R
D

FIGURE E5.47

Baseline system parameter values are
y0¼ 6 ft, xT¼ 160 ft, D¼ 4 ft, a¼ 9� 10�4 lb=ft=s, W0¼ 0.5 lb, w(0)¼ 458, and v(0)¼
75 ft=s
(a) Write the equations comprising the mathematical model of the system in state variable

form _x ¼ f (x, u) where the state vector x ¼ [x _x y _y].
(b) Use Simulink to simulate the system under baseline conditions, and verify the stone

trajectory shown in Figure E5.47:

0 20 40 60 80 100 120 140 1600

5

10

15H
ei

gh
t o

f s
to

ne
, y

 (f
t)

20

25

30

35

40

45

Horizontal distance of stone, x (ft)

Trajectory of stone

FIGURE E5.47

Simulink® 435

(c) The boy picks up a rock, the weight of which is uniformly distributed between 0.25 and
0.75 lb, and throws it with initial speed and angle given by the baseline values. Find the
probability of the rock landing on the target.

(d) Prepare a histogram for the random variable D¼ jR� xTj, and use it to find the empirical
probability density function f̂ D(u), D � 0.

(e) Repeat parts (d) and (e) if W¼W0¼ 0.5 lb and u(0) � U(408, 508).
5.48 A particle slides without friction along a path given by y¼ f(x)¼ x1=2 under the influence of

gravity as shown in Figure E5.48:

x

y

y = f (x)

(0, 0) x0

(x0, y0)

FIGURE E5.48

The time required for the particle to slide down the curve starting from the origin to the point
(x0, y0) is (Speckhart 1976)

t0 ¼ 1ffiffiffiffiffi
2g
p

ðxo
0

ffi
1þ (dy=dx)2

y

s
dx

The termination value x0 is a random variable uniformly distributed between 1 and 5 along the
curve. Implement a Monte Carlo experiment culminating in a histogram for the random
variable t0.

5.49 Consider the second-order system €yþ 2zvn _yþ v2
ny ¼ 0 with initial conditions y(0) ¼ y0,

_y(0) ¼ 0. Introduce state variables x1 ¼ y, x2 ¼ _y. Phase plots for an underdamped
(z¼ 0.25), critically damped (z¼ 1), and overdamped (z¼ 2) case with vn¼ 1 rad=s and
y0¼ 1 are shown in Figure E5.49:

−0.5 −0.25 0 0.25 0.5 0.75 1
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

x 2

x1

Phase trajectories of unforced second-order system

ζ = 0.25

ζ = 1

ζ = 2

ωn = 1 rad/s
x1(0) = 1, x2(0) = 0

FIGURE E5.49

436 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) Plot a histogram for the distance from the initial point x1(0)¼ 1, x2(0)¼ 0 to the steady-
state equilibrium point x1(1)¼ 0, x2(1)¼ 0 along the trajectories in state space if the
damping ratio is uniformly distributed between 0 and 2.

Note that the distance from the initial point (1,0) to the point [x1(t), x2(t)] along the trajectory
is given by

s(t) ¼
ðt
0

_x 2
1 þ _x 2

2

� �1=2
dt

(i) Repeat part (a) for the case where z¼ 0.25, and the natural frequency vn is uniformly
distributed between 0 and 100 rad=s.

(ii) Repeat part (a) for the case where z¼ 1, and the natural frequency vn is uniformly
distributed between 0 and 12.5 rad=s.

(iii) Repeat part (a) for the case where z � U(0, 2), vn � U(0, 100), and y0 � U(0, 1).

5.11 CASE STUDY: PILOT EJECTION

Several benchmark applications of continuous-time simulation using analog and digital computers
have been around for decades. Simulation of a pilot and seat ejected from a fighter aircraft falls in
this category (Korn 1978). The system is shown in Figure 5.120.

When forced to eject, the combination of pilot and seat trajectory is controlled by a set of guide
rails until it is clear of the plane. The ejection velocity vE is constant along a direction uE from the
y axis of the plane. Ejection occurs when the pilot and seat have traveled a vertical distance y1.

After ejection from the aircraft, the pilot and seat follow a ballistic trajectory subject to an
aerodynamic drag force and its own weight. The equations of motion can be developed in the x–y
coordinate system or n–t coordinate system, where n and t refer to directions normal and tangential
to the flight of the pilot and seat as shown in Figure 5.121. Summing forces in the n and t directions,

X
Ft ¼ mat (5:154)

) �FD �W sin u ¼ m _v (5:155)X
Fn ¼ man (5:156)

) �W cos u ¼ m
v2

R
(5:157)

vA

vE

x

θE

y1

y

FIGURE 5.120 Diagram of pilot ejection.

Simulink® 437

where R is the instantaneous radius of curvature of the pilot and seat trajectory. The plane is
assumed to be traveling in a horizontal direction at constant speed vA.

The forward velocity v and angular velocity _u are related by

v ¼ R _u (5:158)

Solving for R in Equation 5.158 and substituting the result in Equation 5.157 give

�W cos u ¼ mv _u (5:159)

With W¼mg and state variables v and u, the state derivatives are obtained from Equations 5.155
and 5.159 as

_v ¼
0, 0 � y < y1

�FD

m
� g sin u, y � y1

(
(5:160)

_u ¼
0, 0 � y < y1

� g cos u

v
, y � y1

(
(5:161)

The intervals 0 � y< y1 and y � y1 correspond to before and after ejection.
Additional state variables x and y, the relative coordinates of the pilot and seat with respect to

the moving aircraft, are needed to view its trajectory with respect to the plane in order to determine
if it safely clears the plane’s rear vertical stabilizer. The state derivatives are expressed as (see
Figure 5.121)

_x ¼ v cos u� vA (5:162)

_y ¼ v sin u (5:163)

It is convenient to start the simulation, that is, integrating the state derivatives, at the moment of
ejection. The initial conditions are obtained with the help of Figure 5.122.

The initial states v(0) and u(0) are computed from

v(0) ¼ v2x(0)þ v2y(0)
h i1=2

(5:164)

) v(0) ¼ [(vA � vE sin uE)
2 þ (vE cos uE)

2]1=2 (5:165)

Pilot and seat at time t

W

θ

θ

v t
n

R

y

vA vA

FD

Aircraft at ejection
(prior to time t)

Aircraft at time t

y

FIGURE 5.121 Trajectory of pilot and seat after ejection.

438 Simulation of Dynamic Systems with MATLAB® and Simulink®

u(0) ¼ tan�1
vy(0)
vx(0)

� �
(5:166)

) u(0) ¼ tan�1
vE cos uE

vA � vE sin uE

� �
(5:167)

Finally, the drag force FD is obtained from

FD ¼ 1
2
CDrAv

2 (5:168)

where
CD is the drag coefficient
r is the density of air
A is the surface area of the pilot and seat normal to the velocity vector

A simulation study is required to investigate the combinations of aircraft speed vA and altitude h
associated with safe ejection, that is, pilot and seat clear the rear vertical stabilizer by a predeter-
mined amount. First, we shall simulate a single case where vA¼ 500 ft=s and h¼ 0 (sea level).
A Simulink diagram is shown in Figure 5.123.

y(0) = y1θE

x(0)

y

vA

θ(0) v(0)

x

x(0) = −y1 tan θE

θE

vE

vx(0)
vy(0)

v(0) = =
vA − vE sin θE

vE cos θE

FIGURE 5.122 Initial states x(0), y(0), v(0), and u(0) at ejection (t¼ 0).

FIGURE 5.123 Simulink® diagram of pilot ejection.

Simulink® 439

Baseline numerical values of the system parameters are uE¼ 158, vE¼ 40 ft=s, m¼ 8 slugs,
A¼ 10 ft2, CD¼ 1, and y1¼ 4 ft. The ‘‘Lookup Table’’ contains air density r (slug ft2) vs. altitude
h (ft) data points from sea level to 60,000 ft.

The pilot and seat trajectory relative to the aircraft is obtained by calling the Simulink model
‘‘ejection_seat.mdl’’ from the M-file ‘‘Chap5_eject.m’’ using the command ‘‘sim(‘ejection_
seat’).’’ Figure 5.124 illustrates the relative separation between the pilot and seat combination
and the plane during the time when the pilot and seat are located above the plane. The pilot and seat
safely clear the vertical stabilizer.

−60 −50 −40 −30 −20 −10 0

0

2

4

6

8

y (
ft) 10

12

14

16

18

20

x (ft)

Plane profile

Pilot and seat trajectory

Starting point

Vertical stabilizer

FIGURE 5.124 Plot of pilot and seat trajectory relative to the aircraft (h¼ 0 ft, vA¼ 500 ft=s).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
×104

0

200

400

A
irc

ra
ft

sp
ee

d,
 v A

 (f
t/s

)

600

800

1000

1200

1400

1600

Altitude, h (ft)

Safe conditions for pilot ejection

Region of safe ejection

FIGURE 5.125 Lower and upper aircraft speeds at a given altitude for safe ejection.

440 Simulation of Dynamic Systems with MATLAB® and Simulink®

At a given altitude h, the pilot and seat trajectory will safely clear the stabilizer provided the
aircraft cruising speed vA falls within a range of values. At slow speeds, the exit velocity is
insufficient to propel the pilot and seat safely over the stabilizer, while at very high speeds, the
excessive drag force and backward velocity (relative to the plane) produce a similar outcome.

A simulation study was performed to determine a region of safe ejection conditions, that is,
altitude and speed combinations resulting in a clearance of 5 ft when the pilot and seat are directly
over the back part of the rear stabilizer. The M-file ‘‘Chap5_safe_eject.m’’ calls the simulation
model for altitudes from zero to 50,000 ft (in increments of 5,000 ft) and finds the range of aircraft
speeds for a safe ejection. The result is shown in Figure 5.125.

Figure 5.126 shows a plot of y(t), the height of the pilot and seat combination above the plane,
corresponding to the safe ejection trajectory shown in Figure 5.124. The lower graph shows u(t), the
angle between the velocity vector and the horizontal. Can you locate the point on each plot where
the pilot and seat are located at the rear of the plane?

EXERCISES

5.50 With respect to the ballistic trajectory of the pilot and seat,
(a) Develop an alternate mathematical model using x, y coordinates. The states are x, _x, y,

and _y.
(b) Prepare a Simulink diagram for simulating the trajectory following ejection.
(c) Run the simulation for the same conditions as in Figure 5.124 and compare results.
(d) Suppose the aircraft is cruising at 30,000 ft in level flight when ejection occurs. Simulate

pilot and seat trajectories corresponding to vA¼ 500, 600, . . . , 1200 ft=s. Plot the entire
set of trajectories (with respect to the plane) on the same axes with the plane profile
similar to Figure 5.124. Are the results consistent with the safe ejection conditions
portrayed in Figure 5.125?

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

5

10

15

20

Pilot and seat height above plane vs. time

−10

−5θ
(d

eg
)

y (
ft)

0

5

t (s)

Pilot and seat angle of trajectory vs. time

FIGURE 5.126 Pilot and seat height above plane and trajectory after ejection.

Simulink® 441

5.51 Use either n–t or x–y coordinate systems to model the pilot and seat trajectory and obtain
plots of
(a) x vs. t
(b) y vs. t
(c) u vs. t
when ejection occurs from 50,000 ft at a speed of 900 ft=s.

5.52 Reexamine the limiting plane speeds for a safe ejection from 25,000 ft as the mass of the pilot
and seat varies from 8 slugs to 12 slugs. How important is the combined mass of the pilot and
seat with respect to the limiting plane speeds at 25,000 ft?

5.53 Obtain new curves for lower and upper safe ejection speeds in terms of altitude if the criterion
for a safe ejection is that the pilot and seat simply clear the rear vertical stabilizer. Use the
baseline value for m¼ 8 slugs.

5.54 Modify the code in M-file ‘‘Chap5_safe_eject.m’’ to check whether the pilot and seat have
cleared the rear stabilizer over its entire length of 48–60 ft back from the point of ejection.
How does this affect the curves in Figure 5.125?

5.12 CASE STUDY: KALMAN FILTERING

Estimations of the Moon and planetary orbits were performed by early pioneers such as Kepler,
Legendre, and Gauss. More recent estimation algorithms have been developed in an effort to obtain
the optimal estimate of a dynamic object, the Kalman filter being the most popular. In this case study,
the continuous-time Kalman filter, the steady-state Kalman filter, and the discrete-time Kalman filter
(Simon 2006) are applied to the trajectory of an asteroid. First, the algorithms of the different filters
will be presented in summary form, and then simulations will be run in Simulink for comparison.

5.12.1 CONTINUOUS-TIME KALMAN FILTER

The state equations of a continuous dynamic system are given by

_x ¼ Axþ Buþ w

y ¼ Cxþ v
(5:169)

where
x is the state vector
u is the input vector
y is the output vector
A is the system matrix
B is the input matrix
C is the output matrix

In the state equations, w and v are zero-mean, uncorrelated, continuous-time, white noise with
process covariance matrix Qc and measurement covariance matrix Rc, respectively. Mathematically,

w � (0,Qc)

v � (0,Rc)

E[wwT] ¼ Qcdij

E[vvT] ¼ Rcdij

E[vwT] ¼ 0

(5:170)

442 Simulation of Dynamic Systems with MATLAB® and Simulink®

The algorithm of the continuous-time Kalman filter is given by

K ¼ PCTR�1c

_̂x ¼ A _̂xþ Buþ K(y� Cx̂)

_P ¼ �PCTR�1c CPþ APþ PAT þ Qc

(5:171)

where the last equation in 5.171 is referred to as the Riccati equation. The algorithm is initialized
with the expectation values of the state and state covariance

x̂(0) ¼ E[x(0)]

P(0) ¼ E[(x(0)� x̂(0))(x(0)� x̂(0))T]
(5:172)

5.12.2 STEADY-STATE KALMAN FILTER

In the case of the steady-state Kalman filter, the system dynamics do not change with respect to
time; therefore, _P ¼ 0, so that the Riccati equation of 5.171 becomes

0 ¼ �PCTR�1c CPþ APþ PAT þ Qc (5:173)

5.12.3 DISCRETE-TIME KALMAN FILTER

The state equations of a discrete dynamic system are given by

xk ¼ Fk�1xk�1 þ Gk�1uk�1 þ wk�1

yk ¼ Hk�1xk�1 þ vk�1
(5:174)

where
Fk�1 is the system matrix
Gk�1 is the input matrix
Hk�1 is the output matrix

In this case, wk�1 and vk�1 are zero-mean, uncorrelated, discrete-time, white noise with process
covariance matrix Qk and measurement covariance matrix Rk, respectively. Mathematically,

wk � (0,Qk)

vk � (0,Rk)

E wkw
T
j

h i
¼ Qkdk�j

E vkv
T
j

h i
¼ Rkdk�j

E wkv
T
j

h i
¼ 0

(5:175)

Simulink® 443

The algorithm of the discrete-time Kalman filter is given by

x̂�k ¼ Fk�1x̂þk�1 þ Gk�1uk�1
P�k ¼ Fk�1Pþk�1F

T
k�1 þ Qk�1

Kk ¼ P�k H
T
k HkP

�
k H

T
k þ Rk

� ��1
x̂þk ¼ x̂�k þ Kk yk �Hkx̂

�
k

� �
Pþk ¼ (I � KkHk)P

�
k (I � KkHk)

T þ KkRkK
T
k

(5:176)

and is initialized with the expectation values of the state and state covariance

x̂þ0 ¼ E[x0]

Pþ0 ¼ E x0 � x̂þ0
� �

x0 � x̂þ0
� �Th i (5:177)

5.12.4 SIMULINK
® SIMULATIONS

The three different Kalman filters (continuous, steady-state, and discrete) are used to estimate the
kinematics (position and velocity) of an incoming meteorite. It is assumed that the meteorite is
tracked with a radar system that picks up the object at a range of 200,000 m with a velocity of
5,000 m=s. The measurement error R of the radar tracking station is 100 m. The process noise
statistics Q in range, velocity, and acceleration are 1 m, 0.1 m=s, and 0.1 m=s2, respectively. Since
the initial conditions of the meteorite are unknown, the diagonal elements of the state covariance
matrix P are large. The meteorite is tracked for 30 s at a frequency of 10 Hz.

Figure 5.127 shows a Simulink diagram for estimating the range of the meteorite with a
continuous-time Kalman filter. (In most cases, element blocks retained their default names for
ease of locating them in the Simulink library. A few subsystem names were changed to reflect their
contents.) At the top of the continuous-time Kalman filter hierarchy, two major subsystems are
shown: (1) the actual range of the meteorite corrupted by noise and (2) the estimated range
containing the continuous-time Kalman filter elements. To run this model, execute the MATLAB
M-file CTKF_Model_Data.m.

By double clicking on the ‘‘Actual’’ subsystem, Figure 5.128 shows the elemental blocks that
calculate the kinematics of the meteorite y ¼ y0 þ v0t þ 1=2at2 and v ¼ v0 þ at where the initial
conditions are represented by xhat0, a vector defined in the MATLAB M-file.

FIGURE 5.127 Top view of the continuous-time Kalman filter.

444 Simulation of Dynamic Systems with MATLAB® and Simulink®

Returning to the top-level view and then double clicking on the ‘‘Estimates’’ subsystem, Figure
5.129 shows the elemental blocks of the continuous-time Kalman filter algorithm, Equation 5.171.
The integrator block requires the initial conditions xhat0 defined in the MATLAB M-file. For
legibility, the computation of the state covariance matrix P is placed into its own subsystem.

By double clicking on the ‘‘P’’ subsystem, Figure 5.130 shows the elemental blocks that update
the state covariance matrix P, Equation 5.171. The integrator in this subsystem requires the initial
conditions P0 defined in the M-file.

Simulating the model by executing the MATLAB M-file CTKF_Model_Data.m created the
following plots. Figure 5.131 shows the actual range R and the estimated range Rhat of the meteorite
vs. time. The meteorite is picked up at a range of 200,000 m and tracked for 30 s. Over this
time period, the meteorite traveled approximately 150,000 m. The continuous-time Kalman filter
performs very well, such that it is difficult to see any differences between the actual range and the
estimated range.

Figure 5.132 shows the actual velocity V and the estimated velocity Vhat of the meteorite vs.
time. The continuous-time Kalman filter takes approximately 10 s for transients to settle before
obtaining reasonable velocity estimates.

Figure 5.133 shows the actual acceleration A and the estimated acceleration Ahat of the meteorite
vs. time. It is unnecessary to estimate the acceleration of gravity, but it is shown here for

FIGURE 5.128 The ‘‘Actual’’ subsystem.

FIGURE 5.129 The continuous-time Kalman filter algorithm.

Simulink® 445

FIGURE 5.130 Simulink® diagram of the continuous-time Kalman filter.

0

2
×105

R
Rhat1.8

1.6

1.4

1.2

1

0.8

Ra
ng

e a
nd

 ra
ng

e e
st

im
at

e (
m

)

0.6

0.4
5 10 15

Time (s)
20 25 30

FIGURE 5.131 Plot of range and range estimates (m) vs. time (s).

–4900

–4950

–5000

–5050

V
Vhat

–5100

–5150

–5200

–5250

Ve
lo

ci
ty

 an
d

ve
lo

ci
ty

 es
tim

at
e (

m
/s

)

–5300
0 5 10 15

Time (s)
20 25 30

FIGURE 5.132 Plot of velocity and velocity estimates (m=s) vs. time (s).

446 Simulation of Dynamic Systems with MATLAB® and Simulink®

completeness. Again, the transients take approximately 10 s to settle before obtaining reasonable
estimates.

Figure 5.134 shows the range error, the difference between the actual range and the estimated
range, vs. time. In theory, the range error should be bounded by the standard deviation of the
1,1 element of the state covariance matrix, which it is. It appears as if the maximum range error at
any given time is about 50 m. Recall (Figure 5.131) that the meteorite traveled roughly 150,000 m
over 30 s. An error of 50 m, even at the end of the 30 s when the meteorite is at a range of 50,000 m,
is 0.1%.

Figure 5.135 shows the velocity error, the difference between the actual velocity and the
estimated velocity, vs. time. In this case, the velocity error should be bounded by the standard
deviation of the 2,2 element of the state covariance matrix, which it is. After the filter transients
settle out, the maximum velocity error appears to be less than 10 m=s. Recall (Figure 5.132) that the
meteorite obtained a speed of roughly 5300 m=s over 30 s. An error of 10 m=s is less than 0.2%.

25

20

15

10

5

0

–5

–10

Ac
ce

le
ra

tio
n

an
d

ac
ce

le
ra

tio
n

es
tim

at
e (

m
/s

/s
)

–15

–20

–25
0 5 10 15

Time (s)
20 25 30

Graviational acceleration
Ahat

FIGURE 5.133 Plot of acceleration and acceleration estimates (m=s=s) vs. time (s).

150
Range error (m) compared with theoretical bounds

100

50

0

–50Ra
ng

e e
rr

or
 (m

)

–100

–150
0 5 10 15

Simulation
Theory

Time (s)
20 25 30

FIGURE 5.134 Plot of range error vs. time.

Simulink® 447

This concludes the implementation and analysis of the continuous-time Kalman filter as applied
to the range and velocity estimates of an incoming meteorite.

Next, the steady-state Kalman filter is applied to the same problem for comparison with the
continuous-time Kalman filter. The only difference between the two models is the calculation of the
state covariance matrix P. In the continuous-time algorithm, the Riccati equation is time dependent;
for the steady-state algorithm, the Riccati equation is independent of time, Equation 5.173. With
regard to model structure, the top-level diagram and ‘‘Actual’’ subsystem diagram are the same for
the steady-state Kalman filter as they were for the continuous-time Kalman filter. However, the
‘‘Estimates’’ subsystem reflects the difference with regard to the Riccati equation, which is repre-
sented by a constant element block called ‘‘SSP’’ seen in Figure 5.136.

150
Velocity error (m/s) compared with theoretical bounds

100

50

0

–50

–100

Ve
lo

ci
ty

 er
ro

r (
m

/s
)

–150
0 5 10 15

Time (s)

Simulation
Theory

20 25 30

FIGURE 5.135 Plot of velocity error vs. time.

FIGURE 5.136 The steady-state Kalman filter algorithm.

448 Simulation of Dynamic Systems with MATLAB® and Simulink®

Simulating the model by executing the MATLAB M-file SSCTKF_Model_Data.m created the
following plots. Figure 5.137 shows the actual range R and the estimated range Rhat of the meteorite
vs. time. From this plot, it appears that the steady-state Kalman filter performs just as well as the
continuous-time Kalman filter. As before, it is difficult to see any differences between the actual
range and the estimated range.

Figure 5.138 shows the actual velocity V and the estimated velocity Vhat of the meteorite vs.
time. From this plot, it can be seen that the steady-state Kalman filter performs better than the
continuous filter in estimating the velocity of the meteorite. Obviously missing from this plot are the
transients associated with the time-dependent state covariance updates. The steady-state Kalman

2
×105

1.8

1.6

1.4

1.2

1

0.8

0 5 10
Time (s)

Ra
ng

e a
nd

 ra
ng

e e
st

im
at

e (
m

)

R
Rhat

15 20 25 30

0.6

0.4

FIGURE 5.137 Plot of range and range estimates (m) vs. time (s).

–4900

Ve
lo

ci
ty

 an
d

ve
lo

ci
ty

 es
tim

at
e (

m
/s

) –4950

–5000

–5050

V
Vhat

–5100

–5150

–5200

–5250

–53000 5 10 15
Time (s)

20 25 30

FIGURE 5.138 Plot of velocity and velocity estimates (m=s) vs. time (s).

Simulink® 449

filter eliminates the need to perform this calculation—which may be significant for an application
where real-time processing is limited.

Figure 5.139 shows the actual acceleration A and the estimated acceleration Ahat of the meteorite
vs. time. As mentioned before, it is unnecessary to estimate the acceleration of gravity, but it is
shown for completeness. Again, there are no transients with the steady-state Kalman filter.

Figure 5.140 shows the range error, the difference between the actual range and the estimated
range, vs. time. Again, the range error is bounded by the standard deviation of the 1,1 element of the
state covariance matrix, which is constant. The maximum range error at any given time is negligible
for the steady-state Kalman filter.

25

Ac
ce

le
ra

tio
n

an
d

ac
ce

le
ra

tio
n

es
tim

at
e (

m
/s

/s
)

20

15

10

5

0

Gravitational acceleration
Ahat

–5

–10

–15

–20

–25
0 5 10 15

Time (s)
20 25 30

FIGURE 5.139 Plot of acceleration and acceleration estimates (m=s=s) vs. time (s).

150

100

50

0

–50

–100

Ra
ng

e e
rr

or
 (m

)

Range error (m) compared with theoretical bounds

–1500 5 10 15
Time (s)

20

Simulation
Therory

25 30

FIGURE 5.140 Plot of range error vs. time.

450 Simulation of Dynamic Systems with MATLAB® and Simulink®

Figure 5.141 shows the velocity error, the difference between the actual velocity and the
estimated velocity, vs. time. The velocity error is bounded by the standard deviation of the 2,2
element of the state covariance matrix, which is constant. Here, too, the maximum velocity error at
any given time is negligible for the steady-state Kalman filter.

This concludes the implementation and analysis of the steady-state Kalman filter as applied to the
range and velocity estimates of an incoming meteorite.

Next, the discrete-time Kalman filter is applied to the same problem for comparison with the
continuous-time Kalman filter. The dynamic system of the meteorite kinematics are discretized,
Equation 5.174, and then simulated with the discrete-time Kalman filter algorithm, Equation 5.176.
At this time, a few comments regarding the algorithm are in order. The first two equations of the
algorithm x̂�k and P�k are known as the a priori state and state covariance estimates, respectively.
They take the name ‘‘a priori’’ because the calculations are performed before the meteorite’s state is
measured. The third equation of the algorithm Kk is the Kalman gain. The last two equations of the
algorithm x̂þk and Pþk are known as the a posteriori state and state covariance estimates, respectively.
They take the name ‘‘a posteriori’’ because the calculations are performed after the meteorite’s state
is measured.

As in the previous two cases, the top-level diagram and ‘‘Actual’’ subsystem diagram are the
same for the discrete-time Kalman filter. However, the ‘‘Estimates’’ subsystem, shown in Figure
5.142, shows the Simulink diagram for the discrete-time Kalman filter algorithm. From this view,
the a priori state and state covariance, the Kalman gain, and the a posteriori state and state
covariance subsystems are clearly represented.

By double clicking on the ‘‘a priori state’’ subsystem, Figure 5.143 shows the elemental blocks
that calculate the a priori state estimate of the algorithm. The initial conditions are represented by
xm0, a vector defined in the corresponding MATLAB M-file.

Returning to the top-level view and then double clicking on the ‘‘a priori covariance’’ subsystem,
Figure 5.144 shows the elemental blocks that calculate the a priori state covariance estimate of the
algorithm. The initial conditions are represented by Pm0, a matrix defined in the corresponding
MATLAB M-file.

Returning to the top-level view and then double clicking on the ‘‘Kalman gain’’ subsystem,
Figure 5.145 shows the elemental blocks that calculate the Kalman gain of the algorithm.

150

100

50

Velocity error (m/s) compared with theoretical bounds

0

–50Ve
lo

ci
ty

 er
ro

r (
m

/s
)

–100

–150
0 5 10 15

Simulation
Theory

Time (s)
20 25 30

FIGURE 5.141 Plot of velocity error vs. time.

Simulink® 451

FIGURE 5.143 The ‘‘a priori state’’ subsystem.

FIGURE 5.142 The discrete-time Kalman filter algorithm.

FIGURE 5.144 The ‘‘a priori covariance’’ subsystem.

452 Simulation of Dynamic Systems with MATLAB® and Simulink®

By double clicking on the ‘‘a posteriori state’’ subsystem, Figure 5.146 shows the elemental
blocks that calculate the a posteriori state estimate of the algorithm.

Returning to the top-level view and then double clicking on the ‘‘a posteriori covariance’’
subsystem, Figure 5.147 shows the elemental blocks that calculate the a posteriori state covariance
estimate of the algorithm.

Simulating the model by executing the MATLAB M-file DTKF_Model_Data.m created the
following plots. Figure 5.148 shows the actual range R and the estimated range Rhat of the meteorite
vs. time. Themeteorite is picked up at a range of 200,000m and tracked for 30 s. Over this time period,
the meteorite traveled approximately 150,000 m. Like the previous two filters, the discrete-time
Kalman filter performs very well. Indeed, it is difficult to see any differences between the actual range
and the estimated range.

Figure 5.149 shows the actual velocity V and the estimated velocity Vhat of the meteorite vs.
time. The discrete-time Kalman filter takes approximately 10 s for transients to settle before
obtaining reasonable velocity estimates. This is similar to the behavior of the continuous-time
Kalman filter.

FIGURE 5.145 The ‘‘Kalman gain’’ subsystem.

FIGURE 5.146 The ‘‘a posteriori state’’ subsystem.

Simulink® 453

Figure 5.150 shows the actual acceleration A and the estimated acceleration Ahat of the meteorite
vs. time. The transients take approximately 15 s to settle before obtaining reasonable estimates, 5 s
more than the continuous-time Kalman filter.

Figure 5.151 shows the range error, the difference between the actual range and the estimated
range, vs. time. In theory, the range error should be bounded by the standard deviation of the 1,1
element of the state covariance matrix. For the discrete-time Kalman filter, a few data points lie
outside this theoretical limit, but only marginally. Recall (Figure 5.149) that the meteorite traveled
roughly 150,000 m over 30 s. An error of 100 m, even at the end of the 30 s when the meteorite is at
a range of 50,000 m, is 0.2%.

Figure 5.152 shows the velocity error, the difference between the actual velocity and the estimated
velocity, vs. time. Again, in theory, the velocity error should be bounded by the standard deviation of
the 2,2 element of the state covariance matrix. After the discrete-time Kalman filter transients settle

FIGURE 5.147 The ‘‘a posteriori covariance’’ subsystem.

2
×105

1.8

1.6

1.4

1.2

1

0.8

0.6

Ra
ng

e a
nd

 ra
ng

e e
st

im
at

e (
m

)

0.4
0 5 10 15

Time (s)

R
Rhat

20 25 30

FIGURE 5.148 Plot of range and range estimates (m) vs. time (s).

454 Simulation of Dynamic Systems with MATLAB® and Simulink®

out, the maximum velocity error appears to be less than 10 m=s. Recall (Figure 5.149) that the
meteorite obtained a speed of roughly 5300 m=s over 30 s. An error of 10 m=s is less than 0.2%.

5.12.5 SUMMARY

Three different Kalman filters (continuous, steady-state, and discrete) were used to estimate the
kinematics (position and velocity) of an incoming meteorite. Once filter transients settled out, both
the continuous-time and discrete-time Kalman filters provided acceptable results with regard to
meteorite range and velocity estimation as evidenced by comparing the range and velocity errors
with actual range and velocity magnitudes. If real-time processing poses limitations, it is recom-
mended to use the steady-state Kalman filter.

–4900

–4950

–5000

–5050

–5100

V
Vhat

Ve
lo

ci
ty

 an
d

ve
lo

ci
ty

 es
tim

at
e (

m
/s

)

–5150

–5200

–5250

–5300
0 5 10 15

Time (s)
20 25 30

FIGURE 5.149 Plot of velocity and velocity estimates (m=s) vs. time (s).

25

20

15

10

5

0

–5

–10

–15

–20

Ac
ce

le
ra

tio
n

an
d

ac
ce

le
ra

tio
n

es
tim

at
e (

m
/s

/s
)

–250 5 10 15
Time (s)

20

Gravitational acceleration
Ahat

25 30

FIGURE 5.150 Plot of acceleration and acceleration estimates (m=s=s) vs. time (s).

Simulink® 455

EXERCISE

5.55 Develop the steady-state Kalman filter for the discrete model. Hint: Combine the a priori and
the a posteriori equations into a single equation and note in the steady-state, x̂�k ¼ x̂�k�1 ¼ x̂�

P�k ¼ P�k�1 ¼ P� in the a priori case or x̂þk ¼ x̂þk�1 ¼ x̂þ Pþk ¼ Pþk�1 ¼ Pþ in the a posteriori
case.

150

100

50

0

–50Ra
ng

e e
rr

or
 (m

)

–100

–150
0 5 10 15

Time (s)

Simulation

Range error (m) compared with theoretical bounds

Theory

20 25 30

FIGURE 5.151 Plot of range error vs. time.

150

100

50

0

–50Ve
lo

ci
ty

 er
ro

r (
m

/s
)

–100

–150
0 5 10 15

Time (s)

Velocity error (m/s) compared with theoretical bounds

20

Simulation
Theory

25 30

FIGURE 5.152 Plot of velocity error vs. time.

456 Simulation of Dynamic Systems with MATLAB® and Simulink®

6 Intermediate Numerical
Integration

6.1 INTRODUCTION

We continue our exposition of numerical integration introduced in Chapter 3. Additional algorithms
to approximate the solution of differential equation models of continuous-time systems will be
examined. In previous chapters, there was no mention of how to quantify the degree of accuracy one
could expect with the simple Euler and trapezoidal integrators. Truncation errors are introduced in
this chapter as a way of remedying this omission.

This chapter introduces two broad classifications of numerical integrators known as one-step
methods and multistep formulas and presents a case for when to use each type. Adaptive techniques
for changing the integration step size when using one-step methods are discussed.

Later on, a property of system models referred to as ‘‘stiffness’’ is explored along with ways of
dealing with it to make sure accurate and stable simulations result. Numerical stability is mentioned
only briefly near the end of the chapter; however, more will be mentioned about this important
property when we revisit numerical integration in Chapter 8.

This chapter concludes with a case study that relies on one of the numerical integration methods
introduced earlier in the chapter.

6.2 RUNGE–KUTTA (RK) (ONE-STEP METHODS)

One-step methods refer to a family of numerical integration algorithms designed to update the
current state across an interval of time, called the integration step, in such a way that the state
derivative function is evaluated at one or more points of the interval. In contrast, multistep methods
incorporate computed state values from previous intervals in the process of updating the state.

Our discussion of one-step methods begins with an autonomous system involving a single state
variable x¼ x(t) with state derivative function f (t, x).

dx

dt
¼ f (t, x) (6:1)

The state derivative function could be written f (t, x, u) when there are external inputs present. The
reason for choosing a first-order system is simple. Dynamic system models are typically higher than
first order; however, the differential equations comprising an nth-order model can be recast as a set
of coupled first-order differential equations for the state derivatives _x1(t), _x2(t), . . . , _xn(t) in terms of
the state variables x1(t), x2(t), . . . , xn(t) and when present, inputs u1(t), u2(t), . . . , ur(t). The algo-
rithms derived for numerical integration of Equation 6.1 are easily extended to the case of more than
one state variable.

Suppose x(ti), the solution to Equation 6.1 at time t¼ ti, were known and denoted xi for short.
A way of approximating xiþ1¼ x(tiþ1), the state x(t) at t¼ tiþ1¼ tiþ T, is needed. The approxima-
tion is written as xA(iþ 1) (see Figure 6.1).

457

We can proceed along a line whose slope is wi (see Figure 6.1) starting from the point (ti, xi) on
the solution x(t) and terminating when t¼ tiþ1. This leads to

xA(iþ 1) ¼ xi þ Twi (6:2)

The slope wi is a suitably chosen approximation to the state derivative function f (t, x) over the
interval ti � t � tiþ1. We shall return to this notion of a line with slope wi from (ti, xi) to [tiþ1,
xA(iþ 1)] momentarily.

6.2.1 TAYLOR SERIES METHOD

Consider the Taylor Series expansion of the function x(t) shown in Figure 6.1.
Expanding the function x(t) in a Taylor Series about the point ti,

xiþ1 ¼ xi þ d

dt
x(ti)T þ 1

2!
d2

dt2
x(ti)T

2 þ 1
3!

d3

dt3
x(ti)T

3 þ � � � (6:3)

Equation 6.3 can be expressed in terms of the state derivative function,

f (t, x) ¼ d

dt
x(t) (6:4)

) xiþ1 ¼ xi þ f (ti, xi)T þ 1
2!

d

dt
f (ti, xi)T

2 þ 1
3!

d2

dt2
f (ti, xi)T

3 þ � � � (6:5)

The derivatives (d=dt)f(ti, xi), (d
2=dt2)f(ti, xi), and so forth can be obtained from the chain rule. For

example, the first derivative is

d

dt
f (ti, xi) ¼ q

qt
f (ti, xi)þ q

qx
f (ti, xi)

d

dt
x(ti) (6:6)

¼ ft(ti, xi)þ fx(ti, xi)f (ti, xi) (6:7)

where

ft(ti, xi) ¼ q
qt
f (ti, xi), fx(ti, xi) ¼ q

qx
f (ti, xi) (6:8)

x(t)

t
ti ti + 1

xi

xi+1 i1

T

xA(i + 1)

FIGURE 6.1 Graphical representation of calculation for new state xA(iþ 1).

458 Simulation of Dynamic Systems with MATLAB® and Simulink®

Substituting Equation 6.7 into Equation 6.5 yields

xiþ1 ¼ xi þ Tf (ti, xi)þ T2

2
[ft(ti, xi)þ fx(ti, xi)f (ti, xi)]þ � � � (6:9)

Truncating Equation 6.9 after the second term produces the explicit Euler integrator

xA(iþ 1) ¼ xi þ Tf (ti, xi) (6:10)

which would normally be written as

xA(iþ 1) ¼ xA(i)þ Tf [ti, xA(i)] (6:11)

since xi is known only at the initial point (0, x0).
Truncating Equation 6.9 after the third term results in a more accurate approximation of the true

value xiþ1, namely,

xA(iþ 1) ¼ xA(i)þ Tf [ti, xA(i)]þ T2

2
{ ft[ti, xA(i)]þ fx[ti, xA(i)] f [ti, xA(i)]} (6:12)

The Taylor Series method can be used to obtain difference equations such as Equations 6.11 and
6.12 for updating the discrete-time state xA(i). However, it is rarely attempted because expressions
for the higher-order derivatives of f (t, x) are often complex functions involving higher-order partial
derivatives of f (t, x). What is needed is an algorithm for computing xA(iþ 1) with comparable
accuracy to the truncated Taylor Series without requiring partial derivatives of f (t, x).

6.2.2 SECOND-ORDER RUNGE–KUTTA METHOD

Recalling our previous discussion of wi, the slope of the line from the point (ti, xi) to [tiþ1, xA(iþ 1)]
in Figure 6.1, suppose we choose it to be a weighted sum of the state derivative f (t, x) evaluated at
several points on the interval. In particular, if wi is a weighted average of f (t, x) at two points on the
interval ti � t � tiþ1, the result is

wi ¼ a1k1 þ a2k2 (0 � a1 � 1, 0 � a2 � 1, a1 þ a2 ¼ 1) (6:13)

where k1 is the state derivative function f (t, x) at (ti, xi), that is,

k1 ¼ f (ti, xi) (6:14)

and k2 is the state derivative function f(t, x) at [tiþ pT, xiþ qTf(ti, xi)], that is,

k2 ¼ f [ti þ pT , xi þ qTf (ti, xi)], (0 � p � 1, 0 � q � 1) (6:15)

Lines with slopes k1 and k2 are shown in Figure 6.2.
From Equations 6.14 and 6.15,

k2 ¼ f [ti þ pT , xi þ qTk1] (6:16)

indicating that k2 can be determined once k1 is known. The weights a1 and a2 as well as the
constants p and q are to be determined.

Intermediate Numerical Integration 459

Substituting Equation 6.13 into Equation 6.2 gives

xA(iþ 1) ¼ xi þ T(a1k1 þ a2k2) (6:17)

The derivative function f(t, x) can be expanded in a two-dimensional Taylor Series about the point
(ti, xi) as follows:

f (ti þ Dt, xi þ Dx) ¼ f (ti, xi)þ ft(ti, xi)Dt þ fx(ti, xi)Dx

þ 1
2

ftt(ti, xi)Dt
2 þ 2ftx(ti, xi)DtDxþ fxx(ti, xi)Dx

2
� �þ � � � (6:18)

Letting Dt¼ pT, Dx¼ qTf(ti, xi) in Equation 6.18 makes k2 in Equation 6.16 equal to

k2 ¼ f (ti, xi)þ ft(ti, xi)pT þ fx(ti, xi)qTf (ti, xi)

þ 1
2

ftt(ti, xi)(pT)
2 þ 2ftx(ti, xi)(pT)[qTf (ti, xi)]þ fxx(ti, xi) qTf (ti, xi)½ �2

n o
þ � � � (6:19)

Substituting Equation 6.14 for k1 and Equation 6.19 for k2 into Equation 6.17 results in

xA(iþ 1) ¼ xA(i)þ Ta1f (ti, xi)þ Ta2[f (ti, xi)þ ft(ti, xi)pT þ fx(ti, xi)qTf (ti, xi)]

þ 1
2
Ta2 ftt(ti, xi)(pT)

2 þ 2ftx(ti, xi)(pT)[qTf (ti, xi)]þ fxx(ti, xi)[qTf (ti, xi)]
2

� �þ � � �
(6:20)

Simplifying Equation 6.20 by collecting terms involving powers of T leads to

xA(iþ 1) ¼ xi þ (a1 þ a2)Tf (ti, xi)þ a2T
2[pft(ti, xi)þ qfx(ti, xi)f (ti, xi)]þ � � � (6:21)

Equating the right-hand sides of Equations 6.9 and 6.21 gives

a1 þ a2 ¼ 1, a2p ¼ 1
2
, a2q ¼ 1

2
(6:22)

The first three terms in Equation 6.3 comprise the second-order truncated Taylor Series expansion of
x(t) about the point ti, that is,

x2(ti þ T) ¼ x(ti)þ d

dt
x(ti)T þ 1

2!
d2

dt2
x(ti)T

2 (6:23)

ti + pTti ti+1

xi
xi + qTf (ti, xi)k1

k2

xi+1

t
x(t)

xA(i + 1) = xi + Tf (ti, xi)ˆ

FIGURE 6.2 Representation of wi¼ a1k1þ a2k2 as weighted sum of f(t, x) at two points.

460 Simulation of Dynamic Systems with MATLAB® and Simulink®

where the subscript ‘‘2’’ indicates that the Taylor Series is truncated after the term containing T2.
Hence, by choosing the constants a1, a2, p, and q according to Equation 6.22, we can be certain that
the computed state xA(iþ 1) in Equation 6.21 achieves comparable accuracy as the second-order
truncated Taylor Series.

There are, however, an infinite number of solutions to the three equations in four unknowns in
Equation 6.22. Numerical integrators based on the use of Equation 6.17 with a1, a2, p, and q
satisfying the constraints in Equation 6.22 are referred to as second-order RK or RK-2 integrators.

6.2.3 TRUNCATION ERRORS

The local truncation error eT is the difference between the exact solution x(tiþ T) and the approxi-
mate solution xA(iþ 1) obtained by the Taylor Series method or some other numerical approxima-
tion technique such as the RK-2 integrators. Hence,

eT ¼ x(ti þ T)� xA(iþ 1) (6:24)

For the approximation based on the second-order truncated Taylor Series method, Equation 6.24
becomes

eT ¼ x(ti þ T)� xi þ f (ti, xi)T þ 1
2!

d

dt
f (ti, xi)T

2

� �
(6:25)

Thus, the local truncation error reduces to the sum of all the terms in the Taylor Series expansion for
x(tiþ T) beginning with the term containing T3. That is,

eT ¼ 1
3!

d3

dt3
x(ti)T

3 þ 1
4!

d4

dt4
x(ti)T

4 þ � � � (6:26)

Since the first term on the right-hand side of Equation 6.26 is generally the dominant term
(magnitude-wise), the local truncation error is proportional to T3 and is said to be of order T3,
denoted eT � O(T3). The global truncation error ET is the accumulation of individual truncation
errors incurred in the process of numerically integrating over several intervals. It turns out that ET is
proportional to T2 or equivalently ET � O(T2).

It is important to distinguish between the order of the local truncation error and its actual value
for a particular numerical integrator. We should not expect to find the numerical value of eT in
the process of computing xA(i), i¼ 0, 1, 2,. . . . Were that possible, the exact solution x(ti), i¼ 0,
1, 2, . . . could be computed from Equation 6.24.

We have seen that RK-2 integrators achieve comparable accuracy to the second-order truncated
Taylor Series method and, as a result, are referred to as second-order accurate. The local truncation
error eT � O(T3) regardless of how we solve for a1, a2, p, and q in Equation 6.22. The numerical
value of eT will, however, be sensitive to the particular RK-2 integrator.

Knowing eT � O(T3) and ET � O(T2) for RK-2 integrators makes the consequence of adjusting
the integration step size predictable. For example, halving the step size reduces the local and

global truncation errors by a factor of
1
8
and

1
4
, respectively. For the explicit Euler integrator (RK-1),

eT � O(T2) and ET � O(T) implying the local truncation error are reduced by
1
4
while the global

truncation is approximately
1
2
as large when the step size is halved.

We now investigate two possible choices for the set of constants a1, a2, p, and q.

Solution I: a1 ¼ a2 ¼ 1=2 and p¼ q¼ 1
From Equations 6.2 and 6.13, the RK-2 integrator becomes

xA(iþ 1) ¼ xi þ T

2
(k1 þ k2) (6:27)

Intermediate Numerical Integration 461

Since xi is unknown after the initial step, it must be replaced by xA(i) in Equation 6.27 to yield the
difference equation for a numerical integrator. Using the definitions for k1 and k2 in Equations 6.14
and 6.15 and remembering that p¼ q¼ 1 give

xA(iþ 1) ¼ xA(i)þ T

2
{f [ti, xA(i)]þ f [ti þ T , xA(i)þ Tf [ti, xA(i)]]} (6:28)

Denoting xA(i)þ Tf [ti, xA(i)] by x̂A(iþ 1) in Equation 6.28 gives

xA(iþ 1) ¼ xA(i)þ T

2
{f [ti, xA(i)]þ f [ti þ T , x̂A(iþ 1)]} (6:29)

You should recognize x̂A(iþ 1) as the explicit Euler estimate of xiþ1 in Equation 6.11 (see Figure
6.2). Hence, the explicit Euler (an RK-1 integrator) establishes the second point [ti þ T , x̂A(iþ 1)]
for evaluating the derivative function, and the average derivative function or slope is then used to
update the state according to Equation 6.29.

The RK-2 integrator of Equation 6.29 is the improved Euler or Heun’s method introduced in
Section 3.6. At that time, it was developed using a geometrical argument instead of the formal
approach presented here.

The second solution for the constants a1, a2, p, and q will also look familiar.

Solution II: a1¼ 0, a2¼ 1 and p ¼ q ¼ 1=2.
From Equations 6.2 and 6.13, the RK-2 integrator is

xA(iþ 1) ¼ xi þ Tk2 (6:30)

As in the case of the improved Euler integrator, the difference equation for xA(i) results from
replacing xi by xA(i) in Equation 6.30 giving

xA(iþ 1) ¼ xA(i)þ Tf ti þ T

2
, xA(i)þ T

2
f [ti, xA(i)]

� �
(6:31)

Introducing the notation

xA iþ 1
2

� �
¼ xA(i)þ T

2
f [ti, xA(i)] (6:32)

implies the new state xA(iþ 1) is calculated according to

xA(iþ 1) ¼ xA(i)þ Tf ti þ T

2
, xA iþ 1

2

� �� �
(6:33)

Equation 6.33 is identical to the modified Euler integrator in Section 3.6.
In summary, the Taylor Series method (second order and higher) for approximating x(tiþ T)

requires the derivative function f(ti, xi) as well as its derivatives (see Equation 6.5). RK-2
integrators produce estimates of xiþ1 to the same accuracy as the first three terms in Equation 6.5
without requiring the total derivative (d=dt)f(t, x). The price is an extra derivative function
evaluation f(t, x).

The following example illustrates use of the Taylor Series method and the RK-2 integrators.
Results are compared with the first-order explicit Euler (RK-1) integrator and the exact solution.

462 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 6.1

The object shown in Figure 6.3 is initially at rest and then subjected to a constant force
f (t) ¼ F, t � 0. The motion of the object is opposed by the damper force fD(t)¼av(t). The contents
of the object are leaking so that the object’s mass diminishes from its initial value m0 to a final
mass mf.

At a given time t, the mass of the object is given by

m(t) ¼
m0 � ct, 0 � t � (m0 �mf)

c

mf , t >
(m0 �mf)

c

8>><>>: (6:34)

(a) Find an expression for the state derivative function f(t, v) while the mass of the object is still
decreasing.

(b) Find the difference equation for updating the state vA(i) using the second-order Taylor Series
method.

(c) Find the difference equation for updating the state vA(i) using the RK-1 explicit Euler
integrator.

(d) Find the difference equation for updating the state vA(i) using the RK-2 improved
Euler integrator.

(e) Find the difference equation for updating the state vA(i) using the RK-2 modified Euler
integrator.

(f) Find the exact solution for the state v(t).
(g) Numerical values of the system parameters are m0¼ 1 slug, mf¼ 0.2 slugs, c¼ 0.05

slugs=min, and a¼ 0.25 lb=ft=min and the external force is F ¼ 10 lb. Tabulate and graph
the results when T¼ 0.5 min.

(a) The differential equation model for the system is

m(t)
dv
dt
¼ F � av (6:35)

Solving for the derivative function,

dv
dt
¼ f (t, v) ¼ F � av

m0 � ct
, 0 � t � (m0 �mf)

c
(6:36)

(b) From Equation 6.9,

viþ1 ¼ vi þ Tf (ti, vi)þ T2

2
[ft(ti, vi)þ fv(ti, vi)f (ti, vi)]þ � � � (6:37)

v(t)

f(t) m(t)
fD(t)

v(t)

f(t) m(t)

FIGURE 6.3 Moving object with decreasing mass.

Intermediate Numerical Integration 463

Partial differentiation of Equation 6.36 gives

ft(ti, vi) ¼ (F � avi)
c

(m0 � cti)2
(6:38)

fv(ti, vi) ¼ �a
m0 � cti

(6:39)

Substituting Equations 6.36, 6.38 and 6.39 into Equation 6.37 yields

viþ1 ¼ vi þ T
F � avi
m0 � cti

� �
þ T2

2
c(F � avi)
(m0 � cti)2

� a

(m0 � cti)
F � avi
m0 � cti

� �
þ � � � (6:40)

Truncating Equation 6.40 after the T2 term, replacing vi by vA(i), viþ1 by vA(iþ 1), and setting t¼ iT
lead to the difference equation

vA(i þ 1) ¼ vA(i)þ F � avA(i)
m0 � ciT

� �
T þ (c� a)

2
F � avA(i)
(m0 � ciT)2

� �
T2 (6:41)

(c) The RK-1 explicit Euler integrator is

v̂A(i þ 1) ¼ v̂A(i)þ Tf [ti, v̂A(i)] (6:42)

¼ v̂A(i)þ T
F � av̂A(i)
m0 � ciT

� �
(6:43)

(d) The RK-2 improved Euler integrator, Equation 6.29, is

vA(i þ 1) ¼ vA(i)þ T
2
{f [ti, vA(i)]þ f [ti þ T, v̂A(i þ 1)]} (6:44)

¼ vA(i)þ T
2

F � avA(i)
m0 � ciT

þ F � av̂A(i þ 1)
m0 � c(i þ 1)T

� �
(6:45)

(e) The RK-2 modified Euler integrator, Equations 6.32 and 6.33, is

vA i þ 1
2

� �
¼ vA(i)þ T

2
f [ti, vA(i)] (6:46)

¼ vA(i)þ T
2

F � avA(i)
m0 � ciT

� �
(6:47)

vA(i þ 1) ¼ vA(i)þ Tf tiþ1=2, vA i þ 1
2

� �� �
(6:48)

¼ vA(i)þ T
F � avA i þ 1

2

� �
m0 � c i þ 1

2
T

� �
2664

3775 (6:49)

(f) The exact solution for v(t) is obtained from Equation 6.36 by integration.

ðv
v(0)

dv0

F � av0
¼
ðt
0

dt0

m0 � ct0
(6:50)

) v(t) ¼ F
a
� F

a
� v(0)

� �
1� ct

m0

� �a=c
, 0 � t � (m0 �mf)

c
(6:51)

464 Simulation of Dynamic Systems with MATLAB® and Simulink®

(g) For the numerical values given, results from the Taylor Series method, the three numerical
integrators, and the exact solution are tabulated in Table 6.1 at 1 min intervals after the first
two steps.

Figure 6.4 contains a graph of the four numerical integrators and the exact solution. Both the
table and figure confirm the improved accuracy possible with the use of the Taylor Series method
and RK-2 integration compared to the explicit Euler (RK-1) integrator.

Knowing the exact solution, we can check the results obtained from the Taylor Series method.
For the numerical values given, the exact solution in Equation 6.51 becomes

v(t) ¼ 40� 40(1� 0:05t)5, 0 � t � 16 (6:52)

The second-order truncated Taylor Series v2(t) about the point t¼ 0 is

v2(T) ¼ v(0)þ d
dt

v(0)T þ 1
2

d2

dt2
v(0)T2 (6:53)

Setting v(0) to zero, differentiating Equation 6.52 to find the first two derivatives and substituting
the results into Equation 6.53 give

v2(T) ¼ 10T þ 1
2
(�2)T2 (6:54)

) v2(0:5) ¼ 10(0:5)� (0:5)2 ¼ 4:75

which agrees with the value in Table 6.1.

TABLE 6.1
Taylor Series Method, RK-1 (Explicit Euler), RK-2 (Improved Euler), RK-2 (Modified Euler)
with T¼ 0.5 min, and Exact Solution

i ti¼ iT
Taylor Series
Method vA(i)

RK-1 Explicit
Euler v̂A(i)

RK-2 Improved
Euler vA(i)

RK-2 Modified
Euler vA(i)

Exact
Solution

0 0 0 0 0 0 0

1 0.5 4.75 5.0 4.7436 4.7468 4.7562

2 1 9.0375 9.4872 9.0257 9.0317 9.0488

4 2 16.3617 17.0828 16.3421 16.3520 16.3804

6 3 22.2287 23.0849 22.2045 22.2168 22.2518

8 4 26.8677 27.7584 26.8415 26.8548 26.8928

10 5 30.4826 31.3371 30.4562 30.4696 30.5078

12 6 33.2532 34.0256 33.2280 33.2408 33.2772

14 7 35.3370 36.0013 35.3139 35.3256 35.3588

16 8 36.8704 37.4162 36.8501 36.8604 36.8896

18 9 37.9706 38.3992 37.9534 37.9622 37.9869

20 10 38.7368 39.0575 38.7226 38.7298 38.7500

22 11 39.2515 39.4792 39.2403 39.2460 39.2619

24 12 39.5826 39.7345 39.5741 39.5785 39.5904

26 13 39.7843 39.8783 39.7782 39.7814 39.7899

28 14 39.8991 39.9519 39.8948 39.8970 39.9028

30 15 39.9586 39.9847 39.9559 39.9573 39.9609

Intermediate Numerical Integration 465

6.2.4 HIGH-ORDER RUNGE–KUTTA METHODS

Higher-order RK formulas are derived in the same manner as the RK-2 integrators. For RK-3
integration, the formula for updating the state xA(i), is

xA(iþ 1) ¼ xA(i)þ T(a1k1 þ a2k2 þ a3k3) (6:55)

where k1, k2, and k3 are derivative function evaluations at specific points. There are now three
constants p, q, and r, which determine the points at which the derivatives are to be evaluated.
Matching coefficients of powers of T in the expression for xA(iþ 1) using Equation 6.55 with the
truncated Taylor Series for x(t) through the T3 term generates four equations in the six unknowns a1,
a2, and a3 and p, q, and r.

One particular solution leads to the frequently used RK-3 integration formula

xA(iþ 1) ¼ xA(i)þ T

6
(k1 þ 4k2 þ k3) (6:56)

where

k1 ¼ f [ti, xA(i)] (6:57)

k2 ¼ f ti þ 1
2
T , xA(i)þ 1

2
k1T

� �
(6:58)

k3 ¼ f [ti þ T , xA(i)� k1T þ 2k2T] (6:59)

The local truncation error of an RK-3 integrator eT � O(T 4) and the global truncation error
ET � O(T 3).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

v(
t),

 v A
(i)

20

25

30

35

40

t

Taylor series method
Euler (RK-1), T = 0.5 min
Improved Euler (RK-2), T = 0.5 min
Modified Euler (RK-2), T = 0.5 min
Exact

FIGURE 6.4 Comparison of numerical integrators and exact solution for Example 6.1.

466 Simulation of Dynamic Systems with MATLAB® and Simulink®

Fourth-order RK formulas are the most common of all the RK numerical integrators for reasons
we shall discuss shortly. The derivation is patterned after the approach used for the lower-order RK
methods. Flexibility in the choice of several parameters results in a family of RK-4 integrators.
A popular RK-4 integrator is illustrated in Figure 6.5.

The derivative function evaluations are computed according to

k1 ¼ f [ti, xA(i)], xA iþ 1
2

� �
¼ xA(i)þ T

2
k1 (6:60)

k2 ¼ f tiþ1=2, xA iþ 1
2

� �� �
, x̂A iþ 1

2

� �
¼ xA(i)þ T

2
k2 (6:61)

k3 ¼ f tiþ1=2, x̂A iþ 1
2

� �� �
, x̂A(iþ 1) ¼ xA(i)þ Tk3 (6:62)

k4 ¼ f [tiþ1, x̂A(iþ 1)] (6:63)

and the updated state xA(iþ 1) is obtained from

xA(iþ 1) ¼ xA(i)þ T

6
(k1 þ 2k2 þ 2k3 þ k4) (6:64)

Note that of the four required derivative evaluations, one is at the beginning of the interval, two
occur at the midpoint, and the last one takes place at the end of the interval. The algorithm is
straightforward to program because of the sequential nature in the calculations of k1, k2, k3, and k4.

RK-1 through RK-4 (and higher) integrators are incorporated in simulation and numerical
analysis software packages. MATLAB® and Simulink® offer a choice of RK-1 through RK-5
integrators.

6.2.5 LINEAR SYSTEMS: APPROXIMATE SOLUTIONS USING RK INTEGRATION

The special case of linear system models is worth looking at in some detail. Suppose the derivative
function in Equation 6.1 is linear in x, that is,

dx

dt
¼ f (t, x) ¼ ax (6:65)

ti

xA(i)
k1

k1

k2

k2

k3

k4

k3

(k1 + 2k2 + 2k3 + k4)

xA(i + 1)

xA(i + 1)ˆ

ti+1 = ti +T

1
6—

2
1—xA i +

ˆ
2
1—xA i +

ti+(1/2) = ti + T2
1—

FIGURE 6.5 Illustration of an RK-4 integrator.

Intermediate Numerical Integration 467

Applying RK-1, RK-2, RK-3, and RK-4 integrators to the linear system in Equation 6.65 produces
the following difference equations for updating the state xA(i):

RK-1: xA(iþ 1) ¼ (1þ aT)xA(i) (6:66)

RK-2: xA(iþ 1) ¼ 1þ aT þ 1
2!
(aT)2

� �
xA(i) (6:67)

RK-3: xA(iþ 1) ¼ 1þ aT þ 1
2!
(aT)2 þ 1

3!
(aT)3

� �
xA(i) (6:68)

RK-4: xA(iþ 1) ¼ 1þ aT þ 1
2!
(aT)2 þ 1

3!
(aT)3 þ 1

4!
(aT)4

� �
xA(i) (6:69)

The general solutions to Equations 6.66 through 6.69 are easily obtained by recursion. The results are

RK-1: xA(i) ¼ (1þ aT)ix(0) (6:70)

RK-2: xA(i) ¼ 1þ aT þ 1
2!
(aT)2

� �i
x(0) (6:71)

RK-3: xA(i) ¼ 1þ aT þ 1
2
(aT)2 þ 1

2!
(aT)3

� �i
x(0) (6:72)

RK-4: xA(i) ¼ 1þ aT þ 1
2
(aT)2 þ 1

3!
(aT)3 þ 1

4!
(aT)4

� �i
x(0) (6:73)

where x(0) is the initial condition. In general, an RK-m integrator applied to the linear system model,
Equation 6.65, results in

xA(i) ¼
Xm
k¼o

(aT)k

k!

" #i
x(0) (6:74)

¼ 1þ aT þ 1
2!
(aT)2 þ 1

3!
(aT)3 þ � � � þ 1

m!
(aT)m

� �i
x(0) (6:75)

In the case of more than a single state variable, that is, _x ¼ Ax, a similar result applies for RK-m
integrators.

xA(i) ¼
Xm
k¼o

(TA)k

k!

" #i
x(0) (6:76)

¼ I þ TAþ 1
2!
(TA)2 þ 1

3!
(TA)3 þ � � � þ 1

m!
(TA)m

� �i
x(0) (6:77)

Equation 6.76 for the explicit Euler integrator (m¼ 1) as well as the improved and modified Euler
integrators (m¼ 2) was first introduced in Section 3.6.

The discrete-time signal xA(i), i¼ 0, 1, 2, 3, . . . is intended to approximate the continuous-time
state x(t)jt¼ iT, i¼ 0, 1, 2, 3, . . . The solution x(t) to Equation 6.65 is

x(t) ¼ x(0)eat, t � 0 (6:78)

) x(iT) ¼ x(0)eaiT ¼ x(0)(eaT)i (6:79)

468 Simulation of Dynamic Systems with MATLAB® and Simulink®

Expanding eaT in a Taylor Series about zero, Equation 6.79 becomes

x(iT) ¼ 1þ aT þ 1
2!
(aT)2 þ 1

3!
(aT)3 þ � � � þ 1

m!
(aT)m þ � � �

� �i
x(0) (6:80)

From Equations 6.74 and 6.80 with i¼ 1, the mþ 1 terms in the approximate value xA(1) are
identical to the first mþ 1 terms of the infinite series expression for x(T).

After one step, the local truncation error of an RK integrator is

eT ¼ x(T)� xA(1) (6:81)

For an RK-m integrator,

eT ¼ eaTx(0)� 1þ aT þ 1
2!
(aT)2 þ 1

3!
(aT)3 þ � � � þ 1

m!
(aT)m

� �
x(0) (6:82)

Replacing eaT in Equation 6.82 by its Taylor Series expansion leads to

eT ¼ 1
(mþ 1)!

(aT)mþ1 þ 1
(mþ 2)!

(aT)mþ2 � � �
� �

x(0) (6:83)

and, therefore, eT� O(T mþ1) as expected. All RK-m integrators are said to be of mth order, not to be
confused with their local truncation error, which is of order mþ 1, that is, eT � O(Tmþ1). The mth
order reference stems from the high-order term in the truncated Taylor Series. For an RK-m
integrator, the global truncation error ET � O(T m).

RK-1 through RK-4 integrators require one to four derivative function evaluations per step. RK
integrators of order higher than four are not as efficient. For example, an RK-5 integrator requires
six derivative function evaluations per step for comparable agreement with the fifth-order Taylor
Series expansion of the solution. A penalty of one additional derivative function evaluation per step
is the price incurred in moving from an RK-4 integrator with eT � O(T5) to an RK-5 integrator with
eT � O(T6). The computational effort during each integration step results primarily from evaluating
the derivative function. Hence, the penalty is nontrivial.

Worse yet, RK-6 integrators require eight derivative function evaluations to achieve a local
truncation error eT � O(T7). RK-4 methods are popular because they are the highest order one-step
integrators that do not require more derivative function evaluations than their order.

6.2.6 CONTINUOUS-TIME MODELS WITH POLYNOMIAL SOLUTIONS

The Taylor Series method for finding xA(iþ 1) starting from the point (ti, xi) on the solution x(t) is

xA(iþ 1) ¼ xi þ d

dt
x(ti)T þ 1

2!
d2

dt2
x(ti)T

2 þ � � � þ 1
m!

dm

dtm
x(ti)T

m (6:84)

where the total derivatives (d2=dt2)x(ti), (d
3=dt3)x(ti), . . . , (d

m=dtm)x(ti) are computed from partial
derivatives of the derivative function f (ti, xi).

Suppose the exact solution is the mth-order polynomial

x(t) ¼ a0 þ a1t þ a2t
2 þ � � � þ amt

m (6:85)

The exact solution at t¼ tiþ1 is

x(tiþ1) ¼ a0 þ a1tiþ1 þ a2t
2
iþ1 þ � � � þ amt

m
iþ1 (6:86)

Intermediate Numerical Integration 469

With xA(0) set equal to x(0), Equations 6.84 and 6.86 produce identical results at the discrete points
0, T, 2T, . . . In other words,

xA(iþ 1) ¼ x(tiþ1), i ¼ 0, 1, 2, . . . (6:87)

Proof for the case when m¼ 2 follows. Starting with

xA(iþ 1) ¼ xi þ d

dt
x(ti)T þ 1

2!
d2

dt2
x(ti)T

2 (6:88)

The two derivatives in Equation 6.88 are obtained from the exact solution for x(t) in Equation 6.85
with m¼ 2. Substituting them into Equation 6.88 and simplifying give

xA(iþ 1) ¼ xi þ (a1 þ 2a2ti)T þ 1
2
(2a2)T

2 (6:89)

¼ (a0 þ a1ti þ a2t
2
i)þ a1T þ 2a2tiT þ a2T

2 (6:90)

¼ a0 þ a1(ti þ T)þ a2(ti þ T)2 (6:91)

¼ x(tiþ1) (6:92)

The proof is similar for higher-order polynomial solutions.
In Example 6.1, the exact solution v(t) in Equation 6.52 is a fifth-order polynomial. Hence, the

Taylor Series method using the fifth-order truncated Taylor Series would agree with the exact
solution at 0, T, 2T,. . . . However, in Example 6.1, a second-order Taylor Series was used to
generate the discrete-time values vA(1), vA(2), vA(4), vA(6), . . . , vA(30) shown in Table 6.1. This
explains the discrepancy between the discrete-time values and the exact solution v(t1), v(t2), v(t4),
v(t6), . . . , v(t30) shown in the last column of the table.

In general, when x(t) is an mth-order polynomial, unlike the mth-order Taylor Series method,
RK-m integrators will not generate the true solution values x(t1), x(t2), x(t3),. . . . Different RK-m
integrators will produce different discrete-time solutions; however, they achieve comparable accur-
acy with the Taylor Series method in the sense that the local truncation errors are the same order of
magnitude. A similar result holds for RK integrators and the truncated Taylor Series method when
both are the same order and less than m. In that case, the Taylor Series method will no longer be
exact. The following example illustrates this point.

Example 6.2

In Example 6.1, if we change the value of a from 0.25 to 0.1, the exact solution to Equation 6.35
becomes

v(t) ¼ 100� 1
4
(20� t)2 (6:93)

Approximate the solution for v(t) using the second-order Taylor Series, RK-1 integration, and both
RK-2 integrators with a step size of T¼ 0.5. Compare results with the exact solution.

The state derivative function, Equation 6.36, is given by

f (ti, vi) ¼ F � avi
m0 � cti

¼ 10� 0:1vi
1� 0:05ti

¼ 2
100� vi
20� ti

� �
(6:94)

The first partials in Equations 6.38 and 6.39 become

ft(ti, vi) ¼ 2
100� vi
(20� ti)2

� �
(6:95)

470 Simulation of Dynamic Systems with MATLAB® and Simulink®

fv(ti, vi) ¼ �2
(20� ti)

(6:96)

and the Taylor Series method for calculating the approximation to v(tþ T) is

vA(i þ 1) ¼ vA(i)þ Tf [ti, vA(i)]þ T2

2
{ft[ti, vA(i)]þ fv[ti, vA(i)]f [ti, vA(i)]} (6:97)

From Equations 6.94 through 6.97 with i¼ 0, ti¼ t0¼ 0 and vA(i)¼ vA(0)¼ v(0)¼ 0,

vA(1) ¼ 10T � 1
4
T2 (6:98)

For a step size of T¼ 0.5, vA(1)¼ 4.9375. The exact solution v(T)jT¼ 0.5 is computed from

v(t)jt¼T¼0:5 ¼ 100� 1
4
(20� t)2

t¼T¼0:5

¼ 4:9375

which agrees with the result from the Taylor Series method.
Results for the Taylor Series method, RK-1, both RK-2 integrators, and the exact solution are

tabulated in Table 6.2.

6.2.7 HIGHER-ORDER SYSTEMS

The application of RK numerical integration to higher-order systems is straightforward. The
differential equations of an nth-order system model are expressed as a system of first-order
differential equations as shown in Equations 6.99 through 6.101.

dx1
dt
¼ f1(t, x1, x2, . . . , xn) (6:99)

dx2
dt
¼ f2(t, x1, x2, . . . , xn) (6:100)

..

.

dxn
dt
¼ fn(t, x1, x2, . . . , xn) (6:101)

TABLE 6.2
Comparison of Taylor Series Method, RK-1, RK-2, and Exact Solution

i ti Taylor Series vA(i) RK-1 Explicit vA(i) RK-2 Improved vA(i) RK-2 Modified vA(i) Exact v(ti)

0 0 0 0 0 0 0

1 0.5 4.9375 5.0000 4.9359 4.9367 4.9375

2 1.0 9.7500 9.8718 9.7468 9.7484 9.7500

4 2.0 19.0000 19.2308 18.9938 18.9970 19.0000

6 3.0 27.7500 28.0769 27.7410 27.7455 27.7500

8 4.0 36.0000 36.4103 35.9883 35.9942 36.0000

10 5.0 43.7500 44.2308 43.7357 43.7430 43.7500

Intermediate Numerical Integration 471

Updating the current discrete-time state vector [x1,A(i), x2,A(i), . . . , xn,A(i)] to the new vector
[x1,A(iþ 1), x2,A(iþ 1), . . . , xn,A(iþ 1)] with RK-m integration consists of determining, in the
proper sequence, the derivatives kj,p, j¼ 1, 2, . . . , m and p¼ 1, 2, 3, . . . , n. By the proper sequence,
we mean k1,1, k1,2, . . . , k1,n, followed by k2,1, k2,2, . . . , k2,n up through by km,1, km,2, . . . , km,n.

To illustrate, suppose we are dealing with a third-order (n¼ 3) system and choose to implement a
fourth-order (m¼ 4) RK-4 integrator to update the discrete-time state. The three derivative functions
are each calculated four times in the following order:

k1,1 ¼ f1[ti, x1,A(i), x2,A(i), x3,A(i)]

k1,2 ¼ f2[ti, x1,A(i), x2,A(i), x3,A(i)]

k1,3 ¼ f3[ti, x1,A(i), x2,A(i), x3,A(i)]

9>=>; (6:102)

k2,1 ¼ f1[ti þ 0:5T , x1,A(i)þ 0:5Tk1,1, x2,A(i)þ 0:5Tk1,2, x3,A(i)þ 0:5Tk1,3]

k2,2 ¼ f2[ti þ 0:5T , x1,A(i)þ 0:5Tk1,1, x2,A(i)þ 0:5Tk1,2, x3,A(i)þ 0:5Tk1,3]

k2,3 ¼ f3[ti þ 0:5T , x1,A(i)þ 0:5Tk1,1, x2,A(i)þ 0:5Tk1,2, x3,A(i)þ 0:5Tk1,3]

9>=>; (6:103)

k3,1 ¼ f1[ti þ 0:5T , x1,A(i)þ 0:5Tk2,1, x2,A(i)þ 0:5Tk2,2, x3,A(i)þ 0:5Tk2,3]

k3,2 ¼ f2[ti þ 0:5T , x1,A(i)þ 0:5Tk2,1, x2,A(i)þ 0:5Tk2,2, x3,A(i)þ 0:5Tk2,3]

k3,3 ¼ f3[ti þ 0:5T , x1,A(i)þ 0:5Tk2,1, x2,A(i)þ 0:5Tk2,2, x3,A(i)þ 0:5Tk2,3]

9>=>; (6:104)

k4,1 ¼ f1[ti þ T , x1,A(i)þ Tk3,1, x2,A(i)þ Tk3,2, x3,A(i)þ Tk3,3]

k4,2 ¼ f2[ti þ T , x1,A(i)þ Tk3,1, x2,A(i)þ Tk3,2, x3,A(i)þ Tk3,3]

k4,3 ¼ f3[ti þ T , x1,A(i)þ Tk3,1, x2,A(i)þ Tk3,2, x3,A(i)þ Tk3,3]

9>=>; (6:105)

The components of the state are updated according to

x1,A(iþ 1) ¼ x1,A(i)þ T

6
(k1,1 þ 2k2,1 þ 2k3,1 þ k4,1) (6:106)

x2,A(iþ 1) ¼ x2,A(i)þ T

6
(k1,2 þ 2k2,2 þ 2k3,2 þ k4,2) (6:107)

x3,A(iþ 1) ¼ x3,A(i)þ T

6
(k1,3 þ 2k2,3 þ 2k3,3 þ k4,3) (6:108)

An example of a second-order system model using RK-4 integration is now presented. The standard
form of a linear second-order system is

d2x

dt2
þ 2zvn

dx

dt
þ v2

nx ¼ Kv2
nu (6:109)

Letting x1¼ x and x2¼ dx=dt leads to the state equation model

dx1
dt
¼ f1(t, x1, x2, u) ¼ x2 (6:110)

dx2
dt
¼ f2(t, x1, x2, u) ¼ �v2

nx1 � 2zvnx2 þ Kv2
nu (6:111)

where the last argument u of f1(t, x1, x2, u) and f2(t, x1, x2, u) refers to the system input.

472 Simulation of Dynamic Systems with MATLAB® and Simulink®

Expressions for the derivatives k1, k2, k3, and k4 associated with states x1 and x2 are

k1,1 ¼ f1[ti, x1,A(i), x2,A(i), u(ti)] (6:112)

¼ x2,A(i) (6:113)

k1,2 ¼ f2[ti, x1,A(i), x2,A(i), u(ti)] (6:114)

¼ �v2
nx1,A(i)� 2zvnx2,A(i)þ Kv2

nu(ti) (6:115)

k2,1 ¼ f1[ti þ 0:5T , x1,A(i)þ 0:5Tk1,1, x2,A(i)þ 0:5Tk1,2, u(ti þ 0:5T)] (6:116)

¼ x2,A(i)þ 0:5Tk1,2 (6:117)

k2,2 ¼ f2[ti þ 0:5T , x1,A(i)þ 0:5Tk1,1, x2,A(i)þ 0:5Tk1,2, u(ti þ 0:5T)] (6:118)

¼ �v2
n[x1,A(i)þ 0:5Tk1,1]� 2zvn[x2,A(i)þ 0:5Tk1,2]þ Kv2

nu(ti þ 0:5T) (6:119)

k3,1 ¼ f1[ti þ 0:5T , x1,A(i)þ 0:5Tk2,1, x2,A(i)þ 0:5Tk2,2, u(ti þ 0:5T)] (6:120)

¼ x2,A(i)þ 0:5Tk2,2 (6:121)

k3,2 ¼ f2[ti þ 0:5T , x1,A(i)þ 0:5Tk2,1, x2,A(i)þ 0:5Tk2,2, u(ti þ 0:5T)] (6:122)

¼ �v2
n[x1,A(i)þ 0:5Tk2,1]� 2zvn[x2,A(i)þ 0:5Tk2,2]þ Kv2

nu(ti þ 0:5T) (6:123)

k4,1 ¼ f1[ti þ T , x1,A(i)þ Tk3,1, x2,A(i)þ Tk3,2, u(ti þ T)] (6:124)

¼ x2,A(i)þ Tk3,2 (6:125)

k4,2 ¼ f2[ti þ T , x1,A(i)þ Tk3,1, x2,A(i)þ Tk3,2, u(ti þ T)] (6:126)

¼ �v2
n[x1,A(i)þ Tk3,1]� 2zvn[x2,A(i)þ Tk3,2]þ Kv2

nu(ti þ T) (6:127)

The updated state [x1,A(i), x2,A(i)] is obtained from

x1,A(iþ 1) ¼ x1,A(i)þ T

6
(k1,1 þ 2k2,1 þ 2k3,1 þ k4,1) (6:128)

x2,A(iþ 1) ¼ x2,A(i)þ T

6
(k1,2 þ 2k2,2 þ 2k3,2 þ k4,2) (6:129)

An example illustrating the application of Equations 6.110 through 6.129 follows.

Example 6.3

A simplified model to predict the levels of a drug in an individual is accomplished using
compartmental analysis similar to the iodine model in Section 4.3. After oral ingestion, a drug
enters the gastrointestinal tract (compartment 1) and is then distributed into the bloodstream
(compartment 2) where it is metabolized and eliminated. State equations describing the drug
dynamics in each compartment are

Gastrointestinal tract:
dm1

dt
¼ �c1m1 þ u (6:130)

Bloodstream:
dm2

dt
¼ �c1m1 � c2m2 (6:131)

where
m1 and m2 are the amounts of drug in each compartment (mg)
u is the ingestion rate of the drug (mg=min)
c1 and c2 are drug distribution and elimination constants of the individual (min�1)

Intermediate Numerical Integration 473

The output y is the amount of drug in the bloodstream, that is, m2.

(a) Convert the state equations into a single second-order differential equation relating the
output y and input u. Find z, vn, and K for the second-order system.

(b) Define x1¼ y¼m2 and x2¼ dy=dt¼ dm2=dt and simulate the response using classic RK-4
integration with a step size T¼ 1 min for the following conditions:

m1(0) ¼ 0mg, m2(0) ¼ 0 mg, c1 ¼ 0:06 min�1 , and c2 ¼ 0:015 min�1

Assume the drug ingestion rate is given by

u(t) ¼ Me�t=t, t � 0 (M ¼ 5mg=min , t ¼ 4 min) (6:132)

(c) Find the exact solution for x1(t).
(d) Plot the simulated response x1,A(i) and the exact solution x1(t) on the same graph.

(a) Elimination of m1 from Equations 6.130 and 6.131 is easily accomplished by Laplace trans-
forming the equations and algebraically solving for M2(s), which is also Y(s).

(sþ c1)M1(s) ¼ U(s) (6:133)

(sþ c2)M2(s) ¼ c1M1(s) (6:134)

Y(s) ¼ M2(s) ¼ c1
sþ c2

M1(s) (6:135)

¼ c1
sþ c2

1
sþ c1

U(s)
� �

(6:136)

Inverse Laplace transformation of Y(s) leads to the differential equation

d2y
dt2
þ (c1 þ c2)

dy
dt
þ c1c2y ¼ c1u (6:137)

Comparing Equation 6.137 with the standard form of Equation 6.109 yields

vn ¼ (c1c2)1=2, z ¼ c1 þ c2
2(c1c2)1=2

, K ¼ 1
c2

(6:138)

Solving for the second-order system parameters,

vn ¼ (c1c2)1=2 ¼ [(0:06)(0:015)]1=2 ¼ 0:03 rad=min

z ¼ c1 þ c2
2(c1c2)1=2

¼ 0:06þ 0:015
2(0:03)

¼ 1:25

K ¼ 1
c2
¼ 1

0:015
¼ 66:6�6 min�1

(b) The RK-4 calculations follow the procedure outlined in Equations 6.112 through 6.129. The
integration step begins with the k1 derivative evaluation for each state, that is,

k1,1 ¼ x2,A(0) ¼ x2(0) ¼ 0

k1,2 ¼ �v2
nx1,A(0)� 2zvnx2,A(0)þ Kv2

nu(0)

¼ �v2
nx1(0)� 2zvnx2(0)þ Kv2

nM

¼ �0:0009(0)� 2(1:25)(0:03)(0)þ 1
0:015

� �
(0:0009)(5)

¼ 0:3

474 Simulation of Dynamic Systems with MATLAB® and Simulink®

followed by the k2 derivative evaluation for each state, that is,

k2,1 ¼ x2,A(0)þ 1
2
k1,2T

¼ 0þ 1
2
(0:3)(1)

¼ 0:15

k2,2 ¼ �v2
n x1,A(i)þ 1

2
k1,1T

� �
� 2zvn x2,A(i)þ 1

2
k1,2T

� �
þ Kv2

nu ti þ 1
2
T

� �
¼ �0:0009 0þ 1

2
(0)(1)

� �
� 2(1:25)(0:03) 0þ 1

2
(0:3)(1)

� �
þ 1

0:015

� �
(0:0009)5e�0:5=4

¼ 0:2535

The remaining derivative evaluations are obtained in a similar fashion.

k3,1 ¼ 0:1267, k3,2 ¼ 0:2552, k4,1 ¼ 0:2552, k4,2 ¼ 0:2144

M-file ‘‘Chap6_Ex2_3.m’’ recursively solves the RK-4 difference equations for the discrete-time
states x1,A(i) and x2,A(i). Table 6.3 contains selected values of x1,A(i).

(c) The exact solution for x1(t)¼ y(t) can be determined by substituting the Laplace transform of u(t)
into Equation 6.136,

X1(s) ¼ c1
sþ c2

1
sþ c1

M
sþ (1=t)

� �� �
(6:139)

TABLE 6.3
Approximate (RK-4, T¼ 1 min) and Exact
Solutions

i ti x1,A(i) x1(ti)

0 0 0.0 0.0

1 1 0.13477907 0.13477243

2 2 0.48560007 0.48558842

3 3 0.98658006 0.98656465

4 4 1.58751933 1.58750114

5 5 2.25036682 2.25034661

25 25 11.68143041 11.68141034

50 50 11.65359364 11.65357994

100 100 6.24296647 6.24295986

150 150 2.98572189 2.98571876

200 200 1.41218500 1.41218352

250 250 0.66716006 0.66715936

300 300 0.31514864 0.31514831

Intermediate Numerical Integration 475

Inverse Laplace transforming Equation 6.139 gives the exact solution,

x1(t) ¼ Mc1t
(c1 � c2)(1� c1t)(1� c2t)

(1� c1t)e�c2t � (1� c2t)ec1t þ (c1 � c2)te�t=t
h i

(6:140)

(d) Table 6.3 contains values of the discrete-time response x1,A(i) and the exact solution x1(t)
at different times. The approximate and exact solutions agree to four places after the decimal
point.

Figure 6.6 contains plots of the discrete-time states x1,A(i) and x2,A(i) and the exact solution x1(t).
Every fourth point of the discrete-time signals is plotted for the sake of clarity.

Before we proceed further, it would be useful to know the total amount of drug ingested by the
individual. Integrating the rate of drug ingestion over time,

MT ¼
ð1
0

u(t)dt ¼
ð1
0

Me�t=tdt ¼ Mt (6:141)

For a continuous-time integrator, the derivative function f(t, x) is equal to the input u(t) to the
integrator. Hence,MT in Equation 6.141 can be found for an arbitrary input function u(t) using any
of the numerical integrators we have studied. Of course, the upper limit must be finite, presumably
the time required for the drug to be fully ingested.

We conclude this section with a simple nonlinear system model.

Example 6.4

The cooling of a high-temperature oven is governed by the following differential equation
(McClamroch 1980):

C
d~T
dt
¼ �Kc(~T � T0)� Kr(~T4 � T4

0) (6:142)

0 50 100 150 200 250 300
0

5

10

15
x1,A(i), i = 0, 4, 8, ...

x2,A(i), i = 0, 4, 8, ...

x1(t)

t (min)

0 50 100 150 200 250 300
t (min)

RK-4 integration (T = 1 min)

−0.2

x 2
=

dm
2/

dt
 (m

g/
m

in
)

x 1
=

m
2

(m
g)

0

0.2

0.4

0.6

0.8

FIGURE 6.6 Discrete-time signals x1,A(i) and x2,A(i) and continuous-time signal x1(t).

476 Simulation of Dynamic Systems with MATLAB® and Simulink®

where
~T ¼ ~T(t) is the oven temperature (8R)
T0 is the surrounding temperature (8R)
C is the thermal capacity of the oven
Kc and Kr are convective and radiation heat loss coefficients

Simulate the oven’s cooling from an initial temperature of 10008R if the surrounding temperature is
5008R. Numerical values of the thermal parameters are

C ¼ 24Btu=	R, Kc ¼ 8Btu=h=	R, Kr ¼ 2� 10�8 Btu=h=	R4

RK-1 through RK-4 integrators were used to numerically integrate the derivative function

f (~T) ¼ d~T
dt
¼ �Kc

C
(~T � T0)� Kr

C
(~T4 � T4

0) (6:143)

The results are shown in Table 6.4. The integration step size was chosen for each integration
method to make the total number of derivative function evaluations and, hence, the computa-
tional effort, roughly the same.

The last column is labeled ‘‘Exact’’; however, the exact solution is not easily obtained. The
numbers in the last column were obtained using RK-4 integration with a small enough step size
(T¼ 0.005 h) to generate approximate values in agreement with the exact solution values to at
least one place after the decimal point. How can we check this assumption?

Figure 6.7 shows the results of using RK-1 and RK-4 to integrate the derivative function,
Equation 6.143, with step sizes T¼ 0.1, 0.2, 0.3 h and T¼ 0.3, 0.6, 0.9 h, respectively. RK-1
produces reasonably accurate results only with T¼ 0.1 h whereas RK-4 integration generates
accurate approximations to the ‘‘exact’’ solution for T¼ 0.4 h and T¼ 0.8 h.

TABLE 6.4
Comparison of RK-1, 2, 3, 4 Integrators with Different Step Sizes and Exact Solution

RK-1 RK-2 RK-3 RK-4

T¼ 0.1 T¼ 0.2 T¼ 0.3 T¼0.4 ‘‘Exact’’

i ti eTA(i) i ti eTA(i) i ti eTA(i) i ti eTA(i) eTA(i)
0 0 1000.0 0 0 1000.0 0 0 1000.0 0 0 1000.0 1000.0

2 0.2 841.0 1 0.2 864.1 859.9

3 0.3 793.1 1 0.3 806.2 813.2

4 0.4 755.6 2 0.4 784.9 1 0.4 774.3 775.5

6 0.6 699.8 3 0.6 730.8 2 0.6 713.5 718.0

8 0.8 660.0 4 0.8 691.1 2 0.8 675.6 676.2

9 0.9 644.0 3 0.9 656.1 659.3

10 1.0 630.1 5 1.0 660.6 644.4

12 1.2 607.0 6 1.2 636.4 4 1.2 617.2 3 1.2 619.1 619.5

16 1.6 573.9 8 1.6 600.8 4 1.6 583.4 583.6

20 2.0 552.1 10 2.0 576.3 5 2.0 559.4 559.6

30 3.0 522.7 15 3.0 540.7 10 3.0 526.2 526.7

40 4.0 510.2 20 4.0 523.3 10 4.0 512.3 512.3

48 4.8 505.4 24 4.8 515.4 16 4.8 506.6 12 4.8 506.7 506.7

Intermediate Numerical Integration 477

EXERCISES

6.1 Show that the difference equation resulting from using RK-m integration to approximate the
behavior of dx=dt¼ f (t, x)¼ ax is

xA(iþ 1) ¼ 1þ aT þ 1
2!
(aT)2 þ 1

3!
(aT)3 þ � � � þ 1

m!
(aT)m

� �
xA(i)

6.2 The mass m of a radioactive material in a container decays according to the equation

dm

dt
¼ �km subject to m(0) ¼ m0

where
m¼m(t)
k is a constant for the specific radioactive material
m0 is the initial mass of radioactive material in the container

The half-life of a radioactive material, T1=2, is related to the decay constant k by T1=2¼ ln 2=k.
Suppose the half-life of a radioactive material is 2 years and there is initially 1 kg of material

present in the container.
(a) Use RK-1 through RK-4 integration to obtain approximations of the mass of radioactive

material present in the container every month until less than 0.25 kg of material remains.
(b) Compare the results from part (a) with the exact solution for m(t).

6.3 The amount of fish in a lake at any time is assumed to obey the following logistic growth
model:

dx

dt
¼ Kx(M � x)� u

where
x¼ x(t) is the number of fish present
u¼ u(t) is the rate at which fish are harvested

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

400

600T
(d

eg
 R

) 800

1000

400

600T
(d

eg
 R

) 800

1000

RK-1 integration with step size T = 0.1, 0.2, 0.3 h

Exact
T = 0.1 h
T = 0.2 h
T = 0.3 h

t (h)

RK-4 integration with step size T = 0.4, 0.8, 1.2 h

Exact
T = 0.4 h
T = 0.8 h
T = 1.2 h

FIGURE 6.7 RK-1 and RK-4 solution of oven cooling with three different step sizes.

478 Simulation of Dynamic Systems with MATLAB® and Simulink®

Nominal values of the system parameters are K¼ 2.5� 10�7 (fish-day)�1 and M¼ 200,000
fish. The lake is initially stocked with 50,000 fish.
(a) Use RK-4 integration with appropriate step size T to approximate the fish population in the

absence of harvesting. Plot the results.
(b) Plot the exact solution x(t)¼M=(1� [1�M=x(0)]e�KMt) on the same graph.
(c) Repeat part (a) for a constant harvesting rate u¼ 2750 fish=day.
(d) Repeat part (a) for a constant harvesting rate u¼ 2250 fish=day.

6.4 For the system in Example 6.1, let a¼ 0.15, c¼ 0.05, m0¼ 1, F¼ 0, and v(0)¼ 2. The
derivative function is

dv

dt
¼ f (t, v) ¼ �3v

20� t
, 0 � t � 16

and the exact solution is

v(t) ¼ 2(1� 0:05t)3, 0 � t � 16

Show that v(0.5) and vA(1) are identical, where vA(1) is the result of using RK-3 integration with
a step size T¼ 0.5.

6.5 Repeat Example 6.3 using RK-1 and RK-2 integrator with a step size T¼ 1 min. Compare the
accuracy of each with the RK-4 method results shown in Table 6.3.

6.6 In Example 6.3, choose the states x1¼m1 and x2¼m2 and the outputs y1¼ x1 and y2¼ x2.
(a) Find the matrices A, B, C, and D in the continuous-time state variable model of the system.
(b) Apply RK-4 integration with T¼ 1 min to obtain approximate solutions for the amount of

drug in the gastrointestinal tract and the bloodstream. Compare the results of drug amounts
in the bloodstream with results in Table 6.3.

(c) Use RK-4 integration with T¼ 1 min to find an approximate solution for the case where
m1(0)¼ 20 mg, m2(0)¼ 0 mg, and u(t)¼ 0, t � 0.

(d) Verify the results in part (c) by using

xA(i) ¼ I þ TAþ 1
2!
(TA)2 þ 1

3!
(TA)3 þ 1

4!
(TA)4

� �i
x(0)

6.7 Approximate the amount of drug ingested by an individual using RK-1 through RK-4 integra-
tion (using an appropriate step size T) when the drug ingestion rate is
(a) u(t)¼Me�t=t, t � 0 (M¼ 5 mg=min, t¼ 4 min)
(b) u(t)¼Me�t=t, t � 0 (M¼ 1 mg=min, t¼ 45 min)
(c) u(t)¼A sin(2pt=P), 0 � t � P=2 (A¼ 2 mg=min, P¼ 30 min)
(d) u(t) is available in tabular form in the following table:

t (min) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

u(t) (mg=min) 0.0 0.4 1.0 3.0 2.2 1.4 0.8 0.4 0.2 0.1 0.0

6.8 Since RK-4 integrators require four times the number of derivative function evaluations as
RK-1 integrators and RK-2 integrators require twice the number of derivative function evalu-
ations as RK-1 integrators, it is reasonable to compare the three integrators when the compu-
tational effort is roughly the same for all three. In other words, if the step size for the RK-1

Intermediate Numerical Integration 479

integrator is T, then the RK-2 and RK-4 integrators should be run with step sizes 2T and 4T,
respectively. Simulate the response of the system in Example 6.1 where

dv

dt
¼ f (t, v) ¼ 5

2� v

20� t

� �
, v(0) ¼ 0

using RK-1, RK-2 (improved or modified Euler), and the classic RK-4 integrator using step
sizes of 0.25, 0.5, and 1 s, respectively. Enter the results in the following table. Comment on the
results.

RK-1 (T¼ 0.25) RK-2 (T¼0.5) RK-4 (T¼ 1)

i ti vA(i) v(ti) i ti vA(i) v(ti) i ti vA(i) v(ti)

0 0 0.00000 0.00000 0 0 0.00000 0.00000 0 0 0.00000 0.00000

4 1 2 1 1 1

8 2 4 2 2 2

12 3 6 3 3 3

16 4 8 4 4 4

20 5 10 5 5 5

24 6 12 6 6 6

28 7 14 7 7 7

32 8 16 8 8 8

6.9 The model for finding the temperature in the oven of Example 6.4 when there is an internal heat
source is

C
d~T

dt
¼ �Kc(~T � T0)� Kr(~T

4 � T4
0)þ u

where u¼ u(t) is the heat source. Suppose the oven and its surroundings are in equilibrium at a
temperature of 6008R.
(a) Simulate the transient response of the oven temperature using an RK-2 integrator with step

size T¼ 0.25 h when the heat transferred to the oven is as shown in Figure E6.9:

u, Btu/h

0 10
t, h

12,000

FIGURE E6.9

(b) Find the exact solution for ~T(t) to one place after the decimal point by solving for
~TA(i) � ~T(ti), i¼ 0, 1, 2, 3, . . . using RK-4 integration with step size T¼ 0.001 h. Compare
the results with those from part (a) and (b).

480 Simulation of Dynamic Systems with MATLAB® and Simulink®

6.3 ADAPTIVE TECHNIQUES

The computational efficiency of RK methods can be improved if the step size is allowed to vary
during a simulation. A reasonable criterion must be established for determining when it is appro-
priate to modify the step size and by how much. The criterion is usually based on an estimate of the
local truncation error as the simulation progresses with time. If an estimate of the local truncation
error is outside an acceptable tolerance, then it is possible to either reduce the step size when the
estimated error is too large or quite possibly increase the step size if it appears that the error is
unnecessarily small. Techniques for estimating the local truncation error and modifying the step
size, if warranted, are referred to as adaptive step size control.

6.3.1 REPEATED RK WITH INTERVAL HALVING

If we use the local truncation error as the basis for determining when the step size needs adjustment,
then a method is needed for approximating it. One approach requires that we obtain two estimates of
the updated state from an RK integrator and use the difference to estimate the local truncation error.
Interval halving refers to the case where the step sizes differ by a factor of 2.

Refer to Figure 6.8 to understand how the method works. Let xA(iþ 1jT) be the approximate
solution to _x ¼ f (t, x) at tiþ1 obtained using a step size of T. Similarly, let xA(iþ 1jT=2) be the
approximate solution to _x ¼ f (t, x) at tiþ1 obtained after two steps using a step size of T=2.

Assume xA(i) is exact, that is, xA(i)¼ x(ti). It follows that

x(tiþ1) ¼ xA(iþ 1jT)þ eT (6:144)

x(tiþ1) ¼ xA iþ 1

 T2
� �

þ eT=2 (6:145)

where eT and eT=2 are the local truncation errors in xA(iþ 1jT) and xA(iþ 1jT=2), respectively.
From Equations 6.144 and 6.145,

xA(iþ 1jT)þ eT ¼ xA iþ 1

 T2
� �

þ eT=2 (6:146)

Suppose the numerical integrator is an RK-4 with local truncation error eT � O(T5). Then eT can be
expressed as

eT ¼ cT5 (6:147)

and eT=2, which is the sum of local truncation errors for the two half-intervals, is given by

eT=2 ¼ c
T

2

� �5

þc T

2

� �5

¼ 2c
T

2

� �5

¼ 1
16

cT5 ¼ 1
16

eT (6:148)

x(ti)

x(ti+1)

xA(i + 1) T
xA i + 1 2

T

x(i)

εT

xA i + 2
T

2
1

ti

xA(i)

tti+(1/2) ti+1

εT/2

FIGURE 6.8 Illustration of interval halving for estimation of local truncation error.

Intermediate Numerical Integration 481

In reality, c in Equation 6.147 and the two occurrences of c in Equation 6.148 are different and
depend on the derivative function and the intervals; however, for suitably small T, the differences
are negligible. Eliminating eT from Equations 6.146 and 6.148 gives

xA(iþ 1jT)þ 16eT=2 ¼ xA iþ 1

 T2
� �

þ eT=2 (6:149)

Solving for eT=2 in Equation 6.149 gives

eT=2 ¼
xA iþ 1

 T2
� �

� xA(iþ 1jT)
15

(6:150)

eT=2 in Equation 6.150 is an estimate of the local truncation error of the RK-4 integrator when
the step size is T=2. It can be used to adjust the step size in subsequent calculations. For example,
Table 6.5 shows a possible approach to step size adjustment using predetermined tolerance limits
eL and eU.

The truncation error eT=2 can be added to xA(iþ 1j(T=2)) to obtain a fifth-order accurate estimate
of x(tiþ 1), that is, a new estimate xA(iþ 1) with local truncation error eT � O(T5). This gives

eL � jeT=2j � eU (6:151)

¼
16xA iþ 1

 T2
� �

� xA(iþ 1jT)
15

(6:152)

The following example includes a one-step numerical integrator
with the step size determined by the interval halving method
previously described.

Example 6.5

A cone-shaped tank is filling with water at a constant rate
F1(t) ¼ F as shown in Figure 6.9. The initial level is h0. Water
evaporates from the tank at a rate proportional to the surface
area of liquid. The constant of proportionality is a.

(a) Find the derivative function in the continuous-time
model of the tank.

(b) For F ¼ p ft3=min, a¼ 0.01 ft=min, and h0¼ 10 ft, esti-
mate the local truncation error in the RK-4 estimate hA(1)
when T¼ 1 in using interval halving, that is, find eT=2.

TABLE 6.5
Step Size Adjustment Based on Outcome
of j«T=2j
Outcome Action (Next Integration Step)

eL > jeT=2j Double current step size

eL � jeT=2j � eU Keep current step size

jeT=2j > eU Halve current step size

h

F1

h

FIGURE 6.9 Conical tank with
evaporation.

482 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) Use eT=2 to obtain a fifth-order accurate estimate of h(T).
(d) Simulate the tank dynamics for a period of time sufficient to allow the tank level to increase

by 90% of the ultimate change in level. Use an adaptive step size based on the algorithm in
Table 6.5 with eL¼ 10�13 and eU¼ 10�11.

(e) Find the analytical solution of the continuous-time model and plot it along with the
simulated solution.

(a) The continuous-time model of the tank is

dV
dt
¼ F1(t)� aS (6:153)

where
V is the volume of water in the tank
S is the surface area of water at the top where evaporation occurs

For the conical shape in Figure 6.9,

V ¼ ph3

12
, S ¼ ph2

4
(6:154)

Substituting Equation 6.154 into Equation 6.153 and solving for the derivative function give

dh
dt
¼ 4F

ph2
� a (6:155)

(b) Using the given values for a and F gives

dh
dt
¼ 4

h2
� 0:01 (6:156)

Starting from the initial point (0, h0)¼ (0, 10), the results from interval halving after one integration
step are given in Table 6.6.

The second column contains the results from a single-step RK-4 integrator with step size T¼ 1
min. The last two columns list the results from two consecutive steps of an RK-4 integrator with
step size T¼ 0.5 min.

From Equation 6.150, an estimate of the local truncation error in hA(1j(T=2)) is given by

eT=2 ¼
hA 1

 T
2

� �� �
� hA(1jT)

15

¼ 10:02988067543399� 10:02988067543460
15

¼ �0:40619359727619� 10�13

TABLE 6.6
Results after One Step of Interval Halving Using RK-4 (T¼ 1 min)

t1¼T t1=2¼T=2 t1¼T=2þT=2

k1 0.03000000000000 0.03000000000000 0.02988050771064

k2 0.02988026946101 0.02994006743256 0.02982108077964

k3 0.02988074623874 0.02994018702867 0.02982119883721

k4 0.02976202120809 0.02988050764055 0.02976202170051

hA(1jT)¼ 10.02988067543460 hA
1
2
T

2

� �
¼ 10:01497008471359 hA 1

T

2

� �
¼ 10:02988067543399

Intermediate Numerical Integration 483

(c) From Equation 6.152, the fifth-order accurate estimate of h(T) is

hA(1) ¼
16hA 1

 T
2

� �� �
� hA(1jT)

15

¼ 16(10:02988067543399)� 10:02988067543460
15

¼ 10:02988067543395

(d) The steady-state tank level is easily obtained by setting the derivative function to zero in
Equation 6.155 and solving for h¼ h(1).

) h(1) ¼
ffiffiffiffiffiffiffi
4F
pa

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p

p(0:01)

r
¼ 20 ft (6:157)

The tank dynamics were simulated using RK-4 integration with interval halving for step
size control in ‘‘Chap6_Ex3_1.m.’’ The ultimate change in tank level is h(1) � h(0)¼
20� 10¼ 10 ft. The simulation terminates when hA(i) exceeds the level h(0)þ 0.9[h(1)�
h(0)]¼ 10þ 0.9(10)¼ 19 ft.

Table 6.7 summarizes how the step size was changed in accordance with the given tolerances
on the estimated local truncation error. Note the significant increase in step size from the starting
value of T¼ 1 min as the simulation progresses.

(e) The analytical solution is an implicit function for h(t). The derivation is left as an exercise. The
result is

100 10� h(t)� 10 ln
60� 3h(t)
h(t)þ 20

� �� �
¼ t (6:158)

Data points were obtained by increasing h(t) from 10 to 19 ft in small increments, solving for the
corresponding value of t, and plotted in Figure 6.10 with t values along the abscissa. The
simulated results (every fourth point) are also plotted demonstrating the close agreement with
the exact solution. Notice that the step size is progressively increased as the slope, that is,
derivative of the solution, gradually decreases.

The average of the estimated local truncation errors is

�eT=2 ¼
X169
i¼1

(eT=2)i ¼ 1:6653� 10�12 (6:159)

TABLE 6.7
Simulation Time Interval and the
Constant Step Size T Using Interval
Halving for Adaptive RK-4 Integration

Time Interval Step Size, T

0 � t � 1 1

1 � t< 69 2

69 � t< 209 4

209 � t< 313 8

313 � t< 1673 16

484 Simulation of Dynamic Systems with MATLAB® and Simulink®

In this example, the simulated time was approximately 1670min, which would have required 1670
integration steps if the step size had remained constant at T¼ 1min.With adaptive step size control,
the number of integration steps was 169, a nearly 90% reduction. Of course, each of the 169
integration steps requires two passes, one using a full step size and the other using two half-steps.
The number of derivative function evaluations for each method is summarized below.

6.3.2 CONSTANT STEP SIZE (T¼ 1 min)

Total number of function evaluations ¼ 1670 min

1 min=step
� 4

function evaluations

step
¼ 6680

6.3.3 ADAPTIVE STEP SIZE (INITIAL T¼ 1 min)

1. Number of function evaluations (first pass)

169 steps� 4
function evaluations

step
¼ 676

2. Number of new function evaluations (second pass)

169 steps� 3
function evaluations

first half interval
¼ 507

169 steps� 4
function evaluations

second half interval
¼ 676

Total number of function evaluations¼ 676þ 507þ 676¼ 1859.

The number of derivative function evaluations has been reduced by over 72%. This comparison
is clearly sensitive to the order of the RK integrator used as well as the constant step size T and total
simulation time. For example, halving the value of T from 1 to 0.5 min doubles the number of
derivative function evaluations in the first case where the step size remains constant. With interval
halving and adaptive step size control, the total number of steps would remain nearly the same

0 200 400 600 800 1000 1200 1400 1600
10

11

12

13

h(
t),

 h
A

(ft
)

14

15

16

17

18

19

20

t (min)

Simulated and analytical tank level vs. time

h(t)
hA(i), i = 0, 3, 7, ...

FIGURE 6.10 Results of RK-4 integration with adaptive step size control.

Intermediate Numerical Integration 485

regardless of the initial step size. Consequently, the total number of derivative function evaluations
would remain about the same in either case.

The step size control logic is also significant. The adaptive step size control is typically more
complex (Borse 1997; Chapra and Canalel 2002) than the simple approach presented here where the
new step size is either one half, the same, or twice the current step size.

Since an implicit solution for h(t) is known (Equation 6.158), it is possible to compare the
estimated local truncation error with the actual local truncation error, although not in a straightfor-
ward manner due to the implicit nature of the solution.

6.3.4 RK–FEHLBERG

In the case of RK-4 integration, the interval halving method requires seven additional derivative
function evaluations for the second pass over the two half-intervals. A total of 11 function
evaluations are required for each interval, independent of the interval size. An alternative method
for estimating the local truncation error is based on the difference of two different order RK
integrators over the same integration time step. By choosing two RK integrators with several
common points for the derivative function evaluations, efficiency is improved significantly com-
pared to the interval halving method.

The RK–Fehlberg method employs RK-4 and RK-5 integrators where the four function evalu-
ations k1, k2, k3, and k4 of the RK-4 integrator are used in the RK-5 integrator as well. Recall that
RK-5 integration methods require six function evaluations per step. Therefore, RK–Fehlberg
methods combining RK-4 and RK-5 integrators employ a total of six derivative function evaluations
per interval.

A common RK–Fehlberg integrator is given as follows (Rao 2002):

k1 ¼ f [ti, xA(i)] (6:160)

k2 ¼ f ti þ 1
4
T , xA(i)þ 1

4
Tk1

� �
(6:161)

k3 ¼ f ti þ 3
8
T , xA(i)þ 3

32
Tk1 þ 9

32
Tk2

� �
(6:162)

k4 ¼ f ti þ 12
13

T , xA(i)þ 1932
2197

Tk1 � 7200
2197

Tk2 þ 7296
2197

Tk3

� �
(6:163)

k5 ¼ f ti þ T , xA(i)þ 439
216

Tk1 � 8Tk2 þ 3680
513

Tk3 � 845
4104

Tk4

� �
(6:164)

k6 ¼ f ti þ 1
2
T , xA(i)� 8

27
Tk1 þ 2Tk2 � 3544

2565
Tk3 þ 1859

4104
Tk4 � 11

40
Tk5

� �
(6:165)

The estimate of x[(iþ 1)T] using RK-4 integration is

xA(iþ 1) ¼ xA(i)þ T
25
216

k1 þ 1408
2565

k3 þ 2197
4104

k4 � 1
5
k5

� �
(6:166)

The RK-5 estimate of x[(iþ 1)T] and eventual updated state is

xA(iþ 1) ¼ xA(i)þ T
16
135

k1 þ 6656
12825

k3 þ 28561
56430

k4 � 9
50

k5 þ 2
55

k6

� �
(6:167)

486 Simulation of Dynamic Systems with MATLAB® and Simulink®

The local truncation error incurred in the ith integration interval is estimated from the difference of
Equations 6.167 and 6.166. Thus,

Estimate of (eT)i ¼ T
1

360
k1 � 128

4275
k3 � 2197

75240
k4 þ 1

50
k5 þ 2

55
k6

� �
(6:168)

Example 6.6 illustrates the use of RK–Fehlberg integration, specifically, the RK-4 and RK-5
methods previously described.

Example 6.6

A motor boat is being driven across a river L ft wide to the opposite side as shown in Figure 6.11.
The boat departs from point 0, the origin of an x–y coordinate system, attempting to reach a point
H ft upstream. The boat travels at a constant speed vb mph relative to the water that flows
downstream at a speed of vr mph. The boat is continuously steered in the direction of its intended
destination. The boat’s heading is given by the angle u as shown in the diagram. Numerical values
of the system parameters are L¼ 1000 ft, H¼ 5000 ft, vb¼ 15 mph, and vr¼ 5 mph.

(a) Choose the state variables as x(t) and y(t) and obtain expressions for the state derivative
functions in terms of x and y and the system parameters L, H, vb, and vr.

(b) Use the ‘‘ode45’’ numerical integrator in Simulink and simulate the boat’s x and y position
as a function of time. Plot x vs. t, y vs. t, and u vs. t.

(c) Plot the steering angle u vs. horizontal position x.
(d) Find an expression for the derivative dy=dx in terms of x and y and the system parameters L,

H, vb, and vr.
(e) Write a program to implement the RK–Fehlberg method to numerically integrate dy=dx.

Adjust the step size when the estimated local truncation error falls outside an acceptable
tolerance range. Choose the initial integration step to be T¼ 1 ft.

(f) Find the exact solution for y(x) and compare it with the simulated results.

(a) From the diagram, the state derivatives are

dx
dt
¼ vb cos u ¼ vb

L� x

[(L� x)2 þ (H� y)2]1=2
(6:169)

dy
dt
¼ �vr þ vb sin u (6:170)

¼ �vr þ vb
H� y

[(L� x)2 þ (H� y)2]1=2
(6:171)

(x, y) θ

H

L0

vb

vr

FIGURE 6.11 Boat trajectory crossing the river.

Intermediate Numerical Integration 487

(b) A Simulink diagram of the system is shown in Figure 6.12.
Selecting the ‘‘ode45’’ integrator with maximum step size set to 20 and relative tolerance

equal to 10�6 produces graphs of the state variables x(t) and y(t) and the additional output u(t)
shown in Figure 6.13.

The exact solutions for x(t), y(t), and u(t) were approximated using Simulink’s RK-4 integrator
with a very small step size, namely, T¼ 0.01 s. The adaptive step size control quickly adjusts
the step size to its maximum value and maintains it at the upper limit until the simulation is
nearly complete. Comparison with the ‘‘exact’’ (T¼ 0.01 s) solution shows that the truncation
errors are minimal.

FIGURE 6.12 Simulink® diagram of boat crossing.

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0
250

x (
ft)

y (
ft)

θ
(d

eg
)

500
750

1000
Results of boat crossing simulation

0

2000

4000

6000

80

85

90

t (s)

ode45
θ(t)

ode45
y(t)

ode45
x(t)

FIGURE 6.13 Time histories of state variables x(t) and y(t) and output u(t) using Simulink® variable-step
integrator ‘‘ode45’’ and ‘‘exact’’ solutions (RK-4 with T¼ 0.01).

488 Simulation of Dynamic Systems with MATLAB® and Simulink®

(c) A plot of steering angle u vs. horizontal position x is shown in Figure 6.14. Note that the river
current causes the boat to be steered at increasingly greater angles as it approaches the right bank
of the river.

(d) States x(t) and y(t) represent a parametric description of the boat’s trajectory y¼ y(x). The
trajectory can be found in one of two ways. First, the parameter t can be eliminated from equations
for the states x(t) and y(t). Since we have not developed the solutions for x(t) and y(t), we resort to
the second approach, namely, integration of the derivative dy=dx.

Dividing Equation 6.170 by Equation 6.169 gives

dy
dx
¼ �vr þ vb sin u

vb cos u
(6:172)

Expressing sin u and cos u in terms of the distances x, y, L, and H (see Figure 6.11) and simplifying
the result yield

dy
dx
¼ H� y

L� x
� vr
vb

1þ H� y
L� x

� �2
" #1=2

(6:173)

(e) The RK–Fehlberg Equations 6.160 through 6.168 are solved in ‘‘Chap6_Ex3_2.m.’’
A simulation summary is shown in Table 6.8.

0 100 200 300 400 500 600 700 800 900 1000
78
79
80
81
82
83
84
85
86
87
88
89
90

x (ft)

θ
(d

eg
)

Steering angle vs. horizontal distance

θA(i) using ode45
θ(x)

FIGURE 6.14 Steering output u vs. horizontal location x with Simulink® variable-step integrator ‘‘ode45’’
and ‘‘exact’’ solution.

TABLE 6.8
Summary of RK–Fehlberg Simulation Results
for Boat Crossing

Minimum tolerance 10�7 ft
Minimum tolerance 10�5 ft

Minimum step size 0.1 ft

Minimum step size 25 ft

Number of integration steps 87

Average step size 11.49 ft

Average estimated local truncation error 1.6427� 10�4

Intermediate Numerical Integration 489

(f) Derivation of the exact solution to Equation 6.173 is left as an exercise. The result is

y(x) ¼ H� L� x
2

c(L� x)�k � (L� x)k

c

" #
(6:174)

where
c ¼ Lk�1(Hþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þH2
p

)
k¼ vr=vb

Plots of the approximate solution yA(i) obtained in part (e) and the exact solution, Equation
6.174, are shown in Figure 6.15.

EXERCISES

6.10 In Example 6.5,
(a) Find the analytical solution to the continuous-time model of Equation 6.155.
(b) Write a program to numerically integrate the derivative function using RK-4 with

adaptive control of step size. Compare your results with those in Tables 6.6 and 6.7.
(c) Experiment with the tolerances used to establish the step size, and plot the results on the

same graph with the analytical solution.
(d) Is the tank initially in equilibrium? Explain. Find the constant flow in F1 for which the

tank is in equilibrium when the height of water is 15 ft.
(e) With 15 ft of water in the tank and equilibrium conditions established, the flow in is

decreased by 50%. Simulate the response using RK-4 with step size control.
(f) For the same conditions as in part (e), find the estimated and true local truncation errors

resulting from the use of RK-4 numerical integration when the water level is 14.9 ft.

Hint: Find the actual time required for the tank level to reach 14.9 ft, and use that value as the
initial integration step size.

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

y (
ft)

2500

3000

3500

4000

4500

5000

x (ft)

Path of boat

RK-Fehlberg: yA(i), i = 0, 1, 2, 3, ...
Exact: y(x)

FIGURE 6.15 Simulated (RK–Fehlberg) and exact solutions for y(x) in boat crossing.

490 Simulation of Dynamic Systems with MATLAB® and Simulink®

6.11 In Example 6.6,
(a) Find the analytical solution y¼ y(x) to Equation 6.173 repeated as follows:

dy

dx
¼ H � y

L� x
� vr
vb

1þ H � y

L� x

� �2
" #1=2

Hint: Let x̂ ¼ L� x, ŷ ¼ H � y, introduce u ¼ ŷ=x̂, and obtain an implicit solution of the
separable differential equation in u.

(b) Compute the estimated and actual local truncation errors using RK-4 with interval halving
to adjust the step size. Choose the initial step size T¼ 1 ft.

6.12 Find the trajectory of the boat in Example 6.6, assuming it is steered continuously at the
destination point (L, H), if the river current varies sinusoidally according to

vr(x) ¼ A sin
p

L
x, 0 � x � L

where A¼ 10 mph.
6.13 In the boat-crossing problem of Example 6.6, suppose the boat steering angle u is an input to

the continuous-time model.
(a) Find the state derivative functions in dx=dt¼ f1(x, y, u) and dy=dt¼ f2(x, y, u).

For parts (b) through (d), find the analytical solution and check your answer using
Simulink with the ‘‘ode45’’ solver.

(b) The steering angle u is held constant at the initial heading of the destination point, that is,

u(t) ¼ �u ¼ tan�1
H

L

� �
, t � 0

Find the location of the boat when it reaches the other side. Use the values of vr, vb, L, and
H from Example 6.6.

(c) The captain wishes to cross the river and reach the opposite shore line at x¼ L, y¼ 0,
which is directly across from where he started. Find the constant heading �u, which allows
him to accomplish this. Assume the river current is constant at vr¼ 6 mph and the boat
moves at a constant speed of vb¼ 24 mph. Plot the boat’s trajectory.

(d) Make a plot of y(L) vs. �u for 0 � �u < p=2 where y(L) is the y coordinate of the location
where the boat reaches the opposite side of the river. Assume vr¼ 10mph and vb¼ 25mph.

(e) The captain observes a large fish swimming upstream at a constant speed of vf¼ 6mph in the
middle of the river (x¼ L=2). Starting from (0, 0), he begins to steer directly at the fish when
it is directly across from him, that is, located at (L=2, 0). Find and plot the boat’s trajectory
until it catches up with the fish if the river current is 0 mph and the boat speed is 10 mph.

6.14 A hydraulic accumulator is shown in Figure E6.14. Its purpose is to damp fluctuations in
the input flow rate f1(t) caused by pressure peaks upstream. The flow exits downstream of the
accumulator through a linear resistance. The continuous-time model for the pressure p(t) in the
accumulator section is (Palm 1983)

A2

k

dp

dt
¼ f1 � 1

R
(p� p0)

where
A is the area of the accumulator plate
k is the spring constant
R is the fluid resistance

Intermediate Numerical Integration 491

The input flow rate is given by

f1(t) ¼
0:01 ft3=s, t � 0 s

0:05 ft3=s, 0 < t � 0:01 s

0:01 ft3=s, t > 0:01 s

8><>:
Numerical values of the system parameters are

A ¼ 0:0055 ft2, k ¼ 30 lb=ft, R ¼ 105 lb s=ft2, p0 ¼ 14:7 lb=in:2

The system is at steady state prior to the pulse input in flow.
(a) Use the RK–Fehlberg integrator to simulate the transient response of p(t).
(b) Find the analytical solution for p(t).
(c) Find the solution for p(t) without the accumulator present.
(d) Plot the responses from parts (a), (b), and (c) on the same graph.
(e) Simulate the response for p(t) with Simulink using the ‘‘ode45’’ integrator, and compare

the results with those in parts (a) and (b).

f2f1

R
A

k

p0p

FIGURE E6.14

6.4 MULTISTEP METHODS

RK integrators were classified as one-step methods. The calculations for determining xA(iþ 1), the
approximate solution to the continuous-time model

dx

dt
¼ f (t, x) (6:175)

at t¼ tiþ1, relies on the previous estimate xA(i) and one or more derivative function evaluations on
the interval ti � t � tiþ1. The previous state estimate xA(i) is ignored once xA(iþ 1) has been
computed. In contrast, multistep methods exploit knowledge of previous state estimates because
they provide information about the local behavior of x(t) that can be used to advance the state.

Formulas for multistep methods are derived by integrating Equation 6.175 from ti to tiþ1,

ðx(tiþ1)
x(ti)

dx ¼
ðtiþ1
ti

f [t, x(t)]dt (6:176)

) x(tiþ1) ¼ x(ti)þ
ðtiþ1
ti

f [t, x(t)]dt (6:177)

The integrand f [t, x(t)] is unknown since x(t) is the solution to Equation 6.175.

492 Simulation of Dynamic Systems with MATLAB® and Simulink®

6.4.1 EXPLICIT METHODS

An mth-order interpolating polynomial Pm(t) that passes through the current derivative f [ti, xA(i)]
and previous m derivatives f [ti�1, xA(i� 1)], f [ti�2, xA(i� 2)], . . . , f [ti�m, xA(i�m)] can be used to
obtain an approximation of the integral in Equation 6.177 (see Figure 6.16). Replacing the integrand
in Equation 6.177 by the interpolating polynomial Pm(t) gives

xA(iþ 1) ¼ xA(i)þ
ðtiþ1
ti

Pm(t)dt (6:178)

where the approximations xA(i) and xA(iþ 1) are used instead of x(ti) and x(tiþ1), the actual points on
the solution x(t). The integral in Equation 6.178 is equal to the shaded area under the polynomial
Pm(t), which has been extrapolated over the current integration interval (ti, tiþ1).

To illustrate, suppose the polynomial is the linear function passing through {ti�1, f [xA(i� 1)]}
and {ti, f [xA(i)]}. Then m¼ 1 and

P1(t) ¼ f [ti, xA(i)]þ f [ti, xA(i)]� f [ti�1, xA(i� 1)]
ti � ti�1

�
(t � ti) (6:179)

Integrating P1(t) and substituting the result in Equation 6.178 yield after simplifying

xA(iþ 1) ¼ xA(i)þ T

2
{3f [ti, xA(i)]� f [ti�1, xA(i� 1)]} (6:180)

The formula in Equation 6.180 is known as the two-step Adams–Bashforth (AB-2) method.
‘‘Two-step’’ refers to the use of two intervals, (ti�1, ti) and (ti, tiþ1), to compute the new state
xA(iþ 1). Note that the method is explicit since xA(iþ 1) does not appear on the right-hand side of
Equation 6.180.

xA(i − m)
xA(i − 2)

xA(i − 1)
xA(i)

x(t)

ti+1ti−1ti−2ti–m ti

ti+1ti−1ti−2 ti

t

f (ti−m, xA(i − m)) f(ti−2, xA(i − 2))
f(ti−1, xA(i − 1))

f(ti, xA(i))Pm(t)

t
ti−m

FIGURE 6.16 An mth-order interpolating polynomial for approximating integrand in Equation 6.177.

Intermediate Numerical Integration 493

The Taylor Series expansion of the derivative function f(t, x) leads to an alternative derivation
of Equation 6.180, which also provides an expression for the local truncation error of the AB-2
integrator. The Taylor Series expansion of x(t) about ti evaluated at tiþ1 is given by

x(tiþ1) ¼ x(ti)þ d

dt
x(ti)(tiþ1 � ti)þ 1

2
d2

dt2
x(ti)(tiþ1 � ti)

2 þ � � � (6:181)

¼ x(ti)þ Tf [ti, x(ti)]þ T2

2
d

dt
f [ti, x(ti)]þ � � � (6:182)

where T is the fixed-step size, that is, T¼ tiþ1� ti¼ ti� ti�1¼ � � �. The Taylor Series expansion of
the derivative function f(t, x) about ti evaluated at ti�1 is

f [ti�1, x(ti�1)] ¼ f [ti, x(ti)]þ d

dt
f [ti, x(ti)](ti�1 � ti)þ 1

2
d2

dt2
f [ti, x(ti)](ti�1 � ti)

2 þ � � � (6:183)

¼ f [ti, x(ti)]� T
d

dt
f [ti, x(ti)]þ T2

2
d2

dt2
f [ti, x(ti)]þ � � � (6:184)

Solving for T(d=dt)f [ti, x(ti)] in Equation 6.184 and substituting into Equation 6.182 give

x(tiþ1) ¼ x(ti)þ T

2
{3f [ti, x(ti)]� f [ti�1, x(ti�1)]}þ 5

12
T3 d2

dt2
f [ti, x(ti)]þ � � � (6:185)

Truncating Equation 6.185 after the linear term and replacing x(ti�1), x(ti), x(tiþ1) with xA(i� 1),
xA(i), xA(iþ 1) lead to the AB-2 formula in Equation 6.180. Furthermore, since the first term omitted
in Equation 6.185 is of order T3, the local truncation error eT � O(T 3). The global truncation error
ET � O(T2) and AB-2 is said to be second-order accurate.

More accurate Adams–Bashforth integration formulas exist. It is simply a question of the number
of points, that is, mþ 1 in Figure 6.16, used to establish the interpolating polynomial Pm(t). Several
higher-order AB integrators are listed as follows using the simpler notation fA(i)¼ f [ti, xA(i)],
fA(i� 1)¼ f [ti�1, xA(i� 1)], etc.

AB-3: xA(iþ 1) ¼ xA(i)þ T

12
[23fA(i)� 16fA(i� 1)þ 5fA(i� 2)] (6:186)

AB-4: xA(iþ 1) ¼ xA(i)þ T

24
[55fA(i)� 59fA(i� 1)þ 37fA(i� 2)� 9fA(i� 3)] (6:187)

AB-5: xA(iþ 1) ¼ xA(i)þ T

720
[1901fA(i)� 2774fA(i� 1)þ 2616fA(i� 2)

� 1274fA(i� 3)þ 251fA(i� 4)] (6:188)

Local truncation errors for AB integrators are obtained using the Taylor Series expansion approach
illustrated for deriving the AB-2 formula. Truncating the respective series to obtain Equations 6.186
through 6.188 results in (3=8)T4(d3=dt3)f [ti, x(ti)], (251=720)T

5(d4=dt4)f [ti, x(ti)], and (475=1440)
T6(d5=dt5)f [ti, x(ti)] as the first omitted terms in the AB-3, AB-4, and AB-5 formulas. The local and
global truncation errors for the third-order accurate AB-3 integrator are eT� O(T 4) and ET� O(T 3),
respectively. An mth-order accurate AB-m integrator has a local truncation error eT � O(T mþ 1) and
global truncation error ET � O(T m).

494 Simulation of Dynamic Systems with MATLAB® and Simulink®

Both AB and RK integrators rely on a weighted sum of derivative function evaluations. In the
case of one-step RK integration, the derivative function is evaluated numerous times over a single
interval in contrast to the multistep AB integrators, which rely on derivative evaluations from
previous intervals.

The mth-order accurate multistep integration formulas are more efficient than one-step
methods of identical order because the same derivative function fA(i) is utilized m times for
updating the state over m consecutive intervals. Another way of looking at it is only a single
new derivative function evaluation fA(i) is required to advance the state from xA(i) to xA(iþ 1).
For example, suppose we have just determined the state xA(i) using AB-3 integration. Since
fA(i� 1) and fA(i� 2) are still in memory, only fA(i)¼ f [ti, xA(i)] is needed to compute the new
state xA(iþ 1) in Equation 6.186.

Multistep methods are not self-starting. One approach is to utilize a one-step method for the first
several integration steps before transitioning to a multistep formula. Alternatively, a one-step
method followed by lower-order multistep methods can be used prior to implementing a specific
multistep method. Once again, let us choose the AB-3 integrator for illustration purposes. From
Equation 6.186 with i¼ 0, 1

xA(1) ¼ xA(0)þ T

12
[23fA(0)� 16fA(�1)þ 5fA(�2)] (6:189)

xA(2) ¼ xA(1)þ T

12
[23fA(1)� 16fA(0)þ 5fA(�1)] (6:190)

It is impossible to know fA(�1) and fA(�2) without knowing x(�T) and x(�2T). Hence, two
integrations are performed using a one-step method starting from the known initial point [0, x(0)]
to determine xA(1) and xA(2). Subsequent state estimates xA(3), xA(4), . . . are computed from the
AB-3 formula. The ‘‘weakest link in the chain’’ argument dictates the choice of an appropriate one-
step method to initiate the numerical solution. In other words, for a third-order accurate AB-3
integrator with local truncation error eT � O(T4), a third-order accurate RK-3 integrator with
comparable local truncation error eT � O(T4) is used.

In the second approach, a third-order accurate one-step method can be used to find xA(1) followed
by the second-order accurate multistep AB-2 integrator to determine xA (2) before switching to
AB-3 integration. The first approach is preferred since the AB-2 integrator degrades the accuracy of
the numerical solution.

The difference equations for AB-2, AB-3, and so forth are higher order than the first-order
differential equation of the continuous-time system given in Equation 6.175. In other words, the
resulting discrete-time systems for approximating the first-order continuous-time system dynamics
have two or more discrete-time states depending on the order of the AB integrator used. Later, in
Chapter 8, we shall see that there is a penalty for implementing higher order (and hence more
accurate) multistep integrators to simulate linear continuous-time systems. The penalty takes the
form of a constraint imposed on the integration step size in order to assure a stable simulation.

6.4.2 IMPLICIT METHODS

Equations 6.180 and 6.186 through 6.188 are explicit methods since all the terms on the right-hand
side have already been computed. There are, however, compelling reasons for using the derivatives
f [tiþ1, xA(iþ 1)], f [ti, xA(i)], f [ti�1, xA(i� 1), . . . , f [ti�mþ 1, xA(i�mþ 1)] instead of f [ti, xA(i)],
f [ti�1, xA(i� 1)], f [ti�2, xA(i� 2)], . . . , f [ti�m, xA(i�m)] (see Figure 6.16) to determine the mth-
order interpolating polynomial Pm(t). Since our objective is to compute xA(iþ 1), the eventual
difference equation will be implicit, that is, xA(iþ 1) will appear on both sides of Equation 6.178.

Intermediate Numerical Integration 495

Using the implicit form in Equation 6.178 yields formulas for the Adams–Moulton implicit
numerical integrators given in Equations 6.191 through 6.194.

AM-2: xA(iþ 1) ¼ xA(i)þ T

2
[fA(iþ 1)þ fA(i)] (6:191)

AM-3: xA(iþ 1) ¼ xA(i)þ T

12
[5fA(iþ 1)þ 8fA(i)� fA(i� 1)] (6:192)

AM-4: xA(iþ 1) ¼ xA(i)þ T

24
[9fA(iþ 1)þ 19fA(i)� 5fA(i� 1)þ fA(i� 2)] (6:193)

AM-5: xA(iþ 1) ¼ xA(i)þ T

720
[251fA(iþ 1)þ 646fA(i)� 246fA(i� 1)

þ 106fA(i� 2)� 19fA(i� 3)] (6:194)

Note that the AM-2 integration formula is the implicit trapezoidal integrator introduced in Section
3.4. If the system model is linear, fA(iþ 1) is a linear function of xA(iþ 1), and an explicit solution
for xA(iþ 1) in Equations 6.191 through 6.194 is possible. In general, implicit equations are solved
in iterative fashion by numerical methods.

AB-m and AM-m integrators are both mth-order accurate. However, the local truncation error
eT for the implicit AM-m integrator is less than the comparable explicit AB-m integrator (see
Table 6.9). The local truncation errors cannot actually be calculated because the value of t̂i is
unknown except for ti � t̂i � tiþ1a.

Multistep methods are not well suited for adaptively changing the step size based on the
estimated local truncation error. With a change in step size from xA(i) to xA(iþ 1), some or all of
the past values [xA(i), fA(i)], [xA(i� 1), fA(i� 1)], . . . , [xA(i�m), fA(i�m)] can no longer be used,
defeating the essential reason for using a multistep method in the first place. The use of multistep
integration methods is demonstrated in Example 6.7.

Example 6.7

The dynamics of a tumor growth is described by the first-order differential equation as follows
(Braun 1978):

d
dt

V (t) ¼ le�atV(t) (6:195)

(a) Find the difference equations for approximate tumor growth VA(i), i¼ 1, 2, 3, . . . using AB-2
and AM-3 integrators.

(b) Find the analytical solution V(t) to Equation 6.195.

TABLE 6.9
Local Truncation Errors for AB-m, AM-m Integrators (m¼ 2, 3, 4, 5)

Local Truncation Error, eT Local Truncation Error, eT

AB-2
5
12

T3 d2

dt2
f [̂ti, x(̂ti)] AM-2 � 1

12
T3 d2

dt2
f [̂ti, x(̂ti)]

AB-3
3
8
T4 d3

dt3
f [̂ti, x(̂ti)] AM-3 � 1

24
T4 d3

dt3
f [̂ti, x(̂ti)]

AB-4
251
720

T5 d4

dt4
f [̂ti, x(̂ti)] AM-4 � 19

720
T5 d4

dt4
f [̂ti, x(̂ti)]

AB-5
475
1440

T6 d5

dt5
f [̂ti, x(̂ti)] AM-5 � 27

1440
T6 d5

dt5
f [̂ti, x(̂ti)]

496 Simulation of Dynamic Systems with MATLAB® and Simulink®

The model parameters are l¼ 0.2 new cells per cell per week and a¼ 0.02 per week.
A tumor initially contains one thousand cells.

(c) Compare results from the exact solution and approximate solutions with a step size of
T¼ 0.25 week. Plot the approximate and exact solutions on the same graph.

(a) Combining the derivative function

fA(i) ¼ f [ti,VA(i)] ¼ le�ati VA(i) (6:196)

with the AB-2 integrator of Equation 6.180, that is,

VA(i þ 1) ¼ VA(i)þ T
2
[3fA(i)� fA(i � 1)]

yields the second-order difference equation

VA(i þ 1) ¼ VA(i)þ T
2
[3le�ati VA(i)� le�ati�1VA(i � 1)] (6:197)

¼ 1þ 3
2
lTe�aiT

� �
VA(i)� 1

2
lTe�a(i�1)TVA(i � 1), i ¼ 1, 2, 3, . . . (6:198)

Repeating the steps for the AM-2 integrator, Equation 6.191 yields the implicit form of the
difference equation, that is,

VA(i þ 1) ¼ 5
12

lTe�a(iþ1)TVA(i þ 1)þ 1þ 8
12

lTe�aiT
� �

VA(i)� lTe�a(i�1)TVA(i) (6:199)

Solving for VA(iþ 1) in Equation 6.199 produces the explicit form,

VA(i þ 1) ¼ 1þ (2=3)lTe�aiT

1� (5=12)lTe�a(iþ1)T

� �
VA(i)� (1=12)lTe�a(i�1)T

1� (5=12)lTe�a(iþ1)T

� �
VA(i � 1), i ¼ 1, 2, . . . (6:200)

Note that the discrete-time system models, Equations 6.198 and 6.200, are time-varying due to the
appearance of the discrete-time variable ‘‘i’’ in the coefficients of VA(i) and VA(i� 1). This is
expected since the continuous-time model, Equation 6.195 is time-varying as a result of the e�at

term in the coefficient of V(t).

(b) The exact solution is obtained by separating the differential equation, Equation 6.195, and
integrating from t¼ 0, V¼V0 where V0 is the initial volume of cells.

ðv
v0

dV
V
¼
ðt
0

le�atdt (6:201)

) V(t) ¼ V0e(l=a)(1�e
�at) (6:202)

(c) The AB-2 and AM-3 integrators require a single integration step using a one-step method to
provide a starting value for VA(1). Ordinarily, an RK-2 one-step integrator would be used for
the first step with the AB-2 and AM-3 multistep integrators. In lieu of that, we shall use the exact
solution to generate VA(1) and leave the use of one-step methods to start the solution process as
an exercise.

From the initial condition and Equation 6.202, the starting values for the AB-2 and AM-3
integrators are VA(0)¼ 1000, VA(1)¼ 1051.14.

Intermediate Numerical Integration 497

Plots of the exact solution for tumor growth and every 50th discrete-time output of the AB-2 and
AM-3 integrators are shown in Figure 6.17. Based on comparison with the exact solution of the
continuous-time model, both integrators appear to predict cell growth exceptionally well (see
‘‘Chap6_Ex4_1.m’’).

The limiting value of tumor size V(1) occurs when the growth rate (1=V)(dV=dt) approaches
zero. This limit cannot be obtained from the continuous-time model by setting the derivative to
zero as in the case of logistic growth (see Section 1.5). However, it is possible to compute V(1) as
the limiting value of the exact solution, that is,

V(1) ¼ lim
t!1V0e(l=a)(1�e

�at) ¼ V0el=a (6:203)

Substituting the value of VA(0) for V0 along with the given values for l and a gives V(1)¼
1000e0.2=0.002¼ 2.203� 107 in agreement with the plots in Figure 6.17.

6.4.3 PREDICTOR–CORRECTOR METHODS

Generally speaking, implicit methods are more accurate than explicit methods of the same order. In
all but the simplest cases, the solution requires an iterative root-solving scheme, which can wreak
havoc on the computational efficiency of the implicit integrator. Fortunately, a solution to the
problem exists, although with a slight trade-off in the number of required derivative function
evaluations.

The alternative approach is to employ an explicit method to predict the new state followed by an
implicit method using the predicted state on the right-hand side of the equation. This eliminates the
primary obstacle of implicit methods, namely, a nonlinear algebraic equation with the unknown
updated state on both sides. The combination of explicit and implicit numerical integration is called
a predictor–corrector method.

0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500
0

N
um

be
r o

f c
el

ls
N

um
be

r o
f c

el
ls

0.5

1

1.5

2

×107

×107

Exact: V(t)

Exact: V(t)

AB-2: VA(i), i = 0, 50, 100, ...

AM-3: VA(i), i = 0, 50, 100, ...

Tumor growth—exact and AB-2

Tumor growth—exact and AM-3

Note: VA(1) for AB-2 from exact solution

Note: VA(1) for AM-3 from exact solution

T = 0.25 wks

T = 0.25 wks

0

0.5

1

1.5

2

t (weeks)

FIGURE 6.17 Tumor growth—exact solution, AB-2 and AM-3 integrators.

498 Simulation of Dynamic Systems with MATLAB® and Simulink®

If this sounds familiar, it is because we have already implemented a simple predictor–corrector
method in Section 3.6, namely, the improved Euler or Heun’s method. In that case, the predictor is
the first-order explicit Euler integrator, and the corrector is the second-order trapezoidal integrator.
The common practice is to combine explicit Adams–Bashforth and implicit Adams–Moulton
integrators of the same order. Integration formulas for several of these predictor–corrector combin-
ations are

AB-2 predictor: x̂A(iþ 1) ¼ xA(i)þ T

2
{3f [ti, xA(i)]� f [ti�1, xA(i� 1)]} (6:204)

AM-2 corrector: xA(iþ 1) ¼ xA(i)þ T

2
[f̂A(iþ 1)þ fA(i)] (6:205)

where f̂A(iþ 1) ¼ f [tiþ1, x̂A(iþ 1)] is the derivative based on the predicted state x̂A(iþ 1).

AB-3 predictor: x̂A(iþ 1) ¼ xA(i)þ T

12
[23fA(i)� 16fA(i� 1)þ 5fA(i� 2)] (6:206)

AM-3 corrector: xA(iþ 1) ¼ xA(i)þ T

12
[5f̂A(iþ 1)þ 8fA(i)� fA(i� 1)] (6:207)

AB-4 predictor: x̂A(iþ 1) ¼ xA(i)þ T

24
[55fA(i)� 59fA(i� 1)þ 37fA(i� 2)� 9fA(i� 3)] (6:208)

AM-4 corrector: xA(iþ 1) ¼ xA(i)þ T

24
[9f̂A(iþ 1)þ 19fA(i)þ 5fA(i� 1)þ fA(i� 2)] (6:209)

It should be noted that some authors refer to the implicit numerical integrators in Equations 6.191
through 6.194 as Adams integrators and the predictor–corrector formulas in Equations 6.204
through 6.209 as Adams–Moulton integration formulas.

In certain applications, it may be desirable to execute several iterations of the corrector equation
before advancing to the next integration step. In other words, corrected values are continually
inserted on the right-hand side of the corrector equation until some threshold or tolerance is attained,
resulting in improved estimates of the new state. In general, it is inadvisable to execute the corrector
equation more than once or twice due to the additional derivative function calculations required.
When the corrector equation is implemented only once, predictor–corrector integration formulas are
examples of a two-pass (one for the predictor and one for the corrector) approach to updating the
discrete-time state. There are no implicit equations to solve.

When the order of the predictor and corrector is the same, the combined predictor–corrector
integration formula is also of that order. Furthermore, the truncation errors (local and global) are the
same as those of the more accurate implicit corrector (see Table 6.9). Combining same order
predictor and corrector makes it possible to estimate the local truncation error after each step
(Ralston and Wilf 1965) based on the predicted and corrected states with virtually no computational
overhead. This permits the step size to be changed in an adaptive fashion. Of course, repeatedly
changing the step size with a multistep integration method is counterproductive.

The stability of numerical integration methods refers to the sequence of numerical values
computed for the discrete-time states when simulating a stable continuous-time system. We shall
learn in Chapter 8 that explicit multistep methods exhibit poorer stability characteristics compared
with implicit methods. Suffice it to say for now that the higher-order AB multistep integrators are
prone to instability. This is mitigated to some extent by the choice of step size. However, reducing
the step size to combat the problem adversely impacts computational efficiency reflected in the total
number of derivative function evaluations required to simulate the system.

Intermediate Numerical Integration 499

Example 6.8

A manufacturer of high-end luxury automobiles has determined that the monthly demand for its
cars follows an inverse price relationship, that is,

d(p) ¼ a
1
p

� �
, p > 0 (6:210)

where
p is the base price of a single vehicle
d is the monthly demand
a is a constant

The number of vehicles produced by the manufacturer is based on the fluctuating price.
Suppose the monthly supply of vehicles (up to some limit) is related to price by

s(p) ¼ bp1=2, p > 0 (6:211)

where
s is the monthly production
b is another constant

Furthermore, assume the actual price is governed by supply and demand according to

dp
dt
¼ K[d(p)� s(p)], p > 0 (6:212)

¼ K a
1
p

� �
� bp1=2

� �
(6:213)

where K is also a constant.
Several months ago when the price was $200,000, 16 cars were sold. The car maker would

produce 25 vehicles per month if the vehicle price were $250,000. The current price is $180,000.
The numerical value of K is $2,000 per vehicle.

(a) Use an AB-4=AM-4 predictor–corrector with step size T¼ 0.5 month to find the response of
the price. Generate the required starting values from an RK-4 integrator.

(b) Simulate the response in part (a) using RK-4 with step size sufficiently small to approximate
the exact response. Graph the simulated and ‘‘exact’’ response.

(a) The MATLAB file to compute the RK-4 starting values and implement AB-4=AM-4 predictor–
corrector integration is ‘‘Chap6_Ex4_2.m.’’ Using the classic RK-4 integrator with step size T¼ 0.5
month, the following values were obtained to start the AB-4=AM-4 predictor–corrector:

pA(0) ¼ $180,000, pA(1) ¼ 176,823:92

pA(2) ¼ $174,122:06, pA(3) ¼ $171,832:02

(b) Basing the exact solution p(t) on RK-4 with T¼ 0.01 months produced the results in Table 6.10
and plotted in Figure 6.18. Values from the simulated response pA(i) are also tabulated in

500 Simulation of Dynamic Systems with MATLAB® and Simulink®

Table 6.10 and plotted in Figure 6.18. According to the graphs, the transient period for the price to
reach equilibrium is approximately 15 months. The equilibrium point is easily obtained from
Equation 6.213, that is,

0 ¼ K a
1

p(1)

� �
� bp1=2(1)

� �
(6:214)

) p(1) ¼ a
b

� 	2=3
¼ 3,200,000

0:05

� �2=3

¼ $160,000 (6:215)

in agreement with the value shown in Figure 6.18.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.6

1.62

1.64

1.66

1.68

1.7

Ca
r p

ric
e (

$) 1.72

1.74

1.76

1.78

1.8
×105

t (months)

p(t)
pA(i)

Price of luxury automobiles vs. time

FIGURE 6.18 Price response pA(i) from AB-4=AM-4 (T¼ 0.25 months) and ‘‘Exact’’ p(t) based on RK-4
(T¼ 0.01 months).

TABLE 6.10
pA(i) from AB-4=AM-4 Integration Using RK-4 Starting Values with T¼ 0.5 Months
and Exact Solution p(t) Approximated by RK-4 with T¼ 0.01 Months

i ti, Months pA(i), $ p(ti), $ i ti, Months pA(i), $ p(ti), $

0 0 180,000.00 180,000.00 16 8 161,086.76 161,086.85

2 1 174,122.06 174,122.02 18 9 160,748.08 160,748.17

4 2 169,897.30 169,897.25 20 10 160,514.70 160,514.77

6 3 166,897.64 166,897.62 22 11 160,354.00 160,354.06

8 4 164,787.43 164,787.46 24 12 160,243.42 160,243.47

10 5 163,313.01 163,313.07 26 13 160,167.36 160,167.39

12 6 162,287.89 162,287.97 28 14 160,115.05 160,115.08

14 7 161,577.64 161,577.73 30 15 160,079.08 160,079.10

Intermediate Numerical Integration 501

EXERCISES

6.15 Rework Example 6.7 using RK-2 to find the starting value VA(1) for the AB-2 and AM-3
integrators, respectively. Comment on the results.

6.16 Rework Example 6.7 with step size T¼ 2 weeks using an RK-4 method to find the starting
values VA(1), VA(2), and VA(3) for the AB-4 and AM-4 integrators. Comment on the results.

6.17 Show that the equilibrium price in Example 6.8 is stable by choosing initial prices slightly less
and slightly greater than p(1) and observing the transient price responses. Use a suitable
numerical integrator to obtain the transient response.

6.18 An unforced continuous-time system is described by the first-order differential equation
(tþ 1) (dx=dt)þ x¼ 0. An AB-2 numerical integrator with step size T is used to simulate
the response of the system with initial condition x(0)¼ 1.
(a) The difference equation for updating the discrete-time state xA (n) is

xA(nþ 1) ¼ a0xA(n)þ a1xA(n� 1), n ¼ 1, 2, 3, . . .

Express a0 and a1 in terms of the step size T and discrete-time variable n.
(b) Use an RK-2 integrator with step size T¼ 0.1 s to find xA(1), the starting value needed for

the AB-2 integration.
(c) Use the AB-2 integrator to find xA(2).
(d) Compare the approximate values xA(2), xA(3), . . . , xA(10) with the exact values x(0.2),

x(0.3), . . . , x(1). Note that the exact solution is given by x(t)¼ 1=(tþ 1).
6.19 A double integrator is shown in Figure E6.19. Initial conditions are x(0)¼ y(0)¼ 0.

∫ ∫x(t)u(t) y(t)

FIGURE E6.19

(a) Find the discrete-time system approximation (difference equation) of the first integrator
using explicit Euler integration with step size T. Denote the input as u(n) and the output as
xA(n).

(b) The input is a unit step u(t)¼ 1, t � 0. Find xA(1), xA(2), and xA(3). Leave your answers in
terms of T.

(c) Find the general solution for xA(n).
(d) Show that the local truncation error (eT)n¼ xA(n)� x(nT)¼ 0, n¼ 0, 1, 2, 3, . . . Comment

on the result, that is, explain why the discrete-time output xA(n) is identical with the
continuous-time output at the end of each integration step.

(e) Find the discrete-time system approximation (difference equation) of the second integra-
tor using explicit Euler integration with step size T. Denote the input as xA(n) and the
output as yA(n).

(f) Find yA(1), yA(2), yA(3), yA(4), and yA(5). Leave your answers in terms of T.
(g) The general solution for the output yA(n) is

yA(n) ¼ (an2 þ bnþ c)T2, n ¼ 0, 1, 2, 3, . . .

Find the numerical values of the constants a, b, and c.
(h) Find the differential equation relating the output y(t) and input u(t).
(i) Find the local truncation error (eT)n¼ yA(n)� y(nT).

502 Simulation of Dynamic Systems with MATLAB® and Simulink®

6.5 STIFF SYSTEMS

Linear time-invariant models of dynamic systems are termed ‘‘stiff’’ when the time constants, or
more specifically the characteristic roots (eigenvalues of the system matrix A), vary significantly in
magnitude. For nonlinear system models, the concept applies to the characteristic roots of a
linearized model that represents the dynamics of the nonlinear system in some operating region.
Linearization of nonlinear systems is discussed in Chapter 7.

Systems tend to be stiff for a number of reasons. Mechanical systems composed of stiff and soft
components exhibit resonant frequencies that differ greatly in magnitude. The natural response of
certain electrical networks contains spikes, which die out rapidly in comparison to terms with far
slower dynamics. Control system components such as controllers, actuators, and sensors oftentimes
respond much quicker than the plant or process being controlled.

Figure 6.19a and b contain s-plane pole plots corresponding to stiff systems, and Figure 6.19c is
a pole plot of a fast system, but not stiff. The stiffness can be quantified by the ratio of the largest
(in magnitude) to the smallest characteristic root.

Stiff systems impose requirements on numerical integrators, in particular explicit methods, which
can result in exceedingly small integration steps to assure the result is a stable solution. Numerical
stability is considered in some detail in Chapter 8. For the present time, we can think of numerical
stability as a property of numerical integration, which implies that a stable discrete-time system will
result whenever the continuous-time system model is stable.

Suppose the fast pole in Figure 6.19a, the pole furthest from the imaginary axis, is designated s1
and the slower poles are s2 and s3, s4¼�zvn
 jvd. The natural response consists of a linear
combination of the real modes es1t, es2t and the oscillatory modes e�zvnt sinvdt, e�zvnt cosvdt.
That is,

xnat(t) ¼ c1e
s1t þ c2e

s2t þ e�zvnt[A1 sinvdt þ A2 cosvdt] (6:216)

The transient response of the system with poles in Figure 6.19a is of the same form as the natural
response in Equation 6.216. Due to the inherent stiffness of the system, the time constant t1¼�1=s1
is considerably shorter than either t2¼�1=s2 or t¼ 1=zvn, the effective time constant of the
damped oscillations. Hence, the fast component c1es1t vanishes well before the remaining terms.
However, the numerical stability of fixed-step explicit integrators is controlled by the fast mode,
requiring the use of a far smaller integration step than would be necessary in the absence of the fast
characteristic root s1.

Integration formulas have been developed specifically for stiff systems. References by Gear
(1971) and Hartley (1994) contain excellent descriptions of specific ‘‘stiff’’ integrators. MATLAB
and Simulink offer a choice of one-step and multistep integrators designed for efficient simulation of
stiff systems.

(a)

× ×
×

×

×

× × ×
×

×

×
×

×(b) (c)

FIGURE 6.19 s-Plane location of characteristic roots for stiff system (a), (b), and nonstiff system (c).

Intermediate Numerical Integration 503

6.5.1 STIFFNESS PROPERTY IN FIRST-ORDER SYSTEM

Before we illustrate an example of a stiff system, it should be men-
tioned that the ‘‘stiffness’’ property can be present in a forced system
with only a single state variable, that is, a system with a single
characteristic root or eigenvalue modeled by a linear first-order dif-
ferential equation. The basic requirement is merely the existence of
two or more terms in the response with markedly different time
constants. Consider the simple forced mechanical system shown in
Figure 6.20.

Assuming that the mass M is negligible leads to the continuous-
time model,

B
d

dt
x(t)þ Kx(t) ¼ F(t) (6:217)

The state derivative function is

f (x) ¼ d

dt
x(t) ¼ 1

t

1
K
F � x

� �
(6:218)

where t¼B=K is the first-order system time constant.
Suppose the forcing function F(t) is an ideal step input whose amplitude is numerically equal to

the spring constant K, that is, F(t)¼K, t � 0. Because a step input is physically impossible, it is
approximated by F̂(t)

F̂(t) ¼ K(1� e�t=tF), t � 0 (6:219)

where tF is the time constant of the exponential rise. From the system’s perspective, F̂(t) will look
like a step input provided its rise time is several orders of magnitude less than t, the system time
constant.

Analytical solutions for the state x(t) based on the ideal step input F(t) of magnitude K and the
approximation in Equation 6.219 are easily obtained by the use of Laplace transforms. Laplace
transforming Equation 6.217 and solving for X(s) give

X(s) ¼ 1
tsþ 1

1
K
F(s)

� �
(6:220)

The Laplace transform of the state response to an ideal step input of magnitude K is therefore

X(s) ¼ 1
tsþ 1

1
K
� K
s

� �
¼ 1

tsþ 1
1
s

� �
(6:221)

When the input F̂(t) is used, F̂(s) replaces F(s) in Equation 6.220, making the Laplace transform of
the state response, denoted x̂(t), equal to

X̂(s) ¼ 1
tsþ 1

1
K
� K 1

s
� tF
tFsþ 1

� �� �
¼ 1

tsþ 1
1

s(tFsþ 1)

� �
(6:222)

F(t)

M

K B

x(t)

FIGURE 6.20 Simple mech-
anical system.

504 Simulation of Dynamic Systems with MATLAB® and Simulink®

Inverse Laplace transformation of Equations 6.221 and 6.222 gives

x(t) ¼ 1� e�t=t, t � 0 (6:223)

x̂(t) ¼ 1� 1
t� tF

te�t=t � tFe
�t=tF

� 	
, t � 0 (t tF) (6:224)

Note that the response x̂(t) consists of a fast and a slow component, that is,

x̂(t) ¼ x̂F(t)þ x̂S(t) (6:225)

where

x̂F(t) ¼ tF
t� tF

e�t=tF (6:226)

and

x̂S(t) ¼ 1� t

t� tF
e�t=t (6:227)

Simulation of the first-order system response to F̂(t) poses problems not previously encountered.
To illustrate, consider the case when B¼ 1 and K¼ 10. The system time constant t¼B=K¼ 0.1 s.
Suppose the fast component time constant tF in Equation 6.219 is chosen two orders of magnitude
less than the system time constant, that is, tF¼ t=100¼ 0.001 s.

Dividing F̂(t) by K produces the exponential rise approximation to a unit step input shown in the
upper left corner of Figure 6.21. The ideal unit step input and unit step response in Equation 6.223
are shown in the lower left quadrant of Figure 6.21.

RK-4 integration was used to generate the simulated responses shown on the right side of Figure
6.21. In the top right quadrant, the integration time step T was chosen to be an order of magnitude

0 1 2 3 4 5
×10−3

1

0.8
0.6
0.4
0.2

0

1

0.8

0.6

0.4

0.2

0

1 0
–4
–8

–12
–16
–20

0

0.8
0.6
0.4
0.2

0

Ideal unit step

Approximate unit
step input

F(t)ˆ1—
K

Ideal unit step

Unit step response, x(t)

RK-4 response to

T = 0.0001 s

RK-4 response to

T = 0.0075 s

input F(t)1—
K

ˆ

input F(t)1—
K

ˆ

0 0.1 0.2 0.3 0.4 0.5
t (s) t (s)

t (s)

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5
t (s)

FIGURE 6.21 Unit step response and simulated (RK-4) response to input (1=K)F̂(t).

Intermediate Numerical Integration 505

less than tF, that is, T¼ tF=10¼ 0.0001 s, to guarantee accuracy of the simulation. Every 150th
point of the simulated response is plotted. The unit step response x(t) and the simulated step
response are nearly identical at ti¼ iT, i¼ 0, 1, 2,. . . .

The integration step size T¼ 0.0001 s is a great deal smaller than would seem necessary for RK-4
integration of a first-order system with time constant t¼ 0.1 s. Since the fast component x̂F(t)
decays in 5tF¼ 5� 0.001¼ 0.005 s, an adaptive procedure can be employed, which increases the
step size after the transient period of the fast component has elapsed.

What do you suppose would happen if we tried a fixed-step RK-4 integrator with T, an order of
magnitude smaller than the system time constant, that is, T¼ t=10¼ 0.01 s? To answer that
question, the simulation was rerun using RK-4 with T a little less than 0.01 s, namely,
T¼ 0.0075 s. The simulated response (every other point) is shown in the lower right quadrant of
Figure 6.21. It bears no resemblance to either x(t) or x̂(t).

Despite the gross inaccuracy, the numerical integrator is nonetheless stable as evidenced by the
limiting value approaching the correct steady-state value of unity. Further increases in T will
eventually result in an unstable response of the discrete-time system. The integration step size is
therefore limited by the fast time constant tF.

This example illustrates how a first-order system appears to be stiff, despite the fact there is only
a single state. The fast input component (tF¼ 0.001 s) in conjunction with the slower system natural
mode (t¼ 0.1 s) is responsible for this happening.

6.5.2 STIFF SECOND-ORDER SYSTEM

A second-order system is stiff if it contains a ‘‘fast’’ and a ‘‘slow’’ natural mode. Consequently, for a
second-order system to be inherently stiff, it must be overdamped. The second-order circuit shown
in Figure 6.22 is stiff provided the circuit parameters produce a pair of real characteristic roots
several orders of magnitude apart.

Compared with fixed-step-size numerical integrators, stiff integrators increase the step size after
the fast transients decay to zero, reducing execution time significantly. The following example
illustrates the use of one of Simulink’s stiff integrators.

Example 6.9

In the circuit shown in Figure 6.22, after the capacitor has fully charged to the battery voltage v0,
the switch disconnects the battery at t¼ 0, and the capacitor discharges its stored energy to the
RLC circuit. The current i(t) satisfies the differential equation

L
d2i
dt2
þ R

di
dt
þ 1
C
i ¼ 0 (6:228)

vc(0) ¼ v0, i(0) ¼ 0

C

L

R

iv0
+
−

vC

FIGURE 6.22 A second-order RLC circuit.

506 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) Represent the circuit in state variable form where x1¼ i and x2¼ di=dt.
(b) Show that the system is stiff when the circuit parameter values are R¼ 25 V, L¼ 20 mH,

C¼ 200 mF, and v0¼ 12 V.
(c) Simulate the transient response using a fixed-step RK-2 integrator, and determine the largest

step size T, which yields a stable and accurate solution.
(d) Use one of the stiff numerical integrators available in Simulink to simulate the transient

response.
(e) Find the analytical solution for the transient response, and compare the results of parts (c)

and (d) with the exact solution.

(a) Derivation of the state equations is straightforward.

_x1 ¼ di
dt
¼ x2 (6:229)

_x2 ¼ €x1 ¼ d2i
dt2

(6:230)

¼ 1
L
� 1
C
i � R

di
dt

� �
(6:231)

¼ � 1
LC

x1 � R
L
x2 (6:232)

(b) The characteristic equation is jsI�Aj ¼0 where A is the system matrix in the state represen-
tation _x ¼ Ax. Thus,

jsI� Aj ¼ s
1 0

0 1

 !
�

0 1

� 1
LC

�R
L

0@ 1A

 ¼ 0 (6:233)

s2 þ R
L
sþ 1

LC
¼ 0 (6:234)

The characteristic roots are

s1,2 ¼
�R=L

ffi
(R=L)2 � 4(1=LC)

q
2

(6:235)

Substituting the given values for R, L, and C in Equation 6.235 yields a stiff system with charac-
teristic roots s1¼�1249.8 rad=s and s2¼�0.2 rad=s.

(c) The Simulink model for the system is shown in Figure 6.23.
The natural modes are es1t ¼ e�1249:8t and es2t ¼ e�0:2t. Using Simulink’s RK-2 integrator with

different step sizes eventually produces a stable and accurate simulation with T¼ 0.0015 s. The
discrete-time state x1,A(i) is plotted in the upper left graph of Figure 6.24. It requires 16,663 steps to
simulate the transient response, lasting approximately 25 s. The first 41 points x1,A(i), i¼ 0, 1,
2, . . . , 40 are shown in Figure 6.24 and every 500th point thereafter.

Increasing the step size T from 0.0015 s to 0.0016 s with RK-2 produces the graph of x1,A(i) in
the lower left corner of Figure 6.24. Every 500th point is plotted. While the response is stable, that
is, limi!1 x1,A(i) ¼ 0, it is clearly inaccurate. The graph in the lower right quadrant contains the
first 0.04 s of the discrete-time state x1,A(i) when the RK-2 integration step size is 0.002 s. In this
case, the discrete-time system is unstable with the simulated response becoming increasingly
more negative (approaching �1) as time increases.

(d) Choosing the ‘‘ode23s’’ stiff integrator produces the response shown in the upper right corner
of Figure 6.24. It is similar in appearance to the graph obtained with RK-2 integration and step size
T¼ 0.0015 s; however, the entire simulation required a total of 72 steps. The improvement in

Intermediate Numerical Integration 507

efficiency compared to the RK-2 integrator is dramatic, that is, an average step size of
25=72¼ 0.3472 s compared to 0.0015 s.

(e) The exact solution for i(t) is obtained by Laplace transformation of Equation 6. 228, that is,

L s2I(s)� si(0)� di
dt

(0)
� �

þ R[sI(s)� i(0)]þ 1
C
I(s) ¼ 0 (6:236)

I(s) ¼ di
dt

(0)
1

s2 þ (R=L)sþ 1=LC

� �
(6:237)

FIGURE 6.23 Simulink® model for RLC circuit.

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5
RK-2 (T = 0.0015 s)

x1,A(i),
i = 0, 1, .., 40, 540, ...
i(t), t ≥ 0 i(t), t ≥ 0

0

0.1

0.2

0.3

0.4

0.5
Stiff integrator ode23s

x1,A(i), i = 0,
1, 2, ...,72

−10

−5

0

×10−14 RK-2 (T = 0.0016 s)

t (s) t (s)

x1,A(i), i = 0, 500, ...

0 0.01 0.02 0.03 0.04
−8000

−6000

−4000

−2000

0
RK-2 (T = 0.002 s)

x1,A(i), i = 0, 1, 2, ...

FIGURE 6.24 RK-2 integration with step sizes T¼ 0.0015, 0.0016, 0.002 s, stiff integrator ‘‘ode23s’’ and
exact solution for current i(t).

508 Simulation of Dynamic Systems with MATLAB® and Simulink®

Replacing the initial derivative (di=dt) (0) by vc(0)=L gives

i(t) ¼ vc(0)
L

1
s1 � s2

� �
es1t � es2tð Þ (6:238)

where s1 and s2 are the characteristic roots found in Equation 6.235. Using the values for
vc(0)¼ v0, L and the characteristic roots s1 and s2, the exact solution for i(t) is

i(t) ¼ �0:4802(e�1249:8t � e�0:2t) (6:239)

¼ �0:4802(e�t=0:0008 � e�t=5) (6:240)

The exact solution for i(t) is plotted on the graphs with the RK-2. (T¼ 0.0015 s) and ‘‘ode23s’’
responses. Both are in excellent agreement with the exact solution. Note the initial spike in i(t)
from zero to approximately 0.48 amp. This results from the rapid decay of the fast mode e�1249.8t

in the first 5� 0.0008¼ 0.004 s. After 0.004 s have elapsed, the response is essentially the slow
component 0.4802e�0.2t, which lasts for approximately 5� 5¼ 25 s.

Stiff integrators are designed to take smaller steps while the fast component of the transient
response is decaying and then accelerate after the fast component has vanished. Figure 6.25
illustrates how the integrator ‘‘ode23s’’ creeps along for the first 20 or so steps and then ramps up
for the last 52 integration steps. Indeed, after the first 21 steps, the simulation has progressed to
0.03675 s with an average step size of 0.00175 s. The average step size over the final 51 steps is
0.4894 s.

6.5.3 APPROXIMATING STIFF SYSTEMS WITH LOWER-ORDER NONSTIFF SYSTEM MODELS

Stiff systems typically consist of components or subsystems that operate at significantly different
speeds. For example, consider the control system shown in Figure 6.26 comprising a proportional
controller, a second-order system, and a first-order sensor in the feedback loop. An additive
disturbance or load component combines with the second-order system output to produce the
complete output signal y(t).

The output Y(s) is expressed in terms of two transfer functions GR(s) and GD(s)

Y(s) ¼ GR(s)R(s)þ GD(s)D(s) (6:241)

0 20 40 60 80

0

0.1

0.2St
ep

 si
ze 0.3

0.4

0.5

Step number

Stiff integrator “ode23s” step sizes

t = 0.0368 s

t = 0.1529 s

t = 0.6528 s t = 24.6490 s

t = 25 s

FIGURE 6.25 Step size vs. step number for ‘‘ode23s’’ integrator in Example 6.9.

Intermediate Numerical Integration 509

where

GR(s) ¼ Y(s)

R(s)

D(s)¼0

¼ KCK(tsþ 1)

ts3 þ (1þ 2zvnt)s2 þ 2zvn þ v2
nt

� �
sþ v2

n þ KCKKS
(6:242)

and

GD(s) ¼ Y(s)

D(s)

R(s)¼0

¼ KL ts3 þ (1þ 2zvnt)s2 þ 2zvn þ v2
nt

� �
sþ v2

n

� �
ts3 þ (1þ 2zvnt)s2 þ 2zvn þ v2

nt
� �

sþ v2
n þ KCKKS

(6:243)

The sensor dynamics are considerably faster than those of the second-order plant, a common
situation in control systems. Suppose the numerical values of the system parameters are KC¼ 2,
K¼ 5, z¼ 0.7, vn¼ 1.5 rad=s, KS¼ 0.75, t¼ 0.00125 s, and KL¼ 3. The characteristic polynomial
of the third-order system is

D(s) ¼ ts3 þ (1þ 2zvnt)s
2 þ 2zvn þ v2

nt)sþ v2
n þ KCKKS

�
(6:244)

Substituting the given values of the system parameters into Equation 6.244 and using the MATLAB
function ‘‘roots’’ to find the characteristic roots (poles) of the closed-loop control system result in
p1¼�800.01, p2,3¼�1.0453
 j2.9423. The stiffness ratio is

stiffness ¼ jp1jjp2j ¼
j � 800:01j

j � 1:0453þ j2:9423j ¼ 256:21 (6:245)

indicating a moderately stiff system. A Simulink diagram of the system is shown in Figure 6.27.
Both reference input and disturbance inputs are accounted for.

KC

Sensor

KLD(s)

KS
τs + 1

U(s)R(s)

–
Controller

X(s)

Y(s)K
s2 + 2ζωns + ωn2

FIGURE 6.26 A stiff system with fast and slow components.

FIGURE 6.27 Simulink® diagram for simulating stiff control system dynamics.

510 Simulation of Dynamic Systems with MATLAB® and Simulink®

The simulated response to a unit step input r(t)¼ 1, t � 0 is to be obtained using RK-4
integration. Analytical methods exist to compute the largest value of step size T, which results in
a stable simulation; however, they are deferred until Chapter 8. Trial and error with different values
of T produced the responses shown in Figure 6.28.

The correct step response is shown on top, whereas the one on the bottom is the result of
numerical instability of the RK-4 integrator at the larger step size of T¼ 0.0035 s. The results are
typical of what happens when a numerical integrator becomes unstable, that is, the simulated results
may be quite accurate and suddenly become useless as the integration step size is increased by a
slight amount. Try modifying the Simulink model ‘‘stiff_approx_1.mdl’’ to allow a disturbance step
input or simply make one of the initial conditions nonzero and look at the natural response. In either
case, a step size of T¼ 0.0034 s produces a stable output and T¼ 0.0035 s does not.

The stiffness is attributable to the disparity in the time constant of the sensor and the effective
time constant of the second-order system. The question that naturally arises is ‘‘What happens if the
sensor dynamics are ignored, that is, the sensor responds instantaneously to its inputs?’’ The
characteristic polynomial in Equation 6.244 becomes second order when the sensor time constant
t is set to zero. The control system is underdamped with a pair of complex poles, �1.50
 j2.9407,
nearly identical to the complex poles of the third-order control system with sensor time constant
included. The system is no longer stiff and a larger value of T can be used for RK-4 simulation.

Step responses of the original third-order control system and the reduced second-order system are
generated in the MATLAB script file ‘‘Chap6_stiffsys_approx.m,’’ which calls the Simulink model
‘‘stiff_approx_2.mdl’’ shown in Figure 6.29. Both systems are simulated concurrently using RK-4
integration with step size T¼ 0.001 s.

The plant output y(t) and sensor output x(t) for the third-order control system with the sensor
dynamics included and second-order control system with sensor approximated as a pure gain are
shown in Figure 6.30. There is no noticeable difference in y(t) or x(t) for the second- and third-order
systems.

The second-order system was simulated to determine how large the step size could be without
concern for numerical instability of the RK-4 integrator. The reader should verify that step sizes up

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.25

0.5

0.75y(
t)

y(
t)

1

1.25

1.5
Step response of stiff third-order system

RK-4 with T = 0.0034 s

0

2,500

5,000

7,500

10,000

Step response of stiff third-order system

RK-4 with T = 0.0035 s

t (s)

FIGURE 6.28 Stable and unstable simulated responses using RK-4 integration.

Intermediate Numerical Integration 511

FIGURE 6.29 Simulink® diagram for third-order and second-order control systems.

0 1 2 3 4 5 0 1 2 3 4 5
0

0.25

0.5

y(
t)

y(
t)

x(
t)

x(
t)

0.75

1

1.25

1.5
Response of third-order system

0

0.25

0.5

0.75

1

1.25

1.5

t (s)

0

0.25

0.5

0.75

1

1.25

1.5

0

0.25

0.5

0.75

1

1.25

1.5

t (s)

Response of third-order system

Response of second-order system Response of second-order system

FIGURE 6.30 Step response of stiff and nonstiff control system models.

512 Simulation of Dynamic Systems with MATLAB® and Simulink®

to approximately T¼ 0.2 s produce accurate (and therefore stable) results. This represents a sizable
reduction in execution time, a speedup of roughly 0.2=0.0034� 59 times. Chapter 8 includes a
discussion on how to find the limiting value of T precisely.

Consider the load transfer function GD(s) in Equation 6.243 for the case when t¼ 0.00125 s and
when t¼ 0. Putting GD(s) in pole-zero form,

GD(s) ¼ b3s3 þ b2s2 þ b1sþ b0
a3s3 þ a2s2 þ a1sþ a0

(6:246)

¼ b3
a3

� �
(sþ z1)(sþ z2)(sþ z3)

(sþ p1)(sþ p2)(sþ p3)
(6:247)

From M-file ‘‘Chap6_stiffsys_approx.m,’’ the results are

t¼ 0.00125 s:

b0¼ 6.75 a0¼ 9.75 z1¼�800 p1¼�800.0094
b1¼ 6.3084 a1¼ 2.1028 z2¼�1.05þ j1.0712 p2¼ �1.0453þ j2.9423

b2¼ 3.0079 a2¼ 1.0026 z3¼�1.05� j1.0712 p3¼ �1.0453� j2.9423

b3¼ 0.0039 a3¼ 0.0013

GD(s) ¼ 3(sþ 800)(s2 þ 2:1sþ 2:25)
(sþ 800:0094)(s2 þ 2:0906sþ 9:7499)

(6:248)

t¼ 0:

b0¼ 6.75 a0¼ 9.75 z1¼�1.05þ j1.0712 p1¼�1.05þ j2.9407

b1¼ 6.3 a1¼ 2.1 z2¼�1.05þ j1.0712 p2¼�1.05þ j2.9407

b2¼ 3 a2¼ 1

b3¼ 0 a3¼ 0

GD(s) ¼ 3(s2 þ 2:1sþ 2:25)
s2 þ 2:1sþ 9:75

(6:249)

Canceling the real pole and real zero in Equation 6.248 results in a nonstiff second-order system,
which accurately represents the dynamics of the stiff third-order system.

Canceling factors from the numerator and denominator in a transfer function when the pole-zero
plot indicates that a pole and zero are close to each other is valid under most conditions. In fact, one of
the goals of control system design based on ‘‘pole placement’’ is to mitigate or eliminate entirely the
effect of undesirable modes in the open-loop system natural response. A controller with a combination
zero and pole is inserted in the loop with the zero located near the undesirable open-loop pole.

Another example of approximating a stiff system model with a lower-order dynamics model is
now given. In this case, the order of the approximate system is reduced by ignoring a fast mode and
retaining the slower dominant mode as opposed to canceling nearly equivalent numerator and
denominator factors.

Intermediate Numerical Integration 513

Example 6.10

An armature-controlled DC motor with a load inertia mounted on its shaft is shown in Figure 6.31.
The inputs are the armature voltage e0(t) and the load torque TL(t). The outputs are the motor
torque T(t) and angular speed of the motor v(t). Dependent variables (in addition to the outputs)
are the armature current i(t) and back emf of the motor vb(t). R and L are the electrical resistance
and inductance of the armature circuit while B and J are the viscous damping coefficient and load
inertia. Kb and KT are the back emf and torque constants of the motor.

The following equations govern the dynamics of this electromechanical system:

e0(t) ¼ Ri(t)þ L
d
dt

i(t)þ vb(t) (6:250)

vb(t) ¼ Kbv(t) (6:251)

T(t) ¼ KTi(t) (6:252)

J
d
dt

v(t)þ Bv(t) ¼ T(t)þ TL(t) (6:253)

(a) Draw a block diagram of the system and find the transfer functions I(s)=E0(s) and V(s)=E0(s)
where E0(s)¼L{e0(t)}, I(s)¼L{i(t)}, and V(s)¼L{v(t)}.

(b) Find the steady-state gain (from armature voltage to angular speed), natural frequency, and
damping ratio of the motor as a function of the motor parameters.

(c) Find expressions for the motor time constants in terms of the motor parameters.
(d) The motor constants and load inertia are

R ¼ 0:2V, L ¼ 0:1mH, KT ¼ 8� 10�3 ft lbf=A

Kb ¼ 0:05
V

rad=s
, B ¼ 0:01

ft lbf
rad=s

, J ¼ 4:5� 10�3
ft lbf
rad=s2

Compute the second-order system parameters, characteristic roots, time constants, and
stiffness ratio.

(e) Find expressions for the time constants when the armature inductance is assumed to be
negligible. Find the reduced order transfer functions I(s)=E0(s) and V(s)=E0(s) when L� 0.

(f) Simulate the response v(t), t � 0 of the first- and second-order models to a unit step input in
armature voltage using Simulink’s Euler integrator. Compare the results and comment on the
step size required to achieve a stable response in each case.

Motor Load

T(t)

T(t)

e0(t)

e0(t)

R L

vb(t)

+

_

i(t) TL(t)
Armature circuit

B
J

+

−

TL(t)

ω(t)

ω(t)

FIGURE 6.31 Armature-controlled DC motor and load.

514 Simulation of Dynamic Systems with MATLAB® and Simulink®

(g) Use one of Simulink’s stiff integrators to obtain the step
response of the DC motor second-order system model.
Compare the number of steps and execution time
required for the stiff integrator and the RK-1 Euler inte-
grator with step size T¼ 0.0005 s.

(h) Compare the frequency response function GV(jv)¼
V(jv)=E0(jv) when L¼ 0.1 and 0 mH. Comment on the
results.

(i) Compare the outputs i(t), t � 0 and v(t), t � 0 in response
to a load torque TL(t)¼ sin vLt, t � 0 for the following
cases shown in Table 6.11.

(a) Laplace transforming Equations 6.250 through 6.253 with
initial conditions zero provides the basis for constructing the
block diagram shown in Figure 6.32.

GV(s) ¼ V(s)
E0(s)

TL(s)¼0

¼ (1=(Lsþ R))KT (1=(Jsþ B))
1þ Kb(1=(Lsþ R))KT (1=Jsþ B))

(6:254)

¼ KT

(Lsþ R)(Jsþ B)þ KbKT
(6:255)

GI(s) ¼ I(s)
E0(s)

TL (s)¼0

¼ V(s)
E0(s)

�
V(s)
I(s)

(6:256)

¼ KT=[(Lsþ R)(Jsþ B)þ KbKT]
KT=(Jsþ B)

(6:257)

¼ (Jsþ B)
(Lsþ R)(Jsþ B)þ KbKT

(6:258)

(b) Dividing GV(s) in Equation 6.255 by JL and equating the result to the standard form of a
second-order system,

GV(s) ¼ KT=JL
[sþ (R=L)] [sþ (B=J)]þ KbKT=JL

¼ Kmv
2
n

s2 þ 2zvnsþ v2
n

(6:259)

Solving for the steady-state gain Km, the natural frequency vn, and the damping ratio z in terms of
the motor parameters results in

Km ¼ KT

BRþ KbKT
(6:260)

vn ¼ BRþ KbKT

JL

� �1=2

(6:261)

z ¼ BLþ JR

2[JL(BRþ KbKT)]1=2
(6:262)

TABLE 6.11
Motor Inductance and Load
Torque Frequency Values

vL

L (mH) 2p rad=s 200 rad=s

0

1

0.1

1
Ls + R

E0(s)
–

Ω(s)

Vb(s) Kb

KT
1

Js + B
I(s) T(s)

TL(s)

FIGURE 6.32 Block diagram of armature-controlled DC motor.

Intermediate Numerical Integration 515

(c) It is possible to show that the motor is overdamped (z> 1), and, therefore, the transfer function
in Equation 6.259 is expressible as

GV(s) ¼ Kmv
2
n

s2 þ 2zvnsþ v2
n
¼ Kmv

2
nt1t2

(t1sþ 1)(t2sþ 1)
(6:263)

The denominator of GV(s) is the characteristic polynomial D(s) whose roots are

s1, s2 ¼ �zvn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1vn

q
(6:264)

The motor time constants in Equation 6.263 are related to the characteristic roots according to
t1¼�1=s1, t2¼�1=s2. Substituting Equations 6.261 and 6.262 into Equation 6.264 produces an
expression for the characteristic roots,

s1, s2 ¼ � 1
2JL

[(BLþ JR)
 {(BLþ JR)2 � 4JL(BRþ KbKT)}1=2] (6:265)

Taking the negative reciprocals of s1 and s2 gives

t1, t2 ¼ 2JL

(BLþ JR)
 {(BLþ JR)2 � 4JL(BRþ KbKT)}1=2
(6:266)

(d) The second-order system parameters are computed using Equations 6.260 through 6.262. The
results are Km ¼ 3:3�3 rad=s=V, vn¼ 73.03 rad=s, and z¼ 13.71. The characteristic polynomial of
the second-order system model is

D(s) ¼ (Lsþ R)(Jsþ B)þ KbKT (6:267)

¼ LJs2 þ (LBþ RJ)sþ RBþ KbKT (6:268)

Substituting the numerical values of the motor constants gives

D(s) ¼ 4:5� 10�7s2 þ 9:0� 10�4 sþ 2:4� 10�3 (6:269)

The characteristic roots s1 and s2 can be found directly from Equation 6.265 or by solving for the
roots of D(s) in Equation 6.269. The result is s1¼�1999.6 rad=s and s2¼�2.67 rad=s. The motor
time constants are t1¼�1=s1¼ 0.0005 s and t2¼�1=s2¼ 0.375 s. The stiffness ratio is
s1=s2¼ 749.7.

(e) Ignoring terms involving L in the denominator of Equation 6.266 gives

t1 � 2JL

(BLþ JR)þ {(BLþ JR)2 � 4JL(BRþ KbKT)}1=2

� �
L�0
¼ L

R
(6:270)

t2 � lim
L!0

2JL

(BLþ JR)� {(BLþ JR)2 � 4JL(BRþ KbKT)}1=2

� �
(6:271)

Application of L’Hospital’s rule in Equation 6.271 results in

t2 � JR
BRþ KbKT

(6:272)

516 Simulation of Dynamic Systems with MATLAB® and Simulink®

Ignoring the effect of armature inductance, that is, assuming L¼ 0 in Equations 6.255 and 6.258,
yields a first-order model of the motor with transfer functions

V(s)
E0(s)

¼ KT

JRsþ RBþ KbKT
(6:273)

I(s)
E0(s)

¼ Jsþ B
JRsþ RBþ KbKT

(6:274)

Hence, the motor can be modeled as a first-order component

V(s)
E0(s)

¼ Km

tmsþ 1
(6:275)

with time constant tm¼ t2¼ 0.375 s and Km ¼ 3:3�3 rad=s=V.

(f) The Simulink diagram for the step responses of the first- and second-order system models using
Euler integration is shown in Figure 6.33.

The simulated responses of the motor to a unit step input in armature voltage occurring at
t¼ 0.25 s are shown in Figure 6.34. Euler integration at T¼ 0.001 s is stable for both cases, L¼ 0.1
and 0 mH. Note that both responses approach the predicted steady-state value
vss ¼ Km � 1 ¼ 3:3�3 rad=s=V� 1V ¼ 3:33�3 rad=s in roughly 5� tm¼ 5� 0.375¼ 1.875 s after
the unit step is applied.

Figure 6.35 shows the simulated response of the second-order system model (L¼ 0.1 mH) with
Euler integration for step sizes of T¼ 0.001001 and 0.001002 s. The first plot indicates the onset of
numerical instability, while the second shows clear instability at the larger step size. By trial and
error, the upper limit for stable Euler integration of the stiff system model, the second-order system
with L¼ 0.1 mH, is approximately T¼ 0.001 s.

The first-order system model obtained by ignoring the fast pole at s1¼�1999.6 rad=s leaving
only the dominant pole at s2¼�2.7 rad=s can be simulated with Euler integration using a far
greater integration step. Figure 6.36 shows what to expect with step sizes of T¼ 0.1, 0.25, 0.75,
and 1 s, respectively. The lowest value of T results in a step response nearly identical to the
analytical solution (not shown). The result is still quite acceptable for T¼ 0.25 s. The integrator
appears to be marginally stable (and grossly inaccurate) when T is equal to 0.75 s. The response in
the lower right is clearly unstable.

(g) The Simulink model in Figure 6.33 was called from M-file ‘‘Chap6_Ex5_2.m’’ with the
‘‘ode1’’ and ‘‘ode15s’’ integrators selected to simulate the motor angular speed and current.
Simulated outputs of the second-order system are plotted in Figure 6.37. ‘‘ode1’’ is Euler and
‘‘ode15s’’ is one of the stiff integrators available in MATLAB.

FIGURE 6.33 Simulink® diagram for step responses of first- and second-order models.

Intermediate Numerical Integration 517

The y-labels are written as v(t) and i(t) even though the plots are actually of the discrete-time
(simulated) system outputs. The armature voltage e0(t) was applied at t¼ 0.25 s, and the simulation
ran for 0.25þ 5tm¼ 0.25þ 5(0.375)¼ 2.125 s. The analytical solutions for v(t) and i(t) are
considered in Exercise 6.24.

Euler simulation required (0.25þ 5tm)=T¼ 4250 integration steps. The stiff integrator needed
only 79 steps to produce comparably accurate results. The execution times for each were obtained

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

ω
(t)

 (r
ad

/s
)

ω
(t)

 (r
ad

/s
)

1

2

3

Step response of motor (L = 0.1 mH)

Step response of motor (L = 0 mH)

Euler integration, T = 0.001 s

Euler integration, T = 0.001 s

0

1

2

3

t (s)

FIGURE 6.34 Unit step responses of first- and second-order system models.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0
1
2
3
4
5
6

Step response of motor (L = 0.1 mH)

Step response of motor (L = 0.1 mH)

Euler integration, T = 0.001001 s

Euler integration, T = 0.001002 s

0
1
2
3
4
5
6

t (s)

ω
(t)

 (r
ad

/s
)

ω
(t)

 (r
ad

/s
)

FIGURE 6.35 Unstable second-order model step responses.

518 Simulation of Dynamic Systems with MATLAB® and Simulink®

using the MATLAB command ‘‘cputime,’’ which returns the CPU time used by MATLAB from
the time it is first loaded. Execution times for the Euler and stiff integrator were 63 and 47 ms,
respectively.

(h) The frequency response functions GV(jv) for the first-order model (L¼ 0) and second-order
model (L¼ 0.1 mH) are shown in Figure 6.38. The magnitude function jGV(jv)j for L¼ 0.1 and
0 mH is nearly identical up to 1000 rad=s well beyond the cutoff frequency or bandwidth of the

Simulated step response of DC motor (L = 0) using Euler integration

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 100 2 4 6 8 10

0

1

2

3

4

T = 0.1 s

0

1

2

3

4

T = 0.25 s

0

2

4

6

8

10

t (s) t (s)

T = 0.75 s

−200
−100

0
100
200
300
400

T = 1 s

ω
(t)

 (r
ad

/s
)

ω
(t)

 (r
ad

/s
)

ω
(t)

 (r
ad

/s
)

ω
(t)

 (r
ad

/s
)

FIGURE 6.36 Simulated response using Euler integration with four different step sizes.

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0

1

2

3

ode1 (Euler), T = 0.0005 s

4250 steps

0

1

2

3

4

5

t (s)

ode1 (Euler), T = 0.0005 s

4250 steps

0

1

2

3

ode15s (stiff)

79 steps

0

1

2

3

4

5

t (s)

ode15s (stiff)

79 steps

ω
(t)

 (r
ad

/s
)

i(
t)

(a
m

p)

i(
t)

(a
m

p)

ω
(t)

 (r
ad

/s
)

FIGURE 6.37 Simulated DC motor step response using Euler and stiff integrator.

Intermediate Numerical Integration 519

motor. The DC gain GV(j0) is the same as the motor gain Km ¼ 3:3�3 rad=s=V (10.46 db). At
v¼ 2000 rad=s, the magnitudes are 0.0031 rad=s=V (�50.05 db) with L¼ 0.1 mH and 0.0044
rad=s=V (�47.04 db) with L¼ 0.

Figure 6.38 suggests that the dynamic response of the motor to changes in armature voltage be
accurately predicted by the first-order (nonstiff) model.

(i) The six cases in Table 6.11 were simulated using the Simulink model ‘‘dc_motor_2.mdl’’ shown
in Figure 6.39. ‘‘Chap6_Ex5_2.m’’ calls ‘‘dc_motor_2.mdl’’ twice, once with vL¼ 2p rad=s and

10−1 100 101 102 103 104 105

−100

|G
Ω

(jω
)|,

db
A

rg
(G

Ω
(jω

)),
de

g

−75

−50

−25

0

ω (rad/s)

10−1 100 101 102 103 104 105

ω (rad/s)

GΩ(jω), first- and second-order system models

L = 0

L = 0

L = 0.1 mH

L = 0.1 mH
−180

−135

−90

−45

0

FIGURE 6.38 Frequency response function GV(jv) for L¼ 0 and 0.1 mH.

FIGURE 6.39 Simulink® diagram for i(t) and v(t) with L¼ 0, 0.1, and 1 mH.

520 Simulation of Dynamic Systems with MATLAB® and Simulink®

the second time with vL¼ 2000 rad=s. The armature voltage e0(t) is zero for both calls. RK-4
integration with step size 0.0001 s was specified in ‘‘Chap6_Ex5_2.m.’’

The motor current and angular speeds for L ¼ 0, 0.1, and 1 mH are indistinguishable
from each other when the load torque frequency is 2p rad=s (see Figure 6.40). Figure
6.41 shows angular speed and current of the motor when the load torque frequency vL¼ 200
rad=s. The angular speeds are nearly identical; however, there is a noticeable difference in
current when L ¼ 1 mH. Hence, for an accurate simulation of motor current for the case when
L¼ 1 mH and the load torque frequency is 200 rad=s (or greater), the stiff second-order system
model is required.

−0.4

i(
t),

 am
ps

ω(
t),

 ra
d/

s

−0.2

0

0.2
Motor current, ωL = 200 rad/s

Motor current, ωL = 200 rad/s

L = 1 mH

L = 0, 0.1 mH

0

1

2

t (s)

L = 0, 0.1, 1 mH

0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

FIGURE 6.41 Motor current and speed for L¼ 0, 0.1, 1 mH, vL¼ 200 rad=s.

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

−10

i(
t),

 A

−5

0

5

10

15
Motor current, ωL = 2π rad/s

Motor current, ωL = 2π rad/s

L = 0, 0.1, 1 mH

L = 0, 0.1, 1 mH

−40

−20

ω(
t),

 ra
d/

s

0

20

40

60

t (s)

FIGURE 6.40 Motor current and speed for L¼ 0, 0.1, 1 mH, vL¼ 2p rad=s.

Intermediate Numerical Integration 521

EXERCISES

6.20 In Example 6.9,
(a) Find the largest integration time step T, which yields stable and accurate approximations

of the current i(t) using RK-1, RK-3, and RK-4 integrators.
(b) Find the analytical solution for the current i(t).
(c) Simulate the transient response of the circuit using the remaining stiff integrators available

with Simulink and compare the number of integration steps required for each one.
Calculate

j�ej ¼ 1
N

X
k¼1, 2,...,N

ji(tk)� x1,A(tk)j

where tk, k¼ 1, 2, . . . , N are the discrete times used by the stiff integration method to
approximate the exact solution i(tk).

6.21 Figure E6.21 shows a thermal second-order system with input u(t) and output y(t). The
temperature output is converted by a transducer, modeled as a first-order lag, to an electronic
signal v(t).

s2 + 2ζωns + ωn
2

U(s) Y(s) V(s)
Btu
h

Volts°F

ωn = 0.5 rad/s
ζ = 2.25

K = 0.04 V/°F
τ = 0.1 s

K
τs + 1

ωn
2

FIGURE E6.21

(a) Find the exact solution for the unit step response of v(t).
(b) Find the stiffness ratio relating the ratio of the largest to the smallest (in magnitude)

characteristic root of the system. Is the system stiff?
(c) Simulate the unit step response with a fixed-step RK integrator. What is the largest

integration step size that can be used to obtain a stable solution?
(d) Repeat part (c) using one of Simulink’s stiff integrators, and compare the number of steps

used by the RK and stiff integrator.
(e) Compare the frequency response function V(jv)=U(jv) with and without the sensor

dynamics by generating a Bode plot for each on the same graph. Comment on the
results.

6.22 The liquid level in the tank shown in Figure E6.22 is regulated by controlling the flow in F1

using an electronically actuated control valve. A level transmitter provides a voltage signal vT
to the controller. The set point level Hcom is converted to a voltage vcom inside the controller.
The actuating signal ev¼ vcom� vT is input to the controller that outputs the voltage signal v
that determines the valve opening. The valve dynamics are described by a gain Kv and time
constant tv as shown in the block diagram of the control system. The outflow from the tank F0

is assumed to be proportional to the level, that is, F0¼ cH.

522 Simulation of Dynamic Systems with MATLAB® and Simulink®

F1

Controller Set Pt
vT

H
Hcom

v

F0

Transmitter

ft
H

ft

vT
Volts

Controller

Valve Tank

Hcom vcom

cfmVolts
vev F1 1

As + cKT

KT

KC 1+ 1
TI s τvs + 1

KV

Volts– Volts

FIGURE E6.22

(a) The characteristic equation of the closed-loop control system is

1þ KTKC 1þ 1
TIs

� �
KV

tvsþ 1

� �
1

Asþ c

� �
¼ 0

The numerical values of the system parameters are

KT ¼ 0:25V=ft, KC ¼ 2, KI ¼ 10 min , KV ¼ 4 cfm=V, tv ¼ 0:01 min ,

A ¼ 100 ft2, c ¼ 3 cfm=ft:

(b) Find the characteristic roots and the stiffness ratio.
(c) The system is initially at steady state with the tank empty. The set point input is a step

function Hcom(t)¼ 3 ft, t> 0. The step response H(t), 0 � t � 180 min is simulated using
Simulink’s fixed-step integrators ‘‘ode1’’ through ‘‘ode4.’’ Use trial and error to estimate
the integration step size T (to eight places after the decimal point), resulting in a
marginally stable simulated response. Enter the values in the second column of the
following table.

(d) Obtain plots of H(t) and F1(t) with each integrator when the step size is one half the
limiting values found in part (b). Enter the number of integration steps used to simulate
the tank level response in the third column of the following table.

(e) Obtain plots of H(t) and F1(t) using Simulink’s stiff integrator ‘‘ode23s.’’

Intermediate Numerical Integration 523

(f) Find the number of integration steps in part (d) and enter the value in the following table.

Integrator
T (Marginally

Stable Response)
Number of Steps
(Step Size T=2)

Ode1

Ode2

Ode3

Ode4

Ode23s n=a

6.23 Consider a third-order system with transfer function in Equation 6.248 and second-order
system approximation with transfer function in Equation 6.249. Denote the transfer functions
by G3(s) and G2(s), respectively. Suppose the input to both systems is u(t)¼ 100eat, t � 0.
(a) Simulate the responses of each system and plot them on the same graph for the following

cases:

(i) a¼ 0 (ii) a¼�100 (iii) a¼�800 (iv) a¼�800.0094 (v) a¼�5000

6.24 Find analytical solutions for v(t) and i(t) in response to a step input e0(t) in Example 6.10.
Compare the exact solutions with the simulated results obtained using ‘‘ode1’’ and ‘‘ode15s’’
integrators.

6.25 For the DC motor in Example 6.10 with armature voltage zero,
(a) Find the transfer functions

GV(s)jE0(s)¼0 ¼
V(s)

TL(s)

E0(s)¼0

, GI(s)jE0(s)¼0 ¼
I(s)

TL(s)

E0(s)¼0

(b) Draw Bode plots for GV(jv)jE0(s)¼0 and GI(jv)jE0(s)¼0 for L¼ 0, 0.1, 1 mH.
(c) Are the motor current and speed profiles in Figures 6.40 and 6.41 consistent with the

results in part (b)?
6.26 An angular speed control system is shown in Figure E6.26a:

E0(s) Ω(s)

Vb(s)

––

TL(s)

Kb

1
Js + B

T(s)

Ktach

Ωref(s)

DC motor

rad/s
Units

converter

Volts ft-lbf

ft-lbf

KT
Ls + R rad/s

KampVoltsVolts

Volts

FIGURE E6.26a

524 Simulation of Dynamic Systems with MATLAB® and Simulink®

The motor constants and load inertia are

R ¼ 1V, L ¼ 0:1mH, KT ¼ 0:8 ft lbf=A, Kb ¼ 0:05V=rad=s,

B ¼ 0:01 ft lbf=rad=s, J ¼ 0:045 ft lbf=rad=s
2:

The tachometer gain in the feedback path is Ktach¼ 0.0475 V=rad=s and the amplifier gain
Kamp¼ 50. A units converter is inserted before the first summer to convert the reference input
from rad=s to volts. The gain of the units converter is the same as Ktach.
(a) Find the stiffness of the DC motor.
(b) Find the stiffness of the closed-loop control system.
(c) Prepare a Simulink diagram for simulating the control system. The reference input and

load torque profiles are shown in Figure E6.26b.

t, s1 6 11

400

ωref(t), rad/s

t, s12 14

15

TL(t), ft-lbf

FIGURE E6.26b

(d) Use trial and error to find the maximum step size for stable integration of the model using
RK-1 through RK-4 integration.

(e) Simulate the control system using RK-1 through RK-4 integration with step sizes equal to
one half the values found in part (d). Repeat using the stiff integrators ‘‘ode15s,’’
‘‘ode23s,’’ ‘‘ode23t,’’ and ‘‘ode23tb.’’ Compare the execution times and number
of integration steps required with each.

6.27 The block diagram of a control system is shown in Figure E6.27.

K s + 2.5
s + 10

1
s(s + 100)R(s)

–
Y(s)

FIGURE E6.27

(a) Find the closed-loop system transfer function Y(s)=R(s).
(b) Find the closed-loop system poles (characteristic roots) and the stiffness ratio for con-

troller gains of K¼ 1, 100, 1000.
(c) Find the analytical solutions for the unit step responses when K¼ 1, 100, 1000.
(d) Select any order RK integrator and find the step size for each value of K where the

integrator is on the verge of becoming unstable.
(e) Simulate the step responses using the selected RK integrator with a step size of one half

the value found in part (d) for each value of K.
(f) Plot the analytical and simulated step responses on the same graphs.
(g) Approximate the stiff closed-loop system dynamics when K¼ 100 with a second-order

transfer function obtained by ignoring the fast pole of the third-order closed-loop transfer
function. Introduce a gain in the numerator of the second-order transfer function that

Intermediate Numerical Integration 525

makes the DC gain of the second- and third-order system transfer functions identical.
Compare the third-order system analytical and simulated step responses to the second-
order system analytical and simulated step responses. Compare the step sizes, number of
integration steps, and execution times used to simulate the original system and the
reduced order system approximation.

6.6 LUMPED PARAMETER APPROXIMATION OF DISTRIBUTED
PARAMETER SYSTEMS

Dynamic systems involving variables that exhibit both spatial and temporal variations are modeled by
partial differential equations and referred to as distributed parameter systems. The introductory
section in Chapter 1 cited the example of a room temperature T(x, y, z, t) that varies as a function of
the point coordinates (x, y, z) as well as time t. Analytical solutions of partial differential equation
models subject to various boundary conditions are rare in all but the simplest of examples. Numerical
solutions are based on a partitioning of the entire volume and surface areas within the system into
meshes comprising finite-sized triangular elements with interior and exterior nodes at the vertices.
Difference equations, sometimes numbering in the hundreds of thousands depending on the size and
shape of the finite elements, are written for the dependent variable(s) at a subset of the nodes. Accurate
approximations to the continuous solutions of the partial differential equation models are possible
using this ‘‘finite element analysis’’ approach. Examples include the temperature distribution and heat
flows from irregular-shaped cooling surfaces, structural analysis, fluid dynamics, and so forth.

In dynamic systems with regular-shaped geometries, a continuously varying spatial parameter
can be discretized into a finite number of values associated with discrete geometric regions. For
example, consider a long, thin cylindrical rod with perfect insulation along its length and top face
like the one shown in Figure 6.42.

Suppose one end of the rod is immersed in a liquid bath of constant temperature T . Assuming
negligible heat flow in the x and y directions, temperature gradients exist solely in the longitudinal
direction, that is, along the z-axis of the cylinder. The temperature is described by T(t, z). The initial
temperature distribution T0(z) is known as well.

Derivation of the equation governing the cylinder’s tempera-
ture T(t, z) is straightforward (Miller 1975). The result is the
partial differential equation

q
qt
T(t, z)� a

q2

qz2
T(t, z) ¼ 0 (6:276)

subject to initial condition T(0, z)¼ T0(z), 0 � z � L along
with the boundary conditions T(t, 0) ¼ T , t � 0 and (q=qz)
T(t, z)jz¼ L¼ 0, t � 0. L is the length of the cylinder, and a is a
parameter related to the physical and thermal properties of the
cylinder material.

A lumped parameter model consisting of coupled ordinary
differential equations is obtained by dividing the cylinder into
n equal segments of length Dz¼ L=n (see Figure 6.42). Each
segment has, associated with it, a thermal capacitance Ci and
is assigned a node temperature Ti. Energy balances for each segment
relate the net heatflow to the accumulation of thermal energy, that is,

Ci
d

dt
Ti(t) ¼ Qi�1 � Qi, i ¼ 1, 2, 3, . . . , n (6:277)

y

Tn

Ti
Ri

Ci

Rn

Cn

Qi

Qi−1

Qn−1

Qn=0

x

z

Tamb

T

FIGURE 6.42 Lumped param-
eter depiction of rod with discrete
thermal capacitances.

526 Simulation of Dynamic Systems with MATLAB® and Simulink®

Heat flows across the boundaries of each segment along the z-axis by conduction. Fourier’s law of
heat conduction states that the conductive heat flow per unit area is negatively proportional to the
temperature gradient in the direction of flow. The heat flow from the constant temperature source at
the bottom to the first segment with temperature T1 is

Q0 ¼ �kA Ti � T

Dz=2

� �
¼ T � T1

R1
(6:278)

The term in parenthesis is the temperature gradient, and k is the thermal conductivity of the material.
R1 represents the thermal resistance at the lower boundary and is computed from

R1 ¼ Dz

2kA
(6:279)

The internal heat flows are described by

Qi ¼ �kA Tiþ1 � Ti
Dz

� �
¼ Ti � Tiþ1

Riþ1
, i ¼ 1, 2, . . . , n� 1 (6:280)

where

Riþ1 ¼ Dz

kA
, i ¼ 1, 2, . . . , n� 1 (6:281)

Heat flow between the top segment and its surroundings is zero as a result of assuming that the top
face is perfectly insulated. Consequently,

Qn ¼ 0 (6:282)

The cylindrical rod with n¼ 5 segments is illustrated in Figure 6.43.

Q5 = 0

T5(t)

T4(t)

T3(t)

T2(t)

T1(t)

Q4

Q3

Q1

Q0

Q2

T

Δz

R5

R4

R3

R2

R1

R6 = ∞
C5

C4

C3

C2

C1

FIGURE 6.43 Cylinder with five distinct temperature nodes.

Intermediate Numerical Integration 527

Combining Equations 6.277, 6.278, and 6.280 through 6.282 leads to the linear system of
differential equations

d

dt

T1(t)

T2(t)

T3(t)

T4(t)

T5(t)

26666664

37777775 ¼ A

T1(t)

T2(t)

T3(t)

T4(t)

T5(t)

26666664

37777775þ BT (6:283)

The coefficient matrix A and input matrix B are given by

A ¼

� 1
R1
þ 1
R2

� �
1
C1

1
R2C1

0 0 0

1
R2C2

� 1
R2
þ 1
R3

� �
1
C2

1
R3C2

0 0

0
1

R3C3
� 1

R3
þ 1
R4

� �
1
C3

1
R4C3

0

0 0
1

R4C4
� 1

R4
þ 1
R5

� �
1
C4

1
R5C4

0 0 0
1

R5C5
� 1
R5C5

266666666666666664

377777777777777775
(6:284)

B ¼ 1
R1C1

0 0 0 0

� �T
(6:285)

Example 6.11

The temperature of a 10 ft long, 2 ft diameter copper cylinder is initially 758F throughout its entire
length. One of its edges is placed in contact with a surface maintained at a constant temperature of
2008F. The cylinder is thermally insulated from its surroundings except for the edge surface in
contact with the 2008F temperature. Assume heat flows in the longitudinal direction only.

The physical properties of copper are

thermal conductivity: k¼ 224 Btu=h=8F=ft
specific heat: c¼ 2.93 Btu=8F=slug
mass density: r¼ 17.3 slug=ft3

Partition the cylinder into five equal-sized sections and

(a) Find the matrices A and B in the state equation _T(t) ¼ AT(t)þ BT where
T(t) ¼ [T1(t)T2(t)T3(t)T4(t)T5(t)]T is the state vector.

(b) Find the steady-state node temperatures.
(c) Simulate and plot the temperature responses of each section long enough for the transient

response to die out.
(d) Plot the temperature profile along the bar at t¼ 0, 2.5, 5, 10, 20, 30 h.

(a) The volume of each section is

Vi ¼ AiDz ¼ p
D
2

� �2

Dz ¼ p
2
2

� �2 10
5

� �
¼ 2p ft3, i ¼ 1, 2, . . . , 5 (6:286)

528 Simulation of Dynamic Systems with MATLAB® and Simulink®

The thermal capacitance of each section is

Ci ¼ cirVi ¼ 2:93
Btu

	F� slug
� 17:3

slug

ft3
� 2p ft3 ¼ 318:49

Btu
	F

, i ¼ 1, 2, . . . , 5 (6:287)

and the thermal resistances at the interfaces of each section are

R1 ¼ Dz1
2kA1

¼ 2 ft

2� 224 (Btu=h=	F ft)� p ft2
¼ 0:0014

	F
Btu=h

(6:288)

Ri ¼ Dzi
kAi
¼ 2� R1 ¼ 0:0028

	F
Btu=h

, i ¼ 2, 3, 4, 5 (6:289)

Substituting the values for Ri and Ci into Equations 6.284 and 6.285 gives (see M-file ‘‘Cha-
p6_Ex6_1.m’’)

A ¼

�3:3143 1:1048 0 0 0

1:1048 �2:2096 1:1048 0 0

0 1:1048 �2:2096 1:1048 0

0 0 1:1048 �2:2096 1:1048

0 0 0 1:1048 �1:1048

266666664

377777775, B ¼

2:2096

0

0

0

0

266666664

377777775
(b) The steady-state state vector Tss is obtained from Equation 6.283 with the left-hand side equal
to the zero vector. The result is

Tss ¼ �A�1BT

¼ �

�3:3143 1:1048 0 0 0

1:1048 �2:2096 1:1048 0 0

0 1:1048 �2:2096 1:1048 0

0 0 1:1048 �2:2096 1:1048

0 0 0 1:1048 �1:1048

2666666664

3777777775

�1 2:2096

0

0

0

0

2666666664

3777777775
200

¼

200

200

200

200

200

2666666664

3777777775
(6:290)

(c) A ‘‘Constant’’ block and the ‘‘state-space’’ block in Simulink are all that are needed to
simulate the response of the lumped parameter system model. The output matrix C is chosen to
be the 5� 5 identity matrix, forcing the output vector to be identical to the state vector. The direct
transmission matrix D is a 5� 1 column vector of all zeros. The Simulink diagram is shown in
Figure 6.44.

The ‘‘Workspace I=O’’ tab in the ‘‘Simulation Parameters’’ dialog box must have
‘‘Time’’ and ‘‘States’’ checked. The Simulink model file ‘‘temp_cylinder.mdl’’ is called
from within ‘‘Chap6_Ex6_1.m.’’ RK-4 integration with step size T¼ 0.01 h was used to generate
the node temperature responses T1(t), T2(t), . . . , T5(t) shown in Figure 6.45.

(d) The temperature profiles are approximated by linearly interpolating the node temperatures at
the required times (see Figure 6.46).

Intermediate Numerical Integration 529

FIGURE 6.44 Simulink® diagram for simulation of lumped parameter system model.

1 2 3 4 5

80

100

120

140

160

180

200

Node

T
(°F

)

t = 0 h

t = 2.5 h

t = 5 h

t = 10 h

t = 20 h

t = 30 h

FIGURE 6.46 Temperature profiles along cylinder at t¼ 0, 2.5, 5, 10, 20, 30 h.

0 5 10 15 20 25 30
75

90

105

120

135T
(°F

)

150

165

180

195

t (h)

T4(t)

T5(t)

T3(t)

T2(t)

T1(t)

Cylinder node temperatures vs. time

FIGURE 6.45 Time histories of cylinder node temperatures.

530 Simulation of Dynamic Systems with MATLAB® and Simulink®

6.6.1 NONLINEAR DISTRIBUTED PARAMETER SYSTEM

The next example illustrating the approximation of a distributed parameter system with a lumped
parameter model is that of a coffee pot used for brewing coffee. In the coffee pot shown in Figure
6.47, liquid rises up through the riser, is distributed uniformly over the bed of coffee grounds, passes
through the bed taking up coffee extract, and falls back to the bottom of the pot.

The following notation is used in the partial differential equation model, which governs the
concentration of coffee in the liquid as it passes through the layer of coffee grounds, and
the ordinary differential, which describes the concentration of coffee in the well-mixed reservoir
at the bottom of the pot.

Notation:

A: cross-sectional area of the contact bed, ft2

L: height of the contact bed, ft
HL: holdup of liquid per unit height of contact bed, lb water=ft
Ht: holdup of liquid in reservoir of pot, lb water
a: mass transfer area per unit of volume of bed, ft2=ft3

km: mass transfer rate coefficient, lb=s coffee=(ft2� (lb coffee=lb water))
cs: saturated concentration of coffee, lb coffee=lb water
z: independent spatial variable measured from bottom to top of contact bed, ft
t: independent time variable, min
w(t): circulation of liquid, lb water=s
E0(z, t): fraction of coffee not yet extracted at height z and time t
c(z, t): concentration of coffee in liquid at height z and time t, lb coffee=lb water
cR(t): concentration of coffee in reservoir, lb coffee=lb water

Assuming no coffee concentration gradients in the radial direction of the contact bed and a well-
mixed reservoir leads to a mathematical model based on conservation of coffee extract in the contact
bed and reservoir (Huntsinger, personal notes)

Contact bed: �w q
qz

c(z, t)þ E0(z, t)Aakm[cs � c(z, t)] ¼ HL
q
qt
c(z, t) (6:291)

subject to: c(0, t) ¼ cR(t), c(z, 0) ¼ 0 (6:292)

Reservoir: Ht
d

dt
cR(t)þ wcR(t) ¼ wc(L, t), cR(0) ¼ 0 (6:293)

The lumped parameter model of the coffee pot is developed in a similar manner to the way it was
obtained for the temperature distribution along the cylindrical rod. That is, the contact bed is divided

Contact bed

Deflector
w

H

D

z

L

Liquid

FIGURE 6.47 Coffee pot with liquid circulation.

Intermediate Numerical Integration 531

into a number of discrete layers with homogeneous properties
throughout. The situation is illustrated in Figure 6.48 for the case
of three sections with uniform liquid concentrations c1(t), c2(t), and
c3(t). The liquid concentration in the reservoir is cR(t).

Equations expressing the conservation of coffee extract in each
homogeneous section are

Section 1:w(t)cR(t)� w(t)c1(t)þ (Dz)AaKm[cs � c1(t)]E0,1(t)

¼ HLDz
d

dt
c1(t) (6:294)

Section 2:w(t)c1(t)� w(t)c2(t)þ (Dz)AaKm[cs � c2(t)]E0,2(t)

¼ HLDz
d

dt
c2(t) (6:295)

Section 3:w(t)c2(t)� w(t)c3(t)þ (Dz)AaKm[cs � c3(t)]E0,3(t)

¼ HLDz
d

dt
c3(t) (6:296)

The third term in Equations 6.294 through 6.296 accounts for the
mass transfer of coffee extracted from the coffee grounds to the

liquid. E0,i(t), i¼ 1, 2, 3 represents the fraction of coffee not yet extracted from section ‘‘i’’ after time
‘‘t.’’ The equation for E0,i(t) is

E0,i(t) ¼ B0ADz� KTEi(t)

B0ADz
, i ¼ 1, 2, 3 (6:297)

where
B0 is the total coffee per volume of bed for fresh grounds
KTEi(t) is the total coffee extracted from section i in time ‘‘t’’ obtained from

KTEi(t) ¼
ðt
0

E0,i(Dz)AaKm[cs � ci(t)]dt (6:298)

The final equation of the lumped parameter model is the mass balance on the coffee in and out of the
reservoir.

Reservoir: w(t)c3(t)� w(t)cR(t) ¼ Ht
d

dt
cR(t) (6:299)

A careful check of all terms in Equations 6.294 through 6.296 and 6.299 will reveal the units to be lb
coffee=s.

The circulation of coffee is described by

w(t) ¼
�w

t1

� �
t, 0 � t < t1

�w, t � t1

8<: (6:300)

The model equations are represented in the Simulink model file ‘‘coffee.mdl’’ shown in Figure 6.49.
Numerical values of the system parameters are given in ‘‘Chap6_coffee.m’’ and listed as follows:

D ¼ 6 in:, H ¼ 5 in: of water, L ¼ 2:5 in: of coffee

Δz = L/3

Δz

Δz

c1(t)

c2(t)

c3(t)

cR(t)

w(t)

w(t)

w(t)

w(t)

∞

∞

∞

∞

FIGURE 6.48 Lumped param-
eter view of coffee pot.

532 Simulation of Dynamic Systems with MATLAB® and Simulink®

a ¼ 3000 ft2 of bed=ft3 of bed, km ¼ 0:00003
lb=s coffee

ft2 � (lb coffee=lb water)

B0 ¼ 3 lb coffee=ft3 of bed, cs ¼ 0:2 lb coffee=lb water

t1 ¼ 60 s, �w ¼ 0:05 lb water=s

Initial conditions: c1(0) ¼ c2(0) ¼ c3(0) ¼ cR(0) ¼ 0 lb of coffee=lb of water

Coffee concentration in the three sections and reservoir are shown in Figure 6.50.

FIGURE 6.49 Simulink® model for simulating coffee pot.

0 100 200 300 400 500 600
0

0.005

0.01

Co
nc

en
tr

at
io

n,
 lb

 co
ffe

e/
lb

 o
f w

at
er

0.015

0.02

0.025

cR(t)
c1(t)

c2(t)

c3(t)

t (s)

Concentration of coffee vs. time for lumped parameter model

FIGURE 6.50 Concentration of coffee in lumped sections and reservoir.

Intermediate Numerical Integration 533

The transient period is approximately 10 min (600 s). The steady-state concentration attained in
each section and in the reservoir is slightly greater than 0.02 lb coffee=lb of water, well below the
saturation limit of cs¼ 0.2 lb coffee=lb water.

There is no analytical method for determining (c1)ss, (c2)ss, (c3)ss, and (cR)ss from the model
Equations 6.294 through 6.296 and 6.299 when all the coffee has been extracted from the coffee
grounds, that is, E0,1(1)¼E0,2(1)¼E0,3(1)¼ 0. When this occurs, the steady-state concentra-
tions are an identical amount that depends on the quantity of coffee grounds initially placed in the
coffee pot.

Figure 6.51 shows the amount of coffee extracted (in oz) from each section and the overall
amount as a function of time. The initial amount of coffee in each section (0.6545 oz) and the total
(1.9635 oz) are calculated from the initial volumes of coffee extracted in each section and B0, the
coffee density in lb coffee=cu ft of bed. After 10 min, the total amount of coffee extracted from
sections 1, 2, and 3 is 1.8892 oz.

There is sufficient water for nearly ten 8 oz cups of coffee. Can you verify this? Figures 6.50 and
6.51 are plotted in M-file ‘‘Chap6_coffee.m.’’

EXERCISES

6.28 Rework Example 6.11 for the case where the top surface of the cylinder is no longer insulated.
Instead, the top surface is maintained at 08F.

6.29 Rework Example 6.11 using n¼ 10 and 20 segments, and compare the results with those
shown in Figures 6.45 and 6.46.

6.30 Rework Example 6.11 for the case where the diameter of the cylinder is 1 ft instead of 2 ft.
Compare the results to those shown in Figures 6.45 and 6.46.

6.31 Rework Example 6.11 for the case where the bottom face of the cylinder receives a constant
supply of heat in the amount of 25,000 Btu=h and the top surface is maintained at 758F, the
same as the initial temperature of the cylinder.

0

0.2

0.4

0.6

0.8
Initial amount of coffee (oz)

Initial amount of coffee (oz) Initial amount of coffee (oz)

Section 1 coffee extraction

t (s) t (s)

0

0.5

1

1.5

2

Section 2 coffee extraction

Section 3 coffee extraction

0

0.2

0.4

0.6

0.8

0 150 300 450 600 0 150 300 450 600

0 150 300 450 600 0 150 300 450 600
0

0.2

0.4

K T
E 1

(t)
,o

z

K T
E 2

(t)
,o

z

K T
E 3

(t)
,o

z

K T
E(

t),
oz

0.6

0.8
Sections 1, 2, 3 coffee extraction

Initial amount of coffee (oz)

FIGURE 6.51 Coffee extraction from each section and combined.

534 Simulation of Dynamic Systems with MATLAB® and Simulink®

6.7 SYSTEMS WITH DISCONTINUITIES

Mathematical models of dynamic systems sometimes exhibit discontinuities. Internal and external
forces in mechanical systems and energy sources in electrical and thermal systems can change
instantaneously as a result of infinitesimal displacements in the state of the these systems. Distinct
regions exist in the state space where the system model is represented by different sets of algebraic
and differential equations. The situation is illustrated in Figure 6.52 for the case of a discontinuous
second-order system with state variables x1 � 0, x2 � 0 and 3 distinct regions S1, S2, and S3.

For a second-order system without discontinuities, a suitable mathematical model assumes the
form of a system of first-order differential equations

dx1
dt
¼ f1(t, x1, x2)

dx2
dt
¼ f2(t, x1, x2)

9>>=>>; (6:301)

For the second-order system with discontinuities like the one shown in Figure 6.52,

dx1
dt
¼ f11(t, x1, x2), (x1, x2) 2 S1

dx1
dt
¼ f12(t, x1, x2), (x1, x2) 2 S2

dx1
dt
¼ f13(t, x1, x2), (x1, x2) 2 S3

9>>>>>>=>>>>>>;
(6:302)

dx2
dt
¼ f21(t, x1, x2), (x1, x2) 2 S1

dx2
dt
¼ f22(t, x1, x2), (x1, x2) 2 S2

dx2
dt
¼ f23(t, x1, x2), (x1, x2) 2 S3

9>>>>>>=>>>>>>;
(6:303)

S1 = ((x1, x2)|0 ≤ x1 < X1, 0 < x2 < (x1, x2))

S2 = ((x1, x2)|0 ≤ x1 < X1, (x1, x2) ≤ x2 < X2)

S3 = ((x1, x2)|0 ≤ x1 < X1, x2 ≥ X2 or x1 ≥ X1, x2 ≥ 0)

(x1, x2) = 0

X2

X1

x2

x1

FIGURE 6.52 Discontinuous system with three distinct regions in state space.

Intermediate Numerical Integration 535

In the general case of an nth-order system with m regions S1, S2, . . . , Sm, we have

dxi
dt
¼ fij(t, x1, x2, . . . , xn), i ¼ 1, 2, . . . , n j ¼ 1, 2, . . . ,m (6:304)

where the m regions are defined by a set of discontinuity functions fk(x1, x2, . . . , xn) such that a
discontinuity occurs when one of the functions fk¼ 0 (Hay 1973).

Simulation of a dynamic system modeled as in Equation 6.304 is not as straightforward as the
systems previously encountered. The complication arises from the requirement of knowing which
region the state resides in to assure numerical integration of the appropriate equations. With fixed-
step as well as variable-step integration methods, the state (x1, x2, . . . , xn) and the set of discontinuity
functions fk are available only at discrete points in time corresponding to the end point of each
integration step. The presence of a discontinuity (or several discontinuities) at an interior point of the
step is sensed by a change in sign of one (or more) of the discontinuity functions.

Several approaches to the problem are possible. The simplest is to merely assume the discon-
tinuity (or discontinuities) occurs at the end of the step in which it is detected. The appropriate
model equations are numerically integrated, starting from the beginning of the next step. The
shortcoming of this approach is apparent, namely, the creation of a cumulative error resulting
from integration of the incorrect equations over a portion of the interval in which the discontinuity
occurs. The error is minimized by choosing excessively small integration steps when using fixed-
step integrators, not a very satisfactory solution, even impossible for certain applications.

The second approach is applicable for variable-step integration methods, which adjust the step
size based on estimation of the local truncation error. Instead of waiting for the end of an integration
step to check for the occurrence of a discontinuity, the discontinuity functions fk are evaluated after
each derivative function evaluation within the interval. A change of sign in any fk triggers a switch
in one of the derivative functions, eventually producing an artificially large estimate of the
truncation error. The result is a self-correcting reduction in the current integration step leading up
to the time of the discontinuity and slightly beyond.

The next approach is similar to the first in that the discontinuity functions fk are evaluated only at
the end of each fixed-size integration step. When one or more discontinuities are found to have
occurred in the current interval, some form of interpolation or possibly root finding is employed to
locate their time(s) of occurrence to a prescribed accuracy. Once the time of occurrence is
determined, the integration is repeated over the subinterval ending at the time of the first (earliest)
discontinuity. Subsequent integrations proceed to the end of the fixed-size integration step using the
state equations appropriate to the corresponding region in state space.

The last approach is best illustrated by a simple example. Figure 6.53 shows a pendulum
swinging from a frictionless hinge with angular displacement confined to a single plane of motion.
The bob at the end of the pendulum is immersed in a viscous fluid during a portion of its travel.

L

R

r

cos θL = L
R

Liquid

θL

θ

FIGURE 6.53 Pendulum traveling through air and liquid.

536 Simulation of Dynamic Systems with MATLAB® and Simulink®

The pendulum rod is assumed to be of negligible mass as is the drag force on the bob when
exposed to air.

The bob is subject to a gravitational force W at all times along with a drag force FD and buoyant
force FB acting on it while it is submerged. The forces are shown in Figure 6.54 for both cases.

The pendulum dynamics are modeled by the differential equation

J
d2u

dt2
¼ (�W þ FB)R sin u� FDR, �uL � u � uL

�WR sin u, juj > uL

�
(6:305)

Expressions for the constant buoyant force and assumed linear drag force are

FB ¼ gV ¼ E
4
3
pr3

� �
(6:306)

FD ¼ av ¼ aR
du

dt
(6:307)

where
g is the specific weight of the liquid
V is the volume of the bob
a is the drag coefficient

Combining Equations 6.305 through 6.307 gives

J
d2u

dt2
¼ �mgþ 4

3
gpr3

� �
R sin u� aR2 du

dt
, �uL � u � uL

�mgR sinE, juj > uL

8><>: (6:308)

Introducing state variables x1(t)¼ u(t) and x2(t) ¼ _u(t) results in

_x1 ¼ _u ¼ x2, _x2 ¼ €u ¼
1
J

�mgþ 4
3
gpr3

� �
R sin x1 � aR2x2

�
�uL � x1 � uL

1
J
(�mgR sin x1), jx1j > uL

8>><>>: (6:309)

Defining regions S1 and S2 in the state space according to

S1 ¼ {(x1, x2), �uL � x1 � uL} and S2 ¼ {(x1, x2), jx1j > uL} (6:310)

FB = γV

FD = αv

Bob in air (|θ| > θL)

θ θ
v v

W = mgW = mg

Bob in liquid (−θL ≤ θ ≤ θL)

FIGURE 6.54 Diagram showing external forces acting on bob.

Intermediate Numerical Integration 537

and using the notation in Equation 6.304, the state derivative functions become

f11(x1, x2) ¼ x2, (x1, x2) 2 S1 (6:311)

f12(x1, x2) ¼ x2, (x1, x2) 2 S2 (6:312)

f21(x1, x2) ¼ 1
J
�mgþ 4

3
gpr3

� �
R sin x1 � aR2x2

� �
, (x1, x2) 2 S1 (6:313)

f22(x1, x2) ¼ 1
J
(�mgR sin x1), (x1, x2) 2 S2 (6:314)

The discontinuity functions are

f1(x1, x2) ¼ x1 � uL (6:315)

f2(x1, x2) ¼ �x1 � uL (6:316)

Note that f1(x1, x2) ¼ 0) x1 ¼ uL and f2(x1, x2) ¼ 0) x1 ¼ �uL. Hence, when either discon-
tinuity function is zero, the pendulum is transitioning from region S1 to S2 or vice versa. Figure 6.55
shows the state vector (x1, x2) is inside region S1 when the discontinuity functions satisfy the
inequalities

f1(x1, x2) � 0 and f2(x1, x2) < 0 (6:317)

Conversely, the state vector (x1, x2) is in region S2 whenever

f1(x1, x2) > 0 or f2(x1, x2) � 0 (6:318)

A flow chart is shown in Figure 6.56 for simulating the pendulum dynamics. MATLAB routines
called by the main program ‘‘Chap6_discont.m’’ are listed followed by a brief explanation of their
function.

function [phi_1, phi_2]¼DFUNCT(x1,x2)
% Evaluates discontinuity functions given state components
% Inputs: x1,x2 - components of state
% Outputs: ph1,ph2 - discontinuity functions at (x1,x2)
global thetaL
phi_1¼x1�thetaL;
phi_2¼�x1�thetaL;

x1

2(x1, x2) ≥ 0

−x1 − θL ≥ 0 −x1−θL > 0

−x1 − θL > 0

x1 < θL

x1 > θL

1(x1, x2) > 0

0

Region S2 Region S1 Region S2

−θL θL

−x1 − θL ≥ 0 and x1 − θL ≤ 0
x1+θL ≥ 0 and x1 ≤ θL

–θL ≤ x1 and x1 ≤ θL

2(x1, x2) < 0 and 1(x1, x2) ≤ 0

FIGURE 6.55 Definition of regions S1 and S2 in terms of discontinuity functions.

538 Simulation of Dynamic Systems with MATLAB® and Simulink®

Initialize system parameters, state x1(0), x2(0), and time t 0

DFUNCT (Evaluates discontinuity functions at t + T)
Compute 1(x1(t + T), x2(t + T)), 2(x1(t + T), x2(t + T))

DFUNCT (Evaluates discontinuity functions at t = 0)
1(x1(0), x2(0)), 2(x1(0), x2(0))

1(x1(0), x2(0)) ≤ 0 and 2(x1(0), x2(0)) < 0 ISTATE 1

1(x1(0), x2(0)) > 0 and 2(x1(0), x2(0)) ≥ 0 ISTATE 2

CNTRL (Sets state marker ISTATE at t = 0)

Increment time
t t + T

Increment time
t t + T

N

INTRP (Estimates point in interval (t, t + T) where a discontinuity function is zero)

Compute “a”, (0 < a < 1) where 1(x1(t + aT), x2(t + aT)) ≈ 0 or 2(x1(t + aT), x2(t + aT)) ≈ 0

DFUNCT (Evaluates discontinuity functions at t + aT)
Compute 1(x1(t + aT), x2(t + aT)), 2(x1(t + aT), x2(t + aT))

ISTATE (t + aT) 2 if ISTATE(t) = 1
ISTATE (t + aT) 1 if ISTATE(t) = 2

Y

RK4 (Integrates differential equations from t + aT to t + T)
Compute state (x1(t + aT), x2(t + aT))

1(x1, x2) or 2(x1, x2) changed sign?

RK4 (Integrates differential equations from t to t + aT)
Compute state (x1(t + aT), x2(t + aT))

f (Evaluates derivative functions)

f (Evaluates derivative functions)

f11(x1(t + T), x2(t + T), ISTATE)
f12(x1(t + T), x2(t + T), ISTATE)
f21(x1(t + T), x2(t + T), ISTATE)
f22(x1(t + T), x2(t + T), ISTATE)

f11(x1(t + T), x2(t + T), ISTATE)
f12(x1(t + T), x2(t + T), ISTATE)
f21(x1(t + T), x2(t + T), ISTATE)
f22(x1(t + T), x2(t + T), ISTATE)

f (Evaluates derivative functions)
f11(x1(t + T), x2(t + T), ISTATE)
f12(x1(t + T), x2(t + T), ISTATE)
f21(x1(t + T), x2(t + T), ISTATE)
f22(x1(t + T), x2(t + T), ISTATE)

RK4 (Integrates differential equations from t to t + T)
Compute state (x1(t + aT), x2(t + T))

FIGURE 6.56 Flow chart for simulation of pendulum dynamics.

Intermediate Numerical Integration 539

MATLAB function ‘‘DFUNCT.m’’ receives the coordinates (x1, x2) of the state vector and returns
values of the two discontinuity functions f1(x1, x2) and f2(x1, x2).

function ISTATE¼CNTRL(phi_1,phi_2)
% Determines whether state vector is in Region S1 or S2
% S1 - pendulum bob in liquid, i.e. jx1j<¼theta_L
% S2 - pendulum bob in air, i.e. jx1j>theta_L
% Inputs: phi_1, phi_2 - discontinuity functions
% Output: ISTATE - marker indicating if state is in Region S1 or S2
if phi_1 <¼0 & phi_2<0

ISTATE¼1; % state is in Region S1
else

ISTATE¼2; % state is in Region S2
end

‘‘CNTRL.m’’ accepts the values of the discontinuity functions f1(x1, x2) and f2(x1, x2) and
checks which of the mutually exclusive conditions in Equation 6.317 or 6.318 are true. The marker
‘‘ISTATE’’ is set accordingly.

function [x1_new, x2_new]¼RK4(T,x1_old,x2_old,ISTATE)
% RK-4 numerical integrator for updating state
% Inputs: T - integration step size
% x1_old,x2_old - starting values of state components
% ISTATE - marker indicating if state is in Region S1 or S2
% Outputs: x1_new,x2_new - updated state vector
global g R m J gamma r alpha
[k11 k12]¼f(x1_old,x2_old,ISTATE);
x1_half¼x1_oldþ(T=2)*k11;
x2_half¼x2_oldþ(T=2)*k12;
[k21 k22]¼f(x1_half,x2_half,ISTATE);
x1_half_hat¼x1_oldþ(T=2)*k21;
x2_half_hat¼x2_oldþ(T=2)*k22;
[k31 k32]¼f(x1_half_hat,x2_half_hat,ISTATE);
x1_full_hat¼x1_oldþT*k31;
x2_full_hat¼x2_oldþT*k32;
[k41 k42]¼f(x1_full_hat,x2_full_hat,ISTATE);
x1_new¼x1_oldþ(T=6)*(k11þ2*k21þ2*k31þk41);
x2_new¼x2_oldþ(T=6)*(k12þ2*k22þ2*k32þk42);

‘‘RK4.m’’ implements the commonly used fourth-order RK integration algorithm presented in
Equations 6.60 through 6.64. In addition to inputs specifying the integration step size and the
current state vector, the last input ‘‘ISTATE’’ is passed to the function ‘‘f.m’’ to assure the
appropriate state derivative equations are selected, that is, Equations 6.311 and 6.313 or 6.312
and 6.314.

function [f1, f2]¼f(x1,x2,ISTATE)
% Inputs: x1,x2 - components of state
% ISTATE - marker indicating if state is in Region S1 or S2
% Outputs: f1,f2 - state derivatives

global g R m J gamma r alpha
f1¼x2;

540 Simulation of Dynamic Systems with MATLAB® and Simulink®

if ISTATE¼ ¼1
f2¼(R=J)*(�m*gþ(4=3)*(gamma*pi*r^3))*sin(x1)�alpha*x2;

elseif ISTATE¼ ¼2
f2¼(R=J)*(�m*g*sin(x1));

end

‘‘f.m’’ is called from ‘‘RK4.m’’ four times (once at the start, twice in the middle, and once at the
end of the integration interval) in the process of updating the state. It returns the values of the state
derivative functions.

function a¼INTRP(ti,ph_old,ph_new,x11,x22,k)
% Interpolates to estimate pt tiþaT where one of the discontinuity
% functions is zero. Uses linear interpolation to find intermediate
% pt tiþbT followed by quadratic interpolation based on given two pts
and intermediate pt.

% Inputs: ti - starting pt of interval to be interpolated
% ph_old,ph_new - starting and ending value of discontinuity
% function which changed sign over interval
% x11,x22 - state vector at start of interval
% k - index of discontinuity function which changed sign
% Outputs: a - decimal number between 0 and 1 indicating where
% discontinuity function is estimated to be zero

global T ISTATE
b¼ph_old=(ph_old-ph_new); % zero crossing at tiþbT based on linear

interpolation of (ti,ph_old) and (tiþT,ph_new)
t0¼tiþb*T;
t1¼ti;
t2¼tiþT;
y1¼ph_old;

y2¼ph_new;
[x11 x22]¼RK4(b*T,x11,x22,ISTATE); % compute state at tiþbT
[ph11 ph22]¼DFUNCT(x11,x22); % compute ph1 and ph2 at tiþbT
if k¼ ¼1

y0¼ph11;
else

y0¼ph22;
end % if
t¼[t1 t0 t2];
y¼[y1 y0 y2];
p¼polyfit(t,y,2); % fit quadratic thru (ti,ph_old), (tiþT, ph_new)

% and (tiþbT, y0)
r¼roots(p); % roots of quadratic
if r (1) >¼ti & r(1) <¼tiþT % find root in interval (ti, tiþT)

t_root¼r(1);
else

t_root¼r(2);
end % if
a¼(t_root-ti)=T; % normalizes ‘‘a’’ to between 0 and 1

‘‘INTRP.m’’ is invoked when a change in sign of either discontinuity function is detected from
one end of the integration interval to the other (see Figure 6.56). Several options are possible when it

Intermediate Numerical Integration 541

comes to estimating the point in time where the discontinuity function is zero. One approach is
illustrated in Figure 6.57.

The first step is to fit a linear function through the pts (ti, fold) and (tiþ T, fnew), where ti, fold

and fnew are provided as inputs to ‘‘INTRP.m.’’ The root of the linear function occurs at tiþ bT,
where

b ¼ fold

fold � fnew

(0 < b < 1) (6:319)

The time tiþ bT can be treated as the pt where the discontinuity function is approximately zero.
However, an improved estimate is possible if we determine f0, the value of the discontinuity
function at tiþ bT, and generate the quadratic function through all three pts, namely, (ti, fold),
(tiþ T, fnew), and (tiþ bT, f0). The root of the quadratic interpolation polynomial that
falls between ti and tiþ T is the desired time tiþ aT, (0< a< 1). ‘‘INTRP.m’’ returns the
value of ‘‘a.’’

Once the pt tiþ aT is identified, RK-4 integration is repeated for the interval (ti, tiþ T) by
sequentially integrating from ti to tiþ aT and then from tiþ aT to tiþ T. Note that since the state
transitions between regions at points where either discontinuity function is zero, the state marker
‘‘ISTATE’’ is switched from 1 to 2 or vice versa in preparation of the RK-4 integration from tiþ aT
to tiþ T (see Figure 6.56).

An alternative to the method described involves the use of an iterative root-solving technique
(e.g., Bisection, False Position, and so forth) to locate the pt tiþ aT. The number of iterations is
controlled by setting a tolerance on the magnitude of the discontinuity function at tiþ aT.

A numerical example for the pendulum shown in Figure 6.53 follows. Baseline system parameter
values are

Radius of spherical pendulum bob: r¼ 2.5 in
Density of iron pendulum bob: gbob¼ 491.32 lb=ft3

Length of negligible mass pendulum rod: R¼ 3 ft
Vertical distance from center of rotation to liquid surface: L¼ 2.25 ft
Density of liquid: g¼ 62.4 lb=ft3

Drag coefficient on pendulum bob in liquid: a¼ 0.15 lb=ft=s

(ti, old)

(t1 + aT) t1 + T
t

t1 + bTti

= β0 + β1t + β1t2

(ti + T, new)

= α0 + α1t

(t1 + bT, 0)

FIGURE 6.57 Quadratic interpolation to locate approximate pt of discontinuity.

542 Simulation of Dynamic Systems with MATLAB® and Simulink®

6.7.1 PHYSICAL PROPERTIES AND CONSTANT FORCES ACTING ON THE PENDULUM BOB

weight: W ¼ giron V ¼ 491:32
lb

ft3
� 4
3
pr3 ft3 ¼ 491:32

lb

ft3
� 4
3
p

2:5
12

ft

� �3

¼ 18:61 lb

mass: m ¼ W

g
¼ 18:61

32:17
slug ¼ 0:5785 slug

moment of inertia about axis of rotation: J¼mR2¼ 0.5785 slug� (3 ft2)¼ 5.21 ft lbf s
2

buoyant force: FB ¼ gV ¼ 62:4
lb

ft3
� 4
3
pr3 ft3 ¼ 62:4

lb

ft3
� 4
3
p

2:5
12

ft3
� �

¼ 2:36 lb

angle of pendulum at initial contact with liquid:

uL ¼ cos�1
L

R

� �
¼ cos�1

2:25
3

� �
¼ 0:7227 rad (41:41)

In addition to the model system parameters, initial conditions must be specified. Choosing u(0)¼
758, _u(0) ¼ 0	=s, the pendulum dynamics were simulated consistent with the logic outlined in the
flow chart shown in Figure 6.56.

A Simulink diagram of the pendulum dynamics using fixed-step RK-4 integration, without
searching for the precise time when a discontinuity occurs, is shown in Figure 6.58. A step size
of T¼ 0.1 s was used in both cases.

Comparison of the simulation results for the pendulum angle u(t) is shown in Figure 6.59. The
MATLAB M-file ‘‘Chap6_discont.m’’ was executed with a time step of T¼ 0.1 s. A third plot
intended to represent the exact solution for u(t) is also shown. It was obtained by running the
Simulink model with RK-4 and step size of T¼ 0.001 s. Using a time step of this magnitude negates

FIGURE 6.58 Simulink® diagram for pendulum dynamics.

Intermediate Numerical Integration 543

almost entirely the adverse effect of a discontinuity occurring part way into the integration interval.
The three responses are in close agreement resembling that of a lightly damped linear second-order
system.

Useful information about the pendulum dynamics can be obtained from inspection of time
histories and phase plots of additional system variables. Figure 6.60 is a phase portrait of the state
trajectory evolving from the initial point u(0)¼ 758, _u(0) ¼ 0	=s and lasting for a period of 15 s.

The points along the trajectory where u(t)¼ uL and u(t)¼�uL indicates a transition from one
region to the other, that is, the first marker corresponds to the pendulum entering the liquid for the
first time on its way down.

0 2 4 6 8 10 12 14
−80

−60

−40

θ(
t),

 d
eg

−20

0

20

40

60

80

t (s)

θ = −θL = −41.4°

θ = θL = 41.4°

Discontinuity method (T = 0.1 s)
Simulink (T = 0.1 s)

“Exact” (Simulink, T = 0.001 s)

θ(0) = 75°, dθ(0)/dt = 0°/s
α = 0.15 lb/ft/s, γ = 62.4 lb/cu ft

FIGURE 6.59 Simulated results using method for locating discontinuities, Simulink®, and approximation to
‘‘exact’’ solution.

−80 −60 −40 0 0 20 40 60 80
−250

−200

−150

dθ
/d

t (
de

g/
s)

−100

−50

0

50

100

150

200

250

θ (deg)

θ = θL = 41.4°

1st transition

Phase portrait

θ = −θL = −41.4°

FIGURE 6.60 Plot of state trajectory x2(t) ¼ _u(t) vs. x1(t)¼ u(t).

544 Simulation of Dynamic Systems with MATLAB® and Simulink®

Figure 6.61 includes time histories of u(t), _u(t), and €u(t). In addition, the marker ‘‘ISTATE’’ is
shown fluctuating between 1 and 2 corresponding to transitions of the pendulum bob from air to
water and vice versa.

The pendulum bob velocity and the drag force exerted by the liquid opposing its motion were
captured in the Simulink model scopes and are shown in Figure 6.62.

The constant buoyant force of 2.36 lb opposes the motion of the pendulum bob on the way down
and does the opposite while the bob is moving upward. The drag force never exceeds 2 lb in
magnitude. The pendulum bob weighs 18.6 lb. From Figure 6.62, we notice that it continues to
oscillate for a relatively long period of time due to minimal damping forces.

The discontinuous nature of the system is best illustrated by taking a closer look at the angular
acceleration. Figure 6.63 shows the step changes that occur as the pendulum bob transitions between
the two media. Note that the step changes in angular acceleration are greater at the moments when
the pendulum bob is going from air to liquid compared with transitions from liquid to air. Can you
explain why this happens? Exercise 6.34 addresses this point in greater detail.

−50

θ(
t),

 d
eg

0

50 θ = θL = 41.4°

θ = −θL = −41.4°

t (s)

1

IS
TA

TE

d2 θ/
dt

2 , d
eg

/s
ec

2
dθ

/d
t,

de
g/

s

2

t (s)

−200

−100

0

100

200

0 5 10 15
t (s)

0 5 10 15

0 2.5 5 7.5 10 12.5 15
t (s)

0 2.5 5 7.5 10 12.5 15

−500

0

500

FIGURE 6.61 Time histories of u, du=dt, d2u=dt2 and state marker ‘‘ISTATE.’’

−3

F D
 (l

b)

−2

−1

0

1

2

Drag force

0 2.5 5 7.5 10 12.5 15

−10

v (
ft/

s)

−7.5
−5

−2.5
0

2.5
5

7.5

t (s)
0 2.5 5 7.5 10 12.5 15

t (s)

Velocity vs. time

FIGURE 6.62 Velocity and drag force on pendulum bob.

Intermediate Numerical Integration 545

Suppose we increase the damping effect of the liquid by replacing it with a heavier fluid. Instead
of water, imagine a liquid with weight density of g¼ 150 lb=ft3 responsible for producing a drag
coefficient of a¼ 0.3 lb=ft=s. Further, suppose the pendulum bob is released with an initial angular
displacement u(0)¼ 758 and initial velocity of _u(0) ¼ �90	=s.

Figure 6.64 shows a portion of the transient responses obtained from the discontinuity method
(T¼ 0.1 s), Simulink with RK-4 (T¼ 0.1 s) and Simulink with RK-4 (T¼ 0.001 s) as the approxi-
mation to the exact solution. Values obtained from the method based on locating the points of
discontinuity within the integration interval are closer to the ‘‘exact’’ solution than the values
obtained from conventional implementation of RK-4 integration.

100
Angular displacement and angular acceleration vs. time

Air to liquid transition
θ (deg) Liquid to air transition

50

0

−50

θ(
t),

 d
eg

−100
0 1 2

d2θ/dt2 (deg/s2)

d2 θ/
dt

2 (d
eg

/s
2)

3
t (s)

4 5 6

1000

500

0

−500

−1000

FIGURE 6.63 Angular acceleration showing discontinuities at air=liquid transitions.

0 1 2 3 4 5
−80

−60

−40

−20

θ(
t),

 d
eg

0

20

40

60

80

t (s)

Comparison of discontinuity method, Simulink and “Exact” solutions

Discontinuity method (T = 0.1 s)
“Exact” (Simulink, T = 0.001 s)

Simulink (T = 0.1 s)

θ(0) = 75°, dθ(0)/dt = −90°/s
α = 0.3 lb/ft/s, γ = 150 lb/cu ft

FIGURE 6.64 Comparison of solutions with new initial conditions and parameters.

546 Simulation of Dynamic Systems with MATLAB® and Simulink®

It is instructive to look at graphs of the discontinuity functions f1(x1, x2) and f2(x1, x2). Figure
6.65 shows their time histories for the conditions listed in Figure 6.59.

The zero crossings of f1(x1, x2) and f2(x1, x2) correspond to the transitions of the system
between regions S1 and S2. A close-up view of the discontinuity functions is shown in Figure 6.66.

Note how the quadratic interpolation function ‘‘INTRP’’ successfully locates the zero crossings,
enabling the RK-4 integrator to stop at the correct point in time within the integration interval, reset
the derivative functions, and then continue to integrate for the remainder of the interval as indicated
in the flow chart in Figure 6.56.

−2

−1

0

1

t (s)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

t (s)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−2

−1

0

1

1
2

FIGURE 6.65 Plot of discontinuity functions.

−0.15
−0.1

−0.05
0

0.05
0.1

0.15

−0.15
−0.1

−0.05
0

0.05
0.1

0.15

t (s)
0 1 2 3 4 5 6

t (s)
0 1 2 3 4 5 6

1
2

FIGURE 6.66 Close-up view of discontinuity functions f1(x1, x2) and f2(x1, x2).

Intermediate Numerical Integration 547

Example 6.12

Using the baseline conditions for the pendulum except for g¼ 150 lb=ft3 and a¼ 0.3 lb=ft=s, deter-
mine the largest initial angle of the pendulum rod, so that when it is released with zero initial angular
velocity, its fails to emerge from the liquid. Plot the angular rotation of the pendulum as a check.

The problem is to find the initial condition u(0) � 0, which satisfies

Min
u(0)�0

u(t) ¼ �uL (6:320)

A simple search for the required initial condition was performed by varying u(0) from 458 to 608 in
increments of 0.58. The results are shown in graphical form in Figure 6.67. The answer appears to
be slightly less than 528.

45 47.5 50 52.5 55 57.5 60
−48

−46

−44

−42

−40

θ m
in

(d
eg

) −38

−36

−34

−32

θ(0) (deg)

θL = −41.4°

Minimum angular displacement vs. initial angular displacement

R = 3 ft
L = 2.25 ft
r = 2.5 in
γbob = 491.3 lb/cu ft
α = 0.3 lb/ft/s
γ = 150 lb/cu ft

dθ(0)/dt = 0°/s

FIGURE 6.67 Results of search for u(0) resulting in umin¼�uL.

0 1 2 3 4 5
−50

−40

−30

−20

−10

θ(
t),

 (d
eg

)

0

10

20

30

40

50

60

θ = −θL = −41.4°

Angular displacement of pendulum for θ(0) = 52°

Exact solution approximated by Simulink RK-4, T = 0.001 s

t (s)

FIGURE 6.68 Simulated pendulum response with initial condition u(0)¼ 528.

548 Simulation of Dynamic Systems with MATLAB® and Simulink®

The pendulum response with u(0)¼ 528 was generated for the conditions shown in Figure 6.68
using RK-4 integration with step size T¼ 0.001 s. The result is shown in Figure 6.68. As expected,
the minimum angular response is approximately �uL¼�41.48.

EXERCISES

6.32 The pendulum bob in Example 6.12 is released from the vertical position u(0)¼p rad with
initial angular velocity _u0. Find _u0 if the bob makes a complete revolution and returns to the
vertical position with zero angular velocity.

6.33 The pendulum bob shown in Figure E6.33 passes through two different nonmixing liquids.
Physical parameter values are

Radius of spherical pendulum bob: r¼ 3 in
Density of pendulum bob: gbob¼ 250 lb=ft3

Length of negligible mass pendulum rod: R¼ 4 ft
Vertical distance from center of rotation to liquid 1 surface: L1¼ 2.5 ft
Vertical distance from center of rotation to liquid 2 surface: L2¼ 3.5 ft
Density of liquid 1: g1¼ 62.4 lb=ft3

Density of liquid 2: g1¼ 175 lb=ft3

Drag coefficient on pendulum bob in liquid 1: a1¼ 0.10 lb=ft=s
Drag coefficient on pendulum bob in liquid 2: a2¼ 0.65 lb=ft=s

R

r

Liquid 1

L2
θL2 θ

L1

θL1
cos θL2

=

L
Rcos θL1

=

L2
R

Liquid 2

FIGURE E6.33

With state vector (x1, x2)¼ (u, _u), the state equations are

_x1 ¼
f11(x1, x2), (x1, x2) 2 S1
f12(x1, x2), (x1, x2) 2 S2
f13(x1, x2), (x1, x2) 2 S3

_x2 ¼
f21(x1, x2), (x1, x2) 2 S1
f22(x1, x2), (x1, x2) 2 S2
f23(x1, x2), (x1, x2) 2 S3

8<:
8<:

where the regions S1, S2, and S3 in state space are described by

S1: {(x1, x2)jpendulum bob in air}
S2: {(x1, x2)jpendulum bob in liquid 1}
S3: {(x1, x2)jpendulum bob in liquid 2}

(a) Find expressions for S1, S2, and S3 similar to those in Equation 6.310.
(b) Find the state derivative functions fij, i¼ 1, 2, j¼ 1, 2, 3.
(c) Find the discontinuity functions f1(x1, x2), f2(x1, x2), f3(x1, x2), and f4(x1, x2), where

fi(x1, x2)¼ 0, i¼ 1, 2, 3, 4 indicates the pendulum bob is passing from region S1 to S2, S2
to S3, S3 to S2, and S2 to S1, respectively.

Intermediate Numerical Integration 549

(d) Use the method outlined in the flow chart in Figure 6.66 to simulate the angular position
and angular velocity of the pendulum for initial conditions u(0)¼ 908 and _u(0) ¼ 0	=s.
Choose any of the RK integrators with integration step size T selected on the basis of a
trade-off between accuracy and computational effort. Plot time histories of u(t) and _u(t) as
well as a phase portrait similar to the one in Figure 6.60 showing the points where the
system transitions between regions.

(e) Simulate the same conditions in part (d) using Simulink with an excessively small
integration step size T in order to obtain an approximation to the exact solution. Compare
the results in parts (d) and (e).

6.34 According to the graphs in Figure 6.63, the angular acceleration appears to be continuous
when the pendulum bob passes from liquid to air for the first time.
(a) Verify this by plotting d2u=dt2 vs. t shortly before to shortly after this occurs.
(b) For this to happen, the component of the buoyant force FB in the direction of motion and the

drag force FDmust effectively cancel each other out. On the same axes, plot both quantities
and compare them at the moment the pendulum bob exits from the liquid for the first time.

6.35 Consider the pendulum in Figure 6.53 with physical properties

Radius of spherical pendulum bob: r¼ 2 in
Density of pendulum bob: gbob¼ 400 lb=ft3

Length of negligible mass pendulum rod: R¼ 5 ft
Vertical distance from center of rotation to liquid surface: L¼ 3 ft

The drag coefficient a (lb=ft=s) is related to the density of the liquid g (lb=ft3) according to the
relationship a¼ 0.05þ 0.02g, 50 � g � 400.

The pendulum is released from an almost vertical position u(0)¼ 179.98 with zero angular
velocity. Simulate the pendulum dynamics using any suitable method and prepare graphs of
(a) umax vs. g(50 � g � 400) where umax is the total number of degrees the pendulum rotates

through on its first swing.
(b) tsettling time vs. g(50 � g � 400) where tsettling time is the time in seconds for the transient

response to remain within 2% of its steady-state equilibrium value uss¼ 08.
(c) _umax vs. g(50 � g � 400) where j _umaxj is the absolute value of the maximum angular

velocity in. 8=s.
6.36 A rolling cart of mass m is connected to a stationary support located at x¼ 0 by a spring with

stiffness k and damper with damping constant c as shown in Figure E6.36a:

L0 xr = x − 0.5D

m

Fμ,r Fμ, f

D

x(t)

F(t)
k

c

μ = μ1 μ = μ2

xf = x + 0.5D

FIGURE E6.36a

550 Simulation of Dynamic Systems with MATLAB® and Simulink®

The cart is subjected to an external force F(t). The coefficient of rolling friction changes from
surface 1 (m¼m1) to surface 2 (m¼m2) at x¼ L. The frictional force at each wheel is Fm¼m
(mg=4) where m is either m1 or m2 depending on which surface the wheel is in contact with. A
diagram of the cart and the forces acting on it is shown in Figure E6.36b. Note that the state
definition x1¼ x and x2¼ _x.

Fk = kx = kx1
dx
dt

2Fμ,r

2Fμ, f

FCart

x1 = x

dx
dtx2 =

Fc = c = cx2

FIGURE E6.36b

Introduce regions S1, S2, and S3 in state space {x1, x2} according to the cart location, that is,

S1¼ {(x1, x2) jx1þ 0.5D< L}—cart is located entirely on surface 1
S2¼ {(x1, x2) jx1� 0.5D< L and x1þ 0.5D> L}—cart is on surface 1 and surface 2
S3¼ {(x1, x2) jx1� 0.5D> L}—cart is located entirely on surface 2

(a) Find expressions for fij(x1, x2), i¼ 1, 2, j¼ 1, 2, 3, the ith state derivative _xi when the state
(x1, x2) is located in region Sj.

(b) Find the discontinuity functions f1(x1, x2) and f2(x1, x2) where
f1(x1, x2)¼ 0) (x1, x2) is transitioning between S1 and S2
f2(x1, x2)¼ 0) (x1, x2) is transitioning between S2 and S3

(c) Implement the method outlined in the flow chart of Figure 6.56 using RK-4 integration
with integration step size T, based on a trade-off between accuracy and computational
effort, to simulate the cart dynamics. Baseline conditions are
m1¼ 0.4, m2¼ 0.05
m¼ 30 slugs, c¼ 5 lb=ft=s, k¼ 25 lbf=ft
L¼ 25 ft, D¼ 5 ft
x(0)¼ L, _x(0)¼ 0 ft=s
The applied force F(t) is a step input of magnitude F0¼ 250 lb. Plot the cart position
x(t) vs. time and cart velocity _x(t) vs. time.

(d) Simulate the cart dynamics with Simulink, and compare the results with those obtained in
part (c).

6.37 A block diagram for a simple on–off tank level control system is shown in Figure E6.37.
The flow in to the tank F1 is either zero or F depending on the state of the on–off controller,
that is,

F1 ¼ Fu, u ¼ 0, e � 0

1, e > 0
where e ¼ Hcom � H

�

The tank dynamics is modeled by

A
dH

dt
þ F0 ¼ F1, F0 ¼ cH1=2

Intermediate Numerical Integration 551

F–
dH
dtA +F0 = F1

F0 = cH1/2

u

e
1

Controller
Tank dynamics

e
–

u F1 HHcom

FIGURE E6.37

(a) The state derivative is

dH

dt
¼ f1(H), H 2 S1

f2(H), H 2 S2

(

Regions S1 and S2 are defined such that when H is in region S1 of state space, the
controller is off, and the opposite is true when H is in region S2. Find expressions for S1
and S2 in terms of the state H.

(b) Find expressions for the state derivate functions f1(H) and f2(H).
(c) Find the discontinuity function f(H) that specifies which region the state is in based on its

sign, that is, f(H)¼ 0 implies the state H is transitioning between the two regions.
(d) Use the method that finds the time of the discontinuity to simulate the tank level. Choose

any RK integrator with suitable integration step size based on accuracy and computation
requirements.

The following conditions apply:

A ¼ 20 ft2, c ¼ 0:4 ft3=min =ft1=2, F ¼ 10 ft3=min , H(0) ¼ 0 ft

Hcom ¼ 15, t � 0

Run the simulation for a period of time sufficient for the controller to cycle on and off
several times and plot time histories of H(t) and _H(t).

(e) Plot a phase portrait _H vs. H showing the points where the controller cycles between its
two states.

(f) Simulate the system for the same conditions in part (d) with Simulink using RK-4
integration with an excessively small step size in order to approximate the exact solution.
Compare the results with those in part (d).

6.8 CASE STUDY: SPREAD OF AN EPIDEMIC

Epidemic models for various fatal and nonfatal diseases in humans and animals have been
postulated since the early 1900s (Kermack and McKendrick 1927; Hethcote 1976; Keen and
Spain 1992; Brown and Rothery 1993). Modern-day epidemics such as the spread of AIDS have
been studied with the help of simulation models (Isham 1988; Perelson 1993; Culshaw and Ruan
2000; Coutinho et al. 2001).

The formulation of a mathematical model in the field of epidemiology requires some basic
information about disease and how it spreads among a population. To start with, symptoms of the

552 Simulation of Dynamic Systems with MATLAB® and Simulink®

disease may not appear at the time a host is infected, rather an incubation period may be necessary
prior to appearance of the symptoms. A host infected with a pathogen may become infectious only
after a period of latency. The infectious period is the duration of time during which the host is
capable of transmitting the disease to others in the population. The incubation, latent, and infectious
periods depend on the pathology of the disease.

For certain diseases, the host may experience an immune period where the infection has run its
course, the host has recovered, and cannot be re-infected. However, the individual may still be a
carrier and capable of transmitting the disease to susceptible individuals. As a means of preventing
or limiting the scope of an epidemic, some infected individuals may be isolated from the population
to prevent transmission of the disease to susceptible individuals. If the disease is potentially fatal, a
number of infected individuals will die. If a vaccine exists, individuals receiving the vaccine pass
from the class of susceptibles to the class of recovered individuals.

Early epidemic models concentrated on the movement of individuals through three stages,
namely, (S)usceptible, (I)nfected carrier, and (R)ecovered. The so-called S-I-R models relate the
state derivatives dS=dt, dI=dt, and dR=dt to the states S, I, and R using expressions formulated by
epidemiologists to describe the interactions between individuals in each group. Inherent in the
models are a number of parameters (rate constants) associated with infection, transmission, recov-
ery, mortality, and so forth. Later on, more sophisticated models were developed to account for
additional stages. Finally, partial differential equations evolved as modelers attempted to predict
both temporal and spatial variations of the populations in each stage during the course of an
epidemic.

The following information is postulated to provide a framework for studying the dynamics of an
epidemic stemming from the spread of a fatal disease.

. The initial population consists entirely of susceptible individuals, that is, those at risk of
contracting the disease.

. The disease is introduced by individuals immigrating from outside the area, a fraction of
which are sick.

. A subset of the susceptible individuals contract the disease through contact with sick
individuals.

. An outbreak of the disease is recognized after a specified period of time immediately
followed by a cessation of immigration.

. After recognizing the existence of a possible epidemic, a segment of the susceptible
individuals is inoculated with a vaccine making them immune to the disease.

. Starting at the same time inoculations begin, a portion of those who are sick or become sick
later are separated from the general population by quarantine.

. Sick individuals either recover and become immune or die.

Members of the population exist in one of five states.

x1(t): Number of susceptible people at time t
x2(t): Number of sick people in population at time t
x3(t): Number of immune people at time t
x4(t): Number of deceased people at time t
x5(t): Number of sick people quarantined from population at time t

Possible transitions between states are illustrated in Figure 6.69. Note that the m¼m(t) is the rate of
immigration and n¼ n(t) represents the rate of inoculation of susceptible individuals.

Intermediate Numerical Integration 553

The state vector x is [x1 x2 x3 x4 x5]T . A mathematical model of the system requires knowledge
of a vector function f (t, x,m), describing the state derivatives. In this example, the system of coupled
differential equations _x ¼ f (t, x,m) is given by

dx1
dt
¼ f1(t, x,m) ¼ �cx1x2 þ am� n (6:321)

dx2
dt
¼ f2(t, x,m) ¼ cx1x2 � a23x2 � a24x2 � a25x2 þ (1� a)m (6:322)

dx3
dt
¼ f3(t, x,m) ¼ a23x2 þ a53x5 þ n (6:323)

dx4
dt
¼ f4(t, x,m) ¼ a24x2 þ a54x5 (6:324)

dx5
dt
¼ f5(t, x,m) ¼

0, 0 � t � t0

a25x2 � a53x5 � a54x5, t > t0

(
(6:325)

The constants a23, a24, a25, a53, a54, c, and a are system parameters, which describe the transitions
by individuals from one state to another. For example, the disease spreads by contact between
susceptible and sick members of the population, and c is a transmission constant. The constant a is
the fraction of immigrants who are susceptible. All terms on the right-hand side of Equations 6.321
through 6.325 are in units of individuals per unit of time, the same as the left-hand-side state
derivatives.

The time t0 in Equation 6.325 is the length of time it takes to recognize the outbreak of a possible
epidemic. Quarantining of sick people, cessation of immigration, and inoculation of susceptible
individuals begin at t¼ t0. Immigration and inoculation profiles are shown in Figure 6.70.

The simple model ignores birth and deaths from other causes and does not account for emigration
of individuals. The following values have been arbitrarily selected for conducting a baseline study.

x1 x2 x3

x4

x5

n

m

FIGURE 6.69 State transition diagram.

m(t) n(t)

I0

t0 t0
t t

N0

FIGURE 6.70 Immigration and inoculation profiles.

554 Simulation of Dynamic Systems with MATLAB® and Simulink®

a23 ¼ 0:1 per week, a24 ¼ 0:003 per week, a25 ¼ 0:05 per week

a53 ¼ 0:1 per week, a54 ¼ 0:003 per week

a ¼ 0:9, c ¼ 2:25� 10�8 per people=week

t0 ¼ 8 weeks, I0 ¼ 2500 people=week, N0 ¼ 0 inoculations=week

Note that the baseline conditions assume zero inoculations following the recognition of a possible
epidemic. A number of interesting simulation studies are possible. First, we will investigate various
inoculation policies and their mitigating effect on spreading of the disease in a population initially
consisting of 10 million susceptible individuals.

The classic RK-4 numerical integrator introduced in Equations 8.60 through 8.64 was chosen for
simulating the system response. After several trial runs with different integration step sizes, T¼ 0.1
weeks were selected. The results of a baseline and additional simulations using inoculation rates of
5,000, 10,000, and 15,000 people per week are shown in Figures 6.71 through 6.74. Refer to
MATLAB M-file ‘‘Chap6_CaseStudy.m.’’ For simplicity, the subscript ‘‘A’’ has been dropped from
the notation for the discrete-time signals.

A summary of the results is listed in Table 6.12.
As expected, the highest inoculation level results in the fewest deaths. The third row shows the

maximum number of sick people at any time in the 200 week study period. The peak is reduced
from 585,834 sick at one time to 268,548 as a result of administering 15,000 vaccinations=week
compared with none at all.

The discrete-time state variable x2(i) represents the number of infected individuals at the discrete
times ti¼ iT, i¼ 0, 1, 2, . . . The cumulative number of people who have been sick up through time ti
is denoted s(i) (see Figures 6.71 through 6.74 and Table 6.12). It is computed by numerical
integration of ds=dt, where

ds

dt
¼ (1� a)mþ cx1x2 (6:326)

0

2

Pe
op

le
Pe

op
le

4

6

8

10
Simulation results (N0 = 0 inoculations/week)

x1

x3

x2
x5

x4

s

0 25 50 75 100 125 150 175 200

0 25 50 75 100 125 150 175 200
0

1

2

3

4

5

6
×105

×106

t (weeks)

FIGURE 6.71 Epidemic response for baseline conditions (N0¼ 0 inoculations=week).

Intermediate Numerical Integration 555

Note the difference between ds=dt and dx2=dt. The former is the rate of change of newly infected
individuals, that is, those people entering state x2. As a result, s(t) is monotonically increasing. The
state derivative dx2=dt is the overall rate of change of infected people in the nonquarantined
population. It is negative when more individuals are leaving state x2 than entering, which results
in x2(t) decreasing.

0

2

4

6

8

10
×106

×105

Simulation results (N0 = 5000 inoculations/week)
x1

x2
x5

x4

x3

s

0 25 50 75 100 125 150 175 200

0 25 50 75 100 125 150 175 200

0

1
2
3

Pe
op

le
Pe

op
le

4
5

6

t (weeks)

FIGURE 6.72 Epidemic response (N0¼ 5000 inoculations=week).

s

0

4

3

2

1

0

2

4

6

8

10

Pe
op

le
Pe

op
le

×106

×105

Simulation results (N0 = 10,000 inoculations/week)
x1

x3

x2
x5

x4

0 25 50 75 100 125 150 175 200

0 25 50 75 100 125 150 175 200

t (weeks)

FIGURE 6.73 Epidemic response (N0¼ 10,000 inoculations=week).

556 Simulation of Dynamic Systems with MATLAB® and Simulink®

The same RK-4 integration method and step size were used to numerically integrate the discrete-
time signal (1�a)m(i)þ cx1(i)x2(i) to generate s(i).

A valuable check on the accuracy of the simulation is possible. Conservation of individuals
can be verified at every discrete point in time. In this case, the total number of individuals begins at
10 million and increases at a rate of 2500 per week for 8 weeks. Hence, after approximately
2 months, the total population consists of 10,020,000 people distributed among the five states x1, x2,
x3, x4, and x5. Summing x1(200), x2(200), x3(200), x4(200), and x5(200) in each column of Table
6.12 will show that all individuals are accounted for. This is crucial in the context of real-world
simulations where analytical solutions of the continuous-time model are not available.

Sensitivity analyses with respect to each system parameter at baseline conditions offer insight into
the dynamics of the epidemic. To illustrate this, suppose we are interested in relating the number of
individuals who contract the disease with the system parameter that measures how contagious the
disease is, that is, the transmission coefficient c that appears in Equations 6.321 and 6.322. The
parameter was allowed to vary by 25% in both directions from the nominal or baseline value
c¼ 2.25� 10�8 per people=week, and the simulation is repeated with the remaining parameters

0

2

4

6

8

10

s

0

0.5
1

1.5
2

2.5
3

Pe
op

le
Pe

op
le

×106

×105

Simulation results (N0 = 15,000 inoculations/week)
x1

x3

x2
x5

x4

0 25 50 75 100 125 150 175 200

0 25 50 75 100 125 150 175 200

t (weeks)

FIGURE 6.74 Epidemic response (N0¼ 15,000 inoculations=week).

TABLE 6.12
Summary of Epidemic Simulation Results after 200 Weeks

N0¼ 0 N0¼ 5,000 N0¼ 10,000 N0¼15,000

x1(200) 4,368,093 4,233,072 4,125,930 4,016,139

x2(200) 8,089 8,038 7,614 6,395

Max x2 585,834 469,690 362,637 268,548

x3(200) 5,471,549 5,630,535 5,763,273 5,900,147

x4(200) 164,146 140,116 115,298 90,604

x5(200) 8,123 8,238 7,885 6,715

s(200) 5,700,412 4,867,698 4,007,144 3,149,525

Intermediate Numerical Integration 557

fixed at their baseline values. Figure 6.75 shows that s(200), the predicted number of sick people in the
first 200 weeks, increases as the transmission coefficient parameter c increases, as one would expect.

A similar study was conducted to investigate the relationship between the cumulative number of
deaths x4(200) and the transmission coefficient c. The graph in Figure 6.76 shows what can be
expected in terms of the number of people dying over the 200 week period as the level of
contagiousness varies about the baseline value.

Try running the simulation with the same baseline conditions to ascertain the numerical value
of c that results in the epidemic spreading to every member of the population. A number of other
studies are suggested in the exercise problems.

1.6 1.8 2 2.2 2. 2.6 2.8 3
0

1

2

3

4

s(2
00

),
pe

op
le 5

6

7

8
×106

×10–8c (per people/week)

Sensitivity of cumulative sick after 200 weeks to
variation in parameter measuring contagiousness of disease

Baseline pt
Cumulative sick

FIGURE 6.75 Sensitivity analysis: s(200) vs. c.

1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.25

0.5

x 4
(2

00
),

pe
op

le

0.75

1

1.25

1.5

1.75

2

2.25

2.5 ×105

×10–8c (per people /week)

Baseline pt
Cumulative deaths

Sensitivity of cumulative deaths after 200 weeks to
variation in parameter measuring contagiousness of disease

FIGURE 6.76 Sensitivity analysis: x4(200) vs. c.

558 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

6.38 In the study that looked at the effect of various inoculation rates, prepare graphs of
(a) Cumulative sick vs. inoculation rate
(b) Number of deaths vs. inoculation rate
(c) Peak number of sick vs. inoculation rate
Use the classic RK-4 integrator with baseline values for all parameters (except inoculation
rate), and run the simulations for a sufficient period of time to include the transient response.
Consider inoculation rates from 0 to 50,000 per week.

Repeat parts (a), (b), and (c) using Simulink with the same numerical integrator.
6.39 In the inoculation study, find the cumulative number of individuals quarantined.

Hint: Let q(t) represent the cumulative number of people quarantined through time t, and write
the differential equation for q(t) similar to the procedure for finding s(t).

6.40 Investigate the duration of the epidemic transient period as a function of the parameter c. Does
the epidemic last longer when the disease is more contagious?

Intermediate Numerical Integration 559

This page intentionally left blank

7 Simulation Tools

7.1 INTRODUCTION

Mathematical models of dynamic systems are derived with their intended use in mind. For example,
systems with fast internal dynamics driven by inputs that change infrequently (relative to the system
time constants) reside in steady state the majority of the time. Accordingly, the model consists of a
system of coupled, possibly nonlinear, algebraic equations. In this context, a solution (or solutions)
defines an equilibrium state (or states) corresponding to fixed values of the system inputs. When one
or more inputs change, a stable system transitions from one equilibrium state to another and the
dynamics, that is, transient response, is ignored. Solving the steady-state algebraic equations for an
equilibrium solution is rarely a straightforward task, particularly when dealing with nonlinear
systems. The MATLAB® steady-state solver is introduced in Section 7.2. It is designed to locate
equilibrium states of a Simulink® model.

Tuning a simulation model of a real, continuous-time system is an iterative process like the one
shown in Figure 7.1. Assumptions about the structure of the mathematical model, that is, the state
derivative vector f (x, u, p) and parameter values p, are tested and refined using observed data
acquired from the system. An essential component of the validation process is minimization of an
error function e(f , p), a measure of the differences between the actual system and simulation model
outputs.

A Simulink add-on called Parameter Estimation compares empirical data with data
generated by a Simulink model. Using optimization techniques, Simulink Parameter Estima-
tion estimates the parameter and (optionally) initial conditions of states such that a user-selected
cost function is minimized. The cost function typically calculates a least-square error between the
empirical and model data.

Once the mathematical model has been determined, some type of exploratory study can be
performed to determine the ‘‘best’’ (in some sense) values for the controllable system parameters.
Optimization theory is a broad area of study with roots in Operations Research and Applied
Mathematics. It is the foundation for implementation of what are collectively called optimum
seeking methods. The MATLAB optimization toolbox provides the simulationist access to a
number of algorithms for locating points in the model’s parameter space where the system performs
at optimum or near optimum levels. Examples are presented in Section 7.3 of using optimization for
both parameter identification and system optimization involving Simulink models.

Another Simulink add-on, Response Optimization, is a tool that helps you tune design
parameters in Simulink models by optimizing time-based signals to meet user-defined constraints. It
supports continuous-time, discrete-time, and multirate models accounting for model uncertainty by
conducting Monte Carlo simulations. Simulink Response Optimization can be used to tune
multiinput=multioutput and adaptive controllers in nonlinear systems and optimize physical param-
eters to minimize power consumption, reduce range of motion, and tune filter coefficients.

An equilibrium state is sometimes required to serve as the initial state for a simulation investi-
gation of the system’s dynamic response. After locating an equilibrium point of a nonlinear system
model, the system’s response to dynamically changing inputs can be approximated by linearizing
the equations about the equilibrium point. Accuracy of the linearized model depends in part on the
magnitude of the state vector’s excursions from the equilibrium state. In general, if the changing
input vector remains in close proximity to its equilibrium level, the state vector will do the same.
Regulatory control systems are a good example of an application where linearization of process

561

models has proven beneficial in both the design and analysis of the system. Section 7.4 illustrates
the capabilities of MATLAB to linearize nonlinear models created with Simulink.

7.2 STEADY-STATE SOLVER

Unlike linear systemmodels, it is possible for nonlinear systems to possess any number of equilibrium
points, that is, points in state space where the state derivatives are all zero. Furthermore, there is no
uniform approach guaranteed to determine the number or location of the equilibrium points.

Knowledge of a nonlinear system’s equilibrium points is important for several reasons. The first
relates to stability. Once an equilibrium point is located, stability can be determined by linearizing the
model’s state equations in the neighborhood of the equilibrium point. Second, the behavior of forced
nonlinear systems is often approximated by ‘‘small signal’’ linearized models. The characteristic
dynamics (time constants, poles, critical frequencies, eigenvalues, and so forth.) of the linearized
system depend on the location of the equilibrium point. Linearization is discussed in a later section.

Consider a nonlinear state model

_x ¼ f (x, u) (7:1)

where
x and u are the state and input vectors, respectively
f (x, u) is a vector of functions defining the state derivatives

Equilibrium points x e corresponding to a constant input vector ue are solutions to the nonlinear
system of algebraic equations

f (x e, ue) ¼ 0 (7:2)

Some type of numerical method for finding the solutions (x e)1, (x e)2, . . ., given the input ue, is
needed. Nonlinear autonomous systems described by

_x ¼ f (x) (7:3)

may also possess a finite (or infinite) number of equilibrium points that satisfy

f (x e) ¼ 0 (7:4)

Parameter
identification

u

Mathematical
model

System
identification

Simulation
model

p f

Physical
system

T

uk ysim ε(f, p) Min ε(f, p)
f

Min ε(f, p)
p

yobs

xk +1 = f (xk, uk; p)
yk = g (xk, uk) −

. .
y = g (x, u)
x = f (x, u; p)

FIGURE 7.1 Iterative procedure for simulation model validation.

562 Simulation of Dynamic Systems with MATLAB® and Simulink®

To illustrate the point, we focus on a nonlinear system model from the field of ecology. A predator–
prey model for the population of fish (prey) and sharks (predator) in the ocean is (Haberman 1997)

dF

dt
¼ F(a� bF � cS) (7:5)

dS

dt
¼ S e� l

S

F

� �
(7:6)

where F¼F(t) and S¼ S(t) are the instantaneous populations (or population densities) of fish and
sharks in a fixed geographical area. The system is autonomous since there are no fish or sharks
entering or leaving the region according to an external function of time t. Conversely, harvesting of
either population according to some predetermined schedule, independent of the levels F and S,
would require additional terms with explicit dependence on t resulting in a nonautonomous system
model.

The model equations are based on the following observations:

1. The growth rate of fish (1=F)dF=dt is reduced from a constant ‘‘a’’ by an amount
proportional to the number of fish (which compete for the limited food supply) as well
as an amount proportional to the number of sharks (for which the fish are the primary food
source). Proportionality constants b and c reflect the level of competition among the fish for
their food and the aggressiveness of the sharks.

2. Shark growth rate (1=S)dS=dt is reduced from a constant e by an amount proportional to
the ratio of sharks to fish. A higher S=F depletes the fish supply more rapidly.

Equilibrium points (Fe, Se) satisfy the steady-state algebraic equations resulting from setting the
state derivatives to zero. Thus,

0 ¼ Fe(a� bFe � cSe) (7:7)

0 ¼ Se e� l
Se
Fe

� �
(7:8)

There is more than one equilibrium point (see Exercise 7.2). Our interest is in the nontrivial
equilibrium point where neither fish nor sharks vanish. From Equation 7.8 with the term in
parenthesis equal to zero,

Se ¼ e

l
Fe (7:9)

Substituting Se from Equation 7.9 into Equation 7.7 gives (after simplification)

Fe ¼ al

blþ ce
(7:10)

Finally, Se is obtained from Equations 7.9 and 7.10 as

Se ¼ ae

blþ ce
(7:11)

We shall return to the predator–prey model to investigate the dynamic interaction between fish and
sharks, particularly in the vicinity of the equilibrium point (Fe, Se).

Simulation Tools 563

7.2.1 TRIM FUNCTION

Figure 7.2 shows a Simulink diagram for simulating the predator–prey ecosystem modeled by
Equations 7.5 and 7.6. The model name is ‘‘Fish_Sharks.mdl.’’ Parameters ‘‘a,’’ ‘‘b,’’ ‘‘c,’’ ‘‘e,’’
and ‘‘lam’’ are assigned values in the MATLAB M-file ‘‘Chap7_Fish_Sharks.m.’’ There are no
inputs and the two states are designated as outputs.

A function ‘‘trim’’ is called from MATLAB to search for equilibrium points associated with a
named Simulink model file. The ‘‘trim’’ function call is

[x, u, y, dx]¼trim(‘Fish_sharks’, x0)

The second parameter ‘‘x0’’ is the starting point in state space in the search for an equilibrium
point. The output contains the equilibrium state ‘‘x,’’ input and output vectors ‘‘u’’ and ‘‘y’’ at
equilibrium, respectively, and the value of the state derivative vector at the equilibrium point. Empty
vectors are returned when there are no inputs or outputs defined. Should the numerical search
algorithm fail to converge to an equilibrium point, a different starting point will sometimes fix the
problem.

Optional parameters are available for constraining selected components of the state, input, and
output vectors. For example, instead of a true equilibrium point, we may look for points in the state
space where a subset of the state derivative vector is zero.

Numerical values of the parameters in Equations 7.5 and 7.6 were arbitrarily chosen as a¼ 50,
b¼ 1, c¼ 5, e¼ 2, and l¼ 10. Running M-file ‘‘Chap7_Fish_Sharks.m’’ with starting point
x0¼ (18.75; 3.75) results in

x ¼ 25:0000 u ¼ Empty matrix: 0� by� 1 y ¼ 25:0000

5:0000 5:0000

dx ¼ 1:0e� 011 * � 0:1954

0:0026

According to Equations 7.10 and 7.11,

Fe ¼ al

blþ ce
¼ 50(10)

1(10)þ 5(2)
¼ 25, Se ¼ 50(2)

1(10)þ 5(2)
¼ 5

FIGURE 7.2 Simulink® diagram of predator–prey model.

564 Simulation of Dynamic Systems with MATLAB® and Simulink®

in agreement with the results of the ‘‘trim’’ function call. Note that the ordering of the state vector
‘‘x’’ must be known. This will be addressed later in Section 7.4. The small ‘‘dx’’ values assure the
accuracy of the located equilibrium point.

The transient response and state trajectory produced by the Simulink ‘‘scope’’ and ‘‘XY
Graph’’ starting from the point (1.25Fe, 0.25Se)¼ (31.25, 1.25) are shown in Figures 7.3 and 7.4.

The behavior of the system starting from 100 randomly selected points in a region including the
equilibrium point is shown in Figure 7.5. It appears that the equilibrium point is indeed stable since
all trajectories terminate there.

7.2.2 EQUILIBRIUM POINT FOR A NONAUTONOMOUS SYSTEM

The ‘‘trim’’ function can be used to locate the steady state of a forced system subjected to a
constant input(s). Figure 7.6 is a simplified diagram of a transducer that converts a low-level

25
30
35
40
45

F(t) vs. t

0 0.5 1 1.5 2 2.5
0

2

4

6

t

S(t) vs. t

FIGURE 7.3 Transient response of ecosystem.

20 25 30 35 40 45
0

1

Sh
ar

ks

2

3

4

5

6

Fish

Shark vs. fish populations

(1.25Fe , 0.25Se)

(Fe , Se)

FIGURE 7.4 State trajectory of ecosystem.

Simulation Tools 565

acoustic pressure signal p(t) to an output voltage vR(t). The movable membrane and fixed plate form
a capacitor. The sound waves deflect the membrane changing the separation between it and the back
plate and, therefore, the capacitance. A bias voltage is applied to produce an electrical charge on the
membrane. The motion of the membrane is opposed by damping and elastic forces as well as an
electrostatic force.

The mathematical model consists of the following differential and algebraic equations describing
the circuit and the forces acting on the membrane:

R
dQ

dt
þ vC ¼ E0, vR ¼ E0 � vC (7:12)

Q ¼ CvC (7:13)

C ¼ B

h
¼ B

L� x
(7:14)

0 5 10 15 20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

9

10

11

F

S

State trajectories near equilibrium point Fe = 25, Se = 5

FIGURE 7.5 State trajectories demonstrating stability of equilibrium point.

x: Position of membrane
h: Separation between membrane and back plate

vR

E0
+

+Sound
waves
Vibrate
membrane
Changing
capacitance

Membrane

Insulator

Back
plate Output

signal

Battery required to “bias”
the membrane

Variable capacitance transducer.

x L0

hF

p
Fixed plateMembrane

FIGURE 7.6 Variable capacitance transducer.

566 Simulation of Dynamic Systems with MATLAB® and Simulink®

m
d2x

dt2
þ m

dx

dt
þ kx ¼ �Fe þ F (7:15)

Fe ¼ Q2

2B
, F ¼ pA (7:16)

where
Q¼Q(t) is the electric charge on the capacitor (Cs)
vC¼ vC(t) is the voltage across the capacitor (Vs)
vR¼ vR(t) is the output voltage across the resistor (Vs)
C¼C(t) is the variable capacitance of the capacitor (Fs)
h¼ h(t) is the separation between the movable membrane and back plate (mm)
x¼ x(t) is the membrane displacement from equilibrium, that is, when p¼E0¼ 0 (mm)
Fe¼Fe(t) is the electrostatic force on the membrane (N)
F¼F(t) is the force acting on the membrane due to pressure p (N)
p¼ p(t) is the input acoustic pressure acting uniformly on the membrane (psi)
E0 is the bias voltage on the capacitor (Vs)
m is the mass of membrane (gs)
m is the damping coefficient (N=(mm=s))
k is the elastic constant (N=mm)

Choosing the states and outputs

x1 ¼ x, x2 ¼ Q, x3 ¼ _x

y1 ¼ x, y2 ¼ h, y3 ¼ C, y4 ¼ Fe, y5 ¼ F, y6 ¼ vC, y7 ¼ Q, y8 ¼ vR

leads to the state equations (see Exercise 7.4)

_x1 ¼ x3, _x2 ¼ 1
BR

[�x2(L� x1)þ BE0], _x3 ¼ 1
m
�kx1 � x32

2B
� mx3 þ Ap

� �
(7:17)

y1 ¼ x1, y2 ¼ L� x1, y3 ¼ B

L� x1
, y4 ¼ x22

2B
(7:18)

y5 ¼ Ap, y6 ¼ x2(L� x1)

B
, y7 ¼ x2, y8 ¼ E0 � x2(L� x1)

B
(7:19)

For constant inputs E0 and p(t)¼ p0, the equilibrium states are found by setting the state derivatives
in Equation 7.17 to zero resulting in

x3,e ¼ 0, �x2,e(L� x1,e)þ BE0 ¼ 0, �kx1,e �
x22,e
2B
þ Ap0 ¼ 0 (7:20)

Eliminating x2,e from the two equations yields a third-order polynomial in x1,e.

kx31,e � (2kLþ Ap0)x
2
1,e þ L(kLþ 2Ap0)x1,e þ 0:5BE2

0 � AL2p0 ¼ 0 (7:21)

Equation 7.21 is solved in the M-file ‘‘chap7_cap.m’’ using the following baseline parameter values:

A ¼ p (20mm)2, L ¼ 10mm, m ¼ 5 g, m ¼ 0:01N=(mm=s),

k ¼ 0:5N=mm, R ¼ 100V, B ¼ 5� 10�5 F-mm,

E0 ¼ 48V, p0 ¼ 0:01 psi

Simulation Tools 567

The single real root of Equation 7.21 is x1,e¼ xe¼ 0.17208282239091 mm. From the second of the
equations in Equation 7.20, x2,e¼Qe¼ 2.442023021386376� 10�4 C.

A Simulink diagram of the system is shown in Figure 7.7. For reference by the ‘‘trim’’ function,
the inputs are ‘‘E0’’ and ‘‘p0,’’ the states are ‘‘x,’’ ‘‘Q,’’ and ‘‘xd,’’ and the eight outputs are
designated as shown. The ‘‘trim’’ function call in the M-file ‘‘Chap7_Cap.m’’ is

[x, u, y, dx]¼trim(‘cap_transducer’, x0, u0, y0 ix, iu iy)

where the outputs ‘‘x,’’ ‘‘u,’’ and ‘‘y’’ are the computed equilibrium values of the state, input, and
output vectors, respectively. The last argument ‘‘dx’’ is the state derivative vector that is identically
zero at true equilibrium conditions. The input parameters ‘‘x0, u0, and y0’’ are used to set initial
guesses for the equilibrium state, input, and output while the remaining arguments ‘‘ix, iu, and iy’’
serve to constrain selected components of the state, input, and output vectors at equilibrium.

Running script file ‘‘Chap7_Cap.m’’ produces the results shown in Table 7.1.
Note that the second input u2,e¼ 0.00006894413789 is the equivalent of p0¼ 0.001 psi converted

to N=m2. The equilibrium state from the ‘‘trim’’ function call is in agreement with the solution to the
equilibrium equations in Equation 7.20 obtained by running the M-file ‘‘Chap7_Cap.m.’’

A common use of the ‘‘trim’’ function is in applications where a subset of the equilibrium state
and=or output vector is specified and the goal is to determine the input conditions resulting in the
partially or fully specified equilibrium state. Figure 7.8 portrays a block diagram of a system with
four inputs, six states, and three outputs.

Instead of specifying constants for inputs u1(t), u2(t), u3(t), and u4(t), to establish an equilibrium
state x e ¼ x1,e x2,e x3,e x4,e x5,e x6,e½ �T and output y

e
¼ y1,e y2,e y3,e½ �T , only input u2 is

fixed. Equilibrium levels of x2, x6, and y1 are also fixed, and the steady-state equations of the system

FIGURE 7.7 Simulink® diagram of capacitive transducer for use by ‘‘Trim’’ function.

TABLE 7.1
‘‘Trim’’ Function Results

x1,e¼ 0.17208282239053, x2,e¼ 0.00024420230214, x3,e¼�0.00000000000000
u1,e¼ 48.00000000000000, u2,e¼ 0.00006894413789

y1,e¼ 0.17208282239053, y2,e¼ 9.82791717760947, y3,e¼ 0.00000508754796, y4,e¼ 0.00059634764370,

y5,e¼ 0.08663775883916, y6,e¼ 48.00000000001074, y7,e¼ 0.00024420230214, y8,e¼�0.00000000001074
dx1¼ 10�7��0.00000000000000, dx2¼ 10�7��0.00000107363007, dx3¼ 10�7��0.38882785879935

568 Simulation of Dynamic Systems with MATLAB® and Simulink®

must be solved subject to these constraints. The solution will include the values for the nonconstrained
inputs u1, u3, and u4 along with the equilibrium values for the nonconstrained state and output
components. Keep in mind that there may be no feasible solution or several solutions depending on
the values assigned to the constrained variables.

To be more specific, consider an aircraft flying in level flight at a given altitude with constant
speed, heading, and angle of attack. Certain constraints are imposed on the state vector of transla-
tional (longitudinal, lateral, and vertical) velocities (u, v, and w) and angular (roll, pitch, and yaw)
velocities (r, p, and q) in a body reference coordinate system. The pilot wishes to know the throttle
position and input settings that control the orientation of the control surfaces in order for the plane to
achieve steady-state ‘‘trim’’ flight conditions.

The following example (Beltrami 1993) illustrates the point for an ecological system.

Example 7.1

The growth rate of fish in a confined space at a fishery is modeled by

g(x) ¼ uR
x
þ rx 1� x

k

� 	
� euE (7:22)

where
x¼ x(t) is the density of fish measured in tons per square mile
Parameters r and k determine the natural growth rate function rx(1� x=k) of fish in the absence

of external inputs related to harvesting and restocking
Input uE is a measure of the effort (ships, gear, manpower, etc.) per year expended in harvesting
The parameter e represents the efficiency of catching fish, measured as a fraction of each ton of

fish caught per unit of effort

Finally, the first term accounts for restocking of fish with uR, the restocking rate measured in
tons of fish per square mile per year.

(a) Find the state derivative function and verify whether the given units for parameters and
variables are consistent. In particular, determine the units of r, k, and e.

(b) Find the equation relating the equilibrium state xe and the constant inputs uR and uE where
uR(t)¼ uR, t � 0 and uE(t)� uE, t � 0.

Baseline numerical values of the system parameters are k¼ 4, r¼ 2, and e¼ 0.1.
(c) Find xe when uR¼ 0.3 tons=mi2=year and uE¼ 10 effort units=year.
(d) Repeat part (c) using the ‘‘trim’’ function. In addition, use xe found in part (c) and fix

uR¼ 0.3 to find the equilibrium value of uE. Repeat using xe found in part (c) and fix uE¼ 10
to find the equilibrium value of uR.

(e) Change the numerical value of uE to 20 and show that there exist three real solutions for xe.

u1(t)

u2(t)

u3(t)

u4(t)

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

y1(t)

y2(t)

y3(t)

x = f(x, u). y = g(x, u)

FIGURE 7.8 Dynamic system with equilibrium conditions specified for one input, two states, and one output.

Simulation Tools 569

(f) Verify the results in part (e) using the ‘‘trim’’ function with initial states x0¼ 0, 2, and 5.
(g) Show that the middle equilibrium point is unstable and the remaining two are stable. Verify

the nature of the equilibrium points by simulation.

(a) The state derivative function is obtained from

g(x) ¼ 1
x
dx
dt
¼ uR

x
þ rx 1� x

k

� 	
� euE (7:23)

) f (x, uR, uE) ¼ dx
dt
¼ uR þ rx2 1� x

k

� 	
� euEx (7:24)

The units for each term in Equation 7.24 are tons=mi2=year, that is,

tons=mi2

year
¼ tons=mi2

year
þ 1=year

tons=mi2

 !
tons
mi2

� �2

� 1
effort

� �
effort
year

� �
(tons=mi2)

The units for r, k, and e are (1=year)=(tons=mi2), tons=(mi2), and 1=effort, respectively.

(b) Setting the state derivative function in Equation 7.24 to zero gives

uR þ rx2e 1� x e
k

� 	
� euExe ¼ 0 (7:25)

(c) Substituting the given values for r, k, e, uR, and uE into Equation 7.25 produces a cubic
polynomial in xe. The M-file ‘‘Chap7_Ex2_1.m’’ employs the ‘‘roots’’ function to find the
roots. The results are 3.4740, 0.2630
 j0.3218.

(d) ‘‘Chap7_Ex2_1.m’’ contains the statements

% A.1 Given uR_bar and uE_bar, find xe
uR_bar¼0.3; uE_bar¼10;
x0¼10; ix¼[];
u0¼[uR_bar;uE_bar];
iu¼[1,2]; y0¼0; iy¼[];
[x, u, y, dx]¼trim(‘fishery_1’, x0, u0, y0, ix, iu, iy)

where ‘‘fishery_1’’ is the Simulink file name of the model shown in Figure 7.9. Note
that ‘‘iu¼[1,2]’’ constrains the inputs to uR¼ 3 and uE¼ 10. The results are given in Table
7.2. The second part of part (d) is implemented using the following statements (see Table 7.2 for
results):

% A.2 Given uR_bar and xe, find uE_bar
uR_bar¼0.3;
x0¼3.4740;
ix¼1;
u0¼[uR_bar;0];
iu¼1;
y0¼0; iy¼[];
[x, u, y, dx]¼trim(‘‘fishery_1’’, x0, u0, y0, ix, iu, iy)

The third part of part (d) is accomplished in a similar fashion except that uE and xe are fixed and
uR is returned by the ‘‘trim’’ function. In this case, the assignments ‘‘ix¼1’’ and ‘‘iu¼1’’ fix
xe¼ 3.4740 and uR¼ uR

570 Simulation of Dynamic Systems with MATLAB® and Simulink®

(e) When uE¼ 20, the ‘‘roots’’ function in ‘‘Chap7_Ex2_1.m’’ yields three solutions to Equation
7.25, namely, 0.1814, 1.3278, and 2.4908.

(f) Using the ‘‘trim’’ function with initial state guesses of 0, 2, and 5 produces the identical
equilibrium states (see Cases B.1, B.2, and B.3 in Table 7.2).

(g) The stability of each equilibrium point can be ascertained by looking at a graph of the
growth rate function shown in Figure 7.10. Note that the fish density increases wherever g(x)
is positive as indicated by right-pointing arrows and conversely decreases in regions where g(x) is
negative, shown with left-pointing arrows. Fish densities initially located in the region
(xe)1< x< (xe)2 will move towards (xe)1¼ 0.1814 whereas initial densities satisfying (xe)2< x< (xe)3
eventually approach (xe)3¼ 2.4908. Consequently, the equilibrium point (xe)2¼ 1.3278 is
unstable.

The system is simulated using ‘‘fishery_2.mdl’’ (not shown) that is identical to ‘‘fish-
ery_1.md1’’ except for the input blocks that are replaced by ‘‘constant’’ blocks and the
‘‘output’’ block is removed. Results are shown in Figure 7.11.

Note that the middle responses in the second graph starting at x0¼ 1.3, slightly less than
(xe)2¼ 1.3278 and x0¼ 1.35 and slightly more than (xe)2¼ 1.3278, diverge from the neighborhood
of (xe)2, the unstable equilibrium point.

Before we proceed further, it is interesting to consider the market place’s influence on the fish
supply. If we adopt a very rudimentary model for the harvesting effort uE, one that says the rate of
change of harvesting depends solely on net profit as measured by the difference between revenue
and cost, then uE(t) is governed by the first-order differential equation

FIGURE 7.9 Simulink® diagram of fishery system dynamics.

TABLE 7.2
Results of Using ‘‘trim’’ Function for Different Conditions

Case Given Given Initial Guess Result ‘‘xd’’

A.1 uR¼ 0.3 uE¼ 10 x0¼ 10 xe¼ 3.4740 �2.8234� 10�8

A.2 uR¼ 0.3 xe¼ 3.4740 x0¼ 10 uE¼ 10 5.1090� 10�11

A.3 uE¼ 10 xe¼ 3.4740 x0¼ 10 uR¼ 0.3 1.2261� 10�12

B.1 uR¼ 0.3 uE¼ 20 x0¼ 0 xe¼ 0.1814 2.1407� 10�12

B.2 uR¼ 0.3 uE¼ 20 x0¼ 2 xe¼ 1.3278 0

B.3 uR¼ 0.3 uE¼ 20 x0¼ 5 xe¼ 2.4908 �3.3323� 10�10

Simulation Tools 571

duE
dx
¼ a(R� C) (7:26)

where
R and C are the revenue and cost, respectively, in $=year=mi2

a is a constant

Assuming revenue depends on harvesting euEx and selling price p leads to

R ¼ euEx � p (7:27)

0 0.5 1 1.5 2 2.5 3 3.5
–1

−0.5

0

0.5

g(
x)

, y
–1

1

1.5

2

2.5

3

(xe)1 = 0.1814

(xe)2 = 1.3278

(xe)3 = 2.4908

(xe)3 — stable

(xe)1 — stable
(xe)2 — unstable

x, tons per sq mile

Growth rate of fish vs. fish density

FIGURE 7.10 Graph of fish growth rate and equilibrium points.

0

x (
to

n/
m

i2)
x (

to
n/

m
i2)

x (
to

n/
m

i2)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2
x vs. t

(xe)1 = 0.1814 (stable)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

(xe)2 = 1.3278 (unstable)

0 0.5 1 1.5 2 2.5 3 3.5
2

3

4

5

t (y)

(xe)3 = 2.4908 (stable)

FIGURE 7.11 State responses starting from several initial points.

572 Simulation of Dynamic Systems with MATLAB® and Simulink®

where p is the selling price in $=ton. The cost is a function of effort and restocking, that is,

C ¼ cEuE þ cRuR (7:28)

where
cE is in $=effort=year=mi2

cR is in $=ton

Equations 7.26 through 7.28 give

duE
dt
¼ a[peuEx� (cEuE þ cRuR)] (7:29)

The expanded system dynamics are now modeled by the coupled nonlinear differential equations
given in Equations 7.24 and 7.29. A block diagram of the system displaying the system parameters,
input, states, and outputs is shown in Figure 7.12.

System parameters r, k, . . . , cR can be thought of as inputs to the system. However, they are
distinguished from the system input uR because they generally remain fixed at assigned values.
When they do vary, fluctuations (often unpredictable) occur with less frequency than the input.

Suppose the set of parameters in Figure 7.12 are fixed at baseline values except for the selling
price p. Viewing the system as being ‘‘driven’’ by the conventional input restocking rate uR as well
as p, we can employ the ‘‘trim’’ function to search for the equilibrium state and output vectors.
The M-file ‘‘Chap7_fishery_w_economics.m’’ uses k¼ 4, r¼ 2, e¼ 0.1, a¼ 0.75, cE¼ 2, and
cR¼ 1 for the fixed parameters and varies uR and p as inputs in the ‘‘trim’’ function call. The
results are shown in Table 7.3.

Certain combinations of uR and p produce no solution, which raises the question of whether
there may in fact be other equilibrium states in addition to the one given in Table 7.3 for the
combinations considered. There is no certainty when using a search algorithm. All we can do is

r k αε p cE cR

y1 = x
y2 = uE
y3 = pεuE x – (cE uE + cR uR)

x

uE
uR

y1

y2

y3
duE
dt

= α[(pε x – cE)uE – cR uR)]

dx
dt = uR rx2 1 – – εuE xx

k+

FIGURE 7.12 Block diagram of system showing parameters, input, states, and output.

TABLE 7.3
Equilibrium States xe and (uE)e as a Function
of Input (uR, p)

uR p

6 7 8

0.3 xe¼ 3.3772 xe¼ 2.8821 xe¼ 2.5189

(uE)e¼ 11.4053 (uE)e¼ 17.1501 (uE)e¼ 19.8447

0.5 xe¼ 3.4052 xe¼ 2.8975 xe¼ 2.5304

(uE)e¼ 11.5954 (uE)e¼ 17.6981 (uE)e¼ 20.5694

1 xe¼ 3.4716 xe¼ 2.9321 xe¼ 2.5559

(uE)e¼ 12.0522 (uE)e¼ 19.0668 (uE)e¼ 22.3675

Simulation Tools 573

begin the search from different starting points in the hope of finding additional equilibrium states,
should they exist. The results in Table 7.3 were obtained using a starting guess of x¼ 10 and
uE¼ 20.

We now explore the possibility of the existence of an analytical solution for the equilibrium
state. The algebraic equations resulting from setting the state derivative functions in Equations 7.24
and 7.29 to zero are

0 ¼ uR þ rx2e 1� xe
k

� 	
� e(uE)ex e (7:30)

0 ¼ pex e � cE(uE)e � cRuR (7:31)

Solving for xe in Equation 7.31 gives

x e ¼ 1
pe(uE)e

[cE(uE)e þ cRuR] (7:32)

and substituting the result for xe in Equation 7.30 produces a fourth-order polynomial in (uE)e. The
details are left for an exercise problem; however, the result is

b4(uE)
4
e þ b3(uE)

3
e þ b2(uE)

2
e þ b1(uE)e þ b0 ¼ 0 (7:33)

where

b4 ¼ �kp2e3cE

b3 ¼ kp2e3uR(p� cR)þ rc2E (kpe� cE)

b2 ¼ rcEcRuR(2kpe� 3cE)

b1 ¼ �r(cRuR)2(kpe� 3cE)

b0 ¼ �r(cRuR)3

(7:34)

For uR¼ 0.3 and p ¼ 6, the solutions from ‘‘Chap7_fishery_w_economics.m’’ are

(uE)e ¼ 11:4053, 0:7500, �0:1471
 j0:0168

x e ¼ 3:3772, 4:0000, �0:0219
 j0:3842

There are two feasible solutions, namely, xe¼ 3.3772, (uE)e¼ 11.4053 and xe¼ 4.0000,
(uE)e¼ 0.7500. The ‘‘trim’’ function has converged to the first solution (see Table 7.3).

The values shown in Table 7.3 can be verified by simulation. For example, Figure 7.13 is a
simulation of the system initially at equilibrium with inputs uR¼ uR¼ 0.3, p ¼ p ¼ 6, and
xe¼ 3.3772, (uE)e¼ 11.4053. Step changes in uR and p occur at t¼ 1 year. The new inputs
correspond to the lower right corner of Table 7.3, namely, uR¼ uR¼ 1, p ¼ p ¼ 8. The new
equilibrium state agrees with the values shown in the table. Refer to M-file ‘‘Chap7_Fig2_12.m.’’

EXERCISES

7.1 An alternate predator–prey model for fish and sharks is

dF

dt
¼ aF � bSF

dS

dt
¼ �cSþ dFS

574 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) Find the nontrivial equilibrium point (Fe, Se) in terms of parameters a, b, c, and d.
(b) Use the ‘‘trim’’ function to find the equilibrium point when the system parameters are

a¼ 0.1, b¼ 0.03, c¼ 0.02, and d¼ 0.0025, and compare the answer with the value
obtained using the result in part (a).

(c) Verify by simulation that the equilibrium point (Fe, Se) is ‘‘neutrally stable,’’ which means
that sustained oscillations in fish and shark populations occur regardless of the initial
conditions F(0) 6¼ 0 and S(0) 6¼ 0. Plot time histories F(t) and S(t), t � 0 and a phase plot
S vs. F.

7.2 For the predator–prey system governed by Equations 7.5 and 7.6,
(a) Show that the points (Fe, Se) in the following table are equilibrium points.

Fe Se

0 0

a

b
0

al ae

blþ ce blþ ce

(b) Investigate the local stability of each equilibrium point by simulation of the system with
initial conditions in the neighborhood of each point. Draw the phase trajectories for each case.

(c) The system parameters are a¼ 50, b¼ 2.5, c¼ 4, e¼ 2, and l¼ 8. Use the ‘‘trim’’
function starting at different points in the F–S plane to try and locate the last two
equilibrium points.

(d) The system parameters are a¼ 40, b¼ 4, c¼ 3, e¼ 2, and l¼ 5. Use the ‘‘trim’’ function
with S constrained to zero to find the equilibrium point (a=b, 0).

(e) The system parameters are a¼ 50, b¼ 2.5, c¼ 0, e¼ 2, and l¼ 8. Simulate the system and
obtain time histories of F(t) and S(t) along with a phase trajectory when the initial
populations are F(0)¼ 5 and S(0)¼ 2.

3.4
3.2

3
2.8
2.6

2.4

x (
to

n/
m

i2)
u E

 (e
ffo

rt
 p

er
 y)

25

20

15

10

0 1 2

{

{ {

{

3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10
t (y)

0.3, t ≤ 1
1,μR =

μR =

6, t ≤ 1
8, t < 1p =

p =0.3, t ≤ 1
1,

6, t ≤ 1
8, t < 1

t < 1

t < 1

FIGURE 7.13 Simulated transient response to step changes in uR and p.

Simulation Tools 575

7.3 A three-species predator–prey model (Edelstein-Keshet 1988) is

dx

dt
¼ axzþ bxy� yx

dy

dt
¼ dy� exy

dz

dt
¼ mz(n� z)� lxy

where
x is a predator
y and z are its prey

(a) Express the nontrivial equilibrium pt (xe, ye, ze) in terms of the system parameters.
(b) Use the ‘‘trim’’ function to find the equilibrium pt when the system parameters are

a¼ 0.075, b¼ 0.009, g¼ 0.2, d¼ 0.1, e¼ 0.025, m¼ 0.0015, n¼ 10, and l¼ 0.003.
Compare the answer with the value obtained using the result in part (a).

(c) The equilibrium point is asymptotically stable. Verify by simulating the response of the
autonomous system starting from various randomly selected points in the neighborhood of
the equilibrium point.

7.4 Derive the state Equations 7.17 through 7.19.

7.3 OPTIMIZATION OF SIMULINK® MODELS

System designers often resort to simulation to verify whether a newly designed system performs in a
manner consistent with a set of predefined requirements and constraints. Generally speaking,
multiple simulations are necessary to ‘‘observe’’ how the system responds to a range of inputs
and parameter variations. For some systems, a subset of the inputs and parameters that affect its
performance are controllable. For example, ground vehicle performance can be characterized by
fuel economy, vehicle handling, ride comfort, acceleration, emergency braking, and so forth. Given
a single unambiguous measure of system performance, the design objective reduces to a determin-
ation of numerical values for the controllable system parameters (wheel base, springs and shocks,
carburetor design, weight, steering ratio, and so forth) resulting in optimal performance. In contrast,
a simulation model used to predict weather relies on knowledge of atmospheric conditions to
forecast future weather patterns. Neither inputs (at least not yet) nor the resulting weather is
controllable.

Inherent in the process of optimizing system performance is the ability to observe or,
somehow, measure performance, that is, acquire data about the system as the parameters are
varied. Experimenting with the real system is oftentimes impractical for reasons of expense and
time consumption or even dangerous depending on the levels of the system parameters. Herein
lies the value of simulation in optimizing a system’s performance. The simulation model can be
‘‘exercised’’ in a systematic way to achieve optimum or near optimum results without the
previously cited pitfalls of dealing with the physical system. A simple example of system
optimization follows.

Figure 7.14 portrays a pair of objects, one designated the target and the other object intent on
destroying it by firing a projectile weapon at it. The target is assumed to be a point moving at
constant velocity vT in a circular trajectory of radius L with the attacker permanently positioned at
the center of the coordinate system. The attacker fires its weapon along a fixed direction denoted by
the azimuth angle u. The projectile is subjected to a linear drag force. Both objects are assumed to be

576 Simulation of Dynamic Systems with MATLAB® and Simulink®

at the same elevation for the entire time. The system is similar in nature to a surface vessel under
attack by a torpedo fired from a submarine.

The mathematical model begins with equations describing the trajectories of the target and
projectile. The angular velocity of the target is

_w ¼ vT
L

(7:35)

The x and y coordinates of the target are related to the increasing angle w (measured with respect to
the y-axis) according to

xT ¼ L sinw, yT ¼ L cosw (7:36)

The projectile’s motion is governed by

m _vp þ mvp ¼ 0 (7:37)

where
m is the projectile mass
m is the drag coefficient for determining the linear drag force acting on the projectile

Resolving the projectile’s velocity into x and y coordinates,

_xp ¼ vP cos u, _yP ¼ vP sin u (7:38)

The distance separating the target and projectile is given by

D ¼ [(xT � xP)
2 þ (yT � yP)

2]1=2 (7:39)

A Simulink diagram incorporating Equations 7.35 through 7.39 is shown in Figure 7.15. Since the
intended purpose of firing the projectile is to intercept the target, the performance measure of the
system is taken as the separation between the target and projectile at the moment the projectile has
traveled a distance L. This distance is denoted as Dfinal. Note the presence of a ‘‘Relational
Operator’’ block for terminating the simulation when the projectile’s distance ‘‘rP’’ exceeds ‘‘L.’’
The simulation final time is chosen as some arbitrarily large number ensuring that the simulation is
halted at the appropriate time, which incidentally is monitored in the ‘‘Display’’ block.

y

x

vT

vP

L

D

θ

(t)

(xT, yT)

(xP, yP)

FIGURE 7.14 Diagram showing movement and position of target and projectile.

Simulation Tools 577

The firing angle u is treated as a controllable parameter. Our objective is to find uopt, that is, the
projectile firing angle that minimizes the performance measure Dfinal (ideally to zero). A number of
calls are made from the M-file ‘‘Chap7_target.m’’ to the simulation model ‘‘target_projectile.mdl’’
to explore the relationship between Dfinal and u. The result is shown in Figure 7.16.

The function Dfinal(u) is seen to possess a single minimum in the neighborhood of 708 when the
remaining system parameter values are as shown in Figure 7.16. We must perform a search for uopt
where

Dfinal(uopt) ¼ Min
u�0

Dfinal(u) (7:40)

FIGURE 7.15 Simulink® diagram of target and projectile system.

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

M
iss

 d
ist

an
ce

, D
fin

al
 (f

t)

4000

5000

6000

Firing angle, θ (deg)

vT = 15 mph, vP (0) = 45 mph
L = 5000 ft, m = 2000/32.2 slugs, μ = 0.1 lb s/ft

FIGURE 7.16 Graph of miss distance Dfinal vs. projectile firing angle u.

578 Simulation of Dynamic Systems with MATLAB® and Simulink®

The M-file ‘‘Chap7_opt_search.m’’ performs a very rudimentary search for the optimum angle
uopt. It begins by incrementing u (starting from zero) until it finds an angle uU where Dfinal(uU) is
greater than Dfinal at the previous firing angle. Since the previous point could be to the right of
the minimum, the angle prior to the previous one is designated uL and the interval (uL � u � uU)
is guaranteed to contain uopt. A second sweep, with a finer gradation of u values, is initiated,
beginning at uL. It continues until uopt is found or the entire interval (uL � u � uU) is traversed.
uopt is detected when Dfinal(u) is below some threshold, 10 ft in this case. A second sweep is
tried with even finer divisions if the first one is unsuccessful. It must be borne in mind that each
value of u requires a simulation run to find Dfinal(u). The two search phases are illustrated in
Figure 7.17.

The optimization toolbox includes a number of algorithms for iteratively searching parameter
spaces to locate local minima and maxima of a function that depends on the parameters. Optimum
seeking methods are available for both unconstrained and constrained optimization. The optimiza-
tion toolbox and Simulink complement each other when the performance measure (objective
function in optimization terminology) at some point in the parameter space depends on the
dynamic response of a system. That is, the actual system response must be observed or simulated
to obtain a numerical value of the objective function. This could be a final value of some output
(dependent variable) or perhaps a certain function of several dependent variables. A common
situation is where the objective function is evaluated as the integral of an appropriate function of
the system’s outputs.

In situations where the objective function dependence on the system’s parameters is expressible
in analytical or tabular form, a dynamic simulation is unnecessary and Simulink is not required. In
either case, a unique value for the objective function at different locations in the parameter space
must be available to the optimization routine.

Before we delve more into the practical aspects of optimization, let us take a look at how the
MATLAB optimization toolbox can be used to find the optimum firing angle uopt in the previous

0

20

40

60

80

θ
(d

eg
)

θ
(d

eg
)

Iteration

Phase 1 search: Δθ = 2.5° Phase 2 search: Δθ = 0.2°

θU = 72.5°

θL = 67.5°

θopt = 69.7°

0

2000

D fi
na

l

D fi
na

l

4000

6000

68

69

70

Iteration
1 5 10 15 20 25 30

Iteration
1 5 10 15 20 25 30

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

0

50

10

150

20

Iteration

FIGURE 7.17 Two-phase search for optimum firing angle.

Simulation Tools 579

example. The first step is the creation of a MATLAB function file to evaluate the objective function
Dfinal for a given value of firing angle u. The function M-file ‘‘obj_ fcn_D’’ is listed as follows:

function f¼obj_fcn_D(angle, L, m, mu, vT, vP)
% Objective function for finding D_final
T¼0.05; % integration step (sec) for RK-4
tfinal¼200; % final sim time (sec)
opts¼simset(‘SrcWorkSpace’,‘current’,‘DstWorkSpace’,‘current’);
theta¼angle; % firing angle (rad) for ‘CON’ Simulink model block
sim(‘target_projectile’, tfinal, opts); %run sim and return array D
f¼D(end); % objective function: D_final (ft)

The first argument of ‘‘obj_ fcn_D.m’’ is ‘‘angle’’ (the optimization parameter u), and the
remaining arguments are simply parameters passed to the function from the main program
‘‘Chap7_Toolbox_opt_search.m.’’ The main program initializes the starting value of u in the
variable ‘‘angle_init’’ and then calls the optimization toolbox function ‘‘fminunc’’ to start
the search uopt. The preferred way of calling ‘‘fminunc’’ depends on the version of MATLAB in
use. Prior to MATLAB 6.0 (R12), the correct syntax was

[opt_angle_rad, FVAL]¼fminunc(‘obj_fcn_D’,angle_init,[], L, m, mu,
vT, vP_initial) % optimum angle (rad)

For MATLAB 6.0 (R12) and later, the string ‘obj_fcn_D’ was replaced by the function handle
‘@obj_fcn_D’ for faster calls to the objective function.

uopt and the minimum Dfinal are returned in ‘‘opt_angle_rad’’ and ‘‘FVAL’’ if the search
algorithm converges to a solution. ‘‘Chap7_Toolbox_opt_search.m’’ contains additional statements
to simulate the system using the optimum firing angles returned by ‘‘fminunc’’ when the target
speed is 15 and 75 mph. Target and projectile trajectories are shown in Figures 7.18 and 7.19. The
projectile’s position is plotted at 2.5 s intervals. The elapsed time in both cases is 80.8 s.

It is not surprising that elapsed time tf is the same for both target speeds. The time is easily found
by recognizing that the solution to Equation 7.37 is given by

vP(t) ¼ vP(0)e
�(m=m)t, t � 0 (7:41)

0 200 400 600 800 1000 1200 1400 1600 1800
0

500

1000

1500

2000

2500y (
ft)

3000

3500

4000

4500

5000

x (ft)

Target trajectory
Projectile trajectory

vT = 15 mph
θopt = 69.63°

Simulated firing at optimum firing angle

FIGURE 7.18 Target and projectile motion for optimum firing angle (vT¼ 15 mph).

580 Simulation of Dynamic Systems with MATLAB® and Simulink®

and then integrating to obtain sp(t), the distance traveled by the projectile

sp(t) ¼
ðt
0

vp(0)e
�(m=m)tdt (7:42)

¼ m

m
vp(0)[1� e�(m=m)t], t � 0 (7:43)

Setting sp(tf)¼ L and solving for tf give

tf ¼ �m

m
ln 1� mL

mvp(0)

� �

¼ � 2000=32:2
0:1

ln 1� 0:1(5000)
(2000=32:2)45(5280=3600)

� �
¼ 80:79 s (7:44)

There are a number of system parameters that can be varied to study their effect on the optimum
firing angle. Suppose we wish to investigate the relationship between uopt and the target’s speed vT.
The M-file ‘‘Chap7_opt_theta_vT.m’’ sequences through a range of target speeds vT¼ 5, 15, 25, . . . ,
65, 75 mph and finds the optimum firing angle for each speed. The result is shown in Figure 7.20
where it is apparent that the relationship is linear. Could this have been predicted?

Referring to Figure 7.14, at time tf, when the projectile has struck the target,

u ¼ p

2
� j(tf) ¼ p

2
� vT

L

� 	
tf (vT in ft=s, u in rad) (7:45)

) u ¼ 90� vT
5000

5280
3600

� �
180
p

� �� �
80:79 (vT in mph, u in deg) (7:46)

) u ¼ 90� 1:3579vT (7:47)

which is the equation of the line shown in Figure 7.20.

0 1000 2000 3000 4000 5000
−1000

−500

0

500

1000

1500

y (
ft) 2000

2500

3000

3500

4000

4500

5000

x (ft)

Target trajectory
Projectile trajectory

vT = 75 mph
θopt = –11.85 deg

FIGURE 7.19 Target and projectile motion for optimum firing angle (vT¼ 75 mph).

Simulation Tools 581

The search algorithm used to find the optimum firing angle, illustrated in Figure 7.17, is rather
simple. More sophisticated algorithms rely on the local topography of the objective function to
guide the search for the local optimum point. The gradient vector (to be defined shortly) is computed
at a point in multidimensional parameter space and used to arrive at a new direction and distance for
continuing the search. The gradient vector reduces to the first derivative for one-dimensional
searches.

Following is an example of a one-dimensional parameter search using the slope, that is, first
derivative to locate the minimum of an objective function. In the target–projectile system, the
projectile decelerates with time due to the linear drag force. Suppose the target attempts to ‘‘outrun’’
the projectile by traveling in the y-direction starting from the point (0, L), (see Figure 7.14) at
constant speed vT. The target is in the clear if the pursuing projectile is moving slower than the
target, that is, vP(t)< vT at some point in time and yT (t)> yP(t) have been true up to that time.

We focus on the minimum separation between the target and projectile to see how close the two
come. For a set of fixed parameters L, m, m, vT, and vP(0)> vT, the time at which the minimum
separation occurs is required. Position of the target is given by

yT (t) ¼ Lþ vT t, t � 0 (7:48)

From Equation 7.42, the distance traveled and, hence, position of the projectile are

yP(t) ¼ tvP(0)(1� e�t=t), t � 0 where t ¼ m

m
(7:49)

The separation between the target and projectile as a function of time is

D(t) ¼ yT (t)� yP(t) ¼ Lþ vT t � tvP(0)(1� e�t=t), t � 0 (7:50)

A graph of Equation 7.50 with the nominal parameter values is shown in Figure 7.21. Differenti-
ating D(t) in Equation 7.50 gives

0 10 20 30 40 50 60 70 80
−20

0O
pt

im
um

 fi
rin

g
an

gl
e,

θ o
pt

 (d
eg

)

20

40

60

80

100

Target speed, vT (mph)

FIGURE 7.20 Results of target speed sensitivity analysis.

582 Simulation of Dynamic Systems with MATLAB® and Simulink®

d

dt
D(t) ¼ vT � vP(0)e

�t=t, t � 0 (7:51)

A search algorithm is implemented in ‘‘Chap7_min_sep_search.m,’’ which sequences through
values of t based on the first derivative. Specifically,

tiþ1 ¼ ti � d

dt
D(ti) � D, i ¼ 0, 1, 2, . . . (7:52)

The search terminates when the magnitude of the derivative falls below a threshold that was set to
0.1 and D was fixed at a value of 10.

Figure 7.22 shows the results of two searches for the minimum separation. The one on the left
starts at t0¼ 0 s and the other begins at t0¼ 800 s. The two searches quickly locate the same
minimum separation of 572.4 ft at t¼ 349.7 s. Note the derivative function approaching zero from
opposite directions as the two searches progress.

This example illustrates the power of using the derivative to scale the step size between
sequential points in the search for the optimum value of the objective function.

From elementary calculus, the local minima and maxima of a continuously differentiable
function occur at critical points where the first derivative is equal to zero. Hence, from Equation
7.51, we can find tmin as follows

d

dt
D(t)

t¼tmin

¼ vT � vP(0)e
�t=t

t¼tmin
¼ 0

) tmin ¼ �t ln vT
vP(0)

� �
¼ � 2000=32:2

0:15
ln

15
35

� �
¼ 350:8 s

(7:53)

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

D
 (f

t)

3000

3500

4000

4500

5000

t (s)

Separation between target and projectile

vT = 15 mph, vP (0) = 35 mph
L = 5000 ft, m = 2000/32.2 slugs, μ = 0.15 lb s/ft

FIGURE 7.21 Graph of separation distance vs. time.

Simulation Tools 583

Substituting tmin in Equation 7.53 for t into Equation 7.50 gives (after simplification),

Dmin ¼ L� t vP(0)� vT þ vT ln
vT

vP(0)

� �� �
(7:54)

¼ 5000� 2000=32:2
0:15

35� 15þ 15 ln
15
35

� �� �
5280
3600

� �
¼ 572:3 ft (7:55)

The numerical values obtained analytically in Equations 7.53 and 7.55 are in agreement with the
values obtained from the iterative search for the minimum separation.

Analytical solutions for finding the optimum point are seldom possible. When the system
dynamics are modeled by nonlinear equations, iterative searches using simulation to obtain the
objective function and numerical derivative approximations are often the only recourse. For
example, the existence of nonlinear damping functions in the target–projectile system would
necessitate a simulation-based approach to finding the minimum separation.

The optimization toolbox employs a different search method when the objective function and its
derivative (partial derivatives in the multivariable case) are expressible in analytic form. The M-file
‘‘obj_ fcn_D_sep.m’’ includes definitions of both the objective function and its first derivative. The
essential statements are

function [f,g]¼obj_fcn_D_sep(t,L,tau,vT,vP_initial)
f¼LþvT*t-tau*vP_initial*(1-exp(-t=tau));
g¼vT-vP_initial*exp(-t=tau);

and the calling program ‘‘Chap7_Toolbox_opt_sep_search.m’’ references the function file
‘‘obj_fcn_D_sep.m’’ using

options¼optimset (‘GradObj’,‘on’);
t_min¼fminunc (@obj_fcn_D_sep, t_init, options, L, tau, vT, vP_

initial)

0

2000D
(ft

)
4000 t0 = 0

Δ = 10
t0 = 800
Δ = 10

t0 = 800
Δ = 10

t0 = 0
Δ = 10

Starting point

−30

−20dD
/d

t (
ft/

s)

D
(ft

)
dD

/d
t (

ft/
s)

−10

0

t (s) t (s)

0

1000

2000

3000

4000

5000
Starting point

0 100 200
(a)

(b)

300 400

0 100 200 300 400

350 500 650 800

350 500 650 800

0

5

10

15

FIGURE 7.22 Results of two searches for minimum separation. (a) Sequence of points in search for
minimum. (b) Sequence of derivative evaluations in search for minimum.

584 Simulation of Dynamic Systems with MATLAB® and Simulink®

The ‘‘options’’ declaration is required to enable the gradient search method, which uses the
first derivative of the objective function given in ‘‘obj_fcn_D_sep.m,’’ when the call to ‘‘fminunc’’
is made. The results obtained from running the M-file ‘‘Chap7_Toolbox_opt_sep_search.m’’ are
identical with the analytical values given in Equations 7.53 and 7.55.

7.3.1 GRADIENT VECTOR

Our experience in the previous example taught us that knowledge of the slope, that is, first
derivative of the objective function, could be used to reduce the number of iterations required to
locate a local optimum. The same holds for objective functions involving several parameters.
Instead of a single derivative, a gradient vector with components equal to the partial derivatives
of the objective function with respect to each parameter is computed. The gradient vector of a
multivariable function at a point in parameter space points in the direction of maximum increase of
the function. Furthermore, the magnitude of the gradient vector is a measure of the rate of increase
in the objective function in the direction of the gradient.

Consider the function

f (x1, x2) ¼ c1(x1 � h)2 þ c2(x2 � k)2, �1 < x1 <1, �1 < x2 <1 (7:56)

The gradient vector at the point (x1, x2) is

rf (x1, x2) ¼
qf (x1, x2)

qx1
qf (x1, x2)

qx2

2664
3775 ¼ 2c1(x1 � h)

2c2(x2 � k)

" #
(7:57)

Figure 7.23 portrays the objective function as a surface z¼ f(x1, x2) for the case where h¼ 5, k¼ 10,
c1¼ 1, and c2¼ 4. Several contours that are projections of constant z in the x1–x2 plane are
also shown. The global minimum occurs at x1¼ h¼ 5 and x2¼ k¼ 10 and the minimum value is
f(h, k)¼ f(5, 10)¼ 0.

Since the gradient vector at (x1, x2) points in the direction of maximum increase of f(x1, x2), the
orthogonal direction that coincides with the tangent to the contour at (x1, x2) represents the direction
of zero change in f(x1, x2). The negative of the gradient vector is drawn at several points in the x1–x2

35
30

z = f (x1, x2)

25
20
15
10

5
0

12
10

8x2 x10
2

4 6
8 10

z

FIGURE 7.23 Graph of surface z¼ f(x1, x2) and several contours z¼ const.

Simulation Tools 585

parameter space in Figure 7.24 because �rf(x1, x2) points in the direction of maximum decrease of
f(x1, x2), and we are looking at minimizing the objective function.

Table 7.4 includes the points shown in Figure 7.24, the value of z for the contour, which the
points lie on, the negative gradient vector, and its magnitude. The lengths of the negative gradient
vectors are drawn proportional to their magnitudes given in the table.

A multivariable function like f(x1, x2) is expandable about a point (x1, x2) using a two-dimensional
Taylor Series, that is,

f (x1, x2) ¼ f (x1, x2)þ qf (x1, x2)
qx1

(x1 � x1)þ qf (x1, x2)
qx2

(x2 � x2)þ h:o:t: (7:58)

Objective function contours and negative gradient vectors in x1 – x2 plane

3 3.5 4 4.5 5 5.5 6 6.5 7
8.5

9

9.5

10

10.5

11

x1

x 2

z = 5 contour

z = 0 at x1 = 5, x2 = 10

FIGURE 7.24 Contours of the objective function f(x1, x2)¼ (x1� 5)2þ 4(x2� 10)2.

TABLE 7.4
Contour and Gradient Data for Points
Shown in Figure 7.24

(x1, x2) Contour �=f(x1, x2) k=f(x1, x2)k

(2.7639, 10) 5
4:4721

0

� �
4.4721

(4, 9.1340) 4
2

6:9282

� �
7.2111

(6, 9.2929) 3
�2

5:6569

� �
6.0000

(5.5, 10.6614) 2
�1

�5:2915
� �

5.3852

(4.5, 10.4330) 1
1

�3:4641
� �

3.6056

(5, 10.1581) 0.1
0

�1:2649
� �

1.2649

586 Simulation of Dynamic Systems with MATLAB® and Simulink®

where h.o.t. represents higher order terms involving powers and products of (x1 � x1) and (x2 � x2).
To a first-order approximation, the change in f(x1, x2) about the point (x1, x2) is

f (x1, x2)� f (x1, x2) � qf (x1, x2)
qx1

Dx1 þ qf (x1, x2)
qx2

Dx2 (7:59)

) Df (x1, x2) � qf (x1, x2)
qx1

Dx1 þ qf (x1, x2)
qx2

Dx2 (7:60)

) Df (x1, x2) �
qf (x1, x2)

qx1
qf (x1, x2)

qx2

2664
3775
T

Dx1

Dx2

" #
¼ rf (x1, x2)TD (7:61)

And, therefore, Df (x1, x2) � 0 provided the gradient vector is identically zero at (x1, x2). Quite
understandably, the search for local extremes (minima and maxima) of the objective function
f(x1, x2) is based on finding points where the gradient vector rf(x1, x2)¼ [0 0]T. The gradient vector
also vanishes at a saddle point, which is neither a local minimum nor maximum. A test involving the
matrix of second partials at points where the gradient is zero can distinguish between local extrema
and saddle points.

Optimum seeking methods search for extreme values (minima and maxima) of an objective
function using the gradient vector in some way (Converse 1970; Miller 1975, 2000; Hasdorff 1976;
Daniels 1978; Bryson 1999). The references include both constrained and unconstrained optimiza-
tion problems. In constrained optimization, a subset of the parameters are constrained in some
fashion limiting the region of feasible solutions for finding the optimum. Typically, the constraints
are inequalities reflecting limitation of system resources or existence of physical boundaries for
safe operation.

7.3.2 OPTIMIZING MULTIPARAMETER OBJECTIVE FUNCTIONS REQUIRING SIMULINK
® MODELS

We now focus on multiparameter objective functions, which require execution of a Simulink model
to evaluate. The following example is one of a control system where the objective is to minimize a
performance measure by choosing two parameters associated with the controller. The performance
measure is obtained from simulation and the optimization toolbox is used to find the optimum
control settings.

A block diagram of a heading control system for a ship is shown in Figure 7.25. The ship’s
autopilot and power amplifier are an ideal proportional-derivative (PD) controller that converts an
error signal to an amplified voltage for driving the steering gear connected to the ship’s rudder. The
steering gear, rudder, and hull dynamics are combined into a single ship dynamics transfer function.
A gyro compass in the feedback loops senses the ship’s heading and sends a voltage to the autopilot.
A saturation block is inserted between the controller and ship transfer function to account for the

Gyro compass

ψcom(s)

Units
converter

Autopilot/amplifier Ship dynamics

ψ(s)U(s)
deg v v deg

Ku v –
Ku

s(τs + 1)

v

vKp + Kds

Kg

E (s)

FIGURE 7.25 Block diagram of ship heading control system.

Simulation Tools 587

limited power available to the steering system. The units converter transforms the commanded
heading from degree to volts for compatibility with the autopilot’s electronics.

The control parameters Kp and Kd are to be selected to optimize the system response to a step
input in command heading. There are numerous measures that can be used to characterize the step
response. Five specific measures are enumerated as follows:

1. Rise time tr—Time required for response to go from 10% to 90% of its final heading
2. Maximum overshoot, OSmax—Difference between maximum heading and final heading in

underdamped systems
3. Maximum heading rate, j _cmaxj—Maximum rate of change in ship’s heading
4. Integral squared error, ISE—Integral of squared error from time zero to infinity
5. Integral absolute error, IAE—Integral of absolute value of error from zero to infinity

The objective function f is assumed to be a function of these measures, that is,

f ¼ f (tr,OSmax, j _cmaxj, ISE, IAE) ¼ F(KP,Kd) (7:62)

Note that the objective function is implicitly dependent on Kp and Kd because each of the measures
tr, OSmax, j _cmaxj, ISE, and IAE depends on these parameters. The goal is to find the optimum value
fopt where

fopt ¼ Min
KP>0,Kd>0

F(KP,Kd) (7:63)

In this example, f is set to a linear combination of the five measures. Hence,

f (tr,OSmax, j _cmaxj, ISE, IAE) ¼ c1tr þ c2OSmax þ c3j _cmaxj þ c4ISEþ c5IAE (7:64)

The constants c1, c2, c3, c4, and c5 determine the weights of each measure. For example, if the goal is
to minimize the integral squared error (ISE),

ISE ¼
ð1
0

e2(t)dt ¼
ð1
0

[ccom � c(t)]2dt (7:65)

the weights are set to c1¼ c2¼ c3¼ c5¼ 0 and c4¼ 1.

The constrained optimization routine ‘‘fmincon’’ in the optimization toolbox implements a
search for fopt subject to parameter constraints. The statement

[opt_Kp_Kd,FVAL,EXITFLAG,OUTPUT]¼fmincon(@obj_fcn_ship,Kp_Kd_
init,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS,Kg,L,Ks,tau,t1,theta_com,c)

in ‘‘Chap7_Toolbox_opt_ship.m’’ invokes a constrained search for the optimum values of param-
eters Kp and Kd. The arguments ‘‘A, B, Aeq, Beq, LB, UB, NONLCON’’ define the constraints.
‘‘LB’’ and ‘‘UB’’ are used to set lower and upper bounds on the parameters, and the remaining
arguments are empty arrays not applicable in this example.

Before we look at the results, it is instructive to visualize the objective function surface with
respect to the Kp–Kd plane. The objective function in this example is

f ¼ tr þ OSmax þ j _cmaxj ¼ F(Kp,Kd) (7:66)

588 Simulation of Dynamic Systems with MATLAB® and Simulink®

It is shown in Figure 7.26 for the region 0 � Kp � 25, 0 � Kd � 25. The data points for drawing the
surface were obtained by repeated calls to the Simulink model ‘‘ship.mdl’’ from the M-file ‘‘Chap7_
ship_control.m.’’ The simulated step responses were executed for 100 s, a period of time sufficient to
allow the transient response to vanish, except for heavily damped cases (low Kp, high Kd). Numerical
values of the system parameters are Ku¼Kg¼ 10 V=rad, Ks¼ 0.04 rad=s=V, and t¼ 10 s, and the
autopilot=amplifier saturates at 25 V. The commanded heading ccom was set to 308.

In runs where the ship’s heading had yet to reach 90% of the final heading (which did not occur
for the points shown in Figure 7.26), the rise time was set to 100 s. When the ship’s heading failed to
reach the final heading, the overshoot was set to zero. The final heading is the commanded heading
for all combinations of Kp and Kd resulting in a stable response.

The Simulink block diagram for the model ‘‘ship.mdl’’ is shown in Figure 7.27.
The ‘‘PID’’ block in Figure 7.27 is present in the ‘‘Simulink Extras’’ library. It is an ideal PID

controller with parameters P, I, and D in the transfer function

G(s) ¼ Pþ I

s
þ Ds (7:67)

40

35

30

25

20F
(K

p,
K d

)

15

10
25 20 15 10 5 0 0 5 10 15 20 25

Kd
Kp

FIGURE 7.26 Objective function surface f ¼ tr þ OSmax þ j _cmaxj ¼ F(Kp,Kd).

FIGURE 7.27 Simulink® block diagram for ship heading step response.

Simulation Tools 589

For simulation runs, P assumed the value of Kp, I was zero, and D assumed the value of Kd. The
optimization toolbox search algorithm started from the point (1, 1) in the Kp–Kd plane. A gradient
search is not used since the gradient of the objective function is not available in analytic form.
A gradient-based search would require numerical approximations to the gradient at a number of
points along the way to finding the optimum. The number of objective function evaluations would
likely increase significantly depending upon the algorithm’s efficiency in locating the optimum. In
this example, a ‘‘medium-scale, SQP, Quasi-Newton, and line-search’’ algorithm (see optimization
toolbox reference manual), was used successfully to find the optimum solution, namely,
(Kp)opt¼ 1.3011, (Kd)opt¼ 7.1913, and fopt¼ 14.4395. A total of 344 function evaluations and,
hence, the same number of simulation runs were required.

The simulation was run with the optimal parameter settings to verify the objective function value.
The ship’s heading and heading rate are shown in Figure 7.28. The rise time, maximum overshoot,
and maximum heading rate are 11.5000 s, 0.1154 deg, and 2.8241 deg=s, respectively. From
Equation 7.66, f¼ 11.5000þ 0.1154þ 2.8241¼ 14.4395.

7.3.3 PARAMETER IDENTIFICATION

Knowledge of the system parameters appearing in the differential and algebraic equations used to
model continuous-time dynamic systems is often imperfect. When the simulationist is reasonably
confident that the model’s structure is suitable for its intended purpose, the subject of parameter
identification arises (see Figure 7.1). A simple approach predicated on minimizing the differences
between observed and simulated responses is presented in the following example.

The decreasing concentration of a chemical in solution follows a law from reaction kinetics that
states

dx

dt
¼ �kxn (k > 0, n > 0) (7:68)

where
x¼ x(t) is the concentration
k is a rate constant
n is the order of the reaction

Suppose the concentration of a chemical in solution was measured and recorded once a minute
for 60 min. The values at 5 min intervals are shown in Table 7.5.

0

5

10

15

20

25

30

t (s) t (s)

Command and actual headings (deg)

0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3
Heading rate (deg/s)

FIGURE 7.28 Results with optimal parameter settings: (Kp)opt¼ 1.3011, (Kd)opt¼ 7.1913.

590 Simulation of Dynamic Systems with MATLAB® and Simulink®

The problem before us is to estimate the reaction constant k and reaction order n. We will do this
by simulating the response for the chemical concentration starting with guessed values for k and n.
The observed and simulated responses are used to compute the sum of squared errors, that is,

SSE ¼ f (k, n) ¼
X60
i¼0

[x̂i � xi]
2 (7:69)

where
xi¼ x(ti), i¼ 0, 1, 2, . . . , 60 are simulated concentrations a minute apart
x̂i ¼ x̂(ti), i¼ 0, 1, 2, . . . , 60 are values of concentration measured at one-minute intervals, some

of which are shown in Table 7.5

Minimizing the objective function f(k, n) yields the optimal estimates of the reaction parameters.
Observed concentrations x̂i, i¼ 0, 1, 2, . . . , 60 are obtained by running the M-file ‘‘Chap7_

reaction_kinetics.m,’’ which calls the Simulink model ‘‘chemical.mdl’’ with k¼ 0.125 and n¼ 2.3,
representative of the true reaction. The Simulink block diagram is shown in Figure 7.29. A search
constrained to the first quadrant of the k–n plane is performed using one of the routines from the
optimization toolbox. The search concludes with kopt¼ 0.1256, nopt¼ 2.3037 and SSE¼ f(kopt, nopt)¼
3.2303� 10�7.

A graph of the simulated concentration response with the optimal parameter values is shown in
Figure 7.30. As expected, the observed concentrations fall on the simulated concentration response
curve.

7.3.4 EXAMPLE OF A SIMPLE GRADIENT SEARCH

The common feature of all gradient search algorithms is their reliance on calculation of the gradient
vector at a point in the parameter space. The logic for choosing a direction and step size leading to

TABLE 7.5
Measured Concentration of Chemical in Solution at the End
of 5 min Intervals

t (min) 0 5 10 15 20 25 30

x̂ (mol=L) 0.5000 0.4015 0.3386 0.2945 0.2617 0.2363 0.2159

t (min) 35 40 45 50 55 60

x̂ (mol=L) 0.1991 0.1851 0.1731 0.1628 0.1538 0.1459

FIGURE 7.29 Simulink® diagram for chemical reaction.

Simulation Tools 591

the next point along with the frequency of gradient calculations is what distinguishes one gradient
search algorithm from another. The gradient search presented in this section is intended to
demonstrate how to exploit the property of the gradient vector to find a local minimum of an
objective function. It is less efficient in comparison with established gradient search algorithms
reported in the literature.

The focus of our attention is a bowl-shaped tank shown in Figure 7.31. The bowl is the lower half
of a sphere of radius R. Water flow into and out of the tank is controlled by the valves located in the
inflow and exiting pipes. The inflow F1(t) is maintained at a constant value F1. The outflow F2(t) is a
function of water level H(t) and the opening of the valve in the discharge line, which effectively
determines the constant c in the equation

F2(t) ¼ c[H(t)]1=2 (7:70)

0 10 20 30
t (min)

40 50 60
0.1

0.15

0.2

ˆ
x(

t)
an

d
x(

t)
(m

ol
/L

)

0.25

0.3

0.35

0.4

0.45

0.5

End-of-minute observed concentrations
Simulated concentration using kopt and nopt

kopt = 0.1256, nopt = 2.3037

FIGURE 7.30 Graph of observed and simulated (k ¼ kopt, n ¼ nopt) concentration with optimal parameters.

H(t)

R

F1(t)

F2(t)

FIGURE 7.31 Hemispherical bowl with flows in and out.

592 Simulation of Dynamic Systems with MATLAB® and Simulink®

Conservation of mass requires

d

dt
V(t) ¼ F1(t)� F2(t) (7:71)

where the volume V(t) is related to the water level by

V(t) ¼ 1
3
pH2(t)[3R� H(t)] (7:72)

Differentiating Equation 7.72 with respect to t and simplifying yield

d

dt
V(t) ¼ p[2R� H(t)]H(t)

d

dt
H(t) (7:73)

Combining Equations 7.70, 7.71, and 7.73 results in the differential equation model

p[2R� H(t)]H(t)
d

dt
H(t) ¼ F1(t)� c[H(t)]1=2 (7:74)

The term p[2R�H(t)]H(t) is equal to the cross-sectional area of the bowl at the water level H(t),
that is,

A(H) ¼ p(2R� H)H (7:75)

And, therefore, Equation 7.74 is expressible as

A(H)
dH

dt
¼ F1 � cH1=2 (7:76)

The objective is to fill the tank in a specified period of time. The inflow F1 and discharge constant c
are the controllable parameters at our disposal. Before we discuss the gradient search, the objective
function must be defined. Since the goal is to fill the tank in a given period of time, say Tdes, the
objective function is defined as

F(tfill) ¼

A
tfill
TL
� 1

� �2

, 0 � tfill < TL

0, TL � tfill � TH

B
tfill � TH
Tmax � TH

� �2

, TH < tfill � Tmax

B, Tmax < tfill

8>>>>>>>>><>>>>>>>>>:
(7:77)

F(tfill) is zero whenever the time to fill the tank tfill falls between TL¼ Tdes�D=2 and TH¼ Tdesþ
D=2 where D is the width of the interval centered at Tdes. The constant Tmax is an arbitrarily chosen
upper limit. A and B determine the objective function at the points tfill¼ 0 and tfill¼ Tmax. A graph of
F(tfill) is shown in Figure 7.32.

It is helpful to visualize the objective function surface over the F1–c plane. For convenience, let
the maximum inflow be (F1)max¼ 10 ft3=min when the inlet valve is wide open. Furthermore,
a maximum value of cmax¼ 2 ft3=min=ft1=2 is assumed, corresponding to a wide-open valve in the
discharge line.

Simulation Tools 593

The objective function surface is shown in Figure 7.33. It is plotted in the M-file ‘‘Chap7_
globe_ fill_surface.m,’’ which loops through a range of F1 and c values, calling the Simulink model
file ‘‘globe.mdl’’ to determine the fill time tfill. The simulation terminates when the tank is full, that
is, H(t)¼R¼ 5 ft, or failing that when the simulated time reaches Tmax¼ 300 min.

It appears from looking at Figure 7.33 that the surface contains a ridge extending from c¼ 0 to
c¼ cmax¼ 2 (with corresponding F1 values) for which the objective function is zero. Indeed, this is
consistent with our intuition, which suggests the likelihood of numerous combinations of F1 and c
yielding a tank fill time between TL¼ 145 min and TH¼ 155 min and, thus, F(F1, c)¼ 0.

0 32.68 80.15 150 200 246.71 300 350

0

10

20

30

40

F
(t f

ill
)

50

60

70

80

90

100

tfill

A = 100

B = 50

Tdes = 150 min

TL = 145 min TH = 155 min

Tmax = 300 min

Δ = TH − TL = 10 min

FIGURE 7.32 Graph of objective function F(tfill).

70

60

50

40

30

20

10

0
10

8
6

4
2

0 0
0.4

0.8 c
1.2

1.6
2

F1

FIGURE 7.33 Objective function surface z¼F(F1, c) for tank-filling problem.

594 Simulation of Dynamic Systems with MATLAB® and Simulink®

Another distinguishing characteristic in the surface’s topology is the plateau at an elevation of 50
(the value of B) corresponding to points (F1, c) for which the tank fill time is greater than or equal to
300 min or else the tank never fills. The challenge will be for the gradient search algorithm to find
points in parameter space along the aforementioned ridge where the objective function is a
minimum, that is, zero.

The Simulink block diagram is shown in Figure 7.34.
The parameters F1 and c and the tank fill time tfill are visible in Simulink ‘‘display’’ blocks.

Note the limited integrator with upper limit set to R¼ 5 ft, which also happens to be identical to the
threshold parameter of the ‘‘Switch’’ block. Consequently, the simulation is halted when the tank
is full, that is, the level H(t) � R.

A variable-step ‘‘ode45 Dormand Prince’’ numerical integrator with default tolerance
settings is used to control the truncation error. Execution times are reduced by a significant
amount compared to one of the RK fixed-step integrators with suitably chosen integration step
(see Exercise 7.10).

The gradient search implemented in ‘‘Chap7_ grad_ search_ globe_ fill.m’’ is outlined in flow
chart form in Figure 7.35. It begins with a user-selected starting point (F1, c) in F1–c parameter
space. Prior to the calculation of the gradient, the point is checked to verify the possibility of the
tank filling up. At steady state, we know from Equation 7.76 that

(F1)ss � c(Hss)
1=2 ¼ 0 (7:78)

and, therefore, imposing the constraint

F1 > cR1=2 (7:79)

guarantees that the water will eventually attain a level of R¼ 5 ft, although not necessarily in less
than Tmax¼ 300 min. If the initial point fails to satisfy the inequality in Equation 7.79, the initial
inflow F1 is adjusted according to

F1 ¼ min {1:5cR1=2, (F1)max} (7:80)

FIGURE 7.34 Simulink® diagram for hemispherical tank-filling simulation.

Simulation Tools 595

The remaining blocks in the flow chart are for computing the objective function, the gradient vector,
and for determining how big a step to take in the negative gradient direction in searching for a
minimum, that is, points where F(F1, c)¼ 0.

The so-called steepest descent gradient searches (Wilde 1964) look for the optimum distance to
travel in the negative gradient direction before changing directions. The optimum distance is
determined by the local minimum of the objective function along the negative gradient direction.
When the local minimum is reached, the gradient vector is recalculated, and the search proceeds in the
new direction that happens to be orthogonal to the previous search direction. Hence, with steepest

Computer F(F1
new, cnew) and F(F1

new, cnew)

F(F1
new, cnew < 0.001 or | F(F1

old, cold)| < 0.1 or iter = 50

F(F1
new, cnew) < F (F1

old, cold)

F(F1
old, cold) F(F1

new, cnew)

F1
old > cold R1/2Y

Y

Y

N

N

N

F1
old min {1.5cold R1/2, (F1)max}

Step min {0.75 × step, 0.1}

iter iter + 1

iter 1

Stop

Initial guess: F1
old and cold

F(F1
old, cold), (F)maxF1

new F1
oldmin − Step ∂

∂F1| F(F1
old, cold)|

cnew min F(F1
old, cold), cmaxc1

old − Step ∂
∂F1| F(F1

old, cold)|

Computer F (F1
old, cold) and F (F1

old, cold)

cnewF1
newF1

old

FIGURE 7.35 Flow chart for gradient search algorithm.

596 Simulation of Dynamic Systems with MATLAB® and Simulink®

descent as described, the search consists of a sequence of orthogonal moves from point to point.
The distance between consecutive points varies, generally decreasing as the optimum is approached.

The gradient search illustrated in Figure 7.35 is not of the steepest descent type; rather, it
consistently takes a single step in the negative gradient direction from one point to the next and
then recomputes the gradient vector.

The magnitude of the step is altered based on a comparison of the objective function at
neighboring points, that is, after taking a full step, if the new objective function is greater than
the previous value, the step size is reduced by 25% next time around. A lower threshold on step size
is imposed to prevent the search from ‘‘slowing down to a crawl.’’ Compared to steepest descent, the
steps are either too small or too large, and the search will require more gradient calculations. Even
worse, the new gradient direction may steer the search away from the minimum altogether, and the
method fails to converge.

The search is terminated using a stop condition based on the magnitude of the gradient vector, the
value of the objective function, and the number of steps taken. After considerable experimentation,
the tolerances were chosen to stop the search if

jrF(F1, c)j ¼

q
qF1

F(F1, c)

q
qc1

F(F1, c)

26664
37775

 � 0:1 or F(F1, c) � 0:001 or # steps ¼ 50 (7:81)

The gradient vector rF(F1, c) is calculated numerically using a central difference approximation
formula, namely,

q
qF1

F(F1, c) ¼ F(F1 þ DF1, c)� F(F1 � DF1, c)
2DF1

(7:82)

q
qc

F(F1, c) ¼ F(F1, cþ Dc)� F(F1, c� Dc)

2Dc
(7:83)

where the deviations DF1 and Dc are 0.005 and 0.01, respectively. The gradient vector is computed
by calling the MATLAB function ‘‘gradF_globe.m’’ from the M-file ‘‘Chap7_grad_search_
globe_ fill.m’’ with arguments F1 and c. The components in Equations 7.82 and 7.83 are returned
as outputs.

Results of successful gradient searches starting from randomly chosen starting points in the
region 0 � F1 � (F1)max¼ 10, 0 � c � cmax¼ 2 of F1–c parameter space are shown in Table 7.6.
The search failed to locate the minimum on a few occasions.

A different approach to finding the optimum points located along the ridge in Figure 7.33 is to
plot the F(F1, c)¼ 0 contour. Other contours F(F1, c)¼F0, (F0 constant) can be plotted as well by
searching for points in the F1–c plane, which result in filling times corresponding to the required
contour values. Figure 7.32 shows the two filling times that result in F(F1, c)¼ 20 and the single
filling time that leads to F(F1, c)¼ 60.

With F0¼ 20, the next step is fixing the parameter c and varying F1 until the two values that lead
to tmin¼ 80.15 min and tfill¼ 246.71 min are found. The search for F1 is constrained to the interval
(F1)min� F1� (F1)max, where (F1)min is the minimum flow needed to fill the hemispherical tank and
is given by

(F1)min ¼ cR1=2 (7:84)

where c is the current fixed value. In other words, points {(c, F1)jF1< (F1)min} are infeasible and not
searched. The process is repeated for c ranging from cmin¼ 0 to cmax¼ 2 ft3=min=ft1=2.

Simulation Tools 597

A similar process occurs when B � F0 � A, except in this case, there is a single value of fill
time corresponding to F0 (see Figure 7.32). For F(F1, c)¼F0¼ 60, the fill time is 32.68 min. The
F0¼ 20 and F0¼ 60 contours are shown in Figure 7.36. The F0¼ 0 contour is also shown.
The upper portion corresponds to fill times of tfill¼ TL¼ 145 min, and the lower segment is for
tfill¼ TH¼ 155 min. (see M-file ‘‘Chap7_Fig3_23.m.’’) Note that only three values of the parameter
c were used, namely, cmin, (cminþ cmax)=2, and cmax, when searching for the corresponding value of
F1 because the contours appear to be linear.

TheM-file ‘‘Chap7_globe_contours.m’’ can be used to draw the contours ranging fromF0¼ 0 up to
a maximum value (F0)max corresponding to c¼ cmin¼ 0 and F1¼ (F1)max¼ 10 ft3=min. The contour

TABLE 7.6
Summary of Gradient Search Results for Five Starting Points in F1– c Plane

#1 #2 #3 #4 #5

(F1)start 2.026 9.218 1.762 0.578 8.131

cstart 1.344 1.476 0.811 0.705 0.019

F[(F1)start, cstart] 1.756 52.922 6.776 17.013 60.377

rF[(F1)start, cstart]
11:293
�21:173
� �

6:038
�10:780
� � �46:318

86:859

� � �96:765
81:472

� �
4:288
�7:400
� �

jrF[(F1)start, cstart]j 23.996 12.356 98.437 205.659 8.553

(F1)opt 5.407 5.279 2.777 2.381 5.393

copt 1.995 1.898 0.558 0.345 1.995

tfill 153.5 147.8 146.3 147.5 155.0

F[(F1)opt, copt] 0 0 0 0 0

rF[(F1)opt, copt]
�0:039
0:073

� �
0
0

� �
0
0

� �
0
0

� � �0:530
1:040

� �
jrF[(F1)opt, copt]j 0.083 0 0 0 1.167

Iterations 8 17 3 9 10

0 0.5 1 1.5 2
0

1

2

3

4

5

F 1
 (f

t3 /m
in

) 6

7

8

9

10

Infeasible region: H(∞) < R = 5 ft

c (ft3/min/ft1/2)

60

20

20

0
0

FIGURE 7.36 Objective function contours F0¼ 0, 20, 60.

598 Simulation of Dynamic Systems with MATLAB® and Simulink®

for F0¼ (F0)max is a single point located at (0,10) in Figure 7.36. ‘‘Chap7_globe_contours.m’’ reports
the value of (F0)max along with the corresponding fill time, which happens to be the shortest time in
which the tank can be filled. From Figure 7.33, (F0)max appears to be approximately 68.

MATLAB will also draw the objective function contours. The statements

v¼[5 20 60];
contour(cc,F11,z,v)

in ‘‘Chap7_Fig3_24.m’’ produce the contours corresponding to objective function values of 5, 20,
and 60 shown in Figure 7.37. There is substantial agreement between the contours in Figures 7.36
and 7.37.

7.3.5 OPTIMIZATION OF SIMULINK
® DISCRETE-TIME SYSTEM MODELS

We conclude this section with a simplified model of hospital–patient occupancy (McClamroch
1980) using Simulink to simulate the dynamics. The goal will be to investigate the relationship
between the average number of scheduled patients per day on the hospital’s utilization of existing
capacity. Stochastic systems of this nature, where entities arrive in nondeterministic fashion
requiring services of random duration at different stages, are typically studied using discrete-event
simulation (Banks 2005). Popular programs for simulating systems of this nature are Process Model
(Evans) and ARENA (Kelton 1997).

While Simulinkmay not be the ideal program to simulate the dynamics of patients flowing through
a hospital’s facilities, a macroscopic discrete-time system model that captures some of the important
features is still possible. In the model to be formulated, the basic unit of discrete-time is a day.

The types of daily arrivals and departures from the hospital are accounted for by

ei¼ number of emergency arrivals on (i þ 1)st day
si¼ number of scheduled arrivals on (i þ 1)st day
di¼ number of departures on (i þ 1)st day
mi¼ number of deaths on (i þ 1)st day

0 0.5 1 1.5 2
0

1

2

3

4F 1
 (f

t3 /m
in

)

5

6

7

8

9

10

c (ft3/min/ft1/2)

F0 = 60

F0 = 20

F0 = 20

F0 = 5

F0 = 5

FIGURE 7.37 Graph of several contours of objective function F(F1, c).

Simulation Tools 599

Letting xi denote the number of occupied beds at the end of the ith day and L the total number of
beds, a simple model describing the hospital’s daily occupancy is

xiþ1 ¼ Min{L, xi þ ui}, i ¼ 0, 1, 2, 3, . . . (7:85)

where ui¼ siþ ei� di�mi. The components of ui in Equation 7.85 are assumed to be normally
distributed, that is,

si � N(mS,s
2
S), ei � N(mE,s

2
E), di � N(mD,s

2
D), mi � N(mM ,s

2
M)

where mS, mE, mD, mM and s2
S,s

2
E,s

2
D,s

2
M are the respective means and variances.

Typical sequences of ui and xi are shown in Figure 7.38. Note that ui represents a summation of
input components (arrivals and departures) during the (iþ 1)st day.

A Simulink block diagram of the nonlinear, first-order, discrete-time system is shown in
Figure 7.39.

In addition to generating the input components and implementation of the difference equation,
additional blocks are used to decompose the input ‘‘u(i)’’ into two series, called ‘‘u(i)> 0’’ and
‘‘u(i)< 0.’’ The first series ‘‘u(i)> 0’’ is the subset of positive values in ‘‘u(i)’’ corresponding
to days where the number of new patients exceeds the number of patients discharged or who have
died. At the end of those days, the hospital’s occupancy either increases (relative to the previous
day) or else remains constant at its capacity.

The second series ‘‘u(i)< 0’’ is the subset of negative values in ‘‘u(i)’’ corresponding to days
when the number of discharged and dying patients surpasses the number of arrivals and the
hospital’s occupancy at the end of the day is diminished from the previous day.

Note also the presence of two Simulink ‘‘switch’’ blocks feeding ‘‘scopes’’ labeled ‘‘delta
(i)> 0’’ and ‘‘delta(i)< 0.’’ The former outputs a time series showing on which days and by
how much the demand for beds exceeds the hospital’s capacity. The numerical values represent the
overflow demand, that is, the amount of additional beds required to accommodate the influx of
additional patients. The scope labeled ‘‘delta(i)< 0’’ shows the days when the hospital is
operating at less than capacity and by how much.

0 1 2 3 4 5

x0

0 1 2 3 4

ui

u0 u2

u1

u3

u4

i

i

L
xi

x1
x2 x3

x4

x5

5

x4 = Min{L, x3 + u3} = L
x5 = Min{L, x4 + u4} = x4 + u4

x3 = Min{L, x2 + u2} = x2 + u2

x2 = Min{L, x1 + u1} = x1 + u1

x1 = Min{L, x0 + u0} = x0 + u0

FIGURE 7.38 Illustration of discrete-time input and output relationship in Equation 7.85.

600 Simulation of Dynamic Systems with MATLAB® and Simulink®

Typical profiles for ‘‘u(i)> 0,’’ ‘‘u(i)< 0,’’ ‘‘delta(i)> 0,’’ and ‘‘delta(i)< 0’’ are
shown in Figures 7.40 through 7.43 for the case where the average number of admissions exceeds
the average number of discharges plus deaths.

Figures 7.44 and 7.45 show results of a single run for 100 days under the following conditions:

mS ¼ 21, s2
S ¼ 4, mE ¼ 5, s2

E ¼ 2

mD ¼ 23, s2
D ¼ 9, mM ¼ 2, s2

M ¼ 0:25

L ¼ 200, x0 ¼ 200

Hospital occupancy fluctuates between 195 and 200 corresponding to occupancy rates ranging from
97.5% to 100%. The high occupancy rates are consistent with the condition mSþmE>mDþmM,
that is, the average daily arrival of new patients is greater than the average number of patients
leaving the hospital. From Figure 7.45, it is clear there are a number of days when patients may have
been scheduled for admittance but were not admitted. (Keep in mind the simplistic nature of the
model that does not account for the hospital’s ability to accommodate excess patients.)

0 5 10 15 20 25 30 35 40 45 50
0
1

Pa
tie

nt
s

2
3
4
5
6
7
8
9

Days

FIGURE 7.40 Typical ‘‘u(i)>0’’ profile—Days with excess of new patient.

FIGURE 7.39 Simulink® diagram of hospital occupancy.

Simulation Tools 601

0 5 10 15 20 25 30 35 40 45 50
−9
−8
−7
−6
−5Pa

tie
nt

s
−4
−3
−2
−1

0

Days

FIGURE 7.41 ‘‘u(i)<0’’ profile—Excess discharged and dying patients.

0 5 10 15 20 25 30 35 40 45 50

0

1

2

Pa
tie

nt
s

3

4

5

6

7

Days

FIGURE 7.42 Typical ‘‘delta(i)>0’’ profile—Days when capacity exceeded.

0 5 10 15 20 25 30 35 40 45 50

−15

−10

Pa
tie

nt
s

−5

0

Days

FIGURE 7.43 Typical ‘‘delta(i)<0’’ profile—Days at less than capacity.

602 Simulation of Dynamic Systems with MATLAB® and Simulink®

A Monte Carlo simulation can be performed to investigate the effect of scheduled arrivals on
hospital utilization (occupancy rate) and the number of patients turned away due to lack of beds.
‘‘Chap7_hospital.m’’ is an M-file, which varies mS, the mean number of scheduled arrivals, and
computes a number of performance measures based on 10 simulated records, each containing 1 year
(365 days) of information. That is, for a given value of mS, 365 days of operation are simulated. The
initial occupancy is reset to x0¼ L, and the process repeated nine more times. The remaining system
parameters are fixed at the baseline values previously given.

A number of performance measures are computed for each value of mS:

1. An objective function that accounts for the days when the hospital is unable to accept new
patients due to excess demand, that is, ‘‘delta(i)>0,’’ and other days when the
hospital operates at less than capacity, that is, ‘‘delta(i)<0.’’ It is a weighted average
over all 10 records given by

F(mS) ¼ c1
1
10

X10
j¼1

1
365

X365
i¼1

D(i)>0

D(i)

24 35
j

8><>:
9>=>;þ c2

1
10

X10
j¼1

1
365

X365
i¼1

D(i)<0

jD(i)j
24 35

j

8><>:
9>=>; (7:86)

0 10 20 30 40 50 60 70 80 90 100

−4
−2

0

Pa
tie

nt
s

2
4
6
8

10
12

Days

FIGURE 7.44 Daily net patient input.

0 10 20 30 40 50 60 70 80 90 100

195

196

Pa
tie

nt
s

197

198

199

200

Days

FIGURE 7.45 Hospital occupancy for 100 days.

Simulation Tools 603

where c1 and c2 are the weights applied to the average number of excess patients per day
and the average number of unused beds per day, respectively.

2. The percent occupancy averaged over all 10 records (10� 365 days).
3. The average number of excess patients per day averaged over all 10� 365 days.
4. The average excess capacity (unused beds) per day averaged over all 10� 365 days.

Results are shown in Figure 7.46 for c1¼ c2¼ 1.
Note the steep decline in objective function until mS¼ 20, which represents an equilibrium

condition in the sense that new arrivals and departures are balanced (on average), that is mSþ
mE¼mDþmM. Choosing c1¼ c2¼ 1 implies that an unused bed and a nonadmitted patient have
equal importance.

A few points to consider as we conclude this section are as follows:

1. Can you explain why the graphs of the objective function and the average excess capacity
are nearly identical?

2. What should the hospital’s admitting policy with respect to scheduled number of arrivals
be to assure 100% occupancy rates?

3. What will happen to the objective function as the mean number of arrivals continues to
increase beyond 25 as shown in Figure 7.46.

4. What is the implication of changing the weight c2 from 1 to 5 and what effect will it have
on the objective function?

5. What is the significance of setting s2
S ¼ 0?

6. Is there a difference between simulating ten 1 year periods and one 10 year period as far as
the Monte Carlo simulation is concerned?

Sensitivity analysis for parameter μS

0

50

100

150

200

0

20

40

60

80

100

0

1

2

3

4

5

15

O
bj

ec
tiv

e f
un

ct
io

n
Av

e.
ex

ce
ss

 p
at

ie
nt

s p
er

 d
ay

Av
e.

ex
ce

ss
 ca

pa
ci

ty
 p

er
 d

ay
Av

e.
pe

rc
en

t o
cc

up
an

cy

16 17 18 19 20 21 22 23 24 25 15 16 17 18 19 20 21 22 23 24 25

15 16 17 18 19 20 21 22 23 24 2515 16 17 18 19 20 21 22 23 24 25
0

50

100

150

200

μS μS

μS μS

FIGURE 7.46 Objective function (c1¼ c2¼ 1) and other performance measures.

604 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

7.5 Suppose the movement of the target in Figure 7.14 is along the circular path of radius R¼ 2.5
mi with speed given by

v(s) ¼ V þ v0 sin
2ps
s0

� �
, s � 0

where s is the distance traveled along the circular trajectory. The mean speed V and amplitude
v0 are uniformly distributed according to

V � U(20, 40mph), v0 � U(0, 10mph)

and the period s0¼ 2000 ft. The projectile’s dynamics are defined by the parameters
m¼ 4000=32.2 slugs, m¼ 0.15 lb s=ft, and vp(0)¼ 60 mph.

Use the MATLAB random number generator to generate values for V and v0.
(a) Simulate single firings of the projectile corresponding to firing angles of u¼ 08, 58, 108, . . . ,

908. Halt the simulation when the projectile has traveled a distance greater than R mi.
Plot the miss distance (minimum separation between target and projectile) vs. the firing
angle.

(b) From the graph in part (a), estimate the optimum firing angle, that is, the one that results in
the projectile striking the target.

(c) Using the same values of V and v0, write an M-file to find the optimum firing angle. The use
of MATLAB’s optimization toolbox is optional.

(d) Verify the result in part (c) by simulation.
7.6 A projectile of mass m is fired with initial velocity v0 at an angle a0 from the horizontal

direction. Its position, while in flight, is given by coordinates (x, y), and its velocity is
represented by v as shown in Figure E7.6a. The projectile is subject to a linear drag force fD
in the tangential direction and a constant gravitational force in the vertical direction.

v

fD

mg

(x, y)

R

H
v0

α0

α

FIGURE E7.6a

The equations of motion are

d2x

dt2
¼ � fD

m
cos a,

d2y

dt2
¼ � fD

m
sin a� g

fD ¼ mjvj ¼ m
dx

dt

� �2

þ dy

dt

� �2
" #1=2

tana ¼ dy=dt

dx=dt

Simulation Tools 605

Baseline values of the system parameters are

m¼ 0.25 slugs, v0¼ 500 ft=s, c¼ 0.015 lb s=ft, a0¼ 458

Use the Simulink diagram as shown in Figure E7.6b or construct your own Simulink model
to answer the following questions.

FIGURE E7.6b

(a) The projectile is fired in the vertical direction. Find
(i) The analytical solution y(t), t � 0 and plot it for the time period when y � 0
(ii) The peak altitude H attained by the projectile
(iii) The time tp when the peak altitude is reached

(b) Find the maximum altitude H by optimization, that is, search for the time when �y(t) is a
minimum. Compare the result with your answer in part (a).

(c) Find the horizontal distance R corresponding to firing angles a0¼ 08, 58, 108, . . . , 908 and
plot the results. Estimate the firing angle a0 that maximizes R.

(d) Find the value (a0)
opt that maximizes R(a0) by the minimization of the objective function

F(a0)¼�R(a0) subject to 08 � a0 � 908.
(e) Find the initial velocity v0 that results in a peak altitude of H¼ 1200 ft when the projectile

is fired at an angle of 458. Formulate this as an optimization problem and then find the
optimum solution.

(f) Let H ¼ 1500 ft and R ¼ 2000 ft be the design values of peak altitude and down range
distance. The objective is to find combinations of initial firing angles and initial velocities
resulting in H ¼ H and R ¼ R. Choose the objective function to be minimized as

F(a0, v0) ¼ e2H þ e2R
� �1=2¼ [(H � H)2 þ (R� R)2]1=2

and plot the surface F(a0, v0) as well as several equally spaced (in numerical value)
contours for 08 � a0 � 908, 0 � v0 � 600 ft=s.

606 Simulation of Dynamic Systems with MATLAB® and Simulink®

(g) Write an optimization program that starts from an initial point (a0, v0) in parameter space
and locates an optimum point {(a0)

opt, (v0)
opt} where the objective function F(a0, v0) is a

minimum. Fill in the following table:

Initial Initial Number of
a0(8) v0 (fps) (a0)

opt (v0)
opt Max H R F[(a0)

opt, (v0)
opt] Iterations

20 400

65 100

45 300

80 500

5 200

7.7 An alternative method for controlling the heading of a ship is to use rate feedback as shown in
Figure E7.7. The saturation block is omitted. Using the same parameter values as in the text,

Gyro

ψcom(s)

Units
converter

Amplifier
Ship dynamics

ψ(s)
deg deg

Rate gyro

E(s)

– –
Kp

Kr

ψ(s)
.

1
s

Ks
τs + 1Ku

Kψ

FIGURE E7.7

(a) Find the amplifier gain Kp and rate gyro gain Kr, which minimizes the ISE in response to a
step command heading of 58.

(b) Repeat part (a) for an IAE objective function.
7.8 Repeat the steps in estimating the parameters k and n if the observed chemical concentrations at

the end of 5 min intervals are as given in the following table. Draw a graph similar to the one in
Figure 7.30 showing simulated and observed values after 1 min intervals for the first hour.

t (min) 0 5 10 15 20 25 30

x̂ (mol=L) 2.0000 1.3333 1.0000 0.8000 0.6667 0.5714 0.5000

t (min) 35 40 45 50 55 60

x̂ (mol=L) 0.4444 0.4000 0.3636 0.3333 0.3077 0.2857

7.9 Suppose the hemispherical tank shown in Figure 7.31 is turned upside down.
(a) How does the mathematical model of the system change?
(b) Modify the Simulink diagram to reflect the new configuration.

Simulation Tools 607

(c) Show that the surface plot in Figure 7.33 and zero contour plot in Figure 7.36 remain
unchanged.

(d) Repeat parts (a) and (b) and generate new surface and zero contour plots if the tank is
cylindrical with radius R¼ 5 ft.

7.10 Compare the execution time required to draw the surface in Figure 7.33 where the objective
function is evaluated over a 40-by-40 grid of points in the F1–c plane when the numerical
integrator is a fixed RK-4 integrator with step size 0.01 s and the default variable-step ode45
(Dormand Prince).

Hint: Insert the MATLAB commands ‘‘tic’’ and ‘‘toc’’ at the beginning and end of the
MATLAB statements. The execution time will be returned by ‘‘toc.’’

7.11 The objective function defined in Equation 7.77, and shown in Figure 7.32, is modified to

F(tfill) ¼

A, 0 � tfill < Tmin

A
tfill
TL
� 1

� �2

, Tmin � tfill < TL

0, TL � tfill � TH

B
tfill � TH
Tmax � TH

� �2

, TH � tfill < Tmax

B, Tmax < tfill

8>>>>>>>>>>>><>>>>>>>>>>>>:
where Tmin is the shortest time possible for a hemispherical tank with radius R¼ 7.5 ft to fill.
The controllable parameters are confined to the ranges 0 � c � 4 ft3=min=ft1=2 and 0 � F1 �
20 ft3=min. The end points where the objective function is zero are TL¼ 190 min and
TH¼ 210 min. Finally, Tmax¼ 500 min. The numerical values of A and B, the limiting values
of the objective function, are A¼ 80 and B¼ 40.
(a) Find Tmin.
(b) Generate a new surface plot similar to the one shown in Figure 7.33 for the region 0 �

F1 � 20, 0 � c � 4.
(c) Modify the objective function definition in ‘‘Chap7_globe_contours.m,’’ and plot the

contours corresponding to objective function values 0, 10, 20, . . . , (F0)max where (F0)max

is the objective function value corresponding to a fill time of Tmin.
(d) Find several optimum points Fopt

1 , copt
� �

on the F(F1, c)¼ 0 contour.
(e) Run a simulation of the globe filling with F1 ¼ Fopt

1 and c¼ copt from part (d) and verify
that the fill time falls between TL and TH.

7.12 Write a program to implement a gradient-based search algorithm to find a point (F1, c) where
the objective function is zero. Test the algorithm starting from
(a) F1¼ 4 ft3=min, c¼ 1 ft3=min=ft1=2

(b) F1¼ 7.5 ft3=min, c¼ 2 ft3=min=ft1=2

(c) F1¼ 1 ft3=min, c¼ 0 ft3=min=ft1=2

7.13 For the hospital occupancy model, do a Monte Carlo simulation and plot the objective function
F(mS) for mS¼ 15, 16, . . . , 30 with weights c1¼ 1, c2¼ 5. Use baseline values given in the text
for the system parameters. Assume the hospital is initially operating at full occupancy.

7.14 Suppose the hospital has a holding facility where new patients wait for a bed to become
available. Let the state variables in the discrete-time model be xB(i), the number of patients in
rooms with beds at the end of the ith day, and xH(i), the number waiting for an assigned bed in
the holding area at the end of the ith day. Patients are transferred from the holding area to a
room with a bed on days when the number of emergency and scheduled arrivals is less than

608 Simulation of Dynamic Systems with MATLAB® and Simulink®

the number of discharged and dying patients. The number of beds is LB; the holding area can
accommodate LH patients.

Repeat the Monte Carlo simulation described in the text using the baseline values of the
system parameters and LH¼ 15. Plot graphs similar to the ones in Figure 7.46. The weights
are c1¼ c2¼ 1. Note that the occupancy rate is based on the number of patients with beds, that
is, with LB¼ 200 and LH¼ 15, the occupancy rate is 90% if xB¼ 180, xH¼ 0, and 100% if
xB¼ 200, xH¼ 5.

7.15 Investigate the effect of variability in the number of scheduled arrivals on the hospital’s
occupancy rate. Choose the mean mS¼ 21 scheduled patients per day and simulate the percent
occupancy as a function of the standard deviation sS where sS ranges from zero to three
scheduled patients per day.

7.16 Use Monte Carlo simulation to obtain an empirical probability density function for random
variable Y, the hospital’s percent occupancy. Use the following values for the system
parameters:

mS ¼ 24, s2
S ¼ 9, mE ¼ 6, s2

E ¼ 4, mD ¼ 28, s2
D ¼ 9,

mM ¼ 2, s2
M ¼ 0:25, L ¼ 200, x0 ¼ 200

Hint: Simulate 100 records of sufficient length (in days) to obtain 100 observations y1, y2,
y3, . . . , y100 where yi, i¼ 1, 2, 3, . . . , 100 is the percent occupancy corresponding to the ith
record. Plot the results

7.17 Consider a loan in the amount of P dollars to be repaid in n equal monthly installments of
A dollars with interest at i per month. The unpaid balance Pk made after the kth payment is
given by

Pk ¼ Pk�1 þ iPk�1 � A ¼ Pk�1(1þ i)� A, k ¼ 1, 2, . . . , n

A Simulink block diagram is shown in Figure E7.17. Note that the loan amount P is the initial
condition of the ‘‘Unit Delay’’ block and the simulation stop time is set to n. Also, be sure
to set the ‘‘Solver options Type’’ to ‘‘Fixed-step,’’ ‘‘Fixed-step size’’ to 1,
and the integrator to ‘‘discrete no continuous states.’’

The terms of a car loan are P¼ $30,000, n¼ 48 months, and i¼ 0.005 (0.5% per month).
For a fixed value of monthly payment A, the unpaid balance at the end of the loan period is
P48. Positive values of P48 means A is too low and the loan has not been paid off in its
entirety. A negative value of P48 implies A is too much and overpayment of the loan
has occurred. The correct amount of the monthly payment A to retire the loan after the
last (48th) payment is the value of A for which the unpaid balance at the end of the loan
period is zero.

loan_repay.mdl

1
z

Unit delay

i

A

1

P(k) P(k−1)

i + i++

x
+−

FIGURE E7.17

Simulation Tools 609

(a) Prepare a graph of P48 vs. A, for A¼ $600, $625, $650, . . . , $800. Estimate the correct
value of A to repay the loan.

(b) Write your own or use MATLAB’s optimization toolbox to determine the correct A by
finding the value of A, which minimizes the objective function P48.

(c) Plot Pk vs. k, k¼ 0, 1, 2, 3, . . . , 48 using the value of A found in part (b). Compare
your answer for A with the correct value of A, which can be obtained from the formula

A ¼ P
i(1þ i)n

(1þ i)n � 1

� �

7.4 LINEARIZATION

Chapter 4 introduced a number of important concepts instrumental in analyzing the behavior of
linear systems. By linear systems, we are referring to actual systems modeled by linear algebraic and
differential equations. Real-world systems are inherently nonlinear. However, in certain regions,
they may respond in a way that a linear model provides an acceptable representation of the system’s
dynamics. Whenever we employ linear models to describe nonlinear systems, it must be with the
understanding that the system remains within its so-called linear-operating region.

Consider the simple mechanical spring shown in Figure 7.47. Its deflection x from equilibrium
depends on the magnitude and direction of the applied force F.

Measurements of deflection and force over a range of forces resulting in fracture from excessive
compression or elongation produce a graph like the one shown in Figure 7.48.

The linear region of the spring is the section of the operating characteristic where x is propor-
tional to F. Known as Hooke’s law, the familiar form is

F ¼ kx (7:87)

where k is the spring constant, a measure of its stiffness. The linear model in Equation 7.87 is a valid
model of the spring provided the applied force is confined to F1 � F � F2.

Numerous components behave in a similar fashion. The current in an electrical resistor is
assumed proportional to the voltage across its terminals over a range of currents. Conductive heat
flow due to a temperature difference between two points and fluid flow caused by pressure
differences at different locations are additional examples of cause-and-effect relationships assumed
to be linear over a range of operating conditions.

F

x

x = 0

Equilibrium length

FIGURE 7.47 Deflection of a mechanical spring subjected to an applied force.

F

x

Linear region
F1

F2 Fmax

Fmin

FIGURE 7.48 Operating characteristic of spring showing its linear region.

610 Simulation of Dynamic Systems with MATLAB® and Simulink®

In the example of the spring, the static operating curve shown in
Figure 7.48 can be divided into three distinct regions, that is,
points {F, x(F)} where

1. Fmin<F<F1

2. F1 � F � F2 (linear region)
3. F2<F<Fmax

The relation x¼ x(F) between force and displacement in each
region is based on empirical observation as opposed to an analyt-
ical model or equation based on scientific principles or natural
laws. In contrast, the liquid tank with incompressible fluid shown
in Figure 7.49 is modeled by the linear first-order differential
equation based on conservation of volume,

A
dH

dt
þ F0 ¼ F1 (7:88)

along with the operating characteristic of the tank, that is, the relationship between the out flow and
the liquid level, which applies in both the steady state and otherwise.

F0 ¼ F0(H) ¼ cH1=2, H � 0 (7:89)

Equation 7.89 is based on Bernoulli’s principle from Physics. The constant c depends on the
physical properties of the fluid, tank, and the discharge line.

Equation 7.88 was derived in Section 1.2. The discharge F0 was assumed proportional to H, that
is, F0(H)¼ cH, resulting in a linear system model of the tank. A ‘‘real’’ tank is nonlinear by virtue of
Equation 7.89.

7.4.1 DEVIATION VARIABLES

A linearized tank model can be obtained to approximate the nonlinear tank dynamics. The technique
relies upon the concept of an operating point and deviation variables. To illustrate, let us suppose a
linearized tank model is required, which provides a reasonable approximation to the nonlinear
system provided the inflow, level, and outflow vary only slightly from the steady-state values
F1,H,F0 shown in Figure 7.50.

The operating point, for purposes of linearization, is characterized by an inflow F1 and the point
(H,F0) where

F0 ¼ cH
1=2

(7:90)

A
H(t)

F0(t)

F1(t)

FIGURE 7.49 A liquid tank
with input F1(t) and dependent
variables F0(t) and H(t).

F1

F0

A H–

–

–

F0
–

(H, F0) operating point

–H

– –

H

F0 F0 = cH1/2

FIGURE 7.50 Operating point (H,F0) for tank linearization.

Simulation Tools 611

With steady-state conditions at the operating point, F0 ¼ F1. From Equation 7.90,

H ¼ F
2
0

c2
¼ F

2
1

c2
(7:91)

When the inflow F1(t) and outputs H(t) and F0(t) differ from their operating point values, deviation
variables DF1(t), DH(t), and DF0(t) are introduced according to

F1(t) ¼ F1 þ DF1(t), H(t) ¼ H þ DH(t), F0(t) ¼ F0 þ DF0(t) (7:92)

Deviation variables relate the differences between actual values of the system variables and their
operating point levels, that is,

DF1(t) ¼ F1(t)� F1, DH(t) ¼ H(t)� H, DF0(t) ¼ F0(t)� F0 (7:93)

Expanding F0 in Equation 7.89 in a Taylor Series about the operating point (H,F0),

F0 ¼ F0 þ d

dH
F0(H)

H¼H

(H � H)þ d2

dH2
F0(H)

H¼H

(H � H)2 þ � � � (7:94)

) F0 � F0 ¼ DF0 ¼ d

dH
F0(H)

H¼H

DH þ d2

dH2
F0(H)

H¼H

DH2 þ � � � (7:95)

If DH is small in absolute value, then the DH2 term and all succeeding terms are higher order terms
that can be ignored (to a first-order approximation). The result is a first-order Taylor Series
approximation for the deviation flow DF0, namely,

DF0 � d

dH
F0(H)

H¼H

DH ¼ F00(H)DH (7:96)

Differentiating Equation 7.89 to find the first derivative F00(H) and evaluating the result at H ¼ H
lead to

DF0 � 1
2
cH
�1=2

DH (7:97)

where the accuracy depends on the magnitude of DH (more about this point later).
Substituting expressions in Equation 7.92 for F1(t), H(t), and F0(t) into Equation 7.88 gives

A
d

dt
[H þ DH(t)]þ F0 þ DF0(t) ¼ F1 þ DF1(t) (7:98)

) A
d

dt
H þ A

d

dt
DH(t)þ F0 þ DF0(t) ¼ F1 þ DF1(t) (7:99)

Knowing F0 ¼ F1 and the fact that A(d=dt)H ¼ 0 leads to

A
d

dt
DH(t)þ DF0(t) ¼ DF1(t) (7:100)

612 Simulation of Dynamic Systems with MATLAB® and Simulink®

Substituting the approximation in Equation 7.96 for DF0(t) into Equation 7.100 results in the first-
order linearized differential equation model

A
d

dt
DH(t)þ F00(H)DH(t) ¼ DF1(t) (7:101)

The nonlinear-operating characteristic for the tank, Equation 7.89, has been approximated by the
linear relationship of Equation 7.96, which can be written as

F0 ¼ F0 þ F00(H)(H � H) (7:102)

Equation 7.102 is the equation of the line tangent to the curve F0¼F0(H) at the operating point
(H,F0). Figure 7.51 illustrates the case when the tank constant c¼ 0.5 ft3=min=ft1=2 and the
operating point (H,F0) ¼ (9 ft, 1:5 ft3=min). Note that (H,F0) is the origin in a new coordinate
system with DH in the horizontal direction and DF0 in the vertical direction.

Before we generalize the procedure for linearization of certain types of nonlinearities, we
illustrate, through the next example, a case where the nonlinear term in the system model is a
product of dependent variables.

Consider the well-stirred tank in Figure 7.52. The temperature of the liquid T(t) as well as its
level H(t) is of interest. Accordingly, a second equation is required, one that introduces the
additional dependent variable T(t).

0 5 10 15 20 25
0

0.5

F 0
 (f

t3 /m
in

)

1

1.5

2

2.5

3

H (ft)

ΔH

ΔF0

F0 = 0.5H1/2

ΔF0 = (1/12)ΔH

Operating point: H=9 ft, F0=1.5 ft3/min– –

FIGURE 7.51 Nonlinear tank-operating curve and linearized approximation.

F1(t), T1(t)

F0(t), T(t)

A
H(t)T(t)

FIGURE 7.52 Stirred tank with inputs F1(t), T1(t) and dependent variables H(t), F0(t), T(t).

Simulation Tools 613

The rate at which energy is stored in the liquid holdup is equal to the difference in the rate of
energy flowing in and out of the tank. If we substitute the word ‘‘mass’’ for ‘‘energy,’’ we have the
principle of conservation of mass, which led to the differential equation for the tank level in
Equation 7.88. Applying the principle of conservation of energy in equation form gives

d

dt
(cpgVT) ¼ cpgF1T1 � cpgF0T (7:103)

where
T(t) is the uniform liquid temperature in tank, 8F
F1(t) is the input flow rate, ft3=min
T1(t) is the liquid temperature entering tank, 8F
F0(t) is the output flow rate, ft3=min
V is the volume of liquid in tank, ft3

cp is the specific heat of liquid (Btu=lb-8F)
g is the specific weight of liquid (lb=ft3)

The left-hand side accounts for the energy accumulation, and the right-hand side represents the
difference in energy flows in the two streams. Replacing the tank volume V with the product AH in
Equation 7.103 results in

A
d

dt
(HT)þ F0T ¼ F1T1 (7:104)

) AH
dT

dt
þ AT

dH

dt
þ F0T ¼ F1T1 (7:105)

Equations 7.88, 7.89, and 7.105 comprise the nonlinear mathematical model of the system. Figure
7.53 illustrates the presence of two inputs (independent variables) and three dependent variables.
The state variables are T(t) and either H(t) or F0(t), but not both since they are related algebraically
according to Equation 7.89.

A steady-state operating point is established where F1(t) ¼ F1 and T1(t) ¼ T1 with dependent
variables H(t) ¼ H,F0(t) ¼ F0, and T(t) ¼ T . Introducing deviation variables

DT ¼ T(t)� T , DT1 ¼ T1(t)� T1 (7:106)

Equation 7.105 becomes

A(H þ DH)
d

dt
(T þ DT)þ A(T þ DT)

d

dt
(H þ DH)þ (F0 þ DF0)(T þ DT)

¼ (F1 þ DF1)(T1 þ DT1) (7:107)

dH
dt

dT
dt

A + F0 = F1
dH
dt

AH + AT + F0T = F1T1

F0 = cH1/2

Math model:

Tank
F1(t)

T1(t)

H(t)
T(t)
H0(t)

FIGURE 7.53 Nonlinear system: tank with two inputs and three dependent variables.

614 Simulation of Dynamic Systems with MATLAB® and Simulink®

Deviation variables are assumed to be small in magnitude, and, therefore, the products DH(d=dt)DT,
DT(d=dt)DH, DF0DT, and DF1DT1 are negligible by comparison. Equation 7.107 simplifies to

AH
d

dt
DT þ AT

d

dt
DH þ F0T þ F0DT þ TDF0 ¼ F1T1 þ F1DT1 þ T1DF1 (7:108)

Substituting DF0 from Equation 7.96 into Equation 7.108 and rearranging terms give

AH
dDT

dt
þ AT

dDH

dt
þ F0DT þ TF00(H)DH ¼ F1T1 � F0T þ F1DT1 þ T1DF1 (7:109)

Recognizing that F0 ¼ F1 and T ¼ T1 at the steady-state operating point, Equation 7.109 reduces to

AH
dDT

dt
þ AT

dDH

dt
þ F0DT þ TF00(H)DH ¼ F1DT1 þ T1DF1 (7:110)

Equations 7.101 and 7.110 are coupled linearized differential equations of the tank. It is left as an
exercise problem to show that the state derivatives are expressible as

d

dt
DH

d

dt
DT

2664
3775 ¼

�
�F00(H)

A
0

0 � F0

AH

�
DH

DT

" #
þ

�
1
A

0

0
F0

AH

�
DF1

DT1

" #
(7:111)

Simulation is an effective way to appreciate the limitations of a linearized model. The following
example illustrates the point.

Example 7.2

The tank shown in Figure 7.52 with cross-sectional area A¼ 100 ft2 is initially in equilibrium with
F1 ¼ F0 ¼ 25 ft3=min, H ¼ 9 ft, and T1 ¼ T ¼ 150	F. The input flow and temperature profiles are
shown in Figure 7.54.

(a) Simulate the transient response of the nonlinear model when a¼b¼ 0.1.
(b) Repeat part (a) using the linear state model in Equation 7.111.
(c) Compare the nonlinear and linearized responses and comment on the results.
(d) Find the time constants tH and tT of the linearized system and show that tH¼ 2tT.
(e) Find expressions for H(1) and T(1) in response to constant inputs F1(t) ¼ F̂1, t � 0 and

T1(t) ¼ T̂1, t� 0 based on the nonlinear model. Compute the numerical values forH(1) and
T(1) when F̂1 ¼ (1þ a)F1 and T̂1 ¼ (1� b)T1.

(f) Repeat part (e) using the linearized model and compare the results.

F1

F1 + αF1

F1(t), ft3/min
– –

–

5
t, min t, min

1550 0

T1

T1 − βT1

T1(t), °F

15

FIGURE 7.54 Tank system input profiles.

Simulation Tools 615

(a) Figure 7.55 is a Simulink diagram for simulating the dynamic response of the nonlinear and
linearized system models.

The level H and temperature T of the nonlinear system are plotted in Figure 7.56. The transient
period is on the order of 300 min for level and 200 min for temperature.

(b) The linearized system outputs are shown in Figure 7.57.

(c) The nonlinear and linearized transient responses for level and temperature are compared in
Figure 7.58. For a 10% increase in inlet flow rate above F1 and a 10% decrease in inlet
temperature below T1, the nonlinear system and linearized system approximation exhibit nearly
identical transient responses.

(d) Referring to Equation 7.101, the time constant tH of the linearized system is

tH ¼ A
F00(H)

¼ A

(1=2)cH
�1=2 ¼

2AH
1=2

c
(7:112)

FIGURE 7.55 Simulink® diagram for simulation of nonlinear and linearized system.

9

9.5

10

10.5

11

t (min)

H
(t)

, f
t

T(
t),

 °F

0 50 100 150 200 250 300
(a) (b)

0 25 50 75 100 125 150 175 200
135

140

145

150

t (min)

FIGURE 7.56 Nonlinear system response of (a) level and (b) temperature.

616 Simulation of Dynamic Systems with MATLAB® and Simulink®

Solving for c in Equation 7.90 and substituting the result into Equation 7.112 give

tH ¼ 2AH
1=2

F0H
�1=2 ¼

2AH
F0
¼ 2(100)(9)

25
¼ 72 min (7:113)

From the second of the two state equations in Equation 7.111, the time constant tT is

tT ¼ AH
F0
¼ 100(9)

25
¼ 36 min (7:114)

tH¼ 2tT follows directly from Equations 7.113 and 7.114.

(e) At steady state (t¼1), dH=dt and dT=dt are zero. Setting dH=dt equal to zero in Equation 7.88
gives

F0(1) ¼ F1(1) ¼ F̂1 (7:115)

According to the tank-operating characteristic (Equation 7.89),

F0(1) ¼ c[H(1)]1=2 (7:116)

9

10

11

0 50 100 150 200 250 300
135

140

145

150

t (min)

H
(t)

, f
t

T(
t),

 °F

(a)

(b)

FIGURE 7.57 Linearized system (a) level and (b) temperature transient response (a¼b¼ 0.1).

9

10

11

9

10

11

t (min) t (min)

135
140
145
150

0 50 100 150 200 250 300 0 50 100 150 200 250 300
135
140
145
150

H
(t)

, f
t

H
(t)

, f
t

T(
t),

 °F
T(

t),
 °F

(a) (b)

FIGURE 7.58 Comparison of (a) nonlinear and (b) linearized system transient responses.

Simulation Tools 617

Solving for H(1) in Equation 7.116,

H(1) ¼ F0(1)
c

� �2
¼ F̂1

c

" #2
(7:117)

Setting (dH=dt)¼ (dT=dt)¼ 0 in Equation 7.105 gives

F0(1)T(1) ¼ F1(1)T1(1)) T(1) ¼ T1(1) ¼ T̂1 (7:118)

The tank constant c is obtained from the given operating point conditions, that is,

c ¼ F0

H
1=2
¼ 25

91=2
¼ 25

3
ft3=min =ft1=2 (7:119)

The numerical values of H(1) and T(1) are

H(1) ¼ F̂1
c

" #2
¼ (1þ a)F1

c

� �2
¼ 1:1(25)

25=3

� �2
¼ 10:89 ft

T(1) ¼ T̂1 ¼ (1� b)T1 ¼ 0:9(150) ¼ 135	F (7:120)

(f) Setting (d=dt)DH¼ (d=dt)DT¼ 0 in Equation 7.111 and solving for DH(1) and DT(1) give

DH(1)

DT(1)

" #
¼ �

�
� F00(H)

A
0

0 � F0
AH

��1�
1
A

0

0
F0
AH

�
DF1

DT1

" #
(7:121)

¼ �
� A
F00(H)

0

0 �AH
F0

26664
37775
�
1
A

0

0
F0
AH

�
DF1
DT1

� �
(7:122)

¼
1

F00(H)
0

0 1

24 35 DF1
DT1

" #
¼

1
F00(H)

DF

DT1

264
375 (7:123)

The slope F00(H) is obtained by differentiation of Equation 7.89 followed by substitution of the
values c¼ 25=3 ft3=min=ft1=2 and H ¼ 9 ft. The result is F00(H) ¼ 25=18 ft3=min=ft. The deviation
variables at steady state are

DH(1) ¼ 1
F00(H)

DF ¼ 1
F00(H)

aF1 ¼ 1
25=18

(0:1)(25) ¼ 1:8 ft (7:124)

DT(1) ¼ DT1 ¼ �bT1 ¼ �0:1(150) ¼ �15	 (7:125)

The steady-state level and temperature from the linearized model are

H(1) ¼ Hþ DH(1) ¼ 10:8 ft (7:126)

T(1) ¼ T þ DT(1) ¼ 135	F (7:127)

The steady-state level based on the linearized system model differs by 0.09 ft from the value based
on the nonlinear model. The steady-state temperatures are the same from both the nonlinear and
linearized system models.

618 Simulation of Dynamic Systems with MATLAB® and Simulink®

7.4.2 LINEARIZATION OF NONLINEAR SYSTEMS IN STATE VARIABLE FORM

The starting point is a nonlinear system model

_x ¼ f (t, x, u) (7:128)

y ¼ g(t, x, u) (7:129)

where
x ¼ [x1 x2 . . . xn]T is the n� 1 state vector
y ¼ [y1 y2 . . . yp]T is a p� 1 vector of outputs
u ¼ [u1 u2 . . . um]T is the m� 1 input vector
t is time

Equations 7.128 and 7.129 are short for

_x1

_x2

..

.

_xn

26666664

37777775 ¼
f1(t, x, u)

f2(t, x, u)

..

.

fn(t, x, u)

26666664

37777775,
y1

y2

..

.

yp

26666664

37777775 ¼
g1(t, x, u)

g2(t, x, u)

..

.

gp(t, x, u)

26666664

37777775 (7:130)

The objective is to linearize Equations 7.128 and 7.129 about a nominal operating point in the
state space x0 ¼ [x01 x02 . . . x0n]

T for a given (usually constant) input vector
u0 ¼ [u01 u02 . . . u0m]

T . The first-order Taylor Series approximation of the function f1(t, x, u)
about the point (x0, u0) is given by

_x1 ¼ f1(t, x
0, u0)þ q

qx1
f1(t, x

0, u0)(x1 � x01)þ
q
qx2

f1(t, x
0, u0)(x2 � x02)þ � � �

þ q
qxn

f1(t, x
0, u0)(xn � x0n)þ

q
qu1

f1(t, x
0, u0)(u1 � u01)

þ q
qu2

f1(t, x
0, u0)(u2 � u02)þ � � � þ

q
qum

f1(t, x
0, u0)(um � u0m) (7:131)

Similar relations hold for _x2, . . . , _xn. Introducing deviation variables

Dx1 ¼ x1 � x01, D x2 ¼ x2 � x02, . . . , D xn ¼ xn � x0n

Du1 ¼ u1 � u01, Du2 ¼ u2 � u02, . . . , Dum ¼ um � u0m

leads to the linearized approximation of Equation 7.128 by

D _x ¼ ADxþ BDu (7:132)

Simulation Tools 619

where

A ¼

qf1
qx1

(x0, u0)
qf1
qx2

(x0, u0) � � � qf1
qxn

(x0, u0)

qf2
qx1

(x0, u0)
qf2
qx2

(x0, u0) � � � qf2
qxn

(x0, u0)

..

. ..
. ..

.

qfn
qx1

(x0, u0)
qf2
qx2

(x0, u0) � � � qfn
qxn

(x0, u0)

266666666666664

377777777777775
(7:133)

B ¼

qf1
qu1

(x0, u0)
qf1
qu2

(x0, u0) � � � qf1
qum

(x0, u0)

qf2
qu1

(x0, u0)
qf2
qu2

(x0, u0) � � � qf2
qum

(x0, u0)

..

. ..
. ..

.

qfn
qu1

(x0, u0)
qfn
qu2

(x0, u0) � � � qfn
qum

(x0, u0)

266666666666664

377777777777775
(7:134)

and

D _x ¼ [D _x1 D _x2 � � � D _xn]
T

Dx ¼ [Dx1 Dx2 � � � Dxn]
T

Du ¼ [Du1 Du2 � � � Dum]
T

The combined matrix [AjB] of all partials is called the Jacobian matrix of the vector function
f (t, x, u) defining the state derivatives. In similar fashion, the linearized approximation to Equation
7.129 is given by

Dy ¼ CDxþ DDu (7:135)

where

Dy ¼ [Dy1 Dy2 � � � Dyp]
T ¼ y1 � y01 y2 � y02 � � � yp � y0p

h iT
and

y0i ¼ gi(x
0, u0), i ¼ 1, 2, . . . , p (7:136)

C and D are matrix of partials with components

cij ¼ qgi
qxj

(x0, u0), i ¼ 1, 2, . . . , p, j ¼ 1, 2, . . . , n (7:137)

dij ¼ qgi
quj

(x0, u0), i ¼ 1, 2, . . . , p, j ¼ 1, 2, . . . ,m (7:138)

620 Simulation of Dynamic Systems with MATLAB® and Simulink®

To illustrate the process of linearizing a nonlinear state variable model, consider the inverted
pendulum previously introduced in Section 5.4, redrawn in Figure 7.59.

The coupled nonlinear differential equations describing the system (Equations 5.50 and 5.51) can
be manipulated to read

€x ¼ ml _u2 sin u� (mg=2) sin 2uþ u

M þ m sin2 u
(7:139)

€u ¼ �(ml=2)
_u2 sin 2uþ (mþM)g sin u� u cos u

l(M þ m sin2 u)
(7:140)

State variables are x1, x2, x3, x4 where x1 ¼ x, x2 ¼ _x, x3 ¼ u, x4 ¼ _u. The state derivatives are
given by

_x1 ¼ f1(x, u) ¼ x2 (7:141)

_x2 ¼ f2(x, u) ¼ mlx24 sin x3 � (mg=2) sin 2x3 þ u

M þ m sin2 x3
(7:142)

_x3 ¼ f3(x, u) ¼ x4 (7:143)

_x4 ¼ f4(x, u) ¼ �(ml=2)x
2
4 sin 2x3 þ (mþM)g sin x3 � u cos x3

l M þ m sin2 x3
� � (7:144)

Choosing the outputs as x and u,

y1 ¼ g1(x, u) ¼ x1 (7:145)

y2 ¼ g2(x, u) ¼ x3 (7:146)

Components of the linearized system matrices A, B, C, and D consist of the partials

a11 ¼ qf1
qx1

(x0, u0) ¼ 0, a12 ¼ qf1
qx2

(x0, u0) ¼ 1,

a13 ¼ qf1
qx3

(x0, u0) ¼ a14 ¼ qf1
qx4

(x0, u0) ¼ 0

(7:147)

a21 ¼ qf2
qx1

(x0, u0) ¼ 0, a22 ¼ qf2
qx2

(x0, u0) ¼ 0, a24 ¼ qf2
qx4

(x0, u0) ¼ 2mlx4 sin x3
M þ m sin2 x3

(7:148)

x

u M

θ
m

FIGURE 7.59 A nonlinear system: the inverted pendulum.

Simulation Tools 621

The component a23 is equal to N1=D1 evaluated at the operating point (x0, u0) where

N1 ¼ M þ m sin2 x3
� �

mlx24 cos x3 � mg 1� 2 sin2 x3
� �� �

� mlx24 sin x3 �
mg

2
sin 2x3 þ u

h i
(m sin 2x3) (7:149)

D1 ¼ M þ m sin2 x3
� �2

(7:150)

a31 ¼ qf3
qx1

(x0, u0) ¼ a32 ¼ qf3
qx2

(x0, u0) ¼ a33
qf3
qx3

(x0, u0) ¼ 0, a34
qf3
qx4

(x0, u0) ¼ 1 (7:151)

a41 ¼ qf4
qx1

(x0, u0) ¼ 0, a42 ¼ qf4
qx2

(x0, u0) ¼ 0, a44
qf4
qx4

(x0, u0) ¼ �mlx4 sin 2x3
l(M þ m sin2 x3)

(7:152)

The component a43 is equal to N2=D2 evaluated at the operating point (x0, u0) where

N2 ¼ l M þ m sin2 x3
� � �mlx24 1� 2 sin2 x3

� �þ (mþM)g cos x3 þ u sin x3
� �

þ m

2
lx24 sin

2 2x3 � (mþM)g sin x3 þ u cos x3
h i

lm sin 2x3 (7:153)

D2 ¼ l M þ m sin2 x3
� �� �2

(7:154)

b11 ¼ qf1
qu

(x0, u0) ¼ 0, b21 ¼ qf2
qu

(x0, u0) ¼ 1

M þ m sin2 x3
(7:155)

b31 ¼ qf3
qu

(x0, u0) ¼ 0, b41 ¼ qf4
qu

(x0, u0) ¼ �cos x3
l(M þ m sin2 x3)

(7:156)

c11 ¼ qg1
qx1

(x0, u0) ¼ 1, c12 ¼ qg1
qx2

(x0, u0) ¼ 0, c13 ¼ qg1
qx3

(x0, u0) ¼ c14 ¼ qg1
qx4

(x0, u0) ¼ 0

(7:157)

c21 ¼ qg2
qx1

(x0, u0) ¼ c22 ¼ qg2
qx2

(x0, u0) ¼ 0, c23 ¼ qg2
qx3

(x0, u0) ¼ 1, c24 ¼ qg2
qx4

(x0, u0) ¼ 0

(7:158)

d11 ¼ qg1
qu

(x0, u0) ¼ d21 ¼ qg2
qu

(x0, u0) ¼ 0 (7:159)

Suppose the steady-state operating point is x0 ¼ [0 0 p 0]T and input u0 ¼ 0. The nonzero
elements of matrices A, B, C, and D are

a12 ¼ 1, a23 ¼ � m

M
g, a34 ¼ 1, a43 ¼ � g

l

(mþM)

M
,

b21 ¼ 1
M

, b41 ¼ 1
lM

, c11 ¼ c23 ¼ 1 (7:160)

For M¼ 3 kg, m¼ 0.1 kg, l¼ 0.75 m, g¼ 9.8 m=s2, the system matrices are

A1 ¼

0 1 0 0

0 0 �0:3267 0

0 0 0 1

0 0 �13:5022 0

26664
37775, B1 ¼

0

0:333

0

0:444

26664
37775, C1 ¼

1 0 0 0

0 0 1 0

� �
, D1 ¼

0

0

� �
(7:161)

622 Simulation of Dynamic Systems with MATLAB® and Simulink®

7.4.3 LINMOD FUNCTION

Simulink estimates the matrices A, B, C, and D in the linearized approximation by using
small perturbations in the state and input(s) to numerically calculate the partial derivatives. The
‘‘linmod’’ and ‘‘linmod2’’ functions extract the linearized model coefficient matrices from a
Simulink diagram of the nonlinear system.

The top level of a Simulink simulation of the inverted pendulum is shown in Figure 7.60.
The ‘‘cart’’ subsystem is shown in Figure 7.61.
The MATLAB statement

[sizes,X0,states]¼InvertPend_1([],[],[],0);

in M-file ‘‘Chap7_InvertPend.m’’ returns the following information:

sizes¼4 x0¼0
0 3.1416
2 0
1 0
0
1
1

FIGURE 7.60 Simulink® model of inverted pendulum showing input and two outputs.

FIGURE 7.61 Cart subsystem showing internal states.

Simulation Tools 623

states¼‘InvertPend_1=cartmodel=x Integrator’
‘InvertPend_1=cart model=theta Integrator’
‘InvertPend_1=cart model=xd Integrator’
‘InvertPend_1=cart model=thetad Integrator’

The first four components of the output ‘sizes’ reveal the number of continuous states (4),
discrete states (0), outputs (2), and inputs (1) in the Simulink model. The ordering of the states is
conveyed by the output vector ‘‘states,’’ which in the present case is seen to be ‘‘x,’’ ‘‘theta,’’
‘‘xd,’’ and ‘‘thetad.’’ ‘‘X0’’ reports the initial values of the state vector in the order defined by the
output ‘‘states.’’ It will soon become apparent why the ordering of the state vector is significant.

The same M-file ‘‘Chap7_InvertPend.m’’ contains the statement

[A2,B2,C2,D2]¼linmod(‘InvertPend_1’,x_operpt,u0)

which returns the linearized system matrices. The first argument ‘‘InvertPend_1’’ is the
Simulink model file name, while ‘‘x_operpt’’ and ‘‘uo’’ are arrays with numerical values of
the state and input at the operating point.

The ‘‘linmod’’ function returns the matrices

A2 ¼

0 0 1 0

0 0 0 1

0 �0:3267 0 0

0 �13:5022 0 0

26664
37775, B2 ¼

0

0

0:333

0:444

26664
37775, C2 ¼

1 0 0 0

0 0 1 0

� �
, D2 ¼

0

0

� �
(7:162)

The matrices in Equations 7.161 and 7.162 are different as a result of the difference in the ordering
of the state vector in the two different linearized models of the system. That is, from Equation 7.161,
when the state is [Dx D _x Du D _u]T , we have

D _x1

D _x2

D _x3

D _x4

266664
377775 ¼

D _x

D€x

D _u

D€u

266664
377775 ¼

0 1 0 0

0 0 �0:3267 0

0 0 0 1

0 0 �13:5022 0

266664
377775

Dx

D _x

Du

D _u

266664
377775þ

0

0:333

0

0:444

266664
377775[Du] (7:163)

On the other hand, when the state is [Dx Du D _x D _u]T , Equation 7.162 implies

D _x1

D _x2

D _x3

D _x4

266664
377775 ¼

D _x

D _u

D€x

D€u

266664
377775 ¼

0 0 1 0

0 0 0 1

0 �0:3267 0 0

0 �13:5022 0 0

266664
377775

Dx

Du

D _x

D _u

266664
377775þ

0

0

0:333

0:444

266664
377775[Du] (7:164)

Once the linearized system matrices A1, B1, C1, and D1 or A2, B2, C2, and D2 are known, the inverted
pendulum dynamics can be approximated using either set, and the response should compare
favorably with the nonlinear system response provided the state and input deviations from the
operating point are kept small. Figure 7.62 is the Simulink diagram for comparing the nonlinear
system model and the linearized model using the set of matrices A2, B2, C2, and D2 obtained from
the ‘‘linmod’’ function.

Figure 7.63 shows the nonlinear and linearized response for u(t) corresponding to a pulse input force
of magnitude 2.5 N from 1 to 2 s. Agreement between the nonlinear and linearized responses is very
good. Note the small deviation in u(t) from u0¼p rad resulting from the particular input.

624 Simulation of Dynamic Systems with MATLAB® and Simulink®

Figure 7.64 exemplifies what happens when the state vector x(t) deviates by a significant amount
from x0. The magnitude of the applied force pulse input is increased to 25 N. The nonlinear system
model and linearized approximation no longer exhibit the same level of agreement as before.

Due to the absence of damping, the (nonlinear and linear) models predict sustained oscillations.
Hence, the coefficient matrices A1 and A2 must possess a pair of purely imaginary characteristic
roots, easily confirmed by checking the eigenvalues of each. The statements ‘‘eig(A1)’’ and ‘‘eig
(A2)’’ both return two real eigenvalues 0,0, and two imaginary eigenvalues
j3.674537.

A closer look at Equations 7.163 and 7.164 reveals a simpler formulation of the governing
equations. From Equation 7.164,

D€x ¼ �0:3267Duþ 0:333Du (7:165)

D€uþ 13:5022Du ¼ 0:444Du (7:166)

FIGURE 7.62 Simulink® diagram for comparing nonlinear and linearized models.

3
3.1
3.2
3.3

3
3.1
3.2
3.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5

θ n
on

lin
ea

r(t
),

ra
d

θ l
in

ea
r(t

),
ra

d

1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
3

3.1
3.2
3.3

t (s)

Nonlinear
Linear

FIGURE 7.63 Nonlinear and linearized model response u(t) for u(t)¼ 2.5 N, 1 � t � 2.

Simulation Tools 625

The natural modes from Equation 7.166 are s1, s2¼ (�13.5022)1=2¼
 j 3.6745, and the frequency
of undamped oscillations is vn¼ 3.6745 rad=s (see Figures 7.63 and 7.64). Furthermore, the two
remaining characteristic roots are, from Equation 7.165, both zero. Laplace transforming Equations
7.165 and 7.166 and solving for Du(s) and DX(s) result in

Du(s) ¼ 0:444
s2 þ 13:5022

DU(s) (7:167)

DX(s) ¼ 0:333
s2 þ 13:0666

s2(s2 þ 13:5022)

� �
DU(s) (7:168)

The inverted pendulum is often used as an example of an inherently (open-loop) unstable system,
and numerous linear controls texts demonstrate techniques for designing linear controllers to
balance the pendulum in the upright position (u¼ 0). The steady-state operating point
[x0, _x0, u0, _u0; u0] ¼ (0, 0, 0, 0; 0) is unstable, easily verified by changing ‘‘x30’’¼ u0 to zero in
M-file ‘‘Chap7_InvertPend.m’’ and observing the eigenvalues of the linearized system matrix A1 or
A2. Of course, basic intuition suggests as much, that is, ‘‘What happens to the pendulum when it is
displaced from the upright equilibrium position?’’ Exercise 7.24 looks at this case in more detail.

You can implement your own ‘‘linmod’’ function to numerically compute the linearized system
matrices A, B, C, and D. To illustrate, suppose we wish to estimate a43 in Equation 7.163. The exact
value of �13.5022 was computed from the analytical expression for the partial derivative
(qf4=qx3)(x0, u0) using Equations 7.153 and 7.154. A simple central difference formula to approxi-
mate (qf4=qx3)(x0, u0) is

qf4
qx3

(x0, u0) � f4 x01, x
0
2, x

0
3 þ D, x04, u

0
� �� f4 x01, x

0
2, x

0
3 � D, x04, u

0
� �

2D
(7:169)

2
3
4
5

2
3
4
5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2
3
4
5

t (s)

Nonlinear
Linear

θ n
on

lin
ea

r(t
),

ra
d

θ l
in

ea
r(t

),
ra

d

FIGURE 7.64 Nonlinear and linearized model response u(t) for u(t)¼ 25 N, 1 � t � 2.

626 Simulation of Dynamic Systems with MATLAB® and Simulink®

From Equation 7.144, the numerator terms are

f4 x01, x
0
2, x

0
3 þ D, x04, u

0
� � ¼ �(ml=2) x04

� �2
sin 2 x03 þ D

� �þ (mþM)g sin x03 þ D
� �� u cos x03 þ D

� �
l M þ m sin2 x03 þ D

� �� �
(7:170)

f4 x01, x
0
2, x

0
3 � D, x04, u

0
� � ¼ �(ml=2) x04

� �2
sin 2 x03 � D

� �þ (mþM)g sin x03 � D
� �� u cos x03 � D

� �
l M þ m sin2 x03 � D

� �� �
(7:171)

The operating point is (x0; u0) ¼ [0 0 p 0; 0]T . After substituting in the numerical values for
m, M, g and choosing D¼ 0.01, we have

qf4
qx3

(x0, u0) � (0:1þ 3)(9:8)
(0:75)(2) (0:01)

sin (pþ 0:01)

3þ 0:1 sin2 (pþ 0:01)
� sin (p� 0:01)

3þ 0:1 sin2 (p� 0:01)

� �
� �13:5020 (7:172)

which is very close to the analytically obtained value �13.5022. Another example of linearization
involving nonlinear tanks is presented in Section 8.4.

7.4.4 MULTIPLE LINEARIZED MODELS FOR A SINGLE SYSTEM

When the inputs to a nonlinear system vary by a considerable amount, a single linearized model may
no longer be sufficient to describe the excursions of the state vector about an individual operating
point. It becomes necessary to linearize the system dynamics in terms of deviation variables about
different operating points. The linearized models are applicable to specific regions in state space.
While the initial state may have been at equilibrium, be mindful that the initial conditions of the
deviation variables are no longer zero as the state transitions between different linearized regions in
state space. The situation is illustrated in Figure 7.65 for an autonomous, second-order system with
different linearized models in each of the four quadrants of state space.

x2

x1

Δx1 = x1 − x1,2, Δx2 = x2 − x2,2
− −

Δx1 = f12(Δx1, Δx2) −
.

Δx2 = f22(Δx1, Δx2) −
.

Δx1 = x1 − x1,1, Δx2 = x2 − x2,1
− −

Δx1 = f11(Δx1, Δx2) −
.

Δx2 = f21(Δx1, Δx2) −
.

Δx1 = x1 − x1,4, Δx2 = x2 − x2,4
− −

Δx1 = f14(Δx1, Δx2) −
.

Δx2 = f24(Δx1, Δx2) −
.

Δx1 = x1 − x1,3, Δx2 = x2 − x2,3
− −

Δx1 = f13(Δx1, Δx2) −
.

Δx2 = f23(Δx1, Δx2) −
.

− −(x1,1, x2,1)

− −(x1,4, x2,4)− −(x1,3, x2,3)

− −(x1,2, x2,2)

FIGURE 7.65 State trajectory of an autonomous, nonlinear, second-order system linearized about four
different operating points.

Simulation Tools 627

An example of how to accommodate multiple operating points is illustrated using the nonlinear
second-order system in Figure 7.66. The mathematical model describing the coupled dynamics of
the two tanks is given in Equations 7.173 through 7.176.

A1
dH1

dt
þ F1 ¼ F0 (7:173)

F1 ¼ c1H
1=2
1 (7:174)

A2
dH2

dt
þ F2 ¼ F1 (7:175)

F2 ¼ c2H
1=2
2 (7:176)

Solving for the state derivative functions gives

dH1

dt
¼ f1(H1,H2,F0) ¼ 1

A1
(F0 � c1H

1=2
1) (7:177)

dH2

dt
¼ f2(H1,H2,F0) ¼ 1

A2
(c1H

1=2
1 � c2H

1=2
2) (7:178)

Suppose the flow into the first tank is constant, that is, F0(t) ¼ ~F0, t � 0. Steady-state levels are
obtained by setting both derivatives equal to zero. The result is

(H1)ss ¼
~F0

c1

� �2
, (H2)ss ¼

~F0

c2

� �2
(7:179)

A typical state trajectory starting from {H1(0), H2(0)} and ending at {(H1)ss, (H2)ss} is shown
in Figure 7.67. Four different operating points designated (H1,H2) in the (H1, H2) state space are
also shown.

Equations 7.177 and 7.178 are initially linearized about the operating point (H1,H2) nearest to
the initial state {H1(0), H2(0)}. The equations are relinearized as necessary, that is, when the state
trajectory transitions from a neighborhood about one operating point to another region about a
different operating point.

For nonlinear systems with inputs, linearization requires a nominal input for each operating point.
The following example presents the results of using a single operating point compared with using
multiple operating points for linearizing the two-tank system in Figure 7.66 with constant inflow.

F0(t)

A2A1

F1(t)

F2(t)

H1(t) H2(t)

FIGURE 7.66 Second-order system consisting of two nonlinear first-order tanks.

628 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 7.3

For the two-tank system shown in Figure 7.66, baseline parameter values are

A1 ¼ 25 ft2, A2 ¼ 15 ft2, c1 ¼ 3 ft3=min =ft1=2, c2 ¼ 4 ft3=min =ft1=2

(a) Find the steady-state levels (H1)ss and (H2)ss when ~F0 ¼ 12 ft3=min.
(b) Choose a steady-state operating point (H1,H2) where H1 ¼ 0:5(H1)ss. Find the tank 2 level

H2 at the operating point and the nominal inflow F0 at the operating point.
(c) Introduce deviation variables and linearize the model differential equations.
(d) Solve the linearized equations for the case where both tanks are initially empty and

~F0 ¼ 12 ft3=min. Compare the level responses of both tanks to the solutions obtained from
the nonlinear equations.

(e) Plot state trajectories for the linearized and nonlinear systems.
(f) Establish four steady-state operating points corresponding to tank 1 levels of 0.125(H1)ss,

0375(H1)ss, 0.625(H1)ss, and 0.875(H1)ss.
(g) Repeat parts (d) and (e).

(a) From Equation 7.179, the steady-state levels are

(H1)ss ¼
~F0
c1

� �2
¼ 12

3

� �2
¼ 16 ft, (H2)ss ¼

~F0
c2

� �2
¼ 12

4

� �2
¼ 9 ft (7:180)

(b) The required inflow F0 to maintain tank 1 level at H1 ¼ 0:5(H1)ss ¼ 8 ft is equal to the steady-
state outflow from tank 1, that is,

F0 ¼ F1 ¼ c1H
1=2
1 ¼ 3(8)1=2 ¼ 8:4853 ft3=min (7:181)

For steady-state conditions, tank 2 level must be

H2 ¼ F2
c2

� �2
¼ F1

c2

� �2
¼ 3(8)1=2

4

 !2
¼ 4:5 ft (7:182)

The steady-state operating point is (H1,H2) ¼ (8 ft, 4:5 ft) and F0 ¼ 8:4853 ft3=min.

(H2)ss

(H1)ss
H1

H2

0

H2(0)

H1(0)

(H1, H2)− − (H1, H2)− −

(H1, H2)− −

(H1, H2)− −

FIGURE 7.67 Several operating points and state trajectory for tanks subject to F0(t) ¼ ~F0, t � 0.

Simulation Tools 629

(c) Introducing deviation variables DH1 ¼ H1 �H1, DH2 ¼ H2 �H2 for the tank levels and
DF0 ¼ F0 � F0 ¼ ~F0 � F0 for the inflow to tank1produces a systemof linearizeddifferential equations

D _H1 ¼ a11DH1 þ a12DH2 þ b1DF0 (7:183)

D _H2 ¼ a21DH1 þ a22DH2 þ b2DF0 (7:184)

a11 ¼ q
qH1

f1(H1,H2, F0)

H1¼H1,H2¼H2,F0¼F0

¼ �c1
2A1H

1=2
1

(7:185)

a12 ¼ q
qH2

f1(H1,H2, F0)

H1¼H1,H2¼H2,F0¼F0

¼ 0 (7:186)

a21 ¼ q
qH1

f2(H1,H2, F0)

H1¼H1,H2¼H2,F0¼F0

¼ c1

2A2H
1=2
1

(7:187)

a22 ¼ q
qH2

f2(H1,H2, F0)

H1¼H1,H2¼H2,F0¼F0

¼ �c2
2A2H

1=2
2

(7:188)

b1 ¼ q
qF0

f2(H1,H2, F0)

H1¼H1,H2¼H2,F0¼F0

¼ 1
A1

(7:189)

b2 ¼ q
qF0

f2(H1,H2, F0)

H1¼H1,H2¼H2,F0¼F0

¼ 0 (7:190)

Substituting values for A1, A2, c1, c2, H1, H2 in Equation 7.185 and Equations 7.187 through
7.189, the linearized tank model is

D _H1 ¼ �0:0212DH1 þ 0:04DF0 (7:191)

D _H2 ¼ 0:0354DH1 � 0:0629DH2 (7:192)

(d) The general solution to Equations 7.183 and 7.184 with a12¼b2¼ 0, initial conditions
DH1(0) ¼ H1(0)�H1,DH2(0) ¼ H2(0)�H2, and DF0 ¼ ~F0 � F0 is (see Exercise 7.25)

DH1(t) ¼ �b1DF0
a11

þ DH1(0)þ b1DF0
a11

� �
ea11t (7:193)

DH2(t) ¼ a21b1DF0
a11a22

þ a21
(a11 � a22)

DH1(0)þ b1DF0
a11

� �
ea11t

þ DH2(0)þ a21
(a22 � a11)

DH1(0)þ b1DF0
a22

� � �
ea22t (7:194)

With H1(0)¼H2(0)¼ 0, DF0 ¼ ~F0 � F0 ¼ 12� 8:4853 ¼ 3:5147 ft3=min, the linearized tank-level
responses H1(t) ¼ H1 þ DH1(t) and H2(t) ¼ H2 þ DH2(t) become

H1(t) ¼ 14:6274(1� e�0:0212t), t � 0 (7:195)

H2(t) ¼ 8:2279� 12:4195e�0:212t þ 4:1916e�0:0629t, t � 0 (7:196)

The nonlinear system responses can be approximated by resorting to simulation with a
fixed-step numerical integrator and small integration step. The Simulink diagram is shown in
Figure 7.68.

An RK-4 integrator with step size of 0.01 s was used to approximate the tank 1 and tank 2
nonlinear system level responses. The linearized system responses in Equations 7.195 and 7.196
are plotted along with the nonlinear system responses in Figure 7.69.

Note that the nonlinear system step responses approach the correct steady-state levels
(H1)ss¼ 16 ft and (H2)ss¼ 9 ft predicted in Equation 7.180. Can you verify whether the tank levels
for the linearized system shown in Figure 7.69, namely, H1(350)¼ 14.62 ft and H2(350)¼ 8.22 ft,
are correct?

630 Simulation of Dynamic Systems with MATLAB® and Simulink®

(e) The state trajectories are shown in Figure 7.70.

(f) A similar procedure to the one used in parts (a) through (e) establishes four distinct steady-state
operating points (H1,H2) where H1 is one of the four values 0.125(H1)ss¼ 2 ft, 0.375(H1)ss¼ 6 ft,
0.675(H1)ss¼ 10 ft, 0.875(H1)ss¼ 14 ft. The corresponding values of H2 and F0 are shown in
Table 7.7.

(g) The nonlinear and linearized system responses for both tanks are shown in Figures 7.71
and 7.72.

The static nonlinear operating curves for each tank are shown in Figure 7.73, and the state
trajectories of the linearized and nonlinear systems are shown in Figure 7.74. The operating points
listed in Table 7.7 are shown as well. Note the improved accuracy in the step response of the
system linearized about multiple operating points compared to the case illustrated in Figure 7.70
where a single operating point (H1,H2) was used.

FIGURE 7.68 Simulink® diagram for nonlinear two-tank system.

0

5

10

15 Nonlinear
Linear

Tank 1 level response

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350
0

5

H
2(

t),
 ft

H
1(

t),
 ft

10
Nonlinear

Linear

t (min)

Tank 2 level response

FIGURE 7.69 Comparison of linearized and nonlinear system tank-level responses.

Simulation Tools 631

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5
H

2
(ft

)

H1 (ft)

6

7

8

9

10

(H1, H2)− −

LinearNonlinear

(H2)ss = 9 ft

(H1)ss = 16 ft

FIGURE 7.70 State trajectories of linearized (H1 ¼ 8 ft, H2 ¼ 4:5 ft) and nonlinear systems.

TABLE 7.7
Steady-State Operating Points (H1,H2)
and Corresponding F0

Region H1 (ft) H2 (ft) F0 (ft3=min)

I 2 1.125 4.2426

II 6 3.375 7.3485

III 10 5.625 9.4868

IV 14 7.875 11.2250

0 50 100 150 200 250 300 350
0

2

4

H
1(

t),
 ft

6

8

10

12

14

Region I

Region II

Region III

Region IV

t (min)

LinearizedNonlinear
(H1)ss = 16

FIGURE 7.71 Tank 1 linearized system response using four operating points and nonlinear system response.

632 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

7.18 The nonlinear tank model in which the outflow is based on Equation 7.89 can be thought of as
exhibiting a variable fluid resistance, that is, R¼ f (H). When the tank is linearized about an
operating pt (H,F0), the resistance R ¼ f (H) ¼ DH=DF0, which is the reciprocal of the slope
of the tangent drawn to the function F0¼ cH1=2 at the operating point (see Figure 7.51).
Hence, for small variations about the operating point, the tank behaves similar to a linear tank
with resistance R.
(a) Show that the linearized resistance R about the point (H,F0) is equal to 2H0=F0.
(b) For the tank whose operating curve is shown in Figure 7.51, find the linearized resistance

R when the tank level fluctuates by a small amount about
5 ft (ii) 10 ft (iii) 15 ft (iv) 20 ft.

(c) Comment on the apparent fluid resistance of a nonlinear tank as the level rises.

0 50 100 150 200 250 300 350
0

1

2

3

4

5

H
2(

t),
 ft

6

7

8

(H2)ss =

t (min)

9

Linearized

Nonlinear

FIGURE 7.72 Tank 2 linearized system response using four operating points and nonlinear system response.

0

2

4F 1
 (f

t3 /m
in

)

6

8

10

12

0

2

4F 2
 (f

t3 /m
in

)

6

8

10

12

H1 (ft) H2 (ft)

F1 = c1H1
1/2 F2 = c2H2

1/2

(H1, F1)– – (H2, F2)– –

0 5
(a) (b)

10 15 0 2 4 6 8

FIGURE 7.73 Static nonlinear operating curves for both tanks. (a) Tank 1 nonlinear system operating
characteristic. (b) Tank 2 nonlinear system operating characteristic.

Simulation Tools 633

7.19 A tank with nonlinear operating curve, shown in Figure 7.51, and cross-sectional area 25 ft2 is
initially filled to a height of 9 ft. There is no inflow.
(a) Employ Simulink (with suitable integrator and step size) to simulate the emptying of the

tank. Graph Hsim(t).
(b) Linearize the differential equation model about the initial point H(0)¼ 9 ft, F0(0)¼

1.5 ft3=min, that is, choose the operating pt as (H,F0) ¼ (9, 1:5), and find the linear
differential equation describing the deviation DH(t) ¼ H(t)� H.

(c) Find the analytical solution for DH(t) and plot Hlin(t) ¼ H þ DH(t) on the same graph as
the simulated solution Hsim(t). Comment on the results.

(d) Find the analytical solution for the level, Hanal(t), and compare it with the simulated
response Hsim(t) in part (a) and linearized response Hlin(t) in part (c).

7.20 Starting with Equations 7.101 and 7.110, obtain Equation 7.111 for the linearized state
derivatives.

7.21 The nonlinear tank shown in Figure E7.21a has an adjustable valve in the discharge line.
The valve opening is given by the normalized variable u (0 � u � 1) where u¼ 0 is a closed
valve and u¼ 1 represents a fully open valve. The outflow is obtained from F0¼F0(u, H)¼
c(u)H1=2.

F0(t)

F1(t)

A

θ(t)

H(t)

FIGURE E7.21a

0 2 4 6 8 10 12 14 16

0

2

4

6
H

2
(ft

)

8

10

H1 (ft)

H1(0), H2(0)

(H1)ss, (H2)ss

– –(H1, H2)

Linear
Nonlinear

FIGURE 7.74 State trajectories for linearized and nonlinear systems.

634 Simulation of Dynamic Systems with MATLAB® and Simulink®

An expression for DF0(t) in the linearized differential equation model of the tank
A(d=dt)DH(t)þDF0(t)¼DF1(t) is obtained as follows:

F0 ¼ F0(u,H0)þ q
qu

F0(u,H0)Duþ q
qH

F0(u,H0)DH

) DF0 ¼ q
qu

[c(u)H1=2]u¼u,H¼HDuþ
q
qH

[c(u)H1=2]u¼u,H¼HDH

¼ H
1=2 d

du
c(u)

u¼u

Duþ c(u)
d

dH
H1=2

H¼H

DH

¼ H
1=2

c0(u)Duþ c(u)
1
2
H
�1=2

� �
DH

Data points along the valve-operating characteristic c(u) are shown in Figure E7.21b:

0 0.5 1

c(θ), ft3/min/ft1/2

2.5

0

θ = 0.5

θ

−

FIGURE E7.21b

(a) Find the linearized differential equation about the steady-state operating point where
u ¼ 0:5, H ¼ 9 ft.

(b) Simulate the tank-level response when the inflow increases by 10% and valve opening
decreases by 15% with respect to their operating point values. The initial conditions are
H(0)¼H, u(0)¼ u. Assume both changes are step inputs. The cross-sectional area of the
tank is 50 ft2.

7.22 In Example 7.2, let b¼ 0 and vary a from �0.5 to 0.5 in steps of 0.05.
(a) Plot the linearized level responses on the same graph.
(b) Plot the nonlinear level responses on the same graph.
(c) Repeat parts (a) and (b) for H ¼ 4, 16 and 25 ft.

7.23 The populations of two species coexisting in the same environment are governed by the
predator–prey equations

dx

dt
¼ x(a� bx� cy)þ ux

dy

dt
¼ y(�k þ lx)þ uy

where x¼ x(t) is the population of the prey at time ‘‘t,’’ y¼ y(t) is the population of predators
at time ‘‘t,’’ ux¼ ux(t) is the net rate of new prey introduced at time ‘‘t,’’ uy¼ uy(t) is the net

Simulation Tools 635

rate of new predators entering the environment at time ‘‘t,’’ and a, b, c, l, and k are parameters
of the system.
(a) Find the nontrivial equilibrium points (x, y) in the x, y plane when the two inputs are

ux ¼ ux ¼ 0, uy ¼ uy ¼ 0, t � 0. Leave your answers for x and y in terms of the system
parameters.

(b) Introduce deviation variables D x, Dy, Dux, and Duy and choose the outputs as Dy1¼Dx
and Dy2¼Dy. Linearize the state equations about the operating point where x ¼ x, y ¼ y,
ux ¼ ux, and uy ¼ uy and find the linearized system matrices A, B, C, and D in terms of the
system parameters.

(c) Find the transfer functions Dx(s)=Dux(s), Dx(s)=Duy(s), Dy(s)=Dux(s), and Dy(s)=Duy(s).
(d) Suppose the numerical values of the system parameters are a¼ 12, b¼ 0, c¼ 2, k¼ 20,

and l¼ 4. Further, let the inputs be ux¼ 1, t � 0 and uy¼ 0, t � 0. Simulate the nonlinear
and linearized system responses starting from the point x(0)¼ 0, y(0)¼ 0 and compare
results using plots of
(i) x(t) vs. t and xlin(t) vs. t on the same graph
(ii) y(t) vs. t and ylin(t) vs. t on the same graph
(iii) y(t) vs. x(t) and ylin(t) vs. xlin(t) on the same graph
Comment on the results.

(e) Repeat part (d) with ux¼ 0, t � 0, and uy¼�1, t � 0.
(f) Repeat parts (d) and (e) with x(0)¼ 1 and y(0)¼ 1.

7.24 The dynamics of an inverted pendulum with physical parameters M¼ 4 kg, m¼ 0.15 kg, and
l¼ 0.8 m is to be linearized about a steady-state operating point (x0; u0) ¼
[x0, _x0, u0, _u0; u0] ¼ 0 0 0 0; 0½ �T .
(a) Find the linearized system matrices A, B, C, and D

(i) Analytically
(ii) Using ‘‘linmod’’
(iii) By numerical approximation using a central difference approximation formula

with suitably small D
(b) Find the eigenvalues of the coefficient matrix A for the three methods in part (a).

Comment on the results.
(c) Use the A, B, C, and D matrices resulting from the analytical approach and simulate u(t),

t � 0 in response to the pulse input u(t)¼ 0.01 N, 1 � t � 2.
(d) Simulate the nonlinear system response for u(t), t � 0 due to the same input in part (c).

Compare the linearized and nonlinear responses.
7.25 For the two-tank system in Figure 7.66,

(a) Show that the solution of the linearized differential equations in Equations 7.183 and
7.184 is given in Equations 7.193 and 7.194.

(b) Check the solution at t¼ 0 and t¼1
(c) The system in Example 7.3 is linearized about a steady-state operating point where

H1 ¼ 1 ft. Find expressions for H2 and F0 in terms of H1 and the system parameters c1,
c2, A1, and A2 and then evaluate them numerically.

(d) Plot the linearized system response for constant inputs of ~F0 ¼ 2, 4, 8 ft3=min and both
tanks initially empty.

(e) Simulate the nonlinear system dynamics for the same constant input values, and plot the
responses on the same graph used for the linearized system responses. Comment on the
results.

7.26 Repeat Example 7.3 for the case where the tanks interact, that is, the flow out of the first tank
F1 enters tank 2 at the bottom and is modeled by

F1 ¼ c12(H1 � H2)
1=2

where c12¼ 2 ft3=min=ft1=2.

636 Simulation of Dynamic Systems with MATLAB® and Simulink®

7.27 The nonlinear pendulum in Figure E7.27 is modeled by J€uþ c _uþ mgr sin u ¼ 0.

m

rθ

FIGURE E7.27

(a) The state components are x1¼ u and x2 ¼ _u. Find the state derivative functions f1(x1, x2)
and f2(x1, x2) in the state equations _x1 ¼ f1(x1, x2) and _x2 ¼ f2(x1, x2).

(b) Linearize the state equations about the equilibrium point x1¼ 0 rad, x2¼ 0 rad=s.
(c) The initial conditions are x1(0)¼ 0 rad, x2(0)¼ 0.1 rad=s. Find expressions for the

linearized responses x1(t), x2(t) when the system parameters are

m ¼ 0:25 slugs, r ¼ 2 ft, c ¼ 0:1 ft lb=rad=s, J ¼ mr2 ¼ 1 ft 1b s2

(d) Obtain the nonlinear system response by simulation, and plot the linearized and nonlinear
system responses on the same graph.

(e) Repeat parts (c) and (d) when the initial conditions are x1(0)¼ 0.25 rad, x2(0)¼ 0 rad=s.

7.5 ADDING BLOCKS TO THE SIMULINK® LIBRARY BROWSER

7.5.1 INTRODUCTION

In order to keep development costs down, previously verified and validated models are reused in the
development of new simulations. A verified model means the model was built right, whereas a
validated model means the right model was built. As an example, in Section 5.12, various Kalman
filters (continuous, discrete, and steady-state continuous) were developed in Simulink. These
models were verified and validated by comparing them to known results (outputs and plots) from
MATLAB scripts. It would be beneficial if these models were made available for use by other
members of the simulation development team. What follows is the process by which models are
added to a library and made available for modeling through the Simulink Library Browser.

Recall from Section 5.12 the case study of Kalman filtering led to the development of three
different models: the continuous-time Kalman filter (CTKF), the discrete-time Kalman filter
(DTKF), and the steady-state continuous-time Kalman filter (SSCTKF) whose top-level blocks
are repeated in Figures 7.75 through 7.77 for convenience.

In each of Figures 7.75 through 7.77, the Kalman filter algorithms labeled CTKF Estimates, DTKF
Estimates, and SSCTKF Estimates, respectively, have been selected to identify which particular
blocks will be added to the library. In order to make these filters available to developers as individual
drag and drop blocks within the Simulink Library browser, follow the procedure outlined next.

In Simulink, click on File ! New ! Library as shown in Figure 7.78.
This action opens an untitled library window shown in Figure 7.79.
Simply drag and drop the CTKF estimates block into the untitled library window. The result of

this action is shown in Figure 7.80.
Repeating this procedure for the DTKF Estimates block and the SSCTKF block results in Figures

7.81 and 7.82.
From the library window, click File ! Save to save the blocks into the library as shown in

Figure 7.83.

Simulation Tools 637

Add

y yhat

Continuous-time Kalman filter
(run with CTKF_Model_Data.m)

yhatout

To workspace
CTKF

estimates
Random
number

Actual

y +
+

FIGURE 7.75 Continuous-time Kalman filter.

y +
+ y xm

Discrete-time Kalman filter
(run with DTKF_Model_Data.m)

xmout

To workspaceAddActual
Random
number

DTKF
estimates

FIGURE 7.76 Discrete-time Kalman filter.

y +
+
Add

SSCTKF
estimates

Steady-state continuous-time Kalman filter
(run with SSCTKF_Model_Data.m)

y yhat yhatout

To workspaceActual
Random
number

FIGURE 7.77 Steady-state continuous-time Kalman filter.

638 Simulation of Dynamic Systems with MATLAB® and Simulink®

FIGURE 7.78 Creating a library.

FIGURE 7.79 Library: untitled.

FIGURE 7.80 Drag and drop of CTKF estimates.

Simulation Tools 639

In the Save As dialog box, enter the name of the library, chosen here as ‘‘kflib’’ (to represent
Kalman filter library) in Figure 7.84.

Once the library is saved, the name will change from ‘‘Library: untitled*’’ to ‘‘Library: kflib’’ as
shown in Figure 7.85.

The next step in the process is the creation of the S-block M-file to load the library when
Simulink is started. To view a template, type ‘‘edit slblocks’’ in the MATLAB command window.
The M-file template is given as follows where executable lines are identified in bold.

FIGURE 7.81 Drag and drop of DTKF estimates.

FIGURE 7.82 Drag and drop of SSCTKF estimates.

FIGURE 7.83 Saving the blocks into the library.

640 Simulation of Dynamic Systems with MATLAB® and Simulink®

function blkStruct¼slblocks
%SLBLOCKS Defines the block library for a specific Toolbox or Block-

set. SLBLOCKS returns information about a Blockset to
% Simulink. The information returned is in the form of a Blockset-

Struct with the following fields:
%
% Name Name of the Blockset in the Simulink block library Block-

sets & Toolboxes subsystem.
% OpenFcn MATLAB expression (function) to call when you double-

click on the block in the Blocksets & Toolboxes
% subsystem.
% MaskDisplay Optional field that specifies the Mask Display com-

mands to use for the block in the Blocksets & Toolboxes
% subsystem.
% Browser Array of Simulink Library Browser structures,

described below.
%
% The Simulink Library Browser needs to know which libraries in your

Blockset it should show, and what names to give them. To

FIGURE 7.84 Saving the Kalman filter library, kflib.

FIGURE 7.85 Library: kflib.

Simulation Tools 641

% provide this information, define an array of Browser data struc-
tures with one array element for each library to display in the

% Simulink Library Browser. Each array element has two fields:
%
% Library File name of the library (mdl-file) to include in the

Library Browser.
% Name Name displayed for the library in the Library Browser

window. Note that the Name is not required to be the
% same as the % mdl-file name.
%
% Example:
% %Define the BlocksetStruct for the Simulink block libraries
% %Only simulink_extras shows up in Blocksets & Toolboxes
% %
% blkStruct.Name¼[‘Simulink’ sprintf(‘\n’) ‘Extras’];
% blkStruct.OpenFcn¼‘simulink_extras’;
% blkStruct.MaskDisplay¼sprintf(‘Simulink\nExtras’);
%
% %
% % Both simulink and simulink_extras show up in the Library Browser.
% %
% blkStruct.Browser(1).Library¼‘simulink’;
% blkStruct.Browser(1).Name¼‘Simulink’;
% blkStruct.Browser(2).Library¼‘simulink_extras’;
% blkStruct.Browser(2).Name¼‘Simulink Extras’;
%
% Copyright 1990–2006 The MathWorks, Inc.
% $Revision: 1.20.2.10 $

% Name of the subsystem which will show up in the Simulink Blocksets
and Toolboxes subsystem.

blkStruct.Name¼[‘Simulink’ sprintf(‘\n’) ‘Extras’];

% The function that will be called when the user double-clicks on this
icon.

blkStruct.OpenFcn¼‘simulink_extras’;

% The argument to be set as the Mask Display for the subsystem. You may
comment this line out if no specific mask is desired.

% Example: blkStruct.MaskDisplay¼‘plot([0:2*pi],sin
([0:2*pi]));’; No display for Simulink Extras.

blkStruct.MaskDisplay¼‘’;

% Define the Browser structure array, the first element contains the
information for the Simulink block library and the second for the %
Simulink Extras block library.

Browser(1).Library¼‘simulink’;
Browser(1).Name¼‘Simulink’;
Browser(1).IsFlat¼0;%Isthislibrary‘‘flat’’(i.e.nosubsystems)?
Browser(2).Library¼‘simulink_extras’;
Browser(2).Name¼‘Simulink Extras’;

642 Simulation of Dynamic Systems with MATLAB® and Simulink®

Browser(2).IsFlat¼0;%Isthislibrary‘‘flat’’(i.e.nosubsystems)?
blkStruct.Browser¼Browser;
clear Browser;

% Define information about Signal Viewers
Viewer(1).Library¼‘simviewers’;
Viewer(1).Name¼‘Simulink’;
blkStruct.Viewer¼Viewer;
clear Viewer;

% Define information about Signal Generators
Generator(1).Library¼‘simgens’;
Generator(1).Name¼‘Simulink’;

blkStruct.Generator¼Generator;
clear Generator;

% Define information for model updater
blkStruct.ModelUpdaterMethods.fhSeparated-

Checks¼@UpdateSimulinkBlocksHelper;

% End of slblocks

For the Kalman filter library, the simplified S-block M-file was edited as shown in Figure 7.86.
The primary changes are blkStruct.Name, Browser.Library, and Browser.Name on lines 4, 11, and
12, respectively. This file must be saved as ‘‘slblocks.m’’ in the same folder as the library file in
order for Simulink to acknowledge existence of the ‘‘kflib’’ library at startup.

When Simulink is started, Figure 7.87 shows the Simulink Library Browser with an exploding
directory named ‘‘My Kalman Filters’’ containing the three Kalman filters ‘‘CTKF Estimates,’’
‘‘DTKF Estimates,’’ and ‘‘SSCTKF Estimates,’’ which are now available to drag and drop into a
Simulink model.

FIGURE 7.86 S-block M-file ‘‘slblocks.m.’’

Simulation Tools 643

FIGURE 7.87 Simulink® Library Browser with my Kalman filters.

FIGURE 7.88 DTKF estimates subsystems.

644 Simulation of Dynamic Systems with MATLAB® and Simulink®

By double-clicking on ‘‘DTKF Estimates’’ in the right window of the Simulink Library Browser,
the subsystems of the algorithm (Kalman gain, a posteriori covariance, a posteriori state, a priori
covariance, and a priori state) are displayed in the window as shown in Figure 7.88. These are also
available for dragging and dropping for developing Simulink models.

7.5.2 SUMMARY

This section demonstrated how to create a Simulink library and add it to the Simulink Library
Browser, thereby making custom models available to other members of a development team.

EXERCISE

7.28 In Simulink, create a simple model for the equation of a line y ¼ mxþ b where x is the input
signal, m is a gain block on the input signal, b is a constant block added to the output of the
gain block, and y is the output signal. Once the model is built, create a library named ‘‘linelib’’
and add it to the Simulink Library Browser by editing the slblocks.m file accordingly.

7.6 SIMULATION ACCELERATION

7.6.1 INTRODUCTION

The default simulation option in Simulink is Normal mode. It is set by clicking Simulation !
Normal in Simulink as shown in Figure 7.89 for the discrete-time Kalman filter model from Section
5.12. In this mode, the simulation is executed as a single (interpreted) process within the
MATLAB=Simulink environment. Normal mode supports debugging, M-files, scopes=viewers,
run-time diagnostics, parameter tuning, and algebraic loops. However, depending on the level of
fidelity built into the Simulink model, or depending on how many replications of the Simulink
model are run, the simulation could consume a lot of the user’s time.

Simulink offers two compiled options: Accelerator mode (Figure 7.90) and Rapid Acceleration
mode (Figure 7.91).

In Accelerator mode, the simulation executes as a single (compiled) process within the
MATLAB=Simulink environment. This mode supports debugging, M-files, and scopes=viewers,

y

Actual
Random
number

Add

y xm xmout

To workspace
DTKF

estimates

h DTKF_Model_Data.m)

+
+

te-time Kalman filter

FIGURE 7.89 Normal simulation.

Simulation Tools 645

and allows the user to tune parameters. In order to run the simulation in Accelerator mode, simply
select Simulation ! Accelerator in Simulink as shown in Figure 7.90 and execute the model.

In Rapid Accelerator mode, the simulation executes as two separate processes:
MATLAB=Simulink running as one process while another compiled process runs in parallel. This
mode only supports scopes=viewers and parameter tuning. In order to run the simulation in Rapid
Accelerator mode, simply select Simulation ! Rapid Accelerator in Simulink as shown in Figure
7.91 and execute the model.

After selecting Accelerator mode for the discrete-time Kalman filter model, the MATLAB
Command Window displays the following message just before running the simulation.

Building the Accelerator target for model: DTKF_Model
Successfully built the Accelerator target for model: DTKF_Model

This message (with italics added) indicates that Accelerator mode was selected and that a
compiled version was created.

y

Actual
Random
number

Add

y xm xmout

To workspace
DTKF

estimates

+
+

h DTKF_Model_Data.m)
te-time Kalman filter

FIGURE 7.90 Accelerator mode simulation.

h DTKF_Model_Data.m)

y

Actual
Random
number

Add

y xm xmout

To workspace
DTKF

estimates

+
+

te-time Kalman filter

FIGURE 7.91 Rapidly accelerated simulation.

646 Simulation of Dynamic Systems with MATLAB® and Simulink®

After selecting Rapid Accelerator mode for the discrete-time Kalman filter model, the MATLAB
Command Window displays the following message just before running the simulation.

Building the rapid accelerator target for model: DTKF_Model
Successfully built the rapid accelerator target model: DTKF_Model

This message (with italics added) indicates that Rapid Accelerator mode was selected and that a
compiled version was created. Note that while both Accelerator mode and Rapid Accelerator mode
use aspects of MATLAB’s Real-Time Workshop, the user does not need Real-Time Workshop to
accelerate simulations. However, the user does need Real-Time Workshop to generate source code
for other purposes.

One final comment is that the Rapid Accelerator mode lends itself toward running Monte Carlo
simulations. Please see Section 5.10 for more information.

7.6.2 PROFILER

Sometimes, the user would like to know which sections of the simulation are consuming the most
time. Simulink provides a tool called the Profiler for such analysis. To turn on the Profiler, click
Tools ! Profiler in Simulink (Figure 7.92) and rerun the simulation.

Output from the Profiler for the discrete-time Kalman filter simulation is shown in Figure 7.93.
By examining this information, the user can take action (e.g., change an algorithm) to help reduce
the amount of time the simulation is spending in any one area.

7.6.3 SUMMARY

This section demonstrated how to accelerate simulations using the Accelerator mode and the Rapid
Accelerator mode. While both modes are compiled and are generally faster than the Normal
(interpreted) mode, which one to use depends on the type of tool support needed. Both compiled
modes support scopes=viewers and parameter tuning, but only Accelerator mode adds debugging
and M-file support.

This section also briefly mentioned the Profiler—a tool to assist users in examining which areas
of the simulation require the most amount of execution time. With this knowledge, the user can
augment algorithms to increase simulation performance. This can pay dividends, particularly if the
user is running many replications of a Monte Carlo simulation with a high level of fidelity.

y

Actual
F

M

y xm xmout

To workspace
DTKF

estimates

_Model_Data.m)
Kalman filter

FIGURE 7.92 Simulink’s profiler.

Simulation Tools 647

EXERCISE

7.29 Open the discrete-time Kalman filter from Section 5.12.
(a) Run the model in Normal mode.
(b) Run the model in Accelerator mode.
(c) Run the model in Rapid Accelerator mode.
(d) Turn on the Profiler and run the model to see where the model spends most of its time.

FIGURE 7.93 Profiler output (partial).

648 Simulation of Dynamic Systems with MATLAB® and Simulink®

8 Advanced Numerical
Integration

8.1 INTRODUCTION

Dynamic errors, an important aspect in digital simulation of dynamic systems, are introduced.
Instead of focusing on truncation errors, the simulationist may be more concerned with errors in
dynamic response, a yardstick of simulation accuracy involving comparisons of transient and
sinusoidal responses of continuous-time and discrete-time models.

The subject of dynamic errors has been covered in great detail by Howe (1986). The commonly
used numerical integrators are analyzed by considering the characteristic roots, magnitude, and
phase properties of the ‘‘equivalent continuous-time system,’’ that is, the continuous-time system
whose sampled values coincide with the discrete-time (simulated) system outputs. The connection
between digital simulation and discrete-time systems is further illustrated by exploring the subject of
stability in both arenas.

Stiff systems, initially introduced in Chapter 6, are once again considered. Multirate integration
schemes are presented as an alternative to the use of stiff integrators for the case where the overall
system can be decomposed into several interconnected subsystems operating at different speeds.

Real-time simulation is a specialized application involving interactions between a digital simu-
lation and real-time inputs from physical components or a human operator. The necessity of
synchronizing with signals to and from external components places additional constraints on the
simulation environment and numerical integrators. Real-time compatible numerical integrators are
discussed along with numerical integrators not suitable for real-time implementation and an
explanation of why they are not.

The chapter concludes with a look at some additional techniques for developing discrete-time
models intended to approximate the dynamic behavior of linear time-invariant (LTI) continuous-
time models.

8.2 DYNAMIC ERRORS (CHARACTERISTIC ROOTS, TRANSFER FUNCTION)

The use of numerical integrators to simulate the behavior of continuous-time systems introduces
errors, that is, the transient and steady-state behavior of the discrete-time responses differs from that
of the continuous-time outputs at the times where the simulated response is computed. Some insight
with respect to the differences is possible by considering expressions for the truncation errors
inherent in the various types of numerical integrators. We know that the local and global truncation
errors are sensitive to the integration step size and the state derivative functions which define the
continuous-time system model.

The differences in transient and steady-state sinusoidal responses are termed dynamic errors.
Truncation errors, on the other hand, relate numerical solutions of differential equation models to
various-order Taylor Series expansions of the continuous-time solutions. A mathematical frame-
work for comparing dynamic errors resulting from numerical integration of linear continuous-time
models is possible. Given that real-world system models are invariably nonlinear, the first step is
therefore to linearize the system of nonlinear differential and algebraic equations about a steady-
state operating point, similar to the procedures discussed in Section 7.4.

649

The dynamic errors associated with the use of fixed-step numerical integrators applied to linear
system models fall in one of two categories (Howe 1986). One type of error focuses on differences
between characteristic roots of the continuous-time system model and the apparent or equivalent
continuous-time system. By equivalent continuous-time system, we mean the continuous-time
system that generates sampled values identical with the discrete-time (simulated) system.

The second type of error relates to differences between the frequency response function of the
continuous-time system and the discrete-time system used to approximate its behavior. Only linear
first- and second-order systems will be considered because higher-order systems can be represented
as linear combinations of these lower-order subsystems.

8.2.1 DISCRETE-TIME SYSTEMS AND THE EQUIVALENT CONTINUOUS-TIME SYSTEMS

Consider a first-order linear system modeled by

dx

dt
¼ f (x, u) ¼ lxþ u (8:1)

The characteristic root is l, the pole of the system transfer function

H(s) ¼ X(s)

U(s)
¼ 1

s� l
(8:2)

Digital simulation of the system requires solution of a difference equation obtained by numerical
integration of the state derivative function f(x, u). For explicit Euler integration, the z-domain
transfer function of the resulting discrete-time system can be obtained by z-transforming the
difference equation

xA(nþ 1) ¼ xA(n)þ T[lxA(n)þ u(n)] (8:3)

or equivalently from (see Section 4.7)

H(z) ¼ H(s)js z�1
T
¼ 1

s� l

s z�1

T

¼ 1
(z� 1=T)� l

¼ T

z� (1þ lT)
(8:4)

The discrete-time system pole is located at z1¼ 1þ lT.
The equivalent continuous-time system is the system whose output x(t), t � 0 is identical to the

discrete-time output xA(nT) at times tn¼ nT, n¼ 0, 1, 2,. . . . To illustrate, suppose the input to
the system in Equation 8.1 is u(t)¼ 1, t � 0. The response is

x(t) ¼ 1
l
[elt � 1], t � 0; (8:5)

The use of explicit Euler integration with step size T to approximate the continuous-time step response
produces the discrete-time approximation xA(n), short for xA(nT), n¼ 0, 1, 2, . . . obtained from

XA(z) ¼ H(z)U(z) (8:6)

¼ T

z� (1þ lT)

� �
z

z� 1
(8:7)

650 Simulation of Dynamic Systems with MATLAB® and Simulink®

Partial fraction expansion of Equation 8.7 followed by inverse z-transformation of the resulting
terms gives

xA(n) ¼ 1
l
[(1þ lT)n � 1], n ¼ 0, 1, 2, . . . (8:8)

Let the equivalent continuous-time system be described by

dx

dt
¼ f (x, u) ¼ l*xþ Ku (8:9)

where l* and K are the characteristic root and gain parameter of the equivalent first-order
continuous-time system, respectively. The step response is

x*(t) ¼ K

l*
[el*t � 1], t � 0 (8:10)

Sampling the equivalent continuous-time system response every T(s) gives

x*(nT) ¼ K

l*
[el*nt � 1], n ¼ 0, 1, 2, . . . (8:11)

Equating the discrete-time responses in Equations 8.8 and 8.11,

1
l
[(1þ lT)n � 1] ¼ K

l*
[el*nT � 1], n ¼ 0, 1, 2, . . . (8:12)

Solving for K and l*,

el*nT ¼ (1þ lT)n) l* ¼ 1
T
ln (1þ lT) (8:13)

K

l*
¼ 1

l
) K ¼ l*

l
¼ ln (1þ lT)

lT
(8:14)

The step response of the first-order continuous-time system in Equation 8.1 with characteristic root
l¼�2 is shown in Figure 8.1. Also shown is the step response of the discrete-time system in
Equation 8.3 corresponding to explicit Euler integration of the derivative function with step size
T¼ 0.05 s. The step response of the equivalent continuous-time system in Equation 8.9 with l* and
K computed from Equations 8.13 and 8.14 is also shown.

From Equation 8.4, the pole of the discrete-time system is z1¼ 1þ lT. Replacing 1þ lT in
Equation 8.13 with z1 leads to an expression relating the characteristic root of the equivalent
continuous-time system and the pole of the discrete-time system. That is,

l* ¼ 1
T
ln z1 (8:15)

Solving Equation 8.15 for the discrete-time system pole leads to

z1 ¼ el*T (8:16)

Uniform sampling of the equivalent continuous-time system response x*(t) every T s generates the
discrete-time system signal xA(n) with pole z1 given in Equation 8.16. In the general case, sampling

Advanced Numerical Integration 651

continuous-time signals with real and complex poles produces discrete-time system signals with
z-plane poles given by

z1 ¼ eTsi , i ¼ 1, 2, . . . , n (8:17)

where si are the poles of the continuous-time system (Jacquot).
Equation 8.17 applies to LTI systems and their characteristic roots as well. The sampled output of

a continuous-time system with characteristic root (s-plane pole) s1 is identical to the output from a
discrete-time system with characteristic root (z-plane pole) located at z1 ¼ eTsi . Looking at it from
the opposite direction, the continuous-time system equivalent to a discrete-time system with a pole
z1 has an s-plane pole at s1¼ 1=T� ln z1.

According to Equation 8.17, a continuous-time integrator with a pole at s¼ 0 in the s-plane is the
continuous-time system equivalent to a discrete-time system with a pole at z¼ 1. Figure 8.2
illustrates the point by showing that a pure integrator generates a continuous-time signal x(t) in
response to the input u(t), which matches the response of the discrete-time system with z-domain
transfer function H(z)¼K=(z� 1) at the discrete times tn¼ nT, n¼ 0, 1, 2,. . . .

Suppose u(t)¼ e�at, t � 0 is the input to the integrator. The output x(t) is

x(t) ¼
ðt
0

u(t)dt ¼ 1
a
(1� e�at), t � 0 (8:18)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

xA(n), Euler integration (T = 0.05)

x(t), (λ = −2)

x*(t), (λ* = −2.1072, K = 1.0536)

FIGURE 8.1 Step response of continuous-time, discrete-time, and equivalent continuous-time systems.

1
s

K
z − 1

x(t)u(t)

u(n)T
x(t)|t = nT = xA(n), n = 0, 1, 2, ...

xA(n)

FIGURE 8.2 An integrator as the equivalent continuous-time system to a discrete-time systemwith pole at z¼ 1.

652 Simulation of Dynamic Systems with MATLAB® and Simulink®

The discrete-time response is found from inverse z-transformation of

X(z) ¼ K

z� 1

� �
z

z� e�aT
¼ K

1� e�aT
z

z� 1
� z

z� e�aT

� �
(8:19)

) xA(n) ¼ K

1� e�aT
(1� e�anT), n ¼ 0, 1, 2, . . . (8:20)

and it follows that x(nT)¼ xA(n), n¼ 0, 1, 2, . . . provided

K ¼ 1� e�aT

a
(8:21)

Figure 8.3 shows the characteristic root of the continuous-time system in Equation 8.2 for the case
when l¼�2. The pole of the discrete-time system resulting from explicit Euler integration with
step size T¼ 0.05 is located at z1¼ (1þ lT)¼ 1þ (�2)(0.05)¼ 0.9 in the z-plane. The character-
istic root of the equivalent continuous-time system is l*¼ 1=T� ln z1¼ 1=0.05� ln 0.9¼�2.107
in the s-plane.

8.2.2 CHARACTERISTIC ROOT ERRORS

The fractional error in characteristic root incurred using numerical integration for digital simulation
of a first-order continuous-time system with characteristic root l is defined as (Howe 1986)

el ¼ l*� l

l
(8:22)

For an underdamped second-order system with complex poles l1,2¼�zvn
 jvd where z and vn

are the damping ratio and natural frequency, respectively, and vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2vn

p
is the damped

natural frequency, the characteristic root errors are

ez ¼ z*� z, evn ¼
vn*� vn

vn
, evd ¼

vd*� vd

vd
(8:23)

z*, vn*, and vd* are the damping ratio, natural frequency, and damped natural frequency of
the equivalent continuous-time second-order system, respectively. The characteristic roots of the
equivalent continuous-time system are

l1,2* ¼ �z*vn*
 jvd* ¼ �z*vn*
 j
ffi
1� (z*)2vn*

q
(8:24)

High-order linear continuous-time systems can be represented as the sum of first- and second-order
continuous-time systems. Hence, the characteristic root errors introduced in Equations 8.22 and 8.23
are sufficient to analyze transient response dynamic errors of higher-order systems comprising first-
and second-order subsystems.

Unit Circle
−2−3

s-plane z-plane

z = eTs

z1 = 0.9λ* = −2.107 λ = −2

FIGURE 8.3 Mapping z¼ eTs for finding the equivalent continuous-time system characteristic root
l*¼�2.107 when z1¼ 0.9, T¼ 0.05.

Advanced Numerical Integration 653

Example 8.1

The first-order system in Equation 8.1 is simulated using trapezoidal integration.

(a) Find an expression for el, the fractional error in characteristic root.
(b) Find an asymptotic formula for el valid for jlTj � 1.
(c) Over what range of values for lT is the asymptotic formula for el accurate?

(a) The difference equation for trapezoidal integration is based on

xA(nþ 1) ¼ xA(n)þ T
2
{f [xA(n), u(n)]þ f [xA(nþ 1), u(nþ 1)]} (8:25)

where f [xA(n), u(n)] and f [xA(nþ 1), u(nþ 1)] refer to the derivative function in Equation 8.1.
Z-transforming the difference equation and then solving for the ratio X(z)=U(z) results in the
z-domain transfer function

H(z) ¼ X(z)
U(z)

¼ T
zþ 1

(2� lT)z� (2þ lT)

� �
(8:26)

The z-plane pole is

z1 ¼ 2þ lT
2� lT

¼ 1þ lT=2
1� lT=2

(8:27)

From Equation 8.15, the characteristic root of the equivalent continuous-time system is

l* ¼ 1
T
ln z1 ¼ 1

T
ln

1þ lT=2
1� lT=2

� �
(8:28)

and the fractional error in characteristic root is

el ¼ l*
l
� 1 ¼ 1

lT
ln

1þ lT=2
1� lT=2

� �
� 1 (8:29)

(b) Equation 8.29 is expressed in the form

el ¼ 1
lT

ln 1þ lT
2

� �
� ln 1� lT

2

� �� �
� 1 (8:30)

The asymptotic formula for el is obtained by truncating the Taylor Series expansion

ln (1þ a) ¼ a� a2

2
þ a3

3
� a4

4
þ � � � (8:31)

after the cubic term where a¼ lT=2 and a¼�lT=2 in Equation 8.30. After simplification, the
result is

el � 1
12

(lT)2, jlTj � 1 (8:32)

(c) A plot of the exact and asymptotic formulas for el is shown in Figure 8.4. From the graph, it
appears that the exact and asymptotic formulas for el are nearly identical for �0.5 � lT< 0.

654 Simulation of Dynamic Systems with MATLAB® and Simulink®

The first-order continuous-time system in Equation 8.1 is asymptotically stable provided l< 0. The
graphs of exact and asymptotic error in Figure 8.4 are for lT< 0; hence, they apply strictly to
asymptotically stable, first-order systems. Equations 8.29 and 8.32 are not valid for lT¼ 0, that is,
when the continuous-time system reduces to a marginally stable integrator with characteristic
root l¼ 0.

Consider the use of trapezoidal integration with step size T to simulate the autonomous first-
order system _x ¼ f (x) ¼ lx with initial condition x(0). The discrete-time signal xA(n) satisfies the
difference equation

xA(nþ 1) ¼ 1þ lT=2
1� lT=2

� �
xA(n), n ¼ 0, 1, 2, 3, . . . (8:33)

with solution given by

xA(n) ¼ 1þ lT=2
1� lT=2

� �n

x(0), n ¼ 0, 1, 2, 3, . . . (8:34)

Table 8.1 summarizes the results for a first-order system with characteristic root l¼�0.5 simu-
lated using trapezoidal integration with four different step sizes. The results are consistent with the
graphs in Figure 8.4.

−1.5 −1.25 −1 −0.75 −0.5 −0.25 0
0

0.05

0.1

0.15

0.2

0.25

0.3

λT

eλ (Exact)

eλ (Asymptotic)

FIGURE 8.4 Exact and asymptotic fractional characteristic root errors for trapezoidal integration (with step
size T) of first-order system _x ¼ lxþ u.

TABLE 8.1
Effect of Parameter lT on Equivalent Characteristic Root and
Fractional Characteristic Root Errors with Trapezoidal Integration

l T lT l* el (Exact) el (Asymptotic)

�0.5 0.015 �0.0075 �0.500002 4.68754� 10�6 4.68750� 10�6

�0.5 0.15 �0.075 �0.500234 4.69146� 10�4 4.68750� 10�4

�0.5 1.5 �0.75 �0.526538 5.12764� 10�4 1.30208� 10�1

Advanced Numerical Integration 655

Several different responses are shown in Figure 8.5. The top two plots show the response of
the continuous-time system and the discrete-time response corresponding to the top two rows in
Table 8.1. Due to the close agreement between l and l*, the response of the equivalent
continuous-time system is indistinguishable from the response of the actual system. Additionally,
the discrete-time output (not all points shown) is in close agreement with the continuous-time
response at times 0, T, 2T,

In the last two cases (lT¼�0.75 and lT¼�1.25), the difference between l and l* is
significant, and the response of the equivalent continuous-time system is noticeably different
from the actual system response, particularly for the case where lT¼�1.25. The simulated
(discrete-time) response is off as well.

Characteristic root errors resulting from simulation of second-order systems using specific
numerical integrators are obtained in a straightforward manner. To illustrate, consider an
underdamped second-order continuous-time system with characteristic roots
l1,2 ¼ �zvn
 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2vn

p
. Similar to the approach used in Equation 8.4, replacing the Laplace

variable s in the continuous-system transfer function with the reciprocal of the z-domain transfer
function for Euler integration leads to the z-domain transfer function of the discrete-time system.
This gives

H(z) ¼ Kv2
n

s2 þ 2zvnsþ v2
n

s z�1

T

(8:35)

¼ K(vnT)2

z2 � 2(1� zvnT)zþ 1� 2zvnT þ (vnT)2
(8:36)

Setting the denominator to zero and solving for the poles of H(z) give

z1,2 ¼ 1� zvnT
 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� z2)

q
vnT (8:37)

0 2.5 5 7.5 10 0 2.5 5 7.5 10

0 2.5 5 7.5 10 0 2.5 5 7.5 10

0

0.2

0.4

0.6

0.8

1

λ = −0.5
T = 0.015

λT = −0.0075

λ = −0.5
T = 1.5

λT = −0.75

λ = −0.5
T = 2.5

λT = −1.25

λ = −0.5
T = 0.15

λT = −0.0075

Table 8.1 row 1 responses

0

0.2

0.4

0.6

0.8

1

t
0

0.2

0.4

0.6

0.8

1

t

0

0.2

0.4

0.6

0.8

1
Table 8.1 row 2 responses

Table 8.1 row 3 responses Table 8.1 row 4 responses

FIGURE 8.5 Responses of first-order continuous-time, discrete-time, dashed line, and equivalent continuous-
time systems for conditions in Table 8.1.

656 Simulation of Dynamic Systems with MATLAB® and Simulink®

From Equation 8.15, the characteristic roots of the equivalent continuous-time system are

s1,2* ¼ 1
T
ln z1,2 (8:38)

Finding an expression for s1* is easier when the corresponding z-plane pole z1 is written in polar
form.

s1* ¼ 1
T
ln (Reju) ¼ 1

T
lnRþ j

u

T
(8:39)

where R and u are obtained from Equation 8.37 (after simplification) as

R ¼
ffi
1� 2zvnT þ (vnT)2

q
(8:40)

u ¼ tan�1
ffi
1� z2vnT

p
1� zvnT

 !
(8:41)

Substituting Equations 8.40 and 8.41 into Equation 8.39 gives s1* ¼ a*þ jb* where the real and
imaginary components a* and b* are given by

a* ¼ 1
T
ln

ffi
1� 2zvnT þ (vnT)2

q� �
(8:42)

b* ¼ 1
T
tan�1

ffi
1� z2vnT

p
1� zvnT

 !
(8:43)

The continuous-time pole s1, the z-plane pole z1, and the equivalent continuous-time system pole
s1* are shown in Figure 8.6.

−ζωn

1−ζ2ωnj

1−ζ*2ωn*

a* = −ζ*ωn*

jb* = j

s1

s*1

ωn

ωn*

z1

R
θz1 = eTs1*

z-plane

FIGURE 8.6 Relationship between second-order continuous-time system, discrete-time, and equivalent
continuous-time system complex pole.

Advanced Numerical Integration 657

From Figure 8.6, it follows that

vn* ¼ (a*2 þ b*2)1=2 ¼ 1
T

ln
ffi
1� 2zvnT þ (vnT)2

q� �� �2(

þ tan�1
ffi
1� z2vnT

p
1� zvnT

 !" #29=;
1=2

(8:44)

z* ¼ cosw ¼ �a*
vn*
¼
� ln

ffi
1� 2zvnT þ (vnT)2

p� 	
vn*T

(8:45)

Asymptotic formulas for vn* and z* are given in (Howe 1986) as

vn* � 1þ zvnT
2

� �
vn, vnT � 1 (8:46)

z* � z� 1� z2

2

� �
vnT, vnT � 1 (8:47)

Exact and approximate (asymptotic) expressions for the fractional error in natural frequency of the
equivalent continuous-time system

evn ¼
vn*
vn

� �
� 1 (8:48)

are obtained from Equation 8.44 for the exact result and Equation 8.46 for the asymptotic one.
Figure 8.7 shows exact and asymptotic fractional errors for several second-order continuous-time
system damping ratios using explicit Euler integration.

1

2

3

×10−3

ζ = 0.1 ζ = 0.25

Exact
Asymptotic

Exact
Asymptotic

0.005

0.01

0.015

0.02

0.02

0.04

0.06

0.08

0 0.05 0.1 0.15 0 0.1 0.2 0.3 0.4
ωnT

e ω
n

e ω
n

ζ = 0.9

ζ = 0.5

Exact
Asymptotic

Exact
Asymptotic

0 0.2 0.4 0.6 0 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

ωnT ωnT

ωnT

FIGURE 8.7 Exact and asymptotic fractional errors in natural frequency with explicit Euler integration.

658 Simulation of Dynamic Systems with MATLAB® and Simulink®

Substituting Equation 8.46 into Equation 8.48 results in the asymptotic fractional error as a
linear function of vnT, that is,

evn � 0:5z(vnT), vnT � 1 (8:49)

From Equation 8.45, the damping ratio error ez is expressible as

ez ¼ z*� z ¼
� ln

ffi
1� 2zvnT þ (vnT)2

q� �
vn*T

� z (8:50)

where vn* is given in Equation 8.44. From Equation 8.47, the asymptotic approximation for ez is

ez � 0:5(z2 � 1)vnT, vnT � 1 (8:51)

The asymptotic expressions for evn in Equation 8.49 and ez in Equation 8.51 are of order O(vnT)
when using Euler integration to simulate an underdamped second-order system.

A plot of the exact and asymptotic formulas for the equivalent system damping ratio z* as a
function of vnT when z¼ 0.1 is shown in the top half of Figure 8.8. Agreement between the two
plots is excellent over the interval 0 � vnT � 0.5.

The equivalent continuous-time system is marginally stable when its two characteristic roots
(transfer function poles) are purely imaginary, that is, z*¼ 0 (see Figure 8.6). From Equation 8.51
with z¼ 0.1 and z*¼ 0, the dimensionless parameter vnT is computed as

z*� z ¼ 0� 0:1 � 0:5[(0:1)2 � 1]vnT (8:52)

) vnT ¼ �0:1
0:5(�0:99) ¼ 0:202

−0.4

−0.3

−0.2

−0.1

0

0.1

Exact
Asymptotic

ζ = 0.1

ζ = 0.1

Equivalent
system
stable
ζ* > 0

Equivalent system unstable
ζ* < 0

ζ*
e ζ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

−0.4

−0.3

−0.2

−0.1

ωnT

Exact
Asymptotic

FIGURE 8.8 Equivalent system damping ratio (z*) and error (ez) vs. vnT.

Advanced Numerical Integration 659

The damping ratio z* of the equivalent continuous-time system is negative whenever vnT> 0.202.
The implication of z*< 0 is obvious from Figure 8.6, namely, the characteristic roots are located in
the right half of the complex plane, and the equivalent system is unstable despite the fact that the
actual continuous-time system is asymptotically stable with positive damping ratio z¼ 0.1. The
lower half of Figure 8.8 shows plots of the error ez¼ z*� z¼ z*� 0.1 vs. vnT based on the exact
and asymptotic formulas in Equations 8.50 and 8.51.

Figure 8.9 points out a serious shortcoming of using explicit Euler integration to simulate the
response of a marginally stable (z¼ 0) second-order system. The equivalent continuous-time
system is unstable because z*< 0 regardless of how small vnT is chosen. The natural modes of
the equivalent continuous-time system are oscillatory with increasing amplitude. The discrete-
time system based on the use of explicit Euler integration is likewise unstable with a pair of
complex poles outside the Unit Circle. This problem can be fixed by using trapezoidal integration
instead of Euler integration (see Exercise 8.2).

Figures 8.7 through 8.9 are generated in M-file ‘‘Chap8_Fig2_7throughFig2_9.m.’’

Example 8.2

A second-order system with damping ratio z¼ 0.1, natural frequency vn¼ 50 rad=s, and steady-
state gain K¼ 1 is initially in equilibrium. A unit step input is applied at t¼ 0. The step response is
simulated using explicit Euler integration with step size T.

(a) Find the step response x(t), t � 0.
(b) Find the equivalent system natural frequency vn* and damping ratio z* for T¼ 0.001, 0.002,

0.004, 0.005 s.
(c) Plot the continuous-time system response x(t) and the discrete-time system response xA(n),

n¼ 0, 1, 2, . . . corresponding to the values of T in part (b).

(a) The unit step response of an underdamped second-order system is (see Chapter 2)

x(t) ¼ K 1� e�zvnt cosvdt þ zvn

vd
sinvdt

� �� �
, t � 0 (8:53)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

ωnT

Exact

Asymptotic

ζ = 0, Explicit Euler integration

ζ*

FIGURE 8.9 Equivalent system damping ratio using explicit Euler integration.

660 Simulation of Dynamic Systems with MATLAB® and Simulink®

Substituting the given values for the system parameters z, vn, and K and evaluating the damped

natural frequency vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2vn

p
give

x(t) ¼ 1� e�5t cos 50
ffiffiffiffiffiffiffiffiffiffi
0:99
p

t
� 	

þ 1

10
ffiffiffiffiffiffiffiffiffiffi
0:99
p sin 50

ffiffiffiffiffiffiffiffiffiffi
0:99
p

t
� 	� �

, t � 0 (8:54)

(b) Using Equations 8.44 and 8.46 for the exact and asymptotic equivalent system natural
frequencies along with Equations 8.45 and 8.47 for the exact and asymptotic equivalent system
damping ratios, the results are tabulated in Table 8.2. The damped natural frequency of the
continuous-time system vd and the exact and asymptotic damped natural frequency approxima-
tion of the equivalent system are also shown.

Note that the equivalent continuous-time (as well as the discrete-time) system is on the verge of
instability at vnT¼ 0.2 in agreement with the top graph shown in Figure 8.8.

(c) The continuous-time response is plotted on the same graph as the simulated response for the
four distinct values of T in Figure 8.10. Every third point of the discrete-time response is plotted in
the top left graph. Every point is shown in the remaining plots.

TABLE 8.2
Comparison of Actual System and Equivalent System Parameters

vnT vn vn* Exact vn* Approximate z z* Exact z* Approx. vd vd* Exact vd* Approximate

0.05 50 50.099 50.125 0.1 0.0751 0.0753 49.749 49.958 49.983

0.10 50 50.147 50.250 0.1 0.0501 0.0505 49.749 50.084 50.186

0.20 50 50.084 50.500 0.1 0.0000 0.0010 49.749 50.084 50.500

0.25 50 49.975 50.625 0.1 �0.0249 �0.0237 49.749 49.959 50.611

0.5

1

1.5

2

ωnT = 0.05

ωnT = 0.2

ωnT = 0.1

ωnT = 0.25

0

0.5

1

1.5

2

−1

0

1

2

3

Continuous-time
Discrete-time

Continuous-time
Discrete-time

Continuous-time
Discrete-time

Continuous-time
Discrete-time −4

−2

0

2

4

t (s)
0 0.2 0.4 0.6 0.8 1

t (s)
0 0.2 0.4 0.6 0.8 1

t (s)
0 0.2 0.4 0.6 0.8 1

t (s)
0 0.2 0.4 0.6 0.8 1

FIGURE 8.10 Continuous-time and discrete-time unit step responses of second-order system (z¼ 0.1,
vn¼ 50 rad=s) using explicit Euler integration.

Advanced Numerical Integration 661

The damped natural frequency of the four simulated step responses corresponding to
vnT¼ 0.05, 0.01, 0.2, 0.25 appears to be in close agreement with the continuous-time system
response. However, even the discrete-time response in the top left graph where the integration
step size is T¼ 0.001 s deviates considerably from the continuous-time response in the neighbor-
hood of the peaks and low points. The oscillatory discrete-time response in the lower left graph in
Figure 8.10 is consistent with Figure 8.8, which shows the equivalent continuous-time system
damping ratio is zero when vnT� 0.2.

It is clear from this example that the use of explicit Euler integration to approximate the
dynamics of an underdamped, stable, second-order system (0< z< 1) may result in an equivalent
continuous-time system that is asymptotically stable (0< z*< 1), marginally stable (z*¼ 0), or
unstable (z*< 0). From Figure 8.6, the equivalent continuous-time system is marginally stable
when a*¼ 0. Setting the argument of the natural log term in the expression for a* in Equation 8.42
to 1 and solving for vnT gives

(vnT)max ¼ 2z) Tmax ¼ 2z
vn

(0 < z < 1) (8:55)

where (vnT)max and Tmax are the values of (vnT) and T, which result in marginally stable, discrete-
time, and equivalent continuous-time systems. A plot of (vnT)max¼ 2z is shown in Figure 8.11
along with vnT ranging from 0.01 up to (vnT)max when z¼ 0.707.

Consider the second-order system

€xþ 2zvn _xþ v2
nx ¼ Kv2

nu (8:56)

with parameters z¼ 0.707, vn¼ 10 rad=s, and K¼ 1. Differentiating the unit step response in
Equation 8.53 gives the unit impulse response (Ogata 1998). Alternatively, the impulse response
can be obtained by inverse Laplace transformation of the system transfer function H(s)¼ X(s)=U(s).
Either way, the result is

h(t) ¼ K
vnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p e�zvnt sin vdt, vd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2vn

q
(8:57)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

(ω
nT

) m
ax

1.4

1.6

1.8

2

ζ

ωnT = 0.01

0.75(ωnT)max

0.5(ωnT)max

0.25(ωnT)max

(ωnT)max = 1.414

FIGURE 8.11 Plot of (vnT) vs. z resulting in marginally stable, second-order equivalent continuous-time
system using explicit Euler integration.

662 Simulation of Dynamic Systems with MATLAB® and Simulink®

Suppose we attempt to simulate the impulse response of the system in Equation 8.56 using explicit
Euler integration. The difference equation for explicit Euler integration of the second-order system
in Equation 8.56 was developed in Section 4.7 and is repeated in Equation 8.58.

xkþ2 � 2(1� zvnT)xkþ1 þ 1� 2zvnT þ (vnT)2
� �

xk ¼ K(vnT)2uk, k ¼ �1, 0, 1, 2, . . .
(8:58)

The unit impulse response of the second-order system in Equation 8.56 is identical to the response
of the unforced system with initial conditions x(0) ¼ 0, _x(0) ¼ v2

n (see Exercise 8.6). Therefore, the
impulse response can be simulated by solving the difference equation in Equation 8.58 with
uk¼�1, 0, 1, 2, . . . along with the appropriate initial conditions, namely, x(0)¼ 0 and
x(�1) ¼ �v2

nT. The simulated impulse responses for the values of vnT in Figure 8.11 are shown
in Figures 8.12 and 8.13. Not all the data points for the discrete-time response when vnT¼ 0.01
are shown.

Figure 8.12 illustrates the necessity of choosing the time step to achieve an accurate transient
response. Indeed, all four simulated responses in Figure 8.12 are stable and converge to the
correct steady state, but only one is reasonably accurate. Figure 8.13 represents the case where the
discrete-time system (and the equivalent continuous-time system) are marginally stable with
oscillatory natural modes.

It may have occurred to you that the impulse response of the second-order system in Equation
8.56 could be simulated by finding the impulse response hk, k¼ 0, 1, 2, . . . of the discrete-time
system described by Equation 8.58, either analytically or by recursive solution of the difference
equation with uk¼ dk¼ 1, k¼ 0, 1, 2,. . . . Think twice before doing so because hk 6¼ h(t)jt¼ kT,
k¼ 0, 1, 2,. . . .

Simulated impulse responses of second-order
system, ζ = 0.707, (ωnT)max = 2ζ = 1.414

0

1

2

3

4

t

ωnT = 0.01

ωnT = 0.7071
ωnT = 1.0607

ωnT = 0.3536

x(t)
xA(n)

x(t)
xA(n)

x(t)
xA(n)

x(t)
xA(n)

0

1

2

3

4

−1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
t

0 0.2 0.4 0.6 0.8 1

t
0 0.2 0.4 0.6 0.8 1

t
0 0.2 0.4 0.6 0.8 1

−4
−2

0
2
4
6
8

10

FIGURE 8.12 Continuous-time and simulated second-order system impulse responses using explicit Euler
integration with different values for parameter vnT.

Advanced Numerical Integration 663

8.2.3 TRANSFER FUNCTION ERRORS

A second class of dynamic error involves the frequency response functions of the continuous-time
system and the discrete-time system used to simulate it. The fractional error in the (discrete-time
system) transfer function is

eH ¼ H(ejvT)� H(jv)

H(jv)
(8:59)

where it is important to remember that

H(jv) ¼ H(s)js jv, H(z) ¼ H(s)js 1=HI (z)
, H(e jvT) ¼ H(z)jz e jvT (8:60)

The fractional error in transfer function is a complex-valued, frequency-dependent function, which
can be expressed in terms of a real and imaginary component, that is,

eH ¼ H(e jvT)

H(jv)
� 1 ¼ eM þ jeA (8:61)

In polar form, the frequency response functions are expressed as

H(jv) ¼ jH(jv)je jf, where f ¼ Arg[H(jv)] (8:62)

H(e jvT) ¼ jH(ejvT)je jf*, where f* ¼ Arg[H(ejvT)] (8:63)

Substitution of Equations 8.62 and 8.63 into Equation 8.61 yields

eH ¼ jH(e jvT)je jf*

jH(jv)je jf
� 1 (8:64)

¼ jH(e jvT)j
jH(jv)j e

j(f*�f) � 1 (8:65)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−15

−10

−5

0

5

10

15

20

t

x(t)

xA(n)

ζ = 0.707, ωn = 10 rad/s, T = 0.1414 s, ωnT = 1.414

FIGURE 8.13 Simulated impulse response of second order system with marginally stable Euler integrator.

664 Simulation of Dynamic Systems with MATLAB® and Simulink®

Approximating e j(f*�f) in a first-order Taylor Series expansion, that is,

e j(f*�f) � 1þ j(f*� f) (8:66)

) eH � jH(e jvT)j
jH(jv)j [1þ j(f*� f)]� 1 (8:67)

) eH � jH(e jvT)j
jH(jv)j þ

jH(e jvT)j
jH(jv)j j(f*� f)� 1 (8:68)

When the simulation is reasonably accurate, H(e jvT)�H(jv) over a range of frequencies and the
term (jH(e jvT)j)=(jH(jv)j)j(w*�w) can be approximated by j(w*�w) (Howe 1986).

The final expression for eH is therefore

eH � jH(e jvT)j
jH(jv)j � 1þ j(f*� f) (8:69)

Comparison of Equations 8.61 and 8.69 reveals

eM ¼ Re(eH) ¼ Re
H(e jvT)

H(jv)
� 1

� ��
� jH(e jvT)j
jH(jv)j � 1 (8:70)

eA ¼ Im(eH) ¼ Im
H(e jvT)

H(jv)
� 1

� ��
� f*� f (8:71)

From Equation 8.70, eM, the real part of eH (the fractional error in discrete-time transfer function), is
approximately equal to the fractional error in the discrete-time transfer function gain. Furthermore,
eA, the imaginary part of eH, is approximately equal to the phase error of H(ejvT).

Consider the case of a continuous-time integrator approximated by explicit Euler integration with
step size T. Setting l¼ 0 in Equation 8.4 or referring to Equation 4.465, the z-domain transfer
function is

H(z) ¼ T

z� 1
(8:72)

Substituting expressions for H(ejvT) and H(jv) in the definition of eH gives

eH ¼ T=(e jvT�1)
1=jv

� 1 (8:73)

¼ jvT � e jvT þ 1
e jvT � 1

(8:74)

¼ 1� cosvT þ j(vT � sinvT)

cosvT � 1þ j sinvT
(8:75)

Rationalizing Equation 8.75, that is, multiplying numerator and denominator by cos vT� 1� j sin
vT, and simplifying lead to

eH ¼ eM þ jeA ¼ vT sinvT

2(1� cosvT)
� 1þ j

�vT
2

� �
(8:76)

Advanced Numerical Integration 665

From Equation 8.70, an approximation for the fractional gain error in H(e jvT) is

jH(e jvT)j
jH(jv)j � 1 � eM ¼ vT sinvT

2(1� cosvT)
� 1 (8:77)

and from Equation 8.71, the approximation for the phase error in H(e jvT) is

Arg[H(e jvT)]� Arg[H(jv)] � eA ¼ �vT

2
(8:78)

Exact expressions for the fractional gain error and phase error for the explicit Euler integrator are
(see Exercise 8.7)

Fractional gain error ¼ jH(e jvT)j
jH(jv)j � 1 ¼ vT

[2(1� cosvT)]1=2
� 1 (8:79)

Phase error ¼ Arg[H(e jvT)]� Arg[H(jv)] ¼ �tan�1 sinvT

cosvT � 1

� �
� �p

2

� 	
(8:80)

Figure 8.14 contains graphs of the exact and approximate expressions for the fractional error in gain
for 0 � vT � 1 rad. Note that eM is a good approximation to the fractional gain error in H(e jvT)
provided vT � 1. An asymptotic approximation for eM, which holds for vT � 1, can be obtained
by replacing sinvT and cosvT in Equation 8.77 with the first two nonzero terms in the Taylor
Series expansions,

sinvT � vT � (vT)3

3!
, cosvT � 1� (vT)2

2!
(8:81)

eventually leading to eM� 0, vT � 1 confirmed by the graph of eM in Figure 8.14.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.08

−0.06

−0.04

Fr
ac

tio
na

l e
rr

or
 in

 g
ai

n
of

 H
(e

jω
T)

−0.02

0

0.02

0.04

ωT (rad)

Exact

eM (approx.)

FIGURE 8.14 Approximate and exact fractional error in discrete-time transfer function gain using explicit
Euler integration.

666 Simulation of Dynamic Systems with MATLAB® and Simulink®

The phase angle plots for the continuous-time integrator and explicit Euler integrator are shown
in Figure 8.15. The top graph shows the constant phase angle �p=2 rad for the continuous-time
integrator along with the phase angle of the discrete-time transfer function given in Equation 8.72.
The lower graph shows eA in Equation 8.78 and equally spaced points computed from the exact
expression for the phase error in Equation 8.80. The linear approximation eA is virtually identical to
the exact expression for the phase error.

An asymptotic expression for H(e jvT) can be derived starting with Equation 8.72.

H(e jvT) ¼ T

e jvT � 1
¼ T

[1þ jvT þ ((jvT)2=2!)þ ((jvT)3=3!)þ � � �]� 1
(8:82)

Truncating the power series for e jvT after the quadratic term gives

H(e jvT) � T

jvT þ (jvT)2=2
, vT � 1 (8:83)

� 1
jv

1
(1þ jvT=2)

, vT � 1 (8:84)

The frequency response function of the continuous-time integrator is H(jv)¼ 1=jv. The second
term

1
1þ jvT=2

¼ 1

[1� (vT=2)2]1=2e j tan�1 (vT=2)
(8:85)

� e�jvT=2, vT � 1 (8:86)

) H(e jvT) � H(jv)e�jvT=2, vT � 1 (8:87)

−2

−1.8

−1.6

−1.4

Arg [H(e jωT)]

Arg [H(jω)] = −π/2

−0.5

−0.4

−0.3

−0.2

Ph
as

e e
rr

or
 (r

ad
)

Ph
as

e a
ng

le
 (r

ad
)

−0.1

0

ωT

eA (approx.)
Exact

Approximate and exact error in phase angle of H(e jωT)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 8.15 Phase angle plots for continuous-time and explicit Euler integrator.

Advanced Numerical Integration 667

implying that the asymptotic behavior (vT � 1) of the explicit Euler integrator is that of a pure
continuous-time integrator with an additional delay of �vT=2 rad.

To illustrate Equation 8.87, a sine wave u(t) at a frequency of v rad=s is input to an integrator
shown in Figure 8.16. The signal u(t) is sampled every T s, and the resulting discrete-time signal is
input to an explicit Euler integrator updating at 1=T Hz.

The top half of Figure 8.17 shows the sinusoidal input u(t)¼ sin 2t, the explicit Euler output
xA(n), n¼ 0, 5, 10, . . . when the step size T¼ 0.025 s, and the continuous-time output x(t). The
parameter vT¼ 2(0.025)¼ 0.05 rad is small enough for the asymptotic formula in Equation 8.87 to
accurately predict the characteristics of the discrete-time output xA(n). According to Equation 8.87,
the steady-state amplitudes of xA(n) and x(t) are equal for all input frequencies provided vT � 1.
The amplitude is

jxA(n)j ¼ jx(t)j ¼ jH(jv)j � ju(t)j ¼ 1
jv

 � 1 ¼ 1
v
¼ 1

2
(8:88)

easily verified by looking at the plots of xA(n) and x(t) in the top half of Figure 8.17.

∫

T

u(t) = sin ωt

u(n) = sin ωnT

x(t) = ∫sin ωt dt =

xA(n)

Explicit
Euler

integrator
(Step size T)

(1− cos ωt)1—ω

FIGURE 8.16 Continuous- and discrete-time integration of a sinusoidal input.

−1

−0.5

0

0.5

1

Input u(t) = sin 2t, explicit Euler integrator (T = 0.025 s) output xA(n), output x(t)

u(t)

xA(n)

ωT = 0.05

x(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−1

−0.5

0

0.5

1

t (s)

u(t)

xA(n)

ωT= 0.5

x(t)

Input u(t) = sin 2t, explicit Euler integrator (T = 0.025 s) output xA(n), output x(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

FIGURE 8.17 Explicit Euler and continuous-time integrator outputs (vT¼ 0.05 rad).

668 Simulation of Dynamic Systems with MATLAB® and Simulink®

The asymptotic approximation for H(e jvT) in Equation 8.87 also predicts a delay of vT=2 rad in
xA(n) relative to the continuous-time output x(t). The time delay can be estimated by zooming in on
the responses in the top half of Figure 8.17.

Alternatively, the time delay can be determined by finding the time between occurrences of equal
values of xA(n) and x(t). For example, at t¼ 4 s, the discrete-time variable n¼ 4=0.025¼ 160 and
from M-file ‘‘Chap8_Fig2_17.m,’’ xA(160)¼ 0.05603. Setting x(t0)¼ xA(160)¼ 0.5603 and solving
for t0.

x(t0) ¼ 1
v
(1� cosvt0) ¼ xA(160) ¼ 0:5603 (8:89)

t0 ¼ 1
2
cos�1 [1� 2(0:5603)]þ 2p

v
¼ 3:9874 s (8:90)

The simulated response xA(n) is lagging the output x(t) by 4� 3.9874¼ 0.0126 s, in close agreement
with the predicted value of T=2¼ 0.0125 s.

The lower half of Figure 8.17 illustrates the case where v¼ 2 rad=s, T¼ 0.25 s, and the
asymptotic approximation in Equation 8.87 based on vT � 1 no longer applies. From Equation
8.79, the fractional gain error in H(e jvT) when vT¼ 0.5 rad is 0.010493 (see Figure 8.14). Solving
for jH(e jvT)j in Equation 8.79,

jH(e jvT)j ¼ (1þ fractional gain error)jH(jv)j

¼ (1þ 0:010493)
1
j2

 ¼ 0:505247 (8:91)

Since ju(t)j ¼ 1, the predicted peak-to-peak swing in xA(n) is 2� 0.505247¼ 1.010494. The
discrete-time response xA(n) was generated for different lengths of time (instead of two periods as
in Figure 8.17) to capture the peak-to-peak swing in xA(n) using the MATLAB® statement
‘‘max (xA) �min (xA)’’ in ‘‘Chap8_Fig2_17.m.’’ The results are tabulated in Table 8.3.

The time delay was computed in the same manner used for the case when vT¼ 0.05 rad. The
results are n¼ 4=0.25¼ 16, xA(16)¼ 0.4371, x(3.8639)¼ 0.4371 and the time delay is equal to
4� 3.8639¼ 0.1361 s. The asymptotic formula in Equation 8.87 for H(e jvT) underestimates the
time delay, that is, T=2¼ 0.125 s.

8.2.4 ASYMPTOTIC FORMULAS FOR MULTISTEP INTEGRATION METHODS

The same steps used to obtain the asymptotic formula in Equation 8.84 for the explicit Euler
integrator are applicable to the multistep integration formulas introduced in Section 6.4.

TABLE 8.3
Measured Peak-to-Peak Swing in xA(n)
for Different Time Periods

Duration of Simulation (s) Max(xA)�Min(xA)

P¼ 2p=v¼p 1.010481

25P¼ 25p 1.010491

50P¼ 50p 1.010491

100P¼ 100p 1.010492

Advanced Numerical Integration 669

For example, simulating the response x(t) of a continuous-time integrator subject to input u(t), using
a second-order explicit Adams–Bashforth (AB-2) numerical integrator, reduces to solve the differ-
ence equation

xA(nþ 1) ¼ xA(n)þ T

2
[3u(n)� u(n� 1)] (8:92)

z-Transforming Equation 8.92 and solving for the z-domain transfer function give

X(z)

U(z)
¼ HI(z) ¼ T

2
3� z�1

z� 1

� �
(8:93)

where the subscript I in HI(z) reminds us that we are dealing with the z-domain transfer function
approximation of a continuous-time integrator. Replacing z by e jvt in Equation 8.93 produces the
discrete-time system frequency response function

HI(e
jvT) ¼ T

2
3� e�jvT

e jvT � 1

� �
(8:94)

Approximating the complex exponentials e jvt and e�jvt by power series up to the third-order term
generates the asymptotic formula (see Exercise 8.10)

HI(e
jvT) � 1

jv

1

1� (5=12)(vT)2

� �
, vT � 1 (8:95)

According to the asymptotic approximation in Equation 8.95, the frequency response of an AB-2
integrator is identical in phase to that of an ideal continuous-time integrator while the gain is off by
the factor in parenthesis in Equation 8.95. Hence, the phase error in the asymptotic approximation of
HI(e

jvt) is zero and the fractional gain error is

HI(e
jvT)j j

H(jv)j j � 1 � 1

1� (5=12)(vT)2

� �
� 1 (8:96)

� (5=12)(vT)2

1� (5=12)(vT)2
(8:97)

� (5=12)(vT)2, jvTj � 1 (8:98)

Equations 8.84 and 8.95 are special cases of a general formula (Howe 1986, 1995)

HI(e
jvT) � 1

jv

1

1þ eI(jvT)
k

� �
, vT � 1 (8:99)

which holds for the multistep integrators in Section 6.4, namely, explicit Adams–Bashforth, implicit
Adams–Moulton, and predictor–correctors. Numerical values for the error coefficient eI depend on
the order k and type of integrator. A table of values for low-order numerical integrators is given in
Table 8.4. The error coefficients are identical to the constants in the local truncation error term for
each integrator (see Table 6.9).

Frequency responses for a continuous-time integrator and AB-1 (explicit Euler) through AB-4
numerical integrators are shown in Figure 8.18a through d. Also shown are the frequency responses

670 Simulation of Dynamic Systems with MATLAB® and Simulink®

for the same AB integrators based on the asymptotic formula in Equation 8.99 where eI, k¼ 1, 2,
3, 4 are given in Table 8.4. The plots are generated in M-file ‘‘Chap8_Fig2_18abcd.m.’’

Figure 8.18a shows close agreement between the exact and asymptotic Euler magnitude func-
tions up to vT¼v(1)� 0.5 rad. Beyond that, the two plots begin to deviate from the continuous-
time integrator magnitude function with the exact Euler the better approximation. Hence, for
vT � 1, the Euler integrator introduces essentially zero gain error. The exact and asymptotic
Euler phase plots also agree up to approximately vT¼ 0.5 rad. However, Figure 8.18 shows the
Euler integrator introducing phase error with respect to the continuous-time integrator beginning
around vT¼ 0.04 rad. Significant phase error in the neighborhood of 308 is present for vT¼ 1 rad.

The AB-2 integrator and its asymptotic approximation are both quite accurate in the range of
frequencies for which vT< 0.4 rad. Beyond that, the asymptotic approximation of the magnitude
begins to deviate from both the continuous-time and exact AB-2 magnitude functions. From
Equation 8.99 with k¼ 2, the asymptotic curve approaches infinity at the point where

1þ eI(jvT)
k ¼ 1þ eI(j)

2(vT)2 ¼ 1� 5
12

v2 ¼ 0 (8:100)

) v ¼ 1:5492 rad=s

The asymptotic phase plot is exact up to v¼ 1.5492 rad=s where it increases from �908 to 908 due
to the change in sign of the denominator. It follows from Equation 8.99 that the asymptotic phase
plots for k¼ 2, 6, 10, . . . are similar to the one in Figure 8.18b and the asymptotic plots are exact,
that is, arg{H(e jvT)}¼�180 deg for k¼ 4, 8, 12,

TABLE 8.4
Error Coefficients in Asymptotic Formula in Equation 8.99
for kth Order, z-Domain Frequency Response Functions
of Numerical Integrators

Numerical Integrator Equation Order k Error Coefficient eI

AB-1 (explicit Euler) 1 1=2

AB-2 6.180 2 5=12

AB-3 6.186 3 3=8

AB-4 6.187 4 251=720

AB-5 6.188 5 475=1440

AM-2 (trapezoidal) 6.191 2 �1=12
AM-3 6.192 3 �1=24
AM-4 6.193 4 �19=720
AM-5 6.194 5 �27=1440
AB-2 predictor 6.204 2a �1=12a
AM-2 corrector 6.205

AB-3 predictor 6.206 3b �1=24b
AM-3 corrector 6.207

AB-4 predictor 6.208 4c �19=720c
AM-4 corrector 6.209

a AB-2=AM-2.
b AB-3=AM-3.
c AB-4=AM-4.

Advanced Numerical Integration 671

8.2.5 SIMULATION OF LINEAR SYSTEM WITH TRANSFER FUNCTION H(S)

In addition to a simple continuous-time integrator, it is possible to approximate the discrete-time
frequency response of higher-order linear systems simulated using numerical integrators like the
ones represented in Table 8.4. We learned in Section 4.7 that H(z) resulting from digital simulation
of a continuous-time system with transfer function H(s) is obtained by substituting 1=HI(z) for s,
where HI(z) is the z-domain transfer function of the numerical integrator.

Consider the first-order system governed by

dx

dt
¼ lxþ Ku (8:101)

10−2 10−1 100

10−2 10−1 100

−20

M
ag

ni
tu

de
 (d

b)

0

20

40

ω (rad/s)

Frequency response of continuous and Euler (T = 1 s) integrators

Euler (asymptotic)

Euler
Continuous

−180
−160
−140
−120
−100

Ph
as

e (
de

g)

−80

ω (rad/s)

Euler (asymptotic)

Euler

Continuous

(a)

10−1 100

M
ag

ni
tu

de
 (d

b)
Ph

as
e (

de
g)

ω (rad/s)

10−1 100

ω (rad/s)

−20
−10

0
10
20
30
40

Frequency response of continuous and AB-2 (T = 1 s) integrators

AB-2 (asymptotic)

AB-2
Continuous

−180
−135

−90
−45

0
45
90

AB-2 (asymptotic)

AB-2

Continuous

(b)

FIGURE 8.18 Exact and asymptotic frequency response of (a) AB-1 (Euler) integrator, (b) AB-2 integrator,

672 Simulation of Dynamic Systems with MATLAB® and Simulink®

similar to Equation 8.1 except for the gain K on the right-hand side of the equation. Simulation of
the system using a numerical integrator with transfer function HI(z) results in a discrete-time system
with frequency response function

H(e jvT) ¼ H(s)

s 1=HI (e jvT)

¼ K

s� l

s 1=HI (e jvT)

(8:102)

¼ KHI(e
jvT)

1� lHI(e jvT)
(8:103)

10−1

10−1 100

−20

−10

M
ag

ni
tu

de
 (d

b)
Ph

as
e (

de
g)

0

10

20

ω (rad/s)

ω (rad/s)

Frequency response of continuous and AB-3 (T = 1 s) integrators

AB-3 (asymptotic)

AB-3
Continuous

10
−180

−135

−90

−45

0
AB-3 (asymptotic)

AB-3

Continuous

(c)

Frequency response of continuous and AB-4 (T = 1 s) integrators

AB-4 (asymptotic)

AB-4
Continuous

−180

−135

−90

−45

AB-4 (asymptotic)

AB-4

Continuous

10−1 100

Ph
as

e (
de

g)

−20

−10

M
ag

ni
tu

de
 (d

b)

0

10

20

ω (rad/s)

10−1 100

ω (rad/s)(d)

FIGURE 8.18 (continued) (c) AB-3 integrator, and (d) AB-4 integrator.

Advanced Numerical Integration 673

An approximate expression for H(e jvT) is obtained using the asymptotic approximation for H(e jvT)
in Equation 8.99.

H(e jvT) � K 1þ jv 1þ eI(jvT)
k

� �� �
1� l 1=jv 1þ eI(jvT)

k
� �� � , vT � 1 (8:104)

� K

jv 1þ eI(jvT)
k

� �� l
, vT � 1 (8:105)

Using trapezoidal integration, k ¼ 2, eI ¼ �1=12 from Table 8.4,

H(e jvT) � K

jv[1þ (1=12)(vT)2]� l
, vT � 1 (8:106)

The exact expression for H(e jvT) is obtained from

H(z) ¼ H(s)

s 1=HI (z)

¼ K

s� l

s 2

T
z�1
zþ1
� 	 (8:107)

) H(e jvT) ¼ K

(2=T)((z� 1)=(zþ 1))� l

z e jvT

(8:108)

¼ KT(e jvT þ 1)
(2� lT)e jvT � (2þ lT)

(8:109)

The use of trapezoidal integration for digital simulation of linear continuous-time systems is referred
to as Tustin’s method.

Example 8.3

The capacitor in the circuit shown in Figure 8.19 is initially uncharged when the switch closes.

(a) Find the discrete-time transfer function H(z)¼VC(z)=E0(z) using Tustin’s method.
(b) Find the asymptotic form of the discrete-time frequency response function.
(c) Find the exact expression for the discrete-time frequency response function.
(d) Graph the frequency response function of the continuous-time system and the discrete-time

frequency response functions obtained in parts (b) and (c) if the time constant of the circuit is
25 ms and the integration step size is 1 ms.

(e) Compute the gain and phase errors based on the asymptotic expression forH(e jvT) when the
input is a sinusoidal input at 1� 105 Hz.

(a) The differential equation of the circuit is

t
d
dt

vc(t)þ vc(t) ¼ e0(t), (t ¼ RC) (8:110)

C

R

vc(t)e0(t)

FIGURE 8.19 RC circuit for digital simulation.

674 Simulation of Dynamic Systems with MATLAB® and Simulink®

Laplace transforming Equation 8.110 leads to the transfer function

H(s) ¼ Vc(s)
E0(s)

¼ 1
tsþ 1

¼ 1=t
sþ 1=t

(8:111)

) H(z) ¼ Vc(z)
E0(z)

¼ 1
tsþ 1

s 2

T
z�1
zþ1
� 	 (8:112)

¼ zþ 1
[1þ 2(t=T)]zþ (1� 2t=T)

(8:113)

(b) The transfer function for the first-order system in Equation 8.101 is identical toH(s) in Equation
8.111 when l¼�1=t and k¼�1=t. Making those substitutions in Equation 8.106 gives the
asymptotic formula for H(e jvt).

H(e jvT) � 1=t
jv[1þ (1=12)(vT)2]� (�1=t) , vT � 1 (8:114)

� 1
jvt[1þ (1=12)(vT)2]þ 1

, vT � 1 (8:115)

(c) The exact expression for H(e jvT) is from Equation 8.109,

H(e jvT) ¼ (T=t)(e jvT þ 1)
(2� lT)e jvT � (2þ lT)

l¼�1=t

(8:116)

¼ (T=t)(e jvT þ 1)
[2þ (T=t)]e jvT � [2� (T=t)]

(8:117)

(d) The MATLAB M-file ‘‘Chap8_Ex2_3.m’’ computes the magnitude and phase of

H(jv) ¼ 1
tsþ 1

s jv
¼ 1

1þ jvt
(8:118)

The magnitude and phase of H(e jvT) using the asymptotic and exact formulas in Equations 8.115
and 8.117 are computed. The gain and phase plots are shown in Figure 8.20.

(e) At v¼ 1� 105 Hz� 2p rad=cycle¼ 2p� 105 rad=s,

H(j2p� 105) ¼ 1
1þ j2p� 105(25� 10�6)

¼ 1
1þ j5p

¼ 0:0635e j(�1:5072) (8:119)

H(e j2p�105�10�6) � 1
j2p� 105(25� 10�6)[1þ (1=12)(2p� 105 � 10�6)2]þ 1

(8:120)

� 0:0615e j(�1:5092) (8:121)

The fractional gain error and phase errors in the discrete-time frequency response function based
on the asymptotic approximation for H(e jvT) in Equation 8.115 at v¼ 1� 105 Hz are

Fractional gain error � jH(e j2p�105�10�6)j
jH(j2p� 105)j � 1

� 0:0635
0:0615

� 1 ¼ �0:0317 (8:122)

Advanced Numerical Integration 675

Phase error � Arg H e j2p�105�10�6
� 	h i

� Arg[H(j2p� 105)]

� �1:5092� (�1:5072)
� �0:002 rad (�0:1157 deg) (8:123)

Figure 8.20 shows the asymptotic formula for approximating H(e jvT) is accurate up to approxi-
mately vT¼ 106 rad=s� 10�6 s¼ 1 rad. The exact and asymptotic discrete-time frequency
response functions are close to the continuous-time frequency response function up until frequen-
cies approaching the Nyquist frequency p=T¼ 106p rad=s.

For an underdamped second-order system with damping ratio z and natural frequency vn, the
asymptotic approximation of the discrete-time frequency response function using a kth-order
numerical integrator with error coefficient eI is obtained in the same manner employed for the
first-order system, namely,

H(e jvT) ¼ v2
n

s2 þ 2zvnsþ v2
n

s 1=HI(e jvT)

(8:124)

Substituting the asymptotic expression for H(e jvT) in Equation 8.99 into Equation 8.124 results in
(after simplification) (Howe 1986)

H(e jvT) � 1

v2
n � v2 1þ 2eI(jvT)k

h i
þ j2zvnv 1þ eI(jvT)k

h i , vT � 1 (8:125)

and the fractional error in H(e jvT) is approximated by the asymptotic formula

eH ¼ H(e jvT)
H(jv)

� 1 � 2eI(jvT)k (v=vn)2 � jz(v=vn)
� �

1� (v=vn)2 þ j2z(v=vn)
, vT � 1 (8:126)

103 104 105 106

103 104 105 106

−60

G
ai

n
(d

b)
Ph

as
e (

de
g)

−40

−20

0

Continuous

Discrete (asymptotic)
Discrete (exact)

Gain of continuous- and discrete-time frequency response functions

Trapezoidal integration of
first-order system

H(s) = 1/(τs + 1), τ = 25 μs
T = 1 μs

−90

−45

0

ω (rad/s)

Continuous

Discrete (asymptotic)

Discrete (exact)

Phase of continuous- and discrete-time frequency response functions

FIGURE 8.20 Continuous- and discrete-time (exact and asymptotic) bode plots for first-order system using
trapezoidal integration.

676 Simulation of Dynamic Systems with MATLAB® and Simulink®

Rationalizing Equation 8.126 leads to expressions for eM and eA, the real and imaginary compon-
ents of eH, which provide suitable approximations for the fractional gain error and phase error of
H(e jvT), respectively. The expressions are of the form

eM ¼ fM(z,v=vn, k, eI)(vT)k, eA ¼ fA(z,v=vn, k, eI)(vT)k, vT � 1 (8:127)

The functions fM(z, v=vn, k, eI) and fA(z, v=vn, k, eI) are further addressed in Exercise 8.13. The
notable feature in Equation 8.127 is the dependence of both error measures on the term (vT)k,
emphasizing the importance of choosing the step size T and the integrator order k.

EXERCISES

8.1 Repeat Example 8.1 for the case where explicit Euler is used in place of trapezoidal integration.
8.2 A second-order system with damping ratio z¼ 0 and natural frequency vn is simulated using

trapezoidal integration with step size T.
(a) Plot the equivalent continuous-time system damping ratio z* as a function of the parameter

vnT for 0 � vnT � 1.
(b) Plot the equivalent continuous-time system natural frequency vn* as a function of the

continuous-time system natural frequency vn for 0 � vn � 10 rad=s when T¼ 0.1 s.
(c) Repeat parts (a) and (b) for z¼ 0.1 and 1.
(d) What effect does changing the value of T have on the equivalent continuous-time system

damping ratio and natural frequency?
8.3 Consider the overdamped continuous-time second-order system with transfer function

H(s) ¼ 1
(t1sþ 1)(t2sþ 1)

shown in Figure E8.3.

U(s) 1
(τ1s + 1)(τ2s + 1)

Y(s) U(s) Y(s)Y1(s)

Y2(s)

A1
τ2s + 1

A2
τ2s + 1

FIGURE E8.3

(a) Decompose H(s) into the sum of two first-order transfer functions H(s)¼H1(s)þH2(s)
where H1(s)¼A1=(t1sþ 1) and H2(s)¼A2=(t2sþ 1) (see Figure E8.3) and express the
constants A1 and A2 in terms of the time constants t1 and t2.

(b) The equivalent realizations of the same second-order system are simulated using explicit
Euler integration with step size T. Find the fractional error in the frequency response
functions H(e jvT), H1(e

jvT), and H2(e
jvT). Leave your answers in terms of t1, t2, and T.

(c) Resolve the fractional errors into real and imaginary components, that is,

eH ¼ H(e jvT)

H(jv)
� 1 ¼ eM þ jeA, eH1 ¼

H1(e
jvT)

H1(jv)
� 1 ¼ eM1 þ jeA1

eH2 ¼
H2(e

jvT)

H2(jv)
� 1 ¼ eM2 þ jeA2

Advanced Numerical Integration 677

For t1¼ 1 s, t2¼ 10 s, and T¼ 0.05 s, plot eM , eM1 , eM2 vs. vT on a single graph and
eA, eA1 , eA2 vs. vT on a different graph. Comment on the results.

(d) Find exact expressions for the fractional gain error in H(e jvT), H1(e
jvT), and H2(e

jvT). Plot
the fractional gain error in H(e jvT) vs. vT and eM vs. vT on the same graph. Repeat for
H1(e

jvT) and eM1 and then for H2(e
jvT) and eM2 .

(e) Find exact expressions for the phase error in H(e jvT), H1(e
jvT), and H2(e

jvT). Plot
the phase error in H(e jvT) vs. vT and eA vs. vT on the same graph. Repeat for H1(e

jvT)
and eA1 and then for H2(e

jvT) and eA2 .
(f) Simulate the two configurations shown in Figure E8.3b when u(t)¼ sin 50t, t � 0 using an

explicit Euler integrator with step size T¼ 0.01 s. Plot the continuous-time input and output
and the simulated response on the same graph for each configuration. Do the results agree
with the graphs obtained in parts (d) and (e)?

8.4 For AB-2 integration,
(a) Find the discrete-time frequency response function H1(e

jvT).
(b) Find expressions for the exact and asymptotic fractional gain and phase errors.
(c) Plot the results over a suitable range of values for vT.

8.5 Generate a new table and figure similar to Table 8.2 and Figure 8.9 where a second-order
system with damping ratio z and natural frequency vn is simulated using numerical integration
for the following cases:

Z vn (rad=s) Numerical Integrator

0 50 Explicit Euler

0 50 Implicit Euler

0 50 Trapezoidal

0.1 50 Implicit Euler

0.1 50 Trapezoidal

0.707 1 Explicit Euler

0.707 1 Implicit Euler

0.707 1 Explicit Euler

2 0.01 Explicit Euler

2 0.01 Implicit Euler

2 0.01 Trapezoidal

8.6 For a second-order system described by

€xþ 2zvn _xþ v2
nx ¼ Kv2

nu

(a) Show that the unit impulse response is identical to the response of the autonomous system
(u¼ 0, t � 0) with initial conditions x(0) ¼ 0, _x(0) ¼ Kv2

n.
(b) Show that the initial conditions for the difference equation of the discrete-time

system resulting from the use of explicit Euler integration are x(0)¼ 0 and
x(�1) ¼ �Kv2

nT .
(c) Suppose the parameter values are z¼ 0.5, vn¼ 10, and K¼ 1. Simulate the continuous-

time step and impulse responses using explicit Euler integration with vnT¼ 0.05. Compare
the simulated and analytical solutions.

8.7 Derive the exact expressions for the fractional gain error and phase error in the discrete-time
transfer function H(e jvT) using explicit Euler integration given in Equations 8.79 and 8.80.

678 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.8 Show that the asymptotic expression for the fractional error in the discrete-time transfer
function H(e jvT) resulting from explicit Euler integration of the first-order system _x ¼ lxþ u
is given by

eH ¼ H(e jvT)

H(jv)
� 1 � vl

2(v2 þ l2)
vT � j

v2

2(v2 þ l2)
vT , vT � 1

What does the system reduce to when l¼ 0? Comment on what happens to the real and
imaginary components.

8.9 Verify the curves plotted in Figures 8.14 and 8.15 for the fractional gain and phase errors based
on explicit Euler integration by using the MATLAB functions ‘‘real,’’ ‘‘imag,’’ ‘‘abs,’’ and
‘‘angle,’’ that is,

Fractional gain error � eM ¼ Re(eH) ¼ Re
H(e jvT)

H(jv)
� 1

�
¼ Re

jvT

e jvT � 1
� 1

�

Fractional gain error ¼ jH(e jvT)j
jH(jv)j � 1 ¼ vT

e jvT�1

� 1

Phase error � eA ¼ Im(eH) ¼ Im
H(e jvT)

H(jv)
� 1

�
¼ Im

jvT

e jvT�1� 1

�
Phase error ¼ Arg[H(e jvT)]� Arg[H(jv)] ¼ �Arg[e jvT�1]� �p

2

� 	
8.10 Derive the asymptotic formula for H1(e

jvT) in Equation 8.95 starting with the exact expres-
sion for the discrete-time frequency response function in Equation 8.94.

8.11 Using trapezoidal integration to simulate the first-order system in Equation 8.1,
(a) Find the fractional error in transfer function eH.

Hint: Start with Equation 8.109.

(b) Find the real and imaginary parts of eH, that is, eH ¼ eM þ jeA.
(c) Compare eM and eA with the exact expressions for the fractional gain and phase errors.

8.12 For simulation of the first-order system _x ¼ lxþ u using a kth-order numerical integrator with
error coefficient eI,
(a) Show that the asymptotic expression for the fractional error in transfer function is

given by

eH ¼ H(e jvT)

H(jv)
� 1 ¼ jveI(jvT)

k

jv� l
, vT � 1

(b) Derive expressions for eM and eA when the order k is odd and different expressions when
k is even.

8.13 Derive the asymptotic expressions for H(e jvT) in Equation 8.125 and eH in Equation 8.126.
Find the functions fM (z, v=vn, k, eI) and fA(z, v=vn, k, eI) in Equation 8.127 when the
numerical integrator order k is odd and even.

8.14 Show that the characteristic root error resulting from simulation of a first-order continuous-
time system with characteristic root l is approximated by

el ¼ l*
l
� 1 � �eI(lT)k, jlTj � 1

where eI and k are the error coefficient and order of the numerical integrator, respectively.

Advanced Numerical Integration 679

8.3 STABILITY OF NUMERICAL INTEGRATORS

We have seen a number of examples where digital simulation of a stable continuous-time system
with a bounded input (or even no input with nonzero initial conditions) produced a sequence of
numbers that grow without bound as time increases. The unstable conditions can be attributed to a
combination of the numerical integrator and integration step size (for fixed-step integrators).
Stability of fixed-step numerical integrators is reflected in the natural dynamics of the discrete-
time system used to approximate the continuous-time system. The family of explicit multistep
Adams–Bashforth integrators introduced in Section 6.4 is now examined in some detail.

8.3.1 ADAMS–BASHFORTH NUMERICAL INTEGRATORS

Difference equations resulting from the application of second-order and higher Adams–Bashforth
integration are higher-order than the LTI continuous-time systems being simulated. For example, a
first-order continuous-time system with a pole at s¼ l simulated using AB-2 integration produces a
second-order discrete-time system with discrete-time input u(n) and output x(n), previously referred
to as xA(n). The z-domain transfer function is

H(z) ¼ X(z)

U(z)
¼ 1

s� l

s 1

H1(z)

(8:128)

¼ 1
s� l

s 1

T(3z�1)=2z(z�1)
(8:129)

¼ (T=2)(3z� 1)
z2 � (1þ (3=2)lT)zþ (1=2)lT

(8:130)

Note that HI(z) for AB-2 integration is given in Equation 8.93 of the previous section. Multiplying
numerator and denominator in Equation 8.130 by z�1 followed by inverse z-transformation leads to
the second-order difference equation

x(nþ 1)� 1þ 3
2
lT

� �
x(n)þ 1

2
lTx(n� 1) ¼ T

2
[3u(n)� u(n� 1)] (8:131)

The states x(n) and x(n� 1) are needed to compute the updated state x(nþ 1). This is easily
explained by referring to Figure 6.16. P1(t); the linear interpolating polynomial integrated to
generate x(nþ 1) depends on current and previous derivative functions, which in turn are functions
of the current and previous discrete-time states x(n) and x(n� 1).

The resulting z-domain transfer function in Equation 8.130 has two poles that are the roots of the
characteristic polynomial in the denominator. The dominant pole for the case when lT � 1
corresponds to an equivalent continuous-time system characteristic root l*, which can be estimated
from the characteristic root error formula (Howe 1986)

el ¼ l*� l

l
� �eI(lT)k (8:132)

where eI and k are the integrator error coefficient and order, respectively. For AB-2 integration,
eI¼ 5=12 and k¼ 2. Hence,

l* � l[1� eI(lT)
k] � l 1� 5

12
(lT)2

� �
, lT � 1 (8:133)

680 Simulation of Dynamic Systems with MATLAB® and Simulink®

Suppose the continuous-time system pole is l¼�100 and AB-2 integration is used with a step size
T¼ 0.0001 s. From Equation 8.133,

l* � �100 1� 5
12

{(�100)(0:0001)}2
� �

, lT � 1

� �99:99583 (8:134)

The exact value of l* is obtained from

l* ¼ 1
T
ln z1 (8:135)

where z1 is the dominant pole, that is, larger (in magnitude) root of the characteristic equation

z2 � 1þ 3
2
lT

� �
zþ 1

2
lT ¼ z2 � 0:985z� 0:005 ¼ 0 (8:136)

The poles are located at z1¼ 0.99005, z2¼�0.00505, and the equivalent characteristic root is from
Equation 8.135

l* ¼ 1
0:0001

ln (0:99005) ¼ �99:99581

There is no real equivalent system characteristic root for the extraneous pole z2; however, x(n),
n¼ 0, 1, 2, . . . does include a transient component c2zk2, which rapidly vanishes to zero leaving the
dominant component c1zk1 and input mode (if present) terms to accurately track the continuous-time
system response x(t), t � 0.

Numerical stability of the simulation becomes an issue when the AB-2 integration step size
produces z-plane poles in proximity of the Unit Circle. For a given first-order continuous-time
system with characteristic root l< 0, the discrete-time system resulting from AB-2 integration is
marginally stable when the dominant pole is located at 1 or �1. From Equation 8.136,

z ¼ 1: (1)2 � 1þ 3
2
lT

� �
(1)þ 1

2
lT ¼ 0) lT ¼ 0 (8:137)

z ¼ �1: (�1)2 � 1þ 3
2
lT

� �
(�1)þ 1

2
lT ¼ 0) lT ¼ �1 (8:138)

Combining the above two results imposes the condition for stability, namely,

�1 < lT < 0) 1 > �lT > 0) T <
1
�l (8:139)

In other words, the AB-2 integration step size T is limited by the time constant t¼�(1=l) of the
first-order continuous-time system. Where is the second z-plane pole when lT¼ 0 and lT¼�1?

Second-order systems can be analyzed in the same way by allowing l to be complex in the case
of an underdamped second-order system or a pair of distinct real values for an overdamped second-
order system. For example, a stable, second-order system with complex poles located at �7.5
 j5
simulated with AB-2 integration using a step size T¼ 0.1 s generates a stable discrete-time system

Advanced Numerical Integration 681

if the two z-plane poles (principal and extraneous) are located inside the Unit Circle. This is easily
checked by substituting lT¼ (�7.5þ j5)(0.1)¼�0.75þ j0.5 into the characteristic equation,

z2 � 1þ 3
2
lT

� �
zþ 1

2
lT

lT¼�0:75þj0:5

¼ z2 þ (0:125� j0:75)z� 0:375þ j0:25 ¼ 0 (8:140)

Solution of Equation 8.140 reveals that the poles are located inside the Unit Circle at

z1 ¼ �0:6188þ j0:6418 ¼ 0:8916e j2:3379

z2 ¼ 0:4938þ j0:1082 ¼ 0:2157e j0:2157

and the discrete-time system is therefore stable. Increasing T eventually causes one of the z-plane
poles to be on the Unit Circle where the system becomes marginally stable.

A closed locus of lT points can be identified in the complex plane with the property that all
interior points produce stable discrete-time systems using AB-2 integration. The locus of points is
called a stability boundary and the interior points comprise the stability region. There is a different
stability boundary for each AB integrator.

The starting point for locating the stability boundary is finding H(z), the z-domain transfer
function of the discrete-time system resulting from numerical integration of the stable, continu-
ous-time system

dx

dt
þ lx ¼ u, Re(l) < 0 (8:141)

A similar approach to the one used for finding H(z) for AB-2 integration of the continuous-time
system in Equation 8.141 is employed to find H(z) for different-order AB integrators. For AB-1
(Euler), AB-3, and AB-4 integration, HI(z) in Equation 8.128 is

AB-1: H1(z) ¼ T

z� 1
(8:142)

AB-3: H1(z) ¼ T

12
23z2 � 16zþ 5

z2(z� 1)

� �
(8:143)

AB-4: H1(z) ¼ T

24
55z3 � 59z2 þ 37z� 9

z3(z� 1)

� �
(8:144)

Replacing s by 1=H1(z) in H(s)¼ 1=(s� l) leads to the z-domain transfer function H(z). For AB-1
through AB-4 integration, the results are

AB-1: H(z) ¼ T

z� (1þ lT)
(8:145)

AB-2: H(z) ¼ T(3z� 1)
2z2 � (2þ 3lT)zþ lT

(8:146)

AB-3: H(z) ¼ T(23z2 � 16zþ 5)
12z3 � (12þ 23lT)z2 þ 16lTz� 5lT

(8:147)

AB-4: H(z) ¼ T(55z3 � 59z2 þ 37z� 9)
24z4 � (24þ 55lT)z3 þ 59lTz2 � 37lTzþ 9lT

(8:148)

682 Simulation of Dynamic Systems with MATLAB® and Simulink®

Note the existence of one, two, and three extraneous z-plane poles in Equations 8.146
through 8.148. The stability boundaries are obtained by setting z¼ e ju in the denominators of
Equations 8.145 through 8.148 and solving for lT. For example, with AB-3 integration, lT is
given by

lT ¼ 12
e j3u � e j2u

5� 16e ju þ 23e j2u

� �
(8:149)

Results for AB-1, AB-2, AB-3, and AB-4 integrators are obtained in the MATLAB M-file
‘‘Chap8_AB_Stability_Boundaries.m’’ and shown in Figure 8.21.

Only the top half of each stability boundary is shown since they are symmetric with respect to the
real axis. Points along the top half of a stability boundary are computed by varying u from 0 to p rad
causing e ju to traverse the top half of the Unit Circle. The lower half is generated by sweeping u
from 0 to �p rad.

A note of caution in finding the stability boundaries. The pole moving along the Unit Circle must
be the largest in magnitude. For example, in the case of AB-4, the additional three poles must lie
inside the Unit Circle. Values of lT for which this is not the case are ignored, that is, they are not
points on the stability boundary (see Exercise 8.17).

Figure 8.21 confirms the result in Equation 8.139, namely, lT<�1 for AB-2 integration of a
stable, first-order system with real characteristic root l. AB-1 integration is explicit Euler, and it is
clear from Equation 8.145 that the lone z-plane pole of H(z) migrates to z¼�1¼ 1e jp when
lT¼�2, also confirmed by observing the leftmost point on the AB-1 stability boundary.

The equation of the stability boundary for AB-1 integration in the lT plane is easily derived.
Figure 8.22 shows the z-plane pole of H(z) in Equation 8.145 varying from 1 to �1 along the Unit
Circle as u increases from zero to p.

From Equation 8.145, the parameter lT on the AB-1 stability boundary is

lT ¼ e ju�1 ¼ cos uþ j sin u� 1 ¼ (cos u� 1)þ j sin u (8:150)

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

Im
 (λ

T
)

0.4

0.6

0.8

1

1.2

1.4

AB-3

AB-2

AB-1

Re (λT)

AB-4

λT plane

FIGURE 8.21 Stability boundaries for AB-1 through AB-4 integration.

Advanced Numerical Integration 683

If we let x and y be the real and imaginary parts of lT, respectively, that is, lT¼ xþ jy, then

x ¼ cos u� 1, y ¼ sin u (8:151)

) (xþ 1)2 þ y2 ¼ cos2 uþ sin2 u ¼ 1 (8:152)

and the AB-1 stability boundary is therefore a circle with center at (�1, 0) and radius 1 in the lT or
x–y plane.

AB-1 integration is inappropriate for simulation of an undamped second-order system, a result
we observed earlier in Section 3.6. The characteristic roots of a second-order system with z¼ 0 are
l¼
jvn, and hence lT¼
jvnT, which corresponds to the imaginary axis in the lT plane. From
Figure 8.21, it is clear that the imaginary axis lies outside the AB-1 stability region (except for the
origin).

A more general approach to locating stability boundaries is to view them as locus of points in the
lT plane resulting from a mapping of the Unit Circle in the z-plane. Figure 8.23 illustrates the AB-2
stability boundary resulting from mapping points z¼ re ju¼ le ju (0 � u< 2p) along the Unit Circle
in the z-plane according to the transformation

lT ¼ 2
e ju � e j2u

1� 3e ju

� �
(8:153)

obtained by solving for lT in the denominator of Equation 8.146 with z replaced by e ju. The
stability boundary (polar form lT¼Me jc) is shown in Figure 8.23.

−2 −1

(x, y)λT plane

−1 1

z-plane

FIGURE 8.22 Variation of z-plane pole for determining AB-1 stability boundary.

z-plane
z = re jθ

r

θ

Unit Circle
r = 1

−1 −0.8 −0.6 −0.4 −0.2
−1

−0.5

Im
(λ

T
)

0

0.5

1
Stability boundary for AB-2 integrator

λT plane

λT = Me jψ

M

ψ

Re(λT)

λT = 2
e jθ−e j2θ

1−3e j2θ

0.20

FIGURE 8.23 Mapping the Unit Circle to the AB-2 stability boundary.

684 Simulation of Dynamic Systems with MATLAB® and Simulink®

Polar coordinates of the points along the AB-2 stability boundary are

M ¼ 2
e ju � e j2u

1� 3e ju

 (8:154)

¼ 2
(cos u� cos 2u)2 þ (sin u� sin 2u)2

(1� 3 cos u)2 þ (�3 sin u)2
� �1=2

(8:155)

¼ 2
1� cos u

5� 3 cos u

� �1=2

(8:156)

c ¼ Arg
e ju � e j2u

1� 3e ju

� �
(8:157)

¼ tan�1
4 sin u� sin 2u

4 cos u� cos 2u� 3

� �
(8:158)

Rectangular coordinates of lT on the AB-2 stability boundary are given in Exercise 8.30.

Example 8.4

For AB-2 integration,

(a) Find the image points on the AB-2 stability boundary in the lT plane of the following points:

z ¼ 1,

ffiffiffi
2
p

2

� �
(1þ j), j, �1, e j4p=3, � j,

ffiffiffi
2
p

2

� �
(1� j).

(b) Is it possible for an AB-2 simulation of an undamped second-order system to be stable?
Verify the result.

(a) The image points are computed using Equations 8.156 and 8.158 in the M-file ‘‘Chap8_Ex3_1.
m.’’ They are tabulated in Table 8.5.

(b) An undamped second-order system is governed by

d2

dt2
x(t)þ v2

nx(t) ¼ u(t) (8:159)

The characteristic roots are located on the imaginary axis at l¼
jvn. Close-ups of the AB-2
stability boundary near the imaginary axis are shown in Figure 8.24. Observation of the left graph

TABLE 8.5
Points on Unit Circle and Image Points on AB-2 Stability Boundary

z¼ re ju r, u z¼ aþ jb a, b lT¼Me jc M, c lT¼ cþ jd c, d

1, 0 1, 0 0, 0 0, 0

1, p=4
ffiffiffi
2
p

=2,
ffiffiffi
2
p

=2 0.6380, p=4 �0.0596, 0.6352
1, p=2 0, 1 0.8944, p=2 �0.4, 0.8
1, p �1, 0 1, p �1, 0
1, 4p=3 �1=2, � ffiffiffiffiffiffiffiffi

3=2
p

0.9608, �2.0944 �0.6923, �0.6662
1, 3p=2 0, �1 0.8944, �p=2 �0.4, �0.8
1, 7p=8

ffiffiffi
2
p

=2, � ffiffiffi
2
p

=2 0.6380, �p=4 �0.0596, �0.6352

Advanced Numerical Integration 685

in Figure 8.24 implies lT¼ jvnT is limited to approximately j0.12 for the AB-2 integrator to result
in a stable discrete-time system. However, a closer look at the AB-2 stability region in the right
graph indicates that the limit is considerably smaller. Further enlargement of the AB-2 stability
region in the vicinity of the origin will show that the imaginary axis is exterior to the AB-2
stability region (with the exception of the origin, lT¼ 0).

The instability of an AB-2 integrator for simulation of an undamped second-order system can
be established by investigating the characteristic polynomial of the z-domain transfer function
H(z) given by

H(z) ¼ 1
s2 þ v2

n

s (2=T)[z(z�1)=(3z�1)]

(8:160)

) X(z)
U(z)

¼ 0:25T2(9z2 � 6zþ 1)
z4 � 2z3 þ [1þ 2:25(vnT)2]z2 � 1:5(vnT)2zþ 0:25(vnT)2

(8:161)

Figure 8.25 is a plot of the loci of the four poles of H(z) corresponding to numerical values of
vnT¼ 0.05, 0.01, 0.15, . . . , 0.95,1. The AB-2 integrator generates a discrete-time output x(n) from
the fourth-order system governed by

x(nþ 4)� 2x(nþ 3)þ [1þ 2:25(vnT)2]x(nþ 2)� 1:5(vnT)2x(nþ 1)

þ 0:25(vnT)2x(n) ¼ 0:25T2[9u(nþ 2)� 6u(nþ 1)þ u(n)]
(8:162)

Up until vnT� 0.3, there is a pair of equivalent complex roots that die out rapidly due to the close
proximity to the origin of the extraneous poles z3 and z4. At the same time, z1 and z2 appear to lie
on the Unit Circle implying that the other pair of equivalent, continuous-time poles (corresponding
to poles z1 and z2) lie on the imaginary axis in the s-plane since.

If z1 and z2 were actually on the Unit Circle, the damping ratio of the equivalent second-order
continuous-time system would be zero and the discrete-time output would reflect an undamped
second-order system response once the fast transient component vanishes. In reality, all the
points along the two loci shown in Figure 8.25 are outside the Unit Circle, and the equivalent
continuous-time second-order system damping ratio is slightly negative (see Exercise 8.20).

−10 −5 0
×10−3

−0.4

−0.3

−0.2

−0.1

Im
(λ

T
)

Im
(λ

T
)

0

0.1

0.2

0.3

0.4

Re(λT) ×10−7Re(λT)
−6 −4 −2 0

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

λT plane λT plane

FIGURE 8.24 Close-ups of AB-2 stability boundary near origin of lT plane.

686 Simulation of Dynamic Systems with MATLAB® and Simulink®

Howe (1986) includes asymptotic formulas for natural frequency and damping ratio errors
incurred when using low-order multistep Adams–Bashforth integration methods. The formulas for
k¼ 1, 2, 3, 4 are

k ¼ 1: evn � zeIvnT, ez � (z2 � 1)eIvnT, vnT � 1 (8:163)

k ¼ 2: evn � (1� 2z2)eI(vnT)2, ez � 2(z� z3)eI(vnT)2, vnT � 1 (8:164)

k ¼ 3: evn � �(3z� 4z3)eI(vnT)3, ez � (1� 5z2 þ 4z4)eI(vnT)3, vnT � 1 (8:165)

k ¼ 4: evn � �(1� 8z2 þ 8z4)eI(vnT)4, ez � �4(z� 3z3 þ 2z5)eI(vnT)4, vnT � 1 (8:166)

where eI are the integration error coefficients given in Section 8.2. For accurate (vnT � 1)
simulations of undamped (z¼ 0) second-order continuous-time systems, Equations 8.163 and
8.165 imply damping ratio errors of �1=2(vnT) with AB-1 and 3=8(vnT)

3 with AB-3 integration,
respectively. Equations 8.164 and 8.166 imply the damping ratio error is zero for AB-2 and AB-4
integration to order O(vnT)

2 and O(vT)4, respectively. The actual damping ratio error is of order
O(vnT)

3 for AB-2 and O(vnT)
5 for AB-4 integration.

8.3.2 IMPLICIT INTEGRATORS

The Adams–Moulton implicit integrators were introduced in Section 6.4. The z-domain transfer
functions for AM-2, AM-3, and AM-4 integrators are obtained in a similar fashion to the Adams–
Bashforth integrators, that is, the difference equation approximation of a pure continuous-time
integrator is developed and then z-transformed to produce HI(z). The results for AM-2 through
AM-4 integrators are (see Exercise 8.22)

AM-2: HI(z) ¼ T

2
zþ 1
z� 1

� �
(8:167)

AM-3: HI(z) ¼ T

12
5z2 þ 8z� 1
z(z� 1)

� �
(8:168)

AM-4: HI(z) ¼ T

24
9z3 þ 19z2 � 5zþ 1

z2(z� 1)

� �
(8:169)

−1 −0.5 0 0.5 1
−1

−0.8
−0.6
−0.4
−0.2Im

(z
)

0
0.2
0.4
0.6
0.8

1 z-plane

Re(z)

ωnT = 0.3

ωnT = 0.3

z1 locus

z2 locus

z3 locus

z4 locus

Unit Circle

Locus of z-plane poles z1, z2, z3, z4, for AB-2
simulation of system x + ωn

2 x = u. ¨

FIGURE 8.25 Locus of poles of H(z) for AB-2 simulation of undamped second-order system €xþ v2
nx ¼ u.

Advanced Numerical Integration 687

Replacing s by 1=HI(z) in the first-order system transfer function H(s)¼ 1=(s� l) leads to the
following expressions for the z-domain transfer functions using AM-2 through AM-4 integration,

AM-2: H(z) ¼ T(zþ 1)
(2� lT)z� (2þ lT)

(8:170)

AM-3: H(z) ¼ T(5z2 þ 8z� 1)
(12� 5lT)z2 � (12þ 8lT)zþ lT

(8:171)

AM-4: H(z) ¼ T(9z3 þ 19z2 � 5zþ 1)
(24� 9lT)z3 � (24þ 19lT)z2 þ 5lTz� lT

(8:172)

We may conclude from Equations 8.170 through 8.172 that AM-2 integration does not introduce
extraneous roots (system poles), whereas AM-3 and AM-4 introduce one and two extraneous roots
for each state. Stability boundaries for AM-2, AM-3, and AM-4 integration are obtained using the
same method for the Adams–Bashforth integrators. Starting with AM-2, the characteristic polyno-
mial for H(z) in Equation 8.170 is

(2� lT)z� (2þ lT) ¼ 0 (8:173)

Setting z¼ e ju and solving for lT yield

lT ¼ 2
z� 1
zþ 1

� �

z e ju
¼ 2

e ju � 1
e ju þ 1

� �
� e�ju=2

e�ju=2

� �
(8:174)

¼ 2
e ju=2 � e�ju=2

e ju=2 � e�ju=2

� �
(8:175)

¼ j2
sin (u=2)
cos (u=2)

� �
(8:176)

¼ j2 tan (u=2) (8:177)

From Equation 8.177, the top half of the Unit Circle, that is, z¼ e ju, 0 � u<p, is mapped into the
imaginary axis from lT¼ 0 to lT¼ j1. The entire Unit Circle is mapped into the imaginary axis in
the lT plane, which is the stability boundary for AM-2 or trapezoidal integration. In other words,
the entire left-half plane is the stability region assuring that any stable continuous-time system
(Re l< 0) simulated by AM-2 integration leads to a stable discrete-time system regardless of the
integration step size.

The stability regions for AM-3 and AM-4 integration are obtained from mapping the Unit Circle
according to

AM-3: lT ¼ 12
e j2u � e ju

5e j2u þ 8e ju � 1

� �
(8:178)

AM-4: lT ¼ 24
e j3u � e j2u

9e j3u þ 19e j2u � 5e ju þ 1

� �
(8:179)

The stability boundaries for AM-3 and AM-4 integration are computed in ‘‘Chap8_AM_Stability_
Boundaries.m’’ and shown along with the AM-2 stability boundary in Figure 8.26.

Note the restrictions imposed onAM-3 andAM-4 simulation of a stable, first-order system (l< 0).
The integration step size T is limited to less than�6=l and�3=l, respectively. Equivalently, the step
size T< 6t for AM-3 and T< 3t for AM-4 integration, where t¼�1=l is the system time constant.

688 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 8.5

The concentration of a chemical in the vessel shown in Figure 8.27 is determined by the
differential equation

V
Q

dc
dt
þ c ¼ c1 (8:180)

where
V is the constant volume of liquid in the vessel
Q is the constant flow rate of liquid in and out of the vessel
c1 is the concentration of chemical in the liquid flowing in
c is the concentration of the chemical in the well-stirred vessel

(a) Find the analytical solution for the concentration c(t), t � 0 when the input c1(t) ¼ c1, t � 0.
(b) Find the difference equation for simulating the concentration response using AM-2 integra-

tion with step size T.
(c) Find an expression for the steady-state value c(n)jn!1 and compare it with c(t)jt!1.
(d) Repeat parts (b) and (c) for AM-3 integration.
(e) Numerical values of the system parameters are Q¼ 25 m3=min and V¼ 150 m3, and the

initial concentration of chemical in the tank is c(0)¼ 5 mg=m3. The input c1¼ 60 mg=m3.
Simulate the concentration response using AM-2 and AM-3 integration with step size
T¼ 1.5t, 1.25t, t, 0.75t where t¼V=Q is the system time constant. Plot and compare the
simulated responses and the analytical solution.

−6 −5 −4 −3 −2 −1 0
−1

−0.5

0

0.5

Im
(λ

T
)

1

1.5

2

2.5

3

3.5

4

AM-4

AM-3 AM-2

Re(λT)

λT plane

FIGURE 8.26 Stability boundaries for AM-2 through AM-4 integrators.

∞

Q, c1

c

Q, c

c

FIGURE 8.27 Chemical flowing in and out of a vessel with constant liquid volume.

Advanced Numerical Integration 689

(a) The analytical solution is obtained by Laplace transforming the differential equation with input
c1 constant along with the given initial condition. Alternatively, the step response of a first-order
system is given in Equation 2.6 and repeated as follows using the current notation for the stirred
tank.

c(t) ¼ c(0)e�(Q=V)t þ c1[1� e�(Q=V)t], t � 0 (8:181)

(b) Rewriting the differential equation as

dc
dt
¼ �Q

V
cþQ

V
c1 ¼ � 1

t
cþ 1

t
c1 (8:182)

and comparing it with dx=dt¼ lxþ u, the z-domain transfer function of the discrete-time
system is obtained by replacing l with �1=t in Equation 8.170 and inserting 1=t in the numerator
to give

H(z) ¼ C(z)
C1(z)

¼ (T=t)(zþ 1)
[2þ (T=t)]z� [2� (T=t)]

(8:183)

¼ (T=2t)(zþ 1)
[1þ (T=2t)]z� [1� (T=2t)]

(8:184)

Inverting Equation 8.184 leads to the difference equation

1þ T
2t

� �
c(nþ 1)� 1� T

2t

� �
c(n) ¼ T

2t
[c1(nþ 1)þ c1(n)], n ¼ 0, 1, 2, . . . (8:185)

which is used to update the state according to

c(nþ 1) ¼ 1� (T=2t)
1þ (T=2t)

� �
c(n)þ T=t

1þ (T=2t)

� �
c1, n ¼ 0, 1, 2, . . . (8:186)

(c) The steady-state value c(n)jn!1 is obtained from Equation 8.186 after replacing c(n) and
c(nþ 1) with c(n)jn!1. Solving for c(n)jn!1 yields

c(n)jn!1¼ c1 (8:187)

Hence, c(n)jn!1¼ c1¼ c(t)jt!1, the final concentration of the continuous-time system.

(d) Replacing l with �1=t, inserting 1=t in the numerator of Equation 8.171, and simplifying the
result give

H(z) ¼ C(z)
C1(z)

¼ 5z2 þ 8z� 1
[12(t=T)þ 5]z2 � [12(t=T)� 8]z� 1

(8:188)

and the difference equation is

12
t

T
þ5

� 	
c(nþ2)� 12

t

T
�8

� 	
c(nþ1)� c(n)¼ 5c1(nþ2)þ8c1(nþ1)� c1(n)

(8:189)

) c(nþ2)¼ 1
[12(t=T)þ5]

12
t

T
�8

� 	
c(nþ1)þ c(n)þ12c1

h i
, n¼ 0,1,2, . . .

(8:190)

690 Simulation of Dynamic Systems with MATLAB® and Simulink®

Letting c(nþ 2)¼ c(nþ 1)¼ c(n)¼ c(n)jn!1 in Equation 8.190 and solving for c(n)jn!1 give the
same result as Equation 8.187, that is, the AM-3 integrator also converges to c(t)jt!1¼ c1.

(e) The simulated responses using AM-2 and AM-3 integration along with the analytical solution
are computed in ‘‘Chap8_Ex3_2.m’’ and shown in Figures 8.28 and 8.29. An RK-3 integrator would
normally be used to generate c(1), which is required to compute c(2) in Equation 8.190. However,
the exact value c(T) was used instead.

Note the improvement in the AM-3 integrator compared with the AM-2 integrator.

τ = 6 min
T = 1.5τ = 9 min

τ = 6 min
T = τ = 6 min

τ = 6 min
T = 0.75τ = 4.5 min

τ = 6 min
T = 1.25τ = 7.5 min

60
50
40
30
20
10

0

60

Co
nc

en
tr

at
io

n
(m

g/
m

3)
Co

nc
en

tr
at

io
n

(m
g/

m
3)

Co
nc

en
tr

at
io

n
(m

g/
m

3)
Co

nc
en

tr
at

io
n

(m
g/

m
3)

50
40
30
20
10

0

t (min)

60
50
40
30
20
10

0

60

40

20

0

0 5 10 15 20 25 30

t (min) t (min)
0 5 10 15 20 25 30

0 5 10 15 20 25 30
t (min)

0 10 20 30

FIGURE 8.28 Analytical and simulated AM-2 concentration response.

0
10

Co
nc

en
tr

at
io

n
(m

g/
m

3)
Co

nc
en

tr
at

io
n

(m
g/

m
3)

Co
nc

en
tr

at
io

n
(m

g/
m

3)
Co

nc
en

tr
at

io
n

(m
g/

m
3)

20
30
40
50
60

0
10
20
30
40
50
60

0
10
20
30
40
50
60

0
10
20
30
40
50
60

t (min)
0 5 10 15 20 25 30

t (min)
0 5 10 15 20 25 30

t (min)
0 5 10 15 20 25 30

t (min)
0 5 10 15 20 25 30

τ = 6 min
T = 1.5τ = 9 min

τ = 6 min
T = 1.25τ = 7.5 min

τ = 6 min
T = 0.75τ = 4.5 minτ = 6 min

T = τ = 6 min

FIGURE 8.29 Analytical and simulated AM-3 concentration response.

Advanced Numerical Integration 691

8.3.3 RUNGA–KUTTA (RK) INTEGRATION

RKnumerical integration was introduced in Section 6.2. Unlike the multistep methods, RK integra-
tion algorithms are referred to as single pass or one step in nature. Depending on the order of the RK
integrator, one or more state derivative function evaluations are required per step in order to advance
the discrete-time state approximation to the next step. Fixed-step and variable-step RK formulas are
popular in continuous-time system simulation.

Numerical stability with fixed-step RK integrators is important because of the limitations
imposed on the integration step size. A similar approach to the one used for multistep methods is
employed to obtain the stability boundary corresponding to a particular RK integrator. To illustrate,
consider the second-order RK-2 integrator first introduced in Section 3.6 known as improved Euler
or Heun’s method. A continuous-time first-order system modeled by dx=dt¼ f(x, u)¼ lxþ u is
simulated using improved Euler integration by first predicting the updated state as

x̂(nþ 1) ¼ x(n)þ Tf [x(n), u(n)] (8:191)

¼ x(n)þ T[lx(n)þ u(n)] (8:192)

¼ (1þ lT)x(n)þ Tu(n) (8:193)

followed by correction to

x(nþ 1) ¼ x(n)þ T

2
{ f [x(n), u(n)]þ f [x̂(nþ 1), u(nþ 1)]} (8:194)

¼ x(n)þ T

2
{ f [x(n), u(n)]þ f [(1þ lT)x(n)þ Tu(n), u(nþ 1)]} (8:195)

¼ x(n)þ T

2
{lx(n)þ u(n)]þ l[1þ lT)x(n)þ Tu(n)]þ u(nþ 1)} (8:196)

¼ 1þ lT þ (lT)2

2

� �
x(n)þ T

2
[(1þ lT)u(n)þ u(nþ 1)] (8:197)

Taking the z-transform of Equation 8.197 and solving for the ratio X(z)=U(z) give

H(z) ¼ X(z)

U(z)
¼ (T=2)(zþ lT þ 1)

z� [1þ lT þ (lT)2=2]
(8:198)

Another popular RK-2 integrator, first introduced in Section 3.6, is the modified Euler integrator.
The difference equation for modified Euler integration with a step size T can be obtained by
reference to Figure 8.30. Note that the intervals of width T̂ ¼ T=2 correspond to one-half the
basic simulation frame rate (1=T) to accommodate the input sampling rate of two samples per
integration step T.

The first step in advancing the state using modified Euler integration with step size T is to
compute the value x̂(nþ 1) halfway through the integration interval, that is,

x̂(nþ 1) ¼ x(n)þ T̂ f [x(n), u(n)] (8:199)

¼ x(n)þ T̂[lx(n)þ u(n)] (8:200)

¼ (1þ lT̂)x(n)þ T̂u(n) (8:201)

692 Simulation of Dynamic Systems with MATLAB® and Simulink®

The derivative function at t ¼ (nþ 1)T̂ is calculated using the predicted value x̂(nþ 1) in Equation
8.201. The updated state x(nþ 2) is computed by taking a step of length T ¼ 2T̂ in the direction
based on the midpoint derivative. Thus,

x(nþ 2) ¼ x(n)þ 2T̂ f [x̂(nþ 1), u(nþ 1)] (8:202)

¼ x(n)þ 2T̂[lx̂(nþ 1)þ u(nþ 1)] (8:203)

¼ x(n)þ 2lT̂ x̂(nþ 1)þ 2T̂u(nþ 1) (8:204)

¼ x(n)þ 2lT̂[(1þ lT̂)x(n)þ T̂u(n)]þ 2T̂u(nþ 1) (8:205)

¼ [1þ 2lT̂(1þ lT̂)]x(n)þ 2T̂[lT̂u(n)þ u(nþ 1)] (8:206)

In terms of the modified RK-2 integration step size T ¼ 2T̂ , the difference equation for updating the
discrete-time state x(n) is

x(nþ 2) ¼ 1þ lT þ (lT)2

2

� �
x(n)þ T

lT

2
u(n)þ u(nþ 1)

� �
, n ¼ 0, 1, 2, 3, 4, . . . (8:207)

Note that n¼ 0, 1, 2, 3, 4, . . . in Equation 8.207 corresponds to times 0, T=2, T, 3T=2, 2T, . . . , and,
therefore, x(n), n¼ 0, 2, 4, . . . are the modified RK-2 states updated every T (s). The z-domain
transfer function for modified RK-2 integration with step T is obtained by z-transforming Equation
8.207,

H(z) ¼ T[zþ (lT=2)]

z2 � [1þ lT þ (lT)2=2]
(8:208)

Difference equations and z-domain transfer functions for higher-order RK integrators are obtained
in a similar fashion to the procedure outlined in Equations 8.199 through 8.208 for modified RK-2
integration. An RK-3 integrator with step size T requiring input samples at the beginning, one-third
and two-thirds into the interval, is described by

k1 ¼ f [x(n), u(n)] (8:209)

k2 ¼ f x(n)þ T

3
k1, u nþ 1

3

� �� �
(8:210)

u(n + 1) u(t)

u(n)

x(n + 2)

nT (n + 1)T̂ˆ ˆ(n + 2)T

nT (n + 1)T̂ˆ ˆ(n + 2)T

t
T = T/2ˆ

T

x (n + 1)ˆ

x(n)

t

FIGURE 8.30 Modified Euler integration running at state update rate (1=T).

Advanced Numerical Integration 693

k3 ¼ f x(n)þ 2T
3
k2, u nþ 2

3

� �� �
(8:211)

x(nþ 1) ¼ x(n)þ T

4
(k1 þ 3k3) (8:212)

Using this RK-3 integrator with a sampling interval T̂ ¼ T=3 to simulate the first-order continuous-
time system dx=dt¼ lxþ u results in the third-order difference equation (see Exercise 8.27)

x(nþ 3) ¼ 1þ lT þ (lT)2

2
þ (lT)3

6

� �
x(n)þ T

4
þ l2T3

6

� �
u(n)

þ lT2

2
u(nþ 1)þ 3T

4
u(nþ 2), n ¼ 0, 1, 2, 3, . . . (8:213)

where x(n), n¼ 0, 3, 6, 9, . . . are the RK-3 states updated once every T(s).
z-Transforming Equation 8.213 leads to the z-domain transfer function

H(z) ¼ (3T=4)z2 þ (lT2=2)zþ (T=4)þ (l2T3=6)

z3 � [1þ lT þ (lT)2=2þ (lT)3=6
(8:214)

Consider the RK-4 integrator presented in Section 6.2, Equations 8.60 through 8.64 with integration
step size T and input sampled at the beginning and midpoint of each interval. The z-domain transfer
function is (Howe 1986, 1995)

H(z) ¼ (T=6){z2 þ [4þ 2lT þ (lT)2=2]zþ 1þ lT þ (lT)2=2þ (lT)3=4}

z2 � [1þ lT þ (lT)2=2þ (lT)3=6þ (lT)4=24]
(8:215)

The characteristic polynomials for the one-step RK integrators with z-domain transfer functions
given in Equations 8.198, 8.208, 8.214, and 8.215 are summarized as follows.

RK-2 (Improved Euler): z� 1þ lT þ (lT)2

2

� �
(8:216)

RK-2 (Modified Euler): z2 � 1þ lT þ (lT)2

2

� �
(8:217)

RK-3 (Input sampling at 3=T): z3 � 1þ lT þ (lT)2

2
þ (lT)3

6

� �
(8:218)

RK-4 (Input sampling at 2=T): z2 � 1þ lT þ (lT)2

2
þ (lT)3

6
þ (lT)4

24

� �
(8:219)

For an mth-order RK integrator requiring ks input samples per integration step T, the characteristic
polynomial is given by

RK-m Input sampling at
ks
T

� �
: zks � 1þ lT þ (lT)2

2!
þ (lT)3

3!
þ � � � þ (lT)m

m!

� �
(8:220)

694 Simulation of Dynamic Systems with MATLAB® and Simulink®

Note that the bracketed expression in Equation 8.220 is the truncated Taylor Series approximation
for elT. Let us explore this point further. l*, the characteristic root of the equivalent continuous-time
system, is related to the z-plane pole by

z ¼ el*(T=ks) (8:221)

The z-plane pole for the RK-4 integrator is from Equation 8.219

z ¼ 1þ lT þ (lT)2

2
þ (lT)3

6
þ (lT)4

24

� �1=2
(8:222)

Substituting this z into Equation 8.221 with ks¼ 2 and squaring both sides lead to

1þ lT þ (lT)2

2
þ (lT)3

6
þ (lT)4

24

� �
¼ el*T (8:223)

Expanding the exponential term in Equation 8.223 in a fifth-order truncated power series eventually
leads to the asymptotic formula for the fractional characteristic root error, that is,

RK-4: el ¼ l*
l
� 1 � � 1

120
(lT)4, jlT j � 1 (8:224)

which implies the integrator error coefficient eI for RK-4 is �1=120.

Example 8.6

Find the equivalent continuous-time system characteristic root for the system in Example 8.5 using
RK-2, RK-3, and RK-4 integration with step size T¼ 0.25 s.

From Equation 8.223 and similar expressions for RK-2 and RK-3,

RK-2: l* ¼ 1
T
ln 1þ lT þ (lT)2

2

� �
(8:225)

RK-3: l* ¼ 1
T
ln 1þ lT þ (lT)2

2
þ (lT)3

6

� �
(8:226)

RK-4: l* ¼ 1
T
ln 1þ lT þ (lT)2

2
þ (lT)3

6
þ (lT)4

24

� �
(8:227)

The characteristic root for the system in Example 8.5 is l ¼ �1=6. Substituting
lT ¼ (�1=6)(1=4) ¼ �1=24 in Equations 8.225 through 8.227 results in

l* ¼
�0:16661691, (RK-2)
�0:16666719, (RK-3)
�0:16666666, (RK-4)

8<:
The stability boundaries for the RK integrators are obtained as before by mapping the Unit Circle in
the z-plane into the lT plane using the denominator of H(z) to define the mapping. The MATLAB
M-file ‘‘Chap8_RK_Stability_Boundaries.m’’ finds and plots the top half of the RK-2, RK-3, and RK-4
stability boundaries shown in Figure 8.31.

Advanced Numerical Integration 695

Unlike the Adams–Bashforth and Adams–Moulton integrators, the stability regions become
larger for the higher-order RK integrators. There is a single stability boundary for all mth-order RK
integrators, independent of the number of input samples required during each integration step.
This is logical since stability of the discrete-time system associated with RK integration is an
inherent system property unrelated to the possible existence of inputs.

The fractional characteristic root error el for the mth-order numerical integrators discussed in
this section and the previous section is related to the integrator error coefficient eI according to
(Howe 1995)

el ¼ l*
l
� 1 � �eI(lT)m, jlTj � 1 (8:228)

A comparison of characteristic root errors for comparable order, Adams–Bashforth, Adams–
Moulton, and RK integrators, is shown in the middle three columns of Table 8.6.

Keep in mind the RK-m integrator requiresm derivative function evaluations per step. The RK-4
integrator, for example, would take roughly four times longer than either AB-4 or AM-4 integrators
to execute a single step. In order to keep the computational effort between the multistep AB-m and
AM-m integrators comparable to the one-step RK-m integrators, the step size should be m times
larger with RK-m integration.

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

Im
(λ

T
)

2

2.5

3

RK-4

RK-3

RK-2

Re(λT)

λT plane

FIGURE 8.31 Stability boundaries for RK-2 through RK-4 integrators.

TABLE 8.6
Characteristic Root Errors for AB, AM, and RK Integrators

m el, AB-m Step Size T el, AM-m Step Size T el, RK-m Step Size T ~el, RK-m Step Size T

2 � 5
12

(lT)2
1
12

(lT)2 � 1
6
(lT)2 � 1

6
(l2T)2 ¼ � 4

6
(lT)2

3 � 3
8
(lT)3

1
24

(lT)3 � 1
24

(lT)3 � 1
24

(l3T)3 ¼ � 27
24

(lT)3

4 � 251
720

(lT)4
19
720

(lT)4 � 1
120

(lT)4 � 1
120

(l4T)4 ¼ � 256
120

(lT)4

696 Simulation of Dynamic Systems with MATLAB® and Simulink®

The last column in Table 8.6 reflects the effect of increasing the step size with RK integration to
make the computational effort approximately the same as the comparable order AB and AM
integrators. In the case of RK-4, the effective characteristic root error ~el is proportional
to �(256=120)(lT)4, and the ratio of el for AB-4 integration to ~el for RK-4 integration is

el
~el
¼ �(251=720=lT)

4

�(256=120)(lT)4 ¼ 0:1634 (8:229)

making AB-4 integration roughly six times more accurate than RK-4 integration when execution
time is taken into consideration.

Example 8.7

A simplified block diagram for the forward speed control of a ground vehicle is shown in Figure
8.32. The system parameters are the open-loop system gain K and poles located at s¼�a and
s¼�b.

(a) Find expressions for the natural frequency, damping ratio, and steady-state gain of the
second-order closed-loop system in terms of the system parameters.

(b) Find the analytical solution for the unit step response.
(c) An RK-2 (improved Euler) simulation is performed for the cases where K¼ 100, 250 using

step sizes of T¼ 0.025 and 0.1 s. The open-loop poles are located at s¼�a¼�2 s�1 and
s¼�b¼�5 s�1. Plot the analytical and simulated step responses for each case on separate
graphs. Comment on the accuracy and numerical stability of the RK-2 integrator. Repeat
using RK-4 integration with step sizes of 0.1 and 0.2 s.

(d) For the case where K¼ 250, a¼ 2, and b¼ 5, find the maximum value of T that can be used
to implement RK-3 simulation. Verify the result.

(a) The closed-loop system transfer function is

V(s)
Vcom(s)

¼ K
s2 þ (aþ b)sþ abþ K

(8:230)

Comparing Equation 8.230 to the standard form of a second-order system transfer function

K
s2 þ (aþ b)sþ abþ K

¼ Kssv
2
n

s2 þ 2zvnsþ v2
n

(8:231)

and solving for the second-order system parameters Kss, vn, and z results in

Kss ¼ K
abþ K

, vn ¼ (abþ K)1=2, z ¼ aþ b

2(abþ K)1=2
(8:232)

(s + a)(s + b)
KVcom(s)

–
V(s)

FIGURE 8.32 Block diagram of speed control system.

Advanced Numerical Integration 697

(b) The analytical solution for the step response is (see Equation 2.24)

y(t) ¼ Kss 1 ¼ vn

vd
e�zvnt sin (vdt þ w)

� �
, t � 0 (8:233)

vd ¼ (1� z2)1=2vn, w ¼ tan�1
vd

zvn

� �
(8:234)

(c) RK integrators ‘‘ode1’’ through ‘‘ode5’’ of order one through five are available in MATLAB
and Simulink®. The Simulink diagram is shown in Figure 8.33.

The Simulink model file ‘‘speed_control.mdl’’ is called from the MATLAB M-file
‘‘Chap8_Ex3_4.m,’’ which sets the system parameters, selects the numerical integrator as either
RK-2 or RK-4, sets the timing parameters (step size and simulation duration), and plots the
analytical and simulated responses. The results are shown in Figures 8.34 and 8.35.

Speed_control.mdl

1

v_ref

Run chap8_ex3_4.m first

vev_ref

Zero-pole
v
1+− (s + a)(s + b)

K

FIGURE 8.33 Simulink® diagram for RK simulation of speed control system.

0

0.25

v (
ft/

s)
v (

ft/
s)

0.5

0.75

1

1.25

1.5
K = 100, T = 0.025 s

RK-2

ωn = 10.49 rad/s, ζ = 0.33
λ = −3.5 + j9.8869

λT = −0.0875 + j0.2472

ωn = 16.12 rad/s, ζ = 0.22
λ = −3.5 + j15.7401

λT = −0.0875 + j0.3935

ωn = 10.49 rad/s, ζ = 0.33

ωn = 16.12 rad/s, ζ = 0.22

λ = −3.5 + j9.8869

λ = −3.5 + j15.7401

λT = −0.35 + j0.9887

λT = −0.35 + j1.5740

0

0.25

0.5

0.75

1

1.25

1.5
K = 100, T = 0.1 s

RK-2

0

0.25

0.5

0.75

1

1.25

1.5
K = 250, T = 0.025 s

t (s)

RK-2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2

0 0.5 1 1.5 2 2.5 3
−5

−25

0

25

50

75

100
K = 250, T = 0.1 s

t (s)

RK-2

FIGURE 8.34 Analytical and RK-2 simulation of speed control system step response.

698 Simulation of Dynamic Systems with MATLAB® and Simulink®

Some of the data points at the end of the simulated responses when T¼ 0.025 s in Figure 8.34
are omitted to make it easier to visualize the discrete-time nature of the response. Several of the
simulated transient responses are quite accurate, whereas others deviate by a significant amount
from the analytical solution. The RK-2 integrator is unstable when K¼ 250 and T¼ 0.1 s, and the
RK-4 integrator exhibits instability for the case when K¼ 250 and T¼ 0.2 s. The reader should
confirm that lT¼�0.35þ j1.5740 and lT¼�0.7þ j3.1480 fall outside the stability regions for
RK-2 and RK-4, respectively.

(d) For the case when K¼ 250, the continuous-time system characteristic roots are l¼�3.5

j15.7401. The limiting value of T for numerical stability is found by locating the intersection of the
ray lT¼ (�3.5þ j15.7401)T, T> 0 and the RK-3 stability boundary as shown in Figure 8.36. The
M-file ‘‘Chap8_Ex3_4.m’’ contains MATLAB code, which tracks the values of lT along the RK-3
boundary as the point z rotates around the Unit Circle in the z-plane. The common point on the
ray and stability boundary is located where the angle of lT on the stability boundary is equal to the
constant angle of the ray (see Figure 8.36). It occurs at lT¼�0.5198þ j2.3386. The limiting step
size is found from

lTmax ¼ (�3:5þ j15:7401)Tmax ¼ �0:5198þ j2:3386 (8:235)

Solving for Tmax in Equation 8.235,

�3:5Tmax ¼ �0:5198) Tmax ¼ 0:1485 s

The Simulink model was run using the ‘‘ode3’’ RK-3 integrator with a step size of Tmax. The
marginally stable simulated response is shown in Figure 8.37.

0

0.25

0.5

0.75

1

1.25

1.5
K = 100, T = 0.1 s K = 100, T = 0.2 s

K = 250, T = 0.1 s K = 250, T = 0.2 s

RK-4

0

0.25

0.5

0.75

1

1.25

1.5

RK-4

0

0.25

0.5

0.75

1

1.25

1.5

t (s) t (s)

RK-4

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

−200

−400

−600

0

200
RK-4

v (
ft/

s)
v (

ft/
s)

ωn = 10.49 rad/s, ζ = 0.34
λ = −3.5 + j9.8869

λT = −0.35 + j0.9887

ωn = 16.12 rad/s, ζ = 0.22
λ = −3.5 + j15.7401

λT = −0.35 + j1.5740

ωn = 16.12 rad/s, ζ = 0.22
λ = −3.5 + j15.7401

λT = −0.7 + j3.1480

ωn = 10.49 rad/s, ζ = 0.34
λ = −3.5 + j9.8869

λT = −0.7 + j1.9774

FIGURE 8.35 Analytical and RK-4 simulation of speed control system step response.

Advanced Numerical Integration 699

EXERCISES

8.15 Show that the extraneous z-plane pole z2 resulting from AB-2 integration of the first-order
system dx=dt¼ lxþ u is approximately equal to 0.5lT when lT � 1.

8.16 Simulate the unit step response of the first-order system dx=dt¼ lxþ u using AB-2 integra-
tion, and plot both x(t), t � 0 and x(n), n¼ 0, 1, 2, . . . for the following cases:

L T

�0.1 1, 2, 5, 9, 10, 11

�2 0.1, 0.2, 0.3, 0.4, 0.5, 0.6

�50 0.002, 0.005, 0.01, 0.019, 0.02, 0.021

−3 −2.5 −2 −1.5 −1 −0.5 0 0.50

0.5

1

1.5
Im

(λ
T

)

2

2.5

eλT plane

Re(λT)

–0.5198 + j2.3386

Ray: λT = (–3.5 + j15.7401)T

FIGURE 8.36 Finding lTmax point for RK-3 simulation of system.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

v (
ft/

s)

2

t (s)

v(n), RK-3 simulated response
v(t), Analytical solution

FIGURE 8.37 Analytical step response and marginally stable RK-3 simulated response.

700 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.17 Show that the procedure for finding the AB-4 stability region must be modified to account for the
existence of extraneous poles outside the Unit Circle, that is, for certain values of lT, the principal
pole may lie on the Unit Circle; however, there may be other poles of H(z) larger in magnitude.

8.18 The stability boundary for AB integration in polar form is lT¼Me jc where M¼ jlTj and
c¼Arg(lT) are both functions of the angle u as shown in Figure 8.23 for AB-2 integration.
(a) Show that M¼ (2� 2 cos u)1=2 and c¼ tan�1 (sin u=(cos u� 1)) for AB-1 integration.
(b) Derive Equations 8.156 and 8.158.
(c) Find M and c for AB-3 and AB-4 integration.

8.19 Investigate the stability of AB-3 and AB-4 integration for undamped continuous-time second-
order systems. Specifically,
(a) Find the z-domain transfer functions of the system, and plot the loci of the poles as the

parameter vnT varies, similar to Figure 8.25 for AB-2 integration.
(b) Include close-ups of the stability boundaries near the imaginary axis of the lT plane.

8.20 In Example 8.4,
(a) Find all the z-plane poles when vnT¼ 0.05, 0.1, . . . , 0.45, 0.5. Comment on how the

results affect the stability of AB-2 integration of undamped second-order systems.
(b) Show that the difference equation for implementing AB-2 integration of the system

€xþ v2
nx ¼ u is

x(nþ 4)� 2x(nþ 3)þ 1þ 2:25(vnT)
2

� �
x(nþ 2)� 1:5(vnT)

2x(nþ 1)

þ 0:25(vnT)
2xA(n) ¼ 0:25T2[9u(nþ 2)� 6u(nþ 1)þ u(n)], n ¼ 0, 1, 2, 3, . . .

(c) Find the difference equation for explicit Euler integration of the undamped second-order
system.

(d) Write aMATLABM-file that accepts values forvn and T and implements AB-2 integration
to simulate the unit step response of the system. Use the explicit Euler integrator to
compute the starting values x(2) and x(3).

(e) Plot the exact and simulated step responses for the following cases:
(i) vn¼ 1 rad=s, T¼ 0.01 s
(ii) vn¼ 100 rad=s, T¼ 0.002 s
(iii) vn¼ 0.02 rad=s, T¼ 15 s
(iv) vn¼ 10 rad=s, T¼ 0.5 s

8.21 Discuss the implications of the AB-3 stability boundary extending into the first quadrant of the
lT plane. Illustrate by simulating the step response of the continuous-time second-order system

d2

dt2
x(t)� d

dt
x(t)þ 49:25x(t) ¼ u(t)

using AB-3 integration with step size T¼ 0.1 s. Plot the exact and simulated response on the
same graph. What is the damping ratio and natural frequency of the continuous-time system?

8.22 Derive expressions for
(a) HI(z) for AM-2, AM-3, and AM-4 integrators given in Equations 8.167 through 8.169.
(b) H(z) for AM-2, AM-3, and AM-4 integration of dx=dt¼ lxþ u, (Re l< 0) given in

Equations 8.170 through 8.172.
(c) lT in Equations 8.178 and 8.179.

8.23 Use the final value theorem (see Table 4.5) to obtain the final value for c(n)jn!1 given in
Equation 8.187.

8.24 Find an expression for the equivalent continuous-time system characteristic root l* corre-
sponding to the z-plane pole resulting from AM-2 simulation of the system dx=dt¼ lxþ u.
Compute l* and el (the characteristic root error) for the values of l and T used in Example
8.5. Are your answers consistent with the responses in Figures 8.28 and 8.29?

Advanced Numerical Integration 701

8.25 For RK-2 integration of dx=dt¼ lxþ u resulting in Equation 8.198 for H(z),
(a) Find the z-plane pole of the discrete-time system.
(b) Find the equivalent continuous-time system characteristic root l*.
(c) Find asymptotic formulas for l* and the fractional error in l*, that is, el¼ l*=l� 1.

8.26 Find the difference equation for the RK-4 integrator in Section 6.2.
8.27 Derive the result in Equation 8.214 for the z-domain transfer function of the RK-3 integrator in

Equations 8.209 through 8.212.
8.28 Derive the expression in Equation 8.224 for the fractional characteristic root error incurred

using RK-4 integration.
8.29 Consider an unstable, second-order system with DC gain kSS¼ 1, natural frequency vn¼ 50

rad=s, and damping ratio z¼�0.02. The initial conditions are x(0)¼ 1 and _x(0)¼ 0.
(a) Use Simulink to simulate the transient response of the autonomous system using RK-2

and RK-4 integration with a step size of T¼ 0.05 s.
(b) Find the analytical solution and plot it along with the RK-2 and RK-4 simulated responses

on the same graph.
(c) Comment on the results. Does lT lie inside the RK-2 and RK-4 stability regions?

8.30 Polar coordinates of the AB-2 stability boundary are expressed parametrically in Equations
8.156 and 8.158. Show that a parametric representation for the rectangular coordinates of the
AB-2 stability boundary is given by

x ¼ Re(lT) ¼ 4 cos u� cos 2u� 3
5� 3 cos u

y ¼ Im(lT) ¼ 4 sin u� sin 2u
5� 3 cos u

for 0 � u � 2p.

8.4 MULTIRATE INTEGRATION

The topic of stiff systems was introduced in Section 6.5. Recall that the stiffness property is a
measure of the variation in magnitude between the smallest and largest characteristic roots (eigen-
values of the coefficient matrix A in state variable model) of a linear or linearized system. When the
characteristic roots of a stiff system are as portrayed in Figure 8.38a, variable-step stiff integrators
like MATLAB’s ‘‘ode15s,’’ ‘‘ode23s,’’ ‘‘ode23tb’’ are more computationally efficient in
simulating the system dynamics than fixed-step numerical integrators owing to the excessively
small time steps necessary with fixed-step integrators to assure numerical stability.

When the system poles are clustered in distinct regions of the s-plane as shown in Figure 8.38b, the
overall continuous-time system is composed of two or more subsystems that effectively operate at

Im

Re

(b)(a)

Im

Re

FIGURE 8.38 Stiff system (a) without distinct grouping of poles and (b) with distinct grouping of poles.

702 Simulation of Dynamic Systems with MATLAB® and Simulink®

different speeds. Different time scales are required to view the time histories of the individual
subsystem state variables. The pole locations in Figure 8.38b implies the existence of three subsys-
tems, a relatively slow sixth-order subsystem associated with the six dominant poles nearest to the
origin and imaginary axis, an intermediate speed fourth-order subsystem corresponding to the middle
four poles, and a third-order fast subsystem arising from the three poles furthest from the origin.

Multirate integration methods are often effective in simulating continuous-time systems with
identifiable subsystems like the one shown in Figure 8.38b. As the name suggests, numerical
integrators running at different frame rates (step sizes) are tailored to the individual subsystems.
The explanation and example that follow are geared toward a two-time scale system, that is, a
system with characteristic roots in two distinct regions located an order of magnitude apart from the
origin of the s-plane. By implication, a subset of the system’s state variables are predominantly
characterized by fast dynamics, that is, short time constants, high natural frequencies, and band-
width, and the remaining states are just the opposite, namely, those associated with slow natural
modes and longer transient responses.

Electromechanical control systems are frequently composed of fast and slow subsystems.
Components in electronic controllers and sensors are much faster than the mechanical systems
being controlled. The result is an overall system with fast and slow dynamics. Figure 8.39 is the
block diagram of an aircraft pitch control system similar to one in Howe (1995). The airframe is
modeled as a linear second-order system to account for the short-period longitudinal dynamics. The
actuating signal for the controller is the difference between the commanded elevator deflection
di coming from the autopilot and the actual elevator deflection de. The control surface actuator
(lumped with the controller) moves the elevator. The pitch u and pitch rate _u are fed back to the
autopilot, which receives the pitch angle command ucom from the pilot.

The airframe dynamics and subsequent integrator constitute the slow subsystem, and the fast
subsystem is composed of the remaining components. Since the slow and fast states are to be
integrated at different rates, it is necessary to define the slow and fast states and express the state
derivatives in terms of the states and the command input. We begin with the slow subsystem blocks
and perform the steps necessary to generate an equivalent simulation diagram. The transfer function
of the airframe dynamics is

_u(s)

de(s)
¼ KAv

2
n(tAsþ 1)

s2 þ 2jvnsþ v2
n

(8:236)

leading to the differential equation

d2 _u

dt2
þ 2zvn

d _u

dt
þ v2

n
_u ¼ KAv

2
ntA

dde
dt
þ KAv

2
nde (8:237)

The simulation diagram is shown in Figure 8.40. The integrator outputs are chosen as the slow
system states x1, x2, and x3.

(s + p1)(s + p2)
Kc(s + z)θcom δi δeK

– ––
1
s

1
s2

θ
.

Kθ
.

θKAωns (τAs + 1)
s2+2ζωns + ωns

Controller/control
surface actuator Airframe dynamics

Autopilot
Elevator

FIGURE 8.39 Block diagram of aircraft pitch control system.

Advanced Numerical Integration 703

The fast systems states are obtained by breaking the controller=control surface actuator transfer
function into serial first-order blocks as shown in Figure 8.41. The simulation diagrams for the first-
order blocks are drawn using the techniques introduced in Section 2.4.

The simulation diagram with the fast states x4, x5, x6, and x7 is shown in Figure 8.42.
From Figures 8.39, 8.40, and 8.42, we are able to write algebraic and state derivative equation,

which eventually lead to the following state model (see Exercise 8.31).

_x ¼ Axþ Bucom (8:238)

y ¼ Cxþ Ducom (8:239)

where the matrices A, B, C, and D are given by

A ¼

0 KAv
2
n KAv

2
ntA 0 0 0 0

0 0 1 0 0 0 0

0 �v2
n �2zvn 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

�KCK �KCKK _uKAv
2
n �KCKK _uKAv

2
ntA �KC 0 �p2 KC(z� p1)

�K �KK _uKAv
2
n �KK _uKAv

2
ntA �1 0 0 �p1

26666666666666664

37777777777777775
(8:240)

1
s

1
s

1
s

−2ζωn

KAωn
2

KAτAωn
2

–ωn
2

x1 θ
θ
.

x2x3δe

FIGURE 8.40 Simulation diagram of airframe dynamics with states x1, x2, and x3.

Kc s + p1
s + zA (s) B (s) C (s)1

s + p2

FIGURE 8.41 Controller=control surface actuator.

1
s 1

s
1
s

1
sKc z

A (s) x4x7

Kc

−p2−p1

x6 x5

δe
B (s)

C (s)

FIGURE 8.42 Simulation diagram of fast subsystem with states x4, x5, x6, and x7.

704 Simulation of Dynamic Systems with MATLAB® and Simulink®

B ¼

0

0

0

0

0

KCK

K

266666666666664

377777777777775
, C ¼

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

266666666666664

377777777777775
, D ¼

0

0

0

0

0

0

0

266666666666664

377777777777775
(8:241)

Note that the output vector y ¼ [y1 y2 y3 y4 y5 y6 y7]T is chosen to be identical to the

state vector x. Decomposing the state vector x into a vector of slow states u ¼ [u1 u2 u3]T ¼
[x1 x2 x3]T and fast states w ¼ [w1 w2 w3 w4]

T ¼ [x4 x5 x6 x7]T leads to a definition
of the slow state derivatives _u ¼ f (u,w) as

_u1 ¼ _x1 ¼ f1(u,w) ¼ A1,2u2 þ A1,3u3 (8:242)

_u2 ¼ _x2 ¼ f2(u,w) ¼ A2,3u3 (8:243)

_u3 ¼ _x3 ¼ f3(u,w) ¼ A3,2u2 þ A3,3u3 þ A3,4w1 (8:244)

and the fast state derivative vector _w ¼ g(u,w, ucom) is

_w1 ¼ _x4 ¼ g1(u,w, ucom) ¼ A4,5w2 (8:245)

_w2 ¼ _x5 ¼ g2(u,w, ucom) ¼ A5,6w3 (8:246)

_w3 ¼ _x6 ¼ g3(u,w, ucom)

¼ A6,1u1 þ A6,2u2 þ A6,3u3 þ A6,4w1 þ A6,6w3 þ A6,7w4 þ B6ucom (8:247)

_w4 ¼ _x7 ¼ g4(u,w, ucom) ¼ A7,1u1 þ A7,2u2 þ A7,3u3 � w1 þ A7,7w4 þ B7ucom (8:248)

where the coefficients Ai, j are the elements in the coefficient matrix A in Equation 8.240.
Figure 8.43 portrays the slow and fast subsystems and the coupling between them.

Slow
subsystem

Fast
subsystem

w1
w2
w3
w4

.

.

.

.

w1 = A4,5w2

w2 = A5,6w3

w3 = A6,1u1 + A6,2u2 + A6,3u3 + A6,4w1 + A6,6w3 + A6,7w4 + B6θcom
w4 = A7,1u1 + A7,2u2 + A7,3u3 − w1 + A7,7w4 + B7θcom

u1

u2

u3

.

.

.

u1 = A1,2u2 + A1,3u3

u2 = A2,3u3
u3 = A3,2u2 + A3,3u3 + A3,4w1

u1 u2 u3 w1

θcom

FIGURE 8.43 Slow and fast subsystem interaction.

Advanced Numerical Integration 705

Once the system is decomposed into a slow and fast subsystem, the numerical integration routine
and frame times (step size Ts for the slow subsystem and Tf for the fast one) must be selected. The
numerical integrator to update the slow states is referred to as the ‘‘master’’ routine, and the
integration method for advancing the fast states is called the ‘‘slave’’ routine (Palusinski 1986).
The situation is illustrated in Figure 8.44 for the case where both ‘‘master’’ and ‘‘slave’’ are the
classic RK-4 integrator (see Equations 6.60 through 6.64) with step sizes Ts and Tf, respectively. The
quotient N¼ Ts=Tf is called the frame ratio. A single slow and fast state is shown for simplicity.

There are several choices when it comes to scheduling the order of execution for slow and fast
frames. Referring to Figure 8.44, starting at time tn, we can take a half step through the slow frame
starting from un in the direction defined by slope k1. The endpoints (tn, un) and (tn þ 0:5Ts, unþ1=2)
determine the equation of a line that is interpolated to provide the value of the slow state at the
beginning of each fast frame. The fast state is then advanced using RK-4 integration up until the
time tnþ 0.5NTf, generating values for wnNþ1, wnNþ2, . . . , wnNþ0.5N. Next, the slow state derivative
function k2 is evaluated at tnþ 0.5Ts using the predicted slow state unþ1=2 along with the previously
computed fast state w(nþ0.5)N.

The step-by-step process for updating the slow state vector u and fast state vector w from tn to
tnþ1 is outlined in the following.

8.4.1 PROCEDURE FOR UPDATING SLOW AND FAST STATES: MASTER=Slave¼RK-4=RK-4

1. Compute k1 ¼ f (un,wnN)

2. Compute unþ1=2 ¼ un þ 0:5Tsk1
3. Determine equation of lines connecting (tn, un) and (tnþ1=2, unþ1=2)
4. Use ‘‘slave’’ RK-4 to integrate fast state from tn to tnþ 0.5NTf based on interpolated values

for slow state at beginning of fast frame times.
5. Compute k2 ¼ f (unþ1=2,w(nþ0:5)N)
6. Compute û nþ1=2 ¼ un þ 0:5Tsk2
7. Compute k3 ¼ f (û nþ1=2,w(nþ0:5)N)
8. Compute û nþ1 ¼ un þ Tsk3
9. Determine equation of line connecting and (tn þ 0:5Ts, û nþ1=2) and (tn þ 1, û nþ1)

tn = nNTf tn + 0.5NTf tn + 1 = tn + NTf

wnN

wnN+1

wnN+N−1
w(n+0.5)N

w(n+1)N

tn = nTs tn + 0.5Ts tn+1 = tn + Ts

un
k1

k2

k2

k3

(k1 + 2k2 + 2k3 + k4)

k4Interpolation line

Interpolation line
k1 un+1/2

un+1/2k3ˆ

1−6

un+1

un+1ˆ

FIGURE 8.44 Multirate integration for one frame of slow state and N frames of fast state.

706 Simulation of Dynamic Systems with MATLAB® and Simulink®

10. Use ‘‘slave’’ RK-4 to integrate fast state from tnþ 0.5NTf to tnþ1¼ tnþNTf based on
interpolated values for slow state at beginning of fast frame times.

11. Compute k4 ¼ f (û nþ1,w(nþ1)N)
12. Compute updated slow state unþ1 ¼ un þ 1

6 (k1 þ 2k 2 þ 2k 3 þ k 4)

The choice of frame times Tf and Ts depends on the integrators used for the ‘‘master’’ and ‘‘slave’’
routines as well as the dynamics of the slow and fast subsystems. Baseline values of the system
parameters for the following discussion are (see Figure 8.39)

Airframe dynamics: KA¼ 10, tA¼ 0.8 s, vn¼ 5 rad=s, z¼ 0.2
Controller=control surface actuator: Kc ¼ 4� 105, z ¼ 12:5, p1 ¼ p2 ¼ 100
Autopilot gain: K¼ 0.1625, pitch rate feedback sensor gain: K _u¼ 0.2

Substituting the parameter values into Equation 8.240 gives the coefficient matrix A with eigen-
values (characteristic roots) equal to the closed-loop system poles. The result is

l1 ¼ �0:67, l2,3 ¼ �4:31
 j6:48, l4 ¼ �21:97, l5,6 ¼ �11:07
 j37:46, l7 ¼ �148:59

Magnitudes of the system poles range from a low of jl1j ¼ 0.67 to a high of jl7j ¼ 148.59,
demonstrating the stiffness of the system. The magnitude of the remaining poles suggests the
existence of a slow subsystem characterized by the first three poles l1, l2, and l3, and a fast
subsystem corresponding to the remaining four poles l4, l5, l6, and l7 located further from the
origin than l1, l2, and l3.

8.4.2 SELECTION OF STEP SIZE BASED ON STABILITY

Simulation of the seventh-order control system with classic RK-4 integration and step size T is
stable provided the points liT, i¼ 1, 2, . . . , 7 fall within the RK-4 stability region. Figure 8.45a
shows the location of liT, i¼ 1, 2, . . . , 7 when the integration step size T is 0.01 s. Since all 7 liT
points are inside the stability boundary, the RK-4 simulation is stable. The RK-4 simulation is
marginally stable when the leftmost liT point is located on the stability boundary at �2.785. The
step Tmax is obtained from

�max jlij � Tmax ¼ �148:59Tmax ¼ �2:785) Tmax ¼ 0:0187 s (8:249)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−4

Im
(λ

T
)

−3

−2

−1

0

1

2

3

−4

Im
(λ

T
)

−3

−2

−1

0

1

2

3

λiT, i = 1, 2, ..., 7 (T = 0.01 s)

λT plane

Re(λT)
−3 −2.5 −2 −1.5 −1 −0.5 0 0.5

Re(λT)

λT plane

(b)(a)

λiT, i = 1, 2, ..., 7 (T = 0.0187 s)

FIGURE 8.45 RK-4 simulation boundary: (a) stable and (b) marginally stable.

Advanced Numerical Integration 707

Figure 8.45b illustrates the case where T¼ Tmax¼ 0.0187 s. The leftmost value of liT is on the
RK-4 stability boundary at–2.785, leading to a z-plane pole of the discrete-time system located on
the Unit Circle.

A Simulink diagram of the pitch control system is shown in Figure 8.46.
The diagram includes a ‘‘State-Space’’ block to implement the state equations in Equations

8.238 through 8.241. The pitch input command is given by the exponential rise

ucom(t) ¼ ucom(1� e�t=tcom), t � 0 (8:250)

which represents a real-world approximation to a step input provided tcom is chosen appropriately,
that is, 5tcom is set equal to 10–20 times the fixed integration step size.

Figure 8.47 shows the pitch responses from the scopes labeled ‘‘pitch (deg)’’ and ‘‘x1
theta (deg)’’ for the integration step sizes of 0.018 and 0.019 s. The numerical instability when
T¼ 0.019 s is predicted by Equation 8.249.

The reader can run the M-file ‘‘Chap8_Multi_Rate_Integ.m’’ with different system parameter
values to compare outputs x1(t), x4(t), and x6(t) from the state variable model and the equivalent
signals u(t) and de(t) and the output of the controller block.

8.4.3 SELECTION OF STEP SIZE BASED ON DYNAMIC ACCURACY

The transfer function of the closed-loop system in Figure 8.39 can be obtained using block diagram
reduction or other graphical techniques such as Mason’s gain formula for signal flow graphs. The
result is

Gucom!u
(s) ¼ u(s)

ucom(s)
¼ b2s

2 þ b1sþ b0

s7 þ a6s6 þ a5s5 þ a4s4 þ a3s3 þ a2s2 þ a1sþ a0
(8:251)

FIGURE 8.46 Simulink® diagram of aircraft pitch control system in Figure 8.39.

708 Simulation of Dynamic Systems with MATLAB® and Simulink®

where

b0 ¼ KKcKAv
2
nz, b1 ¼ KKcKA(1þ tAz)v

2
n, b2 ¼ KKcKAv

2
ntA (8:252)

a0 ¼ KKcKAv
2
nz,

a1 ¼ KKcKAv
2
nzþ Kcv

2
nz(1þ KKAK _u),

a2 ¼ KKcKAv
2
ntA þ Kc 2zvnzþ v2

n þ KKAK _uv
2
n(1þ tAz)

� �
a3 ¼ Kczþ 2zvnKc þ v2

np1p2 þ KKcKAK _utAv
2
n

a4 ¼ Kc þ 2zvnp1p2 þ v2
n(p1 þ p2)

a5 ¼ p1p2 þ 2zvn(p1 þ p2)þ v2
n

a6 ¼ p1 þ p2 þ 2zvn

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(8:253)

An equivalent implementation of the system with transfer function in Equation 8.251 consists of the
input ucom(t) feeding parallel first- and second-order components with the outputs of each block
summed to generate the pitch response u(t). Partial fraction expansion of Equation 8.251 using
numerical values for b0, b1, b2, and a0, a1, . . . , a6 based on the given system parameter values leads
to the configuration shown in Figure 8.48.

Dashed lines identify the slow and fast subsystem components. Despite the fact that u¼ x1 is
classified as one of the slow states, it is clear from Figure 8.48 that u(t) comprises both fast and slow
components. However, it will be shown later that the fast component is negligible compared with
the slow component.

The slow subsystem constants are

A1 ¼ 0:3373, l1 ¼ �0:67, B1 ¼ 0:7930, B0 ¼ 37:0325, b1 ¼ 8:6254, b0 ¼ 60:6057

0

1

2

3

4

5

t (s)

Pitch (deg) (T = 0.018 s) Pitch (deg) (T = 0.019 s)

0

50Pi
tc

h
(d

eg
)

Pi
tc

h
(d

eg
)

Pi
tc

h
(d

eg
)

Pi
tc

h
(d

eg
)

100

150

0

50

100

150

0 1 2 3 4 5

t (s)
0 1 2 3 4 5

t (s)
0 1 2 3 4 5

t (s)
0 1 2 3 4 5

0

1

2

3

4

5

x1 theta (deg) (T = 0.018 s) x1 theta (deg) (T = 0.019 s)

FIGURE 8.47 Simulink scope outputs showing stable (T¼ 0.018 s) and unstable (T¼ 0.019 s) pitch
responses with RK-4 integration.

Advanced Numerical Integration 709

and the fast subsystem constants are

C1 ¼ �1:7568, l4 ¼ �21:97, D1 ¼ 0:6477, D0 ¼ �49:8169, d1 ¼ 22:1383, d0 ¼ 1525:7,

E1 ¼ 0:0328, l7 ¼ �148:59

The poles of the slow subsystem second-order component (roots of s2þ b1sþ b0) are
l2,3¼�4.31
 j6.48. The fast subsystem second-order component poles are roots of s2þ d1sþ d0,
namely, l5,6¼�11.07
 j37.46.

Table 8.6 lists asymptotic formulas for the characteristic root errors resulting from the use of
certain low-order numerical integrators. In particular, for RK-4 with step size T and integrator error
coefficient eI¼ 1=120,

RK-4: el ¼ l*
l
� 1 � �eI(lT)4 � � 1

120
(lT)4, jlT j � 1 (8:254)

where l* is the characteristic root of the equivalent continuous-time system.
For second-order systems Howe (1986) presents formulas for dynamic errors in damping ratio z,

natural frequency vn, and damped natural frequency vd using first-order through fourth-order
integration methods. For RK-4, the asymptotic expressions are

ez ¼ z*� z

z
� �4(z� 3z3 þ 2z5)eI(vnT)

4 (8:255)

� � 1
30

(z� 3z3 þ 2z5)(vnT)
4, vnT � 1 (8:256)

evn ¼
vn*� vn

vn
� �(1� 8z2 þ 8z4)eI(vnT)

4 (8:257)

� � 1
120

(1� 8z2 þ 8z4)(vnT)
4, vnT � 1 (8:258)

A1
s − λ1

B1s + B0
s2 + b1s + b0

D1s + D0
s2 + d1s + d0

C1
s − λ4

E1
s−λ7

Fast subsystem

Slow subsystem

θcom(s) θ(s)

FIGURE 8.48 Parallel implementation of pitch control system transfer function.

710 Simulation of Dynamic Systems with MATLAB® and Simulink®

evd ¼
vd*� vd

vd
� �(1� 12z2 þ 16z4)eI(vnT)

4 (8:259)

� � 1
120

(1� 12z2 þ 16z4)(vnT)
4, vnT � 1 (8:260)

For the first-order component in the slow subsystem in Figure 8.48,

el � � 1
120

(l1T)
4 � � 1

120
(�0:673)4T 4 � �0:00171T 4 (8:261)

The damping ratio, natural frequency, and damped natural frequency of the slow subsystem second-
order component are found by equating the term s2þ b1sþ b0 and the standard form of a quadratic
characteristic polynomial s2 þ 2zvnsþ v2

n. The results are zslow¼ 0.554, (vn)slow¼ 7.785 rad=s,
and (vd)slow.¼ 6.481 rad=s. Substituting the values of zslow and (vn)slow into Equations 8.256, 8.258,
and 8.560 gives

ez � � 1
30

zslow � 3z3slow þ 2z5slow
� �

[(vn)slowT]
4 (8:262)

� � 1
30

[0:554� 3(0:554)3 þ 2(0:554)5](7:785T)4 (8:263)

� �18:1562T 4 (8:264)

evn � �
1

120
1� 8z2slow þ 8z4slow
� �

[(vn)slowT]
4 (8:265)

� � 1
120

[1� 8(0:554)2 þ 8(0:554)4](7:785T)4 (8:266)

� 21:4777T4 (8:267)

evd � �
1

120
1� 12z2slow þ 16z4slow
� �

[(vn)slowT]
4 (8:268)

� � 1
120

[1� 12(0:554)2 þ 16(0:554)4](7:785T)4 (8:269)

� 35:9894T4 (8:270)

Choosing the RK-4 step size to limit the characteristic error in damped natural frequency
to 0.025%,

Tslow ¼ (evd)des
35:9894

� �1=4
¼ 0:00025

35:9894

� �1=4
¼ 0:0513 s (8:271)

The actual characteristic error in damped natural frequency will be slightly different from
evdð Þdes¼ 0:025% because (vn)slow Tslow¼ 0.3997, which is not an order of magnitude less than 1,
a requirement for the asymptotic formula in Equation 8.260.

A similar procedure can be performed to determine an appropriate step size for RK-4 simulation
of the fast subsystem. Suppose the fast subsystem step size is selected to limit the sum of

Advanced Numerical Integration 711

the characteristic root errors associated with the fast poles l4¼�21.97 and l7¼�148.59.
From Equation 8.261,

el4 þ el7 � �
1

120
l44 þ l47
� �

T4 � Edes (8:272)

) � 1
120

[(�21:97)4 þ (�148:59)4]T4 � Edes (8:273)

Choosing Edes¼�0.02%,

T4 � �0:0002
�(1=120)[(�21:97)4 þ (�148:59)4]

) Tfast � 0:0026 s (8:274)

Once again, there will be a slight difference between el4 þ el7 and Edes when Tfast¼ 0.0026 s,
because the product jl7Tfastj ¼ j(�148.589)0.0026j ¼ 0.3936 is not significantly less than 1 as
required in the asymptotic formula of Equation 8.254.

Henceforth, multirate integration using RK-4 for both slow and fast systems will be performed
with Tf¼ 0.0025 s and Ts¼ 0.05 s resulting in a frame ratio N¼ 20.

8.4.4 ANALYTICAL SOLUTION FOR STATE VARIABLES

In most cases, analytical solutions for the state variables are not available with the possible
exception of linear (or linearized) system models and elementary input signals. An advantage of
knowing the analytical solution for the state variables is that it can serve as a benchmark for
comparing results obtained by different simulation-based approaches. Consequently, the analytical
solution for a subset of the state variables in the pitch control system will be determined with this
purpose in mind.

Laplace transforming the pitch command signal given in Equation 8.250 gives

u(s) ¼ b2s
2 þ b1sþ b0

s7 þ a6s6 þ a5s5 þ a4s4 þ a3s3 þ a2s2 þ a1sþ a0

� �
ucom

s(tcomsþ 1)
(8:275)

Choosing ucom ¼ 5	, tcom ¼ 0:01 s and substituting the baseline parameter values into Equations
8.252 and 8.253 determine u(s). Using MATLAB’s ‘‘conv’’ function to expand the denominator
into a ninth-order polynomial and then the ‘‘residue’’ function results in the partial fraction
expansion of u(s). Converting pairs of terms with complex poles and coefficients into real terms
results in the analytical pitch response

u(t) ¼ uslow(t)þ ufast(t)þ uforced(t) (8:276)

where uslow(t) comprises the slow subsystem natural mode terms,

uslow(t) ¼ 5{�0:5047e�0:673t þ e�4:313t[�0:6150 cos (6:4812t)
�0:3474 sin (6:4812t)]} (8:277)

ufast(t) is made up of fast subsystem natural mode terms,

ufast(t) ¼ 5{0:0004548e�148:589t þ 0:1025e�21:975t

þ e�11:069t[0:0204 cos (37:4583t)þ 0:0388 sin (37:4583t)]} (8:278)

712 Simulation of Dynamic Systems with MATLAB® and Simulink®

and uforced(t) includes the input mode terms

uforced(t) ¼ 5(1� 0:0035e�100t) (8:279)

The exponential decay in the forced component results from the exponential term in the command
input (see Equation 8.250).

Plots of the slow component uslow(t) and fast component ufast(t) shown in the top half of Figure
8.49 suggest that the fast component contributes a negligible amount to the overall response. Hence,
u(t) is appropriately classified as a slow subsystem state variable.

The bottom half of Figure 8.49 shows the forced component given in Equation 8.279 and the
total pitch response comprising the slow, fast, and forced components. Note that on the time scale
used in Figure 8.49, the forced component appears to be a step input. In reality, it contains an
exponential rise term with time constant tcom¼ 0.01 s.

A similar approach can be used to find the analytical solution for the fast state variable x4¼ de.
The transfer function from ucom(s) to de(s) is

Gucom!de(s) ¼
de(s)

ucom(s)
¼ g4s

4 þ g3s
3 þ g2s

2 þ g1sþ g0
s7 þ a6s6 þ a5s5 þ a4s4 þ a3s3 þ a2s2 þ a1sþ a0

(8:280)

g0 ¼ 0, g1 ¼ KKcv
2
nz, g2 ¼ KKc(v

2
n þ 2zvnz), g3 ¼ KKc(2zvn þ z), g4 ¼ KKc (8:281)

and the analytical solution for the elevator deflection de(t) is

de(t) ¼ (de)slow(t)þ (de)fast(t)þ (de)forced(t) (8:282)

(Ee)slow(t) ¼ 5{0:0709e�0:673t þ e�4:313t[0:0844 cos (6:4812t)� 0:1440 sin (6:4812t)]} (8:283)

(de)fast(t) ¼ 5{0:050e�148:589t þ 0:252e�21:975t

þ e�11:069t[�0:2842 cos (37:4583t)� 0:1644 sin (37:4583t)]} (8:284)

−6

−4

de
g

de
g

−2

0

2
θfast(t)

θforced(t)

θslow(t)

θ(t)

Slow and fast components of pitch response θ(t)

0

2

4

6
Forced component and total pitch response

t (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIGURE 8.49 Total pitch response and its components.

Advanced Numerical Integration 713

(de)forced(t) ¼ 5(�0:1733e�100t) (8:285)

The total response de(t) and its components (de)slow(t), (de)fast(t), and (de)forced(t) are shown in
Figure 8.50.

From the top graph, it is clear that both fast and slow components are present in de(t). Despite the
existence of an appreciable slow component, de(t) is nonetheless identified as a fast state variable.
Multirate simulation of the overall system must integrate de(t) at the fast frame rate due to the
significant high-frequency component (de)fast(t).

8.4.5 MULTIRATE INTEGRATION OF AIRCRAFT PITCH CONTROL SYSTEM

The MATLAB M-file ‘‘Chap8_multi_rate_integ.m’’ includes code for implementing multirate
integration of Equations 8.242 through 8.248 with RK-4 as the ‘‘master’’ and ‘‘slave’’ integration
routines.

Figure 8.51 shows Simulink and multirate integration results for the slow states u1¼ x1, u2¼ x2,
and u3¼ x3. The Simulink model was integrated using RK-4 with integration step size identical to
the fast frame time Tf¼ 0.0025 s. The slow frame time was Ts¼ 0.05 making the frame ratio N¼ 20.

The Simulink and multirate simulation responses are in general agreement; however, the
accuracy of each can only be established by comparison with the analytical solutions. Accordingly,
Figures 8.52 and 8.53 show the analytical solutions for x1(t) and x2(t) on the same graph with the
RK-4 and multirate simulation results. For purposes of clarity, not all simulated points are shown in
the graph. The analytical solution for x1(t)¼ u(t) is given by Equations 8.276 through 8.279, and the
one for x2(t) is obtained in the MATLAB M-file ‘‘Chap8_multi_rate_integ.m.’’

From Figures 8.52 and 8.53, it is clear that the simulated responses using Simulink with RK-4
and step size Tf¼ 0.0025 s are virtually identical with the analytical solutions. As expected, the
responses obtained using multirate integration with RK-4=RK-4 and Tf¼ 0.0025 s, Tf¼ 0.05 s are
not as accurate.

Simulated responses of two of the fast states, namely, w1¼ x4 and w2¼ x5, obtained using
Simulink and multirate integration are shown in Figure 8.54. The M-file ‘‘Chap8_multi_rate_
integ.m’’ plots the remaining fast states w3¼ x6 and w4¼ x7.

−0.5

0

0.5

1

(δe)slow(t)

(δe)(t)

(δe)fast(t)

(δe)forced(t)

Slow and fast components of elevator deflection response δe(t)

Forced component and total elevator deflection response δe(t)

−1

−0.5

de
g

de
g

0

0.5

1

t (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIGURE 8.50 Total elevator deflection and its components.

714 Simulation of Dynamic Systems with MATLAB® and Simulink®

The analytical solution for x4¼ de, the elevator deflection, is shown in Figure 8.55 along with the
responses from Simulink and multirate integration. Once again, the Simulink RK-4 and analytical
responses are indistinguishable from each other, while the multirate solution deviates from both
during the transient response period.

Multirate integration introduced errors in the transient response of each state variable in the
aircraft pitch control system. The errors can be reduced by decreasing the frame ratio; however, the
benefits from using multirate integration are lessened. An acceptable trade-off is generally possible.

0

2

4

x1—Simulink RK-4

x2—Simulink RK-4

x3—Simulink RK-4

0

2

4

u1—Multirate RK-4/RK-4

u2—Multirate RK-4/RK-4

u3—Multirate RK-4/RK-4

0

0.005

0.01

0

0.005

0.01

0

5

10

t (s) t (s)

0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5

1.5 3 4.5 1.5 3 4.5

0

5

10
×10−4 ×10−4

FIGURE 8.51 Simulation of slow states using Simulink® and multirate integration.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

x 1
 (d

eg
)

2

2.5

3

3.5

4

4.5

5

Analytical
Simulink RK-4 (T = 0.0025 s)
Multirate RK-4/RK-4 (Tf = 0.0025 s, Ts = 0.05 s)

Frame ratio N = 20

t (s)

FIGURE 8.52 Comparison of analytical, Simulink®, and multirate x1(t) responses.

Advanced Numerical Integration 715

Significant increases in performance are achieved using multirate integration for multiple time
scale systems where the predominant number of states are associated with the slow subsystem(s).
Moreover, the computational savings can be substantial when the times required to compute the
slow subsystem state derivatives are appreciable due to the complex nature of the derivative
functions or possibly due to the use of table lookups involved in the computation process.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Frame ratio N = 20

t (s)

x 2

x1(t) vs. t

Analytical
Simulink RK-4 (T = 0.0025 s)
Multirate RK-4/RK-4 (Tf = 0.0025 s, Ts= 0.05 s)

FIGURE 8.53 Comparison of analytical, Simulink, and multirate x2(t) responses.

Simulink and multirate integration of fast states

0

0.5

1

x4—Simulink RK-4

0

0.5

1

−0.4

−0.2

0

0.2

0.4

t (s)

x5—Simulink RK-4

0 1 2 3 4 5 0 1 2 3 4 5

0 0.25 0.5 0.75 1
t (s)

0 0.25 0.5 0.75 1
−0.4

−0.2

0

0.2

0.4

w1—Multirate RK-4/RK-4

w2—Multirate RK-4/RK-4

FIGURE 8.54 Simulation of fast states using Simulink and multirate integration.

716 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.4.6 NONLINEAR DUAL SPEED SECOND-ORDER SYSTEM

We now turn our attention to a second-order stiff system with a fast and a slow state. Furthermore,
the system dynamics are nonlinear and the stiffness varies with the operating point of the linearized
system. The system consists of two cylindrical tanks in series as shown in Figure 8.56.

Flow F0(t) into the first tank (open at the top) is completely controlled by a regulating valve in the
inflow line. The outflow F2(t) from the second tank (sealed at the top) is a function of valve opening
in the outflow line along with the liquid pressure at the bottom of the tank.

The system is modeled by differential and algebraic equations. Dynamics of the first tank are
governed by

A1
d

dt
H1(t)þ F12(t) ¼ F0(t), H1(t) � L1 (8:286)

where
A1 is the cross-sectional area
L1 is the height of the first tank

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Analytical
Simulink RK-4 (T = 0.0025 s)
Multirate RK-4/RK-4 (Tf = 0.0025 s,
Ts= 0.05 s)

Frame ratio N = 20

t (s)

x4(t) vs. t

x 4
 (d

eg
)

FIGURE 8.55 Comparison of analytical, Simulink, and multirate x4(t) responses.

H1(t)

F0(t)

F12(t)

p2(t)

H2(t)

F2(t)

p0

L1

L2

FIGURE 8.56 System of two different capacity tanks in series.

Advanced Numerical Integration 717

The flow from the first tank into the second tank F12(t) depends on the pressure differential
between the bottom of the first tank and the top of the second tank.

F12(t) ¼
c1[p0 þ gH1(t)� gL2 � p2(t)]1=2, p0 þ gH1(t)� gL2 � p2(t) > 0

0, otherwise

(
(8:287)

where
c1 is a constant related to the fluid resistance in the line connecting the tanks
p0 is atmospheric pressure (14.7 psi)
g is the specific weight of water (62.4 lb=ft3)

The air pressure above the liquid in the sealed tank p2(t) is related to the liquid levelH2(t) according to

p2 ¼ L2
L2 � H2

� �
p0 (8:288)

Equation 8.288 assumes that the air pressure in the sealed tank obeys the relationship
p2V2¼ constant and that p2¼ p0 when H2¼ 0. Hence,

p0A2L2 ¼ p2A2(L2 � H2) (8:289)

The differential equation for the second tank is

A2
d

dt
H2(t)þ F2(t) ¼ F12(t), H2(t) � L2 (8:290)

The flow out of the second tank is governed by the algebraic relation

F2(t) ¼ c2[{p2(t)þ gH2(t)}� p0]
1=2 (8:291)

where c2 is a constant related primarily to the physical construction of the valve in the discharge line
and its percent opening.

Stiffness is a property of linear systems relating the magnitudes of the fast poles (eigenvalues) to
the slower poles. We can linearize the nonlinear system modeled by Equations 8.286 through 8.291
about a steady-state operating point (H1,H2) corresponding to a constant input flow
F0(t) ¼ F0, t � 0.

At steady state, F2 ¼ F2(1) ¼ F0 and it follows from Equation 8.291

F2 ¼ c2[(p2 þ gH2)� p0]
1=2 ¼ F0 (8:292)

) c2
L2

L2 � H2

� �
p0 þ gH2 � p0

� �1=2
¼ F0 (8:293)

Rearranging Equation 8.293 leads to a quadratic equation in H2,

gH
2
2 � p0 þ gL2 þ F0

c2

� �2" #
H2 þ F0

c2

� �2
L2 ¼ 0 (8:294)

It is left as an exercise to show that the steady-state operating level in the first tank is

H1 ¼ L2 þ 1
g

F0

c1

� �2
þ H2

L2 � H2

� �
p0

" #
(8:295)

718 Simulation of Dynamic Systems with MATLAB® and Simulink®

Given F0, Equations 8.294 and 8.295 can be solved in that order to find the operating point levels
H2, H1 and ultimately the remaining dependent variable operating point values, namely, F12,
F2, and p2.

The nonlinear system model in Equations 8.286 through 8.291 can be reduced to

dH1

dt
¼ f1(H1,H2,F0) (8:296)

¼ 1
A1

F0 � c1 g(H1 � L2)� H2

L2 � H2

� �
p0

� 1=2
" #

, H1 � L1 (8:297)

dH2

dt
¼ f2(H1,H2,F0) (8:298)

¼ 1
A2

c1 g(H1 � L2)� H2

L2 � H2

� �
p0

� 1=2

� c2
H2

L2 � H2

� �
p0 þ gH2

� 1=2
" #

(8:299)

The linearized state model is

d

dt
DH(t) ¼ ADH(t)þ BDF0(t) (8:300)

Dy(t) ¼ CDH(t)þ DDF0(t) (8:301)

where

DH(t) ¼ DH1(t)

DH2(t)

� �
¼ H1(t)� H1

H2(t)� H2

" #
(8:302)

Dy(t) ¼

DH1(t)

DH2(t)

DF12(t)

DF2(t)

Dp2(t)

26666664

37777775 ¼
H1(t)� H1

H2(t)� H2

F12(t)� F12

F2(t)� F2

p2(t)� p2

26666664

37777775 (8:303)

The coefficient matrix A comprises the first partial derivatives

A11 ¼ q
qH1

f1(H1,H2,F0) (8:304)

¼ �gc1
2A1

g(H1 � L2)� H2

L2 � H2

� �
p0

� ��1=2
(8:305)

A12 ¼ q
qH2

f1(H1,H2,F0) (8:306)

¼ p0c1
2A1

g(H1 � L2)� H2

L2 � H2

� �
p0

� ��1=2
L2

(L2 � H2)
2

�
(8:307)

A21 ¼ q
qH1

f2(H1,H2,F0) (8:308)

¼ gc1
2A2

g(H1 � L2)� H2

L2 � H2

� �
p0

� ��1=2
(8:309)

Advanced Numerical Integration 719

A22 ¼ q
qH2

f2(H1,H2,F0) (8:310)

¼ �p0L2c1
2A2

g(H1 � L2)� H2

L2 � H2

� �
p0

� ��1=2
1

(L2 � H2)
2

�

� c2
2A2

H2

L2 � H2

� �
p0 þ gH2

� ��1=2
p0L2

(L2 � H2)
2 þ g

�
(8:311)

The components of the input matrix B and output matrix C are obtained from partial derivatives as
well (see Exercise 8.41).

Example 8.8

The baseline numerical values of the system parameters are

R1 ¼ 15 ft, L1 ¼ 50 ft, c1 ¼ 4 ft3=min =(lb=ft2)1=2, A1 ¼ pR2
1 ¼ 225p ft2

R2 ¼ 5 ft, L2 ¼ 7:5 ft, c2 ¼ 2 ft3=min =(lb=ft2)1=2, A2 ¼ pR2
2 ¼ 56:25p ft2

and the baseline inflow under steady-state operating conditions is F0¼ 60 ft3=min.
For the given baseline conditions,

(a) Find the steady-state operating point values H1,H2, F12, F2, and p2.
(b) Compute the numerical values of the components of matrix A.
(c) Find the eigenvalues of A and compute the stiffness ratio.
(d) Draw a Simulink diagram for simulating the system dynamics.
(e) Use the MATLAB ‘‘linmod’’ function to approximate the matrices A, B, C, and D.
(f) Compare the linearized system response and the simulated response of the nonlinear system

for the case where the system is initially in steady state and the inflow to the first tank is
given by

F0(t) ¼
F0, t � 50

F0 � 5, t > 50 min

(
(8:312)

(a) Determine the new steady-state levels in both tanks predicted by the nonlinear model and the
linearized model.

(b) The steady-state operating levels are obtained from Equations 8.294 and 8.295 in the M-file
‘‘Chap8_Ex4_1.m.’’ The results are

H1 ¼ 23:52 ft, H2 ¼ 2:01 ft

F12 ¼ F2 ¼ 60 ft3=min

p2 ¼ 2891:4 lb=ft2

(c) The same M-file contains code for evaluating the components of matrix A using Equations
8.304 through 8.311. The result is

A ¼ �0:0118 0:0993

0:1059 �1:1440

� �

720 Simulation of Dynamic Systems with MATLAB® and Simulink®

(d) The eigenvalues of A are l1¼�0.00255151 and l2¼�1.15318422, and the stiffness ratio of
the system linearized about the given steady-state operating point is

l2
l1
¼ �1:15318422�0:00255151 ¼ 451:96

The time constants of the linearized system are

t1 ¼ �1
l1

�1
�0:00255151 ¼ 391:92min

t2 ¼ �1
l2
¼ �1
�1:15318422 ¼ 0:867min

demonstrating the dual time scales involved.

(e) A Simulink diagram is shown in Figure 8.57.

(f) MATLAB statements in ‘‘Chap8_Ex4_1.m’’ for employing the ‘‘linmod’’ function are

[sizes,X0,states]¼TwoTanks([],[],[],0)
H_opert¼[H1_ss;H2_ss];
u0¼F0;
[A, B, C, D]¼linmod(‘TwoTanks_linmod’, H_opert, u0)

The first line returns the variable ‘‘states,’’ which identifies the limited integrator outputs
‘‘H1’’ and ‘‘H2’’ as the first and second states, respectively. The last line refers to a Simulink model
file ‘‘TwoTanks_linmod.mdl,’’ which is similar to ‘‘TwoTanks.mdl’’ shown in Figure 8.57
except an input port block replaces the ‘‘Constant’’ block with parameter ‘‘F0’’ and the addition
of five output port blocks to identify the system outputs. The last line produces the linearized
system matrices

A ¼ �0:0118 0:0993
0:1059 �1:1440

� �
, B ¼ 0:0014

0

� �
, C ¼

1 0
0 1

8:3200 �70:2135
0 19:6334
0 526:6010

266664
377775, D ¼

0
0
0
0
0

266664
377775

FIGURE 8.57 Simulink® diagram for simulation of two-tank system with stiff dynamics.

Advanced Numerical Integration 721

Note that the coefficient matrix A using ‘‘linmod’’ is identical (to at least four places after the
decimal point) to the previous result based on the analytical expressions for the partial derivatives
in Equations 8.304 through 8.311.

(g) The Simulink diagram in Figure 8.57 is supplemented with additional blocks to generate the
deviation input variable DF0(t)¼ F0(t)� F0 into a ‘‘State-Space’’ block with output
Dy(t) ¼ [DH1(t)DH2(t)DF12(t)DF2(t)Dp2(t)]T. The linearized system out puts H1(t) ¼ H1þ
DH1(t) and H2(t) ¼ H2 þ DH2(t) are compared with the simulated nonlinear system responses in
Figures 8.58 and 8.59.

RK-4 simulation with a short time step T¼ 0.1 s was used to generate accurate approximations
of the nonlinear responses. The Simulink model file is ‘‘TwoTanks_NL_and_ L.mdl.’’ The linear-
ized responses are approaching steady state after 1500 min in agreement with the larger time
constant of 391.92 min.

0 250 500 750 1000 1250 1500
20.5

21

21.5

H
1 (

ft)

22

22.5

23

23.5

t (min)

Linearized

Nonlinear

F0(t) = F0, t ≤ 50 min
= F0 + ΔF0, t > 50 min

(F0 = 60 ft3/min, ΔF0 = −5 ft3/min)

−

−
−

H1(0) = H1 = 23.52 ft−

FIGURE 8.58 Tank 1 nonlinear and linearized system level responses.

0 250 500 750 1000 1250 1500

1.75

1.8

1.85

1.9

1.95

2

t (min)

Nonlinear

Linearized

H
2

(ft
)

F0(t) = F0, t ≤ 50 min
= F0 + ΔF0, t > 50 min

(F0 = 60 ft3/min, ΔF0 = −5 ft3/min)

−

−
−

H2(0) = H2 = 2.01 ft−

FIGURE 8.59 Tank 2 nonlinear and linearized system level responses.

722 Simulation of Dynamic Systems with MATLAB® and Simulink®

(h) The new steady-state levels established when the inflow is held constant at 55 ft3=min are
obtained from Equations 8.294 and 8.295. The result is (H1)ss¼ 20.89 ft and (H2)ss¼ 1.76 ft. From
Equation 8.300 at steady state,

DHss ¼ �A�1BDF0 (8:313)

¼ � �0:0118 0:0993
0:1059 �1:1440

� ��1 0:0014
0

� �
[�5] ¼ �2:7501

�0:2547
� �

) (H1)ss ¼ H1 þ (DH1)ss ¼ 23:52þ (�2:75) ¼ 20:77

) (H2)ss ¼ H2 þ (DH2)ss ¼ 2:01þ (�0:25) ¼ 1:76 ft

It is clear from Figures 8.58 and 8.59 that the linearized system approximation to the nonlinear
system about the given steady-state operating point is more than adequate when the perturbation
in F0(t) about F0 is limited to �5 ft3=min.

Figure 8.60 contains graphs showing how the steady-state operating point levels H1,H2,p2
vary with changes in the flow F0. The baseline operating point in Example 8.8 with F0¼ 60 ft3=min
is also shown.

The stiffness of the linearized system is shown in the top left corner. Note how the stiffness
increases from a little over 200 to around 950 before the first tank starts to overflow when the level
reaches L1¼ 50 ft. At that point, the linearized system eigenvalues are �0.0015 and �1.4724,
resulting in natural modes with time constants of approximately 0.679 and 645.8 min. The large
difference in time constants of the linearized system results primarily from the significant disparity
in the capacities of the two tanks.

8.4.7 MULTIRATE SIMULATION OF TWO-TANK SYSTEM

In view of the large difference between the linearized system time constants, multirate integration
offers the possibility of reducing simulation execution time without significant loss of accuracy.

0

200

400St
iff

ne
ss 600

800

1000
Linearized system stiffness

0

15

30

45

60

H
1 (

ft)
−

H
2 (

ft)
−

S.S. tank 1 level

0

1

2

3

4

F0 (ft3/min)
_

S.S. tank 2 level

0 20 40 60 80 100
F0 (ft3/min)
_0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0

5
10
15
20
25
30

S.S. tank 2 air pressure

p 2
 (p

si)
−

Operating pt

Operating pt

Operating pt

Operating pt

FIGURE 8.60 Graph of linearized system stiffness and nonlinear system steady-state operating character-
istics.

Advanced Numerical Integration 723

The first step is to choose the ‘‘master’’ and ‘‘slave’’ integration routines and determine the slow and
fast frame times. The aircraft pitch example used the one-step RK-4 for ‘‘master’’ and ‘‘slave.’’ For
this example, the multistep AB-2 integrator will be used to integrate both the slow and fast states.

AB-2 integration is a popular numerical integrator, particularly in applications involving ground
vehicle, aircraft, missile, ship, power plant, and chemical process simulators where a real-time
solution of the model equations is required. Real-time numerical integration is the subject of the
following section.

Looking at the AB stability regions in Figure 8.21 of the previous section, the simulation step
size T is limited by the condition lT¼�1 for AB-2 integration of a linear first-order continuous-
time system with characteristic root l. Consequently, for small changes from the baseline operating
point of the two-tank system, that is, (F0 ¼ 60 ft3=min; H1 ¼ 23:52 ft,H2 ¼ 2:01 ft), AB-2 simu-
lation will be stable provided

lT ¼ (�1:1532)T < �1) T < 0:8672min

Figure 8.61 shows the results of AB-2 simulation of the system when the inflow F0(t)¼
55 ft3=min, t � 0.

The initial tank levels are the steady-state values when F0 ¼ 60 ft3=min. The two plots on the left
are the result of selecting the step size T¼ 0.1 min while the graphs on the right correspond to an
integration step of T¼ 0.87 min, just slightly larger than the upper limit for AB-2 stability. The
unstable nature of both tank level responses when T¼ 0.87 min is apparent. The unstable responses
are similar to the stable transient responses up to a point. All graphs were generated in M-file
‘‘Chap8_TwoTanks_AB2.m.’’

The next set of graphs in Figure 8.62 illustrate AB-2 simulation of tank level responses when
both tanks are initially empty and the inflow is a step input described by
F0(t) ¼ F0 ¼ 60 ft3=min , t � 0. The fluid level H2(t) remains at zero until the first tank level

AB-2 simulation of tank 1 level, F0(t) = 55 ft3/min, t ≥ 0, H1(0) = 23.52 ft

AB-2 simulation of tank 2 level, F0(t) = 55 ft3/min, t ≥ 0, H2(0) = 2.01 ft

21

H
1(

t),
 ft

H
2(

t),
 ft

H
1(

t),
 ft

H
2(

t),
 ft

22

23

24

25

T = 0.1 min

0

0.5

1

1.5

2

2.5

t (min) t (min)

T = 0.1 min

21

22

23

24

25

T = 0.87 min

0 1000 2000 3000

0 1000 2000 3000 0 1000 2000 3000

0 1000 2000 3000

0

0.5

1

1.5

2

2.5

T = 0.87 min

FIGURE 8.61 Stable and unstable AB-2 simulation for H1(0) ¼ H1,H2(0) ¼ H2.

724 Simulation of Dynamic Systems with MATLAB® and Simulink®

H1(t) reaches a height of L2¼ 7.5 ft, that is, high enough to push fluid from the bottom of the first
tank up to the top of the second tank. Thus, F12(t)¼ 0 as long as H1(t)< L2.

Due to the magnitude of the step, the system variables H1(t) and H2(t) are not confined to a small
region about the initial steady-state operating point (H1,H2) ¼ (0, 0). Consequently, a single
linearized model to accurately predict deviations in both levels is not valid, and the discussion in
Section 7.4 dealing with multiple linearized models is applicable.

Multirate integration of the nonlinear two-tank system with AB-2 integration as the ‘‘master’’
routine and AB_2 integration as the ‘‘slave’’ routine is straightforward to implement (see
‘‘Chap8_TwoTanks_Multirate_AB2.m’’). Time histories of each tank level when the fast frame
time Tf¼ 0.25 min and the slow frame time Ts¼ 25 min (frame ratio N¼ Ts=Tf¼ 100) are shown in
Figure 8.63. Note that every 200th point in the H2(t) response is plotted in the lower graph.

Results from another multirate simulation run are shown in Figure 8.64. The fast state H2(t) was
updated using AB-2 integration with frame time Tf¼ 0.1 min while the slow state H1(t) was
advanced by AB-2 integration every Ts¼ 100 min. The frame ratio was 1000. Every 200th point
in the fast subsystem is plotted.

The solid lines in Figures 8.63 and 8.64 were obtained from Simulink RK-4 integration of the
state equations with integration step size T¼ 0.1 min. Due to the small step size, they serve
as accurate approximations to the exact solutions of the nonlinear state equations. Note that the
AB-2=AB-2 response for H1(t) is quite accurate in both cases; however, the level response H2(t) is
superior in the first case where the frame ratio is less. Exercise 8.45 explores the effect of frame ratio
on the overall accuracy of the multirate simulation results.

8.4.8 SIMULATION TRADE-OFFS WITH MULTIRATE INTEGRATION

The case for multirate integration is based on the reduced number of derivative evaluations of the
slow state required compared with the number of evaluations required when both slow and fast
states are integrated at the same frame rate. The savings in execution time can be dramatic for

0

H
1(

t),
 ft

H
2(

t),
 ft

H
1(

t),
 ft

H
2(

t),
 ft

5

10

15

20

25

30
AB-2 simulation of tank 1 level, F0(t) = 60 ft3/min, t ≥ 0, H1(0) = 0 ft

AB-2 simulation of tank 2 level, F0(t) = 60 ft3/min, t ≥ 0, H2(0) = 0 ft

T = 0.1 min

0

0.5

1

1.5

2

2.5

3

t (min) t (min)

T = 0.1 min

0

5

10

15

20

25

30

T = 0.87 min

0 1000 2000 3000

0 1000 2000 3000 0 1000 2000 3000

0 1000 2000 3000

0

0.5

1

1.5

2

2.5

3

T = 0.87 min

FIGURE 8.62 Stable and unstable AB-2 simulation for H1(0)¼H2(0)¼ 0.

Advanced Numerical Integration 725

0

H
1(

t),
 ft

H
2(

t),
 ft

5

10

15

20

25
Simulated tank 1 level vs. time

Simulink RK-4 (T = 0.1 min)
Multirate integration AB-2/AB-2 (Ts = 25 min,
Tf = 0.25 min)

0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

2

t (min)

Simulated tank 2 level vs. time

Simulink RK-4 (T = 0.1 min)
Multirate integration AB-2/AB-2 (Ts = 25 min,
Tf = 0.25 min)

FIGURE 8.63 Multirate simulation (AB-2=AB-2) of nonlinear two-tank system (Ts¼ 25 min, Tf¼ 0.25 min,
N¼ 100).

0

5

H
1(

t),
 ft

H
2(

t),
 ft

10

15

20

25
Simulated tank 1 level vs. time

0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

2

t (min)

Simulated tank 2 level vs. time

Simulink RK-4 (T = 0.1 min)
Multirate integration AB-2/AB-2 (Ts = 100 min,
Tf = 0.1 min)

Simulink RK-4 (T = 0.1 min)
Multirate integration AB-2/AB-2 (Ts = 100 min,
Tf = 0.1 min)

FIGURE 8.64 Multirate simulation (AB-2=AB-2) of nonlinear two-tank system (Ts¼ 100 min, Tf¼ 0.1 min,
N¼ 1000).

726 Simulation of Dynamic Systems with MATLAB® and Simulink®

high-order systems in which the majority of the state variables are associated with the slow
subsystem. Even low-order systems experience significant reduction in simulation time when the
slow derivatives are computationally more intensive. Be aware that real-world derivative functions
often involve more than a few simple calculations. Logical branching, multidimensional lookup
tables along with the sheer number of model equations to be evaluated contribute to the duration as
well as uncertainty in the cpu time required to compute the state derivatives.

Without multirate integration, the total number of frames (integration steps) is given by tfinal=T,
where tfinal is the simulation time and T is the integration step size. In the simplest case with only
two states, fixed execution times of each derivative function and single-pass integration routines for
‘‘master’’ and ‘‘slave,’’ the reduction in execution time from implementing multirate integration is
straightforward. Suppose the cpu times required to execute the slow and fast derivative functions are
Ds and D f, respectively.

Case I: Without multirate integration (Ts¼ Tf¼ T)
The derivatives are numerically integrated at the simulation frame rate (1=T). The total execution
time for fast derivative evaluations is

Gf ¼ tfinal
Tf

� �
Df ¼ tfinal

T

� 	
Df (8:314)

with a similar expression for the time required to perform slow derivative calculations,

Gs ¼ tfinal
Ts

� �
Df ¼ tfinal

T

� 	
Ds (8:315)

The total time to compute both fast and slow derivatives is therefore

Gw=o ¼ Gf þ Gs ¼ tfinal
T

� 	
Df þ tfinal

T

� 	
Ds ¼ tfinal

T
(Df þ Ds) (8:316)

Case II: With multirate integration (Ts¼NTf¼NT)
The total time required for both fast and slow derivatives is

Gw ¼ Gf þ Gs ¼ tfinal
Tf

� �
Df þ tfinal

Ts

� �
Ds (8:317)

¼ tfinal
T

� 	
Df þ tfinal

NT

� 	
Ds (8:318)

¼ tfinal
T

Df þ Ds

N

� �
(8:319)

Assuming cpu times to execute fast and slow derivative functions are related by

Ds ¼ aDf , a > 0 (8:320)

From Equations 8.319 and 8.320,

Gw ¼ tfinal
T

Df 1þ a

N

� 	
(8:321)

The cpu time (in seconds) required to evaluate two state derivatives using single-pass, multirate
integration is illustrated in Figure 8.65 for the case where the transient response requires

Advanced Numerical Integration 727

tfinal=T¼ 100,000 simulation frames. This number of integration steps would be required, for
example, if the step size needed to satisfy numerical stability and dynamic accuracy requirements
was T¼ 0.01 s and the transient response lasted for 1000 s. The cpu time to execute the fast state
derivative function Df was fixed at 100 ms, and the slow state derivative requires aDf ms where
a ranges from 0.5 to 2.5.

Observe from Figure 8.65 that the total cpu time without multirate integration varies from a low
of 15 s when Ds¼ 0.5Df to a high of 35 s when Ds¼ 2.5Df. The reduction in cpu time is more
pronounced for lower values of frame ratio, that is, N � 10. Also, note that when the fast and slow
state derivatives require the same amount of cpu time to execute, that is, a¼ 1, the savings in overall
cpu time is reduced from 20 min down to the limiting value of 10 min as expected.

The reduction in cpu time for the conditions illustrated in Figure 8.65 may seem trivial. The
largest reduction in cpu time only approaches 25 s for the case where a¼ 2.5 and the frame ratio is
large. Simulation studies often entail multiple simulation runs with one or more system parameters
varying from run to run. A two-parameter sensitivity study where each parameter assumes
10 numerical values requires 100 simulation runs. In this scenario, the use of multirate integration
can achieve significant savings in overall computational time at the slight expense of reduced
accuracy in the simulated responses.

EXERCISES

8.31 Derive the state equation matrices A, B, C, and D given in Equations 8.240 and 8.241.
8.32 In the aircraft pitch control system, find the maximum step size allowable for stable RK-4

simulation of the slow subsystem second-order component with poles located at
�4.3127
 j6.4812.

8.33 In the aircraft pitch control system, use MATLAB to find
(a) The analytical solution for state variable x3(t) and compare with the simulated results

obtained with Simulink RK-4 and multirate RK-4=RK-4
(b) The analytical solution for the pitch rate _u(t) and compare it with the simulated response

obtained from Simulink using RK-4

0 5 10 15 20 25 30 35 40 45 50
10

15

Cp
u

ex
ec

ut
io

n
tim

e,
Γ

(s
)

20

25

30

35

Frame ratio (N)

Total simulation cpu execution time vs. frame ratio

α = 0.5, 1, 1.5, 2, 2.5

tfinal
T

= 100,000 frames

Δf = 100 μs

Single rate integration (step size T)
Multirate integration (fast state Tf = T, slow state Ts = NTf)

FIGURE 8.65 Total cpu time required to simulate transient response of system with single rate (N¼ 1) and
multirate (N> 1) integration.

728 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.34 For the aircraft pitch control system represented by the block diagram shown in Figure 8.48,
(a) Draw a simulation diagram and label the states x1, x2, x3, . . . , x7.
(b) Write the state equations and find the matrices A, B, C, and D in

_x ¼ Axþ Bucom, y ¼ Cxþ Ducom. The output is y(t)¼ u(t). Leave your answer in terms
of parameters A1, B1, B0, b1, b0, . . . , E1.

(c) Using the given baseline values for the control system parameters K, Kc, . . . , K _u, evaluate
the matrices A, B, C, and D.

(d) Use MATLAB to verify that the eigenvalues of the coefficient matrix A are identical to
those of the matrix A in Equation 8.240. Compare the eigenvalues to the roots of the
characteristic polynomial in Equation 8.251.

(e) Supplement the diagram shown in Figure 8.46 with additional Simulink blocks to
simulate the pitch response based on the block diagram in Figure 8.48. Plot the three
pitch responses on the same graph.

8.35 Label the five inputs to the summer in Figure 8.48 as u1, u2, . . . , u5. Find and plot the
analytical solutions for u1(t), u2(t), . . . , u5(t), on the same graph in response to the command
pitch input in Equation 8.250. Comment on the results.

8.36 Simulate the aircraft control system pitch response to the input given in Equation 8.250 using
multirate integration with Tf¼ 0.001 s and Ts¼ 0.02 s. Choose RK-1 for the ‘‘slave’’ routine
and RK-4 for the ‘‘master’’ integration. Plot the response along with the analytical solution.

8.37 Consider the aircraft pitch control system operating in regulator mode, that is, zero input and
initial condition u(0)¼ u0.
(a) Find analytical solutions for the pitch response u(t) and the elevator deflection de(t) when

u0¼ 108.
(b) Find Tmax, the maximum integration step for a stable simulation using RK-2 integration.
(c) Simulate the pitch and elevator responses of the regulator control system (u0¼ 108) using

Simulink with RK-2 integration. Choose the step size T¼ 0.1Tmax.
(d) Simulate the pitch and elevator responses of the regulator control system using RK-2=RK-2

multirate integration. Choose the fast frame time Tf, so that the characteristic error in
damping ratio of the fast subsystem second-order component in Figure 8.48 is 0.1%.
Round Tf to three places after the decimal point. Choose the slow frame time Ts to make
the frame ratio N¼ Ts=Tf¼ 10.

(e) Plot the three pitch responses (analytical and two simulated) on the same graph. Repeat
for the three elevator responses.

8.38 In the aircraft pitch control system, find the analytical solution for the fast state variables x5(t),
x6(t), and x7(t) and plot the analytical, Simulink RK-4 and multirate RK-4=RK-4 solutions on
the same graph similar to Figure 8.55.

8.39 Run the multirate integration of the aircraft pitch control system in the M-file ‘‘Chap8_
multi_rate_integ.m’’ for the cases where the frame ratio N¼ 20, 10, 5, 1, and plot the
simulated and analytical responses for x1(t)¼ u(t), _u(t), and x4(t)¼ de(t).

8.40 Derive Equation 8.295 for the steady-state operating level in the first tank.
8.41 Find analytical expressions in terms of the system parameters A1, c1, A2, L2, and c2 and the

steady-state levels H1,H2 for the components of matrices B and C in Equations 8.300 and
8.301. Evaluate B and C for the given baseline values of the system parameters when F0¼ 60
ft3=min, and compare your results with those given in the text.

8.42 Generate responses similar to those in Figure 8.58 for the case where the initial conditions
correspond to an input flow F0(t) ¼ F0 ¼ 20 ft3=min¼ 20 ft3=min. The inflow suddenly
increases by DF0(t)¼ 2.5 ft3=min at t¼ 50 min.

8.43 Plot an H1 vs: H2 operating characteristic for the two-tank system.

Hint: Vary F0 from zero until the first tank begins to overflow. Find the steady-state values for
H1 and H2.

Advanced Numerical Integration 729

8.44 Use AB-2 integration with step size T to simulate and plot the fluid level responses of both
tanks like the ones shown in Figures 8.58 and 8.59 for T¼ 0.05, 0.1, . . . , 1.0. Comment on the
results.

8.45 For the baseline nonlinear two-tank system with tanks initially empty and tank one inflow
given by F0(t)¼ 75 ft3=min, t � 0.
(a) Run the Simulink model ‘‘TwoTanks.mdl’’ using RK-4 integration for a simulated time of

1500 min with decreasing step sizes T until there is negligible change in output for
consecutive runs. Save the simulated tank levels at the end of each minute and denote
them H1,A(n), H2,A(n), n¼ 0, 1, 2, . . . , 1500. Assume that the simulated values are exact,
that is, H1,A(n)�H1(nT), H2,A(n)�H2(nT), n¼ 0, 1, 2, . . . , 1500.

(b) Run the MATLAB M-file ‘‘Chap8_TwoTanks_Multirate_AB2_AB2.m’’ or write your
own to implement multirate AB-2=AB-2 integration for a simulated time of 1500 min
with fixed frame time Tf¼ 0.1 min. Let the frame ratio N¼ Ts=Tf vary according to 1, 5,
10, 15, 20, 25, 50, 75, 100, 500, 1000 and denote tank levels at the end of each minute by
Ĥ1,A(n), Ĥ2,A(n), n¼ 0, 1, 2, . . . , 1500. Compute the mean squared errors for each value
of N as

EH1 (N) ¼
1

1500

X1500
n¼0

Ĥ1,A(n)� H1,A(n)
� �2h i

EH2 (N) ¼
1

1500

X1500
n¼0

Ĥ2,A(n)� H2,A(n)
� �2h i

(c) Plot EH1(N) and EH1(N) vs. N and comment on the results.
8.46 Eight of ten natural modes of a linear 10th-order system are slow in comparison with the

remaining two natural modes. The average cpu time required to compute the slow and fast
state derivatives is 12 and 0.3 ms, respectively. A multirate integration scheme is proposed to
simulate the transient response using RK-4 to integrate the slow states and RK-2 for the fast
states. The fast states are updated at a rate of 250 Hz to assure numerical stability and
reasonable dynamic accuracy. The dominant mode of the system corresponds to a real pole
at s¼�0.05.

A simulation study to investigate the effect of three parameters calls for 10� 10� 10 simulation
runs. Generate a graph like the one shown in Figure 8.65 relating the total simulation study cpu time
vs. the multirate integration frame ratio.

8.5 REAL-TIME SIMULATION

Until now, the simulation execution time required by whatever computer resources might be
available to update the state and algebraic variables of the system received minimal attention.
A simulation study could ‘‘run long’’ for a number of reasons such as model complexity, dynamic
accuracy and numerical stability requirements, limited cpu processing capabilities, and so forth;
however, the consequences of waiting on the simulation to complete were not a critical concern.
Simulations of this nature fall in the category of ‘‘off-line,’’ ‘‘batch,’’ or, more generally, nonreal-
time simulation.

In some real-time simulations, a component that may have been simulated in the past has been
replaced by the actual hardware. Alternatively, the component of interest may be physically
integrated into the simulation from the beginning, making it unnecessary to simulate it beforehand.
The component could be a gyroscopic sensor, a control surface actuator, an autopilot, or a

730 Simulation of Dynamic Systems with MATLAB® and Simulink®

combination of various sensors, actuators, and controllers in a particular system. The hardware must
communicate with the simulation computer at precise intervals of time. The situation, illustrated in
Figure 8.66, is referred to as ‘‘hardware-in-the-loop’’ simulation or HIL simulation for short.

HIL is used extensively in the development and testing of missile systems. Missile sensors are
stimulated with input signals generated from real-time control computers representing the motion of
targets during an engagement. Guidance and control hardware respond by providing inputs to the
missile flight dynamics model, which is simulated in real-time to determine the missile’s trajectory
and calculate target intercept conditions (Eguchi 1998; Canova 1999).

The automotive industry incorporates real-time HIL simulation to design and test electronic
control units (ECUs) for efficient operation of key systems such as power train control, the antilock
braking system (ABS), and traction and cruise control. Classical simulation was performed off-line
using simulation models of the vehicle’s dynamics, sensors, and ECUs. While it was beneficial to
demonstrate interaction of the various components and subsystems, it was still necessary to evaluate
an ECU design using expensive prototype vehicles on a test track. Reproducing test track conditions
to investigate unexpected results posed additional challenges.

One solution was to use HIL simulation composed of a real-time computer that runs a model of
the vehicle to be controlled and the input=output (I=O) interfaces required to electrically connect to
the controller. Benefits include a reduction in control system development and testing, no need for
expensive prototype vehicles, elimination of risk that improper control software could lead to a
hazardous failure during a test track run, and no concern about test track interactions with a
prototype vehicle (Green 1997).

Figure 8.67 shows the main components of an HIL implementation for testing an ABS controller
used by the German automaker Audi (Hanselmann). A digital-to-analog (D2A) converter generates
wheel speed signals, sinusoidal voltages proportional in both frequency and amplitude to wheel
speed, that replaces those from magnetic sensors in the actual vehicle. This accounts for the
‘‘interface-to-hardware’’ component in Figure 8.66. The ‘‘interface from hardware’’ consists of an
analog-to-digital (A2D) converter for generating pressure sensor signals (in digital form) required
by the vehicle dynamics model in the simulation computer to simulate the vehicle’s response.
Steering angle and other signals shown in Figure 8.67 are used for testing advanced levels of vehicle
dynamics control such as automated braking on individual wheels at different intensity levels to
stabilize vehicle motion in extreme situations.

It is imperative that the simulation computer be able to integrate the state variables in synchron-
ization with real time. The beginning of each integration step must be properly aligned with the
corresponding point in real time. In other words, the simulation must be capable of running fast
enough on the digital computer that the computed outputs, in response to real-time inputs, occur at
the exact time these outputs would take place in the real world.

A realistic vehicle dynamics model consists of coupled algebraic and differential equations with
lookup tables for evaluating certain vehicle parameters that vary as driving conditions change.

Simulated
components

and
subsystems

Interface
from

hardware

Actual
hardware

Simulation computer

Real-time simulation

Interface
to

hardware

FIGURE 8.66 Hardware-in-the-loop real-time simulation.

Advanced Numerical Integration 731

The equations are available as commercial C-language modules or in block diagram form (Simulink
or other continuous simulation modeling program) with blocks representing transfer functions and
system nonlinearities. Code is generated automatically from the block diagrams for real-time
execution on the target DSP hardware.

Pushing the vehicle dynamics envelope to model evasive driving maneuvers adds to the
complexity while imposing even more stringent timing requirements for numerically stable simu-
lation of the differential equations. Additional mechanical degrees of freedom are present in the
more detailed models used by Audi to account for slight movements in the vehicle’s axles and
suspension.

The time required to read input devices, perform simulation computations, and write to output
devices determines the required frame rate for the simulation. In Audi’s case, the simulation frame
rate is less than 1 ms. The simulator generates signals and communicates them to the ECU in a
matter of microseconds.

The simulated portion of the system in an HIL simulation may be all continuous-time, all
discrete-time, or a combination of both. Furthermore, other types of signals, other than analog,
are frequently encountered in HIL simulation. It is not uncommon for actual hardware to commu-
nicate with the simulation computer via I=O devices involving discrete digital (TTL), serial (RS-
232, RS-422), instrumentation bus (IEEE-488) or network (Ethernet) signals (Ledin 2001).

Sometimes, the hardware in Figure 8.66 is actually a human such as a pilot in a flight simulator or
an operator in a power plant simulator. A ‘‘human-in-the-loop’’ simulation can be used to evaluate
the dynamic response of the system, the effectiveness of instrumentation displays and controls, or as
a trainer to instruct the human in routine and emergency operation of the system. In the case of real-
time interactive simulators (vehicle, aircraft, train, ship, plant, and so forth), several channels of
output from the simulation computer may be used to drive motion systems as well as audio and
visual displays to provide additional cues designed to enhance the overall sense of being physically
immersed in a realistic, high-fidelity simulation environment. Figure 8.68 is a picture of a high-
fidelity-driving simulator used for conducting research in traffic engineering, human factors, and
design of new vehicle systems.

Pressure
modulator Brake hydraulics

Pressure sensors

Steering angle

Yaw rate
Engine speed
Engine torque

El
ec

tr
on

ic
 co

nt
ro

l u
ni

t

Torque command
Wind speed
Lateral acceleration

DDS
In

te
rfa

ce St
an

da
rd

 I/
O

Master DSP

Bu
s i

nt
er

fa
ce

Parallel
processing

DSP

Brake
pedal actuator

Simulator

PC

FIGURE 8.67 HIL simulation of vehicle ABS system. (From Hanselman, H. and Smith, K., Test Meas.
World Manage., 35, 1996.)

732 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.5.1 NUMERICAL INTEGRATION METHODS COMPATIBLE WITH REAL-TIME OPERATION

The timing issues inherent in real-time simulation preclude the use of variable-step methods, which
adaptively regulate the integration step size. The iterative nature of implicit methods makes the
solution times unpredictable and, therefore, unsuitable for real-time applications as well. We will
begin by looking at several one-step RK integrators (see Section 6.2) and determine whether they
are compatible with real-time simulation. A continuous-time dynamic system is assumed to be
modeled by the scalar, possibly nonlinear differential equation

dx

dt
¼ f (x, u) (8:322)

where
x¼ x(t) is the state
u¼ u(t) is the single input

For simplicity, the derivative function is assumed not to be an explicit function of ‘‘t.’’ If the
system is time-varying, the derivative function should be expressed as f(t, x, u).

Figure 8.69 illustrates the sequence of operations for a real-time simulation running at a basic
frame rate of 1=T using an integrator requiring two passes, that is, two derivative function

FIGURE 8.68 The National Advanced Driving Simulator used for Traffic Engineering Research and Vehicle
System Design. (Courtesy of NHTSA, Washington, DC.)

tn tn+1

I/O
Read

Derivative
evaluation

Derivative
evaluation

I/O
write

Spare
time

T

τ2

τ1

τ2

τ1

FIGURE 8.69 Real-time simulation with two-pass numerical integration method.

Advanced Numerical Integration 733

evaluations per frame. The initial operation is an I=O read of the input un¼ u(tn). The next process is
the two derivative function evaluations including the calculations to advance the state from xA(n) to
xA(nþ 1). Note that the time to evaluate the derivative function may be random due to the necessity
of searching through tables of empirical data or as a result of branching when the code is executed.
Lower and upper limits to compute the derivative functions and perform the calculations necessary
for updating the state are t1 and t2 s. The final operation is an I=O write to the hardware interface as
shown in Figure 8.66. The residual time before the frame ends is spare time to minimize the chances
of a frame overrun and allow for expansion of the derivative function evaluation time should the
model increase in complexity.

The following analysis of compatibility of real-time, single frame rate (as opposed to multirate)
integration is based on the following assumptions:

1. The time required to complete the I=O read and write operations is negligible in compari-
son with the time to evaluate the derivative function and update the state.

2. The execution time to compute the derivative function is deterministic.
3. The spare time per frame is zero.

The net effect of these assumptions is that the frame time T is subdivided into m equal subframes
where m is the number of passes through the derivative function. Several RK-m integrators will now
be considered. In each instance, the test for compatibility with real-time simulation is whether or not
the input u(t) is needed at a point in time within the frame prior to it being available in real time.

8.5.2 RK-1 (EXPLICIT EULER)

The simplest of all the numerical integrators, explicit Euler, is compatible with real-time simulation
because the input u(t) is needed only at the beginning of the frame. Thus, updating the discrete-time state
from xn to xnþ1 with RK-1 requires un be available at tn, the start time of the nth frame, which is certainly
true (see Figure 8.70). Note that xn is short for xA(n), the discrete-time approximation to x(tn).

8.5.3 RK-2 (IMPROVED EULER)

Improved Euler RK-2 integration was introduced in Section 3.6 and again in Section 6.2.
Figure 8.71 helps to explain why this one-step, two-pass numerical integrator is not suitable
for real-time simulation under the previously assumed conditions. Specifically, the calculation of
xnþ1 commencing at tnþ(1=2) requires knowledge of unþ1, which is not available until T=2 s later
at the end of the frame.

tn−1

xn−1

tn t

u(t) un−1

un

xn

un+1

tn+1 = tn + T

tn−1 tn ttn+1 = tn + T

xn = xA(n) ≈ x (tn)
xn+1 = xn+Tf (xn, un)

FIGURE 8.70 RK-1 (Euler) integration compatibility with real-time simulation.

734 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.5.4 RK-2 (MODIFIED EULER)

This version of RK-2 integration was first introduced in Section 3.6. The equations for updating the
discrete-time state from xn to xnþ1 are

x̂nþ1=2 ¼ xn þ T

2
f (xn, un) (8:323)

xnþ1 ¼ xn þ Tf (x̂nþ1=2, unþ1=2) (8:324)

The initial derivative evaluation starts at tn and requires un. The second pass at evaluating the
derivative function begins at tnþ1=2, precisely the time at which unþ1=2 becomes available. Hence,
both inputs are synchronized in real time with requirements of Equations 8.323 and 8.324. Howe
(1995) refers to modified RK-2 integration as RTRK-2 to designate its suitability for real-time
simulation.

Next, we look at two versions of RK-3 integration, one that is compatible with real-time
simulation and the other that is not compatible.

8.5.5 RK-3 (REAL-TIME INCOMPATIBLE)

The equations for the first RK-3 integrator are as follows:

Starting at tn: k1 ¼ f (xn, un), x̂nþ1=2 ¼ xn þ T

2
k1 (8:325)

Starting at tnþ1=3: k2 ¼ f (x̂nþ1=2, unþ1=2), x̂n ¼ xn þ T(�k1 þ 2k2) (8:326)

Starting at tnþ2=3: k2 ¼ f (x̂n, unþ1), xnþ1 ¼ xn þ T

6
[k1 þ 4K2 þ k3] (8:327)

The unsuitability for real-time implementation of Equations 8.325 through 8.327 stems from the
requirement of needing unþ1=2 at tnþ1=3, which is before it is available (see Equation 8.326) and a
similar dilemma at time tnþ2=3 where unþ1 is required according to Equation 8.327.

t

xn

xn+1
xn+1ˆ

tn tn+1 = tn + T
t

u(t) un

un+1

1_
2

tn+

1_
2

tn+

= tn + T−2

tn tn+1 = tn + T= tn + T−2

[f (xn, un) + f (xn+1, un+1)]ˆT−2xn+1 = xn +

xn+1 = xn + Tf (xn, un)ˆ

FIGURE 8.71 RK-2 (improved Euler) incompatibility with real-time simulation.

Advanced Numerical Integration 735

8.5.6 RK-3 (REAL-TIME COMPATIBLE)

A real-time compatible RK-3 integrator is described by

Starting at tn: k1 ¼ f (xn, un), x̂nþ1=3 ¼ xn þ T

3
k1 (8:328)

Starting at tnþ1=3: k2 ¼ f (x̂nþ1=3, unþ1=3), x̂nþ2=3 ¼ xn þ 2T
3
k2 (8:329)

Starting at tnþ2=3: k3 ¼ f (x̂nþ2=3, unþ2=3), xnþ1 ¼ xn þ T

4
[k1 þ 3k3] (8:330)

8.5.7 RK-4 (REAL-TIME INCOMPATIBLE)

Fourth-order RK integration is widely used in applications not requiring real-time simulation.
It can be shown that all RK-4 integrators require the input unþ1 for evaluation of the state
derivative on the fourth pass at a time prior to the end of the current frame. Hence, none is
compatible with real-time; however, a five-pass RK integrator with fourth-order accuracy suitable
for real-time exists.

8.5.8 MULTISTEP INTEGRATION METHODS

The entire family of Adams–Bashforth numerical integrators presented in Section 6.4 is compatible
with real time. The lower-order formulas are commonly used in real-time simulation applications.
They are preferable to similar order real-time compatible RK integrators because they are single
pass in nature and, hence, require less time to execute. For example, AB-m integration requires
approximately 1=m as much time as any of the RK-m integrators. In HIL applications, AB-m
simulation can run at frame rates roughly m times greater than any real-time compatible RK-m
integrator. Dynamic errors are less for RK-m than AB-m integration with identical step size T;
however, the advantage goes to AB-m integration running at m� (1=T) frames per second (fps)
compared with RK-m integration at 1=T fps.

AB-1 integration is identical to explicit Euler. It is used sparingly in real-time simulation for the
same reason it is used infrequently in nonreal-time simulation mode, namely, it is a first-order
method, and even moderately accurate results require excessively small integration time steps. AB-2
through AB-4 are the most popular choices for real-time simulation. The stability regions of AB
integrators higher than fourth order are quite small and become smaller as the order increases (see
Figure 8.21). As a result, numerical stability constraints imposed by high-order AB integrators
require the magnitude of lT (l is the largest magnitude characteristic root of the stable linear or
linearized system) be excessively small, thus requiring higher frame rates.

The predictor–corrector multistep methods (referred to by some as Adams–Moulton predictor–
correctors) are not real-time compatible. They are two-pass integration algorithms, which combine
an explicit Adams–Bashforth integrator to predict the new state followed by an implicit formula
based on the predicted state to correct it. Equations 6.204 through 6.209 in represent second-
through fourth-order methods. The dynamic error properties of predictor–corrector methods (see
Table 8.4) are comparable to the single-pass implicit integrators (which are referred to in this text as
Adams–Moulton integrators).

A real-time compatible predictor–corrector formula is possible. An example from Howe (1995)
of a second-order method is now presented. The scalar state equation is the same as Equation 8.322.
The first step is to generate an estimate of the state x̂nþ1=2 at the midpoint of the current interval (see
Figure 8.72).

736 Simulation of Dynamic Systems with MATLAB® and Simulink®

This is accomplished by using a form of modified Euler integration, that is, x̂nþ1=2 is computed
based on a step size of T=2 according to

x̂nþ1=2 ¼ xn þ T

2
f̂nþ1=4 (8:331)

The derivative estimate f̂nþ1=4 is obtained by linear extrapolation through (tn�1, fn�1) and (tn, fn) as
shown in Figure 8.72. From the principle of similar triangles,

fn � fn�1
tn � tn�1

¼ f̂nþ1=4 � fn�1
tnþ1=4 � tn�1

(8:332)

Setting tn � tn�1 ¼ T , tnþ1=4 � tn�1 ¼ 5T=4 and solving for f̂nþ1=4 give

f̂nþ1=4 ¼ fn�1 þ 5
4
(fn � fn�1) (8:333)

Substituting f̂nþ1=4 into Equation 8.331 results in the second-order predictor

x̂nþ1=2 ¼ xn þ T

8
(5fn � fn�1) (8:334)

The derivative estimate f̂nþ1=2 is calculated from

f̂nþ1=2 ¼ f (x̂nþ1=2, unþ1=2) (8:335)

Finally, the new state xnþ1 is obtained from modified Euler integration,

xnþ1 ¼ xn þ Tf̂nþ1=2 (8:336)

Equations 8.334 through 8.336 describe a real-time, predictor–corrector algorithm (which Howe
refers to as RTAM-2). It is a two-pass method since it requires two derivative function evaluations
per step—the dynamic error coefficient eI¼ 1=24 making it twice as accurate as the implicit
(trapezoidal) and the AB-2=AM-2 predictor–corrector, since both have error coefficients of

xn + 1

n − 1

n − 1 n + 1n
xn−1

fn−1

xn

fn

n

1−4
fn +
ˆ

1−2
fn +
ˆ

1−2
xn +ˆ

1−2n+

1−2n+

1−4n+

1−4n+

FIGURE 8.72 Diagram for illustrating real-time predictor–corrector method.

Advanced Numerical Integration 737

eI¼�1=12 (see Table 8.4), and neither is compatible with real time. It is 10 times more accurate
than AB-2 integration, which has an error coefficient eI¼ 5=12.

For execution times comparable to single-pass formulas, this method would utilize a step size
twice as large and generate state updates at half the frequency. After compensating for different step
sizes, it still exhibits two and half times the dynamic accuracy of the single-pass AB-2 based on the
approximate asymptotic formulas for small step sizes. The estimate x̂nþ1=2 is available for real-time
output; hence, the real-time predictor–corrector can output the state at the same frequency as
the single-pass integrators. The integrator requires inputs at the beginning and midpoint of the
frame making the sampling frequency twice that of a single-pass integrator. Higher-order real-time
compatible predictor–correctors are possible (Howe 1995).

8.5.9 STABILITY OF REAL-TIME PREDICTOR–CORRECTOR METHOD

The stability region for the real-time predictor–corrector given in Equations 8.334 through 8.336 is
obtained in the same way as for the explicit Adams–Bashforth, implicit Adams–Moulton, and RK
integrators (see Section 8.3). Both the nonreal-time and real-time compatible predictor–correctors
introduce extraneous roots in the z-domain and, therefore, are subject to stability limitations on step
size. The characteristic polynomials for each integrator are

Nonreal-time predictor---corrector: D(z) ¼ z2 � 1þ lT þ 3
4
(lT)2

� �
zþ 1

4
(lT)2 (8:337)

Real-time predictor---corrector: D(z) ¼ z4 � 1þ lT þ 5
8
(lT)2

� �
z2 þ 1

8
(lT)2 (8:338)

The stability regions are shown in Figure 8.73.
The real-time compatible predictor–corrector has a somewhat larger region, making it preferable

from a stability standpoint.

Nonreal-time

Real-time

−2 −1.75 −1.5 −1.25 −1 −0.75 −0.5 −0.25 0 0.25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Re(λT)

Im
(λ

T
)

λT plane

FIGURE 8.73 Stability regions for second-order predictor–corrector methods.

738 Simulation of Dynamic Systems with MATLAB® and Simulink®

Example 8.9

Obtain difference equations for simulating the unit step response of the system

dx
dt
¼ lxþ u, l ¼ �0:25 (8:339)

using the real-time compatible integrators

(a) Modified Euler.
(b) AB-2.
(c) Real-time predictor–corrector.
(d) Choose the step size T, so that lT¼�0.25, �1 for the modified Euler and real-time

predictor–corrector and lT¼�0.125, �0.5 for the AB-2 integrator. Graph the step
responses along with the exact solution and comment on the results.

(a) From Equation 8.323 for modified Euler, the estimated state at the halfway point is

x̂nþ1=2 ¼ xn þ 0:5Tfn (8:340)

¼ xn þ 0:5T(lxn þ un) (8:341)

¼ (1þ 0:5lT)xn þ 0:5Tun (8:342)

and the second pass produces the updated state from Equation 8.324 as

xnþ1 ¼ xn þ Tf̂nþ1=2 (8:343)

¼ xn þ T(lx̂nþ1=2 þ unþ1=2) (8:344)

¼ xn þ [Tl{(1þ 0:5lT)xn þ 0:5Tun}þ unþ1=2] (8:345)

¼ [1þ lT(1þ 0:5lT)]xn þ T(0:5lTun þ unþ1=2) (8:346)

(b) The AB-2 difference equation for computing the state is

xnþ1 ¼ xn þ 0:5T(3fn � fn�1) (8:347)

¼ xn þ 0:5T[3(lxn þ un)� (lxn�1 þ un�1)] (8:348)

¼ (1þ 1:5lT)xn � 0:5lTxn�1 þ 1:5Tun � 0:5Tun�1 (8:349)

(c) The real-time predictor–corrector first step is from Equation 8.334,

x̂nþ1=2 ¼ xn þ 0:125T(5fn � fn�1) (8:350)

¼ xn þ 0:125T[5(lxn þ un)� (lxn�1 þ un�1)] (8:351)

¼ (1þ 0:625lT)xn � 0:125lTxn�1 þ 0:625Tun � 0:125Tun�1 (8:352)

The new state is obtained from Equations 8.335 and 8.336,

xnþ1 ¼ xn þ Tf̂nþ1=2 (8:353)

¼ xn þ T(lx̂nþ1=2 þ unþ1=2) (8:354)

¼ xn þ T[l{1þ 0:625lT)xn � 0:125lTxn�1 þ 0:625Tun � 0:125Tun�1}þ unþ1=2] (8:355)

¼ [1þ lT(1þ 0:625lT)]xn � 0:125(lT)2xn�1 þ lT(0:625Tun � 0:125Tun�1)þ Tunþ1=2

(8:356)

Advanced Numerical Integration 739

(d) The difference Equations 8.346, 8.349, and 8.356 were solved recursively in the M-file
‘‘Chap8_Ex5_1.m.’’ The AB-2 integrator and real-time predictor–corrector were started with a
single step of the improved Euler integrator. The results are shown in Figures 8.74 and 8.75 along
with the exact solution for the unit step response,

x(t) ¼ 1
l
[elt � 1], t � 0 (8:357)

The single-pass AB-2 integrator was running at twice the frame rate of the two-pass modified Euler
and real-time predictor–corrector to keep the execution times comparable. In Figure 8.74, the
simulated responses using the numerical integrators are in close agreement with the exact
solution. In Figure 8.75, the accuracy of the numerical integrators has deteriorated as a result of
the increased values of the parameter lT. The M-file ‘‘Chap8_Ex5_1.m’’ includes runs for inter-
mediate values of lT as well.

8.5.10 EXTRAPOLATION OF REAL-TIME INPUTS

A solution to the problem of numerical integrators being incompatible with real-time simulation is
to employ extrapolated input data. Consider the improved Euler integrator illustrated in Figure 8.71.
The evaluation of fn ¼ f (xn, un) lasts from tn to approximately tnþ1=2. After calculating x̂nþ1, the
evaluation of f̂nþ1 ¼ f (x̂nþ1, unþ1) is scheduled to begin at tnþ1=2. The input unþ1 is required a half
frame before it is available, thus explaining why improved Euler is incompatible with real-time
simulation.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

x(
t) 2

2.5

3

3.5

4

t

Step response (modified Euler, AB-2, real-time
predictor–corrector and exact)

Modified Euler (RK-2), λT = −0.25
AB-2, λT = −0.125
Real-time predictor–corrector, λT = −0.25
Exact

λ = −0.25

FIGURE 8.74 Unit step response of first-order system using three real-time compatible numerical integrators
with lT¼�0.25, �0.125 and the exact solution.

740 Simulation of Dynamic Systems with MATLAB® and Simulink®

A possible remedy is to use first-order (linear) extrapolation based on un�1 and un to predict unþ1.
An alternative approach is to sample the input at tnþ1=2 and predict unþ1 based on linear extrapo-
lation of un and unþ1=2. The predicted values for each approach is denoted ûnþ1 in Figure 8.76.

Adopting the first approach leads to

ûnþ1 ¼ un þ (un � un�1) (8:358)

If we think of Equation 8.358 as the difference equation for a discrete-time system with input un and
output yn ¼ ûnþ1, n ¼ 0, 1, 2, . . . , the first several values of the output are

n ¼ 0: y0 ¼ û1 ¼ u0 þ (u0 � u�1) ¼ 2u0 (8:359)

n ¼ 1: y1 ¼ û2 ¼ u1 þ (u1 � u0) ¼ 2u1 � u0 (8:360)

n ¼ 2: y2 ¼ û3 ¼ u2 þ (u2 � u1) ¼ 2u2 � u1 (8:361)

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5

3

3.5

4

t

Step response (modified Euler, AB-2, real-time predictor–corrector and exact)

Modified Euler (RK-2), λT = −1
AB-2, λT = −0.5
Real-time predictor–corrector, λT = −1
Exact

λ = −0.25x(
t)

FIGURE 8.75 Unit step response of first-order system using three real-time compatible numerical integrators
with lT¼�1, �0.5 and the exact solution.

un−1

un
1−2

1−2

un+

tn +

u(t)

un+1ˆ

un+1ˆ

tn+1tn–1 tn

FIGURE 8.76 Use of extrapolation to make improved Euler compatible with real-time.

Advanced Numerical Integration 741

Figure 8.77 shows a continuous-time function u(t), the first four sampled values u0, u1, u2, and u3,
and the first three extrapolated values û1, û2, û3.

The z-transform of the output sequence yn, n¼ 0, 1, 2, 3, . . . is by definition

Y(z) ¼ y0 þ y1z
�1 þ y2z

�2 þ y3z
�3 � � � (8:362)

¼ 2u0 þ (2u1 � u0)z
�1 þ (2u2 � u1)z

�2 þ (2u3 � u2)þ � � � (8:363)

Rearranging the terms in Equation 8.363 gives

Y(z) ¼ 2(u0 þ u1z
�1 þ u2z

�2 þ � � �)� z�1(u0 þ u1z
�1 þ u2z

�2 þ � � �) (8:364)

¼ (2� z�1)U(z) (8:365)

The same result follows directly from Equation 8.358 with ûnþ1 replaced by yn. The z-domain
transfer function of the linear extrapolator is therefore

G(z) ¼ Y(z)

U(z)
¼ 2� z�1 (8:366)

Before we discuss the dynamic errors incurred from the use of extrapolation, it is necessary to define
the characteristics of an ideal extrapolator. Figure 8.78 illustrates the point for an arbitrary signal u(t)
sampled at regular intervals of T units of time.

0 T 2T 3T
t

−T

u0

u1

u2
u3

u(t)

u1ˆ

u2ˆ

u3ˆ

FIGURE 8.77 Linear extrapolation of input u(t).

u2 u2u1 u1u0 u0

u3 u3

u4 u4

0 T 2T 3T 4T

Ideal
extrapolator

0 T 2T 3T t−T

un ynu(t)

t

y (t)

FIGURE 8.78 Illustration of an ideal extrapolator.

742 Simulation of Dynamic Systems with MATLAB® and Simulink®

At time t¼ nT, if the input to an ideal extrapolator is un¼ u(nT), the output yn¼ unþ1¼ u[(nþ 1)T].
Hence, an ideal extrapolator advances the input u(t) by an amount T to the left along the t-axis.
In contrast, a pure delay of the same duration shifts the input u(t) by the same amount to the right
along the t-axis.

The Laplace transform of the ideal extrapolator GI(s) can be obtained by replacing T in the
transform for a pure delay of length T with �T leading to

GI(s) ¼ Y(s)

U(s)
¼ e�(�T)s ¼ eTs (8:367)

The frequency response functions of the real and ideal extrapolators are

G(z)jz¼e jvT¼ G(e jvT) ¼ 2� e�jvT (8:368)

GI(s)js¼jv¼ GI(jv) ¼ e jvT (8:369)

The fractional error in G(e jvT), the extrapolator frequency response function, is

eG ¼ G(e jvT)� GI(jv)

GI(jv)
¼ 2� e�jvT � e jvT

e jvT
¼ 2e�jvT � e�2jvT � 1 (8:370)

The fractional error in extrapolator frequency response gain is

ejGj ¼ jG(e
jvT)j � jGI(jv)j
jGI(jv)j ¼ j2� e�jvT j � 1 (8:371)

Replacing e�jvt with cosvT� j sinvT, Equation 8.371 reduces to

ejGj ¼ (5� 4 cosvT)1=2 � 1 (8:372)

An asymptotic formula for ejGj is (see Exercise 8.50)

ejGj � (vT)2, vT � 1 (8:373)

The phase error in extrapolator frequency response is

effG ¼ Arg{G(e jvT)}� Arg{GI(jv)} (8:374)

¼ Arg{2� e�jvT}� vT (8:375)

An asymptotic formula for effG is (Howe 1995)

effG � �(vT)3, vT � 1 (8:376)

Magnitude and phase angle plots of a real and ideal extrapolator are shown in Figure 8.79 for
0 � vT � 0.5 rad. The graphs are in agreement with Equations 8.373 and 8.376, which imply that
the magnitude error is more significant than the phase angle error.

Advanced Numerical Integration 743

Example 8.10

An input signal u(t)¼ sinvt, t � 0 is sampled every T¼ 0.1 s, and the resulting discrete-time signal
un, n¼ 0, 1, 2, . . . is input to an extrapolator governed by Equation 8.358.

(a) Graph the continuous-time signal u(t), discrete-time signal un, and the extrapolator output
ûnþ1, n ¼ 0, 1, 2, 3, . . . for the following cases:
(i) vT¼ 0.1 rad
(ii) vT¼ 0.25 rad
(iii) vT¼ 0.5 rad
(iv) vT¼ 1 rad

(b) An improved Euler integrator with step size T¼ 0.1 s is used to simulate the response of the
first-order system in Equation 8.339 to the sinusoidal input u(t)¼ sinvt, t � 0. In order to
simulate the real-time response, the input is extrapolated as shown in Figure 8.80 before
being numerically integrated. Find the exact and simulated responses for the four cases in
part (a) and plot the results.

(a) The signals u(t), un, and ûnþ1 are generated in the script file ‘‘Chap8_Ex5_2.m’’ and the results
are shown in Figures 8.81 and 8.82. The extrapolator gain error is first noticeable at vT¼ 0.25 rad,
becoming progressively worse at vT¼ 0.5 rad and vT¼ 1 rad, respectively.

0.95

M
ag

ni
tu

de
Ph

as
e a

ng
le

 (r
ad

)

1
1.05

1.1
1.15

1.2
1.25

Magnitude of real and ideal extrapolator frequency response functions

|GI(jω)|

Arg[GI(ejωT)]

|G (ejωT)|

0

0.1

0.2

0.3

0.4

0.5

ωT (rad)

Phase angle of real and ideal extrapolator frequency response functions

Arg[G(jω)]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

FIGURE 8.79 Magnitude and phase plots for first-order and ideal extrapolator.

Improved Euler integrator
Extrapolator

u(t) un+1 = un + (un − un−1)ˆ
T un un+1ˆ

f (x, u) = λx+u, (λ = −0.5)
xn+1 = xn+Tf (xn, un)ˆ

ˆˆ ˆxn+1 = xn+ [f (xn, un) + f (xn+1, un+1)]T−2

xn

FIGURE 8.80 Real-time simulation of first-order system dynamic response.

744 Simulation of Dynamic Systems with MATLAB® and Simulink®

(b) The analytical solution for the response is obtained by Laplace transformation of the differen-
tial equation _x ¼ lxþ u with sinusoidal input u¼ sinvt. The Laplace transform of x(t) is

X(s) ¼ v

(s� l)(s2 þ v2)
(8:377)

which is easily inverted by partial fractions to give

x(t) ¼ v

l2 þ v2
elt � cosvt � l

v
sinvt

� �
(8:378)

¼ v

(l2 þ v2)
elt � 1

(l2 þ v2)1=2
sin (vt þ w), w ¼ pþ tan�1

v

l

� 	
(8:379)

The exact response x(t) and the simulated responses xn for the cases when vT¼ 0.1 rad and
vT¼ 0.25 rad are plotted in Figure 8.83. Results for the remaining two cases, vT¼ 0.5 rad
and vT¼ 1 rad, are shown in Figure 8.84. Error in the simulated response due to extrapolator
gain error is significant at input frequencies vT¼ 0.5 rad and vT¼ 1 rad where the asymptotic
approximations in Equations 8.373 and 8.376 are no longer valid.

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1
T = 0.1 s

ωT = 0.1 rad
T = 0.1 s

ωT = 0.25 rad

u(t)
un
un+1ˆ

t (s)
0 2 4 6 8 10 12 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t (s)

u(t)
un
un+1ˆ

FIGURE 8.81 Continuous-time, sampled and extrapolated inputs (vT¼ 0.1, 0.25 rad).

0 0.4 0.8 1.2 1.6 2 2.4 0 0.2 0.4 0.6 0.8 1 1.2

−1

−1.25

−0.75

−0.5

−0.25

0

0.25

0.75

1

1.25
T = 0.1 s

ωT = 0.5 rad
T = 0.1 s

ωT = 1 rad

t (s) t (s)

−1.5

−1

−0.5

0

0.5

1

1.5
u(t)
un
un+1ˆ

u(t)
un
un+1ˆ

FIGURE 8.82 Continuous-time, sampled and extrapolated inputs (vT¼ 0.5, 1 rad).

Advanced Numerical Integration 745

8.5.11 ALTERNATE APPROACH TO REAL-TIME COMPATIBILITY: INPUT DELAY

When numerical integrators are not compatible with real-time simulation, it is because the input(s)
are required at points in time prior to their occurrence. One solution to this dilemma is to use input
values previously sampled in place of the input data required by the formula in the numerical
integration algorithm. Refer to Figure 8.85, which shows an input u(t) and delayed versions
u(t � T=2), u(t � T).

Let us assume once again that improved Euler, a second-order, two-pass RK integrator incom-
patible with real-time simulation, is to be used. Starting at time tn, the first stage is an Euler
prediction of the state at tnþ1. However, instead of using the current input un, suppose the input
from one-half a time step in the past is used, namely, un�1=2. That is, x̂nþ1 is computed from

x̂nþ1 ¼ xn þ Tf (xn, un�1=2) (8:380)

−1

−1.25

−0.75

−0.5

−0.25

0

0.25

0.75

1
1.25 T = 0.1 s

ωT = 0.1 rad
T = 0.1 s

ωT = 0.25 radx(t)
xn

t (s)

Simulated output with extrapolated input for
real-time compatability

Simulated output with extrapolated input for
real-time compatability

t (s)

−0.4
−0.3
−0.2
−0.1

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

00 2 4 6 8 10 12 14 16 18 20 1 3 5 6 7 8 9 10 11 12

x(t)
xn

42

FIGURE 8.83 Exact and simulated (improved Euler) responses (vT¼ 0.1, 0.25 rad).

−0.15

−0.25

−0.05

0.05

0.15

0.25

0.35

t (s) t (s)

Simulated output with extrapolated input for
real-time compatability

Simulated output with extrapolated input for
real-time compatability

0 10 0.5 1.5 2 2.5 3 3.5 41 3 4 5 6 7 8

−0.05

−0.1

0

0.05

0.1

0.15

0.2

2

x(t)
xn

x(t)
xn

T = 0.1 s
ωT = 0.5 rad

T = 0.1 s
ωT = 1 rad

FIGURE 8.84 Exact and simulated (improved Euler) responses (vT¼ 0.5, 1 rad).

746 Simulation of Dynamic Systems with MATLAB® and Simulink®

Starting at time tnþ1=2, the second pass to compute the new state is

xnþ1 ¼ xn þ T

2
[f (xn, un�1=2)þ f (x̂nþ1, unþ1=2)] (8:381)

Assuming Equation 8.381 requires approximately T=2 units of time to execute, the updated state
xnþ1 is available at time tnþ1. Hence, by using un�1=2 in place of un and un�1=2 instead of unþ1, the
improved Euler integrator is running in real time. Equations 8.380 and 8.381 applied to the first-
order system dx=dt¼ lxþ u lead to the difference equation

xnþ1 ¼ 1þ lT þ (lT)2

2

� �
xn þ T

2
(1þ lT)un�1=2 þ T

2
unþ1=2 (8:382)

Equation 8.382 is similar to the difference equation for simulation of the first-order system using
classical improved Euler integration except for the presence of the delayed input, that is, un is
replaced by un�1=2 and unþ1 is replaced by unþ1=2.

There is of course a penalty incurred as a result of using ‘‘old’’ values from the delayed input u(t).
To illustrate, consider the case where sampled values are obtained from the input delayed a full time
step T as shown in Figure 8.86.

Simulation of the system dx=dt¼ lxþ u with real-time, improved Euler integration leads to a
discrete-time system with z-domain transfer function

GR=T (z) ¼ X(z)

U(z)
¼ z�1G(z) ¼ b1zþ b0

z(z� a0)
(8:383)

where

a0 ¼ 1þ lT þ (lT)2

2
, b0 ¼ T

2
(1þ lT), b1 ¼ T

2
(8:384)

tn

un

u(t)

un+1

u(t −T)

un−

t
tn+tn– tn+1tn–1

un−1

1−2

1−2

1−2
1−2

un+

T−2u(t −)

FIGURE 8.85 Use of delayed input to make numerical integrator real-time compatible.

z−1U(z)

GR/T (z)

G(z) X(z)

FIGURE 8.86 z-Domain transfer function for real-time implementation.

Advanced Numerical Integration 747

The continuous-time system transfer function is

G(s) ¼ 1
s� l

(8:385)

The dynamic errors in the discrete-time frequency response functions are

eG ¼
G(z)jz e jvT�G(s)js jv

G(s)js jv

(8:386)

¼ b1e jvT þ b0ð Þ= e jvT � a0ð Þ
1=(jv� l)

� 1 (8:387)

¼ (jv� l) b1e jvT þ b0ð Þ
e jvT � a0

� 1 (8:388)

5eGR=T
¼ GR=T (z)

z e jvT

�G(s)js jv

G(s)js jv

(8:389)

¼ b1e jvT þ b0ð Þ= e jvT e jvT � a0ð Þð Þ
1=(jv� l)

� 1 (8:390)

¼ (jv� l) b1e jvT þ b0ð Þ
e jvT e jvT � a0ð Þ � 1 (8:391)

The fraction gain errors are

ejGj ¼ jG(e
jvT)j � jG(jv)j
jG(jv)j (8:392)

¼ b1e jvT þ b0ð Þ= e jvT � a0ð Þj j
j1=(jv� l)j � 1 (8:393)

ejGR=T j ¼
GR=T (e

jvT)

� jG(jv)j

jG(jv)j (8:394)

¼ b1e jvT þ b0ð Þ= e jvT e jvT � a0ð Þ½ �j j
j1=(jv� l)j � 1 (8:395)

¼ b1e jvT þ b0ð Þ= e jvT � a0ð Þ½ �j j
j1=(jv� l)j � 1 (8:396)

¼ ejGj (8:397)

The phase error are

effG ¼ ffG(e jvT)� ffG(jv) (8:398)

¼ Arg
b1e jvT þ b0
e jvT � a0

� �
� Arg

1
jv� l

� �
(8:399)

748 Simulation of Dynamic Systems with MATLAB® and Simulink®

effGR=T ¼ ffGR=T (e
jvT)� ffG(jv) (8:400)

¼ Arg
b1e jvT þ b0

e jvT (e jvT � a0)

� �
� Arg

1
jv� l

� �
(8:401)

¼ Arg
b1e jvT þ b0
(e jvT � a0)

� �
� vT � Arg

1
jv� l

� �
(8:402)

¼ effG � vT (8:403)

The fractional gain and phase errors for the classical and real-time, improved Euler integrators are
graphed in Figure 8.87 for the case when l¼�0.5. As expected from Equation 8.397, the fractional
gain errors are equal and from Equation 8.403, the real-time, improved Euler integrator introduces
an additional phase lag of vT rad. Note that the fractional gain error varies from zero to approxi-
mately �2% over the interval 0 � vT � 0.5 rad.

Also, note that effG � 0 for 0 v vT � 0.5 rad. Hence, the classical improved Euler
integrator contributes essentially zero phase shift with respect to the continuous-time frequency
response.

The phase angles (in deg) of the two discrete-time and the continuous-time frequency response
functions are shown in Figure 8.88. As expected from Equation 8.403, the separation between the
top two plots ffG(e jvT) and ffG(jv) and the bottom plot ffGR=T (e

jvT) is vT rad. For example, at
vT¼ 0.3 rad, ffG(e jvT) ¼ ffG(jv) ¼ �1:4031 rad (�80.3914 deg) and ffGR=T (e

jvT) ¼ �1:7031 rad
(�97.5801 deg).

−0.02

−0.015

Fr
ac

tio
na

l g
ai

n
er

ro
r

Ph
as

e e
rr

or
 (r

ad
)

−0.01

−0.005

0
Fractional gain error in discrete-time frequency response functions

e|G|

e|GR/T|

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.5
−0.4
−0.3
−0.2
−0.1

0

ωT (rad)

Phase error in discrete-time frequency response functions

 GRv

 G
e

e

FIGURE 8.87 Dynamic errors from simulation of dx=dt¼�0.5xþ u with classical and real-time, improved
Euler integration (T¼ 0.1 s).

Advanced Numerical Integration 749

Example 8.11

An object with thermal capacitance C and thermal resistance R shown in Figure 8.89 is exposed to
a surrounding temperature that varies according to T0(t) ¼ T0 þ DT0 sin 2pf0t, t � 0. The math-
ematical model governing T̂(t), the temperature of the object, consists of Equations 8.404
and 8.405.

Baseline system parameter values are

C ¼ 200Btu=	F, R ¼ 0:005	F=Btu=h,

T0 ¼ 50	F, DT0 ¼ 20	F, f0 ¼ 1 cycle every 24 h, T(0) ¼ 50	F

Find the difference equations for simulating the temperature response using

(a) Improved Euler integration
(b) Real-time, improved Euler integration using a one-step delayed version of the input
(c) Find the analytical solution for T̂(t).
(d) Simulate the temperature response over two cycles in T0(t) by recursive solution of the

difference equations in parts (a) and (b). Choose the time step T, so that T=RC¼ 0.25. Plot
the analytical and numerical solutions on the same graph.

(e) Repeat part (d) for f0¼ 1 cycle every 3 h.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−120

−110

−100

−90

−80

−70

−60

Ph
as

e a
ng

le
 (d

eg
)

−50

−40

−30

−20

−10

0

ωT (rad)

G(jω)
G(e jωT)

GR/T (e jωT)
ωT = 0.3 rad (17.2°)

FIGURE 8.88 Phase of discrete-time and continuous frequency response functions.

T(t)ˆ

Q(t)
T0(t)

R, C

(8.405)

(8.404)dT̂
dtC = Q(t)

1
RQ(t) = [T0(t) − T(t)]ˆ

FIGURE 8.89 Thermal system for Example 8.11.

750 Simulation of Dynamic Systems with MATLAB® and Simulink®

(a) Combining Equations 8.404 and 8.405 leads to the differential equation of the system.

t
dT̂
dt
þ T̂(t) ¼ T0(t), t ¼ RC (8:406)

The state derivative function is

f (T̂, T0) ¼ dT̂
dt
¼ 1

t
(T0 � T̂) (8:407)

and the difference equation for implementing standard improved Euler integration is

T̂nþ1 ¼ 1� T
t
þ 1
2

T
t

� �2
" #

T̂n þ T
2t

1� T
t

� �
T0,n þ T

2t

� �
T0,nþ1,n¼0,1,2,... (8:408)

where

T0,n ¼ T þ DT0 sinvnT, n ¼ 0, 1, 2, . . . (v ¼ 2pf0) (8:409)

(b) Delaying the input T0(t) by T h before sampling leads to the difference equation

T̂nþ1 ¼ 1� T
t
þ T

t

� �2
" #

^̂Tn þ T
2t

1� T
t

� �
T0,n�1 þ T

2t

� �
T0,n, n ¼ 0, 1, 2, . . . (8:410)

(c) The analytical solution for T̂(t) is obtained by Laplace transforming Equation 8.406 followed by
inverse Laplace transformation of the expression for T̂(s). The steps are left for an exercise. The
result is

T̂(t) ¼ T0 T(0)� T̂(0)þ tvDT0
1þ (tv)2

� �
e�t=t þ DT0

1þ (tv)2
[sinvt � (tv) cosvt] (8:411)

(d) The simulated responses are determined by recursive solution of the appropriate difference
equation in ‘‘Chap8_Ex5_3.m.’’ The step size is determined from

T ¼ 0:25RC ¼ 0:25(0:005	F=Btu=h)(200Btu=	F) ¼ 0:25 h

The continuous-time input T0(t) is shown in the top half of Figure 8.90. The discrete-time input
T0,n, n¼ 0, 1, 2, 3, . . . are the sampled values at 0.25 h intervals; however, only the sampled
values at the end of each hour are shown in Figure 8.90. The lower half of Figure 8.90 shows the
continuous-time output T̂(t) and the discrete-time outputs at the end of each hour, that is, every
fourth value.

The continuous-time response T̂(t) and the simulated response T̂n generated by improved Euler
integration are indistinguishable from each other at the end of the integration steps. The discrete-
time response T̂R=T,n is simply T̂n delayed by T¼ 0.25 h. There is close agreement between the
simulated and analytical responses because the dynamic errors are very small when vT¼ 0.065
(see Figure 8.87).

Advanced Numerical Integration 751

(e) The period of input temperature fluctuations is reduced from24 to 3 h. The new radian frequency
is v¼ 2pf0¼ 2p(1=3)¼ 2.094 rad=h and vT¼ 0.524 rad. A slight difference between the simulated
response T̂n and the continuous-time response is now evident as shown in Figure 8.91. According to
Figure 8.87, the two are in phase and the fractional gain error is approximately �0.02 (�2%).

The real-time, iImproved Euler temperature response T̂R=T,n is once again a delayed version of T̂n,
the delay being T¼ 0.25 h. There is a significant difference between the analytical solution
and the real-time, improved Euler response.

30Te
m

pe
ra

tu
re

 (d
eg

 F
)

Te
m

pe
ra

tu
re

 (d
eg

 F
)

40

50

60

70
Continuous-time input T0(t) and sampled values T0,n

T0(t)
T0,n, n = 0, 4, 8, ...f0 = 1 cycle/24 h

ωT = 0.065 rad
T = 0.25 h

0 4 8 12 16 20 24 28 32 36 40 44 48

0 4 8 12 16 20 24 28 32 36 40 44 48

30

40

50

60

70

τ = 1 h
T = 0.25 h

t (h)

Continuous-time output T(t) and discrete-time outputs Tn and TR/T,n

T(t)ˆ
ˆ
ˆ
Tn, n = 0, 4, 8, ...
TR/T,n, n = 0, 4, 8, ...

FIGURE 8.90 Continuous- and discrete-time inputs and outputs (f0¼ 1 cycle=24 h).

30Te
m

pe
ra

tu
re

 (d
eg

 F
)

Te
m

pe
ra

tu
re

 (d
eg

 F
)

40

50

60

70
Continuous-time input T0(t) and sampled values T0,n

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
40

45

50

55

60

t (h)

Continuous-time output T(t) and discrete-time outputs Tn and TR/T,n

T0(t)
T0,n

f0 = 1 cycle/3 h
ωT = 0.524 rad

T = 0.25 h

τ = 1 h
T = 0.25 h

T(t)ˆ
ˆ
ˆ
Tn
TR/T, n

FIGURE 8.91 Continuous- and discrete-time inputs and outputs (f0¼ 1 cycle=3 h).

752 Simulation of Dynamic Systems with MATLAB® and Simulink®

EXERCISES

8.47 Rework Example 8.9 using two half steps of RK-2 to generate the starting value for the real-
time predictor–corrector.

8.48 Use the real-time predictor–corrector to simulate the response of the first-order system in
Example 8.9 for lT¼ 0.1 and a sinusoidal input u(t)¼ sinvt, t � 0. Write a MATLAB script
file that accepts values for the radian frequency in the range 0.1 vBW � v � 10vBW, where
vBW is the system bandwidth and plots the simulated response and exact solution.

8.49 Suppose a zero-order extrapolator yn ¼ ûnþ1 ¼ un, n¼ 0, 1, 2, . . . is used instead of the first-
order extrapolator in Equation 8.358.
(a) Find the z-transform G(z)¼ Y(z=U(z) of this extrapolator.
(b) Find an expression for the fractional error in the frequency response function eG.
(c) Find expressions for the fraction error in gain ejGj and the error in phase effG.
(d) Find asymptotic formulas for the errors in part (c).
(e) Plot the magnitude and phase of the zero order and ideal extrapolator.

8.50 Derive the asymptotic expression in Equation 8.373 for the fractional error in extrapolator
frequency response gain.

8.51 Estimate the fractional gain and phase errors from the graph in Example 8.10 (Figure 8.79) for
the case when vT¼ 0.5 rad. Compare the results with the exact values given in Equations
8.372 and 8.375.

Hint: Run ‘‘Chap8_Ex5_2.m’’ and enlarge the plots to facilitate the measurements needed to
estimate the respective errors.

8.52 Repeat Example 8.10 part (b) using the second-order system

d2x

dt2
þ 2jvn

dx

dt
þ v2

nx ¼ Kv2
nu (K ¼ 2,vn ¼ 10 rad=s)

in place of the first-order system. Plot the exact and simulated responses for z¼ 0.1,
z¼ 0.707, and z¼ 2 when vT¼ 0.1 rad, vT¼ 0.25 rad, vT¼ 0.5 rad, and vT¼ 1 rad. Note
that there are a total of 12 distinct combinations of z and vT.

8.53 Derive the analytical expression for T̂(t) in Equation 8.411.
8.54 Run the M-file ‘‘Chap8_Ex5_3.m.’’

(a) Zoom in the bottom graph in Figure 8.91 in order to accurately measure the peak
amplitudes (with respect to T0¼ 508 F) after the transient response has died out. Calculate
the fractional error in jG(e jvt)j and compare to the value estimated from Figure 8.87.

(b) Measure the time phase shift in T̂(t) and T̂n with respect to the input T0(t), and convert the
value to degrees. Compare your answer with the phase angle estimated from Figure 8.87.

8.55 Rework Example 8.11 and include the real-time, modified Euler integrator given in Equations
8.323 and 8.324.

8.56 The classic RK-4 integrator introduced in Section 6.2 is incompatible with real-time simula-
tion. Choose a step size of T¼ 0.01 s for the RK-4 integrator given by

k1 ¼ f (xn, un), xnþ1=2 ¼ xn þ 0:5Tk1

k2 ¼ f (xnþ1=2, ûnþ1=2), x̂nþ1=2 ¼ xn þ 0:5Tk2

k3 ¼ f (x̂nþ1=2, unþ1=2), x̂nþ1=2 ¼ xn þ 0:5Tk3

k4 ¼ f (x̂nþ1, ûnþ1)

xnþ1 ¼ xn þ T

6
(k1 þ 2k2 þ 2k3 þ k4)

Advanced Numerical Integration 753

to simulate the response of the system dx=dt¼ xþ u when the input is given by u¼ u(t)¼
sin 25t, t � 0. The initial condition x(0)¼ 0. Compute ûnþ1=2 and ûnþ1 based on linear
extrapolation through the points (tn�1, un�1) and (tn, un). Plot the exact solution and the
simulated response on the same graph.

8.6 ADDITIONAL METHODS OF APPROXIMATING CONTINUOUS-TIME
SYSTEM MODELS

Several additional methods for simulating the dynamics of continuous-time systems are presented in
this section. Explanations of each are followed by the application of the methods to a linear
continuous-time system to produce the z-domain transfer function, difference equations, and
frequency response functions of the resulting discrete-time systems.

8.6.1 SAMPLING AND SIGNAL RECONSTRUCTION

A special case of this method was introduced briefly in Exercise 4.74. A discrete-time system to
approximate an LTI continuous-time system can be synthesized by sampling the continuous-time
input and then reconstituting the input using a reconstruction process. The reconstructed signal is
applied to the LTI continuous-time system. Finally, the output is sampled to produce a discrete-time
signal. The process is illustrated in Figure 8.92.

The sampled values uk, k¼ 0, 1, 2, . . . can be used to reconstruct a piecewise continuous
approximation to u(t) in different ways. The simplest approach is to use a zero-order hold (ZOH)
circuit, which generates a zero-order polynomial fit through the sampled values to produce the
piecewise constant staircase function ~u(t) shown in Figure 8.93. A single value of uk, k¼ 0, 1,
2, . . . in each interval is all that is required to reconstruct the continuous-time signal approximation
for that interval.

The piecewise constant function ~u(t) can be decomposed into a series of rectangular pulses as
shown in Figure 8.94.

Expressing ~u(t) in terms of the unit step function û(t),

~u(t) ¼ u0[1� û(t � T)]þ u1[û(t � T)� û(t � 2T)]þ u2[û(t � 2T)� û(t � 3T)]þ � � � (8:412)

uk Signal reconstruction G(s)
T

G(z)

yku(t) T u(t) y(t)~~

FIGURE 8.92 Sampling and signal reconstruction to approximate a linear time-invariant continuous-time
system.

k

uk

t

u(t)

t t

yk

0 0 01 2 T 2T T 2T 1 20

y(t)u(t)
~~

FIGURE 8.93 Representative signals in Figure 8.92 using a ZOH reconstruction device.

754 Simulation of Dynamic Systems with MATLAB® and Simulink®

Laplace transforming Equation 8.412 gives

~U(s) ¼ u0
1
s
� e�Ts

s

� �
þ u1

e�Ts

s
� e�2Ts

s

� �
þ u2

e�2Ts

s
� e�3Ts

s

� �
þ � � � (8:413)

The output of the continuous-time system with transfer function G(s) is

~y(t) ¼ L�1{~Y(s)} ¼ L�1{G(s)~U(s)} (8:414)

¼ £�1 G(s)u0 (1� e�Ts)þ u1e
�Ts(1� e�Ts)þ u2e

�2Ts(1� e�Ts)þ � � �� � 1
s

�
(8:415)

The discrete-time output yk consists of the sampled values ~y(t)jt¼kT , k¼ 0, 1, 2, . . . Y(z) is obtained
by z-transforming Equation 8.415 after setting z¼ eTs, resulting in

Y(z) ¼ z u0(1� z�1)þ u1z
�1(1� z1)þ u2z

�2(1� z�1)þ � � �� �L�1 G(s)

s

� �
(8:416)

¼ z u0 þ u1z
�1 þ u2z

�2 þ � � �� �
(1� z�1)L�1 G(s)

s

� �
(8:417)

The inside bracketed expression is recognized as U(z) ¼ z{uk}. Hence,

Y(z) ¼ U(z)(1� z�1)z £�1
G(s)

s

� �
(8:418)

where z{£�1{G(s)=s}} represents the z-transform of the discrete-time signal obtained from uniform
sampling of the continuous-time signal £�1{G(s)=s}. The z-domain transfer function resulting from
the sampling and ZOH reconstruction method illustrated in Figure 8.92 is given by

G(z) ¼ Y(z)

U(z)
¼ (1� z�1)z £�1

G(s)

s

� �
(8:419)

The errors resulting from the use of Equation 8.419 are related to the signal reconstruction process.
As you might expect, properties of the input u(t), sampling interval T, and the method of recon-
structing the input from the sampled values uk, k¼ 0, 1, 2, . . . play a central role in the process.

We now illustrate the application of Equation 8.419 in finding a discrete-time system approxi-
mation of a second-order continuous-time system.

+ +…+
u0

0

u1

0

u2

T 2T 3T T 2T 3T T 2T 3T0

FIGURE 8.94 ZOH output ~u(t) shown as a sum of rectangular pulses.

Advanced Numerical Integration 755

Example 8.12

Consider an underdamped second-order system with damping ratio z ¼ 1=
ffiffiffiffiffiffi
10
p

, natural frequency
vn ¼

ffiffiffiffiffiffi
10
p

rad=s, and steady-state gain of unity.

(a) Find the z-domain transfer function and difference equation of the discrete-time system
approximation. Leave your answer in terms of the sampling period T.

(b) Input to the continuous-time system is u(t)¼ 5(1� e�2t), t � 0. Find the continuous-time
system response y(t), t � 0.

(c) Plot the continuous-time system response y(t) and the discrete-time approximation yk, k¼ 0,
1, 2, . . . for T¼ 0.05, 0.1, 0.25, 0.5 s.

(a) The transfer function of the continuous-time system is

G(s) ¼ kv2
n

s2 þ 2zvnsþ v2
n
¼ 10

s2 þ 2sþ 10
(8:420)

G(s)
s
¼ 10

s(s2 þ 2sþ 10)
¼ 1

s
� sþ 2
s2 þ 2sþ 10

(8:421)

£�1
G(s)
s

�
¼ 1� e�t cos 3t þ 1

3
sin 3t

� �
(8:422)

From Table 4.4,

z{1} ¼ z
z� 1

(8:423)

z{e�kT cos 3kT} ¼ z2 � (e�T cos 3T)z
z2 � (2e�T cos 3T)zþ e�2T

(8:424)

z{e�kT sin 3kT} ¼ (e�T sin 3T)z
z2 � (2e�T cos 3T)zþ e�2T

(8:425)

Using Equations 8.423 through 8.425 in Equation 8.419 for G(z) results in (after simplification)

G(z) ¼ b1zþ b2

z2 þ a1zþ a2
(8:426)

b1 ¼ 1� e�T cos 3T þ 1
3
sin 3T

� �
, b2 ¼ e�2T � e�T cos 3T � 1

3
sin 3T

� �
(8:427)

a1 ¼ �2e�T cos 3T, a2 ¼ e�2T (8:428)

Equation 8.426 leads to the difference equation of the discrete-time system

yk þ a1yk�1 þ a2yk�2 ¼ b1uk þ b2uk�1 (8:429)

(b) The continuous-time system response to the input u(t) is obtained from

y(t) ¼ £�1{G(s)U(s)} ¼ £�1
10

s2 þ 2sþ 10
� 5 1

s
� 1
sþ 2

� ��
(8:430)

756 Simulation of Dynamic Systems with MATLAB® and Simulink®

Partial fraction expansion of the terms in brackets followed by inverse Laplace transformation
leads to

y(t) ¼ 5� 5e�2t � 10
3
e�t sin 3t, t � 0 (8:431)

(c) The MATLAB M-file ‘‘Chap8_Ex6_1.m’’ includes statements to solve Equation 8.429 in recur-
sive fashion. Figure 8.95 shows the continuous-time system response and the discrete-time
response when T¼ 0.05, 0.1, 0.25, 0.5 s.

For signals that are not band limited such as the input u(t)¼ 5(1� e�2t), a good rule of thumb is to
sample 10 times faster than the shortest time constant (t¼ 0.5 s in this case). The top left graph in
Figure 8.95 corresponds to T¼ t=10¼ 0.05 s, and the agreement between the continuous-time
and discrete-time responses is excellent.

The outputs of the ZOH for the two extremes (T¼ 0.05 and 0.5 s) are shown in Figure 8.96,
illustrating the importance of the sampling process.

The ZOH has characteristics similar to a low-pass filter. To see this, suppose the first sampler in
Figure 8.92 produces a train of impulses of strength u(kT) at the sampling instants kT, k¼ 0, 1,
2, . . . instead of the discrete-time signal uk¼ u(kT), k¼ 0, 1, 2,. . . . Knowing the output of the ZOH
is uk, kT � t< (kþ 1)T implies that the ZOH is effectively integrating the kth impulse for kT �
t< (kþ 1)T. The situation is portrayed in Figure 8.97. The transfer function of the ZOH is therefore

GZOH(s) ¼ 1� e�Ts

s
(8:432)

Keep in mind that the impulse sampler is a mathematical fiction that allows the zero-order hold to
be modeled by the continuous-time transfer function in Equation 8.432.

The frequency response function is obtained by replacing s with jv in Equation 8.432.

GZOH(jv) ¼ 1� e�jvT

jv
(8:433)

Continuous and discrete-time system responses

0
1
2
3
4
5
6

T = 0.05 s

y(t)
yk

t (s)

0
1
2
3
4
5
6

T = 0.1 s

0
1
2
3
4
5
6

T = 0.25 s

0 1 2 3 4 5
t (s)

0 1 2 3 4 5

t (s)
0 1 2 3 4 5

t (s)
0 1 2 3 4 5

0
1
2
3
4
5
6

T = 0.5 s

y(t)
yk

y(t)
yk

y(t)
yk

FIGURE 8.95 Illustration of ‘‘sample and ZOH reconstruction’’ method.

Advanced Numerical Integration 757

Equation 8.432 can be manipulated into the form (Kuo 1980)

GZOH(jv) ¼ T
sin (vT=2)
vT=2

e�j(vT=2) (8:434)

¼ 2p
vs

� �
sinp(v=vs)
p(v=vs)

e�jp(v=vs) (8:435)

where vs¼ 2p=T is the sampling frequency. Equation 8.434 reveals that the ZOH introduces a half
sample period (T=2) delay, which explains the need for choosing T small when the input contains
significant high-frequency components.

The magnitude and phase of GZOH(jv) are shown in Figure 8.98 for the case where T¼ 0.05 s
and vs¼ 2p=T¼ 125.67 rad=s. Note the DC gain jGZOH(j0)j ¼ T.

For band-limited inputs with cut-off frequency v0, the minimum sampling frequency
is vs¼ 2v0. The actual sampling period should be chosen to minimize the attenuation of GZOH(jv)

0
1
2
3
4
5

Output of ZOH driven by sampled input uk (T = 0.05 s)

ZOH output, u(t)~
Continuous-time input u(t)

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3
0
1
2
3
4
5

t (s)

Output of ZOH driven by sampled input uk (T = 0.5 s)

ZOH output, u(t)~
Continuous-time input u(t)

FIGURE 8.96 Effect of sampling rate on ZOH reconstruction of input u(t).

ZOH

u(t)
u(kT) δ(t − kT)

….T 2T 3T 4T0 kT ….T 2T 3T 4T0 kT

uku(t)~

FIGURE 8.97 Impulse sampler feeding ZOH device.

758 Simulation of Dynamic Systems with MATLAB® and Simulink®

over the information band (0, v0). Furthermore, additive noise components above the cutoff
frequency will also be passed, since there is no sharp drop in attenuation at v0.

The ‘‘c2d’’ function in the MATLAB control system toolbox introduced in Section 4.10
supports sampling and ZOH signal reconstruction to find the z-domain transfer function given
in Equation 8.419. The syntax for calling the ‘‘c2d’’ function using ZOH approximation is
sysd¼c2d(sysc,T,‘zoh’) where ‘‘sysc’’ is created using the control system toolbox
command ‘‘tf’’ to represent the continuous-time transfer function.

8.6.2 FIRST-ORDER HOLD SIGNAL RECONSTRUCTION

More accurate signal reconstruction methods are possible using polynomial fits through several data
points, resulting in different expressions for the z-domain transfer function G(z). The output of a
first-order hold circuit that approximates the sampled continuous-time signal by a sequence of linear
functions is shown in Figure 8.99.

0

0.01

0.02

0.03

0.04

ωs 2ωs 3ωs 4ωs

T = 0.05

ω (rad/s)
0 50 100 150 200 250 300 350 400 450 500

ω (rad/s)
0 50 100 150 200 250 300 350 400 450 500

−1250

−1000

−750

A
rg

[G
ZO

H
(jω

)],
 d

eg
|G

ZO
H

(j
ω)

|

−500

−250

0

ω0 = 0.5ωs

FIGURE 8.98 Frequency response of GZOH(jv).

T 2T 3T0 T 2T 3T0(n − 1)T nT

u0 u0

u1 u1

u2
u2

u3
u3

……

un

un−1

u(t)un

u(t)~

FIGURE 8.99 First-order hold reconstruction of a sampled continuous-time signal.

Advanced Numerical Integration 759

The analytical expression for the piecewise continuous output of the first-order hold is given by

~u(t) ¼ un þ un � un�1
T

(t � nT), nT � t < (nþ 1)T (n ¼ 0, 1, 2, . . .) (8:436)

where u�1 is assumed to be zero. A derivation of G(z) based on a first-order hold approximation is
possible using a similar approach to the derivation leading to the z-domain transfer function in
Equation 8.419 using the zero-order hold approximation. However, it is quite laborious and
unnecessary, since the ‘‘c2d’’ function includes the first-order hold approximation method. The
approximation is invoked by issuing also the command sysd¼c2d(sysc,T,‘foh’).

8.6.3 MATCHED POLE-ZERO METHOD

Another approach to developing a discrete-time approximation to a continuous-time system is by
the process of matching the z-plane poles and zeros to their s-plane counterparts. This method can be
applied to any asymptotically stable, LTI system with nonzero steady-state gain.

Consider an nth-order, stable, LTI system with transfer function G(s). Uniform sampling every
T s of the system’s impulse response produces a discrete-time signal from an equivalent nth-order
discrete-time system with z-domain transfer function G(z). The n poles of G(z) are obtained by a
mapping of the s-plane poles according to

zi ¼ esiT , i ¼ 1, 2, . . . , n (8:437)

Two examples of this are

G(s) ¼ 1
sþ a

) g(t) ¼ £�1{G(s)} ¼ e�at (8:438)

gk ¼ g(kT) ¼ e�akT) G(z) ¼ z{gk} ¼ z

z� e�aT
(8:439)

G(s) ¼ sþ a

(sþ a)2 þ b2 ¼
sþ a

[s� (aþ jb)] [s� (a� jb)]
(8:440)

g(t) ¼ £�1{G(s)} ¼ e�aT cosbT (8:441)

gk ¼ g(kT) ¼ e�akT cosbkT (8:442)

G(z) ¼ z� e�aT cosbT
z2 � (e�aT cosbT)zþ e�2aT

(8:443)

¼ z� e�aT cosbT
[z� e�aþjb)T] [z� e�(a�jb)T]

(8:444)

When zeros of G(s) are present as in Equation 8.440, they are not mapped into zeros of G(z)
according to Equation 8.437. However, in the matched pole-zero method, a discrete-time transfer
function is created with the poles and zeros of G(z) determined from Equation 8.437.

Two additional steps complete the process. First, the term zn�m, where m is the order of the
numerator polynomial of G(s), is inserted in the numerator of G(z) (Smith 1987). An alternative
approach inserts the term (zþ 1)n�m in the numerator of G(z). Second, the gains of the two transfer
functions are matched at some frequency by appropriate choice of a gain term in G(z).

760 Simulation of Dynamic Systems with MATLAB® and Simulink®

The matched pole-zero method is illustrated for the second-order system in Example 8.12. The
poles of G(s) in Equation 8.420 are s1,2¼a
 jb, (a¼�1, b¼ 3). Since there are no zeros of G(s),
m¼ 0 and the z-domain transfer function G(z) is of the form

G(z) ¼ K 0
z2

(z� es1T)(z� ee
s2T)

(8:445)

¼ K 0
z2

[z� e(aþjb)T] [z� e(a�jb)T]
(8:446)

¼ K 0
z2

z2 � 2(eaT cosbT)zþ e2at
(8:447)

Substituting the given values of a and b into Equation 8.447 results in

G(z) ¼ K 0
z2

z2 � 2(e�T cos 3T)zþ e�2T
(8:448)

The DC gains of G(s) and G(s) are

G(s)js¼0 ¼
10

s2 þ 2sþ 10

¼0
¼ 1 (8:449)

G(z)jz¼1 ¼ K 0
z2

z2 � 2(e�T cos 3T)zþ e�2T

z¼1

(8:450)

¼ K 0
1

1� 2e�T cos 3T þ e�2T
(8:451)

Equating the DC gains gives

K 0 ¼ 1� 2e�T cos 3T þ e�2T (8:452)

Substituting K0 in Equation 8.452 into Equation 8.448 gives

G(z) ¼ (1� 2e�T cos 3T þ e�2T)z2

z2 � 2(e�T cos 3T)zþ e�2T
(8:453)

A frequency response plot of the continuous-time system transfer function G(s)js¼jv and the
approximating discrete-time system transfer functions G(z)jz¼e jvT based on the two methods are
shown in Figure 8.100 for sampling times of T¼ 0.05 s and T¼ 0.25 s, respectively. G1(e

jvT) refers
to the discrete-time transfer function in Equation 8.426 arrived at by using the ZOH method, and
G2(e

jvT) corresponds to the one in Equation 8.453 obtained using the matched pole-zero method.
The plots extend from zero (DC) to the Nyquist frequency (p=T), which is 62.83 rad=s for

T¼ 0.05 s and 12.57 rad=s when T¼ 0.25 s. An accurate (magnitude and phase) approximation of
the continuous-time system frequency response characteristics is possible using the ZOH approxi-
mation method or the matched pole-zero technique with T¼ 0.05 s for frequencies up to around
5 rad=s. The magnitude functions for both discrete-time systems and the continuous-time system are
nearly identical over the entire range of frequencies shown for T¼ 0.05 s.

Advanced Numerical Integration 761

The ‘‘c2d’’ function in the MATLAB control system toolbox implements a ‘‘modified matched
pole-zero’’ approximation. A (zþ 1)(n�m)�1 term is inserted in the numerator where m and n are the
orders of the numerator and denominator of G(s). The resulting G(z) will contain an (n� 1)st-order
polynomial in the numerator. The current output of the nth-order discrete-time system yk depends on
outputs yk�1, yk�2, . . . , yk�n and most importantly only on the past inputs uk�1, uk�2, . . . , uk�n. With
an nth-order term in the numerator of G(z), yk will depend on the current input uk as well. In real-
time applications, the current output would have to wait for an A=D read, implementation of the
difference equation followed by a D=A write to hardware, all performed in theoretically zero time.
The problem is mitigated to a large extent when these operations consume a small fraction of the
sample time T.

The matched pole-zero and modified matched pole-zero methods are applied to the continuous-
time transfer function in Equation 8.420 in ‘‘Chap8_matched_pole.m’’ with a sampling time of
T¼ 0.05 s. Results are as follows:

Matched pole-zero: G(z) ¼ 0:0237 z2

z2 � 1:8811 z� 0:9048
(8:454)

Modified matched pole-zero: G(z) ¼ 0:01187(zþ 1)
z2 � 1:8811 zþ 0:9048

(8:455)

An important property of the ZOH approximation and matched pole-zero methods is related to the
stability of the resulting discrete-time systems. Note that the characteristic polynomials of the
transfer functions G(z) in Equations 8.426, 8.454, and 8.455 are identical, namely, z2� 2(e�T cos 3T)
zþ e�2T. The continuous-time system poles are mapped to the z-plane according to Equation 8.437 in
each case. Consequently, continuous-time system poles in the left-hand plane are mapped to the interior
of the Unit Circle in the z-plane and, therefore, produce stable discrete-time modes as well.

0

0.4

0.8

M
ag

ni
tu

de
Ph

as
e (

de
g)

M
ag

ni
tu

de
Ph

as
e (

de
g)

1.2

1.6

ω (rad/s) ω (rad/s)

|G(jω)|

|G(jω)|
|G1(e jωT)|

Arg G1(e jωT) Arg G1(e jωT)

|G1(e jωT)||G2(e jωT)|

|G2(e jωT)|

T = 0.05 s

−250

−200

−150

−100

−50

0

Arg G(jω) Arg G(jω)

Arg G2(e jωT)
Arg G2(e jωT)

0

0.4

0.8

1.2

1.6 T = 0.25 s

0 10 20 30 40 50 60

ω (rad/s) ω (rad/s)
0 10 20 30 40 50 60

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

−200

−100

0

FIGURE 8.100 Frequency response of continuous-time and approximate discrete-time systems.

762 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.6.4 BILINEAR TRANSFORM WITH PREWARPING

The use of trapezoidal integration to discretize a continuous-time system with transfer function G(s)
was discussed in Section 4.7. The z-domain transfer function of the discrete-time system approxi-
mation was shown to be

G(z) ¼ G(s)

s 2

T
z�1
zþ1
� 	 (8:456)

An alternate derivation of Equation 8.456 is based on the transformation z¼ eTs, which can be
written in terms of a pair of infinite series expansions according to

z ¼ e(T=2)s

e(�T=2)s
¼ 1þ (Ts=2)þ (1=2!)(Ts=2)2 þ (1=3!)(Ts=2)3 þ � � �

1� (Ts=2)þ (1=2!)(Ts=2)2 � (1=3!)(Ts=2)3 þ � � � (8:457)

Truncating both series after the linear term gives

z ¼ 1þ (T=2)s
1� (T=2)s

(8:458)

Solving for s in Equation 8.458 gives

s ¼ 2
T

z� 1
zþ 1

� �
(8:459)

Equation 8.459 is known as the bilinear transform, and the process for obtaining the discrete-time
approximation is commonly referred to as Tustin’s method. The left half of the s-plane consisting of
points s¼sþ jv, �1<s< 0 is mapped into the interior of the Unit Circle, jzj< 1. Consequently,
the method produces stable discrete-time systems regardless of the step size T provided the
continuous-time system is stable. For this reason, it is among the most popular methods for
simulation of continuous-time systems.

The frequency response of discretized systems obtained using the bilinear transform in
Equation 8.459 is examined by considering the image of points along the jv axis, that is, s¼ jv,
�1< v<1. From Equation 8.458 with s¼ jv,

z ¼ 1þ (T=2)jv
1� (T=2)jv

¼ 1e ju (8:460)

where

u ¼ 2 tan�1
vT

2

� �
, �1 < v <1 (8:461)

The entire length of the jv axis from �j1 (pt A) to j1 (pt C) is mapped one-to-one into the Unit
Circle starting at u¼�p (pt A0) to u¼p (pt C 0) (see Figure 8.101).

Compressing the jv axis into the Unit Circle according to Equation 8.461 results in a warping of
the frequency response. This can be overcome by prewarping a critical frequency, say v0, in the
s-plane before applying the bilinear transform to the continuous-time transfer function H(s).

Advanced Numerical Integration 763

Frequency response of the resulting z-domain transfer function Ĥ(z) and the continuous-time
transfer function H(s) will agree at the selected critical frequency, that is,

H(s)js¼jv0
¼ Ĥ(z)

z¼e jv0T (8:462)

The prewarped critical frequency v̂0 is obtained from (Jacquot 1981)

v̂0 ¼ 2
T
tan

v0T

2

� �
(8:463)

The following example illustrates the process of prewarping a second-order continuous-time filter
transfer function to force agreement in the frequency response functions at the natural frequency of
the filter.

Example 8.13

An analog filter is described by

H(s) ¼ sþ v2
n

s2 þ 2zvnsþ v2
n

(z ¼ 0:25,vn ¼ 1000 rad=s) (8:464)

(a) Find H(z) using the bilinear transform with a sampling time of T¼ 0.001 s.
(b) Find the transfer function Ĥ(s) resulting from prewarping the natural frequency vn.
(c) Find Ĥ(z) using the bilinear transform on the prewarped transfer function Ĥ(s).
(d) Plot the magnitude and phase of H(s), H(z), and Ĥ(z) on the same graph and comment on

the results.

(a) Substituting the filter parameter values z and vn into Equation 8.464 gives

H(s) ¼ sþ 106

s2 þ 500sþ 106
(8:465)

H(z) is obtainedby replacing swith the right-hand sideof Equation8.459. TheMATLABcontrol system
toolbox functions ‘‘BILINEAR’’ and ‘‘c2d’’ are both designed to facilitate implementation of the
bilinear transform. One form of the function ‘‘BILINEAR,’’which is applicable in this case, is

[NUMd, DENd]¼BILINEAR(NUM, DEN, FS)

where the parameters ‘‘NUM’’ and ‘‘DEN’’ are row vectors describing the numerator and denom-
inator of H(s) in descending powers of s, and ‘‘FS’’ is the sampling frequency in Hz. The
numerator and denominator of H(z) are specified in the output arrays ‘‘NUMd’’ and ‘‘DENd.’’

B

C

A−j∞

j∞
Im

Re
A΄
C΄ B΄

s-plane

Im

Re

s = jω

z = e jθ

θ

z-plane1 + ()sT
2—

1 – ()sT
2—

z =

Unit
Circle

FIGURE 8.101 Bilinear transform mapping of the imaginary axis in the s-plane.

764 Simulation of Dynamic Systems with MATLAB® and Simulink®

The M-file ‘‘Chap8_Ex6_2.m’’ contains the call to the ‘‘BILINEAR’’ function and the result is

NUMd¼0.1670 0.333 0.1663
DENd¼1.000 –1.0000 0.6667

Invoking the ‘‘c2d’’ function with ‘‘sysd¼c2d(sysc, T, ‘tustin’) results in

Transfer function:

0.167z^2þ0.3333zþ0.1663

z^2-zþ0.6667
sampling time¼0.001 sec

in agreement with the results obtained using the ‘‘BILINEAR’’ command.

(b) Prewarping the natural frequency using Equation 8.463 yields

v̂n ¼ 2
T
tan

vnT
2

� �
¼ 2

0:001
tan

1000(0:001)
2

� �
¼ 1092:6 rad=s (8:466)

The prewarped transfer function is therefore

Ĥ(s) ¼ sþ v̂2
n

s2 þ 2zv̂nsþ v̂2
n
¼ sþ 1:1938� 106

s2 þ 546:3sþ 1:1938� 106
(8:467)

(c) Ĥ(z) results from the bilinear transformation applied to the transfer function in Equation 8.467.
Equivalently, the MATLAB statement

sysd_prewarp¼c2d(sysc, T, ‘prewarp’, w_crit)

can be found in ‘‘Chap8_Ex6_2.m’’ with ‘‘w_crit’’ set equal to the natural frequency vn¼ 1000
rad=s. The resulting z-domain transfer function appears as

0.1902 z^2þ0.3798 zþ0.1896

z^2�0.8928zþ0.6524

(d) The magnitude and phase plots for the continuous-time system frequency response H(jv) and
the two discrete-time systems (with and without prewarping the natural frequency vn¼ 1000
rad=s) are shown in Figure 8.102. As expected, Equation 8.462 is verified at the critical frequency
of 1000 rad=s.

There is one additional method included in the ‘‘c2d’’ function for converting continuous-time
models to discrete-time models. It is called the impulse invariant method. It is predicated on
making the discrete-time system impulse response proportional to the sampled values of the
continuous-time system impulse response function. The syntax for implementing this method is
‘‘sysd¼c2d(sysc,T,‘imp’).’’

EXERCISES

8.57 Implement the ‘‘c2d’’ function using the zero-order hold approximation in Example 8.12 and
show that the results are consistent with Equations 8.426 through 8.428 when T¼ 0.05 s.

8.58 Derive the expression for GFOH(s), the transfer function of a first-order hold driven by an
impulse sampler. Plot the frequency response for the case when T¼ 0.05 s, and compare the
result with the frequency response plot of a ZOH with T¼ 0.05 s shown in Figure 8.98.

Advanced Numerical Integration 765

8.59 Redo Example 8.12 using
(a) The first-order hold approximation and compare the results with the ZOH approximation

method
(b) The bilinear transform method and compare the results with the ZOH approximation

method
8.60 Apply the bilinear transform to the prewarped continuous-time transfer function Ĥ(s) in

Equation 8.46 and compare the result with z-domain transfer function Ĥ(z) given in part (c)
of Example 8.13.

8.61 The circuits in Figure E8.61 are low- and high-pass filters.

Low-pass filter: H(s) = 1
0.1s + 1

1 Ω

0.1 Fvi

1F

vi v0v0 1 Ω

ωcrit = 0.1 rad/s ωcrit = 1 rad/s

s
s + 1

High-pass filter: H(s) =

+− +− +− +−

FIGURE E8.61

(a) Find the z-domain transfer function of the approximating discrete-time filters based on the
bilinear transform with sample time T¼ 0.005 s for the low-pass filter and T¼ 0.05 s for
the high-pass filter.

(b) Repeat part (a) after first prewarping the critical frequencies of each filter.
(c) Compare the frequency responses of the continuous-time and discrete-time filters.
(d) Find and plot the unit step responses of the low-pass filter and its discrete-time approx-

imations.
(e) Repeat part (d) for the high-pass filter.

0

0.5M
ag

ni
tu

de
Ph

as
e (

de
g)

1

1.5

2

ω (rad/s)

Use of bilinear transform with and without prewarping

|H(jω)|

|H(e jωT)|

|H(e jωT)|

Arg H(e jωT)|
Arg H(e jωT)|

Arg H(jω)

ˆ

ˆ

Prewarped frequency, ω0 = 1000 rad/s

0 500 1000 1500 2000 2500 3000

ω (rad/s)
0 500 1000 1500 2000 2500 3000

−180

−135

−90

−45

0

FIGURE 8.102 Illustration of prewarping critical frequency prior to bilinear transform.

766 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.62 For the transfer function G(s)¼ 10=(s2þ 2sþ 10) in Example 8.12,
(a) Convert to state-space form _x ¼ Axþ Bu, y ¼ Cxþ Du using the MATLAB function

‘‘tf2ss.’’
(b) Convert the continuous-time state-space model to discrete-time form using the MATLAB

function ‘‘c2dm.’’ Choose the sample time T¼ 0.05 s and specify ‘‘zoh’’ as the method
of approximation.

(c) Obtain the unit step response by solving the discrete-time state model equations recur-
sively and plot the results.

8.63 For the filters in Exercise 8.62,
(a) Obtain discrete-time filter approximations to each using the impulse invariant method.
(b) Compare the frequency response functions of the continuous- and discrete-time filters.
(c) Compare the impulse response functions of the continuous- and discrete-time filters.

8.7 CASE STUDY: LEGO MINDSTORMSE NXT

8.7.1 INTRODUCTION

In the November 2008 issue of Mechanical Engineering, the American Society of Mechanical
Engineers surveyed its members for the trend they thought would have the most significant impact
10 years hence. In second place, with 26% of the responses, was Mechatronics—the integration of
mechanical and electronic design. Incidentally, first place (28%) went to nanotechnology and
microelectromechanical systems—devices that are demanded by mechatronicians.

The discipline of Mechatronics is a nexus of four technical sub-disciplines: mechanical systems,
electronics systems, control systems, and computers. The intersection of mechanical and electronic
systems is electromechanics; electronic and control systems intersect at control electronics; control
systems and computers combine to form digital control systems; and finally, computers and
mechanical systems form mechanical computer-aided design (CAD). Figure 8.103 displays these
relationships graphically.

Control
systems

Control
electronics

Electronic
systems

Electro
mechanics

Mechanical
Systems

Mechanical
CAD

Computers

Digital control
systems

Mechatronics

Defe
nse

sy
ste

m
s

M
anufacturing

Consumer products

Xerography

Medical

AerospaceAutomotive

M
at

er
ia

ls
pr

oc
es

sin
g

FIGURE 8.103 Mechatronics: mechanical, electronics, and control systems, and computers.

Advanced Numerical Integration 767

From a feedback control systems perspective, mechatronics is the implementation or realization
of a controller design. A feedback control system involves either tracking a changing input or
regulating a constant reference input. The block diagram for a generic feedback control system is
given in Figure 8.104.

The feedback control system diagram begins with the reference input, which is fed into a
comparator. The comparator measures the difference between the reference input and the feedback
signal, generating an error signal. In order for the computer to process the error signal, it must first
be converted by an A2D converter. Once the control signal is processed, it is converted by a D2A
converter. It is this signal, fed into the actuator, that controls the process. Note that this signal may
need to be amplified in order to actuate the controlling hardware. A sensor is connected to the
process in order to measure the performance of the system. The sensor provides the feedback signal,
which is used in the comparator. This loop is continually repeated for the process to be controlled.
Simply stated, control design synthesis involves mathematically modeling and analyzing a physical
process (e.g., missile airframe) and then designing a controller (e.g., acceleration autopilot).
Simulink’s graphical environment facilitates this ‘‘model-based design’’ approach. These steps of
controller design synthesis are usually performed on the same host development platform, that is, a
personal computer.

Beyond modeling, analysis, and design, mechatronics adds the implementation step. In this step,
the controller design is realized on the actual (e.g., flight) hardware. Generated source code is
compiled and assembled for a particular microprocessor that is executed for the digital controller
design. Source code interfaces for actuators and sensors, called device drivers, are typically
provided by vendors that manufacture these various pieces of hardware. An application that
facilitates this extended development process is called an Integrated Development Environment
(IDE). By adding MATLAB’s Real-Time Workshop to the host’s suite of tools, code generation,
compilation, and assembly for a specific microprocessor are enabled. The repetitive process of
making changes to the controller design in the Simulink model, generating, compiling, assembling,
downloading, and running code on the microprocessor is known as rapid prototyping. This allows
the engineer to build a little and test a little, thereby rooting out errors early in the development
process and potentially avoiding the larger costs associated with redesigning the system late in the
development process.

By combining the popular Lego Mindstormse NXT (henceforth referred to NXT) robotics
platform with MATLAB’s Simulink and Real-Time Worshop tools, this development process can
be demonstrated end to end. Therefore, the remainder of this section is devoted to

. Product requirements, software download, and installation

. Creating a Simulink model that provides a noisy input signal and then running the
‘‘unfiltered’’ model on the NXT to observe how the noisy signal affects the physical motor

. Modifying the Simulink model by adding a discrete-time Kalman filter (DTKF) (Section
5.12), which filters the noisy input signal and then running the ‘‘filtered’’ model on the
NXT observing the effect of the filtered signal on the physical motor

ActuatorFilter ProcessProcessor
Analog

to
digital

Digital
to

analog

SensorFilter

FIGURE 8.104 Feedback control system block diagram.

768 Simulation of Dynamic Systems with MATLAB® and Simulink®

8.7.2 REQUIREMENTS AND INSTALLATION

The software and hardware requirements are

. MATLAB, Simulink, Real-Time Workshop, and Real-Time Workshop’s Embedded Coder
available from The Mathworks

. Cygwine and the GNU ARMe compiler available as a download

. NXT hardware and corresponding device drivers available from Lego

Once The Mathworks software is installed and functioning properly, the third-party software
download and installation (Cygwine and the GNU ARMe compiler) is facilitated by a MATLAB
m-file script. Cygwine is a UNIX shell environment that runs on Windows and the GNU ARMe
compiler compiles C source code for the ARM processor that runs on the NXT. The script is
available from The Mathworks’ Web site at http:==www.mathworks.com by searching for ‘‘ECRo-
bot Installer.’’ (ECRobot is an abbreviation for Embedded Controller Robot.) Locate the hyperlink
‘‘Download the ECRobot installer’’ to download (ecrobot_installer_v1_2.zip at the time). Extract
the files and then follow the README.pdf instructions. The ECRobotInstaller contains three
MATLAB m-file scripts:

. A script ‘‘download_ecrobot_tools’’ to download all the necessary software. Note: Before
running the script in Step 1: Automated Download of the README file, it may need to be
edited to accommodate the current version of nxtOSEK.

. A script ‘‘install_ecrobot_tools’’ to configure and install the necessary software.

. A script ‘‘update_nxt_firmware’’ that updates the firmware on the NXT to run ARM binary
files

Note: At the time of this writing, sg.exe had been removed from nxtOSEK. Therefore, sg.exe is
obtained by downloading and extracting osek_os-1.1.lzh for nxtOSEK from the Web site http:==
lejos-osek.sourceforge.net=download.htm. Copy =toppers_osek=sg=sg.exe to the nxtOSEK=
toppers_osek=sg directory.

At this point, follow Step 5: Verify that everything works as outlined in the README file. Note
that the README file contains answers to commonly asked questions. If you have additional
questions, please e-mail mindstorms@mathworks.com.

8.7.3 NOISY MODEL

In this section, a Simulink model is created that generates a noisy input signal, which drives an NXT
motor. First, the model is built and simulated to view the noisy signal. Then, C source code is
generated, compiled, assembled, downloaded, and run on the NXT to observe how the noisy signal
affects the physical motor.

Knowing ahead of time that C source code will be generated with MATLAB’s Real-Time
Workshop, the model is architected such that the portion of the model that is generated into C
source code exists within a function—where the function is driven by a scheduler. Upon starting
Simulink, a new block set has been installed and added to the Simulink Library Browser called
‘‘ECRobot NXT Blockset.’’ In this blockset, there is a block called ‘‘ExpFcnCalls Scheduler.’’ This
block generates function-call events according to the rate specified within the block parameters. For
the model shown in Figure 8.105, this block generates function calls at the rate of 100 ms. The
function-call scheduler expects to be connected to a demux block in case there are multiple
functions being called by the scheduler. Even though there is only one function, a demux block is
still necessary. The output of the demux block is the input into a subsystem block—which contains
the function. However, at this top-level, a servo motor interface block (from the ECRobot NXT

Advanced Numerical Integration 769

http://www.mathworks.com
http://lejos-osek.sourceforge.net/download.htm
http://lejos-osek.sourceforge.net/download.htm

Blockset) is connected to a scope, so the (noisy) output can be viewed. The blocks nxtbuild(‘Noisy’,
‘build’) and nxtbuild(‘Noisy’,‘rxeflash’) are annotation blocks with call-back functions enabled to
execute the corresponding command in MATLAB.

By double clicking on the subsystem block named ‘‘Noisy,’’ the function-call subsystem (from
the standard Simulink library blockset) is seen as in Figure 8.106.

By double clicking on the function-call subsystem, the model that generates the noisy signal is
seen as in Figure 8.107.

The creation of the function-call sSubsystem automatically places the f() block in this subsystem
to indicate that the included elemental blocks are part of the function. A random number block with
a mean of 32 and a variance of 322 generates the random signal. The saturation block limits possible
signals to
100 as these are the limits of the NXT motor signals. The data type conversion is set to
int8 to represent the signed 8-bit integer, that is, �128 to 127. (The andom number, saturation, and
data type conversion blocks are all part of the standard Simulink library blockset.) Finally, the Servo
Motor Write block (from the ECRobot NXT blockset) is connected to port B. Port B is the second
output (top=left) from the Lego ‘‘brick’’ as seen in Figure 8.108

ExpFcnCalls
Scheduler

Fcn_100ms
In1

Noisy

Requires additional 3rd party tools
nxtbuild(‘Noisy’, ‘build’)

nxtbuild(‘Noisy’, ‘rxeflash’)

Servo Motor
Interface

B

Scope

OSEK Tasks
Fcn_100ms: 0.1 [sec]

FIGURE 8.105 Top-level block diagram of the noisy model.

1 In1

function()

Function-call
Subsystem

FIGURE 8.106 Function-call subsystem.

770 Simulation of Dynamic Systems with MATLAB® and Simulink®

Upon running a Simulink simulation, the noisy data may be
viewed from the scope block as seen in Figure 8.109.

Alternatively, the noisy data are available in the MATLAB
Workspace as a variable ‘‘structure with time’’ named ‘‘noisy.’’
A plot of this noisy data is shown in Figure 8.110.

The next part of this exercise is to generate, compile, assemble,
download, and run C source code for the ‘‘noisy’’ function on the
NXT to observe how the noisy signal affects the physical motor.

By clicking on the annotation block nxtbuild (‘Noisy’, ‘build’),
theReal-TimeWorkshop codegenerator is invoked,which createsC
source code and corresponding header files from the Simulink func-
tion. The following text appears inMATLAB’sCommandWindow.

Starting Real-Time Workshop build procedure for
model: Noisy

Successful completion of Real-Time Workshop build
procedure for model: Noisy

Generating ECRobot NXT scheduler file(s) for model:
Noisy

Successful completion of ECRobot NXT scheduler file
(s) generation for model: Noisy

Executing GNU-ARM toolchain for building execut-
able . . .

Successful C source code and header file generation result in the Real-Time Workshop Report
appearing as shown in Figure 8.111.

On the left side of the Real-Time Workshop Report window, hyperlinks indicate the various
sections of the C source code related to the function from the Simulink model. In particular, by
clicking on ‘‘Noisy.c,’’ one can view portions of the code that correspond directly with the elemental
blocks that constitute the function of the Simulink model. The rest of the messages in MATLAB’s
Command Window correspond to the build portion of compiling and assembling the binary image
file named ‘‘Noisy.rxe.’’

f()

fuction

Random
Number

Saturation
 –100 to 100

int8 B

Data Type
Conversion

Servo Motor
Write

FIGURE 8.107 Noisy signal model.

FIGURE 8.108 Lego Min-
sdtormse NXT ‘‘brick.’’
(LEGO® and LEGO® Mind-
storms® NXTe

ˆ
are trademarks of

the LEGO®Group,which does not
sponsor nor endorse this book.
This photo of the LEGO® Mind-
storms® NXTe

ˆ
brick is used here

with permission. � 2010 The
LEGO® Group.)

Advanced Numerical Integration 771

FIGURE 8.109 Noisy output viewed from the Scope Block.

0
–100

–80

–60

–40

–20

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1
Time (s)

Motor power level vs. time

M
ot

or
 p

ow
er

 le
ve

l

1.2 1.4 1.6 1.8 2

FIGURE 8.110 MATLAB® plot of the noisy data.

FIGURE 8.111 Real-time workshop report.

772 Simulation of Dynamic Systems with MATLAB® and Simulink®

.

.

.
(many messages corresponding to the build process, i.e., compiling and assembling)
.
.
.
Generating binary image file: Noisy_rom.bin
Generating binary image file: Noisy_ram.bin
Generating binary image file: Noisy.rxe

Once the binary image file ‘‘Noisy.rxe’’ has been created, click on the annotation block nxtbuild
(‘‘Noisy,’’ ‘‘rxeflash’’) to load the binary image into the flash memory of the NXT. For this part of
the procedure, MATLAB’s Command Window shows the following:

Execute NeXTTool for uploading a program to the enhanced NXT standard firmware:.=
nxtprj=Noisy.rxe
Executing NeXTTool to upload Noisy.rxe . . .
Noisy.rxe¼ 26144
NeXTTool is terminated.
Note: NeXTTool is a utility that transfers files from the PC to the NXT.

At this time, the NXT is ready to run the noisy motor program. Be certain there is a motor
connected to Port B on the brick. Upon running this program, the motor indeed runs erratically,
exhibiting its response to the noisy input.

8.7.4 FILTERED MODEL

In this section, the noisy Simulink model is modified by adding a DTKF (Section 5.12), which filters
the noisy input signal. The model is simulated in Simulink to view the filtered signal. Then, as
before, C source code is generated, compiled, assembled, downloaded, and run on the NXT to
observe how the physical motor responds to the filtered signal.

As shown in Figure 8.112, the top-level block for the filtered model is similar to that of the noisy
model, except the name of the subsystem block has been changed to ‘‘Filtered’’ and the annotation
blocks have been updated as well.

OSEK Tasks
Fcn_100ms: 0.1 [sec]

ExpFcnCalls
Scheduler

Fcn_100ms

Filtered

Requires additional 3rd party tools
nxtbuild(‘Filtered’, ‘buld’)

nxtbuild(‘Filtered’, ‘rxeflash’)

Servo motor
interface

B

Scope

In1

FIGURE 8.112 Top-level block diagram for the filtered model.

Advanced Numerical Integration 773

By double clicking on the subsystem block named ‘‘Filtered,’’ the function-call subsystem (from
the standard Simulink library blockset) is seen as in Figure 8.113.

By double clicking on the function-call subsystem, the model that generates the filtered signal is
seen as in Figure 8.114.

A subsystem block named ‘‘DTKF’’ has been added to the model in order to filter the noisy
signal. This is the same DTKF that was developed in Section 5.12 for the meteorite. However, rather
than setting the variables in MATLAB (as in Section 5.12), the parameters are set directly in the
Simulink blocks. Also, while the DTKF had three states: position, velocity, and acceleration,
the position of the meteorite was of primary interest in that example. Therefore, the first output of
the DTKF (corresponding to position) is selected as the input to the saturation block. The major
subsystems of the DTKF are the a priori and a posteriori calculations of the state and covariance
matrix updates as seen in Figure 8.115.

1 In1

function()

function-call
subsystem

FIGURE 8.113 Function-call subsystem.

f()
function

Random
number

I O

DTKF
Selector Saturation

–100 to 100

int8 B

Servo motor
write

Data type
conversion

FIGURE 8.114 Filtered signal model.

774 Simulation of Dynamic Systems with MATLAB® and Simulink®

The details of the DTKF are shown in Figures 8.116 through 8.120. Notice in Figure 8.116
(a priori state) and 8.117 (a priori covariance) that the unit delay block inherits the sample time, that
is, the function-call scheduler time, by setting sample time equal to �1 in the block properties.

Upon running a Simulink simulation, the filtered data may be viewed from the Scope Block as
seen in Figure 8.121. Notice that the filtered value appears to be approximately 32, which was the
mean of the random number block.

Alternatively, the filtered data are available in the MATLAB Workspace as a variable ‘‘structure
with time’’ named ‘‘filtered.’’ A plot of the filtered data is shown in 122.

Pm Pm K

KI
1 y

xp

xp

a posteriori
state

a posteriori
covariance

a priori
state

K

xm

Pm
Pp

xm

O1

Pp

a priori
covariance

Kalman
gain

FIGURE 8.115 Discrete-time Kalman filter subsystems.

Fk

1

xp

product2

xm(k + 1) 1
z

Unit delay

Inherited
Sample

Time, –1

xm(k)
1

xm

Matrix
multiply

[3×3]

–

FIGURE 8.116 ‘‘A priori’’ state.

Advanced Numerical Integration 775

By clicking on the annotation block nxtbuild(‘‘Filtered,’’ ‘‘build’’), the Real-Time Workshop
code generator is invoked, which creates C source code and corresponding header files from the
Simulink function. The following text appears in MATLAB’s Command Window.

Starting Real-Time Workshop build procedure for model: Filtered
Successful completion of Real-Time Workshop build procedure for model: Filtered
Generating ECRobot NXT scheduler file(s) for model: Filtered
Successful completion of ECRobot NXT scheduler file(s) generation for model: Filtered
Executing GNU-ARM toolchain for building executable . . .

Successful C source code and header file generation result in the Real-Time Workshop Report
appearing as shown in Figure 8.123.

[3×3]

[3×3]

Fk

Fḱ

1

Pp
Product2

Pm(k + 1)

Unit delay

Inherited
Sample

Time, –1

Pm(k)
1

Pm

Matrix
multiply

1
z–

FIGURE 8.117 ‘‘A priori’’ covariance.

1 Pm
Hk΄

Hk

Matrix
multiply

Product3 Add2

1e5

Rk

+

*
*
Inv
Product1

1
K

+

[1 0 0]́

[1 0 0]

FIGURE 8.118 Kalman gain.

776 Simulation of Dynamic Systems with MATLAB® and Simulink®

K
2

3
y

[1 0 0]

Hk
Product3

Add1

Add2
xp

xm

1

1

Product1
–

+

+

+

Matrix
multiply

Matrix
multiply

FIGURE 8.119 ‘‘A posteriori’’ state.

K
1

[1 0 0]

Hk
Product3

Matrix
Multiply

Matrix
multiply

Matrix
multiply

[3×3]

Identity

Add1

Add2 Pp
1

Rk

1e5

uT

uT

2 Pm

Math
Function1

Math
function

Product2

Product1

+

+
+

–

FIGURE 8.120 ‘‘A posteriori’’ covariance.

FIGURE 8.121 Filtered output viewed from the Scope Block.

Advanced Numerical Integration 777

On the left side of the Real-Time Workshop Report window, hyperlinks indicate the various
sections of the C source code related to the function from the Simulink model. In particular, by
clicking on ‘‘Filtered.c,’’ one can view portions of the code that correspond directly with the
elemental blocks and the DTKF blocks that constitute the function of the Simulink model.
The rest of the messages in MATLAB’s Command Window correspond to the build portion of
compiling and assembling the binary image file named ‘‘Filtered.rxe.’’

.

.

.
(many messages corresponding to the build process, i.e., compiling and assembling)

0
–100

–80

–60

–40

–20

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1
Time (s)

Motor power level vs. time

M
ot

or
 p

ow
er

 le
ve

l

1.2 1.4 1.6 1.8 2

FIGURE 8.122 MATLAB plot of the filtered data.

FIGURE 8.123 Real-time workshop report.

778 Simulation of Dynamic Systems with MATLAB® and Simulink®

.

.

.
Generating binary image file: Filtered_rom.bin
Generating binary image file: Filtered_ram.bin
Generating binary image file: Filtered.rxe

Once the binary image file ‘‘Filtered.rxe’’ has been created, click on the annotation block nxtbuild
(‘‘Filtered,’’, ‘‘rxeflash’’) to load the binary image into the flash memory of the NXT. For this part of
the procedure, MATLAB’s Command Window shows the following:

Execute NeXTTool for uploading a program to the enhanced NXT standard firmware:.=
nxtprj=Filtered.rxe

Executing NeXTTool to upload Filtered.rxe . . .
Filtered.rxe¼ 28720
NeXTTool is terminated.

At this time, the NXT is ready to run the filtered motor program. As before, be sure there is a motor
connected to Port B on the NXT brick. Upon running this program the motor indeed runs smoothly,
exhibiting its response to the filtered input.

8.7.5 SUMMARY

In this Case Study, the build-a-little=test-a-little rapid prototyping development process was facili-
tated by an IDE. The technology (software and hardware) that enabled the IDE was made available
by tools from The Mathworks (MATLAB, Simulink, Real-Time Workshop, and RTW’s Embed-
deed Coder), Cygwine, GNU ARMe, and Lego (Mindstormse NXT).

Once the IDE is enabled with the technology, the intent was to demonstrate how easy it is to
rapidly change the model from within Simulink, and then with two mouse clicks: generate, compile,
assemble, download, and run the model on the NXT.

It is left as an exercise for the student to now unleash his=her creativity in developing various
applications on this platform.

EXERCISE

8.64 While a noisy input signal was generated from within Simulink, modify the model such that a
sensor provides the input. Examine the various sensors that are available physically, as well as
from the ECRobot NXT Blockset in the Simulink Library Browser. For additional assistance,
see the samples that were part of the software installation, for example, TestUltrasonicSensor.
mdl.

Advanced Numerical Integration 779

This page intentionally left blank

References
Akai, T. J., Applied Numerical Methods, John Wiley & Sons, New York, 1994.
Allen, R. W. and T. Rosenthal, Systems technology=requirements for vehicle dynamics simulation models,

Society of Automotive Engineers, SAE 941075, 1994.
Aycin, M. and R. Benekohal, Stability and performance of car-following models in congested traffic, Journal of

Transportation Engineering, 127, 2–12, 2001.
Banks, J., J. S. Carson II et al., Discrete-Event System Simulation, 4th edn., Pearson=Prentice-Hall, Upper

Saddle River, NJ, 2005.
Baruh, H., Analytical Dynamics, WCB=McGraw-Hill, Boston, MA, 1999.
Beltrami, E., Mathematical Models in the Social and Biological Sciences, Jones and Bartlett, Boston, MA,

1993.
Bender, J. G. and R. E. Fenton, A study of automatic car following, IEEE Transactions on Vehicular

Technology, VT-18, 134–140, 1966.
Borse, G. J., Numerical Methods with MATLAB, PWS Publishing, Boston, MA, 1997.
Bracewell, R., The Fourier Transform and Its Applications, McGraw-Hill, New York, 1986.
Braun, M., Differential Equations and Their Applications, Springer-Verlag, New York, 1978.
Brown, D. and P. Rothery, Models in Biology: Mathematics, Statistics and Computing, John Wiley & Sons,

West Sussex, U.K., 1993.
Bryson, A. E., Dynamic Optimization, Addison-Wesley, Menlo Park, CA, 1999.
Buckley, P., Techniques of Process Control, John Wiley & Sons, New York, 1964.
Burns, R. S., Advanced Control Engineering, Butterworth Heinemann, Oxford, U.K., 2001.
Cadzow, J. A., Discrete-Time Systems—An Introduction with Interdisciplinary Applications, Prentice-Hall,

Englewood Cliffs, NJ, 1973.
Canova, B. S., P. H. Christensen, M. D. Lee, B. R. Tripp, M. H. Pack, and D. L. Pack, Simulation to support

operational testing: A practical approach, in Proceedings of the 1999 Winter Simulation Conference,
pp. 1071–1078, 1999.

Chapra, S. and R. Canalel, Numerical Methods for Engineers with Software Programming Applications, 4th
edn., McGraw-Hill, New York, 2002.

Close, C. M., Modeling and Analysis of Dynamic Systems, 3rd edn., John Wiley & Sons, New York, 2002.
Converse, A. O., Optimization, Holt, Rinehart & Winston, New York, 1970.
Coutinho, F. A. B., L. F. Lopez, M. N. Burattini, and E. Massad, Modeling the natural history of HIV infection

in individuals and its epidemiological implications, Bulletin of Mathematical Biology, 63, 1041–1062,
2001.

Culshaw, R. V. and S. Ruan, A delay differential equation model of HIV infection of CD4þ T cells,
Mathematical Biosciences, 165, 27–39, 2000.

Dabney, J. B. and T. L. Harman, Mastering Simulink 4, Prentice Hall, Upper Saddle River, NJ, 2001.
Daniels, R. W., An Introduction to Numerical Methods and Optimization Techniques, Elsevier=North Holland,

New York, 1978.
D’Azzo, J. J. and C. H. Houpis, Linear Control System Analysis and Design, 4th edn., McGraw-Hill, New

York, 1995.
Dorf, R. C. and R. H. Bishop,Modern Control Systems, 10th edn., Pearson=Prentice-Hall, Upper Saddle River,

NJ, 2005.
Edelstein-Keshet, L., Mathematical Models in Biology, McGraw-Hill, New York, 1988.
Eguchi, H., K. Obana, and M. Kamiya, Hardware-in-the-loop missile simulation facility, Proceedings of SPIE,

3368, 2–9, 1998.
Etkin, B., Dynamics of Flight, John Wiley & Sons, New York, 1982.
Farlow, S. J., An Introduction to Differential Equations and Their Applications, McGraw-Hill, New York,

1994.
Fausett, L. V., Numerical Methods—Algorithms and Applications, Prentice-Hall, Upper Saddle River, NJ,

2003.
Fishwick, P. A., Simulation Model Design and Execution—Building Digital Worlds, Prentice-Hall, Upper

Saddle River, NJ, 1995.

781

Franklin, G. F., J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, 4th edn., Prentice-
Hall, Upper Saddle River, NJ, 2002.

Gawthrop, P. and L. Smith, METAMODELLING: Bond Graphs and Dynamic Systems, Prentice-Hall, London,
U.K., 1996.

Gear, W. C., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood
Cliffs, NJ, 1971.

Gordon, G., System Simulation, Prentice-Hall, Englewood Cliffs, NJ, 1978.
Green, R. and K. Jackson, The design drive—Advanced HITL simulation systems for automotive controllers,

Modern Simulation and Training Journal, 56–58, 1997.
Haberman, R., Mathematical Models—Mechanical Vibrations, Population Dynamics and Traffic Flow,

Prentice-Hall, Englewood Cliffs, NJ, 1977.
Hannon, B. and R. Matthias, Dynamic Modeling with STELLA II, Springer-Verlag, New York, 1994.
Hanselmann, H. and K. Smith, Real-time simulation replaces test drives, Test & Measurement World Maga-

zine, 35–40, February 15, 1996.
Haraldsdottir, A. and R. Howe, Multiple frame rate integration, Flight Simulation Technologies Conference,

Atlanta, GA, September 7–9, 1988, Technical Paper (A88–53626 23–09), 1988.
Hartley, T. T., Digital Simulation of Dynamic Systems—A Control Theory Approach, Prentice-Hall, Englewood

Cliffs, NJ, 1994.
Hasdorff, L., Gradient Optimization and Nonlinear Control, John Wiley & Sons, New York, 1976.
Hay, J. L., R. E. Crosbie, and R. I. Chaplin, Integration routines for systems with discontinuities, The Computer

Journal, 17, 275–279, 1973.
Hethcote, H., Qualitative analyses of communicable disease models, Mathematical Biosciences, 28, 335–356,

1976.
Hoffman, J. D., Numerical Methods for Engineers and Scientists, Marcel Dekker, New York, 1992.
Hostetter, G. H., M. S. Santina, and Paul D’Carpio-Montalvo, Analytical, Numerical and Computational

Methods for Science and Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1991.
Howe, R., Transfer function and characteristic root errors for fixed-step integration algorithms, Transactions of

SCS, 2, 293–320, 1986.
Howe, R., Dynamics of Real-Time Digital Simulation, Applied Dynamics International, Ann Arbor, MI, 1995.
Hultquist, P. F., Numerical Methods for Engineers and Computer Scientists, Benjamin Cummings, Menlo

Park, CA, 1988.
Huntsinger, R., Personal notes.
Hutton, D. V., Fundamentals of Finite Element Analysis, McGraw-Hill, New York, 2004.
Isham, V., Mathematical modeling of the transmission dynamics of HIV infection and AIDS, Journal of the

Royal Statistical Society, 151, 5–30, 1988.
Jackson, L. B., Signals, Systems and Transforms, Addison-Wesley, Reading, MA, 1991.
Kailath, T., Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
Karayanakis, N., Computer-Assisted Simulation of Dynamic Systems with Block Diagram Languages, CRC

Press, Boca Raton, FL, 1993.
Karnopp, D. C., D. L. Margolis, and R. C. Rosenberg, System Dynamics—Modeling and Simulation of

Mechatronic Systems, 4th edn., John Wiley & Sons, New York, 2000.
Keen, R. E. and J. D. Spain, Computer Simulation in Biology—A Basic Introduction, John Wiley & Sons,

New York, 1992.
Kelton, W. D., R. P. Sadowski, and D. A. Sadowski, Simulation with Arena, McGraw-Hill, New York, 1997.
Kermack, W. D. and A. D. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings

of the Royal Society of London, 115, 700–721, 1927.
Korn, G. A. and J. V. Wait, Digital Continuous-System Simulation, Prentice-Hall, Englewood Cliffs, NJ, 1978.
Kraniauskas, P., Transforms in Signals and Systems, Addison-Wesley, Wokingham, U.K., 1992.
Kuo, B., Digital Control Systems, Holt, Rinehart & Winston, New York, 1980.
Ledin, J., Simulation Engineering, CMP Books, Lawrence, KS, 2001.
Linz, P. and R. L. C. Wang, Exploring Numerical Methods—An Introduction to Scientific Computing Using

MATLAB, Jones and Bartlett, Boston, MA, 2003.
Mathews, J. H. and K. D. Fink, Numerical Methods Using MATLAB, 3rd edn., Prentice-Hall, Upper Saddle

River, NJ, 1999.
McClamroch, N. H., State Models of Dynamic Systems, Springer-Verlag, New York, 1980.
McLeod, J., PHYSBE . . . A physiological simulation benchmark experiment, SIMULATION, 7, 324–329,

1966.
Meerschaert, M. M., Mathematical Modeling, 2nd edn., Academic Press, San Diego, CA, 1999.

782 References

Mesterton-Gibbons, M., A Concrete Approach to Mathematical Modeling, Addison-Wesley, Redwood City,
CA, 1988.

Miller, K. S., Partial Differential Equations in Engineering Problems, Prentice-Hall, Englewood Cliffs, NJ,
1975.

Miller, R. E., Optimization Foundations and Applications, John Wiley & Sons, New York, 2000.
Mokhtari, M. and M. Marie, Engineering Applications of MATLAB 5.3 and SIMULINK 3, Springer-Verlag,

London, U.K., 2000.
Natke, H. G., Introduction to Multi-Disciplinary Model-Building, WIT Press, Southampton, U.K., 2003.
Nekoogar, F. and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice-Hall, Upper Saddle

River, NJ, 1999.
Nise, N. S., Control Systems Engineering, 2nd edn., Benjamin Cummings, Redwood City, CA, 1995.
Ogata, K., Discrete-Time Control Systems, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ, 1995.
Ogata, K., System Dynamics, 3rd edn., Prentice-Hall, Upper Saddle River, NJ, 1998.
Ogata, K., Modern Control Engineering, 4th edn., Prentice-Hall, 2002.
O’Neil, P. V., Advanced Engineering Mathematics, Wadsworth, Belmont, CA, 1983.
Oppenheim, A. V., R. W. Schafer, and R. J. Buck, Discrete-Time Signal Processing, 2nd edn., Prentice-Hall,

Eaglewood Cliffs, NJ, 1999.
Orfanidis, S., Introduction to Signal Processing, Prentice-Hall, Upper Saddle River, NJ, 1996.
Palm, W. J., Modeling, Analysis and Control of Dynamic Systems, John Wiley & Sons, New York, 1983.
Palusinski, O. A., Simulation of dynamic systems using multirate integration techniques, Transactions of the

Society for Computer Simulation, 2, 257–273, 1986.
Papoulis, A., The Fourier Integral and Its Applications, McGraw-Hill, New York, 1962.
Parks, T. W. and C. S. Burrus, Digital Filter Design (Topics in Digital Signal Processing), John Wiley & Sons,

New York, 1987.
Perelson, A., Dynamics of HIV infection of CD4þ T cells, Mathematical Biosciences, 114, 81–125, 1993.
Ralston, A. and H. S. Wilf, Mathematical Methods for Digital Computers, John Wiley & Sons, New York,

1965.
Rao, S. S., Applied Numerical Methods for Engineers and Scientists, Prentice-Hall, Upper Saddle River, NJ,

2002.
Recktenwald, G., Numerical Methods with MATLAB—Implementation and Application, Prentice-Hall, Upper

Saddle River, NJ, 2000.
Reseck, J., SCUBA, Safe and Simple, Simon and Schuster, New York, 1990.
Richmond, B., An Introduction to Systems Thinking: STELLA Software, High Performance Systems Inc.,

Hanover, NH, 2001.
Riggs, D. S., Control Theory and Physiological Feedback Mechanisms, The Williams & Wilkins Co.,

Baltimore, MD, 1970.
Rohrs, C. E., J. L. Melsa, and D. G. Schultz, Linear Control Systems, McGraw-Hill, New York, 1993.
Schilling, R. J. and S. L. Harris, Applied Numerical Methods for Engineers Using MATLAB and C,

Brooks=Cole, Pacific Grove, CA, 2000.
Shampine, L., Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.
Shearer, J. L., Dynamic Modeling and Control of Engineering Systems, Prentice-Hall, Upper Saddle River, NJ,

1997.
Shevell, R. S., Fundamentals of Flight, 2nd edn., Prentice-Hall, Englewood Cliffs, NJ, 1989.
Shier, D. R., Applied Mathematical Modeling, CRC Press, Boca Raton, FL, 2000.
Smith, W. A., Elementary Numerical Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1986.
Smith, J. M., Mathematical Modeling and Digital Simulation for Engineers and Scientists, 2nd edn., John

Wiley & Sons, New York, 1987.
Speckhart, F. H., A Guide to Using CSMP—The Continuous System Modeling Program, Prentice-Hall,

Englewood Cliffs, NJ, 1976.
Theusen, G. J. and W. J. Fabrycky, Engineering Economy, Prentice-Hall, 1971.
Theusen, G. J. and W. J. Fabrycky, Engineering Economy, 9th edn., Prentice-Hall, Upper Saddle River, NJ,

2001.
Tse, I. E., F. S. Hinkle, and R. T. Marse, Mechanical Vibrations: Theory and Applications, Allyn and Bacon,

1963.
Wellstead, P. E., Introduction to Physical System Modelling, Academic Press, London, U.K., 1979.
Wilde, D. J., Optimum Seeking Methods, Prentice-Hall, Englewood Cliffs, NJ, 1964.
Woods, R. L. and K. L. Lawrence, Modeling and Simulation of Dynamic Systems, Prentice-Hall, Upper Saddle

River, NJ, 1997.

References 783

	Cover
	Title Page
	Copyright
	Contents
	Foreword
	Preface
	Authors
	Chapter 1 Mathematical Modeling
	1.1 Introduction
	1.1.1 Importance of Models

	1.2 Derivation of a Mathematical Model
	Exercises
	1.3 Difference Equations
	1.3.1 Recursive Solutions

	Exercises
	1.4 First Look at Discrete-Time Systems
	1.4.1 Inherently Discrete-Time Systems

	Exercises
	1.5 Case Study: Population Dynamics (Single Species)
	Exercises

	Chapter 2 Continuous-Time Systems
	2.1 Introduction
	2.2 First-Order Systems
	2.2.1 Step Response of First-Order Systems

	Exercises
	2.3 Second-Order Systems
	2.3.1 Conversion of Two First-Order Equations to a Second-Order Model

	Exercises
	2.4 Simulation Diagrams
	2.4.1 Systems of Equations

	Exercises
	2.5 Higher-Order Systems
	Exercises
	2.6 State Variables
	2.6.1 Conversion from Linear State Variable Form to Single Input–Single Output Form
	2.6.2 General Solution of the State Equations

	Exercises
	2.7 Nonlinear Systems
	2.7.1 Friction
	2.7.2 Dead Zone and Saturation
	2.7.3 Backlash
	2.7.4 Hysteresis
	2.7.5 Quantization
	2.7.6 Sustained Oscillations and Limit Cycles

	Exercises
	2.8 Case Study: Submarine Depth Control System
	Exercises

	Chapter 3 Elementary Numerical Integration
	3.1 Introduction
	3.2 Discrete-Time System Approximation of a Continuous-Time Integrator
	Exercises
	3.3 Euler Integration
	3.3.1 Backward (Implicit) Euler Integration

	Exercises
	3.4 Trapezoidal Integration
	Exercises
	3.5 Numerical Integration of First-Order and Higher Continuous-Time Systems
	3.5.1 Discrete-Time System Models from Simulation Diagrams
	3.5.2 Nonlinear First-Order Systems
	3.5.3 Discrete-Time State Equations
	3.5.4 Discrete-Time State System Matrices

	Exercises
	3.6 Improvements to Euler Integration
	3.6.1 Improved Euler Method
	3.6.2 Modified Euler Integration

	Exercises
	3.7 Case Study: Vertical Ascent of a Diver
	3.7.1 Maximum Cable Force for Safe Ascent
	3.7.2 Diver Ascent with Decompression Stops

	Exercises

	Chapter 4 Linear Systems Analysis
	4.1 Introduction
	4.2 Laplace Transform
	4.2.1 Properties of the Laplace Transform
	4.2.2 Inverse Laplace Transform
	4.2.3 Laplace Transform of the System Response
	4.2.4 Partial Fraction Expansion

	Exercises
	4.3 Transfer Function
	4.3.1 Impulse Function
	4.3.2 Relationship between Unit Step Function and Unit Impulse Function
	4.3.3 Impulse Response
	4.3.4 Relationship between Impulse Response and Transfer Function
	4.3.5 Systems with Multiple Inputs and Outputs
	4.3.6 Transformation from State Variable Model to Transfer Function

	Exercises
	4.4 Stability of Linear Time Invariant Continuous-Time Systems
	4.4.1 Characteristic Polynomial
	4.4.2 Feedback Control System

	Exercises
	4.5 Frequency Response of LTI Continuous-Time Systems
	4.5.1 Stability of Linear Feedback Control Systems Based on Frequency Response

	Exercises
	4.6 z-Transform
	4.6.1 Discrete-Time Impulse Function
	4.6.2 Inverse z-Transform
	4.6.3 Partial Fraction Expansion

	Exercises
	4.7 z-Domain Transfer Function
	4.7.1 Nonzero Initial Conditions
	4.7.2 Approximating Continuous-Time System Transfer Functions
	4.7.3 Simulation Diagrams and State Variables
	4.7.4 Solution of Linear Discrete-Time State Equations
	4.7.5 Weighting Sequence (Impulse Response Function)

	Exercises
	4.8 Stability of LTI Discrete-Time Systems
	4.8.1 Complex Poles of H(z)

	Exercises
	4.9 Frequency Response of Discrete-Time Systems
	4.9.1 Steady-State Sinusoidal Response
	4.9.2 Properties of the Discrete-Time Frequency Response Function
	4.9.3 Sampling Theorem
	4.9.4 Digital Filters

	Exercises
	4.10 Control System Toolbox
	4.10.1 Transfer Function Models
	4.10.2 State-Space Models
	4.10.3 State-Space/Transfer Function Conversion
	4.10.4 System Interconnections
	4.10.5 System Response
	4.10.6 Continuous-/Discrete-Time System Conversion
	4.10.7 Frequency Response
	4.10.8 Root Locus

	Exercises
	4.11 Case Study: Longitudinal Control of an Aircraft
	4.11.1 Digital Simulation of Aircraft Longitudinal Dynamics
	4.11.2 Simulation of State Variable Model

	Exercises
	4.12 Case Study: Notch Filter for Electrocardiograph Waveform
	4.12.1 Multinotch Filters

	Exercises

	Chapter 5 Simulink®
	5.1 Introduction
	5.2 Building a Simulink® Model
	5.2.1 Simulink® Library
	5.2.2 Running a Simulink® Model

	Exercises
	5.3 Simulation of Linear Systems
	5.3.1 Transfer Fcn Block
	5.3.2 State-Space Block

	Exercises
	5.4 Algebraic Loops
	5.4.1 Eliminating Algebraic Loops
	5.4.2 Algebraic Equations

	Exercises
	5.5 More Simulink® Blocks
	5.5.1 Discontinuities
	5.5.2 Friction
	5.5.3 Dead Zone and Saturation
	5.5.4 Backlash
	5.5.5 Hysteresis
	5.5.6 Quantization

	Exercises
	5.6 Subsystems
	5.6.1 PHYSBE
	5.6.2 Car-Following Subsystem
	5.6.3 Subsystem Using Fcn Blocks

	Exercises
	5.7 Discrete-Time Systems
	5.7.1 Simulation of an Inherently Discrete-Time System
	5.7.2 Discrete-Time Integrator
	5.7.3 Centralized Integration
	5.7.4 Digital Filters
	5.7.5 Discrete-Time Transfer Function

	Exercises
	5.8 MATLAB® and Simulink® Interface
	Exercises
	5.9 Hybrid Systems: Continuous- and Discrete-Time Components
	Exercises
	5.10 Monte Carlo Simulation
	5.10.1 Monte Carlo Simulation Requiring Solution of a Mathematical Model

	Exercises
	5.11 Case Study: Pilot Ejection
	Exercises
	5.12 Case Study: Kalman Filtering
	5.12.1 Continuous-Time Kalman Filter
	5.12.2 Steady-State Kalman Filter
	5.12.3 Discrete-Time Kalman Filter
	5.12.4 Simulink® Simulations
	5.12.5 Summary

	Exercise

	Chapter 6 Intermediate Numerical Integration
	6.1 Introduction
	6.2 Runge–Kutta (RK) (One-Step Methods)
	6.2.1 Taylor Series Method
	6.2.2 Second-Order Runge–Kutta Method
	6.2.3 Truncation Errors
	6.2.4 High-Order Runge–Kutta Methods
	6.2.5 Linear Systems: Approximate Solutions Using RK Integration
	6.2.6 Continuous-Time Models with Polynomial Solutions
	6.2.7 Higher-Order Systems

	Exercises
	6.3 Adaptive Techniques
	6.3.1 Repeated RK with Interval Halving
	6.3.2 Constant Step Size (T=1 min)
	6.3.3 Adaptive Step Size (Initial T=1 min)
	6.3.4 RK–Fehlberg

	Exercises
	6.4 Multistep Methods
	6.4.1 Explicit Methods
	6.4.2 Implicit Methods
	6.4.3 Predictor–Corrector Methods

	Exercises
	6.5 Stiff Systems
	6.5.1 Stiffness Property in First-Order System
	6.5.2 Stiff Second-Order System
	6.5.3 Approximating Stiff Systems with Lower-Order Nonstiff System Models

	Exercises
	6.6 Lumped Parameter Approximation of Distributed Parameter Systems
	6.6.1 Nonlinear Distributed Parameter System

	Exercises
	6.7 Systems with Discontinuities
	6.7.1 Physical Properties and Constant Forces Acting on the Pendulum BOB

	Exercises
	6.8 Case Study: Spread of an Epidemic
	Exercises

	Chapter 7 Simulation Tools
	7.1 Introduction
	7.2 Steady-State Solver
	7.2.1 Trim Function
	7.2.2 Equilibrium Point for a Nonautonomous System

	Exercises
	7.3 Optimization of Simulink® Models
	7.3.1 Gradient Vector
	7.3.2 Optimizing Multiparameter Objective Functions Requiring Simulink® Models
	7.3.3 Parameter Identification
	7.3.4 Example of a Simple Gradient Search
	7.3.5 Optimization of Simulink® Discrete-Time System Models

	Exercises
	7.4 Linearization
	7.4.1 Deviation Variables
	7.4.2 Linearization of Nonlinear Systems in State Variable Form
	7.4.3 Linmod Function
	7.4.4 Multiple Linearized Models for a Single System

	Exercises
	7.5 Adding Blocks to the Simulink® Library Browser
	7.5.1 Introduction
	7.5.2 Summary

	Exercise
	7.6 Simulation Acceleration
	7.6.1 Introduction
	7.6.2 Profiler
	7.6.3 Summary

	Exercise

	Chapter 8 Advanced Numerical Integration
	8.1 Introduction
	8.2 Dynamic Errors (Characteristic Roots, Transfer Function)
	8.2.1 Discrete-Time Systems and the Equivalent Continuous-Time Systems
	8.2.2 Characteristic Root Errors
	8.2.3 Transfer Function Errors
	8.2.4 Asymptotic Formulas for Multistep Integration Methods
	8.2.5 Simulation of Linear System with Transfer Function H(s)

	Exercises
	8.3 Stability of Numerical Integrators
	8.3.1 Adams–Bashforth Numerical Integrators
	8.3.2 Implicit Integrators
	8.3.3 Runga–Kutta (RK) Integration

	Exercises
	8.4 Multirate Integration
	8.4.1 Procedure for Updating Slow and Fast States: Master/Slave=RK-4/RK-4
	8.4.2 Selection of Step Size Based on Stability
	8.4.3 Selection of Step Size Based on Dynamic Accuracy
	8.4.4 Analytical Solution for State Variables
	8.4.5 Multirate Integration of Aircraft Pitch Control System
	8.4.6 Nonlinear Dual Speed Second-Order System
	8.4.7 Multirate Simulation of Two-Tank System
	8.4.8 Simulation Trade-Offs with Multirate Integration

	Exercises
	8.5 Real-Time Simulation
	8.5.1 Numerical Integration Methods Compatible with Real-Time Operation
	8.5.2 RK-1 (Explicit Euler)
	8.5.3 RK-2 (Improved Euler)
	8.5.4 RK-2 (Modified Euler)
	8.5.5 RK-3 (Real-Time Incompatible)
	8.5.6 RK-3 (Real-Time Compatible)
	8.5.7 RK-4 (Real-Time Incompatible)
	8.5.8 Multistep Integration Methods
	8.5.9 Stability of Real-Time Predictor–Corrector Method
	8.5.10 Extrapolation of Real-Time Inputs
	8.5.11 Alternate Approach to Real-Time Compatibility: Input Delay

	Exercises
	8.6 Additional Methods of Approximating Continuous-Time System Models
	8.6.1 Sampling and Signal Reconstruction
	8.6.2 First-Order Hold Signal Reconstruction
	8.6.3 Matched Pole-Zero Method
	8.6.4 Bilinear Transform with Prewarping

	Exercises
	8.7 Case Study: Lego Mindstormse NXT
	8.7.1 Introduction
	8.7.2 Requirements and Installation
	8.7.3 Noisy Model
	8.7.4 Filtered Model
	8.7.5 Summary

	Exercise

	References

