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Preface

This book is a tribute to great Statisticians, scholars, and teachers whose ideas are 
quoted throughout this book in various contexts. These pearls of wisdom have 
helped us to connect our book with the evolution of science, knowledge and engi-
neering. Eventhough there are many books on statistics, there are few dedicated 
to the application of statistical methods to software engineering. Pure textbooks 
provide scholarly treatment, whereas practitioners need basic understanding and 
application knowledge. Very few statistical books provide application knowledge to 
software engineers. We have been working toward bridging this gap for about two 
decades and have come out with the current book.

Statistical methods are often discussed in the context of six sigma, Capability 
Maturity Model Integrated (CMMI), establishing capability baselines, and con-
structing process performance models. Driven by CMMI auditors, such practices 
have become rituals that rely heavily on automated statistical packages, which are 
rarely well understood. We have been promoting excel-based solution to statistics 
and have presented practical solutions, such as those achieved in this book.

Statistics is the grammar of science.

Karl Pearson

We also realize that sophisticated statistics is not the ideal approach to solve 
problems. Simpler techniques provide easy solutions that connect with the intu-
ition of problem solvers. Although sophisticated techniques sound impressive but 
merely academic, simpler techniques are flexible and can easily penetrate to the root 
of the problem. In this book, we have consciously selected simpler tools. We have 
also simplified several standard techniques.

The techniques presented in this book appear to us as a minimum set of intel-
lectual tools for software engineers and managers. True software engineering 
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can happen only when data are collected and these statistical methods are used. 
Moreover, the statistical management of processes is possible only when managers 
master these techniques.

Learning these techniques in the context of software engineering will certainly 
help budding engineers and fresh recruits. The examples provided in this book will 
provide a deep insight into software engineering and management.

This book can be used extensively as a guidebook for training software engi-
neers and managers at different levels. It will be a very valuable asset in the hands 
of quality professionals who collect data and create models.

This book also exposes practical software engineering problems and solutions to 
aspiring engineering graduates and make them industry ready.

Generally, this book is a guide for professionals to think objectively with data. 
It will help them to mine data and extract meanings. Some of the techniques pro-
vided in the book are excellent prediction tools, which would give foresight to those 
who apply them.

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

© 2015 by Taylor & Francis Group, LLC
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Introduction

The book contains four sections. In the first section, we present facts about data. In 
the second section, we recapitulate metrics. In the third section, we cover basic laws 
of probability. In the fourth section, we present special data patterns in the form of 
tailed mathematical distributions.

We are addressing development metrics, maintenance metrics, test metrics, and 
agile metrics in separate chapters, paying special attention to the specific problems 
in each domain. We also cover the construction of key performance indicators from 
metrics.

We also present elementary statistics to understand key characteristics of data: 
central tendency and dispersion in two separate chapters. The great contribution 
from Tukey in creating a five-point summary of data and the box plot is presented 
in the special chapter.

In Chapter 10, we introduce pattern extraction using histogram. These patterns 
are empirical in nature and are priceless in their capability to show reality as it is. 
Going forward, these empirical patterns are translated into mathematical patterns 
in individual chapters in terms of statistical distributions. Examples are provided in 
each chapter to understand and apply these patterns.

Each chapter is illustrated with graphs. Tables are used to present data where 
necessary. Equations are well annotated. Box stories are used to present interesting 
anecdotes. In particular, brief notes are presented about original inventors of ideas. 
Each chapter contains references on key subjects.

Review questions are presented at the end of each chapter for practice. Exercises 
are included for readers to try their hands on the concepts and reinforce learning by 
doing. Case studies are presented to explain the practical application of the subjects 
covered, where possible. The chapters are organized in such a way that they are easy 
to reach, understand, and apply. We have given special emphasis to application 
instead of derivation of equations.

© 2015 by Taylor & Francis Group, LLC

 



xxii ◾ Introduction

It must be mentioned that all pattern extraction and generation of mathemati-
cal equations have been performed using MS Excel. Statistical functions readily 
available have been used, and the use has been illustrated with solved examples. In 
some cases, we programmed the model equations in Excel.

All the equations used in this book have been tried out with software engineer-
ing data. These equations work. We have verified them and applied them to real-life 
problems.

We have taken utmost care to cite references and acknowledge contributions 
from experts. In case we have missed any, it is entirely due to oversight and we shall 
be obliged if such omissions are brought to our notice for correction.

We welcome feedback from readers which can be mailed to the email ids of the 
authors:

aravind_55@yahoo.com
skmurali7@yahoo.com
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IData

Data are where science and statistics begin. In software engineering, data-based 
decision making makes the difference between maturity and immaturity, profes-
sionalism and unprofessionalism. Data contain the seeds of knowledge. Data must 
be fostered and used. In Section I of this book, we present basic properties of data 
and discuss data quality.

In Chapter 1, we discuss data and descriptive statistics, a smart way to sum-
marize data and see the hidden meaning. Chapter 2 is about detecting truth in 
data by spotting its central tendency. Chapter 3 presents ways of understand-
ing data dispersion. Chapter 4 is devoted to Tukey’s box plot, a brilliant explor-
atory data analysis tool. Data, once collected, must be processed by the techniques 
given in these four chapters.
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Chapter 1

Data, Data Quality, and 
Descriptive Statistics

The Challenge That Persists
Data refer to facts in contrast to opinion or conjecture. Data are evidence, results, 
an expression of reality, and all such concrete realizations. Data are the result of 
observation and measurement (of life in general) of processes and products in soft-
ware development. We use the term data to represent the basic measures (raw) and 
derived (manipulated) metrics.

Data collection remains a challenge even after fifty years of history. The chal-
lenge engulfs the two types of data collection: the routine data collection and the 
special purpose data collection, such as in improvement programs and experiments. 
Problems in these areas are more in the first kind. A summary of the problems in 
data collection was presented by Goethert and Siviy [1], who find that “inconsistent 
definitions of measures, meaningless charts” are among the reasons for poor data.

They complain that “the big picture is lost.” We miss the forest for the trees. 
They also point fingers at a serious problem: the context of the indicators is not 
understood. Not finding a context for data is becoming a major crisis.

Data have no meaning apart from their context.

Shewhart

The routine data collection can be studied from five contexts, viewing from 
five management layers: business management, project management, process 
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4 ◾ Simple Statistical Methods for Software Engineering

management, product management, and the recently introduced subprocess man-
agement. When data lose their context, they are considered irrelevant and are thus 
dismissed. When managers lose interest, data are buried at the source. The solution 
is to categorize metrics according to context and assure relevance to the stake-
holders. The periodical metrics data report should be divided into interlinked and 
context-based sections. Different stakeholders read different sections of the report 
with interest. Context setting should be performed before the goal question metric 
(GQM) paradigm is applied to the metrics design.

Several software development organizations prefer to define “mandatory data” 
and call the rest as “optional data.” Mandatory metrics are chosen from the context 
of the organization, whereas optional metrics are for local consumption. Mandatory 
metrics are like the metrics in a car dashboard display; the industry needs them to 
run the show. The industry chooses mandatory metrics to know the status of the 
project and to assess the situation, departing from the confines of GQM paradigm 
in response to operational requirements.

SEI’s GQ(I)M framework [2] improved the GQM methodology in several ways. 
Using mental models and including charts as part of the measurement process are 
noteworthy. Instant data viewing using charts connects data with decision making 
and triggers biofeedback. Creating charts is a commendable achievement of statisti-
cal methods. Spreadsheets are available with tools to make adequate charts.

Mapping is frequently used in engineering measurements. The mapping phase 
of software size measurement in COSMIC Function Points is a brilliant exposition 
of this mapping. The International Function Point Users Group defines counting 
rules in a similar vein. Counting lines of code (LOC) is already a long established 
method. Unambiguous methods are available to measure complexity. These are all 
product data regarded as “optional.” Despite the clarity provided by measurement 
technologies, product data are still not commonly available.

Moving up, business data include key performance indicators, best organized 
under the balanced scorecard scheme. These data are driven by strategy and vision and 
used in a small number of organizations as a complement to regular data collection.

Data availability has remained a problem and is still a problem. The degree of 
data availability problem varies according to the category of data. A summary is 
presented in the following table:

Category Data Availability

1. Business data Medium availability

2. Project data High availability

3. Process data Low availability

4. Subprocess data Extremely low availability

5. Product data Very low availability
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Collecting data in the last two categories meets with maximum resistance 
from teams because this data collection is considered as micromanagement. The 
previously mentioned profile of data availability is typical of software business 
and contrasts with manufacturing; for example, product data are easily available 
there.

Bringing Data to the Table Requires Motivation
A strong sense of purpose and motivation is required to compile relevant data for 
perusal, study, and analysis. Different stakeholders see different sections of data as 
pertinent. Business managers would like to review performance data. Project man-
agers would like to review delivery related data, including some performance data 
they are answerable to. Process managers would like to review process data. Model 
builders and problem solvers dig into subprocess data. An engineering team would 
be interested in looking at product data.

Data are viewed by different people playing different roles from different win-
dows. Making data visible in each window is the challenge. The organizational 
purpose of data collection should be translated into data collection objectives for 
different stakeholders and different users. Plurality of usage breeds plurality in usage 
perspectives. Plurality is a postmodern phenomenon. Single-track data compiling 
initiatives fail to satisfy the multiple users, resulting in dismally poor metric usage 
across the organization.

The mechanics of data compilation and maintaining data in a database that 
would cater to diverse users is now feasible. One can look up data warehouse tech-
nology to know the method. A common, structured platform, however, seems to be 
a goal-driven process to bring data to the data warehouse.

Data Quality

On Scales
Software data have several sources as there are several contexts; these data come in 
different qualities. A very broad way of classifying data quality would be to divide 
data into qualitative and quantitative kinds. Verbal descriptions and subjective rat-
ings are qualitative data. Numerical values are quantitative data. Stevens [3] devel-
oped scales for data while working on psychometrics, as follows: nominal, ordinal, 
interval, and ratio scales. The first two scales address qualitative data. The remain-
ing two address quantitative data. Stevens restored legitimacy for qualitative data 
and identified permissible statistical analyses for each scale. Each scale is valuable 
in its own way, although most analysts prefer the higher scales because they carry 
data with better quality and transfer richer information.
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6 ◾ Simple Statistical Methods for Software Engineering

When data quality is low we change the rules of analyses; we do not discard 
the data.

Steven’s measurement theory has cast a permanent influence in statistical 
methods.

The lower scales with allegedly inferior data quality found several applications 
in market research and customer satisfaction (CSAT) measurement. CSAT data are 
collected in almost every software project, and an ordinal scale designed by Likert 
[4] is extensively used at present for this purpose. We can improve CSAT data 
quality by switching over to the ratio scale, as in the Net Promoter Score approach 
invented by Frederick [5] to measure CSAT. CSAT data quality is our own making. 
With better quality, CSAT data manifest better resolution that in turn supports a 
comprehensive and dependable analysis.

The advent of artificial intelligence has increased the scope of lower scale data. In 
these days of fuzzy logic, even text can be analyzed, fulfilling the vision of the German 
philosopher Frege, who strived to establish mathematical properties of text. Today, the 
lower scales have proved to be equally valuable in their ability to capture truth.

Error
All data contain measurement errors, whether the data are from a scientific laboratory 
or from a field survey. Errors are the least in a laboratory and the most in a field survey. 
We repeat the measurement of a product in an experiment, and we may get results that 
vary from trial to trial. This is the “repeatability” error. If many experimenters from dif-
ferent locations repeat the measurement, additional errors may appear because of per-
son to person variation and environmental variation known as “reproducibility” error. 
These errors, collectively called noise, in experiments can be minimized by replication.

The discrepancy between the mean value of measured data and the true value 
denotes “bias.” Bias due to measuring devices can be corrected by calibrating the 
devices. Bias in estimation can be reduced by adopting the wide band Delphi 
method. Bias in regularly collected data is difficult to correct by statistical methods.

Both bias and noise are present in all data; the magnitude varies. Special pur-
pose data such as those collected in experiments and improvement programs have 
the least. Data regularly collected from processes and products have the most. If the 
collected data could be validated by team leaders or managers, most of the human 
errors could be reduced. Statistical cleaning of data is possible, to some extent, by 
using data mining approaches, as shown by Han and Kamber [6]. Hundreds of 
tools are available to clean data by using standard procedures such as auditing, 
parsing, standardization, record matching, and house holding. However, data vali-
dation by team leaders is far more effective than automated data mining technol-
ogy. Even better is to analyze data and spot outliers and odd patterns and let these 
data anomalies be corrected by process owners. Simple forms of analysis such as line 
graphs, scatter plots, and box plots can help in spotting bad data.
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Cleaned data can be kept in a separate database called a data warehouse. Using 
data warehouse techniques also help in collecting data from heterogeneous sources 
and providing data a structure that makes further analysis easy. The need for a 
commonly available database is felt strongly in the software industry. More and 
more data get locked into personal databases of team members. Although data col-
lection is automated and data quality is free from bias and noise, the final situation 
is even worse: data are quietly logged into huge repositories with access available 
only to privileged managers. They do not have the time for data related work. The 
shoemaker syndrome seems to be working.

Data Stratification
This is one of the earliest known methods. Data must be grouped, categorized, or 
stratified before analysis. Data categories are decided from engineering and man-
agement standpoint. This should not be left to statistical routines such as clustering 
or principal component analysis.

In real life, stratification is performed neither with the right spirit nor with 
the required seriousness. For instance, a common situation that may be noticed 
is attempts to gather software productivity data and arriving at an organizational 
baseline. Productivity (function point/person month) depends on programming 
language. For example, Caper Jones [7] has published programming tables, indicat-
ing how the level of language increases as productivity increases.

Visual Summary
Descriptive statistics is used to describe and depict collected data in the form of 
charts and tables. Data are summarized to facilitate reasoning and analysis. The 
first depiction is the visual display of data, a part of indicators in the GQ(I)M para-
digm [1]. The second depiction is a numerical summary of data.

Visual display is an effective way of presenting data. It is also called statisti-
cal charting. Graphical form communicates to the human brain better and faster, 
allowing the brain to do visual reasoning, a crucial process for engineers and 
managers. Park and Kim [8] proposed a model for visual reasoning in the creative 
design process. There is growing evidence to show that information visualization 
augments mental models in engineering design (Liu and Stasko [9]). Data visual-
ization is emerging into a sophisticated discipline of its own merit.

Let us see as an example two simple graphs. First is a radar chart of project risks 
shown in Figure 1.1.

This provides a risk profile of project environment at a glance. The radar chart 
presents an integrated view of risk; it is also an elegant summary. This chart can 
be refreshed every month, showing project managers the reality. Reflecting upon 
the chart, managers can make decisions for action. The second chart is a line graph 
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8 ◾ Simple Statistical Methods for Software Engineering

of cumulative count of code written till date. The actual code written is plotted 
alongside the plan in Figure 1.2. By visual reasoning upon the plot, one can guess 
the time to finish the project.

Data must be transformed into charts, till then they do not enter deci-
sion space.
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Figure 1.1 Radar chart for project risks.
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Figure 1.2 Cumulative count of code.
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Data, Data Quality, and Descriptive Statistics ◾ 9

Even lower-scale data can be graphed. For example, a bar graph on discovered 
defect types can be very instructive. Most categorical variables are plotted as bar 
graphs and pie charts, and they make a lot of sense.

The graphs must be interpreted. A picture is worth a thousand words; but each one 
needs a few words of explanation articulating the context and meaning. Commentaries 
on graphs are rare; it may perhaps be assumed that truth is self-evident in the graphs. 
However, it makes a huge difference to add a line of comment to a graph.

Box 1.1 Show Me a Graph

This organization was dedicated to software maintenance. Every month, 
a huge list of change requests are received. The operations manager found 
“backlog” a burning issue. The backlog seemed to grow every month. After 
due contemplation, he devised a simple management technique to address this 
issue. He suggested a simple pie chart report at the end of every month. The 
pie chart showed distribution of bugs according to the following category:

 a. Bugs taken up—complex category
 b. Bugs taken up—simple category
 c. Bugs analyzed but found as nonissues
 d. Bugs in queue—yet to be taken up
 e. Bugs delivered

(a) Bugs taken
up—complex
category, 100,

6%

(b) Bugs taken
up—simple

category, 400,
36%

(c) Bugs
analyzed but

found as non-
issues, 200,

13%

(d) Bugs in
queue—yet to
be taken up,

670, 43%

(e) Bugs
delivered, 200,

13%

The pie chart had a noteworthy consequence. The backlog queue dwin-
dled, and more bugs were fixed monthly. Later, the manager happened to 
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10 ◾ Simple Statistical Methods for Software Engineering

Numerical Descriptive Statistics 
(Numerical Summary of Data)
The numerical summary of data has a standard set of statistics. There is a differ-
ence between data and statistic. Data are a result of measurement. Statistic is a 
result of statistical processing of data. There is a prerequisite for doing descriptive 
statistics. We need a set of observations—a sample of data points—to prepare a 
numerical summary. A few components should have been made or a few executions 
of a process should have been made before we think of a numerical summary. This 
constraint is not imposed on graphs. Data 1.1 presents the data sample and shows 
the effort variance data in a typical development project.

What does the data mean? Quantitative reasoning begins with a statistical 
inquiry into effort variance. What is the center of the process? What is the range of 
the process? Is the process data symmetrical as one would expect, or is it skewed? 
Does the process have a strong peak or is it flat? The answers to such queries are for-
mally available in the form of some basic statistics. These statistics have been com-
puted for the effort variance data using the Excel Data Analysis Tool “Descriptive 
Statistics.” Data 1.2 presents the report from this tool.

know about “visual management” and ascribed success of the pie chart to 
visual management.

The pie chart was so simple and yet so effective; it soon became a weekly 
report and became very popular. The pie chart turned the company around.

Data 1.1 Effort 
Variance Data (%)

20.0
12.4
18.0
30.0
  5.0
12.0
15.0
  0.4
−3.0

4.0
7.0

  9.0
10.0
  6.0
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Data, Data Quality, and Descriptive Statistics ◾ 11

There are fourteen basic “statistics” in the table. We can add the kth largest and 
kth smallest values to this list by ticking off the options in the tool. Definitions of 
these statistics are presented in Appendix 1.1.

Box 1.2 power of TaBle

Managing software development is a complex task. A manager applied 
data-driven management in a novel manner to make his task easy. He 
identified 12 milestones and selected the data he needed to collect for 
each milestone for effective management. That led him to design a data 
table with 12 rows and 10 columns. The data columns included dates, size 
defects, effort, and pertinent feature numbers. The milestones coincided 
with deliveries, and the data table came to be called the milestone table. 
With this simple table, he realized he could manage a project almost of 
any size and duration. He also found extra bandwidth to manage many 
more projects simultaneously. His teams never missed milestones because 
he took milestone level data seriously and reviewed the results objectively 
and with precision. His projects were often delivered on time, with quality 
and within budget.

Data 1.2 Descriptive Statistics of Effort Variance

Data                                                      Descriptive Statistics

20.0
12.4

Mean 10.41429

18.0
Standard error 2.278081

30.0
Median 9.5

5.0
Mode N/A

12.0
Standard deviation 8.5238

15.0
Sample variance 72.65516

0.4
Kurtosis 0.908722

–3.0
Skewness 0.720095

4.0
Range 33

7.0
Minimum –3

9.0
Maximum 30

10.0
Sum 145.8

6.0
Count 14
Confidence level (95.0%) 4.921496
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Special Statistics
A few special statistics are explained in later chapters. Standard error is described in 
Chapter 13. Confidence interval is described in Chapter 21. Percentiles, quartiles, 
and interquartile range are explained in Chapter 4. We can assemble our preferred 
statistics into the descriptive statistics banner.

Three Categories of Descriptive Statistics
The simple and most commonly used descriptive statistics can be divided into three 
categories and analyzed more deeply:

Central tendency (discussed in Chapter 2)
Dispersion (discussed in Chapter 3)
Tukey’s five-point summary (discussed in Chapter 4)

Such a deeper exploration might be viewed as part of exploratory data analysis.

Case Study: Interpretation of Effort 
Variance Descriptive Statistics
Let us look at the descriptive statistics of effort variance data provided in Data 1.2. 
The number of data points is 14. We would have preferred more than 30 data points 

Data Table                   Project Name
                   Customer Ref.

 

    
  1        Start Architecture          
  2        Package 1 F1–F5      
  3        Package 2 F6–F20       
  4        Package 3 F21–F40       
  5        Package 4 F41–F50         
  6        Package 5 F51–F67         
  7        Package 6 F68–F73        
  8        Package 7 F74–F85        
  9        Package 8 F86–F91      
10        Package 9 F92–F100         
11        Package 10 F101–F104       
12        End                  Integration
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for drawing conclusions. We can do with 14, keeping in mind that there could be 
small but tolerable errors in our judgment.

Two statistics are of significant consequence—the mean value is 10.414 and 
the maximum value is 30. We are going to apply business rules to evaluate these 
statistics and not statistical rules. The mean value of variance, when the estimation 
process is mature, should be close to zero. The ideal behavior of estimation errors is 
like that of measurement errors; both should be symmetrically distributed with the 
center at zero. After all, estimation is also a measurement. The current mean vari-
ance of 10.414 is high, suggesting that the project consistently loses approximately 
10% of manpower. This is what Juran called chronic waste.

The second problem is that the maximum value of variance stretches as far as 
30%. This is not terribly bad, from a practical angle. Projects have reported much 
higher extremities going once in a while as far as 80%. This is anyway a less serious 
problem than the mean value.

Both kurtosis and skewness are not alarming.
The median stays closer to the mean, as expected.
There is no clear mode in the data.

The range is 33, but the standard deviation is approximately 8.5, suggesting 
a mathematical process width of six times standard deviation, equal to 51. The 
mathematical model predicts larger variation of process. However, even this larger 
forecast is not alarming as the mean value.

Overall, the project team has a reasonable discipline in complying with plans, 
indicated by acceptable range. The estimation process requires improvement, and it 
looks as if the estimation process could be fine-tuned to achieve a mean error of zero.

Box 1.3 SMall IS BIG

The maintenance projects had to deal with 20,000 bugs every week pouring 
in from globally located customer service centers. The product was huge, and 
multiple updates happened every month and delivered to different users in 
different parts of the world. The maintenance engineers were busy fixing the 
bugs and had no inclination to look at and learn from maintenance data. The 
very thought of a database with millions of data points deterred them from 
taking a dip into the data. Managers were helpless in this regard because they 
had no case to persuade people to take large chunks of time and pore over 
data. Data were unpopular until people came to know about five-point sum-
maries. A month’s data can be reduced to Tukey’s five statistics: minimum, 
first quartile, median, third quartile, and maximum. People found it very 
easy at merely five statistics to understand a month’s performance.
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Application Notes
A primary application of the ideas we have seen in this chapter is in presenting data 
summaries. The design of summary tables deserves attention.

First, presenting too many metrics in a single table must be avoided. Beyond 
seven metrics, the brain cannot process parallel data. Data summary tables with 40 
metrics go overhead. Such data can be grouped under the five categories: business, 
project, process, subprocess, and product. If such a categorization is not favored, 
the summary table can have any of the following categories:

Long term–short term
Business–process
Project–process
Project–process–product

What is important is that the table must be portioned into tiles; the parts may 
be presented separately connected by digital links. This way, different stakeholders 
may read different tables. Whoever picks up a table will find the data relevant and 
hence interesting.

Next, for every metric, the five-point summary may be presented instead of the 
usual mean and sigma for one good reason: most engineering data are nonnormal. 
The five-point summary is robust and can handle both normal and nonnormal 
data.

Concluding Remarks
It is important to realize the context of data to make both data collection and inter-
pretation effective enough.

Time to Repair Analysis
Tukey’s Five-Point Summary

                      Zone 1                 Zone 2                  Zone 3                Zone 4

                     22,000                  12,000                   23,600                 32,000

Statistic
                       Time to                Time to                 Time to               Time to 

                                    Repair,˜Days      Repair, Days      Repair, Days      Repair, Days

Minimum                         12                            6                          45                         25
Quartile 1                         70                          44                          57                         63
Median                           120                          66                        130                         89
Quartile 3                       190                          95                        154                       165
Maximum                      300                        126                        200                        223

N (Bugs
Reported)
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Before analyzing data, we must determine its scale. Permissible statistical 
methods change with scale. For example, we use median and percentiles for ordi-
nal data.

Errors in data undermine our confidence in the data. We should not unwit-
tingly repose undue confidence in data. We must seek to find the data sources and 
make an assessment of possible percentage of error in data. For example, customer 
perception data are likely to be inconsistent and subjective. In this case, we would 
trust the central tendency expressions rather than dispersion figures. Machine-
collected data such as bug repair time is likely to be accurate.

We should learn to summarize data visually as well as numerically. We can 
make use of Excel graphs for the former and descriptive statistics in Excel for the 
latter. These summaries also constitute first-level rudimentary analyses without 
which data collection is incomplete.

Data have the power to change paradigms. Old paradigms that do not fit fresh 
data are replaced by new paradigms that fit. Data have the power to renew business 
management continually. Data are also a fertile ground for innovation, new dis-
coveries, and improvement. All these advantages can be gained with rudimentary 
analyses of data.

Review Questions
 1. What are data?
 2. What are scales of measurement?
 3. What is a statistic? How is it different from data?
 4. What are the most commonly used descriptive statistics?
 5. What is Tukey’s five-point summary?
 6. How does data contribute to self-improvement?

Box 1.4 analoGy: BIofeedBack

There was this boy who stammered and went to a speech therapist. The treat-
ment given was simple: he had to watch his speech waveform in an oscillo-
scope as he was speaking to a microphone. He practiced for 5 days, half an 
hour a day, and walked away cured of stammering. The way he gained normal 
speech is ascribed to biofeedback. Human systems correct themselves if they 
happen to see their performance. That is precisely what data usage in software 
development project achieves. When programmers see data about their code 
defects, the human instinctive capability is to rectify the problems and offer 
defect-free code. This principle has universal application and is relevant to all 
software processes, from requirement gathering to testing.
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Exercises
 1. If you are engaged in writing code for a mission critical software application, 

and if you wish to control the quality of the code to ensure delivery of defect 
free components, what data will you collect? Design a data collection table.

 2. During testing of a 5000 LOC code, what data will you collect for the pur-
pose of assessing code stability?

Appendix 1.1: Definition of Descriptive Statistics
Number of Data Points
When we see a metric value, we should also know the size of the sample used in 
the calculation.

Number of data points (observations) n

Sum
This is a plain total of all values, useful as a meta-calculation:

 
Sum =

=

=

∑ xi

i

i n

1

Variance
This is a mathematical calculation of data dispersion obtained from the following 
formula:

 
Variance =

−

−
=∑ ( )x x

n

i
i

n
2

1

1

where n is the sample size and x  is the sample mean. Variance is the average squared 
deviation from the mean.

Standard Deviation
Square root of variance is equal to standard deviation. This is the mathematical 
expression of dispersion. This is also a parameter to normal distribution.

The standard deviation symbol σ is used to show the standard deviation nota-
tion. Symbol = σ, σ read as sigma:

 σ = variance
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Maximum
This is the largest value in the sample. Large values of effort variance indicate a 
special problem and are worth scrutiny. The questions here are “How bad is the 
worst value? Is it beyond practical limits?” This statistic is a simple recognition of a 
serious characteristic of data.

Minimum
This is the other end of data values. The question is similar: “How low is the min-
imum value?” In effort variance, the minimum value can have a negative sign, 
suggesting cost compression. Usually, cost compression is good news, but process 
managers get cautious when the value becomes deeply negative. The questions that 
bother them are as follows: Has there been some compromise? Will cost saving have 
a boomerang effect?

Range
Range is obtained by subtracting the minimum from the maximum. Range repre-
sents process variation, in an empirical sense. This statistic is widely used in process 
control. It is simple to compute and yet sensitive enough to alert if processes vary 
too much.

Range is just the difference between the largest and the smallest values:

 Range = maximum − minimum

Mode
Mode is the most often repeated value. It is an expression of central tendency.

Median
Median is the value that divides data—organized into an ordered array—into two 
equal halves. This is another expression of central tendency.

In simple words, median is the middle value in the list of numbers. A list should 
be arranged in an ascending order first to calculate the median value. Then the 
formula is stated as follows:

If the total number of numbers (n) is an odd number, then the formula is given 
as follows

 
Median term

th

= +





n 1
2
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If the total number of the numbers (n) is an even number, then the formula is 
as follows:

 
Median

term term
th th

=





 + +







n n
2 2

1

2

Mean
Mean is the arithmetic average of all data points. This is an expression of central 
tendency. This is also a parameter to normal distribution:

 
x

x

n
= ∑

Kurtosis (Flatness of Distribution)
Kurtosis is how peaked the data distribution is. Positive kurtosis indicates a rela-
tively peaked distribution. Negative kurtosis indicates a relatively flat distribution 
(see Chapter 3 for the formula).

Skewness (Skew of Distribution)
Skewness is a measure of asymmetry in data. Positive skewness indicates a distri-
bution with an asymmetric tail extending toward more positive values. Negative 
skewness indicates a distribution with an asymmetric tail extending toward more 
negative values (see Chapter 3 for the formula).
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Chapter 2

Truth and Central 
Tendency

We have seen three statistical expressions for central tendency: mean, median, and 
mode. Mean is the arithmetic average of all observations. Each data point con-
tributes to the mean. Median is the middle value of the data array when data are 
arranged in an order—either increasing order or decreasing order. It is the value 
of a middle position of the ordered array and does not enjoy contribution from all 
observations as the mean does. Mode is the most often repeated value. The three 
are equal for symmetrical distributions such as the normal distribution. In fact, 
equality of the three values can be used to test if the data are skewed or not. Skew 
is proportional to the difference between mean and mode.

Mean
Use of mean as the central tendency of data is most common. The mean is the true 
value while making repeated measurements of an entity. The way to obtain truth 
is to repeat the observation several times and take the mean value. The influence 
of random errors in the observations cancel out, and the true value appears as the 
mean. The central tendency mean is used in normal distribution to represent data, 
even if it was an approximation. Mean is the basis for normal distribution; it is 
one of the two parameters of normal distribution (the other parameter is standard 
deviation). One would expect the mean value of project variance data such as effort 
variance, schedule variance, and size variance to reveal the true error in estimation. 
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Once the true error is found out, the estimation can be calibrated as a measurement 
process.

It is customary to take a sample data and consider the mean of the sample as 
the true observation. It makes no statistical sense to judge based on a single obser-
vation. We need to think with “sample mean” and not with stray single points. 
“Sample mean” is more reliable than any individual observation. “Sample mean” 
dominates statistical analysis.

Uncertainty in Mean: Standard Error
The term “sample mean” must be seen with more care; it simply refers to the mean 
of observed data. Say we collect data about effort variance from several releases 
in a development project. These data form a sample from which we can compute 
the mean effort variance in the project. Individual effort variance data are used to 
measure and control events; sample mean is used to measure and control central 
capability. Central tendency is used to judge process capability.

Now the Software Engineering Process Group (SEPG) would be interested in 
estimating process capability from an organizational perspective. They can collect 
sample means from several projects and construct a grand mean. We can call the 
grand mean by another term, the population mean. Here population refers to the 
collective experience of all projects in the organization. The population mean rep-
resents the true capability of organization.

If we go back to the usage of the term truth, we find there are several discoveries 
of truth; each project discovers effort variance using sample mean. The organiza-
tion discovers truth from population mean.

Now we can estimate the population mean (the central tendency of the organi-
zational process) from the sample mean from one project (the central tendency of 
the local process). We cannot pinpoint the population mean, but we can fix a band 
of values where population mean may reside. There is an uncertainty associated 
with this estimation. It is customary to define this uncertainty by a statistic called 
standard error. Let us look further into this concept.

It is known that the mean values gathered from different projects—the sample 
means—vary according to the normal distribution. The theorem that propounds 
this is known as the central limit theorem. The standard deviation of this normal 
distribution is known as the standard error.

If we have just collected sample data from one project with n data points, and 
with a standard deviation s, then we can estimate standard error with reasonable 
accuracy using the relation
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SE = s

n

Defining an uncertainty interval for mean is further explained in Chapter 25.

Median
The physical median divides a highway into two, and the statistical median divides 
data into two halves. One half of the data have values greater than the median. The 
other half of the data have values smaller than the median. It is a rule of thumb that 
if data are nonnormal, use median as the central tendency. If data are normally dis-
tributed, median is equal to mean in any case. Hence, median is a robust expression 
of the central tendency, true for all kinds of data. For example, customer satisfac-
tion data—known as CSAT data—are usually obtained in an ordinal scale known 
as the Likert scale. One should not take the mean value of CSAT data; median is 
the right choice. (It is a commonly made mistake to take the mean of CSAT data.) 
In fact, only median is a relevant expression of central tendency for all subjective 
data. Median is a truer expression of central tendency than mean in engineering 
data, such as data obtained from measurements of software complexity, productiv-
ity, and defect density.

While the mean is used in the design of normal distribution, the median is 
used in the design of skewed distributions such as the Weibull distribution. 
Median value is used to develop the scale parameter that controls width.

Box 2.1 Hanging a Beam

Think of mean as a center of gravity. In Figure 2.1, the center of gravity 
coincides with the geometric center, which is analogous to the median of the 
beam, and as a result, the beam achieves equilibrium. In Figure 2.2, the cen-
ter of gravity shifts because of asymmetrical load distribution; the beam tilts 
in the direction of center of gravity. The median, however, is still the same 
old point. The distance between median and center of gravity is like the dif-
ference between median and mean. Such a difference makes the beam tilt; in 
the case of a data array, the difference between median and mean is a signal 
of data “skew” or asymmetry.
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Geometric middle point
(analogous to median)

Center of gravity
(analogous to mean)

˜e uniform beam balances at the middl e
point. ˜e center of gravity (analogous to
mean) and the middle point (analogous to
median) coincide.

Figure 2.1 Geometric middle point and center of gravity coincides and the 
beam is balanced.

Geometric middle point
(analogous to median) Center of gravity

(analogous to mean)

˜e asymmetrically loaded beam tilts. ˜is is
analogous to data skew.

Rider upsets
balance of the

beam

Figure 2.2 Asymmetry is introduced by additional weight on the rightside 
of the beam. The mean shifts to the right.
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Mode
Mode, the most often repeated value in data, appears as the peak in the data dis-
tribution. Certain judgments are best made with mode. The arrival time of an 
employee varies, and the arrival data are skewed as indicated in the three expres-
sions of central tendency: mean = 10:00 a.m., confidence interval of the mean = 
10:00 a.m. ± 20  minutes, median = 9:30 a.m., and mode = 9:00 a.m. The expected 
arrival time is 9:00 a.m. Let us answer the question, is the employee on time? 
The question presumes that we have already decided not to bother with individual 
arrival data but wish to respond to the central tendency. Extreme values are not 
counted in the judgment. We choose the mode for some good reasons. Mean is 
biased by extremely late arrivals. Median is insensitive to best performances. Mode 
is more appropriate in this case.

Geometric Mean
When the data are positive, as is the case with bug repair time, we have a more 
rigorous way of avoiding the influence of extreme values. We can use the concept 
of geometric mean.

The geometric mean of n numbers is the nth root of the product of the n num-
bers, that is,

 GM = x x xn
n

1 2

Box 2.2 a RoBust RefeRence

Median is a robust reference that can serve as a baseline much better than 
mean serves. If we wish to monitor a process, say test effectiveness, first we 
need to establish a baseline value that is fair. Median value is a fair central line 
of the process, although many tend to use mean. Mean is already influenced 
by extreme values and is “prejudiced.” Median reflects true performance of 
the process. Untrimmed mean reflects the exact location of the process with-
out any discrimination. Median effectively filters away prejudices and offers a 
fair and robust judgment of process tendency. For example, the median score 
of a class in a given subject is the true performance of the class, and the mean 
score does not reflect the true performance.
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Geometric mean can also be calculated from the arithmetic mean of the loga-
rithm of the n numbers. Then this must be converted back to a “base 10 number” 
by using an antilogarithm.

A geometric mean, unlike an arithmetic mean, tends to mitigate the effect of 
outliers, which might bias the mean if a straight average (arithmetic mean) was 
calculated.

The geometric mean for bug repair time given in Table 2.1 is found to be 17.9. 
We can use the Excel function GEOMEAN to calculate this. In this case, it may 
be noted that the geometric mean is almost equal to the median value. It may be 

Table 2.1 Bug Repair Time

Number of Days

16 31 7

23 19 28

45 18 29

20 18 12

13 21 49

13 39 20

58 14 21

9 11 49

7 11 14

29 9 15

13 25 13

12 25 6

32 20 28

31 17 21

31 13 23

33 13 13

6 13 16

31 24 10

26 12 14

21 7 14
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remembered that all data values are not used in the median computation, whereas 
every data value is used in the geometric mean.

There are certain financial return calculations where geometric mean is the 
right choice. If an investment earns 20% in the first year, 40% in the second year, 
50% in the third year, and 60% in the fourth year, the average return is not the 
arithmetic mean of 42.5% but the geometric mean of 41.703%. It is an error to use 
the arithmetic mean in this case.

Jeff and Lewis [1] have studied tasks times in usability tests that are positively 
skewed. They report that the median does not use all the information available in 
a sample. Using the geometric mean, they have achieved 13% less error and 22% 
less bias than the median.

Harmonic Mean
With positive data, we have yet another statistic to yield central tendency without 
bias from extreme values: the harmonic mean. It is even more protective than geo-
metric mean, that is,

 

HM =
+ + +

N

x x xN

1 1 1

1 2
....

 

To find the harmonic mean of a set of n numbers, we add the reciprocals of the 
numbers in the set, divide the sum by n, then take the reciprocal of the result. The 
harmonic mean is the reciprocal of the arithmetic mean of reciprocals. This gives 
further screening from extreme values. The harmonic mean for bug repair time data 
given in Table 2.1 is 15.6 days. This value is closer to the mode than the median, the 
geometric mean, or the mean.

The Excel function to find harmonic mean is HARMEAN.
A formal treatment of geometric and harmonic means may be found in the 

Handbook of Means and Their Inequalities by Bullen [2].

Interconnected Estimates
In interpreting the central tendency of software data, so much depends on the 
situation. In most cases, data are skewed; therefore, mean, median, and mode are 
different. In such cases, there is no one word answer to central tendency. There are 
three values that need to be studied and interpreted.

Consider the case of repair time of a particular category of bugs in a software 
development project. Bug repair time data are given in Table 2.1.
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The following are the five values of central tendency:

Arithmetic mean 20.517
Median 18.000
Mode 13.000
Geometric mean 17.867
Harmonic mean 15.561

The team leader wants to set a goal for bug repair time and also wants to plan 
resources for the next quarter based on the bug arrival forecast. He wants to take 
data-driven decisions. He wants optimum decisions too. Which expression of truth 
will he use?

If we subscribe to the approach that people should follow best practices, the 
mode should be used to define goal. Aggressive goal setting can still be based on 
the best performance demonstrated: mode. We need a realistic value to be used in 
resource planning. We can either choose the median or the mean. Mean is safer 
and can provide a comfortable cushion. However, then we will be overplanning the 
resources. A look at the data set shows that maximum value is 58 days. We realize 
that such extreme values have biased mean values and deteriorated its application 
potential. Thus, the mean is rejected. A fair answer could be the median.

If the data are positive but skewed, then the geometric and harmonic means can 
be used. Hence, if the data are complex, we need to look at the multiple estimates 
of central tendency instead of just the mean.

Weighted Mean
There are times when we weight data x with factors w and find the weighted average 
using the following formula:

 

x

w x

w

i i

i

n

i

i

n= =

=

∑

∑
1

1

In the Program Evaluation and Review Technique (PERT) calculation, the esti-
mated schedule is a weighted mean of three values:

Optimistic value {O} Weight 1
Pessimistic value {P} Weight 1
Most likely value {ML} Weight 4
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Estimate = + +

+ +
1 4 1

1 4 1
O ML P

Expert judgment of a milestone schedule (days) is shown in Table 2.2. A proper 
estimate is obtained by applying weighted average.

In the previous example, the arithmetic mean is 50 days, and the weighted 
mean is 45 days.

Robust Means
The robust estimate of the mean is less affected by extreme values.

Trimmed Mean
Arithmetic mean breaks down if an extreme value is introduced. Even the presence 
of one extreme value can change this mean. In other words, it has a 0 breakdown 
point.

Trimming data gives us robust estimates of the mean, in the sense that the 
mean is resistant to changes in outlier data. Calculating the arithmetic mean after 
removing x% of data in the lower side and x% of data in the higher side will lead us 
to x% trimmed mean. Practically, x% can vary from 3% to 25%; x% is also called 
breakdown point.

In schools, the mean score of a class is calculated after removing 5% from the 
top and 5% from the bottom scores. It is 5% trimmed mean.

In process management, trimming is not a very straightforward step. Trouble in 
the process is normally revealed in the outliers. We identify outliers and do root cause 
analysis on them for process improvement. We cannot mindlessly discard extreme 
values while data cleaning. We can trim data to find a robust expression for central 
tendency, but the removed data have meaning elsewhere and need to be stored.

For more on trimmed means, refer to the thesis by Wu [3].

Table 2.2 Expert Judgment of Milestone Schedule (Days)

Weight Data Weighted Data

Optimistic 1 20 20

Most likely 4 40 160

Pessimistic 1 90 90

Average 50 45
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Winsorized Mean
Winsorized mean is similar to the trimmed mean. However, instead of trimming 
the points, they are set to the lowest or highest value. The beneficial properties of 
Winsorized means for skewed distributions are discussed by Rivest [4].

Midhinge
This is the average of the first and the third quartiles (the 25th and the 75th percen-
tiles). This is a robust estimate.

Midrange
Midrange is the average of the smallest and the largest data.

Tukey’s Trimean
This is obtained from the quartiles using the formula

 
Trimean = + +Q Q Q1 2 32

4
 

Mean Derived from Geometrical Perspectives
Interesting geometric-based definitions of mean are summarized by Umberger [5]. 
Different means are seen as geometric properties of trapezoids.

Two Categories
We can divide expressions of central tendency into two categories. In the first cat-
egory, we obtain participation from all observations in calculating central tendency. 
There are just three expressions that belong to this category. These measures natu-
rally support mathematical modeling.

Category 1
 1. Mean: we can use mean as a first-order judgment of central tendency

Mean gives true value if we replicated an experiment.
Estimating mean removes random noise.
Mean provides a basis for building normal distribution from data.
Mean is affected by extreme values.
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 2. Geometric mean: central tendency for skewed positive data
 3. Harmonic mean: central tendency for skewed positive data

In the second category, we obtain participation from only strategically selected 
data points. We have seen seven such measures.

Category 2
 1. Mode: a better indicator of central tendency in human performance
 2. Median: a better indicator of central tendency in nonnormal data
 3. Trimmed mean: straight removal of extreme values
 4. Winsorized mean: robust calculation
 5. Trimean: a weighted average of quartiles
 6. Midhinge: an average of the first and the third quartiles
 7. Midrange: average of lowest and largest values

We can estimate a pertinent set of means before judging the central tendency. The 
choice would depend on the skew, the presence of outliers, and the degree of protec-
tion we need from outliers. Such a choice would make analysis robust and safe.

Truth
Truth, expressed as central tendency, has many variants. We can narrow down our 
options depending on the type of data and depending on what we wish to do with 
the finding. The message is not in the mean, nor in the median. The message is to 
be seen in the many expressions. To the mathematically inclined, geometric mean 
and harmonic mean are alternatives to the arithmetic mean. The differences must 
be reconciled with practical reasoning.

Statistical judgment is never the ultimate end.
Further reasoning alone can discover truth.

Statistical calculations need not be the ultimate truth. At best, they can guide 
us toward truth. The moment of truth occurs only with reasoning.

To the empirical researchers, there is a series of trimmed means to bestow alter-
natives to the median.

The impact of multiple definitions of central tendency is rather heavy while 
evaluating shifts in process means. It is safer to work out all the definitions, obtain 
multiple numbers for central tendency, and treat them as a small universe of values.

We will have to compare one universe of central tendency values with 
another. We can no longer pitch one mean against another or engage in 
such misleading exercises.

© 2015 by Taylor & Francis Group, LLC

  



32 ◾ Simple Statistical Methods for Software Engineering

Application Notes
Managing Software Projects Using Central Tendency Values
After collecting all the data, software projects are more commonly managed with 
values of central tendency. Managers prefer to take decision with summary truths.

Goal tracking is done using mean values while risk management is done 
using variances.

Weekly and monthly reports make liberal use of mean values of data collected. 
Performance dashboards make wide use of mean values. Means are compared to 
evaluate performance changes.

Making Predictions
Basic forecasts address mean values. Most prediction models present mean values. 
In forecasting business volumes and resource requirements, central tendencies are 
predicted and used as a rule. The prediction of variance is performed as a special 
case to estimate certainty and risk.

Box 2.3 a golden Rule to oBtain tRutH

Estimating a software project using the “expert judgment” method is knowledge 
driven. However, selective memory could taint human judgment because knowl-
edge is embedded in the human mind. A golden rule to extract truth from expert 
judgment is to make the expert recall extreme values as well as the central value 
from previous experience and use a weighted average using the 1:4:1 ratio. This 
estimate is respected as a golden estimate, and the rule is hailed as the golden rule.

Box 2.4 aligning tHe mean

Aligning the mean of results with target is a great capability. Process alignment 
with target is measured by the distance between mean and target. The lesser the 
distance, the greater is the alignment. Aligned processes synchronize with goals, 
harmonize work flow, and multiply benefits. The mean of results is particularly 
important in this context. The quality guru Taguchi mentions that the loss to soci-
ety is proportional to the square of the drift of process mean from target, that is,

 Loss = (target − mean)2 
Drift favorable to the consumer creates loss to the supplier; drift in the 

opposite direction creates loss to the consumer. Either way, drift causes loss 
to someone in society.
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Case Study: Shifting the Mean
Performance is often measured by the mean. This is true even in the case of engi-
neering performance. Code complexity is an engineering challenge. Left to them-
selves, programmers tend to write complex codes, a phenomenon known as software 
entropy. Code complexity is measured by the McCabe number. Shifting the mean 
value of the McCabe number in code requires drive from leaders and motivation 
from programmers. To make a shift in the mean complexity is a breakthrough in 
software engineering. Lower complexity results in modules that are testable and 
reliable. Nevertheless, achieving lower complexity requires innovation in software 
structure design and programming approaches.

This case study is about a software development project that faced this challenge 
and overcame it by setting a visible goal on mean complexity. The current state is 
defined by the mean McCabe number, and the goal state is defined by the desired 
McCabe number. The testing team suggested an upper limit of 70, beyond which 
code becomes difficult to comprehend in terms of test paths; test coverage also suffers. 
Data for the current state show huge variation in complexity from 60 to 123 and even 
150 occasionally. The project manager has two thoughts: fix an upper limit on com-
plexity of individual objects or fix an upper limit for the mean complexity number for 
a set of objects that define a delivery package. Although these two options look simi-
lar, the practical implications are hugely different. On the first option of setting an 
upper limit on individual events, the limit contemplated by testers is 70. The second 
option is about setting limit on the central tendency; this really is setting an optimum 
target for software development. The number chosen for this target is 40. This is a 
stretch goal, making the intention of the project manager very clear. Figure 2.3 shows 
the chart used by the project team to deploy this stretch goal for shifting the mean.

In reality, the team is gradually moving toward the targeted mean value. The 
direction of shift in the mean is very satisfying.

Current mean 78 

Target mean 40 M
cC

ab
e 

nu
m

be
r

Current
state

Goal
state

Desired
breakthrough

Figure 2.3 Reducing the code complexity.
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Review Questions
 1. What are the strengths and weaknesses of arithmetic mean?
 2. What is the most significant purpose of using trimmed means?
 3. Why is median considered more robust?
 4. How will you find central tendency in ordinal data?
 5. What are the uses of weighted average?

Exercises
 1. Customer Satisfaction Data in a software development project is obtained in 

a Likert scale ranging from 1 to 5. The 1-year customer satisfaction scores are 
given below. Find the central tendency in the data (data 2, 4, 3, 5, 1, 3, 3, 4, 
5, 3, 2, 1).

 2. A test project duration is estimated by an expert who has made the following 
judgments:
 Optimistic duration: 45 days
 Pessimistic duration: 65 days
 Most likely duration: 50 days

 What do you think is the final and fair estimate of the test project duration?
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Chapter 3

Data Dispersion

Data dispersion arises because of sources of variation, including variations in measure-
ments and results due to changes in the underlying process. Which one varies more, 
measurement or processes under measurement? We proceed in this chapter with the 
assumption that there is sufficient measurement capability behind the data; that means 
the measurement errors are very small compared with process variation. If this condition 
is met, dispersion in data will represent dispersion in the process under measurement.

Range-Based Empirical Representation
Dispersion or variation in process is viewed as uncertainty in the process outcome. 
To deal with uncertainty, we need to measure, express, and understand it. Range is 
a good old way of measuring dispersion. This has been used in the traditional X-Bar 
and R control charts, where R stands for range and X-Bar stands for sample mean. 
Range is the difference between maximum and minimum values in data.

There is another convention to leave out extreme values and the considered range. 
Typically, the values below the 3rd percentile and the values above the 97th percen-
tile are disregarded. To understand this, we need to construct the data array and 
sort data in some order and then chop off the upper 3rd percentile and the lower 
3rd percentile. (If the length of the array is L, the 3rd percentile point will rest at a 
point on the array at a distance of 0.03L from the origin. Similarly, the point of the 
97th percentile will rest at a distance of 0.97L from the origin.) This range is the 
empirical difference between the 3rd and the 97th percentile values.

The two calculations previously mentioned are conservative. In a third approach, 
the interquartile range (IQR) is taken as the core variation of the process. IQR is the dif-
ference between Q3 and Q1. It may be noted that 50% of observations remain in IQR.
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Here is a summary of the three empirical expressions of dispersion:

Range maximum
Percentile range 97th

=
=

–minimum
–3rd ppercentile

–Q1IQR Q 3=

Example 3.1: Studying Variation in Design Effort

Design effort data as a percentage of project effort have been collected. The data 
are shown in Data 3.1.

The dispersion analysis of the data using the above-mentioned formulas is 
shown as follows:

% Design Effort

Max 100.00

Min 2.87

Range 97.13

3rd percentile 4.478

97th percentile 91.616

Range 87.139

1st quartile 9.932

2nd quartile 24.933

Range 15.001

Data 3.1 Design Effort Data

% Design E˜or t
             2.87
           11.55
           11.11
           18.55
           21.08
         100.00
           83.56
             6.75
             6.33
             9.71
           21.25
             6.02
           30.63
           13.14
           26.16
           18.85
           32.14
           10.59
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The full range, 97.13, is uncomplicated. The other two ranges have been trimmed. 
The 3rd percentile range (obtained by cutting off 3% of data on either side) is 87.139. 
The IQR is 15.001. Choosing the trimming rules has an inherent trouble—it can 
tend to be arbitrary, unless we exercise caution. Trimming the range is a practical 
requirement because we do not want extreme values to misrepresent the process. The 
untrimmed range is so large that it is impractical. There could be data outliers; one 
would suspect wrong entry, or wrong computation of the percentage of design effort. 
It is obvious that the very high values, such as 100% design effort, are impractical. 
Because the data have not been validated by the team, we can cautiously trim and 
“clean” the data. The 3rd percentile range seems to be clean, but it still has recognized 
a high value of 91.616%, again an impractical value. Perhaps we can tighten the trim-
ming rule, say a cutoff of 20% on either end of data. If we want such tight trimmings, 
we might as well use the IQR, which has trimmed off 25% of data on either end.

Example 3.2: Analyzing Effort Variance Data from Two Processes

Let us take a look at effort variance data from two types of projects, following two 
different types of estimation processes. The data are shown in Data 3.2.

A summary of range analysis is shown as follows: Estimation A and Estimation B

Estimation A Estimation B

Full range 86.482 63.640

Percentile range 69.466 45.181

IQR 19.995 8.075

The three ranges individually confirm that the second set of data from projects 
using a different estimation model has less dispersion.

In both of the previously mentioned examples, we have studied dispersion from 
three different angles. We have not looked into the messages derived from the extreme 
values. Extreme values are used elsewhere in risk management and hazard analysis.

Range calculations approach dispersion from the extreme values—the ends—
of data. These calculations do not use the central tendencies. In fact, these are 
independent of central tendencies.

Next we are going to see expressions of dispersion that consider central ten-
dency of data.

Box 3.1 CroSSing A riVEr

There was a man who believed in averages. He had to cross a river but did 
not know how to swim. He obtained statistics about the depth and figured 
out that the average depth was just 4 feet. This information comforted him 
because he was 6 feet tall and thought he could cross the river. Midway in the 
river, he encountered a 9-foot-deep pit and never came out. This story is often 
cited to caution about averages. This story also reminds us that we should 
register the extreme values in data for survival.
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Dispersion as Deviation from Center
The range of data is a fairly good measure of dispersion. However, if we look at the 
scatter of data around a center, we will obtain a better and more complete picture. 
To visualize this, let us look at hits from a field gun on an enemy target. The hits are 
scattered around the target. If the gun is biased, the hits may be scattered around 

Data 3.2 Dispersion in Effort Variance Data

E˜or t 
Variance – 1

E˜or t 
Variance – 2

51.41 0.07
23.20 9.00
–7.67 –7.67

0.19 0.19
8.31 0.79
4.32 4.32

22.58 22.58
8.23 8.23

28.57 28.57
7.24 7.24

–1.39 –1.39
–1.31 –1.31

–11.32 –11.32
1.27 1.27
6.51 6.51
0.00 0.00

48.15 6.67
1.38 1.38

–2.67 –2.67
23.02 23.02

–35.07 –35.07
4.67 4.67

Range E˜or t 
Variance – 1

E˜or t 
Variance – 2

86.48 63.64

Percentile Range E˜or t 
Variance – 1

E˜or t 
Variance – 2

3rd Percentile –20.11 –20.11
97th Percentile 49.36 25.07

Percentile Range 69.47 45.18

Inter Quartile Range (IQR) E˜or t 
Variance – 1

E˜or t 
Variance – 2

Q1 –0.98 –0.98
Q3 19.01 7.09

IQR 19.99 8.07
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a center slightly away from the target. In both the scenarios, the hits are scattered 
around a center, the mean value.

Dispersion is measured in terms of deviations from the mean. Data with larger 
dispersion show larger deviations from the mean. The following are different expres-
sions making use of this basic idea.

Average Deviation
If we calculate the deviations of all data points—all the N hits—from the mean x  
and take the average, we will obtain a measure of scatter, or dispersion. The average 
deviation for N hits from the field gun is a fairly representative estimate of dispersion. 
Every deviation is measured in meters, and the average deviation is also in meters.

The formula is given as follows:

 D
x x

Nx
i

N

=
−

=∑ ( )
1  (3.1)

When we try the same formula to obtain the average deviation in bug repair 
times (data shown in Table 3.1), we encounter a problem. The average deviation can 
be seen as zero.

The deviation values have a direction; the value can be positive or negative. In 
the process of calculating the average deviation, the positive values have cancelled 
out the negative values.

Average Absolute Deviation
To avoid the sign problem, we can take absolute values of deviation, as shown in 
this modified formula. This is a workaround.

 D
x x

Nx

i
i

N

=
−

=∑ 1  (3.2)

Absolute deviations have been calculated and shown in Table 3.1. The average 
absolute deviation from the mean is 8.669 days. This number defines dispersion of 
bug repair time around the data mean of 20.517.

We can use this measure to compare scatter in 2-month bug repair data.

Median Absolute Deviation
The scale of scatter of data can be computed with respect to any center. Normally, 
we use mean as the center as we have conducted in computing the average absolute 
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Table 3.1 Average Deviation and Average Absolute Deviation of Bug Repair Time

Bug Repair Time (days) Mean (days)
Deviation from 

Mean (days)
Absolute Deviation from 

Mean (days)

16 20.517 –4.517 4.517

23 20.517 2.483 2.483

45 20.517 24.483 24.483

20 20.517 –0.517 0.517

13 20.517 –7.517 7.517

13 20.517 –7.517 7.517

58 20.517 37.483 37.483

9 20.517 –11.517 11.517

7 20.517 –13.517 13.517

29 20.517 8.483 8.483

13 20.517 –7.517 7.517

12 20.517 –8.517 8.517

32 20.517 11.483 11.483

31 20.517 10.483 10.483

31 20.517 10.483 10.483

33 20.517 12.483 12.483

6 20.517 –14.517 14.517

31 20.517 10.483 10.483

26 20.517 5.483 5.483

21 20.517 0.483 0.483

31 20.517 10.483 10.483

19 20.517 –1.517 1.517

18 20.517 –2.517 2.517

18 20.517 –2.517 2.517

21 20.517 0.483 0.483

39 20.517 18.483 18.483

14 20.517 –6.517 6.517

11 20.517 –9.517 9.517

11 20.517 –9.517 9.517

9 20.517 –11.517 11.517

25 20.517 4.483 4.483

(Continued)
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Table 3.1 (Continued) Average Deviation and Average Absolute Deviation of Bug 
Repair Time

Bug Repair Time (days) Mean (days)
Deviation from 

Mean (days)
Absolute Deviation from 

Mean (days)

25 20.517 4.483 4.483

20 20.517 –0.517 0.517

17 20.517 –3.517 3.517

13 20.517 –7.517 7.517

13 20.517 –7.517 7.517

13 20.517 –7.517 7.517

24 20.517 3.483 3.483

12 20.517 –8.517 8.517

7 20.517 –13.517 13.517

7 20.517 –13.517 13.517

28 20.517 7.483 7.483

29 20.517 8.483 8.483

12 20.517 –8.517 8.517

49 20.517 28.483 28.483

20 20.517 –0.517 0.517

21 20.517 0.483 0.483

49 20.517 28.483 28.483

14 20.517 –6.517 6.517

15 20.517 –5.517 5.517

13 20.517 –7.517 7.517

6 20.517 –14.517 14.517

28 20.517 7.483 7.483

21 20.517 0.483 0.483

23 20.517 2.483 2.483

13 20.517 –7.517 7.517

16 20.517 –4.517 4.517

10 20.517 –10.517 10.517

14 20.517 –6.517 6.517

14 20.517 –6.517 6.517

Average Deviation 0.000

Average Absolute Deviation 8.669
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deviation. A robust method is to consider median as the center. Absolute deviations 
from the median are then computed. Next we take the average value of these abso-
lute deviations, that is, the median absolute deviation (MAD). The bug repair time 
data MAD value is 6.000. The calculation is shown in Data 3.3.

Sum of Squares and Variance
There is another way to avoid the sign problem. We can square the deviations and 
take the average. In some statistical contexts, we register an intermediate stage of 
computing the sum of squares. If two data sets have the same number of data 
points, the sum of squares can be used to compare dispersion. If the number of data 
points varies, we should take the average, known as variance.

For bug repair time, sum of squares and variation calculations are shown in Data 3.4.

Data 3.3 Absolute Deviation of Bug Repair Time from the Median

16   18.000                2.000
23                 18.000                5.000
45                 18.000              27.000
20                 18.000                2.000
13                 18.000                5.000
13                 18.000                5.000
58                 18.000              40.000
  9                 18.000                9.000
  7                 18.000              11.000
29                 18.000              11.000
13                 18.000                5.000
12                 18.000                6.000
32                 18.000              14.000
31                 18.000              13.000
31                 18.000              13.000
33                 18.000              15.000
  6                 18.000              12.000
31                 18.000              13.000
26                 18.000                8.000
21                 18.000                3.000
31                 18.000              13.000
19                 18.000                1.000
18                 18.000                0.000
18                 18.000                0.000
21                 18.000                3.000
39                 18.000              21.000
14                 18.000                4.000
11                 18.000                7.000
11                 18.000                7.000
  9                 18.000                9.000
25                 18.000                7.000

Bug Repair
Time Days

Median
Days

Absolute
Deviation

Days
Bug Repair
Time Days

Median
Days

Absolute
Deviation

Days

25                 18.000                7.000
20                 18.000                2.000
17                 18.000                1.000
13                 18.000                5.000
13                 18.000                5.000
13                 18.000                5.000
24                 18.000                6.000
12                 18.000                6.000
  7                 18.000              11.000
  7                 18.000              11.000
28                 18.000              10.000
29                 18.000              11.000
12                 18.000                6.000
49                 18.000              31.000
20                 18.000                2.000
21                 18.000                3.000
49                 18.000              31.000
14                 18.000                4.000
15                 18.000                3.000
13                 18.000                5.000
  6                 18.000              12.000
28                 18.000              10.000
21                 18.000                3.000
23                 18.000                5.000
13                 18.000                5.000
16                 18.000                2.000
10                 18.000                8.000
14                 18.000                4.000
14                 18.000                4.000

          Median          6.000
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The sum of squares is 7512.983. After deriving the average, the variance is found 
to be 125.216. Variance is a good measure for comparing data sets. However, the 
unit is days2, a squared entity. One cannot make an intuitive assessment of disper-
sion as we are able to do with average absolute deviation.

Box 3.2 iCEBErg AnAlogy

Data are like an iceberg. The peak contains only 15% of ice. The remaining 
85% is beneath the water level, unseen by the onlooker. The unseen ice details 
could do great harm to ships. Likewise, the central values constitute just the 
tip. The real process behavior is in the spread of data. The true behavior of a 
process is understood when the spread is also recognized.

Data 3.4 Sum of Squares and Variance of Bug Repair Time

16    20.517                 20.400
23    20.517                   6.167
45    20.517               599.434
20    20.517                   0.267
13    20.517                 56.500
13    20.517                 56.500
58    20.517         1405.000
  9    20.517           132.634
  7    20.517           182.700
29    20.517             71.967
13    20.517             56.500
12    20.517             72.534
32    20.517           131.867
31    20.517           109.900
31    20.517           109.900
33    20.517           155.834
  6    20.517           210.734
31    20.517           109.900
26    20.517             30.067
21    20.517               0.234
31    20.517           109.900
19    20.517               2.300
18    20.517                  6.334
18    20.517                  6.334
21    20.517                  0.234
39    20.517           341.634
14    20.517                42.467
11    20.517                90.567
11    20.517                90.567
  9    20.517           132.634
25    20.517                20.100

25    20.517                20.100
20    20.517                  0.267
17    20.517                12.367
13    20.517                56.500
13    20.517                56.500
13    20.517                56.500
24    20.517                12.134
12    20.517                72.534

7    20.517           182.700
7    20.517           182.700

28    20.517                56.000
29    20.517                71.967
12    20.517                72.534
49    20.517           811.300
20    20.517                0.267
21    20.517                  0.234
49    20.517           811.300
14    20.517                42.467
15    20.517                30.434
13    20.517                56.500

6    20.517           210.734
28    20.517                56.000
21    20.517                0.234
23    20.517                6.167
13    20.517                56.500
16    20.517                20.400
10    20.517           110.600
14    20.517                42.467
14    20.517                42.467
Sum of Squares         7512.983
      Variance           125.216

Bug Repair
Time Days

Mean
Days

Squared
Deviation

Days
Bug Repair
Time Days

Mean
Days

Squared
Deviation

Days
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Standard Deviation
If we take the square root of the variance of bug fix time, we will obtain 11.190 
days. This is the standard deviation, SD, of bug repair time, the most commonly 
used measure of dispersion. This is larger than the average absolute deviation.

The standard deviation is always larger than the average absolute deviation.

The exact formula for standard deviation, SD, has a small correction for sample 
size. Instead of using n as the number of data points, the exact calculation uses n − 1, 
the degrees of freedom; that is,

 SD =
−

−
=∑ ( )x x

n
i

n
2

1

1
 (3.3)

The corrected value of standard deviation for bug repair time is 11.284.
Process dispersion can be defined in terms of standard deviation, sigma. It is 

a tradition dating back to the 1920s to take process variation as ±3 sigma. The 
normal distribution beyond ±3 sigma is disregarded. Mathematically speaking, the 
normal distribution runs from minus infinity to plus infinity. We trim the tails and 
take the span from −3 sigma to +3 sigma as the process dispersion. The trimming 
rules are associated with confidence level. The ±3 sigma trimming rule is associated 
with a confidence level of 97.3%.

Box 3.3 ThumB rulES

With experience, people develop thumb rules about using dispersion mea-
sures. Although the rules depend on the individual person, here is an educa-
tive example. The following table shows three ways of applying dispersion.

SNo            Purpose                 Range Considered         Confidence Level
  1                   Business decisions              Interquartile                           50%
  2                   Process decisions            3–97 percentile                         94%
  3                   Risk avoidance                      Max–min                            100%

Business decisions are customarily taken to accommodate IQR of varia-
tion. To accommodate more would need an unrealistic budget. Process deci-
sions are made with expectations of reasonably stringent discipline. Risk 
avoidance involves understanding and accommodating extreme values. You 
can form your own rules of thumb to manage dispersion.
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Skewness and Kurtosis
Pearson’s Skewness
Skewness is a measure of asymmetry in data. Pearson’s formula for skewness is 
based on the difference between mean and mode. If the difference is more, there is 
more asymmetry. The formula is given as follows:

 Skewness Mean Mode
SD

= −  (3.4)

Applying this formula to bug repair time data, we obtain a skewness of 0.666. 
The value is positive, indicating the presence of more large data. Data are said to be 
skewed to the right. If the skewness is negative, data would be negatively skewed, 
or skewed to the left.

If the mode is ill defined, then we can use the following modified formula based 
on the difference between mean and median:

 Skewness Mean Median
SD

= −3( )  (3.5)

For bug repair time data, this formula yields a skewness of 0.669.

Bowley’s Skewness
A robust estimate of skewness is based on quartiles and median. This is also known 
as quartile skewness or Bowley’s skewness. The formula is given as follows:

 Bowley s skewness
Q Q Median

Q Q
’ = + −

−
3 1

3 1

2  (3.6)

For bug repair time data, Bowley’s skewness was calculated as 0.259. This value 
is much smaller than Pearson’s value. Bowley’s skewness is on a different scale; it 
varies from −1 to +1. Pearson’s skewness varies from −3 to +3.

Third Standardized Moment
Skewness can be considered using the method of moments. Skewness is the third 
standardized moment. This convention is followed in Excel in the function SKEW 
that uses the following formula:

 Skewness =
− −

−



∑n

n n
x x

s
i

( )( )1 2

3

 (3.7)

where n is the sample size, x  is the sample mean, and s is the sample standard deviation.
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It may be noted that in the formula, deviations are raised to the third power. 
Also, like in all skewness calculations, the value is normalized or standardized with 
a division by standard deviation.

The moment-based calculation skewness—using Excel function SKEW—for 
bug repair time data is 1.271. This is a more sensitive measure of skewness.

Kurtosis
The flatness of data is measured as kurtosis. The lower the value of kurtosis, the 
flatter the data distribution. There are different conventions in computing kurtosis. 
The Excel function KURT uses a formula for kurtosis given as follows:

 Kurtosis =
− − −

−



 − −∑n

n n n
x x

s
ni

( )( )( )
( )

(1 2 3
3 1

4 2

nn n− −




2 3)( )

 (3.8)

where n is the sample size, x  is the sample mean, and s is the sample standard deviation.
The formula has been adjusted to make the kurtosis of normally distributed 

data equal to zero. The Pearson method of calculating kurtosis yields a value of 3 
for normal distribution. If we subtract 3 from the Pearson result, we will obtain 
excess kurtosis. Hence, the Excel KURT formula gives “excess kurtosis,” the value 
in excess of normal kurtosis. If this “excess kurtosis” value is positive, data are more 
peaked; if it is negative, data are broader.

Kurtosis for bug repair time data has been calculated. It is +1.676; hence, data 
are peaked.

Box 3.4 SkEwED lifE

A good amount of software project data are skewed. Symmetrical and normal 
data are an exception. Data from simple processes show symmetry. Data from 
complex processes are skewed. Software development is certainly a collection 
of several processes and is expected to produce skewed data. If data collection 
is a process of observation, then we must recognize skew in data and learn to 
accept skew as a reality of life. The transformation of skewed data into sym-
metrical data is an artificial step performed often to apply some statistical 
tests. The untransformed raw data from software projects is often skewed. 
An outstanding example is the skew in complexity data. Another is skew in 
TAT data. In such cases, skew is the DNA of a process. Skew may restrict the 
application of several classic statistical methods while testing the data, but 
that is a secondary issue.
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Coefficient of Dispersion
The term coefficient is commonly used in algebra. The coefficient of a variable 
tells us the magnitude of the effect of the variable on the result. In metallurgy, the 
coefficient of expansion of metals can be used to calculate the expansion of metals. 
Here the coefficient is a metal property. The design of a coefficient of dispersion has 
a different purpose, although the connotations of the term are not entirely strange.

Coefficient of Range
The simplest coefficient of dispersion is the coefficient of range (COR), calculated 
as follows:

 COR Max Min
Max Min

= −
+

( )
( )

 (3.9)

For the bug repair data, COR can be computed as follows:

 Max 58 days
 Min 6 days
 Max − Min 52 days
 Max + Min 64 days
 COR 0.8125 (dimensionless ratio)

Coefficient of Quartile Deviation
COR is based on extreme values and hence is not robust. Coefficient of Quartile 
Deviation (CQD) is based on quartiles and hence is not influenced by extreme 
values. The formula for CQD is given as follows:

 CQD
Quartile Quartile
Quartile Quartile

= −
+

3 1

3 1
 (3.10)

For the bug repair time data, CQD is computed as follows:

 Q3  26.5 days
 Q1  13 days
 Q3 − Q1 13.5 days
 Q3 + Q1 39.5 days
 CQD 0.342 (dimensionless ratio)

It may be seen that using quartiles gives a favorable value for the process of 
repairing bugs. CQD is much better than (smaller than) COR.
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Coefficient of Mean Deviation
This is the ratio of average absolute deviation to mean value. For bug repair time 
data, the ratio is computed as follows:

 Average absolute deviation 8.669
 Mean 20.517
 Ratio 0.423

Coefficient of MAD
This is the ratio of MAD to median. For bug repair time data, the ratio is computed 
as follows:

 MAD 6
 Median 18
 Ratio 0.333

Coefficient of Standard Deviation
This is the ratio of standard deviation to mean. For bug repair time data, the ratio 
is calculated as follows:

 SD 11.284
 Mean 20.517
 Ratio 0.550

This ratio is commonly known as coefficient of variation (COV). It can be 
expressed as a percentage. For bug repair time data, COV can be expressed as 55%. 
This is also called relative standard deviation (RSD).

Summary of Coefficients of Dispersion
For bug repair time data, the coefficient of dispersion has been studied using five 
different conventions, summarized as follows:

 1. COR deviation  0.8125
 2. CQD  0.342
 3. Coefficient of mean deviation 0.423
 4. Coefficient of median deviation 0.333
 5. Coefficient of standard deviation 0.550

Higher values of this coefficient indicate problems because variation is seen as a 
risk. Estimates 1, 3, and 5 have been influenced by extreme values. Estimates 2 and 
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4 are robust, without any influence from extreme values. The true capability of the 
bug repair process is indicated by estimates 2 and 4.

Application Contexts
The statistic “dispersion measure” is most sensitive to context. Measures of disper-
sion can be applied in three prominent contexts: process control, experiments, and 
risk management.

Variation is unavoidable in software processes. In the manufacturing context, 
variation is the least in machine-controlled processes. Manual processes of hardware 
production have a few orders of magnitude more than variation. Software processes 
have several orders of magnitude more than variation. Software processes first have 
human variation; next most software processes are of a problem-solving nature and 
thus reflect variation in the complexity of the problem. Hence, Shewhart’s common 
and special cause variations do not completely represent software process variation. 
In software processes, variation has subtler components, including genetic variation 
of agents and entropy of the problem scenario. We would rather attempt to under-
stand variation before we classify variation in tune with the philosophy of Deming 
[1], which propounded that understanding variation is part of profound knowl-
edge. Categorizing variation into types is divisive, whereas finding a numerical 
expression for dispersion is integrative. The numerical expression, robust enough 
to deal with nonnormal data, is MAD and can be used as a measure of process 
performance in performance scorecards. For instance, in the cases of bug repair, the 
following two values represent the process:

 Median 18 days
 MAD 6 days

If we study variation in experimental data, we will have a different context. In 
experiments, variation is treated as error. Truth is in the center. The standard devia-
tion is a good measure to represent error. If the measured value is positive, we will 
benefit from using coefficient of standard deviation. When we do an experiment to 
measure productivity, we can express the experimental result as a mean ± % RSD 
(relative standard deviation or coefficient of standard deviation). For example, the 
mean productivity of 120 LOC per day ±30% RSD could be a good expression of 
experimental study.

Risk managers need a mathematical expression for variation. Of all the options, 
the standard deviation is a close enough approximation that works well for risk 
assessments.

The measures of dispersion given in this chapter provide a basic entry into the 
subject. For a cohesive understanding, variation should be modeled by methods 
given in Section II of this book.
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In a Nutshell
Dispersion definitions used in chapter, in a nutshell, are presented as follows:

Measures of Dispersion
 1. Range: maximum–minimum
 2. Percentile range: 97th–3rd percentile
 3. IQR: Q3–Q1
 4. Average deviation: average deviation from mean
 5. Average absolute deviation: average absolute deviation from mean
 6. MAD: median value of absolute deviations from median
 7. Sum of squares: sum of squares of deviations from mean
 8. Variance: square of standard deviation

 9. Standard deviation SD =
−

−
=∑ ( )x x

n
i

n
2

1

1

Nature of Dispersion

 10. Pearson’s skewness: Skewness Mean Median
SD

= −3( )

 11. Quartile skewness: Bowley s skewness
Median

’ = + −
−

Q Q
Q Q

3 1

3 1
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Coefficients of Dispersion

 14. Coefficient of range: COR Max Min
Max Min

= −
+

( )
( )

 15. Coefficient of quartile deviation CQD
Quartile Quartile
Quartile Quartile

= −
+

3 1

3 1

 16. Coefficient of mean deviation: ratio of average absolute deviation to mean
 17. Coefficient of MAD: ratio of MAD to median
 18. Coefficient of standard deviation: ratio of standard deviation to mean
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Case Study: Dispersion Analysis of Data Sample
This case study is from a support project. The data volume is pretty large. Around 
15,000 incidents are logged every week. The turnaround time (TAT) of resolv-
ing the issues is taken for our study. We take a random sample of 30 data points 
from the database for dispersion analysis. Using a sample has its own risks: we may 
obtain a limited view of reality, and dispersion seen in the entire database may be 
quite large. However, analysis of a small sample is easy and provides a perspective 
and guidance for further analysis. The range of 30 data sample is 199 days, and it 
seems odd given the fact that there are tightly controlled service level agreements. 
The analyst remembers a 7-day service level agreement and is prompted to form 
clusters in the data. Three clusters emerge by visual analysis. The first cluster agrees 
with the memory recall of the analysts: the data are around 7 days. There seems to 
be a second cluster around 50 days. Two data points show extreme values of 80 and 
200 days. A better evaluation of dispersion is possible if we use coefficients of dis-
persion and the analyst chooses the coefficient of MAD (CMAD). For the raw data, 
CMAD is high. After forming clusters and creating categories, the CMAD values 
become small and reasonable, as shown in Figure 3.1.

Category C seems to be special cases; perhaps those events were put on a 
low priority queue and were taken up very late. There is no information regard-
ing this in the database; the only data logged in are time stamps of entry and 
release. A dispersion analysis of the data sample brought the problem in the 
database and prompted the analyst to create categories. Lessons learned from 
data sample dispersion analysis help in designing a framework for the big job: 
analysis of the total database.
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Figure 3.1 Dispersion analysis of data sample.
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Review Questions
 1. When will you use IQR instead of full range?
 2. When will you use 3% trimmed range instead of full range?
 3. When will you use range calculation based on standard deviation?
 4. What is the benefit of using coefficients of dispersion?
 5. Why do we prefer absolute deviations instead of plain deviations?

Exercises
 1. Calculate skew in the data provided in Figure 3.1 in the case study using 

Pearson’s and Bowley’s method. Compare the results.
 2. Use the bug repair time data from Data 3.4 and calculate the coefficient of 

standard deviation. What is your judgment on dispersion? Is it high or normal?
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Chapter 4

Tukey’s Box Plot:
Exploratory Analysis

The Structure of the Box Plot
Box plot is easily the simplest and most widely used data analysis technique.

The origin of the box plot lies in the range plot. In the rudimentary version of 
the range plot, a line stretches between the minimum and the maximum values [1]. 
We can include markers in this range line to indicate central tendency. We can also 
annotate the line with markers to indicate standard deviation.

Box 4.1 StatiStical thinking

To achieve statistical thinking in engineering and management is our pur-
pose. This involves thinking with data, perceiving central tendency and dis-
persion, and recognizing statistical outliers. These three aspects of statistical 
thinking are facilitated by the box plot. The central line in the box indicates 
central tendency, the median. Dispersion is shown in two levels of details: 
the length of the box is an indicator of dispersion in a broad business sense, 
and the whiskers indicate dispersion with more rigor and confidence level. 
Outliers, if any, are identified and plotted as points beyond the whiskers. To 
use the box plot is to practice statistical thinking. We can use the box plot 
effectively in management and engineering situations.
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In its early form developed by Mary Spear in 1952, the box plot displayed the 
five-point summary of data [2]:

Median
Lower quartile
Upper quartile
Smallest data value
Largest data value

A box is made of median and quartiles; the box includes 50% of observations. 
The quartiles are the edges of the box called hinges. The whiskers are lines that begin 
at the hinges and end at the smallest and largest data values. The graph is known as 
the box-and-whisker plot, or simply the box plot.

The box plot has gone through several changes. A summary of the historical 
developments is presented by Kristin [3].

A simple but effective improvement of the box plot came from John Wilder 
Tukey, which made box plot a popular tool. Tukey modified the box plot and 
published it in Exploratory Data Analysis [4] in 1977. In the modern version, data 
fences are used. The whiskers do not stretch to the smallest or largest data values. 
The whiskers stretch out from the box only up to trimming points (or fences) that 
mark off outliers. The trimming rules have been empirically designed. The markers 
are 1.5 interquartile range (IQR) away from the box. Whiskers end at the points 
farthest from the box inside these markers. The markers provide a pragmatic way to 
find outliers. Aczel and Sundara Pandian, authors of an Excel tool to plot the box 
plot, refer to these markers as fences [5]. Besides these inner fences, the plot authors 
have introduced additional markers 3 IQR away from the box. These are referred to 
as outer fences. If data lie beyond the inner fences, they can be suspected as possible 
outliers. Data that fall outside the outer fences are definite outliers.

A typical box plot is shown in Figure 4.1. The following guidelines have been 
used in the construction of the graph:

Box central line = Median
Lower hinge (edge) of box = Quartile 1
Upper hinge (edge) of box = Quartile 3
IQR = Quartile 3 − Quartile 1
Right inner fence = Quartile 3 + 1.5 IQR
Left inner fence = Quartile 1 − 1.5 IQR
Right outer fence = Quartile 3 + 3 IQR
Left outer fence = Quartile 1 − 3 IQR

Software productivity data (lines of code/person day) are analyzed by this plot. 
The box is constructed from Quartile 1 (productivity = 8) to Quartile 3 (productivity = 
34.5). Fifty percent of the data are inside the box. Hence, the core productivity is in 
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this range. The left whisker reaches zero, whereas the right whisker reaches 70. The 
whisker ends represent a more complete range, beyond the core box. The whisker 
range has good news as well as bad news. The lower whisker is a serious concern; 
productivity values have dropped to zero. This could be a data error and might have 
to be cleaned out. We are doing exploratory analysis with the box plot, and we just 
make a note of this observation at the moment.

Then we find outliers. Those values between the fences are suspected outliers. 
Productivity values between 75 and 116 are perhaps not repeatable performance. 
Those values beyond the outer fence are definite outliers. They are, in a purely statisti-
cal sense, odd, untenable results. Perhaps those results might have had harmful side 
effects; the damage might have been done, and only a root cause analysis can tell.

Customer Satisfaction Data Analysis Using the Box Plot
In analyzing ordinal data, box plots are invaluable. Let us take the customer satisfac-
tion (CSAT) index data from a development project. The data are shown in Data 4.1.

Data have been collected in a 0–10 scale. This scale fares better than the con-
ventional 0–5 Likert Scale. The 0–10 scale has more granularity and less subjective 
error.

To understand the performance of the organization analysts, take the median 
if data were ordinal, although taking the mean is a common but mistaken practice. 

Q3
Whisker

Inner
fence

Outer 
fence

Outlier

Potential
outliers

Q1
Median

–100 –50 0 50
Productivity LOC/PD

100 150

Figure 4.1 Box plot of software productivity.
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In this case, both mean and median provide nearly similar results. However, we 
prefer to use the median. The central tendency of CSAT index is shown as follows:

Mean 6.8
Median 6.9

This is compared with the organization goal, which happens to be 8.0. The 
obvious shortcoming is recognized, and future decisions are made to bridge the 
gap. This is the routine analysis.

Let us now try a box plot to display the CSAT data as shown in Figure 4.2.
We are able to make the following additional observations in the box plot.

 1. The entire box is below the goal. This is a serious subject. The core process 
carrying 50% of performance results is below the mark.

 2. There is an outlier with a value of CSAT index around 3.2. This is way down 
the track. If we apply the Kano model of CSAT, this score will run into deep 
dissatisfaction levels. Perhaps it is just short of customer fury.

 3. Not a single event has reached the top score of 10. Customer delight seems to 
be an unattainable goal. To balance the outlier, we need at least a few delighters. 
To compensate one negative impression, we need to create ten positive impres-
sions. The compensatory effort is missing.

Data 4.1 Customer 
Satisfaction Index Values

5.0      5.8     7.4
6.5    7.6     8.7
6.6    6.0     8.3
9.1    7.2     7.7
5.9    5.5     7.1
5.8    6.8     6.5
7.7    6.3     8.1
7.5    5.9     7.0
5.0    6.3     6.4
5.9    8.5     4.6
7.1    8.2     8.0
7.6    6.0     7.3
7.9    6.2     5.9
7.2    4.7     6.9
7.8    5.3     6.7
4.7    6.9     8.1
7.0    6.7     7.1
3.1    7.6     7.0
5.1    8.2     6.8
4.5    7.2     6.6
8.1    8.6     6.9
5.9    6.9     6.6
7.8    7.7
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Certainly, thinking with the box plot enables us to reason much more than 
working with the mean value of the CSAT index. Box plots make us see the prob-
lem in its entirety; this is a very valuable support.

Tailoring the Box Plot
The box plot is being widely applied in real life. We have seen the insights brought 
in by box plot to R&D scientists, project managers, business managers, quality 
managers, and data analysis in the software business. Even students in the middle 
grade in the United States are taught the box plot [6].

The box plot is being continuously refined. Tukey himself published variations 
in the box plot in 1978 [7]. Others have included frequency information in the box 
plot. Bivariate box plots called bag plots have also been tried out. People have pro-
posed variants called bean plots. An analysis of the attempted improvements in the 
box plot may be found in the paper by Choonpradub and McNeil [8].

Attempts that have tried to pack more information into the box plot have failed. 
People prefer the simple uncluttered plain box plot.

Applications of Box Plot

Numerical quantities focus on expected values, graphical sum-
maries on unexpected values.

John W. Tukey

0 1 2 3 4 5 6 7 8 9 10

Figure 4.2 Box plot of customer satisfaction index.
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Seeing Process Drift
If the median is not on a process target value, we can say that the process has drifted. 
The amount of drift can be easily seen if we draw a target line on the box plot. 
Figure 4.3 shows a box plot of bug repair time. The corporate goal is to fix bugs within 
a maximum of 16 days. The goal is marked on the box plot for easy interpretation.

Detecting Skew
The box plot is an eloquent way of expressing problems in process. One can see 
clearly if the process results are skewed. If the median is in the middle of the box, 
data are not skewed. If the median shifts to the right, data are left skewed. If the 
median shifts to the left, data are right skewed. Another sign of skew is the length 
of whisker. If the right whisker is longer, as seen in Figure 4.3, the process is skewed 
to the right.

Seeing Variation
The width of the box is a measure of process variation. Box width shows variation 
with 50% confidence level. The whisker-to-whisker width also expresses variation, 
perhaps with better clarity and more dramatic effect. The whisker-to-whisker range 
is an expression of variation with confidence levels more than 90%. In Figure 4.3, 
the whisker-to-whisker range is from 6 to 45 days. The variation is far in excess of 
what is anticipated.

Goal

Bugs must be repaired
within 16 days

˜Corporate goal

0 20 40 60 80

Figure 4.3 Box plot of bug repair time, days.
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Risk Measurement
If we plot specification lines on the box plot, we can easily see the risk element 
in the process. If the entire whiskers stay outside the specification lines, the 
process is very risky. Risk is proportional to the portion of the box plot that 
stays outside process specifications. Bug repair, shown in Figure 4.3, surely has a 
schedule risk. We cannot quantify risk using a box plot, but we can qualitatively 
say the risk is very high. Risk management is one area where qualitative judg-
ment is good enough and often more dependable than sophisticated quantita-
tive analysis.

Outlier Detection
A very useful result from the box plot is the detection of outliers. The rules 
applied in the box plot do not assume any mathematical distribution function 
for the process. The box plot way of detecting outliers differs from the control 
chart way of detecting outliers. In control charts, we use the probability density 
function that corresponds to the inherent distribution of data. The box plot 
rules do not apply any distribution formula. The box plot uses a distribution-
free judgment that is more universal and robust enough to engage all kinds of 
data.

Comparison of Processes
Box plots are used to compare process results. All the three elements of processes 
can be visually compared:

Central tendency
Dispersion
Outliers

This visual comparison performs the functions of three tests: t test for process 
mean, F test for process variation, and control chart tests for process outliers. This 
comparison is discussed later in this chapter.

Improvement Planning
Process improvement planning is well supported by box plot analysis. A box plot 
defines the problem with a picturesque essay of three dimensions of the process: 
central tendency, dispersion, and outliers. A box plot is an empirical problem state-
ment. If we think that a well-defined problem is a problem half solved, then we 
stand to gain immensely by the box plot way of problem definition.
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An approximate answer to the right problem is worth a good 
deal more than an exact answer to an approximate problem.

John W. Tukey

Box plots help us to identify and define the right problems.
The productivity box plot shown in Figure 4.1 highlights three opportunities 

for innovation:

 1. Removal of outliers: This is the easiest innovation. There is no outlier in the 
lower side of the plot. That is good news. The outliers with higher values 
might appear as welcome outcomes. Here is the good old question of specify-
ing an upper limit even for the better side of events. It may be suspected that 
extreme value of productivity is the result of a compromise, a slow acting 
fuse, that might show up later somewhere as an issue. Although we need to 
understand all the outliers, the outliers beyond the outer fence may be stud-
ied in detail. The presence of more outliers on the right side also indicates the 
possible existence of a tail or skew in the distribution.

 2. Shifting the median toward higher levels: This means the expected value of 
productivity can be improved.

 3. Reduction of IQR as well as whisker-to-whisker width: Process variation, depicted 
both by the IQR and whisker-to-whisker width, can be reduced to minimize 
variation.

The three innovations could coexist. Improving the median may be accompanied 
by reduction in outliers, and vice versa. It is a good strategy to take up one at a time, in 
the previously mentioned order, and take the beneficial side effects in the other two.

Core Benefits of Box Plot
Tukey’s box plot contains sufficient statistical strategies and yet retains its intended 
simplicity. Many attempts are being made to enhance the information content in box 
plots and make them colorful as well. We focus on the simple box plot in this chapter 
and find that it has great potential. The box plot can be applied to the following:

 ◾ Provide a visual summary of data
 ◾ See process variation
 ◾ Detect outliers
 ◾ Detect skew in data
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 ◾ See process drift
 ◾ Compare processes
 ◾ Plan process improvement

Twin Box Plot
Let us take the case of reestimating software development effort. Teams are reluc-
tant to do a second estimate and are in a hurry to move forward with development. 
However, it is a best practice to do a second estimate after a fortnight into the 
project when many project details become visible. We get to know the require-
ments better, teams communicate better, risks are seen with clarity, and we are 
enlightened by the early lessons. The second estimate is expected to be more accu-
rate. We wish to compare the second estimates with first estimates and study the 
improvement.

The box plot can be eminently used to compare the two results. In Figure 4.4, a 
twin box plot is shown comparing two sets of effort variance data.

The twin box plot offers what might be called a visual test, a preliminary analy-
sis before we start rigorous tests. Visual judgment of the following can provide vital 
clues regarding the differences between two results:

 1. Is there a difference between the whisker-to-whisker widths?
 2. Is there a difference between the box widths?
 3. Is there a relative shift in the position of the median?

If the answer is yes to any one of these questions, we need to take a deeper 
look at the box plots. Sometimes the presence or absence of outliers could make 
a difference. Sometimes the skew of the median line inside a box could provide 
a clue.

If the difference is significant, the boxes in the two plots may be completely 
disjointed. They may not overlap. Using the box plot representation, it is rather easy 
to see if the new result is different from the old.

EVA 1

EVA 2

EVA
–80 –60 –40 –20 0 20 40 60 80

Figure 4.4 Comparison of two estimates using box plots.

© 2015 by Taylor & Francis Group, LLC

  



62 ◾ Simple Statistical Methods for Software Engineering

If results due to innovation show improvement, one or more of the following 
visual clues may be present:

 ◾ The overall length of the box plot would have decreased
 ◾ Outliers might have disappeared
 ◾ The central line might show a favorable shift
 ◾ The box might have shrunk
 ◾ The box might be relocated in a favorable region
 ◾ The unfavorable whisker might have diminished

If an improvement is not visible in a box plot, it may not be an improvement in 
the first place. The question of looking for significance does not arise.

However, in most cases, people take pains to go through lengthy procedures 
to execute significant tests to check differences, without box plot visual 
checks. In some cases even after box plot rejections, people go through the 
ritual of significance tests.

Holistic Test
The twin box plot test is a holistic approach; it can compare two populations (two 
groups) in a complete balanced fashion that no other test can offer. The price we 
pay for completeness is loss of rigor. It so happens that rigorous tests have narrower 
scope than robust tests; approximate analysis can sweep more terrain than precise 
analysis. We need such a holistic test before we go into more sophisticated tests.

The twin box plot shown in Figure 4.4 offers a holistic comparison described in 
the following paragraphs.

First, it compares the median values. The median of the first estimate is 4.67%, 
and the median of the second estimate is 1.27%. Comparing medians is more 
robust than comparing means, which makes sense even with nonnormal data. This 
is a comment on central tendency.

Then dispersion is compared at two levels; the first IQR is 23.45 and the sec-
ond and improved value is 8.54. It is evident that the core of the estimation process 
covering 50% of results shows less dispersion—an order of magnitude less. The 
new dispersion is one-third the old. The old whisker-to-whisker range is 86.48, 
whereas the new whisker-to-whisker range is 20.32, four times less. It is evident 
that the dispersion is reduced in the new estimation technique; it is more reliable. 
The box plot provides an order of magnitude test before we resort to p values for 
judgment.

The box plot identifies outliers in the second group; not every estimate has been 
well performed. The best practice must spread. The second process has philosophi-
cal problems called statistical outliers. However, in a practical sense, even the outli-
ers are better than the first process.
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Application Summary: Twin Box Plot
 ◾ The twin box plot is a qualitative test and should be performed before any 

hypothesis test.
 ◾ The only way to compare overall performance of data sets is the twin box plot.
 ◾ We can compare the following aspects of process using twin box plots:

 − Quartile-to-quartile distance (IQR)
 − Whisker-to-whisker distance
 − Range
 − Median (central tendency)
 − Outliers
 − Skew

 ◾ Each comparison can provide a unique clue about difference in processes.
 ◾ We can use a rule of thumb: if boxes overlap, there is no significant shift in 

central value.
 ◾ After seeing the twin box plot, we can decide which confirmatory test must 

be performed.
 − If there is shift in central value, confirm it with a t test.
 − If dispersion is different, confirm it with an F test.
 − If outliers are present, cross check them with a control chart.

 ◾ We can take preliminary decisions with the box plot, followed by confirma-
tory tests to make the final decision.

 ◾ When data are nonnormal, twin box plots provide more reliable clues than 
conventional tests.

Box 4.2 Evaluating improvEmEnt

The need to evaluate that improvement occurs more often than we think in 
software projects. In the very first place, we collect data because we wish to 
improve performance. We are thus made to check if performance has really 
improved after data collection and reporting. To do this, we need two sets 
of performance data, before and after improvement. Then we just have to 
prepare a twin box plot and compare the results, as described in this chapter. 
There are other circumstances when we consciously improve performance 
through six sigma and lean; once again, we can use box plots to compare 
results before and after improvement. Sometimes we may do special experi-
ments and invariably use the box plot to portray data using box plots as evi-
dence for improvement. Box plots are widely used as graphical companion 
to experiments. High maturity in software engineering involves continual 
improvement, and the box plot is a very valuable tool.
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Case Study 1: Business Perspectives 
from CSAT Box Plots
This case study is about managing CSAT across a large organization with four stra-
tegic business units (SBUs). The annual average CSAT index of the organization 
has been computed as 3.217, which is far below the target of 4 in a Likert scale of 
1–5. The CSAT data are obtained by a survey of the overall satisfaction of custom-
ers. The calculation of the average of ordinal data is a subject of ongoing debate. 
Strictly speaking, average is meaningless in ordinal data, but average is taken as an 
effective indicator. It is easier to estimate and report. If we use box plots instead of 
mean, we tend to see more details of CSAT. If we plot separate box plots for dif-
ferent SBUs, we get more information and an easy intercomparison, as shown in 
Figure 4.5.

CSAT Analysis across SBUs
In one glance, we are able to take in several details of CSAT. The linear structure of 
box plot accommodates several box plots in one chart. In Figure 4.5, there are lower 
whiskers; the lower whiskers touch the floor level, particularly in SBU 1 and SBU 3. 
These lower whiskers are the real problems; customers tend to remember negative 
results longer. If Kano’s model of CSAT can be used, the lower whiskers fall in the 
zone of asymptotically crashing dissatisfaction.

The key message of CSAT Box Plots is not in the central values but in the 
lower whiskers.
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Box plot of SBU 1, SBU 2, SBU 3, SBU 4
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Figure 4.5 Customer satisfaction analysis across SBUs using box plots.
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The chart shows SBU 2 to be outstanding. The box reaches the maximum value, 
providing customer delight. In SBU 3, customer delight is seen as a rare achieve-
ment and not a repeatable result. The chart is a sort of control chart on CSAT across 
the organization. Target 4 can be interpreted as the lower specification limit; and 
the chart provides a clear perspective of how CSAT performance meets target.

Case Study 2: Process Perspectives 
from CSAT Box Plots
In another case study, we show how multiple dimensions of CSAT can be tracked 
using box plots. The CSAT survey has captured customer responses to several other 
dimensions of CSAT:

Engineering (ENGG)
Communication (COMM)
Time (TIME)
Price (PRICE)
Responsiveness (RESP)
Quality (QUAL)

These selected six dimensions, or CSAT attributes, captured by the survey indi-
cate customer responses and provides opportunities for improvement to the soft-
ware development organization. The six box plots are available in a single chart as 
in Figure 4.6.
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Figure 4.6 Customer satisfaction analysis across attributes using box plots.

© 2015 by Taylor & Francis Group, LLC

  



66 ◾ Simple Statistical Methods for Software Engineering

CSAT Analysis across Attributes
The chart provides a very easy comparison that we can quickly navigate through.

Performances in ENGG and TIME have earned the lowest scores. The lower 
whisker in ENGG touches the floor and provides a red alert to the organization. 
COMM and PRICE have earned the best scores, assuring customer delight from 
within the “box” area. If we take the target as 4, then RESP and QUAL still need 
improvement. The box plots provided very useful information graphically.

Review Questions
 1. What are the elements in a box plot?
 2. What are fences?
 3. How is the length of a whisker calculated?
 4. How are the hinges calculated?
 5. How robust are the rules used in detecting outliers in the box plot?

Exercises
 1. Draw a box plot using the data provided in Data 4.1, using the macros pro-

vided in Refs. [4] and [5], and interpret the same. You can also download free 
Excel box plot plotters from the web.

 2. Draw a box plot of lines of code developed by yourself or various objects. See 
how the box plot helps in statistical thinking.

Box 4.3 thE Box of thE Box plot

The box plot has a lean structure. It is remarkably simple and uncluttered. The 
earliest version of the box plot was a straight line. Tukey added the box. The 
box achieves its purpose by dominating the plot. This is an intended domi-
nation. The box has the median and contains 50% of central evidence. The 
first glance makes us recognize the box and other details are subdued; the 
box emerges as the primary message. This helps managers to grasp the essen-
tial behavior of processes sans the secondary details. Dispersion beyond the 
box is considered secondary. Outliers are tertiary. Moreover, the box is plain 
and unpopulated. It is just an outline drawing. For quick decisions regarding 
budgeting, the box is all we need to consider. For systematic process manage-
ment, we consider the whiskers. For strategic risk management and problem 
solving, we consider the outliers. The structure of the box plot helps with this 
progression of management decisions.
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 3. Draw a box plot of defects based on the following module data. Interpret your 
findings.
 26
 23
 21
 18
 18
 18
 14
 14
 13
 13
 12
 12

 4. Compare the following two sets of rework efforts during testing using two 
box plots. Interpret your graphs.

 Set 1 Set 2
 12 10
 12 10
 0 9
 5 9
 7 9
 8 7
 9 7
 0 7

  7
  6
  6
  6
  5
  4
  4
  4
  4
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IIMetrIcs

Deriving metrics from data is the key to observation and understanding. Metrics 
endow people with objective observations and deeper understanding. In Section 
II of this book, Chapter 5 is devoted to deriving metrics from data to gain this 
advantage.

Common metrics for all life cycle phases are not an effective approach. 
Compartmentalizing metrics helps. A simple way of doing this is to separately dis-
cuss development metrics, maintenance metrics, and test metrics. Chapters 6, 7, 
and 8 are devoted to these three categories of metrics.

The advent of agile methods has redefined the way life cycles are managed and 
measured. Chapter 9 addresses agile metrics.
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Chapter 5

Deriving Metrics

Creating Meaning in Data
Direct observations are also called base measures or raw data. Such data are either entered 
in the computer by people or recorded automatically by machines. Automated data 
collec tion is gaining currency. When people enter data, they have a chance to see what 
they are keying in and validate the data. Data caught by machines are not immedi  ately 
seen by people; such automatic data are visited during report generation or process analysis.

Derived measures are computed from base measures. Derived measures are known 
by several names. Two of these names are significant: key performance indicators and 
metrics; we use the term metrics. Errors in base measure propagate into metrics. In a 
broader sense, metrics also constitute data. However, metrics carry richer information 
than base measures. We create meaning in data by creating metrics.

Deriving Metrics as a Key Performance Indicator
Measurement is essentially a mapping process. The primitive man counted sheep 
by mapping his cattle, one to one, to a bundle of sticks. If a sheep is missing, it will 
show up as a mismatch. Word was not yet invented, but there was mapping all the 
same. A similar mapping is performed for function point counting; measurement 
is seen as a “counting process,” a new name for mapping. The mapping phase in 
measurement is well described in the COSMIC function point manual. With the 
help of language, we have given a name for what is counted—software size. With 
the help of number theory, we assign a numerical value applying rules.

In a similar manner, we count defects in software. Here the mapping is obvi-
ous. The discovery of defect is conducted by a testing process. Each defect is given 
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a name or an identification number. The total number of defects in a given module 
is counted from the defect log.

Size is a base measure. Defect count is another base measure. The ratio of defects 
to size is called defect density. It is a derived measure, a composite derived from two 
independent base measures. It denotes product quality.

Productivity is another example for a derived measure.
Measures are directly mapped values. Metrics are meaningful indicators con-

structed against requirements.

A “measure” refers to directly mapped value.
A “metric” refers to a meaningful indicator.

Technically speaking, size is a measure, and complexity is a metric. Arrival time 
is a measure, and delay in the arrival is a metric.

Metrics carry more meaning than measures. Hence, metrics are “meaningful 
indicators.”

Estimation and Metrics
A few metrics such as effort variance and schedule variance are based on estimated 
and observed values. For instance, the metric effort variance is defined as follows:

 Effort variance Actual effort Estimated% (= × −100 eeffort
Estimated effort

)

 

This metric truly and directly reflects any uncertainty in estimation.

Accurate measurement combines with ambiguous estimation to  produce 
ambiguous metrics.

Measurement capability and estimation system support each other. They are 
similar in so much as both are observations. Metrics measure the past and the pres-
ent; estimation measures the future.

Paradigms for Metrics

What’s measured improves.

Peter F. Drucker
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“Measure what matters” is a rule of thumb. We do not measure trivial sides. 
We do measure critical factors. Intrinsic to this logic is an assumption that hav-
ing metrics is an advantage; we can improve what we do. The balanced score card 
measures performance to achieve improvement. Areas for improvement are identi-
fied by strategic mapping. Loyal followers of the balanced score card way use this 
method to improve performance through measurements.

Another paradigm for measurement can be seen in quality function deploy-
ment (QFD). This is an attempt to measure what’s and how’s. The QFD structure 
and the associated metrics have benefitted several organizations.

Capability maturity model integrated (CMMI) suggests measurement of every 
process at each level of process maturity. The list of metrics thus derived could be 
comprehensive. The goal question metric (GQM) paradigm is suggested to select 
metrics at each level.

ITIL suggests measurements to improve service quality.
ISO 9000 indicates the measure–analyze–improve approach. It protects quality 

of data by meticulous calibration of measuring devices.
The Six Sigma initiative suggests metrics to solve problems. It has a measure 

phase, where Y = F(X ) is used to define X (causal) metrics and Y (result) metrics.
In the lean enterprise, wastes and values are identified and measured to elimi-

nate waste.
In clean room methodology, software usage is measured and statistically tested. 

Reliability metrics are used in this case.
In personal software process (PSP), Humphrey proposed a set of personal level 

metrics. The choice was based on the special quality and attributes of PSP.
Barry Boehm uses a narrowed down set of metrics to estimate cost in his cost 

construction model (COCOMO). COCOMO metrics have created history by 
contributing to estimation model building.

A metric design follows the framework used for improvement. There are many 
frameworks and models for achieving excellence. Metrics are used by each of 
them as a driver of improvement. The system of metrics easily embraces the parent 
framework.

GQM Paradigm
Most metrics are naturally driven by strong and self-evident contexts. In special 
applications such as breakthrough innovation, model building, and reliability 
research, we need special metrics. We are very anxious that metrics carry a purpose. 
Special initiatives and hence special metrics should still connect with business 
goals. The tree that makes the connection is the GQM paradigm [1].

The GQM paradigm is an approach to manage research metrics and hence is 
more effective in problem solving and model building. It is not so influential in 
driving the five categories of industry metrics mentioned earlier.
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Software Engineering Institute (SEI) introduced the GQ(I)M paradigm [2] as a 
value adding refinement to the GQM paradigm. GQ(I)M uses Peter Singe’s mental 
models to drive metric choice and indi cators to convey meaning. GQ(I)M certainly 
has helped to widen the reach of GQM.

Difficulties with Applying GQM to 
Designing a Metrics System
First, the intermediate stage (question) in the GQM paradigm is not very helpful. 
We simply map metrics to goal. The mapping phase in COSMIC size measurement 
is a great illustration.

Second, while applying GQM, people tend to start with corporate goals and 
attempt to drill down to metrics. This often turns out to be a futile attempt. Large 
organizations have spent days with GQM, getting lost in defining goals, subgoals, 
and sub-subgoals. All these goals go into goal translation and could never make 
it to metric definitions in a single workshop. Rather, we would first derive per-
formance goals from business goals using a goal tree. This is a goal deployment, a 
leadership game. Designers of metrics should discriminate metrics mapping from 
goal deployment. Designers of metrics should pick up selected performance goals 
and map them to metrics.

Third, some metrics are specified by clients. Customer-specified metrics seem 
to run very well in organizations. Data collection is smooth. There is no need for a 
separate mechanism to identify and define these metrics.

Box 5.1 Flying a Plane and gQM

Even the simplest propeller airplane would have meters to measure altitude and 
fuel. These measurements are intrinsic to the airplane design. The meters are fit-
ted by the manufacturer and come with the airplane as basic parts of the airplane. 
One cannot fly without altitude, speed, and fuel level metrics. Flying a plane 
without altimeter is unthinkable. A plane without a speedometer is unrealistic. 
A pilot cannon make decisions without a fuel indicator. These metrics are not 
“goal driven” and certainly not business strategy driven but are driven by design 
requirements. One can think of purposes for each metric, but these purposes are 
not derived from business strategies and business goals; these purposes are implic-
itly inherent in product engineering. Whether there are goals or not, these meters 
will be fitted to the plane, almost spontaneously, like a reflex action triggered by 
survival needs. There are no options here. These metrics are indispensable and 
obvious. One does not need a GQM approach to figure them out.

Hence, cost, schedule, and quality metrics are also indispensable in a soft-
ware development project. These are not “goal driven” but are based on opera-
tional needs. One does not have a choice.
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Fourth, some metrics are driven by requirements. If requirements include 
that the software must be developed for maintainability, there is a natural metrics 
associated with this requirement, that is, the maintainability index. Meeting both 
functional and nonfunctional requirements might need metrics support. Thus, the 
recognized performance targets easily and organically map into performance met-
rics. One need not apply GQM and make heavy weather.

Fifth, metrics are often constructed to serve information needs in the organiza-
tion. Hence, management information systems (MIS) automatically capture many 
metrics. These metrics are an inherent part of MIS. Metric teams have to extract 
metric data from the MIS or ERP systems. These metrics do not follow the GQM 
road.

Sixth, some metrics are derived from operational needs, for example, schedule 
variance. Such needs are compelling, and one does not have a chance to exercise 
options. When the needs are clearly and decisively known, we need not rediscover 
them by GQM.

Seventh, even in the Six Sigma way of problem solving, where the Y and X vari-
ables are defined to characterize the cause-and-effect relationships that constitute 
the problem, metrics are derived by mapping through a cause–effect diagram. The 
selection of the problem to be solved is a goal-driven process, but deriving the vari-
ables (metrics) is conducted through causal mapping, not GQM.

Need-Driven Metrics
It is our finding that successful metrics are driven by transparent needs. The link 
between metrics and needs must be organic, spontaneous, and natural. The bottom 
line:

If we can do without metrics, we will do without metrics. We use  metrics 
only when they are needed.

The system of assigned goals, personal goals, and all the subgoals finally boil 
down to performance goals that reflect the pressing needs of the system. Once a 
metric connect with needs, it works.

The connection between needs and metrics must be concrete, spontaneous, 
transparent, and direct. Hence, mapping is the preferred connecting mechanism. 
Using “questions” is too verbose to be of practical value.

Mapping is a better connector than question.

A more serious concern would be to obtain commitment from agents to sup-
port metrics. A need-based system enables commitment harder than inquiries and 
questions.
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There is a difference between goal and need.

Goal: the end toward which effort is directed
Need: a condition requiring supply or relief

Goals are complex; they consist of interconnected layers and are influenced by 
“personal goals” and “self-efficacy.” Goals have multiple dimensions, are likely to 
drive discussions of metric design into inconclusive divergence, and are correspond-
ingly undesirable to rely on for deriving metrics. Needs have a simple structure and 
are well defined with greater degree of objectivity in software development projects.

Meaning of Metrics: Interpreting Metric Data
We define a metric by defining the relationship the metric has with raw data. Metric 
definition inheres the meaning of that metric. The defining equation is more signifi-
cant than the name we give to a metric. Names could mislead, but definitions do not. 
It is good to recall metric definitions, even if obvious, before beginning interpretation.

Having recalled the metric definition, we now look at metric data. It is better to 
work with a data table that shows the raw data and the derived metric in separate 
columns. Visibility into basic observations helps in getting a detailed understand-
ing of metrics. In one column, we can have the time stamp of data. If data fall into 
categories, it is better to include the category name in one column. Occasionally, we 
may have to allocate additional columns to accept further categorization schemes.

Next we should construct a box plot of metric data and analyze the statisti-
cal nature of data. The box, whiskers, and outliers seen in the box plot must be 
understood and explained. Questions regarding the stability and the reasonable 
dispersion of the metric must be addressed. We can support this enquiry with a 
descriptive statistics analysis.

Data have intrinsic meaning that can be seen by applying statistical, engi-
neering, and management perspectives.

Box 5.2 olyMPic RunneR

Time in a school’s final sprint competition is measured using an analog stop-
watch. In interschool competitions at the state level, time is measured more 
precisely using a digital stopwatch. In Olympic sprints, time is measured 
by laser systems controlled by computers to the precision of a millisecond. 
As the capability of running improves, the precision of measurement also 
is improved. Likewise, when software engineering practices become more 
mature, metric capability also is improved. The quality of metric data also is 
improved. Metrics and maturity go together.
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The engineering and management understanding of the “variable” the metrics 
denote should throw more light into the box plot. The box plots must be compared 
with expected behavior.

Finally, we should mark the performance goal line on the box plot and relate 
data behavior to the goal. Figure 5.1 shows the box plot of productivity metric with 
the performance goal marked. This performance goal represents the project objec-
tive and not the business goal because this metric is treated as a project metric in 
our example.

Meaning of metric is seen relative to the operating goal.

How data relate to performance goals is what we now learn from data. Does the 
box include the performance goal line, or has the performance goal slipped away 
from the box area? Or, in the worst case, has the performance goal (quantitative 
target) drifted far and gone over to the whiskers?

We can now develop the various interpretations and come to some conclusions. 
For instance, interpreting the productivity metric of Figure 5.1 has led to the fol-
lowing interpretations and conclusions:

Most of the results, denoted by the box and whiskers, fall short of the perfor-
mance goal or target value.
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Figure 5.1 Box plot of software productivity.
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Our Categories of Metrics
There are different ways to classify metrics. We follow the five classifications of data 
mentioned in Chapter 1 and work with the corresponding five types of metrics:

 1. Business metrics
 2. Project metrics
 3. Process metrics
 4. Subprocess metrics
 5. Product metrics

Some of these categories could overlap depending on the definitions used in 
the organization. The same metrics could be reused in a different context under 
a different category. For example, reuse is generally regarded as a process metric. 
However, it can be used as a product metric to evaluate product behavior, as a proj-
ect metric to understand time saved by reuse, and as a business metric to estimate 
profit generated by reuse. Context influences categorization.

Business Metrics
These are defined and deployed to implement business strategy in the organiza-
tion. The metrics are strategic in nature. A popular example of the use of business 
metrics may be seen in the balanced score card framework of Kaplan et al. [3]. In 
this framework, metrics are identified under four categories: finance, process, learn-
ing and growth, and customer. Kaplan promises progress through measurements. 
These metrics interact and from a system with cause–effect relationships. Deriving 
business metrics from business strategy is very similar to the approach in the GQM 
paradigm of Victor Basili [1]. However, instead of using a translation tree, metrics 
are mapped to strategy.

Business metrics are driven by strategy and situation.

Project Metrics
Managing a software project needs some minimum metrics such as effort, sched-
ule, quality, productivity, and customer satisfaction (measured through surveys).

Project metrics are based on project requirements and customer requests. These 
are driven by project scope. The list of project metrics is extended to accommo-
date customer requirements such as reliability and maintainability. Some customers 
show keen interest in knowing product quality, down to the module level. They seek 
reports on module quality and module performance during testing. Project metrics 
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also have to satisfy information to be communicated to stake holders. For example, 
resource utilization can become an important metric sought by human resources 
and finance departments. Server downtime is a metric that would help the facilities 
management department. Projects also measure risk by internal surveys.

In general, project metrics are requirement driven. They are to be specified dur-
ing scope definition. Project metrics also serve as information devices and assist in 
project communication.

Process Metrics
Every process presents opportunities for metrics at the input, process, and output 
stages. Such a process metric is used first to understand, then to control the process, 
and later to improve the same.

Use metrics to understand, control, and improve.

Software delivery is made through a chain of processes, and one or more met-
rics can be used to control and improve each process stage in the chain. The total 
number of process metrics is equal to or more than the number of stages. Metric 
choice is driven by process control needs. This choice of metrics is further influ-
enced by the life cycle model used. For example, in the waterfall life cycle, metrics 
such as requirement stability, design complexity, code size, and test effectiveness 
can be used to address control needs in each development phase.

Subprocess Metrics
A more detailed process control takes us to the subprocess. For example, a process, 
such as design, can be broken down to manageable subprocesses such as design, 
design review, and redesign. The metrics for controlling these subprocesses are 
design effort, design review effort, and design rework effort. Subprocess metrics 

Box 5.3 analogy: constRucting a Building

Software development is analogous to constructing a building in some ways. 
The natural metrics in a civil construction are the size of the building, the 
grade of quality of interior and materials used, and the reliability of the build-
ing against natural forces such as wind and rain. Similarly, in constructing a 
software product, the basic metrics are size, complexity, and reliability. In a 
construction business, routinely maintained design and construction logbooks 
show these metric data. In software projects, these metrics are slowly being 
accepted; a few organizations maintain these records, and many others still wait.
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present a management challenge because these metrics get closer to the individuals 
who fear exposure and hence refrain from sharing data. As Deming said, we need 
to “drive out fear” if we want to collect subprocess metric data.

Product Metrics
Software product structure and performance are monitored through product met-
rics. For example, we can measure software code size by lines of code, structure 
by function point, quality by defect density, and reliability by mean time between 
failure. In the design stage, we can measure structure by function point and size by 
number of design pages. In the requirement stage, we can measure size by number 
of features. Product metrics can be used to monitor “product health.”

Case Study: Power of Definitions
The definition of metrics precedes metric data. Metric definitions shape our 
approach to engineering before data validates our approach. The names of met-
rics with their definitions are part of the engineering and management vocabulary. 
Richer vocabulary reflects richer practices. Asking how many metrics we need is 
like asking how many words we need to converse effectively.

A few words are enough to exchange pleasantries,
A hundred are enough to manage simple conversations,
A thousand makes one an expert communicator, and
Many more are used by professionals.

Box 5.4 eaRthQuake

Earthquake prediction uses esoteric metrics. For example, the rise and fall 
of water levels in deep wells in China are measured; elsewhere, in a scientific 
approach, weak magnetic signals are monitored using sophisticated equip-
ment to measure seismic activity. Seismic vibrations are picked up along 
fault lines and analyzed to predict earthquakes. All these metrics are special, 
expensive, and based on geological models. Likewise, software reliability pre-
diction needs special metrics. Metric choice depends on the reliability model 
selected for prediction. These metrics are not routine but special, and they 
belong to the category of “model-driven metrics.” They have to be specially 
designed and deployed, and the extra cost and effort should be approved by 
business leaders.
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On the other side of it, how effectively we use the few metrics is more important 
than the vocabulary volume. When managers use metric vocabulary in day-to-day 
dialogues with team members, a new culture can be created. Here is the case of one 
manager who wanted to make his software more maintainable. He chose to ask his pro-
grammer for a definition of maintainability; the response was swift, the programmer 
found out, from the literature, a formula for maintainability index. The manager left the 
subject at that and did not press for either the use of this index or the maintainability 
data on the code. The very definition of the maintainability index triggered a chain of 
responses from the programmer, from a realization that maintainability is important to 
improve code maintainability. Numbers were gathered only later, in subsequent trials. 
The numbers were not shared with others. All that the programmer needed was direc-
tion, and the manager showed that he was a great leader by giving the direction.

Lessons:

Metrics thrive under great leadership.
Some metrics are very personal.

Box 5.5 Meet the exPeRt—Watt s. huMPhRey

Watt S. Humphrey (1927–2010), known as the father of software quality, 
was born in Battle Creek, Michigan. He enlisted in the Navy at 17 years of 
age to help fight in World War II. After his enlistment was up, he enrolled 
in the University of Chicago where he graduated with a bachelor’s degree in 
physics. He earned his master’s degree in physics from the Illinois Institute of 
Technology and then a master’s degree in business administration from the 
University of Chicago.

He started his career with Sylvania in Boston and then moved to IBM, 
where he rose through the ranks to become director of development and vice 
president of technical development. In that job, he supervised software devel-
opment in 15 laboratories that were spread out in seven countries. There were 
4000 software engineers working under him.
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Review Questions
 1. What are the five categories of metrics used in software projects?
 2. What is the GQM paradigm? What are its limitations?
 3. What is the GQ(I)M paradigm? What are the advantages of GQ(I)M over 

GQM?
 4. What is the primary motivator of project metrics?
 5. How are process metrics selected?

Exercises
 1. Develop a metric plan to manage software testing.
 2. Develop a metric plan to control design complexity.
 3. Develop a metric plan to control code quality.
 4. Develop a metric plan to control requirements volatility.
 5. Develop a metric plan to manage software maintenance.

References
 1. V. R. Balili and G. Caldiera, Goal Question Metric Paradigm, John Wiley, 1994.
 2. R. E. Park, W. B. Goethert, W. A. Florac, Goal Driven Software Measurement— 

A Guidebook, SEI Handbook CMU/SEI-96-HB-002, 1996.
 3. R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action, 

Harvard Business Review Press, Harvard College, 1996.

At 60 years of age, when many people are thinking of retiring, Mr. 
Humphrey embarked on a new career at Carnegie Mellon University, where 
he established the software process program that instilled a discipline to soft-
ware development.

His colleague, Anita Carleton, the director of the Carnegie Mellon 
Software Engineering Institute’s Software Engineering Process Management 
Program, said that before Mr. Humphrey came along, software engineers 
created programs by coding and testing. He changed the culture of the dis-
cipline to develop a more systematic approach to planning, developing, and 
releasing new software.

His work earned him the National Medal of Technology, which was pre-
sented to him by President George W. Bush in 2005.
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Chapter 6

Achieving Excellence in 
Software Development 
Using Metrics

We have seen metric development to suit the context, address needs and fulfill per-
formance goals in Chapter 5. Now we shall discuss how to apply metrics to manage 
the software development cycle and achieve excellent results.

Let us look at a few representative metrics shown in the following paragraphs 
for developing the approach. For a comprehensive study of metrics, see Fenton [1], 
Grady [2], Stephan Kan [3], Pandian [4], and Putnam [5].

Examples of Project Metrics
Time to Deliver

The first 90 percent of the code accounts for the first 90 percent 
of the development time … The remaining 10 percent of the 
code accounts for the other 90 percent of the development time.

Tom Cargill
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This is the most serious concern of any project manager, time being a scarce 
resource that cannot be bought out but can only be saved. The trick is to track time 
performance using any convenient metric every milestone. The metric could be 
schedule variance or schedule slippage or earned value metrics (EVM).

Cost
This metric is tracked often as man days; the overhead can be added by a finance 
expert.

Quality
Every work product quality should be tracked by counting defects and normalizing 
the defect count by an appropriate expression of size.

Productivity
Size developed per man day is a common expression of this metric. There are several 
other definitions to choose from depending upon the purpose of measurement.

Time to Repair
The time taken to fix bugs is an important metric and is tracked automatically 
through the bug tracking tool.

Customer Satisfaction
This metric is obtained using quarterly surveys or annual surveys.

Requirement Volatility
Score creep or requirement volatility is a crucial metric and is to be closely tracked 
by the project team.

Examples of Product Metrics
Requirement Size
Requirement management suggests we measure the size in terms of number of 
features or number of pages or simply the number of requirements. Some use “use 
case points” or another specially designed metric.
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Design Complexity

With proper design, the features come cheaply. This approach 
is arduous, but continues to succeed.

Dennis Ritchie

Function point (FP) and its variants can be used to judge design complexity; we 
need to measure the flow of information from and into every module. A summary 
of function point metrics is presented by Caper Jones [6].

A simple design metric has been proposed by Ball State University [7]:

The external design metric De is defined as

 De = e1 (inflows * outflows) + e2 (fan-in * fan-out)

where inflows is the number of data entities passed to the module from 
superordinate or subordinate modules plus external entities, outflows is 
the number of data entities passed from the module to superordinate 
or subordinate modules plus external entities, fan-in and fan-out are 
the number of superordinate and subordinate modules, respectively, 
directly connected to the given module, and e1 and e2 are weighting 
factors.

The internal design metric Di is defined as

 Di = i1 (CC) + i2 (DSM) + i3 (I/O)

where CC, the Central Calls, is the number of procedure or function 
invocations, DSM, the Data Structure Manipulations, is the number of 
references to complex data types, which are data types that use indirect 
addressing, I/O, the Input/Output, is the number of external device 
accesses, and i1, i2, and i3 are weighting factors.

D(G) is a linear combination of the external design metric De and 
the internal design metric Di and has the form

 D(G) = De + Di
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The calculation of De is based on information available during 
architectural design, whereas Di is calculated when detailed design is 
completed.

The need for a Design Metric cannot be overemphasized. Good design makes 
the remaining phases of software development a smooth journey.

Box 6.1 Meet the expert—AllAn J. AlBrecht: 
the FAther oF Function point

Allan J. Albrecht (1927–2010), the father of function points, never imag-
ined that function points would be used by a large user community spread 
around several countries. Allan clearly outlined productivity as work prod-
uct output divided by work effort. However, it was the development of the 
function point analysis concept as a means of identifying work product 
that has been his greatest contribution. Allan Albrecht’s ideas shaped many 
careers.

Function point metrics were invented at IBM’s White Plains development 
center in 1975. Function point metrics were placed in the public domain by 
IBM in 1978. Responsibility for function point counting rules soon trans-
ferred to the IFPUG.

The original formula was simple and can be used quickly without any 
hassle. The weights he used in the formula proved to be right and remained 
valid long after his invention. IBM advertised FP as a key to success and 
grabbed huge software development orders.

He developed the function point metric in response to a 
business need, to enable IBM customers for application 
software to state their requirements in a way that reflected 
the function of a proposed software system in terms that 
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Code Size

A good way to stay flexible is to write less code.

Pragmatic Programmer

The size of developed, deleted, modified, or reused code must be tracked as lines 
of code. Distinction can be made between executable and comment lines.

If function point metric is selected (in all phases), we can first calculate func-
tional size using the original formula invented by Allan J. Albrecht:

EI × 4 = _____
EO × 5 = _____
EQ × 4 = _____
ILF × 10 = _____
EIF × 7 = _____
Total FP  = _____

where EI is the external input, EO is the external output, EI is the external inquiry, 
ILF is the internal logical file, and EIF is the external interface file.

The International Function Point User’s Group (IFPUG) has introduced a 
detailed FP counting method in 1986 [8]. The results still agree with Albrecht’s 
formula, but counting has become more precise. The IFPUG rules are time con-
suming to apply.

they could readily deal with, not the more technical lan-
guage, e.g., SLOC counts, of the software developers. 
This was truly a major step forward in the state of the art, 
and in the state of practice of our profession.

John Gaffney

FP could be applied to all programming languages and across all develop-
ment phases; this helps development management and simplifies benchmark-
ing. FP is a better predictor of defects than lines of code. FP is also a more 
effective estimator of cost and time.
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Code Complexity
Again, function point is a good enough metric of code complexity. If a tool is 
available for measuring complexity, we can use the McCabe complexity number. 
This cyclomatic complexity measures the amount of decision logic in a single soft-
ware module. Cyclomatic complexity is equal to the number of independent paths 
through the standard control flow graph model.

Highly complex modules are more prone to error, harder to understand, harder 
to test, and harder to modify. Limiting complexity helps. McCabe proposed 10 as 
the limit, but higher levels of complexity are in use.

Defect Density
A common metric to express quality is known as defects per kilo lines of code 
(KLOC) or defects per FP. The second formula can be used even in the design 
phase.

Box 6.2 the Full Function point: A BreAkthrough

The full function point (FFP) revolutionized size measurement. A new 
paradigm was invented: data movement is size. Full function points were 
proposed in 1997 with the aim of offering a functional size measure spe-
cifically adapted to real-time software. It has been proven that FFP can 
also capture the functional size of technical and system software and MIS 
software.

FFP distinguishes four types of data movement subprocess: entry, exit, 
read, and write, as identified in the context model of software. FFP makes 
use of the measurement principle: the functional size of software is directly 
proportional to the number of its data movement subprocesses.

Practice tends to show that the FFP approach, while offering results very 
similar to those of the IFPUG approach when applied to MIS software, offers 
more adequate results when applied to real-time, embedded, or technical soft-
ware by virtue of the fact that (a) its measurement functions are not bounded 
by constants and (b) the level of granularity is more relevant to these types 
of software. Furthermore, in situations requiring the measurement of smaller 
pieces of software, the FFP approach offers a finer degree of granularity than 
the one offered by the IFPUG approach by virtue of the identification and 
measurement of subprocesses.

Serge oligny and Alain Abran
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Defect Classification
Orthogonal defect classification or its variant is considered as a very critical defect 
measurement. From the classification, defect profile or defect signature can be 
extracted.

Reliability

The price of reliability is the pursuit of the utmost simplicity. It 
is a price which the very rich may find hard to pay.

C.A.R. Hoare

It is becoming a growing fashion to estimate reliability before dispatch. A suit-
able reliability model should be adopted for this purpose. A simple metric is failure 
intensity, meaning the number of defects uncovered per unit time of testing or 
usage.

Examples of Process Metrics
Review Effectiveness
This metric refers to the percentage of defects caught by review. More significantly, 
it draws our attention to the review process. It is now a well-established fact that 
review effectiveness improves quality and reduces time and cost, and this metric is 
worth watching.

Test Effectiveness
This a straightforward calculation of defects found by test cases and is a very good 
metric during the testing phase.

Program testing can be used to show the presence of bugs, but 
never to show their absence!

Edsger Dijkstra
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Test Coverage
There are two expressions in use for this metric. First, we check how much of the 
requirement is covered by test cases (requirements coverage). Second, we track how 
much of the code is covered by testing (structural coverage) using a tool.

Subprocess Metrics
As the software development organization climbs the ladder of process maturity, 
visibility into what we do increases. One way of achieving this deeper visibility is 
to measure subprocesses.

For example, let us consider the case of “review process” and investigate con-
struction of subprocess metrics. The process of review is measured by review effec-
tiveness, the overall performance. To achieve subprocess measurement, review can 
be divided into the following subprocesses:

 ◾ Preparation
 ◾ Individual review
 ◾ Group review by meeting

Metrics can be installed to monitor these subprocesses, for instance, as follows:

 ◾ Preparation effort
 ◾ Individual review effort
 ◾ Individual review speed
 ◾ Group review effort
 ◾ Group review speed

Subprocess metrics provide the following attractive benefits

 ◾ We can build process performance models with the data.
 ◾ We can predict the overall process outcome.
 ◾ We can establish control at the subprocess level and increase certainty of 

achieving goals.

Achieving subprocess measurement is not easy. This requires voluntary effort 
from people, very similar to the case of data collection in the personal software 
process. We cannot force these metrics into the organization because these metrics 
“intrude” into creative efforts. Providing data at the subprocess level require great 
maturity and transparency. People resist subprocess data collection because of the 
following reasons:
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 ◾ The reasons for subprocess data collection are not clearly known.
 ◾ People hate micromanagement.
 ◾ People are quick to realize that already collected data have not been used 

(a truth).
 ◾ People do not have time to think of process performance models.
 ◾ Scientific management is not a popular management style.
 ◾ People think that statistical process control is not relevant to software 

development.

Achieving subprocess metrics therefore requires a cultural transformation.

Converting Metrics into Business Information
Project Dashboard
Project metric data can be transferred to a project dashboard, preferably visual, as 
shown in Figure 6.1. The dash board must be updated, as completely as possible, 
after every milestone is performed. Some metrics such as customer satisfaction may 
be available less frequently, and this does not pose any serious problem. Achieving a 
milestone based dashboard to display metric results is the difficult first step.

Box 6.3 the right Metric For proJect DelAy

Project delay is often measured using a classic metric “schedule variance.” 
This is one of those variance metrics and has enjoyed the favor of many prac-
titioners. The expression defining schedule variance is as follows:

 
Schedule variance Actual schedule Estimated sc= −( hhedule

Estimated schedule
) × 100

 

If a 6-month project is delayed by 5 days, the schedule variance, according 
to the previously mentioned definition, is calculated as follows: (5/180) × 100 = 
2.8%. If the process specification limits are ±5%, this schedule performance 
is acceptable, or, to a cursory glance, the deviation is not alarming.

Instead of measuring delay as a normalized variance, measure a schedule 
slip expressed in actual calendar days by which the project is delayed, and 
a new meaning emerges. In projects that deal with the Y2K problem, even 
a single minute delay could play havoc. This is an example of the mean-
ing of slippage in real time. In this project, process compliance to preset 
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Product Health Report
Product metric results can be organized in matrix format to present recorded infor-
mation about each component. There are many ways one can organize this infor-
mation. A simple form is shown as follows:

Metric C
o
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t 1

C
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t 2
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en
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en
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en
t 9

Date tested

FP

KLOC

Design complexity

Code complexity

Defect count

Defects/FP

Reliability

Residual defects (predicted)

specification limits does not have meaning. Delay should be measured in real 
time. The cost of time depends on the context. For example, a single day delay 
in software delivery to large Aerospace Systems may incur huge costs. Where 
thousands of vendors are involved, scheduled delay can have catastrophic 
cumulative effects. Thus, the following metric must be used:

 Schedule slip = (actual schedule − planned schedule) in days 

The time loss must then be converted into monetary loss. Dollars lost due 
to schedule slip is a better metric than the percentage of process compliance. 
A 1-day slip might translate into millions of dollars in some large projects. 
Customers may levy sizable penalty on schedule slips.
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Statistical Process Control Charts
From collected process data, we plot control charts. Simple statistical process control 
(SPC) techniques can be used to make process control a success. The control charts 
are sufficient to make project teams alert and deliver quality work products and 
simultaneously cut costs. Each chart can be plotted with results from completing 
various components, arranged in a time sequence, as shown in Figure 6.2. These 
charts are also known as process performance baselines.

Case Study: Early Size Measurements
Measuring size early in the life cycle adds great value. During the first few weeks 
of any development project, the early size indicators provide clarity to the project 
teams when things are otherwise fuzzy.

The Netherlands Software Metrics Users Association (NESMA) has developed 
early function point counting. According to NESMA,

A detailed function point count is of course more accurate than 
an estimated or an indicative count; but it also costs more time 
and needs more detailed specifications. It’s up to the project 
manager and the phase in the system life cycle as to which 
type of function point count can be used.

In many applications an indicative function point count gives 
a surprisingly good estimate of the size of the application. Often 
it is relatively easy to carry out an indicative function point count, 
because a data model is available or can be made with little effort.
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Figure 6.2 Control chart on schedule variance.
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When use cases are known, by assigning different weight factors to different 
actor types, we can calculate use case point. This metric can be set up early in the 
project and used as an estimator of cost and time. Technical and environmental 
factors can be incorporated to enrich the use case point for estimation.

Similarly, when test cases are developed, a metric called test case point (TCP) 
can be developed by assigning complexity weights to the test cases. The sum of 
TCP can be used to estimate effort and schedule.

Alternatively, we can measure object points based on screens and reports in the 
software.

Use case points, test case points, and object points are variants of functional 
size. They can be converted into FP by using appropriate scale factors.

Measure functional size as the project starts.
This will bring clarity into requirements and help in the estimation of cost, 
schedule and quality.

Once functional size is measured, the information is used to estimate man-
power and time required to execute the project. This is conveniently performed by 
applying any regression model that correlates size with effort. COCOMO is one 
such model, or one can use homegrown models for this purpose.

There is a simpler way to estimate effort. We can identify the type of soft-
ware we have to develop. Yong Xia identifies five software types: end-user software 
(developed for the personal use of the developer), management information system, 
outsourced projects, system software, commercial software, and military software. 
On the basis of type, we can anticipate the FP per staff month, which can vary from 
1000 to 35 [9]. Using this conversion factor, we can quickly arrive at the effort esti-
mate. Once effort is known, we can derive time required, again by using available 
regression relationships.

Early metrics capture functional size and arrive at effort estimates; measure-
ment and estimation are harmoniously blended.

Project Progress Using Earned Value Metrics
Tracking Progress
Whether one builds software or a skyscraper, earned value metrics can be used to 
advantage. To constrict earned value metric, we need to make two basic observa-
tions: schedule and cost are measured at every milestone.

The first achievement of EVM is in the way it distinguishes value from cost. 
Project earns value by doing work. Value is measured as follows:

Budgeted cost of work is its value.
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In EVM terminology, this is referred to as budgeted cost of work. From a project 
plan, one can see how the project value increases with time. The project is said to 
“earn value” as work is completed. To measure progress, we define the following 
metrics.

Planned value = budgeted cost of work scheduled (BCWS)
Earned value = budgeted cost of work performed (BCWP)

An example of project progress tracked with these two metrics is shown in 
Figure 6.3.

At a glance, one can see how earned value trails behind planned value, graphi-
cally illustrating project progress. This is known as the earned value graph.

Tracking Project Cost
The actual cost expended to complete the work reported is measured as the actual 
cost of work performed (ACWP). Cost information can be included in the earned 
value graph, as shown in Figure 6.4.

In addition to the earned value graph, we can compute performance indicators 
such as project variances and performance indices. We can also predict the time 
and cost required to finish the project using linear extrapolation. These metrics are 
listed in Data 6.1.

An earned value report would typically include all the earned value metrics and 
present graphical and tabular views of project progress and project future.
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Figure 6.3 Tracking project progress.
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The project management body of knowledge (PMBOK) treats earned value 
metrics as crucial information for the project manager. Several standards and 
guidelines are available to describe how EVM works. For example, the EVMS stan-
dard released by design of experiments (DOE) utilizes the EVMS information as 
an effective project management system to ensure successful project execution.
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Figure 6.4 Tracking project cost.

Data 6.1 Earned Value Metrics

Core Metrics
   Budgeted cost of work scheduled (BCWS) (also planned value [PV])
   Budgeted cost of work performed (BCWP) (also earned value [EV])
   Actual cost of work performed (ACWP) (also actual cost [AC])
Performance Metrics
   Cost variance = PV − AC
   Schedule variance = EV − PV
   Cost performance index (CPI) = EV/AC
   Schedule performance index (SPI) = EV/PV
   Project performance index (PPI) = SPI × CPI
   To complete schedule performance index (TCSPI)
Predictive Metrics
   Budget at completion = BAC
   Estimate to complete (ETC) = BAC − EV
   Estimate at completion (EAC)
       EAC = AC + (BAC − EV)           Optimistic
       EAC = AC + (BAC − EV)/CPI       Most likely
       EAC = BAC/CPI             Most likely°simple (widely use d)
       EAC = BAC/PPI            Pessimistic
   Cost variance at completion (VAC) = BAC − EAC
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Review Questions
 1. Mention your choice of a product metric in software development.
 2. Mention your choice of a process metric in software development.
 3. Mention your choice of a project metric in software development.
 4. Mention your choice of a process for establishing subprocess metrics. Identify 

and list the subprocess metrics for the process you have selected.
 5. Why is function point a success?

Box 6.4 Why iS Size Metric MiSSing?

We measure the size of what we build. If we construct a house, we measure 
the floor area. If we build a truck, we measure its length, height, and breadth, 
among other parameters. Size measurement is a hallmark of engineering.

When we build a software, we are reluctant to measure size. Some of us 
do not measure size at all. This is a disappointment for we have failed to 
uphold software engineering. Come to think of it, it is rather easy to measure 
size. If we find IFPUG function point or FFP time consuming and cumber-
some, especially for large modules, we have alternatives to choose from. For 
example, we can use any of the following established metrics:

 ◾ Albrecht function point
 ◾ Mark II FP
 ◾ Object point
 ◾ Test case point
 ◾ Use case point
 ◾ PROBE
 ◾ Feature point

Doug Hubbard’s book titled How to Measure Anything [10] can help to 
overcome mental barriers in measuring things considered impossible to mea-
sure. He observes that the perceived impossibility of measurement is an illu-
sion caused by not understanding the concept of measurement, the object of 
measurement, and the methods of measurement.

You can build your own proprietary size metric. Some have constructed 
engineering size unit as a metric. Others have invented requirement size unit. 
Homegrown complexity metrics are doing the rounds as well. Having an 
approximate size metric is infinitely better than not having one.
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Exercises
 1. Download a C program to convert Celsius to Fahrenheit from the web. 

Count size in lines of code.
 2. For the previously mentioned script, count function point.
 3. Count FFP for item 2. Compare FFP value with FP value.
 4. Develop subprocess metrics for software design. Propose an equation for 

design complexity that makes use of the subprocess metrics.
 5. The earned value metrics for a development project captured in the middle of 

the project life cycle are as follows

 Earned value 1200 person days
 Planned value 1300 person days
 Actual cost 1500 person days

 Calculate the following project performance indices:

 Schedule performance index
 Cost performance index
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Chapter 7

Maintenance Metrics

Fusion of Frameworks in Software Maintenance
Software maintenance assimilates three management styles: project management, 
operations management, and service management. Maintenance metrics design 
mirrors this fusion. The big maintenance work gains from project management 
framework, the small tasks gain from operations management, and all mainte-
nance tasks, by necessity, subscribe to service management framework. The project 
approach harmonizes all.

Operations keeps the lights on, strategy provides a light at the 
end of the tunnel, but project management is the train engine 
that moves the organization forward.

Joy Gumz

Maintenance engineering is based on multiple principles. On the one side, we 
have enhancement tasks (adaptive maintenance), which are mini projects to change 
the functionality of software [1]. Knowledge areas from Project Management Body 
of Knowledge (PMBOK) are often used as founding principles. On the other side, 
we have quick jobs of bug fixing (corrective maintenance), which are more like ser-
vice tasks. Managing these tasks uses operations management, ITIL, ISO 20000, 
and CMMi SM concepts as founding principles. Metrics in these two different 
types of maintenance accordingly differ in their scope, nature, and intent. Metrics 
interpretations reflect the respective founding principles.

© 2015 by Taylor & Francis Group, LLC



104 ◾ Simple Statistical Methods for Software Engineering

Occasionally, we also come across perfective maintenance where quality and per-
formance of the software is improved. Perfective maintenance tasks are product and 
process improvement projects. IEEE standard defines perfective maintenance as “modi-
fication of a software product after delivery to improve performance or maintainability.” 
It is now widely believed that software reliability enhancement is a social responsibility; 
it makes life safer. To fulfill these social expectations, responsible maintenance organi-
zations gather such metrics. These are product and process performance metrics. Such 
metrics have rather complex definitions and are often based on mathematical models.

Corrective maintenance dominates the scenarios in some maintenance organi-
zations. Some take up pure enhancements. In several other organizations, the three 
types coexist in a 3:1:1 ratio according to a study made by NC State University [2]. The 
ratio could be 1:3:1 in certain business contracts where the focus is on bug fixing. NC 
State University also mentions that corrective maintenance—the quick fixes—come 
in two styles: without document changes and with document changes in the 2:1 ratio.

In huge system enhancement contracts, such as in aerospace, a large number 
(thousands) of change requests are clubbed into a development package, and it goes 
through a full development life cycle for many years. Multiple variants of the prod-
uct are released periodically. This becomes more complex than regular green field 
development projects. Additional activities such as impact analysis and regression 
testing are included to ensure that system integrity is maintained. For these projects, 
the metric approaches suggested in Chapter 6 are relevant and may be followed.

In maintenance projects, many data are collected by automated tools. However, the 
construction of metrics and models seems to be more difficult in maintenance projects 
than that in development projects. Maintenance tasks are shorter, and there is no time 
for manual data collection. Tool-collected data go into a database (“write-only” data 
base, Humphrey quipped) and is revisited by analysts who prepare reports for manage-
ment and customers. Data, much less metrics, are not that visible to support teams.

Extraction of metrics from the database is performed based on the purpose at 
hand. The purpose could be weekly management reports or occasional construc-
tion of performance models.

Let us take a look at some typical maintenance metrics.

Box 7.1 Should Maintenance teaM 
MeaSure Software reliaBility?

Reliability is a product metric and is often considered as a development met-
ric. However, the role of reliability assurance shifts with time, from the devel-
opment team to the maintenance team. Under maintenance tasks, reliability 
can either grow or deteriorate. Many support teams do not measure reliability 
unless the contract demands such a metric. As software evolves during main-
tenance, entropy sets in and quality gradually diminishes.
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Maintainability Index
A code is maintainable if it is understandable, modifiable, and testable, three fac-
tors identified by Syavasya [3]. A simple rule is

The more complex a code turns, the less maintainable it becomes.

A widely used and practical working metric, maintainability index, is defined 
as follows:

 MI = 171 − 5.2lnV − 0.23G − 16.2lnLOC

where MI is the maintainability index, V is the Halstead volume, G is the cyclo-
matic complexity, and LOC is the count of source lines of code (SLOC).

Way back during coding, this metric could be used by a programmer to sim-
plify a code in a systematic and measurable manner. The same metric can be used 
by the maintenance team to assess the application under maintenance. During the 
series of enhancements and feature additions, care may be taken to sustain high 
maintainability or even improve maintainability in preventive maintenance. This 
metric plays a fundamental role in the phases, coding, and maintenance:

What is measured, improves.

Tracking this metric, during evolution of software during maintenance, helps 
to regulate and guide maintenance efforts.

Change Requests Count
At the outset, the software size grows following an evolutionary path, release followed 
by release. Only a part of the software is not modified, as suggested by Lehman et al. 

As a system evolves its complexity increases unless work 
is done to maintain or reduce it; the quality of such 
systems will appear to be declining unless they are rig-
orously maintained and adapted to operational environ-
ment changes.

Lehman’s Laws of Software Evolution

It is becoming an implied need that the support teams look after software 
reliability too and hence must measure reliability.
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[4], and shows an example: the total size of a system in modules and the part of the 
system not touched at each release are plotted as a function of release number. Both 
measures are expressed as a percentage of the largest size achieved by the system.

In this dynamic environment, maintenance teams have to respond to change 
requests from the field—from customers. Change requests need to be validated and 
analyzed, and fixes must be designed, built, tested, and finally released. The arrival 
of change requests from two applications under maintenance is shown in Figure 7.1.

Change requests from application 1 show a trend of growth, suggesting more 
changes in the months to come, whereas change requests from application 2 seem 
to have reached a plateau region, suggesting negligible number of changes in the 
months to come. Cumulative plots of change request counts are of immense value 
to the maintenance team. They indicate work done and predict work to be done. 
The metric is a direct count and does not involve complex calculations. Meaningful 
are the patterns discernible to the human eye.

Customer Satisfaction Index
Measurement of customer satisfaction (CSAT) has a strong business purpose: it 
helps businesses grow. Maintenance metrics framework placed great emphasis on 
CSAT survey.

Customers take a more direct interest in bug fixing and tend to fill in customer 
satisfaction survey forms regularly and frequently. The factors selected for CSAT 
survey are unique and resemble typical sets used in the service industry. Zeithaml 
and Parasuraman’s [5] RATER model measures the following factors:
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Figure 7.1 Change request (CR) arrival.
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Reliability
Assurance
Tangibles
Empathy
Responsiveness

More factors are added, and the previously mentioned factors are also tailored 
based on the business contract and customer’s special requirements.

Customer satisfaction against each factor is measured using the Likert scale. 
However, a continuous scale from 0 to 10 is simpler, more granular, and has advan-
tages, presented as follows:

 Undesirable 0 o—o—o—o—o—o—o—o—o—o—o 10 Excellent

The maintenance CSAT factors are very different from the factors used in devel-
opment projects, and the priorities are different. Preferably, the factors should be 
selected in consultation with the customer to have a perfect alignment with cus-
tomer’s expectations.

The CSAT index is a metric religiously collected in corrective maintenance 
operations; this is also the metrics more often seen by top management.

Resource Utilization
There is always a mismatch between the volume of maintenance tasks and the avail-
able resources. Workload is not constant but fluctuates. Projects could be under-
staffed or resources could be idle.

Typical maintenance projects are run with minimal resources to reduce over-
head costs; as a consequence, there is a backlog. However, the resource utilization 
metric will be reported as 100% every month. This metric is a fallacy unless it is 
seen in the context of performance and customer satisfaction. If there is overtime 
and if it is also recorded, human resources utilization will touch 120% and more, 
as has been occasionally reported in the industry. Such high scores are alarming; 
employees could be put under stress, and quality of work may be compromised. 
Fatigue affects the way the team members communicate and empathize with cus-
tomers. The healthy range of this metric is between 95% and 98%.

Along with this metric, team skill index can also be measured using the data 
collection form shown in Figure 7.2. When the team skill index is low, it has two 
significant consequences: customer satisfaction falls low, and it takes longer to fix 
bugs.

Service-Level Agreement Compliances
Service levels are specified in the maintenance contract. There are stringent specifica-
tions on the time to deliver each category of service. For example, the delivery time 
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could be 24 hours for express service, 48 hours for next priority tasks, a week for regu-
lar tasks, a fortnight for odd tasks, and so on. There are different performance slabs 
for different task categories. If delivery had been made within the stipulated time, the 
service-level agreement (SLA) is complied; if not, it is a noncompliance and a breach of 
contract. The customer virtually controls the maintenance team by closely monitoring 
the SLAs. The criteria are often designed to minimize risk to the customer.

The SLA compliance metric is based on counts, defined as follows:

 SLA compliance
Number of deliveries that met SL= AA

Total number of deliveries
× 100 

Customers sign different SLAs with the maintenance organization for each of 
the delivery attributes such as quality, response time, priority levels, and volume 
delivered per month. Every month, the percentage of the SLA compliance level is 
measured for each. Noncompliance may attract penalties, and hence these metrics 
are respected and sincerely tracked.
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SLA metrics enable teams to perform within the limits set. They do not mea-
sure the exact performance but only register whether the SLA is met or not. For 
example, while providing a work around governed by a 48-hour SLA criterion, the 
agent does not report the actual time. Even if the agent completes the job within 
12 hours, delivery will be officially logged only at the 48th hour because the SLA 
says so. Twelve hours is unaccounted for. This is where Parkinson’s law plays a role:

Work expands to fill the time available.

There is no motivation to do your best, but to do just so much, the bare minimum, 
merely to avoid penalty. Under SLA, we never know the true capabilities of teams.

SLA compliance is a business metric in its strict sense.

Percentage of On-Time Delivery
Of all the service attributes, time is the most crucial. A special metric is constructed 
to track the % of deliveries made on time. The on-time delivery (OTD) metric 
elicits respect from the maintenance team because of its inherent business context.

This metric is very different from schedule variance (SV), which is a process metric 
and measures delay. As a process metric, even the magnitude of delay is captured as 
information. In OTD, the magnitude of delay is not captured. ITD is a discrete met-
ric, whereas SV is a continuous metric. OTD captures partial information, whereas 
SV captures complete information. If we have not delivered on time, there is a con-
solation we get in measuring the delay. Even if the delay is small, no mercy is shown. 
The delivery is said to have failed. OTD belongs to a pass/fail world of hard decisions.

Enhancement Size
The enhancement size metric helps in understanding the enhanced job better, 
besides serving as an estimator of cost, schedule, and quality. The Netherlands 
Software Metrics Users Association (NESMA) guideline “Function Point Analysis for 
Software Enhancement Version 2.2.1” defines enhancement as changes to the func-
tionality of an information system, so-called adaptive maintenance. Enhancement 
involves three possible tasks:

 ◾ Addition of functionality
 ◾ Deletion of functionality
 ◾ Change of functionality

Addition of functionality is measured as added FP. The deletion of functional-
ity is measured as 0.40 × deleted FP. Changed functionality is measured as impact 
factor × changed FP; the impact factor could take values from 0 to 1.

The total is called the enhancement size, calculated as follows: enhancement 
function point (EFP) = added FP + 0.40 deleted FP + IF × changed FP.
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The previously mentioned equation shows the effect of deletion and change. To 
work with EFP is a good practice.

As a proxy, LOC can also be used to judge enhancement size, though such a 
metric may not be available early in the enhancement life cycle and may not help 
in estimation. It is a pity to see that some projects do not include deleted size and 
changed size in their calculation.

Bug Complexity
In a lower scale of measurement, bug complexity is measured as high, medium, or 
low by the maintenance engineer. This is a subjective measurement, but it works.

Bug complexity can also be assessed on a continuous scale of 1–10, 10 being the 
most complex and 1 being the least. This is still subjective but has better granularity and 
has the extra advantage of being a numerical expression allowing further calculations.

The objective treatment of bug size considers factors driving bug fixing effort. 
In one model by Andrea De Lucia [6], the number of tasks required and the appli-
cation size are considered as the factors, and the linear regression equation relating 
these two to effort is constructed.

The purpose of measuring bug complexity is to use the answer to predict bug 
fixing effort. That means the purpose is to build an estimation model. During 
analysis, such an estimate is made by the maintenance engineer, usually on the fly. 
Because analysis of the bug is made to fix the bug and not to build a model, explor-
ing additional factors or increasing the depth of measurements is not suggested. 
Bug fixing is the main objective, model building a concomitant one. Moreover, we 
do not need extraordinary precision in estimating the bug fixing effort; we need a 
reasonably useful indicator.

Do not measure with a micrometer, mark with a chalk and cut 
with an axe.

Murphy’s Law of Measurement

Box 7.2 Bug repair tiMe Metric

A maintenance manager desired to statistically establish the team’s bug repair 
capability and circulated a form to gather data. Senior engineers responded truth-
fully. The time spent on bug fixing was approximately 5–6 hours every day. A new 
recruit did not know how to respond and simply wrote “From 9 am till 6 pm, I 
spent time on bug fixing”; a statement too good to be true. The new recruit filled 
in what he thought as an appropriate value and not what he actually did. Bug 
repair time is a metric difficult to collect and even more difficult to validate.
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There are several equally simple ways of building an estimation model, includ-
ing estimation by analogy and proxy-based estimation.

Bug complexity is thus measured with consciously selected level of approxima-
tion. Later, this is going to affect the effort variance metric.

Effort Variance (EV)
The formula for the effort variance metric remains the same as before:

 Effort variance Actual effort Estimated effort= −( ))
Estimated effort

× 100 

However, context and interpretation change in maintenance. This metric can be 
easily applied to enhancement projects where estimation is performed reasonably well, 
and the metric accordingly carries full meaning. It is beneficial to calculate effort vari-
ance twice, first with the initial estimate and later with a revised estimate after the 
change request is better understood. Even after the second estimate, the first estimate 
is still used as a budget control metric and the second as a process control metric.

In bug fixing, effort variance can be calculated, if at all, only approximately 
because of approximations in estimation.

Schedule Variance (SV)
The SV metric is treated like effort variance. Often, this is restricted to enhance-
ment projects and not implemented in bug fixing tasks for two principal reasons: 
bug fixing is tightly controlled by SLAs, and the actual time of fixing is not avail-
able. Many times, bug fixing happens without estimation.

Quality

Quality of Enhancement

Quality metric is calculated by dividing defect count by size and is expressed as 
defects per EFP. The quality of each release is monitored.

Quality of Bug Fix

Sometimes, maintenance activities inadvertently harm quality; while fixing a bug, 
another could be introduced. In a typical bug-fixing environment, the support team 
does not know if a fixed bug opens in the field. If the same bug returns, people still may 
not detect this arrival because there is no traceability. Usage-triggered failures seldom 
come to the knowledge of the bug fixer. Bug arrival rate is not usually connected with 
quality because no one connects the dots. In such a fluid situation, unless quality met-
ric is defined and collected, the quality of the software under maintenance cannot be 
known and improved. However, such a step needs to be negotiated with the customer 
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and be seen as a business need. If quality improves, maintenance cost will come down 
and the customer will benefit; but preventive maintenance has to be paid.

Productivity
Productivity can be expressed in different ways. We suggest the EFP metric per man 
month. This metric eventually controls cost of maintenance; it helps in cost control.

For measuring bug fixing productivity, the number of fixes per man month 
could be a basic metric.

Measuring productivity is straightforward, but estimating productivity from 
contributing factors is not. If the metric includes estimation (which in a broader 
sense is a right expectation), then making use of models such as COCOMO may 
be included in our purview.

Time to Repair (TTR)
This is a metric automatically collected by the bug-tracking tool. If one wants to improve 
the process of bug fixing, optimize it, and achieve excellence, subprocess metrics such as 
(1) time for replication, (2) time for analysis and design, and (3) time for implementation 
and testing can be collected. These subprocess metrics can be obtained by a quick survey. 
The bug tracker tool may not be equipped to collect subprocess metrics. Such surveys are 
performed occasionally to obtain information to improve the process. It is quite possible 
to collect metrics at more granular levels, measure analysis time separately, and design 
time separately if the cost is justified by expected gain. One can go a step further and 
apply lean techniques such as value stream map analysis, waiting time analysis, and idle 
time analysis. This metric will help to make the operation more efficient.

Most certainly, one does not choose subprocess metric for regular data collec-
tion till the organization achieves high maturity and people volunteer to provide 
“personal” data. However, whatever be the level of granularity, bug repair time is 
one of the most effective and beautiful metrics in software engineering.

Box 7.3 the Queue

Bugs form a queue, and customers wait for fixes. Customer satisfaction 
increases with response time and quality; both depend on human resources. 
When resource utilization is 100%, customer satisfaction is less than the best. 
When resource utilization is 90%, customer satisfaction improves. Moral of 
the story: some human reserves must be maintained to boost customer satis-
faction, and there is a trade-off between the two. Maintenance organization 
keeps buffer resources and operates at less than 100% resources utilization 
because losing customer satisfaction is costlier.
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Backlog Index
This index measures the percentage of bugs in the backlog queue and represents an 
operational challenge in maintenance projects.

Bug Classification
Classification is categorical data. To understand bugs better, they are classified in 
the bug tracker database. Typical fields are origin, cause, trigger, type, and solu-
tion. More can be added; ODC use may be considered. A periodical analysis of bug 
distribution among the various classifications is a good revelation of the problem.

Fix Quality
Bug fixes could have problems. Bugs may reopen and cause rework and delay. The 
percentage of bug fixes that are performed right the first time can be measured. 
Rework can be measured for cost control.

Refactoring Metrics
To improve quality of software and reduce maintenance costs by refactoring, we 
measure coupling and cyclamate complexity. Coupling measures the flow of data 
between modules. Cyclomatic complexity measures complexity in module structure.

Reliability
Reliability of the product under maintenance can be computed from “failure inten-
sity,” which is the number of bugs reported per month. From this metric, we can 
judge whether the product is recovering or crashing. A time series plot of cumula-
tive bugs discovered called reliability growth curve can be used as a visual represen-
tation of reliability. The mean time between failure also can be computed.

Metric-Based Dashboards
We would consider the top seven metrics for constructing a graphical dashboard 
for managing software maintenance. The other metric data may be presented in the 
form of a tabular record. The choice of metrics for graphical presentation is entirely 
up to the maintenance teams. Stark uses the following metrics [6]:

 1. Backlog
 2. Cycle time
 3. Reliability
 4. Cost per delivery
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 5. Cost per activity
 6. Number of changes by type
 7. Staff days per change
 8. Percentage of invalid change requests
 9. Complexity assessment
 10. Maintainability
 11. Computer resource utilization
 12. Percentage of content changes by delivery
 13. Percentage of OTD

Figure 7.3 shows an example of a dashboard built with seven metrics.

OTD %

Backlog index

Resources available

Time to repair

Customer satisfaction

Resource utilization 

SLA compliance

Reporting month: 

Predicted
change requests
for next month

Figure 7.3 Maintenance dashboard.

Box 7.4 lehMan’S lawS of Software evolution

The laws of software evolution refer to a series of laws that Lehman and 
Belady formulated in 1974:

 1. Continuing change—a system must be continually adapted or it 
becomes progressively less satisfactory.

 2. Increasing complexity—a system evolves as its complexity increases, 
unless work is done to maintain or reduce it.
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Review Questions
 1. What is the most important metric in adaptive (enhancement) maintenance?
 2. What is the most important metric in corrective maintenance?
 3. What is the most important metric in perfective maintenance?
 4. Which among the previously mentioned three metrics is the toughest to collect?
 5. If you were to design a dashboard for a support project and if you were asked 

to limit the number of metrics to just seven, which seven would you choose?

Exercises
 1. Develop a metrics list for a support project if the adaptive–corrective–perfective 

maintenance task ratio is 3:10:2.
 2. Develop a metrics list for an exclusive support contract for the perfective 

maintenance of software with an express goal of improving maintainability.
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 1. NESMA, Function Point Analysis for Software Maintenance Guidelines, Version 2.2.1, 

Professional Guide of the Netherlands Software Metrics Users Association, Netherland 
2009.
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 5. Conservation of familiarity—a system evolves all associated with it; 
developers, sales personnel, and users, for example, must maintain 
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 7. Declining quality—the quality of a system will appear to be declining 
unless it is rigorously maintained and adapted to operational environ-
ment changes.
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and multiagent feedback systems and must be treated as such to achieve 
significant improvement over any reasonable base.
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Chapter 8

Software Test Metrics

The broad benefits of metrics discussed in Chapters 1 and 5 are relevant to software 
testing too. Although testing is part of the full life cycle, it has become a project of 
its own kind, with its own unique objectives. Testing is conducted to find defects 
and to improve product quality. The three objectives of any project, that is, faster, 
better, and cheaper, also apply to testing. Metrics would help to push testing to 
greater levels.

Project Metrics
Definitions of test project metrics are exactly same as metrics definitions in any 
project, with the same meaning and purpose. Project metrics help to conserve proj-
ect resources and make optimal use of them. Project metrics track requirement 
changes and help to take corrective measures when requirement changes threaten 
the project. Project metrics also help to satisfy customers.

Schedule Variance
In testing projects, delivering on time is important. Measuring time and schedule 
variance as the testing milestones are crossed would give a feedback to the team to 
work toward meeting the delivery schedule.

Effort Variance
Completing testing within budgeted effort is the next concern. An effort variance 
metric would help to control the cost of testing.
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Cost
The cost of testing per release is measured. Cost variance tracks dollars spent in 
excess of the budget. In addition to human cost, we need to consider investment on 
tools and outsourcing and see if we can execute testing within budget.

Human Productivity
From the view of project management, we look at defects found per tester. The 
result is used to provide feedback to testers and hence improve test results. Defect 
discovery rate is one of the metrics used as an index of team productivity.

Requirement Stability
Testing closely follows requirements. Test cases mirror use cases. Hence, the big-
gest uncertainty in testing is requirement stability. This is measured and tracked. 
The requirement stability index (RSI), also called requirement volatility, is defined 
as follows:

 RSI
Original req Req changed Req added Req dele

=
+ + + tted

Original req
 

RSI is a metric that might already exist in the metrics system developed for the 
entire development project. One has just to reuse it.

Resource Utilization
From an operational perspective, resource utilization is a key metric. This metric is 
extended to tools, systems, and people.

Box 8.1 S CurveS in TeSTing

There are a few S curves used in testing. Cumulative defects arrived is the 
first curve. This is also called the reliability growth curve. This curve ends 
in a plateau zone beyond which further testing does not find defects. The 
product is said to have become stable, as far as we know, and can be shipped. 
Cumulative test cases executed is another S curve. The pattern of this S curve 
tells a lot about the nature and quality of test progress. Experienced testers 
can interpret this pattern and take appropriate decisions.
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Customer Satisfaction
Eventually, testing is a service. Customer satisfaction must be measured by con-
ducting surveys to improve service quality.

Test Effectiveness
This metric captures the percentage of defects found by testing. Of course, the 
stretch goal of the test team is to reach 100% effectiveness. The metric is defined 
as follows:

 Test effectiveness
Defects found by tests

Defect
=

ss found by tests Defects found by business use+ rrs
 

Process Metrics
The testing process is managed with several metrics, continuously tracked dur-
ing testing life cycle. A few of them are cumulatively graphed to derive deeper 
meanings.

Box 8.2 MeaSuring The reTurn on 
inveSTMenT of TeST auToMaTion

It is good to automate test cases. Test automation needs creativity. Carefully 
directing test automation will result in cost saving. To make sure that auto-
mation is kept profitable, we introduce a metric ROI of test automation.

Regression tests can be automated; the ROI is great. When manual test-
ing is difficult or impossible, automation is required. The simulation of a 
test scenario is difficult manually and is best performed through automa-
tion. In special cases such as testing a firmware, automation is the only way. 
In testing middle layers with missing upper or lower layers, automation is 
the only way.

Investment on automation may yield benefits beyond the current project. 
The tool must be generic enough to accommodate the needs of different proj-
ects. The tool need not aim at solving the requirements of a single project; it 
must be planned to address the needs of upcoming projects. It is an organi-
zational asset.

ROI from automation may vary from two to ten, typically.
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Defect Removal Efficiency
This metric is used in a special context in testing projects. There are other defini-
tions for this metric in other contexts. Defect removal efficiency (DRE) in testing 
means the number defects removed per unit time, defined as follows:

 DRE
Number of defects

Detection time Resolution
=

+ ttime Retesting time+
 

The inverse of this number is called defect turnaround time (TAT), defined as 
follows:

 TAT
DRE

= 1

 

Test Cases Count
We can cumulatively count test cases designed, executed, and succeeded until any 
point of time chosen for inquiry. This count makes more meaning if plotted as a 
cumulative chart as shown in Figure 8.1. These charts measure dynamic changes 
in test case counts.

Discernible in these charts are a few useful metrics: the percentage of success-
ful test cases and the percentage of executed test cases. These two metrics provide 
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Figure 8.1 Cumulative test cases count.
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useful feedback to the test management. The test team would strive to fill in the 
gaps in these areas. The first refers to quality test cases. The second pertains to a 
commitment to execute test case.

Test Coverage

Functionality Coverage

It is vital to know the proportion of requirements (functionalities) covered by test 
cases. This is the simple and most widely used test coverage metric. This metric 
helps to control and improve coverage and makes the application more usable by 
customers. As testing is in progress, coverage will increase in the light of this metric 
and will reach 100% in the ideal case.

Code Coverage

Yet another coverage metric traces the proportion of code covered by test cases.

Coverage helps eliminate gaps in a test suite.

This is a tenuous metric. Higher coverage does not mean assurance of better 
quality. An experienced tester knows to take a balanced view on this and make sure 
a minimum coverage has been achieved and critical paths have been covered.

Code coverage is a very useful metric.
However, you need to know how to use it.

Coverage metric tools are available to track line, statement, block, decision, 
path, and condition coverage. They provide excellent reports with back tracing and 
help achieve higher test efficiency.

Box 8.3 uniT TeST DefeCT DaTa

A unit test is cost effective. It improves reliability. It reveals bugs that are 
otherwise devious. A unit test needs design knowledge and is best performed 
by testers with design knowledge. For best results, testers can collaborate 
with designers and developers. The level of thoroughness and documenta-
tion depends on test strategy and goals. However, often enough, unit tests 
are not well documented, and unit test defects are not entered into the bug 
tracker. There is not much to motivate the designer except project objectives 
and leadership drive.
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Percentage of Bad Fix
This is a subprocess metric, governing the quality of defect resolution. Bad fixes con-
tains technical risk in testing, besides fuelling rework cost. In addition to poor resolu-
tions, fixing an existing bug can sometimes create additional bugs or expose other bugs.

Product Metrics
The ultimate purpose of testing is to evaluate and measure the quality of the soft-
ware under test (SUT), hence the importance of product metrics in testing.

Defect Counts

Defect Arrival Rate

The number of defects detected per day is the defect arrival rate. The cumulative 
number of defects found can be plotted as a pattern.

Defect Closure Rate

The number of defects closed per day is the defect closure rate. The cumulative plot 
of this number is the defect closure pattern. Figure 8.2 shows the closure pattern 
together with the arrival pattern. The gap between the two patterns has a self-
evident meaning. The figure shows the nearly completed detection process while 
closure seems to be ongoing.

Program testing can be used to show the presence of 
bugs, but never their absence.

Dijkstra

Some organizations have achieved partial success in getting unit test defect 
data. At the least, they collect defect count per module. The defect count is only 
partial because not all defects are counted. Even partial defect data would help 
in understanding defects in the product before even the formal test cycles start.
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Component Defect Count

Defects found in individual components can be separately analyzed. Figure 8.3 
shows a bar graph of defects found in each component. This figure reveals defect 
proneness of some components.

Component Defect Density
When defect count is normalized (divided) by size, we can calculate the metric 
defects/function point (FP); we obtain fresh information about the quality levels 
of each component. Now there is an objective basis to do an intercomparison of 
quality of components. These data can be obtained at the first round of tests and 
updated during subsequent test iterations. The first round of results are a fairly good 
indicator of the quality levels. This will serve as a guide in developing test plans for 
the remaining rounds, and help capture more defects.
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Figure 8.2 Defect arrival closure patterns.
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Figure 8.3 Defect per component.
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Defect Classification
During defect capturing, we can register the different attributes of defects: defect 
type, defect severity, phase injected, trigger, cause, and complexity. Then we can 
classify defects according to each of the attributes and derive broad perspectives 
about defect population. Classification is also a measurement. The defect attri-
bute analysis report is a valuable input to the development team to support defect 
prevention.

Testing Size: Test Case Point
The test case point (TCP) can be used as an estimator for the entire software devel-
opment project also.

Testing size can be measured in terms of TCP. Each test case is assigned a weight 
based on test case complexity and test case type. Test case complexity depends on 
test data, checkpoints, and precondition. The weights are as follows:

Checkpoint 1
Precondition 1, 3, 5
Test data 1, 3, 6

The rules for assigning weights are provided by Nguyen et al. [1]. Unadjusted 
text case points are computed with the above weights. Adjustment is performed 
according to the test case type. In a case study, the author reports, “The num-
ber of estimated TCPs was 8783 for the total 1631 test cases of the system, an 
average of 5.4 TCPs per test case.” The total TCP represents testing size and 

Box 8.4 SMoke TeST DefeCT DenSiTy

Smoke tests are very useful; they shorten the testing cycle. They ensure that 
the code is working and the build is stable. They should be capable of expos-
ing major problems. It is instructive to calculate defect density for each com-
ponent with smoke test defects. Smoke test defect density is an indicator of 
risks in the components and an early predictor of problems. The real power of 
metrics is realized when metrics are used to predict. The smoke test is simple, 
fast, and cheap, but smoke test defect density is priceless.

Smoke tests must be identified during requirements.
For example, safety requirements can be smoke tested very early in the 

project.
The smoke test sets the minimum entry criteria for starting test execution.
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can be used to estimate effort and time required to complete testing. Also in an 
experiment, Nguyen et al. noted that testers spent, on average, 3.21 minutes to 
execute each TCP.

Patel et al. [2] have extended TCP calculation. They have determined TCP sep-
arately for test case generation, manual execution, and automated execution. After 
these calculations, they add all the TCPs to determine the total TCP for testing.

Risk Metric
Testing risk is measured using the FMEA table and expressed as risk priority num-
ber (RPN).

Jha and Kaner [3] have applied FMEA to detect risks and prioritize them for 
mobile application.

Failure mode is the way a program could fail.

They have prepared a catalogue of failure modes under different quality criteria. 
The catalogue is pretty detailed and can be a useful reference to testers. These fail-
ure modes catalogued by Jha and Kaner are domain specific; testers have to identify 
their failure modes in the software testing, by using experience and knowledge.

Experienced testers know failure modes in software.

Having identified the failure modes, then they are prioritized using RPN. Then 
test cases are first developed to cover top 20% risks. Such inputs help testers to plan 
testing using the paradigm “risk-based testing.” This enables testers to begin with 
a small set, learn from the results, and progress. Kaner [4] advocate risk-based test 
prioritization, test lobbying, and test design.

For every feature, we can measure RPN and prioritize features for testing. For 
every product, we can measure RPN and prioritize areas for testing.

Allocate more resource and earlier testing for bigger numbered 
(RPN) areas.

Cem Kaner

The purpose of risk measurement is to prioritize, to test less, to test sooner, and 
to obtain more knowledge.
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Predicting Quality
As testing progresses, the quality of SUT would be progressively measured. Halfway 
through in testing, we have sufficient data to predict the quality level of the product 
at the end of completing test execution. We should be in a position to predict resid-
ual defects when testing is performed and the application is released. On the basis 
of this prediction, we can make a decision to stop testing once the targeted quality 
level is achieved. If a quality level is defined as 99.999% correct code and if predic-
tion shows only 0.001% defects are undiscovered, we can release the application.

In this context, the purpose all test metrics is to make this prediction. Chapter 21 
describes a method for predicting defects.

Metrics for Test Automation
Test automation requires special effort, almost a project on its own merit. Auto-
mation promises to rapidly find defects that manual testing cannot find. This 
increases the quality of SUT.

Automation could be a huge effort, especially for large projects.

Windows NT 4 had 6 million lines of code, and 12 million lines of test code.

By using test automation metrics, this huge effort could be managed better and 
more defects could be found in the SUT.

Return on Investment
Return on investment (ROI) of automation is a strategic measure that justifies auto-
mation. The simple formula for ROI is a direct ratio given as follows:

 ROI
Cost saved by automation

Cost of automation
=

 

Cost savings from automation is usually distributed across several projects that 
benefit from the automation scripts; calculating ROI from single project informa-
tion is not fair.

Percentage Automatable
Another lead metric in test automation is % Automatable. This metric must be 
established upfront:

 % Automatable Number of test cases that can be= aautomated
Total number of test cases

× 100 
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Deciding on the test cases to be automated is a critical decision. Not every test 
case could be automated. Some defects could be found only by slow manual testing. 
Although speed is an advantage, only some test cases should be automated.

Automation Progress
To track the automation project, we can measure automation progress by setting 
up the following metric:

 Automation progress
Number of test cases actual= lly automated

Test cases selected for automation
×× 100  

Case Study: Defect Age Data
Defect age is a very well-known metric in the industry, but only a limited number 
of organizations collect this metric. The time defect spends in the product, from 
injection till resolution, is defect age. This can be calculated from the defect data in 
the bug tracker if appropriate fields have been set and populated. The fields required 
are phase injected and phase detected. It is now evident that the defect database 
is maintained throughout the project life cycle. Moreover, the information in the 
column phase injected is only obtained by reasoning during causal analysis and 
not from the log book. The term data in testing includes even reasoned, intuitive 
judgments.

 Defect age = 1 + phase detected − phase injected

Some people use the formula without the “1”; they just recognize the incre-
mental difference and choose to keep the base value at 0. If a defect is detected in 
the same phase where it was injected, defect age is 1. If discovery happens in the 
next phase, defect age is 2. If a defect is injected during the requirement phase but 
discovered in the test phase, defect age is 4.

This case study is about a testing project with a defect database with 32 fields 
and quite rich in raw data. However, no one derived the metric defect age although 
the possibility was there.

Much after the release, data mining by a QA analyst revealed the defect age 
metric. Motivation for this metric creation from available data had to come from 
an unexpected direction. Managers asked for a model for defect economics, and 
one of the factors driving cost was obviously defect age. Supporting metrics in 
this model building were the cost of finding defects and the cost of fixing defects. 
Both could be calculated from the data available in the database. The cost of 
finding defects was labeled as part of the cost of appraisal, and the cost of fixing 
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defects was labeled as rework or the cost of poor quality as unmistakable influ-
ences from the cost of quality framework. However, these metrics were reported 
as part of defect age study and not COQ study. Life of bugs was nearer to people 
than formal frameworks. Testers perceived COQ as a larger metric for senior 
managers.

(Elsewhere, the cost of quality is also computed within the testing process. 
Three components of COQ are used: prevention, appraisal, and failure. Failure 
means rework on test cases and retesting, appraisal refers to reviews, and prevention 
includes training and defect prevention effort.)

The goal of creating the defect age metric was to establish a cost model by dis-
covering a relationship between defect age and cost of defects.

The most important quality metric is cost of failure.

Crosby

Designers did not want to think of the cost of defect as the cost of failure, but 
testers did. Despite a controversy, the defect age metric became a potential metric. 
There was an engineering concept wherein defect age reflects product reliability. 
The lesser the defect age, the more the reliability. The project team strived to reduce 
defect age.

Another purpose of creating the defect age metric was to check the 1:10:100 
rule of the cost of fixing defects. The rule says if the early fixing of defects costs a 
dollar, late fixing would attract exponentially increasing costs. Deep set defects are 
difficult to find and costly to fix. Data revealed that in that project, the rule was 
1:2:4.2. There was no dramatic rise of cost when defect age increased.

Review Questions
 1. How many metrics would you use in a test dashboard in a testing project?
 2. What are the metrics that can be used in unit testing?
 3. What are the metrics that can be used in smoke tests?
 4. Suggest simple ways of assessing reliability of software before release.
 5. What metric data will be used while making a decision about stopping testing?
 6. Compare test effectiveness with test efficiency.
 7. Mention the names of two commonly used S curves in testing.
 8. Relate defect age to the cost of testing. In your opinion, what would be the 

expression for such a relationship?
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Exercises
 1. Develop a minimum set of metrics you would maintain for a testing agency 

who provides testing services to software developing companies.
 2. Develop a risk metrics system for risk-based testing in a software develop-

ment project.
 3. Suggest a matrix format for checking requirement traceability with test cases.
 4. Develop a metric system to be used for managing test automation.
 5. Develop a template for a one monthly test report based on metric data. 

Mention the names of metrics and the charts you would use.
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Chapter 9

Agile Metrics

The purpose and character of agile metrics empathize with the Agile Manifesto.

Individuals and interactions over processes and tools.

Agile Manifesto

The proper design and implementation of agile metrics can add value and enable 
the agile way of developing software.

Box 9.1 AnAlogy: DeciBels

The human ear transforms sound waves into audio signals. When the sound 
wave intensity increases tenfold in strength, the response of the human ear 
goes up 1 point. When sound intensity increases a hundred times, the human 
ear registers strength of 2 points. The response is logarithmic. Sound level 
is measured in decibels, which are essentially logarithms of sound wave 
intensity.
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Classic Metrics: Unpopular Science
Classic software metrics have become an unpopular science, at least in parts, because 
of the evolution of software engineering. A few rigorous metrics have rendered truth 
less accessible, and such ill-designed metrics turned out to be masks; instead of reveal-
ing, they hid truth. Ambiguous metrics have made things worse being subject to 
multiple interpretations. The majority of classic metrics are not direct.

Effort variance, for example, is seldom based on true effort spent but is based on 
permissible numbers. An engineer may have spent 14 hours in a day but is asked to 
enter only 8 hours because that is the billable amount and the client is not paying 
for overtime. In this case, metrics breed hypocrisy, the very evil it seeks to fight. 
Users need to “understand” the hidden context and guess the hidden meaning.

Schedule variance in a business governed by a service-level agreement has no 
meaning but is still mentioned in the metric plan. Numbers are entered to fill 
reports; no one from the project takes such metric report seriously.

Productivity metrics and corporate goals on productivity are a source of peren-
nial conflict. A common goal is set for all categories of tasks, unmindful of the dif-
ferences in the underlying engineering principles and process capabilities. In such a 
case, no one believes productivity data.

Programmers have strong reasons for not believing the very definition of certain 
metrics. Managers have reasons for not trusting metric data; they fear fudging. Life with 
classic metrics goes on with deeply running distrust. Pressure for CMMI certification 

Sound Intensity Relative Response of Ear

10 1

100 2

1000 3

10,000 4

100,000 5

The ear can process and respond to a remarkably wide range of sound 
intensities with ease.

Earthquake intensities are also expressed in a logarithmic scale called the 
Richter scale. When earthquake force goes up one point in the Richter scale, 
actual energy released goes up 10 times.

Story points are similar to these logarithmic scales. The story point can 
accommodate a wide range of practical software sizes and present them in 
single digit numbers.
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has pushed many organizations into this self-defeating situation. Because auditors insist 
on well-behaved data as evidence of good process control, people remove “outliers”— 
and truth. Errors in metric data are eliminated, destroying opportunities for learning.

Pressure is on metrics to present a perfect picture of life, in a totally unsci
entific manner.

Metrics, when misused, establish illusions of perfection and scientific 
superstitions.

There have been exceptions. There are genuine metric users, but they are far too 
few to turn the tide of opinion on metrics.

I believe in metrics, not politics.

Narayana Murthy
Chairman, Infosys

Two Sides of Classic Metrics
Troubles notwithstanding, classic metrics have made a point. People have learned 
to use numbers, at least when they want to, first by imitating best practices and later 
by acquired capability. Classic metrics have always had great potential (untapped 
though). Those organizations that followed Personal Software Process (PSP) met-
rics did benefit: they reduced defects. Humphrey’s vision of discipline from data 

Box 9.2 MeDicAl AnAlogy: MRi scAn 
AnD Pulse ReADing

A doctor asks for an MRI scan of the head to treat a headache. He wants 
to eliminate possible cause: clots in the brain. The MRI scan is a costly and 
elaborate procedure. The doctor is going through a causal analysis. The scan 
is normal, and the doctor pursues further causes of the headache, with the 
cost paid by the patient through trial and error. Finally, the patient could not 
be cured of his headache.

The patient decides to take naturopathy treatment. The skilled doctor 
reads his pulse, understands the problem, and suggests physiotherapy exer-
cises and yoga for a month. The patient is cured.

Agile metrics are similar to reading the pulse. Data are cheap, simple, and 
quick; the solution is self-healing. The pulse reading reveals more to a trained 
doctor than the MRI scan.
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worked on the one side; organizations showed Return on Investment (ROI). On 
the other side, PSP metrics were not popular and were resisted by teams. There were 
two sides to PSP metrics, the good and the bad. People wanted simpler solutions 
and pushed aside PSP metrics.

Automated metrics survived, which depend on tools, and people were asked just 
to use data not to collect data. That by itself made a huge difference. The drawback 
is that nobody is motivated to use data collected by tools. A seeming gain became a 
loss. Such data did not connect well with people except in the form of reports and 
business intelligence; the intended recipients were senior managers and customers. 
Designers and testers did not care.

Simple core metrics were good and they worked. Fancy special metrics did 
not. Metrics planned and metrics used were worlds apart. At least metric helped 
in goal setting. Process control loop using metrics were too circuitous and oper-
ated with time lags that by the time reports came projects were finished. Even 
the core metrics did not reach teams in time. The feedback loop disappeared on 
the way. Care was taken to install a metric, but no one thought about human 
communication.

Without communication links with people, metrics fail.

Metrics for Agile: Humanization
Agile projects have put people before processes and humanized metrics. Agile metrics 
instantly reach people through displayed charts and daily meetings. Metrics them-
selves are kept light, user-friendly, and direct. Code complexity is measured as high, 
medium, or low instead of using the sophisticated McCabe complexity number. 
Software sizes come in story points; one does not have to count function points using 
time-consuming rules by the International Function Point Users Group. More than 
that, metrics are readily used. Graphical elements have become signifiers instead of 
numerical indicators, where possible. The burn-down chart has replaced several met-
rics at once. Agile metrics influence day to day decision making.

The Price of Humanization
Agile metric data are mostly in the ordinal scale (like in “high–medium–low” judg-
ments). Ordinal data can be collected quickly without hassle. Ordinal data also have 
a degree of calculated approximation. The contrast is between precise but less used 
classic metric data versus approximate but humanized agile data. Working with a 
lower scale suffers information loss, a price we pay for humanization. However, that 
loss does not make agile metrics less scientific than classic metrics, if users are aware 
of the degree of approximation.
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The aim of science is not to open the door to infinite wisdom, 
but to set a limit to infinite error.

Bertolt Brecht
Life of Galileo

Sometimes a clearly defined error is the only way to discover 
the truth.

Benjamin Wiker
The Mystery of the Periodic Table

Common Agile Metrics
Velocity
Agile velocity is story points delivered per sprint. This is the rate at which the team 
delivers tested features. To obtain the best out of this metric, sprints (or iterations) 
must be of consistent length.

Story Point
This is an agile metric of software size, an agile counter part of the classic function 
point. Story point is a numerical expression of textual metrics of size: very small, 
small, medium, large, very large, and so on. Because human judgment is in a non-
linear scale, we prefer a nonlinear order of numbers: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 
144, 233,…, the Fibonacci series. In the Fibonacci scale, the following conversion 
table can be used to express software size.

Software Size Story Point

Very low 1

Low 2

Medium 3

Large 5

Very large 8

Extremely large 13

Next level 21
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Software requirements are broken into small features called user stories. The 
story point scale is used to judge the size of “user stories.”

User stories are analogous to the classical use cases.
Story Points are analogous to Use Case Points.

Technical Debt
Number of defects discovered per iteration.

Tests
The number of tests that have been developed, executed, and passed to validate a 
story.

Level of Automation
The percentage of tests automated.

Earned Business Value (EBV)
Business value attached to stories delivered. According to Dave Nicolette, “EBV 
may be measured in terms of hard financial value based on the anticipated return 
on investment (ROI) prorated to each feature or user story.”

Burn-Down Chart
Burn down represents the remaining work of the project versus the remaining 
human resources. This information can be presented every week until a complete 
release. Burn-down chart is a famous agile visual used to track progress. Figure 9.1 
shows an example of a burn-down chart.

A common practice is to plot a burn-down chart for every team and for each 
iteration. This provides the necessary biofeedback to teams to control backlog and 
to attain iteration goals in time.

Burn-Up Chart
Burn up represents work finished. Figure 9.2 illustrates a burn-up chart (BUC).

The y-axis is a cumulative plot of stories developed iteration by iteration. The 
ideal performance line is plotted along the actual performance line to provide guid-
ance and to measure performance gaps. The BUC can be used when several stories 
are developed concurrently. This is a chart of stories built and work done; this 
records achievement and not merely activities.
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Burn Up with Scope Line
A BUC with scope line marked above as shown in Figure 9.3 has an advantage.

Changing scope can be portrayed in this form and is not so easy in the other 
two charts.
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Box 9.3 A ReBiRth

Many classic metrics are reborn into the agile world with new names. 
Productivity used to be measured as KLOC/man month. This metric is called 
velocity and measured as story points delivered per iteration. The basic con-
cept remains the same, but the metrics used in the calculation are now less 
precise but more convenient. The expectations have shifted. Velocity metric is 
not used as a target, and that seems to have made all the difference; the metric 
has received social acceptance.

When a measure becomes a target it ceases to be a good 
measure.

Goodharts Law

Good old defects are now called technical debt. For long, programmers 
knew that there should be no stigma attached to software defects. The new 
definition upholds a dignity and the human spirit.
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Adding More Agile Metrics
The present metric system is a victim of poor implementation. It is overdesigned 
but underutilized. Agile metrics are simple and easy to implement; they have to be 
simple to honor the very spirit of agile methodology.

Hartmann and Dymond [1] list 10 attributes of a typical agile metric system 
as follows:

 1. It affirms and reinforces lean and agile principles.
 2. It follows trends, not numbers. Measure “one level up” to ensure you measure 

aggregated information, not suboptimized parts of a whole.
 3. It belongs to a small set of metrics and diagnostics. A “just enough” metrics 

approach is recommended: too much information can obscure important trends.
 4. It measures outcome, not output.
 5. It is easy to collect.
 6. It reveals rather than conceals.
 7. It provides fuel for meaningful conversation.
 8. It provides feedback on a frequent and regular basis.
 9. It measures value.
 10. It encourages “good enough” quality.

It may be noted that the above attributes can be applied to metrics in conven-
tional life cycles too.

Hartmann and Dymond conclude that the key agile metric should be business 
value, and they note,

Agile methods encourage businesses to be accountable for 
the investment in software development efforts. In the same 
spirit, the key metrics we use should allow us to measure this 
accountability. Metrics should help validate businesses that 
make smart software investments and teams that deliver busi-
ness value quickly.

ROI begins with the first release of feature. Value must be measured. Delivering 
value early is the hallmark of agile projects.

However, in extreme programming, project teams have added metrics that are 
not so simple. Teams use the following metrics where refactoring takes place at the 
end of each iteration source code:

 1. Coupling
 2. Cyclomatic complexity

© 2015 by Taylor & Francis Group, LLC

  



140 ◾ Simple Statistical Methods for Software Engineering

An example of value generated by these metrics is available in a case study 
by Martin Iliev [2]. Coupling metrics lead to “good encapsulation, high level of 
abstraction, good opportunity for reuse, easy extensibility, low development costs 
and low maintenance costs.” Further, cyclomatic complexity metrics lead to “low 
maintenance costs, collective code ownership, easy to test and produce good code 
coverage results.” Martin Iliev has established a firm business case for these metrics.

From the above example, it may be seen that metrics are agile because of 
the way they are used and the value they create and not because of their 
internal characteristics.

In yet another case, Frank Maurer and Sebastien Martel [3] study productivity 
in extreme programming in OO projects using the following four metrics:

 1. LOC/effort
 2. Methods/effort
 3. Classes/effort
 4. (Bugs + features)/effort

They present evidence for improvement in productivity after introducing XP 
using the four metric data, a fairly obvious use of agile metrics to find ROI of pro-
cess improvement. It may be noted that they have considered the metric productiv-
ity instead of velocity in this case study.

Case Study: Earned Value Management 
in the Agile World
BUCs in agile projects remind us of the earned value graph (EVG) in conventional 
projects. BUC and EVG look alike. The similarity runs deeper. Earned value man-
agement is widely accepted as a best practice in project management and is cov-
ered well in Project Management Body of Knowledge. Managing milestones makes a 
manager agile in sharp contrast with one who chooses to manage at the task level. 
There are typically about eight milestones in a project, and all the project manager 
had to do is to monitor earned value, planned value, and cost at every milestone 
and connect the dots and plot EVG. As milestones pass by, the project manager is 
able to predict future performance by seeing trends. A BUC does exactly that. We 
use sprints instead of milestones. Value is measured in terms of finished and tested 
stories.

The implementation of EVM in agile projects is explained by John Rusk [4], 
who observes, “Agile and EVM are a natural fit for each other.”

Anthony Cabri and Mike Griffith [5] explore EVM usage in agile projects, cre-
ate examples of BUCs, and tackle the issue of changing scope with EVM.
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Tamar et al. [6] consider EVM in Scrum and find that “the implementation 
of the Agile EVM process has no noticeable impact on a Scrum team’s velocity. 
Also, the value of the data was confirmed by the team who had access to the met-
rics, as well as the Scrum Master and management stakeholders for the project. 
Thus, we are encouraged that the Agile EVM metrics do indeed add value to 
Scrum projects.”

In a study of EVM in waterfall and agile projects, Sam Ghosh [7] concludes 
that “the concept of EVM is applicable in agile software project.”

Review Questions
 1. How many metrics would you use in a test dashboard in a testing project?
 2. What are the metrics that can be used in unit testing?
 3. What are the metrics that can be used in smoke tests?
 4. Suggest simple ways of assessing reliability of software before release.
 5. What metric data will be used while making a decision about stopping testing?

Exercise
 1. Develop a minimum set of metrics you would maintain for a testing agency.

References
 1. D. Hartmann and R. Dymond, Appropriate Agile Measurement: Using Metrics and Diag

nostics to Deliver Business Value, IEEE, Agile Conference, 2006.

Box 9.4 RAnk the MessAge

Sometimes the message is not in absolute values but in the relative order. To 
transform nonnormal data into normal data, we consider ranks, for example. 
When there is deterioration in data, ranks still hold true. A dentist gives times 
to five of his clients: 10, 10:30, 11, 11:30, and 12:00. Patients come and wait, 
but the doctor arrives 30 minutes late. The first patient complains she has lost 
30 minutes. The desk operator is cool and says, “You are the first patient the 
doctor will see. You are first in the queue. Ignore the actual time promised to 
you. But we will maintain the order.” The patient reflects upon this response. 
The dental clinic is committed not to the time schedules but to the order. 
That is how the clinic sees it. Their message seems to be in the order, or the 
rank. The exact values of numbers are lost; the ranks are remembered and 
retained. It requires a greater disciple to remember exact values.
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Laws of 
ProbabiLity

In Section III, we shall see some time-tested laws of statistics. However, the founda-
tion lies in empirical patterns of evidential data because all these laws are inspired 
by patterns in evidential data.

Chapter 10 on histogram establishes the rules of thumb of pattern extraction 
from data. Chapter 11 presents the binomial process, the binomial and related laws. 
Historically, a good deal of statistical concepts evolved around these laws, both to 
conceive them and to apply them. Chapter 12 presents the exponential law, the 
related Poisson process. Chapter 13 presents the bell curve, which has become a 
social law of universal status and great potential. Statistical thinking is governed 
by the bell curve. The uniform and triangular bounded distributions, presented in 
Chapters 14 and 15, represent another set of laws that help business decision mak-
ing. The well-known Pareto law, along with some less known applications in open 
source software development, is presented in Chapter 16.

These laws have resulted in several other laws and paradigms. They have cast 
permanent influence on several fields of science and engineering. They are also 
behind some of the most powerful knowledge systems and prediction models used 
in management. These laws are basic to the understanding of software engineering 
and management. They have inspired scientists, economists, and managers ever 
since their discovery. With time, the application and usage of these laws seem to 
increase exponentially.

iii
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Chapter 10

Pattern Extraction 
Using Histogram

The histogram is easily the most commonly used statistical method. It is used to 
detect frequency patterns in data.

A histogram is a way to count the number of data points in data intervals. First, 
the data range that extends from the minimum to maximum value is divided into 
a certain number of equal intervals. Then we count the number of data points in 
each interval and tabulate the counts in a table called tally. The frequency table 
is converted into a bar graph known as a histogram. An example of data creating 
a tally, constructing a histogram, and deriving a frequency diagram as well as an 
ogive from the histogram is illustrated in Appendix 10.1.

A histogram of requirements volatility is shown in Figure 10.1. This histo-
gram is similar to the one obtained by Kulk and Verhoef [1], who studied require-
ments volatility in 84 IT projects comprising 16,500 function points. Requirement 
changes do vary beyond the traditional limit of 10%.

What draws our attention first in the histogram is its peak. Stable processes 
have strong peaks. The peak represents the mode of the process. The core process is 
denoted by the body of the histogram. Almost the entire process results are seen in 
the core. Outside the core, we can see outliers. Unlike in the box plot, outliers are 
distinguished by contrasts in the pattern and not by any rules. This histogram is 
symmetrical. Many metrics exhibit nearly symmetrical shapes; effort variance and 
schedule variance are well-known examples.

Not every histogram is symmetrical. For example, the histogram of complexity 
of object oriented structures, measured as weighted methods per class, is shown in 
Figure 10.2, modeled after the finding of Rosenberg [2].
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Figure 10.1 Symmetrical histogram of requirements volatility.
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This histogram is skewed. There are few classes with large weighted methods 
per class. The larger the number of methods in a class, the greater the potential 
effect on children; children inherit all the methods defined in the parent class. 
Classes with many methods are likely to limit the possibility of reuse. They are also 
difficult to understand and test. Those few complex objects require review and a 
relook. A lot more metrics show skewed shapes; time to repair, defect density, and 
productivity are known for their skew.

Box 10.1 Histogram in Cameras

Histogram is a digital signature of reality. It is used in modern digital cam-
eras to present a pictorial view of light intensity in the field of view. The light 
profile of objects seen through the lens is scanned, digitized, and converted 
into a histogram. The photographer can derive clues from this histogram to 
the settings required to get a good picture.

Understanding image histograms is probably the single most important 
concept to become familiar with when working with pictures from a digital 
camera. A histogram can tell you whether or not your image has been prop-
erly exposed, whether the lighting is harsh or flat, and what adjustments will 
work best. It will not only improve your skills on the computer, but as a pho-
tographer as well. (http://www.cam bridgeincolour.com/tutorials/histograms1 
.htm)

Before the histogram, photography enthusiasts had to go through a lot 
more effort to get good exposures.

Image editors typically have provisions to create a histogram of the 
image being edited. The histogram plots the number of pixels in the 
image (vertical axis) with a particular brightness value (horizontal axis). 
Algorithms in the digital editor allow the user to visually adjust the bright-
ness value of each pixel and to dynamically display the results as adjust-
ments are made. Improvements in picture brightness and contrast can thus 
be obtained. (http://en.wikipedia.org/wiki/Image_editing)
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Choosing the Number of Intervals
Square Root Formula
The elements of a histogram, namely, the peak, the body, and the outliers, can 
change if we change the number of interval N. Normally, we choose the number of 
intervals to be the square root of the number of data points in the sample n.

 N = n0.5 (10.1)

This square root formula is taken as a default value in histogram analysis.

Alternate Approaches
There are three other conventions as well in selecting the number of intervals.

 1. The Sturges rule,

 N = log2n + 1 (10.2)

 2. The Freedman–Diaconis rule,

 N
IQR n

=
−

Range
/2 1 3( )

 (10.3)

 3. The Scott rule, which suggests fewer intervals,

 N
n

=
Range

3 5 3. σ
 (10.4)

Exploratory Iterations
We can see how the histogram varies when the number of bin intervals—and as 
a direct consequence the bin sizes—vary according to the four rules previously 
mentioned. Our trials need not be limited to these four rules. We can try our 
own choice of bin size and extract patterns to suit our inquiry. Bin size reduction 
increases the resolution of histogram graph. For example, in the first iteration, with 
just nine bins, effort variance data yield a histogram shown in Figure 10.3. The 
histogram shows stability and a single peak. We can explore further by improving 
the resolution of the histogram and choose 20 bins; we get a histogram shown in 
Figure 10.4.

This histogram has three modes, or three clusters. This is merely an estimate. 
Extracting different histogram estimates with the same data set is known as non-
parametric density function estimation.
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Figure 10.3 Histogram of effort variance (EVA%) with nine bins.
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Figure 10.4 Histogram of effort variance (EVA%) with 20 bins.
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Process Signature

Our humanity rests upon a series of learned behaviors, woven 
together into patterns that are infinitely fragile and never directly 
inherited.

Margaret Mead

Data of process performance can be converted into histogram signatures. These 
process signatures represent process characteristics. They are used to manage processes.

 1. Process stability: Histogram can be applied to test process stability. Stable pro-
cesses produce histograms with a single peak.

 2. Mode: Histogram reveals process mode.
 3. Multiple peaks: If data come from a mixture of several processes, we will see 

multiple peaks in the histogram.
 4. Cluster analysis: If data have natural clusters, histograms show them.
 5. Outliers: Histogram can easily show outliers.
 6. Natural boundary: Histogram reveals natural process boundaries that can be 

used in goal setting.

The histogram in Figure 10.5 is an example of process signature. It captures the 
way time to repair is managed in projects and presents a broad summary of historic 
performance.

Box 10.2 History of Histograms

The word “histogram” is of Greek origin, as it is a composite of the words 
“istos” (= “mast”) and “gram-ma” (= “something written”). Hence, it should 
be interpreted as a form of writing consisting of “masts,” i.e., long shapes verti-
cally standing, or something similar. The term “histogram” was coined by the 
famous statistician Karl Pearson to refer to a common form of graphical repre-
sentation. Histograms were used long before they received their name, but their 
birth date is unclear. It is clear that histograms were first conceived as a visual 
aid to statistical approximations. Bar charts most likely predate histograms and 
this helps us put a lower bound on the timing of their first appearance.

yannis ioannidis
Department of Informatics and Telecommunications, University of Athens
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This is a typical experience in fixing high-priority bugs without any SLA con-
straint. The team treats high-priority bugs with utmost earnestness and tries to ship 
the fix at the earliest. The histogram is skewed and has a thick tail on the right side. 
There is a sure probability that the repair time would be high.

Beaumont [3] shows a more disciplined histogram for time to repair. The dis-
persion is far less. Barkman et al. [4] present histograms for 16 selected metrics in 
open source projects. (Data have been collected from 150 distinct projects with 
over 70,000 classes and over 11 million lines of code.) This is really a gallery of 
histogram signatures; entries range from well-behaved symmetrical histograms to 
extremely skewed ones. The signature structures typically represent the metrics. 
These patterns are more or less the same across the entire IT industry.

Uniqueness of Histogram Signature
Histograms are true signatures.

Process histograms reflect people.
Product histograms reflect design.

People leave their signatures in their deliveries. The uniqueness of histograms can 
be used to advantage. Software Engineering Institute (SEI) has presented a series of 
histograms that change with the maturity of the organization from level 2 to level 5 
in their several communications. Process histogram is a signature of an organization’s 
maturity. Well-constructed histograms with the right metrics can be used as more 
precise signatures that can be used to compare and predict performance.
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Figure 10.5 Process signature histogram of time to repair.
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A brilliant case in point is the video signature of Liu et al. [5]:

The explosive growth of information technology and digital content 
industry stimulates various video applications over the Internet. Duplicate 
detection and measurement is essential to identify the excessive content 
duplication. There are approximately two or three duplicate videos among 
the ten results on the first web page. Finding visually similar content is 
the central theme in the area of content-based image retrieval; histogram 
distributions of similar videos are with much likeness, while the dissimilar 
ones are completely different. The video histogram is used to represent the 
distributions of videos’ feature vectors in the feature space. This approach 
is both efficient and effective for web video duplicate detection.

Histogram Shapes
Histograms are empirical distributions (or density functions). They can be smoothed 
by nonparametric methods, as is performed in machine intelligence algorithms. 
Alternatively, they can be fitted to mathematical models.

Box 10.3 DeteCting Brain tumor witH Histogram

Brain cancer can be counted among the most deadly and intractable diseases. 
Tumors may be embedded in regions of the brain forming more tumors too 
small to detect using conventional imaging techniques. Malignant tumors 
are typically called brain cancer. These tumors can spread outside of the brain. 
Brain tumor detection is a serious issue in medical science. Imaging plays a 
central role in the diagnosis and treatment planning of a brain tumor.

The image of the brain is acquired through MRI technique. If the histo-
grams of the images corresponding to the two halves of the brain are plotted, 
a symmetry between the two histograms should be observed due to the sym-
metrical nature of the brain along its central axis. On the other hand, if any 
asymmetry is observed, the presence of the tumor is detected. After detection 
of the presence of the tumor, thresholding can be done for segmentation of 
the image. The differences of the two histograms are plotted and the peak of 
the difference is chosen as the threshold point. Using this threshold point, the 
whole image is converted into a binary image providing the boundary of the 
tumor. The binary image is now cropped along the contour of the tumor to 
calculate the physical dimension of the tumor. The whole of the work has 
been implemented using MATLAB® 2010. (Kowar and Yadav [6])
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The shape of a histogram can help in deciding suitable mathematical equa-
tions. Skewed histograms suggest lognormal, exponential, or Pareto distributions. 
The length of a histogram tail contains the final clues. Symmetrical histograms 
suggest normal distribution. Left tails suggest Gumbel minimum distribution. 
Abrupt right tails suggest Gumbel maximum distribution. (The previously men-
tioned mathematical distributions are described in Section II of this book.) These 
descriptions referred to the 16 histograms presented by Barkman [7], which can be 
visually mapped to well-known probability distributions. A visual selection of the 
best suited equation clue is a valuable low-cost alternative to complex techniques 
for model building.

Mixture
If a histogram has a second peak, it is known as bimodal. The second peak (or 
cluster) may come from a mixture of data from two processes. For example, a pro-
ductivity histogram may exhibit two peaks. Each peak may correspond to one pro-
gramming language containing a mixture of data. Alternatively, the better peak 
in the productivity histogram may come from a different team performing with 
higher skill levels, and that is the case with the histogram shown in Figure 10.6. 
The way histograms reveal mixtures is very helpful.

Process Capability Histogram

Character is expressed through our behavior patterns, or natu-
ral responses to things.

Joyce Meyer

Although the process presented results in histograms, it is customary to mark 
the upper specification limit (USL) and the lower specification limit (LSL) on the 
histogram. With USL and LSL marks, it is now called a process capability histogram. 
It enables us to check if the process peak is on target and if the process variation is 
within the limits. These two are the criteria for a capable process. Process capability 
indices can be calculated along with process risk.
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Figure 10.6 Bimodal histogram of productivity.
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Potential (within) capability
Cp
CPL
CPU
Cpk

0.80
0.26
1.35
0.26

Process data
LSL
Target
USL
Sample mean
Sample N
SD (within)
SD (overall)

0.08
0.3
0.5
0.146854
42
0.0870325
0.104562

Observed performance
PPM < LSL
PPM > USL
PPM total

285,714.29
0.00

285,714.29

Exp. overall performance
PPM < LSL
PPM > USL
PPM total

261,288.77
365.88

261,654.65

Overall capability
Pp
PPL
PPU
Ppk
Cpm

0.67
0.21
1.13
0.21
0.36

Figure 10.7 Process capability of defects/test case.
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Figure 10.7 is a histogram of defects found per test case, a key metric in soft-
ware testing. The LSL has been set at 0.08, and the USL has been specified at 0.5. 
Perhaps specifying a USL is unnecessary, but it is meant to cause an alert on prod-
uct quality in this case.

The lower limit is less controversial; the team expects a minimum return from 
test cases. The target 0.3 defects found per test case is also marked for reference. 
Visually, the histogram reveals capability-related issues: the process peak is not on 
target, and a good deal of results (roughly 28%) fall below the lower specification 
limit. The process has a lot to improve. The capability index is 0.26, much lower 
than the desirable value of at least 0.8.

The test case metric “defects found per test case” is a double-edged sword. If 
more defects are found, it could be either due to the poor quality of product on test 
or highly effective test cases. If few defects are found, it could mean that the prod-
uct is good or the test cases are not effective. One has to appreciate both the pos-
sibilities and use extraneous evidence to judge the histogram.

Histogram as a Judge
There is a very significant use of the histogram as a judge. First, it is a visual judge 
of the normality of data. There are debates about the normality of metric data, and 
people do a normality test. A visual judgment of the histogram of the data can be a 
first-order judgment of normality. If data are not normal, people do not do esoteric 
statistical tests on the data.

Process data in software development is often nonnormal.

In these cases, the histogram is used to visualize data and to make a decision 
about statistical tests. For example, time to repair data are avowedly nonnormal; 
all known histograms testify to this. The problem is now escalated: one should use 
nonparametric tests, or one should transform data appropriately and do statistical 
tests. The author prefers the first. Let us keep data in its purest form.

There is an area where we are sure data will have to be normal: prediction errors. 
In any prediction model, errors are symmetric around the mean, and the mean 
error value is zero. A histogram is of the errors usually plotted, to see if it is sym-
metrical around zero, to validate the prediction model.

Good regression models leave behind errors, or residuals, which are nor-
mally distributed and can be tested with histograms.

If the histogram is skewed, the model is not accepted and needs to be improved.
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From One Point to One Histogram
To judge a process or a product, a single observation is not enough. We need mul-
tiple observations and a histogram constructed out of the multiple observations. 
The minimum element in statistical structure seems to be a histogram. If we have to 
judge a process, we need to make enough observations and plot a process capability 
histogram. If we have to study product behavior, we need to collect enough data 
from a minimum number of modules and construct a histogram. Both the process 
and the product can be observed only through histograms.

Case Study: Goal Entitlement
Setting stretch goals is a tricky challenge. Such goals have to be realistic too. The 
goal setting process must be transparent as well. This case study presents the use of 
histograms in setting stretch goals.

Productivity analysis using histogram reveals the presence of two clusters. The 
stronger peak seems to be of higher productivity. The smaller cluster is closer to the 
present goal of 50 lines of code (LOC) per day.

There is every reason to increase the goal to the best practice cluster peak, 
marked B, following a natural path of improvement shown in Figure 10.8.

Entitlement is the best you can possibly operate without redesigning your 
process. It is the difference between the current level of performance and the 
best documented.

This is the core concept in “goal entitlement.” A conservative stretch goal will be 
to set any intermediate point C on the path of improvement such that 70% of the 
ideal improvement is targeted. Thus, C becomes a new goal. With the histogram 
in the background, the entire analysis and planning is data based and realistic and 
makes it easy for people to accept the stretch goal without any reservation.

Box 10.4 weB Content extraCtion

The content of web pages is extracted by using the HTML document’s Text-
To-Tag Ratio histograms. Web content extraction is seen as a histogram clus-
tering task. Histogram clustering is a widely researched topic that is especially 
popular with image researchers. This is especially true among researchers who 
wish to use the histogram footprints of images as a means for classification, 
segmentation, etc. These clustering techniques are also enhanced with the use 
of histogram smoothing techniques. High recall and precision are achieved 
by this technique. (Weninger and Hsu [8])
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Goal entitlement is contested by some, as in The Entitlement Trap by Dennis J. 
Monroe [9]. He argues, “Goal setting by entitlement does not quantify opportunity 
for breakthrough improvement.”

Box 10.5 a stuDy of reuse

The benefits of software reuse range from decreased development time and 
increased product quality to improved reliability and decreased maintenance 
costs. The amount of reuse is measured by several metrics. Curry et al. [10] 
focused on three metrics:

 1. Reuse level (RL): It measures the ratio between different lower level 
items reused verbatim inside a higher level item versus the total number 
of lower level items used.

 2. Reuse frequency (RF): It measures the number of references to reused 
items rather than counting items only once, as was performed for the 
reuse level. This metric measures the percentage of references to lower 
level items reused verbatim inside higher level items versus the total 
number of reference.
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Figure 10.8 Histogram representing an improvement path.
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Appendix 10.1: Creating a Histogram
There are a few standard steps used in histogram creation. We are using the Excel–
Data–Data Analysis–Histogram option.

Data are made available as a column. Column A in Figure A10.1 contains cou-
pling data between objects. Many objects seem to be self-contained but quite a few 
are coupled (Data A10.1).

 3. Reuse density (RD): It measures how much reuse is in a product with 
respect to the size of the product. It is the ratio of total number of lower 
level items reused inside a higher level item normalized to the size of the 
higher level item.

The question is if the three metrics are redundant. To solve the problem, 
the authors have used histograms of correlations. The analysis shows interest-
ing findings with statistical confidence made available by histograms. Instead 
of using an average level of correlation, the authors have preferred histogram 
expressions of correlations. They conclude,

It is evident that from a statistical point of view in the considered C 
projects, RL and RF measure very similar properties of the code, while 
RD presents an independent perspective on the amount-of-reuse.

Just two metrics are enough to manage reuse.
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Figure A10.1 Histogram and ogive (cumulative %).
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We run the tool Histogram. Define the input range and select the option for 
chart output and cumulative percentage. Take the report from Excel by specifying 
“output range.” Table A10.1 and Figure A10.1 show the histogram of coupling and 
the cumulative curve, known as ogive. Select tally columns Bin and Frequency and 
plot an XY scatter diagram to obtain Figure A10.2. This figure is a smoothened 
profile of the histogram.

Interpretation
The coupling histogram is skewed to the right. The tendency of developers seems 
to produce less complex classes. That is a very good sign. There seems to be a few 
high complex outlier classes. This appears as a small independent bar on the right.

Data A10.1 Coupling Data

  1
10
  2
  3
  2
  3
  2
  1
  1
  2
  0
  0
  1
  0
  3

  0
  4
  0
  2
  0
  5
  0
  2
  0
  6
  0
11
  0
  4
  1

Table A10.1 Tally

Bin Frequency Cumulative %

0 10 33.33

2.2 11 70.00

4.4 5 86.67

6.6 2 93.33

8.8 0 93.33

More 2 100.00
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Review Questions
 1. What is the commonly used rule for selecting number of bins in a histogram?
 2. Mention three purposes for extracting histograms from data.
 3. What is meant by a bimodal histogram?
 4. What are the elements of a histogram signature?
 5. How can you judge process capability from a process data histogram?

Exercises
 1. Construct a histogram using the following customer satisfaction data and 

extract the signature of customer satisfaction. Interpret the signature.

 4, 5, 3; 5, 4, 5, 5, 4, 3, 4, 5, 3, 4, 5, 3, 2, 3, 2, 4, 1, 4,
 1, 5, 4, 3, 4, 3, 2, 3, 2, 4, 3, 4, 3, 5, 4, 3, 5, 4, 4, 4, 4

 2. Use MS Excel’s data analysis tool Histogram to construct the histogram. 
Instead of allowing default bin selection, specify your own bins.

 3. If the corporate goal is to get a customer satisfaction score of at least 3, what 
is the risk seen in the previously mentioned histogram signature?

 4. Test case rework effort data in person-hours are given as follows:

 16, 16, 2, 5, 7, 8.5, 8, 9, 10, 11, 5

  Draw a histogram with this limited data and try to draw inferences about 
the test case development process.

 5. Effort variance data in a software enhance project is shown as follows:

 −10, 4, 5, −3, 8, −2, 0, 9, 5, −2, 5, 3, 5, 12

  Draw an ogive of the given data.
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Figure A10.2 Frequency diagram.
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Chapter 11

The Law of Large Numbers

Let us move further away from frequency distribution and look at probability dis-
tributions. The frequency distribution that we have seen in Chapter 10 is an empiri-
cal pattern; what we are now going to see in this chapter and the rest of the book 
are mathematical expressions.

The mathematical sciences particularly exhibit order, symmetry, 
and limitation; and these are the greatest forms of the beautiful.

Aristotle

Box 11.1 Birth of ProBaBility

Before the middle of the 17th century, the term probable meant approvable 
and was applied in that sense, univocally, to opinion and to action. A prob-
able action or opinion was one such as sensible people would undertake or 
hold in the circumstances. However, the term probable could also apply to 
propositions for which there was good evidence, especially in legal contexts.

In the Renaissance times, betting was discussed in terms of odds such as “ten 
to one,” and maritime insurance premiums were estimated based on intuitive 
risks. However, there was no theory on how to calculate such odds or premiums.

The mathematical methods of probability arose in the correspondence of 
Pierre de Fermat and Blaise Pascal (1654) on such questions as the fair divi-
sion of the stake in an interrupted game of chance.
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Life Is a Random Variable
Results, in general, are random in nature; some could be in our favor and some not. 
Process results do not precisely remain favorable all the time, neither do they become 
unfavorable all the time. Results toggle between favor and disfavor, randomly.

The measure of the probability of an event is the ratio of the num-
ber of cases favorable to that event, to the total number of cases.

René Descartes

The discovery of probability goes back to the Renaissance times (see Box 11.1).
A process that toggles between favor and disfavor is called the Bernoulli process, 

named after the inventor. Mathematically, a Bernoulli process takes randomly only 
two values, 1 and 0. Repeated flipping a coin is a Bernoulli process; we get a head or 
tail, success or failure, “1 or 0.” Every toss is a Bernoulli experiment. The Bernoulli 
random variable was invented by Jacob Bernoulli, a Swiss mathematician (see Box 
11.2 for a short biography).

Results from trials converge to the “expected value” as the number increases. 
In an unbiased coin, the “expected value” of the probability of success (probability 
of appearance of heads) is 0.5. More number of trials are closer to the value of the 
probability of success. This is known as the law of large numbers. Using this law, 
we can predict a stable long-term behavior. It took Bernoulli more than 20 years 
to develop a sufficiently rigorous mathematical proof. He named this his golden 

Fermat and Pascal helped lay the fundamental groundwork for the theory 
of probability. From this brief but productive collaboration on the problem of 
points, they are now regarded as joint founders of probability theory. Fermat 
is credited with carrying out the first ever rigorous probability calculation. In 
it, he was asked by a professional gambler why if he bet on rolling at least one 
six in four throws of a die he won in the long term, whereas betting on throw-
ing at least one double-six in 24 throws of two dice resulted in his losing. 
Fermat subsequently proved why this was the case mathematically. (http://
en.wikipedia.org/wiki/Problem_of_points)

Christiaan Huygens (1657) gave a comprehensive treatment of the subject.
Jacob Bernoulli’s Ars Conjectandi (posthumous, 1713) put probability on 

a sound mathematical footing, showing how to calculate a wide range of 
complex probabilities.
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theorem, but it became generally known as Bernoulli’s theorem. This theorem was 
applied to predict how much one would expect to win playing various games of 
chance.

From sufficient data from real-life events, we can arrive at a probability of suc-
cess (p) and trust that the future can be predicted based on this.

Prediction means estimation of two values: mean and variance (which denote 
central tendency and dispersion).

In this chapter, we consider four distributions to describe four different ways of 
describing the dispersion pattern.

 1. Binomial distribution
  The probability of getting exactly k successes in n trials is given by the fol-

lowing binomial expression:

 P X k C p pk
n k n k( ) ( )= = − −1  (11.1)

 where n is the number of trials, p is the probability of success (same for each 
trial), and k is the number of successes observed in n trials, calculated as 
follows:

 Mean = np (11.2)

 Variance = np(1 − p) (11.3)

  Equation 11.1 is a paradigm for a wide range of contexts. In service man-
agement, success is replaced by arrival, and the Bernoulli process is called 
arrival-type process. In software development processes, we prefer to use the 
term success. The coefficient C is a binomial coefficient, hence the name bino-
mial distribution.

  Software development processes may consist of two components:

 a. An inherent Bernoulli component that complies with the law of large 
numbers

 b. Influences from spurious noise factors

  Bernoulli distribution is used in statistical process control. The spurious 
noise factors must be identified, analyzed, and eliminated. For example, in 
service-level agreement (SLA) compliance data, one may find both these 
components. If the process is restricted to the Bernoulli type, the process 
is said to be under statistical control. (Shewhart called this variation due to 
“common causes” and ascribed spurious influences to special causes.)

  Equation 11.1 is used in the quality control of discrete events.
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Example 11.1: Binomial Distribution of Sla Compliance

QuEStion

From the previous year’s deliveries, it has been estimated that the probability of 
meeting SLA in an enhancement project is 90%. Find out the probability of meet-
ing SLA in at least 10 of 120 deliveries scheduled in the current year. Plot the 
related binomial distribution.

Box 11.2 JaCoB BErnoulli (1654–1705)

Nature always tends to act in the simplest way.

Jacob Bernoulli

Jacob Bernoulli gave a mathematical footing to the theory of probability. The 
term Bernoulli process is named after him. A well-known name in the world 
of mathematics, the Bernoulli family has been known for their advancement 
of mathematics. Originally from the Netherlands, Nicolaus Bernoulli, Jacob’s 
father, moved his spice business to Basel, Switzerland. Jacob graduated from 
the University of Basel with a master’s degree in philosophy in 1671 and a 
master’s degree in theology in 1676. When he was working toward his mas-
ter’s degrees, he would also study mathematics and astronomy. In 1681, Jacob 
Bernoulli met mathematician Hudde. Bernoulli continued to study math-
ematics and met world-renowned mathematicians such as Boyleand Hooke.

Jacob Bernoulli saw the power of calculus and is known as one of the 
fathers of calculus. He also wrote a book called Ars Conjectandi, published in 
1713 (8 years after his death).

Bernoulli added upon Cardano’s idea of the law of large numbers. He 
asserted that if a repeatable experiment had a theoretical probability p of turn-
ing out in a certain “favorable” way, then for any specified margin of error, the 
ratio of favorable to total outcomes of some (large) number of repeated trials of 
that experiment would be within that margin of error. By this principle, obser-
vational data can be used to estimate the probability of events in real-world 
situations. This is what is now known as the law of large numbers. Interestingly, 
when he wrote the book, he named this idea the “Golden theorem.”

Bernoulli had received several awards and/or honors. One of the honors 
given to him was a lunar crater named after him. In Paris, there is a street 
named after the Bernoulli family. The street is called Rue Bernoulli.
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anSwEr

You can solve Equation 11.1 by keeping p = 0.9, n = 120, and k = 10. This will 
give the probability of exactly 10 deliveries meeting the SLA. We are assessing the 
chance of getting exactly 10 successes.

Alternatively, use MS Excel function BINOM.DIST.
The answer is zero. The number is too small, 4.04705E-97.
Figure 11.1 shows the binomial probability distribution of SLA compliance. 

This may be taken as a process model. One can notice the upper and lower bound-
aries of the density function, approximately from 91 to 118 trials; one can also note 
the central tendency, which is exactly the mean.

Box 11.3 tESting rEliaBility uSing 
nEgativE Binomial DiStriBution

To test reliability, we randomly selected and run test cases covering usage. 
Executing a complete test library is costly, so we resort to sampling. We can 
choose inverse sampling and choose and execute test cases randomly until a 
preset number of defects are found (unacceptable defect level). If this level is 
reached, the software is rejected. Using regular sampling and under binomial 
distribution, we can do an acceptance test, but we might require to execute 
a significantly large number of test cases to arrive at an equivalent decision. 
Inverse sampling under NBD is more efficient in user acceptance testing.

With this information, we can construct the negative binomial distribu-
tion of defects. The salient overall point of the comparison is that, unless the 
software is nearly perfect, the negative binomial mode of sampling brings 
about large reductions in the average number of executions over the binomial 
mode of sampling for identical false rejection and false acceptance risks [1].
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Figure 11.1 Binomial probability of SLA compliance (p = 0.9, n = 120).
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 2. Negative binomial distribution
  Negative binomial distribution (NBD) is defined by the probability of get-

ting k successes until r failures occur, given by the following expression:

 P X k C p pk
r k k r( ) ( )= = −+ −1 1  (11.4)

 where n is the number of trials, p is the probability of success (same for each trial), 
k is the number of successes observed in n trials, and r is the number of failures.

 Mean = −r p
p

( )1
 (11.5)

 Variance = −r p
p

( )1
2  (11.6)

  If k remains as an integer, the distribution is sometimes known as the Pascal 
distribution. Many engineering problems are elegantly handled with NBD.

  In sampling, if the proportion of individuals possessing a certain charac-
teristic is p and we sample until we see r such individuals, then the number of 
individuals sampled is a negative binomial random variable.

  The NBD is one of the most useful probability distributions. It is used to 
construct models in many fields: biology, ecology, entomology, and informa-
tion sciences [2].

Example 11.2: nBD of right first-time Delivery

QuEStion

In a network sensor manufacturing division, the right first-time rate is 0.6. The 
company wants to deliver 10 sensors to a mission critical application and prefers to 
ship after choosing from the right first-time lot. What is the probability of deliver-
ing 10 right sensors produced for the first time if the production batch size is 12? 
Plot the negative binomial probability distribution function associated with this 
problem. Calculate the mean and variance of the distribution.

anSwEr

It may be seen that data can be represented in Equation 11.4 with the following 
parameters:

r = 10 number of successes
p = 0.6 probability of success
k = n − 10 number of failures
n = production batch size, 10, 11, …

We can use the Excel function NEGBINOM.DIST to generate the NBD and 
plot the graph, as shown in Figure 11.2.
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The Excel function appears as follows, with four arguments:

 NEGBINOM.DIST(number_f, number_s, probability_s, cumulative) 

where number_f is the number of failures (k in NBD Equation 11.4), number_s is the 
threshold number of successes (r in NBD Equation 11.4), probability_s is the probabil-
ity of success (p in NBD Equation 11.4), and cumulative is a logical value that deter-
mines the form of the function. If cumulative is true, NEGBINOM.DIST returns the 
cumulative distribution function; if false, it returns the probability density function.

Finding the probability of delivering 10 right sensors produced for the first 
time from a batch of size 12 can be directly solved as follows:

Batch size n = 12
Number of success s = 10
Number of failure k = 2
Probability of success p = 0.6

The Excel function returns the answer 0.0532. Thus, there is only a small 
chance of finding 10 right sensors produced for the first time.

The mean and variance of the NBD can be directly computed by entering data 
in Equations 11.5 and 11.6. The answers are as follows:

Mean = 15
Variance = 37.5

Figure 11.2 shows that the sensor problem peaks at the mean.
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Figure 11.2 Negative binomial for right first time delivery (r = 10, success prob-
ability p = 0.6).
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 3. Geometric distribution
  The probability k of Bernoulli trials needed to obtain one success is given 

by the following expression:

 P X k p pk( ) ( )= = − −1 1  (11.7)

 where p is the probability of success (same for each trial) and k is the number 
of successes observed in n trials.

 Mean = 1
p

 (11.8)

 Variance = −1
2

p
p

 (11.9)

Example 11.3: geometric Distribution

QuEStion

The right first-time design probability in a software development project is esti-
mated at 0.7. Estimate the probability of needing four trials to find a defect-free 
feature design. Plot a graph between trials and geometric probability.

anSwEr

In this problem, p = 0.7 and k = 4.
Inserting these values in Equation 11.3, we obtain the geometric probability 

(0.0189).
Figure 11.3 shows the graph.

 4. Hypergeometric distribution
  The hypergeometric distribution is a discrete probability distribution that 

describes the probability of k successes in n draws without replacement from 
a finite population of size N containing exactly K successes. This is given by 
the following equations:

 P X r
C C

C
r
K

n r
N K

n
N

( )= = −
−

 (11.10)

 Mean = n
K
N

 (11.11)

 Variance = −





−
−







n
N K
N

N n
N 1

 (11.12)
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Example 11.4: hypergeometric Probability

QuEStion

A release of 10 modules has just been built and the smoke test is over. Results 
show that there are four defective modules. If we draw samples of size 3 with-
out replacement, find the probability that a sample contains two defective 
modules.

anSwEr

First, we assume that the proportion of defective modules follows the law of aver-
ages and holds good for every module. Given the fact that smoke tests do not find 
all defects, such an assumption has serious implications. However, to go ahead 
with solution formulation, we proceed with the following assumption:

You can solve Equation 11.4 by substituting N = 10, K = 4, n = 3, and r = 2

Alternatively, use Excel statistical function HYPGEOM.DIST to solve 
Equation 11.4. The data entry window must be filled as follows:

 Sample_s Number of successes in the sample Enter 2 

note: Success in a statistical sense is finding a defective module. Testers also share 
this view.
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Figure 11.3 Geometric probability distribution for defect free design.
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 Number_sample Size of the sample Enter 3
 Population_s Number of successes in the population Enter 4
 Number_pop Population size Enter 10
 Cumulative Logical value that determines the form of the function. Enter false
 If cumulative is true, then HYPGEOM.DIST returns
 the cumulative distribution function; if false, it returns
 the probability mass function.

Excel returns the following answer: formula result = 0.3.
Thus, the probability that a sample of three modules contains two defective 

modules is 0.3.

Plots of Probability Distribution
To plot the PDF of hypergeometric probability, two scenarios are considered. The 
first is an inquiry into the chance of all items in the sample being defective. Figure 
11.4a presents a plot between sample size and hypergeometric probability. The sec-
ond is a study of one item in a sample being defective. Figure 11.4b presents the plot 
between sample size and hypergeometric probability.
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Figure 11.4 (a) Hypergeometric probability of all items in a defective sample 
(N  = 10, K = 4). (b) Hypergeometric probability of one sample in a defective 
sample (N = 10, K = 4).
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Box 11.4 rEvErEnD thomaS BayES (1702–1761)

In 1719, Bayes matriculated at the University of Edinburgh where he stud-
ied logic and theology. Then he trained for the Presbyterian ministry at the 
University of Edinburgh. In 1733, he became a minister of the Presbyterian 
chapel in Tunbridge Wells, 35 miles southeast of London.

Thomas Bayes was a strong Newtonian in his scientific outlook. Thomas 
Bayes’ early work appears to have been related mainly to infinite series, which 
was one of the paths followed by British mathematicians in the 18th century. 
Bayes’ interest in probability has several origins. First, Bayes learned prob-
ability from Abraham de Moivre. Next, Bayes became interested in prob-
ability after reviewing a publication of Thomas Simpson, a special case of the 
law of large numbers: the mean of a set of observations is a better estimate of 
a location parameter than a single observation.

Bayes set out his theory of probability in “Essay Towards Solving a Problem 
in the Doctrine of Chances,” published in the Philosophical Transactions of the 
Royal Society of London in 1764.

Bayes defined the problem as follows:

Given the number of times in which an unknown event has hap-
pened and failed: Required the chance that the probability of 
its happening in a single trial lies somewhere between any two 
degrees of probability that can be named.

Bayes solved this problem by considering an experiment on a table (could 
have been a billiards table).

A ball is thrown across the table in such a way that it is equally likely to 
come to rest anywhere on the table. Through the point that it comes to rest 
on the table, draw a line. Then throw the ball n times and count the number 
of times it falls on either side of the line. These are the successes and failures. 
Under this physical model one can now find the chance that the probability 
of success is between two given numbers.

It was Bayes’ friend Richard Price who communicated the paper to the 
Royal Society two years after Bayes’ death in 1761. Bayes’ fame rests on this 
result [3].
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Bayes Theorem
What we have seen so far are called classic probability theories championed in the 
17th century in France.

There is another system of probability, invented and advanced by Bayes in the 
18th century in England (see Box 11.4 for a short biography).

In Bernoulli’s system, the future is predicted by current probability derived 
from current data. In the Bayesian system of thinking, the probability of a future 
event is influenced by history too. Future probability is a product of current and 
historic probabilities. Extending it further, future probability is a product prob-
ability derived from data and theoretical probability derived from knowledge. 
Bayes boldly combined soft (subjective) and hard (derived from data) probabili-
ties, a notion that remained unacceptable to many statisticians for years but widely 
adopted now. Bayes used the notion of conditional probability.

We can define conditional probability in terms of absolute probabilities: P(A|B) = 
P(A and B)/P(B); that is, the probability that A and B are both true divided by the 
probability that B is true.

Bayes used some special terms. Future probability is known as posterior prob-
ability. Historic probability is known as prior probability. Future probability can 
only be a likelihood, an expression of chance softer than the rigorous term prob-
ability. Future probability is a conditional probability.

A Clinical Lab Example
A simple illustration of the Bayes analysis is provided by Trevor Lohrbeer in Bayesian 
Maths for Dummies [4]. The gist of this analysis is as follows:

A person tests positive in a lab. The lab has a reputation of 99% correct 
diagnosis but also has false alarm probability of 5%. There is a back-
ground information that the disease occurs in 1 in 1000 people (0.1% 
probability). Intuitively one would expect the probability that the person 
has the disease is 99%, based on the lab’s reputation. Two other prob-
abilities are working in this problem: a background probability of 0.1% 
and a false alarm probability of 5%. Bayes theorem allows us to combine 
all the three probabilities and predict the chance of the person having the 
disease as 1.94%. This is dramatically less than an intuitive guess.

The Bayesian breakthrough is in that general truth (or disease history) prevails 
upon fresh laboratory evidence. Data 11.1 presents the following three probabilities 
that define the situation.

P1: probability of correct diagnosis
P2: probability of false alarm
P3: prevalent disease probability (background history)
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The question is “What is the probability of a person who tests positive having 
the disease?” This probability is denoted by P0 in Data 11.1. P1 and P2 are fixed, and 
P3 is varied. The associated P0 is calculated according to the Bayes theorem:

 
P

P P
P P P P0

1 3

1 3 2 31
=

+ −( ( ))
 (11.13)

In this formula, probabilities are expressed in fractions.

This is a way of understanding how the probability that a hypothesis is true 
is affected by a new piece of evidence. It is used to clarify the relationship 
between theory and evidence.

The role played by false alarm probability on estimation of P0 can also be cal-
culated in a similar way. By keeping the P3 (disease history) constant in the above 
example, we can vary P2, false alarm probability, and see the impact on estimation 
(see Data 11.2).

As false alarm probability P2 decreases, the probability of the subject having 
disease P0 increases, tending toward the probability of correct diagnosis P1.

Data 11.1 Bayes Estimation with Variable Disease 
Probability
                                                 Given Lab Characteristics
P1                         Reputation of correct diagnosis                        99%
P2                         False alarm probability                                          5%

Question: What is the probability P0 of a person who tests positive
                   having the disease?
                 

 P3

                                                              P0

                  0.1                                                            1.9
                  1.0                                                          16.7
                10.0                                                          68.8
                20.0                                                          83.2
                30.0                                                          89.5
                40.0                                                          93.0
                50.0                                                          95.2
                60.0                                                          96.7
                70.0                                                          97.9
                80.0                                                          98.8
                90.0                                                          99.4
Note: It may be seen that posterior probability depends on prior
           probability.

Disease Probability %
Bayes Estimation Chance of Having

Disease %
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The above example illustrates the application of conditional probability and 
how it can modify our judgment, for the better.

Application of Bayes Theorem in Software Development
Chulani et al. [5] applied the Bayes theorem to software development. The Bayes 
theorem is elegantly applied to software cost models.

The Bayesian approach provides a formal process by which a-priori expert 
judgment can be combined with sampling information (data) to produce a 
robust a-posteriori model

 Posterior = Sample × Prior

In the above equation “Posterior” refers to the posterior density function 
summarizing all the information. “Sample” refers to the sample informa-
tion (or collected data) and is algebraically equivalent to the likelihood 
function. “Prior” refers to the prior information summarizing the expert 
judgment. In order to determine the Bayesian posterior mean and variance, 
we need to determine the mean and precision of the prior information and 
the sampling information.

Data 11.2 Bayes Estimation with Variable False Alarm 
Probability

                                                      Constants

P3                             0.001                            Disease history
P1                             0.99                              Probability of correct diagnosis

                                                      Variables

P2               False alarm probability
P0               Probability of the subject having disease

Question: What is the probability P0 of a person who tests positive
                   having the disease?

        Bayes Estimation

     P2                            P0
0.05000               0.01943
0.01000               0.09016
0.00100               0.49774
0.00010               0.90834
0.00001               0.99001
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Chulani et al. have used the Bayesian paradigm to calibrate the Cost 
Construction Model (COCOMO), combining expert judgment with empirical 
data. This illustration has great significance and holds great promise. This makes 
us think differently about data. In a Bayesian sense, data include an intuitive guess. 
The study of Chulani et al. proves that a healthy collaboration between empirical 
data and an intuitive guess, such as available in Bayes, is a practical solution to a 
hitherto unsolved problem.

Fenton [6] used the Bayesian belief networks (BBNs), a commendable expan-
sion of the Bayesian paradigm, to predict software reliability.

Bibi et al. [7] applied BBNs as a software productivity estimation tool. They 
find that BBN is a promising method whose results can be confirmed intuitively. 
BBNs are easily interpreted, allow flexibility in the estimation, can support expert 
judgment, and can create models considering all the information that lay in a data 
set by including all productivity factors in the final model.

Wagner [8] used BBNs inside a framework of activity-based quality models in 
studying the problem of assessing and predicting the complex concept of software 
quality. He observes,

The use of Bayesian networks opens many possibilities. Most 
interestingly, after building a large Bayesian network, a sensitiv-
ity analysis of that network can be performed. This can answer 
the practically very relevant question which of the factors are 
the most important ones. It would allow to reduce the mea-
surement efforts significantly by concentrating on these most 
influential facts.

A Comparison of Application of the Four 
Distributions and Bayes Theorem
In the case of the binomial distribution, the trials are independent of one another. 
Trials are done with replacement.

The hypergeometric distribution arises when sampling is performed from a finite 
population without replacement, thus making trials dependent on one another.

In NBD, the number of trials is not fixed. Trials go until a specified number of 
successes are obtained.

The geometric distribution is a special case of NBD where trials are observed 
until the first success is achieved.  

Bayes theorem provides a way to combine historical distribution with fresh evidence.
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Review Questions
 1. Give an example of the application of binomial distribution.
 2. Give an example of the application of the hypergeometric distribution.
 3. Give an example of the application of the negative binomial distribution.
 4. Give an example of the application of the geometric distribution.
 5. What is Bayes theorem?

Box 11.5 thE thEory that woulD not DiE

Sharon McGrayne’s book, The Theory That Would Not Die: How Bayes’ Rule 
Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged 
Triumphant from Two Centuries of Controversy, presents a history of Bayes’ 
theorem. The following is an excerpt from the review of this book in http://
www .less wrong.com.

Bayes’ system was Initial Belief + New Data → Improved Belief. Mathe-
maticians were horrified to see something as whimsical as a guess play a role 
in rigorous mathematics; this problem of priors was insurmountable.

Pierre-Simon Laplace, a brilliant young mathematician, and the world’s 
first Bayesian, came to believe that probability theory held the key, and he 
independently rediscovered Bayes’ mechanism.

Joseph Bertrand was convinced that Bayes’ theorem was the only way for 
artillery officers to correctly deal with a host of uncertainties about the ene-
mies’ location, air density, wind direction, and more.

Geologist Harold Jeffreys made Bayes’ theorem useful for scientists, pro-
posing it as an alternative to Fisher’s p-values and significance tests, which 
depended on “imaginary repetitions.”

For decades, Fisher and Jeffreys were the world’s two greatest statisticians, 
traded blows over probability theory in scientific journals and in public. Fisher 
was louder and bolder, and frequentism was easier to use than Bayesianism. 
This marked a short lived decline of the Bayesian paradigm.

In 1983, the US Air Force sponsored a review of NASA’s estimates of 
the probability of shuttle failure. NASA’s estimate was 1 in 100,000. The 
contractor used Bayes and estimated the odds of rocket booster failure at 
1 in 35. In 1986, Challenger exploded. Frequentist statistics worked okay 
when one hypothesis was a special case of another, but when hypotheses 
were competing and abrupt changes were in the data, frequentism did not 
work.

One challenge had always been that Bayesian statistical operations were 
harder to calculate, and computers were still quite slow. This changed in the 
1990s, when computers became much faster and cheaper than before.
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Exercises
 1. In a certain school, it has been estimated that the probability of students pass-

ing mathematics tests is 69%. Find out the probability of at least 80 passes 
in a batch of 89 students. Plot the related binomial distribution. Use Excel 
function BINOM.DIST for your calculations.

 2. In a certain application 12 modules have just been built. Test results show that 
there are 4 defective modules. If we draw samples of size 3 without replace-
ment, find the probability that a sample contains two defective modules. Use 
the Excel function HYPGEOM.DIST for your calculations.

 3. Right first-time design probability in a software development project is esti-
mated at 0.3. Estimate the probability of needing seven trials to find a defect-
free feature design. Plot a graph between trials and geometric probability.
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Chapter 12

Law of Rare Events

Science pursues the study of rare events with fervor. The probability of rare events 
is a skewed one. In this chapter, we discuss one continuous distribution and one 
discrete distribution to represent rare events.

Box 12.1 Age DeterminAtion—CArBon DAting

In the mid-1940s, Willard Libby, then at the University of Chicago, real-
ized that the decay of carbon 14 might lead to a method of dating organic 
matter. Wood samples taken from the tombs of two Egyptian kings, Zoser 
and Sneferu, were dated by radiocarbon measurement to an average of 2800 BC 
plus or minus 250 years. These measurements, published in Science in 1949, 
launched the “radiocarbon revolution” in archaeology and soon led to dra-
matic changes in scholarly chronologies. In 1960, Libby was awarded the 
Nobel Prize in chemistry for this work. The equation governing the decay of 
a radioactive isotope is

 N = N0e−λt

where N0 is the number of atoms of the isotope at time t = 0, N is the number 
of atoms left after time t, and λ is a constant that depends on the particular 
isotope. It is an exponential decay. Using this equation, the age of the sample 
can be determined. (http://en.wikipedia.org/wiki/Radiocarbon_dating)
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Exponential Distribution
It is common knowledge in science that decay is defined as an exponential form, 
a simple and beautiful mathematical structure, as given in the following equation:

 f(t) = e−λt (12.1)

where λ is a constant describing the rate of decay and t is the time variable.
Nobel laureate Ernest Rutherford used this equation to describe the radioactive 

decay of thorium in 1907 [1].

It is the basis for the Nobel Prize in Chemistry he was awarded in 1908 
“ for his investigations into the disintegration of the elements, and the 
chemistry of radioactive substances.”

If we use the Geiger counter and counted the radiated particles, the data will 
fit a discrete Poisson distribution. If we measure loss of weight of the parent or the 
interarrival time of particles, the data will fit a continuous Exponential distribution.

When we fit a curve to Rutherford data, we will obtain the following equation:
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Figure 12.1 shows the Rutherford data and the exponential plot. The exponen-
tial form fits like a glove to the decay data. Rutherford also defined a parameter 
called half-life, the time taken for the parent matter to lose half its weight. On the 
exponential graph, half-life represents the median. The half-life point is marked in 
Figure 12.2 (4.03 days), where thorium activity becomes half of the start value. The 
start value is 144, and the half value is 72. The time required for this loss of activity 
is 4.03 days.

The exponential distribution is memoryless.

This can be demonstrated using Figure 12.2. For thorium activity to drop from 
72 to a half of 72, that is, 36, it will take another 4.03 days. This is exactly the time 
taken for thorium activity to drop from 144 to 72. The second drop takes the same 
time as the first drop because the exponential curve has no memory of the first 
drop. Each time, decay starts afresh with a new account and a fresh experience of 
the same half-life. Half-life is the property of the decaying matter represented in the 
exponential form. For thorium activity, it is 4.03 days.

The exponential nature of radioactive decay is exploited in carbon dating (see 
Box 12.1).
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Figure 12.1 Exponential distribution of Radioactive decay.
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© 2015 by Taylor & Francis Group, LLC

  



184 ◾ Simple Statistical Methods for Software Engineering

It can be seen that Equation 12.1 is just a variant of the proper exponential 
probability density function (PDF) shown as follows:

 f(t) = λe−λt (12.3)

The cumulative distribution function (CDF) is as follows:

 F(t) = 1 − e−λt (12.4)

where t is time and λ is the rate constant. The mean of this distribution is 1/λ. The 
standard deviation is also equal to 1/λ.

In engineering, exponential distribution is primarily used in reliability applica-
tions. In the context of reliability, λ is known as the failure rate or hazard rate. In 
a chemical engineering example, corrosion rate is represented in exponential form. 
In an electrical engineering example, electrical charge stored in a capacitor decays 
exponentially. In a geophysics example, atmospheric pressure decreases exponen-
tially with height.

Equation 12.3 shows that a single parameter completely specifies the PDF, a 
unique aspect responsible for the simplicity of the equation.

The other model statistics are as follows:

The median is ln 2
λ

.
The mode is 0.
The skewness is 2.
The kurtosis is 9.

The metric% software defects discovered during system testing decreases expo-
nentially with time, as shown in Figure 12.3. Initial test effort discovers more 
defects, and subsequent tests begin to show lesser results, a common experience 
in software testing. We assume that risky modules are tested first, as per a well-
designed test strategy. Representing defect metrics is a classic application of the 
exponential model.

Defects found in a testing day are counted and summed up to obtain Figure 
12.3. The x-axis of the plot could be test day or even calendar day. We can plot total 
defects found every week and establish the exponential nature.

In reliability analysis, the median value ln 2
λ

 is called half-life. The mean 1/λ 

is known as mean time to fail (MTTF). Also, f(t) = e–λt is known as survival func-
tion or reliability function. If the MTTF of a bulb is 400 hours, the corresponding 
f(t) would define the reliability of the bulb. As time goes on, the reliability would 
decrease, notably after 400 hours, and the reliability of the bulb can be calculated 
directly from the following expression:

 Bulb reliability = e−(t/400)
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where t is elapsed time in hours (see Box 12.2 for a note on a Super Bulb burning 
for 113 years).

In software applications, there is a reversal of thinking: the CDF F(t) = 1 − e−λt 
is known as the reliability function.

As time progresses, more defects are removed, and the product becomes more 
reliable, contrasting with the bulb. It is rather easy to calculate the fraction found 

Box 12.2 Super BulB

The Centennial Light is the world’s longest-lasting light bulb. It is at 4550 East 
Avenue, Livermore, California, and maintained by the Livermore-Pleasanton 
Fire Department. The fire department says that the bulb is at least 113 years 
old and has been turned off only a handful of times. It is a 4-watt, hand-blown, 
carbon filament, common light bulb manufactured by the Shelby Electric 
Company in Shelby, Ohio, in the late 1890s. The Livermore-Pleasanton Fire 
Department plans to house and maintain the bulb for the rest of its life. 
(http://en.wikipedia.org/wiki/Livermore-Pleasanton_Fire_Department)
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Figure 12.3 Exponential distribution of defect discovery.
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until a given date by dividing the defects found until now by the total number of 
estimated defects, as shown in Figure 12.4. The cumulative defects found represent 
software reliability.

There is a caveat.

The rule says failure interval follows exponential distribution while defect 
events follow Poisson distribution. The essential truth is both follow the 
exponential law; one in continuous form, the other in discrete form.

In an ideal situation, we should use failure interval or time to fail in Equation 12.3 
and plot a graph (that would resemble the same pattern in Figure 12.4). In real-life 
projects, the exact time of defect discovery is not always available. People accumulate 
information and submit reports on a weekly basis, occasionally on a daily basis, never 
on an hourly basis, unless of course if the bug tracking tool has a provision to capture 
defect events precisely in real time. Hence, we move away philosophically from report-
ing defect counts to reporting a metric called defects per week. Some people use defect 
density (defects per KLOC or defects per FP) instead of defect count. Either way, we 
have a density metric, which would still fit into a model represented in Figure 12.4.
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Figure 12.4 Exponential distribution cumulative distribution function (CDF) of 
cumulative defects found.
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Poisson Distribution
The exponential law for discrete events can be expressed as follows:

 P x
e
x

x

( , )
!

λ λλ

=
−

 (12.5)

where x takes discrete integer values 0, 1, 2 …, and λ is the mean value of x.
The Poisson distribution can be solved in Excel using the statistical function 

POISSON.DIST. For given values of x and λ, the function returns Poisson prob-
ability. While entering data by making cumulative = 0, we get probability distribu-
tion function, and by making cumulative = 1, we get cumulative probability.

Box 12.3 Siméon DeniS poiSSon (1781–1840)

Siméon Denis Poisson was a French mathematician. His teachers Laplace and 
Lagrange quickly saw his mathematical talents. They became friends for life 
with their extremely able young student, and they gave him strong support 
in a variety of ways.

His paper on the theory of equations written in his third year was of such 
quality that Poisson could graduate without taking the final examination. He 
was employed as a tutor and appointed deputy professor 2 years later in 1802. 
In 1806, he became a full professor.

One of Poisson’s contributions was the development of equations to ana-
lyze random events, later dubbed the Poisson distribution. It describes the 
probability that a random event will occur in a time or space interval under 
the conditions that the probability of the event occurring is very small but the 
number of trials is very large; hence, the event actually occurs a few times.

The fame of this distribution is often attributed to the following story. 
Many soldiers in the Prussian Army died due to kicks from horses. To deter-
mine whether this was due to a random occurrence or the wrath of god, 
the Czar commissioned a Russian mathematician to determine the statistical 
significance of the events. It was found that the data fitted remarkably well to 
a Poisson distribution. There was an order in the data, and deaths were now 
statistically predictable.

Poisson never tried experimental designs. He said,

Life is good for only two things, discovering mathematics 
and teaching mathematics.
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Plots of Poisson probabilities of Equation 12.5 for λ = 1, 2, 3, and 4 are plotted 
in Figure 12.5.

As λ increases, the distribution shifts to the right and tends to turn symmetrical.
The corresponding cumulative probabilities are plotted in Figure 12.6. As λ 

increases, the curve attains an S shape.
The Poisson distribution was created by Siméon-Denis Poisson. In 1837, Poisson’s 

Sorbonne lectures on probability and decision theory were published. They 

1.2

1.0

0.8

0.6

0.4

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0.2

0
0 2 4 6 8 10 12

˜ = 1 ˜ = 2 ˜ = 3 ˜  = 4

Figure 12.6 Poisson cumulative distribution function (CDF).
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contained the Poisson distribution, which predicts the pattern in which random 
events of very low probability occur in the course of a very large number of trials. 
Poisson distribution is called the law of rare events.

A biographical note on the inventor of this distribution, Poisson, may be seen in 
Box 12.3. Poisson seems to have touched upon a universal law. Poisson distribution 
and its extensions are actively pursued by researchers in many domains, including 
software engineering.

A Historic Poisson Analysis: Deaths of Prussian Cavalrymen
In the historic data analysis done by von Bortkiewicz in 1898, deaths of Prussian cav-
alrymen due to horse kicks were fitted to a Poisson distribution. We can look at the 
data made available in Statistics: The Poisson Distribution [2], where the mean value of 
death per corps is given as p = 0.5434. Substituting this value in Equation 12.5 and 
treating x as the number of deaths, we can construct a Poisson distribution as follows:

 P x
e

x

x

( , . )
.
!

.

0 5434
0 54340 5434

=
−

 (12.6)

where x is number of deaths in a single corps.
Figure 12.7 shows a plot of this Poisson distribution.
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Figure 12.7 Poisson distribution of Prussian cavalrymen deaths.
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Using the above Poisson distribution, Russian mathematician von Bortkiewicz 
predicted that “over the 200 years observed 109 years would be with zero deaths.” 
It turned out that 109 is exactly the number of years in which the Prussian data 
recorded no deaths from horse kicks. The match between expected and actual val-
ues is not merely good, it is perfect.

Analysis of Module Defects Based on Poisson Distribution
Before release, software defects are triggered by tests according to the Poisson dis-
tribution. Defect count in modules in User Acceptance Tests will be an example 
of rare events. If the average defects per module are 0.3 and if there are 100 mod-
ules in a release, the defects are distributed across the modules according to the 
Poisson distribution. All the modules are not likely to have equal defects. A few 
may have more and the count tapers off among the remaining. The distribution 
follows Equation 12.5. The plot of Poisson distribution is shown in Figure 12.8.

The mean of the distribution is now known as the rate parameter. The only 
parameter to the equation is the mean. Variance of the distribution is equal to 
mean. Hence, the statistical limits are known by simple formulas:

 UCL = +λ λ3  (12.7)

Box 12.4 AnAlogy—BAD AppleS

A truck delivering apples unloads at a warehouse. Most cartons have apples in 
good condition, but some apples are damaged. Typically, “damaged apples” 
is a rare event; only cartons in some part of the truck might be damaged. The 
occurrence of damaged apples is a Poisson process, the distribution of defects 
happens in spatial domain. The number of bad apples in unit volume is a 
Poisson parameter.

Likewise, a software product is shipped to the customer. When usage 
begins, some part of the product is found to have defects. Such defects are rare 
events. Across the code structure, defects are spatially distributed. However, 
software usage and defect discovery is a rare event in temporal domain. 
Hence, people use the word defect arrival rate. The number of defects arriv-
ing in unit time (e.g., a week) can be measured from defects counts in time. 
The defect arrival rate follows Poisson distribution.

Tests prior to release also discover defects in a similar manner. Defects “arrive” 
according to the Poisson distribution, in a broad sense. Change requests follow 
suit. Each development project has unique styles of managing defect discovery; 
accordingly, the Poisson distribution varies in structure and departs from the 
simple classic Poisson equation. There are several variants of the Poisson distribu-
tion to accommodate the different styles in defect management.
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 CL = λ (12.8)

 LCL = −λ λ3  (12.9)

In the previous example,

 

Upper control limit UCL 0.3 3 0.3

0.3 3 0.548

1.9

( ) = +

= + ×

= 443

This reasoning leads us to think of 1.943 defects per module as the statistical limit. 
Poisson approximation thus allows us statistical control of defects. Any module with 
more than 1.943 defects is a Poisson outlier. Poisson distribution here serves as a qual-
ity judge. (The use of this characteristic Poisson distribution is illustrated in Box 12.4.)

The CDF of the Poisson distribution, shown in Figure 12.9, is of special rel-
evance to software defect management.

It clearly shows only a few modules contain defects. The rest have zero defects. 
This distribution helps to spot those defect intensive modules and subject them to 
appropriate testing.

Another help from the Poisson distribution study is an objective estimate of the 
right first-time index for the software product. This is the Poisson probability that 
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Figure 12.8 Poisson distribution of module defects.
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zero modules will have defects. For example, in the product described in Figure 
12.7, the Poisson probability is 0.74 for x = 0. This is the right first-time index.

Study of Customer Complaint Arrival Rate 
Based on Poisson Distribution
Customer complaints regarding field failure arrive at the Poisson rate. Let us con-
sider a case where the average number of failure complaints arriving per month is λ. 
One question that comes to our mind is “Can we think about the maximum num-
ber of complaints that are likely to arrive?” Is there enough evidence in λ to predict 
the maximum number of complaints? Poisson distribution is applied to such cases. 
A c chart is plotted with the number of complaints arriving per month. The upper 
limit in the chart is calculated by the same formula used above. We find that the 
maximum number of complaints likely to arrive per month is

 λ λ+ 3  

This number could defy intuitive judgment of customer complaints; intuitive 
judgment hovers around the average value. The predicted number may exceed the 
maximum ever number of complaints received in any given month so far. The 
Poisson boundary easily exceeds the trend forecast. The Poisson approximation to 
customer complaint arrival is a very valuable aid.

An example of customer complaints arrival is shown in Figure 12.10.
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Figure 12.9 Cumulative Poisson probability of module defects.
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The Poisson boundary is marked as an upper bound. A trend line is also included 
in the figure to show how the Poisson boundary shows a complaint rate higher than 
indicated by the trend.

In this context, the application of Poisson distribution to model baseball events 
is illustrated in Box 12.5.

Applying Poisson Distribution to Software Maintenance
The arrival of service requests follows Poisson distribution. The interarrival time 
follows exponential distribution. Both are memoryless. The time to repair a bug 
does not depend on previous records. Mean time to fix bugs in a particular setup 
controls dispersion of results. Month or week, teams may experience the same 
Poisson curves. Sophisticated models for queues have been built, but the building 
block is the exponential law.

Bathtub Curve of Reliability: 
A Universal Model of Rare Events
Failure of components is extensively used in reliability analysis because it is a Poisson 
process. The bath tub curve of reliability has three zones. The first is characterized 
by a rapidly decreasing failure rate. This region is known as the early failure period 
(also called infant mortality period). Next, the failure rate levels off and remains 
constant in the flat portion of the bathtub curve. Finally, the failure rate begins to 
increase as materials wear out and degradation failures occur at an ever increasing 
rate. This is the wear out failure period (see Figure 12.11).
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Figure 12.10 Control chart for customer complaints.
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The flat bottom is governed by a Poisson process that has a constant failure rate 
(or hazard rate). To be more specific, this is called as the homogeneous Poisson process 
(HPP). The term homogeneous is due to a constant failure rate or hazard rate. The 
infant mortality period is also a period of growth in reliability. The failure rate in 
this period is not constant but steadily reducing; hence, it is called nonhomogeneous. 
This associated process is the nonhomogeneous Poisson process (NHPP). The wear 
out period is also an NHPP, the difference being the fact that failure rate here 
steadily increases until the system is discarded.

It may be noted that in the example of the bath tub curve shown in Figure 12.11,

 ◾ In the infant mortality period,

 m(t) = λt −β, 0 < β < 1 (12.10)

 defines a decreasing failure rate and an NHPP.
 ◾ In the middle region,

 m(t) = λ, β = 0 (12.11)

 defines a constant failure rate and an HPP.
 ◾ In the wear out period

 m(t) = λt –β, β < 0 (12.12)

 defines an increasing failure rate and an NHPP, in a reverse direction.
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Figure 12.11 Bath tub curve.
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The HPP can be described only by exponential law, an oversimplification though. 
Constant failure rate, a key assumption in HPP, is too ideal to be true even in the 
case of mechanical systems. A bulb, under HPP, will have the same reliability after 
burning through 400 hours or any time fixed by the analyst. Physically this is mean-
ingless. Similarly, the physical meaning of a failure rate in a situation shown in Figure 
12.2 begs explanation. No software ever operates at a constant failure rate, although 
the exponential representation produces such a parameter. It must be borne in mind 
that Figure 12.2 has been obtained by numerical curve fitting rather than by using 
physically reasonable reliability parameters such as failure rates or MTBF or MTTF.

The bath tub curve, in its entirety, is true for mechanical systems. In the case 
of software, failures are constrained to Region 1, which records reliability growth. 
Hence, software failure models are called reliability growth models. For both the 
cases, we now need the help of NHPP modeling for a more accurate representation 
of real world failure patterns.

Nonhomogeneous Poisson Process (NHPP)
Real-life software defect arrival is more complex than simple exponential curves, an 
example available in Figure 12.12. It presents a typical defect arrival pattern during 
system testing. Approximately 140 defects are discovered over a time span of about 
three months. It is not a smooth exponential cumulative distribution. The curve is 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100
Day of failure

Fa
ilu

re
 n

um
be

r

Figure 12.12 Defect arrival pattern—empirical model.
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irregular; defects seem to be triggered in different rates in different periods. There 
seem to be short test cycles within the main testing process. The curve also has sev-
eral linear climbs. These details mark clear departure from the simple exponential, 
making a case for building NHPP.

The equation to an NHPP is given as follows:

 P x m t
e m t

x

m t x

( , ( ))
( )

!

( )

=
−

 (12.13)

where m(t) is the mean value function that takes the place of the traditional failure 
rate constant λ in the HPP model presented in Equation 12.5.

It may be noted that Equation 12.13 is exactly Equation 12.5, except for a redefi-
nition of the rate constant λ. An NHPP is completely defined by its mean value func-
tion m(t). Building an NHPP model decreases the identification of the right function 
for m(t) and the derivation of the parameters of the function from failure data.

There are many options available to choose a function for m(t). Researchers have 
used different functions to suit different situations. The list includes exponential, 
logarithms, Gaussians, Weibulls, and logistic functions. Even mixtures of func-
tions have been used to deal with complex events.

It is now a custom to think of NHPP with two equations. The bigger Poisson 
equation in Equation 12.13 defines the structure, and the mean value function in 
Equations 12.10–12.13 defines a central component. In fitting NHPP to data, we 
derive the coefficients of the mean value function m(t) from data. There is no need 
to consult the Poisson equation for this purpose. The Poisson is in the background, 
as an abstraction of the model.

Think of NHPP, think of mean value function.

An early application of the NHPP power law is by Duane [3], who in 1964 observed,

When he plotted cumulative MTBF estimates versus the times 
of failure on log-log paper, the points tended to line up follow-
ing a straight line. This was true for many different sets of reli-
ability improvement data and many other engineers have seen 
similar results over the last three decades. This type of plot is 
called a Duane Plot and the slope beta of the best line through 
the points is called the reliability growth slope or Duane plot 
slope. A straight line on a Duane plot is equivalent to the NHPP 
Power Law Model.

The NHPP power law has been used as a model for “reliability improvement.”
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Goel–Okumoto (GO-NHPP) Model
Many models have been proposed by the studies about software reliability based on 
NHPP. The main reason for selecting the NHPP technique is that it facilitates the 
testers an analytical framework that helps in identifying the faults derived from the 
software during the testing process, as noted by Vamsidhar et al. [4].

One of the most widely models used is the Goel–Okumoto NHPP model. 
On the basis of their study of actual failure data from many systems, Goel–
Okumoto proposed the following exponential mean value function for their 
NHPP model [5]:

 m(t) = a(1 − e−bt) (12.14)

where m(t) is the expected cumulative number of defects function, a is the expected 
total number of defects in the system, and b is the defect detection rate per defect.

The model assumes exponential behavior of failure and perfect debugging so 
that failure intensity reduces with time. It is exactly a replica of the cumulative 
exponential distribution given in Equation 12.4. The familiar λ, the failure rate 
constant, is now called b, the detection rate constant, supporting the paradigm 
that failure events in software are detection events. b could also stand for test case 
efficiency. The constant a is a scaling factor, introduced to represent the number 
of defects in the product. The Goel–Okumato model treats a as a parameter to be 
estimated from data.

It may be noted that the Goel–Okumuto model fits data to the exponential 
distribution. This strengthens the application of the exponential law in software 
reliability engineering. What is interesting is even in NHPP, the exponential law 
prevails as a fundamental principle. This upholds a universal view: “the exponential 
function is used to generate several other functions.”

By substituting the Goel–Okumoto mean value function in the NHPP equa-
tion, we get the following detailed expression of NHPP:

 P x m t
e a e

x

a e bt xbt

( , ( ))
( ( ))

!

( )

= −− − −−1 1
 (12.15)

where x takes discrete integer values 0, 1, 2, and so on.
The detailed expression still has only two parameters, a and b. Applying Equation 

12.9 for any given time t, we can create the Poisson probabilities of finding x num-
ber of defects. Plotting an NHPP is a complex thing to do. We have plotted the 
mean value function in Figure 12.13. Alongside, we have also plotted cumulative 
NHPP probabilities for the following discrete x values, for example, x = 0, x = 1, 
x = 2, and x = 3. This creates a family of curves for Equation 12.9.

Fitting the mean value function to data is the real job in building an NHPP—a 
curve-fitting job, an empirical task.
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God does not care about our mathematical difficulties.
He integrates empirically.

Albert Einstein

There are several references to the use of the Goel–Okumoto model, often 
called the GO model. A few are mentioned in the following section.

Different Applications of Goel–Okumoto (GO) Model
The law of rare events is fully realised in structure of GO-NHPP model, as we 
have seen. The GO NHPP Model has been extensively researched and used as a 
Software Reliability Growth Model (SRGM). A few attempts are listed below. 
The wide varieties of applications of the GO model explore the model features 
and identify the limits.
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Figure 12.13 Goel–Okumoto model.

© 2015 by Taylor & Francis Group, LLC

  



Law of Rare Events ◾ 199

 1. Nagar and Thankachan [6] have used the GO model to “decide the amount 
of more testing required and for the correct estimation of the remaining 
errors.” They call b as a roundness factor, similar to a shape factor that tends 
to zero when irregularity increases.

 2. Wood [7] considers nine SRGMs and has included the GO model in his 
study. He draws special attention to the collection of time data, the argument 
in SRGMs. He also proposes a two-stage NHPP “if a significant amount of 
new code is added during the test period.”

 3. In a survey of software reliability models, Pai [8] considers the GO model. 
He makes a salient observation regarding the GO model usage, “The model 
requires failure counts in the testing intervals and completion time for each 
test period for parameter estimation.”

  In our opinion, this practice gives extra credibility to the mean value func-
tion and invests it with more decision making power. An exponential model 
that uses sums of the defects found in test intervals and the completion time 
of the test interval as the argument does not depend so much on Poisson 
abstraction.

 4. Liu et al. [9] propose a generalized NHPP that uses a bell curve for fault detec-
tion rate. The bell curve handles variations due to fluctuations in debugging, 
learning, and fault removal efficiency. The results show that the proposed 
model fits failure data better than some selected NHPP models, including 
the GO model.

 5. Anjum et al. [10] have evaluated 16 SRGMs proposed during the past 30 years 
using a set of 12 comparison criteria. They find the GO model in position 6 
from the top. Surprisingly, they find the generalized Goel model in the 14th 
position. 

  The generalized Goel model does not use the simple exponential law 
for its mean value function but adds a third parameter to generate desired 
shape changes. A graph of the generalized Goel model is available in 
Chapter 21.

 6. Mohd and Nazir [11] have studied different reliability models and find an 
interesting characteristic in the GO model.

  It should be noted that here the number of faults to be detected is treated 
as a random variable whose observed value depends on the test and other 
environmental factors. This is a fundamental departure from the other mod-
els which treat the number of faults to be a fixed unknown constant.
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 7. Kim et al. [12] find that the GO model can be applied to safety critical soft-
ware, although

it is generally known that software reliability growth models such as the 
Jelinski-Moranda model and the Goel–Okumoto’s non-homogeneous 
Poisson process (NHPP) model cannot be applied to safety-critical 
software due to a lack of software failure data.

  Their analysis confirms the fear: the estimated total number of inherent 
software faults varies from 27.32 to 34.83 for the GO model as the software 
failure numbers change from 24 to 34. Results are sensitive to the number of 
failure data points.

 8. Lin and Huang [13] finds the Weibull model better than the GO model in a 
special application but chooses to refer to the GO model as a benchmark.

 9. Gokhale and Trivedi [14] propose an enhanced NHPP, called the mean value 
function, as a coverage function and use the log logistic function instead of 
exponential to get better results than the GO model.

Box 12.5 rAre BASeBAll eventS

Huber and Glen [15] have studied three sets of rare baseball events—pitching 
a no-hit game, hitting for the cycle, and turning a triple play—which offer 
excellent examples of events whose occurrence may be modeled as Poisson 
processes. From 1901 to 2004, there have been 206 no-hitters, 225 cycles, 
and 511 triple plays. The associated mean values per year have been calculated 
as follows:

No-hitter = 1.98.
Cycle = 2.16.
Triple plays = 4.91.

The above mean values characterize the respective Poisson distributions.
The researchers have also calculated mean interarrival times as follows:

No-hitter = 772 games.
Cycle = 720 games.
Triple play = 316 games.
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Review Questions
 1. Relate the Poisson distribution to the exponential distribution.
 2. How does the nonhomogeneous Poisson process (NHPP) differ from homo-

geneous Poisson process (HPP)?
 3. Why is the exponential distribution considered as a fundamental engineering 

curve?
 4. How does carbon dating illustrate a fundamental application of the exponen-

tial distribution followed by nature?
 5. How did the Prussian cavalrymen death data prove that the Poisson distribu-

tion works?

Exercises
 1. Applying the Goel–Okumoto NHPP model defined in Equation 12.8, given 

that b = 0.04, estimate time t to reach a reliability level of 0.95. Let us denote 
this time as t95.

 2. Apply Equation 12.9 and find out the probability of finding two defects at 
a point of time = t95. Clue: substitute x = 2 in Equation 12.9. Also consult 
Figure 12.13 for understanding the problem.

 3. If the average defects per module = 0.4, find the right first-time index of the 
application.

  Clue 1: RFT is the probability of getting zero defects in a module during 
testing.

  Clue 2: Use Excel function POISSON.DIST to calculate this number.
 4. Let us take the example of testing 100 components in an application. The 

average defect per module is 0.2. What is the upper control limit on a quality 
control chart for the components?

 5. Assume the Power Law for NHPP. The constant b = 0.5. The failure rate of 
an application is 5 defects per week immediately after release. What would be 
the failure rate in the fifth week?

Using the mean values, intertribal times have been fitted to exponential 
distributions. The researchers find a good fit between the actual data and 
exponential fit, except in the case of triples.

Overall, this is a very good illustration of building Poisson and exponen-
tial models for rare events.
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Chapter 13

Grand Social Law: 
The Bell Curve

Most of us have been initiated into statistical thinking through normal distribu-
tion, with its well-known bell-shaped curve. The normal distribution was invented 
from the binomial distribution.

The binomial distribution is discrete, the normal distribution is continuous.

de Moivre invented normal distribution in 1756. It is also called the Gaussian dis-
tribution because Gauss was the first to apply this equation (1809). Popularly, this 
distribution is known simply as the bell curve (see Box 13.1 for a brief history). 
This is widely used in science, engineering, economics, management, and a host of 
disciplines.

The basic form of the normal distribution, known as the standard normal curve, 
is defined in Equation 13.1, and the graph is shown in Figure 13.1.
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(13.1)

The distribution peaks at the mean, is symmetric, and spreads from –∞ to +∞.
The equation for normal distribution is shown in Equation 13.2. It is defined 

by two parameters, mean μ and standard deviation σ. The mean is known as the 
location parameter because it controls the location of the distribution. The standard 
deviation is known as the scale parameter because it controls the scale (width) of 
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Box 13.1 origins of a social law

Normal distribution has cast its influence in almost every field of life and 
research. It has gained the status of a social law.

French-born British mathematician Abraham de Moivre (1667–1754) 
published A Doctrine of Chance: A Method of Calculating the Probabilities of 
Events in Play in 1718, wherein he addressed the gambling problem. The third 
edition appeared in 1756; it contained the approximation to the binomial 
distribution by the normal distribution.

de Moivre actually had written the equation down in 
1708; obtained it as a limit of coins tossing or binomial 
distribution. We think of a coin being tossed ‘n’ times, 
and note the proportion of k heads. After many k-fold tri-
als, we obtain a graph showing the number of occasions 
on which we get 0 heads, 1 head, 2 heads, … n heads. 
The curve will peak around the probability of getting 
heads with the coin. As the number of tosses ‘n’ grows 
without a bound, a normal distribution results [1].

de Moivre’s concern was with games of chance, and his discovery showed 
the power of sampling to determine patterns in a population by examining only 
a few members. He spent the last part of his life by solving problems of chance 
for gamblers as the resident statistician of Slaughter’s Coffee House in London.

In 1809, German mathematician and astronomer Johann Carl Friedrich 
Gauss (1777–1855) showed that errors of measurement made in astronomi-
cal observations followed a symmetric distribution called normal distribu-
tion. Gauss was also the first to develop the utility of the normal distribution 
curve, which had been discovered earlier by de Moivre. This distribution is 
now often called Gaussian.

The curve was developed by observational astronomers 
who used the ideas of normal distribution to verify the 
accuracy of measurements. They measured a distance 
many times and graphed the results. If most measure-
ments clustered around the mean, then the average of the 
results could be considered reliable. Outliers or deviant 
measurements could be discounted as inaccurate [2].
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the distribution. There is no separate shape parameter because the shape is fixed: it 
is a bell shape.
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where μ is the mean (location parameter), and σ is the standard deviation (scale 
parameter).

Mean and standard deviation are part of descriptive statistics, discussed in 
Chapter 1. For any data set, we can estimate these two parameters. The equation is 
a natural sequel.

The normal distribution has been studied under various names for nearly 
300 years. To the historically inclined, it is Laplace’s second law, Gaussian 
law, or Laplace–Gaussian curve. The names law of deviation and error curve 
could make more sense to experimenters. Pearson, Fisher, and Galton have 
called it the normal curve, the name greatly favored by statisticians.

Today, in statistics books, we tend to call this the normal distribution. In 
the world of science, the favored name is Gaussian distribution.
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Figure 13.1 Standard normal curve.
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The statistical properties of this distribution are as follows:

Mean = μ
Mode = μ
Median = μ
Kurtosis = 3
Relative kurtosis = 0
Skew = 0
Variance = σ2

Standard deviation = σ2

Range = −∞ to +∞

The mean code productivity in LOC per person-day and its standard deviation 
can be easily calculated from data and the corresponding normal distribution graph 
can be plotted.

In Figure 13.2, the assumed normal distribution of productivity is plotted for 
four different standard deviations. We have to assume normal distribution because 
productivity data would be seen as nonnormal had we plotted a histogram. However, 
we proceed with normal approximation. If dispersion decreases, it is a good sign; it 
indicates that the process becomes better. Figure 13.2 shows that as the standard 
deviation decreases, the height of the curve increases while its width decreases.

Real-world process improvement consists of reduction in variation and a simul-
taneous favorable shift in the mean. Figure 13.3 shows the bell curves for produc-
tivity improvement.
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Figure 13.2 Gaussian probability density function (PDF) of productivity.
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The best performance is where the mean is 49 and the standard deviation 2. 
This gets closer to the oft spoken about rule of thumb of 50 LOC per person-day. 
The curves are still hypothetical, at best approximate. The bell curves in Figure 13.3 
portray a story of improvement captured from a Gaussian lens.

First-Order Approximation of Variation

If that enabled us to predict the succeeding situation with the 
same approximation, that is all we require, and we should say 
that the phenomenon had been predicted, that it is governed 
by the laws.

Henri Poincare

Building a Gaussian is rather easy, from just two parameters, mean and stan-
dard deviation. These two can be obtained by expert judgment as well if data were 
not accessible. If we can guess optimistic and pessimistic values, we can “estimate” 
the Gaussian mean and standard deviation. The difference between the maximum 
and the minimum values is the estimated range. The rule of thumb we use to find 
standard deviation is given as follows:
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0
0

0.05

0.10

0.15

0.20

0.25

10 20 30 40
Productivity LOC/person day

Pr
ob

ab
ili

ty
F(

x,
 µ

, ˜
)

50 60 70 80

Mean = 49, SD = 2
Mean = 46, SD = 5
Mean = 43, SD = 7
Mean = 40, SD = 9

F(x, µ, ˜) = e1
2°˜

(x–µ)2

2˜ 2
–

Figure 13.3 Gaussian model for productivity improvement.
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The mean is recalled from the central tendency of the process. The ability of the 
Gaussian distribution to connect easily with approximate data makes it a “social 
law.”

The Gaussian distribution allows us to see the two sides of truth: tendency 
and dispersion and facilitates fair judgment.

For example, from remembered mean value of effort variance = 5% and range = 
30%, we can construct the Gaussian distribution shown in Figure 13.4. The central 
tendency, pictorially seen, reveals the problem. If planning and estimation practices 
were perfect, the central tendency would be zero. Nonzero tendency is a remark on 
project management.

Box 13.2 is the Bell curve fair?

The power of the bell curve is linked to the central limit theorem (CLT): sam-
ple means tend to be normally distributed as sample size N tends to be large.

French mathematician Pierre-Simon Laplace rescued the CLT from the 
nearly forgotten work of Abraham de Moivre and published it in his monu-
mental work Théorie Analytique des Probabilités. In 1901, Russian mathema-
tician Aleksandr Lyapunov defined it in general terms and proved precisely 
how it worked mathematically [3].
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Figure 13.4 Gaussian distribution of effort variance.
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Estimation Error
Variance metrics is a double-edged sword. On the one side, it measures how well a 
plan is executed; on the other side, it measures how well a project is estimated. If 
applied to estimation, this metric can be renamed as the percentage of estimation 
error.

When processes mature, estimation errors tend to be the curve shown in Figure 
13.5. Estimation errors are measurement errors; they resemble the astronomical mea-
surement errors used by Gauss when he discovered a path breaking application of nor-
mal distribution. This is true in the case of size estimation, schedule estimation, and 
effort estimation and even defect count estimation; errors in all these are Gaussian.

Sir Francis Galton described the CLT as follows [4]:

I know of scarcely anything so apt to impress the imagi-
nation as the wonderful form of cosmic order expressed 
by the “Law of Frequency of Error.” Whenever a large 
sample of chaotic elements are taken in hand and mar-
shaled in the order of their magnitude, an unsuspected 
and most beautiful form of regularity proves to have been 
latent all along.

The actual term central limit theorem was first used by George Pólya in 
1920 in the title of a paper. Pólya referred to the theorem as central because 
of its importance in probability theory [5].

According to Le Cam, the French school of probability interprets the word 
central in the sense that “it describes the behaviour of the centre of the distri-
bution as opposed to its tails” [6].

Between 1870 and 1913, Markov, Chebyshev, and Lyapunov contributed to 
CLT. During 1920 to 1937, Lindeberg, Feller, and Lévy perfected the CLT [7].

CLT sets the context for a bell curve paradigm. The science of measure-
ments presents another truth. Whatever we measure, we make repetitions to 
make measurements credible, and we measure the bell curve of the measured 
parameter. The limit or peak of the bell curve is the truth. The tails denote 
errors. Criticism of the bell curve as a grading curve (by some educationalists) 
is ill founded. The bell curve represents data and cannot be made responsible 
for hypothesis.

To sum it up, the bell curve represents truth better than isolated data.
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Viewing Requirement Volatility
In the beginning of a project, managers do consider a risk of scope creep and plan 
out strategies to handle risk. There may not be objective evidence for potential 
scope creep, but approximate models based on benchmark data can be used to con-
struct a Gaussian model to guide strategic planning. In certain projects, require-
ment volatility is believed to have a standard deviation of approximately 3.3% and 
a mean value of 4%, as a rule of thumb.

Thumb rule is merely an expression of one’s experience.

With practice on statistical thinking, we can easily convert knowledge into 
Gaussian parameters.
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A plot of the Gaussian version of the above rule of thumb is shown in Figure 
13.6. The tolerance limit is marked on the graph.

Figure 13.6 is a pictorial model to understand the challenge of requirement 
volatility in the context of a constraining limit. It provides a great visualization of a 
process along with process constraint (or goal).

Traditional ways to deal with information—reading, listening, 
writing, talking—are painfully slow in comparison to “viewing 
the big picture.” Those who survive information overload will 
be those who search for information with broadband thinking 
but apply it with a single-minded focus.

Kathryn Alesandrini
Survive Information Overload: The 7 Best Ways to Manage 

Your Workload by Seeing the Big Picture

Risk Measurement
We can use the Gaussian curve to measure risk, and this is often carried out in soft-
ware project management. For example, in Figure 13.6, the tolerance limit marks 
off a tail whose area indicates risk. In Figure 13.7, we show the Gaussian with the 
tail area marked in black.
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Without referring to the Gaussian tables, we can compute the tail area using 
Excel function in the following expression:

Right tail = 1 − NORMDIST (USL, mean, standard deviation, 1)

Substituting our values, we get right tail = 0.04697 or 4.697%.

You can measure opportunity with the same yardstick
that measures the risk involved. They go together.

Earl Nightingale

The remaining area under the Gaussian measures the probability of meeting 
the goal or “capability.” In our case, requirement volatility capability is 95.3%, as 
marked in Figure 13.7.

Capability and risk are complementary. If one is absent the other steps in.

As an extension of the risk calculation procedure, we can calculate risks for tails 
based on their distances from the mean. As an example, the tail areas are calculated 
for a few useful values of distance from mean and given in Table 13.1.

Table 13.1 contains the solution to the one-tailed problem and presents the 
probability of processes exceeding a given specification limit. Several one-tailed 
problems, such as the probability of defect density exceeding an upper limit, are the 
probability of productivity falling below a lower specification limit.

There are several two-tailed problems. These processes have both an upper 
specification limit and a lower specification limit. For the effort variance metric, 
the specification limits are ±20% in a certain enhancement project. The actual per-
formance is characterized by a normal distribution with mean = 14 and standard 
deviation = 15. The two specification limits define two tails.

The Excel syntax for the previous computation is as follows:

Left tail = NORMDIST (LSL, mean, standard deviation, 1)
Right tail = 1-NORMDIST (USL, mean, standard deviation, 1)
Total risk in the process = left tail + right tail

The calculations are shown in Data 13.1.
The left tail involves process compliance risk. When teams save, there is a risk of 

adopting short cuts, which might later boomerang as product failure. The right tail has 
a plain cost risk. The total risk in the project could be the sum of the two-tailed areas. 
Sometimes, the two tails can attract different weights, for a “weighted” sum calculation 
of total risk. We have used a plain summation in Data 13.1 with the following result:
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Left tail = 0.0117
Right tail = 0.3446
Total risk = 0.3563

In previously mentioned risk analysis, cost escalation seems to be the dominat-
ing risk.

Table 13.1 Risk Calculation for Tails

Distance from Mean Tail Area % Tail Area

0.2 0.420740 42.074

0.4 0.344578 34.458

0.6 0.274253 27.425

0.8 0.211855 21.186

1.0 0.158655 15.866

1.2 0.115070 11.507

1.4 0.080757 8.076

1.6 0.054799 5.480

1.8 0.035930 3.593

2.0 0.022750 2.275

2.2 0.013903 1.390

2.4 0.008198 0.820

2.6 0.004661 0.466

2.8 0.002555 0.256

3.0 0.001350 0.135

Data 13.1 Two-Sided Risk Estimation
Metric                    E˜or t Variance (%)
Historic Data
                              Mean                       14 
                              Sigma                      15 

Specification Limits
                                USL                        20 
                                 LSL                      −20 
Left tail                                            0.011705
Right tail                                         0.344578
Total risk                                         0.356284
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Combining Normal Probability Density 
Functions (PDF): The Law of Quadrature
A very useful property of the normal distribution is that we can easily combine 
several normal PDFs using a simple rule set:

Add the means to obtain the overall mean.
Add the variances to obtain the overall variance.

For example, the schedule performance of milestones can be combined using 
this property. The overall schedule for the project is the sum of schedules of mile-
stones. The overall variance in the project schedule is the sum of individual mile-
stone schedule variances. An example is available in Table 13.2.

The root cause for risk is variance, and Table 13.2 provides variance data across 
the project at every declared milestone. These milestones constitute on the critical 
path. Their variances are added by using the law of quadrature to obtain the overall 

Box 13.3 gaussian smoothening

In image reconstruction Gaussian distribution is used.
In the domain of electromagnetic radiation, antenna beam widths are 

Gaussian reconstructed from the half power beam widths, which are easier to 
measure. The empirical construction of the beam with multiple data points is 
time consuming and looks less attractive when Gaussian smoothening is an 
accepted scientific practice. Gaussian smoothening saves time and money, and 
yet succeeds in constructing truth. In image processing, Gaussian smoothening 
is widely used.

An example of a common algorithm used to perform image smoothening 
is Gaussian. Each pixel is convolved with a Gaussian kernel and summed up; 
the result is suppression of noise, better signal-to-noise ratio, and better qual-
ity image. The bell curve is used to beat noise.

In digital signal processing, the Gaussian filter retrieves truer signals. In 
spatial smoothening MRI images, Gaussian smoothening is used to enrich the 
picture. Gaussian smoothening blurs the noise. The degree of smoothening is 
determined by the standard deviation of the Gaussian. Larger standard devia-
tion Gaussians, of course, require larger convolution kernels to be accurately 
represented. “The Gaussian outputs a ‘weighted average’ of each pixel’s neighbor-
hood, with the average weighted more towards the value of the central pixels.”

During the reconstruction of scanned images, Gaussian smoothening is 
like a low-pass filter. The Gaussian window is an attractive option for volume 
visualization in CT scans [8].
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variance in the project. The perception of risks pervades the project during its life 
cycle. Figure 13.8a shows the bell curves for milestone deliveries.

The overall variance is filled in black. If the milestones were nonnormally dis-
tributed, the overall variance in a project is typically obtained by a procedure called 
Monte Carlo simulation. The overall variance is obtained in an elegant and simple 
method because we assume normal distribution in our case.

The overall project delivery variance and mean are shown separately in Figure 13.8b 
for further analysis. The delivery day is marked as 226, and the tail beyond is known as 

Table 13.2 Milestones Schedule Estimates

Milestone 
No. Milestone

Estimated Schedule Days

Mean Cumulative Sigma Variance

1 Start 0 0 3 9

2 Requirement 
gathering

3 3 1 1

3 Requirement 
documentation

4 7 1 1

4 High level design 12 19 2 4

5 Detailed design 20 39 2 4

6 Code for selected 
10 modules

40 79 3 9

7 Code for next 
10 modules

60 139 3 9

8 Code for remaining 
modules

30 169 2 4

9 System test 15 184 3 9

10 Integration test 12 196 2 4

11 User acceptance test 12 208 1 1

12 Finish 3 211 3 9

Overall mean 211

Overall variance 64

Overall sigma 
(sqrt of var)

8

Note: The milestones above are on the critical path.
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project schedule risk. From the Gaussian formula, risk can be computed as 3%. From 
the graph, we can also see the following three PERT values used in project estimation:

Optimistic value = 186
Pessimistic value = 236
Most likely value (mean) = 211

Using the golden rule, we can also estimate the delivery date, as follows:

 
Delivery date opt pess most likely=

+ +t t kt
6

where k is a constant, normally taken as 4 but can be changed depending on the 
nature of the project.
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Figure 13.8 (a) Milestone delivery bell curves and (b) project delivery bell curve.
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We feel that the above example illustrates the most admirable capability of 
Gaussian distribution. It has made simulation a transparent job, which otherwise 
stays as a black box technique using sophisticated but less understood tools.

An Inverse Problem
Let us revisit Equation 13.2, which defines the Gaussian PDF. The integration of 
this PDF leads to the cumulative distribution function (CDF), F(x), defined as 
follows:

 F x e dx

x
x

( ) =
− −





−∞
∫1

2

2

2

π

µ
σ

 (13.4)

This CDF can be plotted using Excel NORMDIST(x, mean, SD, 1). As an 
example, we plot the CDF for requirement volatility with mean = 3.3% and stan-
dard deviation = 4% in Figure 13.9. The inverse problem is given that the Gaussian 
F(x) = 0.78; what is x? This question and its answer are shown in Figure 13.9. The 
answer is marked as 6.39. This solution has been obtained graphically.

We can use the Excel function NORMINV to find x, as follows:

NORMINV(0.78, 3.3, 4) = 6.3888

F(x) = 0.78

x = 6.39
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Figure 13.9 Gaussian cumulative distribution function of requirements volatility.
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On the same metric, we can pose another inverse problem. If we reject 5% of 
events on either side of the Gaussian distribution, what is the range of requirement 
volatility within the acceptable region? The upper rejection point has a cumulative 
probability of 0.95 and the corresponding x value is as follows:

NORMINV(0.95, 3.3, 4) = 9.879%

The lower rejection point has a cumulative probability of 0.05, and the corre-
sponding x value is as follows:

NORMINV(0.05, 3.3, 4) = −3.279%

Therefore, requirement volatility has a range defined by the interval [−3.279, 
9.879] when 5% of events are rejected in both tails. Sometimes it helps to discard 
extreme ends of the mathematical function and consider the truncated interval 
as the practical dispersion. User’s judgment is required to decide on how much to 
cut off. Typically, people choose any one of 1%, 5%, and 10% truncations. The 
truncated range accordingly shrinks in progression. When it comes to determining 
range, it depends on how the problem gets formulated. Whatever be the formula-
tion, the Gaussian can provide a simple and ready answer.

The formulation of the problem is often more essential than 
its solution, which may be merely a matter of mathematical or 
experimental skill.

Albert Einstein

Box 13.4 is there an average man?

A landmark in the history of the bell curve is the notion of the average man 
put forward by Lambert Adolphe Jacques Quetelet (1796–1874), a Belgian 
astronomer, mathematician, statistician, and sociologist. He applied the 
bell curve to social science, which he called a social physics. He collected the 
heights of 100,000 French conscripts and the chest measurements of 5738 
Scotch soldiers. The probable error in these measurements was approxi-
mately 2 inches. He found “harmonious” variations around the average. 
There was an astonishing symmetry and also an inevitable mixture. It 
looked as if there existed a fictitious average man or ideal man and others 
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Process Capability Indices
A process is said to be capable if two conditions are met: it should show less varia-
tion, and it should be aligned to goal.

Variation must be contained inside the specification window available. The 
practical range of the process (truncated) must be less than the gap (USL − LSL). 
How much of the specification window is consumed by the process determines 
capability. Hence, we use the following two equations in assessing the first index, 
known as Cp, process potential:

Specification window = USL − LSL
Cp, process potential = specification window/6σ

mere deviations from the ideal. Variations came from “constant causes” 
and some extreme perturbations came from “accidental causes.” (We are 
reminded of Shewhart’s common causes and special causes, a profound idea 
that would appear in 1920, a hundred or so years later, in his statistical 
process control.)

Quetelet was convinced that “there is a general law which dominates 
our universe.” He presented a most important and extensive role for the 
average man. The physician could thus determine the most useful remedies 
and the action to be taken, in both usual and unusual cases, by compar-
ing with the fictitious average man. Hence, the artist could predict truth, 
the politician could predict public sentiments, the naturalist could predict 
racial types, and social scientists could predict laws of birth, growth, and 
decay.

Quetelet compared the average man with the center of gravity. Everything 
is to be viewed as varying about a normal state in a manner to be accurately 
described by beautiful bell-shaped curves of perfect symmetry but of varying 
amplitude. Thus, it is that the individual varies about his normal self and the 
members of a group vary about their average. In social physics, the bell curve 
represents the true mechanics of human history.

The average man is free from excess and defect. Nature is striving to pro-
duce the average man but fails because of the interference from a multitude 
of causes [9].

Lesson learned: By analogy, likewise, the industry strives to achieve ideal 
processes but fails because of interferences. 

Growth should be judged by averages; variations must be used to 
detect problems.
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Alignment depends on how close the process mean is to the process target. 
Alignment can be measured by the distance between process mean and process 
target. Processes tend to drift away from the target. Drift diminishes capability. A 
drifted process achieves only a part of its potential. Hence, we have the concept of 
achieve process capability index Cpk, shown as follows:

 Cpk, achieved process capability = Cp(1 − k)

where k = process drift/half of specification window.
The more the drift, the more will be the value of k and the less will be the value 

of Cpk.
There is an established tradition that puts Cp at 1.0 for acceptable quality and 

2.0 for excellent quality.
Besides, if Cpk < Cp, then the process requires alignment to the target.
An example calculation is shown in Table 13.3. Effort variance metric is used 

for this example calculation. The mean is 5%, and the SD is 7%. Specification lim-
its typically are ±10%. In Table 13.3, Cp is calculated as 0.48, and Cpk is calculated 
as 0.24. Two improvement opportunities emerge from these calculations. The first 
opportunity is to improve Cpk and make it equal to Cp; this involves process align-
ment, meaning a shift in the central tendency. The next opportunity is to achieve 

Table 13.3 Process Capability Indices

Process Metric Effort Variance %

Process Goals

Target 0 %

USL 10 %

LSL –10 %

Process Performance

Mean 5 %

Sigma 7 %

Process Capability Indices

Cp = (USL – LSL)/6σ 0.48

k = (Drift)/(0.5*(USL – LSL)) 0.50

Cpk = Cp*(l – k) 0.24
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a breakthrough reduction in process variation and hence increase Cp. Reducing 
variation is more challenging than shifting process mean.

Reduce variation. Knowledge about variation is profound 
knowledge.

Deming

z Score Calculation
Process z is defined in Equation 13.5. The difference between observed value and 
ideal mean is divided by standard deviation to obtain process z:

 
z

x= − µ
σ  

(13.5)

The previously mentioned formula is also known as z score. Larger deviations 
from mean earn larger values of score. Hence, z score is a metric of deviation from 
mean. Because z score is normalized, it is dimensionless.

In practice, what is measured is deviation from the target. Hence, practical z 
score has the following formula:

 
z

x T= −
σ  

(13.6)

For each project metric, z score can be computed as shown in the example in 
Table 13.4. Six development project metrics are considered in the table, and using 
Equation 13.6, the z scores have been computed.

Table 13.4 z Score

Metric Target Sigma Performance z Score

Effort variance 0 5 10 2.00

Schedule variance 0 3 5 1.67

Scope creep 0 2 3 1.50

Defect density 0 1 3 3.00

Complexity 30 10 70 4.00

CSAT 8 2 5 –1.50
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The choice of metrics strikes a balance between process, product, and business 
objectives.

Process Effort variance

Schedule variance

Scope creep

Product Defect density

Complexity

Business CSAT (customer satisfaction)

In this example, the larger the score, the greater the deviation from the target. 
The bar length indicates the statistical distance of mean from targets, the magni-
tude of problems. The advantage is that all metrics performance can be shown in 
the same chart with a common unit (Figure 13.10).

The picture provides a balanced view of the development project.
The approach of measuring statistical distances using z scores can be used to 

compare current year performance from last year performance. Such a comparison 
is shown in Table 13.5. The tornedo chart is shown in Figure 13.11.

Negative z scores indicate the statistically significant reduction in problems. 
The positive z score of CSAT spells significant improvement. The usual practical 

–2 –1

CSAT

Complexity

Defect density

Scope creep

Schedule variance

Effort variance

0 1 2
z score

z score chart

3 4 5

Figure 13.10 z Scores: statistical distance from targets.
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question asked, when improvements are reported, is whether the improvements 
are statistically significant. The direction of z scores indicate improvement and the 
magnitude indicate statistical significance.

Sigma Level: Safety Margin
As the story goes, in 1986 Bill Smith, the father of Six Sigma, showed a bell curve 
to the CEO Bob Galvin and proved that there is a finite probability that processes 
cross the limits and explained why defects reach customers despite multiple testing. 
Six Sigma began as a reliability model. Jack Welch made Six Sigma a discipline 
in GE and later opined, “the mean is fine it is the standard deviation that spells 
trouble.”

Table 13.5 Improvement Scores

Metric
Organization 

Sigma
Last Year 

Mean
Current 

Year Mean
Shift in 
Mean

z 
Score

Effort variance 5 12 10 –2 –0.40

Schedule variance 3 6 5 –1 –0.33

Scope creep 2 6 3 –3 –1.50

Defect density 1 3 2 –1 –1.00

Complexity 10 70 60 –10 –1.00

CSAT 2 5 6 1 0.50

–2 –2

CSAT

Complexity

Defect density

Scope creep

Schedule variance

Effort variance

–1 –1 0
z score

1 1

Figure 13.11 Score improvement.
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The entire Six Sigma methodology depends on the normal distribution. 
Assuming normal distribution, we can calculate sigma level of safety margin to the 
customer using the following definition:

 

Sigma level USL mean / or

Mean lSL /

Whicheve

= −

= −

( ) ,

( )

σ

σ

rr is smaller  (13.7)

The sigma level can be converted into risk using ideas developed early in this 
chapter. Risk is expressed in parts per million or defects per million opportunities 
(DPMO). For example, we can consider two-tailed problems and find tail areas 
for different distances of tails from the mean: 1, 2, 3, 4, 5, and 6 sigmas as shown 
in Table 13.6. The distances are known as sigma levels. The tail areas are known 
as defect levels. In Table 13.6, defect levels are presented first in fractions, then in 
percentage, and finally in PPM or DPMO in the last column.

Table 13.6 Six Sigma Conversion Table

Sigma Level

Tail Areas

Fraction % PPM (DPMO)

Part A: Pure Scale

1 0.3173105078629 31.731050786 317,310.50786

2 0.0455002638964 4.550026390 45,500.26390

3 0.0026997960633 0.269979606 2699.79606

4 0.0000633424837 0.006334248 63.34248

5 0.0000005733031 0.000057330 0.57330

6 0.0000000019732 0.000000197 0.00197

Part B: Practical Scale (1.5 Sigma Drift Included)

1 0.6976721 69.76721 697,672.13

2 0.3087702 30.87702 308,770.17

3 0.0668106 6.68106 66,810.60

4 0.0062097 0.62097 6209.68

5 0.0002326 0.02326 232.63

6 0.0000034 0.00034 3.40
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Table 13.6 has two parts. In part A, the tail areas have been computed the usual 
way. This suggests a defect level of 1.97 parts per billion for a process to qualify 
as a Six Sigma process. This requirement was contested internally in Motorola by 
pragmatic managers who wanted an allowance for long-term drifts in processes. 
In particular, they wanted the “Shewhart allowance of 1.5 sigma drift in control 
charts” to be made available in Six Sigma considerations. Part B of Table 13.6 has 
been computed with Shewhart allowance; this table suggests 3.4 PPM defects for 
a Six Sigma process, approximately 1726 times more defects than the pure scale. 
Finally, the practical scale has prevailed and is widely used as a quality standard.

In Six Sigma culture, we respond to mathematically derived tail probabilities 
even if there is no physical event in the tail region.

Statistical Tests
Gaussian properties are extensively used in statistical tests to compare results. If two 
processes are represented by adjacently located Gaussian curves and if the tails do not 
overlap, they are distinctly different processes. If tails overlap, perhaps they are not so 
different. To resolve this problem, we resort to statistical tests, such as z test, t test, and F 
test. In all tests, we find a p value, the probability of finding one sample from the other 
lot. To calculate p value, in commonly used statistical tests, the Gaussian curve is used.

We have seen how the bell curve can be put to a variety of applications in soft-
ware engineering and management.

Box 13.5 electron charge to 
mass ratio measurement

Nobel laureate J. J. Thomson measured the invisibly small particle electron in 
1897 at the well-known Cavendish laboratory in Cambridge, England.

By carefully measuring how the cathode rays were 
deflected by electric and magnetic fields, Thomson was 
able to determine the ratio between the electric charge 
(e) and the mass (m) of the rays. Thomson’s result was

 e/m = 1.8 × 10–11 coulombs/kg

He received the Nobel Prize in 1906 for the discovery 
of the electron, the first elementary particle. 

Nobelprize.org
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Review Questions
 1. What are the various names by which the normal distribution is known?
 2. What is Gaussian smoothening?

In reality, measurements do not get reported by a single value. We have 
either a range of values or a mean with associated standard deviation. We 
are discussing e/m measurements of electrons in coulombs per kilogram. The 
numbers presented here must be multiplied by 1011.

Todays’ accepted mean e/m is 1.758820088 with a standard deviation of 
0.000000013.

Earlier trials by J. J. Thomson gave results between 1.1 and 1.4 [10]. Norton 
et al. [11] have shown results with a mean value of 1.60 and a standard devia-
tion value of 0.29. Earlier attempts by Millikan [12] result in a mean value 
of 2.82 and a standard deviation of 0.55. These three results are shown as 
reconstructed Gaussian curves in Figure 13.9.

The three bell curves indicate measurement reliabilities available in those 
experiments. The broader the curve, the less the measurement reliability. It 
may also be noted that broader curves have shorter peaks. In this context, one 
can intuitively feel that the height of the peak can also be considered as an 
indicator of measurement reliability. Narrower curves indicate “precision” in 
measurement (Figure 13.12).
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 3. Why does the bell curve perfectly fit all the different variance metrics such as 
effort variance, schedule variance, and size variance?

 4. Name the famous mathematicians and scientists who have contributed to the 
development of the bell curve.

 5. Mention three important applications of the bell curve.

Exercises
 1. In the context of a bell curve with mean = 7 and standard deviation = 6, find 

the z score of a data point 25.
 2. Dr. Shewhart prescribed three sigma limits to control charts. What are the 

tail areas outside these limits?
 3. Find the area under the bell curve included inside two sigma limits.
 4. Find the percentage of area beyond six sigma limits. Express this in parts per 

million.
 5. A process peaks at 4. Its specification limits are 2 and 5. If the standard devia-

tion is 1, find the process capability indices Cp and Cpk.
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Chapter 14

Law of Compliance: 
Uniform Distribution

In sharp contrast to the bell curve, the uniform distribution looks plain, flat, and 
simple but has some interesting applications. There are no tails in the uniform 
distribution. There is no peak either. Uniformly distributed processes are rare in 
manufacturing, but nearly uniformly distributed processes exist in IT services.

Uniform distribution is a continuous distribution bounded between two limits, 
A and B. The probability density function (PDF) may be stated as follows:

 F x
A B

A x B( ) =
−

≤ ≤1 for  (14.1)

The plot of uniform distribution, shown in Figure 14.1, is a rectangle.
Hence, uniform distribution is also known as the rectangular distribution. It 

may be recalled that by integrating a PDF, we get a cumulative distribution func
tion (CDF). It is also known that when we integrate a rectangle, we get a triangle. 
In this case, the PDF is rectangle. Integrating the PDF, we get a triangle which is 
the CDF. Obviously, the CDF is a triangle.

The PDF has the following statistics:

Mean = (A + B)/2
Median = (A + B)/2
Range = B – A

Variance = −( )B A 2

12
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Standard deviation = −( )B A 2

12
Skewness = 0
Kurtosis = 9/5
Relative kurtosis = −1.2

The CDF is defined as follows:

 F x x A
B A

A x B( ) = −
−

≤ ≤for  (14.2)

The CDF is a triangle, as shown in Figure 14.2.
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Figure 14.1 Probability density function (PDF) of uniform distribution.
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Figure 14.2 Cumulative distribution function (CDF) of uniform distribution.
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Bounded Distribution
A principal feature of the uniform distribution is its boundary. It is bounded on 
both sides, in sharp contrast with the unbounded bell curve. To qualify as a uni
form distribution function, three criteria must be met:

 1. Bounding limits must be “final minimum,” clear, and not elastic or vague
 2. Containment criterion 100%
 3. Uniform probability criterion

In practice, there could be challenges in meeting criterion 3; there could be 
turbulence between the limits.

There are many bounded phenomena in software projects. Customer satisfac
tion data are bounded between 1 and 5. SLA compliance is bounded between 
0% and 100%. Time to repair is bounded between 0 and agreed upon maximum 
time; hence, criterion 1 is met. The question in criterion 3 is uniformity. The pro
cess could be any other bounded distributions, beta or truncated Gaussians. Here 
comes a need for approximation and simplification. Uniform distribution is simpler 
and hence is preferred in most cases.

When the customer does not specify boundary, and it is left to the process QA 
to define the boundary based on data, challenges arise. In particular, estimating the 
upper bound could be a challenging problem. Data may not show a sharp edge. If 
we are using only sample data, then the problem of fixing upper bound is analogous 
to the German tank problem relevant to the World War II situation [1].

German tanks were produced according to a uniform distribution [1, N ]. The 
number of tanks captured was n, a mere sample. Can we estimate N from the 
sample data?

 N m
m
n

= − +1  (14.3)

where N is the upper bound of the uniform distribution [1, N ], n is the number of 
tanks captured, and m is the Largest serial number in the sample.

Later, after the war, statistical estimations were found to be much closer to the 
truth than intelligence reports, four to one.

Random Number Generators
Random numbers follow uniform distribution. However, it is difficult to gener
ate random numbers that fit perfectly into a uniform distribution. There are sev
eral random number generators (RNGs), but they predict uniform distribution 
with varying levels of success. For reliable results in simulation, we need perfect 
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random numbers, which means their PDF must be super uniform. A few RNGs 
aim at smooth uniform PDFs, whereas others accommodate deviations from per
fect smoothness. To illustrate this point, Figure 14.3 shows a histogram of 1000 
random numbers generated by Excel function RAND(). We can see a histogram 
with perturbed profile, bounded between 0 and 1. These are pseudorandom num
bers, as best as a practical tool can predict.

Shuttle Time
If a shuttle bus has a cycle time of 40 minutes, the waiting time is uniformly distrib
uted between 0 and 40. A passenger who reaches the bus stand in a random hour and 
is unaware of when the last shuttle left is bound to wait up to 40 minutes. From his 
viewpoint, the arrival of the shuttle is uniformly distributed from 0 to 50 minutes.

Parkinson’s Law
If a service manager assigns a task to his team and suggests that the team completes 
the task within an interval of 4 to 6 days, the team will take anywhere between 4 
and 6 days. The team will exploit the goal window and not exercise its own natural 
capability to finish the task in a naturally possible time. For all we know, the team 
may be able to finish the job in less than 4 days, but human behavior is to stretch 
the job according to Parkinson’s law which states,

Work expands to fill the time available.

LSL USL

0.00 0.16 0.32 0.48 0.64 0.80 0.96

Figure 14.3 Distribution of random numbers.

© 2015 by Taylor & Francis Group, LLC

  



Law of Compliance ◾ 235

If teams exercised their natural capabilities, the PDF of completion time would 
have a peak. Because the team negotiates time to meet specified goals, we end up 
with a performance that does not have character.

Censored Process
If components out of specifications are removed, the reaming lot shows nearly uni
form distribution between the specification limits. The censored lot tends to be 
more uniform if the original lot shows wide variation and if the specification lim
its are stringent. An example is when a semiconductor component manufacturer 
screens best pieces from the line and sells them at premium prices as close tolerance 
devices. He downgrades the rejected components and sells them at a lower price. 
The premium components after censoring show uniform distribution.

Perfect Departure
From an auditorium, if people leave in perfect queues, the departure is uniformly 
distributed. The probability of people crossing the gate is uniformly distributed 
between 0 and a finite time that depends on the number of people and width of the 
gate. When people try to break the queue and rush out, the departure is skewed, 
the worst case being a stampede.

Estimating Calibration Uncertainty 
with Minimal Information
During the calibration of measuring equipment, we need to assess uncertainties. 
There are two types of uncertainties affecting measurement: type A is determined 
from data, and type B is guessed. In type B estimates, we might only be able to 
estimate the upper and the lower limits of uncertainty. We have to assume the value 
is equally likely to fall anywhere in between, that is, a rectangular or uniform dis
tribution. The standard uncertainty for a rectangular distribution is equal to a

3
, 

where a is the semirange between the upper and the lower limits.
Estimation of uncertainty using the uniform distribution is relevant in the fol

lowing cases:

 ◾ Digital resolution uncertainty
 ◾ RF phase angle
 ◾ Quantization error
 ◾ As an expression of ignorance
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From the above examples, it can be seen, inspite of simplicity, the uniform dis
tribution can serve as a handy model to represent several real time processes.

Box 14.1 Airport tAxi-out time

Flight delay has been and continues to be one of the most critical problems 
for airports. A large percentage of flight delays occur on the ground. Among 
all the delays, historical data indicate that taxiout times contribute to more 
than 60% of the total. The taxiout time is defined as the ground transit time 
between the pushback time scheduled or updated by airlines and the takeoff 
time when the aircraft is captured by the radar tracking system. A queu
ing model was introduced to estimate the taxiout time at Logan Airport. 
The takeoff queue size was defined as the number of takeoffs that take place 
between the aircraft pushback time and its takeoff time.

A histogram of taxiout time is flat, suggesting uniform distribution. The 
cumulative frequencies form a straight line, confirming the assumption of 
uniform distribution. The straight line regresses, with an R2 value of 0.98.

Extreme taxiout times occur due to bad weather. These are not included 
in the construction of uniform PDF. Other models have an average predic
tion error of three minutes, whereas uniform distribution PDF prediction 
error is less than 1 minute [2].

The PDF is reconstructed in Figure 14.4.
By analogy, the same uniform distribution is relevant to software support 

services. The response time in complex situations follows uniform distribution.

Taxi-out time (minutes)
5 10 15 20 25 30 35 40
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Figure 14.4 PDF of taxi-out time.
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Review Questions
 1. What are pseudorandom numbers? How are they related to the uniform 

distribution?
 2. What is the shape of the CDF of uniform distribution?
 3. What is the uncertainty in a digital measuring device if its resolution is 

±1 mV? We assume uniform distribution here.
 4. What is the famous German tank problem?
 5. What is the formula for variance in uniform distribution?

Exercises
 1. Calculate kurtosis in uniform distribution if A = 1 and B = 2.
 2. Solve the German tank problem if 30 tanks were captured and the largest 

serial number is 115. That means you have to estimate the number of tanks 
produced in Germany. Clue: use Equation 14.3.

 3. Calculate the median of the uniform distribution with A = 2 and B = 3.
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Chapter 15

Law for Estimation: 
Triangular Distribution

Triangular distribution is one of the simplest known distributions. It can be con-
structed even with minimum or subjective data. The triangular distribution is 
marked by its sharp limits. Inside the area defined by the limits, the triangle offers 
a peak that can assume any position with the limits.

These limits are Limits of Probability. Once the limits are known, filling the 
distribution is easy.

The scientific imagination always restrains itself within the lim-
its of probability.

Thomas Huxley

It is also an approximate distribution: The comfort of approximation is matched 
by convenience of usage and freedom. This freedom offered by the triangular distri-
bution makes it a favorite choice during business decision making and simulation. 
Approximation is the hallmark of genius.
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It is the mark of an educated mind to rest satisfied with the 
degree of precision which the nature of the subject admits and 
not to seek exactness where only an approximation is possible.

Aristotle

Three points that define a triangle have the power to guide. They seem to stem 
from a cosmic design of reality (see Box 15.1).

The earliest record of triangular distributions seems to be in 1755 (about one 
century after the discovery of the related and slightly more sophisticated beta distri-
bution). Recently, the triangular distribution has been used as a proxy for the beta 
distribution. However, the triangular distribution is simpler and more effective [1].

Bell Curve Morphs into a Triangle
We can consider the normal distribution to have a principal body with tail adjuncts. 
The truncation points divide these two ingredients, as shown in Figure 15.1. The 
triangle is a good proxy to the curved but truncated principal body.

The above illustration presents the advantages of the triangular proxy; it has 
focus and simplicity. The tails are discarded, and curvature is replaced by linear 
construction. In project management, the tails represent risk and the body relates 
to primary delivery. In risk management, we pursue distribution with tails having 
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Figure 15.1 Normal distribution as triangle.
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appropriate characteristics to suit the given problem, such as the exponential and 
Pareto for long tails and Gumbel and Weibull for constrained tails. In delivery 
management, the triangle stands for the core output, with risks being relegated 
to the next layer of abstraction and kept invisible, for the present, to the manager.

Mental Model for Estimation
The triangular distribution is both bounded and peaked. Hence, it carries the 
advantages of being bounded like the uniform distribution and has the additional 
advantage of having a strong central tendency. The triangular distribution is a sim-
plified model of process results and a pragmatic substitute for normal and other 
distributions. The project management variables of time, cost, and performance 
can be elegantly modeled using the triangular distribution.

A plot of the triangle may be seen in Figure 15.2. The bottom edges a and b 
represent optimistic and pessimistic values. The middle edge c represents the most 
likely value. This is the estimation triangle extensively used in management.

Box 15.1 Three PoinTs for Guidance

It is good to know that as a general navigation concept, guidance is available 
from three points of reference. If you have three, you get your bearing. Here 
is a related quote:

Sailors and seafarers find their bearings at sea by means of 
natural points of reference located along the coast. These 
points, for example church spires, hills, water-towers or 
lighthouses that generally stand out from the rest of the 
coastline, are called amers [seamarks or landmarks]. All 
you have to do is identify three such landmarks in comple-
mentary directions so as to be able to construct a triangle 
which inevitably contains your ship. This triangle drawn on 
the navigation map is called the “triangle of uncertainty.”

Cécile Le Prado

Likewise, in software development, project three-point estimates provide 
great guidance. Managers can navigate through the project life cycle with 
this help.
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The probability density function (PDF) is split between simple equations to the 
two straight lines to the peak from the two base points. The equation to the first 
line, from the left base point to the peak, is given as follows:

 y x
x a

b a c a
( ) ( )

( )( )
= −

− −
2  (15.1)

The equation to the second line, from the peak to the second base point, is given 
as follows:

 y x
b x

b a b c
( ) ( )

( )( )
= −

− −
2  (15.2)

Mean
The model statistics are derived from elementary geometrical properties of a tri-
angle. Arithmetic mean is according to the following equation:

 Mean = + +a b c
3

 (15.3)
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x variable
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Figure 15.2 Triangular estimation—a widely used mental model.
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Here is an example of the equation application. Let us take the case of a project 
manager trying to give input to a simulator. Let us say he is required to define a 
PDF for productivity. From his own experience, he recalls that function point (FP)/
person-month had varied from 15 to 30. He has also obtained a recent bench-
mark report claiming that the mean value of productivity is 20 FP/person-month. 
Following the Bayesian spirit, we can combine both these data, first a historic 
probability and then a recent piece of evidence. Substituting these three values in 
Equation 15.3, we derive the following:

a = 15
b = 30
Mean = 20
Therefore, c = (20 × 3) − 15 − 30 = 15

This is a right-angled triangle skewed to the right, as shown in Figure 15.3.
This model can now be used in Monte Carlo simulation as an input.

Median
If we are lucky enough to obtain the median value for a skewed result, then we can 
apply the formulas in Equations 15.4 and 15.5, as follows:

 Median when /= + − − ≥ +a
b a c a

c a b
( )( )

( )
2

2 (15.4)

FP/PM
15 30

a
b
Mean
˜erefore, c

=
=
=
=
= 

15 History
30 History
20 (recent benchmark)
(20 × 3) – 15 – 30
15

3
a + b + c

Mean = 

Mean 

c

Productivity model for
Monte Carlo simulation

Figure 15.3 Productivity model.

© 2015 by Taylor & Francis Group, LLC

  



244 ◾ Simple Statistical Methods for Software Engineering

 = − − − ≤ +b
b a b c

c a b
( )( )

( )
2

2when /  (15.5)

The calculation is illustrated below by solving a problem.

QuesTion

Given the following inputs,

Minimum % SLA compliance = 50
Maximum % SLA compliance = 100
The median is 80%

Build a triangular PDF for service-level agreement (SLA) compliance and find 
where the peak occurs.

answer

Let us rearrange the input information to suit our formulas.

a = 50
b = 100
Therefore, (a + b)/2 = 75
Median = 80

Substituting all these in Equation 15.5, we obtain

 c = 84

Thus, all the three corners of the triangle are known. The model is plotted in 
Figure 15.4.

x = % SLA compliance

10050 Median = 80 (given)

Solution
peak = 84

Model for SLA compliance

Figure 15.4 Triangular model of SLA compliance.
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The triangular SLA compliance model is far superior to a plausible Gaussian 
model. Typically, the Gaussian tail would exceed 100%, distort calculations, and 
force us to take countermeasures such as a messy truncation. The triangular PDF is 
compact and does not outstep empirical experience.

Other Statistics
The mode is obviously the peak, and hence, the following relationship is true:

 Mode = c

Dispersion is strongly indicated by the base width, b − a. However, a proper 
calculation of variance is according to the following equation:

 Variance = (a2 + b2 + c2 – ab – ac – bc)/18 (15.6)

An example is as follows:
Given

a = 0,
b = 10,
c = 5 (for a symmetrical triangular model),

We get

Variance = 4.17,
Standard deviation = 2.0412.

It may be noted that as c changes, the variance slightly changes.

Skew
Although the process boundaries constitute a firm base, the apex c can be moved 
from the left extreme to the right extreme, as shown in the three examples in 
Figure 15.5.

The first example has its peak at the lower limit and gives a triangle skewed to 
the right. The second example has its peak in the middle position between the lim-
its, providing symmetry. The peak in the third example coincides with the upper 
limit, giving a negative skew. These three peaks demonstrate how the triangular 
PDF can be made to be symmetrical or skewed. The peak can take an infinite 
number of positions within these extremes.
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The formula for skew is as follows:

 Skew = + − − − − +

+ + − − −

2 2 2 2

5 2 2 2

( )( )( )

(

a b c a b c a b c

a b c ab ac bbc)
3
2

 (15.7)

Equation 15.7 is used to construct a relationship between skew and mode c for a 
given a = 0 and b = 10. A graph of the relationship is plotted in Figure 15.6.

We can generate a wide range of skews using the relationship. In software develop-
ment projects, the challenge arises in the form of skew. In a Gaussian-dominated statis-
tical thinking, skew does not even exist. The triangular model provides a simple model 
to represent skew. Hence, the inherent advantages of the triangular model are threefold:
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Figure 15.5 Triangular distribution—three examples.

0 2 4 6

c

a = 0, b = 10

Sk
ew

8 10 12

0.8

0.6

0.4

0.2

–0.2

–0.4

–0.6

–0.8

0
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It shows a prominent central tendency.
It is capable of representing symmetry.
It is capable of showing skew, both left and right.

All these representations can be achieved with great agility.

Three-Point Schedule Estimation
Let us consider an example of schedule estimation by expert judgment for a soft-
ware component development:

Optimistic value = 25 days
Pessimistic value = 50 days
Most likely value = 30 days

Applying the triangular PDF, the expected value of schedule is as follows:

 
Mean /

days

= + +

=

( )25 50 30 3

35

This may be compared with the conventional estimation technique using the 
program evaluation review technique (PERT) formula. The PERT formula will 
place the estimate as follows:

 

PERT /

/

days

o m p= + +

= + × +

=

( )

( )

.

t t t4 6

25 4 30 50 6

32 5

It is seen that the triangular PDF gives a safer and more conservative estimate.

Beta Option
There have been interests in generalized triangles with curvature added. Wahed 
published “The Family of Curvi-Triangular Distributions” [2]. Brizz [3] has con-
structed two-faced triangles with one face a straight line and the second face expo-
nential. However, the classic beta distribution provides smoothly curved bounded 
functions, and in the opinion of the authors, the good old beta distribution must 
be exploited first before experimenting with curvilinear versions of the triangle. A 
typical beta distribution model is shown in Figure 15.7. The problem of productiv-
ity is revisited with beta.
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For fixed upper and lower bounds 30 and 15, three curves have been drawn for 
three sets of shape parameters. The beta distribution bounded between 0 and 1 is 
defined as follows:

 Beta( , , ) ( )
( ) ( )
( )

x
x xα β

α β
α β

α β

= −

+

− −1 11
Γ Γ
Γ

 (15.8)

where Γ represents the gamma function, and α and β are the shape parameters.
Figure 15.7 looks more appealing than triangles, but the equation intimidates 

users. Beta distribution can offer an impressive array of bounded shapes. However, 
while implementing bounded functions in real-life projects, beta distribution was 
less acceptable despite its inherent power, and the “intuitive” triangular model was 
considered.

Triangular Risk Estimation
Like with any PDF, the triangle can be used for risk analysis. Figure 15.8 shows risk 
measurement in the triangular way.

Risk computation based on triangular function should be taken with far more 
seriousness and treated more urgently than risk measured based on tailed distribu-
tions. Tails in bell curves and other tailed distributions are mere extrapolations into 
extremes, whereas the triangle means business. Risk measured by typical triangular 
models should be specially treated because we do not generally anticipate risks in 
the triangular side of the world. Measuring risk with the body of a probabilistic 
distribution is very different from measuring risk with tails.
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Figure 15.7 Beta distribution of productivity (FP/person-month).
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Parameter Extraction
Precise parameters make precise models. In the case of the triangular model, we 
use expert judgment, Delphi, or wideband Delphi in the absence of data. Group 
judgment is more robust, resulting in a less skewed triangle. If data were available, 
we use histograms and visually match a triangle first and then, if called for, a least 
square error method after optimally binning the histogram. Going for MLE or 
other rigorous techniques is not warranted for triangular models. If more precise 
judgment of risk is involved, then the beta distribution should be chosen or the tri-
angular model must be refined as van Dorp and Kotz [4] have done: They extended 
the model into a four-parameter version that allows even J-shaped forms. It may be 
seen that the TD offers all the facilities available in classical distribution models; it 
supports risk estimation and simulation; It is used in 3 point estimation and first 
order approximation of processes. All this is accomplished using elementary linear 
consideration.

Box 15.2 a crysTal clear world

The triangle offers a tailless view of process. This is a crystal clear world 
without the ambiguity. The presence of tails makes comparing two pro-
cesses a complex affair; one often needs hypothesis testing and abstruse 
rules. It is quite plain with triangles, and one can make commonsense-
based judgments.

For example, let us consider a productivity model defined by a triangle 
(30, 40, and 60) lines of code (LOC) per person day. To answer a question 
whether a productivity data point 61 belongs to this process or an outlier is 
rather easy. The data point in question is outside the triangle.

Had we used a bell curve, the answer is not so easy; at least it will not be 
a straightforward reply. One would say there is chance p that the data point 

LSLRisk
probability Success

probability

Figure 15.8 Risk estimation using triangular distribution.
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Review Questions
 1. Why is the triangular distribution preferred in the place of uniform distribu-

tion for estimation models?
 2. Can we represent data skew in a triangular model?
 3. Compare the way of calculating expected value using the PERT formula with 

the method of calculating the expected value using the mean of triangular 
distribution.

 4. Compare beta distribution with the triangular distribution.
 5. Why is the triangular distribution popular in project management?

Exercises
 1. In a triangular distribution model for productivity, a = 30, b = 90, and 

c = 55. The numbers are LOC/per day, standing for productivity in software 
development. The naming conventions are shown in Figure 15.2. Calculate 
skew.

 2. Calculate mean and median productivity in the above-mentioned situation.
 3. If the threshold productivity is 40, what is the risk in productivity perfor-

mance in the above context?
 4. What is the standard deviation of the distribution in the above example?
 5. Calculate risk using a Gaussian model using the formulas given in Chapter 

13 “Bell Curve,” making use of the standard deviation you found in Exercise 
4 and the mean you found in Exercise 2.
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belongs to the process. Then we will apply a policy to decide whether the p 
value is less than the “critical value.” If the p value is less, then we would say 
that the data point is significantly different from the process. It is a round-
about way of saying that p is outside and is certainly confusing to many who 
would rather have a simple and transparent answer.

The triangle presents a crystal clear view of process and facilitates straight 
decision making.
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Chapter 16

The Law of Life: 
Pareto Distribution— 
80/20 Aphorism

Pareto distribution is a fat-tailed skewed distribution invented by Vifredo Pareto. A 
brief biography of Pareto is given in Box 16.1. The distribution was originally used to 
describe wealth distribution in society. Larger wealth is controlled by fewer people.

Box 16.1 Vilfredo Pareto—the economist 
Who discoVered management (1848–1923)

Vilfredo Pareto was an Italian sociologist, engineer, economist, philosopher, 
political scientist, and mathematician.

Between 1859 and 1864, Vilfredo changed schools several times. From 1864 
to 1867, Vilfredo studied mathematics and physics at the Università di Torino.

In 1869, he earned a doctor’s degree in engineering from what is now the 
Polytechnic University of  Turin. His dissertation was titled “The Fundamental 
Principles of Equilibrium in Solid Bodies.” His later interest in equilibrium 
analysis in economics and sociology can be traced back to this paper.

After his studies, Pareto worked for some years at the Italian Railway 
Company and traveled to Germany, England, Belgium, Switzerland, and 
Austria. In the field of statistics, Pareto worked for insurances and the calcu-
lation of pensions.
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Structure of Pareto
Pareto is known as a fat-tailed distribution. Gaussian, exponential, and Pareto tails 
are compared in Box 16.2. It is shown that Pareto has the largest tail.

A graph of the Pareto distribution is plotted in Figure 16.1. The probability of 
usage of software features is the metric plotted in Figure 16.1. The distribution begins 
from its mode and extends asymptotically to the right. The decline of usage is gradual.

The Pareto probability density function (PDF) depends on two parameters, 
mode m and shape factor α. The equation to the PDF is shown as follows:

 
PDF = +

α α

α

m
x 1

 (16.1)

The equation can be rewritten by marking the constant term separately and 
bringing the variable term to the numerator, as follows:

 f (x) = (αmα)x−(α+1) (16.2)

The equation is clearly a form of the power law with a negative exponential x–b. 
Power law is one of the favorite curves used in data mining.

Pareto became famous by the Pareto Optimum in economics and the 
Pareto distribution. In 1896, he found that the distribution of income does 
not follow the normal distribution but is mostly inclined to the right side. His 
discovery of the “distribution curve for wealth and incomes” of 1895 made 
Pareto famous as a statistician.

The Pareto principle was named after him and built on observations of his 
such as that 80% of the land in Italy was owned by 20% of the population.

Pareto was the first to realize that utility was a preference ordering. With this, 
Pareto not only inaugurated modern microeconomics but also demolished the 
alliance of economics and utilitarian philosophy. Pareto said “good” cannot be 
measured. He replaced it with the notion of Pareto optimality, the idea that a sys-
tem is enjoying maximum economic satisfaction when no one can be made better 
off without making someone else worse off. Pareto optimality is widely used in 
welfare economics and game theory. A standard theorem is that a perfectly com-
petitive market creates distributions of wealth that are Pareto optimal.

His legacy as an economist was profound. Partly because of him, the field 
evolved from a branch of social philosophy as practiced by Adam Smith 
into a data-intensive field of scientific research and mathematical equations. 
(http://en.wikipedia.org/wiki/Pareto_principle; http://en.wikipedia.org/wiki 
/Pareto_distribution)
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Box 16.2 a story of tails

The Gaussian tail dies soon. The exponential tail stretches longer but is lim-
ited. The Pareto tail, resulting from the power law, is unlimited. We can 
compare the standard forms of these three tail equations:

Gaussian, standard form = e
x− 1

2
2

Exponential, standard form = e−x

Pareto, standard form = x −1

In the previously mentioned expressions, scale factor = 1 and location = 0. 
If we check the value of tails at x = 6, we find

Gaussian tail = 0.0000000152
Exponential tail = 0.00248
Pareto tail = 0.167

At x = 6, the Gaussian tail is nearly zero, and the exponential tail is 
162,755 times bigger. In turn, the Pareto tail is 67 times stronger than the 
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Figure 16.1 Pareto distribution of features usage.
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The cumulative distribution function is shown in Figure 16.2. The y-axis 
directly reads usage probability, while the x-axis reads the number of features. 
Using this model, we can find quickly the usage probability of n number of features 
in a software product.

The equation to cumulative distribution is rather simple and is shown as follows:

exponential. For larger values of x, divergence among the three tails increases 
further. The Gaussian tail will be dead, the exponential tail will slide toward 
zero, and the Pareto tail will still have significant values for a long distance.

These three tails represent three aspects of engineering and management. 
Gaussian is drawn to its center; its body is accentuated and its tail attenuated, 
a true model of process behavior. The Gaussian tails are either process defects 
or rejection areas.

Exponential curve represents decay or defects in a product. There seem to 
be special mechanisms in a product that cause decay or vulnerabilities that 
cause defects. By definition, exponential tail represents failure, not perfor-
mance of products.

Pareto is often a model for external factors that influence a product or a 
process from outside the organization.

Business comprises effects represented by these three tails.
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Figure 16.2 Cumulative Pareto distribution of features usage.
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 CDF = −




1 m

x

α

 (16.3)

It may be noted that the previously mentioned equations are defined for values 
of x greater than mode m.

Key statistics of the distribution are given as follows:

 Mean =
−

α
α

m
1

 (16.4)

 Median = m2
1
α  (16.5)

The mean is defined for values of shape factor α > 1.

An Example
A Pareto model has been established with mode m = 1 and shape factor α = 1.2 in 
Data 16.1. The mean for this model turns out to be 6 while the median is 1.8. The 
fact that the mean is so far away from the median explains a model skew. The mean 
has shifted toward the tail. The PDF and cumulative distribution function (CDF) 
have computed and the values are shown in Data 16.1. Pareto calculations are easy 
and can be managed with basic Excel.

The 80/20 Law: Vital Few and Trivial Many
The CDF shown in Figure 16.2 allows us to think of the famous 80/20 due to 
Pareto. It may be seen that 20% of features have 80% usage probability. This is a 
basic principle used in statistical testing. This model is also called the operational 
profile of the product. There are many 80/20 laws that rule life. A brief list is given 
in Box 16.3.

The 80/20 law depicts the phenomenon of “vital few and trivial many.” Illes-
Seifert and Paech [1] have analyzed application of this principle to software defects. 
They report,

The distribution of about 430 defects over about 500 modules has been 
analysed and confirms the Pareto Principle, i.e. approximately 80% of 
the defects were contained in 20% of the modules.
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Illes-Seifert and Paech set up four Pareto hypotheses and prove each is right.

 1. Pareto distribution of defects in files: a small number of files accounts for the 
majority of defects

 2. Pareto distribution of defects in files across releases
 3. Pareto distribution of defects in code: a small part of the system’s code size 

accounts for the majority of defects
 4. Pareto distribution of defects in code across releases

In another example of Pareto, Ostrand and Weyuker [2] have studied the dis-
tribution of defects over different files in 13 releases of a large industrial inventory 
tracking system. For each release, the faults were always heavily concentrated in 
a relatively small number of files. For example, they find that in a certain release, 
10% of files account for 68% of the faults. Interestingly, they find a similar pattern 
in code size; a small number of files contain more code.

In yet another example, Murgia et al. [3] studied the defects in two open source Java 
projects, both developed following agile practices, and find, “There are few Compilation 
Units hosting most bugs, and most other Compilation Units are with a very few bugs,” 

Data 16.1 Pareto Distribution of Usage

Parameters 
m  1 
˜  1.2  

Statistics 
Mean 6  
Median 1.8  

No. of Features

  1                                                           0.600                                                      0.000
  2                                                           0.364                                                      0.565
  3                                                           0.253                                                      0.732
  4                                                           0.191                                                      0.811
  5                                                           0.152                                                      0.855
  6                                                           0.125                                                      0.884
  7                                                           0.106                                                      0.903
  8                                                           0.091                                                      0.918
  9                                                           0.080                                                      0.928
10                                                           0.071                                                      0.937
11                                                           0.064                                                      0.944
12                                                           0.058                                                      0.949
13                                                           0.053                                                      0.954
14                                                           0.049                                                      0.958
15                                                           0.045                                                      0.961
16                                                           0.042                                                      0.964
17                                                           0.039                                                      0.967
18                                                           0.036                                                      0.969
19                                                           0.034                                                      0.971
20                                                           0.032                                                      0.973

Probability Density
Function (PDF) of Usage

Cumulative Distribution
Function (CDF) of Usage

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
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supporting the 80/20 phenomenon. They report that 80% of bugs are contained in 
compilation units ranging from 8% to 20%; clearly, the Pareto law holds. The research-
ers observe, “This is an important result from the software engineering point of view. In 
fact, a review of a small fraction of faulty Compilation Unit may have an exponential 
impact on the overall amount of software defects detectable and fixable.”

Box 16.3 the 80/20 laWs

The 80/20 principle—that 80% of result flows from just 20% of the causes—
is the one true principle of highly effective people. It has become a man-
agement law. Its effect on all facets of life may be seen from the following 
compilation:

Pareto’s historic observations:

80% of Italy’s land was owned by 20% of the population
20% of the pea pods in his garden contain 80% of the peas

In software development,

80% of errors and crashes come from 20% of bugs
20% of software components contain 80% of defects
20% of defects cause 80% of down time
20% of test cases capture 80% of defects

In problem solving,

20% of problems cause 80% of damage
20% of causes are responsible for 80% of problems
20% of hazards account for 80% of injuries
20% of customers take up 80% of one’s time
80% of crimes are committed by 20% of criminals

In the Internet,

1% of the users of a website create new content, 99% lurk

In general,

20% of humans hold power over the remaining 80%
20% patients use 80% health care resources
10% of expenditure on health helps 90% of poor people
20% of the world’s population controlling 82.7% of the world’s income
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Generalized Pareto Distribution
Open source projects have a different DNA. They follow the Pareto distribution.

Simmons and Dillon [4] note a Pareto distribution in the size of the number of 
developers participating in open source projects with most projects having only one 
developer and a much smaller percentage with larger, ongoing involvement.

Kolassa et al. [5] have proposed a generalized Pareto distribution to define com-
mit sizes in open source projects.

The equation to the model is shown as follows:

 f x x( ) = + − ≠
− −

1 1 0
1 1

σ
ξ θ

σ
ξ

ξ
for  (16.6)

where θ is the location parameter (controls how much the distribution is shifted), σ 
is the scale parameter (controls the dispersion of the distribution), and ξ is the shape 
parameter (controls the shape).

Kolassa et al. [5] have fitted the generalized Pareto with the following param-
eters derived from commit size data:

In business,

80% of a company’s profits come from 20% of its customers
80% of a company’s complaints come from 20% of its customers
80% of a company’s profits come from 20% of the time spent by its staff
80% of a company’s sales come from 20% of its products
80% of a company’s sales are made by 20% of its sales staff
80% of your sales come from 20% of your clients

Related special findings:

A small number of flows carry most Internet traffic, and the remainder 
consists of a large number of flows that carry very little Internet traffic 
(Elephant flow and mice flow).

The first 90% of the code accounts for the first 90% of the development 
time. The remaining 10% of the code accounts for the other 90% of the 
development time (Tom Cargill).

Ninety percent of everything is crap (Theodore Sturgeon).
80% of your benefits come from 20% of your efforts (Tim Ferriss in The 

4 Hour Workweek).
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ξ shape = 1.4617
θ location = 0.5
σ scale = 13.854

The previously mentioned model explains how contributions from open source 
developers can vary.

Duane’s Model
J. T. Duane has developed a reliability growth model based on the Pareto distribu-
tion (power law), which has long been in use National Institute of Standards and 
Technology (NIST).

This model implies that the reliability during any specific interval can be repre-
sented by the negative exponential model:

 λ α
C kt= −

T  (16.7)

where C is the average estimate of cumulative failure rate, tT is the total accu-
mulated operating hours, k is the constant representing cumulative failure rate at 
tT = 1, and α is the improvement rate constant.

Tailing a Body
In a novel attempt, Herraiz et al. [6] fit a Pareto tail to a log-normal body with 
object-oriented software metrics. The Pareto distribution, known for its promi-
nent tail, fits the larger values better while the smaller values follow the log-normal 
distribution. Herraiz et al. [6] called the mixture model double Pareto distribu-
tion. Not all OO metrics need a double Pareto. Two metrics, the number of 
children and the lack of cohesion in methods, are better described using a power 
law for the entire range of values. Three metrics, weighted methods per class, 
coupling between object classes, and requests for a class, are better described by 
a double Pareto.

In another study, Herraiz et al. [7] have studied a large quantity of open source 
code, approximately 700,000 C files. In particular, the following metrics were stud-
ied: source lines of code, lines of code, number of blank lines, number of comment 
lines, number of comments, number of C functions, McCabe’s cyclomatic com-
plexity, number of function returns, and Halstead metrics. All the metrics were 
found to follow a double Pareto distribution.

Pareto is the simplest distribution available. It is also the flexible and easy to 
adapt. The 80/20 law derived from Pareto principle are used extensively in business 
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management, project management, software development and problem solving. It 
is also used in reliability modelling.

Review Questions
 1. What is the meaning of 80/20 law?
 2. What is the Pareto principle?
 3. Why is Pareto distribution called a fat tailed distribution?
 4. Which distribution has the fattest tail: Gaussian, exponential, or Pareto?
 5. Give three examples of Pareto laws.

Exercises
 1. Calculate the mean value of Pareto distribution if mode = 7 and shape = 4.
 2. Calculate the median value for the previous case.
 3. Assume the defect density distribution of a certain application follows Gaus-

sian tail. If the threshold of defect density is six units (relative value), what is 
the reliability of the application? (Clue: make use of the calculation shown in 
Box 16.2: A Story of Tails.)

 4. Assume the defect density distribution of a certain application follows expo-
nential tail. If the threshold of defect density is six units (relative value), what 
is the reliability of the application? (Clue: make use of the calculation shown 
in Box 16.2: A Story of Tails.)

 5. Assume the defect density distribution of a certain application follows Pareto 
tail. If the threshold of defect density is six units (relative value), what is the 
reliability of the application? (Clue: make use of the calculation shown in Box 
16.2: A Story of Tails.)

References
 1. T. Illes-Seifert and B. Paech, The Vital Few and Trivial Many: An Empirical Analysis 

of the Pareto Distribution of Defects. Software Engineering, Kaiserslautern, Germany, 
2009, pp. 151–164.

 2. T. J. Ostrand and E. J. Weyuker, The distribution of faults in a large industrial soft-
ware system, In: Proceedings of the 2002 ACM SIGSOFT International Symposium on 
Software Testing and Analysis (ISSTA), ACM Press, Roma, Italy, 2002, pp. 55–64.

 3. A. Murgia, G. Concas, S. Pinna, R. Tonelli and I. Turnu, Empirical Study of Software 
Quality Evolution in Open Source Projects Using Agile Practices.

 4. G. L. Simmons and T. S. Dillon, Towards an ontology for open source software devel-
opment, International Federation for Information Processing, 203, 65–75, 2006.

© 2015 by Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F0-387-34226-5_7
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F566172.566181
http://www.crcnetbase.com/action/showLinks?crossref=10.1145%2F566172.566181


The Law of Life ◾ 263

 5. C. Kolassa, D. Riehle and M. A. Salim, A Model of the Commit Size Distribution of 
Open Source. Springer, Berlin, Heidelberg, 2013.

 6. I. Herraiz, D. Rodriguez and R. Harrison, On the statistical distribution of object- 
oriented system properties. In: Third International Workshop on Emerging Trends in 
Software Metrics (WETSoM 2012), [Version 20101126r], Zurich, Switzerland, June 3, 
2012.

 7. I. Herraiz, J. M. Gonzalez-Barahona and G. Roble, Towards a theoretical model for 
software growth. In: 2013 10th Working Conference on Mining Software Repositories 
(MSR), 2007, p. 21.

© 2015 by Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-35843-2_6
http://www.crcnetbase.com/action/showLinks?crossref=10.1007%2F978-3-642-35843-2_6
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMSR.2007.31
http://www.crcnetbase.com/action/showLinks?crossref=10.1109%2FMSR.2007.31


Tailed 
disTribuTions

Tailed distributions occupy a special position in pattern recognition. They are used 
to describe extreme events. The representation of such less likely events is not often 
the primary interest of project managers and engineers. Attention to central ten-
dencies and overall generic expressions of dispersion have dominated managerial 
thinking. The prediction of tails is a specialist domain, not a generalist’s credo. In 
recent years, interest in tails has increased. Software buyers would like to estimate 
residual defects. Business managers would like to estimate scope creep. Engineering 
managers would like to predict size growth. Hence, models of software evolution 
were created.

The following five chapters are devoted to the use of a few tailed distributions: 
log-normal, gamma, Weibull, Gumbel, and Gompertz. Each distribution has 
unique characteristics that entail unique applications. Together, these five distribu-
tions can handle most extreme events in software engineering. A remarkable appli-
cation of such distributions is in the construction of software reliability growth 
models, described in Chapters 19 and 21.

Despite the mathematical form, which might dissuade a casual reader, these 
distributions are simple to use; they are widely used in the industry. Computations 
needed for solving these expressions are minimal and can be accomplished using 
MS Excel.

iV
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Chapter 17

Software Size Growth: 
Log-Normal Distribution

Log-Normal Processes
Software grows in the development cycle. Software metrics, namely, size, effort, 
defects, and reliability, all manifest growth of software.

Growth is a multiplicative process. This sharply contrasts with the additive pro-
cess of gambling.

Growth of sites on the Web, growth of organisms in biology and ecology or growth 
of fatigue cracks in semiconductors, growth of Web pages in the Internet, growth 
of pollutants in the atmosphere, growth of cancer in people, growth of corrosion in 
metals, growth of phone traffic in a communication network, and growth of words 
are examples of multiplicative processes.

Growth is inadequately represented in the bell curve. A different curve, namely, 
the log-normal distribution, first used in 1836 (see Box 17.1), is seen to represent 
adequately well such growth events. The log-normal distribution is built on a simple 
premise that logarithms of skewed data will be normally distributed without skew; 
taking logarithms removes skew. The logarithmic scale is often used to present 
complex nonlinear data in a simplified linear form (see Box 17.2). Logarithmic 
transformation of observations allows us to apply the familiar properties of the bell 
curve to the transformed data.

Consider software design complexity, which is relatively skewed when com-
pared with the bell curve. We analyzed the NASA data [1] on module design com-
plexities of 505 modules written in C language.
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NASA software defect data sets have been made publicly available and 
extensively used by researchers.

The data may be viewed in the box plot provided in Figure 17.1.
In the box plot, it may be seen that design complexity data are right skewed with 

several outliers too. (Box plot is a good data visualizer; it produces a rich picture of 
data. Further information about the reading a box plot is available in Chapter 4.)

Having seen the picture of raw data, we can choose to take logarithms of data 
and examine the result to see how data have been transformed, in particular, how 
well data have been unskewed, by logarithms. We plot the logarithms of data in a 
box plot in Figure 17.2.

The new box plot has noteworthy and serious differences. Comparing Figure 
17.2 with Figure 17.1 reveals two consequences of the transformation:

 1. The box has become symmetric.
 2. There is a drastic reduction in the number of outliers.

The new box plot is a better fit. It is as if data after transformation have found 
its destination pattern.

Box 17.1 The FirsT AppeArAnce oF Log-normAL

It began with geometric mean. If a variable can be thought of as the multipli-
cative product of some positive independent random variables, then it could 
be modeled as log-normal.

The basic properties of log-normal distribution were discussed long ago in 
1836 by Weber [2]. McAlister described the log-normal distribution around 
1879. Kapteyn and Van Uven, in 1916, gave a graphical method of estimat-
ing the parameters; the log-normal distribution was found to be accurately 
representing the distribution of critical dose for several drugs; this was also 
the first time that log-normal distribution was applied in real life.

–20 –10 0 10 20 30
Design complexity

40 50 60 70

Figure 17.1 Design complexity data.
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The two box plot patterns can be expressed as mathematical curves. First, we 
can fit the data to a normal distribution. The symmetrical normal distribution 
is rather a mechanically executed force fit. The data have the following normal 
parameters:

Mean = 3.592
Standard deviation = 5.447

To obtain the parameters for log-normal distribution, in the most commonly 
used format, we must estimate the mean and standard deviations of natural loga-
rithms of data. Thus, we obtain 0.771 and 0.896.

Normal and log-normal curves generated by Excel functions NORM.DIST 
and LOGNORM.DIST based on the two sets of above parameters are plotted in 
Figure 17.3.

The normal curve represents a traditional and habitual treatment, and the log-
normal curve represents a modern and theory-driven treatment of design complex-
ity data. It may be seen that the log-normal curve is in closer agreement with the 
box plot of data shown in Figure 17.1.

–6 –4 –2 0
Ln design complexity

2 4 6 8

Figure 17.2 Natural logarithms of design complexity data.

Normal
Log-normal

–15 –10 –5 0 5
Design complexity

10 15 20 25
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 17.3 Normal versus log-normal distributions of design complexity.
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The log-normal curve represents an engineering truth missed by the bell curve.

The normal curve is a misfit; it has an odd negative tail that is not practical and 
also it tenders a misleading peak. The log-normal curve does not go negative and 
has the right skewed tail and a perfect peak.

Software design is not a Gaussian process; it is a log-normal process.

Building a Log-Normal PDF for 
Software Design Complexity
As the saying goes, if we substitute natural logarithms for x in a Gaussian PDF 
equation (Equation 17.1), we obtain a log-normal PDF equation, as follows:

 F x e
x

( , , )
( )

µ σ
π σ

µ
σ=

− −
1

2

2

22  (17.1)

Accordingly, natural logarithms of data must be taken first, and then in 
Equation 17.1, x must be replaced by Ln(x), μ must be replaced by the average of 
Ln(x), and σ must be replaced by the standard deviation of Ln(x). However, the 
equation will be in the logarithmic scale. Taking exponential of the results will 
convert them to real-life units.

It may be noted that the Excel function LOGNORM.DIST takes inputs in the 
logarithmic scale but gives results in real domain. We do not have to take exponentials 
and go through a separate conversion process, and this is a great practical convenience.

Users have built their own versions of the log-normal PDF. The first choice we 
need to make is the central value.

The log-normal PDF is built around the median, like the Gaussian is built 
around the mean.

Some versions of log-normal use the geometric mean. In a typical log-normal 
process, the median and the geometric mean are nearly equal. Using the geomet-
ric mean is highly justified by the fact that log-normal numbers are multiplica-
tive and tend to form a geometric series. In creating a log-normal PDF, the NIST 
Engineering Statistics Handbook [3] proposes the following structure:

 f x
x

e
x

( )
(ln )

=
− −

1
2

2

22

σ π

β
σ  (17.2)

where β is the scale factor and σ is the shape factor.
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The parameters α and β can be extracted by (1) the method of moments (MOM), 
(2) the maximum likelihood method, and (3) the minimum χ2 method. We would 
pursue the MOM in this chapter; hence, we use the following two relationships:

 β is the scale factor = mean of Ln(x) (17.3)

 σ is the shape factor = standard deviation of Ln(x) (17.4)

These relationships are inherent in the Excel function LOGNORM.DIST, as 
we have seen while creating Figure 17.3. Methods 2 and 3 compute parameters by 
iteration, and it is a good idea to use Equations 17.3 and 17.4 to generate initial 
values that may help the following iteration runs to converge faster.

Even manual techniques of parameter extraction begin with Equations 17.3 and 
17.4. If we apply them to design complexity data, the scale and shape parameters 
would become 0.771 and 0.896, the starting values.

The NIST suggestion becomes a valuable option: the scale parameter may be 
taken as Ln(Median(x)) instead of Mean of Ln(x). The scale parameter by NIST 
option will be 0.693 instead of the standard 0.771. This is based on a logic that log-
normal distributions are centered on the median, and we need not search for the 
scale parameter iteratively.

Working with a Pictorial Approach
Let us now consider a graphical way of connecting with mathematical distribution. 
We can construct and use a histogram, known for its pattern extraction capabili-
ties. Such a histogram of design complexity data is shown in Figure 17.4.

The histogram has extracted a distinctive pattern, with well-defined and clearly 
discernible features: mode (peak), shape, and tail. These graphical features provide 
guidance in the choice of a sensitive log-normal parameter: the shape factor. Using 
graphical matching, we can select the most appropriate from a set of design com-
plexity log-normal curves.

A set of log-normal curves are given in Figure 17.5, with four sets of log-normal 
parameters given as follows:

 1. Shape 0.7, scale 0.5
 2. Shape 0.896, scale 0.771 (obtained by MOM)
 3. Shape 1.1, scale 1.0
 4. Shape 1.3, scale 1.4

These curves have been obtained iteratively by perturbing the parameter values 
around an initial value, a second pair of parameters, with a shape of 0.896 and a 
scale of 0.771, obtained using MOM.
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Figure 17.5 Pertubations of log-normal distribution of design complexity.
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Figure 17.4 Design complexity histogram.
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It may be seen in Figure 17.5 that the curve with MOM parameters matches 
the histogram, with a tail finishing at 15. The other curves either stop up front or 
overshoot.

It may also be seen that we have made no attempt to make the log-normal model 
represent the outliers seen in the box plot seen in Figure 17.1. Our emphasis has 
remained on the body of the log-normal and not on its tail. That emphasis depends 
on our strategy in building the body or the tail. Had we wished to emphasize the 
tail, then we would have opted for attaching a Pareto tail. To pursue this idea, we 
need to improve the precision of our judgment. We do so by evaluating errors in 
prediction. For nine values of percentiles, ranging from 0.1 to 0.9 in steps of 0.1, 
data values are computed first by using the percentile function in Excel. The same 
percentiles are interpreted as probabilities in cumulative log-normal distribution, 
and we predict design complexities corresponding to the nine percentiles by doing 
an inverse calculation using LOGNORMINV in Excel. The difference between 
predicted value and data value is taken as error in prediction. To find a meaningful 
average error, we find absolute error each time, remove the sign, and then take the 
average. Prediction errors are calculated for all the candidate log-normal models. 
The calculations are shown in Table 17.1.

In Model A, the parameters directly obtained by MOM are used. In Model B, 
the scale is estimated with reference to the median. In Model C, the scale is the 
same as Model B, but the shape has been perturbed till mean absolute error (MAE) 
converged to a minimum.

For further discussion, let us choose the optimized Model C having minimum 
error. The optimized model has a scale of 0.693 and a shape of 0.930. We can 
plot the log-normal cumulative distribution function (CDF) of Model C using the 
Excel function, as follows:

CDF = LOGNORM.DIST(x, scale, shape, 1).

After substitution, the expression becomes

CDF = LOGNORM.DIST(x, 0.693, 0.930, 1).

For our reference, we can plot the probability density function (PDF) using the 
Excel function, as follows:

PDF = LOGNORM.DIST(x, scale, shape, 0).

After substitution the expression becomes

PDF = LOGNORM.DIST(x, 0.693, 0.930, 0).

In both the cases, x is a design complexity. The plots are shown in Figure 17.6.
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Models

A B X1 C X2 X3 X4

Shape 0.896 0.896 0.92 0.93 0.94 0.93 0.93

Scale 0.771 0.693 0.693 0.693 0.693 0.68 0.7
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0.1 1 0.7 0.314 0.6 0.051 0.6 0.019 0.6 0.008 0.6 0.008 0.6 0.000 0.6 0.012

0.2 1 1.0 0.017 0.9 0.076 0.9 0.019 0.9 0.008 0.9 0.008 0.9 0.004 0.9 0.018

0.3 1 1.4 0.351 1.2 0.101 1.2 0.016 1.2 0.006 1.2 0.006 1.2 0.009 1.2 0.024

0.4 1 1.7 0.723 1.6 0.129 1.6 0.010 1.6 0.004 1.6 0.004 1.6 0.016 1.6 0.032

0.5 2 2.2 0.162 2.0 0.162 2.0 0.000 2.0 0.000 2.0 0.000 2.0 0.026 2.0 0.040

0.6 2 2.7 0.713 2.5 0.204 2.5 0.015 2.5 0.006 2.5 0.006 2.5 0.039 2.5 0.050

0.7 3 3.5 0.459 3.2 0.260 3.2 0.041 3.3 0.017 3.3 0.017 3.2 0.059 3.3 0.065

0.8 5 4.6 0.404 4.3 0.345 4.3 0.087 4.4 0.037 4.4 0.037 4.3 0.093 4.4 0.087

0.9 8 6.8 1.184 6.3 0.511 6.5 0.197 6.6 0.084 6.7 0.085 6.5 0.170 6.6 0.131

MAE 0.48082 0.20445 0.04475 0.01889 0.01903 0.04641 0.05113

Note: MAE, mean absolute error, obtained from three important log-normal models given as follows: (A) Scale = Ln (mean), 0.771; Shape = SD Ln(x) 0.896; 
MAE = 0.481; (B) Scale = Ln (median), 0.693; Shape = SD Ln(x) 0.896; MAE = 0.204; (C) Scale = Ln (median), 0.693; Shape = 0.930; MAE = 0.019.
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Box 17.2 LogAriThmic scALe

The human ear responds to sound in a logarithmic scale; the response has an 
amazing dynamic range, from extremely small to extremely large sound. Such 
a range is possible if the scale were logarithmic. If the sound level increases 
tenfold, the response increases one notch. Sound level is measured in decibels, 
logarithms to the base 10 of sound intensities.
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Figure 17.6 Optimal log-normal (a) PDF and (b) CDF of design complexity.
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Application of the Log-Normal Model 1
If an engineering limit on design complexity is set at 6, then we can find the 
probability of meeting this limit (certainty) from the CDF. In the CDF shown 
in Figure 17.6, a vertical line runs from x = 6 to meet the CDF; from the point 
of intersection, a horizontal line is drawn, which meets the y axis at approxi-
mately 0.9.

The exact value is obtained from the CDF as follows:
Probability that design complexity is <6:

= CDF (x = 6)
= LOGNORM.DIST (6,0.693,0.930,1)
= 0.8813

The above number represents the certainty of meeting the design complexity 
goal of 6.

We can extend the analysis to calculate the risk of design complexity exceeding 
the limit of 6.

The risk of design complexity exceeding the limit of 6 is as follows:

= 1 − CDF (x = 6)
= 1 − LOGNORM.DIST (6,0.693,0.930,1)
= 1 − 0.8813
= 0.1187

Calculating certainty and risk is a most useful application of log-normal 
distribution.

Earthquakes are measured in a logarithmic scale. If the power unleashed is 
10 times larger in the Richter scale (invented by Charles F. Richter in 1934) 
for measuring earthquake strength, the signal jumps one point. The release 
of a million-fold strong outburst appears as a mere six-point movement in 
the Richter scale. At the same time, the Richter scale is sensitive enough to 
register very small seismic activities, too small to be detected by humans. The 
range of the Richter scale is enormous.

Orders of magnitude are seen through logarithms. The conversion from 
logarithms to real scale is achieved by taking antilogarithms. A trained 
human mind quickly does a conversion by applying rules and examples. In 
this context, the log-normal distribution is a return to a natural way of deal-
ing with huge magnitudes. One just has to get used to it.
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Application of the Log-Normal Model 2
The next application refers to developing a control chart for design complexity. We 
cannot apply the Shewhart Control Chart with the mean μ as the central line and 
μ ± 3 σ as the control limits. Shewhart chart assumes a normal distribution, and its 
design complexity is log-normal. Shewhart limits are symmetrical design complex-
ity limits that cannot be symmetrical. We have established design complexity as a 
skewed distribution. Besides, we do not need a lower control limit for complexity. 
All we need is an upper control limit.

Shewhart limits include 99.73% of process inside the limits and keep only 
0.27% as outliers. Shewhart limits apply better for manufacturing processes. 
For creative processes such as software design, the authors suggest a different 
rule for control limits. The proposed limits include 95% (0.95) of processes 
inside the limits and mark 5% of processes as outliers. This upper control limit 
is obtained from the CDF shown in Figure 17.6 as an x value corresponding to 
a y value of 0.95.

Upper control limit for y = 0.95
= LOGNORMINV (y, scale, shape)
= LOGNORMINV (0.95,0.693,0.93)
= 9.2324

This sets the statistical limit for upper control of design complexity.

Features Addition in Software Enhancement
In Chapter 13, we treated requirement volatility to a Gaussian with a standard 
deviation of approximately 3.3% and a mean value of 4%, for full life cycle devel-
opment projects with stringent business control on requirements. In large enhance-
ment projects, the Gaussian model does not hold; here changes are far more 
common. Features added after requirements are “finalized” can touch high values, 
as high as 50%. The growth of features is log-normal. The pattern of growth varies. 
Three examples, A, B, and C, are presented in Figure 17.7.

Model C has the largest scale of 20 and the fattest tail. Model B has a scale of 10 
and a medium-sized tail. Model A has a scale of 4 and has an early finishing point. 
All three models represent the customer’s processes over which the maintenance 
team has no direct control. In such cases, statistical management reduces to empiri-
cal understanding of the process with data and creating the appropriate PDFs. To 
recognize if variation is Gaussian or log-normal is the first step; this is enabled by 
histograms. Fitting the appropriate PDF by parameter extraction is the next step. 
Applying the model to solve problems and take decisions is the goal.
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A Log-Normal PDF for Change Requests
The process of “change requests” in a support project is a mixture; it is composed 
of assorted tasks, including bug fix, feature addition, and patchwork. A PDF of 
change requests is modeled with the following parameters:

Shape σ = 1
Scale β = 7

The scale factor is set at the median of data. The shape factor is chosen by an 
iterative search for best fit. The log-normal PDF for change requests is plotted in 
Figure 17.8.

However, this is merely curve fitting. This model does not benefit from 
the ideological context such as that present in the model for feature addition 
or design complexity. Despite this limitation, the model can still be used for 
forecasting.

A better approach, beyond the scope of this book, would be to create a mixture 
model, combining inherent probabilistic characteristics of the components.

Bug fixes may be denoted by Weibull distribution, patchwork by beta dis-
tribution and feature addition by log-normal distribution.

Mathematically combining the three would require a series of approxi-
mations and special analytical treatments, which would require a specialist’s 
knowledge. However, such a combination can also be achieved digitally by 
simulation.
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Figure 17.7 Log-normal PDF of software enhancements.
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From Pareto to Log-Normal
Pareto distribution is a power law and is known for its fat tail (see Chapter 16 for 
more details). Log-normal is a growth model and also has a limited-sized tail. One can 
switch to Pareto if bigger tails are needed. However, the similarity does not end in tails.

When examining income distribution data, Aitchison and 
Brown (1954) observe that for lower incomes a lognormal dis-
tribution appears a better fit, while for higher incomes a power 
law distribution appears better [4].

Power law distributions and log-normal distributions are quite natural models 
and can be generated intuitively. They are also intrinsically connected.

Power law and log-normal both have been applied to file size distributions in 
the Internet; they fare equally well. From a pragmatic point of view, it might be 
reasonable to use whichever distribution makes it easier to obtain results.

Some Properties of Log-Normal Distribution
Some properties of log-normal distribution can come in handy while analyzing 
data. The following median-related formulas are given in NIST:

 Mean Median= e
σ2

2  (17.5)
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Figure 17.8 Log-normal PDF of change requests.

© 2015 by Taylor & Francis Group, LLC

  



280 ◾ Simple Statistical Methods for Software Engineering

 Variance Median= −( )2 2 2
1e eσ σ  (17.6)

The central tendencies are defined in terms of parameters as follows:

 Mean =
+





e

β σ2

2  (17.7)

 Median = eβ (17.8)

 Mode = −( )e β σ2
 (17.9)

We can see from the previous equations that the mean is always larger than the 
median. Similarly, the mode is the smallest.

When β = 1, the log-normal distribution is called standard log-normal distri-
bution.

Case Study—Analysis of Failure Interval
Log-normal distribution is widely used in reliability studies. NIST presents several 
models for reliability analysis, and log-normal is one of them. The choice depends 
on interpretation of the famous bathtub curve. Initially, mechanical systems show 
infant mortality with a failure rate that increases till the system stabilizes. Then 
failure rate decreases and reaches a flat low level. When the failure rate is constant, 
the exponential distribution is enough.

When the failure rate is changing, log-normal or Weibull or other models capa-
ble of handling change are required.

Reliability Analysis Centre [5] illustrates an example of log-normal distribution 
with a scale of 10.3 and a shape of 1.0196 to represent infant mortality and speedy 
recovery, although Weibull is their favorite model for reliability analysis.

In mechanical systems reliability decreases with time whereas in software 
products reliability increases with usage, bug discovery and bug fixing.

Failure mechanisms propagate and grow in physical systems; in software, they 
are located, confined, and eliminated. We need to bear this in mind while working 
on developing a probabilistic model for software reliability.
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Failure models also use theory of product and ensure relevance. For exam-
ple, Varde [6] developed a log-normal model based on physics of failure involving 
electromigration. Varde, ardently supporting physics based reasoning and appar-
ently reluctant to use of mindless statistical models, observed,

Nevertheless, statistics still forms the part of physics-of-failure 
approach. This is because prediction of time to failure is still 
modeled employing probability distribution. Traditionally log-
normal failure distribution has been used to estimate failure 
time due to electromigration related failure.

Varde used median time to fail as the scale parameter and standard deviation as 
the shape parameter, exactly as in NIST guidelines.

We have studied failure times of software after release, the data made avail-
able by the Cyber Security and Information Systems Information Analysis Center 
CSIAC [7]. CSIAC is a Department of Defense (DoD) Information Analysis 
Center (IAC) sponsored by the Defense Technical Information Center (DTIC). The 
CSIAC is a consolidation of three predecessor IACs: the Data and Analysis Center 
for Software (DACS), the Information Assurance Technology IAC (IATAC) and 
the Modeling and Simulation IAC (MSIAC), with the addition of the Knowledge 
Management and Information Sharing technical area.

The software reliability data set has 111 records of failure intervals. With 
time, the failure intervals grow, increasing software reliability. We consider 
time between failures (TBF) as the key indicator of a complex process involving 
usage and maintenance. Growth of TBF is expected with a smooth log-normal 
with a clear peak and a distinct tail (see Box 17.3 for an analogy for software 
TBF).

However, the histogram of TBF, shown in Figure 17.9, reveals two peaks, 
belonging to two separate clusters, suggesting two growth processes. It could be 
that the second cluster could arise from a second release; it could also arise from a 
new pattern of usage recently introduced.

We have fitted two log-normal curves to the clusters. The first has a scale of 
15.5, Ln(median), and a shape of 0.8 (standard deviation of Ln(x)). The second has 
a scale of 16.4 and a shape of 0.1. The graphs are shown in Figure 17.10. This is a 
composite model.

The second log-normal curve in Figure 17.10 resembles Gaussian, but still we 
prefer the log-normal equation because it is median based.
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Review Questions
 1. Compare normal distribution with log-normal distribution.
 2. Provide an example of the logarithmic scale used in practice.
 3. What is the formula for the mean of log-normal distribution with shape σ 

and scale β?
 4. What is the formula for the variance of log-normal distribution with shape σ 

and scale β?
 5. Who invented the log-normal distribution?

Box 17.3 AnALogy—AcceLerATed LiFe TesT

If we record time served by computer hardware before the first failure occurs, 
what we obtain is life data, and the distribution is called life distribution. Life 
data manifest log-normal distribution, both for machines and for humans. 
Log-normal distribution for machine failure is used to measure and improve 
reliability. Log-normal distribution for human life is used to calculate life 
insurance premiums. In both the cases, we estimate or “measure” life proper-
ties using log-normal distribution.

In accelerated life tests of systems, extreme conditions are created, mim-
icking real-world scenarios, to stimulate failure events much earlier than nor-
mal. Moreover, the tests are stopped either after a certain time or after a 
certain number of failures occur. Tests are neither conducted indefinitely nor 
till all failures occur. Life data thus obtained are truncated or “censored.” The 
picture obtained is partial, but the full picture can be constructed by statisti-
cal analysis. One such attempt is to fit log-normal distribution to censored 
life data and see even the unseen part of the full story of failure probabilities. 
Accelerated life tests are faster and cheaper.

Dube et al. [8] discussed the problem of applying log-normal distribu-
tion to censored life data, particularly parameter extraction. They analyze car 
failure data from Lawless [9] for this purpose. The Lawless data “shows the 
number of thousand miles at which different locomotive controls failed in a 
life test involving 96 controls. The test was terminated after 135,000 miles, 
by which time 37 failures had occurred.”

Dube et al. took up and answered the question whether the data fit the log-
normal distribution or not. They showed that “the data fits reasonably well.”

Analogically, software is stressed by usage testing (e.g., user acceptance 
testing), triggering failure events. A record of failure times is called life data. 
Tests are not indefinitely conducted but terminated at some point of time, 
either after a certain number of defects have been found or after the lapse of 
certain time, depending on estimation and strategy of testing. Life data thus 
obtained can be fitted to log-normal.
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Exercises
 1. Download reliability data from CSIAC website [7]. Select postrelease failure 

events for any one project. Draw a histogram of the failure interval data. Fit 
the failure interval data to a log-normal distribution.

 2. Use the above model to predict the current reliability related to the software 
project data you have selected.

References
 1. Available at http://nasa-softwaredefectdatasets.wikispaces.com.
 2. E. Limpert, W. A. Stahel and M. Abbt, Log-normal distributions across the sciences: 

Keys and clues, BioScience, 51(5), 341–352, 2001.
 3. NIST/SEMATECH Engineering Statistics Handbook. The National Institute of 

Standards and Technology (NIST) is an agency of the U.S. Department of Commerce. 
Available at http://www.nist.gov/itl/sed/gsg/handbook_project.cfm.

 4. J. Aitchison and J. A. C. Brown, On criteria for descriptions of income distribution, 
Metroeconomica, 6, 88–107, 1954.

 5. Journal of the Reliability Analysis Center, Volume 13, Second Quarter, RAC, New York, 
2005.

 6. P. V. Varde, Role of statistical vis-à-vis physics of failure methods in reliability engineer-
ing, Journal of Reliability and Statistical Studies, 2(1), 41–51, 2009.

 7. Available at https://sw.thecsiac.com/databases/sled/swrelg.php.
 8. S. Dube, B. Pradhan and D. Kundu, Parameter estimation of the hybrid censored 

log-normal distribution, Journal of Statistical Computation and Simulation, 81(3), 275–
287, 2011.

 9. J. F. Lawless, Statistical Models and Methods for Lifetime Data, Wiley, New York, 2003.

© 2015 by Taylor & Francis Group, LLC

  

http://nasa-softwaredefectdatasets.wikispaces.com
https://sw.thecsiac.com
http://www.nist.gov
http://www.crcnetbase.com/action/showLinks?crossref=10.1111%2Fj.1467-999X.1954.tb00492.x
http://www.crcnetbase.com/action/showLinks?crossref=10.1080%2F00949650903292650
http://www.crcnetbase.com/action/showLinks?crossref=10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2


285

Chapter 18

Gamma Distribution: 
Making Use of 
Minimal Data

Gamma distribution is a more general version of the exponential distribution. It 
provides all the advantages of the exponential distribution: it can model arrival 
times, and it has a fat tail and can characterize failure data. Gamma distribution 
has the extra advantage: it provides us a prominent mode and gives us the freedom 
to set the mode wherever we want by adjusting the shape factor. Gamma distri-
bution retains the fat tail of the exponential distribution. This is not surprising 
because gamma distribution can be proven as a sum of exponential distributions.

The gamma distribution has two parameters, shape parameter α and scale 
parameter β. The probability density function (PDF) is given by the following:

 G x x e
x

( )
( )

,= >−
−1 01

β α
α βα

α β

Γ
 (18.1)

where α is the shape parameter, β is the scale parameter, and Γ(α) = (α – 1)! (gamma 
function).

In the previously mentioned PDF, the symbol Γ(α) stands for the gamma func-
tion. The PDF is plotted in Figure 18.1 to show how the shape of the distribution 
changes when we change the value of shape parameter from 1.2 to 2 and 3 in the 
plots. The scale parameter is kept constant at 10.
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The plots have been made using the Excel function GAMMADIST. This func-
tion returns both the PDF and the Cumulative Distribution Function CDF.

The Excel syntax is defined as follows:

 PDF(x) = GAMMA.DIST (x, shape parameter, scale parameter, 0) 

 CDF(x) = GAMMA.DIST (x, shape parameter, scale parameter, 1) 

Box 18.1 Similarity Between Gamma and 
loG-normal: makinG the ChoiCe

Gamma and log-normal distributions look alike.
Kundu and Manglick [1] compared gamma and log-normal distribution 

and found them remarkably similar. They have used Lawless [2] data of bear-
ing failure for this study. Let us develop some ideas around this analysis.

For Lawless data, we obtain gamma shape = 3.7138 and scale = 19.4489, 
relating to Equation 18.1. Using Excel GAMMA.DIST (x, shape, scale, 0), 
the gamma curve can be realized.

For the same data, we can obtain logarithms and find log-normal parame-
ters, mean of natural logarithms, and standard deviation of natural logarithms 
of data. The log-normal curve can be realized by using Excel LOGNORM.
DIST (x, mean of Ln, standard deviation of Ln, o).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100

Shape = 1.2

Shape = 2

Shape = 3

1

˜ ° ˛(°)
x°–1 e

x
˜

–

Figure 18.1 Gamma distribution.

© 2015 by Taylor & Francis Group, LLC

  



Gamma Distribution ◾ 287

Both the curves are shown in Figure 18.2.
The curves look similar. Kundu and Manglick have used the maximum 

likelihood estimation (MLE) technique to obtain parameters, and they obtain 
slightly different values but nearly identical distributions. (The Kolmogorov–
Smirnov (K-S) distance between the fitted empirical distribution function 
and the fitted log-normal distribution function is 0.09, and the K-S distance 
between the fitted empirical distribution function and the fitted gamma dis-
tribution function is 0.12.)

These distributions are close to one another, and the log-normal is nearer 
to empirical data based on the K-S distance analysis.

The similarity is superficial. There is a difference in the approach and 
assumptions in constructing both the distributions.

Hence, we face the question, which distribution should be used? Are there 
preferences?

The gamma distribution may be used while taking shape based deci-
sions by expert judgment of shapes and mean values.

Log-normal distribution may be used for more rigorous numeri-
cal treatment based on parameter extraction from data alone.

Gamma distribution has a definite advantage: it can quickly convert visual 
judgment to a mathematical model.
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Figure 18.2 Comparison of gamma and log-normal distributions of bear-
ing life.
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Gamma Curves for Clarification Time Data
We can model clarification time data with gamma distribution. In software main-
tenance, clarification time depends mostly on the customer and is not under the 
direct influence of the project team. Let us consider data with descriptive statistics 
shown in Data 18.1.

Data 18.1 shows that the mean is 36.1622, the mode is 11, and the standard 
deviation is 39.3173.

We wish to mention two properties of gamma distribution,

 
Mean scale shape= ×

= αβ
 (18.2)

 Variance = αβ2 (18.3)

To select the shape parameter, let us consult the histogram of clarification time 
data, as shown in Figure 18.3.

The shape of the histogram is closer to the first curve in Figure 18.1, with a 
shape factor of 1.2.

Substituting the values of mean (36.1622) and shape (1.2) in Equation 18.1, we 
obtain the value of scale as follows:

 
Scale Mean

Shape
= = =36 1622

1 2
30 1352.

.
.

 

Data 18.1 Descriptive 
Statistics of Clarification Time 
Data

Clarification Days
Mean                                          36.16227
Standard error                            4.451811
Median                                      21.30242
Mode                                          11
Standard deviation                   39.31733
Sample variance                    1545.852
Kurtosis                                    2.071553
Skewness                                     1.533407
Range                                         171.3028
Minimum                                  −7.30285
Maximum                                164
Sum                                       2820.657
Count                                          78
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A gamma distribution is fitted to the data with a shape of 1.2 and a scale of 30.1352. 
A plot of the fitted gamma PDF is shown in Figure 18.4.

This is the model for clarification time in software maintenance. From the 
model, one can make several judgments, including the following:

The PDF ends practically at 150. Therefore, the data cluster beyond 150 repre-
sents extreme values or outliers. A root cause analysis must be conducted for this 
excessive delay, and corrective and preventive action must be initiated.
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Figure 18.4 Gamma distribution of clarification time with a shape of 1.2 and a 
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If there is a tolerance limit for clarification time set at 80 days by the main-
tenance team, then we can mark a line at x = 80 at the PDF. This line defines a 
tail, whose area represents risk. This line is marked in Figure 18.4. This is a fat tail 
indeed, indicating high risk. We have chosen gamma distribution to produce this 
fat tail and capture the hidden risk loud and clear.

To judge risk, we better plot the cumulative gamma distribution for the same 
scale and shape parameters. This CDF is shown in Figure 18.5.

The line from the tolerance limit of 80 days meets the CDF, and from the 
meeting point, a horizontal line is drawn, which meets the y axis at around 0.9. 
The y axis represents cumulative probability, and 0.9 means that there is a 90% 
chance of clarification time being within the limit. The risk of exceeding the limit 
is therefore 10%.

Shifting the Gamma PDF
Assume that the customer specifies a minimum time they need to resolve this prob-
lem, given the fact that the related managers are constantly traveling and com-
munication with them slows down. Assume further that the customer specified a 
minimum of 4 days. Building this minimum time into the gamma function means 
“shifting of the curve” to the right by 4 units of time, as shown in Figure 18.4. That 
means that the location of the curve is shifting from x = 0 to x = 4. This minimum 
defines the location parameter μ.
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Figure 18.5 Gamma cumulative distribution of clarification time with a shape of 
1.2 and a scale of 30.1352.
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With the inclusion of a location parameter μ, the gamma PDF equation experi-
ences a change. The change is realized by substituting in Equation 18.1 (x − μ) in 
the place of x. After the inclusion of μ, the new equation of the shifted gamma PDF 
is given as follows:

 G x x e x
x

( )
( )

( ) ;= − > >−
− −

1 01

β α
µ µ α βα

α
µ

β

Γ
,  (18.4)

Generating Clarification Time Scenarios with 
Gamma PDF Built from Minimal Data
The three-parameter gamma function in Equation 18.4 retains the properties of the 
two-parameter version. Equations 18.2 and 18.3 are still relevant.

Let us try to use the gamma PDF defined in Equation 18.4 to model clarifica-
tion time by the customer for three possible scenarios in a maintenance project. 

Box 18.2 inventor of Gamma diStriBution

Leonhard Euler (1707–1783), one of the greatest mathematicians of all time, 
is credited with the discovery of gamma function. Some say his teacher, 
Bernoulli, another mathematician, invented it first.

Euler was born in Switzerland, in the town of Basel. At 13 years of age, 
Euler was already attending lectures at the local university. In 1723, he gained 
his master’s degree, with a dissertation comparing the natural philosophy sys-
tems of Newton and Descartes. He wrote two articles on reverse trajectory, 
which were highly valued by his teacher Bernoulli.

At this time, a new center of science had appeared in Europe—the 
Petersburg Academy of Sciences. As Russia had few scientists of its own, 
many foreigners were invited to work at this center, among them Euler. On 
May 24, 1727, Euler arrived in Petersburg.

Euler took a very active role in the observation of the movement of Venus 
across the face of the sun, although at this time he was nearly blind. He had 
already lost one eye in the course of an experiment on light diffraction in 
1738, and an eye disease and botched operation in 1771 led to an almost total 
loss of vision.

However, this did not stop Euler’s creative output. Until his death in 1783, 
the academy was presented with more than 500 of his works. The academy 
continued to publish them for another half century after the death of the 
great scientist. To this day, his theories are studied and taught, and his incred-
ibly diverse works make him one of the founding fathers of modern science.
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Our knowledge of existing pattern and the gamma parameters we have derived 
from existing data are very relevant clues for this model.

Let us begin with an assurance given by the customer to reduce the mean clari-
fication time from the current 36.16 days to 20 days. The customer has already 
declared that he needs a minimum of 4 days for clarification. These two numbers, 
4 and 20, represent the two agreed performance levels as declared by the customer, 
the minimum and the mean. These are really minimal data gathered to characterize 
clarification time. Gamma distribution will do the rest and fit behavioral details 
into the model based on known patterns.

Where data are minimal, gamma distribution fills the gap.

The minimum value 4 represents the location parameter, a fixed value in the models 
we are going to build.

We construct three types of customer responses defined by gamma with three 
values for shape factors: 1.2, 2.0, and 3.0. This selection is intuitive and is based on 
familiarity and knowledge of maintenance teams of customer behavior as well as of 
gamma distribution shapes.

With the help of Equation 18.2, we can estimate the scale parameter as follows:

Corresponding to the shape factor 1.2, the scale factor is = mean/1.2 = 20/1.2 = 16.67.
Corresponding to the shape factor 2.0, the scale factor is = mean/2.0 = 20/2.0 = 10.
Corresponding to the shape factor 3.0, the scale factor is = mean/3.0 = 20/3.0 = 6.67.

Agreeing to the two customer suggestions, now the maintenance team has to pre-
dict expected variations in customer response by applying the gamma PDF.

Three sets of gamma parameters, the scale and the shape factors, set the theater 
for simulation. The values of μ, α, and β for the three scenarios are as follows:

Scenario I gamma [4, 1.2, 16.67]
Scenario II gamma [4, 2.0, 10.00]
Scenario III gamma [4, 3.0, 6.67]

The three gamma distributions, depicting the three scenarios, are plotted in 
Figure 18.6.

Modes
It may be seen that each scenario has a distinctly unique mode. The modes are 7, 14, 
and 17 days. This means that according to Scenario I, the customer is most likely 
to resolve clarification queries in 7 days. According to Scenario II, the most likely 
clarification time is 14 days. According to Scenario III, the most likely clarification 
time is 17 days. These modes represent the most visible customer performance. The 
modes represent performance highlights.
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Tails
In Figure 18.6, a tolerance limit is specified as 50 days. This limit marks the end 
of core performance and the beginning of the tail area. Area beyond the tolerance 
limit is the risk associated with the chosen gamma scenario.

Risks (%) in the three scenarios are 8.68, 5.40, and 3.03 from the tail areas of 
Figure 18.6. These risks have been computed by dividing the tail area by the total 
area.

Box 18.3 Gamma modelinG of rainfall

Gamma distribution is often used in rainfall modeling.
In water resource projects, it is necessary to collect all the information 

related to the region and then to analyze the collected data. A frequency analy-
sis of the rainfall data is the most commonly applied method. The hydrologist 
searches for a mathematical equation characterizing the available data in hand, 
to fill the gaps in the observations and to extrapolate it to a longer period.

Typically, two-parameter gamma distributions are fitted to rainfall data. 
The shape and scale parameters of the gamma distribution, α and β, are deter-
mined from the daily rainfall data of the gauging station.

Minimum time
required by
customer
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by customer

Loc = 4 shape = 1.2 scale = 16.67
Loc = 4 shape = 2 scale = 10
Loc = 4 shape = 3 scale = 6.67
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0
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0.01
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Figure 18.6 Gamma scenarios of clarification time.
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Scenario Analysis
The gamma model enables us to evaluate three scenarios, three kinds of responses, 
from the customer. The first response has a shorter mode of 7 days but a higher risk 
of 8.68%. This could happen if the customer is requested to provide earlier response 
as a top priority.

The second response has a mode of 14 days but a lower risk of 5.4%. Judging 
by the apparent central tendency, mode, the customer seems to have slowed down, 
but the overall risk has reduced in a counterintuitive way.

In the third scenario, perhaps the customer is in his element, the mode is 
delayed further and reached a value of 17 days while the overall risk has come down 
further to a low value of 3.03%.

The tricky balance between demonstrated mode and real risk is a lesson we 
learn from this study.

Like in the case of customer clarification time in maintenance projects, gamma 
models can be built for internal clarification time taken by developers to respond to 
queries from testers in during software development. Gamma models can also be 
built for requirements elicitation time in software development. In all these cases, 
the gamma lesson can be applied:

Early closure is a myth; closure needs a natural time for understanding, 
analysis, training, and response.

Different techniques are used in estimating the parameters: the graphical 
method, the least squares method, the method of moments, and the maxi-
mum likelihood method.

In the analysis of 30 years of rainfall data, it is seen that α varies between 
0.341 and 0.569 and β varies between 6.892 and 19.94 in a year. These 
gamma distribution parameters summarize the pattern of rain fall (based on 
Aksoy [3]).

Box 18.4 PaCkinG hiStory into a 
Gamma Pdf with minimal data

Rainfall data can be huge, especially when one wants to study history. Presenting 
descriptive statistics such as maximum, minimum, mean, median, and variance 
is still not adequate. Climatologists prefer to fit mathematical models such as 
gamma distribution to represent the overall pattern. Descriptive statistics and 
more are inherent in the equation. All that is required is just two parameters— 
the shape and scale parameters—for a season and location.
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NIST Formula for Gamma Parameter Extraction
Instead of the approach we used in plotting Figure 18.4 where we had used visual 
judgment of histogram of data to decide on shape and the method of moment 
formula given in Equation 18.2, to calculate scale, we can use the more rigorous 
NIST [5] formulas presented in Equations 18.5 and 18.6 for parameter extraction:

 Shape α =






x
s

2

 (18.5)

 Scale β = s
x
2

 (18.6)

where x  is the mean and s is the standard deviation.

Applying Gamma Distribution to Software 
Reliability Growth Modeling
Gamma distribution has been used in reliability studies. The gamma cumulative dis-
tribution function (CDF) is an S curve and can represent cumulative defects discov-
ered in software. An example of CDF, although on a different metric, may be found 
in Figure 18.5. A CDF plotted with cumulative defects is known as the software 
reliability growth curve, a subject treated in detail in Chapter 19 where the Weibull 
distribution is used and in Chapter 21 where the Gompertz distribution is used.

Although the Weibull distribution is popularly used to fit failure data, the 
gamma distribution is more suited in certain cases. In a research study, Sonia 
Meskini [6] applies gamma distribution to construct a software reliability growth 
model for smart phones. Sonia observes,

Working with a PDF such as gamma has further advantages. First, gaps in 
data are filled by the equation. Second, one can extrapolate mathematically 
and see beyond boundaries. Third, strategic planners can estimate risk.

There are several options available while choosing a PDF for rainfall data. 
Statistical techniques include the compound Poisson–exponential distribu-
tion; the log, square root, and cube root normal distributions; the gamma 
distribution; various normalizing transforms; the kappa distribution, the 
Weibull distribution, and the Box–Cox transformation.

However, the gamma distribution is frequently used to represent precipita-
tion because it provides a flexible representation of a variety of distribution 
shapes while using only two parameters: shape and scale (based on Husak [4]).
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In Skype Version I the Weibull distribution is the closest to the actual 
behavior curve of the application, followed by the gamma distribution. 
In Skype Version 2 it is to be noted that although the S-shaped distri-
bution is a particular case of the gamma distribution, it fits the data 
slightly better. For Skype Version 3 it can be concluded that the gamma 
distribution is the closest to the actual behavior curve of the application 
failure data, followed by the Rayleigh distribution.

In her conclusion Sonia mentions,

We collected data from all over the world and divided them into differ-
ent versions, and grouped them into different time periods (days, weeks, 
and months). Each application version failure data, when plotted in 
time periods, shows the same pattern: an early ‘burst of failures,’ likely 
due to the most evident defects, followed by a steep decrease in failure 
rate. We first tried several non-linear distributions to better fit the fail-
ure data, and after numerous experiments, we found that the observed 
behavior is better modeled by the Weibull or gamma distributions.

Sonia finally states that, in her observation,

It can be noted that the gamma distribution, along with its particular 
S-shaped case, model more frequently the failure data.

In essence, gamma distribution is attractive because of its simplic-
ity, to perform as on Software reliability growth model. Gamma fits 
elegantly to processes that are not in our direct control but dependent 
on external factors like customer. With less data points we can do simu-
lation using gamma distribution.

Box 18.5 modelinG earthquake damaGe 
with Gamma diStriBution

The application of the gamma distribution to failure data has been extended 
to model damages produced by earthquakes. Repeated overloading of struc-
tures due to earthquake shocks cumulates damage on the hit structure. The 
parameter “residual ductility to collapse” is used to measure this damage. 
The cumulated level of deterioration can be modeled by gamma distribution. 
The occurrence of earthquakes is a Poisson process (see Chapter 12, Law of 
Rare Events), but cumulative wear is a gamma process. Structure reliability is 
obtained by estimating the probability of cumulated damage exceeding the 
threshold (based on Iervolino and Chioccarelli [7]).
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Review Questions
 1. What is the relationship that connects the scale and shape parameters of 

gamma distribution?
 2. How will you estimate the scale parameter, if you can guess the shape param-

eter and have the value of mean of all observations?
 3. How will you estimate the scale parameter directly from data?
 4. Mention three applications of the gamma distribution.
 5. What is the difference between a Poisson process and a gamma process?

Exercises
 1. Plot a gamma curve using Excel function GAMMA.DIST for a shape of 3 

and a scale of 10 units.
 2. Plot a software reliability growth model using gamma distribution with a 

scale of 30 days and a shape of 2.2.
 3. For the SGRM you have drawn in Exercise 2, calculate the fraction of defects 

remaining in the software on day 60. (Clue: use Excel function GAMMA.
INV to calculate the result.)

 4. The mean value of a certain data set is 32.2. If the shape factor is estimated 
as 3 by seeing the histogram of data, what would be the scale factor of the 
gamma distribution of the data?

 5. If the mean of data = 12 and the standard deviation is 2, estimate the gamma 
shape and scale parameters to obtain a gamma model of data.
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Chapter 19

Weibull Distribution: 
A Tool for Engineers

The genesis of the Weibull distribution goes back to the Rayleigh distribution. The 
Rayleigh distribution was invented in 1905 (see Box 19.1). The Weibull distribu-
tion was invented much later by Waloddi Weibull in Sweden in 1939 (see a brief 
biographical note in Box 19.2). Since the discovery of the Weibull distribution, it 
has cast great influence in engineering, especially in reliability analysis. The scope 
of its application has widened to several areas of physics and management (see Box 
19.3 for a few instances).

Box 19.1 Rayleigh Flight

It so happens that the Rayleigh distribution, invented in 1905, is a special 
case of the Weibull distribution invented in 1939. The Weibull distribution 
type II with location constant 0 and shape factor 2 is the Rayleigh curve. 
Both are skewed to the right.

The discovery follows research on the historic “random walk” problem 
posed by Pearson.

Pearson posed his problem in Nature (July 27, 1905).
A man starts from a point 0 and walks l yards in a straight line; he then 

turns through any angle whatever and walks another l yards in a second 
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IBM’s Peter Norden (see Box 19.4) favored the Weibull equation over the logis-
tic curve to model software development project cost. Lawrence Putnam promoted 
the Weibull curve with shape factor = 2 as a Rayleigh distribution. Putnam used 
this in his estimation model SLIM to estimate cost and defect. He went further to 
call this distribution the software equation.

The Weibull distribution is by far the world’s most popular 
statistical model for life data. It is also used in many other 

straight line. He repeats this process n times. I require the probability that 
after n of these stretches he is at a distance between r and r + δr from his 
starting point.

Rayleigh pointed out that, for large values of n, the answer given by 
Rayleigh was

 

2
2

2

2

nl
e r r

r

nl
−

δ
 (19.1)

This actually has the shape of a normal distribution, centered at the origin. 
In this equation Rayleigh assumed that the drunkard walks in one dimen-
sion. The model suggests that the drunkard will return to the origin after a 
random walk. If we allow two additional dimensions and solve the problem, 
a new phenomenon called Rayleigh Flight occurs. The distribution now is 
Rayleigh. The drunkard will not return to the origin.

Rayleigh missed Smoluchowski’s 1906 paper on the motion of colloidal 
particles, in which he introduces the random flight idea.

A one-dimensional walk is Gaussian. A multidimensional walk is Rayleigh. 
Brownian motion in one dimension is Gaussian. The vector sum of Brownian 
movements in several dimensions is Rayleigh. Simple processes follow 
Gaussian. A combination of several simple processes is Rayleigh.

Software development is due to the combined work of several people and 
several processes. Even if the individual processes are Gaussian, the com-
bined result can be the skewed Rayleigh. This being the essential case, can we 
expect team results to be normally distributed? Relentless pursuit of normal-
ity in software engineering data is futile.
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applications, such as weather forecasting and fitting data of all 
kinds. Among all statistical techniques it may be employed for 
engineering analysis with smaller sample sizes than any other 
method.

Robert B. Abernethy

Weibull Curves
We will start with Weibull plots with three standard values for the shape param-
eter: 1, 2, and 3. These three plots are shown in Figure 19.1. We have chosen a scale 
factor of 20 and have kept it the same for the three plots. The shapes of these three 
curves resemble the shapes of the exponential distribution, the Rayleigh distribu-
tion, and the normal distribution, respectively. The three figures represent a family 
of curves known as the Weibull family.

The curves shown are possible models for service time in a software mainte-
nance project with a median value of 20 days and hypothetically equating the scale 
parameter to the median value.

The Weibull equation, which has been used in creating the curves, is given as 
follows:

 W x
x

e
x

( ) ,=






>
− −





α

β β
α β

α
β

α
1

0 (19.2)

where α is the shape parameter and β is the scale parameter.
The value of shape factor is not limited to the three integers shown in Figure 

19.1. It can be any positive number and can be used to generate an infinite number 
of the Weibull curves.

Parameter Extraction
Rules of Thumb
The shape factor can be judged by looking at data histograms. To start the iteration 
of curve fitting, it is good to begin with the nearest of the three shapes 1, 2, and 3 
and then converge using the least square error method. Scale is substantially influ-
enced by median, as shown in the following rule of thumb:

 Scale = C1 median 

 C1 = 0.09 shape factor + 0.636 
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Figure 19.1 Family of Weibull curves.
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It is a good idea to fit Weibull by equating the median of data to the median 
value of the distribution. Weibull, being a skewed curve, is best represented by 
median. This formula is simple.

Moments Method
The scale factor can be estimated by the method of moments. The mean value of the 
distribution is equated to the mean value of data. The variance of the distribution 
is equated to the variance of data.

Equation to the mean of the distribution is given as follows:

 µ β
α

= +






Γ 1 1  (19.3)

Equation to the variance of the distribution is given as follows:

 σ β
α α
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− +














Γ Γ  (19.4)

MLE
A commonly accepted approach to the general problem of parameter estimation is 
based on the principle of maximum likelihood estimation (MLE). Moments-based 
estimators have been popular because of their ease of calculation, but MLEs enjoy 
more properties desirable for estimators. For a first-order judgment, the moments-
based approach is good enough.

Parameters for Machine Availability Modeling
Nurmi and Brevik [1] studied the problem of machine availability in the enterprise area 
and wide area distributed computing settings using Weibull. In one of the models, they 
fit data to a Weibull with a shape factor of 0.49 and a scale factor of 2403. It may be 
noted that the shape factor is less than 1, making it sharper than the exponential func-
tion. The scale value is large on par with the median machine availability value.

Box 19.2 WeiBull, the ScientiSt

Ernst Hjalmar Waloddi Weibull (1887–1979) was a Swedish engineer, scien-
tist, and mathematician. In 1914, while on expeditions to the Mediterranean, 
the Caribbean, and the Pacific Ocean on the research ship Albatross, Weibull 
wrote his first paper on the propagation of explosive waves. He developed the 
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Standard Weibull Curve
If the scale parameter is 1 and the location parameter is 0, the Weibull curve 
assumes a standard form shown below, which is completely controlled by the shape 
parameter as follows:

 W x x e x( ) = − −α α α1  (19.5)

We have plotted three standard Weibull curves for three different values of 
shape factor in Figure 19.2.

NIST defines the several useful properties for the standard Weibull distribu-
tion. The one we need to look at is the formula for median. This relationship is of 

technique of using explosive charges to determine the type of ocean bottom 
sediments and their thickness. The same technique is still used today in off-
shore oil exploration. In 1939, he published his paper on Weibull distribution 
in probability theory and statistics. In 1941, BOFORS, a Swedish arms fac-
tory, gave him a personal research professorship in Technical Physics at the 
Royal Institute of Technology, Stockholm.

Weibull published many papers on the strength of materials, fatigue, rup-
ture in solids, bearings, and of course the Weibull distribution, as well as 
one book on fatigue analysis in 1961. In 1951, he presented his most famous 
paper to the American Society of Mechanical Engineers (ASME) on Weibull 
distribution, using seven case studies.

Weibull worked with very small samples at Pratt & Whitney Aircraft and 
showed early success. Dorian Shainin, a consultant for Pratt & Whitney, 
strongly encouraged the use of Weibull analysis. Many started believing in 
the Weibull distribution.

The ASME awarded Weibull their gold medal in 1972, citing him as “a 
pioneer in the study of fracture, fatigue, and reliability who has contributed 
to the literature for over thirty years. His statistical treatment of strength and 
life has found widespread application in engineering design.”

Weibull’s proudest moment came in 1978 when he received the great gold 
medal from the Royal Swedish Academy of Engineering Sciences, personally 
presented to him by King Carl XVI Gustaf of Sweden.

The Weibull distribution has proven to be invaluable for life data analysis 
in aerospace, automotive, electric power, nuclear power, medical, dental, elec-
tronics, and every industry.
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immense help for curve fitting. From the median value of data, we can directly 
calculate shape factor as follows:

 Median = ln( )2
1
α  (19.6)

Box 19.3 an impReSSive Range

We can find several applications of the Weibull application in the literature; 
here are a few instances.

The strength of yarn is not a single-valued property but a statistical vari-
able. The statistical distribution of yarn strength is usually described by the 
normal distribution. As an improvement, Weibull statistics was used by Shi 
and Hu [2] as a tool to analyze the strength of cotton yarns at different gauge 
lengths to find the relationship between them.

Propagation delay in CMOS circuits is characterized by Weibull distribu-
tion. The experiments of Liu et al. [3] on large industrial design demonstrate 
that the Weibull-based delay model is accurate, realistic, and economic.

Fire interval data are known to belong to the Weibull family. A study by 
Grissino-Mayer [4] shows that two- and three-parameter Weibull distribu-
tions were fit to fire interval data sets. The three-parameter models failed to 
provide improved fits versus the more parsimonious two-parameter models, 
indicating that the Weibull shift parameter may be superfluous.

Reliability can be predicted only with the help of suitable models. Sakin 
and Ay [5] studied reliability and plotted fatigue life distribution diagrams 
of glass fiber-reinforced polyester composite plates using a two-parameter 

Location = 0 alpha = 5 beta = 1

Location = 0 alpha = 2 beta = 1

Location = 0 alpha = 1 beta = 1

–1 0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

1 2 3
x

Location = 0, scale = 1

W
ei

bu
ll 

pr
ob

ab
ili

ty

4 5 6

Figure 19.2 Weibull curves with different shape factors.
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Three-Parameter Weibull
We can think of a general Weibull curve by including a location parameter as 
follows:

 W x x e x
x

( ) ,= −
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− − −
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0,  (19.7)

where the fitted values of the parameters are as follows: μ is the location parameter, 
α is the shape parameter, and β is the scale parameter.

This equation has been generated by substituting x by (x − μ) in Equation 19.2.
Figure 19.3 shows three Weibull curves with three location parameters, the 

shape and the scale are kept constant. It is evident how changing the location 
parameter shifts the curve along the x-axis. When location = 0, we obtain the basic 
Weibull curve, which stays on the positive side of the x-axis. This by itself offers an 
advantage of modeling nonzero values. When location value is increased, the curve 
has a potential to model real life data with higher positive numbers that stay at 

Weibull distribution function. The reliability percentage can be found easily 
corresponding to any stress amplitude from these diagrams.

Robert et al. [6] used the Weibull probability density function as a diam-
eter distribution model. They stated, “Many models for diameter distribu-
tions have been proposed, but none exhibit as many desirable features as the 
Weibull. Simplicity of algebraic manipulations and ability to assume a variety 
of curve shapes should make the Weibull useful for other biological models.”
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Figure 19.3 Weibull curves with different location parameters.

© 2015 by Taylor & Francis Group, LLC

  



Weibull Distribution ◾ 307

some distance from the origin, such as software productivity. First, we should park 
the curve at an optimal location and the adjusted scale and shape until we obtain 
minimum error in fitting.

The use of this three-parameter model is illustrated in the following paragraphs.
In his 1951 path-breaking paper “A Statistical Distribution Function of Wide 

Applicability,” Weibull presented seven case studies of the Weibull distribution  
application [7]. The case for BOFORS steel strength is interesting; hence, we 
studied this case to illustrate the modern version of the Weibull distribution. 
Weibull presented steel strength data that we convert into a histogram, as shown 
in Figure 19.4.

We have fitted the three-parameter Equation 19.7 to Weibull’s data using the 
following steps:

 1. The location parameter was fixed at the minimum value of reported steel 
strength, 32 units.

 2. The choice of shape parameter α is based on the shape of the histogram shown 
in Figure 19.4. The choice of 2 is obvious.

 3. The scale parameter was adjusted to obtain the minimum least square error. 
We begin the iteration by keeping the initial value of the scale factor at the 
median departure from the minimum value. The initial value of the scale 
factor thus obtained is 3.5. We calculate the mean square error at this stage 
between the predicted and the actual probability value. Tentative perturba-
tions of scale factor indicate that moving up reduces error. We increase the 
scale factor in steps of 0.1 until the minimum error is achieved. The best value 
of scale parameter happens to be 4.7.
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Figure 19.4 Historical steel strength data used by Weibull, the scientist.
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The fitted curve is shown in Figure 19.5.
The highlight of the model lies in introducing a location parameter that is nec-

essary, in this case, where data have a large minimum value.

Software Reliability Studies
Defect discovery during the life cycle follows a Weibull curve. The curve math-
ematically extends to beyond the release date. The tail area depends on discovery 
rates before release and is governed by the Weibull equation. Figure 19.6 shows a 
two-parameter Weibull PDF with a shape parameter of 2 and a scale parameter of 
20 days, a defect discovery curve, with release date marked; the tail beyond release 
denotes residual defects.

Figure 19.7 is the cumulative distribution function (CDF) of the same Weibull, 
but the interpretation is interestingly different.

The y-axis represents the percentage of defects found and is likened to product 
reliability at any release point. Using this model, we can predict reliability at delivery.

Both Figures 19.4 and 19.5 provide approximate but useful judgments about 
defect discovery.

Above all they provide valuable clues to answer the question, to release the 
product or test it further?

An experienced manager can make objective decisions using these graphical 
clues. Some organizations have attempted to declare the CFD value at release date 
as software reliability and use this numerical value to certify the product.

Vouk [8] reported the use of Weibull models in the early testing (e.g., unit test-
ing and integration testing phases) of a very large telecommunication system. It is 
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Figure 19.5 Historical Weibull model of steel strength.
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Delivered˜reliability
= Weibull˜CDF˜(40)

Excel˜syntax˜for˜CDF
= Weibull (40,1,20,1)
=˜0.98
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Figure 19.7 Weibull distribution CDF—delivered reliability.
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Figure 19.6 Weibull distribution—defect discovery model.
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shown that the dynamics of the nonoperational testing processes translates into a 
Weibull failure detection model. Vouk also equated the Weibull model (of the sec-
ond type) into the Rayleigh model. He affirmed that the progress of the nonopera-
tional testing process can be monitored using the cumulative failure profile. Vouk 
illustrated and proved that the fault removal growth offered by structured based 
testing can be modeled by a variant of the Rayleigh distribution, a special case of 
the Weibull distribution.

In a novel attempt, Joh et al. [9] used Weibull distribution to address security 
vulnerabilities, defined as software defects “which enables an attacker to bypass 
security measures.” They have considered a two-parameter Weibull PDF for this 
purpose and built the model on the independent variable t, real calendar time. The 
Weibull model has been attempted on four operating systems. The Weibull shape 
parameters are not fixed at around 2, as one would expect; they have been varied 
from 2.3 to 8.5 in the various trials. It is interesting to see the Weibull curves gen-
erated by shapes varying from 2.3 to 8.5. In Figure 19.8, we have created Weibull 
curves with three shapes covering this range: 2.3, 5, and 8.5.

Tai et al. [10] presented a novel use of the three-parameter Weibull distribu-
tion for onboard preventive maintenance. Weibull is used to characterize system 
components’ aging and age-reversal processes, separately for hardware and soft-
ware. The Weibull distribution is useful “because by a proper choice of its shape 
param eter, an increasing, decreasing or constant failure rate distribution can be 
obtained.” Weibull distribution not only helps to characterize the age-dependent 
failure rate of a system component by properly setting the shape parameter but also 
allows us to model the age-reversal effect from onboard preventive maintenance 
using “location parameter.” Weibull also can handle the service age of software and 
the service age of host hardware. They find the flexibility of the Weibull model very 
valuable while making model-based decisions regarding mission reliability.
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Putnam’s Rayleigh Curve for Software Reliability
Remembering that the Rayleigh curve is similar to the Weibull Type II distribu-
tion, let us look at Lawrence Putnam’s Rayleigh curve, as it was called, for software 
reliability:
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td=
−

6 2

3
2

2

 (19.8)

 MTTD after milestone 4= 1
Em  

where Er is the total number of errors expected over the life of the project; Em is the 
errors per month; t is the instantaneous elapsed time throughout the life cycle; td is 
the elapsed time at milestone 7 (the 95% reliability level), which corresponds to the 
development time; and MTTD is the mean time to defect.

To apply this curve software, the life cycle must be divided into nine milestones 
as prescribed by Putnam and define the parameters by relating them to the relevant 
milestones [11,12]. There are many assumptions behind this equation. This model 
works better with large full life cycle projects that follow the waterfall life cycle 
model. Putnam claimed,

With this Rayleigh equation, a developer can project the defect rate expected 
over the period of a project.

Cost Model
Putnam used the same Rayleigh curve to model manpower build up and cost dur-
ing the software development project. The equation was used in his estimation 
model. The same equation was used to define productivity. Putnam’s mentor Peter 
Norden had originally proposed the curve in 1963. Putnam realized its power and 
applied it well. The equation came to be known popularly as the software equation. 
Technically, it is known as the Norden–Rayleigh curve.

Putnam recalls [11],

I happened to stumble across a small paperback book in 
the Pentagon bookstore. It had a chapter on managing R&D 
projects by Peter Norden of IBM. Peter showed a series of 
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curves which I will later identify as Rayleigh curves. These 
curves traced out the time history of the application of 
people to a particular project. It showed the build up, the 
peaking and the tail off of the staffing levels required to get 
a research and development project through that process 
and into production. Norden pointed out that some of these 
projects were for software projects, some were hardware 
related, and some were composites of both. The thing that 
was striking about the function was that it had just two 
parameters. One parameter was the area under the curve 
which was proportional to the effort (and cost) applied, and 
the other one was the time parameter which related to the 
schedule.

Defect Detection by Reviews
Defect detection by reviews can be modeled by using the Weibull curve. Typically, 
we begin with a shape factor of 2, the equivalent of the Rayleigh curve.

Figure 19.9 shows a typical Weibull model for review defects. The cumulative 
curve ends at 0.86, before becoming flat. This roughly indicates that 14% of defects 
are yet to be uncovered, but the review process has been stopped beforehand. The 
PDF is clearly truncated.

At a more granular level, the review defect Weibull model can be applied to 
requirement review, design review, code review, and so on. It is cheaper to catch 
defects by review than by testing, and using such models would motivate reviewers 
to spend extra effort to uncover more defects.
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Figure 19.9 Weibull curve of family 2 showing premature closure of review.
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New Trend
The defect discovery performance of contemporary projects may be seen to be dra-
matically different from the traditional models. In a recent data benchmark done 
by Bangalore SPIN (2011–2012), a consolidated view of the defect curves across 
eight life cycle phases is presented. A summary is available for public view in their 
website bspin.org, and a detailed report can be obtained from them.

BSPIN reports two types of defect curves coming from two groups of projects 
shown in Figure 19.10.

In one group, the unit test seems to be poorly done, and the defect curve is not 
a smooth Rayleigh but broken. It looks as if the first defect discovery process ends 
and another independent defect discovery process starts during later stages of test-
ing. The defect curve is a mixture. As a result, the tail is fat, much fatter than the 
homogeneous Rayleigh (Weibull II) would be able to support. In the second group 
unit, the test was performed well and the defect curve had no tail. Again, the defect 
curve with abruptly ending slope is not the unified Putnam’s Rayleigh.

We may have to look for a special three-parameter Weibull with unconven-
tional shape factors to fit these data. Both the curves affirm that a new reality is 
born in defect management. There is either a low maturity performance where the 
testing process shows a disconnect resulting in postrelease defects or a high matu-
rity process with effective early discovery that beats the Rayleigh tail: a mixture 
curve with double peak or a tailless curve. In the first case, the vision of a smooth, 
unified, homogeneous and disciplined defect discovery has failed. In the second 
case, defect discovery technology has improved by leaps and bounds, challenging 
the traditional Rayleigh curve.
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Figure 19.10 Defect distribution across project lifecycle phases.
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This change reflects changes in life cycle models and practices. The modern 
projects follow new paradigms, self-designed and custom-tailored.

Weibull Model for Defect Prediction—Success Factors
Weibull model, be it for cost prediction or for defect prediction, is holistic in nature 
and can be applied early in the project. Weibull holistic models should be used by 
leaders to predict the future and to manage projects. With a few data and indica-
tors, one can foresee what lies ahead.

However, there is some reluctance in applying holistic models when a lot more 
details have accumulated. People refuse to look at the larger picture. Weibull dis-
tribution presents a larger picture. The predictive use of Weibull cost models that 
resemble earned value graphs or Weibull defect curves that resemble reliability 
growth graphs is easily forgotten.

Alagappan [13] presented three patterns of details that overstep the holistic 
Rayleigh curve:

 1. Fluctuating defect trend
 2. Lower actual defect density
 3. Effective defect management (early defect removal)

These details come after project closure. Weibull can be constructed reliably 
enough halfway through the project. This advantage is untapped by the industry.

Stoddard and Goldenson [14] mentioned the Rayleigh model as a process per-
formance model in an SEI Technical Report (2010). The report presents a success-
ful case study on a Rayleigh model from Lockheed Martin in which the authors of 
the case study described,

The use of Rayleigh curve fitting to predict defect discovery (depicted 
as defect densities by phase) across the life cycle and to predict latent or 
escaping defects. Lockheed Martin’s goal was to develop a model that 
could help predict whether a program could achieve the targets set for 
later phases using the results to date.

Research indicates that defects across phases tend to have a Rayleigh 
curve pattern. Lockheed Martin verified the same phenomenon even 
for incremental development approaches, and therefore decided to 
model historical data against a Rayleigh curve.

Two parameters were chosen: the life-cycle defect density (LDD) 
total across phases and the location of the peak of the curve (PL). 
Outputs included planned defect densities by phase with a performance 
range based on the uncertainty interval for LDD and PL and estimated 
latent defect density.
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Inputs to the model during program execution included the actual 
defect densities by phase. Outputs during program execution included 
fitted values for phases to date, predicted values for future phases and 
estimated LDD, PL, and latent defect density.

The presentation suggested that those who want to be successful 
using defect data by phase for managing a program need to be believers 
in the Rayleigh curve phenomenon for defect detection.

The belief in the Rayleigh curve, mentioned as an ingredient for success, is the 
point we wish to highlight.

Box 19.4 vieWS oF noRden Who FiRSt applied 
WeiBull to SoFtWaRe engineeRing

Peter V. Norden has been a consultant with IBM’s Management Technologies 
practice, specializing in the application of quantitative techniques to man-
agement problems and project management systems. He was a member of 
the team that developed IBM’s worldwide PROFS communication system, 
which eventually became the Internet.

Norden [15] created history by applying the Weibull distribution to soft-
ware development. He was building quantitative models when he noticed,

It turned out, however, that time series and other models 
built on these data had relatively poor predictive value. It 
was only when we noticed that the manpower build-up 
and phase-out patterns related to why the work was being 
done (i.e., the purpose of the effort, such as requirements 
planning, early design, detail design, prototyping, release 
to production) that useful patterns began to emerge. The 
shapes were related to problem-solving practices of engi-
neering groups and explained by Weibull distributions.

Subsequent researchers (notably Colonel L. H. Putnam, originally of 
the U.S. Army Computer Systems Command) referred to them as Rayleigh 
curves but were dealing with the same phenomenon.

The life cycle equation computes the level of effort (labor-hours, labor-
months, etc.; the scale is arbitrary) required in the next work period (day, 
week, month, etc.) as a function of the time elapsed from the start of this 
particular cycle, the total effort forecast for the cycle, and a scaleless “trashi-
ness” parameter that could represent the urgency of the job.
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Review Questions
 1. What settings will make a Weibull curve behave like a Rayleigh distribution?
 2. What is the role played by location parameter?
 3. What is the formula connecting the scale shape and scale factor of Weibull curve?
 4. Who invented the Weibull distribution?
 5. Who applied the Weibull distribution to software projects for the first time?

Exercises
 1. The median value of a certain data set is 4.5. The data are suspected to have 

standard Weibull distribution. Calculate the scale shape.
 2. Plot a Weibull curve with a shape factor of 3 and a scale factor of 15, mak-

ing use of the Excel function WEIBULL.DIST. (Clue: set the cumulative 
value = 0.)

 3. In software review, defect discovery follows the Weibull model with a shape 
of 2 and a scale of 15 days. Find the remaining defects in the code if review is 
terminated on day 20.

 4. Software productivity data (lines of code [LOC] per person day) is fitted to 
Weibull with the following parameters: location = 30, shape = 3, and scale = 
50. Find the probability that productivity will go above 70 LOC/person-day.

 5. Fit Putnam’s software reliability model to BSPIN data (graphs in Figure 19.8) 
and predict the percentage of postrelease defect.
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Chapter 20

Gumbel Distribution 
for Extreme Values

A Science of Outliers
Convention has it that outliers must be marked, studied, and analyzed for root 
causes. In process management, outliers represent high cost, poor quality, and 
rework. The temptation seems to be to attach a stigma to outliers and build prob-
ability density functions (PDFs) for the remaining data. A scientific way would be 
to treat outliers statistically and even predict their occurrence. These outliers can be 
called extreme values and be subjected to treatment by the science of extreme value 
theory, invented by Fréchet (see Box 20.1). The behavior of extremes can be modeled 
by extreme value distributions.

Cláudia Neves et al. [1] summarized the characteristics of extreme value distri-
butions as follows:

A distribution function that belongs to the Fréchet domain 
of attraction is called a heavy-tailed distribution, the Weibull 
domain encloses light-tailed distributions with finite right 
endpoint and the particularly interesting case of the Gumbel 
domain embraces a great variety of tail distribution functions 
ranging from light to moderately heavy, whether detaining 
finite right endpoint or not.
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Of the three types of extreme value distributions, the more popular one is the 
Gumbel distribution (see Box 20.4). There are different notations corresponding 
to the application of the Gumbel distribution. We follow the notation used in the 
NIST Handbook, where this is known as type I extreme value distribution [2].

The presence of extremes in process data may be seen in the box plot presenta-
tion of data (see Chapter 4). Beyond the threshold called fences, we can see extreme 
values on either end of typical box plots. On the right, we have extremes known 
as “maxima,” and on the left, we have extremes known as “minima.” Both the 
extremes can have a significant effect on the process. Gumbel distributions can be 
used to model both the maxima and the minima.

Box 20.1 FIVE PEoPLE AND ExtrEmE VALuE thEory

Five people have contributed to extreme value theory. Fréchet proposed an 
extreme value distribution in 1927. Fisher and Tippet refined it in 1928 and 
proposed three types of extreme value distributions. In 1948, Gnedenko for-
mulated the Fisher–Tippett–Gnedenko theory (generalized extreme value 
theory). Gumbel worked on type I extreme value distribution (called the 
Gumbel distribution after him) and provided simpler derivation and proof 
in 1958.

Fréchet—Maurice René Fréchet (1878–1973), a French mathematician 
who made several important contributions to the field of statistics and 
probability.

Fisher—Ronald Aylmer Fisher (1890–1962), an English statistician who 
created the foundations for modern statistical science.

Gumbel—Emil Julius Gumbel (1891–1966), a German mathematician 
and political writer who derived and analyzed the probability distribu-
tion that is now known as the Gumbel distribution in his honor.

Tippett—Leonard Henry Caleb Tippett (1902–1985), an English statisti-
cian who pioneered extreme value theory along with R. A. Fisher and 
Emil Gumbel.

Gnedenko—Boris Vladimirovich Gnedenko (1912–1995), a Soviet math-
ematician who is a leading member of the Russian school of probability 
theory and statistics.
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Gumbel Minimum PDF
Extreme minimum values follow the Gumbel distribution defined as follows:
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where μ is the location parameter and β is the scale parameter.
We have two plots of the Gumbel PDF in Figure 20.1, with a common location 

parameter (5) and two scale parameters (2 and 3).
It may be noted that these curves show a sharp decline in the right because they 

represent limits of minimal values.

Box 20.2 WorLD rEcorD: 100-mEtEr SPrINt

In a research of world records for the 100-meter running from 1991 to 2008, 
extreme value theory has been applied [3] to predict the ultimate world record. 
Researchers predict that the best possible time that could be achieved in the 
near future is 9.51 seconds for men and 10.33 seconds for women. World 
records during the study are 9.69 and 10.49 seconds for men and women, 
respectively.

They used a generalized extreme value distribution, as follows:

 G x e xxγ γγ γ
( ) ( )= + ≥− +1

1

1 0for  (20.2)

where γ is the extreme value index.
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Figure 20.1 Gumbel minimum.
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Gumbel Parameter Extraction—A Simple Approach
We can use the moments method to extract the two Gumbel parameters, location 
and scale. Let us consider the equations relating data mean, median and mode, and 
standard deviation to Gumbel parameters, shown as follows (http://en.wikipedia 
.org/wiki/Gumbel_distribution):

Data mode = μ
Data mean = μ + 0.5772β
Data median = μ − βln(ln(2))
Data SD /= βπ 6

Solving the previously mentioned equations will yield Gumbel parameters.

Box 20.3 GumBEL DIStrIButIoN, 
tIPPEtt, AND cottoN thrEAD

The evolution of the Gumbel distribution is associated with the story of cot-
ton thread failure in the textile industry.

Leonard Henry Caleb Tippett, after graduating from Imperial College in 
1923, was awarded a studentship by the British Cotton Industry Research 
Association (the Shirley Institute) to study statistics under Professor Karl 
Pearson. Later, he also worked with the great Sir Ronald Fisher.

As they studied the ultimate world records, they were interested in the 
right end point of the distribution. The end point is finite if γ < 0 and infinite 
if γ > 0. Moreover, it may be seen that in case of γ < 0, γ = 0, or γ > 0, the Gγ 
reduces to Weibull, Gumbel, or Fréchet distribution function, respectively. 
It turns out that researchers have used the reversed Weibull form of extreme 
value distribution.

To build the model, researchers collected the fastest personal best times. 
Thus, each athlete only appeared once on their list. The sample size is 762 for 
men and 479 for women. The estimates of γ are −0.18 for women and −0.19 
for men.

The prediction is sensitive to the data window. If records up to 2005 were 
used, researchers find, the predictions of ultimate sprint records would be 
9.29 and 10.11 seconds.
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Gumbel Minimum: Analyzing Low CSAT Scores
Customer satisfaction (CSAT) scores were traditionally measured in a Likert 
scale ranging from 1 to 5. Recently, effort is being made to measure CSAT on a 
0 to 10 continuous scale. The latter scale allows detailed analysis. In both scales, 
the problem area in CSAT lies in the minimum values, which correspond to 
deep dissatisfaction. The minimum values on a 0 to 10 scale follow the Gumbel 
distribution.

This analysis is very different from the typical control charts many plot on 
mean CSAT scores. The mean values are too neutral to reveal customer dissatisfac-
tion. Preparing to plot Gumbel PDF means we collect minimum values of CSAT. 
This by itself is a paradigm shift in CSAT measurement.

We find the mode of the gathered minimum values and use it as the loca-
tion parameter of the PDF. The scale parameter is approximately equal to 1, 
applying the appropriate moment equation. Thus, the model parameters are as 
follows:

Location = 3
Scale = 1

The Gumbel minimum PDF is constructed with these parameters and is shown in 
Figure 20.2.

The Gumbel PDF of CSAT is an eloquent problem statement. All the low-
valued outliers in CSAT data are represented in this plot.

He spent the next 40 years working at the Shirley Institute. He put sta-
tistics to work in a variety of industrial problems, such as the problem that 
looms in weaving sheds that were idle approximately 30% of the time, the 
problem of yarn breakage rates in weaving, the problem of the relationship 
between the length of a test specimen of a yarn and its strength, and the prob-
lem of thickness variation along the length of a yarn. He conducted factorial 
experiments on yarn.

The strength of the yarn is in the weakest part. This was seen by Tippett 
as an “extreme” situation. He studied the occurrence of extremes and iden-
tified three forms of extremes. While working with Fisher, he created the 
distributions, known as the Fisher–Tippet distributions. Later, Gumbel took 
up a special case represented by one of the three equations, simplified it, and 
created the Gumbel distribution.

Tippett was a role model for industrial statisticians. As a result of his work 
in the textile industry, he was awarded the Shewhart Medal of the American 
Society for Quality Control.
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Gumbel Maximum: Complexity Analysis
Data maxima follow the Gumbel maximum PDF defined as follows:
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 (20.3)

where μ is the location parameter and β is the scale parameter.
Let us consider the case of extremely large complexity in some modules. The 

specification limit on cyclomatic complexity is 70. Higher values are dubbed out-
liers and examined one by one. We wish to use these outliers collectively as a group 
by constructing an exclusive PDF for these outliers. We separate these data from 
the database and for a special group of outliers and obtain the following statistics:

Data mean = 219.2
Data mode = 169

Thus, the model parameters, obtained by applying moments equations, are as 
follows:

Location = 169
Scale = 87

Using these parameters, the PDF is constructed and shown in Figure 20.3.
It shows the distribution of complexity maxima in software development. This 

model can be used to manage technical risks in development projects.
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Figure 20.2 Gumbel minimum of CSAT minimum scores.
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The biggest problem we now have with the whole evolution of 
the risk is the fat-tailed problem, which is really creating very large 
conceptual difficulties. Because as we all know, the assumption 
of normality enables us to drop off the huge amount of com-
plexity in our equation. Because once you start putting in non-
normality assumptions, which is unfortunately what characterizes 
the real world, then these issues become extremely difficult.

Alan Greenspan (1997)

Gumbel extreme value PDF solves this problem and allows us to see risk 
directly and objectively instead of inadequate expressions from conventional 
statistical analysis.

Conventional models produce a good fit in regions where most of the data fall, 
potentially at the expense of the tails. In extreme value analysis, only the tail data 
are used.

Minima Maxima Comparisons
We proceed to compare Gumbel distributions for minima and maxima, given the 
same location and scale parameters. This comparison allows us to gain an insight 
into modeling. A comparison is illustrated in Figure 20.4.

We have kept the location parameter at 5 and scale parameter at 3 and con-
structed the Gumbel PDFs for minima and maxima using Equations 20.1 and 20.2.
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Figure 20.3 Gumbel maximum of extreme values of cyclomatic complexity.
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Box 20.4 hoW to chooSE thE rIGht 
ExtrEmE VALuE DIStrIButIoN

There are three types of extreme value distributions. The most common is 
type I, the Gumbel distribution, which is unbounded and falls off exponen-
tially or faster. Type II, the Fréchet distribution, has a lower bound and falls 
off slowly according to power law and has a fat tail. This is used to model 
maximum values. Type III, the reversed Weibull distribution, has an upper 
bound and is used to model minimum values.

Type I (Gumbel) G x e xe
x b
a( ) = −∞ < < ∞−

− −

 (20.4)
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Figure 20.4 Comparison of Gumbel minimum and maximum.
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Type III (Weibull) G x e x b
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Although the behavior of the three laws is completely different, they can 
be combined into a single parameterization containing one parameter ξ that 
controls the “heaviness” of the tail, called the shape parameter:
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The location parameter μ determines where the distribution is concen-
trated. The scale parameter σ determines its width. The shape parameter ξ 
determines the rate of tail decay (the larger ξ, the heavier the tail), with the 
following:

ξ > 0 indicating the heavy-tailed (Fréchet) case.
ξ = 0 indicating the light-tailed (Gumbel) case.
ξ < 0 indicating the truncated distribution (Weibull) case.

The extreme value distributions have been differently adopted by different 
users. Each type of distribution offers certain advantages over the others for 
specific cases.

In earthquake modeling, Zimbidis et al. [4] preferred to use type III 
extreme value distribution (Weibull). They analyzed the annual maximum 
magnitude of earthquakes in Greece during the period 1966–2005. The plot 
of mean excess over a threshold indicates a very short tail, and researchers 
have chosen Weibull accordingly.

In worst-case execution time analysis of real-time embedded systems, Lu 
et al. [5] used the Gumbel distribution after selecting the data very care-
fully using special sampling techniques. Their predictions agree closely with 
observed data.

However, in the probabilistic minimum interarrival time analysis of 
embedded systems, Maxim et al. [6] found that the Weibull extreme value 
distribution fits better.

During the analysis of wave data, Caires [7] found the general extreme 
value model more suitable.

The choice depends on data.

© 2015 by Taylor & Francis Group, LLC

  



328 ◾ Simple Statistical Methods for Software Engineering

Analyzing Extreme Problems
Instead of seeing problems as tails of some parent distribution, extreme value 
analysis using Gumbel distributions allows us to look at the problem squarely in 
the eye.

The Gumbel distribution can be used to analyze several extreme problems in 
addition to the two we have discussed so far. For example, we can do a simple 
schedule variance analysis by collecting data, as shown in Figure 20.5.

This shows the distribution of maximum values of schedule variances in a 
development project. The PDF is built with a location parameter of 20 and a scale 
parameter of 12.

Likewise, we can easily analyze extremely error prone modules, extremely costly 
effort escalations, extreme volatility of requirements, and so on. There is a great 
opportunity for such modern and innovative analysis.

There are a few cautions to be taken before we do extreme value analysis.

First, data collection needs care. Data must be drawn from samples that 
are independent and identical (the iid criterion). Extreme values in a single 
organization approximately meet this requirement of identicality, assum-
ing similar process run in all projects. Data samples also can be easily made 
independent (one sample does not influence another). Doing extreme value 
analysis across distinctly different processes is not suggested.
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Figure 20.5 Gumbel maximum of extreme values of schedule variance.
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Review Questions
 1. When should we use the Gumbel minimum distribution?
 2. When should we use the Gumbel maximum distribution?
 3. What is the primary use of extreme value theory?
 4. Relate outliers in a box plot to Gumbel distributions.
 5. Compare the bell curve with the Gumbel distribution.

Box 20.5 LIVING oN thE EDGE

Combine the extremes, and you will have the true center.

Karl Wilhelm Friedrich Schlegel

Which one captures the essential feature of life: central tendency, dispersion, 
or extreme values? Extreme values have crossed the boundary; they contain 
novelty and throb with energy. They have been pushed by extreme circum-
stances and cruel experiments by nature. We can learn infinitely more and 
gain infinitely more from extreme data than from regular data.

Life is in the boundary.

We have lived out of central limit theorem, and now we should reach out 
and consider extreme value theorem. Both theorems have been designed to 
tell us about limiting performances. Let us look at some of the problems 
modeled by extreme value theory since Tippett and Gumbel: extreme for-
est fire, extremely high flood levels, extreme heights of waves, earthquake, 
extreme heat, extreme cold, extreme loads on aircraft structure, excessive 
stock movements, extreme load on wind turbines, and the list is growing. All 
these extreme value studies aim to save lives or property.

To solve a problem, look at the problem.

However, the optimism of Extreme Value Theory (EVT) is appropriate 
but also exaggerated sometimes. Yet it holds great promise. The potential of 
EVT remains latent, much so in software engineering practices.
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Exercises
 1. Program Gumbel minimum distribution in Excel. (There is no readily avail-

able function in Excel.)
 2. Program Gumbel maximum distribution in Excel. (There is no readily avail-

able function in Excel.)
 3. In the CSAT Gumbel model with location = 3 and scale = 1, find the risk of 

CSAT score falling below 2. Make use the program you have developed for 
exercise 1.

 4. In the complexity Gumbel maximum model with location = 169 and scale = 
87, find the risk of complexity exceeding 300. Make use of the program you 
have developed for exercise 1.

 5. For schedule variance Gumbel maximum model with location parameter = 
20 and scale parameter = 12, find the risk of schedule variance exceeding 40.
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Chapter 21

Gompertz Software 
Reliability Growth Model

S Curves
The S curves in software project management represent cost evolution and reli-
ability growth within projects. The strength of the S curve is that it is based on 
nature. It represents a natural law of growth. The forecasting power of the S curve 
is due to the basic concept of limiting resources that lies at the basis of any growth 
process.

The earliest known S curve is the logistic function, introduced to describe the 
self-limiting growth of a population by Verhulst in 1838, based on the Principle 
of Population published by Thomas Malthus. Benjamin Gompertz developed the 
Malthusian growth model further and invented the law of mortality, a Gompertz 
curve, in 1825 (see Box 21.1 for a brief biography).

Since then, S-shaped curves have been applied for studies in various fields. The 
more precise the data and the bigger the section of the S curve they cover, the more 
accurately the parameters can be recovered. When a system is closer to the end of its 
evolution, it increases the accuracy of the forecast with the S curve [1].
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Modeling Reliability Growth with 
Gompertzian S Curves
The application of the Gompertz curve as a software reliability model (more than a 
century later after Gompertz introduced his curve) is of interest to us.

The Gompertz growth curve is shown in Figure 21.1. The y axis represents reli-
ability growth. In practice, the y axis is calibrated in terms of cumulative defects 

Box 21.1 Benjamin Gompertz 1779–1865

Benjamin Gompertz, a member of a distinguished Jewish family, was born 
in London, where his father and grandfather had been successful diamond 
merchants. It is said that so great was his thirst for knowledge while he was a 
boy that frequently, when his parents had removed all candles to prevent him 
from injuring his health by studying too late at night, he stole out into the 
garden and pursued his investigations by moonlight.

He turned his attention to the theory of imaginary quantities. He would 
have liked the Royal Society to publish the results of his work on this subject, 
but his paper was rejected by the society, apparently on the basis that it was 
too profound and that no one would understand it.

The last published paper by Gompertz on astronomy was produced in 
1829. He maintained an interest in the subject until his death, studying other 
people’s papers and investigating meteors, shooting stars, comets, and so on.

It was as an actuary, however, that Gompertz’s most lasting work was 
performed. His two famous papers on the subject of life contingencies were 
submitted to the Royal Society in 1820 and 1825. Gompertz discovered that 
“The force of mortality at age x might be denoted by Bcx.”

Gompertz then proceeded to test several mortality tables that were in use 
at the time and to show that they followed his “law” approximately over a 
limited range of ages such as 10 to 50 or 15 to 55.

Gompertz’s paper of 1825 marked the beginning of a new era, not merely 
because his formula was, for several reasons, an enormous improvement on 
others, which had been suggested previously, but because it opened up a new 
approach to the life table.

In 1860, he contributed a paper to the International Statistical Congress. 
In this paper, he suggested modifications to his “law” of mortality, which 
would make it applicable over the entire period of life from birth to old age. 
Gompertz’s name will be known by future generations of actuaries not only 
because it cannot be omitted from any textbook on life contingencies but 
also because his outstanding brilliance as a mathematician was equaled by 
his modesty and generosity (JIA 91, 1965).
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discovered until now. We can also calibrate the y axis in terms of the percentage 
of defects found, if we have an estimate of the total defects in the application. The 
expression “percentage of defects found” is believed to be a direct measure of the 
percentage of reliability.

The growth curve starts at some fixed point, and the growth rate increases mono-
tonically to reach an inflection point. After this point, the growth rate approaches 
a final value asymptotically. According to this model assumption, failure detection 
rate increases until the inflection point and then decreases.

In Figure 21.1, the inflection point is marked on the growth curve. Also shown 
is the growth rate curve, which is obtained by differentiating the growth curve. The 
inflection point in the growth curve corresponds with the peak of the growth rate 
curve. A vertical dashed line is drawn to show the correspondence.
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Figure 21.1 Gompertzian growth curve and growth rate curve.
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Building a Reliability Growth Curve
Building a reliability growth curve in real life is fraught with basic problems. 
Software reliability models have not delivered the desirable deliverables that they 
are intended to realize, as commented by Faqih [2], who listed eight major causes 
for this problem,

Unfounded types of assumption, complexity of the software, 
complexity of the reliability models, weakness of the reliabil-
ity models, the misconception of fault and failure phenomena, 
inaccurate modeling parameters, difficulty in selecting the reli-
ability model, difficulty in building software operational profile.

There are many who will adopt a cautious approach to reliability growth models. 
Stringfellow and Andrews [3] saw many challenges,

It is difficult to define operational profiles and perform opera-
tional tests. Defects may not be repaired immediately. Defect 
repair may introduce new defects. New code is frequently 
introduced during the test period. Failures are often reported 
by many groups with different failure-finding efficiency. Some 
tests are more or less likely to cause failures than others. Test 
effort varies due to vacations and holidays.

Whether growth is Gompertzian is the next question.

Gompertz Software Reliability Growth Model Curves
The Gompertz software reliability growth model (SRGM) is defined as follows:

 G t A B Ct
( ) ( )= ( ) (21.1)

where G(t) is the defects found until time (t), A is the total defects in the applica-
tion, B and C are the constants with fractions between 0 and 1, and t is the time 
elapsed from the start of testing.

Constraining C to values less than 1 is of paramount importance; that is what makes 
the expression within the inner brackets decrease with time. Likewise, constraining B 
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to values less than 1 is equally important to make the overall function grow with time. 
The constant A is equal to the number of total defects in the application.

Figure 21.2 contains two sets of Gompertz curves. The first set of three curves 
are constructed with C = 0.3. The second set of three curves are plotted with 
C = 0.6. The value of A is fixed at 100.

The effect of C on the curves can be easily seen on the patterns that discriminate 
the two sets. Increasing C delays defect discovery.

Within each group, three values of B are shown: 0.1, 0.01, and 0.001. Decreasing 
B delays defect discovery.

The x axis of the graph is time varying from 0 to 10 units. It could be days, 
weeks, or months. It could also be proxies for time. However, we had weeks in 
mind while plotting the graph; this roughly coincides with the time required to 
find 100 defects in a small project.
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Figure 21.2 Gompertz reliability growth curves for C = 0.3 and C = 0.6.
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Both B and C control the inflection point. At the inflection point, growth 
attains 0.36788 (this number = 1

e , where e is the Euler constant) of the plateau 
value A. This means 36.788% of the total defects at the inflection point. This prop-
erty characterizes the Gompertzian way of testing and finding defects. The inflec-
tion point, as we have already seen, also represents peak value in growth rate (here 
defect discovery rate).

The time when the inflection happens has been defined by Kececioglu et al. [4]. 
For the different values of B and C used in Figure 21.1, the following inflection 
times have been computed:

B                                   0.1              0.01            0.001         0.1              0.01            0.001
C                                  0.3              0.3              0.3              0.6              0.6               0.6
Inflection time           0.693          1.268          1.605         1.633          2.990          3.783

From these results, we may see the influence of B and C on inflection time. Large 
inflection time indicates delayed defect discovery.

Dimitri Shift
Kececioglu et al. [4] worked out a modified Gompertz curve by adding a constant 
D to displace the curve vertically by a distance D. This shift results in a four-
parameter Gompertz model defined in the following equation:

 G t D A B Ct
( ) ( )= + ( ) (21.2)

This shift of the Gompertz curve in the y axis is analogous to the familiar 
location shift in the x axis we have seen in Chapter 20. The shift factor D is some 
kind of a location parameter. A plot of the shifted Gompertz curve is shown in 
Figure 21.3.

The shifted curve suggests a significant amount of defects discovery immedi-
ately after the start. This is not agreeable to intuitive reasoning. However, Dimitri 
et al. [4] claimed that the modified model fits better with data. They observe from 
several data sets that

Reliability growth data could not be adequately portrayed by the con-
ventional Gompertz model. They point-out that the reason is due to the 
model’s fixed value of reliability at its inflection point. As a result, only 
a small fraction of reliability growth datasets following an S-shaped 
pattern could be fitted.
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In any case, the four-parameter model offers more options during curve fitting, and 
this could be an advantage.

Predicting with the Gompertz Model
Once test data arrives, we may wish to begin asking the following questions:

How many more defects remain in the application?
How long would it take to detect those defects?

These are the prediction questions the Gompertz model strives to answer. There 
are two prediction scenarios. The first is when we use an auxiliary model to esti-
mate defects in the application. For example, we might predict defects based on the 
size and complexity of the application using regression equations based on histori-
cal data. In this case, we know the constant A. All we have to do is to derive the 
remaining parameters B, C, and D from data and predict time.

In the second scenario, all four parameters are unknown. We do not have any 
estimate of the defects in the application. In this case, one short cut is to wait 
for the defect discovery rate to go through a peak and start symptoms of steady 
decline. The peak is the Gompertzian inflection point. If the defects found until 
the inflection point is known, then the overall defects A can be obtained by using 
the following relationship:

 Defects found until inflection = total defects in the application × 0.36788

This calculation completes the prediction of total defects in the application.
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Figure 21.3 Modified Gompertz reliability growth curve with shift.
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We can now estimate constants B, C, and D by iterative analysis to arrive at the 
least square error or any other curve-fitting technique. Once these three constants 
are known, we can predict the time taken to achieve a given percentage of reli-
ability. Curve fitting techniques do not assume Gompertzian behavior but force 
fit the Gompertz curve to data. The coefficient of determination R2 or any other 
assessment of error in the fitted curve should be used to determine the quality of 
predictions.

Dimitri has proposed a way to extract parameters. Data are divided into three 
groups with an equal number of values. He proposed formulas to determine con-
stants [4].

Box 21.2 Gompertz Curve for Growth of SharkS

Sharks are the top predators and play important roles in marine ecosystems. 
Annual yields of small sharks in Taiwan declined dramatically from 5699 
tons in 1993 to 510 tons in 2008, which implies that these stocks, mainly 
caught by trawlers and long-liners in coastal waters off Taiwan, have experi-
enced heavy exploitation in recent years.

The blacktip sawtail catshark is a small species that inhabits tropical and 
subtropical coastal waters of the western Pacific region. In Taiwan, this spe-
cies is found in coastal waters of western and northern Taiwan and is one of 
the most important small shark species. The growth pattern of this species 
has been studied by Liu et al. [5].

The growth data of 275 female sharks have been fitted to growth equations 
such as Gompertz, as shown in Figure 21.4.

Lt = A eBeCt

Where the parameters have been
estimated as
Lt = Length in cm at time t years
A = Asymptotic length 52.8 cms
B = –2.28
C = –0.232

˜ e above Gompertz equation is an
adaptation by Kwang-Ming Liu et al.
˜ e constants are di° erently limited.
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Figure 21.4 Gompertz curve for shark growth.
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More Attempts on Gompertzian Software 
Reliability Growth Model (SRGM)
The Gompertz curve is easily one of the widely used models. There are several 
examples of application of Gompertz to predict software reliability. There have 
been different adaptations, and different interpretations, each adding to the insight 
into the Gompertz curve.

The following interpretations of the Gompertz equation by its different users 
and the values of model constants are noteworthy.

Stringfellow and Andrews
Stringfellow and Andrews [3] built a Gompertzian SRGM shown in Figure 21.5. They 
fitted a model with B = 0.001 and C = 0.74. The model was built from failure data 
collected from a large medical record system, consisting of 188 software components. 
The low value of B suggests delayed discovery and initially slow progress in testing.

The criteria used by Stringfellow and Andrews in model evaluation are simple 
and effective:

Curve fit: How well a curve fits is given by a Goel–Okumoto (GO) F test: the 
R2 value.

Prediction stability: A prediction is stable if the prediction in a given week is 
within 10% of the prediction in the previous week.

Predictive ability: Error of predictive ability is measured in terms of error (estimate− 
actual) and relative error (error/actual).

Stringfellow and Andrews noted that “Gompertz performed better for Release 1 
but not for Release 2 and Release 3.”
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Figure 21.5 Stringfellow’s version of Gompertz reliability growth model.
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Zeide
Bores Zeide [6] observed,

Another characteristic feature of the Gompertz equation is that 
the position of the inflection point is controlled by only one 
parameter, asymptotic size, A.

Swamydoss and Kadhar Nawaz
Swamydoss and Kadhar Nawaz [7] provided a physical interpretation to the param-
eters, as follows:

A: initially, A is taken as total defect detected until date
B: the rate at which defect rate decreases, or test case efficiency (0.27, in his study)
C: a constant, a shape parameter

Swamydoss and Kadhar Nawaz report that they have collected cumulative fail-
ures found every week and constructed the Gompertz model by curve fitting and 
used the model to predict reliability. If the predicted reliability values were less than 
the threshold, they would continue system testing.

Arif et al.
In the adaptation of Arif et al. [8], the coefficients B and C are negative numbers, 
not fractions.

Anjum et al.
Anjum et al. [9] published a Gompertz model with A = 191.787, B = 0.242, and 
C = 0.05972.

Bäumer and Seidler
Bäumer and Seidler [10] reported poor performance of Gompertz.

Ohishi et al.
Ohishi et al. [11] used the Gompertz distribution with a different mathematical struc-
ture. The equation, fitted to data, and a plot of the equation are shown in Figure 21.6.
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The model predicts current reliability as 0.975 and suggests the presence of five 
residual defects. The model indicates that another 4 weeks of testing is required to 
reach a reliability level of 99%.

How to Implement Gompertz 
Model in Software Testing
To begin with, one must acknowledge cautions suggested by Faqih in implement-
ing any SRGM. The concerns of Stringfellow and Andrews are also valid. These 
ideas have been already cited in this chapter in the Building a Reliability Growth 
Curve section.

Further care and preparations are required for implementing Gompertz SRGM 
in real life.

Gompertz is an organic model, a characteristic well seen in the way it fits the 
growth of sharks. Gompertz, the discoverer of the model, uses the organic force 
of life to drive the equation to predict mortality. Testing must be performed in an 
organic manner. That means that testing must be a well-coordinated and homo-
geneous process. There must be a visibly great understanding between testers and 
developers. The arrival of components for tests must follow a systematic pattern 
without ad hoc breaks. Testing must be performed with great sincerity. Defects 
must be logged promptly without delay.

˜ = 0.108
° = 0.043
A = 197
Relative mean absolute error = 2.48%
R2 = 0.9927
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Figure 21.6 Ohishi’s version of Gompertz reliability growth model.
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Often there is an uncertainty in the exact time of defect discovery. The 
logged time could differ from the discovered time. The authenticity of time 
stamp is questionable. This uncertainty will distort data and introduce 
unnatural ripples into data.

To make the model more effective, test cases must be developed early, as soon 
as requirements are clear. All possible usage scenarios should be identified and con-
sidered during requirements collection. Requirement coverage and code coverage 
must be high enough.

To get better Gompertz fit, the test processes must be streamlined. Better 
Gompertz fit is not merely the result of statistical manipulation but presup-
poses testing process improvement.

Swaminathan [12] observed that proper test management and cooperation among 
teams are critical to the success of the Gompertz model. Some customers insist on 
Gompertzian testing; they expect establishment of the Gompertz model as part of the 
testing process and use it for prediction in an appropriate manner. Swaminathan noted,

Customers are expecting software vendors to give an assurance on the 
quality of the delivered product. They insist that this assurance be backed 
up by a valid statistical model and mere verbal assurances would not do.

How do we give this assurance to the customer?
It is not just for the customers. Even for the software vendors, who 

have to make decisions on the size of the team for the support phase, 
they need to know by when the software would reach a certain matu-
rity and thereby when they could reduce/stop testing.

How can software vendors know when their product will reach a 
90% maturity or 99% maturity?

This has become an important aspect to address for both the cus-
tomers and the vendors.

On his experience with building a live Gompertz model and running it, 
Swaminathan indicated,

We started building a tool based on excel.4. The input to the tool 
was the number of defects found every week and the output was the 
predicted defects for the future weeks and the maximum number of 
defects that were likely to be found.

Making the excel tool as per the details given was relatively simple. But 
the bigger challenge was to make it work for a particular team context.

As the test data started flowing from the team, we started using the 
data to predict the maximum number of defects for the product under test.
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The tools predictions turned out to be different from the intuitive 
predictions of the software team. When we tried to understand the 
reason, we found that the testing was done quite randomly.

Table 21.1 gives an example. Defects found during six weeks of test-
ing are tabulated. Test cases executed have been included in the table to 
set the context and environment. Figure 21.7 contains the cumulative 
plot of defects. Apparently, the curve is not Gompertzian. There is a 
hike in the number of test cases executed that corresponds to the hike 
in the defects discovered.

In the tool, we were looking at only the week number and number 
of defects. We had ignored very crucial data in number of test cases 
executed. So, instead of looking at the absolute number of defects, we 
started looking at the defects in the context of the test cases executed 
every week. Even after this change, the predictions did not match with 

Table 21.1 Test Results

Week No.
No. of Test 

Cases Executed
No. of Defects 

Found
Cumulative 

Defects Found

1 100 10 10

2 10 0 10

3 50 3 13

4 75 0 13

5 30 2 15

6 100 5 20
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Figure 21.7 Cumulative defects found in the course of testing.
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what the Project Manager expected. When we investigated the reason, 
it turned out that the software was not completely developed.

We learned that the Gompertz model can only be used in the test– 
analyze–fix cycle and not when full-fledged software development is in 
progress. We also learned that the model should not be used for predic-
tion at the early stages of the test–analyze–fix cycle. The product under 
test has to reach a certain maturity before we start using the data for 
predicting.

As a Gompertzian rule of thumb, until inflection is visible, the model should 
not be used for prediction. It takes time and sufficient data to reach the inflection 
point. The model is to be kept dormant until such a time.

Gompertz Curve versus GO NHPP Model
The two-parameter GO model is discussed in Chapter 12. This original model has 
been criticized because it is concave and lacks the flexibility of the S curve. A third 
parameter c was added by Goel to this model to make it reflect real-life testing. The 
model is known as the generalized GO model, (NHPP: non homogeneous poisson 
process) as shown in Figure 21.8.

This model can be compared with the Gompertz curve for ready reference, also 
shown in Figure 21.8. The two curves shown are representative samples from the 
generalized GO family and the Gompertz family.

Both are S curves; the similarity is interesting coming from two different 
domains, one from computer science and the other from actuarial studies. Both 
the models, generalized GO and Gompertz curve, are capable controlled inflection.
However, the Gompertz curve is a wee bit more practical and flexible.
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Figure 21.8 Gompertz curve versus GO NHPP model.
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Review Questions
 1. On what principle is the Gompertz curve grounded?
 2. How many parameters control the original Gompertz curve?
 3. How many parameters control the modified Gompertz curve?
 4. Compare the Gompertz curve with the generalized GO SRGM.
 5. What precautions must be taken before implementing the Gompertz SRGM?

Exercises
 1. Calculate the inflection point reliability for a Gompertz curve with A = 123.
 2. Download Dimitry Kucharavy and De Guio’s [1] paper and find the formula 

for inflection time in Equation 20. Using this formula, calculate inflection 
time if A = 123, B = 0.01, and C = 0.5.

 3. Predict the remaining defects in an application if the testing process has just 
crossed the peak discovery rate and at the inflection point 25 defects have 
been discovered.
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as test project metric, 118

Return on investment (ROI), 134, 136, 139
measurement of test automation, 119b, 

126
Reuse density (RD), 158b
Reuse frequency (RF), 157b
Reuse level (RL), 157b
Review effectiveness

as process metric, 91
Richter, Charles F., 276b
Richter scale, 132b, 276b
Right first-time delivery, NBD for, 168–169, 

169f
Risk-based testing, 125
Risk management, 32

dispersion measures application, 49
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Risk measurement
box plot application, 59
Gaussian distribution of, 213–215, 213f, 215t
two-sided risk estimation, 215d
using triangular distribution, 248, 249f

Risk metrics, in testing, 125
Risk priority number (RPN), 125
Ritchie, Dennis, 87
RNGs (random number generators)

uniform distribution, 233–234, 234f
Robust means, 29–30

derived from geometrical perspectives, 30
midhinge, 30
midrange, 30
trimmed mean, 29
Tukey’s trimean, 30
Winsorized mean, 30

Robust reference, median as, 25
ROI (return on investment), 134, 136, 139

measurement of test automation, 119b, 126
Routine data collection, 3

contexts, 3–4
RPN (risk priority number), 125
RSD (relative standard deviation), 48
RSI (requirement stability index)

as test project metric, 118
Rusk, John, 140
Rutherford, Ernest, 182

S

Sample mean, 22
Schedule variance (SV), 93b, 109, 132

as maintenance metric, 111
testing, 117

Schlegel, Karl Wilhelm Friedrich, 329b
Science, 181b
Scott rule, 148
S curves

background, 331
Gompertz software reliability growth 

model, 331–333, 333f, 334–336, 
335f

building, 334
Dimitri shift, 336–337, 337f
for shark growth, 338b

in testing, 118b
SD. See Standard deviation (SD)
SEI (Software Engineering Institute), 151
Seidler, P.

on Gompertzian SRGM, 340
SEI’s GQ(I)M framework, 4, 73–74

Self-efficacy, goals and, 76
Self-regulation, 115b
Senge, Peter, 73
SEPG (Software Engineering Process Group), 22
Service-level agreement (SLA), 107, 108, 111, 132
Service management, 103
Shainin, Dorian, 304b
Shapes, histogram, 152–153
Shark growth, Gompertz curve for, 338b
Shewhart, Walter A., 3
Shuttle time

uniform distribution, 234
Simpson, Thomas, 173b
Six Sigma, 73, 75, 225–227, 226t
Size measurements, 100b

early (case study), 96–97
testing, 124–125

Skew detection
box plot application, 58

Skewed data, 46
Skewness, 45–46

Bowley’s, 45
defined, 18
negative, 18
Pearson’s formula for, 45
positive, 18
quartile, 45
third standardized moment, 45–46
triangular distribution, 245–247, 246f

SLA. See Service-level agreement (SLA)
SLA compliance

binomial distribution of, 165, 166–167, 167f
as maintenance metric, 107–109
triangular model of, 244–245, 244f

Smith, Adam, 254b
Smith, Bill, 225
Smoke test defect density, 124b
Social physics, 220b–221b
Software

types of, 97
Software design complexity

log-normal PDF for, 270–271
Software development

Bayes theorem application in, 176–177
Software Engineering Institute (SEI), 151
Software Engineering Process Group (SEPG), 22
Software entropy, 33
Software evolution, Lehman’s laws of, 114b–115b
Software maintenance, 103–104. See also 

Maintenance metrics
Poisson distribution application to, 193
styles, 103
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Software reliability growth model (SRGM), 
198, 199. See also Gompertz software 
reliability growth model

gamma distribution application to, 
295–296

Software reliability studies
Putnam’s Rayleigh curve for, 311
Weibull distribution, 308–310, 309f, 

310f
Software reuse study, 157b–158b
Software size growth. See Log-normal 

distribution
Software test metrics. See Testing/tests
Software under test (SUT), 122
SPC (statistical process control) techniques, 

96, 96f
Spear, Mary, 54
Special purpose data collection, 3, 6
Special statistics, 12. See also specific entries
Spreadsheets, 4
Square root formula, histogram analysis, 148
SRGM. See Software reliability growth model 

(SRGM)
Standard deviation (SD), 21, 44

coefficient of, 48
defined, 16

Standard error, 12
uncertainty in mean, 22–23

Standard normal curve, 205, 207–208, 207f
Standard Weibull curve, 304–305, 305f
Statistical charting, 7

bar graph, 9
pie charts, 9–10
radar chart for project risks, 7–9, 8f

Statistical outliers, 62
Statistical process control (SPC) techniques, 

96, 96f
Statistics

descriptive. See Descriptive statistics
special, 12
vs. data, 10

Statistics: The Poisson Distribution, 189
Steven’s measurement theory, 5–6
Story point, as agile metric, 135–136
Strategic business units (SBUs), 64

CSAT analysis using box plot across (case 
study), 64–65, 64f

Stratification, data, 7
Stringfellow, C.

on Gompertzian SRGM, 339, 339f
Sturges rule, 148
Subprocess data, 4

Subprocess management, 4
Subprocess metrics, 79–80, 92–93, 112

benefits, 92
review process, 92

Sum
defined, 16
of squares, 42–43, 43d

Super bulb, 185
Survival function

exponential distribution, 184
SUT (software under test), 122
SV. See Schedule variance (SV)
Swamydoss, D.

on Gompertzian SRGM, 340
System software, 97

T

Table
milestone, 11
power of, 11b–12b

Tally, 145
TBF. See Time between failures (TBF)
Team skill index (TSI), 107, 108f
Technical debt, 136, 138b
Test case point (TCP), 96, 124–125
Test cases count, 120–121, 120f
Test coverage

code coverage, 121
functionality coverage, 121
as process metric, 92

Test effectiveness, 119
as process metric, 91

Testing/tests, 117–128, 136
automation

automation progress, 127
metrics for, 126–127
percentage automatable, 126–127
ROI measurement, 119b, 126

defect age data (case study), 127–128
Gompertzian SRGM implementation in, 

341–344, 343f, 343t
overview, 117
process metrics, 119

defect removal efficiency, 120
percentage of bad fix, 122
test cases count, 120–121, 120f
test coverage, 121–122

product metrics
component defect density, 123–124
defect classification, 124
defect counts, 122–123
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project metrics
cost, 118
customer satisfaction, 119
effort variance, 117
human productivity, 118
requirement stability, 118
resource utilization, 118
schedule variance, 117
test effectiveness, 119

quality prediction, 126
risk metric, 125
S curves in, 118b
size, 124–125
test case point (TCP), 124–125
unit test, 121b–122b

Text-To-Tag Ratio histograms, 156b
Théorie Analytique des Probabilités, 210b
Third quartile, 13
Third standardized moment, skewness, 45–46
Thomson, J. J., 227b–228b
Three-parameter model, Weibull distribution, 

306–308, 306f–308f
Three-point schedule estimation, triangular 

distribution, 247
Time between failures (TBF), 281, 283b

clusters, log-normal PDF of, 282f
histogram of, 282f

Time to deliver
as project metric, 85–86

Time to repair (TTR)
as maintenance metric, 112
process signature histogram of, 150–151, 151f
as project metric, 86

Tippett, Leonard Henry Caleb, 320b, 
322b–323b

Triangular distribution (law for estimation), 
239–250

bell curve morphs into triangle, 240–241, 
240f

beta option, 247–248, 248f
crystal clear view of process, 249b–250b
mean, 242–243, 243f
median, 243–245, 244f
mental model, 241–242, 242f
overview, 239–240
parameter extraction, 249
skew, 245–247, 246f
three-point schedule estimation, 247
triangular risk estimation, 248, 249f

Trimmed mean, 29
Truth, 22, 31–32. See also Central tendency

expert judgment method, 32b

TSI (team skill index), 107, 108f
TTR. See Time to repair (TTR)
Tukey, John Wilder, 54, 57, 60
Tukey’s box plot, 53–66

applications, 57
comparison of processes, 59
improvement planning, 59–60
outlier detection, 59
process drift, 58
process variation, 58
risk measurement, 59
skew detection, 58
summary, 63

bag plots, 57
bean plots, 57
benefits, 60–61
box of, 66b
comparison of two estimates using, 61–62, 

61f
customer satisfaction data analysis using, 

55–57, 56d, 57f
business perspectives (case study), 

64–65, 64f
process perspectives (case study), 65–66, 

65f
early form, 54
fences, 54
five-point summary, 12, 13b–14b, 54
hinges, 54
historical developments, 54
holistic test, 62
improvement evaluation, 63b
statistical thinking, 53b
structure, 53–55, 55f
tailoring, 57
visual test, 61–62

Tukey’s trimean, 30
Twin box plot, 61–62, 61f

application summary, 63
holistic test, 62
visual test, 61–62

Two-sided risk estimation, 215d

U

Uncertainty, 35. See also Dispersion
estimation using uniform distribution, 

235–240
in mean (standard error), 22–23

Uniform distribution (law of compliance), 
231–236

airport taxi-out time, 236b
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bounded distribution, 233
calibration uncertainty estimation with 

minimal information, 235–236
CDF of, 231, 232, 232f
censored process, 235
Parkinson’s law, 234–235
PDF of, 231–232, 232f
perfect departure, 235
random number generators, 233–234, 234f
shuttle time, 234

Uniqueness, of histogram signature, 151–152
Unit test, 121b

defect data, 121b–122b
Upper specification limit (USL)

process capability histogram, 153, 154f, 155
“Use case points,” as product metric, 86
User stories, 136

V

Variance/variations, 35, 42–43, 43d, 49, 165. 
See also Dispersion

box plot application, 58
defined, 16
first-order approximation of, 209–210, 

210f
prediction of, 32

Velocity, agile, 135, 138b
Visual display/summary, 7–10

bar graph, 9
pie charts, 9–10
radar chart for project risks, 7–9, 8f

Visual reasoning, 7
Visual test, twin box plot, 61–62

W

Wear out failure period, 193
Web content extraction, 156b

Weibull, Ernst Hjalmar Waloddi, 299, 
303b–304b

Weibull curve(s), 301, 302f
standard, 304–305, 305f

Weibull distribution, 296, 299–315
applications, 305b–306b
application to software engineering 

(Norden’ views), 315b
cost model, 311–312
curves, 301, 302f
defect detection by reviews, 312, 312f
for defect prediction, 314–315
new trend, 313–314, 313f
overview, 299–301
parameter extraction

for machine availability modeling, 303
MLE, 303
moments method, 303
rules of thumb, 301, 303

Putnam’s Rayleigh curve for software 
reliability, 311

Rayleigh distribution and, 299–300
software reliability studies, 308–310, 309f, 

310f
standard curve, 304–305, 305f
three-parameter model, 306–308, 

306f–308f
Weibull distribution type II, 299b, 311
Weighted mean, 28–29, 29t
Welch, Jack, 225
Wide band Delphi method, 6
Wiker, Benjamin, 135
Winsorized mean, 30

Z

Zeide, Bores
on Gompertzian SRGM, 340

Z score calculation, 223–225, 223t, 224f, 225f
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