

JAVA™ PROGRAMS

TO ACCOMPANY

PROGRAMMING LOGIC

AND DES IGN

B Y J O A N N S M I T H

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

S E V E N T H E D I T I O N

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2013 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2012931579

ISBN-13: 978-1-133-52606-3
ISBN-10: 1-133-52606-3

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with offi ce locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local offi ce at:
international.cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com
Visit our corporate Web site at cengage.com.

Some of the product names and company names used in this book have
been used for identifi cation purposes only and may be trademarks or
 registered trademarks of their respective manufacturers and sellers.

Any fi ctional data related to persons or companies or URLs used
 throughout this book is intended for instructional purposes only. At the
time this book was printed, any such data was fi ctional and not belonging
to any real persons or companies.

Course Technology, a part of Cengage Learning, reserves the right to revise
this publication and make changes from time to time in its content without
notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
off er any warranties or representations, nor do they accept any liabilities
with respect to the programs.

Java Programs to Accompany Programming
Logic and Design, Seventh Edition
Jo Ann Smith

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Senior Product Manager: Alyssa Pratt

Senior Content Project Manager:
 Cathie DiMassa

Art Director: Faith Brosnan

Compositor: Integra Software Services

Cover Designer: Lisa Kuhn/Curio Press, LLC
 HYPERLINK “http://www.curiopress.com/”
 www.curiopress.com

Image credit: © Leigh Prather/Veer

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, cengage.com/support

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions

Further permissions questions can be e-mailed to
permissionrequest@cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 16 15 14 13 12

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Brief Contents

 Preface ix

CHAPTER 1 An Introduct ion to Java and the
Java Programming Environment 1

CHAPTER 2 Var iables, Constants, Operators,
and Wri t ing Programs Using Sequent ia l
Statements 13

CHAPTER 3 Wr i t ing Structured Java Programs 33

CHAPTER 4 Wr i t ing Programs that Make Decis ions 48

CHAPTER 5 Wr i t ing Programs Using Loops 75

CHAPTER 6 Us ing Arrays in Java Programs 101

CHAPTER 7 F i le Handl ing and Appl icat ions 118

CHAPTER 8 Advanced Array Techniques 135

CHAPTER 9 Advanced Modular izat ion Techniques 152

CHAPTER 10 Addi t ional Topics 180

 Index 197

iii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

 Preface ix

CHAPTER 1 An Introduct ion to Java and the
Java Programming Environment 1

The Java Programming Language 2
Three Types of Java Programs 2
An Introduction to Object-Oriented Terminology 3
Downloading the Java Standard Edition

Development Kit (JDK) 5
The Structure of a Java Program 5
The Java Development Cycle 7

Writing Java Source Code. 8
Compiling a Java Program 8
Executing a Java Program 10
Exercise 1-1: Understanding Java Utilities 11
Lab 1.1: Understanding Java Utilities 12

CHAPTER 2 Var iables, Constants, Operators, and Wri t ing
Programs Using Sequent ia l Statements 13

Variables .14
Variable Names .14
Java Data Types . .15
Exercise 2-1: Using Java Variables, Data Types,

and Keywords .16
Declaring and Initializing Variables. 16

Exercise 2-2: Declaring and Initializing Java Variables17
Lab 2.1: Declaring and Initializing Java Variables 18

Constants . .19
Unnamed Constants 19
Named Constants .19
Exercise 2-3: Declaring and Initializing Java Constants . . .19
Lab 2.2: Declaring and Initializing Java Constants20

iv

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Arithmetic and Assignment Operators 20
Arithmetic Operators21
Assignment Operators and the Assignment Statement22
Precedence and Associativity23
Exercise 2-4: Understanding Operator Precedence

and Associativity24
Lab 2.3: Arithmetic and Assignment Operators25

Sequential Statements, Comments, and Interactive
Input Statements . .26
Exercise 2-5: Understanding Sequential Statements30
Lab 2.4: Understanding Sequential Statements31

CHAPTER 3 Wr i t ing Structured Java Programs 33

Using Flowcharts and Pseudocode to Write a Java Program. . .34
Lab 3.1: Using Flowcharts and Pseudocode to

Write a Java Program38
Writing a Modular Program in Java 40

Lab 3.2: Writing a Modular Program in Java 47

CHAPTER 4 Wr i t ing Programs that Make Decis ions 48

Boolean Operators . .49
Relational Operators 49
Logical Operators .50
Relational and Logical Operator Precedence

and Associativity51
Comparing Strings . .53
Decision Statements55

The if Statement .55
Exercise 4-1: Understanding if Statements 57
Lab 4.1: Understanding if Statements 58
The if-else Statement59
Exercise 4-2: Understanding if-else Statements 61
Lab 4.2: Understanding if-else Statements 62
Nested if Statements 63
Exercise 4-3: Understanding Nested if Statements65
Lab 4.3: Understanding Nested if Statements66
The switch Statement 67
Exercise 4-4: Using a switch Statement 68
Lab 4.4: Using a switch Statement 69

Using Decision Statements to Make Multiple Comparisons . . .70
Using AND Logic . .70
Using OR Logic .71

v

 C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 4-5: Making Multiple Comparisons in Decision
Statements .72

Lab 4.5: Making Multiple Comparisons in
Decision Statements 73

CHAPTER 5 Wr i t ing Programs Using Loops 75

The Increment (++) and Decrement (− −) Operators 76
Exercise 5-1: Using the Increment (++)

and Decrement (−−) Operators 77
Writing a while Loop in Java. 78

Exercise 5-2: Using a while Loop 80
Using a Counter to Control a Loop 80

Exercise 5-3: Using a Counter-Controlled while Loop . . .81
Lab 5.1: Using a Counter-Controlled while Loop82

Using a Sentinel Value to Control a Loop83
Exercise 5-4: Using a Sentinel Value to Control

a while Loop . .85
Lab 5.2: Using a Sentinel Value to Control a while Loop . .86

Writing a for Loop in Java86
Exercise 5-5: Using a for Loop88
Lab 5.3: Using a for Loop89

Writing a do while Loop in Java 89
Exercise 5-6: Using a do while Loop90
Lab 5.4: Using a do while Loop 91

Nesting Loops . .91
Exercise 5-7: Nesting Loops 92
Lab 5.5: Nesting Loops 93

Accumulating Totals in a Loop 94
Exercise 5-8: Accumulating Totals in a Loop 96
Lab 5.6: Accumulating Totals in a Loop 97

Using a Loop to Validate Input 98
Exercise 5-9: Validating User Input 99
Lab 5.7: Validating User Input 100

CHAPTER 6 Us ing Arrays in Java Programs 101

Array Basics . 102
Declaring Arrays . 102
Initializing Arrays 104
Accessing Array Elements 104
Staying Within the Bounds of an Array 105
Using Constants with Arrays 106
Exercise 6-1: Array Basics 107
Lab 6.1: Array Basics 107

vi

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Searching an Array for an Exact Match 108
Exercise 6-2: Searching an Array for an Exact Match . . . 110
Lab 6.2: Searching an Array for an Exact Match 111

Parallel Arrays. . 112
Exercise 6-3: Parallel Arrays 115
Lab 6.3: Parallel Arrays 116

CHAPTER 7 F i le Handl ing and Appl icat ions 118

File Handling . 119
Importing Packages and Classes 119
Opening a File for Reading 120
Reading Data from an Input File 121
Reading Data Using a Loop and EOF 122
Opening a File for Writing 122
Writing Data to an Output File 123
Exercise 7-1: Opening Files and Performing File Input . . . 125
Lab 7.1: Opening Files and Performing File Input 126

Understanding Sequential Files and Control Break Logic . . . 126
Exercise 7-2: Accumulating Totals in Single-Level

Control Break Programs 132
Lab 7.2: Accumulating Totals in Single-Level

Control Break Programs 132

CHAPTER 8 Advanced Array Techniques 135

Sorting Data . 136
Swapping Data Values 137

Exercise 8-1: Swapping Values 137
Lab 8.1: Swapping Values 138

Using a Bubble Sort 138
The main () Method 142
The fillArray() Method. 143
The sortArray() Method. 144
The displayArray() Method 145
Exercise 8-2: Using a Bubble Sort 145
Lab 8.2: Using a Bubble Sort 146

Using Multidimensional Arrays 147
Exercise 8-3: Using Multidimensional Arrays 150
Lab 8.3: Using Multidimensional Arrays 150

CHAPTER 9 Advanced Modular izat ion Techniques 152

Writing Methods with No Parameters 153
Exercise 9-1: Writing Methods with No Parameters 155
Lab 9.1: Writing Methods with No Parameters 156

vii

 C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing Methods that Require a Single Parameter 156
Exercise 9-2: Writing Methods that Require

a Single Parameter 159
Lab 9.2: Writing Methods that Require a Single

Parameter . 160
Writing Methods that Require Multiple Parameters 160
Exercise 9-3: Writing Methods that Require

Multiple Parameters 162
Lab 9.3: Writing Methods that Require Multiple

Parameters . 163
Writing Methods that Return a Value 164

Exercise 9-4: Writing Methods that Return a Value 166
Lab 9.4: Writing Methods that Return a Value 167

Passing an Array and an Array Element to a Method 168
Exercise 9-5: Passing Arrays to Methods 171
Lab 9.5: Passing Arrays to Methods 172

Overloading Methods. 172
Exercise 9-6: Overloading Methods 175

Lab 9.6: Overloading Methods 176
Using Java’s Built-In Methods 177

Exercise 9-7: Using Java’s Built-In Methods 177
Lab 9.7: Using Java’s Built-In Methods 178

CHAPTER 10 Addi t ional Topics 180

A Programmer-Defined Class 181
Creating a Programmer-Defined Class 182
Adding Attributes to a Class 184
Adding Methods to a Class 184
Exercise 10-1: Creating a Programmer-Defined

Class in Java. . 187
Lab 10.1: Creating a Programmer-Defined Class in Java . . 189

Creating a Graphical User Interface (GUI) 190
Writing a Constructor 192
Writing the main() Method 194
Exercise 10-2: Creating a Graphical User Interface

in Java . 195
Lab 10.2: Creating a Graphical User Interface in Java . . . 196

 Index 197

viii

C O N T E N T S

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Preface

Java Programs to Accompany Programming Logic and Design,
Seventh Edition (also known as Java PAL) is designed to provide
students with an opportunity to write Java programs as part of
an introductory programming logic course. It accompanies the
student’s primary text, Programming Logic and Design, Seventh
Edition, by Joyce Farrell. Th is textbook assumes no programming
language experience and provides the beginning programmer
with a guide to writing structured programs and simple object-
oriented programs using introductory elements of the popular Java
programming language. It is not intended as a textbook for a course
in Java programming. Th e writing is nontechnical and emphasizes
good programming practices. Th e examples do not assume
mathematical background beyond high school math. Additionally,
the examples illustrate one or two major points; they do not contain
so many features that students become lost following irrelevant and
extraneous details.

Th e examples in Java PAL, Seventh Edition are often examples pre-
sented in the primary textbook, Programming Logic and Design,
Seventh Edition. Th e following table shows the correlation between
topics in the two books.

Java PAL, Seventh Edition
Programming Logic
and Design, Seventh Edition

Chapter 1: An Introduction to
Java and the Java Programming
Environment

Chapter 1: An Overview of
Computers and Logic

Chapter 2: Variables, Constants,
Operators, and Writing Programs
Using Sequential Statements

Chapter 2: Working with Data,
Creating Modules, and Designing
High-Quality Programs
Chapter 3: Understanding Structure

Chapter 3: Writing Structured Java
Programs

Chapter 2: Working with Data,
Creating Modules, and Designing
High-Quality Programs
Chapter 3: Understanding Structure

(continues)

ix

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Java PAL, Seventh Edition
Programming Logic
and Design, Seventh Edition

Chapter 4: Writing Programs That
Make Decisions

Chapter 4: Making Decisions

Chapter 5: Writing Programs Using
Loops

Chapter 5: Looping

Chapter 6: Using Arrays in Java
Programs

Chapter 6: Arrays

Chapter 7: File Handling and
Applications

Chapter 7: File Handling and
Applications

Chapter 8: Advanced Array
Techniques

Chapter 8: Advanced Array Concepts,
Indexed Files, and Linked Lists

Chapter 9: Advanced Modularization
Techniques

Chapter 9: Advanced Modularization
Techniques

Chapter 10: Additional Topics Chapter 10: Object-Oriented
Programming
Chapter 11: More Object-Oriented
Programming Concepts
Chapter 12: Event Driven GUI
Programming, Multithreading,
and Animation

Organization and Coverage
Java Programs to Accompany Programming Logic and Design, Seventh
Edition provides students with a review of the programming concepts
they are introduced to in their primary textbook. It also shows them
how to use Java to transform their program logic and design into
working programs. Chapter 1 introduces the structure of a Java
program, how to compile and run a Java program, and introductory
object-oriented concepts. Chapter 2 discusses Java’s data types,
variables, constants, arithmetic and assignment operators, and using
sequential statements to write a complete Java program. In Chapter
3, students learn how to transform pseudocode and fl owcharts
into Java programs. Chapters 4 and 5 introduce students to writing
Java programs that make decisions and programs that use looping
constructs. Students learn to use Java to develop more sophisticated
programs that include using arrays, control breaks, and fi le input
and output in Chapters 6 and 7. In Chapter 8, students learn about
sorting data items in an array and using multidimensional arrays.
Passing parameters to procedures is introduced in Chapter 9. Lastly,

(continued)

x

P R E FA C E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

in Chapter 10, students use Java to write programs that include
programmer-defi ned classes. Th is last chapter also gives students
some experience in creating a graphical user interface (GUI).

Th is book combines text explanation of concepts and syntax along
with pseudocode and actual Java code examples to provide students
with the knowledge they need to implement their logic and program
designs using the Java programming language. Th is book is written
in a modular format and provides paper-and-pencil exercises as well
as lab exercises after each major topic is introduced. Th e exercises
provide students with experience in reading and writing Java code as
well as modifying and debugging existing code. In the labs, students
are asked to complete partially prewritten Java programs. Using
partially prewritten programs allows students to focus on individual
concepts rather than an entire program. Th e labs also allow students
to see their programs execute.

Java PAL, Seventh Edition is unique because:

 • It is written and designed to correspond to the topics in the
 primary textbook, Programming Language and Design, Seventh
Edition.

 • Th e examples are everyday examples; no special knowledge of
mathematics, accounting, or other disciplines is assumed.

 • It introduces students to introductory elements of the Java
 programming language rather than overwhelming beginning
programmers with more detail than they are prepared to use
or understand.

 • Text explanations are interspersed with pseudocode from the
 primary book, thus reinforcing the importance of programming
logic.

 • Complex programs are built through the use of complete
 examples. Students see how an application is built from start
to fi nish instead of studying only segments of programs.

Features of the Text
Every chapter in this book includes the following features. Th ese
features are both conducive to learning in the classroom and enable
students to learn the material at their own pace.

 • Objectives: Each chapter begins with a list of objectives so the
student knows the topics that will be presented in the chapter.
In addition to providing a quick reference to topics covered, this
 feature provides a useful study aid.

xi

 P R E FA C E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 • Figures and illustrations: Th is book has plenty of visuals, which
provide the reader with a more complete learning experience,
rather than one that involves simply studying text.

 • Notes: Th ese brief notes provide additional information—for
example, a common error to watch out for.

 • Exercises: Each section of each chapter includes meaningful
paper-and-pencil exercises that allow students to practice the skills
and concepts they are learning in the section.

 • Labs: Each section of each chapter includes meaningful lab work
that allows students to write and execute programs that implement
their logic and program design.

Acknowledgments
I would like to thank all the people who helped to make this book
possible. Th anks to Alyssa Pratt, Senior Product Manager, and Brandi
Shailer, Acquisitions Editor, for their help and encouragement. I am
grateful to Cathie DiMassa, Senior Content Project Manager, Serge
Palladino, Quality Assurance, and Sreemannarayana Reddy Syakam,
of Integra Software Services, for overseeing the production of the
printed book. It is a pleasure to work with so many fi ne people who
are dedicated to producing quality instructional materials.

I am dedicating this book to my husband, Ray, our son, Tim, and our
grandson, William.

Jo Ann Smith

xii

P R E FA C E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Read This Before
You Begin

To the User

Data Files
To complete most of the lab exercises, you will need data fi les that
have been created for this book. Your instructor can provide the data
fi les. You can also obtain the fi les electronically from the publisher at
www.CengageBrain.com (search under the ISBN for this book), and
then searching for this book title.

You can use a computer in your school lab or your own computer to
complete the lab exercises in this book.

Solutions
Solutions to the Exercises and Labs are provided to instructors on the
Course Technology Web site at login.cengage.com. Th e solutions are
password protected.

Using Your Own Computer
To use your own computer to complete the material in this book,
your computer must be included in the list of Java-supported
 systems. To view this list, go to http://www.oracle.com/technetwork/
java/javase/confi g-417990.html.

Th is book was written using Microsoft Windows Vista and
Quality Assurance tested using Microsoft Windows 7.

xiii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Downloading the Java Standard Edition
Development Kit (JDK7) for the Windows Platform
To download JDK7, go to the download Web site at
http://www.oracle.com/technetwork/java/javase/downloads/index
.html.

 • Click the Download button under the JDK heading in the Java
Platform, Standard Edition, Java SE 7uX section of the web page. Th e
“X” represents a digit that changes as Sun releases new downloads. You
may have to scroll down to be able to see the Download button.

 • On the next screen, fi nd your operating system platform (e.g.,
Windows) from the list, select the radio button next to the words
Accept License Agreement, and then click the link on the same
line as your operating system.

 • When the next window appears, you are asked if you want to save the
download fi le. Click Save File (Firefox) or Save (Internet Explorer).

 • In the Save As dialog box (Internet Explorer) or the “Enter name
of fi le to save to . . . ” window (Firefox), specify your Desktop as
the location in which to save the downloaded fi le, then click Save.
(In Firefox, the fi le may automatically be downloaded to your
Downloads folder.) You will be downloading the fi le named jdk-
7ux-windows-i586.exe. Th e “x” represents a digit that change as
Sun releases new downloads. Depending on the speed of your
connection, this could take some time.

 • When the download is complete, note that the size of the fi le
(in bytes) is provided on the download screen. Check that the
fi le you downloaded is the same size. Th is means you have
downloaded the full, uncorrupt fi le.

Installing the Java Standard Edition
Development Kit (JDK7)
 • On your Desktop, double-click jdk-7uX-windows-i586.exe. Th is

starts the installation program.

 • Next,

 • In Vista: You may have to click the Continue button on the
User Account Control dialog box.

 • In XP: Click Run on the Open File Security Warning dialog box.

 • In Windows 7: You may have to click the Yes button in the User
Account Control dialog box.

xiv

READ THIS BEFORE YOU BEGIN R E A D T H I S B E F O R E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 • In the Setup Dialog Box, click the Next button.

 • In the Custom Setup dialog box, select Development Tools if it
is not already selected. At the bottom left, you see “Install to.” By
default, the fi les will be installed in the C:\Program Files\Java\
jdk1.7.0_XX\ folder. You should not change this location unless
you have a good reason to do so.

 • Click the Next button.

 • After a few moments, the Destination Folder dialog box is
displayed, showing you the folder where Java will be installed. You
should not change this location unless you have a good reason to
do so. Click the Next button.

 • Th e Java Setup program now installs the Java SE Development
Kit 7. Files are copied to the appropriate folders. Th is takes a few
minutes. When the setup is complete, you see the message “Java SE
Development Kit 7 Update XX Successfully Installed” in the dialog
box. Click Finish to complete the setup.

 • When the installation is complete, you can delete the downloaded
fi le, jdk-7uxx-windows-i586.exe to recover disk space.

Updating Your PATH Environment Variable
Setting the PATH variable allows you to use the compiler (javac) and
bytecode interpreter (java) without having to specify the full path for
the command.

To set the PATH permanently in Windows 7:

1. Clic k the Start button in the lower left corner of your
Desktop.

2. S elect Control Panel, click System and Security, and then
click System.

3. S elect the Advanced system settings link. Click Yes.

4. In the System Properties dialog box, select the Advanced
tab, if necessary, and then click the Environment Variables
button.

5. S elect PATH or Path in the User variables or System
variables section, click Edit, and then edit the PATH variable
by adding the following to the end of the current PATH:

;C:\Program Files\Java\jdk1.7.0_XX\bin

xv

 READ THIS BEFORE YOU BEGINR E A D T H I S B E F O R E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that it is important to include the semicolon (;) at the
beginning of the path, preceding C:\. Replace the “XX” with
the update number you have downloaded. A typical PATH
might look like this:

C:\Windows;C:\Windows\System32;C:\Program Files\Java\
jdk1.7.0_01\bin

6. When you are fi nished editing the PATH variable, click OK.

7. Clic k OK on the Environment Variables dialog box.

8. Clic k OK on the System Properties dialog box.

9. Close the System window.

To set the PATH permanently in Windows Vista:

1. Clic k the Start button in the lower left corner of your
Desktop.

2. S elect Control Panel and then select Classic View,
if necessary.

3. D ouble-click System.

4. S elect the Advanced system settings link. Click Continue,
if necessary.

5. In the System Properties dialog box, select the Advanced tab, if
necessary, and then click the Environment Variables button.

6. S elect PATH or Path in the User variables or System
variables section, click Edit, and then edit the PATH variable
by adding the following to the end of the current PATH:

;C:\Program Files\Java\jdk1.7.0_XX\bin

Note that it is important to include the semicolon (;) at the
beginning of the path, preceding C:\. Replace the “XX” with
the update number you have downloaded. Add the path to the
end of the current PATH. A typical PATH might look like this:

C:\Windows;C:\Windows\System32;C:\Program Files\Java\
jdk1.7.0_01\bin

7. When you are fi nished editing the PATH variable, click OK.

8. Clic k OK on the Environment Variables dialog box.

9. Clic k OK on the System Properties dialog box.

10. Close the System window.

xvi

READ THIS BEFORE YOU BEGIN R E A D T H I S B E F O R E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To set the PATH permanently in Windows XP:

1. Clic k the Start button in the lower left corner of your
Desktop.

2. S elect Control Panel and then double-click System.

3. In the System Properties dialog box, select the Advanced tab,
and then click the Environment Variables button.

4. S elect PATH or Path in the User variables or System
variables section, click Edit, and then edit the PATH variable
by adding the following to the end of the current PATH:

;C:\Program Files\Java\jdk1.7.0_XX\bin

Note that it is important to include the semicolon (;) at the
beginning of the path, preceding C:\. Replace the “XX” with
the update number you have downloaded. A typical PATH
might look like this:

C:\Windows;C:\Windows\System32;C:\Program Files\Java\
jdk1.7.0_01\bin

5. When you are fi nished editing the PATH variable, click OK.

6. Clic k OK on the Environment Variables dialog box.

7. Clic k OK on the System Properties dialog box.

8. Close the System window.

Capitalization does not matter when you are setting the PATH
variable. Th e PATH is a series of folders separated by semicolons (;).
Windows searches for programs in the PATH folders in order, from
left to right.

To fi nd out the current value of your PATH, at the prompt in a
Command Prompt window, type: path.

Updating Your CLASSPATH Environment Variable
Setting the CLASSPATH variable allows you to execute Java
programs without having to specify the full path for the program.
You may not have to update the CLASSPATH environment variable
unless instructed to do so by your professor.

xvii

 READ THIS BEFORE YOU BEGINR E A D T H I S B E F O R E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you do want to update the CLASSPATH environment variable,
follow the steps you used to edit the PATH variable up to the point
of editing the PATH variable. Th en do the following:

1. S elect CLASSPATH or classpath in the User variables
or System variables section, click Edit, and then edit the
CLASSPATH variable by adding a semicolon (;) followed
by a period (.) to the end of the “CLASSPATH”. A typical
CLASSPATH might look like this:

C:\Program Files\Java\jdk1.7.0_01\bin;.

2. When you are fi nished editing the CLASSPATH variable,
click OK.

3. Clic k OK on the Environment Variables dialog box.

4. Clic k OK on the System Properties dialog box.

5. Close the System window.

If you don’t have a CLASSPATH environment variable, click the New
button, enter CLASSPATH for the variable name and a period (.) for
the variable value.

Capitalization does not matter when you are setting the CLASSPATH
variable. Th e CLASSPATH is a series of folders separated by
semicolons (;). Java searches for classes in the CLASSPATH folders in
order, from left to right.

To fi nd out the current value of your CLASSPATH, at the prompt in a
Command Prompt window, type: set classpath.

To the Instructor
To complete some of the Exercises and Labs in this book, your
students must use the data fi les provided with this book. Th ese fi les
are available from the publisher at www.CengageBrain.com (search
under the ISBN for this book). Follow the instructions in the Help fi le
to copy the data fi les to your server or stand-alone computer. You can
view the Help fi le using a text editor such as WordPad or Notepad.
Once the fi les are copied, you may instruct your students to copy the
fi les to their own computers or workstations.

Course Technology Data Files
You are granted a license to copy the data fi les to any computer or
computer network used by individuals who have purchased this book.

xviii

READ THIS BEFORE YOU BEGIN R E A D T H I S B E F O R E

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1
An Introduction
to Java and the
Java Programming
Environment

After studying this chapter, you will be able to:

 Discuss the Java programming language and its history

 Recognize the three types of Java programs

 Explain introductory concepts and terminology used in
object-oriented programming

 Download the Java Standard Edition Development Kit (JDK)

 Recognize the structure of a Java program

 Complete the Java development cycle, which includes
creating a source code fi le, compiling the source code,
and executing a Java program

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You should do the exercises and labs in this chapter only after you
have fi nished Chapter 1 of your book, Programming Logic and Design,
Seventh Edition, by Joyce Farrell. Th is chapter introduces the Java
programming language and its history. It explains some introductory
object-oriented concepts, describes the process of compiling and
executing a Java program, and explains how to download the Java
Standard Edition Development Kit (JDK). You begin writing Java pro-
grams in Chapter 2 of this book.

The Java Programming Language
Th e Java programming language was developed by Dr. James Gosling
and introduced by Sun Microsystems in late 1995. It became very
popular in a short period of time, mostly due to the rising popularity of
the World Wide Web. Java is a programming language that can be used
to create interactive Web pages and to write Web-based applications
that run on Web servers. Web servers are the computers that “serve
up” content when you request to view Web pages. An online bookstore
and an online course registration system are examples of Web-based
applications. Java is also used to develop stand-alone enterprise
applications (programs that help manage data and run a business) and
applications for cell phones, cable boxes, e-readers, and parking meters.

What makes Java especially useful is that it is an object-oriented
programming language. Th e term object-oriented encompasses a
number of concepts explained later in this chapter and throughout
this book. For now, all you need to know is that an object-
oriented programming language is modular in nature, allowing the
programmer to build a program from reusable parts of programs
called classes, objects, and methods.

Th e Java programming language is just one part of an object-oriented
system called the Java Standard Edition Development Kit (JDK). You
will use the JDK when you write, compile, and execute Java programs
in this book. Th e JDK includes many reusable parts of programs,
called packages. Programmers use these packages to simplify their
programming tasks. Th e JDK also includes development tools used
by program developers. Examples of development tools include the
compiler (javac) and the bytecode interpreter (java) that you will
use later in this chapter.

Three Types of Java Programs
Java programs can be written as applications, servlets, or applets.
An application is a stand-alone program. A servlet is a Java pro-
gram that runs on a Web server or application server and provides
server-side processing, such as accessing a database and handling

Many of the
terms used to
describe the
JDK may be
unfamiliar to

you. Don’t worry about
that right now. By the
time you fi nish with this
chapter, you will under-
stand this new terminol-
ogy and you will even be
using some of the tools
that are part of the JDK.

2

C H A P T E R 1 An Introduction to Java and the Java Programming Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

e-commerce transactions. An applet is a Java program that is exe-
cuted and viewed in a browser such as Mozilla Firefox or Internet
Explorer. In this book, you will write applications, which means you
will be writing stand-alone Java programs.

An Introduction to Object-Oriented
Terminology
You must understand a few object-oriented concepts to be successful
at reading and working with Java programs in this book. Note, how-
ever, that you will not learn enough to make you a Java programmer.
You will have to take additional courses in Java to become a Java pro-
grammer. Th is book teaches you only the basics.

To fully understand the term object-oriented, you need to know a
little about procedural programming. Procedural programming is
a style of programming that is older than object-oriented program-
ming. Procedural programs consist of statements that the computer
runs or executes. Many of the statements make calls (a request to
run or execute) to groups of other statements that are known as
procedures, modules, methods, or subroutines. Th ese programs are
known as “procedural” because they perform a sequence of proce-
dures. Procedural programming focuses on writing code that takes
some data (for example, some sales fi gures), performs a specifi c task
using the data (for example, adding up the sales fi gures), and then
produces output (for example, a sales report). When people who use
procedural programs (the users) decide that they want their pro-
grams to do something slightly diff erent, a programmer must revise
the program code, taking great care not to introduce errors into the
logic of the program.

Today, we need computer programs that are fl exible and easy to
revise. Object-oriented programming languages, including Java, were
introduced to meet this need. In object-oriented programming, the
programmer can focus on the data that he or she wants to manipu-
late, rather than the individual lines of code required to manipulate
that data (although those individual lines still must be written even-
tually). An object-oriented program is made up of a collection of
interacting objects.

An object represents something in the real world, such as a car, an
employee, or an item in an inventory. An object includes (or encap-
sulates) both the data related to the object and the tasks you can
perform on that data. Th e term behavior is sometimes used to refer
to the tasks you can perform on an object’s data. For example, the
data for an inventory object might include a list of inventory items,

3

An Introduction to Object-Oriented Terminology

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the number of each item in stock, the number of days each item has
been in stock, and so on. Th e behaviors of the inventory object might
include calculations that add up the total number of items in stock
and calculations that determine the average amount of time each item
remains in inventory.

In object-oriented programming, the data items within an object are
known collectively as the object’s attributes. You can think of an
attribute as one of the characteristics of an object, such as its shape,
its color, or its name. Th e tasks the object performs on that data are
known as the object’s methods. (You can also think of a method as
an object’s behavior.) Because methods are built into objects, when
you create a Java program, you don’t always have to write multiple
lines of code telling the program exactly how to manipulate the
object’s data. Instead, you can write a shorter line of code, known as a
call, that passes a message to the method indicating that you need it
to do something.

For example, you can display dialog boxes, scroll bars, and buttons for
a user of your program to type in or click on simply by sending a mes-
sage to an existing object. At other times, you will be responsible for
creating your own classes and writing the code for the methods that
are part of that class. Whether you use existing, prewritten classes or
create your own classes, one of your main jobs as a Java programmer
is to communicate with the various objects in a program (and the
methods of those objects) by passing messages. Individual objects in a
program can also pass messages to other objects.

When Java programmers begin to write a program, they must begin
by creating a class. A class can be thought of as a template for a
group of similar objects. In a class, the programmer specifi es the data
(attributes) and behaviors (methods) for all objects that belong to that
class. An object is sometimes referred to as an instance of a class,
and the process of creating an object is referred to as instantiation.

To understand the terms class, instance, and instantiation, it’s help-
ful to think of them in terms of a real-world example—baking a
 chocolate cake. Th e recipe is similar to a class, and an actual cake is
an object. If you wanted to, you could create many chocolate cakes
that are all based on the same recipe. For example, your mother’s
birthday cake, your sister’s anniversary cake, and the cake for your
neighborhood bake sale all might be based on a single recipe that
contains the same data (ingredients) and methods (instructions). In
object-oriented programming, you can create as many objects as you
need in your program from the same class.

4

C H A P T E R 1 An Introduction to Java and the Java Programming Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Downloading the Java Standard Edition
Development Kit (JDK)
All the examples in this book were created using the Java Standard
Edition Development Kit (JDK 7). You can get your own copy of the
JDK and install it on your computer at home, or your school may
have the JDK installed in your lab.

To get your own copy, go to the Java SE Web site at http://www
.oracle.com/technetwork/java/javase/downloads/index.html. Click the
Download button in the Java Platform (JDK) 7 section. Th en follow
the directions for downloading and installing the correct version of
the software for your computer’s operating system. Refer to the “Read
Th is Before You Begin” section at the front of this book, or ask your
instructor, if you have questions regarding this process.

The Structure of a Java Program
When a programmer learns a new programming language, the fi rst
program he or she traditionally writes is a Hello World program—a
program that displays the message “Hello World” on the screen.
Creating this simple program illustrates that the language is capable
of instructing the computer to communicate with the outside world.
Th e Java version of the Hello World program is shown in Figure 1-1.

public class HelloWorld
{
 public static void main(String args[])
 {
 System.out.println("Hello World.");
 }
}

Figure 1-1 Hello World program

At this point, you’re not expected to understand all the code in
Figure 1-1. Just notice that the code begins with the word public, fol-
lowed by the word class. Both public and class are special words,
known as keywords, which are reserved by Java to have a special
meaning. Th e keyword public indicates that the class you are about
to create should be available when the program executes. Th e class
keyword tells the Java compiler that you are beginning the creation
of a class and that what follows is part of that class. Th e name of the

5

The Structure of a Java Program

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

class is up to you; however, the name should be meaningful, and it
cannot contain any spaces. Because this program is written to display
the words “Hello World” on the user’s screen, it makes sense to name
the class HelloWorld.

Th e opening curly brace ({) on the second line of Figure 1-1 marks
the beginning of the class named HelloWorld. Th e closing curly brace
(}) on the last line of Figure 1-1 marks the end of the class.

Below the opening curly brace you see the method named main().

Th is is a special method in a Java program; the main() method is the
fi rst method that executes when any program runs. Th e programs
in the fi rst eight chapters of this book will include only the main()
method. In later chapters you will be able to include additional
methods.

Th e fi rst part of any method is its header. In Figure 1-1, the header
for the main() method begins with the public keyword, followed
by the static keyword, followed by the void keyword, followed by
the method name, which is main(). Th e public keyword makes this
method available to a user who wants to run the program. At this
point, you don’t have to understand the keyword static. Just keep in
mind that it’s necessary to make the Hello World program work.

To understand the keyword void you need to know that methods
often create some kind of output (for example, the result of a calcula-
tion), which can then be used elsewhere in the program. Another way
to say this is that methods sometimes return a value. In Figure 1-1,
the keyword void indicates that the main() method does not return
anything. You will learn more about methods returning values in
Chapter 9 of this book.

When we use the main() method in Java code, we always insert
String args[] within the parentheses following the word main, like
this: main(String args[]). Th is makes it possible to pass some argu-
ments, or values, to the main() method. You will learn more about
passing arguments to methods in Chapter 9. For now, you will have
to include String args[] in the parentheses without understanding
why. Remember that Java is a complex programming language; you
will have much more to learn about it after you fi nish this course in
order to become a Java programmer.

Th e line following the header for main() begins with another open-
ing curly brace. Th is curly brace marks the beginning of the main()
method. Th e closing curly brace on the second-to-last line of Figure 1-1
marks the end of the main() method. All the code within this pair of
curly braces executes when the main() method executes. In Figure 1-1,
there is only this one line of code between the curly braces:

In Java, it is a
convention to
begin class
names with a
capital letter.

If a class name is made
up of two or more words,
the fi rst letter of each
word in the name is typi-
cally capitalized, with no
spaces between the
words.

You can tell
main() is a
method
because of
the parenthe-

ses; all Java method
names are followed by
parentheses.

6

C H A P T E R 1 An Introduction to Java and the Java Programming Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System.out.println("Hello World.");

Th is is the line that causes the words “Hello World.” to appear on
the user’s screen. Th is line consists of two parts. Th e fi rst part,
System.out.println();, prints (that is, displays on the screen) what-
ever is included within its parentheses. In this example, the parentheses
contain the message “Hello World.” so that is what will appear on the
screen. (Th e quotation marks will not appear on the screen, but they are
necessary to make the program work.) Note that the semicolon that ends
the System.out.println("Hello World."); statement is required
because it tells the compiler that this is the end of the statement.

In the statement System.out.println("Hello World.");, System
is a class, out is an object, and println() is a method. Java programs
frequently use this class-dot-object-dot-method syntax.

Next, you learn about the Java development cycle so that later in this
chapter, you can compile the Hello World program and execute it.
Th e Hello World program is saved in a fi le named HelloWorld.java
and is included in the student fi les for this chapter.

The Java Development Cycle
When you fi nish designing a program and writing the Java code that
implements your design, you must compile and execute your program.
Th is three-step process of writing code, compiling code, and executing
code is called the Java development cycle. It is illustrated in Figure 1-2.

Let’s begin by learning about Step 1, writing the Java source code.

Figure 1-2 The Java development cycle

Step 3
Execute the

program
(java MyClass)

Step 1
Write Java

source code
(Notepad)

Step 2
Compile

source code
(javac MyClass.java)

Source code file
(MyClass.java)

Java bytecode
(MyClass.class)

Output

7

The Java Development Cycle

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing Java Source Code
As you learned in the previous section, you write a Java program
by creating a class and including a method named main() in the
class. But what do you use to write the program, and where do you
save it?

To write a Java program, you use a text editor, such as the Windows
text editor, Notepad. You can use any text editor, but the steps in this
book assume you are using Notepad. To start Notepad, click the Start
button, point to Programs or All Programs, click Accessories, and
then click Notepad. Once Notepad starts, you simply type in your
Java source code. Source code is the name used for the statements
that make up a Java program. For example, the code shown earlier in
Figure 1-1 is source code.

When you save the fi le that contains the source code, it is impor-
tant to name the fi le using the same name as the class and to
add the extension .java. For the Hello World program, the class
is named HelloWorld; therefore, the name of the source code
fi le must be HelloWorld.java. Of course, it is also important to
remember the location of the folder in which you choose to save
your source code fi le.

You move on to Step 2 of the Java development cycle after saving
your source code fi le. In Step 2, you compile the source code.

Compiling a Java Program
As you learned earlier in this chapter, the JDK contains several
utility programs. One of these utilities is the Java compiler, named
javac. Th e javac compiler is responsible for taking your source
code and transforming it into bytecode. Bytecode is intermediate,
machine-independent code. Intermediate means that the code is
between source code and machine code. Machine code is made
up of 1s and 0s, which a computer needs to execute a program. Th e
Java compiler automatically saves the intermediate bytecode in a
fi le. Th is fi le has the same name as the source code fi le, but it has a
.class extension rather than a .java extension. Th e bytecode gen-
erated by the compiler is platform independent. Th is is an impor-
tant feature of Java. Platform independence means that the same
Java program can be executed on many diff erent types of computers
that run many diff erent operating systems.

The name of
the fi le and
the name
of the class
must match

exactly, including upper-
case and lowercase let-
ters. It would not be
correct to name the
source code fi le
helloworld.java
because the lowercase
“h” and lowercase “w” do
not match the uppercase
“H” and uppercase “W” in
the class name.

8

C H A P T E R 1 An Introduction to Java and the Java Programming Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e following steps show how to compile a source code fi le.
Th ese steps assume you have already created and saved the
HelloWorld.java source code fi le.

1. S et your PATH environment variable. Refer to “Read Th is
Before You Begin” at the front of this book or ask your
instructor for instructions on how to set the PATH environ-
ment variable.

2. S et your CLASSPATH environment variable. Refer to the “Read
Th is Before You Begin” section at the beginning of this book
for instructions on how to set the CLASSPATH environment
variable.

3. Open a Command Prompt window. To do this in Windows
XP, Vista, or Windows 7, click the Start button, point to All
Programs, click Accessories, and then click Command
Prompt. Th e cursor blinks to the right of the current fi le path.

4. To compile your source code fi le, you fi rst have to change to
the fi le path containing your source code fi le. To do this, type
cd driveletter:\path where driveletter is the drive contain-
ing your fi le, and path is the path to the folder containing
your fi le. For example, to open a fi le stored in a folder named
“Testing,” which is in turn stored in a folder named “My
Program,” which is stored on the C: drive, you would type cd
C:\My Program\Testing. After you type the command, press
Enter. Th e cursor now blinks next to the fi le path for the
folder containing your source code fi le.

5. Type the following command, which uses the Java compiler,
javac, to compile the program:
javac HelloWorld.java

If there are no syntax errors in your source code, a fi le named
HelloWorld.class is created. You do not see anything special
happen. However, the fi le you just created contains the byte-
code for the Hello World program. If there are syntax errors,
you will see error messages on the screen. In that case, you
need to go back to Notepad to fi x the errors, save the source
code fi le again, and recompile until there are no syntax errors
remaining. Syntax errors alert you to mistakes in your source
code and also where they are located in your program.

The PATH
environment
variable tells
your operating
system which

directories on your sys-
tem contain commands.

The
CLASSPATH
environment
variable tells
your operating

system which directories
on your system contain
resources it needs to run
your program.

If you are
working in a
school com-
puter lab, the
fi rst two steps

might already have been
performed for you.

9

The Java Development Cycle

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. After the program is compiled, you can use the dir com-
mand to display a directory listing to see the fi le named
HelloWorld.class. To execute the dir command, you type
dir at the command prompt. For example, if your source
code fi le is located at C:\My Program\Testing, the command
prompt and dir command should look like this:
C:\My Program\Testing>dir. Th e HelloWorld.class
fi le should be in the same directory as the source code fi le,
HelloWorld.java.

Step 3 in the development cycle is executing the Java program. You’ll
learn about that next.

Executing a Java Program
As you know, a computer can understand only machine code (1s
and 0s), so a Java program must eventually be transformed from
bytecode into machine code before it can be executed. Th e Java
Virtual Machine (JVM) is an interpreter that is responsible for
transforming bytecode into machine code and then executing that
machine code.

Th ere are many JVMs available from diff erent vendors and written
for diff erent purposes. For example, Web browsers, such as Internet
Explorer and Mozilla Firefox, contain a JVM. Th ere is a JVM for the
Windows operating system, another for the Mac operating system,
and yet another for the Linux operating system. You will most likely
use the Windows JVM when you execute your Java programs. Th e
name of the JDK utility you use to transform bytecode and execute
your Java programs is java.

To execute the Hello World program, do the following:

1. Open a Command Prompt window. To do this in Windows
XP, Vista, or Windows 7, click the Start button, point to All
Programs, click Accessories, and then click Command
Prompt. Change to the fi le path containing your source code
fi le, if necessary, and then enter the following command:
java HelloWorld

2. When the program executes, the words “Hello World.” appear
in a Command Prompt window.

At this point in
your program-
ming career,
don’t expect
to understand

the contents of a .class
fi le if you open one using
a text editor such as
Notepad.

You must be
in the same
directory that
contains your
.class fi le

when you execute the
program.

10

C H A P T E R 1 An Introduction to Java and the Java Programming Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 1-3 illustrates the steps involved in compiling HelloWorld.java
using the javac compiler, executing the dir command to verify that
the fi le HelloWorld.class was created, and executing the Hello
World program using the java interpreter.

Figure 1-3 Compiling and executing the Hello World program

Exercise 1-1: Understanding Java Utilities
In this exercise, assume you have written a Java program and stored
your source code in a fi le named MyFirstJavaProgram.java. Th en,
answer Questions 1–3.

1. What is the name of the class stored in this fi le?

2. What command would you use to compile the source code?

3. What command would you use to execute the program?

11

The Java Development Cycle

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 1.1 Understanding Java
Utilities

In this lab, you compile and execute a prewritten Java pro-
gram, and then answer Questions 1–6.

1. Open the source code fi le named Programmer.java using
Notepad or the text editor of your choice.

2. Save this source code fi le in a directory of your choice, and
then change to that directory.

3. Compile the source code fi le. Th ere should be no syntax
errors. Record the command you used to compile the source
code fi le.

4. Execute the program. Record the command you used to exe-
cute the program, and also record the output of this program.

5. Modify the class so that it displays “I am learning how
to program in Java.,” and then change the class name to
JavaProgrammer. Save the fi le as JavaProgrammer.java.
Compile and execute the program.

6. Mo dify the JavaProgrammer class so that it prints two lines
of output. Change the class name to GoodLuck. Add a second
output statement that displays “Good Luck!” Save the modi-
fi ed fi le as GoodLuck.java. Compile and execute the program.

12

C H A P T E R 1 An Introduction to Java and the Java Programming Environment

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Name variables and use appropriate data types

 Declare and initialize variables

 Understand and use unnamed and named constants

 Use arithmetic operators in expressions

 Use assignment operators in assignment statements

 Write Java comments

 Write programs using sequential statements and interactive
input statements

C H A P T E R 2
Variables, Constants,
Operators, and
Writing Programs
Using Sequential
Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, you learn about writing programs that use variables,
constants, and arithmetic operators, and that receive interactive
input from a user of your programs. We begin by reviewing variables
and constants and learning how to use them in a Java program. You
should do the exercises and labs in this chapter only after you have
fi nished Chapters 2 and 3 of your book, Programming Logic and
Design, Seventh Edition, by Joyce Farrell.

Variables
As you know, a variable is a named location in the computer’s
 memory whose contents can vary (thus the term variable). You use
a variable in a program when you need to store values. Th e values
stored in variables often change as a program executes.

In Java, you must declare variables before you can use them in a
 program. Declaring a variable is a two-part process: fi rst you give
the variable a name, and then you specify its data type. You’ll learn
about data types shortly. But fi rst, we’ll focus on the rules for naming
 variables in Java.

Variable Names
Variable names in Java can consist of letters, numerical digits, a dollar
sign, and the underscore character, but they cannot begin with a digit.

You cannot use a Java keyword for a variable name. As you learned in
Chapter 1 of this book, a keyword is a word with a special meaning
in Java. Th e following are all examples of legal variable names in Java:
my_var, num6, intValue, and f rstName. Table 2-1 lists some examples
of invalid variable names, and explains why each is invalid.

Name of Variable Explanation
3wrong Invalid because it begins with a digit

$don’t Invalid because it contains a single quotation mark

public Invalid because it is a Java keyword

Table 2-1 Invalid variable names

When naming variables, keep in mind that Java is case sensitive—
 in other words, Java knows the diff erence between uppercase and
lowercase characters. Th a t means value, Value, and VaLuE are three
 diff erent variable names in Java.

In Java, variable names can be as long as you want. A good rule is to
give variables meaningful names that are long enough to describe

A variable is
sometimes
referred to as
an identifi er.

By convention,
variable
names in Java
begin with a
lowercase

letter; all other words in
the name begin with an
uppercase letter—for
example, f rstName.
You cannot include
spaces between the
words in a variable name.

14

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

how the variable is used, but not so long that you make your program
hard to read or cause yourself unnecessary typing. For example, a
variable named f rstName will clearly be used to store someone’s fi rst
name. Th e variable name freshmanStudentFirstName is descriptive
but inconveniently long; the variable name fn is too short and not
meaningful.

Java Data Types
In addition to specifying a name for a variable, you also need to
specify a particular data type for that variable. A variable’s data type
dictates the amount of memory that is allocated for the variable and
the type of data that you can store in the variable. Th ere are many
diff erent kinds of data types, but in this book we will focus on the
most basic kind of data types, known as primitive data types. Th er e
are eight primitive data types in Java: byte, short, int, long, f oat,
double, char, and boolean. Some of these data types (such as short,
int, long, double, and f oat) are used for variables that will store
numeric values, and are referred to as numeric data types. Th e others
have specialized purposes. For example, the boolean data type is used
to store a value of either true or false.

You will not use all of Java’s primitive data types in the programs you
write in this book. Instead, you will focus on two of the numeric data
types (int and double). Th e int data type is used for values that are
whole numbers. For example, you could use a variable with the data
type int to store someone’s age (for example, 25) or the number of
students in a class (for example, 35). A variable of the int data type
consists of 32 bits (4 bytes) of space in memory. You use the data type
double to store a fl oating-point value (that is, a fractional value), such
as the price of an item (2.95) or a measurement (2.5 feet). A vari-
able of the double data type consists of 64 bits (8 bytes) of space in
memory. You will learn about using other data types as you continue
to learn more about Java in subsequent courses.

Th e int and double data types will be adequate for all the numeric
variables you will use in this book. But what about when you need to
store a group of characters (such as a person’s name) in a variable?
In programming, we refer to a group of one or more characters as a
string. An example of a string is the last name “Wallace” or a product
type such as a “desk”. Th ere is no primitive data type in Java for stor-
ing strings; instead, they are stored in an object known as a String
object. In addition to working with the int and double data types in
this book, you will also work with Strings.

In Program-
ming Logic
and Design,
Seventh
Edition, the

data type num is used to
refer to all numeric data
types; a distinction is not
made between int and
double as it is in Java.

15

Variables

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 2-1: Using Java Variables, Data Types,
and Keywords
In this exercise, you use what you have learned about naming Java
variables, Java data types, and keywords to answer Questions 1–2.

1. Is each of the following a legal Java variable name? (Answer
“yes” or “no.”)

 myIDNumber this_is_a_var NUMBER
 yourIDNumber number $number
 short 110number f oatNum
 May13 One Number Number

2. What data type (int, double, or String) is appropriate for
storing each of the following values?

 A person’s weight in pounds.
 Th e amount of your rent payment.
 Your mother’s maiden name.
 Th e amount of interest on a loan, such as 10%.
 Th e number of classes you are taking.

Declaring and Initializing Variables
Now that you understand the rules for naming a variable, and you
understand the concept of a data type, you are ready to learn how to
declare a variable. In Java, you must declare all variables before you
can use them in a program. When you declare a variable, you tell
the compiler that you are going to use the variable. In the process of
declaring a variable, you must specify the variable’s name and its data
type. Declaring a variable tells the compiler that it needs to reserve
a memory location for the variable. A line of code that declares a
 variable is known as a variable declaration. Th e Java syntax for
a variable declaration is as follows:
dataType variableName;

For example, the declaration statement int counter; declares a
variable named counter of the int data type. Th e compiler reserves
the amount of memory space allotted to an int variable (32 bits, or
4 bytes) for the variable named counter. Th e compiler then assigns
the new variable a specifi c memory address. In Figure 2-1, the
 memory address for the variable named counter is 1000, although
you wouldn’t typically know the memory address of the variables
included in your Java programs.

16

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

counter (variable name) another variable

value of counter value of the next variable

first
byte

second
byte

third
byte

fourth
byte

1000 (The memory address is assigned by
the compiler; you cannot assign the memory
address yourself.)

1004 (This is the next available memory address
after counter because 4 bytes [1000, 1001,
1002, and 1003] have been reserved for the
variable named counter.)

int counter;

Figure 2-1 Declaration of variable and memory allocation

You can also initialize a Java variable when you declare it. When you
initialize a Java variable, you give it an initial value. For example,
you can assign an initial value of 8 to the counter variable when you
declare it, as shown in the following code:
int counter = 8;

You can also declare and initialize variables of data type double and
String variables as shown in the following code:
double salary;
double cost = 12.95;
String f rstName;
String homeAddress = "123 Main Street";

You can declare more than one variable in one statement as long as
they have the same data type. For example, the following statement
declares two variables, named counter and value. Both variables are
of the int data type.
int counter, value;

Exercise 2-2: Declaring and Initializing
Java Variables
In this exercise, you use what you have learned about declaring and
initializing Java variables to answer Questions 1–2.

1. Write a Java variable declaration for each of the following.
Use int, double, or String and choose meaningful variable
names.

 Declare a variable to store a product number (1 – 1000).

 Declare a variable to store the number of feet in a yard.

Numeric
 variables are
automatically
initialized to
zero (0),

unless you specify a
different value.

17

Declaring and Initializing Variables

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Declare a variable to store a temperature (0.0 – 130.00).

 Declare a variable to store the name of your home town.

2. Declare and initialize variables to represent the following
 values. Use int, double, or String and choose meaningful
variable names.

 Your shoe size (8.5).
 Th e number of days in a leap year.
 Th e name of your cat, “Yogi”.
 Your cell phone number (999-999-9999).

LAB 2.1 Declaring and Initializing
Java Variables

In this lab, you declare and initialize variables in a Java
program provided with the data fi les for this book. Th e

program, which is saved in a fi le named NewAge.java, calculates your
age in the year 2060.

1. Open the source code fi le named NewAge.java using Notepad
or the text editor of your choice.

2. Declare an integer variable named newAge.

3. Declare and initialize an integer variable named currentAge.
Initialize this variable with your current age.

4. Declare and initialize an integer variable named currentYear.
Initialize this variable with the value of the current year. Use
four digits for the year.

5. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

6. Compile the source code fi le NewAge.java.

7. Execute the program. Record the output of this program.

18

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Constants
As you know, a constant is a value that never changes. In Java, you
can use both unnamed constants as well as named constants in a
 program. You’ll learn about named constants shortly. But fi rst, we’ll
focus on unnamed constants.

Unnamed Constants
Computers are able to deal with two basic types of data: text and
numeric. When you use a specifi c numeric value, such as 35, in a
program, you write it using the numbers, without quotation marks.
A specifi c numeric value is called a numeric constant because it
does not change; a 35 always has the value 35. When you use a spe-
cifi c text value, or string of characters, such as “William,” you enclose
the string constant in double quotation marks. Both of the preced-
ing examples, 35 and “William,” are examples of unnamed constants
because they do not have specifi ed names as variables do.

Named Constants
In addition to variables, Java allows you to create named constants. A
named constant is similar to a variable, except it can be assigned a
value only once. You use a named constant when you want to assign a
name to a value that will never be changed when a program executes.

To declare a named constant in Java, you use the keyword f nal, fol-
lowed by the data type, followed by the name of the constant. Named
constants must be initialized when they are declared, and their con-
tents may not be changed during the execution of the program. For
example, the following statement declares an int constant named
MAX_STUDENTS and initializes MAX_STUDENTS with the value 35.
f nal int MAX_STUDENTS = 35;

Exercise 2-3: Declaring and Initializing
Java Constants
In this exercise, you use what you have learned about declaring and
initializing Java constants to answer the question.

1. Declare and initialize constants to represent the following val-
ues. Use int, double, or String and choose meaningful names.

Th e price of a burger is $4.95.
 Th e number of days in October is 31.
 Th e name of your cat is “Yogi”.
 Th e length of a football fi eld in yards is 100.

By convention,
in Java the
names of
constants are
written in all

uppercase letters. This
makes it easier for you to
spot named constants in
a long block of code.

19

Constants

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 2.2 Declaring and Initializing
Java Constants

In this lab, you declare and initialize constants in a Java
program provided with the data fi les for this book. Th e

program, which is saved in a fi le named NewAge2.java, calculates
your age in the year 2060.

1. Open the source code fi le named NewAge2.java using
Notepad or the text editor of your choice.

2. Declare a constant named YEAR and initialize YEAR with the
value 2060.

3. Edit the following statement so that it uses the constant
named YEAR:

 newAge = currentAge + (2060 − currentYear);

4. Edit the following statement so that it uses the constant
named YEAR:

 System.out.println("I will be" + newAge + "in 2060.");

5. Save this source code fi le in a directory of your choice, and then
make that directory your working directory.

6. Compile the source code fi le NewAge2.java.

7. Execute the program. Record the output of this program.

Arithmetic and Assignment Operators
After you declare a variable, you can use it in various tasks. For
example, you can use variables in simple arithmetic calculations,
such as adding, subtracting, and multiplying. You can also perform
other kinds of operations with variables, such as comparing one
 variable to another to determine which is greater.

In order to write Java code that manipulates variables in this way, you
need to be familiar with operators. An operator is a symbol that tells
the computer to perform a mathematical or logical operation. Java
has a large assortment of operators. We begin the discussion with a
group of operators known as the arithmetic operators.

20

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Arithmetic Operators
Arithmetic operators are the symbols used to perform arithmetic
calculations. You are probably already very familiar with the arithme-
tic operators for addition (+) and subtraction (−). Table 2-2 lists and
explains Java’s arithmetic operators.

Operator Name
and Symbol Example Comment

Addition + num1 + num2

Subtraction − num1 − num2

Multiplication * num1 * num2

Division / 15/2
15.0 / 2.0
15.0 / 2

Integer division; result is 7; fraction is truncated
Floating-point division; result is 7.5
Floating-point division because one of the operands is
a fl oating-point number; result is 7.5

Modulus % hours % 24 Performs division and fi nds the remainder; result is 1
if the value of hours is 25

Unary plus + +num1 Maintains the value of the expression; if the value of
num1 is 3, then +num1 is 3

Unary minus − −(num1 − num2) If value of (num1 − num2) is 10, then
−(num1 − num2) is −10

Table 2-2 Java arithmetic operators

You can combine arithmetic operators and variables to create
 expressions. Th e computer evaluates each expression, and the result
is a value. To give you an idea of how this works, assume that the
value of num1 is 3 and num2 is 20, and that both are of data type int.
With this information in mind, study the examples of expressions and
their values in Table 2-3.

Expression Value Explanation
num1 + num2 23 3 + 20 = 23

num1 − num2 −17 3 − 20 = −17

num2 % num1 2 20 / 3 = 6 remainder 2

num1 * num2 60 3 * 20 = 60

num2 / num1 6 20 / 3 = 6 (remainder is truncated)

−num1 −3 Value of num1 is 3, therefore −num1 is −3

Table 2-3 Expressions and values

21

Arithmetic and Assignment Operators

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Assignment Operators and the Assignment
Statement
Another type of operator is an assignment operator. You use an
assignment operator to assign a value to a variable. A statement that
assigns a value to a variable is known as an assignment statement.
In Java, there are several types of assignment operators. Th e one you
will use most often is the = assignment operator, which simply assigns
a value to a variable. Table 2-4 lists and explains some of Java’s assign-
ment operators.

Operator Name
and Symbol Example Comment

Assignment = count = 5; Places the value on the right side into the memory
location named on the left side.

Initialization = int count = 5; Places the value on the right side into the memory
location named on the left side when the variable
is declared.

Assignment += num += 20; Equivalent to num = num + 20;
Assignment −= num −= 20; Equivalent to num = num − 20;
Assignment *= num *= 20; Equivalent to num = num * 20;
Assignment /= num /= 20; Equivalent to num = num / 20;
Assignment %= num %= 20; Equivalent to num = num % 20;

Table 2-4 Java assignment operators

When an assignment statement executes, the computer evaluates
the expression on the right side of the assignment operator and then
assigns the result to the memory location associated with the vari-
able named on the left side of the assignment operator. An example of
an assignment statement is shown in the following code. Notice that
the statement ends with a semicolon. In Java, assignment statements
always end with a semicolon.
answer = num1 * num2;

Th is assignment statement causes the computer to evaluate the
expression num1 * num2. After evaluating the expression, the com-
puter stores the results in the memory location associated with
answer. If the value stored in the variable named num1 is 3, and the
value stored in the variable named num2 is 20, then the value 60 is
assigned to the variable named answer.

22

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here is another example:
answer += num1;

Th is statement is equivalent to the following statement:
answer = answer + num1;

If the value of answer is currently 10 and the value of num1 is 3,
then the expression on the right side of the assignment statement
answer + num1; evaluates to 13, and the computer assigns the value
13 to answer.

Precedence and Associativity
Once you start to write code that includes operators, you need to be
aware of the order in which a series of operations is performed. In
other words, you need to be aware of the precedence of operations
in your code. Each operator is assigned a certain level of precedence.
For example, multiplication has a higher level of precedence than
addition. So in the expression 3 * 7 + 2, the 3 * 7 would be mul-
tiplied fi rst; only after the multiplication was completed would the 2
be added.

But what happens when two operators have the same precedence?
Th e rules of associativity determine the order in which operations
are evaluated in an expression containing two or more operators with
the same precedence. For example, in the expression, 3 + 7 − 2,
the addition and subtraction operators have the same precedence.
As shown in Table 2-5, the addition and subtraction operators have
left-to-right associativity, which causes the expression to be evaluated
from left to right (3 + 7 added fi rst; then 2 is subtracted). Table 2-5
shows the precedence and associativity of the operators discussed in
this chapter.

Operator Name Operator Symbol Order of Precedence Associativity

Parentheses () First Left to right

Unary − + Second Right to left

Multiplication, division,
and modulus

* / % Third Left to right

Addition and subtraction + − Fourth Left to right

Assignment = += −=
*= /= %=

Fifth Right to left

Table 2-5 Order of precedence and associativity

23

Arithmetic and Assignment Operators

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you can see in Table 2-5, the parentheses operator, (), has the
highest precedence. You use this operator to change the order in
which operations are performed. Note the following example:
average = test1 + test2 / 2;

Th e task of this statement is to fi nd the average of two test scores. Th e
way this statement is currently written, the compiler will divide the value
in the test2 variable by 2, and then add it to the value in the test1 vari-
able. So, for example, if the value of test1 is 90 and the value of test2
is 88, then the value assigned to average will be 134, which is obviously
not the correct average of these two test scores. By using the parenthe-
ses operator in this example, you can force the addition to occur before
the division. Th e correct statement looks like this:
average = (test1 + test2) / 2;

In this example, the value of test1, 90, is added to the value of test2,
88, and then the sum is divided by 2. Th e value assigned to average,
89, is the correct result.

Exercise 2-4: Understanding Operator
Precedence and Associativity
In this exercise, you use what you have learned about operator pre-
cedence and associativity in Java. Study the following code and then
answer Questions 1–2.
// This program demonstrates the precedence and
// associativity of operators.
public class Operators
{
 public static void main(String args[])
 {
 int number1 = 10;
 int number2 = 4;
 int number3 = 16;
 int answer1, answer2, answer3;
 int answer4, answer5, answer6;

 answer1 = number1 * number2 + number3;
 System.out.println("Answer 1: " + answer1);

 answer2 = number1 * (number2 + number3);
 System.out.println("Answer 2: " + answer2);

 answer3 = number1 + number2 − number3;
 System.out.println("Answer 3: " + answer3);

 answer4 = number1 + (number2 − number3);
 System.out.println("Answer 4: " + answer4);

24

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 answer5 = number1 + number2 * number3;
 System.out.println("Answer 5: " + answer5);

 answer6 = number3 / number2;
 System.out.println("Answer 6: " + answer6);
 System.exit(0);
 }
}

1. What are the values of answer1, answer2, answer3, answer4,
answer5, and answer6?

2. Explain how precedence and associativity aff ect the result.

LAB 2.3 Arithmetic and Assignment
Operators

In this lab, you complete a partially written Java program
that is provided along with the data fi les for this book.

Th e program, which was written for a furniture company, prints
the name of the furniture item, its retail price, its wholesale price, the
profi t made on the piece of furniture, a sale price, and the profi t made
when the sale price is used.

1. Open the fi le named Furniture.java using Notepad or the
text editor of your choice.

2. Th e fi le includes variable declarations and output statements.
Read them carefully before you proceed to the next step.

3. Design the logic that will use assignment statements to fi rst
calculate the profi t, then calculate the sale price, and fi nally
calculate the profi t when the sale price is used. Profi t is defi ned
as the retail price minus the wholesale price. Th e sale price is
20% deducted from the retail price. Th e sale profi t is defi ned as
the sale price minus the wholesale price. Perform the appropri-
ate calculations as part of your assignment statements.

4. Save the source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the program.

25

Arithmetic and Assignment Operators

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Execute the program. Your output should be as follows:

• Item Name: Recliner

• Retail Price: $925.0

• Wholesale Price: $700.0

• Pr ofi t: $225.0

• Sale Price: $740.0

• Sale Profi t: $40.0

Next, you will see how to put together all you have learned in this
chapter to write a Java program that uses sequential statements,
 comments, and interactive input statements.

Sequential Statements, Comments,
and Interactive Input Statements
Th e term sequential statements (or sequence) refers to a series
of statements that must be performed in sequential order, one
after another. You use a sequence in programs when you want to
 perform actions one after the other. A sequence can contain any num-
ber of actions, but those actions must be in the proper order, and no
action in the sequence can be skipped. Note that a sequence can contain
comments, which are not considered part of the sequence itself.

Comments serve as documentation, explaining the code to the pro-
grammer and any other people who might read it. In Chapter 2 of your
book, Programming Logic and Design, Seventh Edition, you learned
about program comments, which are statements that do not execute.
You use comments in Java programs to explain your logic to people
who read your source code. Th e Java compiler ignores comments.

You can choose from two commenting styles in Java. In the fi rst, you
type two forward slash characters (//) at the beginning of each line
that you want the compiler to ignore. Th is style is useful when you
only want to mark a single line as a comment. In the second style,
you enclose a block of lines with the characters /* and */. Th is style
is useful when you want to mark several lines as a comment. You may
place comments anywhere in a Java program.

Th e Java program in the following example shows both styles of com-
ments included in the Temperature program. Th e fi rst six lines of the
program make up a multiline, block comment that explains some basic

You are
responsible
for including
well-written,
meaningful

comments in all of the
programs that you write.
In fact, some people think
that commenting your
source code is as impor-
tant as the source code
itself.

26

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

information about the program. Additionally, several single-line com-
ments are included throughout to describe various parts of the program.

A sequence often includes interactive input statements, which
are statements that ask, or prompt, the user to input data. Th e Java
program in the following example uses sequential statements and
interactive input statements to convert a Fahrenheit temperature to
its Celsius equivalent:
/* Temperature.java – This program converts a Fahrenheit
 temperature to Celsius.
 Input: Interactive
 Output: Fahrenheit temperature followed by Celsius
 temperature
*/
import javax.swing.JOptionPane; // Import JOptionPane class
public class Temperature
{
 public static void main(String args[])
 {
 String fahrenheitString;
 double fahrenheit;
 double celsius;

 // Get interactive user input
 fahrenheitString = JOptionPane.showInputDialog(
 "Enter Fahrenheit temperature: ");
 // Convert String to double
 fahrenheit = Double.parseDouble(fahrenheitString);
 // Calculate Celsius equivalent
 celsius = (fahrenheit − 32.0) * (5.0 / 9.0);
 // Output
 System.out.println("Fahrenheit temperature:" +
 fahrenheit);
 System.out.println("Celsius temperature:" + celsius);
 // End program
 System.exit(0);
 }
}

Th is program is made up of sequential statements that execute one
after the other. As noted above, it also includes comments explain-
ing the code. Th e comments are those lines enclosed within the /*
and */ characters, as well as those lines that begin with //. After the
variable fahrenheitString is declared as a String, and fahrenheit
and celsius are declared (using the double data type), the following
assignment statement executes:
fahrenheitString = JOptionPane.showInputDialog(
 "Enter Fahrenheit temperature: ");

Th e showInputDialog method used (on the right side of the assign-
ment statement) belongs to the JOptionPane class and is used when
you want the program’s user to interactively input data needed by

27

Sequential Statements, Comments, and Interactive Input Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

your program. Th is method may be used in this program because
the JOptionPane class was imported into this program using the fol-
lowing statement: import javax.swing.JOptionPane;. When you
import a class, you give your program access to the methods that are
part of the imported class. When you use the showInputDialog()
method, you specify within the parentheses the words you want to
appear in the dialog box on the user’s screen. In this example, the
phrase “Enter Fahrenheit temperature:” will appear in the dialog box
on the user’s screen. Th e same dialog box also displays a text box
where the user can type his or her input, as shown in Figure 2-2.

Figure 2-2 An input dialog box

In this program, you want the user to input a Fahrenheit temperature
value so that the program can convert it to Celsius. You would think,
then, that this would be a simple matter of taking the value entered
by the user, assigning it to a variable, and then performing the neces-
sary conversion calculation. However, Java considers any input entered
into an input dialog box to be a String. In this case, the Fahrenheit
value input by the user is assigned to the String variable named
fahrenheitString. Th e problem is that we can’t perform calculations
on Strings; we can only perform calculations on numeric variables.
So, before the program can proceed with the calculation required to
 convert a Fahrenheit value to a Celsius value, we need to transfer the
value entered by the user to a variable with a numeric data type.

Th at task is performed by the following assignment statement, which
is the second statement to execute:
fahrenheit = Double.parseDouble(fahrenheitString);

Th e parseDouble() method is used on the right side of this assign-
ment statement. Th is method belongs to the Double class and is used
to convert the Fahrenheit value, which the compiler automatically
considered a String, to the double data type. Once the String is
converted to double, it is assigned to the variable fahrenheit (which,
at the beginning of the program, was declared as a double).

Th e third statement to execute is another assignment statement, as
follows:
celsius = (fahrenheit − 32.0) * (5.0 / 9.0);

28

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e formula that converts Fahrenheit temperatures to Celsius is used
on the right side of this assignment statement. Notice the use of paren-
theses in the expression to control precedence. Th e expression is evalu-
ated, and the resulting value is assigned to the variable named celsius.

Notice that the division uses the values 5.0 and 9.0. Th is is an example
of fl oating-point division, which results in a value that includes a
 fraction. If the values 5 and 9 were used, integer division would be
performed, and the fractional portion would be truncated.

Th e next two statements to execute in sequence are both output
statements, as follows:
System.out.println("Fahrenheit temperature:" +
 fahrenheit);
System.out.println("Celsius temperature:" + celsius);

Th e statement System.out.println() is used to output whatever is
within the parentheses. Th e fi rst output statement displays the words
“Fahrenheit temperature:” followed by the value stored in the variable
fahrenheit. Th e second output statement displays the words “Celsius
temperature:” followed by the value stored in the variable celsius. To
use the println() method correctly, you include only one argument
within the parentheses. Arguments are discussed in more detail in
Chapter 9. Th e concatenation operator is used in both output state-
ments to combine two items into one (a string constant, which is one
or more characters within double quotes, and a double). Th e + sym-
bol, when used in this context, is the concatenation operator, not the
addition operator. It is used to combine two values next to each other
to create a single string.

Th e last statement in this program is System.exit(0);. Th is state-
ment is used to end or terminate a Java program.

Th is program is saved in a fi le named Temperature.java and is
included in the student fi les for this chapter. You can see the output
produced by the Temperature program in Figure 2-3.

Figure 2-3 Output from Temperature.java program

Now that you have seen a complete Java program that uses sequen-
tial statements and interactive input statements, it is time for you to
begin writing your own programs.

In Program-
ming Logic
and Design,
Seventh
Edition, the

comma (,) is used as the
concatenation operator.

You will learn
how to control
the number of
places after
the decimal

point when you output
fl oating-point values in
Chapter 9 of this book.

29

Sequential Statements, Comments, and Interactive Input Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 2-5: Understanding Sequential
Statements
In this exercise, you use what you have learned about sequential
 statements to read a scenario and then answer Questions 1–4.

Suppose you have written a Java program that calculates the amount
of paint you need to cover the walls in your family room. Two walls
are 10 feet high and 18.5 feet wide. Th e other two walls are 10 feet
high and 20.5 feet wide. Th e salesperson at the home improvement
store told you to buy 1 gallon of paint for every 150 square feet of
wall you need to paint. Suppose you wrote the following code, but
your program is not compiling. Th is program is saved in a fi le named
Paint.java and is included in the student fi les for this chapter. Take a
few minutes to study this code and then answer Questions 1–4.
// Calculates the number of gallons of paint needed.
public class Paint
{
 public static void main(String args[])
 {
 double height1 = 10;
 double height2 = 10;
 int width1 = 18.5;
 double width2 = 20.5;
 double squareFeet;
 int numGallons;
 numGallons = squareFeet / 150;
 squareFeet = (width1 * height1 + width2 * height2) * 2;
 System.out.println("Number of Gallons: " + numGallons);
 System.exit(0);
 }
}

1. Th e fi rst error you receive from the javac compiler is as
follows:
Paint.java:8: error: possible loss of precision
int width1 = 18.5;
required: int
 found :double

 What do you have to do to fi x this problem?

2. Th e second error you receive from the javac compiler is this:
Paint.java:12: error: possible loss of precision
numGallons = squareFeet / 150;
required: int
 found :double

 What must you do to fi x this problem?

30

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Even if you fi x the problems identifi ed in Question 1 and
Question 2, you still have a problem with this program. It has
to do with the order in which your statements are written.
Identify the problem, and then determine what you need to
do to fi x the problem. On the following lines, describe how to
fi x the problem.

4. You have two variables declared in this program to repre-
sent the height of your walls, height1 and height2. Do you
need both of these variables? If not, how would you change
the program? Be sure to identify all of the changes you
would make.

LAB 2.4 Understanding Sequential
Statements

In this lab, you complete a Java program provided with
the data fi les for this book. Th e program calculates the

amount of tax withheld from an employee’s weekly salary, the tax
deduction to which the employee is entitled for each dependent, and
the employee’s take-home pay. Th e program output includes state tax
withheld, federal tax withheld, dependent tax deductions, salary, and
take-home pay.

1. Open the source code fi le named Payroll.java using
Notepad or the text editor of your choice.

2. Variables have been declared and initialized for you as
needed, and the output statements have been written. Read
the code carefully before you proceed to the next step.

3. Write the Java code needed to perform the following:

• Calculate state withholding tax at 6.0%, and calculate fed-
eral withholding tax at 25.0%.

• Calculate dependent deductions at 2.0% of the employee’s
salary for each dependent.

31

Sequential Statements, Comments, and Interactive Input Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

• Calculate total withholding.

• Calculate take-home pay as salary minus total withholding
plus deductions.

4. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the program.

6. Execute the program. You should get the following output:

• State Tax: $75.0

• Federal Tax: $312.5

• D ependents: $50.0

• Salar y: $1250.0

• Take-Home Pay: $912.5

7. In this program, the variables named salary and
numDependents are initialized with the values 1250.0 and 2.
To make this program more fl exible, modify it to accept
 interactive input for salary and numDependents. Name the
modifi ed version Payroll2.java.

32

C H A P T E R 2 Variables, Constants, Operators, and Sequential Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Use structured fl ow charts and pseudocode to write
structured Java programs

 Write simple modular programs in Java

C H A P T E R 3
Writing Structured
Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, you begin to learn how to write structured Java
programs. As you will see, creating a fl owchart and writing
pseudocode before you actually write the program ensures that
you fully understand the program’s intended design. We begin by
looking at a structured fl owchart and pseudocode from your text,
Programming Logic and Design, Seventh Edition. You should do
the exercises and labs in this chapter only after you have fi nished
Chapters 2 and 3 of that book.

Using Flowcharts and Pseudocode
to Write a Java Program
In the fi rst three chapters of Programming Logic and Design, Seventh
Edition, you studied fl owcharts and pseudocode for the Number-
Doubling program. Figure 3-1 shows the functional, structured
 fl owchart and pseudocode for this program.

Figure 3-1 Functional, structured fl owchart and pseudocode
for the Number-Doubling program

This step gets all
subsequent inputs.

This is the priming
input.

input
originalNumber

Declarations
 num originalNumber
 num calculatedAnswer

start

stop

 not eof? Yes

No

output
calculatedAnswer

input
originalNumber

calculatedAnswer =
originalNumber * 2

34

C H A P T E R 3 Writing Structured Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

By studying the fl owchart and pseudocode, you can see that this pro-
gram makes use of the sequence and loop structures introduced to
you in Programming Logic and Design, Seventh Edition. Th e remain-
der of this section walks you through the Java code for this program.
Th e explanations assume that you are simply reading along, but if you
want, you can type the code as it is presented. Th e goal of this section
is to help you get a feel for how fl owcharts and pseudocode can serve
as a guide as you write Java programs. You must learn more about
Java before you can expect to write this program by yourself.

In Figure 3-1, the fi rst line of the pseudocode is the word start.
How do we translate this pseudocode command into the Java code
that will start the Number-Doubling program? In Chapter 1 of this
book, you learned that, to start a Java program, you fi rst create a
class. So to start the Number-Doubling program, we will fi rst create
a class named NumberDouble. We should also include one method
in the class named main() because it is always the fi rst method that
executes in a Java program. Th us, the code that follows starts the
Number-Doubling program by creating a class named NumberDouble
and including the main() method:
public class NumberDouble
{
 public static void main(String args[])
 {

 }
}

Next, you see that two variables, originalNumber and
calculatedAnswer, are declared as data type num. Th e Java code that
follows adds the variable declarations with the declarations shown
in bold.
public class NumberDouble
{
 public static void main(String args[])
 {
 int originalNumber;
 int calculatedAnswer;
 }
}

Th e next line of the pseudocode instructs you to input the
originalNumber. In other words, you need to write the input statement
that primes the loop. You learned about priming read statements
in Chapter 3 of Programming Logic and Design, Seventh Edition.
In Chapter 2 of this book, you learned how to use interactive input
 statements in programs to allow the user to input data. You also
learned to prompt the user by explaining what the program expects
to receive as input. Th e following example includes the code that

Notice in this
code that
each opening
curly brace is
matched by

a closing curly brace.

If you are
typing the
code as it is
presented
here, save the

program in a fi le that has
the same name as the
class, for example,
NumberDouble.java.
The complete program is
also saved in a fi le named
NumberDouble.java
and is included in the
student fi les for
this chapter.

35

Using Flowcharts and Pseudocode to Write a Java Program

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

implements the priming read by displaying a dialog box where users
can input the number they want doubled. Th e next statement converts
the input String to an int.

Note that the code in boldface has been added to the NumberDouble
class. Th e String variable named originalNumberString is added
to hold the input entered into the input dialog box. If you were
writing this code yourself, you would start by writing the code for
the NumberDouble class, and then edit it to add the boldface code
show here:
import javax.swing.JOptionPane;
public class NumberDouble
{
 public static void main(String args[])
 {
 int originalNumber;
 String originalNumberString;
 int calculatedAnswer;
 originalNumberString = JOptionPane.showInputDialog(
 "Enter number to double: ");
 originalNumber = Integer.parseInt(originalNumberString);
 }
}

Next, the pseudocode instructs you to begin a while loop with eof
(end of fi le) used as the condition to exit the loop.

Since we are using interactive input in this program, it requires no
eof marker. Instead we will use the number 0 (zero) to indicate the
end of input. We’ll use 0 because 0 doubled will always be 0. Th e use
of 0 to indicate the end of input also requires us to change the prompt
to tell the user how to end the program. Review the following code.
Again, the newly added code is formatted in bold.
import javax.swing.JOptionPane;
public class NumberDouble
{
 public static void main(String args[])
 {
 int originalNumber;
 String originalNumberString;
 int calculatedAnswer;
 originalNumberString = JOptionPane.showInputDialog(
 "Enter number to double or 0 to end: ");
 originalNumber = Integer.parseInt(
 originalNumberString);
 while(originalNumber != 0)
 {
 }
 }
}

You have not
learned
enough about
while loops
to write this

code yourself, but you
can observe how it is
done in this example.
You will learn more
about loops in Chapter 5
of this book.

A beginning
curly brace ({)
and an ending
curly brace (})
are used in

Java to mark the begin-
ning and end of code that
executes as part of a loop.

36

C H A P T E R 3 Writing Structured Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

According to the pseudocode, the body of the loop is made up
of three sequential statements. The first statement calculates the
originalNumber multiplied by 2; the second statement prints the
calculatedAnswer; and the third statement retrieves the next
originalNumber from the user. In Java, we actually need to add a
fourth statement between the curly braces that mark the body of
the while loop. This fourth statement converts the input String
to an int.

In the following example, the code that makes up the body of the loop
is in bold.
import javax.swing.JOptionPane;
public class NumberDouble
{
 public static void main(String args[])
 {
 int originalNumber;
 String originalNumberString;
 int calculatedAnswer;
 originalNumberString = JOptionPane.showInputDialog(
 "Enter number to double or 0 to end: ");
 originalNumber = Integer.parseInt(originalNumberString);
 while(originalNumber != 0)
 {
 calculatedAnswer = originalNumber * 2;
 System.out.println(originalNumber + " doubled is "
 + calculatedAnswer);
 originalNumberString = JOptionPane.showInputDialog(
 "Enter number to double or 0 to end: ");
 originalNumber = Integer.parseInt(
 originalNumberString);
 }
 }
}

The last line of the pseudocode instructs you to end the pro-
gram. In Java, the closing curly brace (}) for the main() method
signifies the end of the program. Note that the preceding code
includes three closing curly braces. The last one is the one that
ends the NumberDouble class, and the second-to-last one ends the
main() method.

At this point, the program is ready to be compiled. Assuming there
are no syntax errors, it should execute as planned. Figure 3-2 displays
the input and output of the program.

37

Using Flowcharts and Pseudocode to Write a Java Program

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 3-2 Number Double program input and output

Although you have not learned everything you need to know to write
this program yourself, you can see from this example that writing the
program in Java is easier if you start with a well-designed, functional,
structured fl owchart or pseudocode.

LAB 3.1 Using Flowcharts and
Pseudocode to Write a
Java Program

In this lab, you use the pseudocode in Figure 3-3 to add
code to a partially created Java program. When completed, college
admissions offi cers should be able to use the Java program to deter-
mine whether to accept or reject a student, based on his or her
class rank.

38

C H A P T E R 3 Writing Structured Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 3-3 Pseudocode for the College Admission program

start
 input testScore, classRank
 if testScore >= 90 then
 if classRank >= 25 then
 output "Accept"
 else
 output "Reject"
 endif
 else
 if testScore >= 80 then
 if classRank >= 50 then
 output "Accept"
 else
 output "Reject"
 endif
 else
 if testScore >= 70 then
 if classRank >= 75 then
 output "Accept"
 else
 output "Reject"
 endif
 else
 output "Reject"
 endif
 endif
 endif
stop

1. Study the pseudocode in Figure 3-3.

2. Open the source code fi le named CollegeAdmission.java
using Notepad or the text editor of your choice.

3. Declare two String variables named testScoreString and
classRankString.

4. Declare two integer variables named testScore and
classRank.

5. Write the interactive input statements to retrieve a student’s
test score and class rank from the user of the program.

6. Write the statements to convert the String representation of
a student’s test score and class rank to the integer data type.

7. Th e rest of the program is written for you. Save this source
code fi le in a directory of your choice, and then make that
directory your working directory.

39

Using Flowcharts and Pseudocode to Write a Java Program

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8. Compile the source code fi le CollegeAdmission.java.

9. Execute the program by entering 30 for the test score and
95 for the class rank. Record the output of this program.

10. Execute the program by entering 95 for the test score and
30 for the class rank. Record the output of this program.

Writing a Modular Program in Java
In Chapter 2 of your book, Programming Logic and Design, Seventh
Edition, you learned about local and global variables and named
constants. To review briefl y, you declare local variables and local
constants within the module—or, in Java terminology, the method—
that uses them. Further, you can only use a local variable or a local
constant within the method in which it is declared. (Note that, in
this book, we use the term “method” instead of “module,” as this
is the term used in the Java programming language.) Global vari-
ables and global constants are known to an entire program; they are
declared at the program level and are visible to and usable in all the
methods called by the program. Java does not allow for the use of
global variables or global constants, so the program below uses local
variables (as well as local constants).

Also, recall from Chapter 2 that most programs consist of a main
method, which contains the mainline logic. Th e mainline logic of
most procedural programs follows this general structure:

1. Declarations of variables and constants

2. Housekeeping tasks, such as displaying instructions to
users, displaying report headings, opening fi les the program
requires, and inputting the fi rst data item

3. Detail loop tasks that do the main work of the program,
such as processing many records and performing calculations

4. End-of-job tasks, such as displaying totals and closing any
open fi les

In Chapter 2 of Programming Logic and Design, Seventh Edition,
you studied a fl owchart and pseudocode for a modular program that
prints a payroll report for a small company, using global variables and
constants. Th is fl owchart and pseudocode is shown in Figure 3-4.

40

C H A P T E R 3 Writing Structured Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

stop

return

Yes
name <> QUIT?

No

start

housekeeping()

endOfJob()

detailLoop()

Declarations
 string name
 num gross
 num deduct
 num net
 num RATE = 0.25
 string QUIT = "XXX"
 string REPORT_HEADING = "Payroll Report"
 string COLUMN_HEADING = "Name Gross
 Deductions Net"
 string END_LINE = "**End of report"

detailLoop()

deduct =
gross * RATE

housekeeping()

input gross

output name,
gross, deduct, net

input name

return

output
REPORT_HEADING

output
COLUMN_HEADING

input name

endOfJob()

return

output END_LINEnet =
gross – deduct

Some programmers would not bother to
create a module that contains only one or
two statements. Instead, they would keep
these statements in the mainline logic. The
module is shown here so you can better
see the big picture of how the mainline
logic works using beginning, repeated,
and ending tasks.

Figure 3-4 Flowchart and pseudocode for the Payroll Report program (continues)

41

Writing a Modular Program in Java

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this section, we walk through the process of creating a Java pro-
gram that implements the logic illustrated in Figure 3-4. According
to the fl owchart, the program begins with the execution of the
mainline method. Th e mainline method in the fl owchart declares
four global variables (name, gross, deduct, and net) and fi ve global
constants (RATE, QUIT, REPORT_HEADING, COLUMN_HEADING, and
END_LINE). Th e Java code that follows shows the creation of the
PayrollReport class, the main() method, and variable and constant
declarations.

(continued)

start
 Declarations
 string name
 num gross
 num deduct
 num net
 num RATE = 0.25
 string QUIT = "XXX"
 string REPORT_HEADING = "Payroll Report"
 string COLUMN_HEADING = "Name Gross Deductions Net"
 string END_LINE = "**End of report"
 housekeeping()
 while not name = QUIT
 detailLoop()
 endwhile
 endOfJob()
stop

housekeeping()
 output REPORT_HEADING
 output COLUMN_HEADING
 input name
return

detailLoop()
 input gross
 deduct = gross * RATE
 net = gross – deduct
 output name, gross, deduct, net
 input name
return

endOfJob()
 output END_LINE
return

Figure 3-4 Flowchart and pseudocode for the Payroll Report program

42

C H A P T E R 3 Writing Structured Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.JOptionPane;
public class PayrollReport
{
 public static void main(String args[])
 {
 String name;
 String grossString;
 double gross, deduct, net;
 final double RATE = 0.25;
 final String QUIT = "XXX";
 final String REPORT_HEADING = "Payroll Report";
 final String END_LINE = "**End of report";
 }
}

Notice that one of the declarations shown in the fl owchart,
string COLUMN_HEADING = "Name Gross Deductions Net," is not
included in the Java code. Since you have not yet learned about the
Java statements needed to line up values in report format, the Java
program shown above prints information on separate lines rather
than in the column format used in the fl owchart. Also, notice that
the Java code includes one additional variable, grossString, which is
used to hold the user-entered value for an employee’s gross pay. Later
in the program, the String variable, grossString, is converted to a
double so that it may be used in calculations.

It is important for you to understand that the variables and constants
declared in the fl owchart are global variables that may be used in all
methods that are part of the program. However, as mentioned earlier,
Java does not allow for the use of global variables. Th e variables and
constants declared in the Java version are local, which means they
may only be used in the main() method.

After the declarations, the pseudocode makes a call to the
housekeeping() module that prints the REPORT_HEADING and
COLUMN_HEADING constants and retrieves the fi rst employee’s name
entered by the user of the program. Th e code that follows shows
how these tasks are translated to Java statements. Th e added code is
shown in bold.

If you are
typing the
code as it is
presented
here, save the

program in a fi le that has
the same name as the
class, for example,
PayrollReport.java.
The complete program is
also saved in a fi le named
PayrollReport.java
and is included in the
student fi les for this
chapter.

43

Writing a Modular Program in Java

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.JOptionPane;
public class PayrollReport
{
 public static void main(String args[])
 {
 String name;
 String grossString;
 double gross, deduct, net;
 final double RATE = 0.25;
 final String QUIT = "XXX";
 final String REPORT_HEADING = "Payroll Report";
 final String END_LINE = "**End of report";
 // This is the work done in the housekeeping() method
 System.out.println(REPORT_HEADING);
 name = JOptionPane.showInputDialog(
 "Enter employee’s name: ");
 }
}

Since Java does not allow for global variables, all of the variables
declared for this program are local variables that are available
only in the main() method. If we were to create an additional
method for the housekeeping tasks, that method would not have
access to the name variable to store an employee’s name. So, for
now, the Java programs that you write will have only one method
(module), the main() method. Additional modules, such as the
housekeeping() module, will be simulated through the use of
comments. As shown in the preceding code, the statements that
would execute as part of a housekeeping() method have been
grouped together in the Java program and preceded by a comment.
You will learn how to create additional methods and pass data to
methods in Chapter 9 of this book.

In the fl owchart, the next statement to execute after the
housekeeping() module fi nishes its work is a while loop in the
main module that continues to execute until the user enters
“XXX” when prompted for an employee’s name. Within the
loop, the detailLoop() module is called. Th e work done in
the detailLoop() consists of retrieving an employee’s gross
pay, calculating deductions; calculating net pay; printing the
employee’s name, gross pay, deductions, and net pay on the
user’s screen; and retrieving the name of the next employee. Th e
following code shows the Java statements that have been added
to the Payroll Report program to implement this logic. Th e added
statements are shown in bold.

44

C H A P T E R 3 Writing Structured Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.JOptionPane;
public class PayrollReport
{
 public static void main(String args[])
 {
 String name;
 String grossString;
 double gross, deduct, net;
 final double RATE = 0.25;
 final String QUIT = "XXX";
 final String REPORT_HEADING = "Payroll Report";
 final String END_LINE = "**End of report";
 // This is the work done in the housekeeping() method
 System.out.println(REPORT_HEADING);
 name = JOptionPane.showInputDialog(
 "Enter employee’s name: ");
 while(name.compareTo(QUIT) != 0)
 {
 // This is the work done in the detailLoop() method
 grossString = JOptionPane.showInputDialog(
 "Enter employee’s gross pay: ");
 gross = Double.parseDouble(grossString);
 deduct = gross * RATE;
 net = gross – deduct;
 System.out.println("Name: " + name);
 System.out.println("Gross Pay: " + gross);
 System.out.println("Deductions: " + deduct);
 System.out.println("Net Pay: " + net);
 name = JOptionPane.showInputDialog(
 "Enter employee’s name: ");
 }
 }
}

Th e while loop in the Java program uses the compareTo() method
to compare the name entered by the user with the value of the
constant named QUIT. As long as the name is not equal to “XXX” (the
value of QUIT), the loop executes. Th e statements that make up the
simulated detailLoop() method include: retrieving the employee’s
gross pay; converting the grossString value to a Double using
the parseDouble() method; calculating deductions and net pay;
printing the employee’s name, gross pay, deductions, and net pay; and
retrieving the name of the next employee to process.

In the fl owchart, when a user enters “XXX” for the employee’s name,
the program exits the while loop and then calls the endOfJob()
module. Th e endOfJob() module is responsible for printing the value
of the END_LINE constant. When the endOfJob() module fi nishes,
control returns to the mainline module, and the program stops. Th e
completed Java program is shown next with the additional statement
shown in bold.

You learn more
about the
compareTo()
method in
Chapter 4.

You learned
about
the
method
named

parseDouble() in
Chapter 2.

45

Writing a Modular Program in Java

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

import javax.swing.JOptionPane;
public class PayrollReport
{
 public static void main(String args[])
 {
 String name;
 String grossString;
 double gross, deduct, net;
 final double RATE = 0.25;
 final String QUIT = "XXX";
 final String REPORT_HEADING = "Payroll Report";
 final String END_LINE = "**End of report";
 // This is the work done in the housekeeping() method
 System.out.println(REPORT_HEADING);
 name = JOptionPane.showInputDialog(
 "Enter employee’s name: ");
 while(name.compareTo(QUIT) != 0)
 {
 // This is the work done in the detailLoop() method
 grossString = JOptionPane.showInputDialog(
 "Enter employee’s gross pay: ");
 gross = Double.parseDouble(grossString);
 deduct = gross * RATE;
 net = gross – deduct;
 System.out.println("Name: " + name);
 System.out.println("Gross Pay: " + gross);
 System.out.println("Deductions: " + deduct);
 System.out.println("Net Pay: " + net);
 name = JOptionPane.showInputDialog(
 "Enter employee’s name: ");
 }
 // This is the work done in the endOfJob() method
 System.out.println(END_LINE);
 }
}

Th is program is now complete. Figure 3-5 shows the program’s out-
put in response to the input “William” (for the name), and 1200 (for
the gross).

Figure 3-5 Output of the Payroll Report program
when the input is “William” and 1200

46

C H A P T E R 3 Writing Structured Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 3.2 Writing a Modular Program
in Java

In this lab, you add the input and output statements to a
partially completed Java program. When completed, the

user should be able to enter a year and then click the “OK” button,
enter a month and then click the “OK” button, and enter a day and
then click the “OK” button to determine if the date is valid. Valid
years are those that are greater than 0, valid months include the
values 1 through 12, and valid days include the values 1 through 31.

1. Open the source code fi le named BadDate.java using
Notepad or the text editor of your choice.

2. Notice that variables have been declared for you.

3. Write the simulated housekeeping() method that contains
input statements to retrieve a year, a month, and a day from
the user.

4. Add statements to the simulated housekeeping() method
that convert the String representation of the year, month,
and day to ints.

5. Include the output statements in the simulated endOfJob()
method. Th e format of the output is as follows:

 month/day/year is a valid date.
 or
 month/day/year is an invalid date.

6. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

7. Compile the source code fi le BadDate.java.

8. Execute the program entering the following date: month = 7,
day = 32, year = 2012. Record the output of this program.

9. Execute the program entering the following date: month = 9,
day = 21, year = 2002. Record the output of this program.

47

Writing a Modular Program in Java

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Use relational and logical Boolean operators to make
decisions in a program

 Compare String objects

 Write decision statements in Java, including an if
statement, an if-else statement, nested if statements,
and the switch statement

 Use decision statements to make multiple comparisons by
using AND logic and OR logic

C H A P T E R 4
Writing Programs
that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You should complete the exercises and labs in this chapter only
after you have fi nished Chapter 4 of your book, Programming Logic
and Design, Seventh Edition. In this chapter, you practice using
Java’s relational and logical operators as well as String methods to
write Boolean expressions. You also learn the Java syntax for deci-
sion statements, including the if statement, the if-else statement,
nested if statements, and switch statements. Finally, you learn to
write Java statements that make multiple comparisons.

Boolean Operators
You use Boolean operators in expressions when you want to com-
pare values. When you use a Boolean operator in an expression, the
evaluation of that expression results in a value that is true or false.
In Java, you can subdivide the Boolean operators into two groups:
relational operators and logical operators. We begin the discussion
with the relational operators.

Relational Operators
In the context of programming, the term relational refers to the con-
nections, or relationships, that values can have with one another. For
example, one value might be greater than another, less than another, or
equal to the other value. Th e terms “greater than,” “less than,” and “equal
to” all refer to a relationship between two values. As with all Boolean
operators, a relational operator allows you to ask a question that results
in a true or false answer. Depending on the answer, your program
will execute diff erent statements that perform diff erent actions.

Table 4-1 lists the relational operators used in Java.

Operator Meaning
< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to (two equal signs with no space between them)

!= Not equal to

Table 4-1 Relational operators

To see how to use relational operators, suppose you declare two
 variables: an int named number1 that you initialize with the value 10
and another int variable named number2 that you initialize with the

49

Boolean Operators

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

value 15. Th e following code shows the declaration statements for
these variables:
int number1 = 10;
int number2 = 15;

Th e following code samples illustrate how relational operators are
used in expressions:

 • number1 < number2 evaluates to true because 10 is less than 15.

 • number1 <= number2 evaluates to true because 10 is less than or
equal to 15.

 • number1 > number2 evaluates to false because 10 is not greater
than 15.

 • number1 >= number2 evaluates to false because 10 is not greater
than or equal to 15.

 • number1 == number2 evaluates to false because 10 is not equal to 15.

 • number1 != number2 evaluates to true because 10 is not equal to 15.

Logical Operators
You can use another type of Boolean operator, logical operators,
when you need to ask more than one question but you want to
receive only one answer. For example, in a program, you may want to
ask if a number is between the values 1 and 10. Th is actually involves
two questions. You need to ask if the number is greater than 1 AND
if the number is less than 10. Here, you are asking two questions, but
you want only one answer—either “yes” (true) or “no” (false).

Logical operators are useful in decision statements because, like
 relational expressions, they evaluate to true or false, thereby
 permitting decision-making in your programs.

Table 4-2 lists the logical operators used in Java.

Operator Name Description
&& AND All expressions must evaluate to true for the entire expression to be true;

this operator is written as two & symbols with no space between them.

|| OR Only one expression must evaluate to true for the entire expression to be
true; this operator is written as two | symbols with no space between them.

! NOT This operator reverses the value of the expression; if the expression
evaluates to false, then reverse it so that the expression evaluates to true.

Table 4-2 Logical operators

50

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To see how to use the logical operators, suppose you declare two
 variables: an int named number1 that you initialize with the value 10;
and another int variable named number2 that you initialize with the
value 15 as in the previous example.

Th e following code samples illustrate how you can use the logical
operators along with the relational operators in expressions:

 • (number1 > number2) || (number1 == 10) evaluates to true
because the fi rst expression evaluates to false, 10 is not greater
than 15, and the second expression evaluates to true, 10 is equal
to 10. Only one expression needs to be true using OR logic for the
entire expression to be true.

 • (number1 > number2) && (number1 == 10) evaluates to false
because the fi rst expression is false, 10 is not greater than 15, and
the second expression is true, 10 is equal to 10. Using AND logic,
both expressions must be true for the entire expression to be true.

 • (number1 != number2) && (number1 == 10) evaluates to true
because both expressions are true; that is, 10 is not equal to 15,
and 10 is equal to 10. Using AND logic, if both expressions are
true, then the entire expression is true.

 • !(number1 == number2) evaluates to true because the expression
evaluates to false, 10 is not equal to 15. Th e ! operator then
reverses false, which results in a true value.

Relational and Logical Operator Precedence
and Associativity
Like the arithmetic operators discussed in Chapter 2, the relational
and logical operators are evaluated according to specifi c rules of
 associativity and precedence. Table 4-3 shows the precedence and
associativity of the operators discussed thus far in this book.

51

Boolean Operators

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As shown in Table 4-3, the AND operator has a higher precedence
than the OR operator, meaning expressions that include the AND
operator are evaluated fi rst. Also notice that the relational operators
have higher precedence than the equality operators, and both the
relational and equality operators have higher precedence than the
AND and OR operators. All of these operators have left-to-right
associativity.

To see how to use the logical operators and the relational operators in
expressions, fi rst assume that the variables number1 and number2 are
declared and initialized as shown in the following code:
int number1 = 10;
int number2 = 15;

Now, you write the following expression in Java.
number1 == 10 || number2 == number1 && number2 == 15

Looking at Table 4-3, you can see that the equality operator (==) has a
higher level of precedence than the AND operator (&&), and the AND
operator (&&) has a higher level of precedence than the OR operator
(||). Also, notice that there are three == operators in the expression;
thus, the left-to-right associativity rule applies. Figure 4-1 illustrates
the order in which the operators are used.

As you can see in Figure 4-1, it takes fi ve steps, following the rules
of precedence and associativity, to determine the value of the
expression.

Remember
that you can
change the
order of
 precedence

by using parentheses.

Operator Name Symbol
Order of
Precedence Associativity

Parentheses () First Left to right

Unary − + ! Second Right to left

Multiplication, division,
 and modulus

* / % Third Left to right

Addition and
subtraction

+ − Fourth Left to right

Relational < > <= >= Fifth Left to right

Equality == != Sixth Left to right

AND && Seventh Left to right

OR || Eighth Left to right

Assignment = += −= *= /= %= Ninth Right to left

Table 4-3 Order of precedence and associativity

52

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int number1 = 10;
int number2 = 15;

number1 == 10 || number2 == number1 && number2 == 15

Step 1 true Step 2 false Step 3 true

Step 4 false

&&

||

Step 5 true

Figure 4-1 Evaluation of expression using relational and logical operators

Comparing Strings
In Java, you use relational operators when you compare primitive data
types such as ints and doubles. As you have learned, a primitive data
type is one that is built into the language. You do not use relational
operators to compare Strings in Java because this would result in
comparing references to the String objects, rather than comparing
the contents of the String objects. (A reference is the location in
memory where an object is stored.) Th is is discussed in more detail
later in this section.

When you declare a String variable, the declaration instantiates the
String class and creates a String object. Th e String class contains
multiple methods you can use when you want to compare String
objects. One of these methods is the equals() method. You use it
when you want to test two String objects for equality. Th e equals()
method returns true if the two String objects are equal, and false if
they are not.

Th e following code shows how to use the equals() method to
 compare two String objects and also to compare one String object
and one string constant.
String s1 = "Hello";
String s2 = "World";

Two String
objects are
equal when
their contents
are the same.

53

Comparing Strings

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

s1.equals(s2);
// Evaluates to false because "Hello" is not the same as
// "World".

s1.equals("Hello");
// Evaluates to true because "Hello" is the same as
// "Hello".

In Java, it is important not to use the == operator to compare String
objects. Although doing so will not generate an error, it will cause
the computer to test to see if two String objects are the same object
(i.e., have identical references) instead of whether they have the same
contents. Th e only time one String object would have the same ref-
erence value as another is when they are the same object. In other
words, this would be like testing to see if String1 is equal to String1,
which is a pointless comparison.

Another method used to compare String objects is the compareTo()
method. It returns a 0 if two String objects are equal, a value less
than 0 if the invoking String object is less than the String object
passed to the method, and a value greater than 0 if the invoking
String object is greater than the String object passed to the method.

As shown in Figure 4-2, s1 is the invoking String object, and s2 is
the String object passed to the method.

String s1 = "this";
String s2 = "that";

s1 is the invoking
object

s2 is the object passed
to compareTo()

s1.compareTo(s2);

Result is a value > 0
because “this” comes after
“that” in alphabetical order.

Figure 4-2 Using the compareTo() method

Th e compareTo() method compares the ASCII values of the
 individual characters in String objects to determine if one String
object is greater than, less than, or equal to another, in terms of alpha-
betizing the text in the String objects. As shown in Figure 4-2, the
String object s1, whose value is “this”, is greater than the String
object s2, whose value is “that”, because “this” comes after “that” in
alphabetical order. Th e result of using the compareTo() method with

54

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

String objects s1 and s2 is a value greater than 0 because “this” is
greater than “that”.

Th e following code sample shows how to use the compareTo()
method with two String objects.
String s1 = "whole";
String s2 = "whale";
// The next statement evaluates to a value greater than
// 0 because the contents of s1, "whole", are greater
// than the contents of s2, "whale."
s1.compareTo(s2);
// The next statement evaluates to a value less than 0
// because the contents of s2, "whale", are less than the
// contents of s1, "whole."
s2.compareTo(s1);

Th e following code sample shows how to use the compareTo()
method to compare a String object and a string constant.
String s1 = "whole";
s1.compareTo("whole"); // Evaluates to 0, because
 // they are equal.

Decision Statements
Every decision in a program is based on whether an expression
evaluates to true or false. Programmers use decision statements to
change the fl ow of control in a program. Flow of control means the
order in which statements are executed. Decision statements are also
known as branching statements, because they cause the computer to
make a decision, choosing from one or more branches (or paths) in
the program.

Th ere are diff erent types of decision statements in Java. We will begin
with the if statement.

The if Statement
Th e if statement is a single-path decision statement. As you learned
in Programming Logic and Design, Seventh Edition, if statements are
also referred to as “single alternative” or “single-sided” statements.

When we use the term single-path, we mean that if an expression
evaluates to true, your program executes one or more statements,
but if the expression evaluates to false, your program will not
 execute these statements. Th ere is only one defi ned path—the path
taken if the expression evaluates to true. In either case, the statement
following the if statement is executed.

55

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e syntax, or set of rules, for writing an if statement in Java is as
follows:
if(expression)
 statementA;

Note that when you type the keyword if to begin an if statement,
you follow it with an expression placed within parentheses.

When the compiler encounters an if statement, the expression
within the parentheses is evaluated. If the expression evaluates to
true, then the computer executes statementA. If the expression in
parentheses evaluates to false, then the computer will not execute
statementA. Remember that whether the expression evaluates to
true and executes statementA, or the expression evaluates to false
and does not execute statementA, the statement following the if
statement executes next.

Note that a Java statement, such as an if statement, can be either a
simple statement or a block statement. A block statement is made up
of multiple Java statements. Java defi nes a block as statements placed
within a pair of curly braces. If you want your program to execute
more than one statement as part of an if statement, you must
enclose the statements in a pair of curly braces or only one statement
will execute. Th e following example illustrates an if statement that
uses the relational operator (<) to test if the value of the variable
customerAge is less than 65. You will see the fi rst curly brace in the
fourth line and the second curly brace in the second-to-last line.
int customerAge = 53;
int discount, numUnder = 0;
if(customerAge < 65)
{
 discount = 0;
 numUnder += 1;
}
System.out.println("Discount : " + discount);

In the preceding code, the variable named customerAge is initial-
ized to the value 53. Because 53 is less than 65, the expression,
customerAge < 65, evaluates to true, and the block statement exe-
cutes. Th e block statement is made up of the two assignment state-
ments within the curly braces: discount = 0; and numUnder += 1;.
If the expression evaluates to false, the block statement does not
execute. In either case, the next statement to execute is the output
statement, System.out.println("Discount : " + discount);.

Notice that you do not include a semicolon at the end of the line with
the if and the expression to be tested. Including a semicolon at the
end of this line would not create a syntax error, but it could create a

56

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

logic error in your program. A logic error causes your program to
produce incorrect results. In Java, the semicolon (;) is called the null
statement and is considered a legal statement. Th e null statement is a
statement that does nothing. Examine the following code:
int customerAge = 53;
int discount, numUnder;
if (customerAge < 65); // semicolon here is not correct
{
 discount = 0;
 numUnder += 1;
}

If you write an if statement as shown in the preceding code, your
program will test the expression customerAge < 65. If it evaluates to
true, the null statement executes, which means your program does
nothing, and then the statement, discount = 0; executes because
this is the next statement following the if statement. Th is does not
cause a logic error in your program, but consider what happens when
the expression in the if statement evaluates to false. If false, the
null statement does not execute, but the statement discount = 0;
will execute because it is the next statement after the if statement.

Th e following code uses an if statement along with the equals()
method to test two String objects for equality:
String dentPlan = "Y";
double grossPay = 500.00;
if(dentPlan.equals("Y"))
 grossPay = grossPay − 23.50;

In this example, if the value of the String object named dentPlan
and the string constant “Y” are the same value, the expression
 evaluates to true, and the grossPay calculation assignment state-
ment executes. If the expression evaluates to false, the grossPay
 calculation assignment statement does not execute.

Exercise 4-1: Understanding if Statements
In this exercise, you use what you have learned about writing if
statements. Study the following code and then answer Questions 1–4.
// VotingAge.java - This program determines if a
// person is eligible to vote.
public class VotingAge
{
 public static void main(String args[])
 {
 // Work done in the housekeeping() method
 int myAge = 22;
 String ableToVote = "Yes";
 final int VOTING_AGE = 18;

57

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 // Work done in the detailLoop() method
 if(myAge < VOTING_AGE)
 ableToVote = "No";
 System.out.println("My Age: " + myAge);
 System.out.println("Able To Vote: " + ableToVote);
 // Work done in the endOfJob() method
 System.exit(0);
 }
}

1. What is the exact output when this program executes?

2. What is the exact output if the value of myAge is changed
to 17?

3. What is the exact output if the expression in the if statement
is changed to myAge <= VOTING_AGE ?

4. What is the exact output if the variable named ableToVote is
initialized with the value “No” rather than the value “Yes”?

LAB 4.1 Understanding if Statements
In this lab, you complete a prewritten Java program for
a carpenter who creates personalized house signs. Th e
 program is supposed to compute the price of any sign a

customer orders, based on the following facts:

 • Th e charge for all signs is a minimum of $30.00.

 • Th e fi rst six letters or numbers are included in the minimum
charge; there is a $3 charge for each additional character.

 • If the sign is make of oak, add $15.00. No charge is added for pine.

 • Black or white characters are included in the minimum charge;
there is an additional $12 charge for gold-leaf lettering.

58

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Open the fi le named HouseSign.java using Notepad or the
text editor of your choice.

2. You need to declare variables for the following, and initialize
them where specifi ed:

 • A variable for the cost of the sign initialized to 0.00.

 • A variable for the color of the characters initialized to
“gold”.

 • A variable for the wood type initialized with the value “oak”.

 • A variable for the number of characters initialized with the
value 8.

3. Write the rest of the program using assignment statements
and if statements as appropriate. Th e output statements are
written for you.

4. Compile the program.

5. Execute the program. Your output should be: Th e charge for
this sign is $63.0.

Note that you cannot control the number of places that appear after
the decimal point until you learn more about Java in Chapter 9 of
this book.

The if-else Statement
Th e if-else statement is a dual-path or dual-alternative decision
statement. Th at is, your program will take one of two paths as a result
of evaluating an expression in an if-else statement.

Th e syntax for writing an if-else statement in Java is as follows:
if(expression)
 statementA;
else
 statementB;

When the compiler encounters an if-else statement, the expression
in the parentheses is evaluated. If the expression evaluates to true,
then the computer executes statementA. Otherwise, if the expres-
sion in parentheses evaluates to false, then the computer executes

Do not include
a semicolon
at the end of
the line con-
taining the

keyword if and the
expression to be tested,
or on the line with the
keyword else. While
doing so is not a syntax
error, it could create a
logic error.

59

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

statementB. Both statementA and statementB can be simple
 statements or block statements. Regardless of which path is taken in
a program, the statement following the if-else statement is the next
one to execute.

Th e following code sample illustrates an if-else statement written
in Java:
int hoursWorked = 45;
double rate = 15.00;
double grossPay;
String overtime = "Yes";
final int HOURS_IN_WEEK = 40;
final double OVERTIME_RATE = 1.5;
if(hoursWorked > HOURS_IN_WEEK)
{
 overtime = "Yes";
 grossPay = HOURS_IN_WEEK * rate +
 (hoursWorked - HOURS_IN_WEEK) *
 OVERTIME_RATE * rate;
}
else
{
 overtime = "No";
 grossPay = hoursWorked * rate;
}
System.out.println("Overtime: " + overtime);
System.out.println("Gross Pay: $" + grossPay);

In the preceding code, the value of the variable named hoursWorked
is tested to see if it is greater than HOURS_IN_WEEK.

You use the greater than relational operator (>) to make the
 comparison. If the expression hoursWorked > HOURS_IN_WEEK
 evaluates to true, then the block statement executes. Th is fi rst block
statement contains one statement that assigns the string constant
“Yes” to the variable named overtime, and another statement that
calculates the employee’s gross pay, including overtime pay, and
assigns the calculated value to the variable named grossPay.

If the expression hoursWorked > HOURS_IN_WEEK evaluates to false,
then a diff erent path is followed, and the second block statement fol-
lowing the keyword else executes. Th is block statement contains one
statement that assigns the string constant “No” to the variable named
overtime and another statement that calculates the employee’s gross
pay with no overtime and assigns the calculated value to the variable
named grossPay.

HOURS_IN
_WEEK is a
constant that
is initialized
with the value
40, and

OVERTIME_RATE is a
constant that is initialized
with the value 1.5.

60

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Regardless of which path is taken, the next statement to execute is the
output statement System.out.println("Overtime: " + overtime);
immediately followed by the output statement
System.out.println("Gross Pay: $" + grossPay);.

Exercise 4-2: Understanding if-else
Statements
In this exercise, you use what you have learned about writing if-else
statements. Th is program was written to calculate customer charges
for a telephone company. Th e telephone company charges 25 cents
per minute for calls outside of the customer’s area code that last
over 15 minutes. All other calls are 30 cents per minute. Study the
 following code and then answer Questions 1–4.
// Telephone.java - This program determines telephone
// call charges.
public class Telephone
{
 public static void main(String args[])
 {
 // This is the work done in the housekeeping() method
 int custAC, custNumber;
 int calledAC, calledNumber;
 int callMinutes;
 double callCharge;
 final int MAX_MINS = 15;
 final double CHARGE_1 = 0.25;
 final double CHARGE_2 = 0.30;
 // This is the work done in the detailLoop() method
 custAC = 847;
 custNumber = 5551234;
 calledAC = 630;
 calledNumber = 5557890;
 callMinutes = 50;
 if(calledAC != custAC && callMinutes > MAX_MINS)
 callCharge = callMinutes * CHARGE_1;
 else
 callCharge = callMinutes * CHARGE_2;
 // This is the work done in the endOfJob() method
 System.out.println("Customer Number: " + custAC +
 "-" + custNumber);
 System.out.println("Called Number: " + calledAC +
 "-" + calledNumber);
 System.out.println("The charge for this call is $"
 + callCharge);
 System.exit(0);
 }
}

61

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. What is the exact output when this program executes?

2. What is the exact output if the value of callMinutes is
changed to 20?

3. What is the exact output if the expression in the if statement
is changed to callMinutes >= MAX_MINS?

4. What is the exact output if the variable named calledAC is
assigned the value 847 rather than the value 630?

LAB 4.2 Understanding if-else
Statements

In this lab, you will complete a prewritten Java program
that computes the largest and smallest of three integer

 values. Th e three values are –100, 100, and 36.

1. Open the fi le named LargeSmall.java using Notepad or the
text editor of your choice.

2. Two variables named largest and smallest are declared for
you. Use these variables to store the largest and smallest of
the three integer values. You must decide what other variables
you will need and initialize them if appropriate.

3. Write the rest of the program using assignment statements,
if statements, or if-else statements as appropriate. Th er e
are comments in the code that tell you where you should
write your statements. Th e output statement is written
for you.

62

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Compile the program.

5. Execute the program. Your output should be:

Th e largest value is 100
Th e smallest value is −100

Nested if Statements
You can nest if statements to create a multipath decision statement.
When you nest if statements, you include an if statement within
another if statement. Th is is helpful in programs in which you want
to provide more than two possible paths.

Th e syntax for writing a nested if statement in Java is as follows:
if(expressionA)
 statementA;
else if(expressionB)
 statementB;
else
 statementC;

Th is is called a nested if statement because the second if statement
is a part of the fi rst if statement. Th is is easier to see if the example is
changed as follows:
if(expressionA)
 statementA;
else
 if(expressionB)
 statementB;
 else
 statementC;

Now let’s see how a nested if statement works. As shown in
Figure 4-3, if expressionA evaluates to true, then the com-
puter executes statementA. If expressionA evaluates to false,
then the computer will evaluate expressionB. If expressionB
 evaluates to true, then the computer will execute statementB. If
both expressionA and expressionB evaluate to false, then the
 computer will execute statementC. Regardless of which path is
taken in this code, the statement following the if-else statement is
the next one to execute.

Do not include
a semicolon
at the end of
the lines with
expressions to

be tested or on the line
with the keyword else.

63

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 4-3 Evaluation of a nested if statement

statementA

statementB

nextStatement

statementC

expressionB

expressionAF T

TF

Th e Java code sample that follows illustrates a nested if statement.
if(empDept <= 3)
 supervisorName = "Dillon";
else if(empDept <= 7)
 supervisorName = "Escher";
else
 supervisorName = "Fontana";
System.out.println("Supervisor: " + supervisorName);

When you read the preceding code, you can assume that a depart-
ment number is never less than 1. If the value of the variable
named empDept is less than or equal to the value 3 (in the range
of values from 1 to 3), then the value “Dillon” is assigned to the
 variable named supervisorName. If the value of empDept is not
less than or equal to 3, but it is less than or equal to 7 (in the range
of values from 4 to 7), then the value “Escher” is assigned to the
 variable named supervisorName. If the value of empDept is not in
the range of values from 1 to 7, then the value “Fontana” is assigned
to the variable named supervisorName. As you can see, there are
three possible paths this program could take when the nested
if statement is encountered. Regardless of which path the pro-
gram takes, the next statement to execute is the output statement
System.out.println("Supervisor: " + supervisorName);.

64

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 4-3: Understanding Nested if
Statements
In this exercise, you use what you have learned about writing nested
if statements. Th is program was written for the Woof Wash dog-
grooming business to calculate a total charge for services rendered.
Woof Wash charges $15 for a bath, $7 for a trim cut, and $5 to clip
nails. Study the following code and then answer Questions 1–3.
// WoofWash.java - This program determines if a doggy
// service is provided and prints the charge.
import javax.swing.*; // import package javax.swing
public class WoofWash
{
 public static void main(String args [])
 {
 // This is the work done in the housekeeping() method
 String service;
 final String SERVICE_1 = "bath";
 final String SERVICE_2 = "cut";
 final String SERVICE_3 = "trim nails";
 double charge;
 final double BATH_CHARGE = 15.00;
 final double CUT_CHARGE = 7.00;
 final double NAIL_CHARGE = 5.00;
 service =
 JOptionPane.showInputDialog ("Enter service: ");
 // This is the work done in the detailLoop() method
 if(service.equals(SERVICE_1))
 charge = BATH_CHARGE;
 else if(service.equals(SERVICE_2))
 charge = CUT_CHARGE;
 else if(service.equals(SERVICE_3))
 charge = NAIL_CHARGE;
 else
 charge = 0.00;
 // This is the work done in the endOfJob() method
 if(charge > 0.00)
 System.out.println("The charge for a doggy " +
 service + " is $" + charge + ".");
 else
 System.out.println("We do not perform the " +
 service + " service.");
 System.exit (0);
 }
}

1. What is the exact output when this program executes if the
user enters “bath”?

65

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. What is the exact output when this program executes if the
user enters “shave”?

3. What is the exact output when this program exe-
cutes if the nested if statement is changed to
if(service == SERVICE_1) and the user enters “bath”?

LAB 4.3 Understanding Nested if
Statements

In this lab, you complete a prewritten Java program that
calculates an employee’s productivity bonus and prints

the employee’s name and bonus. Bonuses are calculated based on an
employee’s productivity score as shown in Table 4-4. A productivity
score is calculated by fi rst dividing an employee’s transactions dollar
value by the number of transactions and then dividing the result by
the number of shifts worked.

Productivity Score Bonus

<= 30 $25

31–79 $50

80–199 $100

>= 200 $200

Table 4-4 Employee productivity scores and bonuses

1. Open the fi le named EmployeeBonus.java using Notepad or
the text editor of your choice.

2. Variables have been declared for you and the input statements
and output statements have been written. Read them over
carefully before you proceed to the next step.

3. Design the logic and write the rest of the program using a
nested if statement.

4. Compile the program.

5. Execute the program entering the following as input:

Employee’s name: Dan Johnson
Number of Shifts: 20

66

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Number of transactions: 60
Transaction dollar value: 40000.00

6. Your output should be: Employee Name: Dan Johnson
 Employee Bonus: $50.0

You cannot control the number of places that appear after the deci-
mal point until you learn more about Java in Chapter 9 of this book.

The switch Statement
Th e switch statement is similar to a nested if statement because it
is also a multipath decision statement. A switch statement off ers the
advantage of being easier for you to read than nested if statements,
and a switch statement is also easier for you, the programmer, to
maintain. You use the switch statement in situations when you want
to compare an expression with several integer constants.

Th e syntax for writing a switch statement in Java is as follows:
switch(expression)
{
 case constant: statement(s);
 case constant: statement(s);
 case constant: statement(s);
 default: statement(s);
}

You begin writing a switch statement with the keyword switch. Th en,
within parentheses, you include an expression that evaluates to an
integer value. Cases are then defi ned within the switch statement by
using the keyword case as a label, and including an integer value after
this label. For example, you could include an integer constant such
as 10 or an arithmetic expression that evaluates to an integer such as
10/2. Th e computer evaluates the expression in the switch statement
and then compares it to the integer values following the case labels.
If the expression and the integer value match, then the computer
executes the statement(s) that follow until it encounters a break state-
ment or a closing curly brace. Th e break statement causes an exit
from the switch statement. You can use the keyword default to
establish a case for values that do not match any of the integer values
following the case labels. Note also that all of the cases, including the
default case, are enclosed within curly braces.

Th e following code sample illustrates the use of the switch statement
in Java:

If you omit a
break state-
ment in a
case, all the
code up to the

next break statement or
a closing curly brace is
executed. This is prob-
ably not what you intend.

67

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int deptNum;
String deptName;
deptNum = 2;
switch(deptNum)
{
 case 1: deptName = "Marketing";
 break;
 case 2: deptName = "Development";
 break;
 case 3: deptName = "Sales";
 break;
 default: deptName = "Unknown";
 break;
}
System.out.println("Department: " + deptName);

In the preceding example, when the program encounters the
switch statement, the value of the variable named deptNum is 2.
Th e value 2 matches the integer constant 2 in the second case of the
switch statement. Th erefore, the string constant “Development”
is assigned to the String variable named deptName. A break state-
ment is encountered next, and causes the program to exit from the
switch statement. Th e statement following the switch statement
System.out.println("Department: " + deptName); executes next.

Exercise 4-4: Using a switch Statement
In this exercise, you use what you have learned about the switch
statement. Study the following code and then answer Questions 1–5.
int numValue = 10;
int answer = 0;
switch(numValue)
{
 case 5: answer += 5;
 case 10: answer += 10;
 case 15: answer += 15;
 break;
 case 20: answer += 20;
 case 25: answer += 25;
 default: answer = 0;
 break;
}
System.out.println("Answer: " + answer);

1. What is the value of answer if the value of numValue is 10?

2. What is the value of answer if the value of numValue is 20?

68

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. What is the value of answer if the value of numValue is 5?

4. What is the value of answer if the value of numValue is 17?

5. Is the break statement in the default case needed? Explain.

LAB 4.4 Using a switch Statement
In this lab, you complete a prewritten Java program that
calculates an employee’s end-of-year bonus and prints
the employee’s name, yearly salary, performance rating,

and bonus.

In this program, bonuses are calculated based on an employee’s
annual salary and their performance rating. Th e rating system is
 contained in Table 4-5.

Rating Bonus

1 20% of annual salary

2 10% of annual salary

3 5% of annual salary

4 None

Table 4-5 Employee ratings and bonuses

1. Open the fi le named EmployeeBonus2.java using Notepad or
the text editor of your choice.

2. Variables have been declared for you, and the input statements
and output statements have been written. Read them over
carefully before you proceed to the next step.

3. Design the logic and write the rest of the program using a
switch statement.

4. Compile the program.

5. Execute the program entering the following as input:

Employee’s name: Ed Johnson
Employee’s salary: 70000.00
Employee’s performance rating: 2

69

Decision Statements

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Confi rm that your output matches the following:

Employee Name: Ed Johnson
Employee Salary: $70000.0
Employee Rating: 2
Employee Bonus: $7000.0

Using Decision Statements to Make
Multiple Comparisons
When you write programs, you must often write statements that
include multiple comparisons. For example, you may want to deter-
mine that two conditions are true before you decide which path your
program will take. In the next sections, you learn how to implement
AND logic in a program by using the && (AND) logical operator.
You also learn how to implement OR logic using the || (OR) logical
operator.

Using AND Logic
When you write Java programs, you can use the AND operator
(&&) to make multiple comparisons in a single decision statement.
Remember when using AND logic, that all expressions must evaluate
to true for the entire expression to be true.

Th e Java code that follows illustrates a decision statement that uses
the AND operator (&&) to implement AND logic:
String medicalPlan = "Y";
String dentalPlan = "Y";
if(medicalPlan.equals("Y") && dentalPlan.equals("Y"))
 System.out.println("Employee has medical insurance" +
 " and also has dental insurance.");
else
 System.out.println("Employee may have medical" +
 " insurance or may have dental insurance," +
 " but does not have both medical and" +
 " dental insurance.");

In this example, the variables named medicalPlan and
dentalPlan have both been initialized to the string con-
stant “Y”. When the expression medicalPlan.equals("Y")
is evaluated, the result is true. When the expression
dentalPlan.equals("Y") is evaluated, the result is also true.
Because both expressions evaluate to true, the entire expression,

For now, you
cannot control
the number of
places that
appear after

the decimal point. You will
learn how to do this in
Chapter 9 of this book.

70

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

medicalPlan.equals("Y") && dentalPlan.equals("Y"), evaluates
to true. Because the entire expression is true, the output generated is
“Employee has medical insurance and also has dental insurance.”

If you initialize either of the variables, medicalPlan or
dentalPlan, with a value other than “Y”, then the expression
medicalPlan.equals("Y") && dentalPlan.equals("Y") evaluates
to false, and the output generated is “Employee may have medical
insurance or may have dental insurance, but does not have both
 medical and dental insurance.”

Using OR Logic
You can use OR logic when you want to make multiple comparisons
in a single decision statement. Of course, you must remember when
using OR logic that only one expression must evaluate to true for the
entire expression to be true.

Th e Java code that follows illustrates a decision statement that uses
the OR operator (||) to implement OR logic:
String medicalPlan = "Y";
String dentalPlan = "N";
if(medicalPlan.equals("Y") || dentalPlan.equals("Y"))
 System.out.println("Employee has medical insurance" +
 " or dental insurance or both.");
else
 System.out.println("Employee does not have medical" +
 " insurance and also does not have dental" +
 " insurance.");

In this example, the variable named medicalPlan is initialized
with the string constant “Y”, and the variable named dentalPlan
is initialized to the string constant “N”. When the expression
medicalPlan.equals("Y") is evaluated, the result is true. When the
expres sion dentalPlan.equals("Y") is evaluated, the result is false. Th e
expression, medicalPlan.equals("Y") || dentalPlan.equals("Y"),
evaluates to true because when using OR logic, only one of the
expressions must evaluate to true for the entire expression to be
true. Because the entire expression is true, the output generated is
“Employee has medical insurance or dental insurance or both.”

If you initialize both of the variables, medicalPlan and
dentalPlan, with the string constant “N”, then the expression,
medicalPlan.equals("Y") || dentalPlan.equals("Y"), evaluates
to false, and the output generated is “Employee does not have
 medical insurance and also does not have dental insurance.”

71

Using Decision Statements to Make Multiple Comparisons

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 4-5: Making Multiple Comparisons
in Decision Statements
In this exercise, you use what you have learned about OR logic. Th is
example program was written for a marketing research fi rm that wants
to determine if a customer prefers Coke or Coke Zero over some other
drink. Study the following code and then answer Questions 1–4.
// CokeOrCokeZero.java - This program determines if a
// customer prefers to drink Coke or Coke Zero or some other
// drink.
import javax.swing.*;
public class CokeOrCokeZero
{
 public static void main(String args[])
 {
 String customerName; // Customer’s name.
 String drink = " "; // Customer’s favorite drink.
 // This is the work done in the housekeeping() method
 customerName = JOptionPane.showInputDialog(
 "Enter customer’s name: ");
 drink = JOptionPane.showInputDialog(
 "Enter customer’s drink preference: ");
 // This is the work done in the detailLoop() method
 if(drink.equals("Coke") || drink.equals("Coke Zero"))
 {
 System.out.println("Customer Name: " +
 customerName);
 System.out.println("Drink: " + drink);
 }
 else
 System.out.println(customerName +
 " does not prefer Coke or Coke Zero.");
 // This is the work done in the endOfJob() method
 System.exit(0);
 }
}

1. What is the exact output when this program executes if the
customer’s name is “Sally Preston” and the drink is “Coke
Zero”?

2. What is the exact output when this program executes if the
customer’s name is “Sally Preston” and the drink is “Coke”?

72

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. What is the exact output from this program when
if(drink.equals("Coke") || drink.equals("Coke Zero"))

is changed to
if(drink.equals("Coke") && drink.equals("Coke Zero"))

and the customer’s name is still “Sally Preston” and the drink
is still “Coke”?

4. What is the exact output from this program when
if(drink.equals("Coke") || drink.equals("Coke Zero"))

is changed to
if(drink.equals("Coke") || drink.equals("Coke Zero") ||
 drink.equals("coke") || drink.equals("coke zero"))

and the customer’s name is “Sally Preston”, and the drink is
“coke”? What does this change allow a user to enter?

LAB 4.5 Making Multiple Comparisons
in Decision Statements

In this lab, you complete a partially written Java program
for an airline that off ers a 20% discount to passengers who

are 7 years old or younger and the same discount to passengers who
are 65 years old or older. Th e program should request a passenger’s
name and age, and then print whether the passenger is eligible or not
eligible for a discount.

1. Open the fi le named Airline.java using Notepad or the text
editor of your choice.

2. Variables have been declared and initialized for you, and the
input statements have been written. Read them carefully
before you proceed to the next step.

3. Design the logic deciding whether to use AND or OR logic.
Write the decision statement to identify when a discount
should be off ered and when a discount should not be off ered.

4. Be sure to include output statements telling whether or not
the customer is eligible for a discount.

5. Compile the program.

73

Using Decision Statements to Make Multiple Comparisons

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6. Execute the program, entering the following as input:

a. Customer Name: Karen Matthews
 Customer Age : 6
 What is the output?

b. Customer Name: Robert Williams
 Customer Age : 65
 What is the output?

c. Customer Name: Sonia Perez
 Customer Age : 80
 What is the output?

d. Customer Name: Tim Chen
 Customer Age : 55
 What is the output?

e. Customer Name: Billy Chen
 Customer Age : 4
 What is the output?

f. Customer Name: Ann Vakil
 Customer Age : 27
 What is the output?

74

C H A P T E R 4 Writing Programs that Make Decisions

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Use Java’s increment (++) and decrement (−−) operators

 Recognize how and when to use while loops in Java,
including how to use a counter and how to use a sentinel
value to control a loop

 Use for loops in Java

 Write a do while loop in Java

 Include nested loops in applications

 Accumulate totals by using a loop in a Java application

 Use a loop to validate user input in an application

C H A P T E R 5
Writing Programs
Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, you learn how to use Java to program three types of
loops: a while loop, a do while loop, and a for loop. You also learn
how to nest loops, how to use a loop to help you accumulate a total
in your programs, and how to use a loop to validate user input. You
should do the exercises and labs in this chapter only after you have
fi nished Chapter 5 in your book, Programming Logic and Design,
Seventh Edition. In that chapter, you learned that loops change the
fl ow of control in a program by allowing a programmer to direct the
computer to execute a statement or a group of statements multiple
times. But before you start learning about Java’s loops, it is helpful to
learn about two additional operators, the increment and decrement
operators.

The Increment (++) and Decrement
(−−) Operators
You will often use the increment and decrement operators when
your programs require loops. Th ese operators provide a concise,
 effi cient method for adding 1 to (incrementing) or subtracting 1 from
 (decrementing) an lvalue. An lvalue is an area of memory in which
a value your program needs may be stored. In Java code, you place
an lvalue on the left side of an assignment statement. Recall that an
 assignment statement stores a value at a memory location that is
associated with a variable, and you place a variable name on the left
side of an assignment statement.

For example, the Java assignment statement:
number = 10;

assigns the value 10 to the variable named number. Th is causes
the computer to store the value 10 at the memory location associ-
ated with number. Because the increment and decrement operators
add 1 to or subtract 1 from an lvalue, the statement number++; is
equivalent to number = number + 1; and the statement number−−;
is equivalent to number = number − 1;. Each expression changes
or writes to the memory location associated with the variable
named number.

Both the increment and decrement operators have prefi x and postfi x
forms. Which form you use depends on when you want to incre-
ment or decrement the value stored in the variable. When you use
the prefi x form, as in ++number, you place the operator in front of
the name of the variable. Th is increments or decrements the lvalue
immediately. When you use the postfi x form, as in number++, you
place the operator after the name of the variable. Th is increments or
 decrements the lvalue after it is used.

The “l” in
“lvalue” stands
for “left.”

76

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e example that follows illustrates the use of both forms of the
increment operator in Java.
x = 5;
y = x++; // Postfix form
 // y is assigned the value of x,
 // then x is incremented.
 // Value of x is 6.
 // Value of y is 5.
x = 5;
y = ++x; // Prefix form
 // x is incremented first, then
 // the value of x is assigned to y.
 // Value of x is 6.
 // Value of y is 6.

You might understand the postfi x form better if you think of the
statement y = x++; as being the same as the following:
x = 5;
y = x;
x = x + 1;

To understand the prefi x form better, think of y = ++x; as being the
same as the following:
x = 5;
x = x + 1;
y = x;

Exercise 5-1: Using the Increment (++) and
Decrement (−−) Operators
In this exercise, you use what you have learned about Java’s increment
and decrement operators to answer Questions 1–4.

1. Examine the following code:
x = 9;
y = ++x;

After this code executes, what is the value of x?
y?

2. Examine the following code:
x = 9;
y = x++;

After this code executes, what is the value of x?
y?

3. Examine the following code:

77

The Increment (++) and Decrement (−−) Operators

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

x = 9;
y = −−x;

After this code executes, what is the value of x?
y?

4. Examine the following code:
x = 9;
y = x−−;

After this code executes, what is the value of x?
y?

Writing a while Loop in Java
As you learned in Programming Logic and Design, Seventh Edition,
three steps must occur in every loop:

1. You must initialize a variable that will control the loop. Th is
variable is known as the loop control variable.

2. You must compare the loop control variable to some value,
known as the sentinel value, which decides whether the loop
continues or stops. Th is decision is based on a Boolean com-
parison. Th e result of a Boolean comparison is always a true
or false value.

3. Within the loop, you must alter the value of the loop control
variable.

You also learned that the statements that are part of a loop are
referred to as the loop body. In Java, the loop body may consist of a
single statement or a block statement.

Th e statements that make up the loop body may be any type of
 statements, including assignment statements, decision statements, or
even other loops. Note that the Java syntax for writing a while loop is
as follows:
while(expression)
 statement;

Notice that there is no semicolon after the ending parenthesis.
Placing a semicolon after the ending parenthesis is not a syntax
error, but it is a logic error. It results in an infi nite loop, which is a
loop that never stops executing the statements in its body. It never
stops executing because the semicolon is a statement called the null
 statement and is interpreted as “do nothing.” Th ink of a while loop
with a semicolon after the ending parenthesis as meaning “while the
condition is true, do nothing forever.”

Remember
that a block
statement is
several state-
ments within a

pair of curly braces.

78

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e while loop allows you to direct the computer to execute the
statement in the body of the loop as long as the expression within the
parentheses evaluates to true. Study the example that follows, which
illustrates a while loop that uses a block statement as its loop body:
f nal int NUM_TIMES = 3;
int num = 0;
while(num < NUM_TIMES)
{
 System.out.println("Welcome to Java Programming.");
 num++;
}

In this example, a block statement is used because the loop body
 contains more than one statement.

Th e fi rst statement causes the text “Welcome to Java Programming.”
to appear on the user’s screen. Th e second statement, num++;, is
important because it causes num, the loop control variable, to be
incremented. When the loop is fi rst encountered, the comparison,
num < NUM_TIMES, is made for the fi rst time when the value of num is
0. Th e 0 is compared to, and found to be less than, 3, which means
the condition is true, and the text “Welcome to Java Programming.” is
displayed for the fi rst time. Th e next statement, num++;, causes 1 to be
added to the value of num. Th e second time the comparison is made,
the value of num is 1, which is still less than 3, and causes the text to
appear a second time followed by adding 1 to the value of num. Th e
third comparison also results in a true value because the value of num
is now 2, and 2 is still less than 3; as a result, the text appears a third
time, and num is incremented again. Th e fourth time the comparison
is made, the value of num is 3, which is not less than 3; as a result, the
program exits the loop.

Th e loop in the next code example produces the same results as
the previous example. Th e text “Welcome to Java Programming.” is
 displayed three times.
f nal int NUM_TIMES = 3;
int num = 0;
while(num++ < NUM_TIMES)
 System.out.println("Welcome to Java Programming.");

Be sure you understand why the postfi x increment operator is used in
the expression num++ < NUM_TIMES.

Th e fi rst time this comparison is made, the value of num is 0. Th e 0 is
then compared to, and found to be less than, 3, which means the condi-
tion is true, and the text “Welcome to Java Programming.” is displayed.

Th e second time the comparison is made, the value of num is 1;
because 1 is still less than 3, the text appears a second time. Th e third
comparison also results in a true value because the value of num is

When you use
the postfi x
increment
operator, the
value of num

is not incremented until
after the comparison
is made.

79

Writing a while Loop in Java

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

now 2, and 2 is still less than 3; as a result, the text appears a third
time. Th e fourth time the comparison is made, the value of num is 3,
which is not less than 3; as a result, the program exits the loop.

If the prefi x increment operator is used in the expression
++num < NUM_TIMES, the loop executes twice instead of three times.
Th is occurs because the fi rst time this comparison is made, num
is incremented before the comparison is done. Th is results in num
 having a value of 1 the fi rst time “Welcome to Java Programming.”
is displayed and a value of 2 the second time it is displayed. Th en,
when the value of num is 3, the condition is false, causing the pro-
gram to exit the loop. Th is time, “Welcome to Java Programming.” is
not displayed.

Exercise 5-2: Using a while Loop
In this exercise, you use what you have learned about writing while
loops. Study the following code and then answer Questions 1–4.
f nal int NUM_LOOPS = 12;
int numberOfTimes = NUM_LOOPS;
while(numberOfTimes++ < NUM_LOOPS)
 System.out.println("Value of numberOfTimes is " +
 numberOfTimes);

1. What is the loop control variable?

2. What is the output?

3. What is the output if the code is changed to
while(numberOfTimes++ <= NUM_LOOPS)?

4. What is the output if the code is changed to
while(++numberOfTimes <= NUM_LOOPS)?

Using a Counter to Control a Loop
In Chapter 5 of Programming Logic and Design, Seventh Edition, you
learned that you can use a counter to control a while loop. With a
counter, you set up the loop to execute a specifi ed number of times.
Also recall that a while loop will execute zero times if the expression
used in the comparison immediately evaluates to false. In that case,
the computer does not execute the body of the loop at all.

It is important
to understand
the difference
between the
prefi x and

postfi x forms of the incre-
ment and decrement
operators.

80

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 of Programming Logic and Design, Seventh Edition
 discusses a counter-controlled loop that controls how many times
the word “Hello” is printed. Let’s take a look at the following
 pseudocode for this counter-controlled loop:
start
 Declarations
 num count = 0
 while count < 4
 print "Hello"
 count = count + 1
 endwhile
 output "Goodbye"
 stop

Th e counter for this loop is a variable named count, which is assigned
the value 0. Th e Boolean expression, count < 4, is tested to see if the
value of count is less than 4. If true, the loop executes. If false, the
program exits the loop. If the loop executes, the program displays
the word “Hello”, and then adds 1 to the value of count. Given this
pseudocode, the loop body executes four times, and the word “Hello”
is displayed four times.

Now, let’s see what the code looks like when you translate the
pseudocode to Java:
int count = 0;
while(count < 4)
{
 System.out.println("Hello");
 count++;
}

First, the variable count is assigned a value of 0 and is used as the
counter variable to control the while loop. Th e while loop follows
and includes the Boolean expression, count < 4, within paren-
theses. Th e counter-controlled loop executes a block statement
that is marked by an opening curly brace and a closing curly brace.
Th e statements in the loop body display the word “Hello” and then
 increment count, which adds 1 to the counter variable.

Exercise 5-3: Using a Counter-Controlled
while Loop
In this exercise, you use what you have learned about counter-
controlled loops. Study the following code and then answer
Questions 1–4.

Incrementing
the counter
variable is an
important
statement.

Each time through the
loop, the count variable
must be incremented or
the expression,
count < 4, would
never be false. This
would result in an
infi nite loop.

81

Using a Counter to Control a Loop

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int number1 = 0;
int number2 = 0;
while(number1 < 5)
 number1++;
 number2 += number1;

1. What is the value of number1 when the loop exits?

2. What is the value of number2 when the loop exits?

3. If the statement number1++ is changed to ++number1, what is
the value of number1 when the loop exits?

4. What could you do to force the value of number2 to be 15
when the loop exits?

LAB 5.1 Using a Counter-Controlled
while Loop

In this lab, you use a counter-controlled while loop in a Java
program provided with the data fi les for this book. When

completed, the program should print the numbers 0 through 10, along
with their values multiplied by 10 and by 100. Th e data fi le contains the
necessary variable declarations and output statements.

1. Open the source code fi le named Multiply.java using
Notepad or the text editor of your choice.

2. Write a counter-controlled while loop that uses the loop control
variable to take on the values 0 through 10. Remember to initial-
ize the loop control variable before the program enters the loop.

3. In the body of the loop, multiply the value of the loop control
variable by 10 and by 100. Remember to change the value of the
loop control variable in the body of the loop.

4. Save the source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the source code fi le, Multiply.java.

6. Execute the program. Record the output of this program.

Remember
that number2
+= number1;
is the same as
number2 =

number2 + number1;.

82

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a Sentinel Value to Control a Loop
As you learned in Chapter 1 of Programming Logic and Design,
Seventh Edition, a sentinel value is a value such as “Y” or “N” that a
user must supply to stop a loop. To learn about sentinel values in Java,
we will look at a program discussed in Chapter 5 of Programming
Logic and Design, Seventh Edition and in Chapter 3 of this book. Th e
program creates a payroll report for a small company. Th is program
includes a while loop and uses a sentinel value to determine when
the loop executes or when the loop is exited. Th e pseudocode is
shown below.

start
 Declarations
 string name
 num gross
 num deduct
 num net
 num RATE = 0.25
 string QUIT = "XXX"
 string REPORT_HEADING = "Payroll Report""
 string COLUMN_HEADING = "Name Gross Deductions Net"
 string END_LINE = "**End of report"
 housekeeping()
 while not name = QUIT
 detailLoop()
 endwhile
 endOfJob()
stop

housekeeping()
 output REPORT_HEADING
 output COLUMN_HEADING
 input name
return

detailLoop()
 input gross
 deduct = gross * RATE
 net = gross – deduct
 output name, gross, deduct, net
 input name
return

endOfJob()
 output END_LINE
return

Figure 5-1 Pseudocode for a payroll report program

83

Using a Sentinel Value to Control a Loop

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that a priming read is included in the housekeeping() method
in the pseudocode shown in Figure 5-1. Recall that you perform a
priming read before a loop executes to input a value that is then used to
control the loop. When a priming read is used, the program must per-
form another read within the loop body to get the next input value. You
can see the priming read, the loop, and the last output statement por-
tion of the pseudocode translated to Java in the following code sample:
name = JOptionPane.showInputDialog(
 "Enter employee’s name or XXX to quit: ");

while(name.compareTo(QUIT) != 0)
{
 // This is the work done in the detailLoop() method
 grossString = JOptionPane.showInputDialog(
 "Enter employee’s gross pay: ");
 gross = Double.parseDouble(grossString);
 deduct = gross * RATE;
 net = gross – deduct;
 System.out.println("Name: " + name);
 System.out.println("Gross Pay: " + gross);
 System.out.println("Deductions: " + deduct);
 System.out.println("Net Pay: " + net);
 name = JOptionPane.showInputDialog(
 "Enter employee’s name or XXX to quit: ");
}
// This is the work done in the endOfJob() method
System.out.println(END_LINE);

In this code example, the variable named name is the loop con-
trol variable. It is assigned a value when the program instructs
the user to “Enter employee’s name or XXX to quit: ” and reads
the user’s response. Th e loop control variable is tested with
name.compareTo(QUIT) != 0. If the user enters a name (any value
other than “XXX”, which is the constant value of QUIT), then the test
expression is true and the statements within the loop body execute. If
the user enters “XXX” (the constant value of QUIT), which is the senti-
nel value, then the test expression is false, and the loop is exited.

Th e fi rst statement instructs the user to enter an employee’s gross pay.
Th e program then retrieves the user’s input and stores it in the String
variable named grossString and then coverts the String to a Double
and stores it in the variable named gross. Th e employee’s deductions
are calculated next and stored in the variable named deduct followed
by the program calculating the employee’s net pay and storing the value
in the variable named net. Next, the program outputs the name of the
employee followed by the employee’s gross pay, deductions, and net pay.

Th e last statement in the loop prompts the user for a new value for
name. Th is is the statement that changes the value of the loop control
variable. Th e loop body ends when program control returns to the
top of the loop, where the Boolean expression in the while statement

It is important
to understand
that lowercase
“xxx” and
uppercase

“XXX” are different values.

84

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is tested again. If the user enters the next employee’s name at the last
prompt, then the loop is entered again, and a new gross pay is input
followed by calculations that determine new values for deductions
and net pay. Next, the program displays the name of the employee
followed by this employee’s gross pay, deductions, and net pay. Th e
program then prompts the user to enter a new value for name. If the
user enters “XXX”, then the test expression is false, and the loop
body doesn’t execute. When the loop is exited, the next statement to
execute displays “**End of report” (the constant value of END_LINE).

Exercise 5-4: Using a Sentinel Value to Control
a while Loop
In this exercise, you use what you have learned about sentinel values.
Study the following code and then answer Questions 1–5.
String stringNumToPrint;
int numToPrint, counter;
stringNumToPrint = JOptionPane.showInputDialog(
 "How many pages do you want to print?");
numToPrint = Integer.parseInt(stringNumToPrint);
counter = 1;
while(counter <= numToPrint);
{
 System.out.println("Page Number " + counter);
 counter++;
}
System.out.println("Value of counter is " + counter);

1. What is the output if the user enters a 6?

2. What is the problem with this code, and how can you fi x it?

3. Assuming you fi x the problem, if the user enters 50 as the
number of pages to print, what is the value of counter when
the loop exits?

4. Assuming you fi x the problem, if the user enters 0 as the
 number of pages to print, how many pages will print?

5. Assume you have fi xed the problem discussed in Questions 2,
and then you delete the curly braces. Now, what is the output
if the user enters 5 as the number of pages to print?

85

Using a Sentinel Value to Control a Loop

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 5.2 Using a Sentinel Value to
Control a while Loop

In this lab, you write a while loop that uses a sentinel value
to control a loop in a Java program provided with the data

fi les for this book. You also write the statements that make up the
body of the loop. Th e source code fi le already contains the necessary
variable declarations and output statements. You designed this pro-
gram for the Hollywood Movie Rating Guide in Chapter 5, Exercise
13 in Programming Logic and Design, Seventh Edition. Each theater
patron enters a value from 0 to 4 indicating the number of stars that
the patron awards to the Guide’s featured movie of the week. Th e
program executes continuously until the theater manager enters a
negative number to quit. At the end of the program, you should dis-
play the average star rating for the movie.

1. Open the source code fi le named MovieGuide.java using
Notepad or the text editor of your choice.

2. W rite the while loop using a sentinel value to control the
loop, and also write the statements that make up the body of
the loop.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, MovieGuide.java.

5. Execute the program. Input the following as star ratings:

4
3
2
1
–1

6. Record the average star rating for the movie.

Writing a for Loop in Java
In Chapter 5 of Programming Logic and Design, Seventh Edition, you
learned that a for loop is a defi nite loop; this means this type of loop
will execute a defi nite number of times. Th e following is the syntax
for a for loop in Java:
for(expression1; expression2; expression3)
 statement;

86

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Java, the for loop consists of three expressions that are separated
by semicolons and enclosed within parentheses. Th e for loop
 executes as follows:

 • Th e fi rst time the for loop is encountered, the fi rst expression is
evaluated. Usually, this expression initializes a variable that is used
to control the for loop.

 • Next, the second expression is evaluated. If the second expres-
sion evaluates to true, the loop statement executes. If the second
expression evaluates to false, the loop is exited.

 • After the loop statement executes, the third expression is evalu-
ated. Th e third expression usually increments or decrements the
variable that you initialized in the fi rst expression.

 • After the third expression is evaluated, the second expression is
evaluated again. If the second expression still evaluates to true,
the loop statement executes again, and then the third expression is
evaluated again.

 • Th is process continues until the second expression evaluates
to false.

Th e following code sample illustrates a Java for loop. Notice that the
code uses a block statement in the for loop.
int number = 0;
int count;
final int NUM_LOOPS = 10;
for(count = 0; count < NUM_LOOPS; count++)
{
 number += count;
 System.out.println("Value of number is: " + number);
}

In this for loop example, the variable named count is initialized
to 0 in the fi rst expression. Th e second expression is a Boolean
expression that evaluates to true or false. When the expression
count < NUM_LOOPS is evaluated the fi rst time, the value of count is
0 and the result is true. Th e loop body is then entered. Th is is where
a new value is computed and assigned to the variable named number
and then is displayed. Th e fi rst time through the loop, the output is as
follows: Value of number is: 0.

After the output is displayed, the third expression in the for loop is
evaluated; this adds 1 to the value of count, making the new value of
count equal to 1. When expression two is evaluated a second time,
the value of count is 1. Th e program then tests to see if the value of
count is less than NUM_LOOPS. Th is results in a true value and causes
the loop body to execute again where a new value is computed for

87

Writing a for Loop in Java

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

number and then displayed. Th e second time through the loop, the
output is as follows: Value of number is: 1.

Next, expression three is evaluated; this adds 1 to the value of count.
Th e value of count is now 2. Expression two is evaluated a third time
and again is true because 2 is less than NUM_LOOPS. Th e third time
through, the loop body changes the value of number to 3 and then dis-
plays the new value. Th e output is as follows: Value of number is: 3.

Th is process continues until the value of count becomes 10. At this
time, 10 is not less than NUM_LOOPS, so the second expression results
in a false value, and causes an exit from the for loop.

Th e counter-controlled loop that displays the word “Hello” four
times (which you studied in the “Using a Counter to Control a Loop”
 section of this chapter) can be rewritten using a for loop instead of
the while loop. In fact, when you know how many times a loop will
execute, it is considered a good programming practice to use a for
loop instead of a while loop.

To rewrite the while loop as a for loop, you can delete the assign-
ment statement, counter = 0; because you initialize counter in
expression one. You can also delete counter++; from the loop body
because you increment counter in expression three. Th e program
continues to print the word “Hello” in the body of the loop. Th e
 following code sample illustrates this for loop:
int counter;
final int NUM_LOOPS = 4;
for(counter = 0; counter < NUM_LOOPS; counter++)
{
 System.out.println("Hello");
}

Exercise 5-5: Using a for Loop
In this exercise, you use what you have learned about for loops.
Study the following code and then answer Questions 1–4.
f nal int NUM_LOOPS = 16;
int numTimes;
for(numTimes = 1; numTimes <= NUM_LOOPS; numTimes++)
{
 System.out.println("Value of numTimes is: " + numTimes);
 numTimes++;
}

Answer the following four questions with “True” or “False.”

1. Th is loop executes 16 times.

The curly
braces are not
required
because now
the loop body

contains just one state-
ment. However, it is good
programming practice to
include them, as it makes
the code more readable
and may help prevent an
error later if additional
statements are added to
the body of the loop.

88

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Th is loop could be written as a while loop.

3. Chang ing the <= operator to < will make no diff erence in
the output.

4. Th is loop executes 8 times.

LAB 5.3 Using a for Loop
In this lab, you work with the same Java program you
worked with in Lab 5.1. As in Lab 5.1, the completed
 program should print the numbers 0 through 10, along

with their values multiplied by 10 and by 100. However, in this lab,
you should accomplish this using a for loop instead of a counter-
controlled while loop.

1. Open the source code fi le named NewMultiply.java using
Notepad or the text editor of your choice.

2. W rite a for loop that uses the loop control variable to take on
the values 0 through 10.

3. In the body of the loop, multiply the value of the loop control
variable multiplied by 10 and by 100.

4. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the source code fi le, NewMultiply.java.

6. Execute the program. Is the output the same?

Writing a do while Loop in Java
In Chapter 5 of Programming Logic and Design, Seventh Edition, you
learned about the do-until loop. Java does not support a do-until
loop, but it does have a do while loop. Th e do while loop uses logic
that can be stated as “do a while b is true.” Th is is similar to a while loop;
however, there is a diff erence. When you use a while loop, the condi-
tion is tested before the statements in the loop body execute. When you
use a do while loop, the condition is tested after the statements in the
loop body execute once. As a result, you should choose a do while loop

89

Writing a do while Loop in Java

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

when your program logic requires the body of the loop to execute at
least once. Th e body of a do while loop continues to execute as long as
the expression evaluates to true. Th e do while syntax is as follows:
do
 statement;
while(expression);

Th e following do while loop is a revised version of the while loop
you saw earlier, which prints the word “Hello” four times. In this
 version, the loop is rewritten as a do while loop.
int counter = 0;
final int NUM_LOOPS = 4;
do
{
 System.out.println("Hello");
 counter++;
} while(counter < NUM_LOOPS);

In this example, notice that you use block statements in do while
loops just as in while and for loops. When this loop is entered, the
word “Hello” is printed, the value of counter is incremented, and
then the value of counter is compared with the constant NUM_LOOPS.
Notice that the word “Hello” will always be printed at least once
because the loop control variable, counter, is compared to NUM_LOOPS
at the bottom of the loop.

Exercise 5-6: Using a do while Loop
In this exercise, you use what you have learned about do while loops.
Study the following code and then answer Questions 1–4.
f nal int NUM_TIMES = 4;
int counter = 0;
do
{
 counter++;
 System.out.println("Ball " + counter);
}while(counter < NUM_TIMES);

1. How many times does this loop execute?

2. What is the output of this program?

3. Is the output diff erent if you change the order of the state-
ments in the body of the loop, so that counter++ comes after
the output statement?

90

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. What is the loop control variable?

LAB 5.4 Using a do while Loop
In this lab, you work with the same Java program you
worked with in Labs 5.1 and 5.3. As in those earlier labs, the
completed program should print the numbers 0 through

10, along with their values multiplied by 10 and by 100. However, in
this lab you should accomplish this using a do while loop.

1. Open the source code fi le named NewestMultiply.java using
Notepad or the text editor of your choice.

2. W rite a do while loop that uses the loop control variable to
take on the values 0 through 10.

3. In the body of the loop, multiply the value of the loop control
variable by 10 and by 100.

4. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the source code fi le, NewestMultiply.java.

6. Execute the program. Is the output the same?

Nesting Loops
As the logic of your programs becomes more complex, you may fi nd
that you need to use nested loops. Th at is, you may need to include a
loop within another loop. You have learned that when you use nested
loops in a program, you must use multiple control variables to control
the separate loops.

In Chapter 5 of Programming Logic and Design, Seventh Edition, you
studied the design logic for a program that produces a quiz answer
sheet. Some of the declarations and a section of the pseudocode for
this program are as follows:
 num PARTS = 5
 num QUESTIONS = 3
 string PART_LABEL = "Part "
 sting LINE = ". _____"
 string QUIT = "ZZZ"
 output quizName

By revising
the same fi le
three different
ways in this
chapter, you

have seen that a single
problem can be solved in
different ways.

91

Nesting Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 partCounter = 1
 while partCounter <= PARTS
 output PART_LABEL, partCounter
 questionCounter = 1
 while questionCounter <= QUESTIONS
 output questionCounter, LINE
 questionCounter = questionCounter + 1
 endwhile
 partCounter = partCounter + 1
 endwhile
 output "Enter next quiz name or ", QUIT, " to quit"
 input quizName

Th is pseudocode includes two loops. Th e outer loop uses the loop
control variable, partCounter, to control the loop using the sentinel
value, 5 (constant value of PARTS). Th e inner loop uses the control
variable questionCounter to keep track of the number of lines to
print for the questions in a part of the quiz. Refer to Chapter 5 in
Programming Logic and Design, Seventh Edition for a line-by-line
description of the pseudocode. When you are sure you understand
the logic, take a look at the code sample that follows. Th is code
 sample shows some of the Java code for the Answer Sheet program.
int partCounter;
int questionCounter;
final int PARTS = 5;
final int QUESTIONS = 3;
final String PART_LABEL = "Part ";
final String LINE = ". _____";
partCounter = 1;
while(partCounter <= PARTS)
{
 System.out.println(PART_LABEL + partCounter);
 questionCounter = 1;
 while(questionCounter <= QUESTIONS)
 {
 System.out.println(questionCounter + LINE);
 questionCounter++;
 }
 partCounter++;
}

Th e entire Java program is saved in a fi le named AnswerSheet.java.
Th is fi le is included with the data fi les for this book. You may want
to study the source code, compile it, and execute the program to
 experience how nested loops behave.

Exercise 5-7: Nesting Loops
In this exercise, you use what you have learned about nesting loops.
Study the following code and then answer Questions 1–4.

92

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int sum = 0;
final int MAX_ROWS = 7, MAX_COLS = 5;
int rows, columns;
for(rows = 0; rows < MAX_ROWS; rows++)
 for(columns = 0; columns < MAX_COLS; columns++)
 sum += rows + columns;
System.out.println("Value of sum is " + sum);

1. How many times does the outer loop execute?

2. How many times does the inner loop execute?

3. What is the value of sum printed by System.out.println()?

4. What would happen if you changed rows++ and columns++ to
++rows and ++columns?

LAB 5.5 Nesting Loops
In this lab, you add nested loops to a Java program pro-
vided with the data fi les for this book. Th e program should
print the outline of a rectangle, as shown in Figure 5-2. Th e

rectangle is printed using asterisks, four across and six down. Note
that this program uses System.out.print("*"); to print an asterisk
without a new line.

Figure 5-2 Rectangle printed by the Rectangle program

1. Open the source code fi le named Rectangle.java using
Notepad or the text editor of your choice.

93

Nesting Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Write the nested loops to control the number of rows and the
number of columns that make up the rectangle.

3. In the loop body, use a nested if statement to decide when
to print an asterisk and when to print a space. Th e output
statements have been written, but you must decide when and
where to use them.

4. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the source code fi le, Rectangle.java.

6. Execute the program. Your rectangle outline should look like
the rectangle outline in Figure 5-2.

7. Modify the program to change the number of rows from six
to eight and the number of columns from four to ten. What
does the rectangle look like now?

Accumulating Totals in a Loop
You can use a loop in Java to accumulate a total as your program
executes. For example, assume that your computer science instruc-
tor has asked you to design and write a program that she can use to
calculate an average score for the midterm exam she gave last week.
To fi nd the average test score, you need to add all the students’ test
scores, and then divide that sum by the number of students who took
the midterm.

Note that the logic for this program should include a loop that will
execute for each student in the class. In the loop, you get a student’s
test score as input and add that value to a total. After you get all of
the test scores and accumulate the sum of all the test scores, you
divide that sum by the number of students. You should plan to ask the
user to input the number of student test scores that will be entered,
because your instructor wants to reuse this program using a diff erent
number of students each time it is executed.

As you review your work, you realize that the program will accumu-
late a sum within the loop and that you will also need to keep a count
for the number of students. You learned in Programming Logic and
Design, Seventh Edition that you add 1 to a counter each time a loop
executes and that you add some other value to an accumulator. For
this program, that other value added to the accumulator is a student’s
test score.

94

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e following Java code sample shows the loop required for this pro-
gram. Notice that the loop body includes an accumulator and a counter.
String stringNum, stringScore;
int numStudents, stuCount, testScore;
double testTotal, average;
// Get user input to control loop.
stringNum = JOptionPane.showInputDialog(
 "Enter number of students: ");
// Convert number String to int.
numStudents = Integer.parseInt(stringNum);
// Initialize accumulator variable to 0.
testTotal = 0;
// Loop for each student.
for(stuCount = 0; stuCount < numStudents; stuCount++)
{
 // Input student test score.
 stringScore = JOptionPane.showInputDialog(
 "Enter student’s score: ");
 // Convert to integer.
 testScore = Integer.parseInt(stringScore);
 // Accumulate total of test scores.
 testTotal += testScore;
}
// Calculate average test score.
average = testTotal / stuCount;

If a user entered a 0, meaning 0 students took the midterm, the for
loop would not execute because the value of numStudents is 0, and
the value of stuCount is also 0.

In the code, you use the showInputDialog() method to ask your
user to tell you how many students took the test. Th en the program
converts the String value that is returned by the showInputDialog()
method to an int so that the value can be used in arithmetic
 calculations. Next, the accumulator, testTotal, is initialized to 0.

After the accumulator is initialized, the code uses a for loop and the
loop control variable, stuCount, to control the loop. A for loop is
a good choice because, at this point in the program, you know how
many times the loop should execute. You use the for loop’s fi rst
expression to initialize stuCount, and then the second expression is
evaluated to see if stuCount is less than numStudents. If this is true,
the body of the loop executes, displaying the showInputDialog()
method again, this time asking the user to enter a test score.

As you examine the code, note that because the showInputDialog()
method returns the String version of the value entered by the
user, the program must convert this String to an int by using the
parseInt() method. Th en, you must add the value of testScore to
the accumulator, testTotal. Th e loop control variable, stuCount,
is then incremented, and the incremented value is tested to see if

If testTotal
is not initial-
ized, it will
contain an
unknown value

referred to as a “gar-
bage” value. In Java, your
program will not compile
if testTotal is not
initialized.

You must
 calculate the
average out-
side of the
loop, not

inside the loop. The only
way to calculate the
 average inside the loop
is to do it each time the
loop executes, but this is
ineffi cient.

95

Accumulating Totals in a Loop

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

it is less than numStudents. If this is true again, the loop executes
a second time. Th e loop continues to execute until the value of
stuCount < numStudents is false. Outside the for loop, the
 program calculates the average test score by dividing testTotal by
stuCount.

Th e entire Java program is saved in a fi le named TestAverage.java.
You may want to study the source code, compile it, and execute the
program to experience how accumulators and counters behave.

Exercise 5-8: Accumulating Totals in a Loop
In this exercise, you use what you have learned about using counters
and accumulating totals in a loop. Study the following code and then
answer Questions 1–4. Th e complete program is saved in the fi le
named Rainfall.java. You may want to compile and execute the
program to help you answer these questions.
for(counter = 1; counter <= DAYS_IN_WEEK; counter++)
{
 stringRain = JOptionPane.showInputDialog(
 "Enter rainfall amount for Day " + counter);
 rainfall = Double.parseDouble(stringRain);
 System.out.println("Day " + counter +
 "rainfall amount is " + rainfall + " inches");
 sum += rainfall;
}
// calculate average
average = sum / DAYS_IN_WEEK;

1. What happens when you compile this program if the variable
sum is not initialized with the value 0?

2. Could you replace sum += rainfall; with
sum = sum + rainfall;?

3. Th e variables sum and average should be declared to be what
data type to calculate the most accurate average rainfall?

4. Could you replace DAYS_IN_WEEK in the statement
average = sum / DAYS_IN_WEEK; with the variable named
counter and still get the desired result? Explain.

96

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 5.6 Accumulating Totals in a Loop
In this lab, you add a loop and the statements that make
up the loop body to a Java program provided with the
data fi les for this book. When completed, the program

should calculate two totals: the number of left-handed people and
the number of right-handed people in your class. Your loop should
execute until the user enters the character ‘X’ instead of a ‘L’ for left-
handed or a ‘R’ for right-handed. Th e inputs for this program are
listed in Table 5-1.

Left or Right-Handed

L

R

R

R

L

L

R

X

Table 5-1 Input for Lab 5.6

Note that variables have been declared for you, and the input and
output statements have been written for you.

1. Open the source code fi le named LeftOrRight.java using
Notepad or the text editor of your choice.

2. Write a loop and a loop body that allows you to calculate a
total of left-handed and a total of right-handed people in your
class.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, LeftOrRight.java.

5. Execute the program using the data listed in Table 5-1. Record
the output of this program.

97

Accumulating Totals in a Loop

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using a Loop to Validate Input
In Chapter 5 of Programming Logic and Design, Seventh Edition, you
learned that you cannot count on users to enter valid data in pro-
grams that ask them to enter data. You also learned that you should
validate input from your user so you can avoid problems caused by
invalid input.

If your program requires a user to enter a specifi c value, such as “Y”
or “N”, in response to a question, then your program should validate
that your user entered an exact match to either “Y” or “N”. You must
also decide what action to take in your program if the user’s input is
not either “Y” or “N”. As an example of testing for an exact match,
consider the following code:
String answer;
answer = JOptionPane.showInputDialog(
 "Do you want to continue? Enter Y or N.");
while((answer.compareTo("Y") != 0) &&
 (answer.compareTo("N") != 0))
{
 answer =
 JOptionPane.showInputDialog(
 "Invalid Response. Please type Y or N.");
}

In the example, the variable named answer contains your user’s
answer to the question “Do you want to continue? Enter Y or
N.” In the expression that is part of the while loop, the program
uses the compareTo() method to see if your user really did enter
“Y” or “N”. If not, the program enters the loop, telling the user he
or she entered invalid input and then requesting that he or she
type “Y” or “N”. The expression in the while loop is tested again
to see if the user entered valid data this time. If not, the loop body
executes again and continues to execute until the user enters
valid input.

You can also verify user input in a program that requests a user to
enter numeric data. For example, your program could ask a user to
enter a number in the range of 1 to 4. It is very important to verify
this numeric input, especially if your program uses the input in arith-
metic calculations. What would happen if the user entered the word
“one” instead of the number 1? Or, what would happen if the user
entered 100? More than likely, your program would not run correctly.
Th e following code example illustrates how you can verify that a user
enters correct numeric data.

Remember
that you
use the
compareTo()
method to

compare Strings.

98

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

String stringAnswer;
int answer;
final int MIN_NUM = 1;
final int MAX_NUM = 4;
stringAnswer = JOptionPane.showInputDialog(
 "Please enter a number in the range of " + MIN_NUM +
 " to " + MAX_NUM + ": ");
answer = Integer.parseInt(stringAnswer);
while(answer < MIN_NUM || answer > MAX_NUM)
{
 stringAnswer = JOptionPane.showInputDialog(
 "Number must be between " + MIN_NUM + " and " +
 MAX_NUM + ". Please try again: ");
 answer = Integer.parseInt(stringAnswer);
}

Exercise 5-9: Validating User Input
In this exercise, you use what you have learned about validating user
input to answer Questions 1–3.

1. You plan to use the following statement in a Java program to
validate user input:
while(inputString.compareTo("") == 0)

What would your user enter to cause this test to be true?

2. You plan to use the following statement in a Java program to
validate user input:
while((userAnswer.compareTo("Y") == 0) ||
(userAnswer.compareTo("y") == 0))

What would a user enter to cause this test to be true?

3. You plan to use the following statement in a Java program to
validate user input:
while(userAnswer < 2 || userAnswer > 8)

What would a user enter to cause this test to be true?

99

Using a Loop to Validate Input

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 5.7 Validating User Input
In this lab, you will make additions to a Java program
provided with the data fi les for this book. Th e program is
a guessing game. A random number between 1 and 10 is

generated in the program. Th e user enters a number between 1 and
10, trying to guess the correct number. If the user guesses correctly,
the program congratulates the user, and then the loop that controls
guessing numbers exits; otherwise the program asks the user if he or
she wants to guess again. If the user enters “Y”, he or she can guess
again. If the user enters “N”, the loop exits. You can see that the “Y”
or “N” is the sentinel value that controls the loop. Note that the entire
program has been written for you. You need to add code that vali-
dates correct input, which is “Y” or “N” when the user is asked if he or
she wants to guess a number, and a number in the range of 1 through
10 when the user is asked to guess a number.

1. Open the source code fi le named GuessNumber.java using
Notepad or the text editor of your choice.

2. Write loops that validate input at all places in the code where
the user is asked to provide input. Comments have been
included in the code to help you identify where these loops
should be written.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le GuessNumber.java.

5. Execute the program. See if you can guess the randomly
generated number. Execute the program several times to see
if the random number changes. Also, test the program to
verify that incorrect input is handled correctly. On your best
attempt, how many guesses did you have to take to guess the
correct number?

100

C H A P T E R 5 Writing Programs Using Loops

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Use arrays in Java programs

 Search an array for a particular value

 Use parallel arrays in a Java program

C H A P T E R 6
Using Arrays in Java
Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You should do the exercises and labs in this chapter after you have
fi nished Chapter 6 of Programming Logic and Design, Seventh Edition.
In this chapter, you learn how to use Java to declare and initialize
arrays. You then access the elements of an array to assign values and
process them within your program. You also learn why it is important
to stay within the bounds of an array. In addition, you study some
programs written in Java that implement the logic and design pre-
sented in Programming Logic and Design, Seventh Edition.

Array Basics
An array is a group of data items in which every item has the same
data type, is referenced using the same variable name, and is stored in
consecutive memory locations. To reference individual elements in an
array, you use a subscript. Th ink of a subscript as the position num-
ber of a value within an array. It is important for you to know that in
Java, subscript values begin with 0 (zero) and end with n-1, where n
is the number of items stored in the array. You might be tempted to
think that the fi rst value in an array would be element number 1, but
in fact it would be element number 0. Th e fi fth element in an array
would be element number 4.

To use an array in a Java program, you must learn how to declare
an array, initialize an array with predetermined values, access array
 elements, and stay within the bounds of an array. In the next section
you’ll focus on declaring arrays.

Declaring Arrays
Before you can use an array in a Java program, you must fi rst declare
it. Th at is, you must give it a name and specify the data type for the
data that will be stored in it. In some cases, you also specify the num-
ber of items that will be stored in the array. Th e following code shows
how to declare two arrays, one named cityPopulations that will be
used to store four ints and another named cities that will be used
to store four Strings:
int cityPopulations[] = new int[4];
String cities[] = new String[4];

As shown, you begin by specifying the data type of the items that will
be stored in the array. Th e data type is followed by the name of the
array and then a pair of square brackets.

Th e new operator is used to allocate enough memory for the array ele-
ments, based on the data type specifi ed and the integer value placed
within the second pair of square brackets that follow the data type.

It is an error
to place any-
thing within
the pair of
square brack-

ets that follows the array
name; the integer that
specifi es the array size
belongs in the second
pair of brackets.

102

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As shown in Figure 6-1, the compiler allocates enough consecutive
memory locations to store four elements of data type int for the
array named cityPopulations. If cityPopulations[0] is stored
at memory address 1000, then the address of cityPopulations[1]
is 1004 because each int requires 4 bytes of memory. Similarly,
cityPopulations[3] is at address 1012.

int cityPopulations[] = new int[4];

[0]
Memory
Address
1000

[3]
Memory
Address
1012

Figure 6-1 Memory allocation for cityPopulations array

Th e cityPopulations array provides an example of how memory is
allocated for arrays that contain primitive data types. Memory alloca-
tion is diff erent for arrays of objects. Because a String is an object in
Java, not a primitive data type, memory is allocated for references to a
String object rather than the String object itself. A reference is the
memory address of an object. Th e memory for the String object is allo-
cated when the String object is created. Th is is shown in Figure 6-2.

String cities[] = new String[4];

[0]
Memory
Address
1000

[3]
Memory
Address
1012

Memory
Address
1200

1200 Chicago

Figure 6-2 Memory allocation for cities array

In Figure 6-2, the compiler allocates enough consecutive memory
locations to store four references to String objects for the array
named cities. If the address of cities[0] is 1000, the address of
cities[1] is 1004, and the address of cities[3] is 1012 because
each reference requires 4 bytes of memory. When a String object
is created, the compiler allocates memory for it at another memory
address. Th is address is then stored in the array. If the fi rst String
object created stores the name of the city, “Chicago”, and the memory
allocated for “Chicago” begins at address 1200, then address 1200 is
stored in the fi rst element of the array. An example of creating String
objects is presented later in this chapter.

If an array is
declared to
store items of
data type
double,

8 bytes are allocated for
each item in the array.

103

Array Basics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Initializing Arrays
In Java, array elements are automatically initialized to 0 (zero) for
numeric data types and to the value null for references. Th e keyword
null is a special value in Java, and it is the zero value for references.

You can and will sometimes want to initialize arrays with values that
you choose. Th is can be done when you declare the array. To initialize
an array when you declare it, use curly braces to surround a comma-
delimited list of data items, as shown in the following example:
int cityPopulations[] = {9500000, 871100, 23900, 40100};
String cities[] = {"Chicago","Detroit","Batavia","Lima"};

You can also use assignment statements to provide values for array
elements after an array is declared, as in the following example:
cityPopulations[0] = 9500000;
cities[0] = "Chicago";

A loop is often used to assign values to the elements in an array, as
shown here:
for(loopIndex = 0; loopIndex < 3; loopIndex++)
{
 cityPopulations[loopIndex] = 12345;
 cities[loopIndex] = "AnyCity";
}

Th e fi rst time this loop is encountered, loopIndex is assigned the
value 0. Because 0 is less than 3, the body of the loop executes, assign-
ing the value 12345 to cityPopulations[0] and the value “AnyCity”
to cities[0]. Next, the value of loopIndex is incremented and takes
on the value 1. Because 1 is less than 3, the loop executes a second
time, and the value 12345 is assigned to cityPopulations[1], and
“AnyCity” is assigned to cities[1]. Each time the loop executes, the
value of loopIndex is incremented. Th is allows you to access a diff er-
ent location in the arrays each time the body of the loop executes.

Accessing Array Elements
You need to access individual locations in an array when you assign
a value to an array element, print its value, change its value, assign
the value to another variable, and so forth. In Java, you use an integer
expression placed in square brackets to indicate which element in the
array you want to access. Th is integer expression is the subscript.

Th e following Java program declares an array of data type double, ini-
tializes an array of data type double, copies values from one array to
another, changes several values stored in the array named target,
and prints the values of the arrays named source and target.

Remember
that subscript
values begin
with 0 (zero)
in Java.

104

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can compile and execute this program if you like. It is stored in
the fi le named ArrayTest.java.
public class ArrayTest
{
 public static void main(String args[])
 {
 double target[] = new double[3];
 double source[] = {1.0, 5.5, 7.9};
 int loopIndex;
 // Copy values from source to target.
 for(loopIndex = 0; loopIndex < 3; loopIndex++)
 target[loopIndex] = source[loopIndex];
 // Assign values to two elements of target.
 target[0] = 2.0;
 target[1] = 4.5;
 // Print values stored in source and target.
 for(loopIndex = 0; loopIndex < 3; loopIndex++)
 {
 System.out.println("Source " + source[loopIndex]);
 System.out.println("Target " + target[loopIndex]);
 }
 }
}

Staying Within the Bounds of an Array
As a Java programmer, you must be careful to ensure that the sub-
script values you use to access array elements are within the legal
bounds. Th e Java interpreter checks to make sure that a subscript
used in your program is greater than or equal to 0 and less than the
length of the array. For example, suppose you declare an array named
numbers as follows:
int numbers[] = new int[10];

In this case, Java checks to make sure the subscripts you use to access
this array are integer values between 0 and 9.

If you access an array element that is not in the legal bounds,
Java generates an ArrayIndexOutOfBoundsException. Generally
speaking, an exception is an event that disrupts the normal
fl ow of program execution and can cause your program to ter-
minate. You learn about other exceptions that Java throws
in other chapters in this book. Here, we concentrate on the
ArrayIndexOutOfBoundsException.

For example, consider the highlighted operator in the following code,
which is taken from the previous Java program example:
double source[] = {1.0, 5.5, 7.9};
int loopIndex;
for(loopIndex = 0; loopIndex < 3; loopIndex++)

Later in this
chapter, you
will learn how
to use a
named con-

stant in an array
declaration.

When using a
loop to access
array
 elements, be
sure that the

test you use to terminate
the loop keeps you within
the legal bounds, 0 to
n-1, where n is the
 number of items stored in
the array.

105

Array Basics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you change the highlighted operator to <=, as shown here, your
program will still compile with no errors:
for(loopIndex = 0; loopIndex <= 3; loopIndex++)

A problem arises, however, when the Java interpreter executes your
program, because the loop will execute when the value of loopIndex
is 3. When you access the array element, source[3], you are outside
the bounds of the array because there is no such element in this array.
As shown in Figure 6-3, an ArrayIndexOutOfBoundsException is
thrown, and your program terminates.

Figure 6-3 ArrayIndexOutOfBoundsException

Using Constants with Arrays
It is a good programming practice to use a named constant to help
you stay within the bounds of an array when you write programs that
declare and access arrays. In Java, you can use a named constant that
you create or you can use a constant that Java automatically creates
for you to represent the array size.

Th e following example shows how to use a named constant that you
create:
f nal int NUM_ITEMS = 3;
double target[] = new double[NUM_ITEMS];
for(loopIndex = 0; loopIndex < NUM_ITEMS; loopIndex++)
 target[loopIndex] = loopIndex + 10;

In Java, after you declare the array named target, its size is automati-
cally stored in a fi eld named target.length. You can use this value
in your Java programs, as shown in the following code sample. In this
sample, the fi eld target.length is highlighted, so you can spot it
easily.
f nal int NUM_ITEMS = 3;
double target[] = new double[NUM_ITEMS];
for(loopIndex = 0; loopIndex < target.length; loopIndex++)
 target[loopIndex] = loopIndex + 10;

When you use
the Java-
created
 constant
length to

represent the size of an
array, it is still good
 practice to use a named
constant when declaring
an array. That way, if you
must alter the code to
change the array size,
you only have to make
the change in one loca-
tion in your code.

106

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 6-1: Array Basics
In this exercise, you use what you have learned about declaring and
initializing arrays to answer Questions 1–3.

1. Write array declarations for each of the following:

a. Eight grade point averages

b. F ive fi rst names

c. 21 ages

2. Declare and initialize arrays that store the following:

a. Th e whole numbers 9, 36, 36, 54, and 65

b. Th e last names Smith, Johnson, and Hanson

c. Th e prices 12.00, 101.00, and 3.50

3. Write an assignment statement that assigns the value 999 to
the fi rst element of an array of integers named idNumbers.

LAB 6.1 Array Basics
In this lab, you complete a partially prewritten Java program
that uses an array. Th e program prompts the user to interac-
tively enter 10 salaries, which the program stores in an array. It

should then fi nd the minimum and maximum salaries stored in the array,
as well as the average of the 10 salaries. Th e data fi le provided for this lab
includes the input statement and some variable declarations. Comments
are included in the fi le to help you write the remainder of the program.

1. Open the source code fi le named MinMaxSalary.java using
Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, MinMaxSalary.java.

107

Array Basics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Execute the program. Enter the following salaries: 45000.00,
22000.00, 6000.00, 100000.00, 57000.00, 1000.00, 90000.00,
12000.00, 6000.00, 35000.00. Th e minimum salary should
be 1000.0 and the maximum salary should be 100000.0. Th e
average should be 37400.0.

Searching an Array for an Exact Match
One of the programs discussed in Programming Logic and Design,
Seventh Edition uses an array to hold valid item numbers for a mail-
order business. Th e idea is that when a customer orders an item, you
can determine if the customer ordered a valid item number by searching
through the array for that item number. Th is program relies on a tech-
nique called setting a fl ag to verify that an item exists in an array. Th e
pseudocode and the Java code for this program are shown in Figure 6-4.

Figure 6-4 Pseudocode and Java code for the Mail Order program (continues)

start
 Declarations
 num item
 num SIZE = 6
 num VALID_ITEM[SIZE] = 106, 108, 307,
 405, 457, 688
 num sub
 string foundIt
 num badItemCount = 0
 string MSG_YES = "Item available"
 string MSG_NO = "Item not found"
 num FINISH = 999
 getReady()
 while item <> FINISH
 findItem()
 endwhile
 finishUp()
stop

getReady()
 output "Enter item number or ", FINISH, " to quit"
 input item
return

findItem()
 foundIt = "N"
 sub = 0
 while sub < SIZE
 if item = VALID_ITEM[sub] then
 foundIt = "Y"
 endif

108

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The program
can be
found in
the fi le
named

MailOrder.java.
You may want to compile
and execute the program
to see how it operates.

(continued)

 sub = sub + 1
 endwhile
 if foundIt = "Y" then
 output MSG_YES
 else
 output MSG_NO
 badItemCount = badItemCount + 1
 endif
 output "Enter next item number or ", FINISH, " to quit"
 input item
return

finishUp()
 output badItemCount, " items had invalid numbers"
return

Figure 6-4 Pseudocode and Java code for the Mail Order program (continues)

import javax.swing.*;
public class MailOrder
{
 public static void main(String args[])
 {
 int item, badItemCount = 0;
 String itemString;
 final int SIZE = 6;
 int VALID_ITEM[] = {106, 108, 307, 405, 457, 688};
 int sub;
 boolean foundIt = false;
 final String MSG_YES = "Item Available";
 final String MSG_NO = "Item not found";
 final int FINISH = 999;

 // This is the work done in the getReady() method
 itemString = JOptionPane.showInputDialog(
 "Enter item number: ");
 item = Integer.parseInt(itemString);

 while(item != FINISH)
 {
 // This is the work done in the findItem() method
 foundIt = false;
 sub = 0;
 while(sub < SIZE)
 {
 if(item == VALID_ITEM[sub])
 {
 foundIt = true;
 }
 sub++;
 }

109

Searching an Array for an Exact Match

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As shown in Figure 6-4, when you translate the pseudocode to Java, you
make a few changes. In both the pseudocode and the Java code, the vari-
able named foundIt is the fl ag. However, in the Java code you assign
the value false instead of the string constant “N” to the variable named
foundIt. Th is is because the variable named foundIt is declared as a
variable of the boolean type. Th e boolean data type is one of Java’s prim-
itive data types and is only used to store true and false values.

Exercise 6-2: Searching an Array for
an Exact Match
In this exercise, you use what you have learned about searching an
array for an exact match. Study the following code, and then answer
Questions 1–4. Note that this code may contain errors.
String apples[] = {"Gala", "Rome", "Fuji", "Delicious"};
int foundIt, i;
final int MAX_APPLES = 4;
String inApple;
inApple = JOptionPane.showInputDialog("Enter apple type:");
for(i = 0; i <= MAX_APPLES; i++)
{
 if(inApple == apples[i])
 {
 foundIt = true;
 }
}

Notice that
the equality
operator, ==,
is used when
comparing the

int value in the fi rst if
statement and the
boolean value in the
second if statement.

 if(foundIt == true)
 {
 System.out.println(MSG_YES);
 }
 else
 {
 System.out.println(MSG_NO);
 badItemCount++;
 }
 itemString = JOptionPane.showInputDialog(
 "Enter next item number or " +
 FINISH + " to quit ");
 item = Integer.parseInt(itemString);
 }
 // This is the work done in the finishUp() method
 System.out.println(badItemCount +
 " items had invalid numbers"
 System.exit(0);
 }
}

Figure 6-4 Pseudocode and Java code for the Mail Order program

(continued)

110

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Is the for loop written correctly?

If not, how can you fi x it?

2. Which variable is the fl ag?

3. Is the fl ag variable declared correctly?

If not, what should you do to fi x it?

4. Is the comparison in the if statement done correctly?

If not, how can you fi x it?

LAB 6.2 Searching an Array for
an Exact Match

In this lab, you use what you have learned about searching
an array to fi nd an exact match to complete a partially pre-

written Java program. Th e program uses an array that contains valid
names for 10 cities in the Illinois. You ask the user of the program
to enter a city name; your program then searches the array for that
city name. If it is not found, the program should print a message that
informs the user that the city name is not found in the list of valid
 cities in Illinois.

Th e data fi le provided for this lab includes the input statements and
the necessary variable declarations. You need to use a loop to exam-
ine all the items in the array and test for a match. You also need to set
a fl ag if there is a match, and then test the fl ag variable to determine
if you should print the “Not a city in Illinois” message. Comments
in the code tell you where to write your statements. You can use the
Mail Order program in this chapter as a guide.

1. Open the source code fi le named IllinoisCities.java using
Notepad or the text editor of your choice.

2. Study the prewritten code to make sure you understand it.

3. Write a loop statement that examines the names of cities
stored in the array.

4. Write code that tests for a match.

111

Searching an Array for an Exact Match

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. Write code that, when appropriate, prints the message: Not a
city in Illinois.

6. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

7. Compile the source code fi le, IllinoisCities.java.

8. Execute the program using the following as input:

Peoria
Kankakee
Austin
Boise

Parallel Arrays
As you learned in Programming Logic and Design, Seventh Edition,
you use parallel arrays to store values and to maintain a relation-
ship between the items stored in the arrays. Figure 6-5 shows that
the student ID number stored in stuID[0] and the grade stored in
grades[0] are related—student 56 received a grade of 99.

int stuID[] = new int[4];

[0]

56

[3]

99

int grades[] = new int[4];

[0] [3]

Figure 6-5 Parallel arrays

Th is relationship is established by using the same subscript value
when accessing each array. Note that as the programmer, you must
maintain this relationship in your code by always using the same sub-
script. Java does not create or maintain the relationship.

One of the programs discussed in Programming Logic and Design,
Seventh Edition is an expanded version of the Mail Order program
discussed in the “Searching an Array for an Exact Match” section
earlier in this chapter. In the expanded program, you need to deter-
mine the price of the ordered item and print the item number along

112

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

with the price. You use parallel arrays to help you organize the data
for the program. One array, VALID_ITEM, contains six valid item
numbers. Th e other array, VALID_PRICE, contains six valid prices.
Each price is in the same position as the corresponding item num-
ber in the other array. When a customer orders an item, you search
the VALID_ITEM array for the customer’s item number. When the
item number is found, you use the price stored in the same loca-
tion of the VALID_PRICE array and then output the item number
and the price. Th e complete Java program is stored in the fi le named
MailOrder2.java. Th e pseudocode and Java code that search the
VALID_ITEM array, use a price from the VALID_PRICE array, and then
print the ordered item and its price are shown in Figure 6-6.

Figure 6-6 Pseudocode and Java code for the Mail Order 2 program (continues)

start
 Declarations
 num item
 num price
 num SIZE = 6
 num VALID_ITEM[SIZE] = 106, 108, 307,
 405, 457, 688
 num VALID_PRICE[SIZE] = 0.59, 0.99,
 4.50, 15.99, 17.50, 39.00
 num sub
 string foundIt
 num badItemCount = 0
 string MSG_YES = "Item available"
 string MSG_NO = "Item not found"
 num FINISH = 999
 getReady()
 while item <> FINISH
 findItem()
 endwhile
 finishUp()
stop

getReady()
 output "Enter item number or ", FINISH, " to quit"
 input item
return

findItem()
 foundIt = "N"
 sub = 0
 while sub < SIZE
 if item = VALID_ITEM[sub] then
 foundIt = "Y"
 price = VALID_PRICE[sub]
 endif
 sub = sub + 1
 endwhile

113

Parallel Arrays

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(continued)

 if foundIt = "Y" then
 output MSG_YES
 output "The price of ", item, " is ", price
 else
 output MSG_NO
 badItemCount = badItemCount + 1
 endif
 output "Enter next item number or ", FINISH, " to quit"
 input item
return

finishUp()
 output badItemCount, " items had invalid numbers"
return

Figure 6-6 Pseudocode and Java code for the Mail Order 2 program (continues)

import javax.swing.*;
public class MailOrder2
{
 public static void main(String args[])
 {
 int item, badItemCount = 0;
 double price;
 String itemString;
 final int SIZE = 6;
 int VALID_ITEM[] = {106, 108, 307, 405, 457, 688};
 double VALID_PRICE[] = {0.59, 0.99, 4.50, 15.99,
 17.50, 39.00};
 int sub;
 boolean foundIt = false;
 final String MSG_YES = "Item Available";
 final String MSG_NO = "Item not found";
 final int FINISH = 999;

 // This is the work done in the getReady() method
 itemString = JOptionPane.showInputDialog(
 "Enter next item number or " +
 FINISH + " to quit ");
 item = Integer.parseInt(itemString);

 while(item != FINISH)
 {
 // This is the work done in the findItem() method
 foundIt = false;
 sub = 0;
 while(sub < SIZE)
 {
 if(item == VALID_ITEM[sub])

114

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 6-3: Parallel Arrays
In this exercise, you use what you have learned about parallel arrays.
Study the following code, and then answer Questions 1–4. Note that
this code may contain errors.
String cities[4] = "Chicago", "Rome", "Paris", "London";
int populations[4] = 2695598, 2760665, 2190777, 7805417;
final int MAX_CITIES = 4;
int foundIt;
int i;
String inCity;
inCity = JOptionPane.showInputDialog("Enter city name: ");
for(i = 0; i = MAX_CITIES; ++i)
{
 if(inCity.compareTo(cities[i]) == 0)
 {
 foundIt = i;
 }
}
System.out.println("Population for " + cities[foundIt] +
 " is " + populations[foundIt]);

 {
 foundIt = true;
 price = VALID_PRICE[sub];
 }
 sub++;
 }
 if(foundIt == true)
 {
 System.out.println(MSG_YES);
 System.out.println("The price of " + item +
 " is " + price);
 }
 else
 {
 System.out.println(MSG_NO);
 badItemCount++;
 }
 itemString = JOptionPane.showInputDialog(
 "Enter next item number or " +
 FINISH + " to quit ");
 item = Integer.parseInt(itemString);
 }
 // This is the work done in the finishUp() method
 System.out.println(badItemCount +
 " items had invalid numbers"
 System.exit(0);
 }
}

Figure 6-6 Pseudocode and Java code for the Mail Order 2 program

(continued)

115

Parallel Arrays

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1. Are the arrays declared and initialized correctly?

If not, how can you fi x them?

2. Is the for loop written correctly?

If not, how can you fi x it?

3. As written, how many times will the for loop execute?

4. How would you describe the purpose of the statement
foundIt = i;?

LAB 6.3 Parallel Arrays
In this lab, you use what you have learned about parallel
arrays to complete a partially completed Java program.
Th e program is described in Chapter 6, Exercise 6 in

Programming Logic and Design, Seventh Edition. Th e program should
either print the name and price for a coff ee add-in from the Jumpin’
Jive coff ee shop or it should print the message: “Sorry, we do not
carry that.”

Read the problem description carefully before you begin. Th e data
fi le provided for this lab includes the necessary variable declarations
and input statements. You need to write the part of the program that
searches for the name of the coff ee add-in(s) and either prints the
name and price of the add-in or prints the error message if the add-in
is not found. You can use the expanded Mail Order 2 program shown
in Figure 6-6 as a guide.

1. Open the source code fi le named JumpinJive.java using
Notepad or the text editor of your choice.

2. Study the prewritten code to make sure you understand it.

3. Write the code that searches the array for the name of the
add-in ordered by the customer.

116

C H A P T E R 6 Using Arrays in Java Programs

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Write the code that prints the name and price of the add-in or
the error message and also write the code that prints the total
order cost.

5. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

6. Compile the source code fi le, JumpinJive.java.

7. Execute the program using the following data, and record
the output:

Cream
Caramel
Whiskey
chocolate
Chocolate
Cinnamon
Vanilla

Remember
that Java is
case sensi-
tive, which
means it dis-

tinguishes between
uppercase letters and
lowercase letters. This
means, for example, that
Cinnamon is not the same
as cinnamon.

117

Parallel Arrays

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Understand computer fi les and perform fi le operations

 Work with sequential fi les and control break logic

C H A P T E R 7
File Handling and
Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, you learn how to open and close fi les in Java, how
to use Java to read data from and write data to a fi le in a program,
and how to work with sequential fi les in a Java program. You should
do the exercises and labs in this chapter after you have fi nished
Chapter 7 in Programming Logic and Design, Seventh Edition.

File Handling
Business applications are often required to manipulate large amounts
of data that is stored in one or more fi les. As you learned in Chapter 7
of Programming Logic and Design, Seventh Edition, data is organized
in a hierarchy. At the lowest level of the hierarchy is a fi eld , which
is a group of characters. On the next level up is a record, which is a
group of related fi elds. For example, you could write a program that
processes employee records, with each employee record consisting of
three fi elds: the employee’s fi rst name, the employee’s last name, and
the employee’s department number.

In Java, to use the data stored in a fi le, the program must fi rst
open the fi le and then read the data from the fi le. You use prewrit-
ten classes that are part of the Java Standard Edition Development
Kit (JDK) to accomplish this. In the next section, you learn how
to import packages and classes to make the BufferedReader and
FileReader classes available in your programs. You will also learn
how to use these classes to open a fi le, close a fi le, read data from a
fi le, and write data to a fi le.

Importing Packages and Classes
A package is a group of related classes. Th e classes that you need in
this chapter are part of a package named java.io. Th e JDK contains
many classes that are prewritten for you by the Java development
team. You can simplify your programming tasks by creating objects
using these classes. You can then use the attributes and methods of
those objects in your Java programs.

In order to use these prewritten classes, you must import them into
your Java program. You use the import keyword to include a class
from a Java package. Th e following code imports the BufferedReader
class from the Java package named java.io.

import java.io.BufferedReader;

You can also use the * (asterisk) character in an import statement to
import all classes from a package rather than specifying a single class.
Th e following code imports all of the classes in the java.io package.

import java.io.*;

119

File Handling

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e Java programs in this chapter will use this style to import the
classes needed to perform fi le input and output.

Th e import statement tells the Java compiler the name of the pack-
age and the name of the class (or classes) that contains the prewritten
code you want to use. Th e Java compiler will automatically include
this code.

Opening a File for Reading
To open a fi le and read data into a Java program, you instantiate a
FileReader object and specify the name of the fi le to associate with
the object. Look at the following example:
FileReader fr = new FileReader("inputFile.txt");

In the example, the new keyword instantiates a FileReader object.
Th is new object is associated with the fi le named inputFile.txt.
Notice that the name of the fi le is enclosed in double quotes and
placed within parentheses. As a result of the assignment statement,
this newly created FileReader object is assigned to a variable named
fr and may now be referred to in your Java program using the name
fr. In addition, the statement opens the fi le named inputFile.txt
for reading. Th is means that the program can now read data from the
fi le. In this example, the fi le named inputFile.txt must be saved in
the same folder as the Java program that is using the fi le. To open a
fi le that is saved in a diff erent folder, a path must be specifi ed as in the
next example:
FileReader fr = new FileReader(
 "C:\myJavaPrograms\Chapter7\inputFile.txt");

Even though the program can now read from the fi le, it is usually
more effi cient to read from a buff ered fi le. To do this, we need to cre-
ate a BufferedReader object. A FileReader object reads data from
a fi le one character at a time, whereas a BufferedReader object can
read data a line at a time. In order to create a BufferedReader object,
we decorate the FileReader object. Decorating is a way of adding
functionality to objects in Java. Here is an example:
BufferedReader br = new BufferedReader(fr);

In this example, a new BufferedReader object is created by adding
functionality to the FileReader object named fr. Th e name of the
BufferedReader variable is br. You will use the name br to refer to
the BufferedReader object in your Java program.

120

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reading Data from an Input File
Once you have created a new BufferedReader object that deco-
rates a FileReader object, you are ready to read the data in the
fi le. Th e BufferedReader class provides this functionality with the
readLine() method. Th e readLine() method allows the program to
read a line from an input fi le. A line is defi ned as all of the characters
up to a newline character or up to the End Of File (EOF) marker.
Th e newline character is generated when you press the Enter key on
the keyboard. Th e EOF marker is automatically placed at the end of a
fi le when it is saved.

We will assume that the input fi le for a program is organized so that
an employee’s fi rst name is on one line, followed by his last name on
the next line, followed by his salary on the third, as follows:

Tim
Moriarty
4000.00

To allow the program to read this data, you would write the following
Java code:
String f rstName, lastName, salaryString;
double salary;
firstName = br.readLine();
lastName = br.readLine();
salaryString = br.readLine();

Because the readLine() method always returns a String, the
fi rst line in the example declares three String variables named
firstName, lastName, and salaryString. Th e next line declares a
double named salary. Next, the readLine() method is used three
times to read the three lines of input from the fi le associated with the
BufferedReader object named br. After this code executes, the vari-
able named firstName contains the value “Tim”, the variable named
lastName contains the value “Moriarty”, and the variable named
salaryString contains the value “4000.00”. As you have previously
learned, if your program requires the use of an employee’s salary in
a numeric calculation, you must convert salaryString to a double
as follows:
salary = Double.parseDouble(salaryString);

Th e next example illustrates how to read a salary and convert it to a
double in one step. Th is technique allows you to omit declaring the
salaryString variable.
salary = Double.parseDouble(br.readLine());

121

File Handling

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reading Data Using a Loop and EOF
In a program that has to read large amounts of data, it is usually best
to have the program use a loop. In the loop, the program contin-
ues to read from the fi le until EOF (end of fi le) is encountered. Th e
readLine() method returns a null value when EOF is reached. Th e
Java code that follows shows how to use the readLine() method as
part of a loop.
while((f rstName = br.readLine()) != null)
{
 // body of loop
}

In this example, the readLine() method is part of the expression to
be tested. As long as the value returned by readLine() is not equal to
null, the expression is true, and the loop is entered. As soon as EOF
is encountered, the test becomes false, and the program exits the
loop. Th e parentheses are used to control precedence.

Opening a File for Writing
To write data from a Java program to an output fi le, the program
must fi rst open a fi le. Th is is a two-step process: fi rst, the program
must instantiate a FileWriter object and then specify the name of
the fi le to associate with the object. Look at the following example:
FileWriter fw = new FileWriter("outputFile.txt");

In this example, the new keyword is used to instantiate a FileWriter
object. Th is object is associated with the fi le named outputFile.txt.
Notice that the name of the fi le is enclosed in double quotes and
placed within parentheses. As a result of the assignment state-
ment, this newly created FileWriter object is assigned to a variable
named fw. You can now refer to the object in your Java program
using the name fw. In addition, the statement opens the fi le named
outputFile.txt for writing. Th is means that the program can now
write data to the fi le.

As with input fi les, it’s a good idea to decorate the FileWriter object
to add functionality. For example, you can add the functionality that
is included in the PrintWriter class, which provides the ability to
fl ush (that is, empty) and close an output fi le. In Java, a write opera-
tion is not complete until the buff er associated with an output fi le is
fl ushed (emptied) and closed (made unavailable for further output).
Th e following example shows how to decorate the FileWriter object
by adding functionality from the PrintWriter class.
PrintWriter pw = new PrintWriter(fw);

122

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this example, a new PrintWriter object is created by adding
functionality to the FileWriter object named fw. Th e name of the
PrintWriter object is pw. From this point on, we can use the name
pw to refer to the PrintWriter object in our Java program.

Writing Data to an Output File
Once you have decorated a FileWriter object with a PrintWriter
object, the program is ready to write data to a fi le. You can use the
println() method (which is included in the PrintWriter class) to
write a line to an output fi le.

As an example, assume that an employee’s firstName, lastName,
and salary have been read from an input fi le as in the previous
example and that the employee is to receive a 15 percent salary
increase that is calculated as follows:
f nal double INCREASE = 1.15;
double newSalary;
newSalary = salary * INCREASE;

You now want to write the employee’s lastName, firstName, and
newSalary to the output fi le named newSalary2013.txt. Th e code
that follows accomplishes this task.
FileWriter fw = new FileWriter("newSalary2013.txt");
PrintWriter pw = new PrintWriter(fw);
pw.println(lastName);
pw.println(firstName);
pw.println(newSalary);
pw.flush();
pw.close();

Th e Java program shown in Figure 7-1 implements the fi le input and
output operations discussed in this section.

// EmployeeRaise.java - This program reads employee f rst
// and last names and salaries from an input f le,
// calculates a 15% raise, and writes the employee's f rst
// and last name and new salary to an output f le.
// Input: employees.txt.
// Output: newSalary2013.txt

import java.io.*; // Import class for f le input.

Figure 7-1 Reading and writing fi le data (continues)

123

File Handling

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When writing code that opens fi les and writes to fi les, you need to
be aware of potential problems. For example, the program might
try to open a nonexistent fi le or it might try to read beyond the
EOF marker. If these events occur, a Java program will generate an
exception. (An exception is an event that occurs that disrupts the
normal fl ow of execution.) Th e Java compiler knows that certain
methods are capable of causing an exception. If these methods are
used in a program, it will fail to compile unless you include the words
throws Exception as part of the header for the main() method, as
shown in Figure 7-1. By including these words, you are telling the Java
compiler that you know an exception could occur, and the compiler
should assume that the program contains code that will handle the

(continued)

public class EmployeeRaise
{
 public static void main(String args[]) throws Exception
 {

 String f rstName, lastName, salaryString;
 double salary, newSalary;
 f nal double INCREASE = 1.15;

 // Open input f le.
 FileReader fr = new FileReader("employees.txt");
 // Create BufferedReader object.
 BufferedReader br = new BufferedReader(fr);

 // Open output f le.
 FileWriter fw = new FileWriter("newSalary2013.txt");
 PrintWriter pw = new PrintWriter(fw);

 // Read records from f le and test for EOF.
 while((f rstName = br.readLine()) != null)
 {
 lastName = br.readLine();
 salaryString = br.readLine();
 salary = Double.parseDouble(salaryString);
 newSalary = salary * INCREASE;
 pw.println(lastName);
 pw.println(f rstName);
 pw.println(newSalary);
 pw.f ush();
 }

 br.close();
 pw.close();
 System.exit(0);
 } // End of main() method.
} // End of EmployeeRaise class.

Figure 7-1 Reading and writing fi le data

124

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exception, should it occur. A section of code that is designed to solve
problems related to exceptions is known as an exception handler.

Th ere is much more to learn about the input and output classes in the
java.io package, but you will be able to accomplish quite a lot using
what you have learned in this section.

Exercise 7-1: Opening Files and Performing
File Input
In this exercise, you use what you have learned about opening a fi le
and getting input into a program from a fi le. Study the following code,
and then answer Questions 1–3.

1 FileReader fr = new FileReader(myDVDFile.dat);
2 BufferedReader br = new BufferedReader();
3 String dvdName, dvdPrice, dvdShelf;
4 dvdName = br.readLine();
5 dvdPrice = br.readLine();
6 dvdShelf = br.readLine();

Figure 7-2 Code for Exercise 7-1

1. Describe the error on line 1, and explain how to fi x it.

2. Describe the error on line 2, and explain how to fi x it.

3. Consider the following data from the input fi le myDVDFile.dat:

Rio 21.00 1A
Bridesmaids 16.00 2C
Th or 20.00 3B

a. What value is stored in the variable named dvdName?

b. What value is stored in the variable name dvdPrice?

c. What value is stored in the variable named dvdShelf?

d. If there is a problem with the values of these variables,
what is the problem and how could you fi x it?

You need to
know quite
a bit about
Java in order
to write

exception handlers. In
this book, we will
simply include
throws Exception in
headers to ensure that
our programs compile.

125

File Handling

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 7.1 Opening Files and Performing
File Input

In this lab, you will open a fi le, fl owers.dat, and read input
from that fi le in a prewritten Java program. Th e program

should read and print the names of fl owers and whether they are
grown in shade or sun.

1. Open the source code fi le named Flowers.java using
Notepad or the text editor of your choice.

2. Declare the variables you will need.

3. Write the Java statements that will open the input fi le,
flowers.dat, for reading.

4. W rite a while loop to read the input until EOF is reached.

5. In the body of the loop, print the name of each fl ower and
where it can be grown (sun or shade).

6. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

7. Compile the source code fi le Flowers.java.

8. Execute the program.

Understanding Sequential Files
and Control Break Logic
As you learned in Chapter 7 of Programming Logic and Design,
Seventh Edition, a sequential fi le is a fi le in which records are stored
one after another in some order. Th e records in a sequential fi le are
organized based on the contents of one or more fi elds, such as ID
numbers, part numbers, or last names.

A single-level control break program reads data from a sequen-
tial fi le and causes a break in the logic based on the value of a single
variable. In Chapter 7 of Programming Logic and Design you learned
about techniques you can employ to implement a single-level control
break program. Be sure you understand these techniques before you
continue on with this chapter. Th e program described in Chapter 7 of
Programming Logic and Design that produces a report of customers
by state is an example of a single-level control break program. Th is
program reads a record for each client, keeps a count of the number
of clients in each state, and prints a report. As shown in Figure 7-3,

126

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the report generated by this program includes clients’ names, cities,
and states, along with a count of the number of clients in each state.

Company Clients by State of Residence

Name City State

Albertson Birmingham Alabama
Davis Birmingham Alabama
Lawrence Montgomery Alabama
 Count for Alabama 3

Smith Anchorage Alaska
Young Anchorage Alaska
Davis Fairbanks Alaska
Mitchell Juneau Alaska
Zimmer Juneau Alaska
 Count for Alaska 5

Edwards Phoenix Arizona
 Count for Arizona 1

Figure 7-3 Control break report with totals after each state

Each client record is made up of the following fi elds: Name, City, and
State. Note the following example records, each made up of three
lines:

Albertson
Birmingham
Alabama
Lawrence
Montgomery
Alabama
Smith
Anchorage
Alaska

Remember that input records for a control break program are usu-
ally stored in a data fi le on a storage device, such as a disk, and the
records are sorted according to a predetermined control break vari-
able. For example, the control break variable for this program is
state, so the input records would be sorted according to state.

Figure 7-4 includes the pseudocode for the Client By State program,
and Figure 7-5 shows the Java code that implements the program.

127

Understanding Sequential Files and Control Break Logic

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Start
 Declarations
 InputFile inFile
 string TITLE = "Company Clients by State of Residence"
 string COL_HEADS = "Name City State"
 string name
 string city
 string state
 num count = 0
 String oldState
 getReady()
 while not eof
 produceReport()
 endwhile
 finishUp()
stop

getReady()
 output TITLE
 output COL_HEADS
 open inFile "ClientsByState.dat"
 input name, city, state from inFile
 oldState = state
return
produceReport()
 if state <> oldState then
 controlBreak()
 endif
 output name, city, state
 count = count + 1
 input name, city, state from inFile
return

controlBreak()
 output "Count for ", oldState, count
 count = 0
 oldState = state
return

finishUp()
 output "Count for ", oldState, count
 close inFile
return

Figure 7-4 Client By State program pseudocode

128

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 1 // ClientByState.java - This program creates a report that
 2 // lists clients with a count of the number of clients for
 3 // each state.
 4 // Input: client.dat
 5 // Output: Report
 6
 7 import java.io.*;
 8
 9 public class ClientByState

 01 {
 11 public static void main(String args[]) throws Exception
 21 {
 31 // Declarations
 41 FileReader fr = new FileReader("client.dat");
 51 BufferedReader br = new BufferedReader(fr);
 61 f nal String TITLE =
 71 "\n\nCompany Clients by State of Residence\n\n";
 81 String name = "", city = "", state = "";
 91 int count = 0;
 02 String oldState = "";
 12 boolean done;
 22
 32 // Work done in the getReady() method
 42 System.out.println(TITLE);
 52 if((name = br.readLine()) != null)
 62 {
 72 city = br.readLine();
 82 state = br.readLine();
 92 done = false;
 03 oldState = state;
 13 }
 23 else
 33 done = true;
 43 while(done == false)
 53 {
 63 // Work done in the produceReport() method
 73 if(state.compareTo(oldState) != 0)
 83 {
 93 // Work done in the controlBreak() method
 04 System.out.println("\t\t\tCount for " +
 14 oldState + " " + count);
 24 count = 0;
 34 oldState = state;
 44 }
 54 System.out.println(name + " " + city + " " +
 64 state);
 74 count++;

Figure 7-5 Client By State program written in Java (continues)

129

Understanding Sequential Files and Control Break Logic

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you can see in Figure 7-5, the Java program begins on line 1 with
comments that describe what the program does. (Th e line num-
bers shown in this program are not part of the Java code. Th e y are
included for reference only.) Th e program also includes comments
that describe the program’s input and output. Next comes the Java
code that defi nes the ClientByState class (line 9) and, within the
class, the main() method (line 11).

Within the main() method, lines 14 through 21 declare variables
and constants and initialize them when appropriate. Lines 14 and 15
declare variables as well as open the input fi le named client.dat.
Notice that one of the declarations shown in the pseudocode, string
COL_HEADS = “Name City State” is not included in the Java code.
Since you have not yet learned about the Java statements needed to
line up values in report format, the Java program shown in Figure 7-5
prints information on separate lines rather than in the column format
used in the pseudocode.

Lines 24 through 33 include the work done in the getReady()
method, which includes printing the heading for the report this pro-
gram generates and performing a priming read. You learned about
performing a priming read in Chapter 3 of this book and in Chapter 3
of Programming Logic and Design, Seventh Edition.

Notice that the Java code in the priming read (lines 25 through 28)
is a little diff erent than the pseudocode. An if statement is used on
line 25 to test if a client’s name was read from the input fi le or if EOF
was encountered. If EOF is not encountered, the result of this test will

(continued)

 84 if((name = br.readLine()) != null)
 94 {
 05 city = br.readLine();
 15 state = br.readLine();
 25 done = false;
 35 }
 45 else
 55 done = true;
 65 }
 75 // Work done in the f nishUp() method
 85 System.out.println("\t\t\tCount for " +
 95 oldState + " " + count);
 06 br.close();
 16 System.exit(0);
 26
 36 } // End of main() method
 46 } // End of ClientByState class

Figure 7-5 Client By State program written in Java

130

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

be true, causing the execution of the input statements that read the
city and state from the input fi le. Th e boolean value false is also
assigned to the variable named done on line 29 followed by assign-
ing the current value of state to the variable named oldState on
line 30. Remember that the variable state serves as the control break
variable. If EOF is encountered, the result of this test will be false,
causing the boolean value true to be assigned to the variable named
done on line 33. Th e boolean variable named done is used later in the
program to control the while loop.
Next comes the while loop (line 34), which continues to execute as
long as the value of the boolean variable done is false. Th e body
of the while loop contains the work done in the produceReport()
method. First, an if statement uses the compareTo() method to test
the control break variable state on line 37. Th e compareTo() method’s
job is to determine if the record the program is currently working with
has the same state as the previous record’s state. If it does not, this
indicates the beginning of a new state. As a result, the program per-
forms the work done in the controlBreak() method (lines 40 through
43). Th e work of the controlBreak() method does the following:

1. Prints the value of the variable named count that contains the
count of clients in the current state (lines 40 and 41).

2. Assigns the value 0 to the variable named count to prepare
for the next state.

3. Assigns the value of the variable named state to the variable
named oldState to prepare for the next state.

If the record the program is currently working with has the same
state as the previous record’s state, the controlBreak() method’s
work is not performed. Whether or not the current record’s state is
the same state as the previous record’s state, the next statement to
execute (lines 45 and 46) prints the client’s name, city, and state. Th en
the variable named count is incremented on line 47 followed by the
program reading the next client’s record on lines 48 through 55 using
the same technique as the priming read.
Th e condition in the while loop on line 34 is then tested again, caus-
ing the loop to continue executing until the value of the variable
named done is true. Th e variable named done is assigned the value
true when the program encounters EOF when reading from the
input fi le on line 55.
When the while loop is exited, the last section of the program exe-
cutes. Th is consists of the work done in the finishUp() method:
 • Printing the value of the variable named count (which is the count

of the clients in the last state in the input fi le) on lines 58 and 59.
 • Closing the input fi le (line 60).

131

Understanding Sequential Files and Control Break Logic

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 7-2: Accumulating Totals in
Single-Level Control Break Programs
In this exercise, you will use what you have learned about accumulat-
ing totals in a single-level control break program. Study the following
code, and then answer Questions 1–4.
if(partNum != oldPartNum)
{
 System.out.println("Part Number " + oldPartNum);
 totalParts = partNum;
 oldPartNum = partNum;
}

1. What is the control break variable?

2. True or False? Th e value of the control break variable should
never be changed.

3. Is totalParts being calculated correctly?

If not, how can you fi x the code?

4. True or False? In a control break program, it doesn’t matter if
the records in the input fi le are in a specifi ed order.

LAB 7.2 Accumulating Totals in Single-
Level Control Break Programs

In this lab, you will use what you have learned about accu-
mulating totals in a single-level control break program to

complete a Java program. Th e program should produce a report for
a supermarket manager to help her keep track of the hours worked
by her part-time employees. Th e report should include the day of the
week, the number of hours worked by each employee for each day,
and the total hours worked by all employees each day. Th e report
should look similar to the one shown in Figure 7-6.

132

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 7-6 SuperMarket program report

Th e student fi le provided for this lab includes the necessary variable
declarations and input and output statements. You need to imple-
ment the code that recognizes when a control break should occur.
You also need to complete the control break code. Be sure to accu-
mulate the daily totals for all days in the week. Comments in the code
tell you where to write your code. You can use the Client By State
 program in this chapter as a guide for this new program.

1. Open the source code fi le named SuperMarket.java using
Notepad or the text editor of your choice.

2. Study the prewritten code to understand what has already
been done.

133

Understanding Sequential Files and Control Break Logic

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Write the control break code, including the code for the
dayChange() method, in the main() method.

4. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the source code fi le, SuperMarket.java.

6. Execute this program using the following input values:

Monday – 4 hours (employee 1), 6 hours (employee 2), 2
hours (employee 3)
Tuesday – 3 hours (employee 1), 2 hours (employee 3)
Wednesday – 3 hours (employee 1), 5 hours (employee 2),
7 hours (employee 3)
Th ursday – 5 hours (employee 1)
Friday – 4 hours (employee 1), 3 hours (employee 2), 4 hours
(employee 3)
Saturday – 8 hours (employee 1), 8 hours (employee 2),
8 hours (employee 3)
Sunday – 0 hours

Th e program results should include:

A total of 12 hours worked on Monday
A total of 5 hours worked on Tuesday
A total of 15 hours worked on Wednesday
A total of 5 hours worked on Th urs day
A total of 11 hours worked on Friday
A total of 24 hours worked on Saturday
A total of 0 hours worked on Sunday

134

C H A P T E R 7 File Handling and Applications

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 8
Advanced Array
Techniques

After studying this chapter, you will be able to:

 Explain the need to sort data

 Swap data values in a program

 Create a bubble sort in Java

 Work with multidimensional arrays

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, you review why you might want to sort data, how to
use Java to swap two data values in a program, how to create a bubble
sort in a Java program, and how to use multidimensional arrays. You
should do the exercises and labs in this chapter after you have fi n-
ished Chapter 8 in Programming Logic and Design, Seventh Edition.

Sorting Data
Data records are always stored in some order, but possibly not in the
order in which you want to process or view them in your program.
When this is the case, you need to give your program the ability to
arrange (sort) records in a useful order. For example, the inventory
records you need to process might be stored in product number
order, but you might need to produce a report that lists products
from lowest cost to highest cost. Th at means your program needs to
be able to sort the records by cost.

Sorting makes searching for records easier and more effi cient. A
human can usually fi nd what she is searching for by simply glancing
through a group of data items, but a program must look through a
group of data items one by one, making a decision about each one.
When searching unsorted records for a particular data value, a pro-
gram must examine every single record until it either locates the data
value or determines that it does not exist. However, when searching
sorted records, the program can quickly determine when to stop
searching, as shown in the following step-by-step scenario:

1. Th e records used by your program are sorted by product
number.

2. Th e user is searching for the product number 12367.

3. Th e program locates the record for product number 12368
but has not yet found product number 12367.

4. Th e program determines that the record for product number
12367 does not exist and, therefore, stops searching through
the list.

Many search algorithms require that data be sorted before it can be
searched. (An algorithm is a plan for solving a problem.) You can
choose from many algorithms for sorting and searching for data. In
Programming Logic and Design, Seventh Edition, you learned how to
swap data values in an array, and you also learned about the bubble
sort. Both of these topics are covered in this book.

136

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Swapping Data Values
When you swap values, you place the value stored in one variable into
a second variable, and then you place the value that was originally
stored in the second variable in the fi rst variable. You must also cre-
ate a third variable to temporarily hold one of the values you want to
swap so that a value is not lost. For example, if you try to swap values
using the following code, you will lose the value of score2.
int score1 = 90;
int score2 = 85;
score2 = score1; // The value of score2 is now 90.
score1 = score2; // The value of score1 is also 90.

However, if you use a variable to temporarily hold one of the values,
the swap is successful. Th is is shown in the following code.
int score1 = 90;
int score2 = 85;
int temp;
temp = score2; // The value of temp is 85.
score2 = score1; // The value of score2 is 90.
score1 = temp; // The value of score1 is 85.

Exercise 8-1: Swapping Values
In this exercise, you use what you have learned about swapping values
to answer the following question.

1. Suppose you have declared and initialized two String
variables, lastName1 and lastName2, in a Java program.
Now, you want to swap the values stored in lastName1 and
lastName2, but only if the value of lastName1 is greater than
the value of lastName2. Remember that you do not use the
equality operator (==) when comparing String objects.

Write the Java code that accomplishes this task. Th e declara-
tions are as follows:
String lastName1 = "Johnson";
String lastName2 = "Johnsen";

137

Swapping Data Values

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 8.1 Swapping Values
In this lab, you will complete a Java program that swaps
values stored in three int variables and determines maxi-
mum and minimum values. Th e Java fi le provided for this

lab contains the necessary variable declarations, as well as the input
and output statements. You want to end up with the smallest value
stored in the variable named value1 and the largest value stored
in the variable named value3. You need to write the statements
that compare the values and swap them if appropriate. Comments
included in the code tell you where to write your statements.

1. Open the source code fi le named Swap.java using the text
editor of your choice.

2. Write the statements that test the fi rst two integers, and swap
them if necessary.

3. Write the statements that test the second and third integer,
and swap them if necessary.

4. Write the statements that test the fi rst and second integers
again, and swap them if necessary.

5. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

6. Compile the source code fi le, Swap.java.

7. Execute the program using the following sets of input values,
and record the output.

252 −15 108

815 1010 21

32 32 33

Using a Bubble Sort
A bubble sort is one of the easiest sorting techniques to understand.
However, while it is logically simple, it is not very effi cient. If the list
contains n values, the bubble sort will make n – 1 passes over the list.
For example, if the list contains 100 values, the bubble sort will make
99 passes over the data. During each pass, it examines successive
overlapped pairs and swaps or exchanges those values that are out of
order. After one pass over the data, the heaviest (largest) value sinks
to the bottom and is then in the correct position in the list.

138

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Programming Logic and Design, Seventh Edition, you learned sev-
eral ways to refi ne the bubble sort. One way is to reduce unnecessary
comparisons by ignoring the last value in the list in the second pass
through the data, because you can be sure it is already positioned cor-
rectly. On the third pass, you can ignore the last two values in the list
because you know they are already positioned correctly. Th us, in each
pass, you can reduce the number of items to be compared, and pos-
sibly swapped, by one.

Another refi nement to the bubble sort is to eliminate unnecessary
passes over the data in the list. When items in the array to be sorted
are not entirely out of order, it may not be necessary to make n – 1
passes over the data because after several passes, the items may
already be in order. You can add a fl ag variable to the bubble sort,
and then test the value of that fl ag variable to determine whether any
swaps have been made in any single pass over the data. If no swaps
have been made, you know that the list is in order; therefore, you do
not need to continue with additional passes.

You also learned about using a constant for the size of the array to
make your logic easier to understand and your programs easier to
change and maintain. Finally, you learned how to sort a list of varying
size by counting the number of items placed in the array as you read
in items.

All of these refi nements are included in the pseudocode for the Score
Sorting program in Figure 8-1. Th e Java code that implements the
Score Sorting logic is provided in Figure 8-2. Th e line numbers shown
in Figure 8-2 are not part of the Java code. Th ey are provided for ref-
erence only.

Figure 8-1 Pseudocode for Score Sorting program (continues)

start
 num SIZE = 100
 num score[SIZE]
 num x
 num y
 num temp
 num numberOfEls = 0
 num comparisons
 num QUIT = 999
 String didSwap
 f llArray()
 sortArray()
 displayArray()
stop

139

Using a Bubble Sort

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(continued)

Figure 8-1 Pseudocode for Score Sorting program

num f llArray()
 x = 0
 output "Enter a score or ", QUIT, " to quit "
 input score[x]
 x = x + 1
 while x < SIZE AND score[x] <> QUIT
 output "Enter a score or ", QUIT, " to quit "
 input score[x]
 x = x + 1
 endwhile
 numberOfEls = x
 comparisons = numberOfEls − 1
return

void sortArray()
 x = 0
 didSwap = "Yes"
 while didSwap = "Yes"
 x = 0
 didSwap = "No"
 while x < comparisons
 if score[x] > score[x + 1] then
 swap()
 didSwap = "Yes"
 endif
 x = x + 1
 endwhile
 comparisons = comparisons − 1
 endwhile
return

void swap()
 temp = score[x + 1]
 score[x + 1] = score[x]
 score[x] = temp
return

void displayArray()
 x = 0
 while x < numberOfEls
 output score[x]
 x = x + 1
 endwhile
return

140

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 8-2 Java code for Score Sorting program (continues)

 1 // StudentScores.java - This program interactively reads a
 2 // variable number of student test scores, stores the
 3 // scores in an array, and then sorts the scores in
 4 // ascending order.
 5 // Input: Interactive
 6 // Output: Sorted list of student scores
 7
 8 import javax.swing.*;
 9
10 public class StudentScores
11 {
12 public static void main(String args[]) throws Exception
13 {
14 // Declare variables
15 // Maximum size of array
16 f nal int SIZE = 100;
17 String stuScoreString;
18 // Array of student scores
19 int score[] = new int[SIZE];
20 int x;
21 int temp;
22 // Actual number of elements in array
23 int numberOfEls = 0;
24 int comparisons;
25 f nal int QUIT = 999;
26 Boolean didSwap;
27
28 // Work done in the f llArray() method
29 x = 0;
30 stuScoreString = JOptionPane.showInputDialog(
31 "Enter a score or " + QUIT + " to quit ");
32 score[x] = Integer.parseInt(stuScoreString);
33 x++;
34 while(x < SIZE && score[x - 1] != QUIT)
35 {
36 stuScoreString = JOptionPane.showInputDialog(
37 "Enter a score or " + QUIT + " to quit ");
38 score[x] = Integer.parseInt(stuScoreString);
39 x++;
40 } // End of input loop
41 numberOfEls = x - 1;
42 comparisons = numberOfEls − 1;
43
44 // Work done in the sortArray() method
45 didSwap = true; // Set f ag to true
46 // Outer loop controls number of passes over data
47 while(didSwap == true) // Test f ag
48 {
49 x = 0;
50 didSwap = false;

141

Using a Bubble Sort

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(continued)

The main() Method
As shown in Figure 8-2, the main() method (line 12) declares variables
and performs the work of the program. Th e variables include:

 • A constant named SIZE, initialized with the value 100, which
 represents the maximum number of items this program can sort

 • A String variable named stuScoreString that is used to hold the
String version of a student score

 • An array of data type int named score that is used to store up to a
maximum of SIZE (100) items to be sorted

 • An int variable named x that is used as the array subscript

 • An int variable named temp that is used to swap the values stored
in the array

 • An int named numberOfEls that is used to hold the actual number
of items stored in the array

Figure 8-2 Java code for Score Sorting program

51 // Inner loop controls number of items to compare
52 while(x < comparisons)
53 {
54 if(score[x] > score[x + 1]) // Swap?
55 {
56 // Work done in the swap() method
57 temp = score[x + 1];
58 score[x+1] = score[x];
59 score[x] = temp;
60 didSwap = true;
61 }
62 x++; // Get ready for next pair
63 }
64 comparisons--;
65 }
66
67 // Work done in the displayArray() method
68 x = 0;
69 while(x < numberOfEls)
70 {
71 System.out.println(score[x]);
72 x++;
73 }
74 System.exit(0);
75 } // End of main() method
76 } // End of StudentScores class

142

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 • An int named comparisons that is used to control the number of
comparisons that should be done

 • An int constant named QUIT, initialized to 999, that is used to
control the while loop

 • A Boolean named didSwap that is used as a fl ag to indicate when a
swap has taken place

After these variables are declared, the work done in the f llArray()
method begins on line 28. Th e f llArray() work is responsible for
fi lling up the array with items to be sorted. On line 44, the work done
in the sortArray() method begins. Th is work is responsible for sort-
ing the items stored in the score array. Lastly, the work done in the
displayArray() method begins on line 67 and is responsible for dis-
playing the sorted scores on the user’s screen.

The f llArray() Method
Th e work done in the f llArray() method, which begins on line 28
in Figure 8-2, is responsible for: 1) storing the data in the array and
2) counting the actual number of elements placed in the array. Th e
f llArray() method assigns the value 0 to the variable named x and
then performs a priming read (lines 30 and 31) to retrieve the fi rst
student score from the user and stores the score in the String vari-
able named stuScoreString. Th e String version of a student’s score,
stuScoreString, is then converted to an int and stored in the array
named score at location x on line 32. Notice that the array subscript
variable x is initialized to 0 on line 29 because the fi rst position in an
array is position 0. Also, notice the variable named x is incremented
on line 33 because it is used to count the number of scores entered by
the user of the program.

On line 34, the condition that controls the while loop is tested. Th e
while loop executes as long as the number of scores input by the user
(represented by the variable named x) is less than SIZE (100) and as
long as the user has not entered 999 (the value of the constant QUIT)
for the student score. If x is less than SIZE and the user does not want
to quit, there is enough room in the array to store the student score.
In that case, the program retrieves the next student score, stores the
score in the String variable named stuScoreString, converts the
String to an int, and then stores the score in the array named score
at location x on line 38. Th e program then increments the value of x
(line 39) to get ready to store the next student score in the array. Th e
loop continues to execute until the user enters the value 999 or until
there is no more room in the array.

143

Using a Bubble Sort

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the program exits the loop, the value of x − 1 is assigned to the
variable named numberOfEls on line 41. Notice that x is used as the
array subscript and that its value is incremented every time the while
loop executes, including when the user enters the value 999 in order
to quit; therefore, x represents the number of student scores the user
entered plus one. On line 42 the value of numberOfEls − 1 is assigned
to the variable named comparisons and represents the maximum
number of elements the bubble sort will compare on a pass over the
data stored in the array. It ensures that the program does not attempt
to compare item x with item x + 1, when x is the last item in the array.

The sortArray() Method
Th e work done in the sortArray() method begins on line 44 and
uses a refi ned bubble sort to rearrange the student scores in the array
named score to be in ascending order. Refer to Figure 8-1, which
includes the pseudocode, and Figure 8-2, which includes the Java
code that implements the sortArray() method.

Line 45 initializes the fl ag variable didSwap to true, because, at
this point in the program, it is assumed that items will need to be
swapped.

Th e outer loop (line 47), while(didSwap == true), controls the
number of passes over the data. Th is logic implements one of the
refi nements discussed earlier—eliminating unnecessary passes over
the data. As long as didSwap is true, the program knows that swaps
have been made and that, therefore, the data is still out of order. Th us ,
when didSwap is true, the program enters the loop. Th e fi rst state-
ment in the body of the loop (line 49) is x = 0;. Th e program assigns
the value 0 to x because x is used as the array subscript. Recall that in
Java, the fi rst subscript in an array is number 0.

Next, to prepare for comparing the elements in the array, line 50
assigns the value false to didSwap. Th is is necessary because the
program has not yet swapped any values in the array on this pass.
Th e inner loop begins on line 52. Th e test, x < comparisons, controls
the number of pairs of values in the array the program compares on
one pass over the data. Th is implements another of the refi nements
discussed earlier—reducing unnecessary comparisons. Th e last state-
ment in the outer loop on line 64, comparisons––; , decrements the
value of comparisons by 1 each time the outer loop executes. Th e
program decrements comparisons because, when a complete pass is
made over the data, it knows an item is positioned in the array cor-
rectly. Comparing the value of comparisons with the value of x in the
inner loop reduces the number of necessary comparisons made when
this loop executes.

144

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

On line 54, within the inner loop, adjacent items in the array are
accessed and compared using the subscript variable x and x + 1.
Th e adjacent array items are compared to see if the program should
swap them. If the values should be swapped, the program executes
the statements that make up the work done in the swap() method
on lines 57 through 59, which uses the technique discussed earlier
to rearrange the two values in the array. Next, line 60 assigns true
to the variable named didSwap. Th e last task performed by the inner
loop (line 62) is adding 1 to the value of the subscript variable x. Th is
ensures that the next time through the inner loop, the program will
compare the next two adjacent items in the array. Th e program con-
tinues to compare two adjacent items and possibly swap them as long
as the value of x is less than the value of comparisons.

The displayArray() Method
In the displayArray() method, you print the sorted array on the
user’s screen. Figure 8-1 shows the pseudocode for this method. Th e
Java code is shown in Figure 8-2.

Th e work done in the displayArray() method begins on line 67 of
Figure 8-2. Line 68 assigns the value 0 to the subscript variable, x.
Th is is done before the while loop is entered because the fi rst item
stored in the array is referenced using the subscript value 0. Th e loop
in lines 69 through 73 prints all of the values in the array named
score by incrementing the value of the subscript variable, x, each
time the loop body executes. When the loop exits, the statement
System.exit(0); (line 74) executes and ends the program.

Exercise 8-2: Using a Bubble Sort
In this exercise, you use what you have learned about sorting data
using a bubble sort. Study the following code, and then answer
Questions 1–4.
int numbers[] = {432, −5, 54, −10, 36, 9, 65};
f nal int NUM_ITEMS = 7;
int j, k, temp;
int numPasses = 0, numCompares = 0, numSwaps = 0;
for(j = 0; j < NUM_ITEMS - 1; j++)
{
 numPasses++;
 for(k = 0; k < NUM_ITEMS − 1; k++)
 {
 numCompares++;
 if(numbers[k] > numbers[k + 1])
 {
 numSwaps++;

145

Using a Bubble Sort

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 temp = numbers[k + 1];
 numbers[k + 1] = numbers[k];
 numbers[k] = temp;
 }
 }
}

1. Does this code perform an ascending sort or a descending
sort? How do you know?

2. How many passes are made over the data in the array?

3. How many comparisons are made?

4. Do the variables named numPasses, numCompares, and
numSwaps accurately keep track of the number of passes,
compares, and swaps made in this bubble sort? Explain your
answer.

LAB 8.2 Using a Bubble Sort
In this lab, you will complete a Java program that uses an
array to store data for the village of Marengo. Th e village
of Marengo conducted a census and collected records

that contain household data, including the number of occupants in
each household. Th e exact number of household records has not
yet been determined, but you know that Marengo has fewer than
300 households. Th e program is described in Chapter 8, Exercise 5
in Programming Logic and Design, Seventh Edition. Th e program
should allow the user to enter each household size and determine the
mean and median household size in Marengo. Th e program should
output the mean and median household size in Marengo. Th e fi le
provided for this lab contains the necessary variable declarations and
input statements. You need to write the code that sorts the household
sizes in ascending order using a bubble sort, and then prints the mean
and median household size in Marengo. Comments in the code tell
you where to write your statements.

1. Open the source code fi le named HouseholdSize.java using
Notepad or the text editor of your choice.

2. Write the bubble sort.

3. Output the mean and median household size in Marengo.

146

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

5. Compile the source code fi le, HouseholdSize.java.

6. Execute the program with the following input, and record the
output.

Household Sizes: 3, 3, 2, 6, 9, 5, 2, 2, 1, 4

Using Multidimensional Arrays
As you learned in Chapter 8 of Programming Logic and Design,
Seventh Edition, an array whose elements are accessed using a single
subscript is called a one-dimensional array or a single-dimensional
array. You also learned that a two-dimensional array stores elements
in two dimensions and requires two subscripts to access elements.

In Chapter 8 of Programming Logic and Design, Seventh Edition, you
saw how useful two-dimensional arrays can be when you studied the
example of owning an apartment building with fi ve fl oors with each
fl oor having studio, one-bedroom, and two-bedroom apartments.
Th e rent charged for these apartments depends on which fl oor the
apartment is located as well as the number of bedrooms the apart-
ment has. Table 8-1 shows the rental amounts.

Floor
Studio
Apartment

1-Bedroom
Apartment

2-Bedroom
Apartment

0 350 390 435

1 400 440 480

2 475 530 575

3 600 650 700

4 1000 1075 1150

Table 8-1 Rent schedule based on fl oor and number of bedrooms

In Java, declaring a two-dimensional array to store the rents shown in
Table 8-1 requires two sets of square brackets. Th e fi rst set of square
brackets holds the number of rows in the array, and the second set
of square brackets holds the number of columns. Th e declaration is
shown below:
f nal int FLOORS = 5;
f nal int BEDROOMS = 3;
double rent[][] = new double[FLOORS][BEDROOMS];

147

Using Multidimensional Arrays

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e declaration shows the array’s name, rent, followed by two sets of
empty square brackets. Th e new operator is used to allocate enough
memory for the array elements, based on the data type specifi ed and
the integer values placed within the two pairs of square brackets that
follow the data type. Th e number of rows is included in the fi rst set of
square brackets using the constant value of FLOORS(5), and the num-
ber of columns is included in the second set of square brackets using
the constant value of BEDROOMS(3).

As shown below, you can also initialize a two-dimensional array when
you declare it by enclosing all of the values within a pair of curly
braces and also enclosing the values (separated by commas) for each
row within curly braces. Notice that each group of values within curly
braces is separated by commas.
double rent[][] = {{350, 390, 435},
 {400, 440, 480},
 {475, 530, 575},
 {600, 650, 700},
 {1000, 1075, 1150}};

To access individual elements in the rent array, two subscripts are
required as shown below.
double myRent;
myRent = rent[3][1];

Th e fi rst subscript (3) determines the row, and the second sub-
script (1) determines the column. In the assignment statement,
myRent = rent[3][1], the value 650 is assigned to the variable
named myRent.

Figure 8-3 shows the pseudocode for a program that continuously
displays rents for apartments based on renter requests for bedrooms
and fl oor, and Figure 8-4 shows the Java code that implements the
program.

Remember
that in Java,
array sub-
scripts begin
with 0.

start
 Declarations
 num RENT_BY_FLOOR_AND_BDRMS[5][3] = {350, 390, 435},
 {400, 440, 480},
 {475, 530, 575},
 {600, 650, 700},
 {1000, 1075, 1150}
 num f oor
 num bedrooms
 num QUIT = 99
 getReady()
 while f oor <> QUIT

Figure 8-3 Pseudocode for a program that determines rents (continues)

148

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(continued)

 determineRent()
 endwhile
 f nish()
stop

getReady()
 output "Enter f oor "
 input f oor
return

determineRent()
 output "Enter number of bedrooms "
 input bedrooms
 output "Rent is $", RENT_BY_FLOOR_AND_BDRMS[f oor][bedrooms]
 output "Enter f oor "
 input f oor
return

f nish()
 output "End of program"
return

Figure 8-3 Pseudocode for a program that determines rents

Figure 8-4 Java code for a program that determines rents (continues)

import javax.swing.*;

public class DetermineRent
{
 public static void main(String args[])
 {
 // Declare variables.
 double rent[][] = {{350, 390, 435},
 {400, 440, 480},
 {475, 530, 575},
 {600, 650, 700},
 {1000, 1075, 1150}};
 int f oor;
 int bedroom;
 String f oorString;
 String bedroomString;
 int QUIT = 99;

 // Work done in the getReady() method
 f oorString = JOptionPane.showInputDialog(
 "Enter f oor or 99 to quit: ");
 f oor = Integer.parseInt(f oorString);

149

Using Multidimensional Arrays

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 8-3: Using Multidimensional Arrays
In this exercise, you use what you have learned about using multidi-
mensional arrays to answer Questions 1–3.

1. A two-dimensional array declared as
int myNums[][] = new int[5][3]; has how many rows?

2. A two-dimensional array declared as
int myNums[][] = new int[5][3]; has how many columns?

3. Consider the following array declaration,
int myNums[][] = new int[5][3];

Are the following Java statements legal?
number = myNums[5][3];
number = myNums[0][1];
number = myNums[1][2];

LAB 8.3 Using Multidimensional Arrays
In this lab, you will complete a Java program that uses a
two-dimensional array to store data for the Building Block
Day Care Center. Th e program is described in Chapter 8,

(continued)

 while(f oor != QUIT)
 {
 // Work done in the determineRent() method
 bedroomString = JOptionPane.showInputDialog(
 "Enter number of bedrooms: ");
 bedroom = Integer.parseInt(bedroomString);
 System.out.println("Rent is $" +
 rent[f oor][bedroom]);
 f oorString = JOptionPane.showInputDialog(
 "Enter f oor or 99 to quit: ");
 f oor = Integer.parseInt(f oorString);
 }
 // Work done in the f nish() method
 System.out.println("End of program");
 System.exit(0);
 } // End of main() method.
} // End of DetermineRent class.

Figure 8-4 Java code for a program that determines rents

150

C H A P T E R 8 Advanced Array Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exercise 10 in Programming Logic and Design, Seventh Edition. Th e
day care center charges varying weekly rates depending on the age
of the child and the number of days per week the child attends. Th e
weekly rates are shown in Table 8-2.

Days per Week

Age in Years 1 2 3 4 5

0 30.00 60.00 88.00 115.00 140.00

1 26.00 52.00 70.00 96.00 120.00

2 24.00 46.00 67.00 89.00 110.00

3 22.00 40.00 60.00 75.00 88.00

4 or more 20.00 35.00 50.00 66.00 84.00

Table 8-2 Weekly rates for Lab 8.3

Th e program should allow users to enter the age of the child and the
number of days per week the child will be at the day care center. Th e
program should output the appropriate weekly rate. Th e fi le provided
for this lab contains all of the necessary variable declarations, except
the two- dimensional array. You need to write the input statements and
the code that initializes the two-dimensional array, determines the
weekly rate, and prints the weekly rate. Comments in the code tell
you where to write your statements.

1. Open the source code fi le named DayCare.java using
Notepad or the text editor of your choice.

2. Declare and initialize the two-dimensional array.

3. Write the Java statements that retrieve the age of the child
and the number of days the child will be at the day care center.

4. Determine and print the weekly rate.

5. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

6. Compile the source code fi le DayCare.java.

7. Execute the program.

151

Using Multidimensional Arrays

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Write methods that require no parameters

 Write methods that require a single parameter

 Write methods that require multiple parameters

 Write methods that return values

 Pass entire arrays and single elements of an array
to a method

 Overload methods

 Use Java’s built-in methods

C H A P T E R 9
Advanced
Modularization
Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Chapter 2 of Programming Logic and Design, Seventh Edition, you
learned that local variables are variables that are declared within the
method that uses them. You also learned that most programs consist
of a main method, which contains the mainline logic and calls other
methods to get specifi c work done in the program.

In this chapter, you learn more about methods in Java. You learn how
to write methods that require no parameters, how to write methods
that require a single parameter, how to write methods that require
multiple parameters, and how to write methods that return a value.
You also learn how to pass an array to a method, how to overload
a method, and how to use some of Java’s built-in methods. To help
you learn about methods, you will study some Java programs that
implement the logic and design presented in Programming Logic
and Design.

You should do the exercises and labs in this chapter after you have
fi nished Chapter 9 of Programming Logic and Design.

Writing Methods with No Parameters
To begin learning about methods, we review the Java code for a
Customer Bill program, shown in Figure 9-1. Notice the line numbers
in front of each line of code in this program. Th ese line numbers are
not actually part of the program but are included for reference only.

 1 import javax.swing.JOptionPane;
 2 public class CustomerBill
 3 {
 4 public static void main(String args[])
 5 {
 6 // Declare variables local to main()
 7 String name;
 8 String balanceString;
 9 double balance;
10
11 // Get interactive input
12 name = JOptionPane.showInputDialog(
13 "Enter customer’s name: ");
14 balanceString = JOptionPane.showInputDialog(
15 "Enter customer’s balance: ");
16
17 // Convert String to double
18 balance = Double.parseDouble(balanceString);
19
20 // Call nameAndAddress() method

Figure 9-1 Java code for the Customer Bill program (continues)

153

Writing Methods with No Parameters

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e program begins execution with the main() method, which is shown
on line 4. Th is method contains the declaration of three variables (lines
7, 8, and 9), name,balanceString, and balance, which are local to
the main() method. Next, on lines 12, 13, 14, and 15, interactive input
statements retrieve values for name and balanceString, and on line
18 balanceString is converted to the double data type. Th e method
nameAndAddress() is then called on line 21, with no arguments listed
within its parentheses. Arguments, which are sometimes called actual
parameters, are data items sent to methods. Th ere are no arguments for
the nameAndAddress() method because this method requires no data.
You will learn about passing arguments to methods later in this chapter.
Th e last two statements (lines 24 and 25) in the main() method are print
statements that output the customer’s name and balance.

Next, on line 28, you see the header for the nameAndAddress() method.
Th e header begins with the public keyword, followed by the static
keyword, followed by the void keyword, followed by the method name,
which is nameAndAddress(). Th e public keyword makes this method
available for execution. Th e keyword static means you do not have to
create a CustomerBill object to call the method, and the void keyword
indicates that the nameAndAddress() method does not return a value.
You learn more about methods that return values later in this chapter.
In the next part of the Customer Bill program, we see three constants
that are local to the nameAndAddress() method: ADDRESS_LINE1,

(continued)

21 nameAndAddress();
22
23 // Output customer name and address
24 System.out.println("Customer Name: " + name);
25 System.out.println("Customer Balance: " + balance);
26
27 }
28 public static void nameAndAddress()
29 {
30 // Declare and initialize local, constant Strings
31 f nal String ADDRESS_LINE1 = "ABC Manufacturing";
32 f nal String ADDRESS_LINE2 = "47 Industrial Lane";
33 f nal String ADDRESS_LINE3 = "Wild Rose, WI 54984";
34
35 // Output
36 System.out.println(ADDRESS_LINE1);
37 System.out.println(ADDRESS_LINE2);
38 System.out.println(ADDRESS_LINE3);
39 } // End of nameAndAddress() method
40 }

Figure 9-1 Java code for the Customer Bill program

154

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ADDRESS_LINE2, and ADDRESS_LINE3. Th ese constants are declared
and initialized on lines 31, 32, and 33 and then printed on lines 36, 37,
and 38. When the input to this program is Ed Gonzales (name) and
352.39 (balance), the output is shown in Figure 9-2.

Figure 9-2 Output from the Customer Bill program

Exercise 9-1: Writing Methods with No
Parameters
In this exercise, you use what you have learned about writing
methods with no parameters to answer Questions 1–2.

1. Given the following method calls, write the method’s header:

a. printAddressLabel();

b. displayOrderInfo();

c. displayTVListing();

2. Given the following method headers, write a method call:

a. public static void printCellPhoneNumbers()

b. public static void displayTeamNames()

c. public static void showOrderNumbers()

155

Writing Methods with No Parameters

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 9.1 Writing Methods with
No Parameters

In this lab, you complete a partially prewritten Java
program that includes a method with no parameters. Th e

program asks the user if they have pre-registered for a conference. If
the user has pre-registered, the program should call a method named
discount() that displays the message “You are pre-registered and
qualify for a 10% discount.” If the user has not pre-registered, the
program should call a method named noDiscount() that displays
the message “Sorry, you did not pre-register and do not qualify for a
10% discount.” Th e source code fi le provided for this lab includes the
necessary variable declarations and the input statement. Comments
are included in the fi le to help you write the remainder of the
program.

1. Open the source code fi le named ConferenceDiscount.java
using Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, ConferenceDiscount.java.

5. Execute the program.

Writing Methods that Require
a Single Parameter
As you learned in Programming Logic and Design, Seventh Edition,
some methods require data to accomplish their task. You also learned
that designing a program so that it sends data (which can be diff erent
each time the program runs) to a method (which doesn’t change)
keeps you from having to write multiple methods to handle similar
situations. For example, suppose you are writing a program that has
to determine if a number is even or odd. It is certainly better to write
a single method, to which the program can pass a number entered by
the user, than to write individual methods for every number.

In Figure 9-3, you see the Java code for a program that includes a method
that can determine if a number is odd or even. Th e line numbers are
not actually part of the program but are included for reference only. Th e
program allows the user to enter a number, and then passes that number
to a method as an argument. After it receives the argument, the method
can determine if the number is an even number or an odd number.

156

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The value of the formal parameter,
number, is stored at a different
memory location and is local to
the even_or_odd() method.
For example, it may be stored at
memory location 7800.

The variable named number is
local to the main() method. Its
value is stored at one memory
location. For example, it may be
stored at memory location 2000.

On lines 15 and 16 in this program, the user is asked to enter a num-
ber or the sentinel value, -999, when she is fi nished entering numbers
and wants to quit the program. (You learned about sentinel values
in Chapter 5 of this book.) On lines 15, 16, and 17, the input value is
retrieved, stored in the variable named numberString, converted to
an int, and then stored in the variable named number. Next, if the
user did not enter the sentinel value -999, the while loop is entered,
and the method named even_or_odd() is called (line 21) using the
following syntax, even_or_odd(number);.

 1 // EvenOrOdd.java - This program determines if a number
 2 // input by the user is an even number or an odd number.
 3 // Input: Interactive.
 4 // Output: The number entered and whether it is even or odd.
 5
 6 import javax.swing.*;
 7
 8 public class EvenOrOdd
 9 {
10 public static void main(String args[])
11 {
12 int number;
13 String numberString;
14
15 numberString = JOptionPane.showInputDialog(
16 "Enter a number or -999 to quit: ");
17 number= Integer.parseInt(numberString);
18
19 while(number != -999)
20 {
21 even_or_odd(number);
22 numberString = JOptionPane.showInputDialog(
23 "Enter a number or -999 to quit: ");
24 number= Integer.parseInt(numberString);
25 }
26
27 System.exit(0);
28
29 } // End of main() method.
30
31 public static void even_or_odd(int number)
32 {
33 if((number % 2) == 0)
34 System.out.println("Number: " + number +
35 " is even.");
36 else
37 System.out.println("Number: " + number +
38 " is odd.");
39 } // End of even_or_odd method.
40 } // End of EvenOrOdd class.

Figure 9-3 Java code for the Even Or Odd program

157

Writing Methods that Require a Single Parameter

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Notice that the variable, number, is placed within the parentheses
on line 21, which means that the value of number is passed to the
even_or_odd() method. Th is is referred to as passing an argument
by value. Passing an argument by value means that a copy of the
value of the argument is passed to the method. Within the method,
the value is stored in the formal parameter at a diff erent memory
location, and is considered local to that method. In this example, as
shown on line 31, the value is stored in the formal parameter named
number.

Program control is now transferred to the even_or_odd() method.
Th e header for the even_or_odd() method on line 31 includes the
public, static, and void keywords, as discussed earlier in this
chapter. Th e name of the method follows, and within the parentheses
that follow the method name, the parameter, number, is given a local
name and declared as the int data type.

Remember that even though the name of the parameter, number,
has the same name as the local variable number in the main()
method, they are stored at diff erent memory locations. Figure 9-3
shows that the variable number that is local to main() is stored at one
memory location, and the parameter, number, in the even_or_odd()
method is stored at a diff erent memory location.

Within the method on line 33, the modulus operator, %, is used in
the test portion of the if statement to determine if the value of the
local number is even or odd. Th e user is then informed if number
is even (lines 34 and 35) or odd (lines 37 and 38), and program
control is transferred back to the statement that follows the call to
even_or_odd() in the main() method (line 22).

Back in the main() method, the user is asked to enter another num-
ber on lines 22 and 23, and the while loop continues to execute, call-
ing the even_or_odd() method with a new input value. Th e loop is
exited when the user enters the sentinel value −999, and the program
ends. When the input to this program is 45, 98, 1, −32, 643, and −999,
the output is shown in Figure 9-4.

The data type
of the formal
parameter
and the actual
parameter

must be the same.

158

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 9-4 Output from the Even Or Odd program

Exercise 9-2: Writing Methods that Require
a Single Parameter
In this exercise, you use what you have learned about writing
methods that require a single parameter to answer Questions 1–2.

1. Given the following variable declarations and method calls,
write the method’s header:

a. String name;

printNameBadge(name);

b. double side_length;

calculateRectangleArea(side_length);

c. int hours;

 displaySecondsInHours(hours);

2. Given the following method headers, write a method call:

a. public static void displayPetName(String petName)

b. public static void printHolidays(int year)

c. public static void checkValidPassword(String password)

159

Writing Methods that Require a Single Parameter

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 9.2 Writing Methods that Require
a Single Parameter

In this lab, you complete a partially written Java program
that includes two methods that require a single parameter.

Th e program continuously prompts the user for an integer until
the user enters 0. Th e program then passes the value to a method
that computes the sum of all the whole numbers from 1 up to and
including the entered number. Next, the program passes the value to
another method that computes the product of all the whole numbers
up to and including the entered number. Th e source code fi le
provided for this lab includes the necessary variable declarations and
the input statement. Comments are included in the fi le to help you
write the remainder of the program.

1. Open the source code fi le named SumAndProduct.java using
Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, SumAndProduct.java.

5. Execute the program.

Writing Methods that Require
Multiple Parameters
In Chapter 9 of Programming Logic and Design, Seventh Edition,
you learned that a method often requires more than one parameter
in order to accomplish its task. To specify that a method requires
multiple parameters, you include a list of data types and local
identifi ers separated by commas as part of the method’s header. To
call a method that expects multiple parameters, you list the actual
parameters (separated by commas) in the call to the method.

In Figure 9-5, you see the Java code for a program that includes a
method named computeTax() that you designed in Programming
Logic and Design, Seventh Edition. Th e line numbers are not actually
part of the program but are included for reference only.

160

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the Java code shown in Figure 9-5, you see that the highlighted call
to computeTax()on line 24 includes the names of the local variables
balance and rate within the parentheses and that they are separated
by a comma. Th ese are the arguments (actual parameters) that are
passed to the computeTax() method. You can also see that the
computeTax() method header on line 30 is highlighted and includes
two formal parameters, double amount and double rate, listed within
parentheses and separated by a comma. Th e value of the variable
named balance is passed by value to the computeTax() method as

Memory address 1000

Memory address 1008

Memory address 9000

Memory address 9008

 1 // ComputeTax.java - This program computes tax given a
 2 // balance and a rate
 3 // Input: Interactive.
 4 // Output: The balance, tax rate, and computed tax.
 5
 6 import javax.swing.*;
 7
 8 public class ComputeTax
 9 {
10 public static void main(String args[])
11 {
12 double balance;
13 String balanceString;
14 double rate;
15 String rateString;
16
17 balanceString = JOptionPane.showInputDialog(
18 "Enter balance: ");
19 balance = Double.parseDouble(balanceString);
20 rateString = JOptionPane.showInputDialog(
21 "Enter rate: ");
22 rate = Double.parseDouble(rateString);
23
24 computeTax(balance, rate);
25
26 System.exit(0);
27
28 } // End of main() method.
29
30 public static void computeTax(double amount, double rate)
31 {
32 double tax;
33
34 tax = amount * rate;
35 System.out.println("Amount: " + amount + " Rate: " +
36 rate + " Tax: " + tax);
37
38 } // End of computeTax method
39 } // End of ComputeTax class.

Figure 9-5 Java code for the Compute Tax program

161

Writing Methods that Require Multiple Parameters

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

an actual parameter and is stored in the formal parameter named
amount. Th e value of the variable named rate is passed by value to
the computeTax() method as an actual parameter and is stored in
the formal parameter named rate. As illustrated in Figure 9-5, it
does not matter that one of the parameters being passed, rate, has
the same name as the parameter received, rate, because they occupy
diff erent memory locations. When the input to this program is
300.00 (balance) and .12 (rate), the output is shown in Figure 9-6.

Figure 9-6 Output from the Compute Tax program

Exercise 9-3: Writing Methods that Require
Multiple Parameters
In this exercise, you use what you have learned about writing
methods that require multiple parameters to answer Questions 1–2.

1. Given the following method calls, write the method’s header:

a. String name, message;

printBanner(name, message);

b. double side1, side2;

calculateSquareArea(side1, side2);

c. int day, month, year;

birthdayCard(day, month, year);

In Java, when
you write a
method that
expects more
than one

argument, you must list
the arguments separately,
even if they have the
same data type.

There is no
limit to the
number of
arguments
you can pass

to a method, but when
multiple arguments are
passed to a method, the
call to the method and
the method’s header
must match. This means
that the number of
arguments, their data
types, and the order in
which they are listed
must be the same.

162

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. Given the following method headers, write a method call:

a. public static void tuitionBill(String name,
double tuition)

b. public static void f ndSum(int num1,
int num2)

c. public static void newBalance(double bal,
double percent)

LAB 9.3 Writing Methods that Require
Multiple Parameters

In this lab, you complete a partially written Java program
that includes methods that require multiple parameters

(arguments). Th e program prompts the user for two numeric values.
Both values should be passed to methods named calculateSum(),
calculateDifference(), and calculateProduct(). Th e methods
compute the sum of the two values, the diff erence between the two
values, and the product of the two values. Each method should
perform the appropriate computation and display the results.
Th e source code fi le provided for this lab includes the variable
declarations and the input statements. Comments are included in the
fi le to help you write the remainder of the program.

1. Open the source code fi le named Arithmetic.java using
Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, Arithmetic.java.

5. Execute the program.

163

Writing Methods that Require Multiple Parameters

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing Methods that Return a Value
Th us far in this book, none of the methods you have written return a
value. Th e header for each of these methods includes the keyword void,
as in, public static void main(), indicating that the method does not
return a value. However, as a programmer, you will often fi nd that you
need to write methods that do return a value. In Java, a method can
only return a single value; when you write the code for the method, you
must indicate the data type of the value you want to return. Th is is often
referred to as the method’s return type. Th e return type can be any of
Java’s built-in data types, as well as a class type, such as String. You will
learn more about classes in Chapter 10 of this book. For now, we will
focus on returning values of the built-in types and String objects.

In Chapter 9 of Programming Logic and Design, Seventh Edition,
you studied the design for a program that includes a method named
getHoursWorked(). Th is method is designed to prompt a user for
the number of hours an employee has worked, retrieve the value,
and then return that value to the location in the program where the
method was called. Th e Java code that implements this design in
shown in Figure 9-7.

 1 // GrossPay.java - This program computes an employee’s
 2 // gross pay.
 3 // Input: Interactive.
 4 // Output: The employee’s hours worked and their gross pay.
 5
 6 import javax.swing.*;
 7
 8 public class GrossPay
 9 {
10 public static void main(String args[])
11 {
12 double hours;
13 f nal double PAY_RATE = 12.00;
14 double gross;
15
16 hours = getHoursWorked();
17 gross = hours * PAY_RATE;
18
19 System.out.println("Hours worked: " + hours);
20 System.out.println("Gross pay is: " + gross);
21
22 System.exit(0);
23
24 } // End of main() method.

Figure 9-7 Java code for a program that includes the getHoursWorked()
method (continues)

164

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e Java program shown in Figure 9-7 declares local constants and
variables hours, PAY_RATE, and gross on lines 12, 13, and 14 in the
main() method. Th e next statement (line 16), shown below, is an
assignment statement.
hours = getHoursWorked();

Th is assignment statement includes a call to the method named
getHoursWorked(). As with all assignment statements, the expres-
sion on the right side of the assignment operator (=) is evaluated, and
then the result is assigned to the variable named on the left side of the
assignment operator (=). In this example, the expression on the right
is a call to the getHoursWorked() method.

When the getHoursWorked() method is called, program control is
transferred to the method. Notice that the header (line 26) for this
method is written as follows:
public static double getHoursWorked()

Th e keyword double is used in the header to specify that a value of
data type double is returned by this method.

Two local variables, workHours (data type double) and workHoursString
(a String object), are then declared on lines 28 and 29. On lines 31 and
32, the user is then asked to enter the number of hours worked, at which
point the value is retrieved and stored in workHoursString. Next, on line
33, workHoursString is converted to a double, and assigned to the local
variable named workHours. Th e return statement that follows on line 35
returns a copy of the value stored in workHours (data type double) to the
location in the calling method where getHoursWorked() is called, which
is the right side of the assignment statement on line 16.

(continued)

25
26 public static double getHoursWorked()
27 {
28 double workHours;
29 String workHoursString;
30
31 workHoursString = JOptionPane.showInputDialog(
32 "Please enter hours worked: ");
33 workHours = Double.parseDouble(workHoursString);
34
35 return workHours;
36
37 } // End of getHoursWorked method
38 } // End of GrossPay class.

Figure 9-7 Java code for a program that includes the getHoursWorked()
method

165

Writing Methods that Return a Value

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e value returned to the right side of the assignment statement is
then assigned to the variable named hours (data type double) in the
main() method. Next, the gross pay is calculated on line 17, followed
by the System.out.println() statements on lines 19 and 20 that dis-
play the value of the local variables, hours and gross, which contain
the number of hours worked and the calculated gross pay.

You can also use a method’s return value directly rather than store it
in a variable. Th e two Java statements that follow make calls to the
same getHoursWorked() method shown in Figure 9-7, but in these
statements the returned value is used directly in the statement that
calculates gross pay and in the statement that prints the returned
value.
gross = getHoursWorked() * PAY_RATE;
System.out.println("Hours worked is " + getHoursWorked());

When the input to this program is 45, the output is shown in
Figure 9-8.

Figure 9-8 Output from program that includes the getHoursWorked()
method

Exercise 9-4: Writing Methods that Return
a Value
In this exercise, you use what you have learned about writing
 methods that return a value to answer Questions 1–2.

1. Given the following variable declarations and method calls,
write the method’s header:

a. double price, percent, newPrice;

newPrice = calculateNewPrice(price, percent);

b. double perimeter, one_length, two_length;

perimeter = calcPerimeter(one_length, two_length);

166

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

c. String lowerCase, upperCase;

lowerCase = changeCase(upperCase);

2. Given the following method headers, write a method call:

a. public static String f ndItemType(int itemNumber)

b. public static int squared(int num1, int num2)

c. public static int power(int num, int exp)

LAB 9.4 Writing Methods that Return
a Value

In this lab, you complete a partially written Java program
that includes a method that returns a value. Th e program

is a simple calculator that prompts the user for two numbers and
an operator (+, −, *, /, or %). Th e two numbers and the operator are
passed to the method where the appropriate arithmetic operation is
performed. Th e result is then returned to the main() method where
the arithmetic operation and result are displayed. For example, if the
user enters 3, 4, and *, the following is displayed:

3.00 * 4.00 = 12.00

Th e source code fi le provided for this lab includes the necessary
variable declarations, and input and output statements. Comments
are included in the fi le to help you write the remainder of the
program.

1. Open the source code fi le named Arithmetic2.java using
Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, Arithmetic2.java.

5. Execute the program.

167

Writing Methods that Return a Value

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Passing an Array and an Array
Element to a Method
As a Java programmer, there are times when you will want to write
a method that will perform a task on all of the elements you have
stored in an array. For example, in Chapter 9 of Programming Logic
and Design, Seventh Edition, you saw a design for a program that
used a method to quadruple all of the values stored in an array. Th is
design is translated into Java code in Figure 9-9.

Th e main() method begins on line 4 and proceeds with the declaration
and initialization of the constant named LENGTH (line 7) and the array
of integers named someNums (line 8), followed by the declaration of
the variable named x (line 9), which is used as a loop control variable.
Th e fi rst while loop in the program on lines 12 through 16 prints the
values stored in the array at the beginning of the program. On line 18,
the method named quadrupleTheValues() is called. Th e array named
someNums is passed as an argument.

Figure 9-9 Java code for the Pass Entire Array program (continues)

 1 import javax.swing.*;
 2 public class PassEntireArray
 3 {
 4 public static void main(String args[])
 5 {
 6 // Declare variables
 7 f nal int LENGTH = 4;
 8 int someNums[]= {10, 12, 22, 35};
 9 int x;
10 System.out.println("At beginning of main method...");
11 x = 0;
12 while (x < LENGTH) // Print initial array values
13 {
14 System.out.println(someNums[x]);
15 x++;
16 }
17 // Call method, pass array
18 quadrupleTheValues(someNums);
19 System.out.println("At the end of main method...");
20 x = 0;
21 // Print changed array values
22 while (x < someNums.length)
23 {
24 System.out.println(someNums[x]);
25 x ++;
26 }
27 System.exit(0);
28 } // End of main() method.

168

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When an entire array is passed to a method, the square brackets and
the size are not included. Note that when you pass an entire array to a
method, the array is passed by reference. So, instead of a copy of the
array being passed, the memory address of the array is passed. Th is
gives the method access to that memory location; the method can
then change the values stored in the array if necessary.

Program control is then transferred to the quadrupleTheValues()
method. Th e header for the method on line 29 includes one
parameter, int [] vals. Th e syntax for declaring an array as a
formal parameter includes the parameter’s data type, followed
by empty square brackets, followed by a local name for the array.
Note that a size is not included within the square brackets. In the
quadrupleTheValues() method, the fi rst while loop on lines 35
through 41 prints the values stored in the array, and the second
while loop on lines 43 through 47 accesses each element in the array,

(continued)

Figure 9-9 Java code for the Pass Entire Array program

29 public static void quadrupleTheValues(int [] vals)
30 {
31 f nal int LENGTH = 4;
32 int x;
33 x = 0;
34 // Print array values before they are changed
35 while(x < LENGTH)
36 {
37 System.out.println(
38 " In quadrupleTheValues() method, value is " +
39 vals[x]);
40 x++;
41 }
42 x = 0;
43 while(x < LENGTH) // This loop changes array values
44 {
45 vals[x] = vals[x] * 4;
46 x++;
47 }
48 x = 0;
49 // Print array values after they are changed
50 while(x < LENGTH)
51 {
52 System.out.println(" After change, value is " +
53 vals[x]);
54 x++;
55 }
56 } // End of quadrupleTheValues method
57 } // End of PassEntireArray class.

169

Passing an Array and an Array Element to a Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

quadruples the value, and then stores the quadrupled values in the
array at their same location. Th e third while loop on lines 50 through
55 prints the changed values now stored in the array. Program control
is then returned to the location in the main() method where the
method was called.

When program control returns to the main() method, the next state-
ments to execute (lines 19 through 26) are responsible for printing
out the values stored in the array once more. Th e output from this
program is displayed in Figure 9-10.

Figure 9-10 Output from the Pass Entire Array program

As shown in Figure 9-10, the array values printed at the beginning
of the main() method (lines 12 through 16) are the values with
which the array was initialized. Next, the quadrupleTheValues()
method prints the array values (lines 35 through 41) again before
they are changed. Th e values remain the same as the initialized
values. Th e quadrupleTheValues() method then prints the array
values again after the values are quadrupled (lines 50 through 55).
After the call to quadrupleTheValues(), the main() method prints
the array values one last time (lines 22 through 26). Th ese are the
quadrupled values, indicating that the quadrupleTheValues()
method has access to the memory location where the array is stored
and can permanently change the values stored there.

You can also pass a single array element to a method, just as you pass
a variable or constant. Th e following Java code initializes an array
named someNums, declares a variable named newNum, and passes one
element of the array to a method named tripleTheNumber().

170

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

int someNums[]= {10, 12, 22, 35};
int newNum;
newNum = tripleTheNumber(someNums[1]);

Th e following Java code includes the header for the method named
tripleTheNumber() along with the code that triples the value passed to it.
public static int tripleTheNumber(int num)
{
 int result;
 result = num * 3;
 return result;
}

Exercise 9-5: Passing Arrays to Methods
In this exercise, you use what you have learned about passing arrays
and array elements to methods to answer Questions 1–3.

1. Given the following method calls, write the method’s header:

a. int juneBirthdays [] = {3, 12, 13, 22, 27, 30};

printBirthdays(juneBirthdays);

b. double julyInvoices [] = {100.00, 200.00, 55.00, 230.00};

total = monthlyIncome(julyInvoices);

c. double pastDue[] = {34.56, 33.22, 65.77, 89.99};

printWarning(pastDue[1]);

2. Given the following method headers, write a method call:

a . public static void csClass(String [] name,
double [] grades)

b. public static int printMedian(int [] nums)

3. Given the following method header (in which sal is one
 element of an array of doubles), write a method call:

a. public static void increase(double sal)

171

Passing an Array and an Array Element to a Method

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 9.5 Passing Arrays to Methods
In this lab, you complete a partially written Java program
that reverses the order of 5 numbers stored in an array.
Th e program should fi rst print the fi ve numbers stored in

the array. Next, the program passes the array to a method where the
numbers are reversed. Finally, the main program should print the
reversed numbers.

Th e source code fi le provided for this lab includes the necessary vari-
able declarations. Comments are included in the fi le to help you write
the remainder of the program.

1. Open the source code fi le named Reverse.java using
Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, Reverse.java.

5. Execute the program.

Overloading Methods
You can overload methods by giving the same name to more than
one method. Overloading methods is useful when you need to
perform the same action on diff erent types of inputs. For example,
you may want to write multiple versions of an add() method—one
that can add two integers, another that can add two doubles, another
that can add three integers, and another that can add two integers
and a double. Overloaded methods have the same name, but they
must either have a diff erent number of arguments or the arguments
must be of a diff erent data type. Java fi gures out which method to
call based on the method’s name and its arguments, the combination
of which is known as the method’s signature. Th e signature of an
overloaded method consists of the method’s name and its argument
list; it does not include the method’s return type.

172

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Overloading methods allows a Java programmer to choose a mean-
ingful name for a method and also permits the use of polymorphic
code. Polymorphic code is code that acts appropriately depend-
ing on the context. (Th e word polymorphic is derived from the
Greek words poly, meaning “many,” and morph, meaning “form.”)
Polymorphic methods in Java can take many forms. You will learn
more about polymorphism in other Java courses, when you learn
more about object-oriented programming. For now, you can use
overloading to write methods that perform the same task but with
diff erent data types.

In Chapter 9 of Programming Logic and Design, Seventh Edition, you
studied the design for an overloaded method named printBill(). One
version of the method includes a numeric parameter, a second version
includes two numeric parameters, a third version includes a numeric
parameter and a String parameter, and a fourth version includes
two numeric parameters and a String parameter. All versions of the
printBill() method have the same name with a diff erent signature;
therefore, it is an overloaded method. In Figure 9-11 you see a Java
program that includes the four versions of the printBill() method.

 1 // Overloaded.java - This program illustrates overloaded
 2 // methods.
 3 // Input: None.
 4 // Output: Bill printed in various ways.
 5 import javax.swing.*;
 6 public class Overloaded
 7 {
 8 public static void main(String args[])
 9 {
10 double bal = 250.00, discountRate = .05;
11 String msg = "Due in 10 days.";
12 printBill(bal); // Call version #1.
13 printBill(bal, discountRate); // Call version #2.
14 printBill(bal, msg); // Call version #3.
15 printBill(bal, discountRate, msg); // Call version #4.
16 System.exit(0);
17 } // End of main() method.
18

Figure 9-11 Program that uses overloaded printBill() methods (continues)

173

Overloading Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

On line 12, the fi rst call to the printBill() method passes one
 argument, the variable named bal, which is declared as a double.
Th is causes the run-time system to fi nd and execute the printBill()
method that is written to accept one double as an argument (line 20).
Th e third call to the printBill() method (line 14) passes two
arguments, a double and a String. Th is causes the run-time system
to fi nd and execute the printBill() method that is written to accept
a double and a String as arguments (line 37). You can compile
and execute this program if you would like to verify that a diff erent

(continued)

19 // printBill() method version #1.
20 public static void printBill(double balance)
21 {
22 System.out.println("Thank you for your order.");
23 System.out.println("Please remit " + balance);
24 } // End of printBill version #1 method.
25
26 // printBill() method version #2.
27 public static void printBill(double balance,
28 double discount)
29 {
30 double newBal;
31 newBal = balance - (balance * discount);
32 System.out.println("Thank you for your order.");
33 System.out.println("Please remit " + newBal);
34 } // End of printBill version #2 method.
35
36 // printBill() method version #3.
37 public static void printBill(double balance,
38 String message)
39 {
40 System.out.println("Thank you for your order.");
41 System.out.println(message);
42 System.out.println("Please remit " + balance);
43 } // End of printBill version #3 method.
44
45 // printBill() method version #4.
46 public static void printBill(double balance,
47 double discount,
48 String message)
49 {
50 double newBal;
51 newBal = balance - (balance * discount);
52 System.out.println("Thank you for your order.");
53 System.out.println(message);
54 System.out.println("Please remit " + newBal);
55 } // End of printBill version #4 method.
56 } // End of Overloaded class.

Figure 9-11 Program that uses overloaded printBill() methods

174

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

version of the printBill() method is called when a diff erent number
of arguments are passed or arguments of diff erent data types are
passed. Th e program, named Overloaded.java, is included with
the data fi les provided with this book. Th e output generated by this
program is shown in Figure 9-12.

Figure 9-12 Output from the Overloaded program

Exercise 9-6: Overloading Methods
In this exercise, you use what you have learned about overloading
methods to answer Question 1.

1. In Figure 9-13, which method header would the following
method calls match? Use a line number as your answer.

a. ans2 = sum(2.0,5.0);

b. ans1 = sum(2, 5);

c. ans1 = sum(number1, number1);

d. ans2 = sum(3, 5, 7);

e. ans2 = sum(2, 4, number2);

175

Overloading Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 9.6 Overloading Methods
In this lab, you complete a partially written Java
program that computes hotel guest rates at Cornwall’s
Country Inn. The program is described in Chapter 9,

Exercise 11 in Programming Logic and Design, Seventh Edition.
In this program, you should include two overloaded methods
named computeRate(). One version accepts a number of days
and calculates the rate at $99.99 per day. The other accepts a
number of days and a code for a meal plan. If the code is A, three
meals per day are included, and the price is $169.00 per day. If the
code is C, breakfast is included, and the price is $112.00 per day.
All other codes are invalid. Each method returns the rate to the
calling program where it is displayed. The main program asks the
user for the number of days in a stay and whether meals should be
included; then, based on the user’s response, the program either
calls the first method or prompts for a meal plan code and calls
the second method. Comments are included in the file to help you
write the remainder of the program.

1. Open the source code fi le named Cornwall.java using
Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, Cornwall.java.

5. Execute the program.

1 // Method headers
2 public static int sum(int num1, int num2)
3 public static int sum(int num2, int num2, int num3)
4 public static double sum(double num1, double num2)
5 double number1 = 1.0, ans1;
6 int number2 = 5, ans2;

Figure 9-13 Method headers for Exercise 9-6

176

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using Java’s Built-In Methods
Th roughout this book, you have used some of Java’s built-in methods,
such as the println() method, the showInputDialog() method,
and the parseInt() and parseDouble() methods. In this section, we
will look at another built-in method named format(), which allows
you to control the number of places displayed after the decimal point
when you print a value of data type double. Using the format()
method is one of several ways to control the number of places
displayed after a decimal point.

In the code sample that follows, you see that the format() method
expects two arguments, a string constant and a value to format.
Notice the value to format is a variable named valToFormat that is
declared as data type double.
double valToFormat = 1234.12;
System.out.format("%.3f%n", valToFormat);

In the preceding code sample, the String constant, “%.3f%n”, is a
format specifi er that describes how the value should be formatted.
Format specifi ers begin with a percent sign (%) and end with a con-
verter. Th e converter is a character indicating the type of argument
to be formatted. In this example, the f in %.3f specifi es that the value
to be formatted is a fl oating-point value. In between the percent sign
(%) and the converter, you can include optional fl ags and specifi ers.
In this example, .3 is an optional fl ag that specifi es that you want to
display three places after the decimal point. Th e format specifi er, %n,
indicates that a newline character should be displayed. Th e output
from this code sample is 1234.120.

As you continue to learn more about Java, you will be introduced to
many more built-in methods that you can use in your programs.

Exercise 9-7: Using Java’s Built-In Methods
In this exercise, you use the online documentation supplied by
Oracle to answer Questions 1–8. Go to http://download.oracle.com/
javase/6/docs/api/ to access Java’s online documentation. Scroll down
until you see the word String in the left pane, under “All Classes.” Click
String to access the documentation regarding Java’s String class. Read
the information about the built-in methods that belong to the String
class, and then answer the following questions:

1. What does the concat() method do?

177

Using Java’s Built-In Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2. What data type does the concat() method return?

3. What does the isEmpty() method do?

4. What data type does the isEmpty() method return?

5. How many arguments does the charAt() method require?

6. What is the data type of the argument(s)?

7. Is the startsWith() method overloaded?

8. How many versions of the startsWith() method are listed?

LAB 9.7 Using Java’s Built-In Methods
In this lab, you complete a partially written Java pro-
gram that includes built-in methods that convert
Strings to all uppercase or all lowercase. The program

prompts the user to enter any String. To end the program, the
user can enter “done”. For each String entered, call the built-in
method toLowerCase() and toUpperCase(). The program should
call these methods using a String object, followed by a dot (.),
followed by the name of the method. Both of these methods return
a String with the String changed to uppercase or lowercase.
Here is an example:
String sample = "This is a String.";
String result;
result = sample.toLowerCase();
result = sample.toUpperCase();

178

C H A P T E R 9 Advanced Modularization Techniques

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th e source code fi le provided for this lab includes the necessary vari-
able declarations and the necessary input and output statements.
Comments are included in the fi le to help you write the remainder of
the program.

1. Open the source code fi le named ChangeCase.java using
Notepad or the text editor of your choice.

2. Write the Java statements as indicated by the comments.

3. Save this source code fi le in a directory of your choice, and
then make that directory your working directory.

4. Compile the source code fi le, ChangeCase.java.

5. Execute the program.

179

Using Java’s Built-In Methods

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying this chapter, you will be able to:

 Create a simple programmer-defi ned class

 Create a simple graphical user interface (GUI)

C H A P T E R 10
Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Th is chapter covers topics included in Chapters 10, 11, and 12 in
Programming Logic and Design, Seventh Edition, by Joyce Farrell.

A Programmer-Defi ned Class
You should do the exercises and labs in this section after you have fi n-
ished Chapters 10 and 11 in Programming Logic and Design, Seventh
Edition. You should also take a moment to review the object-oriented
terminology (class, attribute, and method) presented in Chapter 1
of this book and in Chapter 10 of Programming Logic and Design,
Seventh Edition.

You have been using prewritten classes, objects, and meth-
ods throughout this book. For example, you have used the
showInputDialog() method that belongs to the JOptionPane class
to display an input dialog box, and you have used the parseInt()
method that belongs to the Integer class. In this section, you learn
how to create your own class that includes attributes and methods of
your choice. In programming terminology, a class created by the pro-
grammer is referred to as a programmer-defi ned class.

To review, procedural programming focuses on declaring data and
defi ning methods separate from the data and then calling those
methods to operate on the data. Th is is the style of programming
you have been using in Chapters 1 through 9 of this book. Object-
oriented programming is diff erent from procedural programming.
Object-oriented programming focuses on an application’s data and
the methods you need to manipulate that data. Th e data and methods
are encapsulated, or contained within, a class. Objects are created
as an instance of a class. Th e program tells an object to perform tasks
by passing messages to it. Such a message consists of an instruction
to execute one of the class’s methods. Th e class method then manipu-
lates the data (which is part of the object itself).

181

A Programmer-Defi ned Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Programmer-Defi ned Class
In Chapter 10 of Programming Logic and Design, Seventh Edition, you
studied pseudocode for the Employee class. Th is pseudocode is shown
in Figure 10-1. Th e Java code that implements the Employee class is
shown in Figure 10-2.

 1 class Employee
 2 string lastName
 3 num hourlyWage
 4 num weeklyPay
 5
 6 void setLastName(string name)
 7 lastName = name
 8 return
 9
10 void setHourlyWage(num wage)
11 hourlyWage = wage
12 calculateWeeklyPay()
13 return
14
15 string getLastName()
16 return lastName
17
18 num getHourlyWage()
19 return hourlyWage
20
21 num getWeeklyPay()
22 return weeklyPay
23
24 void calculateWeeklyPay()
25 num WORK_WEEK_HOURS = 40
26 weeklyPay = hourlyWage * WORK_WEEK_HOURS
27 return
28 endClass

Figure 10-1 Pseudocode for Employee class

182

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 1 // Employee class
 2 public class Employee
 3 {
 4 private String lastName;
 5 private double hourlyWage;
 6 private double weeklyPay;
 7
 8 public void setLastName(String name)
 9 {
10 lastName = name;
11 return;
12 }
13
14 public void setHourlyWage(double wage)
15 {
16 hourlyWage = wage;
17 calculateWeeklyPay();
18 return;
19 }
20
21 public String getLastName()
22 {
23 return lastName;
24 }
25
26 public double getHourlyWage()
27 {
28 return hourlyWage;
29 }
30
31 public double getWeeklyPay()
32 {
33 return weeklyPay;
34 }
35
36 private void calculateWeeklyPay()
37 {
38 f nal int WORK_WEEK_HOURS = 40;
39 weeklyPay = hourlyWage * WORK_WEEK_HOURS;
40 return;
41 }
42 } // End Employee class

Figure 10-2 Employee class implemented in Java

Looking at the pseudocode in Figure 10-1, you see that you begin
creating a class by specifying that it is a class. In the Java code
in Figure 10-2, line 1 is a comment. Th is is followed by the class
declaration for the Employee class on line 2. Th e class declaration
begins with the keyword, public, which allows this class to be used
in programs, followed by the keyword, class, which specifi es that
what follows is a Java class. Th e opening curly brace on line 3 and

183

A Programmer-Defi ned Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the closing curly brace on line 42 mark the beginning and the end
of the class.

Adding Attributes to a Class
Th e next step is to defi ne the attributes (data) that are included in
the Employee class. As shown on lines 2, 3, and 4 of the pseudocode
in Figure 10-1, there are three attributes in this pseudocode class,
string lastName, num hourlyWage, and num weeklyPay.

Lines 4, 5, and 6 in Figure 10-2 include these attributes in the Java ver-
sion of the Employee class. Notice in the Java code that hourlyWage
and weeklyPay are defi ned using the double data type, and lastName
is defi ned as a String. Also, notice that all three attributes are
private. As explained in Programming Logic and Design, Seventh
Edition, this means the data cannot be accessed by any method that is
not part of the class. Programs that use the Employee class must use
the methods that are part of the class to access private data.

Adding Methods to a Class
Th e next step is to add methods to the Employee class. Th e pseudo-
code versions of these methods, shown on lines 6 through 27 in
Figure 10-1, are nonstatic methods. As you learned in Chapter 10 of
Programming Logic and Design, Seventh Edition, nonstatic methods
are methods that are meant to be used with an object created from a
class. In other words, to use these methods, we must create an object
of the Employee class fi rst and then use that object to invoke (or call)
the method.

Th e code shown in Figure 10-2 shows how to include methods
in the Employee class using Java. We will start the discussion with
the set methods. You learned in Programming Logic and Design,
Seventh Edition that set methods are those whose purpose is to
set the values of attributes (data fi elds) within the class. Th er e are
three data fi elds in the Employee class, but we will only add two set
methods, setLastName() and setHourlyWage(). We will not add a
setWeeklyPay() method, because the weeklyPay data fi eld will be set
by the setHourlyWage() method. Th e setHourlyWage() method uses
another method, calculateWeeklyPay(), to accomplish this.

Th e two set methods, setLastName() shown on lines 8 through 12
in Figure 10-2, and setHourlyWage() shown on lines 14 through 19,
are declared using the keyword public. Th is means that programs
may use these methods to gain access to the private data. Th e
calculateWeeklyPay() method, shown on lines 36 through 41

184

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

in Figure 10-2, is private, which means it must be called from
within another method that already belongs to the class. In the
Employee class, the calculateWeeklyPay() method is called from
the setHourlyWage() method (line 17), which ensures that the class
retains full control over when and how the calculateWeeklyPay()
method is used.

Th e setLastName() method (lines 8 through 12) accepts one argu-
ment, String name, that is assigned to the private attribute, lastName.
Th is sets the value of lastName. Th e setLastName() method is a void
method—that is, it returns nothing.

Th e setHourlyWage() method (lines 14 through 19) accepts
one argument, double wage, that is assigned to the private
attribute, hourlyWage. Th is sets the value of hourlyWage.
Next, it calls the private method, calculateWeeklyPay().
Th e calculateWeeklyPay() method does not accept argu-
ments. Within the method, on line 38, a constant, f nal int
WORK_WEEK_HOURS, is declared and initialized with the value 40.
Th e calculateWeeklyPay() method then calculates weekly
pay (line 39) by multiplying the private attribute, hourlyWage,
by WORK_WEEK_HOURS. Th e result is assigned to the private
attribute, weeklyPay. Th e setHourlyWage() method and the
calculateWeeklyPay() method are void methods, which means they
return nothing.

Th e fi nal step in creating the Employee class is adding the get meth-
ods. Get methods are methods that return a value to the program
using the class. Th e pseudocode in Figure 10-1 includes three get
methods, getLastName() on lines 15 and 16, getHourlyWage() on
lines 18 and 19, and getWeeklyPay() on lines 21 and 22. Lines 21
through 34 in Figure 10-2 illustrate the Java version of the get
 methods in the Employee class.

Th e three get methods are public methods and accept no arguments.
Th e getLastName() method, shown on lines 21 through 24, returns
a String, which is the value of the private attribute, lastName. Th e
getHourlyWage() method, shown on lines 26 through 29, returns
a double, which is the value of the private attribute, hourlyWage,
and the getWeeklyPay() method, shown on lines 31 through 34,
also returns a double, which is the value of the private attribute,
weeklyPay.

Th e Employee class is now complete and may be used in a Java pro-
gram. Th e Employee class does not contain a main() method because
it is not an application but rather a class that an application may now
use to instantiate objects.

The com-
pleted
Employee
class is
included in the

student fi les provided for
this book in a fi le named
Employee.java.

185

A Programmer-Defi ned Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 10-3 illustrates a program named Employee Wages that uses
the Employee class.

 1 // This program uses the programmer-def ned Employee class.
 2
 3 public class EmployeeWages
 4 {
 5 public static void main(String args[])
 6 {
 7 f nal double LOW = 9.00;
 8 f nal double HIGH = 14.65;
 9 // Instantiate an Employee object
10 Employee myGardener = new Employee();
11
12 // Use the get and set methods
13 myGardener.setLastName("Greene");
14 myGardener.setHourlyWage(LOW);
15 System.out.println("My gardener makes " +
16 myGardener.getWeeklyPay() + " per week.");
17
18 // Use the get and set methods
19 myGardener.setHourlyWage(HIGH);
20 System.out.println("My gardener makes " +
21 myGardener.getWeeklyPay() + " per week.");
22 System.exit(0);
23 }
24 }

Figure 10-3 Employee Wages program that uses the Employee class

As shown in Figure 10-3, the Employee Wages program begins
with a comment on line 1, followed by the creation of a class named
EmployeeWages on line 3. Th is class contains a main() method that
begins on line 5. A main() method must be written in this class
because it is an application. As in other programs you have seen
throughout this book, the main() method header includes the key-
word static. As you learned in Chapter 10 of Programming Logic
and Design, Seventh Edition, static methods are those for which no
object needs to exist. Th is means that you do not need to create an
EmployeeWages object in order to call the main() method. On lines
7 and 8 within the main() method, two constants, LOW and HIGH, are
declared and initialized. Next, on line 10, an Employee object (an
instance of the Employee class) is created with the following statement:

Employee myGardener = new Employee();

In Java, a statement that creates a new object consists of the class
name followed by the object’s name. In the preceding example, the
class is Employee, and the name of the object is myGardener. Next
comes the assignment operator, followed by the new keyword and the
name of a constructor you want to use to create the object.

You used the
new keyword
to instantiate
FileReader
and

FileWriter objects in
Chapter 7 of this book.

186

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you learned in Programming Logic and Design, Seventh Edition, a
constructor is a method that creates an object. You also learned that you
can use a prewritten default constructor, which is a constructor that
expects no arguments and is created automatically by the compiler for
every class you write. Th e Employee() constructor used in the Employee
Wages program is an example of a prewritten default constructor.

Once the myGardener object is created, we can use myGardener to
invoke the set methods to set the value of lastName to “Greene” and
the hourlyWage to LOW. Th e syntax used is shown in the following
code sample.
myGardener.setLastName("Greene");
myGardener.setHourlyWage(LOW);

Th is is the syntax used to invoke a method with an instance (an
object) of a class.

On lines 15 and 16 in Figure 10-3, the program then prints “My
gardener makes ” (a string constant) followed by the return value of
myGardener.getWeeklyPay(), followed by the string constant “ per
week.” Here, the myGardener object is used again—this time to invoke
the getWeeklyPay() method.

On line 19, myGardener invokes the set method, setHourlyWage(),
to set a new value for hourlyWage. Th is time hourlyWage is set
to HIGH. Th e program then prints (lines 20 and 21) “My gar-
dener makes ” (a string constant) followed by the return value of
myGardener.getWeeklyPay(), followed by the string constant “ per
week.” Th e System.exit(0); statement on line 22 ends the program.
Th e output from this program is shown in Figure 10-4.

Figure 10-4 Output from the Employee Wages program

You will fi nd the completed program in a fi le named
EmployeeWages.java included with the student fi les for this book.

Exercise 10-1: Creating a Programmer-Defi ned
Class in Java
In this exercise, you use what you have learned about creating and
using a programmer-defi ned class. Study the following code, and then
answer Questions 1–4.

Constructors
always have
the same
name as the
class and are

always written with no
return value—not even
void.

You can also
write your own
constructors.
You will learn
more about

additional constructors in
future Java courses.

Notice the
syntax,
objectName.
methodName,
in which the

name of the object is
separated from the name
of the method by a dot,
which is actually a period.

187

A Programmer-Defi ned Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

class Circle
{
 private double radius; // Radius of this circle
 f nal double PI = 3.14159;
 public void setRadius(double rad)
 {
 radius = rad;
 }
 public double getRadius()
 {
 return radius;
 }
 public double calculateCircumference()
 {
 return (2 * PI * radius);
 }
 public double calculateArea()
 {
 return(PI * radius * radius);
 }
} // End of Circle class

In this exercise, assume that a Circle object named oneCircle has
been created in a program that uses the Circle class, and radius is
given a value as shown in the following code:
Circle oneCircle = new Circle();
oneCircle.setRadius(4.5);

1. What is the output when the following line of Java code
executes?
System.out.println("The circumference is : " +
 oneCircle.calculateCircumference());

2. Is the following a legal Java statement? Why or why not?
System.out.println("The area is : " + calculateArea());

3. Consider the following Java code. What is the value stored in
the oneCircle object’s attribute named radius?
oneCircle.setRadius(6.0);

4. Write the Java code that will assign the circumference of
oneCircle to a double variable named circumference1.

188

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LAB 10.1 Creating a Programmer-
Defi ned Class in Java

In this lab, you will create a programmer-defi ned class
and then use it in a Java program. Th e program should

create two Rectangle objects and fi nd their area and perimeter. Use
the Circle class that you worked with in Exercise 10-1 as a guide.

1. Open the class fi le named Rectangle.java using Notepad or
the text editor of your choice.

2. In the Rectangle class, create two private attributes named
length and width. Both length and width should be data
type double.

3. W rite public set methods to set the values for length
and width.

4. W rite public get methods to retrieve the values for length
and width.

5. W rite a public calculateArea() method and a public
calculatePerimeter() method to calculate and return the
area of the rectangle and the perimeter of the rectangle.

6. Save this class fi le, Rectangle.java, in a direc-
tory of your choice, and then open the fi le named
MyRectangleClassProgram.java.

7. In the MyRectangleClassProgram class, create two Rectangle
objects named rectangle1 and rectangle2 using the default
constructor as you saw in EmployeeWages.java.

8. Set the length of rectangle1 to 6.0 and the width to 2.0. Set
the length of rectangle2 to 8.0 and the width to 4.0.

9. Print the value of rectangle1’s perimeter and area, and then
print the value of rectangle2’s perimeter and area.

10. Sa ve MyRectangleClassProgram.java in the same directory
as Rectangle.java.

11. Compile the source code fi le MyRectangleClassProgram.java.

12. Execute the program.

13. Record the output below.

189

A Programmer-Defi ned Class

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Creating a Graphical User Interface
(GUI)
You should do the exercises and labs in this section after you have
fi nished Chapter 12 in Programming Logic and Design, Seventh
Edition, which discusses creating a graphical user interface (GUI).
To review briefl y, a GUI allows users to interact with programs by
using a mouse to point, drag, or click. GUI programs are referred
to as event-driven or event-based because this type of program
responds to user-initiated events, such as a mouse click. Within a
GUI program, an event listener waits for an event to occur and then
responds to it. An event listener is actually a method that contains
Java code that executes when a particular event occurs. For example,
when a user of a GUI program clicks a button, an event occurs. In
response to the event, the event listener (a method) that is written as
part of the GUI program executes.

In order to create full-blown, event-driven programs that make use of
a graphical user interface, you need to learn more about Java than is
included in this book. In this section, you will learn to use just a few of
the many graphical user interface Components that are included in the
JDK, such as a button, a label, and a frame. You will also learn to write
event listeners that respond to specifi c user actions, such as clicking.

Th e Java program shown in Figure 10-5 creates the graphical user
interface shown in Figure 10-6. Th is GUI is made up of a frame, a
panel, some buttons, and some labels. When the program executes,
the user can click buttons to change the color of a button or the
background color of the panel. You will learn about buttons, labels,
frames, and panels in the following sections.

 1 import javax.swing.*;
 2 import java.awt.*;
 3 import java.awt.event.*;
 4
 5 class GuiDemo
 6 {
 7 JPanel panel;
 8
 9 GuiDemo()
10 {
11 JLabel redLabel = new JLabel("Click to change color");
12 JLabel blueLabel =
13 new JLabel("Click to change color");
14 JLabel backLabel =
15 new JLabel("Click to change background color");
16

Figure 10-5 Java program that uses a graphical user interface (GUI) (continues)

190

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(continued)

Figure 10-6 graphical user interface created by GuiDemo.java

17 f nal JButton redButton = new JButton("Red");
18 redButton.addActionListener(new ActionListener(){
19 public void actionPerformed(ActionEvent e){
20 redButton.setBackground(Color.RED);
21 }
22 });
23 f nal JButton blueButton = new JButton("Blue");
24 blueButton.addActionListener(new ActionListener(){
25 public void actionPerformed(ActionEvent e){
26 blueButton.setBackground(Color.BLUE);
27 }
28 });
29 f nal JButton backButton = new JButton("Background");
30 backButton.addActionListener(new ActionListener(){
31 public void actionPerformed(ActionEvent e){
32 panel.setBackground(Color.GREEN);
33 }
34 });
35
36 panel = new JPanel();
37
38 panel.add(redLabel);
39 panel.add(redButton);
40
41 panel.add(blueLabel);
42 panel.add(blueButton);
43
44 panel.add(backLabel);
45 panel.add(backButton);
46 }
47
48 public static void main(String args[])
49 {
50 GuiDemo demo = new GuiDemo();
51 JFrame frame = new JFrame("GUI Demo");
52 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
53
54 frame.setContentPane(demo.panel);
55 frame.pack();
56 frame.setVisible(true);
57 }
58 }

Figure 10-5 Java program that uses a graphical user interface (GUI)

191

Creating a Graphical User Interface (GUI)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In Figure 10-5, lines 1, 2, and 3 are import statements that import
packages. You learned about import statements in Chapter 2 of
this book. Remember that a package is a group of related classes.
Th e classes used in this program are part of the packages named
javax.swing, java.awt, and java.awt.event. When you import
a class, a program then has access to the methods that are part of
that class. Th e javax.swing package contains components such
as the JButton class. Th e java.awt package contains component
classes as well as other graphics classes, such as the Color class. Th e
java.awt.event package contains classes that we can use to write
event listeners that respond to events.

Line 5 in Figure 10-5 begins the class named GuiDemo. Th e fi rst state-
ment (line 7) in the GuiDemo class uses the JPanel class to create a
reference to a JPanel object named panel. Th e reference is not itself a
JPanel object, but merely a location in memory where the address of
an actual JPanel object will be stored later in the program. A JPanel is
a Java component that is considered a Container. In Java, a Container
is a component that is used to hold or organize other components.
In this program, the JPanel is used to hold buttons and labels.

Writing a Constructor
Lines 9 through 46 of Figure 10-5 include a method named
GuiDemo(). You know this method is a constructor because it has the
same name as the class. Th is constructor expects no arguments and
will execute when a GuiDemo object is created. Within the GuiDemo()
constructor (lines 11 through 15), we create three JLabel objects
named redLabel, blueLabel, and backLabel as:
JLabel redLabel = new JLabel("Click to change color");
JLabel blueLabel =
 new JLabel("Click to change color");
JLabel backLabel =
 new JLabel("Click to change background color");

In Java, a JLabel is used to display a single line of read-only text.
Read-only means that the user cannot change the text that is
displayed. In this example, the interface displays two instances of
read-only text: “Click to change color” and “Click to change back-
ground color”.

Th e next section of code is rather complicated:
f nal JButton redButton = new JButton("Red");
redButton.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 redButton.setBackground(Color.RED);
 }

192

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

});
f nal JButton blueButton = new JButton("Blue");
blueButton.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 blueButton.setBackground(Color.BLUE);
 }
});
f nal JButton backButton = new JButton("Background");
backButton.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 panel.setBackground(Color.GREEN);
 }
});

Th is code (lines 17 through 34 in Figure 10-5) creates JButton objects
and attaches event listener methods to the JButtons. Th e following
three lines of code (lines 17, 23, and 29) create three JButton objects
known as push buttons. When a user clicks (pushes) a JButton, an
event occurs that causes something to happen in the program. In
this program, clicking the redButton causes it to turn red, clicking
the blueButton causes it to turn blue, and clicking the backButton
causes the background color of the JPanel to turn green. Th e string
constants within the parentheses cause the text “Red”, “Blue”, or
“Background” to be displayed on the JButtons.
f nal JButton redButton = new JButton("Red");
f nal JButton blueButton = new JButton("Blue");
f nal JButton backButton = new JButton("Background");

Next, let’s look at the event handlers. Th e following code (lines 18
through 22) adds an event handler to the JButton named redButton:
redButton.addActionListener(new ActionListener(){
 public void actionPerformed(ActionEvent e){
 redButton.setBackground(Color.RED);
 }
});

Th e redButton object invokes the addActionListener() method
(line 18) and passes a new ActionListener object as a parameter.
In Java, JButton objects generate Action Events when they are
clicked and require an event listener to handle the Action Event.
Th e event listener for Action Events is called an ActionListener.
Th er efore, the redButton requires an ActionListener. To add
the ActionListener to the redButton, we need to create a new
ActionListener object. Th is we accomplish by creating an
 anonymous inner class, which is a class that does not have a name
and that is nested within another class.

The program has access to the addActionListener() method
and ActionEvent objects because we imported the java.awt.event
package.

In Java, local
variables,
such as
JButtons,
must be

declared f nal to be
used in an anonymous
inner class, which is
discussed next.

193

Creating a Graphical User Interface (GUI)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Within this inner class, we need to write one method,
public void actionPerformed(ActionEvent e). Th e
actionPerformed() method must be written to accept one param-
eter, an ActionEvent object, which, in this program, is named e.

Th is method contains code that instructs the program what action to
take when the user clicks the redButton. Th e code required for this
program (line 20) is shown in the following example:
redButton.setBackground(Color.RED);

Th e redButton object invokes the setBackground(Color.RED)
method and passes Color.RED as an argument. Th is method changes
the color of the redButton object to the color passed to it. In this
case, the color is red.

You have access to the setBackground() method because it is contained
in the JButton class, which is part of the javax.swing package you
imported.

Lines 23 through 28 add an ActionListener to the JButton named
blueButton to change its color to Color.BLUE when it is clicked.
Similarly, lines 29 through 34 add an ActionListener to the JButton
named backButton to change the color of the JPanel named panel to
Color.GREEN when it is clicked.

Line 36 creates a JPanel object and assigns its reference (memory
address) to panel. Lines 38 through 45 use panel (the JPanel object)
to invoke the add() method. Th e add() method is used to add the
JLabels and JButtons to the JPanel container. You are now fi nished
writing the GuiDemo() constructor.

Writing the main() Method
As shown in Figure 10-5, the main() method is included in the
GuiDemo class.

Th e fi rst line of code (line 50) in the main() method,
GuiDemo demo = new GuiDemo();, is responsible for creating a new
GuiDemo object named demo. Th is line causes the GuiDemo() construc-
tor to be called. As you saw previously, the GuiDemo() constructor
creates the graphical user interface by adding JLabels and JButtons
to a JPanel. It also assigns ActionListeners to the JButtons.

Th e next step is to create a JFrame object named frame (line 51),
as follows:
JFrame frame = new JFrame("GUI Demo");

You have
access to the
Color class
because you
imported the

java.awt package.
Several attributes are
defi ned in the Color
class, including RED,
BLUE, and GREEN.

Remember,
the main()
method is the
fi rst method
called when a

program executes.

194

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A JFrame is a Window that can have a border, a title bar, and a menu
bar. In this example, the string constant “GUI Demo” (in parentheses)
is specifi ed as the title for the JFrame title bar.

Th e next line of code (line 52),
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

is a shortcut technique for adding an event handler to a JFrame. It
causes the JFrame window to close when the user clicks the X button
on the title bar.

Th e last three lines in the main() method (lines 54, 55, and 56) look
like this:
frame.setContentPane(demo.panel);
frame.pack();
frame.setVisible(true);

Th e ContentPane is the container to which you add Components such
as JButtons and JLabels. In this case, we want to use JPanel as a
ContentPane. To specify this, we pass the name of the JPanel (in this
case, demo.panel) to the setContentPane() method.

Th e method named pack() causes the JFrame to be sized to fi t the
size of the Components that have been added to it. Th e method named
setVisible() allows users to see the JFrame if it receives true as
an argument. Passing false to the setVisible() method keeps the
JFrame from being seen.

Th e Gui Demo program is now complete. Th e program is stored in
a fi le named GuiDemo.java along with the other student fi les for this
book. You should compile the program and then execute it to see the
JButtons or the JPanel change color when you click the buttons.

Exercise 10-2: Creating a Graphical User
Interface in Java
In this exercise, you use what you have learned about creating a
graphical user interface to answer Questions 1–4.

1. Write the Java statement that creates a JPanel named
payrollPanel.

2. Write the Java statement that creates a JButton named
saveButton. Th e JButton should include the text “Save”.

The syntax for
accessing
panel (the
name of the
JPanel) is

demo.panel because
panel is a member of
the GuiDemo object
named demo.

You might
wonder why
you would
want to create
a JFrame

that you cannot see.
Many Java programs
consist of multiple
JFrames that are dis-
played to the user at
different times.

195

Creating a Graphical User Interface (GUI)

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. Write the Java statement that adds saveButton to the JPanel
named payrollPanel.

4. Write the Java statement that changes the color of
saveButton to orange.

LAB 10.2 Creating a Graphical User
Interface in Java

In this lab, you create a graphical user interface in a par-
tially completed Java program. Th e program should cre-

ate two JButtons. Display the text “Yes” on one of the JButtons, and
display the text “No” on the other JButton. You should also create
three JLabels. Display the text “Do you like GUI programming? Vote
Yes or No.” on one of the JLabels. Display the text “Click here to vote
Yes” on another JLabel, and display the text “Click here to vote No”
on the third JLabel. Also, add event handlers that cause the back-
ground color of the JPanel to change to yellow if a user votes “Yes”
and to red if a user votes “No”. Use the GuiDemo class discussed in this
section as a guide.

1. Open the fi le named JavaQuiz.java using Notepad or the
text editor of your choice.

2. Create the three JLabels named labelYes, labelNo, and
labelQuestion with the text described above.

3. Cr eate two JButtons named buttonYes and buttonNo with
the text described above.

4. Cr eate a JPanel named myPanel.

5. Save the fi le, JavaQuiz.java, in a directory of your choice.

6. Compile the fi le JavaQuiz.java.

7. Execute the program.

196

C H A P T E R 1 0 Additional Topics

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

addition operator (+), 21, 23, 52
ADDRESS_LINE1 constant,

154–155
ADDRESS_LINE2 constant, 155
ADDRESS_LINE3 constant, 155
algorithms, 136
amount formal parameter, 162
ampersand (&), 50, 52, 70–71
AND operator (&&), 50, 52,

70–71
precedence, 52

anonymous inner classes, 193,
193–194

answer sheet program, 91–92
answer variable, 22–23, 98
AnswerSheet.java fi le, 92
applets, 3
applications, 2
arguments, 154. See also

parameters
passing by value, 158
passing to methods, 6

arithmetic operators, 21, 21
precedence and associativity,

23–26
array(s), 101–117, 102, 135–151

accessing elements, 104–105
accessing individual elements,

148–150
bubble sorts, 139
declaring, 102–103
initializing, 104
multidimensional, 147–151
one-dimensional, 147
parallel, 112–117

Index

Special Characters
< (left angle bracket), 49
> (right angle bracket), 49, 52, 60
() (parentheses), 6, 23, 24, 52
(curly braces), 6–7, 35, 36, 37,

56, 88, 104, 148
! (exclamation point), 49, 50, 52
% (percent sign), 21, 22, 23,

52, 177
& (ampersand), 50, 52, 70–71
* (asterisk), 21, 22, 23, 26,

52, 119
+ (plus sign), 21, 22, 23, 52,

76–78
- (minus sign), 21, 22, 23, 52,

76–78
/ (forward slash), 21, 22, 23, 26
= (equal sign), 22, 49, 52, 54, 110
[] (square brackets), 6, 102,

104, 169
| (pipe), 50, 52, 71–74
. (dot), 187
; (semicolon), 7, 22, 57, 59, 63

A
accessing array elements,

104–105
ActionEvent object, 193, 194
ActionListener, 194
actionPerformed()

method, 194
actual parameters, 154
add() method, 172, 194
addActionListener()

method, 193–194

passed by reference, 169
passing arrays and array

elements to methods,
168–172

printing, 145
searching for exact matches,

108–112
sorting data, 136. See also

bubble sorts
staying within bounds,

105–106
subscripts, 102, 105–106
swapping data values,

137–138
two-dimensional, 147, 148
using constants with arrays,

106–108
ArrayIndexOutOfBounds

Exception, 105–106
assignment operators, 22,

22–23, 52
assignment statements, 22
associativity

arithmetic operators,
23–26

Boolean operators, 51–53
asterisk (*), 119

assignment operator, 22,
23, 52

comments, 26
import statement, 119
multiplication operator, 21,

23, 52
attributes, 4

adding to classes, 184

Note: Page numbers in boldface indicate where key terms are defi ned.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

B
backButton object, 194
backLabel object, 192–193
balance variable, 154, 161
balanceString variable, 154
BEDROOMS constant, 148
behavior, 3, 3–4
block statements, 56, 79
blueButton object, 194
blueLabel object, 192–193
boolean data type, 15, 110

false value, 15, 49, 78, 110,
131, 144

true value, 15, 49, 78,
110, 131

Boolean operators, 49, 49–53
logical, 50–53
precedence and associativity,

51–53
relational, 49–50, 51–53

br variable, 120
break statements, 67

omitting in a case, 67
bubble sorts, 138–147

displayArray()
method, 145

f llArray() method,
143–144

fl ag variables, 139, 144
main() method, 142–143
refi ning, 139
sortArray() method,

144–145
buff ered fi les, reading from, 120
BufferedReader class,

119, 121
BufferedReader object, 120
built-in methods, 177–179
byte data type, 15
bytecode, 8
bytecode interpreter (java), 2

C
calculatedAnswer variable,

35, 37
calculateWeeklyPay()

method, 184–185
calls, 4

statements, 3
case keyword, 67
celsius variable, 27, 28, 29
char data type, 15

cities array, declaring,
102, 103

cityPopulations array
declaring, 102, 103
initializing, 104

class(es), 4. See also specifi c
classes

creating (instantiation), 4
date and method

encapsulation, 181
fi le names, 8
importing, 28, 119–120
inner, anonymous, 193–194
names, 8
naming conventions, 6
objects as instances, 4
packages. See packages
prewritten, 119
programmer-defi ned. See

programmer-defi ned
classes

.class extension, 8
class keyword, 5–6, 183
CLASSPATH environment

variable, 9
Client By State program,

127–131
ClientByState class, 130
closed fi les, 122
Color class, 192, 194
COLUMN_HEADING constant,

42, 43
command prompt windows,

opening, 9
comments, 26
compareTo() method, 45,

54–55, 98, 131
comparisons int, 143,

144, 145
compiler (javac), 2, 8

declaring variables, 16
compiling Java programs,

8–10, 12
Compute Tax program, 160–162
computeTax() method,

161–162
concatenation operator, 29
constants, 19, 19–20. See also

specifi c constants
bubble sorts, 139
declaring, 19–20
initializing, 19–20

named, 19–20
naming convention, 19
string, 19
unnamed, 19
using with arrays, 106–107

constructors, 187
writing, 192–194

Containers, 192
ContentPane, 195
control break variables, 127
controlBreak() method, 131
converter, 177
count variable, 81
counter(s), controlling while

loops using, 80–82
counter variable,

incrementing, 81
curly braces ()

classes, 6–7
code, 35, 36, 37, 88
initializing arrays, 104, 148
statements, 56

Customer Bill program, 153–155

D
data

encapsulation, 181
sorting, 136. See also bubble

sorts
data types, 15, 15–16. See also

specifi c data types
primitive, 15
specifying for arrays, 102–103

data values, swapping, 137–138
decision statements, 55–74

dual-path (dual-
alternative), 59

if statement, 55–59
if-else statement, 59–63
multipath, 63–70
multiple comparisons, 70–74
nested if statements, 63–67
switch statement, 67–70

decision-making programs,
48–74

Boolean operators, 49–53
comparing strings, 53–55
decision statements, 55–74
multiple comparisons, 70–74

declaring, 16, 102
arrays, 102–103
constants, 19–20

I N D E X

198

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

named constants, 19
String variables, 53
variables, 16–18

decorating, 120
FileWriter object, 121

decrement operator (--), 76–78
prefi x and postfi x forms, 76

deduct variable, Payroll Report
program, 42

default constructor, 187
default keyword, 67
defi nite loops, 86
dentalPlan variable, 70–71
deptName variable, 68
deptNum variable, 68
detail loop tasks, 40, 44–45
detailLoop() method, 44
development tools, 2
didSwap variable, 143, 144, 145
dir command, 10
displayArray() method,

bubble sorts, 145
division operator (/), 21, 23
do while loops, 89–91

syntax, 90
done variable, 131
dot (.), object names and

method names, 187
double amount formal

parameter, 161
Double class, 28
double data type, 15, 104–105

arrays, 103
comparing, 53

double keyword, 165
double rate formal parameter,

161, 162
dual-path (dual-alternative)

decision statements, 59

E
empDept variable, 64
Employee class, 182–184

adding methods, 184–187
Employee() method, 187
Employee Wages program, 186
EmployeeWages class, 186
EmployeeWages.java fi le, 187
encapsulation, 3, 181
End Of File (EOF) marker, 121

reading data, 122
END_LINE constant, 42, 45

endOfJob() method, 45
end-of-job tasks, 40, 45
equal sign (=)

assignment operator, 22
relational operators, 49,

54, 110
equal to operator (==), 49, 52,

54, 110
precedence, 52

equals() method, 53–55, 57
errors

logic, 57
syntax, 9

Even Or Odd program, 156–159
even_or_odd() method,

157, 158
event listeners, 190
event-driven (event-based),

190
exception(s), 105, 105–106,

124, 124–125
exception handlers, 125
exclamation point (!)

not equal to operator, 49, 52
NOT operator, 50

executing Java programs,
10–11, 12

execution, 3
expressions, 21

F
fahrenheit variable, 27, 29
fahrenheitString variable,

27, 28
false value, 15, 49, 78, 110,

131, 144
fi elds, 119
fi le(s)

buff ered, reading from, 120
closed, 122
fl ushed, 122
naming, 8
opening. See opening fi les
sequential, 126–134

fi le handling, 119–126
importing packages and

classes, 119–120
opening fi les for reading, 120
opening fi les for writing,

122–123, 125–126
reading data from an input

fi le, 121–122

writing data to an output fi le,
123–126

fi le path, changing, 9
FileReader class, 119
FileReader object, 120, 186

decorating, 120
instantiating, 120

FileWriter object, 122–123, 186
decorating, 121
instantiation, 121

f llArray() method, bubble
sorts, 143–144

f nal keyword, 19
f nishUp() method, 131
f rstName variable, 121, 123
fl ag(s), setting, 108
fl ag variables, bubble sorts,

139, 144
f oat data type, 15
fl oating-point values, 15
FLOORS constant, 148
fl ow of control, 55
fl owcharts, 34–40
fl ushed fi les, 122
for loops, 86–89

execution, 87
rewriting as while loops, 88

format() method, 177–179
format specifi ers, 177
forward slash (/)

assignment operator, 22
comments, 26
division operator, 21, 23

foundIt variable, 110
fr variable, 120
fw variable, 121

G
get methods, 185
getHourlyWage() method, 185
getHoursWorked() method,

164–166
getLastName() method, 185
getReady() method, 130
global variables, 40

disallowance in Java, 40, 43
Gosling, James, 2
graphical user interfaces (GUIs),

190, 190–196
writing constructors, 192–194
writing main() method,

194–195

199

 I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

greater than operator (>), 49,
52, 60

greater than or equal to operator
(>=), 49, 52

gross variable, 84, 165
Payroll Report program, 42

grossString variable, 43, 84
GuiDemo class, 192
GuiDemo() method, 192, 194
Gui.demo.java fi le, 191
GuiDemo.java program, 195

H
headers, 6, 154
Hello World program, 5–11
HelloWorld class, 6
HelloWorld.class fi le, 9
HelloWorld.java fi le, 7, 8,

9, 11
HIGH constant, 186
hourlyWage private attribute,

185, 187
hours variable, 165
HOURS_IN_WEEK constant, 60
hoursWorked variable, 60
housekeeping() method,

43, 44
priming read in, 84

housekeeping tasks, 40, 43–44

I
identifi ers. See variable(s)
if statements, 55–59, 130–131

nested, 63–67
syntax, 56

if-else statement, 59–63
syntax, 59

import keyword, 119
import statement, 119–120,

120
importing, 28, 192

classes, 28, 119–120
packages, 119–120

increment operator (++), 76–78
prefi x and postfi x forms,

76–77, 79–80
infi nite loops, 78
initializing, 17

arrays, 104
constants, 19–20
variables, 18

inputFile.txt fi le, 120
instances, 4
instantiation, 4

String class, 53
int [] vals parameter,

169–170
int data type, 15

comparing, 53
converting String objects to,

36, 37, 95
Integer class, 181
interactive input statements, 27
intermediate, 8
interpreters, 10

J
java. See bytecode interpreter

(java)
.java extension, 8
Java program(s), 7–12

compiling, 8–10, 12
executing, 10–11, 12
structure, 5–7
types, 2–3
writing source code, 8

Java programming language, 2
Java Standard Edition

Development Kit
(JDK 7), 2

downloading, 5
prewritten classes, 119

Java Virtual Machine
(JVM), 10

java.awt package, 192,
193, 194

java.awt.event package,
192

javac. See compiler (javac)
java.io package, 119
javax.swing package, 192
JButton class, 192
JButton objects, 193, 194
JDK 7. See Java Standard

Edition Development Kit
(JDK 7)

JFrame object, 194–195
JLabels, 194
JOptionPane class, 27–28,

181
JPanel(s), 192, 194
JPanel class, 192

K
keywords, 5, 14. See also specifi c

keywords

L
lastName private attribute,

185, 187
lastName variable, 121, 123
left angle bracket (<), 49
LENGTH constant, 168
length constant, 106
less than operator (<), 49, 52
less than or equal to operator

(<=), 49, 52
lines, 121
local variables, 40
logic errors, 57
logical operators, 50, 50–53
long data type, 15
loop(s), 75–100

accessing array elements,
105

accumulating totals in a loop,
94–97

do while loops, 89–91
increment and decrement

operators, 76–78
infi nite, 78
for loops, 86–89
nesting, 91–94
reading data using, 122
syntax, 86–87
validating input, 98–100
variables controlling. See

loop control variables;
specifi c loop control
variables

while loops. See while
loops

loop body, 78
loop control variables, 78, 79,

84–85, 92, 95
loopIndex, 104
LOW constant, 186
lvalues, 76

M
machine code, 8
Mail Order program, 108–110

expanded version, 112–115
MailOrder.java fi le, 109

I N D E X

200

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MailOrder2.java fi le,
113–115

main() method, 6, 35, 43, 44,
166, 195

bubble sorts, 142–143
Customer Bill program, 154
ending programs, 36
local variables, 43
NumberDoubling program,

35
Pass Entire Array program,

168
Score Sorting program,

142–143
String args [], 6
throws Exception in

header, 124
writing, 194–195

mainline method, Payroll Report
program, 42

medicalPlan variable, 70–71
method(s), 4. See also specifi c

methods
adding to classes, 184–187
built-in, 177–179
compareTo(), 54–55
creating objects, 187
displayArray(), 145
encapsulation, 181
f llArray(), 143–144
format(), 177–179
get, 185
headers, 6, 154
with instances, syntax for

invoking, 187
main. See main() method
with no parameters,

153–156
nonstatic, 184
overloading, 172–176
parentheses, 6
passing an array and an array

element to, 168–172
passing arguments to, 6
println(), 123–124
readLine(), 121, 122
requiring a single parameter,

156–160
requiring multiple

parameters, 160–163
return types, 164

returning a value, 6,
164–167

set, 184–185
showInputDialog(),

27–28
signatures, 172
sortArray(), 144–145
static, 186

method names, 187
minus sign (-)

decrement operator, 76–78
subtraction operator, 21, 23,

52
unary minus operator, 22, 52

modular programs, writing,
40–47

modules. See method(s)
modulus (%), 21, 23, 52
multidimensional arrays,

147–151
multipath decision statements,

63–70
multiple comparisons, 70–74
multiplication operator (*), 21,

23, 52
MyGardner object, 186–187
myRent variable, 148

N
name variable, 84–85, 154

Payroll Report program, 42
nameAndAddress() method,

154–155
named constants, 19, 19–20

staying within bounds of
arrays, 106–107

nested if statements, 63–67
syntax, 63

nesting loops, 91–94
net variable, Payroll Report

program, 42
new keyword, 120, 121, 186
new operator, 102, 148
newline character, 121
not equal to operator (!=), 49, 52
Notepad, writing Java

programs, 8
null keyword, 104
null statement, 57, 78
null value, EOF, 121
num data type, 15

num hourlyWage attribute,
184

num loop control variable, 79
num weeklyPay attribute,

184
number parameter, 158
number variable, 76, 158
NumberDouble class, 35–37, 36
NumberDouble.java fi le, 35
Number-Doubling program,

34–38
numberOfEls int, 142, 144
numberString variable, 157
numeric data, 19
NUM_LOOPS constant, 90
numStudents, 95–96

O
object(s), 3

attributes, 4
behavior, 3–4
encapsulation, 3
instances of classes, 4
memory addresses, 103
methods. See method(s);

specifi c method names
methods creating, 187
names, 187

object-oriented program(s), 3
object-oriented programming,

2, 3–4
object-oriented programming

languages, 2, 3–4
terminology, 3–4

oldState variable, 131
one-dimensional arrays, 147
opening fi les

for reading, 120
for writing, 122–123,

125–126
operators, 20, 20–26

arithmetic. See arithmetic
operators

assignment, 22–23
Boolean. See Boolean

operators
decrement, 76–78
increment, 76–78

OR operator (||), 50, 52,
71–74

precedence, 52

201

 I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

originalNumber variable,
35, 37

originalNumberString
variable, 36

outputFile.txt fi le, 121
Overloaded.java program,

175
overloading methods, 172,

172–176
OVERTIME_RATE constant, 60

P
packages, 2, 119, 192

importing, 119–120
panel object, 192

syntax for accessing, 195
parallel arrays, 112–117
parameters. See also arguments

actual, 154
data types, 158
methods. See method(s)

parentheses (())
method names, 6
precedence and associativity,

23, 24, 52
parseDouble() method, 28,

45, 177
parseInt() method, 95, 177,

181
partCounter loop control

variable, 92
Pass Entire Array program,

168–171
passed by reference, 169
passing an argument by value,

158
PATH environment variable, 9
PAY_RATE constant, 165
Payroll Report program, 40–46,

83–86
PayrollReport class, 42
PayrollReport.java fi le, 43
percent sign (%)

assignment operator, 22, 52
format specifi ers, 177
modulus, 21, 23, 52

period (.), object names and
method names, 187

pipe (|), OR operator, 50, 52,
71–74

platform independence, 8

plus sign (+)
addition operator, 21, 23, 52
assignment operators, 22, 52
increment operation, 76–78
unary plus operator, 21,

23, 52
polymorphic code, 173
postfi x increment operator,

76–77, 79
precedence

arithmetic operators, 23–26
Boolean operators, 51–53

prefi x increment operator,
76–77, 79–80

prewritten classes, 119
priming reads, 35–36, 84, 130
primitive data types, 15
printBill() method,

173–175
printing, arrays, 145
println() method, 29,

123–124, 177
PrintWriter class, 122–123,

123
PrintWriter object, 122–123
procedural programs, 3
produceReport() method,

131
programmer-defi ned classes,

181, 181–189
adding attributes, 184
adding methods, 184–187
creating, 182–184, 187–189

pseudocode, 34–40
public keyword, 5, 6, 154, 183
push buttons, 193

Q
quadrupleTheValues()

method, 168, 169–170
questionCounter loop control

variable, 92
QUIT constant, 42, 45, 84, 143

R
RATE constant, 42
rate variable, 161, 162
reading

data from an input fi le,
121–122

opening fi les for, 120

readLine() method, 121,
122

read-only text, 192
records, 119
redButton object, 194
redLabel object, 192–193
references, 53, 103

arrays passed by, 169
relational operators, 49, 49–50,

51–53
rent array, 147–150

accessing individual elements,
148–150

REPORT_HEADING constant,
42, 43

right angle bracket (>), 49, 52

S
salary, 123
salaryString variable, 121
score array, 143
Score Sorting program,

138–145
searching, arrays, for exact

matches, 108–112
semicolon (;), 7, 59, 63

assignment statements, 22
null statement, 57

sentinel values, 78
controlling while loops

using, 83–86
sequential fi les, 126, 126–134

single-level control break
programs, 126–134

sequential statements
(sequences), 26, 26–32

servlets, 2, 2–3
set methods, 184, 184–185
setBackground() method,

194
setContentPane() method,

195
setHourlyWage() method,

184–186, 187
setLastName() method,

184–186
setting a fl ag, 108
short data type, 15
showInputDialog() method,

27–28, 95, 177, 181
signatures, 172

I N D E X

202

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

single-level control break
programs, 126, 126–134

accumulating totals in,
132–134

single-path statements, 55
SIZE constant, 142, 143
someNums array, 168
sortArray() method, bubble

sorts, 144–145
sorting data, 136, 137–147. See

also bubble sorts
swapping data values,

137–138
source array, 104–105
source code, 8. See also

statements
compiling source code fi les,

8–10, 12
specifi ers, 177
square brackets ([])

accessing arrays, 104
array names, 102
parameters, 169
String args [], 6

stand-alone enterprise
applications, 2

state control break variable,
127

state variable, 131
statements. See also method(s)

block statements, 56, 79
calls, 3

static keyword, 6, 154
static methods, 186
string(s), 15

comparing, 53–55
String args [], 6
String class

instantiating, 53
methods, 53

string constants, 19
comparing String objects,

53
String constants, format

specifi ers, 177
string lastName attribute,

184
String objects, 15, 53–55

comparing, 53–55, 98
converting to ints, 36,

37, 95

equal, 53
references, 103

String variables
declaring, 53
readLine() method, 121

stuCount loop control
variable, 95

stuScoreString variable,
142, 143

subscripts, 102
values, 102, 105–106

subtraction operator (-), 21,
23, 52

supervisorName variable, 64
swapping data values, 137–138
switch keyword, 67
switch statement, 67–70

syntax, 67
syntax, 56

do while loops, 90
if statements, 56
if-else statement, 59
invoking methods with

instances, 187
loops, 86–87
nested if statements, 63
object names and method

names, 187
switch statement, 67

syntax errors, 9
System.exit(0) statement,

29, 145
System.out.println()

statement, 7, 29, 166

T
target array, 104–105, 106
temp variable, 142
Temperature.java fi le, 29
Temperature.java program,

26–29
testTotal, 95
text, read-only, 192
text data, 19
text editors, writing Java

programs, 8
throws Exception, including

in main() method
header, 124

totals, accumulating in loops,
94–97

tripleTheNumber() method,
170–171

true value, 15, 49, 78, 110, 131
two-dimensional arrays, 147,

148

U
unary minus operator (-), 21,

23, 52
unary plus operator (+), 21,

23, 52
unnamed constants, 19
user(s), 3
user input, validating using

loops, 98–100

V
validating input using loops,

98–100
VALID_ITEM array, 113–114
VALID_PRICE array, 113–115
values

assigning to variables, 22–23
initializing variables, 17
methods returning, 164–167
passing arguments by, 158
storing with variables, 14
swapping data values,

137–138
variable(s), 14, 14–18. See also

specifi c variables
assigning values, 22–23
control break, 127
data types, 15–16
declaring, 14, 16–18
global, 40
initializing, 17, 18
local, 40
loop control. See loop control

variables; specifi c loop
control variables

names, 14–15, 16
swapping data values,

137–138
uses, 20

variable declarations, 16, 16–18
void keyword, 6, 154, 164

W
Web servers, 2
Web-based applications, 2

203

 I N D E X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

while loops, 36–37, 44–45,
78–82, 131, 168

beginning with eof, 36
controlling using a counter,

80–82
controlling using sentinel

values, 83–86

rewriting as for loops, 88
testing condition controlling,

143–144
writing, 80–82

workHours variable, 165
workHoursString variable, 165
WORK_WEEK_HOURS int, 185

writing
to an output fi le, 123–126
opening fi les for, 122–123,

125–126

X
x variable, 142, 143, 144, 168

I N D E X

204

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has
deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Title

	Statement
	Copyright

	Brief Contents
	Contents
	Preface
	Organization and Coverage
	Features of the Text
	Acknowledgments

	Read This Before You Begin
	To the User
	Data Files
	Solutions
	Using Your Own Computer
	Downloading the Java Standard Edition Development Kit (JDK7) for the Windows Platform
	Installing the Java Standard Edition Development Kit (JDK7)
	Updating Your PATH Environment Variable
	Updating Your CLASSPATH Environment Variable

	To the Instructor
	Course Technology Data Files

	Ch 1: An Introduction to Java and the Java Programming Environment
	Introduction

	The Java Programming Language
	Three Types of Java Programs
	An Introduction to Object-Oriented Terminology
	Downloading the Java Standard Edition Development Kit (JDK)
	The Structure of a Java Program
	The Java Development Cycle
	Writing Java Source Code
	Compiling a Java Program
	Executing a Java Program
	Exercise 1-1: Understanding Java Utilities
	LAB 1.1: Understanding Java Utilities

	Ch 2: Variables, Constants, Operators, and Writing Programs Using Sequential Statements
	Introduction
	Variables
	Variable Names
	Java Data Types
	Exercise 2-1: Using Java Variables, Data Types, and Keywords

	Declaring and Initializing Variables
	Exercise 2-2: Declaring and Initializing Java Variables
	LAB 2.1: Declaring and Initializing Java Variables

	Constants
	Unnamed Constants
	Named Constants
	Exercise 2-3: Declaring and Initializing Java Constants
	LAB 2.2: Declaring and Initializing Java Constants

	Arithmetic and Assignment Operators
	Arithmetic Operators
	Assignment Operators and the Assignment Statement
	Precedence and Associativity
	Exercise 2-4: Understanding Operator Precedence and Associativity
	LAB 2.3: Arithmetic and Assignment Operators

	Sequential Statements, Comments, and Interactive Input Statements
	Exercise 2-5: Understanding Sequential Statements
	LAB 2.4: Understanding Sequential Statements

	Ch 3: Writing Structured Java Programs
	Introduction
	Using Flowcharts and Pseudocode to Write a Java Program
	LAB 3.1: Using Flowcharts and Pseudocode to Write a Java Program

	Writing a Modular Program in Java
	LAB 3.2: Writing a Modular Program in Java

	Ch 4: Writing Programs that Make Decisions
	Introduction
	Boolean Operators
	Relational Operators
	Logical Operators
	Relational and Logical Operator Precedence and Associativity

	Comparing Strings
	Decision Statements
	The if Statement

	Exercise 4-1: Understanding if Statements

	LAB 4.1: Understanding if Statements
	The if-else Statement
	Exercise 4-2: Understanding if-else Statements
	LAB 4.2: Understanding if-else Statements
	Nested if Statements
	Exercise 4-3: Understanding Nested if Statements
	LAB 4.3: Understanding Nested if Statements
	The switch Statement
	Exercise 4-4: Using a switch Statement
	LAB 4.4: Using a switch Statement

	Using Decision Statements to Make Multiple Comparisons
	Using AND Logic
	Using OR Logic
	Exercise 4-5: Making Multiple Comparisons in Decision Statements
	LAB 4.5: Making Multiple Comparisons in Decision Statements

	Ch 5: Writing Programs Using Loops
	Introduction
	The Increment (++) and Decrement (--) Operators
	Exercise 5-1: Using the Increment (++) and Decrement (--) Operators

	Writing a while Loop in Java
	Exercise 5-2: Using a while Loop

	Using a Counter to Control a Loop
	Exercise 5-3: Using a Counter-Controlled while Loop
	LAB 5.1: Using a Counter-Controlled while Loop

	Using a Sentinel Value to Control a Loop
	Exercise 5-4: Using a Sentinel Value to Control a while Loop
	LAB 5.2: Using a Sentinel Value to Control a while Loop

	Writing a for Loop in Java
	Exercise 5-5: Using a for Loop
	LAB 5.3: Using a for Loop

	Writing a do while Loop in Java
	Exercise 5-6: Using a do while Loop
	LAB 5.4: Using a do while Loop

	Nesting Loops
	Exercise 5-7: Nesting Loops
	LAB 5.5: Nesting Loops

	Accumulating Totals in a Loop
	Exercise 5-8: Accumulating Totals in a Loop
	LAB 5.6: Accumulating Totals in a Loop

	Using a Loop to Validate Input
	Exercise 5-9: Validating User Input
	LAB 5.7: Validating User Input

	Ch 6: Using Arrays in Java Programs
	Introduction
	Array Basics
	Declaring Arrays
	Initializing Arrays
	Accessing Array Elements
	Staying Within the Bounds of an Array
	Using Constants with Arrays
	Exercise 6-1: Array Basics
	LAB 6.1: Array Basics

	Searching an Array for an Exact Match
	Exercise 6-2: Searching an Array for an Exact Match
	LAB 6.2: Searching an Array for an Exact Match

	Parallel Arrays
	Exercise 6-3: Parallel Arrays
	LAB 6.3: Parallel Arrays

	Ch 7: File Handling and Applications
	Introduction
	File Handling
	Importing Packages and Classes
	Opening a File for Reading
	Reading Data from an Input File
	Reading Data Using a Loop and EOF
	Opening a File for Writing
	Writing Data to an Output File
	Exercise 7-1: Opening Files and Performing File Input
	LAB 7.1: Opening Files and Performing File Input

	Understanding Sequential Files and Control Break Logic
	Exercise 7-2: Accumulating Totals in Single-Level Control Break Programs
	LAB 7.2: Accumulating Totals in Single-Level Control Break Programs

	Ch 8: Advanced Array Techniques
	Introduction
	Sorting Data
	Swapping Data Values
	Exercise 8-1: Swapping Values
	LAB 8.1: Swapping Values

	Using a Bubble Sort
	The main() Method
	The fllArray() Method
	The sortArray() Method
	The displayArray() Method
	Exercise 8-2: Using a Bubble Sort
	LAB 8.2: Using a Bubble Sort

	Using Multidimensional Arrays
	Exercise 8-3: Using Multidimensional Arrays
	LAB 8.3: Using Multidimensional Arrays

	Ch 9: Advanced Modularization Techniques
	Introduction
	Writing Methods with No Parameters
	Exercise 9-1: Writing Methods with No Parameters
	LAB 9.1: Writing Methods with No Parameters

	Writing Methods that Require a Single Parameter
	Exercise 9-2: Writing Methods that Require a Single Parameter
	LAB 9.2: Writing Methods that Require a Single Parameter

	Writing Methods that Require Multiple Parameters
	Exercise 9-3: Writing Methods that Require Multiple Parameters
	LAB 9.3: Writing Methods that Require Multiple Parameters

	Writing Methods that Return a Value
	Exercise 9-4: Writing Methods that Return a Value
	LAB 9.4: Writing Methods that Return a Value

	Passing an Array and an Array Element to a Method
	Exercise 9-5: Passing Arrays to Methods
	LAB 9.5: Passing Arrays to Methods

	Overloading Methods
	Exercise 9-6: Overloading Methods
	LAB 9.6: Overloading Methods

	Using Java’s Built-In Methods
	Exercise 9-7: Using Java’s Built-In Methods
	LAB 9.7: Using Java’s Built-In Methods

	Ch 10: Additional Topics
	Introduction
	A Programmer-Defined Class
	Creating a Programmer-Defined Class
	Adding Attributes to a Class
	Adding Methods to a Class
	Exercise 10-1: Creating a Programmer-Defined Class in Java
	LAB 10.1: Creating a Programmer-Defined Class in Java

	Creating a Graphical User Interface (GUI)
	Writing a Constructor
	Writing the main() Method
	Exercise 10-2: Creating a Graphical User Interface in Java
	LAB 10.2: Creating a Graphical User Interface in Java

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

