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Preface

After a long period of decline, ontology is back at the forefront of philosophy, sci-
ence and technology. These days ontology comes in at least two main fashions: the
traditional philosophical understanding of ontology has been recently flanked by a
new – computer-based – understanding of ontology.

There are scholars from both fields contending that ontology in knowledge engi-
neering and ontology in philosophy are two completely different disciplines. On the
one hand there is analysis closely tied to the concrete problems of domain model-
ing; on the other, difficult and usually very abstract speculations on the world and its
most rarified structures. For this reason, it is claimed, those scientists who occupy
themselves with ontology in knowledge engineering should not be concerned with
what philosophers have to say (and vice-versa).

The thesis defended by Theory and Applications of Ontology is exactly the oppo-
site. We shall try to show in this work that – despite their different languages and
different points of departure – ontologies in knowledge engineering (let’s say: ontol-
ogy as technology) and ontology in philosophy (let’s say: ontology as categorial
analysis) have numerous problems in common and that they seek to answer similar
questions. And for this reason, engineers and philosophers must devise ways to talk
to each other.

The current resurgence of interest in ontological issues displays a number of
novel features, both among philosophers and among information technologists.
Among philosophers, the revival of a genuine interest in ontology requires the
removal of certain prejudices that have profoundly influenced the analytic and the
continental camps, both of which have in recent decades systematically delegit-
imized ontological inquiry in favour of its epistemological transformation (not to say
reduction). To this shared error of broadly Kantian (or more properly neo-Kantian)
stamp, analytic philosophy has added a linguistic prejudice, and the continental one
styles of inquiry and writing that can be described as devoid of methodological
rigour.

Behind these obstructions to ontological investigation one perhaps discerns the
consequences of another feature common to both camps: the fact that the most influ-
ential thinkers of the last hundred years – the reference unquestionably goes back to
Wittgenstein and Heidegger, however different their philosophical views may have
been – both embraced an a-scientific approach; both, that is, delegitimized alliances,
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vi Preface

or at least serious contact, between science and philosophy. In consequence, the
revival of interest in ontology also provides an opportunity for renewed discussion
of the relationships between science and philosophy.

Science continuously advances, and that which it proves to be valid endures.
Problem-oriented thinkers try to follow problems, not to anticipate conclusions or
to presuppose an image of the world. This perspective is largely correct. It should,
however, be qualified if one is not to commit the ingenuous error of believing that it
is only “solutions” that advance knowledge. Also attempts and failures, in fact, are
instructive. For all these reasons we may accept Aristotle’s contention that ontology
is philosophia prima as regards the problems it seeks to resolve, as long as we
remember that it can only be philosophia ultima as regards the elaboration of results.
And it is here that we discern how ontology concretely operates in harness with
science, because it “presupposes the accumulated knowledge of centuries and the
methodical experience of all the sciences” (N. Hartmann, Der Aufbau der realen
Welt, Meisenheim am Glan, 1949, 26).

Besides points of contact, of course, there are also a number of differences,
perhaps most notably the fact that ontology in knowledge engineering is a disci-
pline still in its infancy, while ontology in philosophy is as old as philosophy itself.
Consequently, the history of philosophy contains ideas, tools and proposals of use
for contemporary developments; and it also indicates the options that will lead us
into dead ends or nowhere at all. When things are viewed in the light of such a long
and articulated history, one knows from the outset that ontology does not permit
ingenuous simplifications. For these reasons, philosophical ontology may usefully
contribute to ontology in knowledge engineering.

It is true, though, that philosophical ontology addresses questions of a more
general nature, ones apparently of no relevance to ontology in knowledge engineer-
ing. Consequently, it may appear that certain components of philosophical ontology
could be ignored in the passage to ontology as technology. Nevertheless, one should
always bear in mind the greater explanatory value and the broader structuring capac-
ity of more general schemes and more comprehensive theories. For this less overt
reason, too, philosophical ontology is useful for ontology in knowledge engineering.

The philosophical codification of ontology has often restricted itself to orga-
nization of its general architecture, without delving into the details of minute
categorization. On the other hand, the concrete, situated practice of ontology as
technology may conversely prove useful for the development of philosophical
ontology.

For these and other reasons, there is mounting interest in the development of
standards, modeling principles, and semantically transparent languages. Ontology
thus comes into play as one of the strategies available to developing the semantic
web, construct robust data-bases, managing huge amounts of heterogeneous infor-
mation because ontologically founded knowledge of the objects of the world is able
to make codification simpler, more transparent and more natural. The belief is that
ontology can give greater robustness to computer-based applications by providing
methodological criteria and categories with which to construct and build them, as



Preface vii

well as contexts in which to set and re-categorize different data-bases so that they
become more mutually transparent. In this way ontology directly contributes to
standardization of the life-cycle model, and can therefore serve as an innovative
and possibly unexpected component of software quality assurance.

These problems are dramatically magnified by the fact that unlike all the soci-
eties of the past, modern societies are no longer afflicted by a lack of information.
If anything they suffer from its excess, from having to cope with too much unused
and unusable information. It becomes increasingly difficult, in fact, to find the infor-
mation that one needs, when one needs it, to the extent that one needs it and in the
appropriate form. Although the information may be stored somewhere, all too often
one does not know where; and even when one is aware of how to find the infor-
mation, it is often accompanied by further information irrelevant to one’s purposes.
And when information is available, it is often forthcoming in the wrong form, or
else its meaning is not explicitly apparent.

However broad the range of information already gathered may be, a great deal
more has still to be assembled and codified. And this inevitably complicates still
further the problem of the functional, flexible, efficient and semantically transparent
codification of information.

Broadly speaking, the two research communities of philosophers and engineers
have still not found a way to relate to each other systematically. While philosophers
tend unilaterally to emphasize the need for a conceptual complexity that matches
the complexity of the subject-matter, engineers tend equally unilaterally to stress
the drawbacks of the tools available and the presence of insuperable computational
problems. One side is perhaps too theoretical, the other too pragmatic. In short,
taken as they stand, the two views seem difficult to reconcile.

However, in dynamic terms, one easily foresees mounting social and institu-
tional pressure for the development of tools able to model fragments of reality
in terms that are both adequate and efficient. And from this point of view,
we are all at fault. Those colleagues who concern themselves with technolo-
gies seemingly pay closer attention to manipulation than to knowledge. Likewise,
those who concern themselves with philosophy suffer from the reverse prob-
lem, that of navigating in a sea of theories for which the rationale is sometimes
unclear.

For our part, we have grown increasingly convinced that the same problems will
force engineers to address theories, and philosophers to address the limitations of
our current capabilities. Provided, however, that both sides have the will, the abil-
ity, the desire and the courage to do so. If they decide to tackle these problems,
it will become reasonable to identify and systematically develop those areas of
convergence and contact now existing.

In this sense, the two volumes of Theory and Applications of Ontology may play
a role in paving the way for a better mutual understanding between engineers and
philosophers. Since the two communities are still very different as to their own lan-
guages, conceptual tools and problem-sets, we thought that collecting papers within
one single volume would have been too constraining. We therefore devised two
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different volumes, one dedicated to the philosophical understanding of ontology and
one to the computer-based understanding of ontologies. Both volumes contain both
papers describing the state of the art in their respective topics and papers addressing
forefront, innovative and possibly controversial topics.

Roberto Poli
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Introduction

Recent events in information technology have led to a new manifestation of the
philosophical field of ontology. In this new manifestation, ontology is also a tech-
nological discipline. On reflection, this development can be seen as unsurprising:
Ontology arises naturally in investigations of advanced information processing sys-
tems such as knowledge-based systems and the world-wide web. The development
of knowledge-based systems has lead to computer applications written to manage
knowledge expressed in symbolic form, in a variety of domains such as diagnos-
tics and manufacturing engineering and in a variety of programming languages.
Each system has its own set of engineering or medical or scientific artifacts for
different domains of knowledge, its own rules expressing domain relationships,
and its own terminology. This makes interoperability difficult if not intractable.
The philosophical notion of ontology suggests a possible solution in the form of
a system-neutral repository of abstract knowledge which can be refined to specify
system rules and artifacts in the domains to be modeled, accompanied by automated
translators mediating between each knowledge system and the repository. Another
example concerns the semantic web, a proposed new-generation world-wide web
meant to achieve a deeper, more meaningful communication between users, their
browsers and the web sites they access than is possible with the purely syntactic
medium of key words and “icons”. But this begs the question: What can one com-
municate when there is no common basis for meaning? Again, by appropriating
the philosophical notion of ontology, technologists hope to resolve the underlying
issues of meaning and communication among users, systems, and content.

The two volumes of Theory and Applications of Ontology (TAO) are intended
to inform the scholar in philosophy or the researcher in the sciences, information
technology, or engineering, of the present state of the art in philosophical ontology
and the systems available for the study, development, and application of ontology as
technology. While Volume 1 addresses philosophy, the present volume, Volume 2,
addresses the recent flowering of ontology as an all-encompassing field of study and
application, which provides a declarative semantic framework for mutual under-
standing and interoperability between technological system components, models
and processes. Volume 2 is intended as a snapshot of much, although not all, of
the work in progress on ontology in this new role as a component of technological
systems.

xv



xvi Introduction

The chapters in this second volume of TAO are grouped in four parts. We con-
sider this grouping necessary, in order to help the reader deal with the large volume
of knowledge contained in the book. Of course, this grouping does not mean that
the chapters are not related or interrelated; in fact, the reader will discover ref-
erences from chapters that present seemingly different aspects of ontologies to
common concepts and entities, which constitutes a proof of the universal appli-
cation of ontologies. The chapters in the first part of the book support this claim.
The chapters in the second and third parts, which constitute the largest part of the
book, present the application of ontologies to specific domains, thus justifying the
sub-title of the volume at-hand. We do not aim to provide an exhaustive catalogue of
ontologies available, but to help the reader in forming the necessary cognitive struc-
tures that will allow him to classify ontology applications and evaluate correctly the
tools and methodologies. The final part contributes chapters that shed light into the
formalisms used to describe and manipulate ontologies, closing in a way the path
that started with the chapters in Volume 1 of this set. Nevertheless, each of the two
volumes is self-contained and can be studied independently.

As we already mentioned, the first part in Volume 2 contains the chapters that
provide an overview of various perspectives of ontology theory, architecture, con-
structs and application. In this context, Poli and Obrst present an overview of
ontology from both the philosophical and technological perspectives. This is by way
of introducing Volume 2, the assumption being that this discussion would be unnec-
essary were the philosophical view the only one to be represented in these volumes.
Continuing, Obrst distinguishes between ontology architecture, as a distinct disci-
pline in ontology engineering, which includes ontology lifecycle management, and
ontological architecture as the architecture used to structure ontologies. The latter
addresses both ontological levels (foundational, upper, middle, utility, reference,
domain, and sub-domain ontologies), and formal constructs used to modularize
ontologies in a large ontological space. Loebe surveys approaches to handling
categorical systems of extensive size, spanning from semi-formal systems in ter-
minology and classification sciences to formal logical approaches. In particular,
he reviews the transition from terminologies to ontologies that are formalized in
logics, exemplified in the medical domain. Tartir, Arpinar, and Sheth introduce
several approaches that have been developed to aid in evaluating ontologies. As
part of this, they present highlights of OntoQA, an ontology evaluation and anal-
ysis tool that uses a set of metrics measuring different aspects of an ontology’s
schema and knowledge base. Seremeti and Kameas provide an overview of the
available tools and software environments that can be used for building, maintain-
ing, and evolving ontologies. Kotis and Vouros aim to provide an understanding of
the functionalities and technologies that need to be integrated in ontology engineer-
ing environments by presenting issues that next generation ontological tools must
consider.

The second part groups the chapters that discuss specific ontologies, foundational
ontologies and ontology engineering systems. Guizzardi and Wagner present the
Unified Foundational Ontology (UFO), which was developed to serve as a foun-
dation for general conceptual modeling languages. They demonstrate the use of
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this foundational ontology in the evaluation and redesign of the Unified Modeling
Language (UML) for concept-based software development. Pease and Li intro-
duce the Controlled English to Logic (CELT) system, which translates a restricted
English grammar to expressions in formal logic. The logic statements use terms
from a large formal ontology, the Suggested Upper Merged Ontology (SUMO).
Foxvog presents the Cyc system familiar to AI researchers. The original intent
of the Cyc project, begun in the 1980s, was to produce an ontology of “all com-
monsense knowledge.” Borgo and Masolo present the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE), a foundational ontology embrac-
ing the notion that there cannot be a unique standard or universal ontology for
knowledge representation. Herre has two contributions in this volume. In the first
chapter, he presents the General Formal Ontology (GFO), a foundational ontology
for conceptual modelling.

The third part presents the application of ontologies in different disciplines
as components used to provide semantically rich representations of technological
domains. The contributions in this part discuss specific domain ontologies as well
as issues in the engineering of ontologies for specific domains. Davies and Kiryakov
distinguish lightweight ontologies (which roughly correspond to ontologies for
application domains in information technology) from the philosophical notion of
ontologies and then motivate and describe techniques for translating information
modelling schemes into lightweight ontologies.

Natural language (English, German, etc.), usually in some simplified, semi-
formalized form making it amenable to computer processing, is often the basis either
for expressing ontologies or as a domain for applications of ontology. Bateman dis-
cusses approaches to natural language processing where there is a strong interaction
with ontological engineering. Fellbaum presents WordNet, a large electronic lexical
database for English. WordNet is in fact a semantic network expressing relation-
ships between words with similar meaning and, hence, has become a valuable tool
for Natural Language Processing and has spawned research in lexical semantics and
ontology.

In his second chapter, Herre applies the GFO as an analysis and development tool
for biomedical ontologies. Kelso, Hoehndorf and Pru1fer more generally address
ontologies for the biomedical domain. They discuss the formalization of community
knowledge in molecular biology along with the provision of a shared vocabulary for
the annotation of the growing amount of biological data available. Rittgen discusses
a number of approaches, rooted in different fields of research, to modeling the multi-
faceted business domain. The emphasis is placed upon pragmatism in modeling
enterprise ontologies. Feldkamp, Hinkelmann, and Thoenssen discuss ontologies
for e-government. There are issues here similar to those for business, e.g., mini-
mizing the cost of government, except that public service at state, provincial and
municipal levels are involved and also regulation of commerce and other activities
of businesses and other public/private entities. Goumopoulos and Kameas present
an ontology-driven approach and a context management framework for composing
context-aware ubiquitous computing applications. The focus is upon applications
which combine the services offered by heterogeneous everyday physical objects
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(e.g., information devices, home appliances, etc) that have been enhanced with
sensing, acting, processing and communication abilities.

The fourth and final part of the current volume compiles chapters that bring the
notions of ontology formalization and formal ontologies into the realm of math-
ematical rigor. Healy posits that an appropriate mathematical language for this is
category theory, the mathematics of structure. The ensuing discussion introduces
this field, which is also referred to as conceptual mathematics, and proceeds from
basic-level definitions and explanations to an in-depth exposition of some of its
key notions. This serves to introduce the chapters by Kalfoglou and Schorlemmer,
Vickers, Kent, and Johnson and Rosebrugh. Each of these chapters approaches
the subject of ontology in a different way, yielding an indication of the richness
of category theory as conceptual mathematics. Kalfoglou and Schorlemmer dis-
cuss the semantic alignment of ontologies as systems of categorical relationships
called information systems, which show how the terms in the different ontologies
are associated. Vickers discusses the ontological commitments made by a form of
categorical logic which has been called the logic of observable quantities; this logic
is well-adapted to formalizing ontologies for scientific theories. Kent provides an
exposition of work for ontologies over the World-Wide Web that is based upon the
work of Joseph Goguen on institutions. The latter are mathematical systems for
analyzing and clarifying the semantics of different logics. Johnson and Rosebrugh
provide a general scheme for the use of category theory in ontology by presenting a
category-theoretic approach to ontology engineering.

The four parts of this volume aim at providing comprehensive coverage of the
current uses of ontologies as components of technological systems. They have been
structured in a way that guides the reader from overviews of ontology application
to mathematical formalization, passing through ontology engineering systems and
domain-specific ontologies. This structure reflects the editors’ choice of most prof-
itable studying path. However, each part is independent from the others and will
equip the reader with updated and complete knowledge under a specific perspective
in ontology engineering and application. The reader is advised to study one part
thoroughly before moving to the next, as the chapters in each part complement each
other under the part’s perspective. Each chapter has been authored by distinguished
scholars in the various applications of ontologies. Let them guide you, the reader,
in a path of knowledge discovery that we, the volume editors, find to be the most
fascinating.



Chapter 1
The Interplay Between Ontology as Categorial
Analysis and Ontology as Technology

Roberto Poli and Leo Obrst

1.1 Introduction

The notion of ontology today comes with two perspectives: one traditionally from
philosophy and one more recently from computer science. The philosophical per-
spective of ontology focuses on categorial analysis, i.e., what are the entities of
the world and what are the categories of entities? Prima facie, the intention of
categorial analysis is to inventory reality. The computer science perspective of
ontology, i.e., ontology as technology, focuses on those same questions but the
intention is distinct: to create engineering models of reality, artifacts which can be
used by software, and perhaps directly interpreted and reasoned over by special
software called inference engines, to imbue software with human level seman-
tics. Philosophical ontology arguably begins with the Greek philosophers, more
than 2,400 years ago. Computational ontology (sometimes called “ontological” or
“ontology” engineering) began about 15 years ago.

In this chapter, we will focus on the interaction between ontology as catego-
rial analysis (“ontology_c”, sometimes called “Big O” ontology) and ontology as
technology (“ontology_t”, sometimes called “Little o” ontology). The individual
perspectives have each much to offer the other. But their interplay is even more
interesting.1

This chapter is structured in the following way. Primarily we discuss ontology_c
and ontology_t, introducting notions of both as part of the discussion about their
interplay. We don’t think they are radically distinct and so do not want to radi-
cally distinguish them, intending by the discussion of the interplay to highlight their
distinctions where they occur, but thereby emphasize their correspondences, and,
in fact, their correlations, complementarities, interdependencies. They are distinct

R. Poli (B)
University of Trento, Trento, Italy
e-mail: Roberto.Poli@unitn.it
1Cf. Daconta et al. (2003, p. 186). The first use of this “Big O, little o” terminology, as known by
the authors, is in Guarino (1995). The distinction made between ontology_c and ontology_t is first
made in Poli (2001b).

1R. Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications,
DOI 10.1007/978-90-481-8847-5_1, C© Springer Science+Business Media B.V. 2010



2 R. Poli and L. Obrst

perspectives after all, we want to emphasize, not distinct analytical methodologies,
nor do they provide distinct analytical products. We discuss some of the historical
definitions of ontology_t, as they emerged during the 1990s. We then provide our
own take on the nature of ontology_t. As part of this exposition, we briefly discuss
the levels and representation of ontologies, ranging over the typical levels of upper
ontologies, middle ontologies, and domain (and sub-domain) ontologies.

Although we cannot discuss the knowledge representation languages typically
used by ontology_t, from Semantic Web languages such as OWL2 (primarily a
description logic) to First-Order Logic (FOL, predicate calculus) languages such
as ISO Common Logic,3 nor the automated reasoning over ontologies that is of
potential benefit to ontology_c as well as to ontology_t, we consider these issues
important but better exposed in another venue. The interested reader is, therefore,
directed to Chapter 2, Ontology Architecture, for a fuller exposition.

We do, however, lay down some principles by which we believe ontologies_t
should be developed, based on analysis from ontology_c, and introduce the notion
of “levels of reality”. We illustrate the interplay of the two notions of ontology by
providing an extended discussion of ontological entities in a hypothetical biology
ontology.

Finally, we conclude by looking to the increasing interaction between these two
aspects of ontology in the future. We briefly discuss some common problems which
require the interplay of ontology_c and ontology_t, and which will assume much
greater prominence once the more basic issues are elaborated on and scientific con-
census established, i.e., ontology modularity, mapping, context-determination and
representation, and vagueness and uncertainty. Ontology_t needs to be informed by
ontology_c and its analytical methods. Ontology_c will increasingly benefit from
the sound and consistent software engineering products arising from ontology_t.

1.2 Ontology_c

Ontology and ontologies have been given many different definitions, both on the
philosophical side and on the technological side.

From the perspective of categorial analysis in philosophy, ontology has been
viewed as both a part of metaphysics and as a part of science. Historically, ontology
has been a branch of metaphysics, interested in formulating answers to the question
of what exists, i.e., what’s the inventory of reality, and consequently in defining cat-
egories (kinds) of entities and the relationships among the categories. Metaphysics
asks different questions than does ontology, notably the question about the nature of
being as a whole.

In our understanding, ontology should also be viewed as following along the
same path as science, i.e., that ontology organizes and classifies the results from
that which science discovers about reality. Furthermore, ontology not only depends

2Bechhofer et al. (2004).
3ISO Common Logic: Common Logic Standard. http://cl.tamu.edu/.
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on science but can also provide tools for the clarification of science itself, in the
form of ontologically clarified and reconstructed sciences. Ontology and science
can therefore support one another.

A further point of contention or at least confusion is that between ontology and
epistemology, i.e., on the study of what is vs. the study of what is ascertained and
how it is ascertained. Ontology requires knowledge about what is, and if knowl-
edge is described as, for example, justified belief, then ontology may be thought to
devolve to knowledge and from thence to belief and justification for belief, i.e., the
realm of evidence, manners and methods by which one adjudicates evidence to form
belief, and thus epistemology.

Ontology is not epistemology, but has a complex relationship to epistemology.
Ontology is primarily about the entities, relations, and properties of the world, the
categories of things. Epistemology is about the perceived and belief-attributed enti-
ties, relations, and properties of the world, i.e., ways of knowing or ascertaining
things. So epistemology is about empirical evidence gleaned that will be described
or characterized by ontology.

Contemporary ontology can be characterized in a number of ways, all of which
can be considered layers of theory (Poli, 2003):

(1) Descriptive ontology concerns the collection of prima facie information either
in some specific domain of analysis or in general.

(2) Formal ontology distills, filters, codifies and organizes the results of descriptive
ontology (in either its local or global setting). According to this interpreta-
tion, formal ontology is formal in the sense used by Husserl in his Logical
Investigations (Husserl, 2001; originally 1900–1901). Being “formal” in such
a sense means dealing with categories like thing, process, matter, form, whole,
part, and number. These are pure categories that characterize aspects or types
of reality and still have nothing to do with the use of any specific formalism.

(3) Formalized ontology: Formal codification in the strict sense is undertaken at
this third level of theory construction. The task here is to find the proper formal
codification for the constructs descriptively acquired and categorially purified
in the way just indicated. The level of formalized constructions also relates to
evaluation of the adequacy (expressive, computational, cognitive) of the various
formalisms, and to the problem of their reciprocal translations. In this sense,
formalized ontology refers to the actual formalization of ontology in a logical
language, typically but not always First Order Logic (FOL). In ontology_t, this
could be rendered in a knowledge representation language such as the FOL-
based ISO Common Logic or in the description logic-based Web Ontology
Language OWL.

The close similarity between the terms “formal” and “formalized” is rather
unfortunate. One way to avoid the clash is to use “categorial” instead of “formal”.4

4Note the philosophical, common use of “categorial” instead of the term “categorical” employed
in this chapter, which comes closer however to the mathematician and logician’s use of the term
“categorical”, as for example in Category and Topos Theory.



4 R. Poli and L. Obrst

Most contemporary theory recognizes only two levels of work in ontology and
often merges the level of the formal categories either with that of descriptive or with
that of formalized analysis. As a consequence, the specific relevance of categorial
analyses is too often neglected.

The three levels of ontology are different but not separate. In many respects they
affect each other. Descriptive findings may bear on formal categories; formalized
outcomes may bear on their formal equivalents, etc. To set out the differences and
the connections between the various ontological facets precisely is a most delicate
but significant task (Poli, 2003).

1.3 Ontology_t

Ontological engineering, i.e., ontology from the perspective of computer science,
has issues comparable to that of philosophical ontology, but reflected techno-
logically in the attempt to develop ontologies as software usable models. So
ontology from the perspective of computer science is both a computer science
and a computational or software engineering problem. On the one hand, “onto-
logical engineering”5 historically had its origins as an engineering problem, as an
attempt to create software usable models of “the ways things are, with the things
that are” to endow software with human level representations of “conceptualiza-
tions” or semantics. On the other hand, there are efforts that intend to make an
“ontological science”, as for example, that of the National Center for Ontological
Research (NCOR) (Obrst, Hughes and Ray, 2006).6 Such an effort would include
strong evaluation criteria and possibly ontology certification.

Although having antecedents in the late 1980s, as formal ontology in philosophy
and formal semantics in linguistics began to impact computer science and espe-
cially artificial intelligence, ontological engineering as a discipline can be marked
as originating approximately in 1991, with Neches et al. (1991) reporting on the
United States Defense Advanced Research Projects Agency’s (DARPA) Knowledge
Sharing Initiative, and Gruber (1991), followed soon after by work by Gruber
(1993), Guarino (1994), and Guarino and Poli (1995).

1.3.1 Ontology_t Definitions

The first proposed definition of ontology in computer science was that of Gruber
(1993)7: “an ontology is an explicit specification of a conceptualization”, which

5The first occasion of use of the term “ontological engineering” is apocryphal: perhaps it occurred
as part of the Cyc project (Guha and Lenat, 1990).
6National Center for Ontological Research (NCOR): http://ncor.buffalo.edu/.
7Anecdotally, the term “ontology” had been used in computer science and artificial intelligence
since the late 1980s. One of the authors of this chapter described the use of ontologies and rules in
Obrst (1989).



1 Interplay Between Ontology as Categorial Analysis & Ontology as Technology 5

was intended to contrast with the usual definition of ontology in philosophy, i.e.,
to emphasize that what was being talked about was ontology_t in our terminology:
ontology as a computational engineering product. The notion of “conceptualization”
was defined in Genesereth and Nilsson (1987) to be “the objects, concepts, and other
entities that are presumed to exist in some area of interest and the relationships that
hold them” (Gruber, 1993) and presumably the “area of interest”, now typically
called “domain”, is a portion of the world.

Guarino and Giaretta (1995) took up the challenge to clarify what was meant by
this and other emerging definitions of ontology_t. In Guarino’s and Giaretta’s anal-
ysis, there were a number of ways to characterize ontology (quoted from Guarino
and Giaretta, 1995, p. 25):

1. Ontology as a philosophical discipline
2. Ontology as an informal conceptual system
3. Ontology as a formal semantic account
4. Ontology as a specification of a conceptualization
5. Ontology as a representation of a conceptual system via a logical theory

5.1 characterized by specific formal properties
5.2 characterized only by its specific purposes

6. Ontology as the vocabulary used by a logical theory
7. Ontology as a (meta-level) specification of a logical theory.

By way of a summary: “ontology: (sense 1) a logical theory which gives an
explicit, partial account of a conceptualization; (sense 2) synonym of conceptual-
ization.” (Guarino and Giaretta, 1995, p. 32)

Note that characterization (4) invokes Gruber’s definition. Part of Guarino’s
and Giaretta’s explication involves analyzing Gruber’s [derived from Genesereth
and Nilsson’s (1987)] notion of a conceptualization as being extensional. Instead,
Guarino and Giaretta (1995) argue that it should be an intensional notion. Rather
than Genesereth and Nilsson’s (1987) view of conceptualization as “a set of exten-
sional relations describing a particular state of affairs,” in Guarino’s and Giaretta’s
view, it “is an intensional one, namely something like a conceptual grid which we
superimpose on various possible states of affairs.” (Guarino and Giaretta, 1995) The
definition that Guarino and Giaretta end up with is that an ontology is an ontological
theory, and as such that it “differs from an arbitrary logical theory (or knowledge
base) by its semantics, since all its axioms must be true in every possible world of
the underlying conceptualization.”

1.3.2 Ontology_t and Epistemology

A further issue about ontology and epistemology should be brought out now, as
it relates to ontology_t. We have mentioned that epistemology deals with how
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knowledge is known. How do my perception and understanding, my beliefs, con-
strain my arrival at real knowledge or assumed belief, i.e., evidence, knowledge
hypotheses prior to their becoming theorems about knowledge (and there should be
a clear path from hypothesis to theorem to true theorem, but often there is not). So if
an ontology is a theory about the world, epistemology addresses the ways of acquir-
ing enough knowledge (and the nature of that) so that one can eventually frame
a theory. In ontology_t, the engineering artifact of the ontology model (a theory)
will require epistemological linkage to data. That data can be inaccurate, contain
uncertainties, and lead to partially duplicate but inconsistent instances of ontology
classes. Epistemology thus is employed in the use and qualification of data and as
stored in databases or tagged or indexed in documents.

If ontology states that human beings have exactly one birth date, the data
about a specific person is epistemological: in a given set of databases the person
instance named John Smith (we assume we can uniquely characterize this instance)
may have two or more attributed birth-dates, not one of which are known to be
true. Epistemological concerns distort and push off needed ontological distinctions.
Evidence, belief, and actual adjudication of true data is epistemological. What the
real objects, relations, and rules are of reality are ontological. Without ontology,
there is no firm basis for epistemology. Analysts of information often believe that
all is hypothesis and argumentation. They really don’t understand the ontological
part, i.e., that their knowledge is really based on firm stuff: a human being only
has one birth date and one death date, though the evidence for that is multivarious,
uncertain, and needs to be hypothesized about like the empirical, epistemological
notion it is.

In fact, much of so-called “dynamic knowledge” is not ontological in nature
(ontological is relatively static knowledge), but epistemological. What is an
instance that can be described by the ontology? How do I acquire and adju-
dicate knowledge/evidence that will enable me to place what I know into the
ontological theory? Instances and their actual properties and property values at
any given time are dynamic and ephemeral (this particular event of speaking,
speaking_event_10034560067800043, just occurred; however the speaking_event
ontology class has not changed).

1.3.3 Ontology_t as Theory with Philosophical Stances

Ontology_t often considers an ontology to be a logical theory about some portion
of the world.8 Philosophical stance towards theories is therefore quite important,
because a given ontological engineer will typically imbue his ontology_t engineer-
ing model with constructs aligned with his or her philosophical stance, e.g. as to the
preferred theory of universals (nominalism, conceptualism or realism).

8See for example, the discussion of what an ontology is on the Ontolog Forum site:
http://ontolog.cim3.net/cgi-bin/wiki.pl?, i.e., Obrst (2006).
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1.4 Interplay Between Ontology_c and Ontology_t

The issues we discuss in this section involve the complex interplay between ontol-
ogy_c and ontology_t. Two main points are discussed: (1) the proper way of
developing formalized ontologies; (2) an illustration of one case in which the inter-
play between philosophy and computer science can be explicitly seen. We discuss
the problem of the “natural” boundaries of a domain ontology and how different
types of domain ontologies should be distinguished.9

We take both Guarino’s and Giaretta’s position (Guarino and Giaretta, 1995;
ontology as interpreted formal system, i.e., a logical theory) and Gruber’s position
(Gruber, 1993; ontology as specification of a conceptualization) as problematic.
Concerning the former, we think focusing on ontology as interpretation only is
insufficient. As reflected in Guarino and Giaretta (1995), in this view ontology is
more focused on the interpretation (semantics) of a logical theory, i.e., has more of
a conceptual-flavored and model-theoretic position ultimately. A consistent logical
theory can be developed about nonsense, for example, with no intent to describe a
portion of the real world, the task of philosophical ontology as we see it. Subsequent
discussions by Guarino (e.g., Guarino, 1998a, 2002; Masolo et al., 2003) have
pointed to a better reconciliation between logical theory and realist-based formal
ontology, which is more closely aligned with our view, as discussed next.

Against both of these views, however, we would rather say that ontology
starts to be something relevant only when specifically ontological axioms are
added to some formal basis (say, FOL). The definition of new concepts with-
out the introduction of new axioms has limited value. In this regard, we consider
as exemplar the General Formal Ontology (GFO) (Herre et al., 2006).10 But
we also admire other upper or foundational ontology efforts which have sought
to axiomatize their distinctions, including, Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE),11 Basic Formal Ontology (BFO),12 Object-
Centered High-level Reference Ontology (OCHRE), Suggested Upper Merged
Ontology (SUMO),13 Upper Cyc,14 etc. Recently there was an effort to reconcile or
at least map among many of these upper or foundational ontologies by the Ontolog
Forum (Obrst et al., 2006).15

9We do not discuss ontological layers here in any detail. The interested reader instead is pointed
toward the chapters on the Categorial Stance and on Ontological Architectures in this volume.
10General Formal Ontology (GFO): http://www.onto-med.de/en/theories/gfo/index.html. See also
Herre’s chapter in this volume.
11For DOLCE and OCHRE, see Masolo et al. (2003) and the site: http://www.
loa-cnr.it/DOLCE.html.
12Basic Formal Ontology (BFO): http://www.ifomis.uni-saarland.de/bfo.
13Suggested Upper Merged Ontology (SUMO): http://www.ontologyportal.org/.
14Upper Cyc: http://www.cyc.com/cycdoc/vocab/vocab-toc.html.
15Ontolog Forum: http://ontolog.cim3.net/cgi-bin/wiki.pl?.
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1.4.1 Developing Formalized Ontologies

Concerning the second issue, the interplay of ontology_c and ontology_t, we pro-
vide an example that illustrates some domain ontology distinctions. We initially
assume that the basic distinction between domain ontologies (DO) and upper ontolo-
gies (UO) are given. We further assume that a boundary has been established
between a selected UO and the DOs which are or could be subsumed under it.
Consequently, it should be clear which concepts pertain to the UO and which pertain
to its DOs. Typically, highly general concepts like “process”, “part”, and “boundary”
are likely to be included in a UO, while concepts like “gene”, “cell” and “mem-
brane” are likely to be included in a domain ontology for, say, biology. Note that we
do suppose that a domain ontology for biology may be considered a domain-specific
UO, since the constructs of the domain ontology may correctly have to be made gen-
eral enough to encompass prospectively an entire science. Considering biology as a
domain with respect to a true UO, then in turn a biology domain ontology may be
considered a domain-specific UO with respect to many complex sub-domains. These
sub-domains can be considered domains in their own right (perhaps also incorporat-
ing other domain ontologies, say that of public administration for the case of public
health), given the complexity of their subject matter, e.g., mammalian anatomy,
neuropathology, genetic engineering, clinical medicine, public health, pharmacol-
ogy, etc. We might call such a domain-specific UO a middle ontology (that spans
multiple domains), a “superdomain” ontology, or simply a domain-specific UO.

Figure 1.116 depicts the basic layers and the nomenclature we employ. By “util-
ity ontology” in the above, we mean an ontology that represents commonly used

Upper

Upper

Upper
Ontology

Mid-Level
Ontology

Domain
Ontology

Upper

Utility Mid-Level

Super Domain

DomainDomain SuperDomain

Domain Domain

Mid-Level

Fig. 1.1 Ontology layers

16From Fig. 9.1 in Chapter 8, Ontological Architecture; also see Semy, Pulvermacher and Obrst
(2005, p. 8).
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concepts, such as Time and Location. However, there is no crucial distinction
between a “utility” and a “mid-level” ontology. We do note that in general, a mid-
level ontology more concretely represents concepts that are defined more abstractly
at the UO level.

To establish our ideas, the two following situations offer useful hints.
Case 1. At the beginning of the previous century the Polish-Russian philosopher

of law Leon Petrazycki called attention to a basic theoretical requirement of theory
development. We quote one relevant passage:

“Many theories, comprising no fallacy, are yet inadequate: one may form the concept of
“a cigar weighing five ounces”, predicate about that class everything known about material
things in general (about solid bodies in general, the chemical properties of the ingredients
of these cigars, the influence of smoking them on health, and so on); these “theories” while
perfectly correct are manifestly inadequate since what is predicated with respect to “cigars
weighing five ounces” is also true of innumerable objects which do not belong to that class,
such as cigars in general. A theory may be inadequate either (1) because the predicates
are related to classes which are too narrow . . . or (2) because the predicate is related to a
class which is too broad (such as various sociological theories which attribute “everything”
to the influence of one factor which in fact plays a much more modest part)” (Petrazycki,
1955, p. 19).

We may well read “ontologies” where Petrazycki writes “theories”. In fact, one
may well read “concepts”, since cognitive science has a comparable notion con-
cerning “concepts”, i.e., that they be non-profligate in a similar manner; especially
with respect to what is called the “theory–theory of concepts”, concepts as “men-
tal theories” (Laurence and Margolis, 1999, p. 43), and with respect to profligacy:
the potential concepts “the piece of paper I left on my desk last night”, “frog or
lamp”, “31st century invention” (Laurence and Margolis, 1999, p. 36). Interestingly,
it seems conceptual analysis is recapitulating ontology and semantics, since the for-
mer is also addressing categorization, analyticity, reference determination, and the
notion of a “prototype” including the notion of “evidential” vs. “constitutive” prop-
erties (Laurence and Margolis, 1999, p. 33), which stumbles on the epistemology
vs. ontology conundrum.

The point here is that an ontology (viz. a domain ontology) may then be inad-
equate if its boundaries are badly cut. But how should one know where to draw
“natural” or “appropriate” boundaries? Some will say that many ontologies at the
domain and middle levels correspond to scientific disciplines, i.e., that science and
scientific theories apportion the areas of interest. This is partially true, but of course
it dismisses intuitive or common-sense ontologies that humans may have, each even
considered a logical theory about the world, because they are based on non-scientific
generalizations. A theory of parenthood, for example, may not be scientific yet, i.e.,
not based on a combination of sociology, anthropology, biology, psychology, eco-
nomics, political science, and everything else that might be scientifically known,
but it may be a reasonable approximation of reality for the short or mid term, since
it’s very doubtful those combination of scientific theories will be reconciled any-
time soon. This point argues for the inclusion of commonsense theories in lieu of
established scientific theories, the latter which may not ever be forthcoming.
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Case 2. It is well known that for decades classification theory has labored under
an unresolved split between two different methodologies. This split is particularly
pronounced in the case of frameworks elaborated by librarians, where it takes
the form of the difference between enumerative or taxonomical (Dewey Decimal
Classification (DDC), Library of Congress Classification (LCC), etc) classification
and faceted classification, also called colon classification, originating from the anal-
ysis of Ranganathan (1962). Since faceted classifications are now being proposed
for Web construction and other computer-based applications as a more effective way
to organize information, a proper understanding of its nature is becoming increas-
ingly relevant. Unfortunately, what is not clear is whether any criteria is available
for deciding whether an enumerative or a faceted style of classification should be
adopted.

Where lies the natural boundary of an ontology_t? The question is both diffi-
cult and subtle. May it not be that the boundaries of an ontology may depend on
subjective intentions? Just as semantics-pragmatics in linguistics and philosophy of
language represents a spectrum, with the latter pole being focused on “semantics
in context, with respect to a given use and intent”, there are subjective intentional
issues here. However, the problem of subjective reasons or needs (“I am developing
this ontology for this and that reason, based on these use cases”) subtly misses the
point. Subjective motivations are always there, and they may more or less severely
constrain the ontology to be build. We think that even moderate subjectivism is prob-
lematic. So it is for this reason that we don’t consider an ontology_t as a standard or
an agreement: an ontology is not the result of a standards-based concensus of opin-
ion about a portion of the world, because, in general, the effort and thus the result
will devolve to the lowest common denominator, and generally end up worthless –
because it is inconsistent, has uneven and wrong levels of granularity, and doesn’t
capture real semantic variances that are crucial for adoption by members of a com-
munity. Users of ontology_t cannot be the developers of ontology_t, for much the
same reason as users should not develop their own databases: users intuitively know
their own semantics, but typically cannot express the ontological and semantic dis-
tinctions important to them, nor therefore model them – even though the real world
referents are common to everyone.

This avoidance of subjectivism is notwithstanding the established or preferred
methodology for developing a specific ontology_t, i.e., that one must focus on
the use cases, anticipated scenarios that instantiate those, and therefore the soft-
ware modeling requirements and “competency questions” (the queries you want
answered, i.e., theorems with instantiations which make them true, or the queries
you would like to have answered if it were possible for this new ontology-based
system to provide you with such), as Fox and Gruninger (1994) and Uschold and
Gruninger (1996) clarify. So ontology_t’s methodology is to proceed both bottom-
up and top-down, i.e., analyze the data sources with respect to their semantics which
will have to be captured by the resulting domain ontology and the questions end
users (domain experts) would like to ask if they could (and can’t typically ask
using database and mainstream computing technology). Concerning the latter, typ-
ically end users can’t formulate these kinds of questions because their imagination
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is constrained by their current systems. It takes patient knowledge elicitation and
knowledge of comparable kinds of value by the working ontology engineer to eke
out this kind of knowledge question.

The focus of ontological analysis is not centered on the subjective intentions
motivating the constructions of the ontology but on the item to be modelled. The
reasons for which one is modeling this or that item (or class thereof) may and do
interfere, even dramatically, but it is the item itself that is relevant. It is the thing in
the world that the ontology is grounded on.

The problem is the old philosophical problem of the connections between epis-
temology and ontology_c, as we mentioned earlier. The problem has been made
obscure by the attitude widely prevalent in recent mainstream philosophy according
to which epistemology prevails over ontology.

Ontologies_t could be more or less detailed; their existence may even – at least
in some cases – modify the functioning of the modelled system. However, the main
question is: does the existence of the item/system under observation depend on the
ontology? When the answer is negative – as it is for the overwhelming majority of
cases – we have a basis for severing the ontological core from all the rest.

The first criterion is then to look for what exists. A number of relatively easy
qualifications should now be taken into consideration. The easiest one is to consider
only directly observable items, i.e. actually existent items, but also items that existed
in the past. They are no more directly observable but we could observe them were
we living at their time (This is the pragmatist criterion firstly devised by Peirce. The
case where one can now observe the traces left by no more existent items is trivially
unproblematic). By adopting the same criterion, one may eventually include also
items possibly existing in the future.

More demanding is the question about what is said to exist, i.e., the primary inter-
est of ontology_c. For example, we may say that there are material things, plants and
animals, as well as the products of the talents and activities of animals and humans
in the world. This first prosaic list already indicates that the world comprises not
only things, animate or inanimate, but also activities and processes and the prod-
ucts that derive from them. For human-developed products, for example, functional
properties are significant (a claw hammer is meant to pound and remove nails; its
head and handle are therefore of length and material composition that is appro-
priately leveragable for those operations). It is likewise difficult to deny that there
are thoughts, sensations and decisions, and in fact the entire spectrum of mental
activities. Similarly, one is compelled to admit that there are laws, languages, and
factories.

We can set about organizing this list of items by saying that there are mate-
rial items, psychological items and social items (Poli, 2001a), as displayed in
Fig. 1.2 below, which depicts dependence of these categories.17 In turn, each of them
presents a vast array of subtypes (material items include physical, chemical, and

17Poli’s Ontology: The Categorial Stance (TAO-1) discusses these issues in more detail.
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Psychological Stratum Social Stratum

Material Stratum

Fig. 1.2 Ontological strata

biological items, psychological items include representation and emotions, social
items include laws, languages and many other types of pertinent items).

This section started by asking the natural boundaries of an ontology, how do we
determine what an ontology includes or does not include? In trying to provide an
answer we found ourselves involved in classical philosophical problems, which is
not at all surprising.

1.4.2 Ontology, Science, and Levels of Reality

Returning to our main question, any possibly correct answer concerning what an
ontology should include will have to start articulating its proposal with respect to
some existing item (or type of). Subsequent steps may follow a variety of differ-
ent paths. However, for most cases one route seems particularly prominent: that
adopted by science. For apparently good reasons, science has been developing in
different branches (including physics, economy, biology and cognitive science), the
idea being that there are classes of items that “go together”, constituting at least a
description and possibly an explanation over some portion of reality. In this regard,
ontology may follow the same route successfully traversed by science. However
different they are, ontology and science are allies. This view intends to convey that
between ontology and science there is a mutual exchange, from science to ontology
and from ontology to science. That ontology may have something to offer science
can be seen from the idea of an ontologically reconstructed and clarified science.

The suggestion is therefore to start from well established scientific partitions.
Even if something more will later be required, this initial step will nevertheless
help in avoiding two opposed risks. A truly atomistic vision claims that atoms are
the only authentically existing items, and that all the other items we recognise are
ephemeral. On the other hand, the followers of a boldly holistic vision will claim
that the only autonomously existing item is the universe as a whole. Neither of these
visions suits ontology. By relying on the multiplicities of sciences one automati-
cally advocates a molar strategy: there are many different items, of different types,
requiring different categorial frameworks.

So far so good. The point we arrive at, however, represents both a safe result and
one of maximal difficulty. As a matter of fact, so far modern science has relied on
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an essentially analytic strategy. Different sciences have been developed in order to
efficaciously segment the whole of reality into classes of more or less uniformly
connected phenomena. The guiding idea has been that phenomena occurring within
each class are more causally homogeneous than phenomena pertaining to other
classes, so that the task of explaining their behavior should be more easily accom-
plished. This divide and conquer strategy has proved immensely successful, at least
for some regions of reality. Other regions have proved more refractory, for a number
of serious reasons. The first is that different regions may require different types of
causation, some of which are still unknown, or only partially known (Poli, 2007).
A second reason is that for some regions of reality the analytic strategy of breaking
items into pieces does not work properly. A third and somewhat connected reason
is the lack of a synthetic methodology.

The complexity of reality requires the analytic strategy of segmentation into cat-
egorially homogeneous regions. This first move is not questioned. However, some
regions contain only items that can be further analytically segmented into pieces.
These items are entirely governed by their parts (from below, so to speak). Other
regions contain items following different patterns: they depend on both their parts
and the whole that results from them. Our understanding of these more complex
items is still deficient. Recent theories about granular partitions (Bittner and Smith,
2001, 2003; Bittner et al, 2007; also see Rogers and Rector, 2000) attempt to remedy
this situation.18 Even so, unfortunately, this is not the end of the story. Something
more is further required: sooner or later the products arising from the segmentation
into categorially homogeneous regions should be synthesized. For we all live in one
world. This second synthetic move has proved much more troublesome than the
original analytic move.

A properly developed synthetic strategy still awaits us. However, the theories of
levels of reality may represent a helpful step toward the elaboration of a fully devel-
oped synthetic strategy.19 Each layer of reality requires (1) specific kinds of items,
(2) appropriate categories, and (3) links to its bearing (i.e. based on building-above

18Bittner and Smith’s (2003) framework tries to uphold the strengths of set theory and mereology
for modeling parts and wholes but avoid their respective weaknesses by building on the distinction
between bona fide (objects which exist independently of human partioning efforts and fiat objects
(objects which exist only because of human partitioning efforts) (Smith, 2001). As such, their
theory of granular partitions begins to impinge on the distinction too between the semantic notions
of intension and extension – because on one view, two intensional descriptions (“the morning star”,
“the evening star”) can be seen as human partitions, even though both extensionally refer to the
same object, Venus. In their view, “partition is a complex of cells in its projective relation to the
world” (Bittner and Smith, 2003, p. 10), and so a triple is established: a granular partition, reality,
and the set of “projections” or mappings to and from the items of the partition and reality. Whether
this is ontology or ontology intermixed with epistemology remains to be clarified.
19Note that we use “level” to refer in general to the levels of reality, restricting the term “layer” to
over-forming relationships, and the term “stratum” to building-above relationships. The interested
reader is directed to Poli, “Ontology. The Categorial Stance” (TAO-1) for a fuller exposition of this
topic.
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relations (Überbauung), and conditioning (i.e. based on over-forming relations, or
Überformung)20 layers as described in Chapter 1, TAO_1.

These are precisely the lacking elements needed to answer the question above
asked on the natural boundaries of an ontology: the boundaries of a domain ontology
are the top domain categories needed for defining the domain items, plus eventual
bearing and conditioning links.

1.4.3 Example: An Ontology of Biology

Using our suggested methodology, we now describe the domain ontology of biology.
Many ontologies_t have been recently developed in the field of biology. Most

of them are found at the OBO website.21 Bio-ontologies offer a nice case for dis-
cussing ontological integration. By looking at the ontologies collected by the OBO
initiatives one may wonder whether (and how) they could be coordinated and even-
tually integrated. The problem we would like to address is whether a methodology –
here understood as a set of instructions or guidelines – could be devised for develop-
ing easy-to-integrate ontologies. Generally speaking, this will comprise minimally
three cases: (1) vertical integration, i.e., specific ontologies integrable within more
general ontologies; e.g. anatomy within biology, (2) horizontal integration, i.e., inte-
gration among ontologies modelling categorially disjoint phenomena, e.g., business
and legal ontologies, and (3) cross-domain ontologies, where a number of ontolo-
gies pertaining to different levels of reality should be both joined and pruned, e.g.,
medicine, which may require chemical, biological, psychological, economic, legal
and religious information, among others. Some of the mentioned ontologies may
further have to be pruned in order to include only information relevant to human
pathologies.

The domain top level of our proposed biology ontology will be based on the
following three concepts (Hohendorf et al., 2008):

• Biological entity (BE).
• Living entity (LE)
• Organism (OR).

Any biological item is a biological entity. The concept of BE refers to anything
organic: DNA, mRNA, the nucleus of a cell, the membrane of a cell, its organelles,
urine are bioentities. The main function of the concept of BE is to delimit the
field. This will prove especially relevant when different ontologies_t are merged
together. If all the merged ontologies_t define their most general domain concepts,
their management will prove much easier (and safer).

20Over-forming relations (Überformung) and building-above relations (Überbauung) are from
Hartmann (1952).
21Open Biomedical Ontologies (OBO) Foundry. http://obofoundry.org.
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Living entities are a specific class of BEs. Two features distinguish LEs from
BEs (1) all LEs are systems, while not all BEs are; and (2) LEs are metabolic sys-
tems. This means that LEs are entities that can survive if appropriate nutrients are
provided. Cells, tissues and organs are cases in point.

Lastly come organisms. These are autopoietic LEs, i.e. LEs able to produce BEs
of which they are composed. Note that a different criterion could be also used: ORs
are autonomous LEs (i.e., entities able to survive without a wider encompassing
entity). However, we’ll use autonomy shortly and will then include it anyway. We
have two main types of ORs: unicellular and multicellular ones. The cell that is a
unicellular organism is a BE, a LE and an OR. The multicellular organism as a whole
is a BE, a LE and an OR. The difference lies in the cell composing the multicellular
organism: differently from the single cell that is a unicellular organism, the cells of
multicellular organisms are living entities but are not organisms. According to the
proposed definitions, a liver cell, then, is a living entity but not an organism.

Two more issues remain to be addressed. The first issue concerns the special sta-
tus of the cell, which sometimes is taken as a full-fledged organism and sometimes
not. To mark the difference it is sufficient to consider that all the other living entities
apart from cells can never be taken as organisms. Cells, therefore, have a special
status, that should be marked in some way. We will mark this fact by using the same
relation for both the organism-organism case and the cell (as LE) and the organism
case. Table 1.1 below shows the relevant cases for binary relations.

Finally, one may notice that if one subtracts LEs from the field of BEs what
remains can be taken as coincident with the field of organic chemistry. This is
entirely correct and shows the link between a bio-ontology and the ontology/ies
characterizing its underlining levels of reality. However, there are differences that
shouldn’t be forgotten. The most obvious one is that the subtraction of living entities
modifies the situation in such a way that a number of question become unanswer-
able. Even if urine is a purely chemical substance (well, a mixture of), how could one
explains its presence without taking organisms into consideration? Organic chem-
istry and biology present areas of overlapping, and that provides the link between
them. However, the questions that are asked from within organic chemistry and the
questions that are asked from within biology are different, and this shows that they
are different. The reason because they are different lies in the entities grounding their
specific levels of reality: molecule for chemistry, (cells and) organisms for biology.

All of this is obviously a first step only. Many other kinds of biological informa-
tion need to find their proper place. Here is where the second case above mentioned
enters the scene. Needless to say, the minimal structure based on the three cate-
gories of biological entity, living entity and organism should be widely enlarged if

Table 1.1 Relations between organisms and cells

Relations between unicellular organism A and unicellular organism B.
Relations between unicellular organism A and multicellular organism B (or vice versa).
Relations between cell A (as a LE and not as a OR) and multicellular organism B

(or vice versa).
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a reasonably articulated model of biology is going to be realized. Once the basic
ontological structure of a domain has been established – that is to say, once the
levels of reality of the domain have been fixed – the subsequent step is to devising
their dimensions of analysis. Here is where faceted analysis can best play its role.
Maintaining fixed our reference domain of biology, two series of facets follow. The
first series is centered on the governing concept of organism as an individual whole
and lists the “viewpoints” from which organisms so taken can be seen. One can then
consider at least the following three cases:

• Classification
• Structure
• Function

Classification will model the unquestionably well known biological taxonomies,
starting from the distinction between prokaryotes and eucaryotes and then substruc-
turing the former into archea and probacteria and the latter into protista, fungi,
plantae, and animalia.

Structure applies part-whole analysis to cells and organisms, for both parts,
organ and tissues. Traditionally this type of analysis is called cytology for the cell
and anatomy for multicellular organisms. A properly organized biological structure
should comprise non only default cases but also variations and anomalies.

Function, finally, corresponds to what is traditionally called physiology and
model the working of the part descriptively listed by the previous facet of the organ-
ism’ structure. In the case of the facet of functions, (serious) variations are usually
called pathologies (to be further distinct between intra-systemic and inter-systemic
pathologies).

The second series of facets list all the other viewpoints, those not focused on
the organism as a whole. These may comprise for instance genetics (focus on the
genes), ethology (focus on some population of organisms), ecology (focus on an
entire ecosystem). But, again, this is not the entire story. A substantial number of
other facets can and should be developed, concerning for instance the growth and
development of organisms, or their reproduction, or their alimentation. For each of
these facets, appropriate ontologies can be developed.

It is time to sum up what has been described in the sections above. We will now
try to extract a general scheme from the various topics so far seen.

We propose to distinguish four different types of domain ontologies:

1. Domain ontologies in the proper sense (e.g. Biological ontology)
2. Sub-domain or facet ontologies (e.g. Gene ontology)
3. Cross-domain ontologies (e.g. Medical ontology)
4. Micro-domain ontologies (e.g. an ontology of edible substances)

In order to maximize the likelihood of ontology mapping, merging, i.e., inte-
gration, we advance two different claims: (1) domain ontologies (of any of the
above-distinguished types) should use a top level ontology as their best change of
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being grounded in a robust framework; (2) furthermore domain ontologies should
contain their own top level (domain-top-level); we will further claim that each of
the four domain ontologies above distinguished needs a different domain-top-level
(this partially explains why distinguishing domain ontologies into specific types is
relevant).

In order to distinguish the different cases, the first needed step is to find a criterion
for distinguishing domain ontologies in the proper sense from the remaining cases.
As a preliminary working definition we propose to define a proper domain ontology
as a (1) categorially closed, (2) maximal partition of reality. Therefore, not every
partition whatsoever is a domain (in the proper sense).

Our second partition is between domain ontologies (in the proper sense) and
their facets. Consider the above described case of a biological ontology. Our claim
is that bio-ontology as a whole is a domain ontology while taxonomy, anatomy,
physiology, genetics, ecology etc. are some of its facets (and therefore should be
properly classified as facet ontologies and not as domain ontologies).

We have claimed that a domain ontology is a categorially autonomous level of
reality. “Categorially autonomous” means that even if its phenomena/entities may
be existentially dependent from lower and/or side level entities, they nevertheless
require a categorial framework different from the one used for understanding the
entities of the existentially supporting levels (i.e., they are categorially autonomous).

For instance, biological entities (organisms) require chemical entities
(molecules) which in their turn require physical entities (atoms) as their “matter”.
However, the frameworks needed for understanding biology, chemistry and physics
are different (otherwise there will be only one single science). A somewhat more
complex case is provided by side-level domains: the connection linking economy
and law is different from the hierarchical one linking say chemistry and biology.
The former are domains based on specific phenomena and each requires its specific
categorial framework. However, the one supports existentially the other; none of
them can exist without the other. Furthermore, both require underlining existential
support for both agents and their biological environment.

The above makes clear that one should distinguish existential dependence from
categorial autonomy. The latter literally means that the field under analysis presents
phenomena requiring new categories.

Any ontology (domain or not) presents a number of different phenomena and
usually requires a vast array of categories. Here we claim that all domain ontologies
present one (or very few) basic (types of) entities. Sometimes they are difficult to
find. Occasionally, science itself has needed quite a while before discovering the
constitutive (dominant) entity/entities of the field. The list of domain-constituting
entities is an enormously powerful tool for ontology development.

Finally, the top level of a domain ontology should comprise the following
information (in parentheses is the information for bio-ontology):

1. The most general domain categories (BE, LE, OR)
2. Link from the domain’s levels of reality (Organism) to the Theory of Levels

module of the general top level ontology
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3. The namespaces for the domain’s “facets” and their position in the overall
structure of the domain ontology

The top level of a sub-domain ontology will include only (1) and (3), but may
lack (2). (3) may be needed in case the sub-domain ontology is further segmented
into sub-sub-domain ontologies.

The last case is the case of cross-domain ontologies, as e.g. medicine. The mini-
mal indication we can here provide is that the top level of a cross-domain ontology
should include the top levels of all its relevant domains, plus appropriate pruning
of the domain’s internal organization. The most obvious case of pruning is limit-
ing biological information to those fragments of biology that are relevant for homo
sapiens.

1.5 Looking Toward the Future

In this chapter we have demonstrated the interaction between ontology_c and
ontology_t, elaborating the definitions of each and describing issues pertinent to
both. In addition, we have illustrated this collaboration with an extended example,
developing the foundations for an ontology of biology.

Both ontology_c and ontology_t are dependent on each other: (1) ontology_t
depends on ontology_c for clarification of the issues involved in describing ontolo-
gies about the real world, and (2) ontology_c depends on ontology_t for representing
the ontologies about the real world that can be developed into engineering products
and be used by software, enabling machines to more closely interact at the human
level of conceptualization.

We see increasing interaction between these two aspects of ontology, ontology_c
and ontology_t, in the future. Once the more basic issues are elaborated on and
scientific consensus established (as we have broached in this chapter), issues such as
ontology modularity, mapping, context-determination and representation, vagueness
and uncertainty, and ontology lifecycle development will become predominant.

What will become more important are issues ontology_c and ontology_t can
work on together and evolve solutions for. Some of these are among the following.

1.5.1 Better Ordering Relations for Ontologies

One issue is the nature of the order relations for ontologies. These can be charac-
terized in many ways: from the perspective of mathematics and computer science
set-theoretically, i.e., as partially ordered sets, lattices (semi-lattices; Davey and
Priestley, 1991), and including structures used by formal concept analysis (Ganter
and Willey, 1996), etc.; or category-theoretically (MacLane, 1971; Lambek and
Scott, 1986; Pierce, 1991; Asperti and Longo, 1991; Crole, 1994; Barwise and
Seligman, 1997), etc. In ontology_c, these order relations may include those above
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but extended with notions of mereology and mereotopology (Varzi, 1998), granular
partitions (Bitner and Smith, 2003), strata and levels of reality (Poli, 1998, 2001a).

A related issue concerning order is a prospective reconciliation of the notion
of subsumption (set-theoretic order) heavily used by informal taxonomies, descrip-
tion logics, thesauri, object-oriented conceptual models, and the logical theories of
ontology engineering. Typically this subsumption relation is called subclass_of or
isa, i.e., the special transitive relation of a child class (non-terminal category) to its
parent class, with the implicit assumption being made that there is some necessary
property that distinquishes a child class from its parent or siblings classes.22 The
subclass/isa relation forms a taxonomic backbone for ontologies_t. Ontology_c has
influenced methodologies and tools to assist in the improved development of the
taxonomies at the core of ontologies, e.g., the use of meta-properties in OntoClean
(Guarino and Welty, 2002).

1.5.2 Elaboration of the Distinctions Among Ontology Levels

We envision increased collaboration in the future between ontology_c and ontol-
ogy_t on some of the issues we began to elaborate in Section 1.4 focusing on
ontology architecture, e.g., the distinctions between upper ontologies and domain
ontologies, including levels of reality, and distinct theories of causality (Poli, 2007).
These issues also impact the part/whole distinctions made by meronymy, mereology,
and topology (Simons, 1988); Varzi and Pianesi, 1996a, b; Varzi, 1998). Discussion
of granularity brings up issues related to zooming in and out and reasoning at dif-
ferent levels of reality, approximation, and vagueness (see Williamson, 1998; Keefe
and Smith, 1999; Obrst and Mani, 2000; Varzi, 2000; Bittner and Smith, 2001).

Upper ontology issues of ontology_c have already come to the forefront in
developing ontology_t products, including time/space distinctions and perspectives:
3D vs. 4D, endurantism vs. perdurantism (see Chapter 14 by Herre, this volume),
SNAP/SPAN notions of Grenon (2003), Grenon and Smith (2003). In many cases,
ontology engineers working in ontology_t are fiercely supportive of one perspec-
tive or another; others would like to maintain the multiple perspectives, picking and
choosing which upper theories to use for different domain ontologies or different
domain applications. To do so, bridge axiomatization are necessary, e.g., bridging
axioms relating 3D to 4D would provide the best of both worlds. However, to date
no one has actually created these bridge axioms (Hamlyn, 1984; Sider 2001; Loux,
2002; Obrst et al., 2006).

22There is also the instance_of relation that is the relation between a lowest-level class (non-
terminal) or classes (in the case of multiple parents) and the instance (terminal, an individual
or particular) which instantiates the properties of that class or classes. In general, classes are
universals and instances are particulars.



20 R. Poli and L. Obrst

1.5.3 Ontology Modularity, Mapping, and Formalization
of Context

Ontologies_t are often called logical domain theories to emphasize that they are
logical theories about specific domains of the real world. In the case of upper ontolo-
gies, these are logical foundational (upper) theories, to signify that they are about
notions that traditionally originate from philosophical ontology, ontology_c, but
are no less logical theories, i.e., syntactic theories (with licensed semantic mod-
els) expressed in a logic and similar to scientific theories except also often extended
to common-sense reality (where no scientific theory yet exists or perhaps ever will),
and thus a common-sense theory.

Viewed as a collection of interlinked logical theories, ontology_t is concerned
with establishing the nature of the relations among these interlinked logical theo-
ries, i.e., the nature of the links. Mathematically and computationally, these links are
important because they characterize notions of modularity among and within ontolo-
gies. If micro-theories can be established (and represented as engineering products)
and linked, then these micro-theories can be seen as constituting a theory. Together,
many theories can constitute larger theories about reality and on which automated
reasoners and other applications in information technology can operate.

It’s important that these links among micro-theories and theories are defined log-
ically, so that the “correct entailments” flow across those links. Automated reasoners
that reason on vastly many theories require logical notions of modularity, to ensure
sound and consistent reasoning. But the definition of what constitutes an ontological
“module”, i.e., a micro-theory or theory, is not yet agreed on. There are many can-
didates: one notion of modularity is that of “little theories” in mathematics (Farmer
et al., 1992), e.g., how the theory of monoids are related to the theories of groups.
There is the microtheory of Cyc (Blair et al., 1992). There is the modularity of cat-
egory theory (Kent, 2004), which focuses on categories and systems of categories
and morphisms among them. There is the so-called “lattice of theories” approach
in which distinct ontologies are related by logical relations (or their interpretations)
(Sowa, 2000).

But are ontologies_t logical theories about the world or are they vocabular-
ies/models about a community? Some in the information technology community
view ontologies as collaborative agreements, more like common conceptual models
or standards. This is not a general view, but it exists. Hence, communities of interest
form to share information and do so by developing common vocabularies. Typically
this is a bottom-up paradigm, wherein communities form to share at least a subset of
their individual information, and require common vocabularies and models of those
vocabularies. Frequently this paradigm views the process of eliciting these vocabu-
laries and models as a standards activity, wherein concensus is established among a
potentially large community.

Directly related to modularity is the the notion of mappings among ontologies,
in which disparate ontologies are related. Mapping includes issues such as enforc-
ing local consistency but tolerating global inconsistency (Wiederhold, 1994; Mitra
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et al., 2000; Noy and Musen, 2000). In general, the mapping between two domain
ontologies constitutes a third integrative domain ontology which must be able to
express everything that is in the two source ontologies.

Finally, pertinent to modularity within and among ontologies is the notion of
formalization of context: what does it mean to index assertions of ontologies, to
state that certain propositions are true in a given context? Is this the same notion
as that of possible worlds with accessibility relations among worlds, with some
worlds being “farther away” than other worlds because of their greater respective
inconsistencies? Do we need modal logic to express this? Contexts are sometimes
called views or perspectives; is this related to the thesaural notion of facets – i.e.,
perspectives or distinguishable trees connected by cross-references? Context will be
increasingly relevant to automated reasoning over ontologies and their knowledge
bases. For semantic, computational, and logical approaches to context (see Lewis,
1980; McCarthy, 1987, 1990, 1993; Guha, 1991; McCarthy and Buvač, 1997; Blair
et al., 1992; Akman and Surov, 1996, 1997; Giunchiglia and Ghidini, 1998; Menzel,
1999; Bouquet et al., 2003; Obrst et al., 1999a, b; Smith and Obrst, 1999; Obrst and
Nichols, 2005; Fikes and Welty, 2006).

1.5.4 Representation vs. Reasoning

This chapter has been primarily focused on the interplay between ontology_c and
ontology_t with respect to representation, i.e., the correct explication of ontol-
ogy from the perspective of philosophy and a coherent rendering of that into an
engineering model that information technology can utilize. Representation here
is commonly considered the content and the logical language that the content is
expressed in. However, reasoning over that representation is especially important for
ontology_t, just as it is for ontology_c. For ontology_c, the reasoning is performed
by human beings; for ontology_t, the reasoning is performed by machines. We
observe the slogan “No reasoning without representation”, which means that auto-
mated reasoning, much like human reasoning using formal logical argumentation,
is ultimately constrained by the representation that is reasoned over, i.e., the content
and the logical language the content is expressed in. One cannot perform full pred-
icate calculus reasoning over content expressed in the propositional calculus, for
example.

So a final consideration for future interplay between ontology_c and ontology_t
is that focused on the nature of automated reasoning, i.e., the preferred logics for
the reasoning, the types of automated reasoning one can perform on those logics
(deduction, induction, abduction), the semantics-preserving transformations from
one logic or knowledge representation language to another, including perhaps that
to special substructural logics (Restall, 2000) for specific kinds of reasoning, and
finally, issues of particular relevance to ontology_t concerning knowledge compila-
tion (Kautz and Selman, 1994; Cadoli and Donini, 1997; Darwiche and Marquis,
2002), i.e., how best to make an efficient runtime representation for the automated
reasoning – which necessarily addresses issues in computational and descriptive
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complexity (Graedal et al., 2007) from computer science, while at the same time
addressing issues in approximation and vagueness on which ontology_c can offer
significant insight.

1.5.5 Final Words

Ontology_t needs to be informed by ontology_c and its methods. Ontology_c will
increasingly benefit from the sound and consistent software engineering products
arising from ontology_t. Computer science, formal philosophy, and formal seman-
tics have come together to birth the beasts called “ontology science” and “ontology
engineering”. These are strange beasts of Earth but are classifiable and describable
under the heavens. Tomorrow it may be that our machines are thereby enabled to
in turn be born as stranger beasts, which may yet interact with us human beings as
cousins on the well-founded and computationally represented ontological firmament
of Earth.
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Chapter 2
Ontological Architectures

Leo Obrst

2.1 Introduction

We distinguish between ontological architecture and ontology architecture, though
they are closely related. Ontology architecture is emerging as a distinct discipline
in ontology engineering – as an ontology development and deployment structure
and methodology (Fernandéz et al., 1997). It necessarily also includes aspects of
what is sometimes termed ontology lifecycle management (Andersen et al., 2006).
In fact, ontology architecture can be considered to encompass ontology lifecycle
management because the former lays out a general framework for the develop-
ment, deployment, and maintenance of ontologies (which is the focus of lifecycle
management), but also includes the interaction of applications and services that
use ontologies, and an ontology tool and service infrastructure to support these.
Ontological architecture is the architecture that is used to structure the ontolo-
gies that are employed by ontology architecture. As such, it addresses the levels
of ontologies required (foundational, upper, middle, utility, reference, domain, and
sub-domain ontologies), and mathematical, logical, and engineering constructs used
to modularize ontologies in a large ontological space. This chapter focuses on onto-
logical architecture, but it must be understood to underpin ontology architecture if
only to ground/situate and enable the latter. Both kinds of architecture are relevant
to ontology engineering, but we cannot address ontology architecture here until the
very last section, when we look ahead. Instead, we focus on ontological architecture,
which as it turns out, is a large enough topic.

The chapter is structured as follows. In Section 2.2, we distinquish ontologi-
cal architecture from ontology architecture, provide some understanding of their
respective rationales, how ontologies are distinct from but impinge on elements of
epistemology, the formal semantics of language, and conceptual models. We depict
the ontology spectrum (Obrst, 2002–2003), which constitutes a range of seman-
tic models of increasing expressiveness, and define these. The more expressive
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models enable more complex applications. We also show how one aspect of onto-
logical architecture, the expressiveness of the knowledge/ontology representation
language, and ontology application are related. In Section 2.3, ontological archi-
tecture is described, by detailing the use of upper, middle, and domain ontologies
to address semantic interoperability. We extend this with a discussion of additional
structure that has been proposed, and some foundational ontological distinctions.
Section 2.4 is the core of the chapter. It discusses some ways of structuring the
ontological space, which really is itself embedded in a logical space, and necessar-
ily must also address meta-ontological architectural issues. Notions of ontological
modularity are examined, including that of formalized contexts such as microtheo-
ries, which originated from the Cyc effort (Blair et al., 1992), the approach called
the lattice of theories, most recently characterized by John Sowa (2005), additional
approaches based on logical ways of characterizing mathematical little theories
(Farmer et al., 1992) which yet must interoperate, recent research in ontology mod-
ularity, and Robert Kent’s (2004, 2006) meta-ontology called the Information Flow
Framework, based on Barwise and Seligman’s (1997) Information Flow Theory,
itself an application of Category Theory (Mac Lane, 1971; Bar and Wells, 1999),
and similar work at the meta-ontological level. Finally, in Section 2.5, we conclude
with a vision of the future for both ontological and ontology architecture.

Ontological architecture spans many topics. We can only briefly sketch its
components in this chapter.

2.2 Ontological and Ontology Architecture: Overview

Ontology architecture addresses content (how better ontologies are developed), the
apparatus needed to develop, deploy, and maintain ontologies (which tools, require-
ments, methodologies, lifecycle support, policy, and governance are required), and
ontology application interaction (how data is stored, accessed, and linked to ontol-
ogy instances and facts; which services do ontology require for and provide to
applications). We do not address this ontology architecture per se in this chapter,
since our interests are more fundamental. Instead, we focus on ontological archi-
tecture, the foundational architecture which must underpin subsequent ontology
application notions we characterize as ontology architecture. This section provides
an overview of what ontological architecture addresses.

2.2.1 Truth and Belief: Ontology, Epistemology, Contextual
Semantics, Language, and Applications

Ontology is many things to many people, as the other chapters of these volumes
demonstrate, and so no time is spent here defining ontology. This chapter focuses on
architecture. One issue, however, needs to be raised: what ontology does not address
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particularly must still be addressed by ontology architecture. Ontology is not epis-
temology, nor is it the semantics of natural language. But aspects of these must
be addressed by an account of ontology architecture. Why epistemology? Because,
though ontology is about the real entities, relations, and properties of the word,
epistemology is about the perceived and belief-attributed entities, relations, and
properties of the world, empirical evidence gleaned that will be described or char-
acterized by ontology. Why natural language semantics? Because, though ontology
is about the real entities, relations, and properties of the world, natural language
semantics is about the rendition in language of interpretations about the entities,
relations, and properties of the world, and includes notions of sense and reference.
In ontology architecture, epistemology is employed in the use and qualification of
data and as stored in databases or tagged or indexed in documents. In ontology archi-
tecture, natural language semantics is employed in the analysis of natural language
descriptions used to ascertain and represent the real world entities of ontology, the
naming conventions used and the access to the interpretations about the real world
that the ontology represents. One natural language processing technology in par-
ticular, information extraction, crucially depends on natural language semantics --
information extraction addressing the identification of entities, relations, and events
in unstructured text, and the tagging or extraction of these to form instances of
ontology concepts.

2.2.2 The Big Picture

Figure 2.11 is a graphical rendition of ontological architecture and its components.
These components will be described in more detail in Section 2.3.

The important point about this diagram is the layers: the upper, mid-level, and
domain (or lower) ontology layers. Sometimes the upper and mid-level ontologies
are called foundational ontologies, and there can be multiple such in each layer.
We eschew the notion of a monolithic ontology, at least for engineering purposes,
and instead view foundational ontologies similar to domain ontologies: as coher-
ent and consistent theories, hence our use of the terminology introduced in the next
section, i.e., ontologies as logical theories. In our view, upper ontologies are most
abstract and make assertions about constructs such as identity criteria, parts/wholes,
substance and constitution, space and time (and endurants and perdurants), neces-
sary properties, dynamic properties, attributes spaces, etc., that apply to all lower
levels; hence, they span all mid-level and domain ontologies. Upper ontologies
themselves may consist of levels, as the extended discussions on levels of reality
make clear (Poli, 2003; Poli, 2010, this volume; Poli and Obrst, 2010, this vol-
ume). Mid-level ontologies are less abstract and make assertions that span multiple
domain ontologies. The characterization of these are less clear, as is the demarca-
tion point between upper and mid-level. Some examples of constructs potentially in

1See Semy et al. (2004, p. 8), also Chapter 1 by Poli and Obrst, this volume.
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a mid-level ontology are humanOrganization and industrialProcess. These are not
necessarily represented in an upper ontology, but may be; probably, however, they
are in a mid-level ontology (a biomedical mid-level ontology may not have these as
concepts; however, a manufacturing mid-level ontology would have them).

2.2.3 The Ontology Spectrum

Ontology architecture, just like ontology, is a notion that must be learned and incor-
porated gradually over time by an enterprise or community. It’s possible, though
rare, that an enterprise or community is sufficiently knowledgeable about ontology
and its use in semantically informing applications; it’s equally rare that the organiza-
tion is aware of the costs, hazards, cost-effective benefits, and preferred methods of
using ontology. To assist organizations (enterprises, communities) in determining
the range of semantic models that constitute stages of embracing semantic tech-
nologies of which the highest model is ontologies, we have created the Ontology
Spectrum, depicted in Fig. 2.2 (Obrst, 2002; Obrst, 2003; Daconta, Obrst, Smith,
2003). The Ontology Spectrum is both a description of the range of semantic mod-
els, as they increase in expressivity and complexity of structure, and an indication of
the migration path that organizations can take as the expressiveness of their semantic
models needs to increase in order to accommodate their richer problems and hence,
solutions. The lower end of the Ontology Spectrum is in fact not about ontologies
at all.

What is colloquially, though incorrectly, known as an ontology can range from
the simple notion of a Taxonomy (terms2 or concepts with minimal hierarchic or

2We differentiate and define term and concept in Table 2.1, below.
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Fig. 2.2 The ontology spectrum

parent/child structure), to a Thesaurus (terms, synonyms, broader than/narrower
than term taxonomies, association relation), to a Conceptual Model (concepts struc-
tured in a subclass hierarchy, generalized relations, properties, attributes, instances),
to a Logical Theory (elements of a Conceptual Model focusing however on real
world semantics and extended with axioms and rules, also represented in a logi-
cal KR language enabling machine semantic interpretation). Terms and concepts
are differentiated in Table 2.1. We also differentiate between weak and strong tax-
onomies: The subclassification of relation characterizes weak taxonomies. Strong
taxonomies are characterized by either the subclass of relation for concepts (which
typically can be considered universal categories for referents3) or the narrower

3There is, however, a vast literature on the notion of concept in philosophy, cognitive sci-
ence/psychology, and linguistics. Often in cognitive science/psychology, a concept is considered
to be mental particular, having a structured mental representation of a certain type (Margolis and
Laurence, 1999b, p. 5–6). However, in philosophy, a concept is considered an abstract entity, signi-
fying a general characterizing idea or universal which acts as a category for instances (individuals
in logic, particulars in metaphysics and philosophical ontology) (Smith, 2004). Even in the philo-
sophical literature, the notion of concept will vary according to philosophical stance, i.e., according
to whether the adherent to the particular notion is an idealist, nominalist, conceptualist, or realist,
or some combination or refraction of those (Poli, 2010). For example, some will consider a concept
to be simply a placeholder for a real world entity, either a universal or a particular; example: Joe
Montana (a former USA football quarterback) or Winston Churchill (a former UK prime minister)
as concepts. That is, the mental placeholder or idea can be about anything. This notion of con-
cept is a surrogate for anything that a philosophical or many linguistic theories may opine. Often,
therefore (and this is our view here), concepts are best understood as conceptions, a term which
has perhaps less technical baggage, insofar as conception emphasizes that we are talking about a
mental representation which may or may not be reified as a concept, perhaps a stronger notion. But
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Table 2.1 Term vs. concept

Terms (terminology): Natural language words or phrases that act as indices to the underlying
meaning, i.e., the concept (or composition of concepts). The term is syntax (e.g., a string) that
stands in for or is used to indicate the semantics (meaning).

Concept (a universal category for referents): A unit of semantics (meaning), the node (entity) or
link (relation) in the mental or knowledge representation model. In an ontology, a concept is the
primary knowledge construct, typically a class, relation, property, or attribute, generally
associated with or characterized by logical rules. In an ontology, these classes, relations,
properties are called concepts because it is intended that they correspond to the mental concepts
that human beings have when they understand a particular body of knowledge (subject matter
area or domain) but at the philosophical universal level, i.e., as kinds of entities. In general, a
concept can be considered a placeholder for a category (way of characterizing) of specific real
world referents (synonymously: specific entities, instances, individuals, or particulars), and thus
ontology as an engineering product is about representing the semantics of the real world in a
model that is usable and interpretable by machine.

than relation (thesauri) for terms. Only the subclass/narrower than relation is a
generalization-specialization relation (subsumption).4

A Conceptual Model can be considered a weak ontology; a Logical Theory
(Fig. 2.3) can be considered a strong ontology. The innermost circle is the set of
axioms. The middle circle is the set of theorems. The outermost circle is the ever
expanding theory, an ontology as logical theory about reality which grows over time,
as new axioms are entered and new theorems deduced. An ontology as a logical
theory is thus: (1) a set of (non-logical) axioms, i.e., the classes, properties, sub-
class and subproperty assertions, the relations, attributes, and constraints on these;
(2) the potentially expanding set of theorems, which can be proven true by some
valid justification mechanism such as that which a typical formal logic provides,
i.e., a set of equivalences or valid reasoning patterns known as inference rules, e.g.,
Modus Ponens; (3) interpretations, which are not depicted in the figure, are the
mappings between a given theory and the set of models (in the sense of model-
theory (Makowsky, 1992; Van Leeuwen, 1994; Hodges, 1997), which are supposed
to be what the syntactic expressions of the theory mean. The whole, a logical theory,
constitutes the specific, growing ontology.

The primary distinction here between a weak and a strong ontology is that a
weak ontology is expressed in a knowledge representation language which is not

for purposes of simplicity, we use the term concept in this chapter to mean roughly an abstract
entity signifying a general characterizing idea or universal which acts as a category for instances.
4The subsumption relation is typically defined to be the subset relation, i.e., intuitively a class is
similar to a set, and the instances of that class are similar to elements of the set. A more gen-
eral class (set), therefore, like mammal will contain a subclass (subset) of primate, among whose
instances (elements) will be specific humans like Ralph Waldo Emerson. Concept subsumption
as an ontology reasoning problem means that “given an ontology O and two classes A, B, verify
whether the interpretation of A is a subset of the interpretation of B in every model of O” (OWL
1.1. http://www.w3.org/Submission/owl11-tractable/).
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Fig. 2.3 Ontology as logical theory

based on a formal logic. Why is this important? It means that a machine can only
read and process a weak ontology (e.g., currently models in ER or UML). It cannot
semantically interpret the ontology, i.e., ingest the ontology and perform automated
reasoning on it (reasoning which is similar to that which a human would make). So
a weak ontology is not semantically interpretable by machine; a strong ontology is.

So what is usually, colloquially considered by the larger community to be an
ontology needs clarification: all of these models should instead be considered
semantic models. An ontology is restricted to the upper half of the Ontology
Spectrum The Ontology Spectrum therefore displays the range of models in terms of
expressivity or richness of the semantics that the model can represent, from “weak”
or less expressive semantics at the lower left (value set, for example), to “strong” or
more expressive semantics at the upper right. The vertical lines, labeled by syntactic
interoperability, structural interoperability, and semantic interoperability, indicate
roughly the expressiveness of the model require to respectively address those levels
of interoperability.5 Syntactic interoperability is defined as enabling the interchange
of information based on a common syntax for at least that interchange. Structural
interoperability is defined as a providing a common structure (a higher-order syn-
tax) to enable the interchange of information. For example, multiple documents

5There are both lower levels of interoperability and higher levels. Lower levels include logical and
physical accessibility and connectivity interoperability, e.g., having two information sources on
the communication network, with network addresses known by those who might wish to access
those sources. A higher level might be pragmatic interoperability (intending a formal pragmatics
account), which factors in the intent of the represented semantics.
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may be syntactically represented in XML, but need to be validated against dis-
tinct structural XML schemas or Document Type Definitions (DTD), which can be
viewed as grammar rules that organize components of the syntax in specific ways.
Semantic Interoperability is defined as providing a common semantics to enable the
interchange of information, i.e., the semantics of the structural layer: what those
structural components mean.

As depicted in the Ontology Spectrum, XML is sufficient for syntactic interop-
erability, XML Schema enables structural interoperability, but a minimum of RDF
is necessary for semantic interoperability.

Figure 2.4 maps those semantic models against the increasingly more complex
applications that are able to be addressed by using those models.

In the above diagram, term (terminology) and concept (real world referent) are
defined as previously in Table 2.1.

As the expressiveness of the semantic model increases, so does the possibility
of solving more complex problems. At the Taxonomy level, an application can pro-
vide only simple categorization, indexing, search, navigation: for example, indexing
your documents into loose topic buckets with some hierarchic organization. Using
thesauri can enable a search application to increase recall by, for example, using
synonyms and substituting these into an expanded query string. For applications
that require more precision, i.e., where approximate or loose characterizations of
the semantics simply will not accomplish what is needed, more expressive models
such as Conceptual Models and Logical Theories, i.e., ontologies, are required.

Recall is a measure of how well an information search and retrieval system finds
ALL relevant documents on a searched for topic, even to the extent that it includes
some irrelevant documents. Precision is a measure of how well such a system finds

Fig. 2.4 More expressive semantic models enable more complex applications
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Table 2.2 Recall vs. precision6

Recall: The percentage of relevant documents retrieved:
Number of relevant docs retrieved
Number of relevant docs

Precision: The percentage of retrieved documents judged relevant:
Number of relevant docs retrieved
Number of docs retrieved

ONLY relevant documents on a searched for topics, even to the extent that it skips
irrelevant documents. Table 2.1 displays the usual definitions of recall and precision.
In most cases, recall and precision are inversely proportional to one another, with
high recall leading to low precision, and high precision meaning the recall is low
(Buckland and Gey, 1994; Table 2.2).

2.2.4 The Ontology Maturity Model

Building on the notions of the Ontology Spectrum, we describe one possible view
of how an enterprise may migrate from less expressive semantic models to more
expressive models, i.e., to real ontologies, based on both the common understanding
of the enterprise and its requirements for more complex applications. Figure 2.5
displays an overall Ontology Maturity (or Capability) Model, simplified here, that
shows the significant gradations toward greater maturity an organization may take
in its evolution toward more completely realizing the goal of an ontology-driven
enterprise.

This figure, which is patterned after the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) that was intended to describe and gauge an
organization’s software process maturity (Royce, 2002), we attempt to develop a
scale of maturity in an organization’s migration towards increasingly more robust
approaches to the use of ontologies for information technology needs.

Our analysis is that initially an organization thinks primarily of local semantics,
i.e., attempts to characterize their information technology needs based on (currently
mainstream) syntactic and structural methods, with only implicit semantics: a nod-
ding of the head to signify agreement with the semantics as uttered in speech, or
an agreement on a data dictionary of English or other natural language definitions,
which ostensibly humans can read and indirectly nod their heads over. However, as
an organization evolves, it begins to understand that it is actually composed of many
communities and sub-organizations, each of which has its own local semantics but
in addition a common enterprise-wide semantics, in fact a common semantics based

6“Recall is like throwing a big fishing net into the pond. You may be sure to get all the trout, but
you’ve probably also pulled up a lot of grouper, bass, and salmon, too. Precision is like going spear
fishing. You’ll be pretty sure to ONLY get trout, but you’ll no doubt miss a lot of them, too.” – Jim
Robertson, http://www-ec.njit.edu/∼robertso/infosci/recall-precision.html
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Least Mature 

Most Mature

OMM Level 4

OMM Level 2
Principled, consistent local semantics captured, some real domain
semantics represented as persistent & maintained models (local
ontologies); term & concept (referent) distinguished   

OMM Level 1
Mainstream syntactic/structural DB technology (+ data warehouses + data marts),
no persistent linkage of semantics to syntax/structure, ad hoc local semantics
sometimes captured in data dictionary & commented in extraneous code; no clear   
distinction made between term & concept (referent)

OMM Level 3 

OMM Level 5

Focus is on capture of real domain semantics, mostly
represented as persistent & maintained models (frame
ontologies); term resources linked to models    

Consistent & pervasive capture of real domain 
semantics, represented as persistent & maintained
models (frame ontologies, some axioms); some
linkage to upper/middle; some inference supported    

Consistent, pervasive capture of
real domain semantics embedded
under common middle/upper
semantics (axiomatized
ontologies); extensive inference      

From less to
more mature  

Fig. 2.5 Ontology maturity model (OMM)

on real world referents that all communities and sub-organizations in the enterprise
share. Most commonly, as a semantically aware enterprise matures, it eventually
distinguishes between terms (ways of referring) and concepts/referents (referents
referred to by potentially many different terms). Hence, the semantic models the
maturing enterprise embraces evolves from term-based models (weak taxonomies
and thesauri) to concept/referent-based models (weak and strong ontologies).

In addition, as the maturing enterprise begins to understand that terminologies
are not as necessary as the underlying meanings (concepts) of those terminologies
that get modeled as a machine usable or interpretable engineering semantic model
(ontology), the enterprise tries to fit together the local semantic models it currently
has (local database schemas or even local community ontologies). Because it is soon
recognized that there is great and incommensurable, though seemingly duplica-
tive, meaning among the diverse ontologies (conceptual stovepipes), the enterprise
attempts to reconcile the semantics. It does so initially by trying to construct seman-
tic mappings between the two ontologies, and then when the problem repeats itself
with every additional ontology which needs to be incorporated (mapped to), the
enterprise begins to understand that the emerging mapping ontology is actually
an integrative ontology that must be as expressive as the most expressive of the
ontologies needing to be integrated.

2.3 Ontological Architecture: Upper, Mid-level, Domain
Ontologies

In this section we discuss the fundamentals of ontological architecture. As depicted
in Fig. 2.1, an ontological architecture encompasses primarily three layers: upper
ontologies, mid-level ontologies, and domain ontologies, with the first two also
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sometimes called foundational ontologies. This section focuses on these. However,
in Section 2.4, we will generalize the architecture to include a meta-level.

2.3.1 What Is an Upper Ontology?

Ontologies may exist at many levels of abstraction. We group ontologies into three
broad categories of upper, mid-level and domain ontologies. In this section we
define what we mean by an upper ontology and characterize the differences between
these three levels. Figure 2.6 is a graphical depiction of these notional levels along
with some sample concepts that may be found at each level.

Most General Thing

Process Location

Geographic Area of Interest

Airspace Target Area of Interest

Upper
Ontology

Domain
Ontology

Most General Thing

Process Location

Geographic Area of Interest

Airspace Target Area of Interest

Mid-Level
Ontology

Fig. 2.6 Ontology categories

2.3.1.1 Upper Ontology Definition

An upper ontology, as defined by Phylita (2002), is a high-level, domain-
independent ontology, providing a framework by which disparate systems may
utilize a common knowledge base and from which more domain-specific ontolo-
gies may be derived. The concepts expressed in such an ontology are intended to be
basic and universal concepts to ensure generality and expressivity for a wide area of
domains. An upper ontology is often characterized as representing common sense
concepts, i.e. those that are basic for human understanding of the world (Kiryakov
et al., 2001). Thus, an upper ontology is limited to concepts that are meta, generic,
abstract and philosophical.7 Standard upper ontologies are also sometimes referred
to as foundational ontologies8 or universal ontologies (Colomb, 2002).

7Standard Upper Ontology (SUO) Working Group Website, http://suo.ieee.org/.
8OpenCyc Website, http://www.opencyc.org/.
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2.3.1.2 Upper Ontology vs. Mid-Level Ontology

A mid-level ontology serves as a bridge between abstract concepts defined in the
upper ontology and low-level domain specific concepts specified in a domain ontol-
ogy. While ontologies may be mapped to one another at any level, the mid-level
and upper ontologies are intended to provide a mechanism to make this mapping
of concepts across domains easier. Mid-level ontologies may provide more con-
crete representations of abstract concepts found in the upper ontology. This ontology
category also encompasses the set of ontologies that represent commonly used con-
cepts, such as Time and Location. These commonly used ontologies are sometimes
referred to as utility ontologies.

2.3.1.3 Upper Ontology vs. Domain Ontology

A domain ontology specifies concepts particular to a domain of interest and rep-
resents those concepts and their relationships from a domain specific perspective.
While the same concept may exist in multiple domains, the representations may
widely vary due to the differing domain contexts and assumptions. Domain ontolo-
gies may be composed by importing mid-level ontologies. They may also extend
concepts defined in mid-level or upper ontologies. Reusing well established ontolo-
gies in the development of a domain ontology allows one to take advantage of the
semantic richness of the relevant concepts and logic already built into the reused
ontology. The intended use of upper ontologies is for key concepts expressed in
a domain ontology to be derived from, or mapped to, concepts in an upper-level
ontology. Mid-level ontologies may be used in the mapping as well. In this way
ontologies may provide a web of meaning with semantic decomposition of con-
cepts. Using common mid-level and upper ontologies is intended to ease the process
of integrating or mapping domain ontologies.

2.3.2 Why Do We Care About Upper Ontology?

2.3.2.1 How Upper Ontologies May Help

Today’s World Wide Web (WWW) is geared toward presenting information to
humans. The Semantic Web is an evolution of the WWW that is intended to cap-
ture the meaning of data (i.e., data semantics) precisely enough that a software
application can interpret them. A key element of the Semantic Web is the use of
ontologies to define concepts and their relationships. With ontologies supplying the
context of data, information retrieval and search engines can exploit this contex-
tual information to perform semantic searches based on the meaning of the concept,
rather than syntactic searches of a given text string. In this way, one could discrim-
inate between horses and cars which both have the same label of “mustang.” Rich
semantics captured in ontologies also provide the ability to combine simple facts
together to infer new facts, and to deduce new generic knowledge in the form of
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proven theorems that is only implicit in the ontologies. With data and applications
mapped to ontologies, inference engines could be used to improve the discovery and
understanding of data as well as the discovery and composition of applications like
Web services. Furthermore, ontologies may be used to represent the semantics of
applications and services directly, much as UML object and conceptual models do
today for specific systems and enterprises, though these do so incompletely, incon-
sistently, and unsoundly, without explicit use by the applications of these models at
either system-generation time or run-time. Upper ontologies are intended to define
foundational concepts used in both mid-level and domain ontologies. In theory, the
mapping between domain ontologies becomes easier if the ontologies to be mapped
are derived from a standard upper ontology.

Two approaches exist for the use of upper ontologies: top-down and bottom-up.
In a top-down approach one uses the upper ontology as the foundation for deriving
concepts in the domain ontology. In this way, the domain ontology designer takes
advantage of the knowledge and experience already built into the upper ontology.
Furthermore, use of the upper ontology provides a theoretical framework on which
to build. In a bottom-up approach, the ontology designer maps a new or existing
domain ontology to the upper ontology. This approach also capitalizes on the knowl-
edge built into the upper ontology but one would expect the mapping to be more
challenging, as inconsistencies may exist between the domain and upper ontology.
Some upper ontologies utilize a combination of these two approaches.

2.3.2.2 A Software Engineer Analogy

Let’s use a software engineering analogy to describe the value of using standard
upper and mid-level ontologies. Mid-level ontologies can be seen as analogous to
software libraries. Early high level programming languages evolved to contain soft-
ware libraries of commonly used functions. High quality software libraries allowed
programmers to reuse the knowledge and experience built into the software library
and freed them to concentrate on domain specific issues. As software libraries
evolved, programming tasks became easier. Programmers do not need to understand
the detailed implementation of libraries in order to use them. Similarly, mid-level
ontologies can evolve to act as ontological utilities. With the existence of such
ontologies, ontology designers can compose their domain ontologies using these
utility ontologies and inherit the concepts and inferencing capabilities provided by
them. Just as software libraries make programming tasks easier, so too would the
availability of high quality, commonly used utility ontologies make ontology devel-
opment easier. Further, concepts in the utility ontology could be mapped to concepts
in an upper ontology without the need for users of the utility ontology to be aware
of these mappings.

Because it is early in the Semantic Web evolution (OWL became a World Wide
Web Consortium [W3C] recommendation in Feb’04), few utility ontologies exist.
However, they are emerging, as evidenced by the DARPA funded effort to create a
standard time ontology, now a W3C public working draft (Hobbs and Pan, 2006).
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2.3.3 What Foundational Ontologies Provide: Ontological Choices

We cannot evaluate foundational ontologies here (but see Section 2.3.4). However,
we can provide some rationale for why foundational ontologies are useful in an
overall ontological architecture and what kinds of constructs one might desire for a
foundational ontology. We call these ontological choices (though Partridge (2002)
calls them meta-ontological choices).

What are the ontological choices that a given foundational ontology provides?
These ontological choices will entail ontological commitments, which means that
there is downward impact on mid-level and domain ontologies on the decisions one
makes at the upper or foundational levels. The WonderWeb Ontology Library Final
Report (Masolo et al., 2003), for example, describes a number of such ontolog-
ical choices: descriptive vs. revisionary, multiplicative vs. reductionist, universals
vs. particulars vs. sets, endurants vs. perdurants, and more. Other choices include
3-dimensional (3D) vs. 4-dimensional (4D) (Hamlyn, 1984; Loux, 2002), distinct
notions of “part” and “whole”, different notions about what constitutes a property
(and attribute), how change should be represented, distinctions about granularity,
vagueness, etc.9 Many of these choices are intricately linked, so, for example,
discussions on endurants and perdurants invoke 3D and 4D views, and crucially elu-
cidate the notion of persistence through time and change. In addition, multiplicative
ontologies, because they tolerate a greater range of modeling complexity (model
whatever is called for by reality), generally enable multiple objects with different
identity criteria to co-occur/co-locate in the same spacetime (Masolo et al., 2003).
In the following, we discuss some of these choices.

2.3.3.1 Descriptive vs. Revisionary

Descriptive and revisionary ontologies (Strawson, 1959) are based on ontological
stances or attitudes towards the effort of modeling ontologies, i.e., how one concep-
tualizes the world and what an ontological engineering product is or should be. A
descriptive ontology tries to capture the more commonsensical and social notions
based on natural language usage and human cognition, emphasizing the agent who
conceives and deemphasizing scientific and philosophical considerations. A revi-
sionary (sometimes called prescriptive) ontology, on the other hand, does emphasize
(or even, strictly adheres to) the scientific and philosophical perspectives, choosing
to base its constructs and modeling decisions on scientific theories and a philosoph-
ical stance that tries to capture the world as it really is (it prescribes the world), and
not necessarily as a given historical agent conceives it to be. A revisionary ontology
therefore says that its modeling constructs are about real things in the world as it is.

9Another choice we will not investigate here is that between presentism and eternalism (Partridge,
2002). Presentism argues that time is real; eternalism that time is not real, that entities change but
their properties do not change over time. Presentism typically goes with endurantism; eternalism
goes with perdurantism.
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In practical terms, all of the constructs in a revisionary ontology will be space-
time objects, i.e., necessarily having temporal properties; in a descriptive ontology,
that will not be the case. In the latter, entities (sometimes called endurants, but
perhaps better called continuants) such as “hammer” and “tank” that have only
incidental temporal properties and events (processes, actions, activities, etc., some-
times called perdurants, but perhaps better called occurrents) such as “attacking”
and “cashing a check” that have explicit temporal properties, are modeled with or
without those temporal properties, respectively. Often in natural language there are
two correlated forms/usages that express the distinction: the nominal and the verbal.
A nominal (noun) “attack” is expressed as in “The attack on the enemy began at 600
hours.” A verbal (verb) “attacked” is expressed as in “We attacked the enemy at 600
hours.”

2.3.3.2 Multiplicative vs. Reductionist

A multiplicative upper ontology is expressively profligate in that concepts can
include anything that reality seems to require, and so any distinction that seems
useful to make can be made in the ontology. Contrarily, a reductionist ontology
reduces the number of concepts to the fewest primitives sufficient to derive the rest
of complex reality.

In the WonderWeb Foundational Library (Masolo et al., 2003), the Descriptive
Ontology for Linguistic and Cognitive Engineering (DOLCE) and the Basic Formal
Ontology (BFO) are multiplicative and descriptive, whereas the Object-Centered
High-Level Reference Ontology (OCHRE) is reductionist and revisionist. The
Suggested Upper Merged Ontology (SUMO)10 (Niles and Pease, 2001b) could be
said to be both multiplicative in that it aims to cover at a general level any concept
that reality requires, and reductionist in that it attempts to be minimal rather than
profligate.

We note that many of these dichotomous ontology choices (descriptive vs.
revisionary, multiplicative vs. reductionist, etc.) really have behind them a set of
assumptions about how to view the world (e.g., strict realism with no notion of a
different possibility) and what an engineering model of the world or parts of the
world can achieve. Therefore, many of the ontology choices will tend to co-occur:
e.g., revisionist and reductionist will generally go together.

2.3.3.3 Universals, Particulars, Sets, Possible Worlds

The distinction between universals (forms, ideas) and particulars (individuals)
brings up a range of philosophical argument that we cannot address here. For our
purposes, universals (whether based on realism, conceptualism, or nominalism) are
general entities. Universals are often characterized as natural classes that abstract
or generalize over similar particular things. Person, Location, Process, etc., are

10Suggested Upper Merged Ontology (SUMO) Website. http://www.ontologyportal.org/.
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Level Example Constructs 
Knowledge
Representation (KR)  
Language (Ontology
Language) Level:  

Meta Level to the
Ontology Concept
Level

Class, Relation, Instance,
Function, Attribute,
Property, Constraint, Axiom,
Rule    

Ontology
Concept/Type (OC)
Level:  

Object Level to the KR 
Language Level,
Meta Level to the
Instance Level 

Person, Location, Event, Frog,
non-
SaccharomycesFungusPolarize
dGrowth, etc.   

Instance (OI) Level: 
Object Level to the 
Ontology Concept
Level 

Harry X. Landsford III,
Person560234, Frog23, non-
SaccharomycesFungusPolarize
dGrowth822,  

Meta-Level to
Object-Level  

Meta-Level to
Object-Level  

Language 

Ontology
(General)  

Knowledge
Base

(Particular)    

Fig. 2.7 Ontology representation levels (Obrst et al., 2007)

examples of universals, and would be represented at the Ontology Concept Level
in Fig. 2.7 (see next section).

If you take a realist stance, universals are “entities of a general kind that exist
independently of us and of our ways of thinking and speaking about the world”
(Hamlyn, 1984). A conceptualist views universals as existing in human minds and
primarily functioning as concepts that generalize and classify things. Nominalists
view universals as largely a notion of our human language, the mode of expression
of our thoughts. In an extreme view of realism, Platonism, universals independently
exist (it’s usually considered unproblematic that particulars exist in reality), and so
in our discussion of upper ontologies here, universals would exist in a quantifica-
tional domain distinct from that of particulars. This could be the case, for example,
if universals were represented at the Ontology Concept level, but the Knowledge
Language level of Fig. 2.7 permits second-order quantification, i.e., quantification
over concepts (properties, predicates, classes, relations, etc.), rather than just over
particulars (individuals, instances) at the Ontology Instance level.

A further distinction can be made: some instances (particulars or individuals)
can themselves be considered universals – at least from the perspective of ontology
applications (Welty, Ferucci, 1999). Degen et al. (2001) address this issue by intro-
ducing universals of higher-order. The Semantic Web ontology language OWL in
fact allows for classes as instances in the OWL-Full dialect (Smith et al., 2004).

Particulars, or individuals or instances, are specific entities and taken to be
instantiations of universals. Particulars exemplify properties (which are usually
understood as universals), meaning they possess specific values such as Sam Jones
being the father of Bill Jones, this apple in my hand being red, and that ball being on
that table at 11 am EST, on January 19, 2008, in my house in Fairfax, Virginia, USA.
Particulars are represented at the Instance Level in Fig. 2.7. Instances of classes
(concepts), facts (specific instantiated relations/properties, e.g., Sam’s fatherhood-
ness to Bill, my apple’s redness), and events (a fact that occurs at a specific time, a
specific perdurant) (Pianisi and Varzi, 2000; Higginbotham et al., 2000) are typically
taken to be particulars.
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Sets are mathematical objects that are sometimes, but not always used to
abstractly characterize the different ontological categories, i.e., the logical apparatus
used to define and order the logico-mathematical notions of ontology. Model-
theoretical semanticists use set theory, but formal ontologists sometimes object (see
e.g., Smith, 2001), where mereotopology (discussed below) is argued to provide a
better foundation for ontology. Nonetheless, a set does not typically constitute a sep-
arate ontological category in its own right – except insofar as it is used as a human
artifact. So, for example, SUMO defines a set as an ontological entity in its upper
ontology because it does represent an entity that it used by other components of the
SUMO upper ontology and potentially other lower, domain ontologies which use
SUMO and make reference to sets directly, as ontological objects. A set in the first
sense, i.e., as a defining mathematical notion, would typically be expressed at the
meta-level, i.e., the Language Level in Fig. 2.7, and thus is not itself an object for
ontological modeling.

It is perhaps a bit confusing or disconcerting to find that the object set really exists
at two levels, i.e., at the modeling content level (Concept Level in Fig. 2.7) and also
at its meta-level (Language Level, Fig. 2.7). The confusion devolves at least partially
on the distinction between use/mention (Tarski, 1933, 1944), i.e., natural language
typically allows one to both use a word and to mention it. So in this sense, ‘set’ is
both an ontological object at the Ontology-Concept modeling level, and the meta-
level object at the Language level which helps to define the entire Ontology-Concept
level below it.

An additional consideration – which we will not discuss in any detail here –
is the notion of possible worlds, which is a way of formally characterizing the
distinction between descriptions (intensions) and individuals which possess the
properties described by the descriptions (extensions). In a sense, the Cyc context
and microtheory-based systematic manner of segregating assertions into theories,
two of which taken together and compared may contradict each other, can be consid-
ered an implementation of the notion of possible worlds. Possible worlds semantics
is usually a notion that also involves modal logic. We consider these notions in more
detail in Section 2.4, Structuring the Ontological and Meta-Ontological Space.

2.3.3.4 Endurants and Perdurants

The distinction between endurants and perdurants is sometimes conflated with two
different distinctions: (1) the distinction between 3D and 4D ontological objects,
and (2) the distinction between continuant and occurrent, respectively. However,
these conflations are problematic (Hayes et al., 2002; Sider, 2004; Degen et al.,
2001). According to the usual definitions (Bittner and Smith, 2003), an endurant
is an entity which exists in full in every instant at which it exists at all; a per-
durant “unfolds itself over time in successive temporal parts or phases.” Both
endurants and perdurants are taken to be concrete particulars, i.e., instances (Loux,
2002). Obviously, the notion of identity- and essence-defining properties intersect
with changeability. A perdurant is typically taken to be a spacetime worm, i.e., an
object that persists (perdures) through spacetime by way of having different tem-
poral parts at what would be different times (temporal non-locality), but a view of
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instantaneous stages is possible too (Sider, 2002). An endurant goes through time
(endures), with identity/essence-defining properties that perhaps depend on occur-
rent objects but are not essentially constituted by those occurrent objects. The crucial
distinction between these constructs is that of the nature of the identifying essential
properties of the object and its change or non-change, usually defined with respect
to time. Related to the distinction is the notion of temporal parts, i.e, whether or
not a given object has temporal parts and the nature of those parts. But it is not
just that distinction that defines 3D and 4D views, since some 3D perspectives per-
mit instantaneous objects to be the temporal parts of themselves (Sider, 2002). For
our purposes here, however, we will equate endurantism with the 3D view, and
perdurantism with the 4D view.

A partonomic hierarchy, for example, is usually defined in terms of a special
partonomic relation, the part-of relation. Mereology is the analysis of the part-of
relation and the set of axioms that seem to constitute our notion of what a part is.
In modern ontological axiomizations, mereology is combined with topology (con-
nectedness among objects) to be mereotopology (Smith, 1996; Casati and Varzi,
1999) since parthood really does seem to require either point “touching”, overlap,
or transitivity of those (i.e., the ‘southern edge of London’ is part of London or
connected to those regions which are part of southern London). Here we begin to
get into notions of granularity and vagueness, and so we’ll end our discussion (but,
see: Obrst and Mani, 2000; Williamson, 1998; Keefe and Smith, 1999; Bittner and
Smith, 2001).

2.3.4 Upper Ontology Initiatives and Candidates

There are a number of ongoing initiatives to define a standard upper ontology.
Two initiatives that began in the early 2000s and recently ended were the IEEE
Standard Upper Ontology Working Group (SUO WG)11 and WonderWeb.12 IEEE
SUO WG was a standards effort operated under the IEEE Standards Association
and sponsored by the IEEE Computer Society Standards Activities Board. Its goal
is to specify an upper ontology that will enable computers to use it for applications
such as data interoperability, information search and retrieval, automated inferenc-
ing, and natural language processing. IEEE SUO WG proposed three candidate
upper ontologies, namely Suggested Upper Merged Ontology (SUMO), Upper Cyc
Ontology (UCO)13 and Information Flow Framework (IFF).

WonderWeb was a project consortium of universities and Industry, working in
cooperation with the DARPA DAML program and the W3C. WonderWeb defined a
library of foundational ontologies that cover a wide range of application domains.

11IEEE Standard Upper Ontology. http://suo.ieee.org/.
12WonderWeb Website. http://wonderweb.semanticweb.org/objectives.shtml. Completed, July
2004.
13Upper Cyc. http://www.cyc.com/cycdoc/vocab/vocab-toc.html.
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This library is intended to be used as a basis for the development of more detailed
domain ontologies. Currently three modules exist: DOLCE, OCHRE, and BFO
(Masolo et al., 2003; Schneider, 2003).14

In addition, there have been proposed other upper (foundational) ontologies,
including Generalized Ontological Language (GOL)/ General Formal Ontology
(GFO) (Heller and Herre, 2004; Herre et al., 2006),

For comparisons of upper ontologies, see Grenon (2003); Semy et al. (2005);
and Mascardi, Cordi, Rosso (2006). There was also an effort in 2006 by the Ontolog
Forum called the Upper Ontology Summit,15 at which many major upper ontol-
ogy developers signed a joint communiqué to agree “to develop the mechanisms
and resources needed to relate existing upper ontologies to each other in order to
increase the ability to reuse the knowledge to which they give access and thereby
facilitate semantic interoperability among those other ontologies that are linked to
them” (Obrst et al., 2006).

2.4 Structuring the Ontological and Meta-Ontological Space

This section extends the ontological architecture considerations of the previous sec-
tion in two ways: (1) it moves beyond purely vertical considerations of object level
ontologies (upper, middle, domain) to include structural and logical relations among
the ontologies of those levels, and ways of addressing the entire object level space,
which we are calling the ontological space, and so necessarily involving notions of
modularity and context (applicability of assertions); (2) it addresses also the meta-
ontological space, i.e., the knowledge (ontology) representation (KR) space at the
meta-level to the ontology object level. Although both of these topics require a more
lengthy elaboration than we can provide here, we will sketch out some of the con-
siderations and approaches. Because the two topics are so intricately connected, we
flatten the structure of our exposition somewhat, addressing meta-ontological issues
and then ontological issues, acknowledging explicitly that the latter depend on the
former – even when a formalized connection cannot yet be established.

2.4.1 Knowledge Representation Languages and Meta-Ontologies

Another way of viewing ontological architecture is more abstractly, i.e.,
meta-ontologically, in terms of the representation levels. These representation lev-
els include minimally: (1) the knowledge (ontology) representation language level;
(2) the ontology concept (universals) level; (3) the ontology instance (particulars)

14Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) Website.
http://www.loa-cnr.it/DOLCE.html.
15Upper Ontology Summit, Ontolog Forum, 2006. http://ontolog.cim3.net/cgibin/wiki.
pl?UpperOntologySummit.
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level. These are displayed in Fig. 2.7. The knowledge representation (KR) level is
the meta-level to the ontology content level (which is its object level). The KR level
characterizes what can be expressed in the ontology. The ontology concept level is
the level that characterizes the generic descriptions of the ontology, i.e., universals
or categories, the ontology proper, which might be considered either the organiz-
ing structure for the ontology instance level or the intensional level which describes
the properties that will hold of specific individuals (the extension) at the ontology
instance level. The third level (instances or particulars) is the level that instantiates
the universals expressed at the second level (universals).

This view partially returns to the Ontology Spectrum perspective, in which the
expressiveness of the knowledge representation language determines the richness of
the object level ontology assertions that can be made.16

A given ontology is syntactically expressed in a particular logical or knowledge
representation language. Although the choice of knowledge representation language
is secondary to the actual ontological content, it is still important because it deter-
mines whether in fact a given upper ontology can be utilized completely or just
partially.

Typically, upper ontologies require expressiveness at the level of First Order
Logic (FOL), but occasionally require more, i.e., second-order or higher. Second-
order is required if the upper ontology quantifies over predicates (or relations or
properties), though limited finite quantification over predicates (in the form of a list
of predicates) can be supported in a first-order language, as KIF/Common Logic
demonstrates.17

Furthermore, an upper ontology may require a modal extension of FOL, depend-
ing on how modalities such as necessity/possibility and potential modalities such
as temporal/spatial operators are expressed in the ontology. In general, modalities
(necessity, belief, obligation, time, etc.) can be expressed either in the (meta level)
logic/KR language or in the (object level) ontology, but in either case, ways to assert
and refer to modal assertions will differ. These differences may be important to the
expressions a domain ontology wants to make.

If the logic/KR language in which a given upper ontology is encoded is less
expressive than the logic/language in which a specific upper ontology is expressed,
semantic information loss will result. The resulting encoding of the upper ontology
will contain only a subset of the original expression of the ontology. For example, if
the original upper ontology is expressed in KIF/Common Logic and then encoded in
OWL (Bechhofer et al., 2004) only a portion will be retained in OWL, which, being
a description logic-based ontology language, tries to maximize machine reasoning
tractability by minimally, but definitely, limiting expressivity. OWL Full, the most
expressive “dialect” of OWL, may in fact be nearly equivalent in expressivity to
FOL, but remains ultimately less expressive.

16Portions of this section are adapted from Semy, Pulvermacher, Obrst (2005), pp. 5-13.
17Common Logic. http://cl.tamu.edu/.
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Fig. 2.8 Ontological architecture: a bigger picture

Finally, it should be noted that if KR languages are either not sufficiently for-
malized so that there is a clear notion of the formal semantics of the language,
or are sufficiently formalized, but offer only indirect expression of upper ontology
axioms, then portions of the upper ontology cannot be used by interpreting soft-
ware. Portions of the upper ontology must then be annotated and interpreted solely
by human beings.

A refinement of this three-level view is the (meta-)ontology architecture of
Fig. 2.8.18

In this diagram, the KR language (or Abstract Core Ontology [ACO], in the usage
of Herre and Loeb (2005)) is in a grounding relation to the abstract top ontology
(ATO) layer, which is rooted in fundamental mathematical theories, a meta-level to
our KR level; a meta-meta-level to our ontology concept/universal level, which after
all is our primary interest here, i.e., it is rooted in set theory and category theory.
Logic and in particular First-Order Logic presumably make up the KR/ACO level.
In this view the ACO assumes at least some of the role of foundational ontolo-
gies (typically upper ontologies). For example, Herre and Loebe (2005, p. 1404)
describe the basic constructs of the ACO as the following (Table 2.3), with the pre-
sumed two underlying core distinctions of the real world being that of category and
individual:

18Adapted from Herre and Loeb (2005).
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Table 2.3 Basic entity types and relations (Herre and Loebe, 2005)
Meta-Level Entity Types (Sets of urelements)
Name Symbol Name Symbol
Category Cat Individual Ind
Object Category OCat Object Obj
Property P Attribute Att
Role Category RCat Role Rol
Relation R Relator Rel

Meta-Level Relations (Sets of pairs of urelements)
Name Symbol Argument Restrictions
identity x = y –
instantiation x :: y Cat(y)
inherence Inh(x, y) Att(x) or Rol(x)
role-of role (x, y) Rol(x), Rel(y)
categorial part-of catp(x, y) Cat(x), Cat(y)

The potential value of this revised architecture is that it generalizes the constructs
expressible at the KR language level, on the one hand, thus enabling many kinds of
KR languages to be developed and be compared, while enforcing a logical consis-
tency on the object ontologies developed in the Ontology Universal and Ontology
Particular levels. On the other hand, an ACO is grounded in the firm mathematics of
the ATO, i.e., its constructs are defined in terms of set theory and category theory,
and presumably some variant of formal logic.

In Herre and Loeb (2005), two different ACOs are developed as an attempt to
address the requirements for an ACO: initially, CPO, which is based on categories
and properties only and thus not all of the constructs in Table 2.3; and then secondly,
CRO, which addresses all of the constructs in Table 2.3, including in particular, rela-
tions. Of course, both of these ACO meta-ontologies have fragments which will
have some constructs but not others. The notion of concept lattice from formal
concept analysis (Ganter and Willie, 1996) is modeled as a experiment to gauge
the expressiveness of CPO in Herre and Loeb (2005). They conclude that CPO
does not appear to be expressive enough for all the examples given in Ganter and
Willie (1996). However, they emphasize that this formalization does highlight dis-
tinct interpretations that can exist for object ontologies, based on the use of ACOs;
this result in itself is valuable and argues for a meta-ontological architecture such as
they describe.

Since Herre and Lobeb (2005) axiomatize CPO and CRO with a type-free
FOL, presumably FOL and other logics constitute at least the lower levels of
ATO, in addition to set theory and category theory at the higher levels. So
ATO is best characterized as the logico-mathematical fundamental level in this
architecture.

Given that ACOs partially constitute the KR language level, they really act as
an upper meta-ontological level of the meta-logical KR language level identified in
Fig. 2.7. The KR languages below them presumably act partially as ACOs (I am
here thinking, for example, of the implicit class theories embedded in OWL and
other KR languages), i.e., as instantiations of an apparently unexpressed ACO.
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2.4.2 The Lattice of Theories

Because ontologies are often considered theories, i.e., as from our discussion pre-
viously of strong ontologies as logical theories, then a sensible question is: what
are the relationships among the theories? Intuitively these relationships are mathe-
matical or logical in nature. Among others, John Sowa (2005) has characterized the
entire structure of ontologies qua theories as a lattice of theories. Sowa states that
Lindenbaum showed that the partial ordering defining the lattice of theories (Davey
and Priestley, 1996) can be view in three ways, as: (1) implication, (2) provabil-
ity, and (3) semantic entailment. These notions are derived from the Lindebaum’s
infinite lattice of theories.

Figure 2.9 depicts implicitly the lattice of theories, but also a portion of the
structural relationships among so-called microtheories and little theories, which are
described in Section 2.4.4. This is a notional figure in which the alphabetic symbols
A, B, . . ., Z (all with implicit subscripts to distinguish multiple occurrences) rep-
resent propositions, the symbol ‘;’ represents disjunction, the symbol ‘,’ represents
conjunction, and the symbols Tn, Tn+1, . . ., Tn+i (n, i ∈ Integers), along with ‘Top
Theory’, represent distinct theories.

In this figure, therefore, T1, . . ., T6 represent distinct, more specific theories in
the lattice of theories having as Top (most general node) the Top Theory. Top Theory

Fig. 2.9 Lattice of theories, microtheories, little theories
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represents the disjunction of all possible propositions, both positive and negative
(i.e., negated positive propositions).19 Arrow lines represent the lattice relations
among theories, interpreted as either implication, provability, or semantic entailment
(though semantic entailment might be the most perspicuous here). Dotted arrow-
lines represent (infinitely) other many theories in the lattice (including, it should be
mentioned, other theories below T1 – T6).

So in this view, although T4 and T5 are mutually inconsistent (because they
assert, respectively, ∼Z and Z), taken individually they are locally consistent.
Furthermore, they are consistent with respect to T3. T3 in turn is consistent with
both T1 and T2. T6 is consistent with T4 but not T5. All are consistent with Top
Theory. Microtheories and little theories, as we will see, inhere in this framework.
T1 – T6 can be considered microtheories or little theories.

2.4.3 Modularity and Context in the Ontological Space

The two notions of modularity and context are closely linked when we consider
the larger ontological space. The ontological space we will define to be: the object
level space of ontologies and their knowledge bases, i.e., the universals (classes,
categories) and particulars (instances, individuals), and the theories and interpre-
tations which make up this space. This section is concerned with ways that have
been proposed to structure the relationships among those modules (theories and their
interpretations).

In the 1980s, even prior to the rise of ontological engineering as a technical
discipline of computer science, John McCarthy, along with his students, began to
investigate the nature of context in knowledge representation and to formalize it
(McCarthy, 1987, 1990, 1993; Guha, 1991; Buvač, 1993; Buvač, Buvač, Mason,
1995; Buvač 1996a-b; McCarthy and Buvač, 1997). Others took up the thread and
implementations appeared, such as that of a microtheory in Cyc (Blair et al., 1992;
Lenat and Guha, 1990).

Most formalizations of context use a specialized context lifting predicate ist(P,
C) or alternatively ist(C, F), which means: proposition P is true in the Context C;
formula F is true in Context C.20 Typically contexts are first-class objects, and
thus ist formulas are first-class formulas (Guha, 1991, p. 17). In Cyc, these con-
texts are implemented as microtheories, i.e., theories/ontologies in the general Cyc
ontological space which are locally consistent, but taken together, are not globally
consistent in the ontological space. In principle, this is similar to the lattice of the-
ories notion discussed earlier, and also to possible world semantics (assuming the
universes of discourse are the same) (Obrst et al., 1999), with the understanding that

19So, the theories are propositional theories here, for purposes of simplicity, but they should
be understood as being formed from FOL or higher-order logical formulae, with the additional
understanding that fully saturated (with instantiated, non-variable, i.e., ground terms) FOL or
higher-order formulae are propositions.
20We use propositions here, but the general case is formulae.
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if a microtheory was replaced with a set of consistent theories, the node in the theory
space could be viewed as the possible world in which all those theories are true, and
thence the relations among those theory-worlds could be construed as accessibility
relations as among possible worlds, with those accessibility relations macroscopi-
cally thus corresponding to the Lindenbaum view microscopically, e.g., as semantic
entailment.

Menzel (1999) points out that these formalizations of context propose a so-called
“subjective conception” of context, i.e., one which defines contexts as sets of propo-
sitions, as theories related via an entailment relation – so typically as a set of beliefs
of a person or agent, and thus subjective. Contrarily, Menzel (1999) argues for an
“objective conception” of context, which views the truth of a proposition not as
a logical relation (such as entailment) between the proposition of a context and
other propositions, but instead as a correspondence relation between the proposition
and the world, and thus objective (Obrst and Nichols, 2005, p. 2). Menzel (1999)
therefore argues for the use of situation theory (Barwise and Perry, 1983), which
explicitly establishes more granular formal contexts in natural language semantics
than the usual notion of possible worlds, i.e., situations.

Giunchiglia and Ghidini (1998), Giunchiglia (1997), and Giunchiglia and
Bouquet (1998) analyze context as Local Model Semantics. Their formalization of
context is based on two properties identified as Locality and Compatibility. Locality,
in their view, is a property shared by the language, the notion of satisfiability of a
formula within a specific context, and the structure of individual contexts: every-
thing in the determination of context is local. Compatibility, they characterize as the
notion of mutual influence that contexts have on themselves, including the struc-
tural notion of changing the set of local models of two contexts so that they agree
to some extent. LMS defines a special model for two languages (L1, L2) which is
a compatibility relation C ⊆ 2M1 × 2M2 (Giunchiglia and Ghidini, 1998, p. 284).
Given the two languages, they associate each of them with a set Mi ⊆ Mi of local
models, where Mi is the class of all models of L1. A specific context then is a set of
local models m ∈ Mi allowed by C. A formula ϕ of a context is satisfied in model
C iff it is satisfied by all the local models of C.21 Bouquet et al. (2003) define a con-
text extension of the Semantic Web ontology language OWL called Context OWL
(C-OWL), which is based on the formalization of LMS.

Some KR languages have been proposed, which reify contexts. In the
Interoperable Knowledge Representation for Intelligence Systems (IKRIS)
project,22 for example, a KR language was developed called IKL (IKRIS
Knowledge Language), which can be considered an extended Common Logic, or
“Common Logic on steroids” (Hayes and Menzel, 2006; Hayes, 2006). In IKL,
contexts are formalized as first-class objects (Makarios, 2006a-c). But the decision
was made to contextualize constants rather than sentences, and so (Welty, 2006):

21For further discussion of LMS, see Obrst et al. (1999) on which this current discussion is based.
22Interoperable Knowledge Representation for Intelligence Support (IKRIS). 2006. http://nrrc.
mitre.org/NRRC/Docs_Data/ikris.
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Fred in (ist C0 (P Fred)) is interpreted with respect to C0

And each constant is replaced with a function of the context and the constant:

{(forall(x) (implies (P (iso CMX)) (G (iso CMx))));
(P(isoC0Fred))}

Some questions to ask about contexts with respect to ontologies are the fol-
lowing. What is the relationship between a context and an ontology? What is the
relationship between a context and a module of an ontology? Are contexts and
ontologies distinct or the same? Is a context embedded within a given ontology
(where the ontology is viewed as a theory or set of logical theories about a domain)?
Is a context extraneous to an ontology and thus outside the ontology as theory,
leading us to view a context as encapsulating ontologies and changing the inter-
pretations of those ontologies in this context as opposed to that context (Obrst and
Nichols, 2005)? In this section, we will discuss modularization in ontologies, and
we will treat contexts as being essentially about perspectives (akin to but more com-
plex than views in the relational database world), i.e., as logical theories (and their
interpretations), which in our estimation are what ontologies are.

Since 1997, formalization of context has established itself as a technical thread
in the CONTEXT conferences (CONTEXT 97, Brézillon and Cavalconti, 1997;
CONTEXT 07, Kokinov et al., 2007). Modularity of ontologies in its own right
has been addressed by very recent workshops [Haas et al., 2006; Cuenca-Grau
et al., 2007). It is often remarked on that formalized context and ontology mod-
ules bear a close resemblance and depend on each other, which has led to the recent
Context and Ontologies Workshops (Bouquet et al., 2007), and see in particular
(Loeb, 2006; Bao and Honavar, 2006; Lüttich et al., 2006; Kutz and Mossakowski,
2007).

2.4.4 Microtheories, Little Theories, Ontology Versioning

A microtheory is a theory in Cyc (Blair et al., 1992; Kahlert and Sullivan, 2006)
which is a portion of the (monolithic) ontology that is separable from other
microtheories, and thus with respect to those possibly containing contradictory
assertions. A Cyc microtheory “is essentially a bundle of assertions that share a
common set of assumptions; some microtheories are focused on a particular domain
of knowledge, a particular level of detail, a particular interval in time, etc. The
microtheory mechanism allows Cyc to independently maintain assertions which
are prima facie contradictory, and enhances the performance of the Cyc system by
focusing the inferencing process.”23

See Fig. 2.9, previously introduced in the discussion of the lattice of the-
ories. Microtheories represent an implementation of a formalization of context

23What’s in Cyc? http://www.cyc.com/cyc/technology/whatiscyc_dir/whatsincyc.
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deriving from McCarthy (1987, 1990, 1993), but focused in particular on Guha
(1991). Originally Cyc microtheory contexts consisted of two parts: assumptions
and content. Subsequently, due to computational inefficiencies with the formal-
ism (primarily in the cost of so many liftings of assertions from one context
into another), the microtheory was recast with finer internal structure. Lenat
(1998) identified 12 dimensions of context space along which contexts vary in
Cyc: “Absolute Time, Type of Time, Absolute Place, Type of Place, Culture,
Sophistication/Security, Granularity, Epistemology, Argument-Preference, Topic,
Justification, and Anthropacity” (Lenat, 1998, p. 4), with each primary dimension
being itself a bundle of partially mutually dependent finer-grained dimensions. A
richer calculus of contexts is thus required. In our view, a dimension of context-
space is thus similar to an index of common and commonsense world knowledge
which cross-cuts domain theories (Obrst et al., 1999, p. 6). This latter usage more
closely corresponds to Lewis’s (1980) ‘index’, as opposed to his much richer
‘context’ (and see discussion in Giunchiglia and Bouquet (1998), p. 7).

In Farmer et al. (1992) and Farmer (1996, 2000), a formalization and imple-
mentation (for mathematical theorem proving) of a notion similar to that of
microtheories is introduced, that of little theories. Defining a theory as a set of
axioms in a formal language, Farmer et al. (1992) contrast two predominant views in
mathematics: (1) the big theory approach, which is one large theory of very expres-
sive axioms (such as Zermelo-Fraenkel set theory) such that the models of these
axioms will contain all of the objects of potential interest to the mathematician; (2)
the little theory approach, in which a number of theories will be used and differ-
ent theorems are proven in different theories, depending on the amount of structure
needed. The little theory approach uses theory interpretations as the primary formal
notion, where theory interpretation is defined as “a syntactic translation between
the languages of two theories which preserves theorems” (Farmer et al., 1992,
p. 2). A formula which is a theorem in the source theory is thus translated into a
theorem in the target theory, which requires the source theory axioms to be trans-
lated into theorems in the target theory. Theorems can thus be reused in different
theories, and one can establish the consistency of the source theory with respect
to the target theory. A theory interpretation between two theories also enables
inferring a relation between the models of the two theories. Farmer et al. (1992) and
Farmer (1996, 2000) also establish how such a formalization can be used to imple-
ment a proof system for doing semi-automated mathematical proofs, developing the
Interactive Mathematical Proof System (IMPS). IMPS enables one to store theories
and theory interpretations. The little theory approach therefore allows for a network
of theories and provides both intertheory and intratheory reasoning. So, similar to
the notion of microtheories, little theories enable different perspectives (different
contexts) to be represented as different theories (microtheories), with the formal
device enabling switching from one theory to another being the notion of a theory
interpretation between the two theories, preserving theoremhood between the two
theories.

Finally, De Leenheer (2004), De Leenheer and Mens (2007), De Leenheer et al.
(2007) demonstrates the significance of the relation among ontologies, contexts, and
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versions of ontologies (among other perspectives), by introducing a formal frame-
work for supporting context driven ontology engineering based on the DOGMA24

framework and methodology. Note that this is not a formalization, but instead an
elaboration and use of existing notions from context formalization.

2.4.5 Information Flow Framework Meta-Ontology

The Information Flow Framework (IFF)25 is authored by Bob Kent (Kent, 2004,
2006) and was recently being developed under the IEEE SUO Working Group.26

IFF provides a framework for sharing ontologies, manipulating ontologies as
objects, relating ontologies through morphisms, partitioning ontologies, compos-
ing ontologies via fusions, noting dependencies between ontologies, and declaring
the use of other ontologies. It takes the building block approach to ontology con-
struction and management, using category theory (Mac Lane, 1971; Barr and Wells,
1999) and Information Flow Theory (IFT) (Barwise and Seligman, 1997) to support
ontology modularity.

IFT is a framework more general than possible worlds, allowing also impossible
worlds (Barwise, 1998). Figure 2.10, for example, displays the interpretation of one
language or logic L1 (classification in their terminology) into another L2, with the
accompanying association with every structure M2 for the logic L2 a structure M1
for the logic L1. One also has to make sure that M1| =L1 α1 iff M2| =L2 α2 holds
for all structures M2 for L2 and all sentences α of L1 Barwise and Seligman (1997,
p. 32; Obrst et al., 1999, p. 7).

Fig. 2.10 Interpretation of
languages

24Developing Ontology-Grounded Methods and Applications (DOGMA); a research initiative of
the Free University of Brussels, Semantic Technologies and Applications Lab (VUB STARLab).
http://www.starlab.vub.ac.be/website/.
25Information Flow Framework. http://suo.ieee.org/IFF/. See also: http://www.ontologos.org/IFF/
IFF.html.
26IEEE Standard Upper Ontology. http://suo.ieee.org/.
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IFF is primarily a meta-ontology, to be used for ontology-ontology integration,
and is still in early stages of development. The original intent for the IFF was to
define morphisms for concept lattices, mapping between Formal Concept Analysis
(Ganter and Willie, 1996) and Information Flow classifications. In addition, the IFF
attempts to develop a framework using IFT and category theory to implement the
so-called “lattice of theories” view of the linkages among ontologies at the object
level (Kent, 2003). The IFF is a fairly detailed framework, and within the limited
space of this paper, no thorough elaboration can be given here. The interested reader
is instead invited to peruse the IFF web site.27 The primary architecture of the IFF
can be depicted as in Fig. 2.11, which is from Kent (2002). See also Kalfoglou
and Schorlemmer (2002, 2003, 2004) for discussion of IFF and issues in ontology
mapping.

In the IFF, object level ontologies (upper, mid-level, domain) reside at the object
level, and their constructs are defined at the meta-level in a series of ascending
sub-levels, from IFF ontology (axiomatization) lower level to higher components.
The lower meta-level defines, axiomatizes, and reasons about particular categories,
functors, adjunctions, colimits, monads, classifications, concept lattices, etc.,
whereas the upper meta-level defines, axiomatizes, and reasons about generic
categories, functors, adjunctions, colimits, monads, classifications, concept lattices,
etc. The top meta-level was a formalization of the Knowledge Interchange Format
(KIF).28

Fig. 2.11 Information flow
framework: architecture
(2002 version, slide 9)

27http://www.ontologos.org/IFF/IFF.html.
28Originally, Knowledge Interchange Format (KIF) Specification (draft proposed American
National Standard [dpANS] NCITS.T2/98-004: http://logic.stanford.edu/kif/dpans.html. However,
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Language

Logic

ModelTheory

Fig. 2.12 Objects of IFF
(Kent, 2005, slide 30)

In Fig. 2.12 is a picture of the primary objects in IFF: Logics, Theories (syntactic
representations), Models (semantic representations), and Languages.

IFF builds on IFT, which in turn builds on category theory. But a formaliza-
tion which is very close to IFF is that of institutions of Goguen (1991), Goguen
and Burstal (1992), Goguen and Roşu (2002), and the related work of Kutz and
Mossakowski (2007), and Schorlemmer and Kalfoglou (2008). Institutions formal-
ize the notion of a logical system by demonstrating that there is a satisfaction
relation between models and sentences which is consistent under change of notation
(Goguen and Burstal, 1992; Goguen 2006). Institutions formalize category-theoretic
signatures derived from (generalized from) vocabularies (ontologies) and signa-
ture morphisms derived from (generalized from) mappings between vocabularies
(ontologies). So institutions are “truth preserving translations from one logical
system to another”, which is very similar to the intention of the IFF.

It should also be noted that the IFF, though a meta-level architecture, is more of
a meta-logical architecture, rather than a meta-ontological architecture as Herre and
Loebe (2005, p. 1411) point out, so – using the latter’s terminology – the IFF is more
like a very elaborated ATO rather than an ACO, in the terminology of Herre and
Loebe (2005). However, given that ACOs act as the upper level of the KR language
meta-logical level (the upper level in Fig. 2.7) (and so, specific KR languages can be
seen as both languages and partial instantiations of implicit ACOs, i.e., as embody-
ing meta-ontological theories), it does seem that the logical vs. ontological levels
of the meta-level needs to be better spelled out. This discussion also demonstrates
that further analysis of the interplay between the logical and ontological levels is a
fruitful subject of study.

For further information about the IFF, the interested reader is referred to Kent
(2010, this volume).

KIF has been superseded by Common Logic, which includes a KIF-like instantiation called CLIF,
and is now an ISO standard.
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2.5 What the Future Holds: A Vision

In this chapter, we have looked at ontological architecture, what it consists of and
what it is related to. We began our discussion by delineating ontological architecture
from ontology architecture, and observed that we would necessarily focus on the
former – as being the necessary foundation for the latter. As one can see, there is
clear technical apparati emerging that addresses the logical, meta-ontological, and
ontological architectures and their requirements to support the actual development
and deployment of ontologies as engineering products in an ontology architecture –
which itself encompasses ontology lifecycle management as a practical discipline
wedding ontologies and software development.

Along the way, we discussed not just the components of ontological architec-
ture, but necessarily aspects of logical and meta-ontological architecture. We tried
to relate these three notions systematically and consistently in a larger framework
that we hope will provide support for subsequent ontology architecture. There are
many moving pieces to this architectural puzzle. Ontology engineering as a branch
of both computer science and software engineering has just recently emerged – and
is propelled by ideas from formal ontology in philosophy, formal logic in mathemat-
ics, formal semantics in linguistics, formal methods and applications in computer
science and artificial intelligence, and formal theories in cognitive science. There

Fig. 2.13 Ontology architecture: application layers
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Fig. 2.14 Ontological architecture supporting ontology architecture

is a grand fermenting of philosophical, logico-mathematical, scientific, and engi-
neering ideas that make the future uncertain to predict. There are, however, some
indications, enough for a vision for the future.

Figure 2.13 depicts one view of an ontology architecture, which admittedly we
could not address in this chapter. However, this architecture represents a sound view
of what is architecturally necessary to deploy ontologies in the real world. Each of
these layers are significant and necessary for an application based on ontologies.
Each layer constitutes hefty portions of a distinct chapter on actually using engi-
neered ontologies to assist users by way of their software applications and services
in the near to foreseeable future.

Behind this figure and its depicted architecture, however, is another figure and
its depicted architecture. Figure 2.14 shows the notional relationship between the
ontological architecture and the ontology architecture.

This is the future: sound ontology philosophy and science driving sound ontology
engineering, with many other technical disciplines collaborating to provide sound
ontology-based applications.
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Chapter 3
Organization and Management of Large
Categorical Systems

Frank Loebe

3.1 Introduction

Ontologies grow large in size if systems are considered that cover a very complex
domain like medicine, or a number of domains possibly together with upper lev-
els of categories. Especially for philosophical investigations of basic categories, the
ontological systems studied in the past typically comprise only a handful of basic
categories, as in the works of Aristotle, Kant, Brentano, Husserl, and many others
(see Sowa, 2000, Section 2.2 for an overview in the context of computer science).
A proper analogy holds for logic, considering the limited size of axiomatic systems
formerly under examination. Manual logical investigations were usually concerned
with studying the consequences of a few axioms, a task hard enough itself. Trying
to model real-world problems with logic, even when equipped with automated rea-
soning as currently available, one easily faces tremendously large signatures and
theories which require novel solutions. A few numbers may provide some intuition
on the current scale of the problems. As a self-contained system, the leading clinical
healthcare terminology system SNOMED CT is implemented in a logical formalism
and comprises more than 311,000 concepts (with formal definitions) as of January
2008.1 On this scale of even a single system, new methods are required for applying
formalisms and using available technologies. The situation is even more complex
in the context of the Semantic Web effort (Berners-Lee et al., 2001). Hendler and
van Harmelen (2007, p. 823) qualifies its major representation languages RDF,
RDFS (W3C, 2004a) and OWL (W3C, 2004b) as “the most widely used KR
(knowledge representation) languages in history” and states that “[a] web search
performed around the beginning of 2007 finds millions of RDF and RDFS docu-
ments, and tens of thousands of OWL ontologies.” Many of those OWL ontologies

F. Loebe (B)
Department of Computer Science, University of Leipzig, Leipzig, Germany
e-mail: frank.loebe@informatik.uni-leipzig.de
1Since 2007, SNOMED CT, the Systematized Nomenclature of Medicine – Clinical Terms, is
maintained and further developed by the International Health Terminology Standards Development
Organization (IHTSDO), see http://www.ihtsdo.org. The number originates from the page http://
www.ihtsdo.org/snomed-ct/snomed-ct0/, accessed on 13.09.2008.

67R. Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications,
DOI 10.1007/978-90-481-8847-5_3, C© Springer Science+Business Media B.V. 2010



68 F. Loebe

complement one another regarding the domains which they cover. Consequently, the
use of several such ontologies as components of a joint, larger system is an immedi-
ate idea. However, the first detailed attempts to elaborate this idea have discovered
many unresolved issues and choices for solutions.

In this chapter we survey approaches to tackle the complexity of huge categorical
systems and describe the state of the art from two perspectives: (1) the internal
organization and use of categorical systems, and (2) modularization issues of logical
formalisms. Put more generally, (1) focuses on a single-category perspective, i.e., it
is concerned with means for specifying or searching single categories in the system.
In contrast, (2) involves a perspective of the system as a whole, as typically held
during the construction and maintenance of categorical systems. For (1), we start
from precursors of current formal ontologies by reviewing work in terminology and
classification sciences, describing the move toward the use of logical approaches
and their benefits. The main part is then concerned with aspect (2) and discusses
modularization universally as well as applied to formal logical languages. Since
modularization as a field is still emerging, this part sets up a terminology of modules
and module characteristics in order to describe and evaluate the current branches of
research to some extent uniformly.

The present chapter assumes a very broad notion of ontology. It includes all
kinds of concept systems, i.e., systems aiming at specifying a collection of concepts
or notions, which themselves are referred to in other information systems. Hence,
natural language texts serve as presentations of ontologies just as other types of sys-
tems, ranging by increasing degree of formality from vocabularies, glossaries, and
thesauri over terminologies or conceptual models up to formal axiomatizations, to
name just a few types (Gómez-Pérez et al., 2004, ch. 1). In a sense, our scope is
similar to that in terminology management (Wright and Budin, 1997), but with less
consideration of representational or linguistic aspects like the naming of concepts
(cf. also de Keizer et al., 2000).

Terminological and ontological aspects are relevant to all domains, and termino-
logical efforts in the form of determining a common language arise immediately in
most fields of science and engineering. In the next section, we concentrate on the
development of concept systems in medicine as a representative of domains with
high complexity.

3.2 Terminological Systems in Medicine

The development of common vocabularies and classification systems in medicine
started very early, exemplified by the introduction of the International Statistical
Classification of Diseases (ICD) in 1893 (WHO, 2004). Concept systems in
medicine grow very large as soon as a broad coverage of subdomains is to
be combined with even a medium depth of subsumption hierarchies.2 Medical

2Most of the current terminological systems arrange concepts by subsumption relations, i.e., along
their degree of generality. The broad use of the term “subsumption hierarchy” includes trees and
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terminology management has thus developed from mere collections of terms (and in
some cases definitions) in the form of vocabularies, glossaries, classifications, code
lists, nomenclatures, and others via semi-formal models to logic-based approaches
(cf. Herre, 2010b) in this volume or de Keizer et al. (2000). We briefly review major
aspects in the course of that development in order to identify solved and unsolved
problems concerning the complexity of these systems. Nevertheless, this will ignore
most of the overwhelming number of problems relating to clinical terminology
(Rector, 1999; Cimino, 1998), many of which still remain open.

The move toward formal systems is primarily driven by two partially interre-
lated aspects, which are often intermingled in the literature: (1) compositionality
and (2) the structured arrangement of concepts.3 Both are motivated by mitigating
the combinatorially exploding number of concepts in medicine. For instance, given
the notions of fracture as well as of bone and bone subtypes, there are fractures of
many kinds, like fractures of the arm, the forearm, the ulna, the radius, the femur,
etc., which need to be available e.g. for electronic health records.

3.2.1 Compositionality

Looking at aspect (1), semi-formal compositional concept systems try to reduce the
representational complexity by providing a number of atomic concepts, e.g., fracture
and arm, forearm, ulna, and radius. Compositionality means to express certain con-
cepts in terms of combinations of others, starting from atomic concepts. Expressions
of the form “(fracture, ulna)” are used for representing the notion of “fracture of
the ulna”. The number of explicitly managed concepts in a compositional setting
can be greatly reduced to the number of atomic concepts. Compositionality is in
this context also called post-coordination and contrasted with pre-coordination (cf.
Rector, 1999, p. 246). Pre-coordinated terminological systems are constructed as
pre-established enumerations of concepts, listing all available concepts explicitly,
whereas post-coordinated systems allow for forming implicit concepts from explic-
itly given constituents. Both approaches usually aim at a degree of coverage as high
as possible, and at internal consistency of the resulting concept system.

Two new problems arise for compositional systems: (a) meaningless combina-
tions of concepts and (b) the need to detect equivalent combinations. An example
for (a) is (fracture, oral cavity), which is not reasonable because cavities can-
not break. The pairs (fracture, ulna) and (ulna, fracture) illustrate problem (b),
if they are understood to express the same concept. Both problems were tackled
by the use of description logics (Baader et al., 2003b) starting in the 1990s, for
instance, in GALEN (Rogers, 2001; Rector and Rogers, 2005) and SNOMED CT
(Iggulden and Price, 2001). In particular, equivalence and subsumption checking of

directed acyclic graphs, also called polyhierarchies. The depth of such hierarchies refers to the path
lengths between roots and leaves.
3This mixture appears, e.g., in the description of first-, second- and third-generation terminologies;
(cf. Rossi Mori, 1997; Spackman and Campbell, 1998; Straub, 2002).
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concepts are common reasoning problems in description logic (Baader et al., 2003b,
Section 2.2.4) which address (b). Problem (a) of meaningless concept definitions
can only partially be supported by a description logic formalism. For this pur-
pose, concepts and relations among them must be expressed appropriately and
need to be augmented by restrictions. For example, (fracture, ulna) could be rep-
resented adequately as fracture � ∃has-location.ulna. Description logics can further
be used to detect inconsistencies among logical restrictions, i.e., they support ensur-
ing consistency. Moreover, less common reasoning tasks like determining the least
common subsumer of a given set of concepts or the most specific concept of an
instance can help in defining new concepts (cf. Baader et al., 2003b, Sections 1.6
and 6.3). Recently, rather weakly expressive description logics – called the EL fam-
ily – are gaining much attention, including their theoretical foundations (Baader,
2003a; Brandt, 2004; Baader et al., 2005; Krisnadhi and Lutz, 2007) as well as effi-
cient reasoners (Baader et al., 2006). One major reason for this development is the
(re)discovery that the limited expressivity is already beneficial for large medical ter-
minologies like GALEN and SNOMED CT, while more expressive logics do not
yet scale to systems of this size.4

Although meanwhile superseded by description logics, it is informative to look
at earlier intermediate solutions to the problem of arbitrary combinations, namely
the use of multi-dimensional or multi-axial concept hierarchies introduced in the
late seventies (cf. Spackman and Campbell, 1998). The restriction to combine
only concepts from different dimensions like anatomic site, morphology, or eti-
ology avoids insensible combinations along one and the same axis, e.g. (ulna,
femur). Since such restrictions remain insufficient, the approach has been refined
to multi-focal models (cf. Straub, 2002). Here, not all dimensions are treated
equally, but certain dimensions appear – possibly constrained in their values –
attached to specific values at another dimension, where a value spanning its own
field of dimensions is called a focus. For instance, the value “fracture” on a
“disease” dimension may be a focus with a “location” dimension constrained to
“bones”.5

4GALEN and SNOMED CT have adopted weak description logics very early. Spackman and
Campbell (1998) and Spackman (2001) report the use of a very restricted and therefore computa-
tionally well tractable description logic for an earlier version of SNOMED CT. The only concept
constructors referred to are conjunction and existential restrictions, plus top and bottom symbols
(apart from bottom, these constructors form nowadays the EL description logic (Baader, 2003a)).
Such usage is also claimed for GRAIL, the language used for GALEN. However, according to
Rector et al. (1997), the structure of GRAIL appears to be related to, but somewhat different from
standard description logics; (cf. also Rector and Rogers, 2005, p. 12 f.).
5Straub (2002) further proposes so-called multi-point models in order to allow for multiple values
on one and the same dimension on a regulated basis, motivated by examples like a double fracture
and given an analysis why extensions by another dimension would not solve that representation
problem. Though we agree on the examples, some skepticism about this solution remains on our
side, but cannot be elaborated here.
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3.2.2 Navigation

Although a number of systems based on multi-dimensional or multi-focal mod-
els are currently found in practice (e.g. LOINC (Forrey et al., 1996; McDonald,
2003)), description logics prevail with regard to their combinatorial capabilities and
the validation of the consistency of restrictions.

Nevertheless, those former approaches have an interesting effect concerning the
organization of subsumption hierarchies, aspect (2) from above. Subsumption rea-
soning in description logics allows for inferring formally consistent subsumption
lattices based on concept definitions. However, the number of explicitly introduced
elements in these lattices usually becomes very large, due to naming composed
concepts in order to reuse them without recomposing them in each case of use.
In spite of their inferential potential, current logical approaches and tools do not
yet offer support to tackle the navigation problem, i.e., the problem of compre-
hending and orienting creators and users of such lattices.6 The availability of
corresponding methodological advices is equally limited. Alan Rector is among
the few authors addressing this question in the field of computer science (Rector,
2003). His approach to organizing concepts is similar to the main idea of multi-
dimensional systems: for the construction of large concept systems one starts with
a number of initially unrelated, self-contained, even mono-hierarchical taxonomies,
called primitive skeletons. Those hierarchies should further be homogeneous, i.e.,
the classification within a primitive skeleton follows a single criterion (or several
progressively more restrictive criteria). Once primitive skeletons are established, all
remaining concepts are defined by means of logical definitions using skeleton con-
cepts, which yields the effect that any concept with multiple parents is a defined
concept.

Rector’s approach is not only reasonable for the construction phase of an ontol-
ogy, but having access to these distinctions in the overall system can further be
exploited for navigational purposes. Over the last decade, methods corresponding to
the multi-dimensional organization of concepts are studied in information retrieval
as faceted browsing/search or dynamic taxonomies (Sacco, 2000, 2006). A major
focus in this area is the usability of systems. For instance, Hearst (2006) suggests
design recommendations for faceted search interfaces and reports that the use of
multiple hierarchies does not confuse users. Faceted browsing is further gaining
popularity in the context of the Semantic Web (Hildebrand et al., 2006; Specia and
Motta, 2007), and it relates closely to faceted classification in library and informa-
tion sciences. One of the initial proponents of the latter is Shiyali R. Ranganathan,
who elaborately provides methodological guidance on the construction of faceted
systems in this field (Ranganathan, 1967, 1962; cf. Spiteri (1998) for simplifica-
tions). From a very general point of view, characteristics of facets may be found
in many representation approaches, as argued in Priss (2000), which makes a first,

6See also Dzbor and Motta (2008) for the navigation problem and related challenges from the
perspective of human-computer interaction applied to ontological engineering.
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integrative attempt to abstractly describe and formalize facets. However, an in-depth
elaboration of facets, neither formally nor ontologically, does not seem to be avail-
able yet, albeit it appears desirable due to its ascribed potential of enhancing formal
approaches, including description logics.

Intermediately summing up, the complexity of concept systems in terms of the
number of their concepts has primarily been addressed by description logics. This
solves the larger parts of the compositionality issues, including support for ensuring
consistency and to some extent for avoiding insensible concepts. But with respect to
search and navigation within large systems further improvements are desirable and
may be transferred from other fields.

3.3 Complex Systems and Modularization in General

The previous section is primarily concerned with a single-concept perspective on the
overall system, which is a common case from a user point of view. There is another
aspect of modularity which is concerned with the overall structure and architecture
of an ontology. This trespasses the view of ontologies as a huge set of interrelated
concepts or, more formally, as a very large set of formal sentences, which becomes
highly relevant for the construction, maintenance and evolution of large ontologies.
In addition, modularity contributes to the comprehension by maintainers and users,
possibly to training the latter in using the system, and it might correspond to some
extent to mental knowledge organization principles. Many systems in nature are
very large and complex, which requires major theoretical efforts in order to compre-
hend and describe them. Artificially created systems have reached similar degrees
of complexity. Modular design is a universal approach to alleviate complexity in
terms of artefactual systems, which is employed in every engineering discipline, e.g.
from construction to machine to software engineering. Independent of the reduc-
tion of complexity and better comprehensibility, further functional advantages of
modular design are the facilitation of change and the encouragement of the parallel
development of different parts of a system.

Focusing on ontologies, modularity is a very young research area in their respect.
Most (medical) terminologies are sparsely structured in their models (Gangemi,
1999, p. 190).7 The recency of modularity for ontologies applies particularly to
ontologies as they appear in currently popular application fields. In the Semantic
Web (Berners-Lee et al., 2001), for instance, there is a growing need and discussion
on modularization of web ontologies, exemplified by a new series of workshops
on modular ontologies (Haase et al., 2006; Cuenca Grau et al., 2008a; Sattler and
Tamilin, 2008). Much work there is devoted to providing modularity regarding the
Web Ontology Language (OWL) (W3C, 2004b). Bio-ontologies such as the Gene

7On the technical level, they are most often delivered in the form of huge data files, with a
technically oriented structure which is rather independent of the conceptual architecture.
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Ontology (Ashburner et al., 2000) or the Open Biomedical Ontologies (OBO)8 form
another active area of application (Kelso et al., 2010, this volume).

There are a number of domains providing ideas and initial approaches for mod-
ularization of ontologies. An active field highly intertwined with it is ontology
integration or ontology matching (cf. also Kalfoglou and Schorlemmer, 2010) in this
volume. Ontology integration is to some extent more mature than modularization,
with Kalfoglou and Schorlemmer (2003) and Noy (2004) presenting first review
articles of the subject, and a comprehensive book (Euzenat and Shvaiko, 2007) being
recently available. Moreover, a couple of approaches in knowledge representation
offer accounts which may be reused for modularization. The area of knowledge-
based systems has also developed solutions – typically added on top of the basic
representation formalisms employed. Looking at implemented approaches, an often-
mentioned parallel for managing large formal systems, including concept systems,
is software engineering (Loebe, 2006; Amir and McIlraith, 2005; Diaconescu et al.,
1993). In connection with formalisms, modularization is frequently studied with
respect to formal structures rather than the contents expressed. We follow this route
in reviewing and discussing logical theories and modularization in the remainder of
this chapter.9

Apart from high-level functional desiderata for logical modules, such as facilitat-
ing reuse or maintainability, a clear notion of module has not yet been established.
In the context of OWL, the primary ontology language of the Semantic Web which
is based on rather expressive description logics (Baader et al., 2003b), only a sim-
plistic means is available to tie formulas together which are syntactically distributed
over several files. The owl:imports statement is the only element available for a
syntax-level splitting of OWL ontologies. That corresponds to the union of the
axioms of the importing ontology and the imported ones, which is insufficient
from the functional perspective outlined above. Meanwhile, first approaches have
been developed in this context, with differing aims and outcomes (e.g. Bouquet
et al., 2003; Cuenca Grau et al., 2006c, 2007a; Kutz and Mossakowski, 2008).
In most cases they are based on earlier work which proves adaptable to mod-
ularity issues, and usually they fall into one of two types, distinguished by the
question of how a resulting modular system is constructed. On the one hand,
a compositional route can be taken by defining modules and general ways of
how these combine into systems. On the other hand, several decompositional
approaches consider the problem of finding appropriate ways of partitioning a given,
typically large ontology. In order to interrelate approaches of either type via a uni-
form terminology, we formulate a self-contained, general framework in the next
section.

8Open Biomedical Ontologies: http://obo.sourceforge.net/
9Terminologically, we separate the use of “ontology” from that of logical “theory”, generally
adhering to more formal, logical vocabulary in this part of the chapter. In the same line the term
“semantically” should now be read as referring to a formal, model-theoretic semantics.
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3.4 Abstract Framework for Modules

3.4.1 Overview

The purpose of this framework is to achieve a degree of comparability among the
families of current and relevant earlier approaches that are reviewed in Section 3.6.
Modules are only introduced on a very general level in this section. Section 3.5
presents a cross-cutting view on the literature by collecting a number of specific
characteristics that are applied in Section 3.6.10

Basically, modules are understood as components of systems which contain
information and are interconnected at interfaces (as known from software engineer-
ing), where they can exchange information. The primary elements of this model are
illustrated in Fig. 3.1. More logically speaking, such system components contain
logical theories, i.e., sets of sentences, which they exchange through their inter-
faces. Moreover, the system itself can influence this exchange among modules by
means of a composition operation.

In the subsequent sections, we refine these intuitions and capture them more
precisely in conventional mathematical style, for general comprehensibility.11 As
an example domain, the modular construction of a top-level ontology is utilized,
primarily focusing on the combination of a module for time with a module for
processes.

System A

Module 1

Ex1 Im1

Module 2

Ex2 Im2

F11 F21 F22

Cp

Bidirectional 
Interface

Composition
Operation

Export
Interface 

Import
Interface

Implicit
Information

Explicit
Information

Theory-
Container

Fig. 3.1 Illustration of major conceptual components of the abstract module definition

10Note that Section 3.6 provides a review of the selected approaches which should to a large extent
be readable without detailed knowledge of the framework. However, the latter supports a unified
view and collects recurrent properties required for modules in Section 3.5.
11Note that partially similar issues are treated in Kutz and Mossakowski (2008) at a comparable
level of generality, exposed in more sophisticated terms on the basis of category theory; cf. Section
3.7.1 for more details about this and related works.
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3.4.2 Formal Preliminaries

In the sequel, a very general understanding of a logic is used in order to cover a
range of approaches, along the lines of Barwise and Feferman (1985) and Herre
(1995). A logic L is understood as a triple L = (L, MS, |=) of a language L,
considered a set of sentences,12 a set of model structures MS, and a satisfiability
relation |=⊆ MS × L between model structures and sentences. The latter gener-
alizes in the standard way13 to model and consequence relations between models,
model classes, and theories, also denoted by |=. The powerset of an arbitrary set S
is denoted by Pow(S).

Grammar-based definitions of a language L usually distinguish between sen-
tence constructions and a signature/vocabulary V. Lg(V) designates the language
over V, i.e., all sentences which can be constructed from V in a given grammat-
ical framework. Sometimes it is useful to speak of the same language even for
different vocabularies. Any subset T ⊆ Lg(V) is called a theory. Voc(T) denotes
the vocabulary on which T is based, the language of T is Lg(T) = df Lg(Voc(T)). For
T ⊆ Lg(V) and V′ ⊆ V, the restriction of T to V′ is defined as T|v′ = df T∩ Lg(V′).
Cn(T) denotes the deductive closure of a theory T regarding a fixed consequence
relation |=. Cc(T) refers to the set of classical consequences of T, in contrast to cer-
tain non-monotonic consequence relations, for instance. The use of Cc assumes that
T is formulated in a language which can be interpreted classically. The set of all
tautologies of a logic is referred to as Taut(V) for a signature V and Taut(L) for a
language L. This formal setting is broad enough to cover at least classical proposi-
tional logic (PL) and first-order logic (FOL), as well as description logic (DL) and
a number of rule-based approaches with a model-theoretic semantics. Moreover,
many non-monotonic formalisms likewise fit under this umbrella.

3.4.3 Defining Modules

Common to all modules under consideration is that they contain information, i.e.,
formally, they “contain” a theory. Everything from which a theory may be extracted
is called a theory container. Th(C) denotes the theory within a theory container
C. Further, two kinds of sentences in a theory are distinguished, motivated by
the difference between axiom sets and deductively closed theories: sentences may
belong explicitly or implicitly to a theory, where implicit sentences are in some sense
derived. For instance, an axiomatization of time may form the explicit part of a the-
ory container, whereas consequences of that axiomatization which are not axioms
themselves pertain to the overall theory implicitly.

12We consider only closed formulas, i.e., formulas without free variables (in languages with
variables).
13One may consider first-order logic as a prototypical case for those notions; (cf. Ebbinghaus et al.,
1994, ch. III).
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The set of explicit sentences within a theory container C is denoted by Ex(C),
implicit sentences by Im(C), which do not overlap and together yield Th(C), i.e.,
Ex(C) ∩ Im(C) = Ø and Th(C) = Ex(C) ∪ Im(C). Note that a theory container C
may distinguish explicit and implicit parts of its theory without the implication that
the latter is deductively closed; hence Th(C) �= Cn(Th(C)) remains possible.

An essential aspect of modules is that they are combined and used together,
resulting in a larger system and module intercommunication. Adapted from soft-
ware engineering, the notion of interfaces is very relevant in this respect. Loebe
(2006) discusses a number of options for interpreting the notion of interface for
the logical case, among them the view of interfaces as theories (which should be
extracted from the module theory). Here we refine this view and distinguish inter-
faces and their specifications, where the former arise from applying the latter to a
theory container. To illustrate the intentions for these notions, consider a time theory
which may comprise an elaborate axiomatization of time points, intervals and vari-
ous relations among them. An interface may be intended to provide restricted access
to that theory in terms of a language restriction, e.g. to a theory of intervals and the
part-of relationship between intervals only. The interface specification defines that
restriction abstractly, and an interface is created by applying the restriction to the
time theory, i.e., to a particular theory container.

More formally, an interface specification FS = (LM, LF, OpF) is defined by two
interfaced languages, LM internal to the module and LF as available externally at
the interface, and a transformation operation OpF. This operation may serve pur-
poses of adapting internal formulas of the module for external combinations, e.g.
by additional relativization of quantifiers (cf. Ebbinghaus et al., 1994, ch. VIII,
p. 119 ff.). It may likewise not change anything in the special case that OpF is the
identity operation.

Interfaces are connected with information flow and its direction, which can be
realized by an exchange of formulas among two theory containers via a connec-
tion among their interfaces. We distinguish three types of interface specifications:
import and export interface specifications as well as bidirectional ones. Import
(export) interface specifications are connoted with the expectation that formulas
in the interface language (a) are primarily provided outside (inside) the interfaced
theory container and (b) they flow only to (away from) the module. In the top-level
ontology example, the time theory may provide an export interface for communicat-
ing formulas to the process theory at an appropriate import interface. In contrast to
strict export and import, bidirectional interfaces allow for the exchange of formulas
in both directions, such that assumptions on the mutual competence are less ade-
quate. This requires different operations for these types: import specifications supply
OpF: Pow(LF) → Pow(LM) and export specifications OpF: Pow(LM) → Pow(LF).
In the bidirectional case, OpF: Pow(L) → Pow(L) with L = df LM ∪ LF and
OpF(T) = OpF(OpF(T)) for every T ⊆ L.14

14This requirement is a real restriction compared to replacing a bidirectional interface with an
arbitrary pair of an import and an export interface.
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If an interface specification FS = (LM, LF, OpF) is applied to a theory container
C this yields an interface F, which is represented as F = (FS, C), where Cont(F) = C
and type(F) ∈ {im, ex, bi} as derived from the type of OpF in FS. The language inter-
nal to the module is denoted by Lgm(F), hence Lgm(F) = LM. Oprn(F) designates
the operation of the interface specification of F. If an input G is provided to OpF
this yields the theory of the interface, Th(F) = df OpF(G). For export interfaces,
the input is the theory of the container, hence Th(F) = OpF(Th(C)). Resuming the
time example, an export interface F defined on intervals and their part-of relation-
ships could result in a subtheory of the elaborated time theory Th(C), possibly with
additionally relativized quantification in Th(F).

Transforming a theory container C into a module M means to add a number of
interfaces to C, and to provide an operation describing how information imported
via interfaces together with explicit/local information of C yield the implicit theory
of the module. E.g., in the case of the process module, this operation defines how
the process axiomatization combines with imported formulas in the language of
time and possibly others. Hence, a module M = (LM, C, (Fj)j∈J, OpM) must define
OpM: Pow(LM) × �j∈J(Pow(Lgm(Fj))) → Pow(LM), which further is the basis to
explain the consequences of changes in modules from which a given module imports
formulas. The theory of the local container C of M is considered the explicit part of
M, if M is viewed as a theory container itself, denoted by Ex(M) = df Th(C), thus
requiring Lg(C) ⊆ LM. Ifc(M) = df (Fj)j∈J denotes all module interfaces. Due to
OpM, Th(M) is dependent on the inputs to import and bidirectional interfaces of M,
hence using Th(M) must assume a fixed environment/system in which the module
is employed, as introduced next. The theory resulting from importing only empty
theories is designated as Thø(M).

The final step is to compose systems from modules, like forming a top-level
ontology from the time and the process theory and others. First of all, such a sys-
tem S will also contain a theory T in a language L. T is usually derived from the
modules (Mk)k∈K and the way they are interconnected at their interfaces; below
Ifm((Mk)k∈K) = df ∪k∈K Ifc(Mk) refers to all interfaces in a family of modules,
which for a system S over that family of modules is abbreviated as Ifm(S). We
identify two aspects involved in linking modules and the composed system: (1) a
structure U of the intended (possibly mutual) use among the modules, meeting at
their interfaces, and (2) a composition operation Cp capturing system-driven trans-
formations between two connected interfaces based on the module usage structure.
Cp allows the system to influence the communication between interfaces indepen-
dently from its modules. For instance, if multiple modules of a top-level ontology
provide time formulas, Cp may be used for conflict resolution, taking into account
the overall system. Much more commonly, however, systems are formed from
axiomatized modules by their set-theoretical union.

A modular theory or system S is described as S = (L, (Mk)k∈K, U, Cp), where
U ⊆ Ifm(S) × Ifm(S) such that interfaces are connected with suitable antagonists,
i.e., for every (x, y) ∈ U: either (type(x) = bi or type(y) = bi) or (type(x) = im
[ex] iff (type(y) = ex [im]). The condition that for every k ∈ K: Lg(Th(Mk)) ⊆ L
is not required for generality, but we expect it to be relevant in many scenarios. Cp
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should be a generic operation (i.e., it does not depend on specific modules) and it
should respect the distinction of import and export interfaces and the structure U.
The theory of S is defined as Th(S) = df Cp((Mk)k∈K, U). A module interface in S
is said to be open iff it is not connected with any other interface in U. A system
is called saturated if it does not require external input, i.e., iff there are no open
import interfaces; bidirectional interfaces may remain open. Like modules, modular
theories are theory containers and may divide their theories into explicit and implicit
parts, and they can also be equipped with their own interfaces, independent of those
of their modules.

3.4.4 Example Module Types

3.4.4.1 Basic Modules

Two formalisms may provide further illustration of how this framework can be
used to understand approaches involving logical modules. The first defines a very
common view based on classical logical theories (e.g., in FOL or any DL), con-
sidering the union of these theories plus its deductive closure as the composition
operation for the system.15 In the above framework, this corresponds to form-
ing a trivial module out of a theory T ⊆ L by setting M = (L, T, F, ∪ ) with
F = ((L, L′, id), M), where id denotes the identity operation, and L′ ⊆ L forms
the interface language. That means, the theory itself (or parts of it) serves as a
bidirectional interface, and obviously there may be several such interfaces for dif-
ferent sublanguages. Modules of this type are called basic modules. They also cover
cases where parts of the signature are marked as “external” while the information
flow remains unrestricted when joining theories (Cuenca Grau, 2007a). Possibly
this corresponds to interface languages which are a proper subset of L. Given
a number of basic modules (Mi)i∈I and their corresponding family of interfaces
Ifm((Mi)i∈I), the use of the set-theoretical union as composition produces the system
S = (Lg(∪i∈I Voc(Mi)), (Mi)i∈I, Ifm((Mi)i∈I) × Ifm((Mi)i∈I),∪).16 Consequently,
∪i∈I (Th(Mi)) ⊆ Th(S) = Cc(∪i∈I(Ex(Mi))). For a logic with Craig interpolation
such as FOL (Chang and Keisler, 1990; Craig, 1957), Th(S) is consistent if and only
if each pair of connected interfaces is consistent (cf. also Amir and McIlraith, 2005).

15In the sequel, following common conventions and despite actually distinguishing theories and
deductively closed theories, we abbreviate this composition operation as “union” or “set-theoretical
union”, denoting it as ∪.
16Concerning the usage structure among basic modules, there is some arbitrariness between two
options: either to consider all interfaces connected to each other, or to see connections only if
there are non-empty intersection languages among the Mi. We chose Ifm((Mi)i∈I) × Ifm((Mi)i∈I)
because even with empty intersection languages some interaction may occur among the Mi, e.g.,
creating inconsistency based on logical sentences restricting the universe to different cardinalities.
However, for FOL the second option is in effect equivalent to this Amir and McIlraith (2005).
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3.4.4.2 Modules in Distributed First Order Logic

Aiming at an uncommon composition operation, another example is provided
by Distributed First Order Logic (DFOL; Ghidini and Serafini, 2000), see also
Section 3.6.5. DFOL theories are defined in disjoint first order languages, e.g.
L1 ∩ L2 = Ø. Syntactically, they can be linked with “interpretation constraints”
ϕ → ψ, where ϕ and ψ belong to different languages, e.g. ϕ ∈ L1, ψ ∈ L2.
The intuition is that ϕ in the L1-module yields that ψ holds in the L2-module.17

Accordingly, a DFOL interpretation constraint implicitly defines two contributions:
one to an export interface Fex such that ϕ ∈ Th(Fex) and the other to an import
interface Fim with ψ ∈ Th(Fim), where it is reasonable to let the “union” of all
equally directed interpretation constraints between the same modules jointly define
those interfaces. Further, the above constraint influences the composition operation
of the combined system S by adding the pair (Fex, Fim) to its usage structure, thus
contributing to deriving the theory Th(S). Notably, the language of S is restricted
compared to a system composed of basic modules. DFOL does not allow for
composing formulas with constituents from the different module languages.

Most of the approaches to be studied in Section 3.6 deal with basic modules.
However, in general, composition within a system may depart from set-theoretical
union. For instance, a system might even provide a weaker theory than each or some
of its modules, i.e., Th(S) ⊂ Th(Mi) for every or some i∈I. A selection of general
characteristics is presented in the next section, as a foundation for comparison.

3.5 Characteristics of Module Notions

All of the subsequent characteristics have been collected within the literature or have
been devised from work on the top-level ontology General Formal Ontology (Herre
et al., 2006; Herre, 2010a, this volume). Accordingly, they represent a collection of
features or desiderata to which particular notions of module may adhere, instead of
a set of necessary requirements for every module definition.

3.5.1 Informal Characteristics

First, we formulate a number of requirements which are hard to state on a sole
formal basis.

CI-1 Comprehensibility: In order to support maintainability, a module should
remain “comprehensible”. Two options in order to achieve this for basic
modules are (a) the restriction to a rather small vocabulary and a small set of

17Interpretation constraints are a special kind of “compatibility constraints” as mentioned in
Section 3.6.5. Their proof-theoretic counterparts share the same intuition and are called “bridge
rules”, a new type of inference rule in DFOL.
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axioms of arbitrary form, or (b) to have a possibly large, structured vocabu-
lary equipped with only simple axioms, which furthermore follow one or a
few common schemes. Regarding systems, comprehensibility should derive
from the way in which they are composed of basic modules.

CI-2 Stability: For a system, changes to a single module or the addition of
loosely related modules should not exhibit a strong influence on the structure
of the system, i.e., the previous system structure should remain stable. For
example, adding a module should not alter connections among other mod-
ules. Furthermore, side effects of evolution should be reduced to a minimum.
This criterion has also been proposed in Rector (2003).

CI-3 Compositionality: For a number of logical properties of module theories it
is desirable to be able to reason over the properties of the theory of the result-
ing system. For example, a composition operation could be devised such that
the consistency of a system immediately results from the consistency of its
modules. Compositionality would be very valuable especially for intractable
logics such as FOL, because one could then concentrate on proving prop-
erties of much smaller theories. For more tractable logics, compositionality
would still be helpful in practice, because large ontologies can take current
reasoners far beyond their capabilities (cf. Pan, 2006).

CI-4 Directionality Composition should allow for a directed information flow
among modules, such that a module B may use another, A, without B having
an impact on A (cf. Ghidini and Serafini, 2000; Bao et al., 2006a). Formally
this is possible in the framework by using import and export interfaces. Let
Fi and Fk be interfaces with which two components Mi and Mk within a sys-
tem S are connected via an export-import-connection. The exporting module
cannot receive formulas over that connection. However, in order to enforce
directionality more generally and also on the system level, composition must
additionally assure that the combination of Th(Mi) and Th(Mk) to Th(S)
respects this limited information flow.

3.5.2 Formal Characteristics

The remaining features can be formally captured in the framework introduced
above. Note that any pre-established constraints with respect to feasibility or com-
putability are not imposed. We will frequently refer to a system S composed of a
family of modules (Mi)i∈I, for an arbitrary index set I.

3.5.2.1 Characteristics Primarily Based on Either Interfaces,
Modules or Systems

CF-1 Basic Interface and Identity Interface: Naturally, interfaces should only
provide access to and from the module contents. Often, one would even
require that they do not change im- or exported formulas. Hence, an interface
F is called basic iff, for arbitrary input G and output language L, its operation
satisfies that Th(F) ⊆ G|L. It is called an identity interface iff Th(F) = G|L.
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CF-2 Black-box Interfaces: The next characteristics aim at the potential of
a module at an interface to interconnect with other modules. It is derived
from Cuenca Grau (2007a) and refers to the assumptions a module holds at
an interface it imports from. Given a module M with Ifc(M) = (Fn)n∈N,
an import or bidirectional interface Fm = (FS, M), m ∈ N, has a (sim-
ple) black-box property iff for an arbitrary input to Fm such that its theory
Th(Fm) is consistent, Th(Fm) can be consistently combined with the the-
ory of otherwise only empty imports to M. In general, that means that for
an arbitrary theory T and the family (Tn)n∈N with Tn = Oprn(Fn)(Ø) for
n �= m and Tm = Oprn(Fm)(T) such that Tm is consistent, it follows that
Th(M) = OpM(Ex(M), (Tn)n∈N) is consistent. For basic modules, this sim-
plifies to enforcing that Th(Fm)∪ThØ(M) is consistent for arbitrary consistent
inputs to Fm. A much stricter version is defined by the analogous assumption
for arbitrary consistent imports at all other interfaces of M, which we call a
strict black-box interface of M.

CF-3 Module Language Overlap: This feature refers to the question of whether
module signatures or languages may overlap, thus analyzing Voc(Mi) ∩
Voc(Mj) and Lg(Mi) ∩ Lg(Mj). There is a variety of options, ranging
from empty intersections in both cases18 over sharing restricted vocabulary
elements (e.g. special relations only) to arbitrary overlap among modules.

CF-4 Classically Closed Composition: Due to the important role of classical
logics, it is often convenient if systems are closed under classical logic:
Th(S) = Cc(Th(S)). Basic modules and their compositions are classically
closed by definition. The rationale behind this closure is to assure correct
reuse of information from S within classical reasoning systems, i.e., when
using S itself as a module in another system.

3.5.2.2 Characteristics with Respect to the Interplay of Modules and Systems

For the following characteristics, we assume that modules are equipped with identity
interfaces only.

CF-5 Inclusion of Explicit Module Information: It appears natural that a sys-
tem S should provide the information contained explicitly in its modules:
∪i∈I (Ex(Mi)) ⊆ Th(S).

CF-6 Inclusion of Complete Module Information: This is a strengthen-
ing of CF-5 to additionally include implicit information of the modules:
∪i∈I (Th(Mi)) ⊆ Th(S). For basic modules this is called local correctness
in Cuenca Grau et al. (2006c), which is traced back to Garson (1989).

18In FOL with equality, the equals symbol must be noticed and can be seen as commonly shared.
For example, contradictory equality sentences may produce contradictions when joining seemingly
signature-disjoint theories.
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CF-7 Deductive Conservativity: This criterion is a kind of “inverse” to CF-6,
because it requires a system to be a (deductive) conservative extension of its
modules: for all i ∈ I: Th(S)|Lg(Mi) = Th(Mi). Put differently, every mod-
ule must cover every formula of the system which can be expressed in its
language. This is referred to as local completeness in Cuenca Grau et al.
(2006c). The criterion of deductive conservativity is recently strongly advo-
cated and analyzed with respect to its application in novel reasoning services
for description logics (cf. among others Lutz et al., 2007a, b; Kontchakov
et al., 2007; Ghilardi et al., 2006a; Cuenca Grau et al., 2008b; Kontchakov
et al., 2008) for extensions of the notion of conservativity.

CF-8 Deductive Conservativity over Sublanguages: A weakening of deductive
conservativity yields another form of interrelating a system S and its modules
Mi. Here it is not the case that every sentence of S expressible in terms of a
module language Lg(Mi) must be part of the module theory Th(Mi), but this
is only required for expressions of a sublanguage K ⊆ Lg(S). One option for
determining K is the use of sentence schemata. For instance, in a DL setting,
Cuenca Grau et al. (2006c) defines modules to be closed under subsumption,
i.e., for a sentence ϕ ∈ Th(S) of the form C� D such that C or D ∈ Voc(Mi),
it is required that ϕ ∈ Th(Mi). This definition requires atomic DL concepts to
belong to one and the same module if they stand in a subsumption relation.
That can produce severe effects on system structures in case of changes to
the system or its modules, especially in decompositional settings if module
signatures are not fixed by other means, cf. Section 3.6.3.

CF-9 Transitivity of Information Flow among Modules: In general, given a sys-
tem S in which the modules Mi and Mj are connected such that Mi has an
impact on Mj, then composition in S should allow Mi to have an (indirect)
impact on any Mk which is connected to Mj (cf. Bao et al., 2006a). Different
kinds of influence lead to different variants of this criterion. One way of
understanding this intuitive statement in the framework is the following.
Remember that the composition operation of S should be given indepen-
dently of specific arguments, i.e., in a way which can be applied to arbitrary
theories (e.g., set-theoretical union). The criterion can mean that there are
cases of Mi, Mj, and Mk such that Th(Mk) in S differs from Th(Mk) in a copy
of S in which Mj ignores imports from Mi, i.e., where all (x, y) from U in S
with x ∈ Ifc(Mi) and y ∈ Ifc(Mj) are removed.

3.5.3 Discussion of Characteristics

The above criteria have been identified as those of major relevance for the sub-
sequent comparison of works related to modularization. The selection is further
influenced by prevalent discussions in the literature. Some more advanced but
less frequently stated criteria have been omitted, like “robustness under joins of
signatures” (Kontchakov et al., 2007), similarly for formal, but irrelevant ones,
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e.g. refraining from the inclusion of only implicit information as (an analog to
the explicit case, CF-5). Hence, the list is not a complete compilation, neither with
respect to the possibilities in the framework nor to the coverage of the literature.

Concerning interrelations among these characteristics, one can already notice
some interplay which is likely to prevent attempts to satisfy all of them as require-
ments for a single notion of module. For example, it appears non-trivial to satisfy
(a) directionality together with (b) the inclusion of module information in the sys-
tem, (c) deductive conservativity of the system as well as (d) classically closed
composition. The naïve approach to directionality fails easily, i.e., a composition
operation which assigns competences to modules based on their languages. To see
this in a FOL setting, let S be composed of M1 and M2 such that M2 uses M1,
and Th(M1) = Cn(Ex(M1)), Th(M2) = Cn(Ex(M2) ∪ Ex(M1)). S may answer
queries in Lg(M1) only by means of the first module, thus by Th(M1), but queries in
Lg(S)\Lg(M1) in terms of Th(M2). This leads quickly to a situation where S loses
classically closed composition, e.g., by no longer satisfying the deduction theorem
of FOL.

The properties of the inclusion of module information and of deductive conser-
vativity (CF-5 to CF-7) appear very restrictive even without the interplay with other
characteristics. The question arises whether a non-trivial composition operation can
be found which differs from set-theoretical union but satisfies both requirements,
all the more since these characteristics originate from settings of basic modules. For
the latter, black-box interfaces also exhibit some peculiarities. For modules with a
single, possibly language-restricted bidirectional interface, the simple and the strict
black-box variants are equivalent because of the restriction to a single source of
import. Moreover, a black-box interface with output language L at a basic module
M is given iff ThØ(M)|L = Taut(L). Therefore, this property corresponds to the fact
that Th(M) is a deductive conservative extension over every consistent interface the-
ory Th(F) ⊆ L. From this follows further that linking two modules at black-box
interfaces yields no interaction.

After those considerations on an abstract level, more concrete approaches can be
discussed.

3.6 Analytic Overview of Logical Approaches

As stated earlier, modularization of logical theories is a rather young research
interest. The following families of approaches are reviewed below.

• “conservativity and disjoint languages” (Cuenca Grau et al., 2006a, 2007a,
2008b; Ghilardi et al., 2006a, b; Kontchakov et al., 2007, 2008; Lutz et al.,
2007a, b and Ponomaryov, 2006a, b, 2007, 2008)

• “partition-based reasoning” (Amir and McIlraith, 2000, 2005; MacCartney et al.,
2003)

• “semantic encapsulation” (Cuenca Grau et al., 2004, 2005, 2006b, c)
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• “package-based description logics” (Bao et al., 2006a, b, c, d, Cuenca Grau et al.,
2007b)

• “distributed logic” (Borgida and Serafini, 2003; Bouquet et al., 2003; Ghidini and
Serafini, 2000, 2001; Serafini and Bouquet, 2004, 2005)

The first four are recent approaches tackling modularization explicitly, whereas
the “distributed logic” approach originates from different motivations, but applies
to modularization as well. In this section, we provide a short contextual placement
for each of these accounts and sketch their main ideas. Moreover, an interpretation
in our framework is discussed to improve their mutual comparability, where the last
subsection surveys all features in tabular form.

3.6.1 Conservativity and Disjoint Languages

The rediscovery of the logical property of conservativity and its potential use in con-
nection with modularization issues is among the latest developments in the fields
of description logics and Semantic Web ontologies. Conservativity in its deductive
variant means the following (cf. also CF-7, CF-8): given two theories T ⊆ T′, T′
is a deductive conservative extension of T iff T′ does not entail consequences that
can be expressed in the language of T, but are not already consequences of T. That
means, T and T′ have the same Lg(T)-consequences, Th(T)|Lg(T) = Th(T′)|Lg(T). A
formal-semantic and usually stronger notion is model-conservativity, which requires
that every model of T can be extended to a model of T′ without changing the inter-
pretation of symbols in the language of T, i.e., if M |= T, there is an M′ |= T′
with M′|Voc(T) = M (cf. also e.g. Lutz et al., 2007a; Cuenca Grau et al., 2008b) for
definitional variants.

The application of conservativity to description logics is mainly studied by Frank
Wolter and colleagues (Ghilardi et al., 2006a, b; Kontchakov et al., 2007; Lutz et al.,
2007a, b). Their work focuses on decision and complexity problems, as well as
procedures for corresponding reasoning tasks like deciding whether one DL the-
ory is conservative over another, or computing explanations for non-conservativity
among two theories. More recently, also types of conservativity and properties of
such relations among theories are analyzed (Kontchakov et al., 2007; Kontchakov
et al., 2008).

In terms of a more explicit approach to defining modularity for DL-based ontolo-
gies, conservativity has also been adopted as a foundation in Cuenca Grau (2007a).
In this work theories are formulated in languages with their signatures being par-
titioned into local and external symbols. Moreover, the basic assumption is made
that a modular use of the external symbols Vext requires that a theory T should
produce conservative extensions T ∪ T′ over Vext for every extension T′ using sym-
bols from Vext. Accordingly, these theories form basic modules with bidirectional
identity interfaces as they appear due to language overlap. In addition, the require-
ment means that the interface defined over the external signature Vext is a simple
black-box interface. Note that connections among two theories at these interfaces
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yield no information exchange among them, cf. Section 3.5.3. Cuenca Grau et al.
(2008b) is a comprehensive successor of Cuenca Grau (2007a) which adopts a
weaker, relative definition of “module”: a subtheory T′ ⊆ T of a given DL theory T
is a module of T for another DL theory S iff S ∪ T is a (deductively) conservative
extension of S ∪ T′ with respect to Voc(S).

As a special case of conservativity one may consider the decomposition of
theories into disjoint language components. The uniqueness (modulo equality
formulas) of such decomposition in the first-order case has been proved by Denis
Ponomaryov (Ponomaryov, 2006a, b). It appears instructive to include this case
in Table 3.1 for comparison. Moreover, the approach is being developed further,
recently including relative decompositions of theories, i.e., studying the relation
between theories and decomposable subtheories (Ponomaryov, 2007; Ponomaryov,
2008). Accordingly, this work evolves into a partition-based reasoning approach,
which is introduced next.

3.6.2 Partition-Based Reasoning

This approach is motivated with a scenario of reasoning over multiple theories with
overlapping content and vocabularies in propositional or first-order logic. A sub-
sidiary aim is the improvement of the efficiency of reasoning by means of partitions.
Amir and McIlraith (2005) presents the latest introduction to the theoretical frame-
work, which is based on earlier publications (MacCartney et al., 2003; Amir and
McIlraith, 2000). The main idea is to use a message passing metaphor from the
object-oriented paradigm in software engineering for reasoning over a partitioning
of some theory. More precisely, given a theory T and a partitioning (Ti)1≤i≤n of
T, message passing algorithms are specified which employ “standard” reasoning
within each Ti, but use message passing between certain Ti and Tk if their lan-
guages overlap. The specified algorithms are proved to be sound and complete with
respect to classical reasoning over T, with these results being heavily based on Craig
interpolation (Craig, 1957, Lemma 1).

Moreover, Amir and McIlraith (2005) presents a decomposition algorithm for
theories which aims at minimizing three parameters, ranked by importance: for a
single partition Ti, it minimizes primarily the number of symbols exchanged with
other partitions, secondarily the number of unshared symbols within Ti. For the
overall partitioning, the number of partitions should be kept to a minimum, which
is the third and least enforced parameter.

In terms of the above framework, the theories in a partitioning are basic mod-
ules equipped with bidirectional identity interfaces over Lg(Ti) ∩ Lg(Tk), which
are composed by set-theoretical union. Therefore, neither directionality nor deduc-
tive conservativity is satisfied in general. It remains to be studied whether the
decomposition algorithm produces modules over which the system is deductively
conservative. Apart from that, the decomposition approach minimizes coupling
among modules, module size, and their number.
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3.6.3 Semantic Encapsulation

The term “semantic encapsulation” is borrowed from Cuenca Grau (2005), and we
use it to cover work on ε-connections (Kutz et al., 2004) as well as its continu-
ation and extension especially for DLs by Bernardo Cuenca Grau and colleagues
in Cuenca Grau et al. (2004, 2005, 2006b, c). ε-connections provide a method of
combining certain kinds of logics, hence this approach belongs to the more mature
field of combining, fibring, and fusing logics.19 There is the general result that the
combination of decidable logics which can be expressed in terms of ε-connections
yields a possibly more expressive, but still decidable formalism. One of the central
ideas behind ε-connections is that each logic maintains its own interpretations in
terms of separate model structures, but certain restrictions among the distinct model
structures can be expressed when combining logics, by means of link relations.

Cuenca Grau et al. (2004, 2006b) apply ε-connections to the combining of
ontologies based on description logics, motivated by the idea of an integrated
use of independently developed OWL ontologies on the web. This work has later
been extended in a way which departs from ε-connections to some extent (Cuenca
Grau et al., 2006c). Nevertheless, it transfers the above-mentioned feature of the
ε-connections method – distinct model structures connected by link relations – to a
certain class of SHOIQ theories,20 namely to such that allow for a partitioning of
the domain of their models. More precisely, Cuenca Grau et al. (2006c) introduces a
decomposition approach for such SHOIQ theories by presenting a partitioning algo-
rithm for a theory T, in which the resulting set P of partitions containing subtheories
is correlated with a specific group of models of T. These models exhibit a domain
partitioning D, and each single partition p of T (i.e., p ∈ P) can be evaluated in a
single partition d ∈ D of the domain of the model. It is this property which may
justify the name “semantic encapsulation”. Each partition has the property that any
two concepts such that one entails the other belong to the same partition. Modules
in the sense of Cuenca Grau et al. (2006c) are computed based on unions of such
partitions, which by the computation inherit this property.21

With respect to our model, this account is also concerned with basic modules with
identity interfaces, composed by set-theoretical union, yet in contrast to partition-
based reasoning here in a DL setting. In its decompositional form, the stability
of modular systems arising from such decompositions is not ensured if the initial
theory is modified.

19The field emerged around the mid of the 1990s, exemplified by dedicated publications and events
such as the workshop series “Frontiers of Combining Systems”; (cf. Caleiro et al., 2005).
20SHOIQ is a slightly more expressive description logic than SHOIN, the description logic
underlying OWL-DL. See Cuenca Grau (2005, Section 2) for an in-depth discussion.
21This property has an effect which may be problematic in some cases. Given a domain ontology D
modularizable according to Cuenca Grau et al. (2006c), the use of an ontology with more general
categories G to integrate D-categories by means of subsumption causes all modules to collapse into
one. This has practically been observed in tests with the GALEN ontology (Cuenca Grau, 2005,
p. 150 f.), and will prevent the use of foundational ontologies in modular fashion according to this
approach.
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3.6.4 Package-based Description Logics

In Bao et al. (2006d), Jie Bao and colleagues define a package-based approach for
description logics, P-DL, with intended features such as a localized semantics of
modules, directional semantic relations among them, and partial reuse or informa-
tion hiding. Similarly to Cuenca Grau (2007a), the symbols of a theory in P-DL are
divided into foreign terms and home package terms. Semantically, the disjointness
of model domains as discussed above is alleviated for P-DL, i.e., importing among
theories occurs by means of domain relations, which are specific one-to-one map-
pings among the domains of local models required as soon as one theory imports a
foreign term.22

In general, basic modules form the basis of this account, as well.23 Directionality
in the sense of CI-4 – though intended – is not fully supported yet, because it is
possible that one module adds assumptions on foreign terms only, which propagate
back to the modules these terms originate from, even if the latter do not import
anything from the former (see Bao et al., 2006a, p. 627). Note further that Cuenca
Grau et al. (2007b) presents a self-contained formal definition of P-DL together
with a simplified, but equivalent variant which employs identity as the one-to-one
mapping among model domains.

3.6.5 Distributed Logics

The notion of “distributed logics” covers several approaches rooted in the contex-
tual reasoning community, specifically based on Local Model Semantics (LMS)
and Multi-Context Systems (MCS) (cf. Ghidini and Giunchiglia, 2001; Serafini
and Bouquet, 2004). More precisely, it refers to works of Luciano Serafini et al.
on developing Distributed First Order Logic (DFOL) (Ghidini and Serafini, 2000),
Distributed Description Logics (DDL) (Borgida and Serafini, 2003) and a contextu-
alized form of OWL, called C-OWL (Bouquet et al., 2003).

The major idea of LMS/MCS, which conveys to the more recent approaches, is
to have a collection of theories (possibly in different logical systems) each of which
is first of all interpreted locally, i.e., with respect to the semantics of its associated
logic (all of which are assumed to be model-theoretically defined). Domain relations

22Actually, Bao et al. (2006d) discusses three types of semantics: a local semantics per module, a
global semantics, in which all model domains are united and domain correspondences are merged,
and a distributed semantics which includes a central package and all of its imports.
23It is tempting to view foreign terms as defining import interfaces instead of the bidirectional
identity interfaces of basic modules. This assumption is also supported by the propagation of sub-
sumption relations among terms to modules importing all atomic term components. However,
conservativity properties are not generally satisfied by P-DL, and accordingly, bidirectional
interfaces appear more appropriate than import interfaces.
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define (arbitrary) interconnections among the domains of such local models, which
can be restricted by compatibility constraints, specific syntactic expressions involv-
ing different local languages. This yields information exchange among the local
theories. Bridge rules provide a proof-theoretic counterpart for compatibility con-
straints: given two theories T1 and T2, a bridge rule is a pair of formulas (ϕ, ψ) such
that ϕ ∈ Lg(T1), ψ ∈ Lg(T2), which states that ϕ ∈ Th(T1) allows one to conclude
ψ in T2.

The distributed logic approach is compositional rather than decompositional.
Actually, it does not aim at creating an integrated system and has not been invented
as an approach to tackle modularization originally. A view of many partially
interrelated, coexistent theories is advocated instead. One rationale for this is the
motivation to describe communicating agents with possibly different views. Despite
of this, the list of properties required for DFOL (Ghidini and Serafini, 2000)
documents quite some overlap with our collection of characteristics.

Local theories in DFOL can be considered as modules equipped with identity
interfaces. Bridge rules provide a non-trivial composition operation, which fully
supports directionality in DFOL. Further, due to the peer-to-peer semantics, the lan-
guage extension at the system level is restricted to compatibility constraints. They
cannot be iterated, i.e., only local formulas are permitted as subexpressions of a
compatibility constraint, such that arbitrary formulas over the union of the vocab-
ularies are not included. Put differently, the (virtual) system language is severely
restricted to the union of the languages of its modules plus compatibility con-
straints. On a more technical level, the fact that all languages are local and mutually
independent creates some inconvenience, because the representation of overlapping
vocabularies implies the addition of many bridge rules.

DDL (Borgida and Serafini, 2003) transfers the approach to a description logic
setting, where only restricted forms of bridge rules have been studied yet, which
express forms of inter-module subsumption. However, the composition operation
remains fairly unconstrained, as in the basic formalism. The effects of this freedom
have been criticized not to meet expectations for modules (named the subsumption
propagation problem and inter-module unsatisfiability problem (cf. Cuenca Grau
et al., 2004; Bao et al., 2006a). Although these can be partially avoided by appro-
priate modeling (Serafini, 2005), we maintain that this mismatch originates from
the motivation of linking systems with different views, which should not be inter-
mingled with modular systems (that are assumed to be, at least potentially, globally
consistent and integrated). Due to the named problems (Bao et al., 2006a) denies
DDL transitive reuse, which Bao et al. define regarding subsumptions within a mod-
ule. In general, however, certain effects from one module may flow to another one
which is not directly connected to the first, but reachable via an intermediate module
(cf. Serafini, 2005), thus satisfying transitivity of information flow as defined above
(CF-9). Moreover, DDL satisfies the inclusion of implicit information (Borgida and
Serafini, 2003, p. 170). Bridge rules provide directionality, except for some special
cases where DDL may show effects along the reverse direction of a bridge rule (cf.
Serafini, 2005).
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3.6.6 Summarizing Overview

Table 3.1 shows an evaluation against the presented characteristics of modules
and modular systems. The order of presentation from left to right is geared to
the deviation from classical logic, rather than the chronological occurrence of
the approaches. Apparently, the majority of approaches refers to basic modules
composed by means of set-theoretical union. To some extent this commonality
is due to our selection of works which centers on common, purely logical set-
tings, cf. also the remarks about further relevant work in the next section. It also
explains the remarkable acceptance of the inclusion of explicit module information
(CF-5).

In general, the table entries provide strong indications regarding the criteria, but
they should not be seen as assignments with a unique and irrevocable interpreta-
tion. For instance, in case of directionality, “No” should be read as such that it
is possible to create directional compositions for basic modules as a special case,
but it is not enforced in general. Similarly, compositionality with respect to consis-
tency is only satisfied in the case of disjoint signatures if equational theories do not
conflict.

Concerning modularization vs. additional motivations of the formalisms dis-
cussed, in our opinion distributed logics and P-DL intermingle different views with
knowledge organization from a single point of view. We believe that these should
be more clearly separated and tackled independently. Furthermore, first comparisons
are available, focusing mainly on ε-connections, DDL, and P-DL. Wang et al. (2007)
provides an evaluation of these approaches against a set of primarily technological
criteria, clustered into five dimensions: networking, dynamics, distribution, reason-
ing, and expressivity. The overlap with the characteristics above is rather limited.
Wang et al. (2007) follows Bao et al. (2006c) which discusses all three approaches
from a DFOL perspective, showing their mutual interrelationships in this setting. In
contrast, Cuenca Grau et al. (2007b) provides a comparison from a description logic
point of view. In addition, the authors discuss the option to tackle modularization by
novel reasoning services for existing languages, in contrast to developing languages
with new, non-standard semantics. It remains open whether one of these lines offers
more advantages than the other. From our perspective, reasoning services like deter-
mining the conservativity of one theory over another are definitely beneficial for
managing theories. As services, however, they exhibit a dynamic character, simi-
larly to decompositional approaches in general – which conflicts with criteria like
stability (CI-2). A potential resort for this may be to distinguish “designed modular-
ity” when building large ontologies from “dynamic modularity support” when using
or analyzing ontologies.

Altogether, it seems that logical modularization currently produces diversified
results and finds itself still in a phase where, based on common, high-level goals
like reuse and comprehensibility, the main directions of research require further
clarification.



90 F. Loebe

Ta
bl

e
3.

1
O

ve
rv

ie
w

of
lo

gi
ca

la
pp

ro
ac

he
s

di
sc

us
se

d
in

Se
ct

io
n

3.
6

w
ith

re
sp

ec
tt

o
th

e
ch

ar
ac

te
ri

st
ic

s
de

fin
ed

in
Se

ct
io

n
3.

5

C
ha

ra
ct

er
is

tic
D

is
jo

in
ts

ig
na

tu
re

s
B

as
ic

m
od

ul
es

w
ith

co
ns

er
va

tiv
ity

Pa
rt

iti
on

-b
as

ed
re

as
on

in
g

Se
m

an
tic

en
ca

ps
ul

at
io

n
Pa

ck
ag

e-
ba

se
d

de
sc

ri
pt

io
n

lo
gi

c
D

is
tr

ib
ut

ed
lo

gi
cs

L
og

ic
FO

L
FO

L
,D

L
FO

L
D

L
(ε

-c
on

ne
ct

io
ns

)
D

L
FO

L
,P

L
,D

L

W
ay

of
cr

ea
tin

g
m

od
ul

ar
sy

st
em

s
D

ec
om

po
si

tio
na

l
(i

n
Po

no
m

ar
yo

v,
20

06
a,

b)

Pr
im

ar
ily

co
m

po
si

tio
na

l
C

om
po

si
tio

na
la

nd
de

co
m

po
si

tio
na

l
C

om
po

si
tio

na
la

nd
de

co
m

po
si

tio
na

l
Pr

im
ar

ily
co

m
po

si
tio

na
l

C
om

po
si

tio
na

l

C
I-

1
C

om
pr

eh
en

si
bi

lit
y

N
ot

ad
dr

es
se

d
N

ot
ad

dr
es

se
d

N
ot

ad
dr

es
se

d
N

ot
ad

dr
es

se
d

N
ot

ad
dr

es
se

d
N

ot
ad

dr
es

se
d

C
I-

2
St

ab
ili

ty
N

o
N

ot
ad

dr
es

se
d

R
at

he
r

no
N

o
R

at
he

r
ye

s
R

at
he

r
ye

s
C

I-
3

C
om

po
si

tio
na

lit
y

w
rt

co
ns

is
te

nc
y

Y
es

N
o

N
o

N
o

N
o

N
o

C
I-

4
D

ir
ec

tio
na

lit
y

N
o

N
o

N
o

N
o

Pa
rt

ia
l

Y
es

C
F-

1
C

F-
2

In
te

rf
ac

e
ty

pe
s

N
on

e
(n

o
in

te
rf

ac
es

)
Id

en
tit

y,
so

m
e

bl
ac

k-
bo

x
Id

en
tit

y
Id

en
tit

y
Id

en
tit

y
Id

en
tit

y

C
F-

3
M

od
ul

e
la

ng
ua

ge
ov

er
la

p
O

nl
y

eq
ua

lit
y

A
rb

itr
ar

y
A

rb
itr

ar
y

A
rb

itr
ar

y
A

rb
itr

ar
y

N
on

e
C

F-
4

C
la

ss
ic

al
ly

cl
os

ed
co

m
po

si
tio

n
Y

es
Y

es
Y

es
Y

es
Y

es
N

o

C
F-

5
In

cl
us

io
n

of
ex

pl
ic

it
m

od
ul

e
in

fo
rm

at
io

n
Y

es
Y

es
Y

es
Y

es
L

oc
al

ly
:Y

es
G

lo
ba

lly
:N

o
Y

es

C
F-

6
In

cl
us

io
n

of
im

pl
ic

it
m

od
ul

e
in

fo
rm

at
io

n
Y

es
Y

es
Y

es
Y

es
L

oc
al

ly
:Y

es
G

lo
ba

lly
:N

o
D

FO
L

:N
ot

ap
pl

.
D

D
L

:Y
es

C
F-

7
D

ed
uc

tiv
e

co
ns

er
va

tiv
ity

Y
es

Y
es

N
o

N
o

N
o

N
o

C
F-

8
D

ed
uc

tiv
e

co
ns

er
va

tiv
ity

ov
er

su
bl

an
gu

ag
es

Y
es

(i
m

pl
ie

d)
Y

es
(i

m
pl

ie
d)

N
o

N
o

N
o

N
o

C
F-

9
T

ra
ns

iti
vi

ty
of

in
fo

rm
at

io
n

flo
w

N
o

(i
m

pl
ie

d)
Y

es
Y

es
Y

es
Y

es
Pa

rt
ia

lly

A
dd

iti
on

al
re

m
ar

ks
D

ed
.c

on
se

rv
at

iv
ity

ov
er

su
bl

an
gu

ag
es

is
di

sc
us

se
d

in
K

on
tc

ha
ko

v
et

al
.

(2
00

7)

C
f.

B
ao

et
al

.
(2

00
6d

)
fo

r
th

e
di

st
in

ct
io

n
of

lo
ca

l
an

d
gl

ob
al

se
m

an
tic

s.

R
es

tr
ic

te
d

sy
st

em
la

ng
ua

ge
in

D
FO

L



3 Organization and Management of Large Categorical Systems 91

3.7 Concluding Remarks

3.7.1 Further Related Areas

The comparison section above concentrates on recent approaches in purely log-
ical settings, most of which explicitly relate themselves to their application for
formalizing ontologies. However, there are many other fields which may provide
valuable input to theories of logical modularization.

Certainly the most prominent large-scale system involving reasoning and struc-
turing theories has not been presented here, namely the solution provided for
structuring the CYC knowledge base (Lenat and Guha, 1990) in terms of microtheo-
ries. The theory for this has primarily been developed by Rahmanathan Guha (1991),
placed in the field of contextual reasoning and strongly inspired by John McCarthy,
who later continued work on contexts with a related formalism (McCarthy and
Buvač, 1998). Obrst (2010, Section 4) in this volume summarizes both microthe-
ories and reasoning about contexts. Contextual reasoning is at the borderline of our
selection. We just note that covering this approach as well appears possible and
would clearly transcend basic modules, e.g., by the need for actual transformations
in interfaces.

In the Semantic Web area there is a lot of research which either extends log-
ical formalisms more radically, adds extra-logical features, or may also provide
less logic-oriented approaches, e.g. for decomposing ontologies in RDF(S) based
on properties of RDF graphs. Examples for this overall group are Stuckenschmidt
and Klein (2003, 2004) and Seidenberg and Rector (2006).

Another very relevant line of research refers to formal approaches in soft-
ware engineering and in the semantics of programs and programming languages.
Cursorily, a number of authors including ourselves already draw inspiration upon
software engineering, e.g. by referring to notions like interfaces, information hid-
ing, etc. However, established formal results in these fields should be studied more
closely, e.g., approaches such as Bergstra (1990) and Diaconescu et al. (1993). The
latter is founded on category theory (cf. Adámek et al., 1990; Healy, 2010, this
volume). On a category-theoretic basis several related approaches have been devel-
oped. One of them involves the Common Algebraic Specification Language (CASL)
(Mosses, 2004), which was originally designed for algebraic software specification.
CASL and its extension HetCASL (Mossakowski, 2005), respectively, allow for log-
ical specifications in a variety of systems. They are recently employed for ontologies
(Lüttich et al., 2006) by means of the Heterogeneous Toolset (Hets) (Mossakowski,
2005). Concerning modularity, that represents an interesting approach insofar as
concepts for structuring in CASL are only very loosely dependent on the specific
logic in use. Kutz and Mossakowski (2008) discusses theoretical foundations for
this direction, suggesting the category-theoretic notions of diagram, colimits, and
of the institutions of Goguen and Burstall (1992) as a proper basis for modular-
ity in ontologies. This approach appears promising, despite and due to its high
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level of abstraction; e.g. (Kutz and Mossakowski, 2008) can directly align itself
with the conservativity approaches in Section 3.6, re-interprets ε-connections (Kutz
et al., 2004) in the semantic encapsulation approach and DDL (Borgida and Serafini,
2003) in the distributed logics family, and supports implementations with Hets
(Mossakowski, 2005).

Finally, the Information Flow Framework (IFF)24 developed by Robert Kent
(2005) remains to be included. On a strict category-theoretic foundation Kent
defines a metatheory intended to serve for the structuring of the Standard Upper
Ontology25 (see also Obrst, 2010, Section 4.5, this volume). Similarly to HetCASL
and Kutz and Mossakowski (2008), a major aim of the IFF is to achieve inde-
pendence of particular logics in which ontologies may be expressed. Accordingly,
both approaches are also closely related to the field of combining logics, while the
motivation of the IFF is intimately tied to the organization of ontologies.

3.7.2 Conclusions

First, let us briefly summarize this chapter. Tracing the route of terminologies and
ontologies in information systems, we outline the move of (medical) terminologi-
cal systems from simple term lists to formal description logic theories. From this
perspective, reducing the complexity of systems was first tackled by composing
complex concepts from atomic concepts, as well as by a structured arrangement of
concepts. Ensuring correct concept composition has ultimately been achieved by
the use of description logics, which can be used to prove formal consistency and
to avoid meaningless concepts to some extent. Nevertheless, the problems of how
to comprehensibly arrange, search, and navigate large structures of categories like
polyhierarchies or graphs remain open, despite recent research and some advances.

Due to the status of (description) logics as the contemporary formalism to express
ontologies, e.g. in the medical domain or the Semantic Web, we concentrate on
logical modularization approaches as a means to tackle the complexity of large cat-
egorical systems to the extent of facilitating their comprehensibility, construction,
maintainability, evolution and reuse. Regarding work concentrating on ontologies, a
corresponding field is currently being established, with a major focus on description
logics for the Semantic Web. In order to compare its approaches and discussions,
we present an abstract framework to describe characteristics of modules and related
notions. On the one hand, this framework is tuned to a high level of general-
ity with sufficient degrees of freedom in order to cover many proposals. On the
other hand, it attempts to remain conceptually minimal, by a model established on
top of theories mainly by the notions of interface, module, and system. Basically,
modules are understood as components of systems which are interconnected at

24Information Flow Framework: http://suo.ieee.org/IFF/
25Standard Upper Ontology: http://suo.ieee.org/
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interfaces, exchanging logical sentences. Notably, there are model-based approaches
to modularization which seem to deviate from the idea of exchanging sentences.

In the previous section, a number of approaches are introduced and considered
regarding this framework. That section indicates the fairly heterogeneous landscape
of modularization proposals in terms of the characteristics introduced in Section 3.5.
Other characteristics were not covered, like the application of the approaches for
top-level ontologies as discussed in Loebe (2006), or more generally the utility
and adequacy with respect to specialized purposes. It remains to be seen how those
proposals behave along other dimensions.

It may appear questionable to discuss modularization for logical systems rather
than genuinely for ontologies. However, we are not aware of any particular onto-
logical theory of modularization, nor elaborate methodological guidance which
concerns the structuring of categorical systems. Currently, we see Rector (2003) as
the closest work to attempting such guidance. In connection with logical approaches
it is noteworthy that the core of all approaches covers a partitioning/division of
the logical languages. Ontologically, this may be interpreted to refer to different
domains, which leads one to the theory of levels of reality (Gnoli and Poli, 2004) and
of domains in general. Those may become an initial step to ontological principles of
organization. However, this requires further studies, see also chapters Herre (2010b)
in this volume and Symons (2010) in previous volume. To provide an example,
a distinction with logical impact and potential benefit by means of an ontological
approach refers to special cases of partitions of categories. In Loebe (2006), taxo-
nomic interrelations of such partitions are distinguished: horizontal partitions com-
prising categories on a similar level of generality, yet in different domains, which are
contrasted with vertical partitions organized in such a way that all categories in one
partition are more general than one or more members in another. Cuenca Grau et al.
(2006a) adheres to a similar difference and defines diverse characteristics for mod-
ularization in correspondence with these cases. Pursuing such routes further may
transcend purely formal solutions, possibly founded on more elaborate ontological
theories about categories and domains than available at present.
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McCarthy, J., and S. Buvač. 1998. Formalizing context (expanded notes). In Computing
Natural Language, Vol. 81 of CSLI Lecture Notes, eds. A. Aliseda, R.J. van Glabbeek, and
D. Westerståhl, 13–50. Center for the Study of Language and Information (CSLI), Stanford
University.

McDonald, C.J., S.M. Huff, J.G. Suico, G. Hill, D. Leavelle, R. Aller, A. Forrey, K. Mercer,
G. DeMoor, J. Hook, W. Williams, J. Case, and P. Maloney. 2003. LOINC, a universal standard
for identifying laboratory observations: A 5-year update. Clinical Chemistry 49(4):624–633.

McIlraith, S.A., D. Plexousakis, and F. van Harmelen eds. 2004. The semantic web – ISWC 2004:
Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, 7–11 Nov
2004, LNCS 3298. Berlin: Springer.

Mosses, P.D. ed. 2004. CASL reference manual: The complete documentation of the common
algebraic specification language. LNCS 2960. Berlin: Springer.

Mossakowski, T. 2005. Heterogeneous specification and the heterogeneous tool set. Habilitation
Thesis. University of Bremen, Germany.

Noy, N.F. 2004. Semantic integration: a survey of ontology-based approaches. SIGMOD Record
33(4):65–70.

Obrst, L. 2010. Ontological architectures In TAO – Theory and applications of ontology, eds.
M. Healy, A. Kameas, and R. Poli, Vol. 2: The information science stance. Part 1, ch. 2.
Heidelberg: Springer.

Pack Kaelbling, L., and A. Saffiotti eds. 2005. Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, 30 Jul–5 Aug 2005.
Denver, CO: Professional Book Center.

Pan, Z., A. Qasem, and J. Heflin. 2006. An investigation into the feasibility of the semantic web.
In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI 2006) and the
18th Innovative Applications of Artificial Intelligence Conference (IAAI 2006), Boston, MA,
16–20 July 2006, 1394–1399. Menlo Park, CA: AAAI Press.

Parsia, B., U. Sattler, and D. Toman eds. 2006. Proceedings of the 2006 International Workshop on
Description Logics (DL 2006), Lake District, UK, 30 May–1 Jun 2006, CEUR 189. Aachen,
Germany: CEUR-WS.org.

Ponomaryov, D. 2006. Formal knowledge representation and the decomposability problem.
Technical Report 135 (translated version), Institute of Informatics Systems, Siberian Division
of the Russian Academy of Sciences, Novosibirsk, Russia.

Ponomaryov, D. 2006. Semantic web basics in logical consideration. In eds. P. Hitzler, and Y. Sure,
Proceedings of the First International Workshop on Applications of Semantic Technologies
(AST 2006), Dresden, Germany, 6 Oct 2006.

Ponomaryov, D. 2007. Generalized decomposability notions for first-order theories. Bulletin of the
Novosibirsk Computing Center 26:103–110.

Ponomaryov, D. 2008. A decomposability criterion for elementary theories. Siberian Mathematical
Journal 49(1):152–154.

Priss, U. 2000. Faceted knowledge representation. Electronic Transactions on Artificial
Intelligence 4(Section C):21–33.

Ranganathan, S.R. 1962. Elements of library classification. 3rd ed. Bombay: Asia Publishing
House.

Ranganathan, S.R. 1967. Prolegomena of library classification. Bombay: Asia Publishing House.



3 Organization and Management of Large Categorical Systems 99

Rector, A.L., S. Bechhofer, C.A. Goble, I. Horrocks, W.A. Nowlan, and W.D. Solomon. 1996.
The GRAIL concept modelling language for medical terminology. Artificial Intelligence in
Medicine, 9(2):139–171.

Rector, A.L. 1999. Clinical terminology: why is it so hard? Methods of Information in Medicine
38(4/5):239–252.

Rector, A.L. 2003. Modularisation of domain ontologies implemented in description logics and
related formalisms including OWL. In Proceedings of the Second International Conference
on Knowledge Capture (K-CAP 2003), Sanibel Island, FL, 23–25 Oct 2003, eds. J. Gennari,
B. Porter, and Y. Gil, 121–128. New York: ACM Press.

Rector, A.L., and J. Rogers. 2005. Ontological & practical issues in using a description logic
to represent medical concepts: experience from GALEN. Preprint Series CSPP-35, School of
Computer Science, The University of Manchester.

Rogers, J., A. Roberts, D. Solomon, E. van der Haring, C. Wroe, P. Zanstra, and A.L. Rector. 2001.
GALEN ten years on: Tasks and supporting tools. In MedInfo 2001: Towards Global Health:
The Informatics Route to Knowledge. Proceedings of the Tenth World Congress on Health and
Medical Informatics of the International Medical Informatics Association, London, 2–5 Sep
2001. Vol. 84 of Studies in Health Technology and Informatics, eds. V. Patel, R. Rogers, and
R. Haux, 256–260. Amsterdam: IOS Press.

Rossi Mori, A. 1997. A second generation of terminological systems is coming. In Proceedings
of the 13th Medical Informatics Europe (MIE 1997), Porto Carras, Greece, 25–29 May 1997.
Vol. 43 of Studies in Health Technology and Informatics, ed. C. Pappas, 436–440. Amsterdam:
IOS Press.

Sacco, G.M. 2000. Dynamic taxonomies: A model for large information bases. IEEE Transactions
on Knowledge and Data Engineering 12(3):468–479.

Sacco, G.M. 2006. Some research results in dynamic taxonomy and faceted search systems. In eds.
A.Z. Broder, and Y.S. Maarek, Proceedings of the First Workshop on Faceted Search held at
SIGIR 2006, Seattle, WA, 10 Aug.

Sattler, U. and A. Tamilin eds. 2008. Proceedings of the Workshop on Ontologies: Reasoning and
Modularity (WORM 2008), Tenerife, Spain, 2 Jun. CEUR 348. Aachen, Germany: CEUR-
WS.org.

Seidenberg, J., and A. Rector. 2006. Web ontology segmentation: Analysis, classification and
use. In Proceedings of the 15th International Conference on World Wide Web (WWW 2006),
Edinburgh, Scotland, 23–26 May 2006, eds. L. Carr, D. De Roure, A. Iyengar, C. Goble, and
M. Dahlin, 13–22. New York: ACM Press.

Serafini, L., and P. Bouquet. 2004. Comparing formal theories of context in AI. Artificial
Intelligence 155(1–2):41–67.

Serafini, L., A. Borgida, and A. Tamilin. 2005. Aspects of Distributed and Modular Ontology
Reasoning. In Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), Edinburgh, 570–575.

Sowa, J.F. 2000. Knowledge representation: Logical, philosophical and computational founda-
tions. Pacific Grove: Brooks/Cole.

Spackman, K.A., and K.E. Campbell. 1998. Compositional concept representation using
SNOMED: Towards further convergence of clinical terminologies. In A paradigm shift in
health care information systems: Clinical infrastructures for the 21st century, Proceedings of
the 1998 AMIA Annual Symposium, Orlando, FL, 7–11 Nov 1998, ed. C.G. Chute, 740–744.
Philadelphia, PA: Hanley and Belfus.

Spackman, K.A. 2001. Normal forms for description logic expressions of clinical concepts
in SNOMED RT. In A medical informatics odyssey: Visions of the future and lessons
from the past, Proceedings of the 25th AMIA Annual Symposium 2001, Washington, DC,
3–7 Nov 2001, ed. S. Bakken, 627–631. Bethesda, MD: American Medical Informatics
Association.

Specia, L., and E. Motta. 2007. Integrating folksonomies with the semantic web. In The Semantic
Web: Research and Applications, Proceedings of the 4th European Semantic Web Conference



100 F. Loebe

(ESWC 2007), Innsbruck, Austria, 3–7 Jun 2007, LNCS 4519, eds. E. Franconi, M. Kifer, and
W. May, 624–639. Berlin: Springer.

Spiteri, L. 1998. A simplified model for facet analysis: Ranganathan 101. Canadian Journal of
Information and Library Science 23(1–2):1–30.

Straub, H.R. 2002. Four different types of classification models. In Knowledge media in
healthcare: Opportunities and challenges, ed. R. Grütter, 57–82. Hershey, PA: Idea Group
Publishing.

Stuckenschmidt, H., and M. Klein. 2003. Modularization of ontologies. Deliverable D21, IST
Project 2001–33052 Wonderweb, Vrije Universiteit, Amsterdam.

Stuckenschmidt, H., and M. Klein. 2004. Structure-based partitioning of large concept hierarchies.
In Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, 7–11
Nov 2004, LNCS 3298, 289–303. Berlin: Springer.

Symons, J. 2010. Levels of reality In TAO – Theory and applications of ontology, eds. R. Poli,
J. Seibt, and J. Symons, Vol. 1: The philosophical stance. Part 1, ch. 6.

Veloso, M.M. ed. 2007. Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, 6–12 Jan, 2007. Menlo Park, CA: IJCAI.

W3C. 2004a. Resource description framework (RDF) and RDF schema (RDFS) specifications.
World Wide Web Consortium (W3C). http://www.w3.org/RDF/

W3C. 2004b. Web ontology language (OWL) specifications. World Wide Web Consortium (W3C).
http://www.w3.org/2004/OWL/

Wang, Y., J. Bao, P. Haase, and G. Qi. 2007. Evaluating formalisms for modular ontologies in
distributed information systems. In Web reasoning and rule systems, Proceedings of the First
International Conference (RR 2007), Innsbruck, Austria, 7–8 Jun 2007, LNCS 4524, eds.
M. Marchiori, J.Z. Pan, C. de Sainte Marie, 178–193. Berlin: Springer.

WHO. 2004. History of the development of the ICD. World Health Organization (WHO).
http://www.who.int/classifications/icd/en/HistoryOfICD.pdf

Wright, S.E., G. Budin eds. 1997. Handbook of terminology management. Amsterdam: John
Benjamins.



Chapter 4
The Information Flow Approach
to Ontology-Based Semantic Alignment

Yannis Kalfoglou and Marco Schorlemmer

4.1 Introduction

In order for two systems (databases, software agents, peers, web services, soft-
ware components, etc.) to be considered semantically integrated, both will need
to commit to a shared conceptualisation of the application domain. Commonly,
this is achieved by providing an explicit specification of this conceptualisation –
what has become to be known as an ontology – and by defining each system’s local
vocabulary in terms of the ontology’s vocabulary. Thus, an ontology models the
vocabulary used by knowledge engineers so that it denotes concepts and their rela-
tions, and it constrains the interpretation of this vocabulary to the meaning originally
intended by knowledge engineers. As such, ontologies have been widely adopted
as an enabling technology for interoperability in distributed environments, such as
multi-agent systems, federated databases, or the semantic web.

This sort of interoperability is dubbed “semantic” precisely because it assumes
that the ontology is some sort of structured theory T – coming thus equipped with
a precise semantics for the structure it holds – and because each system’s local
language Li is interpreted in T (e.g., in the technical sense of a theory interpretation
as defined in (Enderton, 2002), when T is a theory in first-order logic). Semantic
integration is therefore always relative to the theory T into which local languages
are interpreted. We shall call this theory the reference theory of the integration.

The use of ontologies as reference theories for semantic integration, however,
is more in tune with a classical codification-centred knowledge management tradi-
tion, as put forward in (Corrêa da Silva and Agustí, 2003). Such tradition comprises
the efforts to define standard upper-level ontologies such as CyC (Lenat, 1995) and
SUO (IEEE, 2003), or to establish public ontology repositories for specific domains
to favour knowledge reuse such as the Ontolingua server (Farquhar et al., 1997).
Corrêa da Silva and Agustí remark that “centralised ontologies [. . .] promise to
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bring the control of the organisation back to what was possible under classical man-
agement techniques. The problem is that they may also bring back the rigidity of
agencies organised under the classical management tenets.”

Before ontologies became popular, knowledge engineers hardly ever had to work
with more than one ontology at a time. Even in cases where multiple ontologies
were used (see, e.g., Borst et al., 1997), these were mostly controlled experi-
ments (e.g., Uschold et al., 1998) in moderated environments (such as Farquhar
et al., 1997). Nowadays, however, the practice is somewhat different. Modern
trends in knowledge management dictate that we should expect to work more and
more within highly distributed, open, and dynamic environments like the web. In
this sort of environment it is more realistic to achieve certain levels of seman-
tic integration by matching vocabulary on-the-fly. In addition, the proliferation
of many diverse ontologies caused by different conceptualisations of even the
same domain – and their subsequent specification using varying terminology – has
highlighted the need of ontology matching techniques that are capable of com-
puting semantic relationships between entities of disparate ontologies (Kalfoglou
and Schorlemmer, 2003b; Shvaiko and Euzenat, 2005). Since ontologies are the
result of an inter-subjective agreement among individuals about the same frag-
ment of the objective world, they are also highly context-dependent and hardly
will result to be general-purpose, regardless of how abstract and upper-level they
might be.

4.2 Ontology-Based Semantic Integration: Basic Concepts
and Definitions

In this chapter we shall be concerned with semantic integration understood as
the integration of two systems by virtue of the interpretation of their respec-
tive vocabularies into a reference theory – an ontology – expressible in some
logical language. In practice, semantic integration is often carried out on sub-
sets of first-order logic, such as description logics (DL), for which reasoning
has good computational properties. This is, for instance, the approach followed
by Calvanese and De Giacomo in their ontology integration system for database
schemata (Calvanese and De Giacomo, 2005); W3C, too, has embraced DLs in order
to develop the OWL recommendation for ontology representation (McGuinness and
van Harmelen, 2004). Another example is the focus of Giunchiglia, Marchese and
Zaihrayeu on propositional DLs in order to use fast SAT provers for matching taxo-
nomically organised vocabularies (Giunchiglia et al., 2006). In contrast, the Process
Specification Language (PSL) is an example of a semantic integration initiative
based on full first-order logic that uses invariants to define interpretations of local
vocabulary into PSL (Grüninger and Kopena, 2005).

By vocabulary we mean a set V of words and symbols used by a system to
represent and organise its local knowledge. In a formal, logic-based representa-
tion language the vocabulary is constituted by the non-logical symbols used to
form sentences and formulae (in this case it is usually referred to as parameters or
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signature). The language is then the set L(V) of all well-formed formulae over a
given vocabulary V. We shall also write L when we do not want to explicitly refer
to the vocabulary. We call the elements of a language L, sentences.

In declarative representation languages, knowledge is represented and organised
by means of theories. DL-based ontologies are such an example. A convenient way
to abstractly characterise theories in general, is by means of a consequence relation.
Given a language L, a consequence relation over L is, in general, a binary relation |–
on subsets of L which satisfies certain structural properties.1 Consequence relations
are also suitable to capture other sorts of mathematical structures used to organise
knowledge in a systematic way, such as taxonomic hierarchies. When defined as a
binary relation on L (and not on subsets of L), for instance, it coincides with a par-
tial order. Furthermore, there exists a close relationship between consequence and
classification relations (which play a central role in ontological knowledge organisa-
tion), which has been thoroughly studied from a mathematical perspective in (Dunn
and Hardegree, 2001; Barwise and Seligman, 1997; Ganter and Wille, 1999).

We call a theory a tuple T = 〈LT , |−T〉, where |−T ⊆ ℘(LT ) × ℘(LT ) is a
consequence relation, hence capturing with this notion the formal structure of an
ontology in general. Finally, in order to capture the relationship between theories,
we call a theory interpretation a map between the underlying languages of theories
that respects consequence relations. That is, a function i: LT → LT′ is a theory
interpretation between theories T = 〈LT , |−T〉 and T ′ = 〈

LT , |−T′
〉

if, and only if,
for all �, � ⊆ L we have that �|−T � implies i(�)|−T ′ i(�) (where i(�) and i(�)
are the set of direct images of � and � along i, respectively.2

4.2.1 Semantic Matching

We call semantic matching the process that takes two theories T1 and T2 as input
(called local theories) and computes a third theory T1↔2 as output (called bridge
theory) that captures the semantic relationship between T1 and T2’s languages with
respect to a reference theory T. As we shall see below, we call the output of the
semantic-matching process, together with the input it relates, a semantic alignment.
It is important to make a couple of remarks here.

First, one usually distinguishes a theory from its presentation. If the language L
is infinite (as for instance in propositional or first-order languages, where the set
of well-formed formulae is infinite, despite having a finite vocabulary), any conse-
quence relations over L will also be infinite. Therefore, one deals in practice with
a finite subset of ℘(L) × ℘(L), called a presentation, to stand for the smallest con-
sequence relation containing this subset. A presentation may be empty, in which
case the smallest consequence relation over a language L containing it, is called the

1These are commonly those of Identity, Weakening and Global Cut (see Definition 9).
2Theories and theory interpretations as treated here can also be seen as particular cases of the more
general framework provided by institution theory, which has been thoroughly studied in the field
of algebraic software specification (see Goguen and Burstall, 1992).
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trivial theory. We will write Tr(L) for the trivial theory over L. It is easy to prove
that, for all �, � ⊆ L, �|−Tr(L) � if, and only if, � ∩� �= Ø.

Rigorously speaking, current implementations of semantic matching actually
take two presentations of local theories as input and compute a presentation of the
bridge theory as output. But, from a conceptual perspective, we shall characterise
semantic matching always in terms of the theories themselves.

Second, the reference theory T is usually not an explicit input to the semantic
matching process (not even a presentation of it). Instead it should be understood
as the background knowledge used by a semantic matcher to infer semantic rela-
tionships between the underlying languages of the respective input theories. For
a manual matcher, for instance, the reference theory may be entirely dependent on
user input, while a fully automatic matcher would need to rely on automatic services
(either internal or external to the matcher) to infer such reference theory. It is for this
reason that we talk of a virtual reference theory, since it is not explicitly provided
to the semantic matcher, but is implicit in the way external and internal sources
are brought into the matching process as background theory in order to compute a
semantic alignment.

Next, we provide precise definitions of what we mean by bridge theory to capture
a semantic alignment of languages, and also what we mean by a semantic alignment
underlying a semantic integration of local theories.

4.2.2 Integration Theory

Definition 1: Two theories T1 and T2 are semantically integrated with respect to T,
if there exist theory interpretations i1 : T1 → T and i2 : T2 → T .

We call I = {ij : Tj → T}j = 1,2 the semantic integration of local theories T1 and
T2 with respect to reference theory T. Two languages L1 and L2 are semantically
integrated with respect to T if their respective trivial theories are.

In a semantic alignment we are interested in determining the semantic relation-
ship between the languages LT1 and LT2 on which semantically integrated theories
T1 and T2 are expressed. Therefore, a semantic integration I of T1 and T2 with
respect to a reference theory T as defined above is not of direct use, yet. What we
would like to have is a theory TI over the combined language LT1 � LT2 (the disjoint
union) expressing the semantic relationship that arises by interpreting local theories
in T. We call this the integration theory of I, and it is defined as the inverse image
of the reference theory T under the sum of the theory interpretations in I.
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Definition 2: Let i : T → T ′ be a theory interpretation. The inverse image of T′
under i, denoted i−1[T ′], is the theory over the language of T such that �|−i−1[T] �

if, and only if, i(�)|−T ′ i(�).

It is easy to prove that, for every theory interpretation i : T → T ′ , T is a subtheory
of i−1[T ′], i.e., |−T ⊆ |−i−1 [T ′]

Definition 3: Given theories T1 = 〈LT1, |−T1〉 and T2 = 〈LT2, |−T2〉, the sum T1 +
T2 of theories is the theory over the sum of language (i.e., the disjoint union of
languages) LT1 � LT2 such that |−T1+T2 is the smallest consequence relation such
that |−T1 ⊆ |−T1+T2 and |−T2 ⊆ |−T1+T2.

Given theory interpretations i1 : T1 → T and i2 : T2 → T , the sum i1 + i2 :
T1 → T2 → T of theory interpretations is just the sum of their underlying map of
languages.

Definition 4: Let I = {ij: Tj → T}j=1, 2 be a semantic integration of T1 and T2 with
respect to T. The integration theory TI of the semantic integration I is the inverse
image of T under the sum of interpretations i1 + i2 , i.e. TI = (i1 + i2)−1[T].

The integration theory faithfully captures the semantic relationships between sen-
tences in LT1 and LT2 as determined by their respective interpretation into T, but
expressed as a theory over the combined language LT1 � LT2. The sum of local the-
ories T1 + T2 is therefore always a subtheory of the integration theory TI, because
it is through the interpretations in T where we get the semantic relationship between
languages. It captures and formalises the intuitive idea that an integration is more
than just the sum of its parts.

4.2.3 Semantic Alignment

In semantic matching one usually isolates as output to the matching process the
bit that makes TI genuinely a super theory of T1 + T2. The idea is to characterise a
theory T1↔2 over the disjoint union of subsets L1 ⊆ LT1 and L2 ⊆ LT2, called bridge
theory, which, together with T1 and T2, uniquely determines the integration theory
TI. To keep everything characterised uniformly in the same conceptual framework,
the bridge theory, together with its relationship to the local theories T1 and T2, can
be expressed by a diagram of theory interpretations as follows.

Definition 5: A semantic alignment A of T1 with T2 is a diagram

in the category of theories and theory interpretations, where Li ⊆ LTi and T1↔2 is
a theory whose underlying language LT1↔2 = L1 � L2, and where all arrows are
theory inclusions. We shall also write T1 ←A→ T2 as shorthand of an alignment.
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We say that a semantic alignment A underlies a semantic integration I when the
colimit of A in the category of theories and theory interpretations (which always
exists) is the integration theory of I, i.e., colim(A) = TI.

This representation of semantic alignment as a system of objects and morphisms
in a category, and of semantic integration by means of a colimit of such a dia-
gram, bears a close relationship to the notion of W-alignment diagram described in
(Zimmermann et al., 2006). This is so because both notions share the same cate-
gorical approach to semantic alignment. But, unlike in (Zimmermann et al., 2006),
we further take a dual “type-token” structure of semantic integration into account,
and we define an alignment with respect to this two-tier model. We claim that in
this way we better capture Barwise and Seligman’s basic insight that “information
flow involves both types and their particulars” (Barwise and Seligman, 1997). This
will become clearer next when we describe the role of tokens in semantic alignment
scenarios.

4.3 Semantic Alignment Through Meaning Coordination

We shall consider a scenario in which two agents A1 and A2 want to interoperate,
but each agent Ai has its knowledge represented according to its own conceptualisa-
tion, which we assume is explicitly specified by means of its own ontology Oi. Any
expression αi using the vocabulary Oi will be considered semantically distinct a pri-
ori from any expression αj using vocabulary Oj (with j �= i), even if they happen
to be syntactically equal, unless the semantic evidence unveiled by an ontology-
matching process of the kind described below makes them mean the same to A1

and A2. Furthermore, we assume that the agents’ ontologies are not open for inspec-
tion, so that semantic heterogeneity cannot be solved by semantically matching the
ontologies beforehand.

An agent may learn about the ontology of another agent only through meaning
coordination. Thus, we assume that agent Ai is capable of requesting from agent Aj

to explain the intended meaning of an expression αj that is in a message from Aj to
Ai and uses the vocabulary Oj. Agent Ai might request such an explanation with the
intention of determining the semantic relationship of the fragment of Oj used in αj

with respect to its local vocabulary Oi. Correspondingly, we assume that agent Aj is
capable of explaining to Ai the meaning of expression αj by means of a token of this
expression.

The formal framework we describe in the next section is neutral with respect
to the syntactic form of expressions and, more importantly, to what tokens might
be, giving an interesting level of generality to ontology alignment. The Oxford
Dictionary of English defines a token as “a thing serving as a visible or tangible
representation of something abstract.” In our scenario a token will be something
agent Ai is capable of processing and putting into relationship with its own local
ontology Oi.

Take for instance the ontology negotiation process described in (Bailin and
Truszkowski, 2002). There, an agent Ai, upon the reception from another agent
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Aj of a message containing a list of keywords, either sends to Aj an interpretation
of the keywords in the form of WordNet synonyms in order to check that it has
interpreted Aj’s vocabulary correctly, or else requests Aj for a clarification of the
interpretation of unknown keywords, also in form of WordNet synonyms. Thus, in
this scenario, the role of tokens is played by WordNet synonyms of those keywords
whose interpretation needs to be confirmed or clarified.

Looking at another ontology alignment scenario (Wang and Gasser, 2002)
present an ontology-matching algorithm for open multi-agent systems, where
ontologies are partitions of domain instances into categories, based on the K-means
algorithm, a typical partition-based clustering method. The alignment is computed
out in an online fashion by exchanging instances between two agents, rather than by
exchanging abstract concepts. When an agent plans to express some concept or cat-
egory to other agents it uses an instance belonging to that category to represent this
concept. In this scenario it is particular domain instances who play the role of tokens
of a concept or category. Wang and Gasser further note, that “unless a set of agents
already has a compatible and verified shared ontology, it is difficult to see how they
could specify categories to each other in another way.” The capability of a set of
agents to process and classify tokens according to their own local ontologies is what
underlies the ontology-matching process. van Diggelen et al. (2007) also describe
an ontology matching protocol pointing to instances for concept explication. One
agent communicates a number of positive and negative examples of the concept to
the other agent, which in turn, classifies these examples using the concept classifier
from its own ontology.

Finally, in other scenarios (Giunchiglia and Shvaiko, 2004) and (Bouquet et al.,
2003) use mappings of concepts in a tree hierarchy to propositional expressions
using WordNet synsets in order to check, by means of a SAT prover (a software
program that checks the satisfiability of the propositions supplied to it), the
semantic relationships between concepts occurring in two different hierarchies. In
this scenario, a concept is represented by a propositional formula, playing the role
of the token for this concept, which can then be processed by each agent with the
SAT prover.

4.4 Semantic Alignment Hypotheses

We have described a process by which agents compute an ontology alignment by
making the intended meaning of syntactic expressions explicit to each other through
the use of tokens for these expressions. We deliberately have left unspecified what
these tokens actually are, and have only briefly mentioned that we shall consider
tokens as something agents are capable of processing and putting into relationship
with their own local vocabulary. This view of a semantic alignment is the result of
the research initiated by (Kent, 2000) on conceptual knowledge organization, and
applied to ontology alignment by (Schorlemmer and Kalfoglou, 2003; Kalfoglou
and Schorlemmer, 2004) aiming at a formal foundation for semantic interoperability
and integration based on channel theory – Barwise and Seligman’s proposal for a
mathematical theory of information (Barwise and Seligman, 1997).
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In this section we introduce the main channel-theoretic constructs required for
our formal foundation for ontology alignment, motivating them by means of three
Semantic Alignment Hypotheses.

Channel theory takes the idea of a classification as the fundamental notion for
modelling the local context by which tokens relate to types:

Definition 6: A classification A = 〈tok(A), typ(A), |=A〉 consists of a set of tokens
tok(A), a set of types typ(A) and a classification relation |=A⊆ tok(A) × typ(A)
that classifies tokens to types.

Although a very simple notion, classifications have recently been used, under
varying terminology, in many related fields of formal knowledge representation and
theoretical computer science (e.g., in algebraic logic (Dunn and Hardegree, 2001),
categorical logic (Barr, 1996), formal concept analysis (Ganter and Wille, 1999),
and process algebra (Pratt, 2001)).

Hypothesis 2: Semantic alignment presupposes a flow of information between
expressions (i.e., types) of separate agents that happens by virtue of shared
tokens for these expressions. This flow of information can be accurately
described by means of an information channel (Definition 8).

A fundamental construct of channel theory is that of an information channel
between two classifications. It models the information flow between components.
First, though, we need to describe how classifications are connected with each other
through infomorphisms:

Definition 7: An infomorphism f = 〈f→, f←〉 : A → B from classifications A to B
is a contravariant pair of functions f→: typ(A) → typ(B) and f← : tok(B) → tok(A)
satisfying the following fundamental property, for each type α ∈ typ(A) and token
b ∈ tok(B):

As with classifications, infomorphisms have been around in the literature for a
long time, and its contra-variance between the type- and token- level is recurrent
in many fields. They would correspond to interpretations when translating between
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logical languages (Enderton, 2002), or to Chu transforms in the context of Chu
spaces (Pratt, 1995). Channel theory makes use of this contra variance to model the
flow of information at type-level because of the particular connections that happen
at the token-level:

Definition 8: An information channel consists of two classifications A1 and A2
connected through a core classification C via two infomorphisms f1 and f2:

Hypothesis 3: Semantic alignment is formally characterised by a consequence
relation between expressions (i.e., types) of separate agents. This consequence
relation can be faithfully captured by the natural logic (Definition 11) of the
core of the information channel underlying the integration.

Channel theory is based on the understanding that information flow is the result
of regularities in distributed systems. These regularities are implicit in the represen-
tation of systems as interconnected classifications. However, one can make these
regularities explicit in a logical fashion by means of theories and local logics:

Definition 9: A theory T = 〈typ(T), |−T〉 consists of a set typ(T) of types, and a
binary relation between subsets of typ(T). Pairs 〈�, �〉 of subsets of typ(T) are
called sequents. If �|−T �, for �, � ⊆ typ(T), then the sequent �|−T � is called a
constraint. T is regular if for all α ∈ typ(T) and all �, �′, �, �′, � ⊆ typ(T):

1. Identity: α|−T α

2. Weakening: If �|−T �, then �,�′|−T �,�′
3. Global Cut: If �,�0|−T �, �1 for each partition 〈�0,�1〉 of �, then �|−T �

Note that, as is usual with sequents and constraints, we write α instead of {α}
and �, �′ instead of � ∪ �′. Also, a partition of � is a pair 〈�0,�1〉 of subsets
of �, such that �0 ∪ �1 = � and �0 ∩ �1 = Ø; �0 and �1 may themselves be
empty (hence it is actually a quasi-partition). Note that Global Cut is implied by the
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usual (Finitary) Cut only if the binary relation is compact, i.e., �|−T � implies the
existence of finite subsets �0 ⊆ � and �0 ⊆ � such that �0|−T �0.

Regularity arises from the observation that, given any classification of tokens to
types, the set of all sequents that are satisfied by all tokens always fulfills Identity,
Weakening, and Global Cut. Hence, the notion of a local logic:

Definition 10: A local logic L = 〈tok(L), typ(L), | =L, |−L, NL〉 consists of a clas-
sification cla(L) = 〈tok(L), typ(L), |=L〉, a regular theory th(L) = 〈typ(L), |−L〉
and a subset of NL ⊆ tok(L) of normal tokens, which satisfy all the constraints of
th(L); a token a ∈ tok(L) satisfies a constraint �|−L � of th(L) if, when a is of all
types in �, a is of some type in �.

Finally, every classification determines a natural logic, which captures the reg-
ularities of the classification in a logical fashion, and which we shall use in order
model the semantic interoperability between agents with different ontologies:

Definition 11: The natural logic is the local logic Log(C) generated from a classifi-
cation C, and has as classification C, as regular theory the theory whose constraints
are the sequents satisfied by all tokens, and whose tokens are all normal.

The three Semantic Alignment Hypotheses above comprise the core of what we
call the information-flow approach to ontology-based semantic alignment. The basic
concepts and definitions of Section 4.2 characterise semantic alignment in terms of
theory interpretations, which amount to maps of languages, actually maps of types.
Hypotheses 1 and 2, however, make the role of tokens explicit in the characterisation
of a semantic integration. The natural logic then determines the integration theory of
Section 4.2 entirely through the way tokens are classified to types in the core of an
information channel, thus playing the role of the reference theory of the integration.
In the next section we summarise how we have been applying this view of semantic
integration in order to successfully tackle the semantic heterogeneity problem in a
variety of different scenarios.

4.5 Applications and Explorations

Ontology Mapping: A thorough survey on existing ontology mapping tech-
niques in this domain revealed a surprising scarcity of formal, theoretically sound
approaches to the problem (Kalfoglou and Schorlemmer, 2003b). Consequently,
we set out to explore information-flow theoretic ways to tackle the prob-
lem. In (Kalfoglou and Schorlemmer, 2003a) we describe a novel ontology
mapping method and a system that implements it, IF-Map, which aims to
(semi-)automatically map ontologies by representing ontologies as IF classifica-
tions and automatically generate infomorphisms between them. We demonstrated
this approach by using the IF-Map system to map ontologies in the domain of com-
puter science departments from five UK universities. The underlying philosophy of
IF-Map follows the assumption that the way communities classify their instances
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with respect to local types reveals the semantics that could be used to guide the
mapping process. The method is operationalised in a system that includes harvesting
mechanisms for acquiring ontologies from online resources, translators for process-
ing different ontology representation formalisms, and APIs for web-enabled access
of the generated mappings, all in the form of infomorphisms which are encoded in
RDF/OWL formats.

Theory of Semantic Interoperability: We have also explored the suitability of
the information flow theory to define a framework that captures semantic interoper-
ability without committing to any particular semantic perspective (model-theoretic,
property-theoretic, proof-theoretic, etc.), but which accommodates different under-
standings of semantics (Kalfoglou and Schorlemmer, 2004). We articulated this
framework around four steps that, starting from a characterisation of an inter-
operability scenario in terms of IF classifications of tokens to types, define an
information channel that faithfully captures the scenario’s semantic interoperabil-
ity. We used this framework in an e-government alignment scenario, where we used
our four-step methodology to align UK and US Governmental departments using
their ministerial units as types and their respective set of responsibilities as tokens,
which were classified against those types.

Progressive Ontology Alignment: More recently, we applied information-flow
theory to address the issues arising during ontology coordination (Schorlemmer
and Kalfoglou, 2004; Schorlemmer and Kalfoglou, 2005). We have been mod-
elling ontology coordination with the concept of a coordinated information channel,
which is an IF channel that states how ontologies are progressively coordinated, and
which represents the semantic integration achieved through interaction between two
agents. It is a mathematical model of ontology coordination that captures the degree
of participation of an agent at any stage of the coordination process, and is deter-
mined both, at the type and at the token level. Although not yet a fully-fledged theory
of ontology coordination, nor an ontology coordination methodology or procedure,
we have illustrated our ideas in a scenario taken from (Sowa, 2000) where one needs
to coordinate different conceptualisations in the English and French language of the
concepts of “river” and “stream” on one side, and “fleuve” and “reivière” on the
other side.

Situated Semantic Alignment: Most ontology matching mechanisms developed
so far have taken a classical functional approach to the semantic heterogeneity
problem, in which ontology matching is seen as a process taking two or more
ontologies as input and producing a semantic alignment of ontological entities as
output (Giunchiglia and Shvaiko, 2004). Furthermore, matching often has been
carried out at design-time, before integrating knowledge-based systems or mak-
ing them interoperate. But, multi-agent communication, peer-to-peer information
sharing, and web-service composition are all of a decentralised, dynamic, and open-
ended nature, and they require ontology matching to be locally performed during
run-time. In addition, in many situations peer ontologies are not even open for
inspection (e.g., when they are based on commercially confidential information).
Atencia and Schorlemmer (2007) claim that a semantic alignment of ontological ter-
minology is ultimately relative to the particular situation in which the alignment is
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computed, and that this situation should be made explicit and brought into the align-
ment mechanism. Even two agents with identical conceptualisation capabilities, and
using exactly the same vocabulary to specify their respective conceptualisations,
may fail to interoperate in a concrete situation because of their differing percep-
tion of the domain. They address the case in which agents are already endowed
with a top-down engineered ontology (it can even be the same one), which they
do not adapt or refine, but for which they want to find the semantic relationships
with separate ontologies of other agents on the grounds of their communication
within a specific situation. In particular, they provide a formal model that formalises
situated semantic alignment as a sequence of information-channel refinements cap-
turing the flow of information occurring in distributed systems due to the particular
situations – or tokens – that carry information. Analogously, the semantic align-
ment that will allow information to flow ultimately will be carried by the particular
situation agents are acting in (Atencia and Schorlemmer, 2008).

4.6 Conclusions

We have approached the limits of ontology-based semantic alignment from its
mathematical foundations and in the context of alignment scenarios in open and
distributed environments, like the Web, and its extension, the Semantic Web. We
argued for the need to address what we believe is still a lack of sound mathematical
models of information, semantics, and interoperability for multi-agent systems, and
distributed knowledge models on the Semantic Web (Kalfoglou et al., 2004). We
showed that we needed to go beyond the usual approach, which models semantic
alignment as the first-order interpretation of dissimilar vocabularies into a common
ontology.

We propose a general theory of semantic integration that uses a logic-
independent formulation of language, ontology, and ontological commitment that
can cope with the variety of logics and understandings of semantics occurring in
highly decentralised and distributed environments. Furthermore, our proposed the-
ory defines semantic alignment on top of this logic-independent formulation by
means of channel theory. In particular we have shown that the natural logic of
the core of an information channel adequately and faithfully captures the intu-
itive consequence relation lying behind semantically aligned systems. This led us
to advocate for a channel-theoretic characterisation of semantic alignment that we
stated in the form of three Semantic Alignment Hypotheses. Such channel-theoretic
characterisation allowed us to look beyond the standard ontology-based approach to
semantic alignment, and we illustrated this by means of interaction-based meaning
coordination between agents.

By providing a sound theoretical ground upon which we base our three hypothe-
ses for enabling semantic alignment, we enable the use of our framework to model
semantic-alignment as it occurs in semantic heterogeneity scenarios by applying a
variety of technologies. Instead of exploring concrete instantiations of the formal
model to particular alignment technologies – wandering into the discussion of par-
ticular choice methods, termination criteria, and alignment algorithms – we decided
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to shift our attention to what basic capability an agent should have to be able to
engage in an ontology-alignment interaction. Choice of tokens and types, interaction
termination criteria, and concrete matching algorithms will play a central role when
grounding the formal model in concrete domains. This has been explored in two
exemplar uses of our work: progressive ontology alignment and situated semantic
alignment.
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Chapter 5
Ontological Evaluation and Validation

Samir Tartir, I. Budak Arpinar, and Amit P. Sheth

5.1 Introduction

Building an ontology for a specific domain can start from scratch (Cristani and
Cuel, 2005) or by modifying an existing ontology (Gómez-Pérez and Rojas-Amaya,
1999). In both cases, techniques for evaluating the characteristics and the validity
of the ontology are necessary. Not only such techniques might be useful during the
ontology engineering process (Paslaru et al., 2006), they can also be useful to an
end-user who is looking for an ontology that is suitable for her application domain.
The user can select the best ontology according to her application needs among
several ontologies (Sabou et al., 2005).

Ontology evaluation is an important task that is needed in many situations.
For example, during the process of building of an ontology, ontology evaluation
is important to guarantee that what is built meets the application requirement.
Fernández et al. (1999) presents a life cycle for ontologies (Fig. 5.1). The life cycle
is mainly based on Software Engineering processes. Their cycle includes three sets
of activities: Management (that includes control and quality control), technical (that
includes tasks for building an ontology), and support (that includes activities that are
performed at the same time as the technical tasks). In this methodology, ontology
evaluation was presented as an ongoing process throughout the ontology lifecy-
cle in both the management and the support activities to illustrate its importance.
Ontology evaluation is also important in cases where the ontology is automatically
populated from different resources that might not be homogeneous, leading to dupli-
cate instances, or instances that are clustered according to their sources in the same
ontology, both of which may decrease the usefulness of the ontology. For example,
the search for semantic associations (Anyanwu and Sheth, 2003) between entities in
ontologies has been a major focus for the semantic web. These associations capture
the complex relationships between entities that might be involve several other enti-
ties and can’t be easily captured by human users in the midst of a large dataset. If a
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Fig. 5.1 Ontology life-cycle in meth ontology

user is interested in this type of search, she will also be interested to know about the
presence of clusters of instances in the ontology, or the lack of a diverse set of rela-
tionnships that might be of importance to her, because this knowledge will directly
affects results return by this type of search.

In addition to the need during the process of building an ontology, evaluation
and validation of ontologies are also useful for end users in domains where sev-
eral ontologies with similar areas of interest are common. For example, many
ontologies have been created for bioinformatics, and a researcher building an appli-
cation that utilizes ontologies about genes might use an ontology search engine [e.g.
Swoogle (Finin et al., 2005)] or an ontology library (e.g. Protégé Ontologies Library
[Protégé]) find an ontology that best fit his research (e.g. MGED [MGED], GO
[GO], OBO [OBO]) but will often find several ontologies that cover genes and it
will be difficult for the user to simply glance through the resulting ontologies to find
the most suitable ontology. In this and similar domains, a tool that would provide
an insight into the ontology and describe its features in a way that will allow such a
researcher to make a well-informed decision on the ontology that best fits her needs
is needed (Fig. 5.2).

The OntoQA (Tartir et al., 2005) technique we present in Section 5.4 for ontol-
ogy analysis and evaluation was developed after facing some of the issues presented
above in the continuing process of building SWETO (the Semantic Web Technology
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Fig. 5.2 Selecting the “best”
ontology

Evaluation Ontology; Aleman-Meza et al., 2004). SWETO is a large-scale general
purpose ontology that was populated with hundreds of thousands of instances that
were mostly automatically extracted from different resources. This population pro-
cess introduced a few problems. For example, SWETO includes some knowledge
about geographical entities, like countries, states, and cities, and it was noticed that
due to the nature of the sources instances were extracted from, that most of rela-
tionships extract were instances of the “located_in” relationship, or that most of the
instances were about authors and publications. These and similar problems will pre-
vent, for example, the discovery of interesting and useful relationships that connect
people by their presence at the same location at the same time. Such problems would
lower the efficiency and usefulness of some of the Semantic Web techniques such
as the Semantic Association search mentioned above.

The rest of this chapter is organized as follows: Section 5.2 illustrates the need of
ontology evaluation and validation. Section 5.3 introduces the current approaches in
ontology evaluation and validation. Section 5.4 describes the OntoQA technique for
ontology quality evaluation. Finally, Section 5.5 draws some conclusions and future
recommendations.

5.2 Current Approaches in Ontology Evaluation and Validation

The increasing interest in the Semantic Web in recent years resulted in creating a
large number of ontologies, and in increasing the amount of research on techniques
to evaluate ontology quality and validity. With this growth in the number of ontolo-
gies, there have been some attempts to study the different approaches and tools for
ontology evaluation and validation (Hartmann et al., 2004). Below is a description
of the major current approaches currently in use for the evaluation and validation of
ontologies.

5.2.1 Evolution-Based

This approach tracks an important characteristic of ontologies, change over time.
Ontologies change over time by nature. More knowledge is always added to
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domains, and it needs to be properly added to ontologies that model these domains.
This approach tracks changes in the same ontology across different versions to get
an indication of the quality of the ontology, and to detect (and possibly recover) any
invalid changes made to the ontology. Ontologies change over time (evolve) due to
three causes as proposed in Noy and Klein, (2004):

1. Changes in the domain,
2. Changes in conceptualization,
3. Changes in the explicit specification.

Changes in the domain are the most common, and are caused by change or addi-
tion in knowledge in the domains the ontology is modeling. For example, the more
information about the genetic structure of a certain species are discovered, they need
to be added to the ontology that models it.

Changes in conceptualization can result from a changing view of the world and
from a change in usage perspective. Different tasks may imply different views on
the domain and consequently a different conceptualization. For example, the view
of a university from a faculty perspective is much different than the view from a
student perspective, and the adoption of a certain perspective may result in a change
of the ontology.

Changes in the explicit specification occur when an ontology is translated from
one knowledge representation language to another. The languages differ not only
in their syntax, but also (and more importantly) in their semantics and expressivity.
Therefore, preserving the semantics of an ontology during translation is a non-trivial
task.

An example of this approach is the technique presented in Plessers and De Troyer
(2005). In this technique, when a change is needed on the ontology, a request is
first added to the change log using CDL (Change Definition Language). Then, the
change is implemented in the ontology. The technique finally matches the actual
change with the change request from the log, if they are the same, the change is
considered valid and it is propagated.

The technique in Haase et al. (2005) detects the two types of inconsistencies
in evolving ontologies (user-defined and language-based) and repairs inconsisten-
cies in ontologies across the different versions of the ontology by eliminating the
statements that cause inconsistency.

5.2.2 Logical (Rule-Based)

Logical and rule-based approaches to ontology validation and quality evaluation use
rules which are built in the ontology languages and rules users provided to detect
conflicts in ontologies. Examples of first type are when two objects in an OWL
ontology are said to be different from each other (owl:differentFrom), the ontology
can’t say that they are the same thing (owl:sameAs), or when two classes are said to
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be disjoint of each other (owl:disjointWith) and the ontology can not have statements
that mention an instances as being a member to both classes. Users can also identify
properties that are considered in conflict in the domain. For example, a user can
define that property motherOf conflicts with property marriedTo.

Several applications have adopted this approach. In Arpinar et al. (2006), a rule-
based technique to conflict detection in ontologies is introduced. In this approach
users identify conflicting rules using RuleML Boley et al. (2001) and the application
will then list any cases were these rules are violated.

Authors of Parsia et al. (2005) use a logic model they call Swoop to detect
unsatisfiable concepts in OWL ontologies. The technique is intended to be used by
ontology designers to evaluate the quality of their work and to indicate any possible
problems.

5.2.3 Metric-Based (Feature-Based)

Metric-based techniques to evaluate ontologies offer a quantitative perspective of
ontology quality. These techniques scan through the ontology to gather different
types of statistics about the knowledge presented in the ontology, or ask the user to
input some information that is not included in the ontology itself. These techniques
might consider classes’ locations in the ontology schema graph as an indication
of the type of knowledge the ontology focuses on. Some techniques also consider
the instances of populated ontology in the measurement of quality metrics. The
distribution of instances on the classes of the schema might also give an indication
on the quality of the ontology.

Several techniques have adopted this approach. The authors of Lozano-Tello
and Gomez-Perez (2004) propose a hierarchical framework they call OntoMetric
that consists of 160 characteristics spread across five dimensions to evaluation the
quality and suitability of ontologies to users’ system requirements. The dimensions
defined are: content of the ontology, language, development methodology, building
tools, and usage costs. Users of OntoMetric will have the major task of supplying
the application with several values that will be used to measure the suitability of an
ontology for the given system requirements.

In Supekar et al. (2004) the authors propose a model for evaluating ontology
schemas. The model contains two sets of features: quantifiable and non-quantifiable.
Their technique is based on crawling the web to search for ontologies and store them
locally, and then use information provided by the user, like the domain and weights
for their proposed metrics to return the most suitable ontology.

Alani et al. (2006) presents a technique called AKTiveRank that finds a set of
related ontologies to a set of terms the user enters. It uses an aggregation of the
values of the four measures AKTiveRank includes to evaluation ontology schemas
to select one of the ontologies to be the most suitable. The measures they developed
are: class match, density, semantic similarity, and betweenness.

Corcho et al. (2004) introduce the ODEval tool that can be used for the automatic
detection of possible syntactical problems in ontologies, such as the existence of
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cycles in the inheritance tree of the ontology classes, inconsistency, incompleteness,
and redundancy of classes and instances.

Mostowfi and Fatouhi (2006) define eight features they use to measure the quality
of ontologies. These features are used to define a set of transformations to improve
the quality of ontologies. For example, the authors suggest if a class (Student) has a
property (Salary) that does not always have values (because it only holds for student
assistants), then the class needs to be split into two: Student and Student Assistant.
Other transformations attempt to make changes in properties or data types to make
the ontology more consistent.

Another example technique is oQual (Gangemi et al., 2006), which evaluates
ontologies on three dimensions: Structural: which uses a set of 32 features to study
the syntax and formal semantics of the ontology. Functional: which uses a set of five
qualitative measures to study the relationship between the ontology and its intended
meaning. And finally, Usability profiling: which focuses on the communication
(annotation) context of the ontology.

OntoClean (Guarino and Welty, 2004) also follows a feature-based approach
to ontology evaluation and validation. A user of this technique would assign a
set of four features to each of class in the ontology (Rigidity, Identity, Unity, and
Dependence) and then use these features to identify problematic areas that needs to
be reexamined. Based on these four features, classes might move up or down the tax-
onomy, and new classes might be added or removed to correct problems discovered
through the detection of violations of a set of rules built using the four features.

The OntoQA framework we introduced in the abstract is one of the metric based
approaches as well. In OntoQA we define the quality of a populated ontology as a set
of five schema quality features and nine knowledgebase (or instance-base) quality
features. An overview of OntoQA is presented in the next section.

Table 5.1 below provides a summary of the techniques mentioned above. The
table compares the techniques on whether they target developers or end-users,
whether users have to provide information to the technique (which might affect the
training needed to be able to use the technique), whether it targets the schema or
both the schema and the knowledgebase (KB), and whether users have to provide
the ontologies or the application would crawl the internet for candidates.

It can be seen that among the techniques studied, most of them:

• Only work with schemas: This might miss problems and ignore knowledge
available in the KB of a populated ontology.

• Require the user to provide the ontology: This might be problematic for a novice
end-user who is not aware of ontologies available for his domain.

• Target developers (rather than end-users): Although evaluation and validation
are important during the development process, it is important to provide end-
users with tools they can use to select an error-free ontology that best fits their
applications.

• Are feature-based: this is possibly due to the fact that a combination of metrics
can provide insights about an ontology from different perspectives leading to a
better understanding of the nature of the ontology.
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Table 5.1 Comparison of different ontology evaluation techniques

Technique Approach Users
Automatic/
manual Schema/KB Ontology

Plessers and De
Troyer (2005)

Evolution Developers Manual Schema Entered

Haase et al. (2005) Evolution Developers Manual Schema Entered
Arpinar et al. (2006) Logical Developers Manual Schema + KB Entered
Swoop Logical Developers Automatic Schema Entered
OntoMetric Metric Developers Manual Schema Entered
Supekar et al. (2004) Metric D + E Automatic Schema Crawled
AKTiveRank Metric D + E Automatic Schema Crawled
Mostowfi and

Fatouhi (2006)
Metric Developers Automatic Schema Entered

oQual Metric D + E Manual Schema Entered
OntoClean Metric Developers Manual Schema Entered
OntoQA Metric D + E Automatic Schema + KB Entered

Several researchers have studied the current approaches for ontology evaluation
and validation. For example, Gómez-Pérez and Suarez-Figueroa (2003) compared
several DAML/OIL and RDF(S) ontology checkers, validators, parsers and plat-
forms (e.g. OilEd, OntoEdit, etc) and showed how most of the current tools were
unable to find errors in ontologies. The authors also compared the tools with respect
to three major problematic aspects: inconsistency, incompleteness, and redundancy.
They concluded that tools that detect these errors are important for ontologies to be
used more often.

5.3 OntoQA: Metric-Based Ontology Quality Analysis

In this section we describe OntoQA, our ontology evaluation tool. As mentioned
in the previous section, OntoQA is a feature-based method for the evaluating
ontologies (Fig. 5.3). OntoQA’s main characteristic that distinguishes it from other

Fig. 5.3 OntoQA architecture
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ontology quality tools is that it works on populated ontologies, thus enabling it from
utilizing knowledge represented in the instances to gain a better measure of the
quality of the ontology. OntoQA also uses much simpler techniques compared to
others in that it doesn’t require a lot of training as user involvement is minimal.
In OntoQA, metrics (features) are divided into two groups: schema metrics that
address the design of the ontology schema and instance metrics that address the
way instances are organized within the ontology.

Metrics proposed in OntoQA describe certain aspects of the ontology rather
than describing an ontology as merely “effective or ineffective” or “good or bad”,
because, in most cases, the way the ontology is built is largely dependent on the
domain in which it is designed. For example, ontologies modeling human activities
(e.g., travel or terrorism) will have distinctly different characteristics from those
modeling the natural (or physical) world (e.g. genes or complex carbohydrates).

We divided the metrics into two related categories: schema metrics and knowl-
edgebase (instance) metrics. The first category evaluates ontology design and its
potential for rich knowledge representation. The second category evaluates the
placement of instance data within the ontology and the effective utilization of the
knowledge modeled in the schema. Below is a description of both categories of
metrics.

5.3.1 Schema Metrics

Schema metrics address the design of the ontology. Although we cannot definitely
know if the ontology design correctly models the domain knowledge, metrics in this
category indicate the richness, width, depth, and inheritance of an ontology schema
design. The most significant metrics in this category are described next.

5.3.1.1 Relationship Richness

This metric reflects the diversity of the types of relations in the ontology. An ontol-
ogy that contains only inheritance relationships usually conveys less information
than an ontology that contains a diverse set of relationships. The relationship rich-
ness is represented as the percentage of the (non-inheritance) relationships between
classes compared to all of the possible connections that can include inheritance and
non-inheritance relationships.

Definition 1: The relationship richness (RR) of a schema is defined as the ratio
of the number of (non-inheritance) relationships (P), divided by the total num-
ber of relationships defined in the schema (the sum of the number of inheritance
relationships (H) and non-inheritance relationships (P)).

RR = |P|
|H| + |P|
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5.3.1.2 Inheritance Richness

Inheritance Richness (IR) measure describes the distribution of information across
different levels of the ontology’s inheritance tree or the fan-out of parent classes.
This is a good indication of how well knowledge is grouped into different cate-
gories and subcategories in the ontology. This measure can distinguish a horizontal
ontology (where classes have a large number of direct subclasses) from a vertical
ontology (where classes have a small number of direct subclasses). An ontology
with a low inheritance richness would be of a deep (or vertical) ontology, which
indicates that the ontology covers a specific domain in a detailed manner, while an
ontology with a high IR would be a shallow (or horizontal) ontology, which indi-
cates that the ontology represents a wide range of general knowledge with a low
level of detail.

Definition 2: The inheritance richness of the schema (IR) is defined as the average
number of subclasses per class.

IR = |H|
|C|

5.3.1.3 Attribute Richness

The number of attributes (slots) that are defined for each class can indicate both
the quality of ontology design and the amount of information pertaining to instance
data. In general we assume that the more slots that are defined the more knowledge
the ontology conveys.

Definition 3: The attribute richness (AR) is defined as the average number of
attributes (slots) per class. It is computed as the number attributes for all classes
(att) divided by the number of classes (C).

AR = |att|
|C|

5.3.2 Knowledgebase Metrics

The way data is placed within an ontology is also a very important measure of
ontology quality because it can indicate the effectiveness of the ontology design and
the amount of real-world knowledge represented by the ontology. Instance metrics
include metrics that describe the KB (Knowledgebase) as a whole, and metrics that
describe the way each schema class is being utilized in the KB.
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5.3.2.1 Class Richness

This metric is related to how instances are distributed across classes. The number of
classes that have instances in the KB is compared with the total number of classes,
giving a general idea of how well the KB utilizes the knowledge modeled by the
schema classes. Thus, if the KB has a very low Class Richness, then the KB does
not have data that exemplifies all the class knowledge that exists in the schema. On
the other hand, a KB that has a very high CR would indicate that the data in the KB
represents most of the knowledge in the schema.

Definition 4: The class richness (CR) of a KB is defined as the percentage of
the number of non-empty classes (classes with instances) (C′) divided by the total
number of classes defined in the ontology schema (C).

CR =
∣∣C′

∣∣

|C|

5.3.2.2 Class Connectivity

This metric is intended to give an indication of what classes are central in the ontol-
ogy based on the instance relationship graph (where nodes represent instances and
edges represent the relationships between them). This measure works in tandem
with the importance metric mentioned next to create a better understanding of how
focal some classes function. This measure can be used to understand the nature
of the ontology by indicating which classes play a central role compared to other
classes.

Definition 5: The connectivity of a class (Conn(Ci)) is defined as the total number
of relationships instances of the class have with instances of other classes (NIREL).

Conn(Ci) = |NIREL(Ci)|

5.3.2.3 Class Importance

This metrics calculates the percentage of instances that belong to classes at the
inheritance subtree rooted at the current class with respect to the total number of
instances. This metric is important in that it will help in identifying which areas of
the schema are in focus when the instances are added to the KB. Although this mea-
sure doesn’t consider the domain characteristics, it can still be used to give an idea
on what parts of the ontology are considered focal and what parts are on the edges.

Definition 6: The importance of a class (Imp(Ci)) is defined as the percentage of
the number of instances that belong to the inheritance subtree rooted at Ci in the KB
(inst(Ci)) compared to the total number of class instances in the KB (CI).
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Imp(Ci) = |Inst(Ci)|
|KB(CI)|

5.3.2.4 Cohesion

In a semantic association discovery, relationships between instances are traced to
discover how two instances are related. If the instances have disconnections among
themselves, this may hinder such a search. This metric can be used to indicate the
existence of such cases where the KB has more than one connected component (one
being the ideal situation where all instances are connected to each other), indicat-
ing areas that need more instances in order to enable instances from one connect
component to connect to instances in other connected components.

Definition 7: The cohesion (Coh) of a KB is defined as the number of connected
components (CC) of the graph representing the KB.

5.3.2.5 Relationship Richness

This is an important metric reflecting how much of the relationships defined for the
class in the schema are actually being used at the instances level. This is another
good indication of the utilization of the knowledge modeled in the schema.

Definition 8: The relationship richness (RR) of a class Ci is defined as the percent-
age of the number of relationships that are being used by instances Ii that belong to
Ci (P(Ii,Ij)) compared to the number of relationships that are defined for Ci at the
schema level (P(Ci,Cj)).

In addition to these eight metrics (Tartir et al., 2005), includes other metrics that
evaluate the ontology on other design aspects.

5.3.3 OntoQA Results

Figures 5.4 and 5.5 and Table 5.2 below show the OntoQA results when it is run on
the three ontologies: SWETO (a general-purpose ontology with a focus on scien-
tific publications), TAP (Guha and McCool 2003) (a general-purpose ontology) and
GlycO (Sheth et al., 2004) (an ontology for the field of glycomics). It can be seen
how different each one is by looking at the classes most instances in the ontology’s
KB fall into.

Figure 5.4 shows the most important classes in each of the ontologies. From
the figure, it can be clearly seen that classes related to publications are the dom-
inant classes in SWETO. While, with the exception of the Musician class, TAP
gives consistent importance to most of its classes covering the different domains
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Fig. 5.4 Class importance in (a) SWETO (b) TAP and (c) GlycO

it includes. The nature of the GlycO ontology is reflected in the classes that are
most important. The importance of the “N-glycan_residue” and the “alpha-D-
mannopyranosyl_residue” and other classes show the narrow domain of GlycO
is intended for, although the “glycan_moiety” class is the most important class
covering about 90% of the instances in the KB.
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Fig. 5.5 Class connectivity in (a) SWETO (b) TAP and (c) GlycO

Figure 5.5 shows the most connected classes in the three ontologies. From the
figure, it can be seen that SWETO also includes good information about domains
other than publications, including the terrorism domain (Terrorist_Attack and
Terrorist_Organization), the business domain (Bank and Company) and geographic
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Table 5.2 Summary of SWETO, TAP, and GlycO

Ontology Classes Relations Instances Class richness

SWETO 44 101 813, 217 59.1
TAP 6, 959 25 85, 637 0.24
GlycO 361 56 660 48.1

information (City and State). In a similar manner, TAP continues to show that it cov-
ers different domains, and its most connected classes cover the education domain
(CMUCourse and CMUSCS_ResearchArea), the entertainment domain (TV and
Movie), and other domains as well. GlycO’s specific-purpose nature is evident from
the Glycan related classes that are most connected.

Table 5.2 shows the differences between the three ontologies by the number
classes, relationships, and instances, and by their class richness metric, which indi-
cate that more of SWETO’s classes are populated with instances compared to TAP
or GlycO, which may indicate that the instance population process was carried out
to cover resources that reflect the diversity of knowledge in the schema.

5.4 Conclusion

Ontologies form the cornerstone of the Semantic Web, and as the Semantic Web
gains acceptance of the different scientific domains, more ontologies will be created
to capture and share the knowledge in these domains. With this comes the need of
being able to evaluate and validate these ontologies to ensure that they correctly rep-
resent the domain knowledge, and to be able to select the ontology among different
ontologies that best fits a certain application. In this chapter we have summarized
the current major trends in evaluating and validating ontologies and given examples
techniques of each trends. We also presented our work in OntoQA and shown how
it can be used to evaluate the ontology across different dimensions to give accurate
metrics describing the ontology.

Still, more work is needed in ontology evaluation and validation to have tech-
niques that can help the user by searching for ontologies instead of requiring the
user to provide one, and have more techniques that target end-users in addition to
developers.
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Chapter 6
Tools for Ontology Engineering
and Management

Lambrini Seremeti and Achilles Kameas

6.1 Introduction

Nowadays, ontologies are developed for and used in such diverse fields as qualitative
modeling, language engineering, database design, information retrieval and extrac-
tion, knowledge management and organization, search and retrieval of information,
e-commerce and configuration. The engineering part of developing ontologies com-
prises a complex set of activities that are conducted during conceptualization,
design, implementation and deployment of ontologies. Ontology engineering cov-
ers a whole range of topics and issues, such as philosophical and metaphysical
issues and knowledge representation formalisms, methodology of ontology devel-
opment, recent Web technologies such as XML, RDF, OWL and their derivatives,
business process modeling, common sense knowledge, systematization of domain
knowledge, Internet information retrieval, standardization, evaluation, ontology
integration with agents and applications, etc. It also helps in defining the essential
concepts of the world of interest, provides design rationale for a knowledge base,
supports a more disciplined design of a knowledge base and enables the accumula-
tion of knowledge about it. As a consequence, the use of specific software tools that
enable ontology conceptualization, representation, construction and use becomes an
important aspect of building ontologies.

In this chapter, we first discuss a classification of ontology development and
management tools (Section 6.2) according to the tasks that involve an ontology,
for which we also provide some representative tools as examples. In Section 6.3,
we discuss issues to consider when selecting an appropriate tool. Finally, Section
6.4 concludes this chapter with future, trends on tool, for ontology construction and
evolution.
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6.2 Classification of Ontology Tools

The rapid growth of documents, web pages and other types of textual content pose
a great challenge to modern content management systems. Ontologies offer an effi-
cient way to reduce information overload by encoding the structure of a specific
domain thus offering easier access to the information. There are numerous ontology
engineering and management tools in use today. Most of them have resulted from
efforts of research groups and university labs, so they are currently free. So far, there
were several efforts to develop a comprehensive classification of ontology tools.
One widely adopted taxonomy has been proposed by the OntoWeb Consortium
(OntoWeb Consortium, 2002) and includes the following large categories: Ontology
development tools, Ontology merge and integration tools, Ontology evaluation
tools, Ontology-based annotation tools, Ontology storage and querying tools, and
Ontology learning tools. In this chapter, we shall adopt a shallow classification of
ontology tools in two large categories: specialized ontology engineering tools and
integrated ontology engineering environments (see Fig. 6.1).

6.2.1 Specialized Ontology Engineering Tools

These are the tools that support a restricted set of activities of the entire ontol-
ogy life-cycle (design, deployment, maintenance, evolution). They can be divided
in ontology engineering tools, ontologies combination tools, and ontology manage-
ment tools.

6.2.1.1 Ontology Engineering Tools

Ontology engineering is a set of tasks related to the development of ontologies for a
particular domain. It aims at making explicit the knowledge contained within soft-
ware applications, and within enterprises and business procedures for this domain.
An ontology engineering tool is any tool used for creating ontologies or similar
semantic documents. From this perspective, these tools can be classified in ontol-
ogy building tools and ontology learning tools. The former help engineers construct
an ontology from scratch, whereas the latter can be used for the (semi)automatic
construction of an ontology.

Ontology Building Tools

An ontology building process includes problem specification, domain knowledge
acquisition and analysis, conceptual design and commitment to community
ontologies, iterative construction and testing, publishing the ontology as termi-
nology, and possibly populating a conforming knowledge base with ontology
individuals. While the process may be strictly a manual exercise, there are
tools available that can automate portions of it. Some examples of the so-called
ontology editors are CODE (http://www.cs.indiana.edu/∼treicche/code.pdf), DOE
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(http://homepages.cwi.nl/∼troncy/DOE), DUET (http://codip.grci.com/Tools/Tools.
html), JOE (http://www.engr.sc.edu/research/CIT/demos/java/joe), ODE (http://
www.swi.psy.uva.nl/wondertools/html/ODE.html), OilEd (http://oiled.man.ac.uk)
and OntoSaurus (http://www.isi.edu/isd/ontosaurus.html).

OilEd (http://www.redland.opensource.ac.uk/demo/) is a graphical ontology edi-
tor developed by the University of Manchester that allows the user to build
ontologies using DAML+OIL. The initial intention behind OilEd was to provide a
simple editor that demonstrates the use of OIL language. Its current versions do not
provide a full ontology development environment – it does not actively support the
development of large–scale ontologies, the migration and integration of ontologies,
versioning, argumentation and many other activities that are involved in ontology
construction. Rather, it is the “NotePad” of ontology editors, offering enough func-
tionality to allow users to build ontologies and to demonstrate how one can use the
FaCT reasoner to check those ontologies for consistency.

Ontology Learning Tools

Ontology learning is a wide domain of research that consists of ontology enrich-
ment, inconsistency resolution and ontology population. Ontology enrichment is
the task of extending an existing ontology with additional concepts and relations
and placing them in the correct position in the ontology. Inconsistency resolution
is the task of resolving inconsistencies that appear in an ontology with the view to
acquire a consistent (sub)ontology. Ontology population is the task of adding new
instances of concepts into the ontology.

Acquiring domain knowledge for building ontologies requires much time and
many resources. In this sense, one can define ontology learning as the set of meth-
ods and techniques used for building an ontology from scratch, or enriching, or
adapting an existing ontology in a semi-automatic fashion using several sources.
Several approaches exist for the partial automatization of the knowledge acquisition
process. To carry out this automatization, natural language analysis and machine
learning techniques can be used. Alexander Maedche and Steffen Staab (2001) dis-
tinguish different ontology learning approaches focused on the type of input used for
learning. In this sense, they propose the following classification: ontology learning
from text, from dictionary, from knowledge base, from semi-srtuctured schemata
and from relational schemata.

Depending on the different assumptions regarding the provided input data,
ontology learning can be addressed via different tasks: learning just the ontology
concepts, learning just the ontology relationships between the existing concepts,
learning both the concepts and relations at the same time, populating an existing
ontology/structure, dealing with dynamic data streams, simultaneous construction
of ontologies giving different views on the same data, etc. More formally, the ontol-
ogy learning tasks are defined in terms of mappings between ontology components,
where some of the components are given and some are missing and one wants to
induce the missing ones. We shall use a different classification of ontology learning
tools, that is based on the input data provided.
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Ontology Learning Tools from Textual Data

As human language is a primary means of knowledge transfer, ontology learning
from relevant text collections has been among the most successful strategies towards
developing and maintaining ontologies dynamically. More information on ontology
learning from text can be found in Buitelaar et al. (2005). Some examples of sys-
tems for ontology learning from text are KEA (Jones and Paynter, 2002), OntoLearn
(Velardi et al., 2005), Welkin (Alfonseca and Rodriguez, 2002), and Text2Onto
(Ciniamo and Volker, 2005).

Text2Onto (Ciniamo and Volker, 2005) is a framework for ontology learning
from textual resources. Three main features distinguish Text2Onto from its earlier
framework TextToOnto, as well as other state-of-the-art ontology learning frame-
works. First, by representing the learned knowledge at a meta-level in the form of
instantiated modeling primitives within a so called Probabilistic Ontology Model
(POM), it remains independent of a concrete target language, while being able to
translate the instantiated primitives into any (reasonably expressive) knowledge rep-
resentation formalism. Second, user interaction is a core aspect of Text2Onto and the
fact that the system calculates a confidence for each learned object, allows designing
sophisticated visualizations of the POM. Third, by incorporating strategies for data-
driven change discovery, it avoids processing the whole corpus from scratch each
time it changes, only selectively updating the POM according to the corpus changes
instead. Besides increasing efficiency in this way, it also allows a user to trace the
evolution of the ontology with respect to the changes in the underlying corpus.

Ontology Learning Tools from Social Network Data

Traditional Semantic Web deals with ontologies constructed mainly from text doc-
uments. Special ontology learning techniques deal almost exclusively with the
problem of extracting and modeling the knowledge from text documents. The rea-
son for this is that text is the most natural way of encoding information with the
attached semantics. But text is not the only data modality which could be modeled
using ontological structures. Ontological models can also be built from social net-
work data. An example of these ontology learning tools is OntoGen (Fortuna et al.,
2006).

OntoGen (Fortuna et al., 2006) is an ontology learning tool that can handle data
represented as a set of feature vectors describing properties of ontological instances.
Using several machine learning techniques (most prominent being k-means clus-
tering, latent semantic indexing support vector machines, and uncertainty sampling
active learning) OntoGen helps the user to construct an ontological structure directly
from the data by providing suggestions and analyzing the user’s decisions.

Ontology Learning Tools from Semi-structured Data

With the success of new standards for document publishing on the Web, there will
be a proliferation of semi-structured data and formal descriptions of semi-structured
data freely and widely available. HTML data, XML data, XML Document Type
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Definitions (DTDs), XML-Schemata, and their likes add – more or less expres-
sive – semantic information to documents. Ontologies can play a major role for
allowing semantic access to these vast resources of semi-structured data. Though
only few approaches do yet exist, extracting ontologies from these data and data
descriptions may considerably leverage the application of ontologies and, thus,
facilitate the access to these data. An example of this category is OntoBuilder
(Modica et al., 2001).

The OntoBuilder (Modica et al., 2001) tool helps users in creating an ontol-
ogy using as source semi-structured data coded in XML or in HTML. The modular
architecture of the system consists of three main modules: the user interaction mod-
ule, the observer module, and the ontology modeling module. The process followed
to build an ontology has two phases: the training and the adaptation phase. In the
training phase, an initial domain ontology is built using the data provided by the
user. The adaptation phase aims in refining and generalizing the initial ontology.
The user suggests browsing other web sites that contain relevant information for
the domain. From each site, a candidate ontology is extracted and merged with the
existing ontology. To perform this activity, a thesaurus can be used.

Ontology Learning Tools from Database Schemata

Ontologies play a key role in creating machine-processable Web content in order to
promote Semantic Web. Extracting domain knowledge from database schemata can
profitably support ontology development, as the Entity-Relationship (ER) model is
an industrial standard for conceptually modeling databases.

In Xu et al. (2004) a formal approach is presented, as part of an automated tool for
translating ER schemata into Web ontologies in the OWL Web Ontology Language.
The tool can firstly read in an XML-codec ER schema produced with ER CASE
tools such as PowerDesigner. Following the predefined knowledge-preserving map-
ping rules from ER schema to OWL DL (a sublanguage of OWL) ontology, it then
automatically translates the schema into the ontology in both the abstract syntax and
the RDF/XML syntax for OWL DL.

6.2.1.2 Ontologies Combination Tools

When one wants to reuse different ontologies together, those ontologies have to
be combined in some way. This can be done by integrating the ontologies, which
means that they are merged into a new ontology; alternatively, the ontologies can be
mapped, that is, they can be kept separate. In both cases, the ontologies have to be
aligned, which means that they have to be brought into mutual agreement. The align-
ment of concepts between ontologies is difficult, because it requires understanding
of the meaning of concepts. Ontology alignment is concerned with the discovery of
correspondences between ontologies. Ontology mapping is mostly concerned with
the representation of these correspondences. Ontology merging is concerned with
creating the union of ontologies, based on these correspondences. Aligning two
ontologies, implies changes to at least one of them. Changes to an ontology will
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result in a new version of an ontology. If the ontologies are not represented in the
same language, a translation is often required. It is not possible to make a strict
distinction between the tools used for each ontology combination problem, because
each tool usually provides support for several types of combination.

Ontologies Merging Tools

Ontologies merging is the creation of an ontology from two or more source ontolo-
gies. The new ontology will unify and in general replace the original source
ontologies. There are two distinct approaches in ontologies merging. In the first
approach, the input of the merging process is a collection of ontologies and the
outcome is a new, merged ontology, which captures the original ontologies. In the
second approach, the original ontologies are not replaced, but rather a “view”, called
bridge ontology, is created, which imports the original ontologies and specifies the
correspondences using bridge axioms. OntoMerge (Dou et al., 2002), PROMPT
(Noy and Musen, 2000), FCA-Merge (Stumme and Maedche, 2001), HCONE-
merge (Kotis et al., 2006), and IF-Map (Kalfoglou and Schorlemmer, 2003) are
tools that support the merging process.

OntoMerge (Dou et al., 2002) facilitates the creation of a “bridge” ontology,
which imports the original ontologies and relates the concepts in these ontologies
using a number of bridge axioms. It is an approach, in which the source ontologies
are maintained after the merge operation. The output of the merge operation is not a
completly merged ontology, but a bridge ontology which imports the source ontolo-
gies and has a number of Bridging Axioms, which are the translation rules used to
connect the overlapping part of the source ontologies. It accepts a set of concepts
or instance data based on one or more DAML ontologies, and a target ontology and
produces the concepts or instance data translated to the target ontology.

PROMPT (Noy and Musen, 2000) is an algorithm and an interactive tool for the
merging of two ontologies. It identifies a number of ontologies merging operations
(merge classes, merge slots, merge bindings between a slot and a class, etc.) and
a number of possible conflicts introduced by the application of these operations
(name conflicts, dangling references, redundancy in the class hierarchy, and slot-
value restrictions that violate class inheritance).

Ontologies Alignment Tools

Ontologies alignment is the process of discovering similarities between two source
ontologies. It is generally described as the application of the so-called Match opera-
tor (Rahm and Bernstein, 2001). The input of the operator is a number of ontologies
and the output is a specification of the correspondences between the ontologies.
There are many different algorithms which implement the match operator. These
algorithms can be generally classified along two dimensions. On the one hand,
there is the distinction between schema-based and instance-based matching. A
schema-based matcher takes different aspects of the concepts and relations in the
ontologies and uses some similarity measure to determine correspondences (Noy
and Musen, 2000). An instance-based matcher takes the instances which belong to
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the concepts in the different ontologies and compares these to discover similarities
between the concepts (Doan et al., 2004). On the other hand, there is the distinc-
tion between element-level and structure-level matching. An element-level matcher
compares properties of the particular concept or relation, such as the name, and
uses these to find similarities (Noy and Musen, 2000). A structure-level matcher
compares the structure (e.g., the concept hierarchy) of the ontologies to find sim-
ilarities (Giunchiglia and Shvaiko, 2004). These matchers can also be combined
(Ehrig and Staab, 2004). Falcon-AO (Jian et al., 2005), OLA (Euzenat et al., 2004),
and COMA++ (Aumueller et al., 2005) can be considered as ontologies alignment
tools.

Falcon-AO (Jian et al., 2005) is an automatic tool for aligning ontologies. There
are two matchers integrated in Falcon AO. One is a matcher based on linguistic
matching for ontologies, called LMO. The other is a matcher based on graph-
matching for ontologies, called GMO. In Falcon-AO, GMO takes the alignments
generated by LMO as external input and outputs additional alignments. Reliable
alignments are gained through LMO as well as GMO. Reliability is obtained
by observing the linguistic comparability and structural comparability of the two
ontologies being compared. Falcon-AO (version 0.6) copes not only with ontologies
of moderate size, but also with very large-scale ontologies. It integrates three distin-
guishing elementary matchers, to manage different alignment applications, and the
integration strategy is totally automatic.

OLA (Euzenat et al., 2004) is another alignment tool that follows the similarity-
based paradigm. It is dedicated to the alignment of ontologies expressed in OWL,
with an emphasis on its restricted dialect of OWL, called OWL-Lite. More than a
simple tool for automated alignment construction, OLA is designed as an environ-
ment for manipulating alignments. Indeed, the system offers the following services:
parsing and visualization of (pairs of) ontologies; automated computation of similar-
ities between entities from different ontologies; automated extraction of alignments
from a pair of ontologies; manual construction of alignments; initialization of auto-
mated alignment construction by an existing alignment; visualization of alignments;
comparison of alignments.

Ontologies Mapping Tools

Ontologies mapping is an important step to achieve knowledge sharing and semantic
integration in an environment in which knowledge and information have been rep-
resented with different underlying ontologies. The process of ontologies mapping is
a (declarative) specification of the semantic overlap between two ontologies. Given
two ontologies A and B, mapping one ontology with another, means that for each
concept (node) in ontology A, we try to find a corresponding concept (node), which
has same or similar semantics, in ontology B and vice versa (Castano et al., 2007).
The three main phases for any mapping process are: mapping discovery; mapping
representation; mapping execution. CROSI Mapping System (Kalfoglou and Hu,
2005), GLUE (Doan et al., 2004), MAFRA (Maedche et al., 2002), OntoMap R©
(Schnurr and Angele, 2005), and H-Match (Castano et al., 2006) are such tools.
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GLUE (Doan et al., 2004) is a system which employs machine-learning tech-
nologies to semi-automatically create mappings between heterogeneous ontologies
based on instance data, where an ontology is seen as a taxonomy of concepts. It
focuses on finding 1-to-1 mappings between concepts in taxonomies, although the
authors say that extending matching to relations and attributes and involving more
complex mappings (such as 1-to-n and n-to-1 mappings) is the subject of ongoing
research.

MAFRA (Mapping FRAmework for distributed ontologies; Maedche et al.,
2002) supports an interactive, incremental, and dynamic ontologies mapping pro-
cess, the final purpose of which is to support ontology instance transformation.
It adopts an open architecture in which concept mappings are realized through
semantic bridges. A semantic bridge is a module that transforms source ontology
instances into target ontology instances. The MAFRA toolkit supports a graphi-
cal user interface that provides domain experts with functionalities that are needed
for the specification of semantic bridges. It has been implemented as a plug-in of
KAON.

OntoMap R© (Schnurr and Angele, 2005) is a plug-in for the ontology-
management platform OntoStudio R© that supports the creation and management of
ontologies mappings. Mappings can be specified using a graphical representation,
of the schema-view of the respective ontologies. It supports a number of elemen-
tary mapping patterns: concept to concept mappings, attribute to attribute mappings,
relation to relation mappings, and attribute to concept mappings.

Ontologies Versioning Tools

As changes to ontologies are inevitable, it becomes very important to keep track
of these changes, that is, the relation between successive revisions of one ontol-
ogy and the relation between the ontology and its dependencies: instance data that
conforms to the ontology; other ontologies that are built from, or import the ontol-
ogy; applications that use the ontology. Therefore, a versioning tool is needed to
handle revisions of ontologies and the impact on existing sources. In some sense,
the versioning problem can also be regarded as a derivation of ontologies com-
bination; it results from changes to individual ontologies. Although the problem
is introduced by subsequent changes to a specific ontology, the most important
problems are caused by the dependencies on that ontology. Ontologies version-
ing tools, such as SHOE (Heflin and Hendler, 2000), PROMPTDiff (Noy and
Musen, 2002), OntoView (Klein and Fensel, 2001), Ontology Versioning Tool (De
Leenheer et al., 2006), and SemVersion (Volkel and Groza, 2006) are about com-
paring ontology versions rather than about comparing independently developed
ontologies.

OntoView (Klein and Fensel, 2001) is a system that helps ontology engineers
to specify relations between ontology versions, in such a way, that interoperability
between the versions of an ontology is improved. To provide a transparent interface
to arbitrary versions of ontologies, OntoView keeps track of the conceptual relations
and transformations between components of the ontology among different versions.



140 L. Seremeti and A. Kameas

Such support is essential when ontologies are used on the Web and also useful for
the collaborative development of ontologies.

Ontology Translation/Transformation Tools

Ontology transformation consists of transcribing an ontology from one form to
another. This can include its expression in a different ontology language, or a refor-
mulation in a restricted of a language (e.g., expressing automatically some non
necessary OWL-Full ontology into OWL-DL), or with regard to a different vocab-
ulary. Ontology transformation is useful for solving heterogeneity problems, when
one wants to take advantage, in a particular context, of an ontology that has been
developed in another context (i.e., using a different language). Ontology transfor-
mation is supported by a variety of tools. Some of them can be mere lexical or even
be syntactic translators, but most will require the power of processing the ontology
(i.e., inferring) in order to transform it. It is thus necessary to use the right tool:
transformation systems are not version managers.

The term ontology translation is used in the literature to describe two differ-
ent things. Under one understanding, ontology translation refers to the process of
changing the formal representation of the ontology from one language to another
(say from OWL to RDF or from Ontolingua to Prolog). This changes the syntac-
tic form of the axioms, but not the vocabulary of the ontology. Works related to
ontology translation under this understanding, leave the vocabulary of the ontology
unaffected, dealing with the ontological axioms only. Under the second under-
standing, ontology translation refers to a translation of the vocabulary, in a manner
similar to that of ontologies mapping. The difference between ontologies mapping
and ontology translation is that the former specifies the function(s) that relate the
two ontologies’ vocabularies, while the latter applies this (these) function(s) to
actually implement the mapping. OntoMorph (Chalupsky, 2000), WebODE trans-
lation system (Corcho, 2004), Transmorpher (Euzenat and Tardif, 2002), and RDFT
(Omelayenko, 2002) are dedicated in ontology transformation.

OntoMorph (Chalupsky, 2000) is a system that supports the syntactic transfor-
mation of ontologies, using a language not very different from XSLT. It is however
integrated with a knowledge representation system, which provides the ability to
have semantically-grounded rules in the transformations. It uses syntactic rewriting
via pattern-directed rewrite rules that allow the concise specification of sentence-
level transformations based on pattern matching, and semantic rewriting. Syntactic
rewriting is modulated via (partial) semantic models and logical inference.

6.2.1.3 Ontology Management Tools

Software tools are available to support the phases of ontology development. While
ontology editors are useful during each step of the ontology building process, other
types of ontology engineering tools are also needed along the way. Development
projects often end up using numerous ontologies from external sources as well as
existing and newly developed in-house ontologies. Ontologies from any source may
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progress through a series of versions. As a consequence, the careful management
of this collection of heterogeneous ontologies becomes necessary so as to keep
track of them. Some tools also support ontology mapping and linking, comparison,
reconciliation and validation, merging, and converting into other forms. Other
tools can help acquire, organize, and visualize the domain knowledge before and
during the building of a formal ontology. Finally, other tools evaluate the existing
ontologies, or use ontologies to annotate web documents, or support storing and
querying ontologies. All these ontology management tools can be classified in four
major categories that will be described in this section.

Ontology Evaluation Tools

Given the ever-increasing number of ontologies, there is an urgent need for evalua-
tion, checking and validation tools. Ontology evaluation is the problem of assessing
a given ontology from the point of view of a particular criterion of application, in
order to determine if it would suit a particular purpose. It is a critical task, even more
so when the ontology is the output of an automatic system, rather than the result of
a conceptualization effort produced by a team of domain specialists and knowledge
engineers. Ontology evaluation tools are responsible for checking ontology valida-
tion and consistency. These tools do not only validate the conformity to a standard
of the syntactic representation in a special language, but also validate the semantic
properties through the use of inference rules and other similar mechanisms.

Most evaluation approaches fall into four major categories: those based on com-
paring the released ontology to a predefined “golden standard”, which may be
another hand-crafted ontology; those based on using the ontology in an integrated
system and evaluating the performance of this system; those involving comparisons
with a data source relative to the domain that is to be covered by the ontology and
finally, those where the evaluation is performed purely by humans. Human assess-
ment is performed by domain experts who try to assess how well the ontology meets
a set of predefined criteria, requirements, standards, etc. Moreover, irrespective of
the approach that is to be followed, an ontology can be evaluated at different lay-
ers. This is usually desirable, since an ontology is, in general, a complex structure
and in most cases it is better to focus the evaluation on a particular aspect of the
ontology.

Evaluation tools that evaluate the output ontology in a (semi)automatic way are
needed, since the most widely used evaluation techniques are human-based and,
consequently, may be biased. There also exist tools that evaluate the tools that
develop ontologies.

Ontology Evaluation Tools for Tool Evaluation

Tools are evaluated for their technological properties, such as interoperability,
performance, memory allocation, scalability, interface. An example of this category
is OntoGenerator (Handschuh et al., 2001).

OntoGenerator (Handschuh et al., 2001) is an OntoEdit plug-in, focused on
evaluating ontology tools’ performance and scalability.
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Ontology Evaluation Tools for Ontology Evaluation

Ontologies are evaluated for their “language conformity” (i.e., to the syntax of
a representation language) and for their “consistency” (i.e., to what extend they
ensure consistency of specifications with respect to their semantics). OntoAnalyser
(Handschuh et al., 2001), OntoClean (Guarino and Welty, 2002), AEON (Volker
et al., 2005), ONE-T (Bouillon et al., 2002), and CleanONTO (Sleeman and Reul,
2006) are focused on ontology evaluation.

OntoAnalyser (Handschuh et al., 2001) is realized as a plug-in of OntoEdit. It
focuses on evaluating ontology properties, particularly language conformity and
consistency.

Ontology Storage and Querying Tools

Ontologies offer more services than simply representing knowledge and informa-
tion. Human information consumers and web agents use and query ontologies
and the resources committed to them. Since ontologies do not use traditional
techniques and languages to represent information, the necessity to support adap-
tive storage and querying arises. However, the context of storing and querying
knowledge has changed due to the wide acceptance and use of the Web as a
platform for communicating knowledge. New languages for querying (meta)data
based on web standards (e.g., XML, RDF, Topic Maps) have emerged, to
enable the acquisition of knowledge from dispersed information sources, while
the traditional database storage techniques have been adapted to deal with the
peculiarities of the (semi)structured data on the web. So, these tools must pro-
vide full storage and query support to web-based ontology or metadata stan-
dards, such as RDF, RDFS, Topic Maps, DAML+OIL, and OWL. The tools
presented here such as ICS-FORTH RDFSuite (Alexaki et al., 2001), Sesame
(Broekstra et al., 2002), Redland (http://www.redland.opensource.ac.uk/demo/),
Jena (McBride, 2001), RACER (http://www.sts.tu-harburg.de/∼r.f.moeller/racer)
are indicative of this tendency. We can classify these tools, according to the language
that they are based on:

Ontology Storage and Querying Tools Based on OWL

Jena (McBride, 2001) is a Java framework that provides a programming envi-
ronment for RDF, RDFS and OWL, including a rule-based inference engine. The
Jena2 release is more interesting for the ontology engineering process, as it pro-
vides an API that supports programmers who are working with ontology data based
on RDF. This means that Jena2 offers features for handling most of ontology lan-
guages, namely XML, OWL, DAML+OIL, RDFS. It also provides generic RDF
Resource and Property classes to model more directly the class and property expres-
sions found in ontologies using the above languages, and the relationships between
these classes and properties. Due to its storage abstraction, Jena enables new stor-
age subsystems to be integrated. In fact, Jena provides statement-centric methods



6 Tools for Ontology Engineering and Management 143

for manipulating an RDF model as a set of RDF triples, resource-centric methods
for manipulating an RDF model as a set of resources with properties, as well as
built-in support for RDF containers.

Ontology Storage and Querying Tools Based on DAML+OIL

TRIPLE (Sintek and Decker, 2001) is an inference and querying engine. It con-
stitutes the implementation of the TRIPLE query language. It also contains a
standalone DAML+OIL implementation with the following features: it parses
DAML+OIL ontologies with Jena, provides output in various syntaxes, supports
an external DL classifier that can be automatically invoked and its output can be
returned in various formats.

Ontology Storage and Querying Tools Based on Topic Maps

Empolis K42 Knowledge Server constitutes a collaborative, web-based integrated
authoring environment for capturing, expressing and delivering knowledge, which
is able to import, export and merge Topic Maps (Magkanaraki et al., 2002).

Ontology Storage and Querying Tools Based on RDF Schema

Sesame (Broekstra et al., 2002) is an RDF Schema-based Repository and query-
ing facility. It is a system consisting of a repository, a query engine and an
administration module for adding and deleting RDF data and Schema information.

Ontology Storage and Querying Tools Based on RDF

ICS-FORTH RDFSuite (Alexaki et al., 2001) is a suite of tools for RDF meta-
data management, supporting RDF metadata processing for large-scale Web-based
applications. It consists of tools for parsing, validating, storing and querying RDF
descriptions.

Ontology-Based Annotation Tools

Ontology-based annotation refers to the process of creating metadata using ontolo-
gies as their vocabularies. Metadata is usually defined as “data about data”, which
aims at expressing the “semantics” of information. It is used to describe doc-
uments and applications, in order to improve information seeking and retrieval
and its understanding and use. Metadata can be expressed in a wide variety of
vocabularies and languages, and can be created and maintained with a variety of
tools. Ontology-based annotation tools are primarily designed to allow inserting
and maintaining ontology based markups in Web pages. Most of these tools such as
OntoMat Annotizer (Handschuh et al., 2001), SHOE Knowledge Annotator (Heflin
and Hendler, 2000), GATE (Cunningham et al., 2002), Melita (Ciravegna et al.,
2002), AeroDAML (Kogut and Holmes, 2001), Amilcare (Ciravegna and Wilks,
2003), MnM (Vargas-Vera et al., 2002), S-Cream (et al., 2002), Magpie (Domingue
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et al., 2004), PANKOW system (Ciniamo et al., 2004), SemTag system (Dill et al.,
2003), Photocopain (Tuffield et al., 2006), KIM system (Kiryakov et al., 2005),
AKTive Media system (Chakravarthy et al., 2006), OntoELAN (Chebotko et al.,
2004), and NOMOS (Niekrasz and Gruenstein, 2006) have appeared recently with
the emergence of the Semantic Web. They use Information Extraction (IE) and
Machine Learning (ML) techniques to propose semi-automatic annotations for Web
documents.

Tools for Multimedia Documents’ Annotation

Many language data are collected as audio and video recordings, which imposes a
challenge to document indexing and retrieval. Annotation of multimedia data pro-
vides an opportunity for making the semantics of these data explicit and facilitates
the searching for multimedia documents. So, a class of ontology-based annota-
tion tools such as OntoELAN (Chebotko et al., 2004), AKTive Media system
(Chakravarthy et al., 2006), Photocopain (Tuffield et al., 2006) are used as the
ontology-based annotation tools for multimedia documents.

OntoELAN (Chebotko et al., 2004) is the first audio/video ontology-based anno-
tation. It is an ontology-based linguistic annotator that features: support for loading
and displaying ontologies specified in OWL; display a speech and/or video sig-
nals, together with their annotations; time linking of annotations to media streams;
creation of a language profile, which allows a user to choose a subset of terms
from an ontology and conveniently rename them if needed; creation of ontologi-
cal tiers, which can be annotated with profile terms and, therefore, corresponding
ontological terms; and saving annotations in XML format as multimedia ontology
class instances and, linked with them, class instances of other ontologies used in
ontological tiers.

Ontology-Based IE Tools

These tools perform semantic annotation with respect to an ontology without man-
ual intervention (Bontcheva et al., 2006). Some examples of this category are
PANKOW system (Ciniamo et al., 2004), KIM system (Kiryakov et al., 2005) and
Magpie (Domingue et al., 2004).

Magpie (Domingue et al., 2004) is a suite of tools which supports the interpre-
tation of web-pages and “collaborative sense-making”. It annotates web-pages with
metadata in a fully automatic fashion without manual intervention, by matching the
text against instances in the ontology. It automatically creates a semantic layer for
web pages using a user-selected ontology. Semantic layers are annotations of a web
page, with a set of applicable semantic services attached to the annotated items. It
can automatically track concepts found during a browsing session using a semantic
log. The log allows trigger services to be activated when a specific pattern of con-
cepts has been found. The same log can be used as a conceptual representation of the
user’s browsing history. Since all Magpie abilities are underpinned by ontological
reasoning, this enables the users to use the history semantically rather than as a
purely linear and temporal record of their activities.
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Applying “Traditional” IE Tools

These tools do not incorporate ontologies into the system, but either use ontologies
as a bridge between the IE system and the final annotation, as with AeroDAML
(Kogut and Holmes, 2001), or rely on the user to provide the relevant information
through manual annotation, as with Amilcare (Ciravegna and Wilks, 2003).

AeroDAML (Kogut and Holmes, 2001) is an annotation tool which applies IE
techniques to automatically generate DAML annotations from web pages. It links
most proper nouns and common types of relations with classes and properties in a
DAML ontology. It consists of the AeroText IE system, together with components
for DAML generation. A default ontology, which directly correlates to the linguistic
knowledge base used by the extraction process, is used to translate the extraction
results into a corresponding RDF model that uses the DAML+OIL syntax. This
RDF model is then serialized to produce the final DAML annotation.

Ontology Visualization Tools

Ontologies are rich vocabularies, which implicitly contain more information than
can be explicitly found in their text representation. Implicit information, such as the
underlying structure of a data model, or which instances are most closely connected,
is all contained in a graph. This information, though, is difficult, if not impossible, to
extract from a text-based reading of the data. Tools that support the ontology visual-
ization process are OntoViz (http://protege.cim3.net/cgi-bin/wiki.pl?OntoViz), and
WSMOViz (Kerrigan, 2006).

WSMOViz (Kerrigan, 2006) is an integrated ontology engineering and visualiza-
tion tool for WSMO (Feier and Domingue, 2005). This tool does not only allow the
user to view WSML ontologies in a very clear way, but also to edit the ontology in
the visual mode.

6.2.2 Integrated Ontology Engineering Environments

Ontology engineering, in addition to ontology construction, also supports mapping,
management, maintenance and evolution of ontologies. There exist integrated col-
lections of specialized tools that can support (fully or partially) more than one
activities/processes of the ontology engineering life-cycle; these are called inte-
grated ontology engineering environments. The need for these tools arises from the
fact that the life cycle of ontology engineering is highly affected if the ontology is
to be reused for building another ontology and vice-versa: different activities dur-
ing the development of a specific ontology will be carried out if it is based on other
ontologies that have already been built, or are under construction. This leads to inter-
dependencies between the life cycles of ontologies. This interrelation between life
cycles of several ontologies means that integration has to be approached globally
(Fernandez-Lopez et al., 2000).

The integrated ontology engineering environments can represent all or some
of the processes in the different phases of the ontology life cycle, such as
the ontology generation (building, learning), ontology integration (merging,
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mapping, versioning, translating), and ontology management (evaluating, annotat-
ing, storing, querying, visualizing). Integrated ontology engineering environments
such as KAON (Bozsak et al., 2002), Protégé (Noy et al., 2000), WebODE
(Aprirez et al., 2001), OntoEdit (Sure et al., 2002), SWOOP (Kalyanpur
et al., 2005), HCONE (Kotis and Vouros, 2003), SOBOLEO (Zacharias and
Braun, 2007), ORIENT (http://apex.sjtu.edu.cn/projects/orient/), NeOn Toolkit
(http://www.neon-toolkit.org), TopBraid Composer (http://www.topquadrant.com/
topbraidvomposer.html), OBO-Edit (http://oboedit.org), and DIP Ontology
Management Suite (SALERO Consortium, 2006) can be classified in being
web-based or not, in supporting collaborative ontology engineering or not, etc.

SOBOLEO (Zacharias and Braun, 2007) is the acronym for SOcial
BOokmarking and Lightweight Engineering of Ontologies. The system’s goal is
to support people working in some domain in the collaborative development of a
shared vocabulary and a shared index of relevant web resources. With SOBOLEO it
is possible to create, extend and maintain taxonomies according to the SKOS Core
Vocabulary in a simple way. It also supports the collection and sharing of relevant
web resources (bookmarks). These bookmarks can be annotated with concepts from
the SKOS taxonomy or arbitrary tags for better retrieval. One instance or installation
of SOBOLEO is meant to be used by a community with interest in building a shared
vocabulary and a web index. Within this one instance, users create and maintain
collaboratively, one taxonomy and one shared index of web resources.

Protégé (Noy et al., 2000) was developed by Stanford Medical Informatics at
the Stanford University School of Medicine. It was developed originally for use
in the field of clinical medicine and the biomedical sciences, but now it is being
used in many areas where the concepts can be modeled as a class hierarchy. It is
a Java based open-source tool for editing and managing ontologies. It is the most
widely used domain-independent, freely available, platform-independent technol-
ogy for developing and managing terminologies, ontologies, and knowledge bases
in a broad range of application domains. With Protégé it is easy to create classes
and hierarchies, to declare properties for classes, create instances and introduce
values, all these under an environment consisting in menus, buttons, dialog boxes
and easy to use graphic representations. Its core functionality can be extended in
many ways by creating plug-ins. There are over 90 Protégé plug-ins providing
advanced capabilities such as reasoning and inference support and visualization
of large ontologies. For example, PROMPTDiff (Noy and Musen, 2002) automati-
cally calculates structural differences between ontology versions, identifying which
concepts have changed between versions. It identifies both simple and complex
changes and it presents the comparison results to the user in an intuitive way. Users
then can accept or reject the changes between concepts and instances. Jambalaya is
another Protégé plug-in that provides an extensible, flexible, and scalable visualiza-
tion environment for exploring, navigating, and understanding ontologies. ONTO-H
(Benjamins et al., 2004) is a tab plug-in for the Protégé ontology editor that allows
the creation of annotations of RTF documents. OntoLT (Buitelaar et al., 2004)
implements the definition of mapping rules, with which, classes and properties can
be extracted automatically from linguistically annotated text collections. Through



6 Tools for Ontology Engineering and Management 147

the use of such rules, linguistic knowledge (context words, morphological and syn-
tactic structure, etc.) remains associated with the constructed ontology and may
be used subsequently in its application and maintenance, e.g., in knowledge mark-
up, ontology mapping, and ontology evolution. OWLViz is also a Protégé plug-in
which can be used to visualize ontologies built using the Protégé OWL plug-in. The
OWL plug-in enables the creation and maintenance of ontologies described in the
OWL syntax. A description logic inference engine, called RACER, is frequently
used together with the Protégé OWL environment, as it provides reasoning services
such as consistency checking and automated classification of concepts. Protégé can
also support ontology merging with the PROMPT plug-in. The Protégé platform
supports Web-based ontology viewing and collaboration and it provides different
back-end storage mechanisms.

DIP Ontology Management Suite (http://kmi.open.ac.uk/projects/dip/index.php
#publications) is an integrated set of tools for the effective management of ontolo-
gies, designed especially for handling and using ontologies as the underlying
data model for Semantic Web Services. The whole suite consists of six major
components that are developed as Eclipse plug-ins: Browsing and Editing (stan-
dard browsing and editing functionality); Mapping and Merging (allow to map
and/or merge multiple ontologies); Versioning (controls the history of an ontol-
ogy); Reporting (a graphical user interface for creating different types of diagram
reports); Repository (for persistent storage and retrieval of ontology relevant data);
Representation and Data Framework (middle layer and central API that provides
transparent access to the suite’s components).

6.3 Selecting the Appropriate Ontology Engineering
And Management Tool

The continuous development of ontology editors and other tools for managing
ontologies is an indication of the growing need for effective and universal knowl-
edge representation in domains like the Semantic Web, Ubiquitous Computing,
etc. These tools implement different knowledge models with different underly-
ing knowledge representation paradigms, manage large upper level and general
ontologies, and range from standalone to web-based and ubiquitous computing
applications. Thus evaluation and comparison of these tools is important to help
users determine which tool is best suited for their task.

In the last few years many studies evaluating ontology engineering tools have
been published. Some authors have proposed general frameworks for the evaluation
of ontology tools, i.e. the work presented by Duineveld and colleagues (Duineveld
et al., 1999), the deliverable 1.3 of the OntoWeb project (2002), the conclusions
attained in the First International Workshop on Evaluation of Ontology-based Tools
(Angele and Sure, 2002), and Lambrix and colleagues (Lambrix et al., 2003).
Others have presented more focused evaluations using specific criteria: Stojanovic
and Motik (Stojanovic and Motik, 2002) analyzed the ontology evolution require-
ments fulfilled by the tools; Sofia Pinto and colleagues (Sofia Pinto et al., 2002)
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evaluated the support provided by the tools in ontology reuse process; In the Second
International Workshop on Evaluation of Ontology-based Tools (Corcho et al.,
2003) the interoperability of the tools was evaluated; and Gomez-Perez and Suarez-
Figueroa (Gomez-Perez and Suarez-Figueroa, 2004) evaluated the ability of the
tools to detect taxonomic anomalies.

From all these studies, it’s evident that, on one hand, there is no “one fits all”
generic framework that can be used for comparing ontology engineering tools:
different categories of tools require very different comparison frameworks. For
example, ontology engineering tools (ontology building tools and ontology learning
tools) can easily be compared since they all support similar tasks such as defini-
tion of concepts, instances, and relations in a domain. Ontology combination tools
(ontology merging, alignment, mapping, versioning, translation tools) however are
so different from one another that direct comparison may not be possible. They
differ in the type of input they require (e.g., instance data or no instance data),
the type of output they produce (e.g., one merged ontology, pairs of related terms,
articulation rules), modes of interaction and so on. This diversity makes comparing
the performance of ontology combination tools to one another largely meaning-
less. On the other hand, we can summarize certain criteria as the basis for the
comparative evaluation of integrated ontology engineering environments, such as
(http://www.ontoweb.org/download/deliverables/D21_Final-final.pdf):

– Extensibility: measures how adaptable these environments may be to future tech-
nological advances. It is crucial for preserving a full development evolution of
integrated ontology engineering environments.

– Maturity: measures how integrated ontology engineering environments may han-
dle development problems, and even reduce the number and intensity of the future
problematic situations. This criterion comprises the ability to deal constructively
with real environments, the capacity to adapt to change, the capacity to relate and
combine with other integrated environments, and so on.

– Portability: the ability to adapt any integrated ontology engineering environment,
technique or method within a new environment without redeveloping it.

– Interoperability: the ability of systems to operate in conjunction with each other,
encompassing communication protocols, hardware, software applications, and
data compatibility layers.

– Ease-of-use: covers ease-of-learning, intuitiveness, efficiency and functionality.
Simultaneously measures how long it takes for one to learn to use a certain prod-
uct, how intuitive the product is, and how logical it is to use, create or modify a
program.

To be able to decide what ontology engineering tools are needed for fulfilling
actual and future requirements of an application, one needs to objectively evaluate
existing tools. For several reasons, this is a difficult task. Firstly, for an evaluation
to be unbiased, it must be designed and carried out by someone other than tool
developers themselves. Otherwise, the evaluation setup and comparison parameters
are inevitably skewed (often subconsciously). Secondly, it is often hard to come up
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with benchmark tasks and gold standards, because no two tools have been designed
for the same purpose; thus, any attempt to evaluate a tool when performing restricted
benchmark tasks often puts it in uses for which it was not designed. Thirdly, many
of the criteria are, by their very nature, subjective. For example, when evaluating
the quality of an ontology, we often don’t have a single correct answer for how
certain concepts should be represented or when evaluating the quality of ontology
alignment, we often cannot agree on the precise relationships between concepts in
source ontologies (http://co4.inriaples.fr/align/contest).

A systematic approach for comparing and selecting ontology engineering tools
could be based on the taxonomy proposed in Fig. 6.1. Of course, this taxon-
omy should be enhanced with descriptions of specific properties of each class/tool
describing various features and attributes of the class/tool, such as its architecture,
the methodology that the tool follows, etc., as well as the allowed values for these
properties. Then, available tools can be added as instances of specific classes (i.e.,
Protégé is an instance of the Integrated Ontology Engineering Environments class).
In this classification, we have allocated each tool to one and only one class, but
multiple inheritance should not be excluded, especially if we provide more abstract
property descriptions.

This classification could be turned into an ontology of ontology engineering ser-
vices, if we decompose tools into the functions each of them supports and then
analyze the set of functions to form function classes. This ontology could then be
questioned about what is the best ontology engineering tool for a specific applica-
tion, in terms of the functions it supports, or which tools should be used to support
the entire lifecycle of ontology engineering.

6.4 Conclusion

The next generation of semantic applications will be characterized by a large num-
ber of networked ontologies, some of them constantly evolving, most of them being
locally, but not globally, consistent. In such scenarios, it is more or less infeasible
to adopt current ontology management models, where the expectation is to have a
single, globally consistent ontology, which serves the application needs of develop-
ers and possibly integrates a number of pre-existing ontologies. What is needed is
a clear analysis of the complex relationships between ontologies in such networks,
resulting in a formal model of networked ontologies that supports their evolution
and provides the basis for guaranteeing their (partial) consistency in case one of
the networked ontologies is changing. Open issues that are involved are among
others ensuring consistency, evolution of ontologies and metadata, and reasoning.
Developing tools that are able to meet these challenges is an essential require-
ment towards devising an ontology and metadata infrastructure that is powerful
enough to support the realization of applications that are characterized by an open,
decentralized, and ever changing environment.

Since ontologies encode a view of a given domain that is common to a set
of individuals or groups in certain settings for specific purposes, mechanisms to
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tailor ontologies to the need of a particular user in his working context are required.
The efficient dealing with a user’s context posts several research challenges, such
as formal representation of context, context based reasoning and context mapping.
A promising application area of contextual information is user profiling and per-
sonalization. Furthermore, with the use of mobile devices and current research on
ubiquitous computing, the topic of context awareness is a major issue for future
IT applications. Intelligent solutions are needed to exploit context information and
rapidly changing environments and unsteady information sources. Advanced tools
for assigning context to a situation have to be developed, which pave the way to
introduce ontology-based mechanisms into context-aware applications.

An increasing number of application scenarios depend on the integration of infor-
mation from various sources that comes in different formats and is characterized by
different formalization levels. For example, in many large engineering companies,
information can be typically found in text documents, e-mails, graphical engineer-
ing documents, images, videos, sensor data, and so on, that is, information is stored
in so-called cross-media resources. Taking this situation into account, the next gen-
eration of semantic applications will have to address various challenges in order to
come up with appropriate solutions, such as ontology learning and metadata gener-
ation, information integration and advanced ontology mapping. Whereas individual
(non)logical approaches exist to address these aspects, one lacks a coherent frame-
work to handle these challenges in an integrated way. Providing tools that still scale
up, or designing the interaction with the users in such complex scenarios is still an
open research issue.
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Chapter 7
Ontological Tools: Requirements, Design Issues
and Perspectives

Konstantinos Kotis and George Vouros

An Ontological or Ontology Engineering tool is a piece of software that aims to
support the engineering of ontologies. The engineering of ontologies concerns spe-
cific processes and tasks needed to be executed by domain experts and ontology
engineers during the life-cycle of ontologies. The main objective of ontology engi-
neering tools, especially in the context of the Semantic Web, is to provide certain
functionality to users towards constructing shared and evolving ontologies. The aim
of this article is to provide an understanding of the functionalities and technolo-
gies that need to be integrated in ontology engineering environments and to present
issues that next generation ontological tools must consider in order to play a key
role in the era of information and knowledge management.

7.1 Introduction

Ontologies explicate conceptualizations that are shaped and exploited by humans
during practice and interaction among community members, binding the knowledge
processes of creating, importing, capturing, retrieving, and using knowledge. Being
part of knowledge that people possess, conceptualizations evolve in communities as
part of “knowing” (Cook and Brown, 1999). “Knowing” is about interactions with
the world as well with members of communities, with the aim to create new knowl-
edge. Personal knowledge is created through practice, whereas group knowledge is
created through interaction between community members.

The manipulation of conceptualizations involves their development, evaluation,
exploitation and their continuous evolution as part of “knowing”, as humans perform
their tasks and achieve their goals in their working contexts. In particular it involves:
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1. The development of personal conceptualizations. People develop their own con-
ceptualizations, which they may either make explicit (e.g. by formalizing terms
in a special language, by taking notes about their meaning or just by naming
concepts) or not (by storing them in the background of their minds). In their day-
to-day activities people develop their conceptualizations either by improvising,
by specializing/generalizing/aggregating existing concepts based on their expe-
riences and on interaction with other community members, or by synthesizing
existing conceptualizations.

2. The development of commonly agreed group conceptualizations. Developing
commonly agreed and understandable domain conceptualizations is a very dif-
ficult and resource-demanding task that requires members of the communities
to work synergistically towards shaping the information they exploit. By work-
ing synergistically, workers map others’ conceptualizations to their own and put
them in the context of their own experiences. This leads to a conversation whose
back-and-forth, as it is pointed out in Cook and Brown (1999), not only results
in exchanging knowledge but also in generating new knowledge.

3. The evaluation and exploitation of conceptualizations. Exploitation and evalu-
ation of conceptualizations as part of the day-to-day practice of communities
can be considered only as part of “knowing”. Conceptualizations are put in prac-
tice and in the criticism of community members who, as already pointed out,
have to compare them with their own conceptualizations and put them in the
context of their own experiences (e.g. exploit them in a real working setting).
Evaluation can result in new meanings, since concepts are seen under the light
of new experiences and evolving contexts.

The above issues concerning the development, evaluation and exploitation
of conceptualizations must be explicitly addressed in any ontology engineering
methodology. The aim of an ontology engineering methodology is to prescribe pro-
cesses and tasks that support humans to describe “what must be represented” and
“how it can be represented” with respect to the conceptualization of domains. The
objective of each ontology engineering methodology is to support the development
and evolution of ontologies towards shared and agreed domain conceptualizations.
Since the aim is on devising ontologies supporting their evolution towards com-
monly agreed conceptualizations, we emphasize collaborative methodologies that
would support the active, decisive, and thus effective, participation of stakeholders
in methodological tasks.

Therefore, in this article we discuss collaborative state-of-the-art ontology engi-
neering (O.E) methodologies that imply important requirements for the functionality
of O.E tools (Section 7.2). Based on the methodological implications of state-
of-the-art collaborative engineering methodologies for evolving ontologies and on
evaluation efforts for existing O.E tools, Section 7.3 presents a list of functional
requirements that such tools must satisfy. Section 7.4 presents a table (in Appendix)
that sums up known O.E tools’ fulfilment of the stated requirements. Finally, Section
7.5 concludes this article with remarks and a research agenda of the issues that next
generation ontological tools must consider in order to play their vital key role in this
era of information and knowledge management.
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7.2 The Engineering of Ontologies

The engineering of ontologies is the objective of several methodologies (Uschold
and King, 1995; Grüninger and Fox, 1995; Fernández-López et al., 1999; Schnurr
et al., 2000; Sure, 2002) that are analogous to the user-centered software engineer-
ing methodologies: Knowledge engineers with the participation of domain experts
and/or ontology users gather the requirements for the ontologies, and either by
using a knowledge representation language or by using an ontology engineering
environment, they design and implement prototype ontologies. Ontologies pro-
duced are commented by experts in order to be further improved so as to reach
a consensual conceptualisation of the corresponding domain. This contrasts to the
old-fashioned technology-centered software engineering design approach in which
developers gather requirements, design and implement an artefact and leave users to
cope with what they have produced. However, even with the involvement of users,
this approach to ontologies engineering is mostly machine-oriented: Knowledge
engineers deal with these artefacts at the symbol level, mediating between domain
conceptualisations and their formal representations, which can not be further manip-
ulated or even (in some cases) be inspected by domain experts. This leads to a
machine-oriented, knowledge engineer – centered ontology engineering approach:
It relies heavily on de-contextualized principles of engineering ontologies using for-
mal representation languages, but it does not deal with the way people manipulate
their conceptualisations in the context of their day-to-day activities, individually
or conversationally with colleagues. In order to (a) support the active and decisive
involvement of knowledge workers in all stages of an ontology life-cycle, and (b)
further empower people to decisively participate in the engineering of ontologies,
shaping their information space in ways that are seamless to their day-to-day work-
ing activities, recent ontology engineering methodologies aim to accentuate the role
of knowledge workers (i.e. domain experts, ontology users and knowledge engi-
neers) and their active involvement in the ontology life-cycle (Pinto et al., 2004;
Tempich et al., 2006; Kotis and Vouros, 2005).

In this section we provide detailed information on the latest O.E methodolo-
gies, HCOME (Kotis and Vouros, 2005) and DILIGENT (Tempich et al., 2006),
which focus on the above themes with a greater respect than earlier methodologies.
These modern approaches to the collaborative development of shared and evolv-
ing ontologies emphasize providing greater “opportunities” for knowledge workers
to manipulate their conceptualizations during their day-to-day activities, and con-
sequently they impose new functional requirements for the design of modern O.E
tools.

In Kotis and Vouros (2005) authors conjecture that the most important issues that
need to be considered within an ontology engineering methodology are:

1. Allow an eclectic way for the development of ontologies. Members of communi-
ties must be allowed to follow any approach or combination of approaches for the
development of ontologies, which better fits their practice, their working norms
and constraints: They may work in private by improvising conceptualizations
and integrating concepts in a personal (i.e. not shared) conceptual system,
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provide concepts with informal definitions, attaching information items to them,
or/and choose to collaborate by comparing, merging and refining/generalizing
existing ontologies.

2. Emphasize the need for a “natural” (as much as possible) way to interact with
conceptualizations. A major issue for the decisive involvement of knowledge
workers in any ontology engineering task is that they must interact with their con-
ceptualizations at a level of detail that is more convenient for them. Therefore,
low level implementation details of formal ontologies must be hidden from work-
ers who may not understand knowledge representation formalisms’ terminology,
syntax and semantics. People must be given the power to express subtle ontologi-
cal distinctions in a way that is natural to them but satisfies the formal constraints
of the specifications too. This further implies that knowledge workers must be
supported to develop well-formed ontologies (i.e. ontologies without inconsis-
tencies among the defined concepts, with coherency, and well organized), as well
as to reuse, compare and map existing ontologies.

3. Provide the means for exchanging, using and evaluating ontologies conversa-
tionally. As already pointed out, shaping information synergistically is neces-
sary, since knowledge is distributed among workers. To support conversations
between individuals upon ontology specification, a methodology must enable
further criticism on the developed artefacts, encourage feedback from com-
munity members, putting ontologies in the context of knowledge workers’
experiences and practice. Workers may deploy and evaluate ontologies during
their day-to-day activities, raising arguments for and against specific conceptu-
alization aspects, suggest changes, additions and refinements, and propose new
ontology versions. Conversation facilities must provide the means for detecting
new opportunities for collaboration, as well as for getting out of deadlocks within
problematic situations that may arise during collaboration.

4. Consider mapping of concepts’ definitions to other ontologies and/or lexical
resources. The aim is to uncover the human intended semantics (Uschold, 2003)
of the specifications for clarification and communication purposes. This sup-
ports the bridging of different perspectives about the domain and provides a
critical feedback on the precision of specifications. Mapping concepts according
to their meaning is important for the development of commonly agreed concep-
tualizations, especially in communities where people from different disciplines
use the same term with different meanings or use different terms for the same
concept. Furthermore, for people to get a feedback on whether the developed
specifications reflect the intended meaning of terms, or to further constrain the
meaning of terms, they need to map the term definitions to word senses in a
precise way.

The engineering of ontologies must be supported by O.E environments which
are in accordance to the above methodological issues; i.e. integrated collections
of tools/functionalities that support all (or most of the) phases of the modern
collaborative ontology engineering methodologies.
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7.2.1 The HCOME Methodology

The HCOME methodology (see Fig. 7.1) provides a clear distinction between the
phases of the ontology life-cycle, between the goals that should be achieved in each
phase and between the tasks that can be performed so as to achieve these goals. O.E
tasks within the HCOME methodology are performed iteratively, until a consensus
about a common ontology has been reached between knowledge workers. Tasks are
performed by knowledge workers either individually or conversationally. In the first
case, we consider that tasks are performed in a personal space of workers. In the

Fig. 7.1 The HCOME methodology: Phases/processes/tasks and the flow of tasks between stake-
holders and spaces. The (S) symbol represents the shared space and (P) the personal space
respectively
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latter case, tasks are performed in an information space that a group of knowledge
workers shares, i.e. in a shared space. A worker can initiate any ontology engineer-
ing task in his personal or shared space, or take part in a task that has been initiated
by other members of the community in a shared space.

7.2.1.1 Specification Phase

During the HCOME specification phase, knowledge workers join groups that are
about to develop shared ontologies. Having identified themselves within a group,
during this initial phase of ontology engineering, workers are discussing require-
ments, producing specification documents, and agreeing on the aim and the scope of
the new ontology. This phase may start from a worker that has already formed a con-
ceptualisation of specific domain aspects and needs the contribution of colleagues
to further develop the conceptualisation.

The “Specification” phase of the ontology life-cycle includes:

1. The specification of the scope and aim(s) of the ontology. This is essential in
order for workers to have an agreed initial reference of the way they understand
the domain and the way they intend to model it, according to their information
needs.

2. An argumentation dialogue between the members of the team in order to obtain
commonly agreed specification requirements.

3. Recording of the agreed specifications in appropriate forms and documents.

7.2.1.2 Conceptualization Phase

Having agreed on the scope and aim of the ontology to be developed, workers in
their personal space can follow any approach or combination of approaches to the
development of ontologies: They may improvise by integrating concepts in a con-
ceptual system, provide concepts with informal definitions attaching information
items to them, compare, merge and refine/generalize existing ontologies. Since the
consultation of other well-known and/or widely acknowledged resources is criti-
cal to the ontology development process, knowledge workers may perform this
task before sharing their conceptualisations with others. Collaborators should be
able to create, store, maintain, compare, merge, and manage different versions of
ontologies.

The “conceptualization” phase includes the following tasks:

1. The import of existing ontologies (for the reuse of conceptualisations. These may
be located in collaborators’ personal spaces, in the shared space, in corporate
internets, or in the World Wide Web.

2. The consultation of generic top ontologies, thesauruses and domain resources.
The objective here is for knowledge workers to better understand and clarify
the domain conceptualisations, and receive feedback concerning the informal,
human intended semantics of the ontology specifications.
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3. Improvising to ontology construction by allowing the from-scratch development
of formal ontologies based on workers’ perception of the domain.

4. The mapping, merging and management of multiple versions of ontologies,
supporting ontologies reuse and evolution.

5. The comparison of different versions of an ontology, for tracking ontology’s
evolution and for identifying ontologies that can possibly be merged.

6. Attaching to ontology elements information items, such as comments, examples
and specification details.

7.2.1.3 Exploitation Phase

The need to reach a common conceptualization of the working domain, push
inevitably ontologies developed in personal spaces to the shared space. As already
said, shared ontologies can be used by knowledge workers in the context of specific
ontology-driven applications and tasks, be exploited and be evaluated conversation-
ally. The exploitation of an ontology version that has been developed by a colleague
is seen as part of the ontology life-cycle since it may result to the provision of
feedback for the conceptualizations developed, followed by a conversation between
parties and to an agreement to a specific (new) conceptualization. The evaluation
and further development of personal ontologies is achieved via a structured con-
versation and criticism upon the ontology versions posted in the shared space. The
recording of this conversation enables the tracking of changes and of the rationale
behind ontology versions, supporting the decisions on conceptualising the domain
in the final ontology

The “Exploitation” phase includes:

1. The inspection of agreed or shared ontologies, either by individuals in their per-
sonal space or by collaborators in the shared space, for reviewing, evaluating and
criticizing the specified conceptualisations.

2. The comparison of (personal and shared) versions of an ontology, for identifying
the differences between them.

3. The posting of arguments upon versions of ontologies for supporting workers’
decisions, for or against specifications.

7.2.2 The DILIGENT Methodology

The aim of the DILIGENT methodology is to support domain experts within a
distributed working environment to design, develop and evolve ontologies fol-
lowing an argumentation approach based on Rhetorical Structure Theory (RST).
RST (Mann and Thompson, 1987) has been used for the analysis of discussions
towards reaching a consensus within evolving and distributed processes of ontol-
ogy engineering. Based on case studies performed in the context of the DILIGENT
methodology, one can draw the conclusion that argumentation frameworks for the
collaborative engineering of ontologies contributes significantly to the acceleration
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of the development of a commonly agreed ontology. The DILIGENT methodology
integrates the following tasks:

1. Collaborative building of a “starting” shared ontology (OI), by domain exp-
erts (K-provider), ontology engineers (O-engineer), knowledge engineers (K-
engineer) and end-users (O-user)

2. Local adaptation of the shared ontology from the end-users and its exploitation
in their personal space

3. Analysis of local ontologies (On) and of user-specific requirements by a control
board, and decision for the changes/corrections that will be incorporated in the
next version of the shared ontology

4. Revision and update of the shared ontology given the output of task 3
5. Local update of the local users’ ontologies, based on the new version of the

updated shared ontology (Fig. 7.2)

The process starts with the development of a starting ontology, the so called
“shared” ontology, with the collaboration of domain experts, ontology engineers,
knowledge engineers and end-users. The aim is to involve different people, in dif-
ferent roles, with different needs and goals that may not be in the same place. Since
the starting ontology is available, end-users may use it and adapt it in their own local
needs: At their local personal space, end-users are allowed to change the shared
ontology, however they cannot change the ontology that resides in the shared space.
A “control board” is responsible for updating the shared ontology by gathering and
analyzing end-users’ specifications for changes. The responsibility of the control
board is to keep a balance of the degree of each participant’s participation and rec-
oncile conflicts in specifications, ensuring that the shared ontology does not differ
much from the local ontologies. On the other hand, end-users must update their local
ontology in order to get the latest version of the shared conceptualization.

In contrast to the traditional methodologies [e.g. METHONTOLOGY
(Fernández-López et al., 1999), ON-TO-KNOWLEDGE (Schnurr, 2000; Sure,
2002)] to ontology engineering, the DILIGENT methodology is very close to
HCOME. We would say that both efforts move towards the third-generation
of ontology engineering methodologies. Specifically, both methodologies con-
sider distributed settings and thus emphasize issues concerning collaboration and

Fig. 7.2 The DILIGENT
methodology (Tempich et al.,
2006)
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argumentation. In addition, both methodologies consider evolving ontologies,
pointing on the importance of argumentation dialogues, version management and
merging of ontologies. Finally, they both consider that engineers must somehow
minimize their involvement during the engineering of ontologies, at least as far as
the specification of the ontologies is concerned, accentuating the role of domain
experts and ontology users. However the two approaches tackle this last issue dif-
ferently: DILIGENT is clearly dependent on decisions of a control board, whereas
HCOME aims to empower knowledge workers to actively and decisively participate
in the ontology life-cycle possibly without the assistance of knowledge/ontology
engineers.

7.3 Next-Generation Ontology Engineering Tools

Several related reports on ontology engineering tools [e.g. (Garcia-Castro, 2004;
Gómez Pérez, 2002)] establish a set of criteria for evaluating them, reporting on
advantages and disadvantages of their design. These reviews can be seen as a kind
of analysis of functional requirements that one may (partially) adopt for designing
new tools; i.e tools that consider the prons and cons of existing implementations,
providing the necessary functionality for supporting the processes and tasks of state-
of-the-art O.E methodologies. Based on this bibliography and on the methodological
implications of HCOME and DILIGENT methodologies described in Section 7.2,
we have concluded on a list of important requirements for designing modern O.E
tools. Section 7.4 provides information on the requirements fulfilled by existing O.E
tools.

1. Edit/View: The most common functionality of O.E tools is the editing of
ontologies. At a higher level, this functionality may be performed using many
different interface technologies: (a) forms i.e. template-driven definition of
classes/properties/instances using a knowledge representation language (b) nat-
ural language definition based on a controlled language or on the WYSIWYM
knowledge editing paradigm (c) graphical representation of definitions (d)
hypertext linkage of classes/properties/instances supporting definitions’ navi-
gation and (e) a combination of such technologies. At a lower level, this task
requires the use of a formal language in order to formally represent the specified
conceptualizations. Several ontology-specific languages have been proposed,
with varying degrees of formality. Currently, the Web Ontology Language
(OWL) family of languages is the leading standard for the specification of
ontologies. Concluding the above, we require that a modern O.E tool pro-
vides users with a synthesis of different ways to edit and view ontologies.
More important, tools must provide facilities that empower end-users with no
experience in ontology engineering and knowledge representation to manipu-
late their conceptualizations in the most “natural” way for them, maintaining
the consistency of specifications.
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2. Reasoning: Modern O.E tools should provide the functionality to (a) reason
with domain knowledge, inferring new knowledge from the knowledge base
(b) check the consistency of specifications (Garcia-Castro, 2004; Gómez Pérez,
2002). Reasoning services must perform in the background, providing sufficient
information to people about the well formed-ness of their ontologies. Feedback
from the reasoning services must be provided in the form of help and advice
about the validity and consistency of specifications, with respect to people cog-
nitive capacities (i.e. avoid feedback messages in formal language and/or using
technical terms related to the representation and reasoning system).

3. Collaboration: Modern O.E tools must support the collaborative development
of shared ontologies. Tools must provide access to the collaborative and con-
current engineering of multiple ontologies by multiple users. We specifically
identify two design requirements:

a. Tools must be able to distinctively provide at least two different information
spaces: The personal and the shared space. This means that, at a given time
point, an ontology should be characterized to be personal or shared accord-
ing to how many users are allowed to participate to its development. Being
in the personal space, ontologies are developed by only one user, whereas
shared ontologies are developed collaboratively by more than one user at the
same time. The management of ontologies within these two different spaces
does not necessarily imply the creation of two physically distinct spaces. A
shared ontology that is finally agreed between the members of a collabora-
tive team of developers is considered to be a commonly agreed ontology,
and can be optionally stored to another (virtual) space i.e. to the “agreed”
space.

b. Tools must support the organization of discussion sessions for the exchange
of arguments upon shared ontologies. These sessions allow a collaborative
development of shared ontologies using the power of argumentation models.
When joining such a session, knowledge workers agree to share a particular
ontology. The aim and scope of the shared ontology must also be collab-
oratively defined and be agreed. Arguments concerning users’ agreement
or disagreement on specific shared conceptualizations must be recorded,
together with new suggested conceptualizations, in the form of new ver-
sions of the shared ontology. To better track the discussion, argumentation
dialogues may follow an argumentation model for the specification of the
types of argumentation items and their relations.

4. Support for multiple ontologies: O.E tools need to support the concurrent
management of multiple ontologies. Tools must provide mechanisms to cre-
ate several views (versions) of an ontology and to manage different ontologies
within the same context. Users must be capable of managing more than one
ontologies at a time. We specifically identify the following requirements:

a. Tools must be able to load more than one ontologies at the same time for
users to be able to inspect, consult and manipulate them in parallel. For



7 Ontological Tools: Requirements, Design Issues and Perspectives 165

instance, parts of an ontology must be allowed to be copied to another one
in a consistent way. Also, the alignment and merging of two ontologies must
be supported.

b. Tools must allow the creation of several views (versions) of an ontology.
They must support versioning in a very effective way. Versions of an ontol-
ogy must be organized based on several criteria, e.g. by the date of creation,
the contributing party, the version number, etc. Change operations between
subsequent versions must be recorded separately.

c. To control the evolution of ontologies effectively, rich meta-information
must be related to ontology versions: When a version of an ontology is
created during a collaborative session (argumentation), the argumentation
items placed must be interrelated with the corresponding changes (if any)
for future exploitation (this is further elaborated in point 5 below).

d. Tools must support the comparison of different ontologies. This comparison
can be based on the changes recorded during the evolution of an ontology
(in the case of two versions of an ontology), or it can be based on compari-
son mechanisms for computing differences (syntactic, semantic, structural)
between two ontologies: For instance, this can be an ontology alignment
algorithm (in the best case) or a simple syntactic matching algorithm (in the
simplest case).

5. Reuse of knowledge: Ontology engineering tools manage knowledge about the
domain of discourse (represented by a domain ontology), but also informa-
tion about this knowledge (e.g. administrative information, information about
versions and changes that have occurred during ontology evolution, argumen-
tation dialogues). The exchange of ontologies between and within tools must
not be restricted to the level of domain knowledge but must be extended to
the level of meta-information. For the specification of the information to be
exchanged, we conjecture that the use of formal models is the right solution:
The ontology engineering process itself involves knowledge-intensive activities
performed by members of specific communities. People participating in such
a process need to share a common understanding of the various aspects and
issues involved (e.g. domain, methodological and tool-related ones). Therefore
(meta-)ontologies1 can play a major role in interlinking, sharing and combining
knowledge among the parties involved in a collaborative ontology engineering
process, either within the same environment (exploiting conceptualizations at
the shared space) or across different O.E environments (Kotis et al., 2007). We
specifically identify three major design implications:

a. Tools must provide the mechanisms for importing/exporting and relat-
ing meta-information to any domain ontology. The attachment of such
knowledge must be performed by recording instances of the (meta-)

1To distinguish among domain ontologies and ontologies concerning types of meta-information,
when this is needed, we refer to the former as “domain ontologies” and to the latter as “(meta-)
ontologies”.
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ontologies. When a user fetches an ontology version from an ontology store,
he must retrieve also all the related meta-information: the identity of the
previous version, the change operations that have occurred since the last
version, the argumentation items related to these changes, administrative
meta-information. This will allow him to inspect the evolution history and
decide on the exact contributions he has to make.

b. Meta-information must be captured modularly and independently of the
domain ontology, and must be represented using standard semantic web
languages for interoperability purposes. A recent effort towards this new
design implication is presented (both at the requirements and specification
as well as at the implementation level) in an extended work of HCOME
methodology, called the HCOME-30 framework (Vouros et al., 2007).

c. Tools must be able to exchange meta-information, thus there is a need
for exploiting a common vocabulary, i.e. agreed (meta-) ontologies. In
case different ontology engineering tools exploit different (meta-) ontolo-
gies, there must be an alignment mechanism of (meta-) ontologies so as
meta-information to be readily aligned.

6. Consultation: The development of ontologies must be supported by a consul-
tation functionality which is usually integrated in O.E tools in the following
forms: (a) capability to inspect generic semantic distinctions of general / upper
ontologies such as SUMO (Pease et al., 2002) (b) capability of browsing gen-
eral purpose lexicons or thesaurus such as WordNet (Miller, 1995) in order to
obtain the meanings (senses) of classes/properties (or automatically assigning
these senses) (c) getting advice by experts or control boards during an argumen-
tation dialogue, and (d) getting feedback from a reasoner, mainly concerning
the consistency of definitions.

7. Querying: This concerns the support for the formation of queries to the
knowledge base, driven by the definition of classes/properties. Reasoning facil-
ities must support this functionality for deducing new knowledge from the
existing one.

8. Extensibility: The design of O.E tools should provide support so as their func-
tionality to be extended in a rather easy fashion. Dynamic and continuously
evolving settings such as the Semantic Web must host applications that are
adapted to changes fast and easily, by allowing the efficient integration of new
functionalities. The design of tools based on extensible software platforms (e.g.
plug-ins or web services) ensures easy maintenance and high usability.

9. Open to services: O.E tools must provide any ontology engineering function-
ality as a Web service (Dameron et al., 2004). Web services are considered a
key technology for the World Wide Web. The ability to discover and use ontol-
ogy engineering services provided by others, at any time, from any place, and
from any platform, empowers users to develop ontologies on a larger scale. The
potential of web services opens a new era to the design and development of O.E
platforms.

10. Scalability/Storage: The ability of O.E tools to manage large ontologies is a
requirement placed by real Semantic Web applications (Motta, 2006). This is
in contrast to case studies and prototype developments (Garcia-Castro, 2004;
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Gómez Pérez, 2002). Modern O.E tools must facilitate the persistent storage of
domain knowledge using powerful database management systems.

11. Interoperability: The design of O.E tools must provide a wide range of transla-
tion mechanisms in order to support the import/export of different ontologies at
the level of formal languages. From RDF(S) to OWL (and vise versa), modern
tools must support the translation of an imported/exported ontology with the
minimum loss in expressiveness.

12. Open to non-semantic resources (Ontology learning): An alternative way to
develop a domain ontology is by (semi)automatically discovering and extract-
ing concepts and their relations from text corpora, dictionaries, knowledge
bases or other schemata/ontologies. To carry out this task automatically, nat-
ural language analysis and machine learning techniques must be integrated.
The design of ontology engineering tools must provide the ability to extract
knowledge from arbitrary sources in the conventional Web (Motta, 2006) and
automatically build domain ontologies to support further annotation.

7.4 Supporting Ontology Engineering

In this section we examine whether existing O.E tools support the engineering of
ontologies by satisfying the above requirements. We present O.E tools that are inte-
grating more than one functionalities to support (fully or partially) a collaborative
O.E methodology. These O.E tools can be considered as “integrated ontology engi-
neering (O.E) environments”. In conjunction we present “self-standing O.E tools”,
which are considered to support only a specific O.E functionality. For instance,
these can be tools that provide information on differences between ontology
versions.

7.4.1 Integrated O.E Environments

Table 7.1 in Appendix summarizes the degree of functional support that inte-
grated O.E environments currently provide. The functionalities/criteria of the table
are drawn from the requirements presented in Section 7.3. The O.E environments
selected for this presentation are the most well known and widely used/published.
This table can be seen only as a report on the existence of tools’ functionality and
not as a competition for the best tool. Although tools that fully support a collabora-
tive O.E methodology should be considered as the most complete, other tools that
partially support stated requirements may be suitable for specific ontology engineer-
ing tasks for knowledge workers that, in a specific context, have limited demands
on O.E tools’ functionality.

As a conclusion that can be drawn from this table, the HCONE integrated
O.E environment provides the functionality needed for the HCOME collabora-
tive O.E methodology, since it was designed based on the requirements of the
methodology. SWOOP and Protégé, although missing integrated functionalities to
support collaboration, they are positioned in the higher place of the most popular
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and widely used freely downloadable O.E tools because of the extensive range of
functionalities they integrate and their plug-in architecture.

7.4.2 Self-Standing O.E Tools

O.E tools, as already stated, are tools that support only a specific O.E functional-
ity; e.g. tools for providing information on differences between ontology versions
or tools for supporting only the editing of ontologies. In the following we pro-
vide examples of such tools, categorized according to the functionality that they
support:

1. Edit/view: In contrast to integrated ontology environments that provide support
for editing and viewing ontologies in conjunction to other provided functional-
ities, tools such as OilEd (Bechhofer et al., 2001) provide support for (a) the
editing of ontologies (b) the viewing of ontological definitions using a single
viewing facility and (c) consistency checking. These tools cannot be evaluated
as integrated ontology environments since they support only a very specific task
of an O.E methodology and they are not designed so as to support other impor-
tant issues such as scalability, extensibility, collaboration, argumentation, and
reuse of ontologies.

2. Alignment tools: Ontology alignment is the task of establishing a collection of
binary relations between the vocabularies of two ontologies, with respect to
the original axioms. The mapping between two ontologies can be defined as
a morphism from one ontology to the other, i.e. as a function that establishes
equivalence relations between concepts and properties of ontologies (Kotis and
Vouros, 2004). The alignment/mapping of ontologies is a necessary step towards
merging ontologies. Most of the well-known ontology alignment tools are single-
functionality tools that support mainly the OWL language [e.g. AUTOMS (Kotis
et al., 2006), FALCON-AO (Hu et al., 2006), COMA++ (Massmann et al., 2006)]
and provide results in an automatic way. There are also ontology alignment plug-
ins integrated in ontology environments [e.g. Prompt (Noy and Musen, 2000)
in Protégé, HCONE-merge (Kotis and Vouros, 2004) in HCONE, ODEmerge
(Arpírez et al., 2001) in WebODE].

3. Learning: According to the source from which knowledge is extracted, ontol-
ogy learning tools are categorized as follows: (a) from text [e.g. Text-To-Onto
(Meadche and Staab, 2004)] (b) from dictionaries [e.g. DODDLE (Gómez Pérez
and Manzano-Macho, 2003)] (c) from knowledge bases (d) from schemata [e.g.
OntoBuilder (Gómez Pérez and Manzano-Macho, 2003)]. Furthermore, there
are also tools that can be “plugged” in integrated environments [e.g. OntoLT
in Protégé (Buitelaar et al., 2004)].

4. Versioning: This is more an integrated functionality of ontology engineering
environments or a plug-in functionality in ontology tools, such as PromptViz
plug-in in Protégé 3.x. However, there are also tools that provide support only for
this functionality. An example is OntoView (Klein et al., 2002), which provides
support for comparing two versions of an ontology by returning their differences.
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5. Evaluation: Evaluation concerns (a) the evaluation of the ontologies developed
by tools and (b) the evaluation of tools that develop ontologies. The criteria
for both types of evaluation can be based on evaluation frameworks such as
the one proposed by OntoWeb project (Gómez Pérez, 2002). According to this
framework, ontologies are evaluated for their “language conformity” (i.e. to the
syntax of a representation language) and for their “consistency” (i.e. to what
extend they ensure consistency of specifications with respect to their semantics),
whereas tools are evaluated for their technological properties such as interop-
erability, performance, memory allocation, scalability, interface. Examples of
evaluation tools are: OntoAnalyser (Gómez Pérez, 2002) (ontology evaluation),
OntoGenerator (Gómez Pérez, 2002) (tools evaluation), OntoClean (Gómez
Pérez, 2002) (ontology evaluation), One-T (Gómez Pérez, 2002) (ontology eval-
uation). Having said that, we must distinguish these types of evaluation from the
ontology exploitation phase supported, for instance, by the argumentation and
ontology comparison functionality of collaborative O.E environments.

7.5 Conclusion

In this article we have presented an overview concerning efforts for the engineer-
ing of ontologies using state-of-the-art methodologies and tools. We have shown
that the design of such tools should be driven by specific implementation require-
ments and methodological issues that latest O.E methodologies such as HCOME
or DILIGENT explicitly specify. A list of important issues concerning the design of
modern O.E tools has been outlined. Based on this list, we accentuate the importance
of the following points:

1. The role of a collaborative engineering methodology to the design of O.E tools
is rather significant and should be always considered when O.E functionalities
for the development of ontologies are chosen.

2. Tools must support the exchange of domain conceptualizations between com-
munities of users by sharing rich meta-information about the conceptualizations
developed. This information, shaped by (meta-)ontologies, can play a major role
in the interlinking, sharing and combination of knowledge among the parties
involved in a collaborative ontology engineering process.

3. The use of (Semantic) Web Services towards the trading of O.E functional-
ity in a global market of O.E services opens new horizons to the engineering
of ontologies, to the realization of O.E tools and to the realization of the
Semantic Web.

Keeping in mind the above points, the engineering of ontologies, driven
by the requirements of continuously evolving, distributed and open application
environments such as the Semantic Web, could get new dimensions and mean-
ing if it is viewed from a knowledge-worker-centered angle: We can create the
opportunities for millions of web users and developers to actively play their role
in the development and deployment of ontologies in a way that is seamless to their
everyday tasks. This is a challenge for the evolution of the Semantic Web.
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Chapter 8
Using the Unified Foundational Ontology (UFO)
as a Foundation for General Conceptual
Modeling Languages

Giancarlo Guizzardi and Gerd Wagner

8.1 Introduction

In recent years, there has been a growing interest in the use of foundational
ontologies (also known as upper level, or top-level ontologies) for: (i) evaluating
conceptual modeling languages; (ii) developing guidelines for their use; (iii) pro-
viding real-world semantics for their modeling constructs. In this paper, we present
a fragment of a philosophically and cognitively well-founded reference ontology
named UFO (Unified Foundational Ontology). UFO started as a unification of the
GFO (Generalized Formalized Ontology; Heller and Herre, 2004) and the Top-
Level ontology of universals underlying OntoClean (http://www.ontoclean.org).
However, as shown in Guizzardi (2005), there are a number of problematic issues
related the specific objective of developing ontological foundations for general
conceptual modeling languages (e.g., EER, UML, ORM) which were not cov-
ered in a satisfactory manner by existing foundational ontologies such as GFO,
DOLCE or OntoClean. For this reason, UFO has been developed into a full-
blown reference ontology of endurants based on a number of theories from Formal
Ontology, Philosophical Logics, Philosophy of Language, Linguistics and Cognitive
Psychology. This ontology is presented in depth and formally characterized in
Guizzardi (2005). In Section 8.2, we discuss the main categories comprising UFO.

Furthermore, we demonstrate in this paper how this ontology can be used in the
design and evaluation of conceptual modeling languages. In Section 8.3, we present
a general ontology-based framework that can be used to systematically assess
the suitability of an artificial modeling language to model phenomena in a given
domain. In particular, this framework focuses on two properties of modeling lan-
guages (Guizzardi, 2005): (i) domain appropriateness, which refers to truthfulness
of a language to a given domain in reality; (ii) comprehensibility appropriateness,
which refers to the pragmatic efficiency of a language to support communication,
domain understanding and reasoning in that domain.

G. Guizzardi (B)
Federal University of Espirito Santo (UFES), Vitoria-ES, Brazil; Laboratory for Applied Ontology
(ISTC-CNR), Trento, Italy
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In Sections 8.4 and 8.5, we employ UFO and the framework of Section 8.3 to
analyze and redesign the 2.0 version of the metamodel of the Unified Modeling
Language (UML; Object Management Group, 2003). The fact that UML is a de
facto standard considered in several sub-fields of computer science (e.g., software
and domain engineering, database and information systems design) counts in favor
of the practicality and relevance of this approach. Section 8.6 presents some final
considerations of the article.

8.2 The Unified Foundational Ontology (UFO)

In the sequel, we restrict ourselves to a fragment of UFO, depicted in the Fig. 8.1.
Moreover, due to space limitations and the focus of the paper we present the onto-
logical categories comprising UFO superficially. For an in depth presentation and
corresponding formalization, one should refer to Guizzardi (2005).

Object Universal

Object

Moment Universal

Moment

characterizes

inheres in

instantiates instantiatesexemplifies

Fig. 8.1 The Aristotelian
square

8.2.1 The Core Categories: Object−Object Universal,
Moment–Moment Universal

A fundamental distinction in this ontology is between the categories of Particular
and Universal. Particulars are entities that exist in reality possessing a unique iden-
tity. Universals, conversely, are pattern of features, which can be realized in a
number of different particulars. The core of this ontology exemplifies the so-called
Aristotelian ontological square or what is termed a “Four-Category Ontology”
(Lowe, 2006) comprising the category pairs Object–Object Universal, Moment–
Moment Universal. From a metaphysical point of view, this choice allows for
the construction of a parsimonious ontology, based on the primitive and formally
defined notion of existential dependence: We have that a particular x is existentially
dependent (ed) on another particular y iff, as a matter of necessity, y must exist
whenever x exists. Existential dependence is a modally constant relation, i.e., if x
is dependent on y, this relation holds between these two specific particulars in all
possible worlds in which x exists.

The word Moment is derived from the german Momente in the writings of
E. Husserl and it denotes, in general terms, what is sometimes named trope, abstract
particular, individual accident, or property instance. Thus, in the scope of this
work, the term bears no relation to the notion of time instant in colloquial language.
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Typical examples of moments are: a color, a connection, an electric charge, a social
commitment. An important feature that characterizes all moments is that they can
only exist in other particulars (in the way in which, for example, an electrical charge
can exist only in some conductor). To put it more technically, we say that moments
are existentially dependent on other particulars. Existential dependence can also be
used to differentiate intrinsic and relational moments: intrinsic moments are depen-
dent of one single particular (e.g., color, a headache, a temperature); relators depend
on a plurality of particulars (e.g., an employment, a medical treatment, a marriage).
A special type of existential dependence relation that holds between a moment x and
the particular y of which x depends is the relation of inherence (i). Thus, for a partic-
ular x to be a moment of another particular y, the relation i(x, y) must hold between
the two. For example, inherence glues your smile to your face, or the charge in a
specific conductor to the conductor itself. Here, we admit that moments can inhere
in other moments. Examples include the individualized time extension, or the grave-
ness of a particular symptom. The infinite regress in the inherence chain is prevented
by the fact that there are individuals that cannot inhere in other individuals, namely,
objects.

Objects are particulars that possess (direct) spatial-temporal qualities and that
are founded on matter. Examples of objects include ordinary entities of everyday
experience such as an individual person, a dog, a house, a hammer, a car, Alan
Turing and The Rolling Stones but also the so-called Fiat Objects such as the North-
Sea and its proper-parts, postal districts and a non-smoking area of a restaurant. In
contrast with moments, objects do not inhere in anything and, as a consequence,
they enjoy a higher degree of independence. To state this precisely we say that: an
object x is independent of all other objects which are disjoint from x, i.e., that do not
share a common part with x, where independent (x,y) =def ¬ed(x,y) ∧ ¬ed(y,x).
This definition excludes the dependence between an object and its essential and
inseparable parts (Guizzardi, 2005), and the obvious dependence between an object
and its essential moments.

To complete the Aristotelian Square, we consider here the categories of object
universal and moment universal. We use the term universal here in a broader
sense without making any a priori commitment to a specific theory of univer-
sals. A universal thus can be considered here simply as something (i) which can
be predicated of other entities and (ii) that can potentially be represented in lan-
guage by predicative terms. We also use the relation :: of classification between
particulars and universals. Object universals classify objects and moment univer-
sals classify moments. Examples of the former include Apple, Planet and Person.
Examples of the latter include Color, Electric Charge and Headache. This distinction
is also present in Aristotle’s original differentiation between what is said of a sub-
ject (de subjecto dici), denoting classification and what is exemplified in a subject
(in subjecto est), denoting inherence. Thus, the linguistic difference between the two
meanings of the copula “is” reflects an ontological one. For example, the ontological
interpretation of the sentence “Jane is a Woman” is that the Object Jane is classified
by the Object kind Woman. However, when saying that “Jane is tall” or “Jane is
laughing” we mean that Jane exemplifies the moment universal Tall or Laugh, by
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virtue of her specific height or laugh. Finally, we define the relation of characteriza-
tion between moment universals and the particulars that exemplify them: a moment
universal M characterizes a universal U iff every instance of U exemplifies M. The
categories of object, moment, object and moment universals as well as the relations
of classification, inherence, exemplification and characterization are organized in
terms of the so-called Aristotelian Square in Fig. 8.2.

8.2.2 Qualities, Qualia and Modes

An attempt to model the relation between intrinsic moments and their representation
in human cognitive structures is presented in the theory of conceptual spaces intro-
duced in Gärdenfors (2000). The theory is based on the notion of quality dimension.
The idea is that for several perceivable or conceivable moment universals there is an
associated quality dimension in human cognition. For example, height and mass are
associated with one-dimensional structures with a zero point isomorphic to the half-
line of nonnegative numbers. Other properties such as color and taste are represented
by multi-dimensional structures.

In Gärdenfors (2000), the author distinguishes between integral and separable
quality dimensions: “certain quality dimensions are integral in the sense that one
cannot assign an object a value on one dimension without giving it a value on the
other. For example, an object cannot be given a hue without giving it a brightness
value (. . .) Dimensions that are not integral are said to be separable, as for exam-
ple the size and hue dimensions.” He then defines a quality domain as “a set of
integral dimensions that are separable from all other dimensions” and a concep-
tual space as a “collection of one or more domains” (Gärdenfors, 2000). Finally,
he defends that the notion of conceptual space should be understood literally, i.e.,
quality domains are endowed with certain geometrical structures (topological or
ordering structures) that constrain the relations between its constituting dimensions.
In Gärdenfors (2000), the perception or conception of an intrinsic moment can be
represented as a point in a quality domain. Following Masolo et al. (2003), this point
is named here a quale.

An example of a quality domain is the set of integral dimensions related to color
perception. A color quality c of an apple a takes it value in a three-dimensional color
domain constituted of the dimensions hue, saturation and brightness. The geometric
structure of this space (the color spindle (Gärdenfors, 2000)) constrains the relation
between some of these dimensions. In particular, saturation and brightness are not
totally independent, since the possible variation of saturation decreases as brightness
approaches the extreme points of black and white, i.e., for almost black or almost
white, there can be very little variation in saturation. A similar constraint could be
postulated for the relation between saturation and hue. When saturation is very low,
all hues become similarly approximate to grey.

We adopt in this work the term quality structures to refer to quality dimensions
and quality domains, and we define the formal relation of association between a
quality structure and a moment universal. Additionally, we use the terms quality
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universals for those intrinsic moment universals that are associated with a quality
structure, and the term quality for a moment classified under a quality universal.
We also assume that quality structures are always associated with a unique quality
universal, i.e., a quality structure associated with the universal Weight cannot be
associated with the universal Color.

Following Masolo et al. (2003), we take that whenever a quality universal Q is
related to a quality domain D, then for every particular quality x::Q there are indirect
qualities inhering in x for every quality dimension associated with D. For instance,
for every particular quality c instance of Color there are quality particulars h, s, b
which are instances of quality kinds Hue, Saturation and Brightness, respectively,
and that inhere in c. The qualities h, s, b are named indirect qualities of c’s bearer.
Qualities such as h, s, b are named simple qualities, i.e., qualities which do not
bear other qualities. In contrast, a quality such as c, is named a complex quality.
Since the qualities of a complex quality x::Q correspond to the quality dimensions
of the quality domain associated with Q, then we have that no two distinct qualities
inhering a complex quality can be of the same type. For the same reason, since there
are not multidimensional quality dimensions, we have that complex qualities can
only bear simple qualities. Moreover, we use the predicate qualeOf(x,y) to represent
the formal relation between a quality particular y and its quale x.

Finally, we make a distinction between qualities and another sort of intrinsic
moment named here modes. Modes are moments whose universals are not directly
related to quality structures. In Gärdenfors (2000), the author makes the following
distinction between what he calls concepts and properties (which at first could be
thought to correspond to the distinction between Object and Moment universals,
respectively): “Properties. . .form as special case of concepts. I define this distinc-
tion by saying that a property is based on single domain, while a concept may
be based on several domains”. We claim, however, that only moment universals
that are conceptualized w.r.t. a single domain, i.e., quality universals, correspond to
properties in the sense of Gärdenfors (2000). There are, nonetheless, moment uni-
versals that as much as object universals can be conceptualized in terms of multiple
separable quality dimensions. Examples include beliefs, desires, intentions, percep-
tions, symptoms, skills, among many others. Like objects, modes can bear other
moments, and each of these moments can refer to separable quality dimensions.
However, since they are moments, differently from objects, modes are necessarily
existentially dependent of some particular.

8.2.3 Relations, Relators and Qua Individuals

Relations are entities that glue together other entities. In the philosophical litera-
ture, two broad categories of relations are typically considered, namely, material
and formal relations (Heller and Herre, 2004; Smith and Mulligan, 1986). Formal
relations hold between two or more entities directly, without any further interven-
ing particular. In principle, the category of formal relations includes those relations
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that form the mathematical superstructure of our framework including existential
dependence (ed), inherence (i), part-of (<), subset-of, instantiation, characteriza-
tion, exemplification, among many others not discussed here (Guizzardi, 2005). We
name these relations here basic formal relations (Heller and Herre, 2004) or internal
relations (Schneider, 2002). In this case, in conformance with Schneider (2002) we
deem the tie (or nexus) between the relata as non-analyzable.

However, we also classify as formal those domain relations that exhibit similar
characteristics, i.e., those relations of comparison such as is taller than, is older than,
knows more Greek than. We name these relations comparative formal relations. As
pointed out in Smith and Mulligan (1986), the entities that are immediate relata
of such relations are not objects but intrinsic moments. For instance, the relation
heavier-than between two atoms is a formal relation that holds directly as soon as
the relata (atoms) are given. The truth-value of a predicate representing this relation
depends solely on the atomic number (a quality) of each atom and the material
content of heavier-than is as it were distributed between the two relata. Moreover, to
quote Mulligan and Smith, “once the distribution has been effected, the two relata
are seen to fall apart, in such a way that they no longer have anything specifically to
do with each other but can serve equally as terms in a potentially infinite number of
comparisons”.

Material relations, conversely, have material structure of their own and include
examples such as working at, being enrolled at, and being connected to. Whilst a
formal relation such as the one between Paul and his knowledge x of Greek holds
directly and as soon as Paul and x exist, for a material relation of being treated in
between Paul and the medical unit MU1 to exist, another entity must exist which
mediates Paul and MU1. We name these entities relators. Relators are particulars
with the power of connecting entities. For example, a medical treatment connects
a patient with a medical unit; an enrollment connects a student with an educational
institution; a covalent bond connects two atoms. The notion of relator (relational
moment) is supported by several works in the philosophical literature (Heller and
Herre, 2004; Smith and Mulligan, 1986; Lowe, 2006) and, the position advocated
here is that they play an important role in answering questions of the sort: what does
it mean to say that John is married to Mary? Why is it true to say that Bill works for
Company X but not for Company Y?

An important notion for the characterization of relators (and, hence, for the char-
acterization of material relations) is the notion of foundation. Foundation can be
seen as a type of historical dependence (Ferrario and Oltramari, 2004), in the way
that, for example, an instance of being kissed is founded on an individual kiss, or an
instance of being punched by is founded on an individual punch, an instance of being
connected to between airports is founded on a particular flight connection. Suppose
that John is married to Mary. In this case, we can assume that there is a particular
relator (relational moment) m1 of type marriage that mediates John and Mary. The
foundation of this relator can be, for instance, a wedding event or the signing of a
social contract between the involved parties. In other words, for instance, a certain
event e1 in which John and Mary participate can create a particular marriage m1
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which existentially depends on John and Mary and which mediates them. The event
e1 in this case is the foundation of relator m1 and, m1 is the so-called truthmaker of
the propositions “John is married to Mary”.

Using this example, we can further elaborate on the nature of the relator m1.
There are many moments that John acquires by virtue of being married to Mary.
For example, imagine all the legal responsibilities that John has in the context of
this relation. These newly acquired properties are intrinsic moments of John which,
therefore, inhere and are existentially dependent on him. However, these moments
also depend on the existence of Mary. We name this type of moment externally
dependent moment, i.e., externally dependent moments are intrinsic moments that
inhere in a single particular but that are existentially dependent on (possibly a mul-
titude of) other particulars: a moment x is externally dependent iff it is existentially
dependent of a particular which is independent (in the technical sense of 8.2.1) of
its bearer.

In the case of a material externally dependent moment x there is always a partic-
ular external to its bearer (i.e., which is not one of its parts or intrinsic moments),
which is the foundation of x. Again, in the given example, we can think of a cer-
tain event e1 (wedding event or signing of social contract) in which both John
and Mary participate and which founds the existence of these externally depen-
dent moments inhering in John. Now, we can define a particular that bears all
externally dependent moments of John that share the same external dependencies
and the same foundation. We term this particular a qua individual (Masolo et al.,
2005). Qua individuals are, thus, treated here as a special type of complex externally
dependent modes. In this case, the complex mode inhering in John that bears all
responsibilities that John acquires by virtue of a given wedding event can be named
John-qua-husband.

To continue with the same example, we can think about another qua individ-
ual Mary-qua-wife which is a complex mode bearing all responsibilities that Mary
acquires by virtue of the same foundation and that albeit inhering in Mary are also
existentially dependent on John. The qua individuals John-qua-husband and Mary-
qua-wife are existentially dependent on each other. Now, we can define an aggregate
m1 composed of these two qua individuals that share the same foundation, i.e.,
(John-qua-husband < m1) and (Mary-qua-wife < m1). In this example, m1 is exactly
the instance of the relational property marriage that mediates John and Mary and
that makes true propositions such as “John is married to Mary”, “Mary is married
to John”, “John is the husband of Mary”, and “Mary is the wife of John”.

In this example, a particular instance of the relational property marriage (i.e.,
a particular marriage relator) is the sum of all instantiated responsibilities that the
involved parties acquire by virtue of a common foundation. In general, a relator can
be defined as the aggregation of a number of qua individuals that share the same
foundation. A relator is said to mediate (or connect) the relata of a material relation.
Formally we have that: let x, y and z be three distinct individuals such that (a) x is a
relator; (b) z is a qua individual and z is part of x; (c) z inheres in y. In this case, we
say that x mediates y, symbolized by m(x, y). Additionally, we require that a relator
mediates at least two distinct particulars. Again, using the example above, we say
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that the particular relator marriage m1 mediates the objects John and Mary and, for
this reason, we can say that John and Mary are married to each other.

Analogous to the relation of characterization, we define a relation of mediation
that can obtain between a set of object universal and a relator universal in the follow-
ing way: If a relator universal UR mediates the object universals S1 . . . Sn, then every
instance of UR is existentially dependent on a plurality of entities, namely, particular
instances of S1 . . . Sn. Relator universals constitute the basis for defining material
relations R. Material relations are themselves universals whose instances are n-
tuples of particulars. We define the formal relation of derivation derivation(R,UR)
holding between a relator universal UR and a material relation R such that a n-tuple
〈x1 . . . xn〉 instantiates R iff there is a relator r:: UR such that r mediates every xi. To
employ once more the example above, we have that as 〈John, Mary〉 is an instance
of both married to and is the husband of, and 〈Mary, John〉 is an instance of both
married to and is the wife of because there is an individual marriage relator m1 that
mediates John and Mary.

8.2.4 Object Universals

Here we considered a fundamental distinction in the category of object Universals,
namely, the one between Sortal and Mixin Universals. Whilst all universals carry a
principle of application, only sortals carry a principle of identity for their instances.
A principle of application is a principle for which we can judge whether a particular
is an instance of that universal. In contrast, a principle of identity is a principle for
which we can judge whether two particulars are the same. As an illustration of this
point, contrast the two universals Apple and Red1 instantiated by two particulars
x and y: both universals supply a principle for which we can judge whether x and y
are classified under those types (i.e., whether they are Apples, or Reds). However,
only Apple supplies a principle for which we decide whether x and y are the same
(i.e., merely knowing that x and y are both red gives no clue to decide whether or
not x = y).

Within the category of sortal universals, we make a further distinction based on
the formal notions of rigidity and anti-rigidity: A universal U is rigid if for every
instance x of U, x is necessarily (in the modal sense) an instance of U. In other
words, if x instantiates U in a given world w, then x must instantiate U in every
possible world w’. In contrast, a universal U is anti-rigid if for every instance x
of U, x is possibly (in the modal sense) not an instance of U. In other words, if x
instantiates U in a given world w, then there must be a possible world w’ in which
x does not instantiate U. A sortal universal which is rigid is named here a Kind. In
contrast, an anti-rigid sortal universal is termed here a Phased-Sortal. The prototyp-
ical example highlighting the modal distinction between these two categories is the

1Red is used here as an object universal whose instances are particulars like a red apple x, not as
a quality universal whose instances are particulars such as the specific redness of x (Guizzardi,
2005).
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difference between the Kind Person and the Phase-Sortals Student and Adolescent
instantiated by the particular John in a given circumstance. Whilst John can cease to
be a Student and Adolescent (and there were circumstances in which John was not
one), he cannot cease to be a Person. In other words, while the instantiation of the
phased-sortals Student and Adolescent has no impact on the identity of a particular,
if a particular ceases to instantiate the universal Person, then she ceases to exist as
the same particular.

John can move in and out of the Student universal, while being the same par-
ticular, i.e. without losing his identity. This is because the principle of identity that
applies to instances of Student and, in particular, that can be applied to John, is the
one which is supplied by the kind Person of which the phased-sortals Student is a
subtype. This is always the case with Phased-Sortals, i.e., for every phased-sortal
PS, there is a unique ultimate kind K, such that: (i) PS is a specialization of K;
(ii) K supplies the unique principle of identity obeyed by the instances of PS. If
PS is a phased-sortal and K is the kind specialized by PS, there is a specialization
condition ϕ such that x is an instance of PS iff x is an instance of K that satisfies ϕ.
A further clarification on the different types of specialization conditions allows us to
distinguish between two different types of phased-sortals: Phases and Roles. Phases
constitute possible stages in the history of a particular. Examples include: (a) Alive
and Deceased: as possible stages of a Person; (b) Catterpillar and Butterfly of a
Lepidopteran; (c) Town and Metropolis of a City; (d) Boy, Male Teenager and Adult
Male of a Male Person. Roles differ from phases with respect to the specialization
condition ϕ. For a phase Ph, ϕ represents a condition that depends solely on intrinsic
properties of Ph. For instance, one might say that if John is a Living Person then he
is a Person who has the property of being alive or, if Spot is a Puppy then it is a Dog
who has the property of being less than one year old. For a role Rl, conversely, ϕ

depends on extrinsic (relational) properties of Rl. For example, one might say that
if John is a Student then John is a Person who is enrolled in some educational insti-
tution, if Peter is a Customer then Peter is a Person who buys a Product x from a
Supplier y, or if Mary is a Patient than she is a Person who is treated in a certain
medical unit. In other words, an entity plays a role in a certain context, demarcated
by its relation with other entities. This meta-property of Roles is named Relational
Dependence and can be formally characterized as follows: A universal T is rela-
tionally dependent on another universal P via relation R iff for every instance x of
T there is an instance y of P such that x and y are related via R. In other words,
instances of T and P must be mediated by an instance of the relator universal UR
that induces the material relation R.

Finally, in Guizzardi (2005), we have formally proved a number of constraints
involving these categories. These include (among a number of others): (i) a rigid uni-
versal cannot have as its superclass an anti-rigid one (consequently, a phased-sortal
cannot subsume a kind in our theory); (ii) every object must instantiate exactly one
kind (i.e., exactly one rigid independent sortal); (iii) a mixin cannot be subsumed by
a sortal; (iv) a mixin cannot have direct instances.

The discussion of this section is summarized as follows: Kinds are rigid, inde-
pendent sortals that supply a principle of identity for their instances; Phases
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are independent anti-rigid sortals; Roles are anti-rigid and relationally dependent
sortals, Mixins are non-sortals.

8.3 A Framework for Language Evaluation and (Re)Design

One of the main success factors behind the use of a modeling language lies in the
language’s ability to provide to its target users a set of modeling primitives that
can directly express relevant domain concepts, comprising what we name here a
domain conceptualization. The elements constituting a conceptualization of a given
domain are used to articulate abstractions of certain state of affairs in reality. We
name the latter domain abstractions. Take as an example the domain of genealogical
relations in reality. A certain conceptualization of this domain can be constructed
by considering concepts such as Person, Man, Woman, Father, Mother, Offspring,
being the father of, being the mother of, among others. By using these concepts, we
can articulate a domain abstraction (i.e., a mental model) of certain facts in reality
such as, for instance, that a man named John is the father of another man named
Paul.

Conceptualizations and Abstractions are immaterial entities that only exist in
the mind of the user or a community of users of a language. In order to be doc-
umented, communicated and analyzed they must be captured, i.e. represented in
terms of some concrete artifact. This implies that a language is necessary for repre-
senting them in a concise, complete and unambiguous way. Figure 8.3 depicts the
distinction between an abstraction and its representation, and their relationship with
conceptualization and representation language. In the scope of this work the repre-
sentation of a domain abstraction in terms of a representation language L is called
a model and the language L used for its creation is called a modeling language.

In order for a model M to faithfully represent an abstraction A, the model-
ing primitives of the language L used to produce M should faithfully represent
the domain conceptualization C used to articulate the represented abstraction A.
The Domain Appropriateness of a language is a measure of the suitability of a

ModelAbstraction interpreted as

represented by

Modeling
Language

Conceptualization
interpreted as

represented by

used to
compose 

instance of used to
compose instance of

Fig. 8.3 Relations between
conceptualization,
abstraction, modeling
language and model
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language to model phenomena in a given domain, or in other words, of its truth-
fulness to a given domain in reality. On a different aspect, different languages and
specifications have different measures of pragmatic adequacy (Guizzardi, 2005).
Comprehensibility appropriateness refers to how easy is for a user of a given
language to recognize what that language’s constructs mean in terms of domain
concepts and, how easy is to understand, communicate and reason with the specifi-
cations produced in that language. These two quality criteria can be systematically
evaluated by comparing, on one hand, a concrete representation of the worldview
underlying that language (captured by that language’s metamodel) to, on the other
hand, a concrete representation of a domain conceptualization, or a domain ontol-
ogy. The truthfulness to reality (domain appropriateness) and conceptual clarity
(comprehensibility appropriateness) of a modeling language depend on the level
of homomorphism between these two entities (Guizzardi, 2005). The stronger the
match between an abstraction in reality and its representing model, the easier is to
communicate and reason with that model.

The mapping from concepts-to-constructs and its inverse (i.e., constructs-to-
concept) are named here a representation and interpretation mappings, respectively.
In Guizzardi (2005), we discuss a number of properties that should be reinforced for
isomorphic mappings to take place between an ontology O representing a domain
D and a language’s metamodel. If isomorphism can be guaranteed, the implica-
tion for the human agent who interprets a diagram (model) is that his interpretation
correlates precisely and uniquely with an abstraction being represented. By con-
trast, where the correlation is not an isomorphism then there may potentially be a
number of unintended abstractions which would match the interpretation. These
properties are briefly discussed in the sequel and are illustrated in Fig. 8.4: (a)
Soundness: A language L is sound w.r.t. to a domain D iff every modeling primitive
in the language has an interpretation in terms of a domain concept in the ontol-
ogy O; (b) Completeness: A language L is complete w.r.t. to a domain D iff every

Abstraction

(a) (b)

(c) (d)

Model Abstraction Model

ModelAbstraction ModelAbstraction

Fig. 8.4 Examples of lucid (a) and sound (b) representational mappings from abstraction to
model; examples of laconic (c) and complete (d) interpretation mappings from model to abstraction
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concept in the ontology O of that domain is represented in a modeling primitive
of that language; (c) Lucidity: A language L is lucid w.r.t. to a domain D iff every
modeling primitive in the language represents at most one domain concept in O.
(d) Laconicity: A language L is laconic w.r.t. to a domain D iff every concept in
the ontology O of that domain is represented at most once in the metamodel of that
language. In Guizzardi (2005), we also provide a methodological framework for
systematically assessing these properties given a language and a domain.

Unsoundness, Non-Lucidity, Non-Laconicity and Incompleteness violate what
the philosopher of language Grice (1975) names conversational maxims that states
that a speaker is assumed to make contributions in a dialogue which are rele-
vant, clear, unambiguous, and brief, not overly informative and true according to
the speaker’s knowledge. Whenever models do not adhere to these conversational
maxims, they can communicate incorrect information and induce the user to make
incorrect inferences about the semantics of the domain.

In regards to the property of completeness, when mapping the elements of a
domain ontology to a language metamodel we must guarantee that these elements
are represented in their full formal descriptions. In other words, the metamodel MT
of language L representing the domain ontology O must also represent this ontol-
ogy’s full axiomatization. In formal, model-theoretic terms, this means that these
entities should have the same set of logical models. In Guizzardi (2005), we discuss
this topic in depth and present a formal treatment of the idea. The set of logical
models of O represent the state of affairs in reality deemed possible by a given
domain conceptualization. In contrast, the set of logical models of MT stand for
the world structures which can be represented by the grammatically correct spec-
ifications of language L. In summary, we can state that if a domain ontology O
is fully represented in a language metamodel MT of L, then the only grammati-
cally correct models of L are those which represent state of affairs in reality deemed
possible by the domain conceptualization represented by O (termed intended world
structures).

In the beginning of this section, we have exemplified the notions discussed above
by referring to the domain of genealogical relations. This exemplifies what is named
a material domain in the literature. Accordingly, a modeling language designed
to represent phenomena in this domain is named a Domain-Specific Modeling
Language. However, take the case of a (domain-independent) general conceptual
modeling language (e.g., EER, ORM, UML). What should be real-world conceptu-
alization that this language should commit to? The position defended here is that it
should be a system of general categories and their ties, which can be used to articu-
late domain-specific common sense theories of reality. This meta-conceptualization
should comprise a number of domain-independent theories (e.g., types and instanti-
ation, taxonomic structures, identity, existential dependence, etc.) which are able to
characterize aspects of real-world entities irrespective of their particular nature. The
development of such general theories of reality is the business of the philosophical
discipline of Formal Ontology in philosophy and a concrete artifact representing
one of these meta-conceptualizations is a Foundational Ontology. An example of a
Foundational Ontology is the UFO Ontology presented in the Section 8.2.
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8.4 Evaluating and Redesigning the UML 2.0 Metamodel

In the sequel we start by constructing representation and interpretation map-
pings between the concrete metaclasses of the UML metamodel presented in
Object Management Group (2003) and the ontological categories comprising the
foundational ontology depicted in Fig. 8.2.

Class and Generalization: We begin by focusing on a special sense of the UML
metaclass Class (see Fig. 8.5). By class hereby we mean the notion of a first-order
class, as opposed to powertypes, and one whose instances are single objects, as
opposed to association classes, whose instances are tuples of objects. In this sense,
if we make a representation mapping from UFO to the UML metamodel, we can
map the category of Monadic Universal to the UML element of a Class. However,
by carrying on this process, we realize that in UML there are no modeling constructs
that represent the ontological categories specializing Object Universal in Fig. 8.2.
In other words, there are ontological concepts prescribed by our reference ontology
that are not represented by any modeling construct in the language. This amounts
to a case of incompleteness. Moreover, as discussed in Section 8.2.4, the theory of
object universals comprising UFO prescribes a number of constraints governing the
relations between these different types of universals. By not taking this into account,

Fig. 8.5 The redesigned UML 2.0 metamodel
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the UML metamodel admits a number of grammatically correct specifications and
logical models which are not representations of valid state of affairs (intended world
structures) according to the reference ontology.

Attributes, Attribute Values and Datatypes: If we now consider the other types of
monadic universals accounted in our theory, namely, moment and relator universals
we shall realize that they too lack representation in the language metamodel. This
amounts to another case of incompleteness in the modeling language.

As discussed at length in Guizzardi (2005), quality universals are typically not
represented in a conceptual model explicitly but via attribute functions that map
each of their instances to points in a quality structure. For example, suppose we have
the universal Apple (an object universal) whose instances exemplify the universal
Weight. We say in this case that the quality universal Weight characterizes the kind
Apple. Thus, for an arbitrary instance x of Apple there is a quality w (instance of the
quality universal Weight) that inheres in x. Associated with the universal Weight,
and in the context of a given measurement system (e.g., the human perceptual sys-
tem), there is a quality dimension weightValue, which is a set isomorphic to the half
line of positive integers obeying the same ordering structure. Quality structures are
taken here to be theoretical abstract entities modeled as sets. In this case, we can
define an attribute function (another abstract theoretical entity) weight (Kg), which
maps each instance of apple (and in particular x) onto a point in a quality dimension,
i.e., its quale. Thus, attribute functions are the ontological interpretation of UML
attributes, i.e., UML Properties which are owned by a given classifier (Fig. 8.5).

As any property, a UML attribute is a typed element and, thus, it is associated to
Type. Type constrains the sort of entities that can be assigned to slots representing
that attribute in instances of their owning classifier. Since Classifier is a specializa-
tion of Type, we have that both Classes and Datatypes can be the associated types of
an UML attribute. In other words, an attribute represents both an attribute function
and a sort of a relational image function2 that, for example, in the binary relation
ownership between the classifiers Person and Car, maps a particular Person p to all
instances of Car that are associated with p via this relation (i.e., all cars owned by p).
From a software design and implementation point of view, an attribute represents a
method implemented by the owning class, and the type of the attribute represents
the returning type of that method. However, from a conceptual point of view, in the
UML metamodel an attribute stands both for a monadic (instrinsic) and for a rela-
tional property and, thus, it can be considered a case of non-lucidity. On another
perspective, UML offers an alternative notation for the representation of attributes,
namely, navigable end names. That is, the same ontological concept (attribute func-
tion) is represented in the language via more than one construct, which characterizes
a case of non-laconicity.

2A relational image function is formally defined as follows: Let R be a binary relation defined for
the two sets X and Y. The function Im with signature Im(_,_): X × (X ⇔ Y) → ℘ (Y) is defined
as Im(x,R) = {y|(x,y) ∈ R}.
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The DataType associated with an attribute A of class C is the representation
of the quality structure that is the co-domain of the attribute function represented
by A. In other words, a quality structure is the ontological interpretation of the
UML DataType construct. Moreover, we have that a multidimensional quality struc-
ture (quality domain) is the ontological interpretation of the so-called Structured
DataTypes. Quality domains are composed of multiple integral dimensions. This
means that the value of one dimension cannot be represented without representing
the values of others. The fields of a datatype representing a quality domain QD rep-
resent each of its integral quality dimensions. Alternatively we can say that each
field of a datatype should always be interpreted as representing one of the inte-
gral dimensions of the QD represented by the datatype. The constructor method of
the dataType representing a quality domain must reinforce that its tuples always
have values for all the integral dimensions. Finally, an algebra can be defined for
a DataType so that the relations constraining and informing the geometry of repre-
sented quality dimensions are also suitably characterized. As discussed in Guizzardi
(2005), according to the UML specification, a DataType is an abstract entity that
collects other abstract entities (“pure values”) that can be multiply referred, i.e., a
DataType is not a multiply instantiated universal but an abstract particular (set) with
other particulars as members.

Associations: In UML, the association meta-construct is used to represent the
ontological concept of Relation. Relations in UFO can be material or formal. The
latter in turn can be subdivided in basic formal relations (internal relations) and
comparative formal relations. Since class diagrams only represent universals, the
only basic formal relations among the ones we have considered that should have a
representation in these models are the relations of characterization, mediation and
derivation. These concepts have no representation in the UML metamodel, which
characterizes another case of incompleteness.

The association class construct in UML exemplifies a case of non-lucidity, since
“an associaton class can have as instances either (a) a n-tuple of entities which clas-
sifiers are endpoints of the association; (b) a n+1-tuple containing the entities which
classifiers are endpoints of the association plus an instance of the objectified asso-
ciation itself” (Breu et al., 1997). This is to say that an association class can be
interpreted both as a relation and what is termed in the literature a factual universal
(Guizzardi, 2005). In short, if the relator r connects (mediates) the entities a1, . . . , an
then this yields a new particular that is denoted by 〈r : a1, . . . , an〉. Particualrs of this
latter sort are called material facts.

In addition to that, since the “instance of the objectified association itself” is sup-
posed to be an object identifier for the n-tuple, one cannot represent cases in which
the same relator mediates multiple occurrences of the same n-tuple. As an example
of the latter suppose the following situation. Suppose a Treatment relator univer-
sal and a TreatedIn material relation (derived from it) defined between Patients and
Medical Units. Now suppose that treatment t1 mediates the individuals John, and
the medical units MedUnit#1 and MedUnit#2. In this case, we have as instances of
Treatment both facts 〈t1: John, MedUnit#1〉 and 〈t1: John, MedUnit#2〉. However,
this cannot be represented in such a manner in UML. In UML, t1 is supposed
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to function as an object identifier for a unique tuple. Thus, if the fact 〈t1: John,
MedUnit#1〉 holds then 〈t1: John, MedUnit#2〉 does not, or alternatively, John and
MedUnit#2 must be mediated by another relator. These are, nonetheless, unsatisfac-
tory solutions, since it is the very same relator Treatment that connects one patient to
a number of different medical units. In conclusion, association classes on one hand
represent a case of non-lucidity, on the other hand, allow for a case of construct
incompleteness at the instance level.

Interfaces: According to the UML specification, an interface is a declaration
of a coherent set of features and obligations. It can be seen as a kind of contract
that partition and characterize groups of properties which must be fulfilled by any
instance of a classifier that implements that interface. In an interpretation mapping
from the UML metamodel to UFO, an interface qualifies as a case of unsound-
ness. This means that, being merely a design and implementation construct, there
is no category in the conceptual modeling ontology proposed here that serve as the
ontological interpretation for a UML interface.

8.5 Reinforcing the Isomorphism Between UFO and UML

As demonstrated in the previous section, from an ontological point of view, UML
includes cases of ontological incompleteness, unsoundness, non-lucidity and non-
laconicity. In the sequel, we discuss briefly how these problems have been solved
to produce an ontologically well-founded version of UML for conceptual modeling
(Guizzardi, 2005).

Incompleteness: In order to remedy this problem, we propose extensions to
the UML metaclass Class that represent different types of monadic universals. As
shown in Fig. 8.5, these extensions represent finer-grained distinctions between dif-
ferent sorts of object types as well as the notions of mode and relator universals and
material and formal relations.

Another example of incompleteness identified in the previous section is w.r.t. the
representation of different types of basic formal relations, namely, the relations of
characterization, mediation and derivation. There are a number of common char-
acteristics shared by these relations. Firstly, they are all directed relations. In the
case of characterization, the source is a class representing a mode universal; in
the case of mediation, one representing a relator universal; in the case of deriva-
tion, a material relation. In the first two cases, the target is a class representing
either an object or moment universal, while in the case of derivation, the target is
necessarily one representing a relator universal. Secondly, all these relations are
mapped in the instance level to an existential dependency relation between the cor-
responding source particulars and their depended particulars. This has the following
consequences in the metamodel: (i) the association end connected to the target class
must have the cardinality constraints of one and exactly one, since every moment or
fact is a dependent entity; (ii) the association end connected to the target class must
have the meta-attribute isreadOnly = true, since existential dependency is modally
constant; (iii) existential dependency relations are always binary relations.



192 G. Guizzardi and G. Wagner

In order to account to all these requirements, we extend the original UML meta-
model by extending the metaclass direct relationship with the metaclasses direct
binary relationship, dependency relationship, and finally, the basic formal relations
of characterization, mediation and derivation (Fig. 8.5). Finally, since a relator is
dependent (mediates) on at least two numerically distinct entities, we have the fol-
lowing additional constraint: (iv) Let R be a class representing a relator universal and
let {C1. . .C2} be a set of classes mediated by R (related to R via a mediation rela-
tion). Finally, let lowerCi be the value of the minimum cardinality constraint of the

association end connected to Ci in the mediation relation. Then,

(
n∑

i=1
lowerci

)
≥ 2.

Asides from incorporating metaclasses that represent the missing ontological
concepts, the extended UML metamodel must also include a number of constraints
derived from the constraints in the ontology that restrict the ways the introduced
elements can be related (see constraints on Section 8.2.4 as well as (i–iv) above).
The goal is to have a metamodel such that all grammatically correct specifications
according to this metamodel have logical models that are intended world structures
of the conceptualizations they are supposed to represent. In Guizzardi (2005), asides
from extending the UML meta-model in order to represent the ontological con-
cepts discussed above, we define a profile that implements the metaclasses of this
(extended) UML metamodel, as well as their interrelationships and contraints. By
using this profile, for example, the concrete object classes in Fig. 8.5 are represented
in conceptual models as stereotyped classes representing each of the considered
ontological distinctions. Likewise, the admissible relations between these ontolog-
ical categories, derived from the postulates of our theory, are represented in the
profile as syntactical constraints governing the admissible relations between the cor-
responding stereotyped classes. A fragment of this profile is shown in Table 8.1. For
the complete definition of this profile as well as an in depth discussion motivating
its elements one should refer to Guizzardi (2005).

Non-Lucidity: As discussed in the previous section, in UML, attributes represent
both the ontological concepts of attribute functions and relational image functions,
which is case of non-lucidity. To eliminate this problem, we prescribe that attributes
should only be used to represent attribute functions. As consequence, their associ-
ated types should be restricted to DataTypes only. The UML construct of association
classes amounts to a case of both non-lucidity (since it represents a factual and rela-
tor universal) and incompleteness (since one cannot represent cases in which the
same relator mediates multiple occurrences of the same n-tuple). We propose, there-
fore, to disallow the use of association classes in UML for the purpose of conceptual
modeling. In contrast, we propose to represent relational properties explicitly. We
use the stereotype «relator» to represent the ontological category of relator univer-
sals. Relator universals can induce material relations. A material relation induced
by a relator universal R is represented by a UML association stereotyped as
«material» (UML base class association). The basic formal relation derivation is
represented by a dashed line with a black circle in one of the ends (see Fig. 8.6).
A derivation relation is a specialized type of relationship between the stereotyped
association representing the derived «material» association and the stereotyped class
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Table 8.1 Fragment of the UML profile implementing the metamodel of Fig. 8.5

representing the founding «relator» universal. The black circle represents the role of
foundation of the relator universal side. Every «material» association must be the
association end of exactly one derivation relation. Still on Fig. 8.6, from the car-
dinality constraints of the two «mediation» relations we can derive the maximum
cardinality of the derivation relation (on the material relation end) and the cardinal-
ity constrains on both association ends of the material relation itself. For instance,
the upper constraint δ on the end connected to G in the H relation is the result of
(d × h); the upper constraint β in the end connected to F is the result of
(f × b). The upper constraint φ in the end H of the derivation relation is
the result of (b × h). We should highlight that the relator particular is the
actual instantiation of the corresponding relational property (the objectified rela-
tion). Material relations stand merely for the facts derived from the relator
particular and its mediating entities. Therefore, we claim that the representation
of the relators of material relations must have primacy over the representa-
tion of the material relations themselves. In other words, the representation of



194 G. Guizzardi and G. Wagner

Fig. 8.6 Representing
Material Relations and their
founding relators

«material» relations can be omitted but whenever a «material» is represented it must
be connected to an association end of a derivation relation.

Finally, we use the stereotype «formal» to represent comparative formal rela-
tions. Comparative formal relations and material relations are derived relations.
Whilst the former are derived from intrinsic properties of the related entities,
the latter are derived from relators and their mediating entities. Therefore, we
prescribe that UML associations stereotyped as «material» must have the meta-
attribute (isDerived = true). Mutatis Mutandis, we use the same meta-attribute
to represent formal relations which are not internal relations, i.e., which are
comparative.

Non-Laconicity: In the UML notation, the same ontological concept of attribute
functions has two representations in terms of the language constructs, namely, the
textual notation for attributes and navigable association ends. This situation could
be justified from a pragmatic point of view if navigable ends were used to model
only structured DataTypes, and if the textual notation for attributes were only used
to model the simple ones. However, in the current UML metamodel, there is no
constraint on using both notations for both purposes. To eliminate the potential
ambiguity of this situation, we propose to use navigable ends to represent only
attribute functions whose co-domains are multidimensional quality structures (qual-
ity domains). Conversely, those functions whose co-domains are quality dimensions
should only be represented by the attributes textual notation.

Unsoundness: An example of a UML construct which lacks an ontological inter-
pretation is the construct of Interfaces. For this reason, we propose that the use
of this construct should be disallowed in an ontologically well-founded version of
UML. In Fig. 8.5, the metaclasses interface and association classes which have
been disallowed in this metamodel according to our analysis appear as hachured
classes.

8.6 Final Considerations

The development of a well-grounded, axiomatized upper level ontology is an impor-
tant step towards the definition of real-world semantics for conceptual modeling
diagrammatic languages. In this paper, we use present the ontology UFO (Unified
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Foundational Ontology), which has been designed with the specific purpose of
serving as a foundational theory for conceptual modeling. Additionally, we briefly
present an ontology-based framework for evaluating the domain and comprehensi-
bility appropriateness of modeling languages. The framework defines a systematic
method for comparing the metamodel of a language with a concrete representation
of a conceptualization of a given subject domain, termed a reference ontology. The
paper illustrates the usefulness of the UFO ontology as a reference ontology and
application of the method by evaluating and redesigning the UML metamodel for
the purpose of conceptual modeling.

In Guizzardi (2005), the redesigned UML metamodel discussed here has been
used in the implementation of a UML profile for Conceptual Modeling. The profile
comprises of: (i) a set of stereotypes representing ontological distinctions proposed
by the theory (ii) constraints on the possible relations to be established between
these elements, representing the postulates of the theory. By using this profile,
we were able to propose a number of sound engineering tools and principles, and
methodological guidelines for the practice of conceptual modeling such as the role
modeling design pattern and the visual patterns for delimiting the scope of transitive
parthood relations, both presented in Guizzardi (2005).

Finally, it is important to emphasize that, in this article, only a fragment of
UFO is presented. In particular, a fragment of the Ontology of Endurants in UFO
named UFO-A. In Guizzardi and Wagner (2005) and Guizzardi et al. (2008), UFO
is presented in three compliance sets, namely, UFO-A: an Ontology of Endurants;
UFO-B: an Ontology of Perdurants, and UFO-C, which is built upon UFO-A and B
to compose an Ontology of Social Concepts. Although UFO-B and C do not enjoy
the same level of maturity and stability as UFO-A, they have been recently employed
with success in the analysis of other conceptual modeling languages and frameworks
such as REA (Resource-Event Action) (Guizzardi and Wagner, 2005), Tropos and
AORML (Guizzardi and Guizzardi, 2011), and the ODE Software Process Ontology
(Guizzardi et al., 2008), among others.
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Chapter 9
Lightweight Ontologies

John Davies

9.1 Introduction

Ontology was, in its original sense, a branch of philosophy and in this sense of the
word is the study of what (kinds of) things exist: it seeks to identify (or posit) the
categories of existence and the relationships between those categories; and to define
or describe entities1 within this framework. As such, the ultimate goal of ontology
is to provide a definitive and complete classification of entities and the relations
between those entities in all spheres of reality, both material and abstract. In this
context, the phrase “lightweight ontology” has little meaning: indeed, the purpose
of the enterprise is to be as “heavyweight” as to define a framework which is as
complete and definitive a representation of reality as possible.

The term ontology has also, however, come to prominence over recent years in
computer science and in particular in the areas of knowledge representation (KR)
and reasoning and semantic web technology.

As described in more detail in Smith and Welty (2001), interest in ontology arose
in 3 separate but related areas of computer science. At a high level, this interest
arises from the realisation that the behaviour of a software system is meaningful
only by virtue of the interpretation put on it by users of the system. As such, a
system which employs a more accurate model of the user’s world will in general be
more meaningful to that user and will be better able to accommodate change.

In the area of database management systems, it was found that, as database tech-
nology itself matured and stabilised, the issue of conceptual modelling was a more
important and subtle one: the quality of a requirements specification and ultimately
that of the resulting information system itself turned out to be heavily dependent on
the ability of a developer to extract and represent accurately knowledge about the
modelled domain.

J. Davies (B)
BT Innovate, British Telecommunications plc, London, UK
e-mail: john.nj.davies@bt.com
1We define an entity to be that which has a distinct separate existence.
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Similarly, in software engineering the 1980s saw the emergence of object-
oriented technologies which encouraged an approach to software development
requiring the modelling of the application domain using (classes of) objects which
could have associated with them both data and “methods” – software procedures
which in some sense model an object’s capabilities. Objects can invoke the meth-
ods of other objects via a message-passing protocol. Programs are then seen as the
behaviour of a set of cooperating objects rather than the traditional set of instruc-
tions to the computer. In such a paradigm, the issue of a formal and consistent basis
for “object modelling” quickly arose.

In artificial intelligence (AI), the attempt to explicitly represent and reason about
“knowledge” led to recognition of the relevance of work done in ontology. AI
practitioners created knowledge bases representing ground facts and axioms about
some domain, typically accompanied by a more or less formal mechanism for auto-
mated reasoning, allowing the derivation of new information in a specific instance.
McCarthy (1980) stated that creators of intelligent systems must “list everything
that exists, building an ontology of our world.”

Thus the KR community and, latterly, the semantic technology community began
to use the term “ontology” in a somewhat different sense to its original meaning. An
ontology increasingly came to mean a model of a domain of interest described in a
logical language. Of course, for a software system, that which “exists” is precisely
that which can be represented and processed (reasoned about) and so this focus on
logic-based descriptions is to some extent natural. Logics provide a proof theory
(a set of axioms and inference rules which can be used to make deductions) and a
model theory (a formal analysis of the relationship between statements in the logic
and the world being represented). Indeed, it can be argued that knowledge repre-
sentation languages which do not have semantic models of the type furnished by
logic-based approaches do not actually represent anything: without a clear account
of what statements in the language claim to be true in the world, how are we to
know what is being represented? Non-logical presentations only find their mean-
ing when processed by computer programs: and different programs may process the
same data differently because the lack of an explicit semantic model can lead to
different (implicit) semantics being ascribed by different programs.

In addition to a clear semantic account, the use of logic offers other advantages
including a clear understanding of the consistency and decidability of the logic at
hand. Logics can be shown to be consistent: that is, providing the information rep-
resented in the logic initially is itself consistent, no inconsistency can arise from the
application of the logical inference rules. Decidability is particularly important in
the computational context, concerning as it does the tractability of theorems provers.
A decidable logic is one wherein a theorem prover if given a statement to prove will
be able to determine in a finite time whether or not the statement is true or false.
Other interesting properties of logics are soundness and completeness which inform
us about the relationship between the proof theory and model theory of a logic. If
a logic is sound, all formulae which can be derived from a set of formulae F using
the proof theory are true in all models in which F are true. If a logic is complete,
everything true in a given model is provable by the corresponding proof theory.
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The availability of these kinds of mathematical results about logics are invaluable
in telling us the computational properties of systems we may implement based on
them. Although these results are sometimes negative (as when a logic is incomplete
or undecidable), the key point is that the results are known at all: for more ad-
hoc representation schemes no such results are typically known. McDermott (1978)
argues convincingly that these properties are important from more than a purely
theoretical point of view. In essence, his point is that it is crucial that a system not
only “works” but is understood.2

However, if we move away from the requirement that ontologies be machine-
processable the picture is a little different. In the case where an ontology is used in
order to improve the communication between different departments in a company,
for example, a formal approach may not be necessary. Indeed, such an approach may
be actually unhelpful: the majority of users of such an ontology are likely to have
a greater shared understanding of an ontology expressed in a natural language than
one expressed in a description logic, for example. Uschold (Building Ontologies:
Towards a Unified Methodology, 1996) makes the distinction between the goal of
an ontology and the need for formality. He suggests that when it is used to improve
the communication between people, natural language can be sufficient. Our focus
in this chapter, however, will be on machine-processable ontologies and, as argued
above, therefore on logic-based approaches.

Smith (2003) discusses the relationship between ontology in its older philosoph-
ical sense and its later usage in computer science in more detail. For the purposes
of this chapter, we focus on the meaning of the term as used by computer scientists,
noting that, as mentioned above, this is the context in which the term “lightweight
ontology” is meaningful.

The most commonly quoted definition of this sense of the term is that given by
Gruber (1992, 1993):

An ontology is an explicit specification of a conceptualisation

In this sense, the word refers to a software artefact: a computer-processable
model of some domain of interest. Lightweight ontologies in this context are such
providing the simplest formalization of the simplest model, adequate for the task
at hand. The rationale is that simple ontologies are often more appropriate and
economical; they are easier to understand, adapt, management, update, and use.
Lightweight ontologies can “survive” in computationally extreme environments
where scale and performance are critical, e.g. very large databases and search
engines.

In the next section, we consider this notion of ontology in a little more detail,
before proceeding to distinguish lightweight ontologies from other ontologies. We

2Note that while advocating a logic-based approach we are not advocating any specific logic (such
as description logic, for example). Indeed, currently available logics lack some of the properties
which would seem to be required for representing and reasoning at the scale and lack of preci-
sion found on the web. [Fensel and van Harmelen 2007] discuss new, more appropriate inference
mechanisms.
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then motivate and describe techniques which have been developed to translate other
schemes for information modelling into lightweight ontologies. In Section 9.3, we
then consider the Semantic Web and its ontological languages in more detail before
proceeding over the next 3 sections to discuss the application of ontologies to infor-
mation integration, knowledge management and service-oriented environments.
Section 9.7 contains some brief concluding remarks.

9.2 Lightweight Ontologies

9.2.1 Lightweight Ontologies and the Semantic Spectrum

We mentioned in the Introduction that ontologies were described in some logical
language with an associated underlying semantics and certainly this was the view
of early proponents of the application of philosophical ontology to AI (McCarthy,
1980). However, by 1999 it was apparent that the use of the term ontology in
the AI community was proliferating and being applied more and more widely. A
panel at that year’s AAAI conference3 reported on a wide spectrum of structuring
mechanisms that had been characterised as ontologies. Figure 9.1 shows our own
adaptation of that spectrum in the light of more recent developments.

Figure 9.1 depicts a number of approaches to information modelling in roughly
increasing order of expressiveness which have been adopted in recent years, many
of which have attracted the description “ontology.” Note that Obrst in Chapter 2
offers a similar model.

By term list is meant any set of terms used to denote entities in a particular
domain of interest. A good contemporary example of a term list would be a tag
cloud. In Web 2.04 parlance, a tag is a (relevant) keyword or term associated with
or assigned to a piece of content, thus describing the item and enabling keyword-
based classification of information for the purpose of browsing and retrieval. A tag
cloud is then a set of tags defined on a particular body of content to enable topic
browsing. Each tag in the tag cloud is a link to the collection of items that have that
tag. Tags are usually chosen by the author or consumer of the content and are thus
not part of any shared, more formal classification scheme. Tag clouds are sometimes

Term List Taxonomy FormalClassification

Glossary Thesaurus Lightweight ------------- Heavyweight
Ontologies

Fig. 9.1 Semantic spectrum

3http://www.cs.vassar.edu/faculty/welty/aaai-99/
4http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
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also referred to as “folksonomies” (from “folk” + “taxonomy”, though folksonomies
have little in common with taxonomies, being devoid of structure). Glossaries are
closely related to term lists, being term lists with associated definitions for each
term.

Thesaurus is a term which, as seen earlier in the case of the term ontology, has
been adapted in computer science and taken on a related but different meaning from
its original sense. Originally denoting a book listing words in groups of synonyms
(and sometimes also antonyms and related concepts), in computer science thesaurus
typically denotes a collection of terms denoted by three relations: broader-than
(BT), narrower-than (NT) and related-term (RT) sometimes augmented by further
relations. Thesauri in this context are used by electronic information providers
to associate terms with documents, often in digital libraries, to assist information
retrieval and browsing. The semantics of thesauri relations are not always entirely
clear, as we will discuss later.

A taxonomy is semantically more rigorous than a thesaurus in that it is com-
prised of a hierarchy of concepts linked by a transitive subsumption relation (often
called isA or subClassOf) whereby each instance of a class can be inferred to be
an instance of all parent classes. Taxonomies are strict hierarchies: each class has at
most one parent.5

Formal classification schemes have recently been proposed (Giunchiglia et al.,
2005) in an attempt to formalise previous work on classification. Classification has
a long history as the discipline of grouping related concepts or entities. Its task is to
aggregate items for some specific purpose, in contrast to ontology, where the goal
is generate a model of some domain of interest. Giunchiglia (2005) describes the
representation of classifications as lightweight ontologies, as discussed later.

As mentioned earlier, ontologies have been defined, in our sense of the word,
as “specifications of conceptualisations.” Borst (1997) extended this definition
somewhat:

An ontology is a formal, explicit, specification of a shared conceptualisation.

Similarly, in perhaps the best definition we have encountered, Guarino and
Giaretta (1995) offered the following:

a logical theory which gives an explicit, partial account of a conceptualisation.

This definition emphasises the requirement for a logical theory and that any
such account will always be partial rather than being able to completely specify
the intended meaning of any conceptual element.

Our own view is that to qualify as such, an ontology should offer a formal
semantic account of statements in the ontological language: that is, they should be
logic-based.6 Indeed, without formal semantics, it is hard to see how an ontology

5Taxonomy is also sometimes used loosely (and incorrectly) to denote any set of categories against
which electronic content has been classified.
6Though note that we do not necessarily exclude non-logical but formal accounts (e.g. in the case
where the knowledge is probabilistic in nature).
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can be sharable or re-usable, since there is no clear account of what statements in
the language used to represent the ontology actually mean. In addition, the represen-
tation should be declarative so that ontological concepts and other features (such as
the constraints imposed on their use) are explicitly defined. In addition, in order to
qualify as a conceptualisation an ontology must be more than a set of ground facts7:
rather it is an abstract model of concepts in the world, usually limited to a particular
domain of interest.

Lightweight ontologies would then typically consist of a hierarchy of concepts
and a set of relations holding between those concepts. As discussed earlier, if we
specify only a hierarchy of concepts related using a subsumption relation, then we
have a taxonomy. Conversely, heavyweight ontologies add cardinality constraints,
standalone axioms, reified statements and more.

Depending on the planned use of the ontology, a deeper8 ontology may or may
not be required. The deeper an ontology, the more resources it requires to construct
and maintain and of course justifying the required investment in ontology creation
will depend on the anticipated value of the uses(s) to which the ontology will be put.

We stated above that ontologies should be specified in a logical language and
much research in recent years has focussed on the use of Description Logics for this
purpose. Description Logics (DLs) are logics based on a subset of first order pred-
icate calculus, so called because they focus on descriptions of concepts (classes)
as a principal means for expressing logical propositions. A description logic sys-
tem emphasises the use of classification and subsumption reasoning as its primary
mode of inference. DLs were designed as an extension to frames and semantic net-
works, which were not equipped with formal logic-based semantics. DLs are a very
natural candidate for specifying ontologies, given their focus on concepts and sub-
sumption reasoning and the fact that, being subsets of FOPC, they have attractive
computational properties. Indeed, there has been extensive research into the theoret-
ical underpinnings of DLs and a family of logics set out, each with well-understood
properties in terms of expressive power and computational tractability (Baader et al.,
2003).

In recent years, the role and impact of ontologies in computer science has
increased significantly with the advent of the semantic web (Fensel, 2001). In the
semantic web, ontologies provide the key mechanism whereby web-based metadata
is made machine-interpretable. They provide the formal, shared, explicit domain
model against which web data can be annotated. The World Wide Web Consortium
(W3C) has developed the OWL family of languages as open standards for specify-
ing and using ontologies on the (semantic) web. In Section 9.6 we review the OWL
variants and their relative expressivity and complexity.

In recent years, a number of researchers have constructed lightweight ontologies
for use in a number of different application scenarios, often providing mechanisms

7The OWL web ontology language, for example, allows a set of ground facts to be defined as an
ontology. Strictly speaking, this is inadmissible.
8‘Deeper’ in the sense more elaborate and offering a more precise model of the domain at hand.
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to map between other formalisms on the semantic spectrum into a lightweight ontol-
ogy as we have defined it. This work is important since, firstly, it adds to these
previous schemes the benefits of rigour, formal semantics and improved machine
processability and, secondly, because it provides a way of generating domain ontolo-
gies at reasonable cost based on pre-existing work typically with at least some
degree of community consensus.

In the remainder of this section, we will give examples of methods of converting
schemes from a number of points lower on our semantic spectrum, before proceed-
ing in the rest of the chapter for a more detailed discussion of lightweight ontologies
on the semantic web.

9.2.2 Folksonomies and Lightweight Ontologies

Motivated by the wide use of folksonomies on the one hand and the benefits of the
more formal, consistent ontological approach on the other, Van Damme et al. (2007,
2008) describe a method for “turning folksonomies into ontologies.”

As described above, aggregation of raw user-supplied metadata (tags) leads to a
tag cloud or folksonomy, as exemplified in systems such as Flickr9 or deli.cio.us.10

Problems with the use of unstructured, uncontrolled tag clouds include:

(i) different tags referring to the same concept (“Mr Bush” “George Bush” “the
president”);

(ii) the same tag referring to different concepts (“bank” referring to a finan-
cial institution or referring to an area of sloping land, for example along a
riverside);

(iii) different users tagging the same content at different conceptual levels of
abstraction (“Eiffel Tower” or “Paris”).

Building on previous work including Specia and Motta (2007), Van Damme and
her co-authors propose five sets of resources available for deriving ontologies from
folksonomies:

(i) the statistical analysis of both folksonomies and the usage of folksonomy-
based systems (including the underlying social relationships between users)
to identify structural patterns in folksonomies;

(ii) available lexical resources such as dictionaries, Wordnet and Wikipedia;
(iii) existing ontologies
(iv) tools for ontology mapping and matching
(v) methodologies for assisting a community (of ontology-builders in a given

domain) in finding and maintaining consensus.

The contribution of each of the above type of resource to the process is discussed
and analysed.

9http://www.flickr.com/
10http://del.icio.us/
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9.2.3 Thesauri and Lightweight Ontologies

Thesauri are controlled vocabularies developed in specific domains for the purpose
of annotating electronic content and exploiting such annotations for enhanced infor-
mation retrieval and browsing. Most thesauri are represented in special purpose
data formats and often use relations between categories whose semantics are not
well-defined. Thus converting thesauri to lightweight ontologies, as is in the case
folksonomies, brings a number of benefits:

• adherence to a open standard and the consequent enhanced interoperability
• a formal semantic basis
• an explicit specification
• a machine-processable representation

Assem et al. (2006) present a method for the conversion of thesauri to a
lightweight ontology SKOS (Miles and Brickley, 2005). Essentially, SKOS is used
as a metamodel for representing thesauri in RDF. Three specific cases are analysed,
revealing that two of the cases have non-standard features not (currently) antici-
pated by the method presented. Nevertheless, it is concluded that the metamodel
does seem applicable for representing resources adhering to the ISO2788 standard
for monolingual thesauri.

9.2.4 Formal Classification and Lightweight Ontologies

As mentioned above Giunchigla et al. (2005) introduces the notion of formal classi-
fication. Noting that human-crafted classifications (e.g. DMOZ,11 Dewey Decimal
Classification12) lack a key ontological property, namely representation in a formal
language over which automated reasoning can be performed, formal classification
is developed as a graph structure where labels are written in a formal concept lan-
guage. It is shown that formal classifications are equivalent to a form of lightweight
ontology. The notion of Normalized Formal Classification (NFC) is developed. An
NFC is an FC wherein labels of child nodes are always more specific than the labels
of their parent nodes. A fully automated method is then presented for document
classification into NFCs using propositional reasoning.

9.3 Ontologies and the Semantic Web

The principal application area for lightweight ontologies in Computer Science today
is in the application of semantic technology to a number of application areas.
This smenatic technology has been developed as part of the W3C’s semantic web

11http://www.dmoz.org/
12http://www.oclc.org/dewey/
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initiative, which is described in this section. The term semantic technology is a
broader term, used to denote the application of semantic web technology both on
the web and in other areas.

Despite its explosive growth over the last decade, the Web remains essentially
a tool to allow humans to access information. The next generation of the web,
dubbed “the Semantic Web,” will extend the web’s capability through the increased
availability machine-processable information.

Currently, web-based information is based primarily on documents written in
HTML, a language useful for describing the visual presentation of webpages
through a browser. HTML and today’s web, however, offer only very limited ways
of describing the content itself. So, for example, you can specify that a given string
should be displayed in a large bold font but you cannot specify that the string
represents a product code or product price.

Semantic Web technology aims to address this shortcoming, using the descrip-
tive languages RDF and OWL, and the data-centric, customizable markup language
XML. These technologies, which are standards of the W3C13 (WorldWideWeb
Consortium), allow rich descriptions of the content of Web documents. These
machine-processable descriptions in turn allow more intelligent software systems
to be written, automating the analysis and exploitation of web-based information.

In this paper, we begin by describing the key technology building blocks of the
semantic web, namely the languages XML and RDF and the notion of ontologies.
We then proceed to discuss the application of this technology in the key application
area of eBusiness through the use of semantic web services.

Underpinning the Semantic Web is a stack of languages, often drawn in a Fig. 9.2
first presented by Berners-Lee in a presentation to the XML 2000 conference14:

Fig. 9.2 Semantic web
technology layers

13http://www.w3c.org/
14http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html
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We will briefly discuss the XML, RDF and Ontology vocabulary layers in this
language-stack before describing ontologies and their use in the semantic web.

XML is already a widely-used language designed for annotating documents of
arbitrary structure with information concerning the content of those documents, as
opposed to HTML, which was designed principally for information presentation as
described in the introduction. A well-formed XML document creates a balanced
tree of nested sets of open and close tags. There is no fixed tag vocabulary or set
of allowable combinations, so these can be defined for each application. One set
of XML documents might use tags such as <price> and <quantity> and <delivery-
date>, while another might use <author>, <title> and <abstract>.

Perhaps the most important use of XML is as a uniform data-exchange format.
An XML document can essentially be transferred as a data object between two
applications.

As mentioned above, XML is a useful language for attempting to define data
exchange formats, particularly when building new interoperable systems from
scratch. However, new systems will frequently need to interact with pre-existing sys-
tems. Different pre-existing systems will very often use the same term for different
concepts. These types of conflicts typically require more extensive semantics-based
solutions.

Figure 9.3 below shows two examples of semantic conflicts that can found
across data sets. These conflicts are very frequent, occurring as a natural conse-
quence of data modeling – whether due to isolated development, changing needs,
organizational or structural differences, or simply the different approach of 2 human
data modellers.

Fig. 9.3 Types of semantic conflicts (adapted from Pollock and Hodgson, 2004)
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It is apparent that XML only partially addresses the data interoperability issue.
We need interoperation between the processes and information sets within and
across organizations without costly point-to-point data and terminology map-
pings. The goal of semantic web technologies is to employ logical languages that
expose the structures and meanings of data more explicitly, thereby allowing soft-
ware to interact whether terms and definitions are equivalent, different, or even
contradictory. This is the goal of the RDF and OWL languages.

XML can be seen as prescriptive, in that it pre-defines the format of a data object,
RDF is descriptive, allowing the description of semantic relationships between web
resources, through the use of <subject, verb, object> triples. Sets of these triples can
also be viewed as creating a graph structure. This graph structure in effect creates
a web of meaning, where links between web resources have a semantic element
(in contrast to today’s web, where pages may be linked but it is for a human user
to interpret why they are linked and the relationship between the information they
contain).

For example, the graph structure in Fig. 9.4 expresses the following three triples:

1. “http://www.famousauthor.org/id21”, hasName, “J Tolkien”>
2. “http://www.famousauthor.org/id21”, authorOf, “http://www.books.org/ISBN00

615861”
3. “http://www.books.org/ISBN00615861”, hasPrice, “£39”>

Notice how the RDF triples allow us to combine references to web resources
with literal values (e.g. character strings or numbers). Triple 1 above, for exam-
ple, roughly speaking states that the famous author described at web location
“http://www.famousauthor.org/id21” has the name “J Tolkien”.

RDF15 allows us to build a concept map (or ontology) of our domain, defining
the key classes or concepts (authors, books, etc) and the relationships between those
concepts (e.g. authors write books). RDF then allows us to represent and reason
about specific instances of those concepts (e.g. “J. Tolkien wrote the book described
at http://www.books.org/ISBN00615861”).

authorOf

hasPrice
hasName

http://www…./id21
http://www…/ISBN006158

 “£39”

Fig. 9.4 RDF triples as a graph

15Strictly, RDF and its sister language RDF Schema
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Crucially, RDF Schema includes a number of primitives which have precisely
defined semantics. This means that, unlike in XML, the meaning of these primitives
are formally defined and hence known to any application.

The OWL Web Ontology Language16 is a language for the “Ontology vocabu-
lary layer of the semantic web layer cake (Fig. 9.2) and is, like XML and RDF, a
standard of the W3C. Ontologies written in OWL facilitate greater machine inter-
pretability of Web content than that supported by XML, RDF, and RDF Schema
(RDF-S) by providing additional vocabulary along with a formal semantics. OWL
has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL
Full.

In a nutshell, RDF and OWL provide a framework for establishing relationships
between data and for specifying constraints on different data elements and their
relationship to one another. Furthermore, they allow for a description of pre-existing
web-based data rather than prescribing a rigid format for web pages as in XML.
This means that data on the web becomes machine-processable as well as human
readable. In turn, this allows machines to do more of the hard work of interpreting
data which today is left to the user.

In the next sections, we discuss the applications of semantic technology (and
hence lightweight ontologies) to information integration, knowledge management,
and to service-oriented environments.

9.4 Ontologies and Information Integration

Modern organisations are characterised by the availability of massive volumes of
information, made possible by electronic technology. The ability to find and share
information rapidly and effectively is a clear commercial advantage in all sectors.
So, too, is the ability to retain information. Maintaining the corporate memory bank
as employees leave the company is an oft discussed issue.

To these commercial issues have been added regulatory ones. Organisations
which do not disclose all relevant information to regulatory authorities may be seri-
ously penalised. Yet the organisation can only disclose information it knows it has.
Information lost on corporate computers can not be disclosed at the appropriate
time; but will certainly be revealed if the organisation is subject to a detailed forensic
analysis of hard drives prior to a legal hearing.

A typical large organisation in an information-intensive sector (such as finance)
will have a number of data silos (e.g. an HR system, a CRM system, one or more
billing systems, etc). Each such system has its own data model, no two of which
are typically the same, making exchange and integration of information difficult:
indeed, analysts report that the majority of businesses resort to expensive new soft-
ware and/or manual processes when confronted with a need to integrate information
from multiple sources.

16http://www.w3.org/TR/owl-guide/
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Fig. 9.5 Information
integration

The value of ontologies in information integration stems from the ability to
create an over-arching ontology which can subsume multiple database schemas.
The current state-of-the-art in information integration is represented in Fig. 9.5.
To achieve integration at the semantic level, mappings are created between each
database. These might be databases internal to one organisation, e.g. order process-
ing and stock control databases; or the mappings might be across organisations, e.g.
between databases held by separate companies working together in a joint venture
or supply chain. In any case, the problem is that the number of mappings increases
quadratically with the number of databases.

Ontologies can help to address this issue by providing a uniform access layer to
heterogeneous data sources: the linkage of multiple structured, semi-structured and
unstructured information sources using a consistent vocabulary makes it easier to
build applications pulling data together from across the enterprise and also facilitates
the introduction of new systems and databases (Fig. 9.6).

Advantages of the semantic integration approach as opposed to others include:

• no need to re-engineer legacy data sources – existing data sources are instead
“wrapped” by a semantic description;

• based on lightweight, open standards from W3C;
• inherently extensible – RDF and OWL have been designed to make it relatively

straightforward to integrate concepts and relations from more than one ontology;

Fig. 9.6 Semantic information integration
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• reasoning with the information – because OWL (for example) is a logical lan-
guage, formal reasoning is supported, allowing the inference of new facts from
the explicitly stored information and allowing the definition of business rules.

We have reduced the number of mappings needed, but they still do have to be
created. One way to create mappings is to use a mapping language. This is fine for
specialist knowledge engineers but others need a more natural and intuitive approach
which is easy to learn and use. A number of graphical mapping tools have been
created for such users. One such has been developed as part of their OntoStudio
ontology engineering environment.17

Simple drag-and-drop functionality is used to create and amend mappings. At
the same time, the system undertakes consistency checks to ensure that the user’s
actions make sense. Figure 9.7 shows a view of the mapping tool. The left and
right-hand side shows portions of two different ontologies, and the mappings are
represented by lines between them. Mappings can even be conditional. Consider,

Fig. 9.7 Ontology mapping tool

17http://www.ontoprise.de/
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for example, a mapping between two national transport ontologies. The defini-
tion of a “truck” differs in different countries, depending in some countries on
the weight of the vehicle. This can be taken into account when creating the
mapping.

Even greater gains can be achieved by automating, at least partially, the process
of creating the mappings. This is an area of current research. A starting approach
is to look for similarities in the text strings used to denote data fields by different
schemas, e.g. phone for telephone. We can even take account of different represen-
tations of similar sounds, e.g. the use of 4 to represent for. This is frequently called
syntactic matching. We can introduce some appreciation of semantics by using a
thesaurus, such as Wordnet,18 to identify synonyms. Semantic matching can go fur-
ther by taking account of the structure inherent in two schemas. For example, a
product classification system can in general be represented as a graph.19 Structural
similarities then enable the software to draw reasonable conclusions about the rela-
tionship between nodes (i.e. categories of products) in two classification systems.
The software may propose equivalences between categories, or that a category in
one system is a subset of a category in the other classification. Readers interested in
the technical detail of one approach, based on the use of a form of logic known as
propositional calculus, are referred to Bouquet et al. (2003).

Once these techniques have been used to create an initial mapping, it can then be
loaded into a graphical editing tool and refined manually.

The end result is that it is possible to integrate heterogeneous databases, and
provide the knowledge worker in an organisation with a unified view across these
databases.

9.5 Ontologies and Knowledge Management

We have seen in the previous section how semantic technology can be applied to
the integration of structured information. At least as pressing an issue, and more
technically challenging, is management of unstructured information, part of the
knowledge management problem.20

18Wordnet is a lexical reference system in which English nouns, verbs, adjectives and adverbs are
organised into synonym sets, with relations linking the sets. Wordnet provides both a web-based
user interface for the casual user and also a programming interface to enable incorporation into
other systems, e.g. software for mapping between different terminologies.
19In general a graph, but frequently a tree where the product classification is organised as a strict
hierarchy.
20It is not our intention to discuss the definition of knowledge management here but a broad defini-
tion could be “the management by an organisation of its intellectual assets to deliver more efficient
and effective ways of working.” Better access to and management of unstructured information is a
key part of this endeavour.
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9.5.1 Limitations of Current Technology

The traditional approach is to provide tools (in particular search engines) based
on text-string matching. This may be simply through a user initiating a search, or
through text searches embedded in an application. In any case, there are several
problems with this approach, which can be divided into four main areas:

(i) Query Construction
In general, when specifying a search, users enter a small number of terms

in the query. Yet the query describes the information need, and is commonly
based on the words that people expect to occur in the types of document they
seek. This gives rise to a fundamental problem, in that not all documents
will use the same words to refer to the same concept. Therefore, not all the
documents that discuss the concept will be retrieved by a simple keyword-
based search. Furthermore, query terms may of course have multiple meanings
(query term polysemy). As conventional search engines cannot interpret the
sense of the user’s search, the ambiguity of the query leads to the retrieval of
irrelevant information.

Although the problems of query ambiguity can be overcome to some degree,
for example by careful choice of additional query terms, there is evidence to
suggest that many people may not be prepared to do this. For example, an
analysis of the transaction logs of the Excite WWW search engine (Jansen
et al., 2000) showed that web search engine queries contain on average 2.2
terms. Comparable user behaviour can also be observed on corporate Intranets.
An analysis of the queries submitted to BT’s Intranet search engine over a
4-month period between January 2004 and May 2004 showed that 99% of the
submitted queries only contained a single phrase and that, on average, each
phrase contained 1.82 keywords.

(ii) Lack of Semantics
Converse to the problem of polysemy, is the fact that conventional search
engines that match query terms against a keyword-based index will fail to
match relevant information when the keywords used in the query are differ-
ent from those used in the index, despite having the same meaning (index term
synonymy). Although this problem can be overcome to some extent through
thesaurus-based expansion of the query, the resultant increased level of docu-
ment recall may result in the search engine returning too many results for the
user to be able to process realistically.

In addition to an inability to handle synonymy and polysemy, conventional
search engines are unaware of any other semantic links between concepts.
Consider for example, the following query:

“telecom company” Europe “John Smith” director

The user might require, for example, documents concerning a telecom com-
pany in Europe, a person called John Smith, and a board appointment. Note,
however, that a document containing the following sentence would not be
returned using conventional search techniques:
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At its meeting on the 10th of May, the board of London-based O2 appointed John
Smith as CTO

In order to be able to return this document, the search engine would need to
be aware of the following semantic relations:

O2 is a mobile operator, which is a kind of telecom company;
London is located in the UK, which is a part of Europe;
A CTO is a kind of director.

(iii) Lack of Context
Many search engines fail to take into consideration aspects of the user’s con-

text to help disambiguate their queries. User context would include information
such as a person’s role, department, experience, interests, project work, etc. A
simple search on BT’s Intranet demonstrates this. A person working in a partic-
ular BT line of business searching for information on their corporate clothing
entitlement is presented with numerous irrelevant results if they simply enter
the query “corporate clothing”. More relevant results are only returned should
the user modify their query to include further search terms to indicate the part
of the business in which they work. As discussed above, users are in general
unwilling to do this.

(iv) Presentation of Results
The results returned from a conventional search engine are usually pre-

sented to the user as a simple ranked list. The sheer number of results returned
from a basic keyword search means that results navigation can be difficult and
time consuming. Generally, the user has to make a decision on whether to view
the target page based upon information contained in a brief result fragment. A
survey of user behaviour on BT’s intranet suggests that most users will not view
beyond the 10th result in a list of retrieved documents. Only 17% of searches
resulted in a user viewing more than the first page of results.21 Essentially, we
would like to move from a document-centric view to a more knowledge-centric
one (for example, by presenting the user with a digest of information gleaned
from the most relevant results found as has been done in the Squirrel semantic
search engine described later in this chapter).

In recent years, considerable effort has been put into the use of ontologies to
deal with the problem of managing and accessing unstructured information and we
summarise some of the key aspects in the remainder of this section.

21Out of a total of 143,726 queries submitted to the search engine, there were 251,192 occasions
where a user clicked to view more than the first page of results. Ten results per page are returned
by default.
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9.5.2 Applying Ontologies in Knowledge Management

The essential challenge is to create some (meaningful) structure out of unstruc-
tured text. One way to do this is to create semantic metadata: data describing the
unstructured text.

Such metadata can exist at two levels. They can provide information about a
document or a page, e.g. its author, creation or last amendment date, or subject area
(topic); or they can provide information about entities in the document, e.g. the
fact that a particular string in the document represents a company, or a person or
a product code. The metadata themselves should describe the document or entities
within the document in terms of an ontology. At the document level we might have a
property in the ontology has Author to describe authorship. Within the document we
would use classes such as Person, Company or Country to identify specific entities.

Such metadata could be created by the authors of the document. In gen-
eral this will not happen. The authors of Word documents or emails will not
pause to create metadata. We need to generate metadata automatically, or at least
semi-automatically.

There are two broad categories of technology which we can use for this: statisti-
cal or machine learning techniques22; and information extraction techniques based
on natural language processing. The former generally operate at the level of docu-
ments, by treating each document as a “bag of words”. They are, therefore, generally
used to create metadata to describe documents. The latter are used to analyse the
syntax of a text to create metadata for entities within the text, e.g. to identify entities
as Persons, Companies, Countries etc. Nevertheless, this division should not be seen
too starkly. For example, one of the goals of the SEKT project (http://www.sekt-
project.com) was to identify the synergies which arise when these two different
technologies are used closely together. An overview of semantic knowledge man-
agement, including these two approaches to creating metadata, is given in Davies
et al. (2005). For more detail, see Davies, Studer and Warren (2005), which con-
tains a chapter on each of these approaches, besides information on a number of
other topics discussed in this paper.

The metadata can create a link between the textual information in the documents
and concepts in the ontology. Metadata can also be used to create a link between the
information in the document and instances of the concepts. This process is known
as semantic annotation.

To give an example of the linkage between documents and the ontology
and knowledgebase, we can imagine that the ontology will contain the concept
Company. Then the text string “BT” in the document will be identified as being
an instance of the concept Company. This is made possible by natural language

22Statistical techniques employ algorithms with well-defined mathematical properties, usually
derived based on certain assumptions about the datasets being used. Machine learning techniques
are generally heuristic techniques with no formally derived mathematical properties, e.g. itera-
tive techniques for which no proof of convergence exists. The two approaches may suit different
circumstances, or can be used together in a complementary fashion.
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processing software which can make intelligent deductions about what kind of enti-
ties particular text strings represent. For example, the software can make inferences
from the way the term “BT” is used, and the words associated with it in the text.
If the company British Telecommunications Plc. (to give it its formal name) exists
as an instance of Company in the knowledgebase, then the software will tag “BT”
as referring to British Telecommunications Plc. This is possible through an under-
standing of how acronyms are formed. In other situations it may even be able to tag
“it” as referring to the same company, on the basis of a relatively shallow analysis
of the text.23

Where the system identifies a text string as an instance of a concept in the ontol-
ogy but which is not represented in the knowledgebase, then that instance can be
added to the knowledgebase. For example, the text string “ABC Holdings” may be
identified as a company, but one not represented in the knowledgebase. The system
can then add “ABC Holdings” to the knowledgebase.

Figure 9.8 illustrates part of an ontology and corresponding knowledgebase, and
shows how entities in the text can be associated with entities in the knowledgebase.

Research is also in progress to use natural language processing techniques to
learn concepts from text, and thereby extend the ontology. However, this is a sig-
nificantly harder problem. For an example of the state of the art, see Cimiano and
Völker (2005).

Fig. 9.8 Semantic annotation

23The use of pronouns and other short words in place of longer words or phrases is called anaphora.
Hence, the matching of such short words with their longer equivalent is called anaphora resolution.
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9.5.3 Semantic Knowledge Management Tools

The ontological approach offers significant advantages in the capability of tools
for the management of unstructured text. In this section, we exemplify with one
such tool. Bontcheva et al. (2006) is a more comprehensive discussion of semantic
information access discussing a wider range of tools. Similarly Mangrove (2007)
contains a survey and classification of ontology-based search technology.

9.5.3.1 Squirrel Semantic Search Engine

Squirrel (Duke et al., 2007) provides combined keyword based and semantic search-
ing. The intention is to provide a balance between the speed and ease of use of
simple free text search and the power of semantic search. In addition, the ontolog-
ical approach provides the user with a rich browsing experience. Squirrel builds on
and integrates a number of semantic technology components:

(i) PROTON,24 a lightweight ontology and world knowledge base is used against
which to semantically annotate documents.

(ii) Lucene25 is used for full-text indexing;
(iii) The KAON2 (Motik and Studer, 2005) ontology management and inference

engine provides an API for the management of OWL-DL and an inference
engine for answering conjunctive queries expressed using the SPARQL26 syn-
tax. KAON2 also supports the Description Logic-safe subset of the Semantic
Web Rule Language27 (SWRL). This allows knowledge to be presented against
concepts that goes beyond that provided by the structure of the ontology.
For example, one of the attributes displayed in the document presentation is
“Organisation”. This is not an attribute of a document in the PROTON ontol-
ogy; however, affiliation is an attribute of the Author concept and has the range
“Organisation”. As a result, a rule was introduced into the ontology to infer
that the organisation responsible for a document is the affiliation of its lead
author;

(iv) OntoSum (Bontcheva, 2005) a Natural Language Generation (NLG) tool, takes
structured data in a knowledge base (ontology and associated instances) as
input and produces natural language text, tailored to the presentational context
and the target reader. In the context of the semantic web and knowledge man-
agement, NLG is required to provide automated documentation of ontologies
and knowledge bases and to present structured information in a user-friendly
way;

(v) KIM (Popov et al., 2003) is used for massive semantic annotation.

24http://proton.semanticweb.org/
25http://lucene.apache.org/
26http://www.w3.org/TR/rdf-sparql-query/
27http://www.w3.org/Submission/SWRL/
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Initial Search

Users are permitted to enter terms into a text box to commence their search. This
initially simple approach was chosen since users are likely to be comfortable with it
due to experience with traditional search engines. Squirrel then calls the Lucene
index and KAON2 to identify relevant textual resources or ontological entities,
respectively. In addition to instance data, the labels of ontological classes are also
indexed. This allows users to discover classes and then discover the corresponding
instances and the documents associated with them without knowing the names of
any instances e.g. a search for “Airline Industry” would match the “Airline” class
in PROTON. Selecting this would then allow the user to browse to instances of
the class where they can then navigate to the documents where those instances are
mentioned.

Meta-Result

The meta-result page is intended to allow the user to quickly focus their search
as required and to disambiguate their query if appropriate. The page presents the
different types of result that have been found and how many of each type.

The meta-result for the “home health care” query is shown in Fig. 9.9 under the
sub-heading “Matches for your query”.

Document View

The user can select a document from the result set, which takes them to a view of the
document itself. This shows the meta-data and text associated with the document
and also a link to the source page if appropriate – as is the case with web-pages.
Semantically annotated text (e.g. recognised entities) are highlighted. A screenshot
of the document view is shown in Fig. 9.10.

“Mousing-over” recognised entities provides the user with further information
about the entity extracted from the ontology. Clicking on the entity itself takes the
user to the entity view.

Fig. 9.9 Meta-result
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Fig. 9.10 Document view

Entity View

The entity view for “Sun Microsystems” is shown in Fig. 9.11. It includes a
summary generated by OntoSum. The summary displays information related not
only to the entity itself but also information about related entities such as people
who hold job roles with the company. This avoids users having to browse around
the various entities in the ontology that hold relevant information about the entity in
question.

Fig. 9.11 Company entity view
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Fig. 9.12 Consolidated results

Consolidated Results

Users can choose to view results as a consolidated summary (digest) of the most
relevant parts of documents rather than a discrete list of results. The view allows
users to read or scan the material without having to navigate to multiple results.
Figure 9.12 shows a screenshot of a summary for a query for “Hurricane Katrina”.
For each subdocument in the summary the user is able to view the title and source of
the parent document, the topics into which the subdocument text has been classified
or navigate to the full text of the document. Evaluation

Squirrel has been subjected to a three-stage user-centred evaluation process with
users of a large Digital Library. Results are promising regarding the perceived infor-
mation quality (PIQ) of search results obtained by the subjects. From 20 subjects,
using a 7 point scale the average (PIQ) using the existing library system was 3.99
vs. an average of 4.47 using Squirrel – an 12% increase. The evaluation also showed
that users rate the application positively and believe that it has attractive properties.
Further details can be found in Thurlow and Warren (2008).

9.6 Ontologies and Service-Oriented Environments

Industry is seeking urgently to reduce IT costs, more than 30% of which are
attributable to integration.28 Furthermore, in the telecommunications sector for
example, costs of OSS29 integration can rise to 70% of the total OSS budget.30

28Gartner Group, 2004.
29Operational Support Systems: systems that support the daily operation of an organisation’s
business including, for example, billing, ordering, delivery, customer support.
30See, for example, http://www.findarticles.com/p/articles/mi_m0TLC/is_5_36/ai_86708476
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In addition, there is a need to reconfigure system components efficiently in order
to satisfy regulatory requirements for interoperation and to respond quickly to
increasingly sophisticated customer requirements for bundled services.

Thus one of the most pressing current issues design of software architectures
is to satisfy increasing software complexity as well as new IT needs, such as the
need to respond quickly to new requirements of businesses, the need to continually
reduce the cost of IT or the ability to integrate legacy and new emerging business
information systems. In the current IT enterprise settings, introducing a new product
or service and integrating multiple services and systems present unpredicted costs,
delays and difficulty. Existing IT systems consist of a patchwork of legacy products,
monolithic off-shelf applications and proprietary integration. It is even today’s real-
ity that in many cases users on the “spinning chairs” manually re-enter data from
one system to another within the same organization. The past and existing efforts
in Enterprise Application Integration (EAI) don’t represent successful and flexible
solutions. Several studies showed that the EAI projects are lengthy and the majority
of these efforts are late and over budget. It is mainly costs, proprietary solutions and
tightly-coupled interfaces that make EAI expensive and inflexible.

Service Oriented Architecture (SOA) solutions are the next evolutionary step in
software architectures. SOA is an IT architecture in which functions are defined as
independent services with well-defined, invocable interfaces. SOA will enable cost-
effective integration as well as bring flexibility to business processes. In line with
SOA principles, several standards have been developed and are currently emerg-
ing in IT environments. In particular, Web Services technology provides means
to publish services in a UDDI registry, describing their interfaces using the Web
Service Description Language (WSDL) and exchanging requests and messages over
a network using SOAP protocol. The Business Process Execution Language (BPEL)
allows composition of services into complex processes as well as their execution.
Although Web services technologies around UDDI, SOAP and WSDL have added a
new value to the current IT environments in regards to the integration of distributed
software components using web standards, they cover mainly characteristics of syn-
tactic interoperability. With respect to a large number of services that will exist in IT
environments in the inter and intra enterprise integration settings based on SOA, the
problems of service discovery or selection of the best services conforming user’s
needs, as well as resolving heterogeneity in services capabilities and interfaces
will again be a lengthy and costly process. For this reason, machine processable
semantics should be used for describing services in order to allow total or partial
automation of tasks such as discovery, selection, composition, mediation, invoca-
tion and monitoring of services. As discussed, the way to provide such semantics is
through the use of ontologies.

Web services technology effectively added computational objects to the static
information of yesterday’s Web and as such offers a distributed services capability
over a network. Web services provide an easy way to make existing (or indeed new)
software components available to applications via the Internet. As explained above,
however, web services are essentially described using semi-structured natural lan-
guage mechanisms, which means that considerable human intervention is needed to
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Fig. 9.13 Web services and
the semantic web

find and combine web services into an end application. As the number of services
available grows, the issue of scalability becomes critical: without richer (machine-
processable, semantic) descriptions of services it becomes impossible to discover
and compose services in an efficient manner.

The Semantic Web enables the accessing of web resources by semantic descrip-
tions rather than just by keywords. Resources (here, web services) are defined
in such a way that they can be automatically processed by machine. This will
enable the realisation of Semantic Web Services, involving the automation of service
discovery, acquisition, composition and monitoring.

The relationship between web service and semantic web technology is encapsu-
lated in Fig. 9.13 below. Combining the two technology creates the next generation
of web services: semantically-enabled web services with the more sophisticated
capabilities described above.

9.6.1 Web Service Modeling Ontology (WSMO)

The Web Service Modeling Ontology (WSMO) is one ontology which has been
developed to provide a conceptual model for the Semantic Web Services. Another
approach is OWL-S: n the interests of brevity we will focus on WSMO and refer the
interested read to W3C (2004) for further information about OWL-S. In WSMO,
four elements are identified as the fundamental pillars of the model: namely, ontolo-
gies as shared vocabularies with clearly defined semantics, web services as means
to abstract the IT functionality provided, goals representing users requests refer-
ring to the problem-solving aspect of our architecture and finally mediators for
interpretability between the various semantic descriptions.

Ontologies are used as the data model throughout WSMO, meaning that all
resource descriptions as well as all data interchanged during service usage are based
on ontologies. Ontologies are a widely accepted state-of-the-art knowledge rep-
resentation, and have thus been identified as the central enabling technology for
the Semantic Web. The extensive usage of ontologies allows semantically enabled
information processing as well as support for interoperability; WSMO also supports
the ontology languages defined for the Semantic Web.
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Goals provide means to characterize user requests in terms of functional and non-
functional requirements. For the former, a standard notion of pre and post conditions
has been chosen and the later provides a predefined Ontology of generic properties.
For functional aspects a standard notion of pre and post conditions has been chosen.
For non-functional properties (QoS) logical expressions are used to specify the QoS
values provided by the service.

Web Service descriptions specify the functionality, the means of interaction
and non-functional properties (QoS) aspects provided by the Web Service. More
concretely, a Web service presents:

a capability that is a functional description of a Web service. A set of constraints
on the input and output of a service as well as constraints not directly affect-
ing the input (preconditions) and output (postconditions) of the service but
which need to hold before (assumptions) and after (effects) the execution of
the service are part of the capability description.

interfaces that specify how the service behaves in order to achieve its func-
tionality. A service interface consists of a choreography that describes the
interface for the client-service interaction required for service consumption,
and an orchestration that describes how the functionality of a Web service is
achieved by aggregating other Web services.

non-functional properties that specify the QoS values provided by the service.
Non-functional properties of services or goals are modeled in a way similar
to which capabilities are currently modeled in WSMO, more precisely by
means of logical expressions.

Mediators provide additional procedural elements to specify further mappings
that cannot directly be captured through the usage of Ontologies. Using Ontologies
provides real-world semantics to our description elements as well as machine pro-
cessable formal semantics through the formal language used to specify them. The
concept of Mediation in WSMO addresses the handling of heterogeneities occurring
between elements that shall interoperate by resolving mismatches between differ-
ent used terminologies (data level), on communicative behavior between services
(protocol level), and on the business process level. A WSMO Mediator connects
the WSMO elements in a loosely coupled manner, and provides mediation facili-
ties for resolving mismatches that might arise in the process of connecting different
elements defined by WSMO.

9.6.2 Web Service Modeling Language (WSML)

The Web Service Modeling Language (WSML) is a language (or more accurately a
family of languages) for the description of ontologies, goals, web services and medi-
ators, based on the conceptual model of WSMO. A major goal in the development
of WSML is to investigate the applicability of different formalisms, most notably
Description Logics and Logic Programming, in the area of Web services. A fuller
discussion of the various WSML dialects and their advantages and disadvantages
can be found in Vitvar et al. (2007).
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9.6.3 Web Service Modeling Execution Environment (WSMX)

The Web Service Modeling Execution Environment (WSMX) is a reference imple-
mentation of semantic service-oriented environment that is compliant with the
semantic specifications of WSMO. WSMX supports semantically enabled change
functions such as dynamic discovery, selection, and mediation. WSMX also imple-
ments semantically enabled control and connection functions such as service
invocation and inter-operation. WSMX is an execution environment for the dynamic
discovery, selection, mediation, invocation and inter-operation of the semantic web
services in a reference implementation for WSMO. The development process for
WSMX includes defining its conceptual model, defining the execution semantics
for the environment, describing a architecture and a software design and building a
working implementation.

Figure 9.14 presents the WSMX architecture and its most important compo-
nents.

In terms of functionality provided, WSMX can be seen as an aggregation of the
components. The central components are the Core Component, Resource Manager,
Discovery, Selection, Data and Process Mediator, Communication Manager,
Choreography Engine, Web Service Modeling Toolkit, and the Reasoner.

The Core Component is the central component of the system connecting all the
other components and managing the business logic of the system. The Resource
Manager manages the set of repositories responsible for the persistency of all the
WSMO and non-WSMO related data flowing through the system. The Discovery
component is responsible for locating services that satisfy a specific user request.
A set of discovery algorithms ranging from syntactical-based to full semantically-
based matching are available in WSMX for service discovery. The Selection
component is responsible for filtering the potential services which provide the
requested functionality by considering non-functional properties values and finally
selecting the best service.
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WSMX provides two kinds of mediator components that deal with heterogeneity
problems: a Data Mediator component, which mediates between different termi-
nologies, ontologies and a Process Mediator component which mediates between
two given patterns of interaction (i.e., WSMO choreographies) and compensates
the possible mismatches that may appear. The Communication Manager is respon-
sible for managing the communication between a service requester and a service
provided. The two way communication is handled by the Receiver, from requester
to the service, and respectively by Invoker, from the service to the requester. The
Choreography engine provides means to store and retrieve choreography interface
definitions, initiates the communication between the requester and the provider in
direct correlation with the results returned by the Process Mediator, and keeps track
of the communication state on both the provider and the requester sides. In addi-
tion it provides grounding information to the communication manager to enable any
ordinary Web Service invocation.

The semantic inference required by each of the WSMX components is pro-
vided by the Reasoner component. On the client/developed side a toolkit, called the
Web Services Modeling Toolkit (WSMT) is provided allowing modeling of WSMO
elements and easy interaction with the WSMX server. WSMT contains a set of
tools including the WSMO Visualizer for viewing and editing WSML documents
using directed graphs, a WSMX. Management tool for managing and monitoring
the WSMX environment, and a WSMX Data Mediation tool for creating mappings
between WSMO ontologies are also available in WSMT.

In short, Semantic Web Services can lead to more flexible, interoperable, less
costly IT systems. Space does not permit a full description of the technical details
of semantic web services and the reader is referred to Chapter 10 of Davies et al.
(2005) for an overview of current work in Semantic Web Services and to Vitvar et al.
(2007) for a discussion of the applications of semantic technology in service-centric
environments.

9.7 Ontologies and Computer Science

In the above sections we have discussed some areas of applications of lightweight
ontologies in IT today. Moving beyond specific application areas and taking a
broader view, the central property of semantic technology is that it offers the abil-
ity to provide machine-processable descriptions. As above, these descriptions can
be of documents, fragments of documents or web services. Similarly, such descrip-
tions could equally be descriptions of grid elements, handheld computing devices,
security policies or business process elements.

In all these cases, the key points are (i) these descriptions have a well-defined
meaning separate from the programs which interpret them which (ii) allows inter-
operability which would otherwise require hardwired solutions handcoded by
humans.

In short, semantic technology offers the only path to web-scale interoperability;
and such scalability and interoperability is surely one of the most pressing research
challenges for computer science today.
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9.8 Conclusion

In this chapter, we have discussed the notion of lightweight ontologies. We defined
ontology and related ontology to other related knowledge organisation structures,
formal and less formal. We then considered what might constitute a lightweight
ontology. Our view of lightweight as opposed to “heavyweight” ontologies cen-
tred around the expressivity of the ontology description, rather than other possible
notions such as scope, depth or computational tractability. Of course, tractability
is related to expressivity in that, in general, the more expressive a formal language
the less it is amenable to efficient machine processing (reasoning). Regarding scope
and depth, these seem to us separate and highly context-dependent issues: a medical
ontology could seem very wide and/or deep in terms of its domain coverage from
the point of view of a general medical practitioner and yet much shallower from an
ontological consultant or rather narrow from the point of view of a science journal-
ist interested in medicine and many other disciplines besides, for example. Scope is
orthogonal to expressivity (an ontology covering a wide domain can be more or less
expressive), whereas depth is in general related in the sense that an ontology requir-
ing more expressive language to describe it will typically be deeper (i.e. model the
domain of interest to a more detailed level).

We proceeded to discuss ontologies and the semantic web, the emergence of
which over the past decade has seen increased interest in ontologies and associated
topics. We then looked at 3 key areas where ontologies are being used in IT systems
today and briefly discussed the likely centrality of ontologies and semantic technol-
ogy to computer science in the future. A number of requirements need to be fulfilled
for the further uptake of ontologies:

• provision of ontologies and associated metadata: clearly a barrier to the use of
ontologies is the need to manually construct an ontology for each application (or
at least application domain) and then to populate the ontology with instance data).
The use of knowledge discovery and human language technologies is starting
to address these areas, as are the ever increasing number of domain ontologies
available for re-use. As a specific example of the strides being made in this
aera, Thomson-Reuters, the world’s largest business information provider now
offers the Open Calais31 tool for semantically annotating large volumes of textual
information, as well as providing its own information so annotated;

• production of ontology tools: there is need for mature tools support-
ing the ontology engineering lifecycle, preferably integrated into existing
environments.

Assuming progress is made in these areas (and all are the subject of active
research and development programmes), over the next decade, we can anticipate the
increasing incorporation of ontology-based technology into mainstream IT systems
and methods.

31http://www.opencalais.com/
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Chapter 10
WordNet

Christiane Fellbaum

10.1 Introduction

WordNet is a large electronic lexical database for English (Miller, 1995; Fellbaum,
1998a). It originated in 1986 at Princeton University where it continues to be
developed and maintained. George A. Miller, a psycholinguist, was inspired by
experiments in Artificial Intelligence that tried to understand human semantic
memory (e.g., Collins and Quillian, 1969). Given the fact that speakers possess
knowledge about tens of thousands of words and the concepts expressed by these
words, it seemed reasonable to assume efficient and economic storage and access
mechanisms for words and concepts. The Collins and Quillian model proposed a
hierarchical structure of concepts, where more specific concepts inherit information
from their superordinate, more general concepts; only knowledge particular to more
specific concepts needs to be stored with such concepts. Thus, it took subjects longer
to confirm a statement like “canaries have feathers” than the statement “birds have
feathers” since, presumably, the property “has-feathers” is stored with the concept
bird and not redundantly with the concept for each kind of bird.

While such theories seemed to be confirmed by experimental evidence based on
a limited number of concepts only, Miller and his team were asking whether the
bulk of the lexicalized concepts of a language could be represented with hierachi-
cal relations in a network-like structure. The result was WordNet, a large, manually
constructed semantic network where words that are similar in meaning are inter-
related. While WordNet no longer aims to model human semantic organization, it
has become a major tool for Natural Language Processing and spawned research in
lexical semantics and ontology.1

C. Fellbaum (B)
Department of Computer Science, Princeton University, Princeton, NJ 08540, USA
e-mail: fellbaum@princeton.edu
1For critical reviews of WordNet, see Kilgarriff (2000) and Lin (1999).

231R. Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications,
DOI 10.1007/978-90-481-8847-5_10, C© Springer Science+Business Media B.V. 2010
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10.2 Design and Contents

WordNet is a large semantic network – a graph – in which words are interconnected
by means of labeled arcs that represent meaning relations. Lexical relations con-
nect single words while semantic-conceptual relations links concepts that may be
expressed by more than one word.

Synonymy is the many-to-one mapping of word forms and concepts. For exam-
ple, both the strings boot and trunk can refer to the same concept (the luggage
compartment of a car). Under these readings, the two word forms are synonyms.
WordNet groups synonyms into unordered sets, called synsets. Substitution of a
synset member by another does not change the truth value of the context, though
one synonym may be stylistically more felicitous than another in some contexts.

A synset lexically expresses a concept. Examples of synsets – marked here by
curly brackets – are mail, post, hit, strike, and small, little. WordNet’s synsets further
contain a brief definition, or “gloss,” paraphrasing the meaning of the synset, and
most synsets include one or more sentences illustrating the synonyms’ usage. A
domain label (“sports,” “medicine,” “biology,” etc.) marks many synsets.

Polysemy is the many-to-one mapping of meanings to word forms. Thus, trunk
may refer to a part of a car, a tree trunk, a torso, or an elephant’s proboscis. In
WordNet, membership of a word in multiple synsets reflects that word’s polysemy,
or multiplicity of meaning. Trunk therefore appears in several different synsets, each
with its own synonyms. Similarly, the polysemous word form boot appear in several
synsets, once together with trunk, another time as a synonym of iron boot and iron
heel, etc.

Synsets are the nodes or building blocks of WordNet. As a result of the
interconnection of synsets via meaning-based relations, a network structure arises.

10.3 Coverage

WordNet in fact consists of four separate parts, each containing synsets with words
from the major syntactic categories: nouns, verbs, adjectives, and adverbs. The
current version of WordNet (3.0) contains over 117,000 synsets, comprising over
81,000 noun synsets, 13,600 verb synsets, 19,000 adjective synsets, and 3,600
adverb synsets. The separation of words and synsets for different parts of speech
follows from the nature of the word class-specific semantic and lexical relations.

10.4 Relations

Besides synonymy, WordNet encodes another lexical (word-word) relation,
antonymy (or, more generally, semantic contrast or opposition). Antonymy is psy-
chologically salient, particularly among adjective pairs like wet-dry and long-short,
but it is also encoded for verb pairs like rise-fall and come-go. (WordNet does
not make the kind of subtle distinctions among the different kinds of semantic
opposition drawn in, e.g., Cruse (1986).
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Another kind of lexical relation, dubbed “morphosemantic,” is the only one
that links words from all four parts of speech. It connects words that are both
morphologically and semantically related (Fellbaum and Miller, 2003). For exam-
ple, the semantically related senses of interrogation, interrogator, interrogate, and
interrogative are interlinked.

All other relations in WordNet are conceptual-semantic relations and connect not
just words (synset members) but entire synsets. For each part of speech, different
relations were identified.

10.5 Nouns in WordNet

Nouns comprise the bulk of the English lexicon, and the noun component of
WordNet reflects this. Nouns are relatively easy to organize into a semantic network;
WordNet largely follows the Aristotelian model of categorization.

10.5.1 Hyponymy

Noun synsets are primarily interconnected by the hyponymy relation (or hyper-
onymy, or subsumption, or the ISA relation), which links specific concepts to
more general ones. For example, the synset gym shoe, sneaker, tennis shoe is a
hyponym, or subordinate, of shoe, which in turn is a hyponym of footwear, foot-
gear, etc. And gym shoe, sneaker, tennis shoe is a hypernym, or superordinate, of
plimsoll, which denotes a specific type of sneaker. The relation is bi-directional;
therefore, these examples express both that gym shoe, sneaker, tennis shoe is a type
of footwear, footgear and that the category footwear, footgear is comprised of gym
shoe, sneaker, tennis shoe (as well as other types of footwear, such as boot and over-
shoe. Hyponymy is transitive, so plimsoll, by virtue of being a type of gym shoe,
sneaker, tennis shoe, which is a type of footwear, footgear, is also a type of footwear,
footgear.

Hyponymy builds hierarchical “trees” with increasingly specific “leaf” concepts
growing from an abstract “root.” Noun hierarchies can be deep and comprise
as many as fifteen layers, particularly for biological categories, where WordNet
includes both expert and folk terms.

All noun synsets ultimately descend from a single root, entity. The next layer
comprises three synsets: physical entity, abstract entity, and thing. Below these, we
find the synsets object, living thing, causal agent, matter, physical process, sub-
stance, psychological feature, attribute, group, relation, communication, measure,
quantity, amount, and otherworld.

The selection of these very broad categories was of course somewhat subjective
and has engendered discussion with ontologists. On an empirial level, it remains
to be seen whether wordnets for other languages draw the same fundamental
distinctions.2

2We will refer to the Princeton WordNet as “WordNet” and databases in other languages as
“wordnets,” indicating the fact that the proper name WordNet has become a common noun.



234 C. Fellbaum

10.5.2 Types vs. Instances

Within the noun hierarchies, WordNet distinguishes two kinds of hyponymys, types
and instances. Common nouns are types: city is a type of location, and university is a
type of educational establishment. However, New York and Princeton are not types,
but instances of city and educational establishment, respectively. Proper names are
instances, and instances are always leaf nodes that have no hyponyms (Miller and
Hristea, 2004).

While the Princeton WordNet does not distinguish roles from types and instances,
some later wordnets do, e.g., EuroWordNet (Vossen, 1998). Thus, nouns like pet
and laundry are encoded as types of animal and garment, respectively, on par with
poodle and robe. This treatment does not satisfactorily reflect the categorial status
of such nouns; on the other hand, it is doubtful whether a consistent labeling of role
nouns is possible (David Israel, personal communication).

10.5.3 Meronymy

Another major relation among noun synsets is meronymy (or part-whole relation). It
links synsets denoting parts, components, or members to synsets denoting the whole.
Thus, toe is a meronym of foot, which in turn is a meronym of leg and so on. Like
hyponymy, meronymy is bi-directional. WordNet tells us that a foot has toes and
that toe is a part of a foot. Hyponyms inherit the meronyms of their superordinates:
If a car has wheels, then kinds of cars (convertible, SUV, etc.) also have wheels.
(But note that statements like “a toenail is a part of a leg,” though true, sound odd.)

Meronymy in WordNet actually encompasses three semantically distinct part-
whole relations. One holds among proper parts or components, such as feather and
wing, which are parts of bird. Another links substances that are constitutents of
other substances: oxygen is a constituent part of water and air. Members like tree
and student are parts of groups like forest and class, respectively. Many more subtle
kinds of meronymy could be distinguished (Chaffin, 1992).

10.6 Verbs

Verbs are fundamentally different from nouns in that they encode events and states
that involve participants (expressed by nouns) and in that they have temporal
extensions. The classic Aristotelian relations that work well to construct a network
of noun synsets are not suitable for connecting verbs. Verb synsets are organized by
several lexical entailment relations (Fellbaum, 1998b). The most frequently encoded
relation is “troponymy”, which relates synset pairs such that one expresses a partic-
ular manner of the other. For example, mumble is a troponym of talk, and scribble
is a troponym of write. Like hyponymy, troponymy builds hierarchies with several
levels of specificity, but verb hierarchies are more shallow than noun hierarchies and
rarely exceed four levels.
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The particular manner encoded by troponyms is not specified, and troponymy is
in fact a highly polysemous relation whose semantics are domain-dependent. For
communication verbs, the medium distinguishes broad classes of verb hierarchies
(speak, write, gesture); motion verbs tend to be differentiated by such components
as speed (walk vs. run vs. amble).

Another relation among verb synsets is backward entailment, where the event
encoded in one synset necessarily entails a prior event that is expressed by the sec-
ond synset. Examples are divorce and marry and untie and tie. While the events
in such pairs do not temporally overlap, those linked via a presupposition relation
do. Examples are buy and pay: If someone buys something, he necessarily pays for
it, and paying is a necessary part of the buying event. Finally, WordNet encodes a
cause relation, as between show and see and raise and rise. Note that these relations
are unidirectional.

A particular kind of polysemy is found in “auto-relations,” where a word form
has a sense that expresses both the general and the specific concept, as in drink,
imbibe and drink, booze (Fellbaum, 2000).

10.7 Adjectives

Antonymy is the prevailing relation among adjectives. Most adjectives are organized
into “direct” antonym pairs, such as wet-dry and long-short.

Each member of a direct antonym pair is associated with a number of “semanti-
cally similar” adjectives, either near-synonyms or different values of a given scalar
property. Thus, damp and drenched are semantically similar to wet, while arid and
parched are similar to dry. These semantically similar adjectives are said to be “indi-
rect” antonyms of the direct antonym of their central members, i.e., drenched is an
indirect antonym of dry and arid is an indirect antonym of wet (Miller, 1998). For
experimental work examining this theory see Gross et al., (1989).

WordNet also contains “relational” adjectives, which are morphologically
derived from, and linked to, nouns in WordNet. An example is atomic, nuclear,
which is linked to atom, nucleus.

10.8 Where do Relations Come from?

People often ask how the WordNet relations and the specific encodings were
arrived at. Some of the relations, like hyponymy and meronymy, have been known
since Aristotle. They are also implicitly present in traditional lexicographic defini-
tions; a noun is typically defined in terms of its superordinated and the particular
differentiae, or in terms of the whole entity of which the noun denotes a part. Verbs,
too, are often defined following the classical genus-differentiae form.

Word association norms compile the responses people give to a lexical stimulus.
Frequent responses are words that denote subordinate and superordinate concepts,
or words that are semantically opposed to the stimulus words.
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For adjectives, the responses are strikingly uniform and robust; thus, most people
say cold when asked to respond with the word that comes to mind first when they
hear hot. These data inspired the organization of adjectives in terms of antonymy
(Miller, 1998).

To encode these relations for specific words and synsets, the WordNet team relied
on existing lexicographic sources as well as on introspection. In addition, Cruse
(1986) lists some test for synonymy and hyponymy. For example, the pattern “Xs
and other Ys” identifies X as a hyponym (subordinate) of Y, rather than a synonym.

When the bulk of WordNet was compiled, large corpora were not yet available
that could have provided a different aspect on semantic similarity: co-occurrence
in identical or similar contexts. More recent lexicons are often constructed semi-
automatically, relying heavily on the distributional patterns of word forms as a
measure of similarity.

10.9 WordNet as a Thesaurus

Traditional paper dictionaries are necessarily organized orthographically so as to
enable look-up. But this means that words that are semantically related are not found
together, and a user tying to understand the meanings of words in terms of related
words or words in the definition of the target word, must flip many pages.

By contrast, WordNet’s semantics-based structure allows targeted look-up for
meaning-related words and concepts from multiple access points. But unlike in a
traditional thesaurus such as Roget’s, the arcs among WordNet’s words and synsets
express a finite number of well-defined and labeled relations.

10.10 Semantic Distance and Lexical Gaps

The WordNet relations outlined here sufficed to interrelate the words of English;
this was not at all obvious from the start. But WordNet’s apparently simple structure
hides some unevenness. First, the meaning difference, or semantic distance, between
parent and child nodes varies. For example, while verbs like whisper, mumble, and
shout all seem equidistant from their parent talk, the distance between talk and its
direct superordinate, communicate, seems much larger. This can be seen in the fact
that whisper, mumble and shout can be fairly easily replaced by talk in many con-
texts without too much loss of information, whereas the substitution of talk with
communicate would be very odd in many contexts.

A question related to semantic distance concerns lexical gaps, arguably concepts
that for no principled reason are not linguistically labeled. For example, the lexi-
con suggests that nouns like car, bicycle, bus, and sled are all direct subordinates
of vehicle. But this group of “children” seems heterogeneous: sled stands out for
several reasons, in particular for not having wheels. To draw what appears like a
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major distinction among the many vehicles, WordNet introduced a synset wheeled
vehicle. The argument is that people distinguish between the category of wheeled
vehicles and vehicles moving on runners independently of whether this distinction
is lexically encoded in their language. One would expect other languages to label
these concepts and show that the lack of an English word is purely accidental. (In
fact, German has a word, Kufenfahrzeug, for vehicle on runners).3

Adding nodes in places where lexical gaps are perceived reduces the semantic
distance among lexicalized categories but presents a more regular picture of the
lexicalization patterns than warranted by purely linguistic data. Thus, the introduc-
tion of lexical gaps is a matter of discussion among wordnet builders. On the other
hand, it is common practice in ontology, where it is usually assumed concepts are
independent of natural language labels.

10.11 WordNet as an Ontology

Because of its rigid structure, WordNet is often referred to as an ontology; indeed,
some philosophers working on ontology have examined WordNet’s upper struc-
ture and commented on it. For example, Gangemi et al. (2002a, b) and Oltramari
et al. (2002) have made specific suggestions for making WordNet more consistent
with ontological principles. But the creators of WordNet prefer to call it a “lexi-
cal ontology,” because its contents – with few exceptions – are concepts that are
linguistically encoded and its structure is largely driven by the the lexicon. By con-
trast, many ontologists emphasize that an ontology is language-independent and
merely uses language to refer to concepts and relations. Ontologies are usually
understood to be knowledge structures rather than lexicons. For further discussion
on the lexicon-ontology difference see Pease and Fellbaum (2009).

10.12 WordNet and Formal Ontology

WordNet has been linked to formal ontologies (Gangemi et al., 2002a; Niles
and Pease, 2003). Concepts in one ontology, SUMO (Suggested Upper Merged
Ontology, Niles and Pease, 2001; Niles and Pease, 2003; Chapter 11, Controlled
English to Logic Translation, Pease and Li, this volume) have been linked to synsets
not only in the Princeton WordNet but to many wordnets in other languages as well.

SUMO is a formal ontology stated in a first-order logic language called SUO-
KIF. SUMO contains some 1,000 terms and 4,000 axioms using those terms in
SUO-KIF statements. These axioms include some 750 rules. SUMO is an upper
ontology, covering very general notions in common-sense reality, such as time,
spatial relations, physical objects, events and processes.

3Fellbaum and Kegl (1989) argue for lexical gaps in the verb lexicon on syntactic grounds.
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A mid-level ontology (MILO) was created to extend SUMO with several thou-
sand more terms and associated definitions for concepts that are more specific. In
addition, domain ontologies cover over a dozen areas including world government,
finance and economics, and biological viruses. Together with SUMO and MILO
they include some 20,000 terms and 60,000 axioms.

Niles and Pease (2003) manually mapped the formally defined terms in SUMO
to synsets in WordNet. Three types of mappings were made: rough equivalence,
subsuming, and instance. In addition, mappings were made for senses that appeared
to occur frequently in language use, based on the SemCor semantic concordance
(Miller et al., 1993). New concepts were created in the MILO as needed and linked
to the appropriate synsets. SUMO, MILO, and the domain ontologies have been
linked to wordnets in several other languages as well (for details on the linking see
Pease and Fellbaum, 2009).

For example, the synset artificial satellite, orbiter, satellite maps to the formally
defined term of ArtificialSatellite in SUMO. The mapping is an “equivalence” map-
ping since there is nothing that appears to differentiate the linguistic notion from
the formal term in this case. A more common case of mapping is a “subsuming”
mapping. For example elk maps to the SUMO term HoofedMammal. WordNet is
considerably larger than SUMO and so many synsets map to the same more general
formal term. As an example of an “instance” link, the synset george washington,
president washington, washington is linked to the SUMO term Human. Because
WordNet discriminates among different senses of the same linguistic token, the
synset evergreen state, wa, washington is linked via an “instance” relation to the
term StateOrProvince.

10.13 Wordnets in Other Languages

Since the 1990s, wordnets are being built in other languages. The first,
EuroWordNet (EWN, Vossen, 1998), encompasses eight languages, including non-
Indo-European languages like Estonian and Turkish. EuroWordNet introduced some
fundamental design changes that have been adopted by many subsequent wordnets.
Crucially, all wordnets are linked to the Princeton WordNet.

10.14 The EuroWordNet Model

Wordnets were constructed for each language following one of two strategies. The
first, dubbed “Expand,” was to translate the synsets of the Princeton WordNet into
the target language, making adjustments as needed (see below). The second, dubbed
“Merge,” was to develop a semantic network in the target language from scratch and
subsequently link it to the Princeton WordNet.

Several innovations were introduced. In contrast to Princeton WordNet’s strict
limitation to paradigmatic relations, the wordnets built for EWN encode many cross-
POS links. For example, syntagmatically associated nouns and verbs, such as the
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pair student and learn are linked. Another innovation are conjunctive and disjunctive
relations. Conjunctive relations allow a synset to have multiple superordinates. Thus
knife is both a kind of eating utensil and a kind of weapon. Another example is
albino, which can be a kind of person, animal, or plant. Double parenthood can
capture the Type vs. Role distinction discussed earlier.

An example for a disjunctive relation is airplane and its meronyms propellor
and jet; a given type of airplane has either, but not both, parts (Vossen, 1998). The
possibility of disjoint parts can reduce the proliferation of artificial nodes, such as
propeller plane and jet plane.

Each wordnet that is part of EuroWordNet relates to three language-neutral com-
ponents: the Top Concept Ontology, the Domain Ontology, and Interlingual Lexical
Index (ILI).

The Top Concept Ontology is a hierarchically organized set of some 1,000
language-independent core concepts that are expressed in all wordnets. The Domain
Ontology consists of a set of topical concepts like “medicine” and “traffic”; unlike
the unstructured list of domain labels in the Princeton WordNet, the domain
concepts form a hierarchy.

In contrast to the individual wordnets, which are semantic networks with hierar-
chical relations, the ILI is an unstructured, flat list of lexicalized concepts. Each is
represented by a synset and an English definition of the concept expressed by the
synset members. The ILI started out as the Princeton WordNet, with each synset
being assigned a unique identification number, or “record.” The words and synsets
of the languages of EWN were mapped, to the extent possible, onto the synsets
in the ILI, and the record identification number was attached to the corresponding
word or synset in the target language.

In those cases where a language has one or more words expressing a concept
that is not lexicalized in English (i.e., lacking corresponding English words), a new
record was created in the ILI with just an identification number but without English
lexemes; this record includes a pointer to the synset in the source language. In this
way, the ILI came to include, besides WordNet’s synsets, records for all concepts
that are lexicalized in one or more EuroWordNet language but not in English. The
ILI thus constitutes the superset of all concepts included in all European wordnets.

By means of the records, the ILI mediates among the synsets of the individual
languages. Equivalent concepts and words across languages can be determined by
referencing the appropriate ILI records.

Maintaining the ILI is a flat list of entries and restricting the encoding of lexical
and semantic relations to each of the language-specific wordnets avoids the prob-
lem of crosslinguistic mismatches in the patterns of lexicalization and hierarchical
organization. For example, Vossen (2004) cites the case of English container, which
has no counterpart in Dutch. Dutch does have, however, words for specific kinds of
containers, like box, bag, etc. If the ILI had taken over the English WordNet’s hier-
archical structure, where container is a superordinate of box, bag, etc., mapping to
Dutch would be problematic. Instead, the Dutch wordnet simply maps the Dutch
words for box, bag, etc., to its (Dutch) lexicalized superordinate (implement) and
disregards the container level.
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As the number of wordnets grows, the need for connecting them to one another
becomes pressing; moreover, linking should be enable not only accurate matching of
cross-linguistically encoded concepts but also allow for the expression of meanings
that are specific to a language or culture. Fellbaum and Vossen (2007) and Vossen
and Fellbaum (2009) propose the creation of a suitable infrastructure dubbed the
“Global Grid.”

Interconnected multilingual wordnets carry tremendous potential for crosslin-
guistic NLP applications and the study of universal and language-specific lexical-
ization patterns.

10.15 Global WordNets

Currently, wordnet databases exist for several dozen languages (see Singh, 2002;
Sojka et al., 2004, 2006) and new ones are being developed.4 Virtually all word-
net developments follow the methodology of EuroWordNet described earlier. But
wordnets for typologically distinct languages pose novel challenges especially with
respect to the notions “concept” and “word,” which must be defined to determine
synsets and synset membership. One challenge is the morphology of agglutinative
languages like Turkish, Estonian, Tamil and Basque (Bilgin et al., 2004; Kahusk
and Vider, 2002; Thiyagarajan 2002; Agirre et al., 2002), where multiple affixes
that carry grammatical and lexical meaning are added to a stem to form a single
long “word”. For example, does a diminuitive formed via an affix express a concept
distinct from the base form or are they merely lexical variants? Diminuitives are
arguably independent words, and they could be included in a wordnet as such, with
a pointer expressing a “diminuitive” relation to the base form.

Even more challenging are languages like Hebrew and Arabic, where words
are generated from a triconsonantal root that constitutes a kind of “super-concept”
but that does not have lexical status itself; words whose meanings share the core
meaning of the root are derived from it via the addition of vowels (Black et al.,
2006).

For Chinese, Wong and Pala (2004) propose to exploit the semantics inherent in
the Chinese writing system. A character typically consists of two radicals, one of
which carries meaning while the other indicates the pronunciation. Characters and
the concepts they express can be grouped and related to one another based on the
meaning-carrying radical, at least at the top and middle level of the hierarchies.

10.16 WordNet as a Tool for Natural Language Processing

WordNet’s design and electronic format have proved useful for a wide range of
Natural Language Processing (NLP) applications, including mono- and crosslin-
guistic information retrieval, question-answering systems, and machine translation.

4See the website of the Global WordNet Organization, http:www.globalwordnet.org
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All these tasks face the challenge of word sense identification posed by lexical
polysemy. Statistical approaches can identify the context-intended sense in many
cases but are limited. WordNet facilitates alternative or complementary symbolic
approaches to word sense discrimination, as it allows automatic systems to detect
and measure the semantic relatedness of polysemous words that co-occur in a
context.5

10.17 Conclusions

WordNet represents a new approach – made possible by its electronic format –
towards revealing the systematic ways in which a language maps concepts onto
words. WordNet deliberately focuses on the lexicon, but its rigid structure and repre-
sentation of upper-level words and concepts have sometimes invited its comparison
to an ontology, a language-independent knowledge structure. Mapping concepts in
formal ontologies to synsets in wordnets maintains that distinction and sheds light
on concept-word mapping patterns.

Crosslinguistic wordnets show significant overlap at the top levels but diverge
on the middle and lower levels, often due to language-specific lexicalization pat-
terns. Further research on WordNet and the development of wordnets in genetically
unrelated and typologically diverse languages should advance our understanding of
universal and language-specific conceptual and lexical structure.
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Chapter 11
Controlled English to Logic Translation

Adam Pease and John Li

11.1 Introduction

It has long been a goal in computer science for users to communicate with comput-
ers in human language. Instead of complex menu systems or command languages,
people would certainly rather interact with a computer in the same way one would
interact with other people. While there have been many advances in creating com-
puter software that handles English, or other languages, understanding is largely
limited to search and retrieval. That is, a user enters a phrase, keywords or a ques-
tion, and the computer attempts to find the best match between the user’s input, and
some body of stored text. The computer doesn’t understand the question, or the con-
tent that it is searching. It can’t combine information across documents to create a
novel answer to a novel question. It can’t understand simple logical conclusions that
any human could draw from the stored text. If natural language could be translated
to logic, the computer would have a form that could be used for inference, and a
degree of real understanding.

We have developed a program which takes a restricted form of natural language
and automatically translates it to logic. The Controlled English to Logic (CELT) sys-
tem (Pease and Murray, 2003) has a deep understanding of queries and statements.
CELT performs syntactic and semantic analysis on English input, and transforms
it to logic. CELT allows new information to be added to a knowledge base and be
immediately available for queries.

There have been a small number of previous efforts that are similar to our
approach, ACE (Fuchs, 1999) being the most notable, and is the work that inspired
CELT. However, a key advance in our work is that the output of the language
translation system uses terms in an existing large ontology, the Suggested Upper
Merged Ontology (SUMO) (Niles and Pease, 2001). Previous efforts have lacked
such a connection, and resulted in logical statements in which terms have mean-
ing only to the extent they are used in a series of sentences from the user. By
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linking statements to SUMO, each term has a wealth of existing definition, much
as people have a wealth of meaning and understanding behind each word that is
used in communication. One might also question whether this work is truly new,
since most of the issues in the semantics of English of concern to CELT have been
presented in linguistics research over the years. The challenge is in bringing all
this material together in one computational model, and using a single consistent
ontology.

The Suggested Upper Merged Ontology (SUMO) is a freely available, formal
ontology of about 1,000 terms and 4,000 definitional statements. It is provided in
first order logic, and also translated into the OWL semantic web language. It is now
in its 75th free version; having undergone 5 years of development, review by a com-
munity of hundreds of people, and application in expert reasoning and linguistics.
SUMO has been subjected to formal verification with an automated theorem prover.
SUMO has been extended with a number of domain ontologies, which are also pub-
lic, that together number some 20,000 terms and 70,000 axioms. SUMO has also
been mapped to the WordNet lexicon (Fellbaum, 1998; Chapter 10 by Fellbaum,
this volume) of over 100,000 noun, verb, adjective and adverb word senses (Niles
and Pease, 2003), which not only acts as a check on coverage and completeness, but
also provides CELT’s lexicon. SUMO and all the associated tools and products are
made available at www.ontologyportal.org

Although CELT uses a simplified syntax it does not limit the parts of speech or
the number of word senses a word can have, at least to the extent that by using
WordNet, CELT’s vocabulary grows as WordNet grows. More importantly, CELT is
not a domain specific system as with (Allen et al., 1994). It is a completely general
language, but one which can be specialized and extended for particular domains
along with domain specific vocabulary.

We see an analogy with the PalmPilot and our work. The Apple Newton was
an innovative product that attempted to do recognition of unrestricted handwrit-
ing, after some training. The Newton was a failure. The problem was simply too
hard to be tractable at the time. The system did not correctly interpret handwriting
enough of the time to be useful. The PalmPilot took a different approach. It requires
handwriting to be one character at a time, in a special alphabet. These restrictions
eliminate most of the hard problems in handwriting recognition. A small burden is
placed on the user, and in return the user is provided a very useful product. People
will change their behavior if the change is relatively small in proportion to the ben-
efit derived. Placing the jobs that are hard for machines and easy for people in
the domain of the human user can make an impossible job practical. People have
been predicting the arrival of full text understanding ever since the beginning of
AI. The realization of this prediction is usually a constant 10 years from the time
when the prediction is being made. The time horizon keeps being extended and
is unlikely to arrive soon. The best solution may be to simplify the problem in a
smart way.

CELT uses a parsing approach that relies on a controlled English input. This
means that the user asks queries in a specified grammatical format. This subset
of English grammar is still quite extensive and expressive. The advantage of the
controlled English is that when the grammar and interpretation rules are restricted,
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then every sentence in the grammar has a unique interpretation. This eliminates
the problems of ambiguity with other approaches that would result in retrieving
non-appropriate answers.

Another way to look at language research is that most work has focused on han-
dling all language at a very shallow level of understanding, and advances now work
in the direction of gradually increasing the level of understanding while maintain-
ing coverage of all possible utterances. CELT takes the opposite approach of starting
from complete understanding, at least to the extent possible in formal logic, of a very
restricted subset of English. Research on CELT has focused on increasing the range
of understandable sentences, while maintaining the requirement to have complete
understanding of the semantics of the sentences handled.

CELT’s controlled English is meant to provide a syntax with a lexical seman-
tics, which means that the sense of a sentence depends only upon the sentence,
how the words are put together so as to select one out of many possible meanings
for each, and not the context within which it is spoken or written, for example, a
paragraph, document, conversation, or the gestalt of a perceived situation. This con-
verts the English syntax into that of a formal as opposed to natural language. This
approach appropriately partitions application tasks into components which would
be hard to handle by machine (extracting the intended sense of a sentence) and hard
to handle by a human (quickly and efficiently interpreting extensive text, perform-
ing semantically rich Internet searches, etc). The conversion from a fragment of a
natural language (English) to a formal language (controlled English) puts the con-
verted language fragment in the same class with the mathematical vehicle used for
inferencing with the extracted text (formal logic).

11.2 WordNet Mappings

We have mapped all of the over 100,000 word senses in WordNet to SUMO, one at
a time, by hand. Our original work is described in detail in a previous publication
(Niles and Pease, 2003). Since the original version, we have modified the mappings
to keep up to date with the latest versions of WordNet, which resulted in a port
to WordNet 2.0 and then 3.0. We have also revised the mappings to point to more
specific terms in the mid-level and domain ontologies that extend SUMO.

Briefly, WordNet is organized as a list of “synsets” or synonym sets. Synsets each
have a dictionary definition and a set of links to other synsets. We assigned each
synset a link to a particular SUMO term, or in a few case, links to several terms.
WordNet is much larger than SUMO so many synsets link to SUMO terms that are
more general. For example “to flee”, in the sense of to “run away quickly” is linked
to SUMO’s Running, since there is no more specific term available. The word
“valley” however has only one sense in WordNet and it is linked to the equivalent
SUMO term of Valley. Note that these links are not based on the name of the
SUMO term, but rather on the meanings of the formal term and the linguistic term.
For example, the informal synset “seven seas” links to the SUMO term Ocean.

Having a lexicon and an ontology also enforces a certain discipline of clearly
separating linguistic and ontological information. Many ontologies, especially those
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defined in computer languages that are largely limited to taxonomic information,
rely heavily on human intuition about natural language term names for their defi-
nition. SUMO term names are not strictly part of the definition of any term. Term
meanings come solely from the formal axioms on the term. Term names could be
replaced with arbitrary unique symbols and still have the same logically defined
meanings. By keeping the lexicon separate from the ontology, each can follow prin-
ciples of organization specific to their goals as independent works. Many lexicons
for languages other than English have been created (Vossen and Fellbaum, 2002)
and many of those have been mutually linked. As a result, SUMO has links to
many languages in addition to English, further keeping clear the distinction between
formal terms and their correspondence to human languages.

11.3 Simple Parsing and Interpretation

CELT first parses a sentence to determine the parts of speech for each word. It
creates a parse “tree”, such as in Fig. 11.1, that groups these words. For the sentence
“Mike reads the book.” there is a proper noun “Mike”, then a verb, determiner,
another noun and then a period. The pair of words “the book” forms a noun phrase,
noted as “NP”. The phrase “reads the book” is a verb phrase, or “VP”, and so on.

CELT uses the order of the words, and a dictionary that labels words as nouns,
verbs and so forth, in order to determine the parts of speech. The dictionary used is
WordNet, augmented with a list of common proper names.

Once CELT has determined the parts of speech of each word, it must also deter-
mine the particular sense of each word that is intended. For example, is “reads”
the sense of reading text in a book, or the sense of to understand, as in “I read
you loud and clear.” Only by determining the proper sense can CELT find the
proper related SUMO term to translate to, which would then either be Reading or
Communication, respectively. This is discussed further in Section 11.3.1 below.

Fig. 11.1 Simple parse tree
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Once the CELT parser has determined parts of speech and word senses, it can
begin to bring each linguistic element together into a logical expression. SUMO
takes a Davidson (1980) approach to describing events, in which verbs denoting
actions are reified as instances, and the various elements of the event are related to
the instance. In this simple example, the subject of the sentence, “Mike” is therefore
the agent of the action, and so is brought together with an instance of a “read” event
by the SUMO relation agent. The object of the sentence is related to the event
with the SUMO relation patient. A different set of relationships are employed
for different linguistic constructions, such as stative verbs, or quantified sentences,
and several of these are described further in Section 11.4 below. The value of the
resulting logical form is that it can be subjected to deductive inference with a stan-
dard first order theorem prover, and yielding new knowledge deduced from known
facts and input from the CELT user. This can be contrasted with “statistical” based
language understanding approaches that yield approximate and non-logical results
for which deductions, if performed, are not truth-preserving.

To elaborate, the SUMO term reading has a number of logically specified truths
that are consistent as long as one employs the standard semantics of first order
logic (actually SUMO employs some higher-order logical expressions, but let us
leave that detail for another paper). One can follow deduction even a hundred steps
long and the result will not yield a contradiction. In contrast, although WordNet
contains much valuable information, it simply is not intended nor able to support
deductions of arbitrary length. For example, a specific sense of “to read” (synset
200626428) does entails the immediate parent (hypernym) synset of “verbalize”
(synset 200941990 etc) and its parent “communicate” but that does not necessar-
ily entail that one “interact(s)” (the next parent in turn, which is problematic since
one can verbalize to one’s self, at least it appears so from the WordNet definition
of that synset). While locally consistent, it is not a logical product. Further, nothing
in a linguistic product such as WordNet allows one to conclude as does SUMO that
Reading necessarily involves a Text (with a very specific, logical, and formally
specified definition of what a Text is), that a Text containsInformation,
and any of the near infinite number of deductions that are possible in turn from each
of those small conclusions. This discussion is not intended in any way to criticize
WordNet, which is an essential part of CELT, but rather to emphasize the different
functions that WordNet and SUMO support in CELT’s processing.

11.3.1 Word Sense Disambiguation

Our method for word sense disambiguation (WSD) is based on a large data set of
English sentences that have been annotated by hand to specify the precise sense of
each word. The data set used is the Brown Corpus (Kucera and Francis, 1967), and
the markup of that corpus is called SemCor (Landis et al., 1998). This work is not
new, and in fact is rather poor compared to the state of the art. Its only virtues are that
the sources used are free, and the approach is simple. We plan on adopting a more
sophisticated approach in the future. We began by processing SemCor to generate
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a map in which each key is a particular word sense and the value is a list of words
and frequencies that indicate how many times the given sense occurred in a sentence
with each of a set of words. One weakness of SemCor is that it is not as large as many
modern corpora used for this purpose, and key words that discriminate a particular
sense may only occur a few times together with that sense in the Brown Corpus.
There are also many senses in WordNet that do not occur at all in that corpus. We
used two methods to improve the statistical significance of the entries. In support
of our first method, many WordNet senses are very “fine-grained”, which is to say
that some senses indicate very small differences in word sense that may not even
be listed in most dictionaries. There are often cases where very similar word senses
may map to the same SUMO concept. When that occurs, we have “collapsed” the
sense entries, and added the co-occurrence data together. The second method used
to improve performance over a simple use of SemCor relates to a recent effort by
Princeton to disambiguate manually all the words in English definitions of senses
in WordNet. We are processing these sentences just as with SemCor to add these
statistics to our overall set. A key improvement resulting from this new work is
that we will have at least some co-occurrence statistics on all the word senses in
WordNet.

An additional method we have implemented is to use the entire history of a CELT
dialog in WSD. In a very short sentence such as “Bob runs to the store.” it is very
hard to get the sense of the highly polysemous word “run” even with a large manu-
ally disambiguated corpus. But, combined with previous sentences in a dialog such
as “Bob is training for a marathon.” and “Bob bought new sneakers.” getting the
correct result is much more likely.

11.4 Issues in Translation

11.4.1 Case Roles and Word Order

In English, word order is Subject-Verb-Object (except in the case of passive voice,
which CELT does not handle). The roles of Subject, Object (and, when present,
Indirect Object) have a correspondence to SUMO’s set of CaseRole(s), which define
different kinds of participation in events. Continuing with the preceding example,
“Mike” is the subject and “book” is the direct object. In SUMO, the agent relation

(exists (?M ?B ?R)
(and 
(instance ?R Reading)
(agent ?R Mike-1)
(instance Mike-1 Human)
(attribute Mike-1 Male)
(instance ?B Book)
(patient ?R ?B)))

Fig. 11.2 Case role example
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brings together the performer of an action, and the action itself. The patient
relation specifies a participant in the action. The output from CELT also specifies
the types of the participants (Fig. 11.2).

11.4.2 Statives

The type of verb in a sentence has a critical role in interpretation of meaning. Most
verbs indicate occurrence of an event or process. “Mike reads the book.” indicates
that a Reading event is taking place. Other verbs however connote relationships.
“Mike owns the book.” indicates that there is the relationship of ownership between
Mike and the book. There is no “owning” event that takes place. Such verbs are
called “statives”.

To complicate things, some stative verbs have an appropriate non-Process inter-
pretation. For example “Dickens writes Oliver Twist.” should generate (authors
Dickens OliverTwist). However, once that stative is augmented with a time
or a place, then we have two things that are being said, the timeless fact, and the
event. For example “Dickens writes Oliver Twist in 1837.” makes both the state-
ment of authorship above, and the additional statement about a Process occurring
in a particular year (Fig. 11.3).

(and
(authors Dickens OliverTwist)
(exists (?EV)

(and 
(instance ?EV Writing)
(agent ?EV Dickens)
(equals (YearFn 1837) (WhenFn ?EV))
(result ?EV OliverTwist))))

Fig. 11.3 Stative example

11.4.3 Attributes

In the SUMO-WordNet mappings we map most nouns to classes. However, some
nouns can be better mapped to attributes that also imply class membership. A noun
mapped to a Position, should be a Human that has the indicated Position
as an attribute. For example, given the mapping from “pianist” to Musician, the
sentence “Bob is a pianist.” results in Fig. 11.4.

(and
(attribute Bob-1 Male)
(instance Bob-1 Human)
(attribute Bob-1 Musician))

Fig. 11.4 Stative example
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11.4.4 Counting

CELT handles simple expressions about singulars, plurals, mass nouns and count-
ability. “Bob kills 5 rats.” generates Fig. 11.5.

(exists 
(?CLNrats ?event) 
(and 

(attribute Robert-1 Male) 
(forall 
(?I) 
(=> 

(member ?I ?CLNrats) 
(instance ?I Rat))) 

(instance Robert–1 Human) 
(instance ?CLNrats Collection) 
(member-count ?CLNrats 5) 
(agent ?event Robert-1) 
(instance ?event Killing) 
(patient ?event ?CLNrats)))

Fig. 11.5 Counting example

11.4.5 Copula Expressions

CELT handles the many different meanings of the verb “to be”, which is what lin-
guists call the “copula”. “Bob is a pianist.” is relatively straightforward, as shown
above in the section on attributes. However, copula expressions can also be general
statements about classes, as in “An apple is a fruit.”, which generates a subclass
expression as follows:

(subclass Apple Fruit)

CELT provides the same translation for “Apples are fruits.” since the two are
semantically equivalent.

11.4.6 Prepositions

Prepositions can have significantly different interpretations such as in “Bob is on
the boat.” (Fig. 11.6). In contrast, the sentence “The party is on Monday.” refers to

(exists (?boat) 
(and 

(attribute Robert-1 Male) 
(instance Robert-1 Human) 
(instance ?boat Watercraft) 
(orientation Robert-1 ?boat On)))Fig. 11.6 Preposition

example
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(exists (?party ?monday) 
(and 
(instance ?party SocialParty) 
(instance ?monday Monday) 
(during ?party ?monday))

Fig. 11.7 Another
preposition example

Table 11.1 Prepositions, class membership and relations

Preposition Class SUMO relation

at, in, on location location
at, in, on time time
for person destination
for, through time duration
with person agent
with object instrument
across path traverses
within, into object properlyFills
from object origin
from time BeginFn
through object traverses
until time EndFn
after time greaterThan
before time lessThan

a time, rather than a location, and therefore is translated as in Fig. 11.7. A list of
many of the different impacts of argument type on the translations of prepositions
is given in Table 11.1.

In order to determine the type of elements in the sentence we use SUMO class
membership as shown in Fig. 11.8.

CELT type SUMO class
time     TimeMeasure, Process
person   Human, OccupationalRole, SocialRole
object   all others

mass     Substance, Food, and special words such 
as money/furniture/data/life/beauty/truth/
crime/law/education

count     all others

Fig. 11.8 Finding CELT types with SUMO class membership

11.4.7 Quantification

Quantification statements are generally those which use words like “every”, “all”
or “some”. For example, “Every boy likes fudge.” results in the output shown in
Fig. 11.9, and “Some horses eat hay.” results in Fig. 11.10.
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(exists 
(?event ?hay ?horse) 
(and 

(instance ?horse Horse) 
(instance ?event Eating) 
(instance ?hay Hay)  
(patient ?event ?hay) 
(agent ?event ?horse)))

Fig. 11.9 Universal
quantification example

(forall (?boy) 
(exists (?fudge) 

(and 
(instance ?boy Man) 
(instance ?fudge Food) 
(enjoys ?boy ?fudge))))

Fig. 11.10 Universal
quantification example

11.4.8 Possessives

Possessive statements are of the form “X’s Y”, or, less fluently, “The Y of X.”.
The type of the arguments changes the form of the relationship between the entities.
“Tom’s father is rich.”, “Bob’s nose is big.”, “Mary’s car is fast.” See their respective
CELT translations in Fig. 11.11. The second example shows a case of where no

(exists 
(?father) 
(and 

(attribute Tom-1 Male) 
(instance Tom-1 Human) 
(attribute ?father Rich) 
(father ?father Tom-1)))

(exists 
(?nose) 
(and 

(attribute Robert-1 Male) 
(instance Robert-1 Human) 
(attribute ?nose 

SubjectiveAssessmentAttribute) 
(instance ?nose Nose) 
(part ?nose Robert-1)))

(exists 
(?car) 
(and 

(attribute Mary-1 Female) 
(instance Mary-1 Human) 
(attribute ?car Fast) 
(instance ?car Automobile) 
(possesses Mary-1 ?car)))Fig. 11.11 Possessive

examples
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equivalent term has been created in SUMO for the adjective “big”. This also raises
a general issue that some words in natural language are sufficiently vague that it is
not possible to state a formal logical meaning for them, at least not without a more
sophisticated approach than relating them to a single formal term.

11.4.9 Anaphor

CELT handles simple pronoun references, including those across multiple sen-
tences. The user can chose to have CELT process any number of sentences at one
time into a single (possibly large) logical expression. It also handles some refer-
ences on the basis of class descriptions. The example “The man drives to the store.
He buys cookies.” yields the translation shown in Fig. 11.12. CELT can also han-
dle possessive pronoun references, such as “Bob has a house. Mary likes his cat.”
(Fig. 11.13).

(exists 
(?cookies ?event1 ?event2 ?man ?store) 
(and 

(forall 
(?cookie) 
(=> 

(member ?cookie ?cookies) 
(instance ?cookie Food))) 

(instance ?cookies Group) 
(instance ?event1

LandTransportation) 
(instance ?event2 Buying) 
(attribute ?man Male) 
(instance ?man Man) 
(instance ?store RetailStore) 
(patient ?event2 ?cookies) 
(agent ?event1 ?man) 
(destination ?event1 ?store) 
(agent ?event2 ?man)))

Fig. 11.12 Anaphor example

(exists 
(?cat ?house) 
(and 
(attribute Mary-1 Female) 
(attribute Robert-1 Male) 
(instance Mary-1 Human) 
(instance Robert-1 Human) 
(enjoys Mary-1 ?cat) 
(instance ?cat Feline) 
(possesses Robert-1 ?cat) 
(instance ?house House) 
(possesses Robert-1 ?house)))Fig. 11.13 Anaphoric

reference for possessives
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11.4.10 Conjunction and Disjunction

Although CELT can handle simple conjunctions, more work is needed. While han-
dling conjunction of predicates, CELT can handle shared subjects and objects. For
example, the sentence “Bob and Mary cut and paste the photo and the newspaper.”
is translated in Fig. 11.14. Here the assumption that every participant participates in
every activity is not necessarily true but CELT takes a simplistic assumption on this
issue.

(exists 
(?event1 ?event2 ?newspaper ?photo) 
(and 

(attribute Mary-1 Female) 
(attribute Robert-1 Male) 
(instance Mary-1 Human) 
(instance Robert-1 Human) 
(agent ?event1 Mary-1) 
(agent ?event1 Robert-1) 
(instance ?event1 Cutting) 
(agent ?event2 Mary-1) 
(agent ?event2 Robert-1) 
(instance ?event2 Attaching) 
(instance ?newspaper Newspaper) 
(instance ?photo Photograph) 
(patient ?event1 ?newspaper) 
(patient ?event1 ?photo) 
(patient ?event2 ?newspaper) 
(patient ?event2 ?photo)))

Fig. 11.14 Conjunction

11.4.11 Negation

Negation is a challenging issue for interpretation. While the logic expressions of two
sentences “Bob wrote the book.” and “Bob wrote a book.” are similar, their negative
counterparts, “Bob did not write the book.” (Fig. 11.15) and “Bob did not write a
book.” (Fig. 11.16) have quite different logic interpretations. The former sentence
assumes context of reference to a particular book, stating that Bob did not write it.
The latter states that there exists no book that Bob wrote.

(exists (?book)
(and

(attribute Robert-1 Male)
(instance Robert-1 Human)
(not 

(authors Robert-1 ?book))
(instance ?book Book)))Fig. 11.15 Negation of a

definite reference
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(not 
(exists (?book)

(and
(attribute Robert-1 Male)
(instance Robert-1 Human)
(authors Robert-1 ?book)
(instance ?book Book))))

Fig. 11.16 Negation of an
indefinite reference

11.5 CELT Components

We use morphological processing rules, derived from the “Morphy” code of
WordNet to transform other verb tenses and plural verbs into the various tenses
and numbers required. Discourse Representation Theory (DRT) (Kamp and Reyle,
1993) handle context to resolve anaphoric references, implications, and conjunc-
tions. CELT is implemented in SWI-Prolog and its grammatical rules are expressed
in a Definite Clause Grammar (DCG). The DCG formalism is extended with the
feature grammar extension of GULP 3.1 (Covington, 1993). Feature grammars spec-
ify features such as case, number, and gender. Thus CELT’s grammar rules form a
unification grammar.
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Chapter 12
Cyc

Douglas Foxvog

12.1 Introduction

The Cyc project was begun in the mid-80s by Doug Lenat1 to become an ontol-
ogy of “all commonsense knowledge.” This goal was expressed in various different
ways. It was often defined as all the knowledge that one would need in order to
understand encyclopedia articles. For this reason the name “Cyc” was derived from
“encyclopedia” and is pronounced that way. A related goal has been expressed that
the Cyc knowledge base should include all the general knowledge about the world
that a five-year old should know. A corollary of these goals is that the Cyc Language
(CycL) must be designed to be expressive enough to express any thought that may be
included in an encyclopedia and to reason about anything that can be so expressed
to obtain the unstated information implicit in the text. (Lenat, 1995)

These goals have driven the design of Cyc and CycL from the beginning. Not
only did the ontology have to be able to represent a vast array of types of things
but it had to be able to express simple and complex relations among them. The first
design of CycL was as a frame language, with named slots on class types, but as the
project grew, the utility of higher-order relations became apparent and CycL was
redesigned as a higher-order logical language in which statements are represented
by relations between and among things represented in the language. (Pittman and
Lenat, 1993)

CycL became a language using the LISP format in which statements could be
made about every term in the language. LISP allowed CycL to easily represent
higher-arity and variable-arity relations as well as the more common binary
relations. No reserved words were syntactically restricted from being arguments
to relations and being reasoned about. Every Cyc term had to be an instance of
something, so the term Thing was created as the universal class that included

D. Foxvog (B)
Digital Enterprise Research Institute (DERI) Ireland, Galway, Ireland
e-mail: doug.foxvog@deri.org
1The Cyc project started as part of the Microelectronics and Computer Technology Corporation
(MCC), spinning off in 1994 to become Cycorp.

259R. Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications,
DOI 10.1007/978-90-481-8847-5_12, C© Springer Science+Business Media B.V. 2010
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everything (including itself) as an instance and which included every other class as
a subclass2. (Cycorp, 2002)

12.1.1 The Form of the Language

Terms in CycL are either atomic or of the form, (<relation> <arg1> . . .

<argn>). Atomic terms are either variables (indicated with a leading “?”) or con-
stants (which may be terms defined in CycL, strings, or rational numbers). Relations
may be either predicates, which return a truth value, or functions, whose return type
should be defined. Constant atomic terms defined in CycL are normally written with
a leading “#$” except when long CycL expressions are being presented, in which
case the “#$” is usually omitted. Stylistically, the names of predicates start with
lower case letters, while all other terms use upper case. Function names generally
end with “Fn” (excepting units of measure) while context names generally end with
“Mt” (for “microtheory”).

12.1.2 Vocabulary

Classes in CycL are called #$Collections, while things that are not
classes (or sets) are called #$Individuals. #$Relation, partitioned into
#$Predicate and #$Function, is a subclass of #$Individual. Predicates
are normally fixed-arity (usually binary), but some are variable arity, allowing a
range of number of arguments. CycL does not have a separate structure for attributes
attached to classes, but uses domain-restricted #$BinaryPredicates instead.

(#$isa #$MKGandhi #$MaleHuman)

(#$genls #$MaleHuman #$Human)

(#$genls #$MaleHuman #$MaleAnimal)

Being an instance of a class is represented by the (code-supported) binary
predicate, #$isa, while the predicate, #$genls (short for “generalizations”),
is used to express the subclass relation3. Membership in a set is represented
by the binary predicate, #$elementOf. More complex logical relations, such
as #$implies, #$forAll, and #$thereExists, are also instances of
#$BinaryPredicate. Logical connectors such as #$and and #$or are
#$VariableArityPredicates, allowing an indefinite number of arguments.
The Cyc inference engine has special modules for each of these (and many more)
predicates.

Collections are similar to, but distinct from, sets (#$Set-Mathematical).
A set is defined by its members – membership in a set is fixed for all
time – while membership in a class, e.g. #$HumanChild, can be different at
different times. It is possible for two different collections, e.g. #$HomoSapiens

2See Section 12.2.1 below.
3A class is considered a subclass of itself.
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and #$GenusHomo, to have the exactly the same elements in some contexts,
while this cannot happen in the case of sets. Instances of a given collection all
have some more-or-less significant property in common, while the elements of a
given set may have nothing in common besides their membership in the set. Sets
in CycL are rarely identified by a constant, normally being either extensionally
specified by enumerating its elements, e.g (#$TheSet 3 4 5), or intensionally
specified by a defining property, e.g. (#$TheSetOf ?X (#$and (#$isa ?X
#$Integer) (#$greaterThan ?X 42))). [#$TheSet is a variable-arity
function, while #$TheSetOf is a binary function, both of which return an instance
of #$Set-Mathematical.]

12.1.3 OpenCyc and ResearchCyc

Cycorp has released an open source version of Cyc, called OpenCyc4, with hun-
dreds of thousands of terms, millions of assertions relating the terms to each other,
the Cyc inference engine and browser, and documentation for using the system.
ResearchCyc, providing programming tools, additional user interfaces, and a more
powerful natural language system is available to researchers under a more restrictive
licence (Fig. 12.1).

Fig. 12.1 Cyc upper ontology

4http://opencyc.org/
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12.2 Upper Ontology

There have been many efforts to describe an upper level ontology under which all
other ontologies can fall. Cyc needs to represent the concepts in each, if it is to
achieve its goal of being able express and reason about “anything”. Thus Cyc has
multiple ways of describing and subdividing the universal concept, #$Thing, at
the most general level.

Partitions of #$Thing include #$TemporalThing – #$Atemporal
Thing, #$SpatialThing – #$AspatialThing, #$Intangible –
#$PartiallyTangible, and #$SetOrCollection – #$Individual.
Although some of these classes are subclasses of others, e.g. #$Partially
Tangible is a subset of #$TemporalThing and #$SpatialThing while
#$SetOrCollection is a subclass of #$Intangible, intersections of other
of these classes bring more concepts into the upper ontology.

Each of these concepts is divided further. For example, #$TemporalThing
is partitioned into #$TimeInterval and #$TemporallyExistingThing,
which itself is divided into #$SomethingExisting and #$Situation – the
endurant and perdurant which some other upper ontologies have as their basic split.
#$CompositeTangible-AndIntangibleObject is defined as the set of
physical objects which have some non-physical, e.g. symbolic, aspects as well.
This includes anything representational, with writing, or used symbolically – even
if natural, such as a boundary river.

A key subclass of #$IntangibleIndividual is #$Relation, which is
partitioned into #$Predicate and #$Function. Relations have a defined num-
ber of arguments (called arity) which is normally fixed, but could be variable. The
individual arguments are restricted to being instances of a specified class and to
being subclasses of a specified class when appropriate. The result type of functions
is similarly defined. Because Cyc uses binary predicates instead of slots or attributes
attached to classes, the creation of pairs of binary predicates which differ merely in
their argument order (e.g. both hasParent and parentOf) is discouraged.

(#$isa #$biologicalMother #$BinaryPredicate)

(#$arg1Isa #$biologicalMother #$Animal)

(#$arg2Isa #$biologicalMother #$FemaleAnimal)

Numerous predicates and relations, especially those which would be covered by
reserved words in other logic languages, are supported by code in the Cyc infer-
ence engine. Argument restrictions for relations are defined through the use of
such code-supported relations. The binary predicate #$arg1Isa restricts the first
argument of a relation to being an instance of the collection which is the second
argument of #$arg1Isa. Assertions using the relation are rejected from being
put into the knowledge base (KB) if the first argument is not known to be such
an instance and such a conclusion will not be derived from rules. The predicate
#$arg2Genls similarly restricts the second argument to being a subcollection
of the specified collection and #$resultIsa / #$resultGenl makes any
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non-atomic term generated by a function to be an instance/subclass of a specified
collection [see example under Section 12.4 below]. Cyc is internally documented,
with the predicate #$comment used to describe each defined atomic term.

(#$isa #$relatives #$SymmetricBinaryPredicate)

(#$isa #$biologicalMother #$AsymmetricBinaryPredicate)

(#$genlPreds #$biologicalMother #$relatives)

(#$comment biologicalMother "A FamilyRelationSlot that

relates a given Animal to its female biological parent.

(biologicalMother KID FEMALE) means that FEMALE

is the female biological parent of KID. Cf. mother.")

Several binary predicate types are defined by code-supported logical fea-
tures. A binary predicate, e.g. #$relatives, is symmetric if (pred
?A ?B) implies (pred ?B ?A) and asymmetric if (pred ?A ?B) implies
(not (pred ?B ?A)), e.g. #$olderThan. A binary predicate, e.g.
#$greaterThanOrEqualTo, is reflexive if (pred ?A ?A) holds for all
permissible arguments and irreflexive if (not (pred ?A ?A)) does, e.g.
#$perpendicularObjects. Similar predicate types are transitive and anti-
transitive. #$genlPreds indicates that one predicate is “more general” than
another, i.e., its second argument holds as a predicate for a set of arguments in all
cases in which its first argument does.

(#$functionalInArgs #$biologicalMother 2)

#$functionalInArgs defines predicates as being “functional” in one or
more arguments. This means that for any particular way of fixing each of the pred-
icate’s other arguments, there will be at most one thing that, if taken as the nth
argument, would result in a true sentence. For example, #$biologicalMother
is functional in its second argument, as nothing has more than one biological mother.
Code support prevents statements with a different value for the functional argument
from being asserted or deduced.

Cyc formerly defined #$Attribute [think “attribute value”] as a key sub-
class of #$IntangibleIndividual, for the ranges of those binary predicates
which do not seem to be either classes or normal individuals, e.g. #$Color was a
subclass of #$Attribute and #$MaroonColor was an instance. Cycorp later
started restructuring instances of #$Attribute as classes of things possessing
those attribute values. Therefore, #$MaroonColor now represents the class of all
spatial things possessing that color. However, attribute values that can be specified
as scalar ranges, such as hardness have remained as individuals, resulting, e.g. in
#$HardAsARock being an individual, and not meaning the class of all objects
with the specified hardness.

Cyc uses #$isa both for being necessarily an instance of some class (such
as a person) and being an instance of a class (such as boy) in the current
context.
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12.2.1 Higher Order Classes

Because in Cyc, everything is an instance of several classes, the concept of
“instance” has not been made disjoint from classes. “Instance” is a distinction of the
language used for modelling, not one in the world being modelled. The distinction
that Cyc makes is between classes, called #$Collections, and things that cannot
be classes or sets, called #$Individuals. Sets (#$Set-Mathematical), as
described above, are little used.

Ontology languages normally distinguish types of objects (also called class, con-
cept, collection, etc.) from things that are not types (individuals, instances, etc.). An
issue that has often been recognized is that types of classes exist, which means that
instances of these meta-classes are themselves classes. Some systems address this
issue by disallowing meta-classes, some allow meta-classes without restriction, and
others do not distinguish between classes and individuals. In order to provide for
rigor in this field, an ontology of levels of meta-classes (#$CollectionType)
was created for the Cyc Project (Foxvog, 2005). [See Fig. 12.2.]

Classes are distinguished by their “order” – the number of iterations of
instantiations that are necessary in order to obtain individuals.

First-Order Collection: The meta-class of all subclasses of #$Individual.
Each instance of #$FirstOrderCollection is a class, each of whose
instances is an individual. This is the most common type of class, having
instances such as #$Person, #$Computer, and #$Ontology. The class,
#$Individual, is an instance of #$FirstOrderCollection since, by
definition, all of its instances are individuals.

Second-Order Collection: The meta-class of all subclasses of #$FirstOrder-
Collection. Each instance of #$SecondOrderCollection is a class, each
of whose instances is a first-order collection. Typical Second-Order classes include
#$CarBrand, #$AnimalSpecies, #$PersonTypeByOccupation, and

Individual

First-Order Class

Second-Order 

Third-Order

Fourth-Order

Meta-Class

Fixed-Order Class 

Varied-Order Class

Fig. 12.2 Instance-of
relations in meta-class
ontology
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#$USArmy-Rank. #$FirstOrderCollection is an instance of
#$SecondOrderCollection since, by definition, all of its instances are
first order.

Third-Order Collection: The meta-class of all subclasses of #$SecondOrder-
Collection. Each instance of #$ThirdOrderCollection is a class,
each of whose instances is a second-order collection. Typical Third-Order
classes include #$BiologicalTaxonType and #$MilitaryRankType.
#$SecondOrder-Collection is an instance of #$ThirdOrderCollec-
tion since, by definition, all of its instances are second order.

Fourth-Order Collection is the meta-class of all subclasses of #$ThirdOrder-
Collection. Higher order meta-classes could be similarly defined; however,
the utility of implementing such classes is questionable. The only fourth-
order class in OpenCyc (OpenCyc) is #$ThirdOrderCollection. Similarly,
#$FourthOrderCollection would likely become the only instance of Fifth-
Order Collection, and so on, ad infinitum.
#$Individual, #$FirstOrderCollection, #$SecondOrder

Collection, and #$ThirdOrderCollection, are mutually disjoint classes,
which each have the property that every one of their instances has the same order,
i.e. it takes a fixed number of iterations of instantiation to reach an Individual. Thus,
every instance of Individual is an Individual – this could be considered zero-order.
No instance of First-Order Collection is an Individual, but every instance of every
instance of it is. No instance or instance of an instance of Second-Order Collection
is an Individual, but every instance of an instance of an instance of it is. Likewise,
for Third- and Fourth-Order Collection.

Fixed-Order Collection is defined as the meta-class of all classes with
this property. #$FirstOrderCollection, #$SecondOrderCollection,
#$ThirdOrder-Collection, and #$FourthOrderCollection are
not only instances of #$FixedOrderCollection; they are subclasses
of it as well. #$Individual is an instance, but not a subclass of
#$FixedOrderCollection.

Not every class is a Fixed-Order Collection. #$FixedOrderCollection,
itself, has classes of different orders as instances. Thus, it is considered a varied
order collection. Varied-Order Collection is defined at the class of all classes which
(1) have instances of more than one order, (2) are instances of themselves, or (3)
have any instances of variable-order. Every class is therefore either fixed-order or
variable order, but not both.
#$VariedOrderCollection is an instance of both itself and

#$CollectionType. #$Collection, #$CollectionType, and the
universal class (#$Thing) are instances of #$VariedOrderCollection.
#$VariedOrderCollection is not a subclass of #$CollectionType
since some of its instances, e.g. #$Thing, have instances that are individuals as
well as instances that are classes.

Special modules in the inference engine reason about membership in collections
and are designed to block paradoxical reasoning that would naturally arise from
such a structure.
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12.3 Contexts

Two major problems with the concept of a global ontology, or an ontology upon
which everyone can build, are that different ontologies will disagree on facts, and
that most projects do not need the baggage of hundreds of thousands of terms which
are not applicable to their area of interest.

In order to address such issues, as well as to divide the growing ontology into
more manageable chunks, a system of contexts was designed. Just as there is a class
of which every other class is a subclass, a base context (#$BaseKB)5 is defined of
which every context is a subcontext. The Cyc term for the contexts which it reifies is
#$Microtheory (abbreviated “Mt”) – which is a subclass of #$Individual.

Below the base context, lies a directed acyclic graph (DAG) of microtheories.
CycL uses the transitive binary predicate #$genlMt to relate a microtheory to
more general microtheory, whose statements it (in effect) inherits.6 An individual
microtheory may have numerous direct #$genlMts as well as being the direct
#$genlMt of numerous other microtheories.

Although assertions are not copied to a microtheory from its #$genlMts, they
are just as accessible as assertions made in the microtheory. This means that adding
assertions to a microtheory will affect all of its “specMts”.7

12.3.1 Dimensions of Context Space

Contexts are not defined solely on the basis of topic. Although the basic terms being
used for two different purposes can be the same, the rules about how the things
represented by the terms interact, or the data expressed using that vocabulary are
often in conflict. A set of dimensions of conflict space were distinguished, and the
microtheory structure has been developed with these in mind (Lenat, 1998).

12.3.2 Vocabulary/Theory/Data Contexts

Microtheories have been distinguished into Vocabulary Microtheories which
define the general terms used for some topic, Theory Microtheories which express
rules about how the things represented by the vocabulary behave, and Data
Microtheories which provide information, using vocabulary and theories defined
in other microtheories, about events and individuals in some specific context. Data

5For the sake of efficiency and manageability, the #$BaseKB has been separated into a set of
mutually accessable contexts for the use of internal reasoning modules.
6A microtheory is considered a #$genlMt of itself. This is an exception to the genlMt graph
being a DAG.
7The term “spec” – short for “specialization” – is Cyc terminology for the inverse of “genl” – short
for “generalization”.
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microtheories can be considered to be knowledge bases, while vocabulary and
theory microtheories contain ontologies.

More than one theory microtheory may share the same vocabulary microtheory,
but provide different rules. For example, rules for taxes or business incorpora-
tion vary by jurisdiction, the properties of telephones are different now then they
were a decade ago, and physics reasoning is different for children, average adults,
engineers, and relativistic scientists.

Data microtheories may differ by vendor (the price of a book), by date (whether
Montenegro is an independent country), by location (the sun is directly north at
12:01 p.m. GMT, 6 November 2008), or by conceptual work (Oceania is at war
with Eurasia) although they share the same vocabulary (except for mt-specific
individuals) and rules.

Vocabulary microtheories are designed to have only other vocabulary microthe-
ories as #$genlMts; theory microtheories can have both vocabulary and theory
microtheories as #$genlMts; while data microtheories can have any of these three
types as #$genlMts. If two theory or data microtheories each have an associ-
ated vocabulary microtheory and a #$genlMt assertion is made between them, a
#$genlMt assertion is automatically concluded between their associated vocabu-
lary microtheories. [See Fig. 12.3] However, the restrictions on microtheory content
by microtheory type are not enforced by code.

Cyc-based projects are expected to create context-specific microtheories for
their specific use cases with appropriate general purpose mts attached as genlMts.
Project-specific data is added to these mts and queries are carried out in these
project-specific contexts – or in more specialized microtheories. Having such mts
inherit assertions from selected general-use mts (and transitively all their genlMts)
instead of placing new data in existing generic contexts prevents assertions made
for specific cases from interfering in unrelated contexts.

Fig. 12.3 Vocabulary and
theory microtheories

12.3.3 Spindles

Microtheory spindles have been created to deal with the situation in which some
topic can be broken down into a number of separate but similar topics. For example,
consider the case of geographical data microtheories. A general world geography



268 D. Foxvog

Fig. 12.4 Microtheory
spindle

knowledge base can contain basic information about the countries of the world, spe-
cific data microtheories for each country’s geographical details can have that context
as a #$genlMt, and collector microtheories can have all the country-specific
microtheories for a given region or alliance (or the whole world) as #$genlMts.
[See Fig. 12.4]

12.3.4 Problem Solving Contexts

Temporary contexts, called Problem Solving Contexts (PSC), can be set up for
asking and answering questions. Such contexts generally define a set of contexts to
use for answering the question, which are all defined as #$genlMts of the problem
solving context, so that statements that are true in any of the selected contexts are
(effectively) inherited (and thus true) in the PSC and reasoning has access to all such
assertions at the same time.

12.3.5 Hypothetical Contexts

A Hypothetical Context is a problem solving context in which some statements are
asserted to be true so that conclusions can be drawn from them. Such contexts may
be created by special tools and automatically deleted after the tasks are completed.
Both Problem Solving Contexts and the more specific HypotheticalContexts have
specialized code support.

12.3.6 Fictional Contexts

Some contexts are made up, or fictional. The statements in these contexts might
be true in a work of fiction or in some belief system, but are not considered true
outside that work or belief system. Describing these contexts as fictional aids in
reasoning about the contexts from external contexts and can prevent accidentally
creating a more specialized context in which both the external context and the one
that considers it fictional are inherited.
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One cannot label microtheories as fictional in the #$BaseKB since that assertion
would be inherited by the microtheory itself. Two belief system contexts could each
label the other fictional: e.g. if each believed that its god was the one true god, and
that the other belief system worshiped a false god.

12.3.7 UniversalVocabularyMt

The definition of terms in microtheories below the #$BaseKB led to problems in
reasoning since in contexts in which terms were not relevant, they were not defined.
A #$UniversalVocabularyMt was created to hold partial definitions of all
terms to obviate resultant problems in the inference engine.

The use of this microtheory is intended, for example, to prevent one ontologist
from using a term as an individual in one context and a second ontologist unknow-
ingly using it as a class in another. Violations of other disjointnesses such as between
first- and second-order classes or binary and ternary predicates are prevented.

A decision was made to place this microtheory, not in an area which the infer-
ence engine can privately check, but in a #genlMt loop with #$BaseKB, so that
everything that appears in it is true in every context, no matter how unrelated.

Some classes have been defined as being so basic that any assertion that some-
thing is an instance or subclass of them are automatically lifted from whatever
microtheory the assertion is made to the UniversalVocabularyMt. These are called
#$Atemporal-NecessarilyEssentialCollectionTypes or ANECTs.
However, if the term is defined to be an instance or subclass of a far narrower class in
a more specific context, the system does not determine the associated ANECTs that
should be stated in #$UniversalVocabularyMt, which can lead to reasoning
problems if no #$isas (or #$genls for classes) for the term are found there. This
has led to ontologists placing assertions in #$UniversalVocabularyMtwhich
are not true in all possible worlds.

12.4 Functions

The result of applying a function to a set of arguments is an instance of a class
specified by a #$resultIsa predicate, and if the result is a class, it is a
subclass of a class specified by a #$resultGenls predicate. The relationship
between the result of the function and its arguments is specified using the predicate
#$function-CorrespondingPredicate-Canonical.

Some Cyc functions have code support for evaluating the value of the
function term applied to its arguments, in which case they are called
#$EvaluatableFunctions. The result of evaluating the application of an
#$EvaluatableFunction to a set of arguments is a term calculated by code,
e.g. (#$PlusFn 1 2) results in the term ‘3’.

The result of applying a non-evaluable function to a set of arguments is a non-
atomic CycL term. Many non-evaluable Cyc functions are “reifiable”, meaning that
their use creates Non-Atomic Reified Terms (NARTs) which are indexed in the Cyc
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knowledge base similar to constants. #$MotherFn is a reifiable function defined
as follows:

(isa MotherFn UnaryFunction)

(isa MotherFn ReifiableFunction)

(arg1Isa MotherFn Animal)

(resultIsa MotherFn FemaleAnimal)

(functionCorrespondingPredicate-Canonical MotherFn

biologicalMother 2)

(comment MotherFn "This function maps animals to their

biological mothers. (MotherFn ANIMAL) is the biological

mother of ANIMAL.")

Thus, (#$MotherFn #$MKGandhi) would be a term in the Cyc KB which
represents a female such that (as implied by the fifth line above):

(biologicalMother MKGandhi (MotherFn MKGandhi)).

Instances of #$UnitOfMeasure and #$DateDenotingFunction are
types of non-evaluable functions for which reification is not deemed useful.
Their instances still create non-atomic CycL terms, such as (#$Meter 27) and
(#$YearFn 1984), but these are treated differently, e.g. not indexed, in the Cyc
knowledge base.

12.4.1 Prototypes

Cyc uses a function called #$The to express prototypes, greatly simplifying
expressions. The technique was developed for describing relations among body
parts in a prototype human (or other animal) enabling corresponding relations
to be concluded about specific humans. In the anatomical field, #$The may
only be applied to part types of which there are only one, i.e. instances of
#$UniqueAnatomicalPartType. (Lehmann and Foxvog, 1998)

For example, one can assert,

(pipeEndsAtCavity (The Aorta)

(The (LeftObjectOfPairFn VentricleOfHeart)))

in #$HumanPhysiologyMt, from which, given #$Aorta being an
instance of #$UniqueAnatomicalPartType and #$VentricleOfHeart
being an instance of #$SymmetricAnatomicalPartType (resulting in
(#$LeftObjectOfPairFn #$VentricleOfHeart) being an instance of
#$UniqueAnatomicalPartType), Cyc can conclude that any person’s aorta
is connected to that same person’s left ventricle:

(pipeEndsAtCavity (UniqueBodyPartFn MKGandhi Aorta)

(UniqueBodyPartFn MKGandhi

(LeftObjectOfPairFn VentricleOfHeart)))
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12.4.2 Skolemization

Skolemization is a technique of removing existential quantifiers from a formula,
replacing the existential term with a function of all the free terms. Cyc has a special
class of functions to perform this conversion called #$SkolemFunction, which
is a class of system-generated functions used to implement existential quantification.
Whenever a sentence that is headed by #$thereExists is asserted, the inference
engine creates a new instance of #$SkolemFunction and modifies the assertion
to use that function. For example, the rule

(implies

(isa ?ANIMAL Vertebrate)

(thereExists ?MOM

(mother ?ANIMAL ?MOM)))

is converted to

(implies

(and

(isa ?ANIMAL Vertebrate)

(termOfUnit ?MOM (SKF-123456 ?ANIMAL)))

(mother ?ANIMAL ?MOM)))

along with the definition of the Skolem Function.

12.5 Reasoning

The Cyc inference engine has a large number of specialized reasoning modules
in addition to general modules for handling IF-THEN implications. Some of the
publicly acknowledged general features of the inference engine are described in this
section.

12.5.1 Forward and Backward Chaining

Rules in Cyc are of the form (#$implies SENTENCE1 SENTENCE2) and are
declared as either forward or backward chaining. A forward chaining rule is con-
tinuously active such that whenever the inference engine is presented with (or con-
cludes) a sentence matching SENTENCE1, with all arguments bound, the conclusion
is made. For example, a forward-chaining rule on #$biologicalMother could
be used to conclude that a mother is the same species as the child:

(implies

(and

(biologicalMother ?KID ?MOM)

(isa ?KID ?SPECIES)
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(isa ?SPECIES BiologicalSpecies)

(isa ?MOM ?SPECIES))

A backward chaining rule would only activate when a request was made to
the inference engine that matched SENTENCE2. In this case, the inference engine
would try to prove SENTENCE1 with all variables that were bound in SENTENCE2
bound the same way in SENTENCE1.

12.5.2 Don’t Care Variables

Normally, any variables that appear in the antecedent of a rule would be expected
to appear in the consequent or multiple times in the antecedent. However, some-
times only the existence of something that fills a position in some relation is
needed to make the conclusion. Instead of requiring the rule to be written with
#$thereExists in the antecedent, Cyc permits the rule to be written with what
is called a “don’t care variable”, which occurs only once in a rule – in the header.
Such a variable is denoted by an initial “??”. For example:

(implies

(biologicalSons ?DAD ??SON)

(isa ?DAD Parent))

12.5.3 Rule Macro Predicates

As hundreds of thousands of rules were being asserted into Cyc, a large num-
ber of standard patterns appeared. As these were detected, special predicates were
designed to stand as macros for the rule patterns, code modules were written for the
inference engine to speed up reasoning, and the rules were replaced by the assertions
using these “rule macro predicates”. For example,

(interArgCondIsa1-2 anatomicalParts Vertebrate

Head-AnimalBodyPart Head-Vertebrate)

uses the rule macro predicate, #$interArgCondIsa1-2 to mean:

(implies

(and

(isa ?VERT Vertebrate)

(anatomicalParts ?VERT ?HEAD)

(isa ?HEAD Head-AnimalBodyPart)

(isa ?HEAD Head-Vertebrate)).

The equivalent rule is not asserted in the knowledge base, but the assertion in the
macro form is used far more efficiently for reasoning.

It turns out that the predicate for expressing the subclass relationship is a rule
macro predicate, since (genls ?A ?B) means (implies (isa ?I ?A)
(isa ?I ?B)).
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12.5.4 Monotonic vs. Default Reasoning

Each statement in a Cyc knowledge base is asserted to be either monotonically true
or default true. Conclusions derived solely from monotonically true statements are
also monotonically true. Conclusions based on at least one default true statement
are only default true. If defeasible reasoning is turned on, incompatible conclusions
may be returned in answer to a query, using statements that are default true, with
the querier being able to view the pro and con arguments. A monotonic conclusion
would negate any inconsistent default conclusions.

12.5.5 Exceptions to Rules

Cyc allows exceptions to be stated for default rules. Multiple exceptions may be
stated for the same rule. The forms are asserted as:

(exceptWhen STATEMENT RULE)

and

(exceptFor TERM SINGLE_VARIABLE_RULE).

The standard usage of #$exceptWhen is for STATEMENT to have one or more
variables which are present in RULE. For any bindings for these variables in which
STATEMENT is true the rule will not be considered. This form can also be used to
prevent a rule that is inherited from a more general microtheory from being consid-
ered in the microtheory in which the exception is stated. An example of the standard
usage (in #$Terrestrial-FrameOfReferenceMt) is:

(exceptWhen

(spatiallySubsumes ?GEOTHING NorthPoleOfEarth)

(implies

(isa ?GEOTHING GeographicalThing)

(northOf NorthPoleOfEarth ?GEOTHING)

The second exception predicate is used to express that a rule with a single vari-
able in it is not considered for the variable being bound to the specified term. For
example:

(exceptFor

Taiwan-RepublicOfChina

(implies

(isa ?X ChineseProvince)

(geopoliticalSubdivision China-PeoplesRepublic ?X)))

Statements asserted using these predicates are converted to more complex forms
using another predicate, #$abnormal, upon being asserted.
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12.6 Events

Events and static situations are represented in Cyc as temporal objects in their own
rights. This allows an unlimited number of things to be asserted (or concluded) about
the event, which would not be possible if the action were represented by a predicate
which related the various roles. Since this issue was brought up by philosopher
Donald Davison in a 1967 paper, modelling of events as individuals has been called
Davidsonian representation.

12.7 Conceptual Works

Another ontological issue that Cyc had to deal with was the representation of con-
ceptual works. For example, what is Romeo and Juliet by William Shakespeare? Is
it a class of things, whose instances include performances on stages, movies, pam-
phlets, books and sections of books, and readings given before audiences? Or is it a
text string? Or a context in which certain things are true? Does it have start and end
times?

Cycorp handled all of these concepts by developing a model of conceptual works.
A Conceptual Work is defined as an intangible artifact with a start time (when it
was created), possible physical instantiations or “embodiments” (not “instances”) in
objects and/or events, and associated data structure(s) and context(s). If a conceptual
work expresses a meaning it is considered to be a Propositional Conceptual Work
(PCW).

Conceptual works can be instantiated multiple times in Information Bearing
Things (IBTs) which can be physical objects or events. IBTs include physical
books, performances of a play, movie performances, the Mona Lisa hanging in the
Louvre, an image of the Mona Lisa on a computer screen, and a computer file on a
disc from which the image on the screen was generated.

Most conceptual works have associated Abstract Information Structures
(AISes), which are intangible conceptual structures of symbols (text strings, word
strings, symphonic scores, maps, pixels, . . .) with associated communications con-
ventions. The creator of the conceptual work defines the structure of the work,
although technically s/he does not create the structure. In some philosophical sense,
such symbol patterns have existed for all time – or at least since their included
symbols have been defined. The information in an AIS may be specified to dif-
ferent degrees (words, characters, characters in coding systems (e.g. ASCII vs.
UNICODE), font, color, size, . . .). AISes are individuals which can be instantiated
in physical objects or physical events (but such IBTs are not their “instances”).

An IBT can instantiate multiple AISes. For example, a spoken Serbo-Croatian
word instantiates both Latin and Cyrillic text strings, and the same bits in a computer
instantiate the binary string “1011”, octal “13”, decimal “11” and hex “B”.

Combinations of a single symbol string with different communication conven-
tions are different abstract information structures. For example, the string “11”
denotes a different AIS if the communication convention is binary, octal, decimal, or
hex, and the string “sin” denotes a different AIS in Spanish, English, and Swedish.
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A sibling concept to conceptual work is Game, which has many similar prop-
erties: instantiations, structures for the instantiations, creators, versions, etc. Game
and Conceptual Work are subsumed by the concept Devised Practice Or Work,
which has other subclasses such as Award Practice, as well.

12.8 Open/Closed World Assumption

The Cyc inference engine normally operates on an open-world assumption, conclud-
ing that a statement is false only if it can be proved false and making no conclusion
as to the truth of a statement that it can prove neither true nor false. Cyc also provides
ways to allow reasoning using a closed world assumption – that any (non-negated)
sentence that cannot be proved true is considered to be false. The most basic way to
do this is through the unary predicate #$knownSentence which means that the
sentence is trivially provable by the Cyc inference engine from sentences currently
accessible from the context in which it is asked. If #$knownSentence is not true
for a sentence in a given context, then it is false. #$knownSentence can be used
in a query or the antecedent to a rule. #$knownSentence can not be asserted
true or false for any sentence (because the unary predicate #$notAssertible
applies to it), it can only be concluded, and such a conclusion is not cached.

Several unary predicates permit a closed word assumption in a given con-
text regarding specific predicates or membership in a certain class. The predi-
cate #$complete-ExtentDecidable indicates that the inference engine can
determine the truth of any fully-bound sentence headed by that predicate. The
predicate #$completely-DecidableCollection indicates that Cyc can
determine if any given term is a member of a specified class. In both cases,
Cyc will conclude that matching sentences are false if it can not prove that they
are true. Narrower predicates, #$completely-AssertedCollection and
#$completeExtentAsserted, are used to indicate that all matching true
assertions are already present in the knowledge base, so that no backchaining on
rules is necessary to determine the truth of a matching assertion, merely lookup.
Such assertions are normally context dependent:

(completelyAssertedCollection BritishColony)

(completeExtentAsserted colonyOf)

(completeExtentDecidable colonialPowersFlag)

but sometimes they are true throughout the KB:

(completelyDecidableCollection Integer)

These predicates are code supported and context dependant.

12.9 Geopolitical Entities

One distinction that is sometimes important is that of geopolitical entities as organi-
zations that can take actions versus their territories, which are geographical regions.
The two concepts are tightly connected, but the physical region normally existed
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long before the country/ city/state whose territory it is. Actions are taken by the orga-
nization, not by the land mass. At one level Cyc maintains the distinction between
the two, using a function to refer to the territories of the geopolitical entities. Thus
one can say:

(bordersOn (TerritoryFn India)

(TerritoryFn Pakistan))

Cyc also has a context, #$DualistGeopoliticalMt, in which the distinc-
tion is blurred and the geopolitical entity is also a geographical region. Any context
which has this as a #$genlMt can also refer to the physical extent of the geopoliti-
cal entity by referring to that entity. In such a “dualist” context, the above statement
could be expressed:

(bordersOn India Pakistan).

12.10 Temporal Reasoning

Cyc provides several ways of performing temporal reasoning. By default, the tempo-
ral extent of a statement is that of the context in which it resides. The temporal extent
of a Cyc context is defined by its time interval (specified by #$mtTimeIndex) and
its temporal resolution (specified by #$mtTimeParameter). The time interval
may be either continuous or have temporal gaps and the resolution may be con-
tinuous (#$TimePoint), some coarser resolution (e.g. #$CalendarMinute),
or only for the specified time interval (#$Null-TimeInterval). For example,
if someone is talking for twenty minutes, they are not necessarily talking during
each second of that time, but they are during each minute in that period, so the
temporal resolution of a context holding such a statement would be greater than
#$CalendarSecond.

A statement with a different temporal extent than that of the context in
which it is asserted can be expressed using the predicate #$holdsIn or
#$holdsSometime-During to express the extent. For example, (holdsIn
(YearFn 1906) (residesInRegion MKGandhi Africa)) means that
Mahatma Gandhi lived in Africa throughout the whole year of 1906, while
(holdsSometimeDuring (DecadeFn 191) (residesInRegion
MKGandhi Africa)) means that he lived there during the first decade of the
Twentieth Century (1901–1910), possibly the whole decade.

Cyc has many more temporal predicates.

12.11 Natural Language Support

Cyc has a natural language system containing a lexicon and generation rules (Burns
and Davis, 1999). Words in Cyc are individuals (instances of #$LexicalWord)
with associated text strings, parts of speech, denotations, languages, and other
properties.
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Specializations of #$LexicalWord have been created for several languages,
but specializations for other languages are specified using the function #$WordIn-
LanguageFn to specify the appropriate specialization if it is not yet defined, e.g.
(isa Nyet-TheWord (WordInLanguageFn RussianLanguage)).

The Cyc inference engine has modules which generate derived forms of English
words given basic forms. The singular must be given for count nouns and the plural
form if the word is irregular, while a mass noun only has a single form. The infini-
tive must be given for a verb, and any irregular forms should be specified using
special predicates such as #$firstPersonSg-Past. Similarly, regular forms
are given for adverbs and adjectives, along with any irregular forms of comparatives
and superlatives. In any cases in which a non-standard derived form is not given for
an English word, the standard derived form can be generated or interpreted.

Denotations of word senses are described using the quaternary predicate
#$denotation followed by the word, the part of speech, the sense number
for that part of speech, and the meaning of that word sense. The word sense is
specified in a context for the appropriate language. The same Cyc lexical word
may have word senses for different parts of speech. For example, the definition
of #$Boot-TheWord would include:

In GeneralEnglishMt

(isa Boot-TheWord EnglishWord)

(infinitive Boot-TheWord "boot")

(singular Boot-TheWord "boot")

(denotation Boot-TheWord Verb 0 Kicking)

(denotation Boot-TheWord Verb 1 BootingAComputer)

(denotation Boot-TheWord CountNoun 0 Boot-Footwear)

In BritishEnglishMt

(denotation Boot-TheWord CountNoun 1 TrunkOfCar)

Many short phrases act as words and are provided denotations in
Cyc using predicates similar to #$denotation: #$compoundString,
#$headMedialString, and #$multiWordString, (depending on whether
the head word is at the beginning, middle, or end of the phrase).

Templates attached to predicates are used to generate sentences from assertions
using those predicates. Multiple templates can be assigned to a single predicate.

Functional Cyc terms (such as (#$MotherFn #$MKGandhi)) can have lexi-
cal assertions automatically concluded from forward rules declared on the function.
For example,

(implies

(and

(termOfUnit ?MOM (MotherFn ?KID))

(fullName ?KID ?NAME))

(headMedialString (TheList "the") Mother-TheWord

(TheList "of" ?NAME) ProperNoun ?MOM))

Allows the conclusion that (#$MotherFn #$MKGandhi) can be written in
English as “the mother of Mahatma Gandhi’’.
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12.12 Cyc and the Semantic Web

In order to allow the Cyc ontology to be used on the Semantic Web, Universal
Resource Identifiers (URIs) have been specified for each atomic Cyc term. The
form of the URI is http://sw.cyc.com/2006/07/27/cyc/#<term>. Functionally defined
terms (NARTs) are not provided URIs.

12.13 Summary

In summary, Cyc provides a broad common-sense ontology, a higher-order language
for defining and making assertions using the ontology, and an inference engine
for reasoning over such a knowledge base. The inference engine provides subclass
reasoning, deduction according to rules, and numerous special reasoning modules.
Portions of the Cyc ontology may be extracted and reused in other projects without
the inclusion of the vast majority of the Cyc ontology.
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Chapter 13
Ontological Foundations of DOLCE

Stefano Borgo and Claudio Masolo

13.1 Introduction

DOLCE, the Descriptive Ontology for Linguistic and Cognitive Engineering (Masolo
et al., 2003), is a foundational ontology developed embracing a pluralist perspective:
there cannot be a unique standard or universal ontology for knowledge representa-
tion. Once it is accepted that the so-called “monolithic approach” is unrealistic, it
becomes clear that the different foundational ontologies must be mutually trans-
parent by making explicit their ontological stands and formal constraints: this is
necessary to make ontology interaction possible and reliable. Roughly, it is expected
that an ontology is, on the one hand, philosophically well founded (by adopting a
clear ontological perspective) and, on the other hand, that it provides the informa-
tion for its correct application and use (for instance, by describing explicitly the
basic assumptions and the formal constraints on which it relies). A consequence
of this view is that, whenever a foundational ontology does not make an explicit
commitment with respect to an ontological topic, it is assumed that the ontology is
consistent with alternative ontological positions in that topic (in some cases, it may
even allow coexistence of these via techniques like parametrization). This general
view is quite demanding and requires a careful analysis of the ontology content and
structure; DOLCE has been one of the first ontologies explicitly built to follow (and
exemplify) this approach.

Regarding the content of the ontology, the aim of DOLCE is to capture the
intuitive and cognitive bias underlying common-sense while recognizing standard
considerations and examples of linguistic nature. DOLCE does not commit to a
strong referentialist metaphysics (it does not make claims on the intrinsic nature
of the world) and does not take a scientific perspective (it is not an ontology of, say,
physics or of social sciences). Rather, it looks at reality from the mesoscopic and
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conceptual level aiming at a formal description of a particular, yet fairly natural,
conceptualization of the world.

Technically, DOLCE is the result of a careful selection of constraints (prin-
ciples, primitives, axioms, definitions, and theorems) expressed in a rich logical
language, namely first-order logic, in order to guarantee expressiveness, precision,
interoperability, and simplicity of use. These claims are sustained by the accompa-
nying documentation that provides information on the ontological choices and the
motivations for both the structure and the formalization of DOLCE.

Due to the introductory nature of this paper (and the limited space available),
this work describes and formalizes only the most general categories of the DOLCE

ontology. We advise the reader that what is presented here departs in some aspects
from the original DOLCE (Masolo et al., 2003): indeed in these pages we actually
discuss a new and improved version of the DOLCE kernel that we call DOLCE-CORE

(Borgo and Masolo, 2009).

13.2 A Bit of History

DOLCE is part of the WonderWeb project1. The aim of this project is to develop
the infrastructure required for the large-scale deployment of ontologies as the
foundation for the Semantic Web. On the one hand, this goal involves the estab-
lishment of a Web standard ontology language and related ontological engineering
technology, on the other the development of a library of foundational ontologies
reflecting different ontological choices. DOLCE, which came out in 2002, is one
of the ontologies included in the WonderWeb library and, at the time of writing,
it is also the most developed. It has been constructed as an ontology of particulars
with a clear cognitive bias: the categories have been explicitly characterized as
“cognitive artifacts ultimately depending on human perception, cultural imprints
and social conventions” (Masolo et al., 2003, p. 13). So far the ontology has not
undergone changes2 while extensions have been proposed to cover more closely
some application domains. Over the years, DOLCE has been tested in several
projects ranging over a variety of areas as manufacturing, business transaction,
insurance services, biomedicine, multimedia, social interaction, linguistics, and the
Semantic Web at large.3

The real use of the ontology in application projects is increased by the alignment
with WordNet (Gangemi et al., 2003) which provided a basis to study the relation-
ship between ontologies and linguistic resources (Prevot et al., 2005). The ontology
is publicly distributed in several formats4 like first-order logic FOL (including

1http://wonderweb.semanticweb.org
2The version we present here can be considered as the first proposal to update the ontology and it
comes after almost 6 years of experience in applying it.
3See http://www.loa-cnr.it/DOLCE.html for a list of institution and projects that are using or have
expressed interest in the DOLCE ontology.
4The different versions of DOLCE can be downloaded from http://www.loa-cnr.it/DOLCE.html.
The main version is in first-order logic. Versions in other languages have been produced approx-
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KIF), OWL, DAML+OIL, LOOM, and RDFS. It is also available in the Common
Algebraic Specification Language,5 CASL, via the Hets extension6 which makes
available theorem provers and graphical devices.

13.3 Ontological vs. Conceptual Level

To understand the DOLCE view, we should begin with the distinction between onto-
logical entities and conceptual entities. Entities in the first group exist in the “real”
world independently of our mind. The latter group comprises entities that are the
result of conceptual processes (typically over ontological entities). Generally speak-
ing, this distinction is important to understand the different modeling choices on
which theories rely: for example, event theories of time build intervals and instants
of time from temporal relationships between events. That is, in these theories inter-
vals and instants (times in general) are taken to be conceptual entities while events
are ontological entities.

Technically, a disagreement on the ontological-conceptual classification of some
type of entity indicates an inhomogeneity (or, better, heterogeneity) among theo-
ries. The usual (strong) reading of Quine’s principle “to be is to be the value of a
variable” highlights a sharp separation between ontological and conceptual entities
with the consequence that, for instance, times should be banned from the domain
of quantification whenever they are conceptually constructed from events. Clearly,
it is not possible to do justice of common-sense language about time with such a
position where times are expunged from the formal theory.

In order to make possible the comparison (and perhaps the interaction) of hetero-
geneous ontological options at the syntactic level within a unified formal framework
(namely, within FOL), we adopt a soft reading of the Quinean principle and assume
that entities in the domain of quantification can be of ontological or of conceptual
nature. That is, a claim of type “∃xϕ” in the formal ontology is not necessarily
addressing the ontological/conceptual status of the entities satisfying ϕ. In this way
one can include, say, both events and times in the domain of quantification without
committing to them ontologically. It is then possible to formally relate these kinds
of entities within the theory itself. Furthermore, note that this choice allows us to
avoid the problems of reductionism which are particularly critical in foundational
ontologies. Indeed, as Heil notices:

How, for instance, could we hope to re-express truths about the global political con-
sequences of a decline in the GNP of Eastern Europe in terms of interactions among

imating the content of the FOL version by taking into account the different expressive powers of
the other languages.
5http://www.brics.dk/Projects/CoFI/CASL.html
6From http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/index_e
.htm: Hets is a parsing, static analysis and proof management tool combining various tools for
different specification languages.
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fundamental particles? Even if such a reduction were possible, however, it would be self-
defeating. Important higher-level patterns and relations are invisible to physics. (Heil, 2005,
p.31)

13.4 Properties

Once one has established how to consider entities in the domain of the ontology, she
has to decide how to describe (and thus differentiate) entities, i.e., how to deal with
properties. The nature of properties,7 the explanation of what it means that an entity
has a property, and, more specifically, of how different entities can have the same
property, have been widely discussed and investigated, see Armstrong (1989), Loux
(1976), and Mellor and Oliver (1997) for exhaustive surveys. Moreover, persisting
entities (i.e. entities that exist at different times) can change through time by having
different properties at different times: a may have property F (say, “being red”)
at time t1 and an incompatible property G (say, “being green”) at t2. The nature
of time and the way entities persist and change through time are topics central to
foundational ontology and highly debated in the literature. An introduction to these
debates is out of the scope of this paper, we refer the interested reader to Sider
(2001) for an interesting presentation.

Informally, we use the term individual to refer to entities that cannot have
instances, that is, entities that cannot be predicated of others. For example, Aristotle,
the Tour Eiffel and the Mars planet are individuals. On the contrary, the term prop-
erty denotes entities that can have instances, i.e., entities that qualify other entities,
e.g. Red (the color), Person (the kind), Fiat Panda (the car type).

DOLCE-CORE provides three different options to represent properties and tem-
porary properties. The first option consists in the introduction of an extensional
predicate as in the standard technique for the formalization of categories and prim-
itives. In this option, to model temporal change one uses a binary predicate with a
temporal parameter as in expression F(a, t); here F is a predicate reserved for the
given property, a an individual to which the property applies, t a time and expression
F(a, t) states that a has property F at t.8 To be more precise, since we aim at a wide-
ranging view we read formulas of this form as done in Merricks (1994): a exists at t
and it has the property F at t (i.e., when t is/was/will be present). The change from a
property to one incompatible with it (as in changing colors) is then neutrally repre-
sented by writing F(a, t1) ∧ G(a, t2). Less neutral interpretations of formula F(a, t)
are possible, we will see this later. Note that with this choice one cannot explicate
whether the property is related to contextual or social constructions. The idea is
that predicates are reserved to model the basic conceptualization of the world that
the user takes for granted. Summing up, this option is to be preferred for static and
context-independent properties.

7Here we discuss the case of properties only. Relations are treated analogously.
8This solution allows to represent dynamics in the properties but it introduces a series of problems
when considering roles, see Steimann (2000).
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The second option consists in reifying properties, that is, in associating them to
entities (here called concepts) that are included in the domain of quantification. In
order to deal with concepts (and to relate concepts to an entity according to the
properties the latter has), a possibly intensional “instance-of” relation, called clas-
sification, is introduced in the ontology. The idea is to use concepts to represent
properties whose intensional, contextual, or dynamic aspects are deemed important:
“being a student”, “being a catalyst”, “being money”. As we will see, cf. (A10),
concepts in DOLCE-CORE are entities in time, they are created, can be destroyed,
etc. We proceed along the lines of Masolo et al. (2004) that introduces concepts to
represent roles9 in terms of relationships among different entities. The properties
that are best captured in this way are anti-rigid (Guarino and Welty, 2004), that is,
those that are not essential to any of their instances. Roles provide a clear example:
one (a person) may play a role (student) for a limited time, perhaps resume it in
different periods, and yet she (the person) is not ontologically altered by having that
role or else. Furthermore, different entities can play exactly the same role, perhaps
at the same time, and a single entity can play several roles contemporarily.

The third option relies on the notions of individual quality, quality-type and
quality-space. Similarly to concepts, with this option one can characterize the
intensional, temporal, and contextual dimensions of properties. The novelty is
that in this case, as we explain below, one can model also the interconnection
among the way different individuals manifest a property: the quality-types isolate
properties that can be meaningfully compared (like colors, weights, smells, temper-
atures, etc.) and quality-spaces (spaces for short) provide different ways to evaluate
properties.

For each property of an individual, there is a correspondent individual quality
(quality for short) that existentially depends on the individual itself. The quality
inheres in the individual and models the specific way in which that individual has
that property. The color of my car depends on my car and it is necessarily different
from the color of my phone (that depends on my phone) even though both are the
same shade of red: indeed the way my car is red is different from the way my
phone is red. In this view, we say that my car and my phone have the same color
because their individual qualities exactly resemble each other (individual qualities
of different entities are necessarily distinct).

Properties can be more or less specific, compare “being scarlet” and “being
red”. In the philosophical tradition, often only the more specific properties (aka
basic properties) are assumed to correspond to truly ontological properties. In some
approaches (Armstrong, 1997). Johansson (2000) even general properties (univer-
sals) are counted as ontological thus including properties like “being colored”,
“being shaped” and the like. The idea is that these universals need to exist in order to
conceive, e.g., the functional laws of physics (Armstrong, 1997). Johansson (2000)

9Differently from that approach, here we do not rely on logical definitions for concepts, instead
the intensional aspect is (partially) characterized by explicitly stating when concepts are different.
Reviews of this topic that cover a variety of perspectives are in Steiman, (2000), Masolo et al.
(2004) and Loebe (2007).



284 S. Borgo and C. Masolo

isolates these properties, which characterize what we call the quality types, in terms
of maximal incompatibility and maximal comparability: (i) each entity that has a
quality type F must have just one basic property that is a specification of F, and
(ii) all the basic properties that are specifications of F are qualitatively compara-
ble. Qualities that share a basic property are exactly similar, while qualities that
share a non-basic property are only inexactly similar in the sense that they resemble
each other but only up to a degree. In applications, a variety of degrees of resem-
blance are empirically determined (due to species preferences, culture, available
information, adopted measurement instruments or methods etc). From an empirical,
applicative, and cognitive perspective, we need to recognize that properties can be
arranged in different taxonomies each motivated by particular resemblance relations
whose interest is motivated by needs in some domain or application. Furthermore,
sometimes properties are structured in complex ways: complex topological or geo-
metrical relations on properties are common like in the case of the color’s splinter
(Gärdenfors, 2000).

The use of spaces in DOLCE as complex structures of properties is inspired by
Gärdenfors (2000). In this view, it is natural to think that quality types partition
the individual qualities and that each quality type is associated to one or more
spaces (motivated by culture, instruments of investigation, application concerns etc.)
Therefore while a quality type collects the qualities that can be compared (one can
reserve a quality type for color, one for smell, one for temperature etc.), quality
spaces provide a way for classifying individual qualities that are in the same quality
type (a variety of color classifications are used in physics, manufacturing, fashion
etc., each of these isolates a different quality space).

As clear from the examples, some spaces are motivated by applications. In par-
ticular, spaces may rely on relative notions of resemblance: instruments present
different sensitivities and each distinguishes aspects of entities only up to some
granularity. This fact allows to order groups of spaces according to a notion of
granularity (one can even postulate the existence of a space of finest granularity that
recognizes all ontologically possible distinctions). In sum, spaces provide a way to
make room for “subjective” (context dependent, qualitative, etc.) points of view on
qualities: a quality type for color can provide the whole color spectrum, another a
rough distinction in warm-cold colors, a third may discriminate by looking at bright-
ness only etc. Note that spaces can be combined to model complex properties, i.e.,
properties seen as the result of interaction of other properties (the latter are then
considered more basic, in a sense). This choice is often preferred when modeling
properties like velocity, density and force but, as we have seen, it can be used also
to structure basic properties like color.

Finally, changes in individual qualities are explained by changes in their space
locations: the fact that my phone changes color is represented by the fact that
over time the individual color-quality of my phone changes location in the color-
space. Since the qualities of an entity exist whenever the entity exists, this third
modeling option is to be considered only for properties that are necessary to
an entity. Typical examples for physical objects, beside color, are mass and
shape.
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13.5 Basic Categories

DOLCE-CORE takes into account only entities that exist in time called temporal par-
ticulars. With respect to the original DOLCE neither abstract entities nor abstract
qualities are considered. Our subjective perspective on spaces and the consequent
idea that spaces may be created, adopted, abandoned, etc. induces us to introduce
regions in time. This is different from the original DOLCE where regions are consid-
ered to be abstract entities. However, DOLCE abstract regions can be “simulated” in
DOLCE-CORE by means of regions that exist at all times, i.e. regions that are neither
created nor abandoned. Following Masolo et al. (2004), a similar argument holds
for concepts (not considered in the original DOLCE) which therefore exist in time as
well. Indeed, honestly, it is yet unclear to us which of the abstract or the temporal
view is more appropriate for a general (and fairly comprehensive) ontology.

DOLCE-CORE partitions temporal-particulars (PTt) (thereafter simply particu-
lars) into objects (O), events (E), individual qualities (Q), regions (R), concepts (C),
and arbitrary sums (AS). All these categories are rigid: an entity cannot change
from one category to another over time. Note that the categories O (object) and
E (event) correspond to the DOLCE’s categories ED (endurant) and PD (perdu-
rant), respectively. This change in teminology is motivated by the observations in
Section 13.11.

Individual qualities are themselves partioned into quality types (Qi). To each
quality type Qi are associated one or more spaces (Sij), to the result that individ-
ual qualities in Qi have locations in (i.e. they are located in regions belonging to)
the associated spaces Sij. Since we impose that the spaces are disjoint, regions are
themselves partitioned into the spaces Sij. For the sake of simplicity, we here con-
sider a unique space T for (regions of) times. All these statements are enforced in
the system by logical axioms although we do not report them here.

13.6 Parthood

Although mereology, the theory of parthood, is nowadays mostly used in modeling
the spatial or spatio-temporal domain, the theory is not limited to this; it applies
equally well to entities that are only in time (like, for instance, word meanings,
beliefs, desires, societies) or that are neither in space nor in time. Indeed, mereology
was introduced by Lesniewski (1991) as an alternative to set theory (the latter is
based on cognitively unsatisfactory notions like the empty set and the distinction
between urelements and sets) while maintaining the same level of generality.

Since the usefulness of a foundational ontology relies on the balance between
ontological constraints and freedom, it is advisable to start with an ontologically
weak theory and add (carefully and systematically) all the needed constraints. This
approach suggests that the weak ontological commitment of mereology (at least
when compared to set-theory) together with its cognitive acceptability is providing
an acceptable basis for DOLCE-CORE.
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Some authors tend to identify mereology with spatio-temporal inclusion. If it is
true that spatio-temporally extended entities that are one part of the other are also
spatio-temporally coincident, the vice versa does not hold in general: it is possi-
ble to maintain in mereology that the clay constituting a statue and the statue itself
are not one part of the other although they are spatio-temporally coincident enti-
ties (see Rea (1996) for a discussion of this topic). In particular, DOLCE-CORE

carefully distinguishes spatio-temporal inclusion from formal parthood. Indeed,
DOLCE-CORE adopts the axioms of extensional mereology, namely (A1)–(A4), and
apply them to all entities in the domain. Note also that the existence of the sum of
two entities is not generally enforced: this choice depends on the entities one has
in the domain (which, in turn, depends on the use one wants to do of the ontol-
ogy). In short, the user of the ontology is free to impose existence of sum as a
further constraint, to accept it only restricted to some categories or even to reject it
in general.

In DOLCE-CORE, parthood (P) is defined on the whole domain, P(x, y) stands for
“x is part of y”.

D1 O(x, y) � ∃z(P(z, x) ∧ P(z, y)) ( x and y overlap)
D2 SUM(z, x, y) � ∀w(O(w, z) (z is the mereological sum of x and y)

↔ (O(w, x) ∨ O(w, y)))
A1 P(x, x) (reflexivity)
A2 P(x, y) ∧ P(y, z) → P(x, z) (transitivity)
A3 P(x, y) ∧ P(y, x) → x = y (antisymmetry)
A4 ¬P(x, y) → ∃z(P(z, x) ∧ ¬O(z, y)) (extensionality)
A5 If φ is O, E, Qi, Sjk, or C,: (dissectivity)

φ(y) ∧ P(x, y) → φ(x)
A6 If φ is O, E, Qi, Sjk, or C: (additivity)

φ(x) ∧ φ(y) ∧ SUM(z, x, y) → φ(z)

Axiom (A4) states that if x is not part of y, then there is at least a part of x that
does not overlap y. Axiom (A5) states that elements of a category have only parts
that belong to the same category (closure under parthood) while axiom (A6) states
that summing elements of a category one obtains an element in the same category
(closure under sum).

13.7 Time

An ontology that aims at wide applicability has to model time. Furthermore, among
the entities in the domain of quantification, it has to distinguish those that exist
in time and, for these, when they exist. The expression PRE(x, t) in DOLCE-CORE

stands for “x is present at t” where the second argument t is a time. Times form the
special class T in the ontology but this is done with commitment to neither a specific
kind of times (points vs. intervals) nor a specific structure of time (dense vs. discrete,
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linear vs. branching, etc.). Also, because of our weak reading of the existential quan-
tifier, times in DOLCE-CORE may be considered full-fledged ontological entities or
simply conceptual entities. The latter case is illustrated, for instance, by the con-
struction of times from events (Kamp, 1979), a construction that can be adopted in
this ontology.

The structure of DOLCE-CORE makes times and PRE compatible with both a
substantialist position (the Newtonian view that time is absolute, a container-like
manifold) and a relativist position (the Leibnizianian view that time is conceptu-
ally constructed from events). This lack of commitment is important since there
are alternative ways to model times depending on the application interests and the
temporal information one wants to represent. E.g., being present at a time can be
reduced to being simultaneous with (being before, being after) some other entity
(Simons, 1991), or to being located at one specific region in a temporal quality
space (Masolo et al., 2004). In addition, note that we are not distinguishing differ-
ent ways of being in time like “existing in time” vs. “occurring in time” (related
to the distinction objects vs. events discussed in Section 13.11) or “being wholly
present” vs. “being partially present” (see the distinction endurants vs. perdurants in
Section 13.8).

In short, PRE(x, t) is a minimal representation device that is needed just to iden-
tify the entities that are in time and that is neutral with respect to the different
ontological commitments on time, existence of events, temporal relations, theories
of properties, etc. Due to the limited space, we do not enter into further details on
time (for instance, on the additional constraints one can add to commit to one or the
other position). A few axioms of general interest are10: x is present at t only if t is
a time (A7) and being present is dissective and additive over t (A8) and (A9). Note
that (A8) characterizes PRE(x, t) as “x is present at the whole t”, i.e. it is not possible
to find a sub-time of t at which x is not present.

A7 PRE(x, t) → T(t)
A8 PRE(x, t) ∧ P(t′, t) → PRE(x, t′)
A9 PRE(x, t′) ∧ PRE(x, t′′) ∧ SUM(t, t′, t′′) → PRE(x, t)

Since, as stated in Section 13.5, in this paper we limit our discussion to the
DOLCE-CORE fragment, it happens that all the entities here considered exist in time,
that is

A10 PTt(x) → ∃t(PRE(x, t))
(all entities of the DOLCE-CORE fragment exist in time)

Of course, not all the entities in the general DOLCE ontology exist in time. In this
case, it is enough to consider a new “top” category that includes both temporal and
abstract particulars.

10Given the assumption of having just one time-space T, the constraint T(t) → PRE(t, t) can be
added without any additional restriction (see also axiom (A45)).
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13.8 Temporary Parthood

DOLCE-CORE adopts a temporary extensional mereology, also denoted by P, which
is based on axioms (A12)-(A15), i.e., those of extensional mereology (Section 13.6)
enriched with an extra temporal argument. Further mereological aspects are also
enforced (see below the constraints for time regular relations). Expression P(x, y, t)
stands for “x is part of y at time t.”

D3 O(x, y, t) � ∃z(P(z, x, t) ∧ P(z, y, t)) (x and y overlapat time t)

A11 P(x, y, t) → PRE(x, t) ∧ PRE(y, t) (parthood implies being present)

A12 PRE(x, t) → P(x, x, t) (temporary reflexivity)

A13 P(x, y, t) ∧ P(y, z, t) → P(x, z, t) (temporary transitivity)

A14 PRE(x, t) ∧ PRE(y, t)∧ (temporary extensionality)

¬P(x, y, t) → ∃z(P(z, x, t) ∧ ¬O(z, y, t))

A15 If φ is O, E, Qi, Sjk or C: φ(y) ∧ P(x, y, t) → φ(x)(temporary dissectivity)

For standard parthood we stated axiom (A3) so that entities indistinguishable
with respect to parthood are identical. This claim does not hold when temporary
parthood is involved. Temporal coincidence (D4) provides a suitable form of iden-
tification: two entities x and y that are temporary coincident at time t, formally
CC(x, y, t), are indistinguishable relatively to time t but can still be different in gen-
eral.11 If CC(x, y, t), then all the properties of x at t are also properties of y at t and
vice versa.

For properties that are formalized via concepts or qualities, the constraint is
explicitly introduced by the substitutivity axioms. In the case of the primitive rela-
tions of classification and location (that we will introduce later) an axiom of the
form (SB) (given below) is enough, while in the case of the inherence relation,
axioms (A25) and (A26) do the work. Note however that from these axioms no con-
straint follows on properties of x and y at a time different from t nor on properties
represented by means of additional predicates introduced by the user.

Axiom (A16) states that, for entities in time, parthood simpliciter can be defined
on the basis of temporary parthood. The opposite is true only if one commits to
the existence of temporal parts (at every time of existence), an option compatible
with both DOLCE and DOLCE-CORE but that is not enforced. This means that the
axioms for temporary parthood are compatible with both the endurantist and per-
durantist views of persistence through time. Assuming that x and y persist through
time, endurantists read the formula P(x, y, t) as “x and y are both wholly present at
t and x is part of y”, while perdurantists read that formula as “the temporal part of
x at t is part of the temporal part of y at t”. Therefore, perdurantists need to assume
the existence of x and y as well as that of the temporal parts of x and y.

11From a perdurantist perspective (see Section 13.11) where entities are considered as four-
dimensional “worms”, this simply means that two possibly different four-dimensional worms
(x and y) have the same temporal slice at t.
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D4 CC(x, y, t) � P(x, y, t) ∧ P(y, x, t) (x, y coincide at t)
D5 CP(x, y) � ∃t(PRE(x, t)) ∧ ∀t(PRE(x, t) → P(x, y, t)) (x is a constant part of y)
A16 ∃t(PRE(x, t)) → (CP(x, y) ↔ P(x, y))

(for entities in time, “constant part” and “parthood” are equivalent)

Temporary parthood presents three main novelties with respect to the correspond-
ing relationship of DOLCE: (i) it is defined on all the particulars that are in time;
(ii) the existence of sums is not guaranteed; (iii) (A16) is new (in DOLCE it was
considered as a possible extension).

Let us say that a relation R is time regular whenever it satisfies the following:

(DS) R(x, y, t) ∧ P(t′, t) → R(x, y, t′) (dissectivity)
(AD) R(x, y, t′) ∧ R(x, y, t′′) ∧ SUM(t, t′, t′′) → R(x, y, t) (additivity)
(SB) R(x, y, t) ∧ CC(x′, x, t) ∧ CC(y′, y, t) → R(x′, y′, t) (substitutivity)

We can rephrase these properties as follows: if the relation holds at a time, it
holds at any sub-time; if the relation holds at two times, then it holds also at the
time spanning the two; if a relation holds at t for two entities, then it holds for any
two entities temporally coincident at t with them. These properties are collected here
since they characterize several relations in DOLCE-CORE. In particular, we conclude
our partial presentation of temporary parthood by stating that this relation is time
regular, that is, it satisfies all the above constraints.

13.9 Concepts

The formalization of properties as extensional predicates (the first option of Section
13.4) is straightforward and requires no new formal element. Instead, the second
option we considered involves two notions which are not in the original version of
DOLCE: the category of concepts C and the relation of classification CF. CF(x, y, t)
stands for “x classifies y at time t” and is characterized in DOLCE-CORE as a time
regular relation that satisfies

A17 CF(x, y, t) → C(x)
A18 CF(x, y, t) → PRE(y, t)

In addition we require that concepts are mereologically constant, i.e., with respect
to parthood they do not change over time:

A19 C(x) ∧ PRE(x, t) ∧ PRE(x, t′) → ∀y(P(y, x, t) ↔ P(y, x, t′))

13.10 Qualities and Locations

The third option to formally represent properties is via individual qualities.
Each individual quality, say “the color of my car” or “the weight of John”, and

its host are in a special relationship called inheritance. Formally, it is expressed
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by expressions of form I(x, y), whose intended reading is “the individual quality x
inheres in the entity y”.12 This relationship binds a specific bearer as shown by (A21)
while (A22) says that each quality existentially depends on the entity that bears it; in
the previous examples the bearers are my car and John, respectively. Furthermore,
from axiom (A23) qualities exist during the whole life of their bearers.13

We anticipated that individual qualities are grouped into quality types, say Qi is
the color-quality type, Qj the weight-quality type etc. These constraints are simple
and we do not report them explicitly except for axiom (A24) according to which
an entity can have at most one individual quality for each specific quality type.
Axioms (A25) and (A26) say that if two particulars coincide at t then they need to
have qualities of the same type and these qualities also coincide at t. In other terms,
entities coincident at t must have qualities that are indistinguishable at t. Axiom
(A27) says that the sum of qualities of the same type that inhere in two objects
inheres in the sum of the objects (provided these sums exist).

A20 I(x, y) → Q(x)
A21 I(x, y) ∧ I(x, y′) → y = y′
A22 Q(x) → ∃y(I(x, y))
A23 I(x, y) → ∀t(PRE(x, t) ↔ PRE(y, t))
A24 I(x, y) ∧ I(x′, y) ∧ Qi(x) ∧ Qi(x′) → x = x′
A25 CC(x, y, t) → (∃z(I(z, x) ∧ Qi(z)) ↔ ∃z′(I(z′, y) ∧ Qi(z′)))
A26 CC(x, y, t) ∧ I(z, x) ∧ I(z′, y) ∧ Qi(z) ∧ Qi(z′) → CC(z, z′, t)
A27 I(x, y) ∧ I(v, w) ∧ Qi(x) ∧ Qi(v) ∧ SUM(z, x, v) ∧ SUM(s, y, w) → I(z, s)

Note that we do not force a schema of form

Rejected I(x, y) ∧ Qi(x) ∧ P(y′, y) → ∃x′(I(x′, y′) ∧ Qi(x′) ∧ P(x′, x))

because this would prevent properties that inhere in complex objects only, e.g.,
emergent properties like functionalities of assembled artifacts (when not reducible
to functionalities of the components).

The location relation, L, provides the link between qualities and spaces. First,
we require regions (and in particular spaces) not to change during the time they
exist (A28). Then, we write L(x, y, t) to mean “at time t, region x is the location of
the individual quality y” as enforced (in part) by axioms (A30) and (A31).14 Each
individual quality of type Qi must be located at least in one of the available spaces Sij

associated to it (axioms (A34) and (A35)). The location in a single space is unique

12In the original version of DOLCE this relation is called quality and written qt.
13For those familiar with trope theory (Campbell, 1990), qualities can be seen as sums of tropes.
Indeed, one can interpret a trope substitution as a change of quality location. The position adopted
in DOLCE-CORE is compatible with trope theory without committing to the view that change
corresponds to trope substitution.
14In the original version of DOLCE this relation is called quale and written ql. In DOLCE there was
also a distinction between the immediate quale (a non temporary relation) and the temporary quale.
Here we use one temporary relation only and assume that the temporal qualities of an event e at t
correspond to the temporal qualities of the maximal part of e spanning t.
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(A36) and a quality that has a location in a space needs to have some location in
that space during its whole life (A37). (A38) says that two qualities coincident at t
are also indistinguishable with respect to their locations. Together with (A25) and
(A26), this axiom formalizes the substitutivity of temporary properties represented
by qualities: two entities that coincide at t are (at t) indistinguishable with respect to
their qualities.

Axioms (A32) and (A33) characterize the fact that the location of an individual
quality at t is the mereological sum of all the locations the quality has during t, i.e.
at all the sub-times of t. Note that if a is the region corresponding to a property value
of 1kg and b corresponds to a property value of 2kg, then the sum of a and b is the
region including just the two mentioned and is distinguished from the region corre-
sponding to the property value of 3kg. The sum of locations must not be confused
with the sum of property values since, in general, the latter strictly depends on the
space structure while the first does not. Therefore, for instance, if t is the sum of t1
and t2, and L(1kg, x, t1) and L(1kg, x, t2), then at t, x is still located a 1kg and not at
2kg.

A28 R(x) ∧ PRE(x, t) ∧ PRE(x, t′) → ∀y(P(y, x, t) ↔ P(y, x, t′))
A29 Sij(x) ∧ Sij(y) ∧ PRE(x, t) → PRE(y, t)
A30 L(x, y, t) → R(x) ∧ Q(y)
A31 L(x, y, t) → PRE(y, t)
A32 L(x, y, t) ∧ P(t′, t) ∧ L(x′, y, t′) ∧ Sij(x) ∧ Sij(x′) →

∀t′′(PRE(x, t′′) → P(x′, x, t′′))
A33 L(x′, y, t′) ∧ L(x′′, y, t′′) ∧ SUM(t, t′, t′′) ∧ SUM(x, x′, x′′) ∧ Sij(x′) ∧ Sij(x′′) →

L(x, y, t)
A34 L(x, y, t) ∧ Qi(y) →∨

j Sij(x)
A35 Q(y) ∧ PRE(y, t) → ∃x(L(x, y, t))
A36 L(x, y, t) ∧ L(x′, y, t) ∧ Sjk(x) ∧ Sjk(x′) → x = x′
A37 L(x, y, t) ∧ PRE(y, t′) ∧ Sjk(x) → ∃x′(L(x′, y, t′) ∧ Sjk(x′))
A38 L(x, y, t) ∧ CC(x′, x, t) ∧ CC(y′, y, t) → L(x′, y′, t) (L-substitutivity)

The next formula is not an axiom since not all properties are dissective (see the
previous example using weights)

Rejected L(x, y, t) ∧ P(t′, t) → L(x, y, t′)

Additivity is also non-valid for L: it does not hold for properties like mass.

Rejected L(x, y′, t) ∧ L(x, y′′, t) ∧ SUM(y, y′, y′′) → L(x, y, t)

13.11 Objects and Events

We all experience a tendency to distinguish what changes from the changing itself.
A lively and long discussion on the ontological status of events and on what distin-
guishes them from objects has taken place especially in the philosophy of language
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(Casati and Varzi, 1996). There are formal and applicative advantages in accepting
events, e.g., one can (i) quantify over actions, (ii) predicate on causality, and (iii)
avoid reductionist views.

The orginal DOLCE formulated the object vs. event distinction in terms of the
endurant vs. perdurant partition by identifying objects with endurants and events
with perdurants. This choice reflects the position of several philosophers and is
based on the observation that, say, the “life of John” is only partially present at
each time at which it exists (it has distinct temporal parts at each time at which
it exists) while “John” is wholly present whenever it exists (it does not depend on
the existence of temporal parts). However, with this position classical perdurantism
would not be able to embrace the object vs. event distinction for the simple reason
that perdurantists accept only perdurant entities. In addition, in a strict reading of
perdurantism, all particulars must be spatio-temporally extended and two distinct
entities cannot have exactly the same spatio-temporal location. Thus, since “John”
and “the life of John” have exactly the same spatio-temporal location, perduran-
tists would be forced to identify them. This shows that the previous identification,
although motivated by some aspects of the theories, is perhaps too naïve and a dif-
ferent (and more general) foundation of the distinction between objects and events
should be sought.

Hacker (1982) proposes to characterize the distinction on the fact that events are
primarily in (directly related to) time while material, and more generally physical,
objects are primarily in (directly related to) space. Indeed,

• the properties (and qualities) that apply to material objects are different from
those that apply to events. Typically, material objects have weight, size, shape,
texture, color etc. and they are related by specific spatial relationships like con-
gruence. Events, on the other hand, can be sudden, brief or prolonged, fast
or slow, etc. and can occur before, after, simultaneously with other events.
Moreover, relations like causation seem to be strictly linked to events and not
to objects.

• Space plays a role in the identification of material objects, time in that of events.
Material objects that are simultaneously located at different places are different
and events that have different temporal locations are different (Zemach, 1970).

• The unity criteria of objects is primarily spatial, while the one of event is
primarily temporal (Hacker, 1982).

This division extends to non-material objects as well since these are also char-
acterized by non-temporal properties and specific individuation and unity criteria
(space is the realm of these criteria for material objects, other objects rely on
other dimensions, all distinct from time). In short, what differentiates events from
(material or immaterial) objects is the special connection to time and temporal
relations.

Of course, even though events are primarily in time while objects are primar-
ily in other dimensions, there are strong interrelationships between them. Several
author (Simons, 1991; Hacker, 1982) claim that events are not possible without
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objects and vice versa. Since from the representation perspective there seems to
be no real advantage in committing to a reductionist view (either choosing that
events are the truly basic entities or, on the contrary, attributing to objects this
role), the preferred option is to consider both categories of events and of objects
as primary categories and to highlight their relationships: events need participants
(objects) and objects need lives (events). By means of the relationship between
objects and events (aka participation), it is possible to say that an object a exists
at a certain time t “if and because” its life exists at t (Simons, 2000), i.e. it is the
life of a that is the truth-maker for the proposition “a exists at t”. On the other hand,
events are related to space only indirectly via the material objects participating in
them.

DOLCE-CORE characterizes the distinction between objects and events (two basic
categories in the ontology structure) following this latter approach. However, by
(A10), qualities, concepts, and regions are in time too and, intuitively, their par-
ticipation to events (like their creation or destruction) seems plausible. In this
perspective, qualities, concepts and regions could be considered as subcategories of
O (in this view objects are not necessarily extended in space). Here we do not com-
mit to this position and therefore we maintain our initial assumption where qualities,
concepts, and regions are disjoint from objects.

Participation is taken to be a time regular relation defined between objects and
events: PC(x, y, t) stands for “the entity x participates in the event y at t”. Axioms
(A40) and (A41) capture the mutual existential dependence between events and
objects. Axioms (A42) and (A43) make explicit the fact that participation does not
rely on unity criteria for objects or for events (Simons, 1987). This simply means
that the participation relation is not bound by these unity criteria: an object does not
participate to an event as a whole (since also its parts participates to it) as well as an
event does not have participants because of some special unity property (since all
the events, of which it is part, have those participants too). Participation, of course,
can be used to define more specific relations that take into account unity criteria.
Since these criteria often depend on the purposes for which one wants to use the
ontology, they are not discussed here.

A39 PC(x, y, t) → O(x) ∧ E(y)
A40 E(x) ∧ PRE(x, t) → ∃y(PC(y, x, t))
A41 O(x) ∧ PRE(x, t) → ∃y(PC(x, y, t))
A42 PC(x, y, t) ∧ P(y, y′, t) ∧ E(y′) → PC(x, y′, t)
A43 PC(x, y, t) ∧ P(x′, x, t) → PC(x′, y, t)

We now clarify how DOLCE-CORE manages to formalize events and objects
as entities with different qualities, and how it represents “being primarily in time
(space)”. Axiom (A44) makes explicit the fact that quality types directly connected
to events cannot be directly related to objects and vice versa.

A44 I(x, y) ∧ Qi(x) ∧ E(y) ∧ I(z, v) ∧ Qj(z) ∧ O(v) → ¬Qj(x) ∧ ¬Qi(z)
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The exact quality types that apply to objects and events depend on the modeling
interests of the user. Nonetheless, as motivated earlier, qualities that apply to events
are strictly connected to time (fast vs. slow, sudden vs. prolonged, etc.).

Regarding the property of “being primarily in time”, we introduce the quality
type “being time-located”.15 Let us use TQ for this quality type for time and let us
make the simplifying assumption that there is just one space for the time individual
qualities; as seen in Section 13.5, we call it T. DOLCE-CORE (as well as DOLCE)
distinguishes direct qualities, i.e., properties that can be predicated of x because it
has a corresponding individual quality, from indirect qualities, i.e., properties of x
that are inherited from the relations x has with other entities. For instance, following
Simons (2000), events have a direct temporal location, while objects are located
in time just because they participate to events (e.g. their own lives). Analogously,
material objects have a direct spatial location, while events are indirectly located in
space through the spatial location of their participants.

(A45) makes explicit the temporal nature of the parameter t in the location rela-
tion. (A46) says that for events “being in time” reduces to having a time-quality
located in time, which, together with (A10) and (A44), guarantees that all and only
the events have a time-quality. These axioms together with (A41), show that objects
are in time because of their participation in events.

A45 L(x, y, t) ∧ TQ(y) → x = t
A46 E(x) ∧ PRE(x, t) ↔ ∃y(TQ(y) ∧ I(y, x) ∧ L(t, y, t))

Note that if we define the spatial location of events via the location of their par-
ticipants, and the life of an object as the minimal event in which it (maximally)
participates, we obtain that an object spatio-temporally coincides with its life. The
distinction between participation, temporary parthood, and spatial inclusion ensures
that these two entities, although spatio-temporally coincident, are not identified.

As stated before, in DOLCE-CORE qualities cannot participate in events. This
holds in particular for the qualities of objects even though in this case qualities are
related to time by axiom (A23) through the objects they inhere in (which necessarily
exist by axiom (A22)). Time is (at least) an “indirect” quality of qualities of objects.
However one could follow the opposite intuition that qualities can participate in
events, assuming that only qualities are the “true” participants in events. In this per-
spective, objects would participate only indirectly because of the qualities they have.

Several important questions have been left out of this paper. We hope, nonethe-
less, that the approach adopted in building first DOLCE and then DOLCE-CORE

stands out, that the foundational choices we have made can be appreciated for the
careful analysis they rely upon, and that the general methodology we apply here has
been fairly illustrated.

15Analogously, the ontology comprises the quality type “being space-located” which is not
presented here.
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Chapter 14
General Formal Ontology (GFO):
A Foundational Ontology for Conceptual
Modelling

Heinrich Herre

14.1 Introduction

Research in ontology has in recent years become widespread in the field of informa-
tion systems, in distinct areas of sciences, in business, in economy, and in industry.
The importance of ontologies is increasingly recognized in fields diverse as in
e-commerce, semantic web, enterprise, information integration, qualitative mod-
elling of physical systems, natural language processing, knowledge engineering,
and databases. Ontologies provide formal specifications and harmonized definitions
of concepts used to represent knowledge of specific domains. An ontology supplies
a unifying framework for communication and establishes the basis of the knowledge
about a specific domain.

The term ontology has two meanings, it denotes, on the one hand, a research
area, on the other hand, a system of organized knowledge. A system of knowledge
may exhibit various degrees of formality; in the strongest sense it is an axiomatized
and formally represented theory. which is denoted throughout this paper by the term
axiomatized ontology.

We use the term formal ontology to name an area of research which is becoming
a science similar as formal or mathematical logic. Formal ontology is an evolving
science which is concerned with the systematic development of axiomatic theo-
ries describing forms, modes, and views of being of the world at different levels
of abstraction and granularity. Formal ontology combines the methods of mathe-
matical logic with principles of philosophy, but also with the methods of artificial
intelligence and linguistics. At the most general level of abstraction, formal ontology
is concerned with those categories that apply to every area of the world.

The application of formal ontology to domains at different levels of generality
yields knowledge systems which are called, according to the level of abstraction, Top
Level Ontologies or Foundational Ontologies, Core Domain or Domain Ontologies.
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Top level or foundational ontologies apply to every area of the world, in contrast to
the various Generic, Domain Core or Domain Ontologies, which are associated to
more restricted fields of interest. A foundational ontology can serve as a unifying
framework for representation and integration of knowledge and may support the
communication and harmonisation of conceptual systems.

The current paper presents an overview about the current stage of the founda-
tional ontology GFO.1 GFO (General Formal Ontology) is a component of ISFO
(Integrated System of Foundational Ontologies), and ISFO is intended to be a
part of an Integrated Framework for Development and Application of Ontologies
(IFDAO) whose predecessor was the GOL project that was launched in 1999 at
the University of Leipzig. GFO is a foundational ontology integrating objects and
processes. It is being developed, after a deep revision of the original GOL-project,
by the research group Onto-Med (Ontologies in Medicine)2 at the University of
Leipzig. GFO exhibits a three-layered meta-ontological architecture consisting of
an abstract top-level, an abstract core level, and a basic level. Further unique selling
propositions of GFO are the following:

• Includes objects (3D objects) as well as processes (4D entities) and both are
integrated into one coherent framework,

• GFO presents a multi-categorial approach by admitting universals, concepts, and
symbol structures and their interrelations,

• includes levels of reality,
• is designed to support interoperability by principles of ontological mapping and

reduction,
• it is s presented by a set of formal axioms which might be added by meta-logical

links to domain specific ontologies,3

• GFO is intended to be the basis for a novel theory of ontological modelling which
combines declarative specifications with algorithmic procedures,

• it contains several novel ontological modules, in particular, a module for func-
tions and a module for roles, and

• GFO is designed for applications, firstly in medical, biological, and biomedical
areas, but also in the fields of economics and sociology.

We envision GFO to be a foundational ontology which is expressive enough
to contain several other foundational ontologies as special cases. But, GFO is not
intended to be the ultimate result of a foundational ontology; one may doubt whether
a final and uniquely determined top level ontology can ever be achieved. For this
reason, GFO is merely a component of the evolutionary system ISFO, which leaves

1A more detailed exposition of GFO is presented in Herre et al. (2006b).
2http://www.onto-med.de
3The development of axiomatic systems for GFO is work in progress and will be published as
Part II of the General Formal Ontology.
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room for modifications, revisions, adaptations that are triggered by the historical
state of our knowledge, and the applications in nature and society.

Foundational ontologies may differ with respect to their basic categories and
relations (i.e. their vocabulary), with respect to the set of axioms formulated about
their vocabulary or with respect to both the basic vocabulary and the axioms. If two
ontologies have the same basic categories and relations, then the question arises
which axioms should be included in the axiomatization. Here, we admit various
different axiomatizations. The investigation of a system of axioms with respect to its
possible consistent extensions and of other meta-logical properties is an interesting
research topic of its own. It is our opinion that different views of the world can be
sustained, though over time we expect that the number will be reduced to a few
such views, mainly based on utility. According to our pluralistic approach ISFO is
intended to be an integrated and evolutionary system of foundational ontologies.
These ontologies are compared and interrelated using methods of translation and
interpretation.

Domain-specific ontologies exhibit a much richer diversity than foundational
ontologies. The notion of a domain specific ontology admits various interpretations.
From a practical point of view, domain specific ontologies include, among others,
terminologies, glossaries, thesauri and nomenclatures which are associated to spe-
cific domains. A terminology, for example, is a list of terms referring to concepts
in a particular domain. Such a terminology is usually a result of consensus and
agreement among the domain’s experts. Hence, a terminology tends to converge
to a unified and common basic vocabulary which is influenced and determined by
utility and usage. A domain specific ontology in the stronger sense, i.e. understood
as an axiomatized ontology, normally is based on a terminology. There are usually
various axiomatized ontologies that may be built on a terminology.4

Several groups are tackling the development of top-level ontologies or certain
aspects of top-level ontologies. The following approaches are fairly developed, and
they are used, in part, as a source for our considerations. Nicola Guarino, an early
proponent of the use of ontologies in the field of knowledge-based systems, is
involved in the construction of DOLCE (Masolo et al., 2003). Further, two other
ontologies5 are presented in Masolo et al. (2003), following the idea of an ontology
library in the WonderWeb project. DOLCE itself is presented as a hierarchy of cat-
egories and several relationships between them. The description is fairly extensive
and an axiomatization is contained therein as well.

4These axiomatized ontologies of a domain are influenced by the assumed views and the clas-
sification principles from which different conceptualizations can be derived. Furthermore, there
is no sufficiently founded criterion to establish the equivalence of two ontologies. Hence, the
orthogonality criterion, as expounded in Smith et al. (2007), must be rejected.
5One of these ontologies, called BFO (Basic Formal Ontology) (Grenon, 2003), has its source in
the GOL- project which started in 1999 as a common project of the department of formal concepts
(Institute for Computer Science) and the Institute for Medical Informatics of the University of
Leipzig. GOL was the scientific basis for a research programme related to a Wolfgang-Paul Prize
advertised in 2001. Since June 2002 GFO and BFO were independently developed.
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John Sowa (2000) presents and extensively discusses a top-level ontology in the
form of a polytree within a comprehensive book on knowledge representation issues,
i.e. it is not a pure work introducing a top-level ontology. Sowa’s ontology is based
on ideas of the philosopher Charles Sanders Peirce. The Standard Upper Merged
Ontology (SUMO) is an effort of the P1600.1 Standard Upper Ontology Working
Group at IEEE (SUO, 2004). Several draft proposals have been made, one of the
more developed suggestions of which is SUMO. SUMO adopts a polytree architec-
ture of categories, in which there are cases of multiple super-categories, for example,
Group is a subcategory of both Collection and Agent. Its development may have
contributed to the multiplicative approach, as SUMO originates from a merge of
several top-level ontologies (cf. Niles and Pease, 2001), including one of Russell
and Norvig (1995), one of John Sowa (2000), as well as several others. Another
relevant ontology is a 4-dimensional ontology developed by West et al. (2003).
Roberto Poli contributes an additional important account of ontology in the field
of computer science (Poli, 2001). In particular, Poli presents a theory of ontological
levels (cf (Poli, 2002, Poli, 2001) that is acknowledged and adopted in GFO. A fur-
ther important contribution to top-level ontologies is the approach by Guizzardi and
Wagner (2004a, b) which is aimed at the development of a Unified Foundational
Ontology (UFO). This ontology integrates several aspects of DOLCE and GFO.

The current paper is an exposition of main ideas of GFO and draws on the report
(Herre et al., 2006b). In Section 14.2 the basic assumptions and logical methods
are expounded. Section 14.3 describes the meta-ontological architecture of GFO.
Section 14.4 is devoted to a detailed exposition of the basic categories of individ-
uals; this section presents the core of the current paper. In Section 14.5 the basic
relations of GFO are outlined. In Section 14.6 a central idea of GFO is exposed:
the object-process integration. Section 14.7 presents some ideas on principles of
ontology development and ontological modelling.

14.2 Basic Assumptions and Logical Methods

In this section we summarize the basic assumptions and methods from philosophy
and logic.

14.2.1 Philosophical Assumptions

Ontology is based on a particular view at the world: ontology asks what an entity
is, what the essence of it is, and which mode of existence it has. We use the term
“entity” for everything that exists where existence is understood in the broadest
sense. In Ingarden (1964) a classification of modes of existence is discussed that is
useful for a deeper understanding of entities of several kinds. According to Ingarden
(1964) there are –roughly- the following modes of being: absolute, ideal, real, and
intentional entities. This classification can be to some extent related to Gracia’s



14 General Formal Ontology 301

approach (Gracia, 1999) and to the levels of reality in the spirit of Hartmann(1964)
and Poli (2001). We hold a realist view at the world and assume the existence of
a real world which is independent from the subject. Appearances of this world are
considered as actual realizations of the world’s dispositions within a subject. There
is a mutual relation between the subject and object in the sense of (Bloch, 1985)
which exhibits the most important and complex inter-relationship between man and
nature.

Categories are entities that are expressed by predicative terms of a formal or
natural language that can be predicated of other entities. Predicative terms are lin-
guistic expressions T which state conditions Cond(T) to be satisfied by an entity.
Categories are what predicative terms express, not the predicative terms themselves
(Gracia, 1999). There is a close relation between categories and language, hence
the analysis of the notion of a category cannot be separated from the investiga-
tion of language. The predicative term T, the expressed category C, the conditions
Cond(T) specified by T, and the satisfying entity e are mediated by two relations,
expr(T,C) and sat(Cond(T),e). We stipulate that a category C is predicated of an
entity e if an only if e satisfies the conditions that are associated to C. Summarizing
the inter-relations between categories, conditions, and predicative terms we hold
that an entity e instantiates the category C with respect to T if and only if expr(T,C)
and e satisfies the conditions Cond(T) associated to the term T.

Individuals are entities which cannot be instantiated, hence, they cannot be
predicated of other entities. There is a distinction between the property of being
instantiable and of having instances. Individuals cannot be instantiated, on the other
hand, there are categories without any instance. The expression “round square”,
for example, presents a category without any instance. Such categories are called
empty, and they are an extensional sub-category of every category. For a category
C we introduce the transitive closure of C, denoted by trcl(C); this is the smallest
set containing C as an element and which is closed with respect to the following
condition: if D ∈ trcl(C) and e::D then e ∈ trcl(C). The individual base of a category
C, denoted by IndBase(C), is the set of all individuals which are elements of the
transitive closure trcl(C).

14.2.2 Concepts, Symbols, and Universals

We distinguish at least three kinds of categories: universals, concepts, and sym-
bol structures. We hold that any reasonable foundational ontology must include
these three types of categories.6 Universals are constituents of the real world, they
are associated to invariants of the spatio-temporal real world, they are something
abstract that is in the things. Concepts are categories that are expressed by linguistic
expressions and which are represented as meanings in someone’s mind. Concepts

6Our approach to categories is inspired by the ideas of Jorge Gracia (1999). We consider Gracia’s
approach as an important contribution to the philosophical foundation of conceptual modelling.
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are a result of common intentionality which is based on communication and society
(Searle, 1995).7 Symbols are signs or texts that can be instantiated by tokens. There
is a close relation between these three kinds of categories: a universal is captured by
a concept which is individually grasped by a mental representation, and the concept
and its representation is denoted by a symbol structure being an expression of a lan-
guage. Texts and symbolic structures may be communicated by their instances that
a physical tokens.8

Sets play a particular role in GFO. We hold that a set cannot be predicated of
its members, but there are, of course, specifications of sets expressing categories
which can be predicated of sets. Concepts have a complex structure that consists of
interrelated particular parts, which are called conceptual constituents. For concepts
we introduce a basic relation catp(x,y) having the meaning that x is a categorial
part of the concept. In the simplest case a concept can be represented as a set or
aggregate of predicates or properties.

14.2.3 The Axiomatic Method

The axiomatic method comprises principles used for the development of formal
knowledge bases and reasoning systems aiming at the foundation, systematization
and formalization of a field of knowledge associated with a part or dimension of
reality.

The axiomatic method deals with the specification of concepts. If knowledge of
a certain domain is to be assembled in a systematic way, one can distinguish a cer-
tain small set of concepts in this field that seem to be understandable of themselves.
We call the expressions in this set primitive or basic, and we use them without for-
mally explaining their meanings through explicit definitions. Examples for primitive
concepts are identity and part. New terms can be introduced by explicit definitions
based on the primitive notions.

Given the basic terms, we can construct more complex sentences that can be
understood as descriptions of certain formal interrelations between them. Some of
these statements are chosen as axioms; we accept them as true without establishing
their validity by means of a proof. The truth of axioms of an empirical theory may be
supported by experimental data. By accepting such sentences as axioms, we assert
that the interrelations described are considered to be valid in some domain and at

7The mental representation of a concept allows us to understand a linguistic expression. Concepts
are outside of individual minds, but they are anchored, on the one hand, in individual minds by the
concepts’ mental representation, and on the other hand, in society as a result of communication
and usage of language.
8The ability to generate and use symbol structures seems to be the most basic assumption for
complex communication. Here, an important aspect of the ability of humans to construct symbolic
structures and to identify tokens as instances of symbols. The ultimate transmission of information
must use spatio-temporal tokens as bearers.
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the same time we define the given notions implicitly, i.e. the meaning of the basic
terms is captured and constrained by the axioms.

Axiomatic theories should be studied with respect to meta-theoretical proper-
ties. It is important that the axioms of a foundational ontology are consistent,
because domain-specific and generic axioms will be built on them.9 Other impor-
tant meta-theoretical properties are completeness, and the classification of complete
extensions. If several theories are considered, their inter-relationships must be stud-
ied which will lead to questions regarding the interpretation of one theory in another,
and identifying the more comprehensive or expressive theory.

14.2.4 Representation of Ontologies

An ontology must be represented and specified by expressions of a language. We
assume that the general terms in these expressions denote concepts. An ontology
O – understood as a formal knowledge base – is given by an explicit specification of
a conceptualization (Gruber, 1993). This specification must be expressed in a formal
language, and there is a variety of formal specification systems. A main distinction
is drawn between logical languages with model-theoretic semantics and formalisms
using graph-theoretic notations.

14.2.5 Types of Realism

The type of realism on which GFO is based is called integrative realism; it funda-
mentally differs from the realism expounded in a number of papers by Smith (2004),
Smith et al. (2005), Smith (2006), Smith and Ceusters (2006). This section expounds
a critical comparative analysis between GFO-realism and Smithian realism.

Smith’s position can be specified by the following conditions and assumptions,
presented in Smith (2004, 2006), Smith and Ceusters (2006):

• Universals have an observer-independent objective existence; they are invariants
of reality.

• Bad ontologies are those whose general terms lack a relation to corresponding
universals in reality, and thereby also to corresponding instances.

• Good ontologies are representations of reality. A good ontology must be based
on universals instead of concepts.

Unfortunately, there is a gap and a fundamental obscurity pertaining to
condition 3. No definition for reality representation is provided. This fundamental

9If the theory is sufficiently expressive then an absolute consistency proof, based on finitary meth-
ods, is impossible. Hence, consistency proofs have a relative character; they are based on the
method of formally reducing the considered theory to another already established theory whose
consistency has a higher degree of evidence.
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gap can never be closed without the use of concepts, i.e. there is no representation
of reality without concepts.

To close this gap, let us construct an ontology Ont that may represent a
part D of reality. Assume that there are universals U(1),. . .,U(k) in D having an
observer-independent objective existence; they are related, by assumption, to cer-
tain invariants in D, say Inv(1),. . .,Inv(k), of reality. Consider, as an example, the
universal Ape, denoted by A. There are individual instances a(1),. . .,a(m) of A being
individual apes. The universal A may be analysed and discussed, and information
about A may be communicated. Hence, this universal is used and included in natu-
ral language and must be represented by a term, denoted by a word w(A). w(A) is a
string in a language (spoken or written string), but it is more than a senseless string,
because it denotes something. If a person uses w(A), then this word has a meaning,
and understanding a word implies to have access to its meaning. Let m(w) be the
meaning of the word.

To clarify, the entities w(A), A and m(w(A)) exist and are pair-wise distinct.
Obviously, w(A) exists, and A exists by assumption. The existence of m(w(A)) is
demonstrated by the process of understanding. The perception of w(A)10 is immedi-
ately connected to a meaning, and this meaning must be an entity of the mind. The
meaning of w(A) allows for understanding the spoken announcement “Yesterday
an ape escaped from the Zoo”, independent from the actuality of this event. Since
the universal A is separate and outside the mind, and the meaning m(w(A)) exists
within the mind, it may be concluded that A and m(w(A)) are distinct. It is also clear
that w(A) and m(w(A)) are distinct, because w(A) is merely a string, and one could,
through a thought experiment, replace w(A) with any other string S by stipulating
that S is connected to m(w(A)); this connection can be established by a learning
process. Then, the string S plays the role of a designation as well as w(A). Now,
we must clarify a further phenomenon: We must distinguish different (individual)
meanings depending on different recipients; this can be illustrated and explained by
a relation intension(p,m(w)) that is interpreted as: the person p grasps the meaning
m(w(A)) in the course of perceiving the word w(A). Hence, the meanings are depen-
dent on the individual subjects, and we use the expression m(p,w(A)) to denote the
meaning of the word w(A) with respect to the person p. Hence, distinct recipients
of a word possess distinct meanings. On the other hand, we assume that any speaker
of this language who perceives the word w(A) relates it to the same meaning. But
these meanings must be different entities and we must clarify how the equivalence
between different individual meanings is determined and how it is to be understood.
In achieving this equivalence we need a further step and a new construct, the com-
mon intentionality which is the result of communication and society (Searle, 1995).
The common intentionality constitutes an agreement between the subjects about
the equivalence of the different individual meanings m(p,w(A)). This agreement
forms the basis for a concept conc(A), which is an abstract, atemporal entity. In

10One must distinguish between symbols and tokens. Only tokens, being physical instances of
symbols, can be perceived and transmitted through space and time.
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general, common intentionality establishes an equivalence relation between differ-
ent individual meanings. Concepts are abstract entities which are associated to these
equivalence classes, and conversely, individual meanings can be understood as men-
tal representations of concepts.11 The concept conc(A) is based on the one hand
on individual meanings, and on the other hand on common intentionality which is
related to the social stratum. Hence, a concept participates in the mental as well as
in the social stratum of the world. Obviously, conc(A) is distinct from m(p,w(A),
w(A), and A.

In sum, the nodes in an ontology are labeled by terms that denote concepts. Some
of these concepts, notably natural concepts, are related to invariants of material real-
ity. Concepts are represented in individual minds and are founded in society. The
same is true for individuals to which individual concepts correspond. The interre-
lations between universals, concepts, symbols and society are realized by various
relations, including the relation of correspondence (between concepts and univer-
sals, and individual concepts and real individuals), the relation of representation
(between concept and individual mind), the relation of foundedness (between con-
cept and society), and the instantiation relation. We summarize that the restricted
view of Smithian realism cannot be an ontological-philosophical foundation for the
field of conceptual modeling and, in particular, for computer-science ontologies.

14.2.6 Levels of Reality

We assume that the world is organized into strata, and that these strata are classified
and separated into layers. We use the term level to denote both strata and layers.
GFO distinguishes, according to Poli (2001), at least three ontological strata of the
world: the material, the mental-psychological, and the social stratum. Every entity
of the world participates in certain strata and levels. We take the position that the
levels are characterized by integrated systems of categories. Hence, a level is speci-
fied by a meta-level category whose instances are categories of certain kinds. Every
level includes individuals too; these belong to the individual base of those categories
specifying the level.

Among these levels specific forms of categorial and existential dependencies
hold. For example, a mental entity requires an animate material object as its existen-
tial bearer. These levels are needed to describe adequately the entities of the world.
Another problem is how the levels within of a single entity are organized, and how
these levels are connected and how they are separated. It turns out that the separation
cannot be precisely defined, because the phenomenal world that can be immediately
perceived is already cognitively influenced. We assume that there is a physical level,
denoted by PhysW, that is completely independent from the subject. Then there is

11The study of mental representations of concepts is an important topic of cognitive psychology
and cognitive linguistics. The theory of prototypes is an influential approach in this area of research
(Rosch, 1975).
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the phenomenal world, denoted by PhenW, which can be immediately experienced
by perception.

Perception can be understood as realizing an immediate connection between the
subject and the material, subject-independent, objective world. Natural concepts,
based on perception, are the most primitive ones and additional concepts are con-
structed from them. The construction of more complex systems of subject-object
interrelation,12 as, for example theories, increase the distance between the subject
and the perceived material world; on the other hand, they provide a deeper under-
standing of the world. One may think of several ontological layers which connect
the subject with the independent reality. We consider the layer of perception as the
mediator between the subject and reality and stipulate that the phenomenal world
belongs to the material level.

14.3 Meta-Ontological Architecture of GFO

GFO has a three-layered meta-ontological architecture comprised of (1) a basic
level consisting of all relevant GFO-categories and relations, (2) a meta-level, called
abstract core level containing meta-categories over the basic level, for example the
meta-category of all categories, and finally (3) an abstract top-level including set
and item as the only meta-meta-categories.

The notion of a meta-category is a generalization of the notion of a meta-set or a
meta-class in the set-theoretical sense. Let X be a set of entities, then every category
C having exactly the entities of X as its instances is called a categorial abstraction
of X. Usually, there can be several distinct categorial abstractions over the same set
of entities. If a set X of entities is specified by a condition C(x), then the expression
C(x) expresses a category which can be understood as a categorial abstraction of X.

A categorial similarity abstraction of X specifies properties that are common to
all members of the set X. The specification of such categorical similarity abstrac-
tions in a language uses conjunctions of atomic sentences representing – in many
cases – perceivable properties. There are also disjunctive conditions, for example
the condition x is an ape or x is a bridge; obviously, the set of instances of this
condition cannot be captured by a similarity abstraction. More complicated are cat-
egorial abstractions over categories, for example the category species in the field of
biology.

The abstract top ontology (ATO) of GFO contains two meta-categories: set and
item. Above the abstract top level there is a non-formal level, which might be called

12There is the general problem where the cut is made and defined between the subject and the inde-
pendent real world. Several options are possible. Our approach can be justified by interpreting the
phenomena as realization of dispositions of the objective independent world. These dispositions
need a subject to come to appearance, more precisely, these appearances are realizations of dispo-
sitions within a subject. Hence, the phenomenal world is, on the one hand, anchored and founded
in the objective reality, on the other hand it is realized in the subjective world. This connection is
the basis for GFO’s integrative realism.
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philosophical level. On this level, several distinct, philosophically basic assumptions
are presented, mainly around the notions of existence and dependency. The abstract
top level is used to express and model the lower levels of GFO by set-theoretical
expressions. To the abstract top level two basic relations are associated: membership
∈ and identity =. The abstract top level of GFO is represented by a weak fragment
of set theory, and some weak axioms connecting sets with items. Among the axioms
concerning sets belong the following:

∀ x y (Set(x) ∧ Set(y) → (x = y ↔ ∀u (u ∈ x ↔ x ∈ y))
∀ x y (Set(x) ∧ Set(y) → ∃z (Set(z) ∧ z = {x, y})

∀ x y (Item(x) ∧ Item(y) → ∃z (z = {x,y} ∧ Set(z)))

The abstract core level of GFO, called abstract core ontology of GFO (abbre-
viated ACO), exhibits the upper part of GFO. The abstract core ontology of GFO
must first be determined by their main entity types and the relations among them,
for which a certain vocabulary must be introduced. The entities of the world –
being represented on the ATO-level by the items – are exhaustively divided into
categories and individuals, and individuals instantiate categories. Moreover, among
individuals we distinguish objects, and attributives.

By introducing a vocabulary for the considered entities we obtain the following
signature: Cat(x) denotes the meta-category of all categories, OCat(x) represents the
category of all object categories, Prop(x) indicates the category of all properties, and
Rel(x) identifies the category of all relations. Ind(x) is the category of all individ-
uals, Obj(x) designates the category of all objects, Attr(x) represents the category
of all attributives, Rol(x) identifies the category of all roles, and Rel(x) denotes the
category of all relators. These categories are all presented as predicates, i.e. they
occur on the ATO-level as sets of items.

The basic level ontology of GFO contains all relevant top-level distinctions and
categories. All basic relations and categories are presented as set-theoretical rela-
tions and set-theoretical predicates. Categories which are not contained within the
basic level we call domain categories. Domain categories are related to a certain
domain D of the world, and on the domain level they are not presented and consid-
ered as sets, but as entities of its own. Formally, the vocabulary at the basic level of
GFO is extended by additional constants denoting proper categories or individuals.
If, for example, C denotes a domain category we write x::C instead of C(x), indicat-
ing that x is an instance of C. Domain categories may be linked in a simple way to
the basic level predicates of GFO, using domain-upper linking axioms.

14.4 The Basic Categories of Individuals of GFO

In this section the basic classification of individuals is expounded. Full GFO is
intended to include also an ontology of categories; this topic is outside the scope
of the current paper.
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14.4.1 Space-Time

The GFO approach of time is inspired by Brentano’s ideas (1976) on continuum,
space and time. Following this approach, chronoids are not defined as sets of
points, but as entities sui generis.13 Every chronoid has exactly two extremal and
infinitely many inner time boundaries which are equivalently called time-points.
Time boundaries depend on chronoids (i.e. they have no independent existence) and
can coincide. Starting with chronoids, we introduce the notion of time region as the
mereological sum of chronoids, i.e. time regions consist of non-connected intervals
of time. Time entities, i.e. time-regions and time-points, share certain formal rela-
tions, in particular the part-of relation between chronoids and between time-regions,
denoted by tpart(x,y) the relation of being an extremal time-boundary of a chronoid,
denoted by the relations lb(x,y) (x is left-boundary of y), rb(x,y) (x is right bound-
ary of y, and the relation of coincidence between two time-boundaries, denoted by
tcoinc(x,y).

Dealing with the coincidence of time boundaries is especially useful if two pro-
cesses are to be modeled as “meeting” (in the sense of Allen’s relation “meets”). In
GFO there are at least three conditions that a correct model must fulfill:

• there are two processes following one another immediately, i.e. without any gaps,
• there is a point in time where the first process ends, and
• there is a point in time where the second process begins.

If, as is common practice, intervals of real numbers are used for modeling time
intervals (with real numbers as time points), then these conditions cannot be simul-
taneously satisfied. In contrast, the Brentano approach allows for two chronoids
to follow immediately, one after another, and to have proper starting- and ending-
“points” by allowing their boundaries to coincide. The coincidence relation entails
that there is no time difference between the coinciding time boundaries, while main-
taining their status as two different entities. This way, conditions (a), (b) and (c) are
fulfilled.

Many temporal concepts are based on a measurement function μ for chronoids.
Then value μ(C) is called the duration of the chronoid C. Using μ we classify
chronoids with respect to their duration, we may say that this chronoid has a certain
duration α. Using a measurement function we may introduce a number of temporal
concepts, for example days, minutes, and years. Analogously to chronoids and time
boundaries, the GFO theory of space introduces topoids with spatial boundaries
that can coincide. Space regions are mereological sums of topoids.14 To describe
the structure of space (or of regions, respectively) we employ the basic relations
spatial part-of, boundary-of, as well as the coincidence of boundaries. Formally, we
use spart(x,y) x is a spatial part of y, bd(x,y), if x is a boundary of y, and scoinc(x,y)

13The GFO approach to time is related to what P. Hayes calls the glass continuum (Hayes, 1995).
Furthermore, we advance and refine the theory of Brentano (1976).
14Again, we use ideas of Brentano (1976) and Chisholm (1983) for our theory.
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if two (spatial) boundaries x and y coincide. This approach may be called Brentano
space, and it is important to understand, that spatial boundaries can be found in a
greater variety than point-like time-boundaries: Boundaries of regions are surfaces,
boundaries of surfaces are lines, and boundaries of lines are points. As in the case of
time-boundaries, spatial boundaries have no independent existence, i.e. they depend
on the spatial entity of which they are boundaries.

14.4.2 Principal Distinctions

In this section we consider the most basic distinctions between individuals.
Individuals are entities that are not instantiable, they are divided into space-time
entities, concrete and abstract individuals. Concrete individuals exist in time or
space whereas abstract individuals do not. Concrete individuals include this cup, or
this hundred meter run, abstract individuals include the real number π or idealized
prototypical individuals as, for example, canonical anatomical structures (Rosse and
Mejno, 2003). With regard to the relationship between individuals and time and
space, there is the well-known philosophical distinction between endurants and per-
durants. An endurant is an individual that exists in time, but cannot be described as
having temporal parts or phases; hence it is entirely present at every time-point of its
existence and it persists through time. Perdurants, on the other hand, are extended
in time and cannot be wholly present at a time-point. The definition of endurant
and perdurant is based on Johnston and Forbes (1987), and Lewis (1986) where the
notion of persistence is analysed and discussed.

According to this theory an entity persists if it exists at various times. The exis-
tence at various time can be understood – according to Johnston and Forbes (1987) –
in two different ways. Something perdures if it persists by having different temporal
parts at different times, though no one part of it is wholly present at more than one
time; whereas it endures if it persists by being wholly present at more than one time.
It turns out that the notion of endurant combines two contradicting aspects. If, for
example, an endurant x is wholly present at two different time-points t and s, then
there are two different entities “x at t” and “x at s”, denoted by x(t) and x(s), respec-
tively. Now let us assume that x persists from x(t) to x(s). For example, newborn
Caesar exists at time t, x(t), while Caesar at age of 50 at s, x(s). Then, persistence of
implies that x(t) and x(s) are identical.

Unlike the vague notion of an endurant and perdurant we make a more precise
distinction between presential and process. A presential is an individual which is
entirely present at a time-point. The introduction of the term “presential” is motivi-
ated by the fact that presentials are individuals that may exist in the presence, where
we assume that the presence has no temporal extension, hence, happens at a time-
point. We introduce the relation at(x,y) with the meaning the presential x exists at
time-point y. In our approach we separate endurants into wholly present presentials
and persisting persistants or perpetuants.

We pursue an approach which accounts for persistence using a suitable univer-
sal whose instances are presentials. Such universals are called persistants. These



310 H. Herre

do not change, and they can be used to explain how presentials that have different
properties at different times can, nevertheless, be the same. They satisfy a number
of conditions, among them the following: (a) every instance of a persistant is a pre-
sential; (b) for every time-boundary there is at most one instance which exists at
this time-boundary; and (c) there is a chronoid c such that for every time-boundary
of C the persistant has an instance at this time-boundary; and (d) every persistant
is maximal, i.e. there is no proper categorial extension of it having the same exten-
sion. Further conditions should concern the relation of ontical connectedness and
the relation of persistants to processes.

Persistants are special categories that can be instantiated. Are there individuals
that correspond to persistants and take over some of its properties? We claim that
for every persistant P of a certain subclass of persistants there exists an individual
q called perpetuant, satisfying the conditions that it persists through time, and that
it is related to the time-points of its duration by a relation exhib(q,a,t). The relation
exhib(q,a,t) has the meaning that q exhibits the presential a at time-point t. A
perpetuant is related to time by a set of time-points at which it exhibits presentials.
A certain class of perpetuants, called material perpetuants, correlate to individ-
uals which are sometimes called continuants. Unlike continuants – as a type of
endurants – perpetuants are consistently presented.15 The existence of perpetuants
are justified and supported by results of Gestalt theory Wertheimer (1912, 1922).

Processes have a temporal extension thus cannot be wholly present at a time-
point. The relation between a process and time is determined by the projection
function prtime(p,c), having the meaning that the process p has the temporal exten-
sion C. C is called the framing chronoid of P. There is another basic relation for
processes, denoted by. The relation has the meaning that x is a process, t is a time-
entity (a chronoid or a time-point), and the entity y results from the restriction of
t to t. Two cases may be distinguished. If t is a chronoid, then y has the temporal
extension t and is itself a process; y is a processual (or temporal) part of x. If t is a
time-point, then y has no temporal extension, and, hence, cannot be a process. If e
is wholly present at t then e is presential.

14.4.3 Material Structures

A material structure is an individual that satisfies the following conditions: it is a
presential, it occupies space, it is a bearer of qualities, but it cannot be a quality of

15A perpetuant has - similar as a primitive universal - an implicit relation to time. The persistence
of this kind of individual derives from its cognitive character. Persistence seems to be reasonable
only for items that are invariant through a time-interval and at the same time are related at time-
points of its duration to individuals which are immediately related to time and which may have
different properties at different time-points. Such items are either special primitive universals or
particular cognitive individuals. We do not apply the notion of persistance to abstract individuals,
as to the number 100.
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other entities, and it consists of an amount of substrate. Every material structure S
occupies a certain space-region that exhibits the basic relation of S to space. The
relation occ(x,y) describes the condition that the material structure x occupies the
space-region y. A material structure S is spatially contained in the space-region y, if
the space-region x occupied by S, is a spatial part of y. In this case we say that x is
the spatial location of S with respect to y or that y frames S. The relation occ(x,y)
depends on granularity; a material structure S, for example, may occupy the mereo-
logical sum of the space-regions occupied by its atoms or the convex closure of this
system. We assume that in our considerations the granularity is fixed, and – based on
this dimension – that the space-region occupied by a material structure is uniquely
determined.

Using the relations occ(x,y) and spart(u,v) we define the relation matpart(a,b)
with the meaning that the material structure a is a material part of the material
structure b.

matpart(x,y) ↔ ∀u v (occ(x,u) ∧ occ(y,v) → spart(u,v))

Material structures may be classified with respect to the mereotopological prop-
erties of their occupied space regions. A material structure is said to be connected
if its occupied region is a topoid. Every material structure consists of an amount
of substrate. An amount of substrate may is a special persistant whose instances
are distinct amounts at certain time-points; we call these presential amounts of sub-
strate. An amount of substrate at a certain time-boundary, i.e. a presential amount
of substrate, is always a part of the substrate of a material structure. The basic rela-
tion consist(x,y) means the material structure x consists of the presential amount of
substrate y.

Let x be a material structure which occupies a topoid T and let b be a spatial
boundary of T. We postulate the existence of a material entity y which occupies
the boundary b. These entities are called material boundaries, and they existentially
depend on the material structure occupying the according topoid. Material bound-
aries are divided into material surfaces, material lines and material points. Every
material surface is the boundary of a material structure, every material line is the
boundary of a material surface, and every material point is a material boundary of a
material line.

We introduce the basic relation matbd(x,y) with the meaning x is a material
boundary of the material structure y. Two material structures (or their material
boundaries) touch if their occupied space regions have spatial boundaries with coin-
cident parts. One has to take into consideration here that the spatial boundary which
is occupied by a material boundary depends on granularity and context. Our notion
of material structure is very general; almost every space-region may be understood
as the location of some material structure. We single out material objects as material
structures with natural material boundaries. This notion can be precisely defined.
Let us consider a material structure S with material boundary B. A part B(0) of B is
a natural boundary if the two following conditions are satisfied:
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(1) There is a material structure T outside of S such that S and T touch at B(0).
(2) A tangential part of S with boundary B(0) and a part of T touching S at B(0)

can be distinguished by different properties.

Examples of such distinguishing properties are fluid, solid, and gaseous. As an
example, let us consider a river. A river (at a time point of its existence, i.e. con-
sidered as a presential) is a material structure which consists of fluid substrate and
has natural material boundaries at all places, with exception of the region of the
river’s mouth. The solid river bed may be distinguished from the river fluid and the
river fluid may be distinguished from the air above the river. Within our framework
certain puzzles can be easily solved. In Leonardo’s notebooks there is mentioned:
What is it . . . that divides the atmosphere from the water? It is necessary that there
should be a common boundary which is neither air nor water but is without sub-
stance, because a body interposed between two bodies prevents their contact, and
this does not happen in water with air. (cited in Casati and Varzi (1994)).

How can two things – the water and the air – be in contact and yet be separated?
There are two material structures W and A (water and air), W consists of liquid
substrate, A consists of gaseous substrate. W and A have natural boundaries because
at the “touching area” we may distinguish W and A by the properties “fluid” and
“gaseous”. These natural boundaries touch because their occupied space-boundaries
coincide. The touching phenomenon is explained by the property described in the
Brentano-space theory that pure space boundaries may coincide; they may be at
the “same place” but, nevertheless, different. What is “interposed” between the two
natural boundaries are two coinciding space-boundaries which do not occupy any
space.16

14.4.4 Processual Complexes, Processes, and Occurrents

Processual complexes are the most general kind of concrete individuals which have
a temporal extension. The temporal extension of a processual complex is a mere-
ological sum of a non-empty set of chronoids. Processes form the most important
sub-class of processual complexes, and occurrents centers around the notion of pro-
cess. Occurrents are dependent entities that are related to processes in various ways.
Some examples of processes or ocurrents include: a rhinitis, seen as a sequence
of different states of inflammation; writing a letter; sitting in front of a computer
viewed as a state extended in time; the execution of a clinical trial; the treatment of
a patient; the development of a cancer; a lecture in the sense of an actual event as
well as a series of actual events, but opposed to the abstract notion of lecture; an
examination.

16GFO presents a solution to a problem which arises in Smith and Varzi (2000). GFO gives a new
interpretation of bona-fide boundaries in terms of natural boundaries. The claim stated in Smith and
Varzi (2000) that bona fide boundaries cannot touch is counter-intuitive and ontologically false. A
similar critics is sated in Ridder (2002).
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14.4.4.1 Processual Complexes

A processual complex is a concrete individual whose temporal extension is a time
region. The basic relation between temporal complexes and time is determined by
the relation prtime(tc,tr), where tr is the time-region which is associated to the pro-
cessual complex pc; we say that pc is projected onto the time-region tr. A processual
complex is said to be connected if its projection to time is a chronoid. The rela-
tion timerestr(x,t,y) has the meaning that the processual complex x, restricted to
the time-structure t yields the entity y. The time-structure t is a temporal part of
the time-region of x, and may additionally include an arbitrary set of time-points,
selected from the projection of x. Then y is the temporal restriction of x to the
time-structure t. Processual complexes are classified into coherent and non-coherent
complexes.

14.4.4.2 Processes

The set of processes is a proper subset of the set of connected temporal complexes.
Not every connected processual complex is a process because the latter satisfies a
number of further conditions. The projection of a process p to time – described by
the relation prtime(p,c) – is a chronoid which is uniquely determined. Hence, the
relation prtime(p,c) establishes a function from the set of all processes to the set of
all chronoids.

Just as parts of chronoids can be chronoids themselves, we assume that parts of
processes are always processes themselves. If p is a processual part of the process q,
denoted by procpart(p,q), then the temporal extension of p is a temporal part of the
temporal extension of q. Two processes p,q meet, denoted by procmeet(p,q), if their
corresponding chronoids temporally meet. If there is a process r such that p, q are
processual parts of r, and the temporal projection of r is the mereological sum of the
temporal projections of p and q, then r is said to be the processual sum of p and q.
We stipulate that the processual sum of two processes – if it exists – is uniquely
determined.

If a process P is restricted to a time-point of its temporal extension then the
resulting entity cannot be a process, because it has no temporal extension. If this
entity is a presential then it is called a boundary of the process. The relation
procbd(p,t,e) has the meaning that p is a process, t a time-point of the temporal
extension of p, and e a presential at time-points t being the restriction of P to t. We
assume that e is uniquely determined. Processes may be classified with respect to
their boundaries. P is a quality process if any boundary of P presents an aggre-
gate of qualities. Material processes contain in any of its boundaries a material
structure.

Every process is coherent and coherence of a connected temporal complex
implies that its boundaries are ontically and causally connected by the relations
ontic(x,y) and caus(x,y). Coherence is a basic notion that cannot be defined and
reduced to other concepts; it must be characterized by axioms, and these axioms
are based upon our intuitions and experience of the phenomenal world. The
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relation ontic(x,y) is considered and stipulated as a primitive basic relation, hence,
we assume that it cannot be defined by other relations. This relation can be
illustrated and elucidated by examples. Assume, we consider vase V at a certain
time-point t, and suppose that V breaks down at a later time-point t1 into three parts
V1, V2, V3. Then, these parts are ontically connected to V. One aspect behind the
ontic-relation is a general ontological law of conservation of substrate and matter.
Another example, demonstrating the ontic-relation, is related to the ship of Theseus
S. Suppose, that after some time during which replacements of parts of S were car-
ried out two ships S1, S2 came into beeing. Then only that ship is ontically conneted
to S whose parts originate from the parts of S.

Another facet of coherence is causality. We assume that coinciding boundaries
of a process are causally related. In particular, in a process any of its bound-
aries is determined by its past. Hence, in a coherent process a boundary cannot
be replaced arbitrarily by another presential. Analogously, not every extension of
a process is coherent. But, we assume that every process has a processual exten-
sion (which is, hence, coherent), and is at the same time an extension of a process.
Hence, we postulate that every process can be prolonged to the future and to the
past.17

Processes satisfy an ontological inertial principle that can be formulated as fol-
lows. A state (which is a particular process) prolongs to the same type of state unless
there is a cause to change it. In summary: ontical connectedness, causality, and
the ontological principle of inertia are satisfied for processes. Coherence is a very
important principle for processes, without coherence the world would disaggregate
in many isolated individuals.

A material process is a process whose boundaries are material structures. A struc-
tural layer q of some process p is a “portion” of p that may be explained by the
following example. Let be p a 100 m run with eight participants. Then the whole
run is a process P, and every of its runners exhibits, as a process Q for itself, a layer
of P. But even the process, associated to one of the runner’s part, say his right hand,
forms a layer of P.

The layer of a process can be understood as a particular part of it, captured by the
relation with the meaning, that x is a layer of the process y. Further part-of relations
of processes may be derived from them. We may consider, for example, those parts
of a process P which are processual parts of a layer of P. Two layers of a process
are said to be separated if there are no interlacements between then. We claim that
every process can be decomposed into separated layers. Furthermore, we believe
that any number of processes with the same temporal extension can be embedded
into a process containing them as layers.

17We assume an eternal view on processes. If we are speaking about the future or the past then
these are relative notions that are related to an observer.
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14.4.4.3 Occurrents

Occurrents are classified into events, changes, and histories. These entities depend
on processes and are relatively defined with respect to universals. In contrast to a
general understanding of “change” as an effect, a change – in the framework of
GFO – refers to a pair of process boundaries. These pairs occur either at coinciding
boundaries, like “instantaneous event” or “punctual”, or at boundaries situated at
opposite ends of a process of arbitrary extension. The enrollment of a student is an
example for the first kind of changes, called discrete. It comprises two coinciding
process boundaries, one terminating the process of the matriculation, one beginning
the process of studying.

An example of continuous change is illustrated by the decline in the course of a
rhinitis. If two boundaries of this process coincide, one may not be able to assign to
them a difference to the severity of inflammation, but if one considers boundaries
that belong to an extended part of the inflammation process, there will be a differ-
ence. Both notions of continuous and discrete change are relative to contradictory
conditions between which a transition takes place. Frequently, these contradictions
refer to pairs of categories that cannot be instantiated by the same individual.

Locomotions are another representative of continuous change. Here, the con-
tradictory conditions refer to some change of the distance of the moving entity to
some entity or frame of reference. Changes are defined relatively with respect to a
universal U whose instances are presentials.

Relying on those universals, we finally arrive at the following relations: Discrete
changes are represented by dischange(p,e1,e2,u1,u2,u),18 where e1 and e2 capture
the pair of coincident process boundaries.19 This relation implies that p is a process,
u1 and u2 are disjoint sub-universals of u, such that e1 and e2 instantiate u1 and
u2, respectively. Note, that this implies instantiation of both e1 and e2 of u, which
prevents expressing artificial changes, e.g. a change of a weight of 20 kg to a color of
red. The conditions described about dischange are neccessary conditions a discrete
change should satisfy. We may derive from dischange a relation dischange1 defined
as follows:

dischange1(x,y,z,u) =df ∃ u1 u2 dischange(x,y,z,u1,u2)

Note, that if u has no proper disjoint subuniversals then discrete changes with
respect to u cannot exist. Furthermore, if C is a change relative to the universal u
and ext(u) ⊆ ext(v) then C is a change for v, too.

18The representation of a change could additionally mention also two sub-processes p(1), p(2),
where both processes meet, and e(1) is the right boundary of p(1), and e(2) is the left boundary
of p(2).
19Recall that “coincident process boundaries” refers to the fact that the respective time-boundaries
coincide. It does not mean that the presentials themselves should coincide.
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Any continuous process has no discrete changes. For the purpose of formalizing
continuous changes, we consider a subprocess q of the process p. If q is a contin-
uous change of p with respect to the universals u, denoted by contchange(p,q,u),
then the following conditions are satisfied. q does not contain any discrete change
with respect to subuniversals of u, but any two non-coinciding boundaries of q
can be distinguished by subuniversals of u. The mentioned conditions are necces-
sary conditions that should be satisfied by any continuous change. But they are,
we believe, not sufficient to adequately capture the notion of a continuous change.
Continuous processes, and continuous changes in particular, must take into con-
sideration some further conditions which are related to a measurement system that
includes an ordering between certain universals. A complete theory of continuous
processes and changes must be elaborated yet. A refinement and generalization of
continuous changes takes into consideration the idea of observable or measurable
differences between non-coinciding boundaries of a process. It might happen that
not only coinciding boundaries cannot be distinguished, but also boundaries of suf-
ficient small temporal distance. For this purpose we may introduce a universal�(λ)
of chronoids of minimal duration λ that is employed in order to embody the idea of
observable differences during chronoids of length ρ ≥ λ, while the change does not
allow the observation of a difference between boundaries whose temporal distance
is smaller than λ. The predicate is intended to formalize this approach. Changes
can only be realized in terms of ontical connectedness and persistants/perpetuants,
in order to know which entities must be compared with each other to detect a
change.

Events are entities that exhibit a certain behavior relative to a process; every
event is a right boundary of a process. In describing events we introduce are rela-
tion event(p, e, u1, u2, u), where e is the right boundary of p, u1, u2 are different
universals (with disjoint extension) of the “same” kind of instances, i.e. they are
subsumed by a certain universal u. Furthermore, every boundary of p left from e,
within a certain end-segment of p, is an instance of u1, but e itself is an instance of
u2. We present the example of cell-division demonstrating an event. Let us assume
the process p is called cell-division. This process starts with one cell, and ends with
two cells. In the course of the process there is a continuous deformation of the cell,
and at any time-point before the event we find one cell, i.e. to any boundary left
from the event, the property of being one cell is verified. Hence the distinguishing
properties to be considered are “to be one cell” (as a connected whole) or “to be two
cells”. We may consider the same property for the left boundary of a process. The
left boundary of a process p is a starting event of p, with respect to the universals u,
u1, u2, denoted by if every boundary right from e, within a certain initial segment
of p is an instance of u1, but e is an instance of u. We consider an example of a pro-
cess that has a starting event and a (final) event. Let B be a pool and let us consider
the universals u1 = df B is empty, u2 = df B is completely filled with water, u3 the
universal: B is non-empty but not completely filled. Then, the process of filling the
pool B with water has a starting event e1 (the empty B), and a final event e2, B is
completely filled.
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Since every process is prolonged in the future there arises the question which
types of coinciding boundaries may occur. Furthermore, not every universal is suit-
able to establish changes and events. We restrict in this section to the case that the
boundaries of the process are material structures. Such a material structure p may
undergo many changes during its existence. Which kinds of change for p are pos-
sible? We collect some types of changes without claiming that this classification is
complete.

• P may change its qualities, say colour, weight, form, size; these are individuals
that inhere in P, and are genuinely unary, i.e. it do not need any relation to other
entities.

• P may change its relation to space, i.e. may move in space or may change its
form, such that the relation occ(x,y) is changed.

• P may loose spatial parts or may unify with other material structures.
• P may change its relation to other entities, in particular, P may change its role.

In all these changes the type of the changed entity should be preserved. A
colour, for example, should not change into a weight, a form should not change
into a colour. Furthermore, different changes may be interrelated to each other, for
example the change of form and morphology changes the occupied space. Some
of these interrelations are causally founded, for example the relation between the
temperature and the size of an iron poke.

Histories in GFO are related to processes. A history is a pair (p, (ai)i<k) whereas
p is a process, and (ai)i<k are presentials at certain time-points (ti)i<k of the tempo-
ral extension of p such that these presentials are constituent parts of the associated
boundaries of p. k is either a natural number or equals ω. As an example we consider
a patient p. p can be considered as a process Proc(p), and let us assume that his tem-
perature is measured every day four times and during on month. Then the measured
values belong to presentials which are exhibited at the time-points of measurement.

14.4.4.4 Basic Classification of Processes

In this section we investigate the immanent structure of processes based upon
the types of change occurring in it. Using the notions of discrete and continu-
ous change, but also states, processes can be subdivided according to the nature
of changes occurring within a process and sccording to their combinations. First,
there are processes in which all (non-coinciding) internal boundaries determine sub-
processes that exhibit continuous changes. These are continuous processes which
are described, for example, in mechanics (Hermes, 1959).

States. A process p is a state with respect to the universal u, briefly a u-state, if
every boundary of p instantiates u. p is said to be a strong u-state if, additionally,
there are no disjoint sub-universals of u1, u2 of u and no boundaries e1, e2 which are
separated by u1, u2, i.e. e1 :: u1, and e2 :: u2. Every strong u -state is a u -state, but
not conversely. If p is a strong u-state, then there exists an extensionally minimal
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sub-universal v of u such that p is a strong v-state. This is not true for u-states.
Furthermore, if the universal u does not contain any proper sub-universal then any
u-state is a strong u-state. Strong u-states are already determined by certain minimal
universals.

Continuous Processes. A process p is said to be continuous if p has no discrete
changes and p is the mereological sum of continuous changes and states. If a pro-
cess p is continuous then the partition into continuous changes and states is not
necessarily uniquely determined. An example is a circular motion of a body.

Discrete and Discrete-Continuous Processes. But discrete changes may alter-
nate with periods without changes (based on the same universals). Those parts of
a process without changes may be called a state, which constitutes its own type of
process. States, however, are a notion as relative as changes. A process is said to
be discrete if it composed of states and discrete changes. Discrete-ontinuous pro-
cesses are formed of discrete processes and continuous parts, hence such a process
is e mereological sum of discrete and continuous processes. A process is said to
be discreteless if it does not contain any discrete change. Continuous processes are
always, by definition, discreteless. In summary, three standard types of processes
can be identified: continuous processes based on intrinsic changes, states, and dis-
crete processes made up of alternating sequences of extrinsic changes and states or
continuous processes.

General Processes. We now consider the case that no restriction is proposed
(fixed) for the distribution of universals over the boundaries of a process. Let I be a
chronoid, and Bd(I) the set of all boundaries of I. Furthermore, let be {u1, . . . , uk}
a set of universals whose instances are presentials, we assume that these universals
are pair-wise extensional disjoint. Let f be a function Bd(1)−> {u1, . . . , uk}. Does
there exists a process P such that P has a temporal extension I and for every time-
boundary t of Bd(I) holds that e(t) is an instance of f(t)? The classification of general
processes is an open problem.

Another dissection of the category of processes is geared toward the complexity
of the process boundaries in their nature as presentials. Consider a person walking
compared to a clinical trial. In the first case, the process of walking focuses on the
person only (and its position in space), whereas the clinical trial is a process with
numerous participants and an enormous degree of complexity and interlacement. It
is clear that every process is embedded in reality, so the walking is not separated
from the world and could be considered with more complexity.20 However, pro-
cesses often refer to specific aspects of their participants, so that dividing simple
and complex processes appears to be useful. A process is called simple if its process
boundaries are simple presentials or even mere qualities of presentials. In contrast
to simple processes, complex processes involve more than a single presential at their
boundaries. A finer classification of simple processes (according to the nature of its
presentials) could be quality-process and material-structure-processes. Processes

20The categories of situations and situoids as discussed in this paper are a first attempt to account
for this in a systematic manner.
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are not directly related to space, but such a relation can be derived from the pro-
cess boundaries (which are presentials).21 With material-structure processes, each
boundary comprises exactly one material structure e(t), where t denotes the corre-
sponding time-boundary. In this case, the convex frame f of the topoid occupied by
e(t) can be defined, denoted by (e(t), f). In order to assign some topoid to the overall
process we consider the convex closure of every frame f which is assigned to some
e(t) for any time-boundary t in the duration of the process.

For complex processes, which involve a system of material structures and qual-
ities, both approaches can be combined. First, the inherence closure of all qualities
in each process boundary is derived. Then one can determine the convex closure for
each of the material structures found. The final step integrates all topoids determined
in this way within a single convex closure, which is then assigned to the complex
process as its spatial location.

An material object is an artefact if it was designed and produced by a subject, a
human being. Similarly, we introduce the notion of a artefactual process which is
designed by human beings. Among them there a executions of software programs,
or the realization of a plan to achievce certain goals.

14.4.5 Attributives

Attributives are dependent entities, they always need a bearer. Attributives include,
among others, properties, relators, roles, functions, and dispositions. Examples of
qualities are particular weights, forms and colors. A sentence like “This rose is
red.” refers to a particular object, a rose, and to a particular quality, red. Objects
and attributives are connected by the basic relation of inherence. Atomic attributives
have no parts or sub-components, they include qualities and roles. Atomic attribu-
tives are classified into context-free and contextual. Contextual atomic attributives
are always parts of complex attributives. Qualities are context-free atomic attribu-
tives, roles are contextual atomic attributives being parts of relators. Examples of
roles are available through terms like parent, child or neighbor. Here, parent and
child would be considered as a pair of interdependent roles. Apparently, these
examples easily remind one of relations like “is-child-of”. Indeed, a composi-
tion of interdependent roles is a relator, i.e. an entity that connects several other
entities.

14.4.5.1 Properties

Things can have certain characteristics, features. To express them, natural and
artificial languages make use of syntactic elements like adjectives/adverbs, or
attributes/slots, respectively. Examples are: the severity of a rhinitis (a severe or
minor); the shape of a nose (bulbous, pointy, flattened); the size of a filing cabinet;

21This resembles the idea of “indirect qualities” in Masolo et al. (2002).
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the size of a clinical trial (the number of participating patients); the number of cen-
ters comprising mono- and multi-center trials; the age of a patient (which may affect
the inclusion or the exclusion in a trial); the reputation of a university.

In the following, we present the GFO account on properties, which consists
of two parts: First, the distinction between abstract property universals and their
concrete instances, which are called property individuals.22 Second, both property
universals and property and individuals must be distinguished from their respective
values. At the abstract (universal) level, we distinguish between property universals
and their values, which include the difference between phrases like “the size of a
cabinet” and “a big cabinet”. The first phrase refers to a certain aspect of the cabi-
net. The second phrase refers to a value of this property of the cabinet, which reflects
a relationship between the property universal, x, and the same property as exhibited
by another entity, y.

Values of property universals usually appear in groups which are called value
structures or measurement systems. Each of these structures corresponds to some
property universal. More intuitively, one could say that the property may be mea-
sured with respect to some measurement system. For instance, sizes may be
measured with the values “small”, “big”, or “very big”, which are the elements
of one value structure. This structure and the particular values of the sizes of, e.g. a
cabinet and a desk, respectively, allow for comparison of their sizes.

The notion of a value structure of a property is similar to a quality dimension
in Gärdenfors (2000).23 Further, value structures are related to quality spaces in
Masolo et al. (2003).24 Note, however, that various types of value structures can
be found for the same property. Of course, one is tempted to include all these value
structures within one comprehensive or “objective” structure. The latter would cover
all values, such that any other structure appears as a selection of values of the objec-
tive structure. Instead of this, we currently consider it better to have distinct value
structures (e.g. based on some measurement instrument), which may afterwards be
aligned and composed into a broader structure, than to have a pre-defined “objec-
tive” structure. One reason for our approach is that the precise objective structure
is unknown for most properties (choosing real numbers as isomorphic may often
comprise too many values). In addition, all measurement instruments are restricted
to a certain range of values, which can be measured using this instrument.

Within a value structure, several levels of generality may be distinguished, but,
preliminarily, we understand value structures to be sets of values. Often it appears
that a notion of distance can be defined, and that certain layers of value structures are
isomorphic to some subset of real numbers, which allows for a mapping of values
to pairs of a real number and a unit, as in the case of “10 kg”.

Coming to concrete entities, one can observe, that e.g. size (“the size of a fil-
ing cabinet”) can be a property of other entities apart from filing cabinets, as it

22In earlier texts these were referred to as “properties” and “qualities”.
23Note that the term “property value” here resembles Gärdenfors’ notion of “property”, our
“property” his “quality dimension”
24A quality space consists of all “quales” (our property values) of some “quality” (our property).
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is a universal. Hence the question arises whether the size of the particular cabinet
and the size of some other particular entity is literally the same entity. To answer
this question, we introduce the distinction between property universals and property
individuals (regarding these two categories, note the terminological and conceptual
affinity with Masolo et al. (2003)).

In our example, we can differentiate between two entities: “the size” and “the
size of that cabinet”. The size is a property universal (as introduced above). Because
it is a universal, it is independent of the filing cabinet. But apart from the universal,
we find the particular size of the particular cabinet, which exists only in the context
of this cabinet and therefore existentially depends on it. We call individuals of this
kind property individuals. To say that an individual entity has a property means
that there is a quality individual which is an instance of the property universal and
that this property individual inheres in its bearer. So the “size of that cabinet” is a
property individual that inheres in the cabinet, while “size” is a property universal,
of which the quality is an instance.

We introduce values of property individuals, which are analagous to values of
property universals. For example, big and small may be the values of the size uni-
versal, whereas a particular big or small of some cabinet is the value of an individual
quality, namely the size of that cabinet. Values of property individuals are indi-
viduals instantiating the corresponding property universals’ values. Moreover, the
particular value x is linked to a property individual y by the relationship.

It should be stated explicitly that values of property universals are not considered
as specialisations of property universals. Properties themselves can be classified and
subdivided in various ways. One natural way to classify perceptible properties is
assigning them based on the way in which they are perceived. This leads to visible
properties (like lengths and color), smells, tastes (e.g. sweetness, bitterness) and
so on.

However, there are also more formal classification principles for properties, for
instance, according to the categories of the characterized entities. The following
subcategories of properties are preliminarily distinguished with respect to the cat-
egories their bearers belong to. Note that for each category a different subrelation
of has-quality may be introduced, in order to integrate relationships that are fairly
established.

• Qualities of material structures, e.g. the color of a ball,
• Qualities of processes, e.g. the average speed of an object’s movement, running

for half an hour, and
• Qualities of qualities, e.g. a color’s hue or brightness.

14.4.5.2 Relations and Roles

Roles are common in modeling, yet they have lingered in the background and
only in recent years have they attracted focused interest (cf. Boella et al., 2005),
although there are much earlier approaches dealing with roles as a central notion, as
in Bachman and Daya (1977). Initially, the term role calls to mind terms like student,
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patient, or customer – all refer to roles. In a comprehensive analysis, roles have been
investigated for integration into GFO (Loebe, 2003, 2005). Here we provide a com-
pact introduction to the general understanding of roles as well as the current state of
role classification.

General Approach

Starting with a role r, there are two directly related notions, namely player and
context.25 Each role q requires a player p and a context c. More precisely, r is one-
sidedly existentially dependent on p, and mutually existentially dependent with c.
Two basic relations connect entities of these types: plays, denoted as plays(x,y),
connecting a player x with a role y,26 and role-of (role-of(x,y)), which ties a role x
to its context y. In terms of the “standard” role example of student, John plays the
role of the student in the context of his relationship to his university. Other examples
refer to John as an employee in the context of some company, or as a mover of some
pen, in the context of that movement.

Moreover, apart from roles, players, and contexts, roles are often contrasted with
natural universals,27 cf. (Guarino 1992). While “student” is a role, “human” is not
a role, but a natural universal that provides players for roles. Intuitively, roles can be
distinguished from natural universals by their dependence on a context, whereas for
natural universals, the context of the considered role is irrelevant.

Each of these categories discussed thus far are self-contained, in the sense that
they do not provide insights on how they are related to other GFO categories in
this work. To establish these links, we first note that there are individuals as well
as categories of roles (and all other notions). For more specific relations, different
types of roles need to be distinguished. This classification is based on the contexts of
roles, because the coupling of roles and contexts is more tight than between players
and roles, cf. Loebe (2005).

Based on the literature, the following categories serve as contexts in various role
approaches: relations, processes, and (social) objects. Accordingly, we distinguish
three role types with the following informal definitions:

• A relational role corresponds to the way in which an argument participates in
some relation;

• A processual role corresponds to the manner in which a single participant
behaves in some process;

• A social role corresponds to the involvement of a social object within some
society.

25Note that “context” here is just an auxiliary notion for introducing roles, instead of being
presented in a profound ontological analysis.
26The literature provides fills and hasRole as other common terms for the plays relation.
27Other terms in the literature are natural type (Guarino, 1992), natural kind (Wilkerson, 1995),
phenomenon (Sowa, 1984), base classifier in UML (Rumbaugh et al., 1999), and basic concept in
Sunagawa (2005).
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Here, we focus on the relationships to the general role notions identified above.
Moreover, the given classification is not meant to be complete, i.e. other categories
may be contexts, thus yielding further role types.

Relators are the contexts of relational roles, i.e. a relator can be decomposed into
at least two relational roles which complement each other. Intuitively, the role-of
relation seems like a part-of relation in this case. Because relational roles refer to
exactly one player, the plays relation corresponds to has-property. Accordingly, rela-
tional roles are subsumed by the category of properties. Consider that the number
two is a factor of four. This refers to a relator with two role individuals, one instanti-
ating the role universal “factor”, the other instantiating “multiple”. The first of these
role individuals is played by two, while four plays the second role individual.

The generality of relations regarding the entities they connect is reflected in the
fact that players of relational roles cannot be restricted by any specific category;
hence, the natural universal for relational roles in general is the category “entity”.

Processual roles have processes as their contexts. As such they are processes
themselves, and one may identify them as special layers of a process, because role-
of is understood as a part-of relationship (as in the case of relational roles). The plays
relation is different from plays for relational roles, because here plays corresponds
to participation in a process.

When John moves a pen, for example, the movement is a process in which John
and the pen are involved, in different ways. Accordingly, the process can be broken
into two roles, “the mover” and “the moved”. John plays the first role, the pen the
second. Imagining John as a mime who pretends to move a pen should provide a
natural illustration of the notion of processual roles.

The case of the mime further exemplifies an uncommon case of roles: a single
processual role may itself form a context. Almost all role notions are relational in
nature, in the sense that their contexts are composed of several roles. In contrast,
processes that comprise only a single participant are understood as a processual role,
and likewise, as a context. Considering the plays relation, the potential players of
processual roles are restricted to persistants, because a persisting entity is required
to carve out roles from processes.

Note that the similarities of relational and processual roles leads to a category
of abstract roles. The latter is functionally defined as providing “a mechanism of
viewing some entity –– namely the player –– in a defined context” (Loebe, 2005).
Given this abstraction, we can now introduce a final type.

Social roles differ from abstract roles in that their understanding depends much
less on their context. Instead, social roles come with their own properties and behav-
ior, which is a common requirement in many role approaches in computer science,
cf. (Steimann, 2000). For example, if John is a student, he is issued a registration
number and gains new rights and responsibilities. From a philosophical perspec-
tive, this view is further inspired by Searle (1995) and the ontological levels of Poli
(2001), see Section 4. Social roles are considered to be social structures in GFO,
which is an analogous category to material structures, but in the social stratum.
However, social roles also need a foundation on the material level, which in general
role terms corresponds to the plays relation. For instance, the human John plays a
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social role that is characterized by specific rights and responsibilites. Note that so far
we do not exclude that social roles themselves may play other social roles; hence,
there may be chains of the plays relationship that must ultimately terminate by a
role played by a material structure.

The contexts of social roles are also social structures, which may be called soci-
eties or institutions, cf. (Searle, 1995). Accordingly, a rough similarity between
role-of and part-of is present for social roles as well. However, there are complex
interrelations among entities of the social stratum, and the ontology of this stratum
requires much more work.

Given that the general approach to roles is initially independent of other GFO
categories, as well as the diversity of individuals introduced as roles, leads us to
question why all roles should fall within the same category. Stated differently, what
should the intrinsic commonalities between processual and relational roles be? We
must admit that there are none – a fact that lies in the nature of category “role”
itself, because, under a meta-level perspective, all general role characteristics apply
to “role” itself.

These meta-level aspects further relate to the account of roles given by Guarino
(and colleagues), who characterizes “role” as a meta-category of relationally depen-
dent and anti-rigid categories (Guarino and Welty, 2001; Masolo et al., 2004). The
latter means that for each instance of a role category, it is not essential to instantiate
that category. These criteria can be reconstructed in GFO, where relational depen-
dence corresponds to our contexts and anti-rigidity must be re-interpreted in terms
of player universals. Roles in GFO differ from this approach in the sense that (1)
there are role individuals, and (2) it may be essential to play a role. For instance, it
is essential that the natural number two is a factor of four, and it is likewise essen-
tial that each human is a child. Anti-rigidity thus does not hold for every player
universal. Nevertheless, in most cases it is a useful indicator for detecting player
universals, and thus roles.

14.4.5.3 Functions

We understand a function to be an intentional entity, defined in purely teleological
terms by the specification of a goal, requirements and a functional item. Functions
are commonly ascribed by means of the has-function relation to entities that, in some
context, are the realizations of the goal, execute such realizations or are intended by
a reliable agent to do so. Functions are considered to be intentional entities and,
hence, they are not objective entities of the world, but agent-dependent entities that
primarily belong to the mental and social strata.

Structure of Functions

The pattern of the specification of a function F, called a function structure, is defined
as a quadruple, Label(F), Req(F), Goal(F), Fitem(F), where:

• Label(F) denotes a set of labels of function F;
• Req(F) denotes the requirements of function F;
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• Goal(F) denotes a goal of F;
• Fitem(F) denotes a functional item of F.

Except for the label, these are called the function determinants, and they deter-
mine a function. Labels are natural language expressions naming the function.
Most commonly, they are phrases in the form “to do something”, e.g. “to transport
goods”. The requirements of the function set forth all the necessary precondi-
tions that must be met whenever the function will be realized. For example, in the
case of the function “to transport goods from A to B”, goods must be present at
location A. Functions are goal oriented entities – specifying a function requires
providing the goal it serves. However, goals are not identified with functions, as
in Chandrasekaran and Josephson (1997). The goal of the function is an arbitrary
entity of GFO –– referred to also as a chunk of the reality –– that is intended to be
achieved by each realization of the function. In the case of transporting goods, the
location of the goods at B is the goal. The goal specifies only the part of the world
directly affected (or intended to be affected) by the function realization. In our case,
it is the relator of goods being located at B. Often a goal is embedded in a wider
context, being a complex whole, e.g. a fact, configuration, or situation, called final
state. A final state of a function includes the goal plus an environment of the goal,
therefore making the goal more comprehensible. Here, it is the relator together with
its relata, i.e. goods located in B.

Functions are dependent entities, in the sense that a function is always the func-
tion of some other entity, executing it. The functional item of the function F indicates
the role of entities executing a realization of F, such that all restrictions on real-
izations imposed by the functional item are also stipulated by some goal of F. In
the case of “to transport goods”, the functional item would be the role universal
“goods transporter”. Entities are often evaluated against functions. This is reflected
in GFO by the relations of realization and realizer. Intuitively, an individual real-
ization of a function F is an individual entity, in which (and by means of which)
the goal of F is achieved in circumstances satisfying the requirements of F. Take
the example of function F “to transport goods G from Leipzig to Berlin”, and the
individual process of transportation of goods G by plane from Leipzig to Berlin.
In brief, we can say that the process starts when the requirements of F are satis-
fied, and ends by achieving the goal of F, which, therefore, is the realization of
function F.

Realization of Functions

It is important to understand the difference between a function and a realization, in
particular with regard to their specification. To specify a function and its structure
one must state what will be achieved; representing a realization usually means spec-
ifying how something is achieved. Note that not all functions must be realized by
a process, as in the above example. In fact, in GFO we do not interpret functions
in terms of processes or behaviors as described in Sasajima (1995). Apart from
functions that are typically realized by processes or behaviors, we also consider
functions realized by presentials. Consider, for instance, a pepper moth with a dark
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covering sitting on a dark bark. This situation is the realization of the function of
camouflaging a moth.

In every realization we find entities that execute this realization. They may be
identified by references to functional items. For example, for the function “to trans-
port oxygen”, the role “oxygen transporter” is the functional item. Now consider an
individual transport process, i.e. a realization, involving a single red blood cell. That
cell has the role “oxygen transporter” within this realization. This fact gives rise to
a new entity that mediates between the realization and the cell itself, namely the cell
as an “oxygen transporter” (cell-qua-oxygen transporter). Such an entity is called
the realizer of the function and is considered to be a qua-individual, i.e. an instance
of a role universal.

Ascription of Functions

Functions are often ascribed to entities, e.g. the function of oxygen transport is
assigned to a process of blood circulation. We assign functions to entities by the
has-function relation, whose second argument is a function, and the first is one of
the following:

• an entity that is a realization of the function, e.g. for the function of transporting
oxygen, the process of blood circulation;

• an entity that plays the role of the realizer in a realization of a function, e.g. the
red blood cell in the process of blood circulation;

• an entity intended to be a realization or a realizer of a function.

The third case especially refers to artifacts that often inherit their functions from
the designer, who intends for them to realize particular functions. The function
ascription of that kind is called intended-has-functions. Note that artifacts are not
only understood to be entities playing the role of realizers, as, e.g. a hammer that
plays a realizer of the function “to hammer nails”. Additionally, artifacts may play
the role of realizations, e.g. the process of transporting goods, which is a realization
of the transport function, may be an artifact as well. This holds true especially with
regard to services.

The intended-has-functions have a normative character, which allows for assign-
ing such functions to entities that possess them as malfunctions. In short, the entity
that has an intended function F, but is neither a realization nor a realizer of F, is said
to be malfunctioning. The flavors and more detailed specification of malfunctions
and of other notions outlined above can be found in Burek et al. (2006).

14.4.6 Facts, Propositions, and Situations

With relations, relators and roles, all components of facts are available, such that
a more formal approach can be established. Since relations are entities connecting
others, it is useful to consider collections of entities and their relators. The simplest
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combinations of relators and relata are facts. Facts are considered as parts of the
world, as entities sui generis, for example “John’s being an instance of the universal
Human” or “the book B’s localization next to the book C” refer to facts. Note that the
existence of facts is not uncontroversial in the philosophical literature. Approaches
span from the denial of facts on the one hand, to their acknowledgement as the most
primitive kind of entity on the other, cf. (Armstrong, 1997; Wittgenstein, 1922).

Further, facts are frequently discussed in connection with other abstract notions
like propositions (cf. Loux, 1998), which are not covered in depth here. However,
what can be said about propositions is that they make claims about the existence or
non-existence of facts. Therefore, truth-values are assigned to propositions and they
can be logically combined. In contrast, facts do not have a truth value.

There are additional notions that are frequently mentioned in connection with
facts, for example states of affairs, which have yet to be included properly in GFO.
With respect to representations of facts and propositions, we intend to study and
integrate results from situation theory as initiated by Barwise and Perry (1983).
This study will consider notions like infons and situation types, and will comprise
the integration of these notions with those mentioned herein, like propositions and
facts.

Another aspect to be stressed refers to the kinds of entities which facts are about,
as these are not necessarily individuals. For example, the fact “Mary is speaking
about humanity” refers to a relator of type “speaking”, which connects Mary with
the universal humanity. On the basis of the relator and the types of the arguments,
several kinds of facts can be distinguished. Here, one immediate option is to look at
the appearance of individuals (e.g. none, at least one, all) and categories. Facts that
contain at least one individual are called individual facts, while non-individual facts
are called abstract.

Individual and abstract facts may be further classified. We outline a refined
classification that pertains to individual facts and is important for the category of
situations and situoids. The basis of this classification is the temporal interrelation-
ships of the individual constituents of facts. An individual fact is called a presential
fact if all of its individual constituents are presentials, which exist at the same time-
boundary. Facts that are not presential facts can still be classified in many different
sub-types based on similar temporal criteria. Another dimension for classification is
to refer to a finer classification of the constituents, like facts about presentials, facts
about processes, mixtures of these, and so forth. The development of a practically
relevant classification remains to be completed.

As yet, facts themselves have only been considered as individuals. However, it
appears reasonable to speak of factual universals. For instance, sentences in the form
“A man kisses a woman”, can be interpreted in a universal sense. Each relation R,
gives rise to a factual universal F(R), whose instances are composed of a relator of
R and its arguments. Altogether, every relator of R has a corresponding fact instan-
tiating F(R). In this section we survey some basic notions about the most complex
entities in reality, namely situations and situoids.

Material structures, properties, and relators presuppose one another, and con-
stitute complex units or wholes. The simplest units of this kind are facts. A
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configuration is an aggregate of facts. We restrict the discussion in this section to a
special type of facts, and ask whether an aggregate of facts can be integrated into a
whole. Put differently, we ask whether a collection of facts constitutes a whole. We
consider a collection of presential facts which exist at the same time-boundary. Such
collections may be considered to be presentials, and we call them configurations.

It is further required that configurations contain at least one material object.
Material objects are entities having a natural boundary, and on this basis, config-
urations may be classified as either simple or non-simple. A simple configuration is
a configuration that is composed of exactly one material object and has only prop-
erties inhering in that material object. A configuration is said to be non-simple if it
is made up of more than one material object, and these are connected by relators.

A situation is a special configuration which can be comprehended as a whole and
satisfies certain conditions of unity, which are imposed by relations and categories
associated with the situation. We consider situations to be the most complex kind of
presentials.

Configurations have a counterpart in the realm of processes, which we call con-
figuroids. They are, in the simplest case, integrated wholes made up of material
structure processes and property processes. Furthermore, there is a category of
processes whose boundaries are situations, and that satisfy certain principles of
coherence, comprehensibility and continuity. We call these entities situoids; they are
regarded as the most complex integrated wholes of the world. As it turns out, each
of the entities we have considered thus far, including processes, can be embedded
in a situoid. A situoid is, intuitively, a part of the world that is a coherent and com-
prehensible whole and does not need other entities in order to exist. Every situoid
has a temporal extent and is framed by a topoid. An example of a situoid is “John’s
kissing of Mary”, conceived as a process of kissing in a certain environment which
contains individuals of the persistants John and Mary.

Every situoid is framed by a chronoid and a topoid. We use here two rela-
tions tframe(s,y), and tframe(s,y). Note that the relation tframe(s,x) is equivalent
to prt(s,x), since a situoid is a process. The relations prs(s,x) and sframe(s,x) are
different.

Every temporal part of a situoid is a process aggregate. The temporal parts of
a situoid s are determined by the full projection of s onto a part of the framing
chronoid c of s. This full projection relation is denoted by prt(a,c,b), where a is
a situoid, c is a part of the framing chronoid of a, and b is the process that results
from this projection. Boundaries (including inner boundaries) of situoids are projec-
tions to time-boundaries. We assume that projections of situoids to time-boundaries,
which are denoted by prt(a,t,b), are situations. In every situation, a material structure
is contained, and we say that a presential e is a constituent of a situoid s, cpart(e,s),
iff there is a time-boundary t of s such that the projection of s onto t is a situation
containing e.

Situoids can be extended in two ways. Let s, t be two situoids; we say that t is a
temporal extension of s, if there is an initial segment c of the chronoid t such that
the projection of t onto c equals s. We say that t is a structural extension of s if s is a
structural layer of t (cf. Section 14.2). Both kinds of extensions can be combined to
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form the more general notion of a structural-temporal extension. Reality can – in a
sense – be understood as a web of situoids that are connected by structural-temporal
extensions. The notion of an extension can be relativized to situations. Since there
cannot be temporal extensions of situations, an extension t of the situation.

s is always a structural extension. As an example, consider a fixed single material
structure p, which occurs in situation s. Every extension of s is determined by adding
further qualities or relators to s to the intrinsic properties of p. A quality-bundle that
is unified by the material structure p is called saturated if no extension of s adds
new qualities. It is an open question whether there is an extension t of s, such that
every material structure p in t unites with a saturated bundle of qualities.

A configuroid c in the situoid s is defined as the projection of a structural layer of s
onto a chronoid, which is a part of the time-frame of s. In particular, every structural
layer of s is itself a configuroid of s. Obviously every configuroid is a process. But
not every process is a configuroid of a situoid, because not every process satisfies
the substantiality condition.

We postulate as a basic axiom that every occurrent is – roughly speaking – a
“portion” of a situoid, and we say that every occurrent is embedded in a situoid.
Furthermore, we defend the position that processes should be analyzed and clas-
sified within the framework of situoids. Also, situoids may be used as ontological
entities representing contexts. Developing a rigorous typology of processes within
the framework of situoids is an important future project. Occurrents may be clas-
sified with respect to different dimensions, among them we mention the temporal
structure and the granularity of an occurrent.

As a final note regarding situoids, configurations, and their relatives, there are a
number of useful, derivable categories. For instance, one can now define situational
histories as histories that have only situations as their boundaries. In general, the
theory of these entities is considered a promising field for future research.

14.5 Basic Relations of GFO

In this section we summarize the basic relations of GFO.

14.5.1 Existential Dependency

Entity is the category of everything that exists. We consider the entity level as a
philosophical level at which the most general distinctions are considered. These are
distinctions of modes of existence and of existential dependency. For many types of
entities, their instances existentially depend on other entities. For instance, a time-
boundary depends on the chronoid it is a boundary of, or the quality that inheres in a
material structure depends on that structure. Various types of dependency relations
are discussed in the philosophical literature, see e.g. Chapter 9 in Johansson (1989).
It turns out that the notion of existential dependency is rather vague and needs
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further investigation. The classical definition of existential dependence or ontologi-
cal dependence is given by the following informal definition which is preliminarily
adopted:

Definition: An entity x is ontologically dependent on y when x cannot exist unless the y
exists.

14.5.2 Set and Set-Theoretical Relations

The membership relation is the basic relation of set theory. Set(x) denotes the cate-
gory of all sets, represented as a unary predicate. x ∈ y implies that either x and y are
both sets, or x is a so-called class-urelement and y is a set. The subset relationship⊆
is defined in terms of membership. We include in the ontology of sets an axiomatic
fragment of formal set theory, say of ZF, in particular, the axiom of extensionality:
As sets can be nested, we can consider all set-urelements that occur in a set. First,
there is the least flattened set y = trans(x), which extends the nested set on the first
level of nesting with all class-urelements contained in any depth of nesting. That
means, y satisfies the conditions x ⊆ y, and for every z ∈ y holds that z ⊆ y. Then
the class supp(x) = {a | a is a class-urelement and a ∈ trans(y)}, called the support
of x, contains all class-urelements of x and only them. A class x is said to be pure
if supp(x) = ø. We defend the idea by Lewis (1986) that the ontological status of
sets can be reduced to the singletons, i.e. to the understanding of the transformation
providing the singleton {a} from an entity a. In (Herre, 2010) some ideas about this
topic are discussed.

14.5.3 Instantiation and Categories

Cat(x) is a predicate that represents the (meta)-category of all categories. We do
not consider Cat to be an instance of itself. The symbol :: denotes instantiation.
Its second argument is always a category, the first argument can be (almost) any
entity. If the second argument is a primitive category, then the first must be an indi-
vidual. Individuals – in general – can be understood as urelements with respect to
instantiation. Since we assume categories of arbitrary (finite) type, there can be arbi-
trarily long (finite) chains of iteration of the instantiation relation. Since sets have no
instances (they have elements) they can be understood as another kind of urlements
w.r.t. instantiation. On the other hand, categories do not have elements, but instances,
hence categories are urlements with respect to the membership relation.

The definable extension relation, ext(x,y), is a cross-categorial relation, because
it connects categories with sets and is explicitly defined in the following way:
ext(x,y) = Set(y) ∧ ∀ u (u ∈ y ↔ u :: x). We may stipulate the existence of
the set of all instances of a category by the following axiom (existence axiom):
∀x(Cat(x) → ∃ y (ext(x,y)). If we assume this axiom then we may define the exten-
sionality operator for categories: Ext(x) = {y|y :: x}. Note, that the existence axiom
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contradicts the foundation axiom for sets, in case of existence of non-wellfounded
categories. For this reason, we do not assume the foundation axiom for sets.

14.5.4 Property Relations and Relators

Further, several relations connect properties (or individual property instances),
their values and their bearers. If – for reasons of brevity – individual properties
are called “qualities”, there are the general relations has-property hprop(x,y), and
has- quality, hqual(x,y), which relate a property bearer x to one of its proper-
ties/qualities y. However, there are specializations for certain types of arguments.
The best known of such specializations is the relation of inherence, inh(x,y), to be
a sub-relation of has-quality. The phrase “inherence in a subject” can be under-
stood as the translation of the Latin expression “in subjecto esse”, as opposed to
“de subjecto dici”, which may be translated as “predicated of a subject”. Sometimes
inherence is called ontic predication. The second kind of relations connects a prop-
erty with some value of a measurement system. In the denotation value(x,y) x
refers to the property/quality y to the value. Relators are instances of relations.
The role-of relationship was introduced as a close relative of part-of. It relates
roles x and their contexts y, denoted by roleof(x,y). Thus far we have introduced
role-of between processual roles and processes and between relational roles and
relators.

14.5.5 Parthood Relation

Part-of is a basic relation between certain kinds of entities, and several relations
have a similar character.

Abstract and Domain-specific Part-of Relations. The abstract part-of relation is
denoted by p(x,y), while the argument-types of this relation are not specified, i.e.
we allow arbitrary entities to be arguments. We assume that p(x,y) satisfies the
condition of a partial ordering. Domain-specific part-of-relations are related to a
particular domain D, which might be the set of instances of a category. We denote
these relations as partD(x,y). We assume that for a domain D, the entities of D and its
parts are determined. There is a large family of domain-specific part-of relations, the
most general of these are related to basic categories as Chron(x), TReg(x), Top(x),
SReg(x), MatS(x), Proc(x). In the following sections we provide an overview of the
most important category-specific part-of relations.

Part-of Relation for Sets. We hold that the part-of-relation of sets is defined by
the set inclusion, hence part-set(x, y) := Set(x) ∧ Set(y) ∧ x ⊆ y. If we assume the
power-set axiom for sets, then the mereology of sets corresponds to the theory of
Boolean algebras.

Part-of-Relations for Time and Space The part-of relations of time and space
are related to chronoids, time-regions, topoids, and space regions. We introduce
the unary predicates Chron(x), TReg(x), Top(x), SReg(x), and the binary relations
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tpart(x,y), spart(x,y). Every notion of part-of allows for a non-reflexive version of
the relationship, which expresses proper parthood. These are denoted by adding a
“p” to the above predicates, e.g. pp(x,y) or tppart(x,y). In particular, spart applies to
spatial regions, tpart refers to time regions and chronoids, while cpart represents a
relationship between situoids (or situations) and their constituents. The constituents
of a situoid s include, among other entities, the pertinent material structures (that
participate in s) and the qualities that inhere in them. Further, facts and config-
urations are constituents of situoids. Not every part of a constituent of a situoid,
however, is contained in it.

Part-of Relation for Material Structures The basic relations pertaining to material
structures are MatS(x), for “x is a material structure”, and matpat(x,y), which means
that the material structure x is a part of the material structure y. We assume among
the basic axioms:

∀ x y u v (MatS(x) ∧ matpart(x,y) ∧ occ(x,u) ∧ occ(y,v) → spart(v,u))

We stipulate that the relation matpart(x,y) is a partial ordering, but additional
axioms depend strongly on the domain under consideration.

Part-of-Relation for Processes. The part-of relation between processes is denoted
by procpart(x,y), meaning that the process x is a processual part of the process y.
We assume the basic axiom:

∀ x y (Proc(x) ∧ procpart(y,x) ∧ prt(x,u) ∧ prt(y,v) → tpart(v,u))

prt(x,u) states that the process x has the temporal extension u, or that the process
x is temporally projected onto u. Again, we stipulate that the relation procpart(x,y)
is a partial ordering, but additional properties of this relation depend on a concrete
domain. For example, in the processes of surgery, only certain processual parts are
relevant.

14.5.6 Boundaries, Coincidence, and Adjacence

We do not consider boundaries as being parts of entities. The boundary-of rela-
tionship connects entities of various categories, namely (a) time-boundaries and
chronoids, (b) spatial boundaries and space regions, (c) presentials and processes,
and (d) material boundaries and material structures.

We have not introduced a general relationship, but particular boundary-relations
for each of these cases. Case (a) relies on the notions of left and right boundary-
of, lb(x,y) and rb(x,y), respectively. In case (b), bd(x,y) denotes the fact that x is a
spatial boundary of y. Case (c) is discussed in the section on time and space, whereas
the fourth case is not yet formalized.

Coincidence is a relationship between space boundaries or time boundaries,
respectively. Intuitively, two such boundaries are coincident if and only if they



14 General Formal Ontology 333

occupy “the same” space, or point in time, but they are still different entities.
Obviously, congruence of extended boundaries like surfaces is entailed by their
coincidence.

Further, the notion of coincidence allows for the definition of adjacency. In
the case of space-time-entities, these are adjacent as soon as there are coincident
parts of their boundaries. In contrast, material structures and processes cannot have
coincident boundaries. Nevertheless, they are adjacent if the projections of their
boundaries are adjacent.

14.5.7 Relations of Concrete Individuals to Space and Time

Concrete individuals have a relation to time or space.
Material Structures. Material structures are presentials, hence they exists at a

time-point, and the relations at(m,t) captures this relation. The relation at(m,t) is
functional, hence a presential m cannot exist at two different time-points. The binary
relation of occupation, occ(x,y), describes a fundamental relation between mate-
rial structures and space regions. Occupation is a functional relation because it
relates an individual to the minimal topoid in which a material structure is located.
Location is a less detailed notion, which can be derived in terms of occupation
and spatial part-of. An x is located in a region y, loc(x,y), iff the topoid z, occu-
pied by x, is a spatial part of y. Every process has a temporal extension. This
temporal extension is called the projection of the process to time, and is denoted
by prt(x,y). We distinguish several cases: prt(x,c), at(y,t), prb(x,t,y), where x is
a process, y is a presential, c is a chronoid, and t is a time-boundary. The binary
relations assign a temporal entity to presentials and processes, while prb(x,t,y)
is the projection of a process x to its boundary y, which is determined by the
time-boundary t. Note that prb can be used to define the relations at(x,y) and
partic(x,y).

Every situoid, for example the fall of a book from a desk, occurs over
time and occupies a certain space. The binary relations of framing, such as
tframe(s,c), sframe(s,x) binds chronoids C or topoids x to situoids s. We pre-
sume that every situoid is framed by exactly one chronoid and one topoid. The
relation tframe(s,z)/sframe(s,z) is to be read: “the chronoid/topoid z frames the
situoid s”.

14.5.8 Participation

Participation relates individuals to processes. There are several forms of partici-
pation of an individual in a process. particpres(x,p) means that the presential x
participates in the process p. This is the case if the restrictopn of p to a certain time-
point contains x. The relation particperp(x,y) states that the perpetuant x participates
in the process y. This is the case if every presential z which x exhibits stand in the
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relation particpres(z,y). The participance of a persistant x in a process y is defined
analogously. A process x participates in the process, denoted by particproc(x,y) if x
is a layer-part of x.

14.5.9 Association

The relation assoc(s,u) means “the universal u is associated with the situoid s”.
These universals determine which material relations and individuals occur as con-
stituents within a given situoid. Thus, the association provides information about
the granularities and viewpoints that a situoid presupposes. For example, a situoid s
may be a certain part of the world encompassing the life of a tree in a certain envi-
ronment. If a tree is considered as an organism, then the universals associated with
s determine the viewpoint of a biologist, and the associated granularity of included
types of individuals (branches are included, electrons are not). The association rela-
tion is related to a cognitive procedure that transforms the mere material structures
into situations and situoids. Situations and situoids are parts of the world that can
be “comprehended as a whole”. At the purely material level, these parts can be
understood – we believe – as superimposing fields (gravitational, electromagnetic,
etc.), which constitute a certain distribution of energy and matter. At the mental or
psychological level, this distribution is perceived as a material structure. A mate-
rial structure – as we have introduced it – is a pre-version of a situation. At this
level of perception, certain structures may already be perceived: material bound-
aries, colors and the like. The level of comprehension, of understanding this part of
the world as a situation, needs more than only the elementary perceptual structures.
Comprehension presupposes the availability of concepts, and the formation and the
use of concepts seems to be a component of the mind’s cognitive process. The asso-
ciation relation is related to this ability of the mind to understand material structures
of the world as situations.

14.5.10 Ontical Connectedness and Causality

Presentials are connected by spatio-temporal and causal relationhips, which give
rise to persistants and perpetuants. The relation ontic(x,y) connects x and y by an
integrated system of such relationships. It is assumed that x and y are processes or
presentials. We believe that there are different relations of this kind. One interesting
case of ontical connectedness is substrate-connectedness. Two material structures x
and y are substrate-connected if they consist of the same amount of substrate. For
example, a statue s made of clay, considered at a certain time-boundary, is substrate-
connected with the material structure that results from a crash, which destroys s. In
the present stage of investigation of causality, the relation between causes and their
effects is seen as a special relation between presentials (contrary to the DOLCE
account as given in Lehmann et al., (2004)). This basic relation shall support the
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traditional intuitions of regularity, counterfactual dependency and manipulability.
In a second step, the basic causal relation is then extended to cover processes as
causal relata as well.

14.6 Object-Process Integration

In this section we study the inter-relations between processes and other entities. In
particular, we propose a framework for integrating several aspects of objects and
processes into one system.

14.6.1 Processual Unification and Cognition

In GFO, spatio-temporal processes are independent individuals of reality; they
exhibit the most fundamental of its categories.28 All other categories of individuals
are built upon them. Hence, processes unify the world of spatio-temporal individ-
uals. Processes establish the coherence of the world; without processes the world
would disintegrate into numerous separate and isolated entities. Presentials existen-
tially depend on processes; we hold that every presential is a part of a boundary of
a process. Hence, we stipulate the following axiom:

∀x(Pres(x) → ∃yz(proc(y) ∧ procbd(z, y) ∧ cpart(x, y))

A presential x participates in the process y, denoted by particpres(x,y), if a
boundary of y contains x as a constituent part. We postulate that for every time-
boundary t of the temporal extension of a process p there exists a presential which
is the boundary of p at t. From this follows the condition

∀xy(Proc(x) ∧ procbd(y,x) → Pres(y))

Let Bd(p) be the set of boundaries of the process p. Every categorical abstrac-
tion over Bd(p) is called a persistant of p. Hence, a persistant is a concept whose
instances equals the set of boundaries of a process. A persistant U of a process p is
called maximal if there is no persistant V of p containing U as a proper intensional
sub-concept. We hold that for every process there exists a greatest persistant which
is uniquely determined. Persistants present the phenomenon of persistence through
time with respect to the boundaries of a process; they capture those features of the
boundaries of a process which do not change through time.

28Processes, as other individuals, are not completely free of cognition. To clarify this situation
we introduced in Section 14.2.4 layers between the subject and reality. The layer of perception
connects the subject with reality and we stipulate that the phenomenal world, though cognitively
biased, belongs to the reality outside the subject.
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A process is said to be material if every boundary of it is a material structure; the
associated presistants are called material. Perpetuants are individuals that exhibit
a cognitive construction built upon particular material persistants; the existence of
such cognitive individuals is supported by results and methods of Gestalt theory
(Wertheimer, 1912, 1922).29 Perpetuants are related to those entities that are some-
times called continuants or objects, as apples, cars or houses. Unlike persistants,
being concepts, perpetuants are individuals which have an indirect relation to space
and time.

14.6.2 Completed Categories and Integrated Individuals

The spatio-temporal individuals of the world are classified into processes, presen-
tials and perpetuants. Persistants are universals which present categorial abstractions
of the set of boundaries of a process. The complete specification of a material struc-
ture with closed boundary, say, of an ordinary object, integrates four aspects into
one system: the object as a presential, as a process, as a perpetuant, and as a persis-
tant. We explain and demonstrate this interrelation and integration by an ontological
analysis. Consider an everyday name like “John”. What does John refer to in an
ontologically precise sense? There are, obviously, four possibilities, i.e. four entities
of different categories:

• John denotes a presential Pres(John,t) at some point t in time,
• John refers to a perpetuant Perp(John),
• the name is given to a process Proc(John),
• John refers to a persistant Perst(John).

Starting with an act of perception of John, we assume that a presential is
recognized at a time-point t, call it Pres(John,t). If one has seen John several
times, with probably varying properties, but still being able to identify him, this
forms the basis for a perpetuant and a persistant, say Perp(John), and Perst(John).
Now, one may consider the extension of this persistant (which is a univer-
sal), i.e. the set Ext(Perst (John)) = {J|J :: Perst(John)}, and analogously, the set
Exhib(Perp(John)) = {J|exhib(Perb(John),t,J)}. Obviously, the entity Pres(John,t)
referred to above is a member of this class. Also, one can say that any two members
of that class represent “the same John”.

In the fourth interpretation, the name John denotes a process Proc(John) of
a special kind. We postulate the existence of a process Proc(John) whose set of
restrictions to its time-boundaries equals the set of instances of Perst(John) and
the set Exhib(Perp(John)). Furthermore, we see that the presentials associated to
John can be derived from a process by taking the restrictions of this process to

29Persistants apply to every process, whereas the construction of perpetuants is restricted to a
particular class of material processes.
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time-boundaries. On the other hand, the persistant Perst(John) or the perpetuant
Perp(John) cannot be directly derived from a process because a categorial abstrac-
tion and a cognitive construction must be taken into consideration. The entities
Perp(John) and Perst(John) capture important aspects of John’s personal identity.30

We call Int(John) = (Proc(John), Perp(John)) an integrated individual.
A complete understanding and description of concrete individuals needs all four

aspects specified in our integrative system. If one of these aspects is missing we will
face problems. If, for example, we consider John as a persistant or perpetuant only,
then this John cannot engage in any temporal action, for example, the activity of
eating. John’s actions and activities are realized on the process level. If we consider
John as the set of all presentialist Johns, then we have the same problem; since any
action takes time, but a presentialist John cannot carry out any action. If John is a
process only, then the problem becomes identifying the boundaries of the process
because any natural process may be prolonged both into the future and into the past.
Furthermore, we perceive John as a presential, which is missing in a pure proces-
sual understanding. We face similar problems pertaining to a full understanding of
concrete entities, if we combine only two of the above aspects.

The notion of an integrated individual can be generalized to categories. Let us
consider, for example, the category E of elephants. We may associate to E three
basic categories: Proc(E), the category of all processes spanned by all individual
elephants, Pres(E) the class of all presentialist elephants, Perp(E) the class of all
perpetuant elephants. The completed category of elephants, denoted by Compl(E),
has the three instances Proc(E), Perp(E), Pres(E); hence Compl(E) is a higher order
category. Compl(E) can be extended by adding a class of persistants associated
to the elephants. Hence, the system (Compl(E), Perst(E)) exhibits the complete
informations about the category of elephants.

14.6.3 Comparison to Other 4D-Ontologies

GFO is basically a 4D-ontology, in the sense, that the processes form the most fun-
damental category of individuals. Furthermore, processes cannot be considered as
mere aggregates or sets or mereological sums of their boundaries. Hence, our theory
of boundaries differs from the theory of stages in a 4-dimensional setting in the spirit
of Sider (2001). Further, GFO adds to the pure 4D-view a cognitive level at which
perpetuants and persistants are introduced; these correspond to entities called con-
tinuants. Persistants can be introduced for every process p by a categorial abstraction
over the set Bd(p) of boundaries of p.

30A full elaboration of our approach to personal identity is much more complicated. It must con-
sider the underlying process, the place of consciousness and will, and the dynamic interrelations
between the persistant, the perpetuant, the presentials, and the process.
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14.7 Principles of Ontology Development and Ontological
Modelling

The application of GFO as a framework for conceptual modelling needs an expo-
sition of principles for ontology development. In this section some basic ideas are
outlined.

14.7.1 Domains and Conceptualizations

The starting point of ontology development is a domain. The formation and emer-
gence of domains is a result of the evolution of scientific knowledge about the
world, but also the outcome of common sense reasoning and social knowledge as
well as the result of philosophical contemplations and reflections. Ontological lev-
els and strata, for example, as elaborated and exposed by the philosopher Hartmann
(1964, 1965) and further developed by Poli in (2001), exhibit very comprehen-
sive domains of the world. Another group of domains is related to the evolution
of empirical sciences including, for example, the physical domain, the biological
domain, the domain of medicine and many others. The domain of mathematics
has a special nature and differs significantly from the domains of the empirical
sciences. The realm of mathematics is the world of sets that are understood and
conceived by the majority of mathematicians as platonic ideal entities which exhibit
a subject-independent and atemporal existence.

A domain D = (Obj(D), V(D), CP(D)) is determined by a set Obj(D) of objects
associated to it, by a set V of views at Obj(D), and by a set CP of classifica-
tion principles for Obj(D). The notion of view is used in an informal, intuitive
sense, whereas the classification principle CP can be made usually more precise.
In understanding, acquiring and representing the knowledge about a domain D we
use categories and relations between them, and must specify the domain’s objects
and their fine-structure. Hence, we associate to a domain D two further constituents:
the categories of D, denoted by Cat(D), the relations of D, denoted by Rel(D). These
additional constituents are influenced by the view V at Obj(D) and the classification
principle CP of D. The system Concept(D) = (Obj(D), Cat(D), Rel(D)) can be con-
ceived as a detailed form of a conceptualization of the domain D in the sense of
(Gruber, 1993). This approach to conceptualizations supports the ideas expounded
in (Mc Cray, 2006), since we assume that the categorial system Cat(D) as well
as the relations in Rel(D), and also the classification principles CP(D), depend on
the deeper rooted world view of its designer including the purpose for which the
categorical system is generated. An ontology of a domain D is based on a conceptu-
alization Concept(D); it is determined by adding axioms describing inter-relations
between the categories and properties of relations. We present an ontology Ont by
a system Ont = (Concept(D), Ax(Concept(D)), where Ax(Concept(D)) denotes the
set of axioms about the conceptualization Concept(D). The most simple axioms are
presented by relational links between categories.
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The categories of Cat(D) are divided into the set of principal categories of D,
denoted by PrincCat(D) of D, into the set of elementary categories of D, designated
by ElemCat(D), into the set of aspectual categories of D, symbolized by AspCat(D),
and into the linguistically defined categories, denoted by LingCat(D). These sets of
categories form an increasing chain, i.e. we suppose that PrincCat(D)⊆ ElemCat(D)
⊆ AspCat(D) ⊆ LingCat(D). The principal categories are the most fundamental
ones of a domain. For the domain of biology the category of organism is accepted
as being principal. The linguistically defined categories are introduced by formulas
of a language, usually a formal language L. The system (PrincCat(D), ElemCat(D),
AspCat(D)) is called a graduated conceptualization of D.

The elementary categories of a domain are introduced and determined by a
classification based on the domain’s classification principles; they usually present
a taxonomy. There is a great variety of combinations of the classification princi-
ples being applied to specify elementary categories. A domain D is called simple if
it has only one view and one classification principle, and if the taxonomy based
on (Ind,V,CP) exhibits a tree-like structure. If the domain has multiple views
then the taxonomic ordering of elementary concepts cannot be assumed to be
tree-like. Multiple views can be the reason for the occurrence of multiple inher-
itance. Aspectual categories are derived from elementary categories by aspectual
composition and deployment.

14.7.2 Steps of Ontology Development

We summarize the basic steps for the development of an ontology. An ontology
usually is associated to a domain, hence, we must gain an understanding of the
domain which is under consideration. The constituents of a domain D include the
objects of D, the assumed views V, and the classification principles to be used for the
construction of concepts. These constituents can be analysed in the framework of a
top level ontology. We sketch a top-level centred approach to ontology development
and use as a basis the ontology GFO.

1. Step: Domain Specification and Proto-Ontology. A domain is determined by
classification principles and a set of views. The first step is the construction of
a domain specification. In particular, a description of the objects of the domain
A must be established. The considered objects are determined by the assumed
views, whereas the classification principles provide the means for structuring the
set Obj(D) of objects. Usually, there is source information which is associated to the
domain, in particular a set Terms(D) of terms denoting concepts in the domain. The
system ProtoOnt(D) = (Spec(D), Terms(D)) consisting of the domain specification
Spec(D) and a set of terms Terms(D) is called a proto-ontology. A proto-ontology
of a domain contains the relevant information needed to make the further steps in
developing a axiomatized ontology about D.

2. Step: Conceptualisation. A conceptualisation is based on a proto-ontology;
the result of this step is a graduated conceptualization. Hence, the principal and
elementary concepts of the domain must be identified or introduced. The resulting
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concepts belong either to the concepts denoted by the terms of Terms(D) or they are
constructed by means of the classification principles. A further sub-step is pertained
to the desired aspectual concepts which are derived from the elementary concepts.
Finally, we must identify relations which are relevant to capture content about the
individuals and concepts. It would be helpful if a meta-classification of relations is
available. GFO provides already a basic classification of relations which must be
extended and adapted to the particular domain D.

3. Step: Axiomatisation. During this step axioms are developed. This needs a for-
malism, which can be a graph-structure or a formal language. We expound in more
detail the construction of a formal knowledge bases assisted and supported by a top-
level ontology TO. Generally, a axiomatized ontology Ont = (L, V, Ax(V)) consists
of a structured vocabulary V, called ontological signature, which contains symbols
denoting categories, individuals, and relations between categories or between their
instances, and a set of axioms Ax(V) which are expressions of the formal language L.
The set Ax(V) of axioms captures the meaning of the symbols of V implicitly. A def-
initional extension Ontd= (L, V ∪ C(DF), Ax(V) ∪ DF) of Ont is given by a set DF
of explicit definitions over the signature V and a new set C(DF) symbols introduced
by the definitions. Every explicit definition has the form t := e(V), where e(V) is an
expression of L using only symbols from V (hence the symbol t does not occur in
e(V)).

An ontological mapping M of a conceptualization Conc(D) into an axiomatized
ontology Ont is given by a pair M = (tr, DF) consisting of a definitional extension
Ontd of Ont by (the set of definitions) DF and by function tr which satisfies the
following condition:

For every term t ∈ Tm denoting a concept C of Conc(D) which is defined by the (natu-
ral language) expression Def(t) the function tr determines an expression tr(Def(t)) of the
extended language L(V ∪ C(DF)) such that Def(t) and tr(Def(t)) are semantically equivalent
with respect to the knowledge base Ax(Ont) ∪ DF.

Then the set OntMap(Conc(D)) = Ax(V) ∪ DF ∪ {tr(Def(t)) : t ∈ Conc(D)} is
a formal knowledge base which formally captures the semantics of the conceptu-
alization of D. The notion of semantical equivalence with respect to a knowledge
base is used here informally because a strict formal semantics for natural language
sentences does not yet exist; the notion has to be read “the meaning of the nat-
ural language (or semi-formal) sentence Def(t) is equivalent to the meaning of the
expression tr(Def(t))”. An expression e is considered as ontologically founded on an
ontology Ont if it is expressed in some definitional extension Ontd of Ont. Hence,
an ontological mapping of a conceptualisation Conc(D) associates to every term of
Conc(D) an equivalent formal description which is based on a formally axiomatized
ontology Ont. A final axiomatization for Conc(D) can be achieved by starting with a
top-level ontology, say GFO, and then constructing by iterated steps an ontological
mapping from Conc(D) into a suitable extension of GFO. An advanced elaboration
of this theory, which is being investigated by the Onto-Med group, is presented in
Herre and Heller (2006a). The construction of an ontological mapping, which yields
an axiomatization of the conceptualization includes, according to Herre and Heller
(2006a), three main tasks:
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1. Construction of a set PCR of primitive concepts and relations out from the set
{Def(t) : t ∈ Conc} (problem of primitive basis)

2. Construction of an extension TO1 of TO by adding new categories Cat and
relations Rel and a set of new axioms. Ax(Cat ∪ Rel) (axiomatizability problem)

3. Construction of equivalent expressions for Def(t) ∪ PCR on the base of TO1
(definability problem).

14.7.3 Ontological Modelling

In this section we set forth some ideas on a new area of research which aims at the
use of ontologies for modelling of processes and their simulations. The basic idea of
ontological modelling is expounded in Herre and Heller (2006a). Subsequently, we
add further ideas on this field of research. The starting point is a class P of (natural)
processes which can be considered to be included in a class of situoids. A strict
ontological model of P is a category C := OntMod(P) whose extension equals P,
i.e. for all processes p holds: p ∈ P if and only if p :: C. Usually, the condition of a
strict ontological model for a class P of processes can hardly be achieved. For this
reason we say that C is an ontological model of P if the extension of P sufficiently
approximates the class P.31A process p ∈ P is said to be computable if there is an
execution of an algorithm α which approximates p.32 The class P of processes is said
to be computable if there is an algorithm α such that every p ∈ P is approximated
by an execution of α. We assume that any reasonable class P of natural processes is
computable.33

The paper Roeder and Loeffler (2002) expounds a conceptual analysis of the
notion of a stem cell. The authors argue that stemness of a cell cannot be consid-
ered as a specific property that can be determined at one time-point without putting
the cell to functional tests. Hence, stem cells exhibit stemness by participating in
certain interacting processes which are embedded in a larger process which we
call stem-cell process. Let SCP be the class of all stem-cell processes. An expres-
sive ontological model for SCP should be specified in a formal language which
includes among others the conditions presented in the model description in Roeder
and Loeffler (2002). But, more properties must be taken into consideration, among
them those which pertain to different granularity levels of the stem cell processes,
but also to properties which are related to the snapshots of the process and its sub-
processes. Hence, the acquisition of relevant presentialist and processual properties

31This vagueness cannot be avoided because we assume that the specification of OntMod(P)
exhibits a decidable set of conditions. By Gödel’s incompleteness theorems a complete specifi-
cation of P cannot be, in general, achieved.
32The term “an execution of α approximates p” needs further explanation. This can be made precise
by using the approaches of computable and constructive analysis (Weihrauch, 2000; Geuvers et al.,
2007). The development of an ontological theory of computational simulation of natural processes
is in progress and will be published elsewhere.
33It is an open problem whether every reasonable natural process is computable (Kreisel, 1974).
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of stem cell processes is important. Using this idea of ontological models a number
of notions can be clarified and refined, among them computer simulation, prediction,
practical experiment, etc.

Acknowledgments Many thanks to P. Burek, R. Hoehndorf, F. Loebe, H.Michalek who con-
tributed significantly to the development of GFO. I am grateful to R. Poli and anonymous reviewers
for their critical remarks that contribute to the quality of the paper. Thanks to M. West for fruit-
ful discussions which lead to deeper insight into 4-dimensionalism. Finally, thanks to J. Gracia
for inspiring discussions on the relations between different kinds of categories, and the proper
interpretation of the notion of realism.

References

Allen, J.F., and P.J. Hayes. 1990. Moments and points in an interval-based temporal logic.
Computational Intelligence 5(4):225–238.

Armstrong, D.M. 1997. A world of states of affairs. New York, NY: Cambridge University Press.
Ashburner, M., C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski,

S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis. et al.
2000. Gene ontology: Tool for the unification of biology. Nature Genetics 25(1):25–29.

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, eds. 2003. The descrip-
tion logic handbook: Theory, implementation and applications. Cambridge, UK: Cambridge
University Press.

Bachman, C.W., and M. Daya. 1977. The role concept in data models. In Proceedings of the 3rd
International Conference on Very Large Databases, 464–476. IEEE Computer Society.

Bard, J., S.Y. Rhee, and M. Ashburner. 2005. An ontology for cell types. Genome Biology 6(2):R21.
Barwise, J., and J. Perry. 1983. Situations and Attitudes. Cambridge, MA: Bradford Book/MIT

Press.
Bloch, E. 1985. Subject-Objekt. Frankfurt/M: Suhrkamp.
Boella, G, J. Odell, L. van der Torre, and H. Verhagen. eds. 2005. Proceedings of the 2005

AAAI Fall Symposium ’Roles, an Interdisciplinary Perspective: Ontologies, Languages, and
Multiagent Systems’, Nov 3–6, Arlington, Virginia, number FS-05-08 in Fall Symposium
Series Technical Reports, Menlo Park, CA: AAAI Press.

Booch, G., J. Rumbaugh, and I. Jacobson. 1999. The unified modeling language user guide. Object
Technology Series. Reading, MA: Addison Wesley.

Braunwald, E., K.J. Isselbacher, R.G. Petersdorf, J.D. Wilson, J.B. Martin, and A.S. Fauci. eds.
1987. Harrison’s principles of internal medicine, 11th edition. New York, NY: McGraw-Hill.

Brentano, F. 1976. Philosophische Untersuchungen zu Raum, Zeit und Kontinuum, eds. S. Körner,
and R.M. Chisholm, Hamburg: Felix- Meiner Verlag.

Brooksbank, C., G. Cameron, and J. Thornton. 2005. The european bioinformatics institute’s data
resources: Towards systems biology. Nucleic Acids Research 33(Database issue):D46–D53.

Burek, P. 2007. Ontology of functions: A domain-independent framework for modeling functions,
PhD thesis. University of Leipzig, Institute of Informatics (IfI).

Burek, P., R. Hoehndorf, F. Loebe, J. Visagie, H. Herre, and J. Kelso. 2006. A top-level
ontology of functions and its application in the open biomedical ontologies. Bioinformatics
22(14):e66–e73.

Casati, R., and A. Varzi. 1994. Holes and other superficialities. Cambridge, MA: MIT Press.
Chandrasekaran, B., and J.R. Josephson. 1997. Representing functions as effect. In Proceedings of

the Functional Modeling Workshop, Paris, France.
Chisholm, R.M. 1983. Boundaries as dependent particulars. Grazer Philosophische Studien

20:87–96.
Chang, C.C., and H.J. Keisler. 1977. Model theory. Amsterdam: North-Holland Publishing

Company.



14 General Formal Ontology 343

de Keizer, N.F., A. Abu-Hanna, and J.H.M. Zwetsloot-Schonk. 2000. Understanding terminologi-
cal systems I: Terminology and typology. Methods of Information in Medicine 39(1):16–21.

Dori, D. 2002. Object-process methodology: A holistic systems paradigm. Berlin: Springer.
Gärdenfors, P. 2000. Conceptual spaces: The geometry of thought, A Bradford Book. Cambridge,

MA: MIT Press.
Genesereth, M.R., and R.E. Fikes. 1992. Knowledge interchange format. Technical Report Logic-

92-1, Stanford Logic Group, Stanford.
Geuvers, H., M. Nigqui, B. Spitters, and F. Wiedijk. 2007. Constructive analysis, types and exact

real numbers. Mathematical Structures in Computer Science 17:3–36.
Gracia, J.J.E. 1999. Metaphysics and its tasks: The search for the categorial foundation of

knowledge. SUNY series in Philosophy. Albany, NY: State University of New York Press.
Grenon, P. 2003. Spatio-temporality in basic formal ontology: SNAP and SPAN. http://www.

ifomis.org/Research/IFOMISReports/IFOMIS%20Report%2005_2003.pdf
Gruber, T.R. 1993. A translation approach to portable ontology specifications. Knowledge

Acquisition 5(2):199–220.
Guarino, N. 1992. Concepts, attributes and arbitrary relations: Some linguistic and onto-

logical criteria for structuring knowledge bases. Data & Knowledge Engineering 8(3):
249–261.

Guarino, N., and C.A. Welty. 2000. A formal ontology of properties. In Knowledge engineer-
ing and knowledge management: methods, models, and tools, eds. R. Dieng and O. Corby.
Proceedings of the 12th International Conference on Knowledge Engineering and Knowledge
Management (EKAW2000), Juan-les-Pins, France, Oct 2–6, LNCS 1937, 97–112. Berlin:
Springer.

Guarino, N., and C.A. Welty. 2001. Supporting ontological analysis of taxonomic relationships.
Data & Knowledge Engineering 39(1):51–74.

Guarino, N., and C. Welty. 2004. An overview of ontoclean. In Handbook on ontologies,
International Handbooks on Information Systems, Chapter 8, eds. S. Staab, and R. Studer,
151–159. Berlin: Springer.

Guizzardi, G., and G. Wagner. 2004a. Towards ontological foundations for agent modelling
concepts using the unified foundational ontology (UFO), LNCS 3508, June 2004, 110–124.
doi:http://dx.doi.org/10.1007/1147248

Guizzardi, G., and G. Wagner. 2004b. A unified foundational ontology and some applications of it
in business modelling. Proceedings of the CAiSE’04 Workshops. Faculty of Computer Science
ands Information Technology, Riga Technical University, Riga, June 2004, vol. 3, 129–143,
Riga, Latvia.

Hartmann, N. 1964. Der Aufbau der realen Welt. Berlin: Walter de Gruyter and Co.
Hayes, P.J. 1995. A catalogue of temporal theories. Technical Report UIUC-BI-AI-96-01,

University of Illinois.
Heller, B., H. Herre, K. Lippoldt, M. Löffler. 2004. Standardized terminology for clinical trial

protocols based on ontological top-level categories. In Computer-based support for clinical
guidelines and protocols, eds. K. Kaiser, S. Miksch, S.W. Tu. Proceedings of the Symposium
on Computerized Guidelines and Protocols. (CGP 2004), 13–14 Apr 2004. Prague. 46–60.
Studies in Health Technology and Informatics, vol. 101. Amsterdam: IOS-Press.

Herre, H., and B. Heller. 2006a. Semantic foundations of medical information systems based on
top-level ontologies. Journal of Knowledge-Based Systems 19(2):107–115.

Herre, H., B. Heller†, P. Burek, F. Loebe, R. Hoehndorf, and H. Michalek. 2006b. General formal
ontology (GFO) – A foundational ontology integrating objects and processes, Report Nr. 8,
Onto-Med, IMISE.

Herre, H. 2010. Ontology of mereological systems – A logical approach, this volume.
Hermes, H. 1959. Zur Axiomatisierung der Mechanik. In The axiomatic method, eds. L. Henkin,

P. Suppes, and A. Tarski, 282–290. Amsterdam: North-Holland Publishing Company.
Ingarden, R. 1964. Der Streit um die Existenz der Welt I (Existentialontologie). Tübingen: Max

Niemeyer Verlag.



344 H. Herre

Johansson, I. 1989. Ontological investigations: An inquiry into the categories of nature, man and
society. New York, NY: Routledge.

Johnston, M., and G. Forbes. 1987. Is there a problem about persistence? Aristotelian Society
61:107–135.

Kreisel, G. 1974. A notion of mechanistic theory. Synthese 29:16–26.
J. Lehmann, S. Borgo, A. Gangemi, and C. Masolo. 2004. Causality and causation in DOLCE. In

Formal Ontology in Information Systems: Proceedings of the International Conference FOIS
2004, vol 114 of Frontiers in Artificial Intelligence And Applications, eds. A.C. Varzi, and
L. Vieu, 273–284, Amsterdam: IOS Press.

D.B. Lenat, and R.V. Guha. 1990. Building large knowledge-based systems: Representation and
inference in the cyc project. Reading, MA: Addison-Wesley.

Lewis, D. 1986. On the plurality of worlds. Oxford: Basil blackwell.
Loebe, F. 2003. An analysis of roles: Towards ontology-based modelling. Onto-Med Report 6,

Onto-Med Research Group, University of Leipzig.
Loebe, F. 2003. Abstract vs. social roles: A refined top-level ontological analysis. In Boella et al.

[8], 93–100.
Loebe, F. 2007. Abstract vs social roles_ Towards a general theoretical account or roles. Applied

Ontology 2(2):127–158.
Loux, M. 1998. Metaphysics: A contemporary introduction. New York, NY: Routledge.
Masolo, C., S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. 2003. Wonderweb deliverable

D18: Ontology library (final). Technical Report, Laboratory for Applied Ontology – ISTC-
CNR, Trento.

Masolo, C., S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, and L.Schneider. 2002. Wonderweb
deliverable D17. Preliminary Report Version 2.0, Laboratory for Applied Ontology – ISTC-
CNR, Padova, IT.

Masolo, C., L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and N. Guarino. 2004.
Social roles and their descriptions. In Principles of Knowledge Representation and Reasoning:
Proceedings of the 9th International Conference (KR2004.), eds. D. Dubois, C. Welty, and
M.-A. Williams, Whistler, Canada, June 2–5, 267–277, Menlo Park, CA: AAAI Press.

MC Cray, A.T. 2006. Conceptualizing the world: Lessons from history. Journal of Biomedical
Informatics 39:267–273.

Niles, I., and A. Pease. 2001. Towards a standard upper ontology. In Formal Ontology in
Information Systems: Collected Papers from the 2nd International Conference, Oct 2001, eds.
C. Welty, and B. Smith, 2–9, New York, NY: ACM Press.

Pease, A., and I. Niles. 2002. IEEE standard upper ontology: A progress report. Knowledge
Engineering Review 17(1):65–70.

Poli, R. 2001. The basic problem of the theory of levels of reality. Axiomathes 12(3–4):261–283.
Poli, R. 2002. Ontological methodology. International Journal of Human-Computer Studies

56(6):639–664.
Pschyrembel, W., and O. Dornblüth. 2002. In Pschyrembel Klinisches Wörterbuch. 259th edition,

Berlin: Walter de Gruyter.
Ridder, L. 2002. Mereologie. Frankfurt a. Main: Vittorio Klostermann.
Roeder, I., and M. Loeffler. 2002. Anoval dynamic model of hematopoietic stem cell orga-

nizations based on the concept of within-tissue plasticity. Experimental Hematology 30:
853–861.

Rosch, E. 1975. Cognitive representations of semantic categories. Journal of Experimental
Psychology, 104:192–233.

Rosse, C., and J.L. Mejno. 2003. A reference ontology for biomedical informatics. The founda-
tional model of anatomy. Journal of biomedical informatics 36:478–500.

Rumbaugh, J., I. Jacobson, and G. Booch. 1999. The unified modeling. language reference manual.
Object Technology Series. Reading, MA: Addison Wesley.

Russell, S., and P. Norvig. 1995. Artificial intelligence: A modern approach. Prentice hall series in
artificial intelligence. Upper Saddle River, NJ: Prentice Hall.



14 General Formal Ontology 345

Sasajima, M., Y. Kitamura, M. Ikeda, and R. Mizoguchi. 1995. FBRL: A function and behavior
representation language. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI 95, Montreal, Quebec, Canada, Aug 20–25, 1830–1836. San Francisco, CA:
Morgan Kaufmann.

Searle, J.R. 1995. The construction of social reality. New York, NY: Free Press.
Seibt, J. 2003. Free process theory: towards a typology of processes. Axiomathes. 14(1):23–55.
Shahar, Y. 1994. A knowledge-based method for temporal abstraction of clinical data. PhD thesis,

Stanford, CA: Stanford University.
Sider, T. 2001. Four-dimensionalism: an ontology of persistences and time. Oxford: Clarendon

Press.
Smith, B., and A. Varzi. 2000. Fiat and bona fide boundaries. Philosophy and Phenomenological

Research 60(2):401–420.
Smith, B. 2004. Beyond concepts: Ontology as reality representation. In FOIS, International

conference on formal ontology and information systems,73–84, Turin: IOS Press.
Smith, B., W.Ceusters, and R. Temmermann. 2005. Wüsteria. In Proceedings Medical Informatics

Europe 2005, Geneva; Studies in Health Technology and Informatics 116:647–652.
Smith, B. 2006. From concepts to clinical reality: An essay on the benchmarking of biomedical

terminologies. Journal of Biomedical Informatics 39:288–298.
Smith, B., and W. Ceusters. 2006. Ontology as the core discipline of biomedical informatics. In

Computing, philosophy, and cognitive science. eds. C.D. Crnkovic, and S. Stuart. Cambridge,
MA: Scholars Press.

Smith, B. et. al. 2007. The OBO foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature biotechnology 25(11):1251–1255, Nov 2007.

Sowa, J.F. 1984. Conceptual structures: Information processing in mind and machine. Reading,
MA: Addison-Wesley.

Sowa, J.F. 2000. Knowledge representation: logical, philosophical and computational foundations.
Pacific Grove, CA: Brooks/Cole.

Steimann, F. 2000. On the representation of roles in object-oriented and conceptual modelling.
Data & Knowledge Engineering 35(1):83–106.

Sunagawa, E., K. Kozaki, Y. Kitamura, and R. Mizoguchi. 2005. A framework for organizing role
concepts in ontology development tool: Hozo. In Boella et al. [8], 136–143.

SUO. 2004. IEEE P1600.1 Standard upper ontology working group (SUO WG). http://suo.ieee.org.
Szczerba, L.W. 1977. Interpretability of elementary theories. In eds. R.E. Butts, and J. Hintikka,

Logic, foundations of mathematics and computability theory, volume 9 of The Western Ontario
Series in Philosophy of Science, 129–145. Dordrecht: Reidel.

Tarski, A. 1944. The semantic conception of truth and the foundation of semantics. Philosophy and
Phenomenological Research 4:341–375.

Tarski, A. 1983. Logic, Semantics, Metamathematics: Papers from 1923 to 1938, 2nd edition,. eds.
J. Corcoran, Indianapolis: Hackett.

W3C. 2004. Web Ontology Language (OWL) Specifications. W3C Recommendations, World
WideWebConsortium (W3C), Cambridge, MA. http://www.w3.org/2004/OWL/.

Weihrauch, K. 2000. Computable analysis. Berlin: Springer.
Wertheimer, M. 1912. Experimentelle Studien über das Sehen von Bewegung. Zeitschrift für

Psychologie 161–265.
Wertheimer, M. 1922. Untersuchungen zur Lehre von der Gestalt. I. Prinizpielle Bemerkungen.
West, M., J. Sullivan, and H. Teijgeler. 2003. ISO/FDIS 15926-2: Lifecycle integration of process

plant data including oil and gas production facilities. ISO TC184/SC4/WG3N1328, July 2003.
http://www.tc184-sc4.org/wg3ndocs/wg3n1328/lifecycle_integration_schema.html.

Wilkerson, T.E. 1995. Natural kinds. Avebury Series in Philosophy. Aldershot, UK: Avebury.
Wittgenstein, L. 1922. Tractatus logico-philosophicus. (transl: C.K. Ogden) London: Routledge &

Kegan Paul.



Chapter 15
Ontologies in Biology

Janet Kelso, Robert Hoehndorf, and Kay Prüfer

15.1 Introduction

Modern biology is a data-producing, data-driven science. Biological databases cov-
ering the domains of sequence, structure, phenotype, and many other types of
biological information are core resources for biomedical research. Recent advances
in molecular biology, coupled with rapid development of high-throughout technolo-
gies, have lead to the exponential growth of databases housing information about
the sequences, functions and localizations of genes and proteins for a wide range
of organisms. The bottleneck is therefore no longer the production of data, but
the integration and analysis of this data. In order to make biologically meaning-
ful discoveries, researchers require the ability to query and extract the biological
information available from a variety of sources, and to integrate this information
in meaningful ways. However, there are a number of obstacles that make such
integrated analyses difficult.

(i) With the exception of the major nucleotide and protein databases biological
databases are generally developed and maintained by the community of scien-
tists that are interested in the scientific questions that can be addressed by the
data being stored in the database. As such it is common that biological data is
stored in geographically disparate locations, using different technologies and
representations. Redundancy or partial overlap in stored data is common.

(ii) The integration of biological data has been severely hindered by ambiguities in
terminology, semantics and storage. Synonyms and abbreviations are widely
used and often applied with conflicting meanings. Homonyms are present
both within and between biological sub-disciplines. Further, the definitions of
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even fundamental biological concepts such as organism, gene and species are
not universally agreed upon. It is likely that these problems have arisen as
a side-effect of our constantly evolving understanding of biological systems,
and as a result of the gradual merging of historically distinct sub-disciplines as
biological research becomes more integrative.

In 1998 Steffen Schulze-Kremer presented a paper at the Pacific Symposium of
Biocomputing (Schulze-Kremer, 1998) in which he discussed the application and
potential future applications of ontologies in molecular biology. Both in this paper,
and in a later paper (Schulze-Kremer, 2002), he clearly identified the information
exchange and data integration problems prevalent in the biological sciences say-
ing: “Many researchers and databases use (at least partially) idiosyncratic terms and
concepts for representing biological information. Often, terms and definitions differ
between groups, with different groups not infrequently using identical terms with
different meanings. The concept ‘gene’, for example, is used with different seman-
tics by the major international genomic databases.” He proposed ontologies as a
means to provide standardized nomenclature for the rapidly growing databases of
sequence, structure, expression, metabolic and regulatory data for many organisms.

Recent years have seen a growing trend towards the development and adoption of
ontologies for the management of biological knowledge. Ontologies and controlled
vocabularies for various domains of the biomedical sciences have been developed,
largely in an effort to provide a shared language for communicating biological infor-
mation. Ontologies are viewed by the biomedical community as a powerful means
to represent, analyze and integrate biological information.

More historically, however, much of the original basis of biology is in the clas-
sification of domains. An early example of the classification of organisms are the
taxonomies formulated by Linnaeus. The controlled vocabulary of MeSH terms
used by Entrez at the NCBI portal1 of the National Library of Medicine are another
example of where a structured set of terms are used to classify publications and
index them for searching.

From a biologist’s perspective, a controlled terminology with structured relation-
ships is useful in many domains. It provides a consistent and defined nomenclature
and provides structured access to possible terms and relationships.

The major recent utilisation of ontologies in biomedicine has been largely to
provide a common terminology for a variety of domains (discussed later in this
chapter). Successful utilisation of ontologies is dependent upon multiple factors
including their usability, design and on their broad adoption by the community.
There has been some debate over whether a single all-encompassing ontology or
smaller domain or task-specific ontologies are more useful.2 Smaller ontologies take
less time to build and are simpler to maintain and grow. As a result of their prac-
ticality, smaller ontologies relevant to distinct domains of molecular biology have
been rapidly developed and put to use. In order for ontologies in a domain to be

1http://www.ncbi.nlm.nih.gov/
2http://en.wikipedia.org/wiki/Upper_ontology_(computer_science)
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accepted as the standard, community involvement and adoption are essential and
this community agreement has been a hallmark of the development of the modern
“bio-ontologies”. Many of the widely used and accepted ontologies have been built
by consortia, and are designed with specific applications in mind. The most com-
mon application of these bio-ontologies has been the formalisation of domains of
biomedical knowledge through explicit and unambiguous definition of terms used
for the description of biological data. This has been achieved through the naming
and definition of relevant entities within biomedical domains, and the specification
of the relationships that exist between them. Additionally, ontologies that specify
the schemas of knowledge bases have also been valuable in providing a basis for
a variety of standards specifications for the collection of gene expression (Whetzel
et al., 2006), and sequence data (Field et al., 2006).

In this chapter we will explore a few of the modern bio-ontologies and will dis-
cuss their scope, strengths and weaknesses. We will include a short description of
the resources and applications that have been developed around these bio-ontologies
with a view to showing how valuable these ontologies have become in support-
ing biological research. The application of formal ontological principles to the
design of many of the biological ontologies has lagged behind the development of
“light-weight” domain ontologies, and as a result the scope of applications remains
restricted. We will discuss some of the criticism of the lack of formality in the bio-
ontologies, and provide some ideas about how formal logics can be used to address
the growing need for ontology integration.

15.2 Ontologies in Biomedicine

The use of ontology in biomedicine has a long history. Some of the older medical
terminological systems are discussed in some detail in Chapter 16 by Herre, this vol-
ume. We will not discuss these in any detail, but will focus on the second generation
of biomedical ontologies which appeared in recent years.

Growth in the development and use of ontologies in biology in the last 10 years
has been driven by the need for biologists to organise large volumes of data being
generated in molecular biology. To share this data effectively it was necessary to
identify and agree on the relevant concepts and select a shared set of terms for the
description of these domains. Based on this early start a large and growing number
of bio-ontologies have arisen.

15.2.1 The Open Biomedical Ontologies

The Open Biomedical Ontologies (OBO) project is an umbrella organization which
hosts a library of ontologies for the biomedical domain.

To be included in the OBO, ontologies need to conform to a set of criteria
design which ensure their quality and inter-operability. The OBO co-ordinators
provide guidelines for ontology development and facilitate communication between
the ontology developers in order to support the development of such ontologies.
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The OBO Foundry,3 a project attempting to increase the formal rigour of the
OBO ontologies through the application ontological principles, is based on the
following set of principles:

• The ontology must be open and available to be used by all without any constraint
other than (a) its origin must be acknowledged and (b) it is not to be altered and
subsequently redistributed under the original name or with the same identifiers.

Making the ontologies freely available is intended to increase acceptance and
use of the ontology, which in turn ensures that the content is accurate and reflects
the views of the community.

• The ontology is in, or can be expressed in, a common shared syntax. This may be
either the OBO syntax, extensions of this syntax, or OWL.

The motivation for this principle is that it aids in facilitating inter-operability
and permits the development of tools and methods which can then be usefully
applied to multiple domains.

• The ontology possesses a unique identifier space within the OBO Foundry.
• The ontology provider has procedures for identifying distinct successive versions.
• The ontology has a clearly specified and clearly delineated content. The ontology

must be orthogonal to other ontologies already lodged within OBO.
The major reason for this principle is to allow two different ontologies, for

example anatomy and process, to be combined through additional relationships.
These relationships could then be used to constrain when terms could be jointly
applied to describe complementary (but distinguishable) perspectives on the same
biological or medical entity. As a corollary to this, the OBO Foundry strives
for community acceptance of a single ontology for one domain, rather than
encouraging rivalry between ontologies.

• The ontologies include textual definitions for all terms.
• The ontology uses relations which are unambiguously defined following the

pattern of definitions laid down in the OBO Relation Ontology.
• The ontology is well documented.
• The ontology has a plurality of independent users.
• The ontology will be developed collaboratively with other OBO Foundry

members.

A wide variety of biomedical domains are covered by the OBO including ontolo-
gies of anatomy, development and disease for a number of key organisms, ontologies
of biological sequence, function and process, and ontologies of biochemistry, cell
types and behaviour.

Here we discuss the Gene Ontology as an example of a successful and widely
used biomedical ontology which forms part of the Open Biomedical Ontology
Foundry collection.4 More than 65 additional ontologies in various domains and
stages of development are included in the OBO Foundry. Some of the key ontologies
are described in Table 15.1.

3http://www.obofoundry.org/
4http://www.obofoundry.org/
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15.2.2 The Gene Ontology

The Gene Ontology (Ashburner et al., 2000) provides three structured, controlled,
non-organism specific vocabularies describing the entities that exist in the domains
of molecular function, cellular location and biological processes of genes or gene
products.

The project began in 1998 as a collaboration between the curators of three of
the major model organism databases (FlyBase, the Mouse Genome Informatics
database, and the Saccharomyces Genome Database), and arose out of the need
for these communities to share a common, unambiguous vocabulary for functional
annotation of genes and gene products within these databases.

The aims of the Gene Ontology consortium, which has since expanded to include
16 members, are: (i) to develop a set of controlled, structured vocabularies to
describe key domains of molecular biology, including gene product attributes and
biological sequences; (ii) to apply GO terms in the annotation of sequences, genes
or gene products in biological databases; and (iii) to provide a centralized pub-
lic resource allowing universal access to the ontologies, annotation data sets and
software tools developed for use with GO data. (Harris et al., 2004). The success
of the GO is evidenced by its widespread adoption. Using the search term “Gene
Ontology” identifies more than 1,843 citations in GoogleScholar in June 2007 It
was the success of the Gene Ontology that inspired the development of a large num-
ber of domain ontologies, many of which are now gathered under the umbrella of
the OBO consortium. In understanding the reasons for this success it is important
to note that the GO consortium focused on openness and community-involvement,
and the application to real data as key principles in the development, and that these,
together with others factors discussed in an opinion article (Lewis, 2005) have
proven extremely powerful motivators for the biomedical community.

The entities captured in each of the three ontologies that compose the Gene
Ontology have is-a and part-of relations to other entities (Fig. 15.1). There is
no explicit link between the three ontologies that make up the Gene Ontology,
although relationships between the three ontologies exist. There have been vari-
ous approaches to making these relationships explicit (Bodenreider et al., 2003;
Bada and Hunter, 2007). The three ontologies are generally represented as directed
acyclic graphs, so that multiple inheritance is possible. A large number of the other
OBO ontologies are also represented as DAGs.

15.2.3 Ontology Representation

Many biomedical ontologies are made available in the OBO flatfile format
(Golbreich and Horrocks, 2007). The OBO flatfile format in its original form spec-
ifies a directed acyclic graph (Fig. 15.2). In this graph, labeled nodes represent
categories, labeled edges relationships between categories.

The Gene Ontology was the first ontology to use this representation format,
together with one semantic rule, the True Path Rule. The true path rule states that
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Fig. 15.1 A screenshot of a subsection of the Gene Ontology using the AmiGO browser.5

Relationship types are indicated to the left of the term accession as (I) for is-a or (P) for part-of.
The cellular compartment ontology is expanded to show entities and their relationships. An addi-
tional feature is the ability to view genes and gene products which have been annotated with each
term. The number in square brackets following the term name indicates how many gene products
in public databases have been annotated using the term

“the pathway from a child term all the way up to its top-level parent(s) must always
be true” (Ashburner et al., 2000). In the beginning, this rule was applied to the anno-
tations of categories in the Gene Ontology: an annotation to a category remained

5http://amigo.geneontology.org/
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Fig. 15.2 A part of the graph
structure of the gene
ontology. Nodes represent
categories and edges are
relations between the
categories. The figure shows
four categories, linked using
is-a and part-of relations

a valid annotation for all is-a and part-of parents of the category. The annota-
tion relation is not an ontological relationship and may have varying meanings.
Therefore, a more precise definition and semantics for these DAGs was developed in
first order logic (Smith et al., 2005) and description logics (Golbreich and Horrocks,
2007).

Let C be a set of concept names, R ⊇ {is− a} a set of relationship names,
G = (V,E,c,r) be a labeled graph with vertices V, edges E ⊆ V × V , a function
c :V → C and a function r :E → R. Then, G is equivalent to a theory T in first
order logic over the signature Σ = ({:} ∪ R ∪ C) such that for each e ∈ E:

(1) If r(e)=is-a and e=(a,b) with c(a)=c1 and c(b)=c2, then
{∀x (x :c1 → x :c2)} ∈ T

(2) If r(e)=S and e=(a,b) with c(a)=c1 and c(b)=c2, then
{∀x (x :c1 → ∃y (y :c2 ∧ S (x, y)))} ∈ T

The relationship “:” denotes the binary instantiation relation between an indi-
vidual and a category. S denotes the additional relations used in this ontology. For
example, if R={part-of, is-a} as in the Gene Ontology, an edge e=(c1,c2) with the
label r(e)=part-of is translated to: forall x (x:c1 -> exists y (y:c2 AND part-of(x,y))).

One consequence of this definition and the True-Path Rule is that the part-of
relation is transitive. Another important consequence is that the relation represented
in the DAG is a necessary relation: there are no exceptions. The translation of a DAG
into first order logic was not known from the beginning. Many of the criticism of
the Gene Ontology and similar ontologies arose from misunderstandings of relations
between categories. For a detailed discussion, see Sections 15.3, 15.4.1, and 15.4.4.

Recently, Semantic Web Technology is used for the development of biomedical
ontologies. In particular, most ontologies that have commonly be represented in the
OBO format as DAG are now available in OWL. Newly developed ontologies are
often developed using a more expressive knowledge representation format, such as
OWL.
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15.2.4 Ontology Curation

Development and curation of the bio-ontologies is generally performed by domain
experts, and consultation with ontologists is becoming more frequent. The OBO
Foundry, for example, welcomes community input into OBO ontologies, and sug-
gestions for changes or additions are implemented after careful evaluation by the
curators. This process ensures that the ontology is a stable, versioned resource of
high quality and consistency. Alternative models for ontology curation, including
direct community curation via a wiki interface have been proposed (Hoehndorf
et al., 2006) but are not yet widely adopted, largely due to concerns over the decrease
in quality and increase in inconsistencies that may result if curation was completely
unrestricted.

15.2.5 Annotation

A distinguishing feature of many biomedical ontologies is that they have been devel-
oped for specific use in the annotation of biomedical data such that this data can be
shared and integrated. Annotation is the process whereby the terms from an ontol-
ogy are associated with some experimental data (Fig. 15.3). For example, terms
from the Gene Ontology have been used to describe the function, cellular loca-
tion and biological process involvement of the genes and gene products in multiple
model organism databases.

Annotations are contributed by consortium members and independent
researchers. In the Gene Ontology the annotation data is generated largely by the
collaborating model organism databases which then contribute these annotations to
GO for storage and distribution. Each GO annotation has metadata identifying (i)
who made the association between gene and GO term, (ii) the evidence supporting
the association, and (iii) when the association was made.

Each association is labeled with an “evidence code” indicating the type of
evidence that supports that association being made. Distinguishing between types
of support for an association allows researchers using the data to decide how
much confidence to place in the annotation. A large number of the annotations
in the GO database are extracted from the biomedical literature by curators who
read and interpret the statements about gene function and localization that are
made in scientific papers. While manual curation provides the highest quality asso-
ciations, it is time-consuming and dependent on skilled biologists. As a result
high-throughput methods to associate annotations with genes/gene products using
electronic methods have been developed. These approaches include extraction of
associations from literature using text mining approaches, or the transfer of annota-
tion from genes known to have similarity in their DNA sequence or protein structure.
Direct experimental evidence confirmed by a human curator is generally considered
more convincing than inference from automated analyses or associations based on
sequence or structural similarities which have not been reviewed by a curator.
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estrogen-regulated growth inhibitor). Like Ras, RERG protein
exhibited intrinsic GDP/GTP binding and GTP hydrolysis activity.
Unlike Ras proteins, RERG lacks a known recognition site for
COOH-terminal prenylation and was localized primarily in the
cytoplasm.”

Text string
GO

Ontology GO Term GO ID

estrogen-regulated

growth inhibitor

Ras, GDP/GTP binding

GDP/GTP binding

GDP/GTP binding

GTP hydrolysis

cytoplasm

process

process

process

function

function

function

component

response to hormone
stimulus

negative regulation of cell
growth

small GTPase mediated 
signal transduction

GDP binding

GTP binding

GTPase activity

cytoplasm

GO:0009725

GO:0030308

GO:0007624

GO:0019003

GO:0005525

GO:0003924

GO:0005737

“Using microarray analysis, we identified RERG (ras-related and

Fig. 15.3 An example of the process of annotating the protein RERG with terms from the gene
ontology. Associations are made between the text of a scientific paper (top) and terms from the
Gene Ontology biological process ontology (response to hormone stimulus, growth negative reg-
ulation of cell growth, small GTPase mediated signal transduction), molecular function ontology
(GDP binding , GTP binding) and cellular component ontology (cytoplasm)

The genes/gene products from more than 35 distinct genomes have been anno-
tated using the Gene Ontology. Additionally, the Gene Ontology Annotation (GOA)
project6 (Camon et al., 2004) provides high quality GO-based annotations of the
proteins in the UniProt knowledgebase. GOA provides annotated entries for over
60,000 species, making it the largest contributor the GO annotation effort. The anno-
tations are generated through a combination of electronic and manual techniques. A
list of all the available annotations can be retrieved from the GO project website.7

The various tools used to build the annotations are also distributed via the project
website.8

A large number of the applications for which ontologies are used in biomedicine
make extensive use of the annotations. These applications are discussed in more
detail in Section 15.5 of this chapter.

6http://www.ebi.ac.uk/GOA
7http://www.geneontology.org/GO.current.annotations.shtml
8http://www.geneontology.org/GO.tools.shtml#annot
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15.3 Criticism and Extension of the Gene Ontology

The Gene Ontology was criticized in a series of articles (Kumar et al., 2003; Smith
et al., 2003; Kumar and Smith, 2004; Smith et al., 2004). Major confusion arose
from the fact that, despite its name, the Gene Ontology is viewed by its curators as a
controlled vocabulary rather than as an ontology. Important features of an ontology
are missing from the Gene Ontology, most notably a formal specification and defi-
nition of the categories and relations in a formal language like description logic or
first order logic. Although ontological notions such as part, function, process, and
object are used in the names and textual definitions of the Gene Ontology’s terms,
none of these are properly defined.

The Gene Ontology has been further criticized for its lack of logical and ontolog-
ical rigor. The representation as a directed acyclic graph was not formalized in the
early stages of the project and the part-of relation was used in different, inconsistent
ways within the ontologies. For example, organism-specific part-of statements were
included in the Gene Ontology so that part-of statements were not always true, but
only within the context of certain organisms.

These problems arose from two main areas. The first is a misunderstanding of
the part-of relationship between categories. The definition of the part-of relationship
was only added after a major part of the Gene Ontology had already been developed,
with the result that part-of was not uniformly used according to the definition. In par-
ticular, default knowledge was included: part-of relations between categories which
usually, but not always, hold true. The second reason for misunderstanding of part-
of relations was the use of the same names for similar, but biologically unrelated
types of entities in different organisms. An example is the fruiting body develop-
ment in fungi and bacteria. In bacteria, the fruiting body development is a kind of
cell communication, in fungi it is a kind of organ development. Whenever similar
terms are used for different phenomena in different organisms, the Gene Ontology
makes these terms organism specific by adding a “sensu” statement to the term.
Therefore, fruiting body development (sensu Fungi) and fruiting body development
(sensu Bacteria) are two different categories within the Gene Ontology.

Further analysis of the Gene Ontology revealed the implicit ontological distinc-
tions made in its three disjoint taxonomic trees. There are three disjoint taxonomies:
Cellular Component, Biological Process and Molecular Function. While cellular
components are identified as subclasses of “substance”, the distinction between
Biological Process and Molecular Function proved to be more difficult. In partic-
ular, the Biological Process taxonomy contained terms such as “transport”, while
the Molecular Function taxonomy contained “transporter”. In 2003, a major renam-
ing of the terms in the Molecular Function taxonomy occurred, adding “activity”
to the end of each term to reflect more closely the dynamic character of the terms
described. However, the relationship between the Molecular Function taxonomy and
the Biological Process taxonomy remained unclear, as did the exact nature of terms
described in the Molecular Function taxonomy. The definition that relates Molecular
Function to Biological Process is that a biological process is series of events accom-
plished by one or more ordered assemblies of molecular functions. This suggests
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that the activities described in the Molecular Function taxonomy are a part of some
biological process.

The analysis of the Gene Ontology according to the top-level ontological dis-
tinctions of the Basic Formal Ontology (BFO) (Grenon et al., 2004) concluded that
cellular components are a subclass of the BFO’s continuant hierarchy, while biolog-
ical processes and molecular functions as they are defined by GO are occurrents.
It also concluded that molecular functions in GO are not a subclass of the function
category in BFO, which are dependent continuants, but rather functionings.

A further analysis of the relationship between functions and processes in the
Gene Ontology was performed using the Ontology of Functions (OF), a top-level
ontology of functions (Burek et al., 2006). The OF provides a framework for defin-
ing the structure of functions, the function’s relation to processes and to objects

Fig. 15.4 The function “to
transport sugar” represented
in the framework of the
ontology of functions. The
function is represented using
requirements and a goal. The
functional item “sugar
transporter” is the role that
the function bearer (MAL21)
plays in any realization of the
function. The process
“carbohydrate transport”
(from gene ontology’s
process classification) is the
realization of the function,
entities of the type MAL21
are bearers of the function
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that have a function ascribed to them. According to the analysis performed in OF
and illustrated in Fig. 15.4, functions are defined by means of requirements, goals
and a functional item. Requirements correspond to initial conditions which must be
satisfied whenever a function is realized. The goal is supposed to be achieved by
the function. The functional item is a role (Loebe, 2005) played by some entity in
any realization of the function. For example, in the function “to transport sugar”,
illustrated in Fig. 15.4, the functional item is a sugar transporter role. The real-
ization of a function is an entity which provides a transition from the state of the
world in which the requirements of the function are fulfilled, to the state in which
the goal of the function is fulfilled. This will usually be a process such as “sugar
transport”, but may be any other entity. The functional item must be played in
the realization of the function. The entity playing this role in the realization is
the function bearer. Applied to the GO, this yields a complete picture covering
all of the GO’s taxonomies, and its annotated data. The molecular function tax-
onomy describes the functions of gene products. These functions are realized by
categories taken from the GO’s biological process taxonomy. Cellular components
may participate in these processes, potentially bearing a function. However, most
of the molecular functions covered by the GO are functions of the gene products
that are annotated to the function category. Gene products are the bearers of the
functions, and they play the role of the functional item in the realization of the
function.

15.4 Biomedical Ontology Integration Through the Application
of Ontological Design Principles

With the increasing number of biomedical domain ontologies there is a need for a
common ontological framework in which these ontologies can be integrated. The
majority of ontologies that are currently available have been developed separately,
and while many adhere to the OBO guidelines this has not yet guaranteed that they
are fully interoperable. There are therefore several independent efforts that attempt
to integrate multiple biomedical domain ontologies.

Two different approaches are taken towards the integration of ontologies in
biomedicine. The first attempts to construct upper domain ontologies based on a
top-level ontology. The second constructs a core ontology with which the domain
ontologies are then aligned.

Upper domain ontologies define the most general categories within a domain
using the categories of a top-level ontology. For example, the category “Material
structure” may be specialized to “Cell” or “Molecule”, imposing additional restric-
tions on these categories. A core ontology attempts to define the scope of a domain.
In particular, it identifies the “core”; concepts of a domain and specifies the relation
of each category or sub-domain to this “core”.

We discuss three ontologies that can be used to integrate biomedical ontolo-
gies: the BioTop (Schulz et al., 2006) ontology together with the OBO Relationship
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Ontology (Smith et al., 2005), the Simple Bio Upper Ontology (SBUO),9 and the
General Formal Ontology-Biology (GFO-Bio).10 The first two are upper domain
ontologies, the latter is both an upper domain ontology and a core ontology.

15.4.1 The OBO Relationship Ontology

The OBO Relationship Ontology (OBO-RO) (Smith et al., 2005) is an ontology of
the relationships that are used between entities in biomedical ontologies. Its basic
ontology contains only two categories, Continuant and Occurrent. Continuants are
entities which are wholly present at a single point in time, while occurrents have
temporal parts and unfold through time. The OBO-RO provides a set of basic rela-
tions and gives axioms for these. Among the relations provided in the OBO-RO
are the is-a relation, various mereotopological relations, participation, and trans-
formation and derivation relations. For each relation, axioms specifying reflexivity,
transitivity and symmetry are provided. In addition, further definitions are given in
English text.

Because the OBO Relationship Ontology attempts to provide a unifying frame-
work for all biomedical ontologies, the axioms for the relations are weak compared
to more specialized theories. For example, the axioms for the part-of relationship
are reflexivity, transitivity and anti-symmetry.

A number of relations are defined which are intended for use only within
the biomedical domain. Among them are the relation transformation_of and
derives_from. The transformation_of relation is a relation between two identical
biological individuals at two different points in time. The derives_from relation
relates two distinct individuals at two different points in time, and the later individual
is a result of either division or fusion of the previous individual.

The OBO-RO was developed at a time when most biomedical ontologies were
available as directed acyclic graphs. In these graphs, relations such as part-of
were used as inconsistently and ambiguously. By providing these relations with
consistent and unambiguous definitions, the OBO-RO aims to facilitate ontology
inter-operability and to support advanced reasoning across these ontologies. New
ontologies in the OBO library are required to comply with the OBO-RO.

15.4.2 BioTop and the Simple Bio Upper Ontology

The BioTop Ontology (Schulz et al., 2006) is a further development of the GENIA
upper ontology. GENIA is an ontology that is intended for use in semantic anno-
tation of texts in biological text mining (Kim et al., 2003). Several problems
with GENIA’s upper ontology have been identified. BioTop is an upper domain
ontology for biology based on the top-level ontology BFO (Grenon, 2003), with

9http://www.cs.man.ac.uk/∼rector/ontologies/simple-top-bio/
10http://onto.eva.mpg.de/gfo-bio.html
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some concepts borrowed from DOLCE (Masolo, Borgo et al.). The relationships
used in BioTop are the ones used in the OBO Relationship Ontology, plus some
additional relations.

Like GENIA’s upper ontology, BioTop is mainly an ontology of continuants:
entities that are wholly present at each point in time at which they exist, and preserve
their identity through time. Axioms are given in OWL-DL for the upper categories
used in biomedical domain ontologies. For example, the category Cell is defined as
having some Cytoplasm and no Cell as part, and having some CellularComponent
and some Membrane as component.

BioTop is intended to be applied as an upper level ontology for all the ontologies
listed under the OBO umbrella. By providing definitions for the upper categories
of these ontologies, BioTop enforces ontological rigor and attempts to eliminate
ambiguities in the use of categories. For example, when two ontologies include a
Cell category, and both use BioTop for defining this Cell category, interoperability
between these ontologies is made simpler.

The Simple Bio Upper Ontology (SBUO) is an upper domain ontology like
BioTop. It is mainly founded in the DOLCE top-level ontology, with some ideas
from BFO included. Due to the top-level ontology used, several differences dis-
tinguish the two ontologies. In particular, biological sequences like DNA sequences
are abstract individuals in SBUO, while they are modeled as subclasses of molecules
in BFO.

15.4.3 GFO-Bio

While BioTop and SBUO are upper domain ontologies, GFO-Bio11 is both an upper
domain ontology and a core ontology. This is a result of the fact that GFO-Bio
attempts to make the nature of the biological domain precise, and analyzes the cat-
egories used in the upper domain ontology part with respect to their relation to
biology.

GFO-Bio is based on the top-level ontology GFO (Herre, Heller et al.). The rel-
evant features of GFO-Bio’s top-level ontology that allow it to be used to analyze
the nature of a domain are the inclusion of a theory of levels of reality, and explicit
support for higher-order categories in GFO.

In GFO, a level of reality is a higher-order category which has as instances the
categories belonging to a level (see chapter on GFO and levels). The biological
level is defined using the notion of “autopoiesis” as the property of living sys-
tems (Maturana and Varela, 1991). Using the concept of autopoiesis, two principal
categories are identified: Cell and Organism, which both exhibit the property of
autopoietic systems on the material stratum. To the instances of these principal cat-
egories, relations taken from the top-level ontology GFO are applied to yield further
categories. For example, an analysis of organisms using the subsumption relation
results in a species tree. To each category in this tree, mereological relations may

11http://onto.eva.mpg.de/gfo-bio.html
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be applied to obtain a classification of anatomical parts of organisms of one species.
GFO-Bio structures categories according to the relationships that must be applied
to its principal categories, Organism and Cell, in order to obtain the category. This
approach has been called “facet analysis” in the spirit of faceted classification used
in library science.

A core ontology, such as GFO-Bio, is used differently for the integration of
ontologies than an upper domain ontology. While upper domain ontologies define
the upper level concepts of a domain ontology using restrictions on categories, and
thereby provide definitions and restrictions for the domain categories, a core ontol-
ogy specifies the relation of a domain ontology to the principal categories of the
core ontology. It therefore has two main purposes: to structure sub-domains within
biology according to ontological principles, and to make the nature of the biolog-
ical domain precise, thereby delimiting it and allowing for a structured integration
within a wider ontological framework covering multiple domains, such as chemistry.
Further, it allows a faceted view of the domain of biology, starting from the principle
categories of biology and exploring different facets – relationships – of these
principle categories. A part of the taxonomic tree of GFO-Bio depicting the bio-
logical level and several facets or sub domains within this level is shown in
Fig. 15.5. The material stratum is a higher-order category, and the biological level a
sub-category of the material stratum.

Fig. 15.5 A fragment of GFO-Bio’s classification of the biological level. The Material_stratum
is considered a subcategory of GFO’s “Category”. Instances of the Material_stratum category are
the categories that belong to the material stratum. Similarly, the Biological_level category has
the categories and relations pertaining to the biological level as instances. The biological level is
further refined to more detailed sub-levels or domains such as Anatomy



15 Ontologies in Biology 363

15.4.4 Defaults and Exceptions for Ontology Interoperability

Some biomedical ontologies take a particular view on the domain they cover in
that they describe idealizations of the domain. Most of the anatomical ontologies
fall into this class. For example the Foundational Model of Anatomy (Rosse and
Mejino, 2003) describes an idealized, canonical human anatomy. A separate class
of ontologies describes phenomena within a domain where these phenomena may
be exceptions. An example is the Mammalian Phenotype Ontology, which is specif-
ically designed to describe abnormal mouse phenotypes which arise from genetic
modifications in mice.

Interoperability between these types of ontologies would facilitate the consistent
use of biomedical data in the form of annotations, allow for queries over multiple
ontologies and form a rich knowledge resource for biomedicine that could be further
used in solving problems and stating hypotheses. The absence of clear principles
for achieving interoperability between ontologies of this kind hinders the develop-
ment of advanced applications and analysis tools based on these ontologies. As we
will show in the following section, interoperability of ontologies of these different
types cannot be achieved by the methods developed hitherto, and a new set of meth-
ods that transcends the framework of classical logic must be introduced in order to
avoid inconsistencies and at the same time preserve the specificity of both types of
knowledge.

A canonical anatomy ontology such as the Foundational Model of Anatomy
contains rules such as every instance of a human body has as part an appendix. (1)

This rule does not necessarily apply to every real human body: an individual
human body may lack an appendix as part. However, the rule describes an ideal-
ized or canonical human. Phenotype ontologies may describe exceptions to these
idealizations. For example, an individual may both be an instance of a human body
as described in the FMA (which implies an appendix as part) and an instance of
the category “human body with absent appendix”. In a classical logical framework,
such as those used in the OBO Relationship Ontology or in the form of the Web
Ontology Language (OWL) (McGuinness, 2004), a formalization of these two state-
ments would lead to an inconsistency. A human body in the former case has an
appendix as a part, while in the latter case it does not. Instantiating both by an indi-
vidual causes the inconsistency. A logical inconsistency in the formal sense can only
arise when the logical functor of negation is used. This functor is hidden in concepts
such as “absent X”, as used in the Mammalian Phenotype Ontology (Smith, 2005).

In order to avoid terms such as “absent X” and make the negation explicit, the
lacks relation was introduced (Ceusters, 2007), which can be explicitly defined as:

Individual p lacks category C with respect to relation R if and only if there is not
an x such that: xRp and x is an instance of C.

It is possible to use binary relations of the kind x lacks-R C instead of x lacks C
with respect to R. For example, the fact that some individual x lacks a category C
with respect to the relation has-part will be denoted as x lacks-part C.

The use of the lacks relation may cause an inconsistency when a canonical ontol-
ogy and a corresponding phenotype ontology are used together with instances in a
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classical logic formalism, such as first order logic or description logic. The reason
is that classical formalisms enforce very strict interpretations, e.g. of quantifica-
tions like “every human”, which results in monotonicity of these formalisms: the
inferences drawn from a classical logical theory T remain true in every extension of
T with additional facts. In order to prevent inconsistencies, while at the same time
preserving the intuition behind statements such as “a human has an appendix as
part”, such statements in the canonical ontology must be weakened. What is required
is a nonmonotonic logic with which the statements in a canonical ontology can be
treated as true by default, but adding additional knowledge, by reference to a phe-
notype ontology or using a statement involving the lacks relation (and therefore
negation), may invalidate the conclusions previously drawn.

In order to describe the nature of default relationships between two cate-
gories, new relations must be introduced, such as CC-canonical-has-part. For
each relationship R between individuals, a set of relations is introduced according
to Table 15.2. Then, the relationship between “human” and “appendix” becomes
“human CC-canonical-has-part appendix”. Further, this relationship corresponds
to a default rule:
forall x, C1, C2: if C1 CC-canonical-has-part C2 and x IC-instance-of C1 then

by default: there exists a y: y IC-instance-of C2 and x II-has-part y.

Defaults rules can be formalized using answer set programs. Answer set pro-
grams are logic programs that employ two kinds of negation, strong and weak.
While strong negation corresponds to classical negation, weak negation is also
referred to as “default negation”. Intuitively, the weakly negated statement “not A”
means “A cannot be proven”.

Answer set programs must be further combined with ontology representation, in
order to be used within ontologies. For example, the system DLVHEX allows for a
bidirectional flow of information between an answer-set program and a description
logic knowledge base (Eiter, 2006). Relationships that are used in an ontology are
made available to the DLVHEX system. Then, it is possible to express the necessary

Table 15.2 A schema of the relations introduced. Domain and range for the relations are encoded
in the prefix of their name (e.g., IC means that the domain is Individual and the range Category).
For each relation that is used in an imported ontology, a number of relations between categories,
individuals, and between individuals and categories can be created. The CC-canonical-R relation-
ship is a default relation which is accompanied by axioms in an answer set program in order to
describe its semantic as a default

Relationship Definition

x II-R y Individuals x and y stand in the primitive relation II-R.
x IC-R y There exists an individuals z, which is an instance of x, such that x II-R z.
x CC-R y For all individuals a which are an instance of x: a IC-R y.
x CC-canonical-R y For all individuals a which are an instance of x: normally, a IC-R y.
x II-lacks-R y Not x II-R y.
x IC-lacks-R y Not x IC-R y.
x CC-lacks-R y For all individuals a such that: a IC-instance-of x, a IC-lacks-R y.
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axioms for relations of the kind CC-canonical-R. For example, for the relationship
CC-canonical-has-part, the following axiom can be added:

IC-has-part(X,Y) :- ind(X), class(Y), inst(X,Z),

CC-canonical-has-part(Z,Y),

not IC-lacks-has-part(X,Y), class(Z).

This means that if two categories Z and Y stand in the relation CC-
canonical-has-part, and it is not provable that X IC-lacks-has-part Y (not
IC-lacksHasPart(X,Y)), then it is concluded that an individual X, which is
an instance of Z, stands in the relation IC-has-part to the category Y.

Extending biomedical ontologies with the capability for non-monotonic reason-
ing allows for interoperability between ontologies describing canonical knowledge
within a domain and phenotype ontologies (which describe phenomena). Using a
hybrid approach by combining traditional ontology representation languages such
as OWL or OBO DAGs with answer set programs allows for the reuse of tools that
are used in ontology development, such as Protege (Noy et al., 2003) or OBO-Edit
(Day-Richter et al., 2007).

15.5 Applications

Development of the majority of the bio-ontologies has been driven by the need to
order and analyze the vast amount of data collected in biological databases and
acquired by experiments. The biological community has actively applied ontologies
for the annotation of biological data types. A feature that distinguishes the biomed-
ical ontologies is the vast amount of experimental data that is annotated using these
ontologies. It is the combination of the ontologies with this data that has enabled
large-scale biological description and discovery. A number of software packages
supporting a variety of biological applications have been developed by the commu-
nity, only a few of which we will discuss here. A software repository for of these
packages is maintained by the Gene Ontology Consortium,12 and while some of the
tools are GO-specific, some can be used with multiple bio-ontologies.

15.5.1 Annotation and Retrieval of Data

Through formalizing the terms used for a domain and then using these for the
annotation of biological data such as genes and proteins, the bio-ontologies have
provided researchers with the ability to browse and retrieve data according to well
known terms. In an initial approach to help researchers in genetics manage the ris-
ing number of sequences in public databases, controlled vocabularies were used

12http://www.geneontology.org/GO.tools.shtml
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to assign commonly used terms to genes and proteins (eg:. The protein database
Swiss-Prot (Boeckmann et al., 2003)) or cDNA libraries (Kelso et al., 2003).
These controlled vocabularies were later supplemented by bio-ontologies to pro-
vide researchers with domain-specific hierarchies for the browsing and retrieval of
data. For this approach no more than a simple is-a hierarchy is needed, giving a
possible explanation for the simple structure of the OBO Ontologies. A standard
example of a pure is-a hierarchy in biology is the classification of species, consti-
tuting an integral part in the organization of genetic information (Wheeler et al.,
2003). Biological databases now make extensively use of bio-ontologies to provide
controlled terms for the description of various aspects of genes and proteins.

15.5.2 Statistical Analysis of Experiments

Current technologies allow for massive parallel measurements in genetic
experiments. One well-known and widely used form of experiment measures the
relative amount of transcript from DNA for several thousand genes on a microarray
chip (reviewed in Lockhart and Winzeler, 2000). However, the analysis and inter-
pretation of the data generated by these experiments is often hampered by two major
problems:

1. the power to draw a significant conclusion from a single measurement is low
because of large technical variance in the experimental measurements, and

2. data on the level of single genes does not allow for a direct insight into the
affected higher level functions of the organism.

These problems led to the development of several applications (eg:. GOstat
(Beissbarth and Speed, 2004) or FUNC13 (Pruefer et al., 2007) which make use
of the simple DAG structure of the Gene Ontology in order to group genes by their
annotation. This grouping increases the power to detect differences, as the measure-
ments for multiple genes can be combined for testing. Additionally, the statistical
test on the Gene Ontology DAG results in a list of significant groups. These groups
are described by meaningful terms from the Gene Ontology, thus helping the user
to interpret the result in terms of the biologically relevant affected processes and
functions as well as the cellular localization.

While these applications vary in respect to the implemented statistical tests and
the user interface, their general method is very similar. As a prerequisite, genes need
to have an assigned value as the result of the experiment. These values are then col-
lected in Gene Ontology groups according to the annotation of the gene and can be
propagated to linked higher level groups in the DAG because of the True Path Rule.
An appropriate statistical test is then applied to each group. Since many groups
are tested for significance, the chance of a false positive result is not at the desired
probability of error. This constitutes a well known problem of statistics known as
multiple hypothesis testing and is addressed in several of these packages using

13http://func.eva.mpg.de/
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a variety of methods for correction (Manly, 2004). The approach that we have
described here is not limited to the Gene Ontology, but can be applied to any
ontology that can be represented as a DAG.

15.5.3 Automatic Annotation and Community-Developed
Ontologies

Given the amount of experimental and computational research required to describe
gene function, the genetic bases of complex diseases, or the evolutionary history
of organisms, genetics tends to be a field with a vast number of publications, often
in highly focused research areas. Since the curation model used by most of the
bio-ontologies requires curators to read literature in order to extract the ontological
terms and annotations, this leads to a bottleneck in the curation of these ontologies.
Generally the curators read a defined subset of publications to create annotations.
Two alternative approaches to addressing this challenge have been undertaken.

15.5.3.1 Automatic Annotation

Using methods from computer linguistics and information extraction several authors
(Hirschman, 2005) have explored automating the search for relevant publications for
each term in an ontology. Information extraction from biological texts is a powerful
means to increase the coverage of ontologies and their annotations. Such approaches
may also have the ability to verify their correctness, providing increased confidence
in the automatically generated results. Several sophisticated software implemen-
tations have been developed to extract information about e.g. gene and protein
functions from biomedical literature (Camon, 2005). However, while information
extraction from biomedical texts can quickly provide huge amounts of structured
information that potentially can be added to ontologies as categories, relationships
or annotations, manual verification and quality assurance based on human input is
always beneficial.

15.5.3.2 Community Development

A very recent development to increase the amount of captured information from
publications is the use of Wikis (Leuf and Cunningham, 2001) which aim to involve
the community directly in the curation process. While no fully fledged Wiki for
this purpose exists currently, there are several proposed methods, spanning several
degrees of formalism for the captured information. A natural way of applying the
current Wiki technology is to allow natural language descriptions for each gene,
to supplement the genome databases with further information gained from experts
(Wang, 2006). Such a wiki does not yet exist, but there are proposals to provide such
functionality via a new project called WikiProteins (Giles, 2007).

The most formal approach to date is currently under development by Hoehndorf
et al.(Hoehndorf et al., 2006). Within this wiki users are able to edit annotations
and add or modify concepts in the ontology. Additional to the natural-language
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aspect, the wiki provides a way to add formal n-ary relations with subject, object
and additional mandatory and obligatory roles.

A background Core Ontology (GFO-BIO) together with a reasoner are used to
ensure than the information in the wiki is reasonably accurate. The formal entries
must be typed on the basis of the Core Ontology and the reasoner is applied to limit
the entries to those that are consistent with already entered information.

15.5.4 Reasoning for Experimental Hypothesis Testing

There are few advanced applications of the bio-ontologies, perhaps because many
still lack the required formality to support such applications. A recent and inter-
esting example of the use of bio-ontologies in the formulation and testing of
experimental hypotheses is the Robot Scientist project (Soldatova et al., 2006). The
Robot Scientist is a robotic laboratory system able to design, perform and evaluate
biological experiments in a microbiological laboratory. Based on a general ontol-
ogy of experiments, EXPO, (Soldatova and King, 2006) in which data and metadata
about all aspects of the experiment are captured, the robot is iteratively able to for-
mulate hypotheses, physically carry out the experiments, and then evaluate results
in order to use the information gathered in the next experiment.

A second example is Hybrow (Racunas et al., 2004). HyBrow is a system to
design and evaluate hypotheses and verify their consistency with available biomedi-
cal knowledge. It uses an event-based ontology for representing biological processes
in the background. A prototypical implementation is available.14

15.6 Summary and Conclusions

The research field of bio-ontologies has grown rapidly in the past 10 years. This
is a direct result of the need in the biomedical research community to define and
share the vocabulary used for the description of the growing quantities of biolog-
ical data being generated. With increasing amount of data more difficulties were
encountered in managing, sharing and integrating these data. While several early
projects, notably BioCyc (Karp et al., 2005) and GALEN (Rector and Nowlan,
1994), provided ontologies for parts of the biomedical domain, the newer, “light-
weight” ontologies such as the Gene Ontology were developed by biologists to
solve the specific problems that they face in daily research activities. These ontolo-
gies were therefore designed to address a specific, restricted set of problems –
mainly annotation and database integration – and initially tended to sacrifice formal
logical and ontological rigor to achieve this goal in a reasonable time-frame. Over
time, and following the success of ontologies like the Gene Ontology, biomedical

14www.hybrow.org/
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ontologies are being gradually extended, formal foundations laid, and ontologi-
cal principles applied. This is being done in an effort to facilitate interoperability
between the various ontologies that were developed for distinct, but related domains.
Ultimately, these improvements will enable the automatic detection and prevention
of inconsistencies, and automatic extraction of implicit knowledge. The develop-
ment and application of top-level ontologies, the construction of upper-domain and
core ontologies, and the unification of the relationships used in the various biomed-
ical sub-domains are all significant steps in the construction of a unified biomedical
knowledge base. As an increasing amount of knowledge is formalized, the appli-
cation of ontologies and other biomedical knowledge bases for the generation of
biological and biomedical hypotheses, their verification, the automatic planning
and evaluation of experiments and the detection of conflicting biomedical claims
may become possible. The community-wide adoption of software implementations
that use ontologies for the statistical analysis of experimentally generated gene lists
(Beissbarth and Speed, 2004; Prufer et al., 2007), or the identification of protein
functions using ontologies (Wolstencroft, 2006) indicate that ontologically-based
applications are a welcome addition to the biologists data generation and analysis
toolset. Biomedicine is likely to remain a largely data-driven discipline that capital-
izes on the intuition, experience and intellect of the biomedical researcher. However,
parts of the field are amenable to becoming knowledge-driven disciplines. It there-
fore seems likely that ontology-based biomedical knowledge-bases will play an
increasingly important role in modern biomedicine, and act a motivating force in
computational logics, Semantic Web technologies, and for foundational ontological
research.
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Chapter 16
The Ontology of Medical Terminological
Systems: Towards the Next Generation
of Medical Ontologies

Heinrich Herre

16.1 Introduction

Integrating, processing and applying the rapidly expanding information generated
in medicine, bio-medicine and biology is one of most challenging problems facing
research in these fields today. As the volumes of experimental data and knowl-
edge increases, there is a growing need for supporting formal analyses of these
data and pre-processing knowledge for further use in solving problems and stating
hypotheses. To satisfy this pressing need we must increase the formality, expressiv-
ity and transparency of medical terminologies and biomedical ontologies. Achieving
these goals requires the precise and formal characterization of medical, biologi-
cal and biomedical data and knowledge, as well as their correct representation in
computational form.

T Gruber introduced the term ontology to computer science (Gruber, 1993). He
defined ontology as a formal specification of a conceptualization. Computer sci-
entists initially promoted ontologies as a technology for overcoming problems of
heterogeneity. Now, biologists and medical computer scientists employ ontologies
to consistently represent and process biological and medical information and knowl-
edge. Ontologies have proven useful and beneficial for integrating and sharing data,
managing terminology, reusing knowledge and supporting decisions. Bodenreider,
et al. observed that as the field progresses, ontology’s philosophical underpinnings
play a growing role, though they do not address these foundational considerations
(Bodenreider, 2006). Given that the number of ontologies is rapidly growing, there
is an urgent need to create and establish scientific techniques and methods, concep-
tual tools, and computer-based supporting systems for building ontologies and to
establish objective metrics and criteria for measuring and evaluating their quality.
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What follows is a critical analysis of the current situation, particularly with
regard to the significance of logic, artificial intelligence and philosophy for ontol-
ogy research, in an attempt to close the gap that remained open since (Bodenreider,
2006). A broader framework is needed to analyze and represent the relevant phe-
nomena occurring in the field of terminologies and ontologies. Such a framework
should be based on logic, artificial intelligence, linguistics and philosophy. Logic
contributes to a rigorous formalization of biomedical content, linguistics plays a
role in the analysis of natural languages texts, artificial intelligence is relevant
for knowledge representation, inference procedures and integration methods, and,
finally, philosophical ontology provides a framework for the categorization of the
world. The research group Onto-Med at the IMISE, University of Leipzig, is con-
structing the architecture for and developing the constituents of such a framework.
Finally, future avenues of research will be explored, particularly, possible features
of the next generation of medical ontologies.

First, in Section 16.2, the notion of an ontology and a terminological system
is outlined. Furthermore, to make the paper self-contained, some basic notions of
GFO (General Formal Ontology) are summarized which are used in the subsequent
sections. Section 16.3 expounds some basic ideas on domains and conceptu-
alization which are needed in the following sections. Section 16.4 applies the
ideas of Section 16.3 to some recent results on medical terminological systems.
Section 16.5 provides an overview about some important medical terminolog-
ical systems and includes a preliminary ontological analysis of these systems.
Section 16.6 concludes with recommendations for future research, and expounds
ideas which might be relevant for developing the next generation of medical
ontologies.

16.2 Terminological Systems and Ontologies

Here, an ontology should be understood as an information or knowledge sys-
tem comprised of terminological systems as well as formal theories in a logical
language. The similar term formal ontology should be considered as a science
that addresses the systematic development of axiomatic theories describing forms,
modes and views of being at different levels of abstraction and granularity. The
science of formal ontology combines the methods of mathematical logic with
analyses and principles of philosophy, but also with the methods and principles
of other sciences, in particular artificial intelligence, cognitive psychology and
linguistics.

Ontologies, like information systems, are roughly classified into terminologi-
cal systems, frame-based systems and logical theories. Basic constituents of an
ontology are categories, relations, objects, and symbolic structures that serve as
designations. On the formal syntactic side an ontology is a symbolic system com-
posed of strings and words. These strings denote categories, relations or objects.
Categories are entities that are expressed by predicative terms of a formal or natu-
ral language and that can be predicated of other entities. The most important types
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of categories are concepts, which are basic constituents of terminological systems.
Concepts, designations and objects form the so-called semiotic triangle (Campbell
et al., 1998).

Terminological systems, in general, are based on concepts; they relate concepts
of a particular domain to one another, and provide their terms and possibly their
definitions and codes. Concepts are cognitive constructs that are sometimes intu-
itively called units of thought; hence, concepts belong to the mental-psychological
stratum of the world,1 according to the GFO-framework presented in (Herre et al.,
2006) and Poli’s theory of levels of reality (Poli, 2001). Linguistic labels, called
terms, are used to designate concepts. Codes are constructed of letters, numerals
or combinations thereof; they can be used to designate concepts in a computerized
system. Both, linguistic labels and codes, are symbolic structures. Usually, linguis-
tic labels are taken from a natural language; hence, they possess, aside from the
designation function, an intension that is relevant for the comprehension of a term
or word. The semiotic triangle is useful for depicting interrelations between term,
thought (mental state, epistemic state, and meaning) and an object (as referent). The
relation between a term or word and an object is indirect. A subject (a person, an
agent) processes a word, which evokes a corresponding thought (cognitive state,
epistemic state) and then links this thought to an object. We emphasize that a sub-
ject can understand and grasp a subject-independent object only through a mental
state, a unit of thought.

The notion of terminology uses partly the exposition of N.F. de Keizer in (2000a),
and (de Keizer et al., 2000b). A terminology is a list of terms referring to con-
cepts in a particular domain. In a simple terminology, no ordering is assumed. A
thesaurus is a terminology in which terms are ordered, alphabetically or systemat-
ically. Here, concepts can possibly be described by more than one (synonymous)
term. When definitions for the concepts in a terminology are added, it becomes a
vocabulary or glossary. A nomenclature is a system of terms, composed according
to pre-established composition rules for constructing new complex concepts. A tax-
onomy is an arrangement of categories according to the “is-a” relationship from a
subordinate category to a super-ordinate category.

Logical theories are based on a model-theoretical language. A model-theoretical
language consists of a structured vocabulary V(O), called an ontological signature,
and a set of axioms Ax(O) in which V(O) is formulated in a formal language L(O).
Hence, an ontology (understood as a formal object) is a system O = (L, V, Ax);
the symbols of V denote categories and relations between categories or between
their instances. L represents an operator that associates a set of expressions L(V),
which are usually declarative formulas, to a vocabulary V. Assuming the following
conditions, V ⊆ V′ implies L(V) ⊆ L(V′), and L(L(V)) = L(V). An ontology

1The notion “unit of thought“ is very vague. This and similar notions, such as “epistemic state”,
“perception”, “mental state”, “cognitive state” and “meaning” belong to the mental-psychological
stratum, whose investigation is a subject for future research (Albertazzi, 2001; Albertazzi, 2003;
Poli, 2006).
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may be augmented by a derivability relation, denoted by |-. Such an ontology
then becomes a knowledge system (L, V, Ax, Mod, | - , | =). We use the stan-
dard notions of model theory and logic as set forth in (Chang and Keisler, 1977):
Mod(X) denotes the class of models of a theory X, |= is the semantical conse-
quence relation, and |- denotes an inference relation. Throughout the paper, an
ontology is considered as a system (Cat, Rel, Ax) consisting of a set of categories
(Cat), a set of relations (Rel), and a set of axioms (Ax) that specify connections
between the categories and describe properties of the relations in Rel. The simplest
form of an axiom is presented as a relational link between categories. The pre-
cise meanings of these links must be explained using formulas from a language.
Furthermore, among the categories there are individual concepts that represent
objects.

In the remaining part of this section we summarize basic features of GFO
(General Formal Ontology) which are used throughout this paper. GFO is a foun-
dational ontology that is under development by the research group Onto-Med
(Ontologies in Medicine) at the University of Leipzig. A detailed exposition of GFO
is set forth in (Herre et al., 2006), and an outline is presented in (Herre, 2010).
Entity is defined here as everything that exists, where existence is understood in
the broadest sense. Categories are entities expressed by predicative terms of a for-
mal or natural language that can be predicated of other entities. Predicative terms
are linguistic expressions T that state the conditions Cond(T) to be satisfied by an
entity. Entities are primarily distinguished as sets and items. Items are classified
into categories and individuals. Categories are classified into concepts, universals,
and symbol structures. Categories can be conceived without a forced commitment
to realism, conceptualism or nominalism; this is justified by a new kind of real-
ism, called integrative realism which is expounded in (Herre, 2010). Individuals
are entities that are not instantiable; they are divided into pure space-time entities
and non-space-time individuals. Non-space-time individuals are classified into con-
crete and abstract individuals. Concrete individuals exist in time or space, whereas
abstract individuals do not.

With regard to the relationship between individuals, time and space, there is a
well-known philosophical distinction between endurants and perdurants. Unlike the
vague notion of an endurant, GFO uses, instead of an endurant, the more precise
notion of a presential. A presential captures one aspect of an endurant: it is an
individual that is entirely present at a particular time-point. GFO accounts for persis-
tence using a suitable universal whose instances are presentials. Such universals are
called persistants. These do not change and can be used to explain how presentials
with different properties at different times can be the same. Therefore, persistants
are special categories that can be instantiated. We claim that for every persistant P
of a certain subclass of persistants, there exists an individual q, called a perpetuant,
which persists through time and is related to the time-points of its duration by a
relation exhib(q,a,t). The relation exhib(q,a,t) means that (the perpetuant) q exhibits
the presential at a time-point t. Perpetuants are cognitive constructions of the mind
whose existence can be justified by Gestalt theory (Wertheimer,1912).
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16.3 Domains and Graduated Conceptualizations

This section outlines a preliminary account of the structure of domains and their
conceptualizations. In particular, we introduce the notion of a graduated concep-
tualization. The formation and emergence of domains is a result of the evolution
of scientific knowledge, but also the product of common sense reasoning, social
awareness and both, philosophical contemplations and reflections.

A domain D, is determined by a set of objects Obj(D), by a set V of views at
Obj(D), and by a set CP of classification principles for Obj(D). Hence, a domain
is represented as a three component system, D = (Obj(D), V, CP). The notion of
view is used in an informal, intuitive sense, whereas the classification principle
can usually be made more precise. In understanding, acquiring and representing
the knowledge about a domain, we use categories and relations between them, and
must specify the domain’s individuals and their fine-structure. Hence, two addi-
tional constituents are associated to a domain: a set of categories of D, denoted
by Cat(D) and, a set of relations of D, denoted by Rel(D). These additional con-
stituents are influenced by the views of Ind(D) and the classification principles of D.
The system Concept(D) = (Ind(D), Cat(D), Rel(D)) can be conceived as a detailed
form of a conceptualization of the domain D in the sense of (Gruber, 1993). This
approach to conceptualizations supports the ideas McCray expounded (McCray,
2006), assuming that the categorical system Cat(D), the relations in Rel(D), and also
the classification principles CP(D), depend on the more deeply rooted world view
of its designer, including the purpose for which the categorical system is generated.
The relations in Rel(D) can be classified into relations between individuals, called
individual relations, and relations between categories, called categorical relations,
and finally as mixed relations which have as elements both individuals and cate-
gories.2 An ontology of a domain is based on a conceptualization; it is determined
by adding axioms describing inter-relations between the categories and properties
of relations. An ontology Ont can be presented as a system Ont = (Concept(D),
Ax(Concept(D)), where Ax(Concept(D)) denotes the set of axioms about the con-
ceptualization Concept(D). The simplest axioms are represented by relational links
between categories.

Let D be a domain and Cat(D) be the set of categories associated to D. The con-
ceptualization of D, and hence the system Cat(D), is not uniquely determined and
may change over time.3 This phenomenon is discussed in (McCray, 2006), in which
a number of examples is collected and analyzed. Since a domain depends on a view,

2A more fine-grained system of types for relations may be introduced.
3Recently, a principle of coordinated evolution is discussed in (Smith et al., 2007). One of the
included rules, called orthogonality, is stating that for every domain there should be only one
ontology. Such a principle must be rejected, it contradicts elementary evolution principles in sci-
ence. There is great diversity of ontologies pertaining to the same domain which are determined
by the conceptualization, by the axioms selected, and by the expressivity of the language in which
these axioms are formulated.
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a set of individuals and a classification principle, there are also cases for which
the domain changes with respect to the view and the classification principle, but
leaves the objects fixed. Examples for these kinds of changes and deviations may be
found in the biological and medical domain. The entire biological domain changes
permanently by creating new sub-domains, introducing new concepts and by mod-
ifying the content of existing concepts. Recent developments concern the cladistic
taxonomy of biology, which differs from classical systems in biology which group
species and other biological categories according to shared features and character-
istics (Hennig, 1950; Hennig, 1975; Wiley, 1981). The cladistic taxonomy is based
on another classification principle, arranging the taxa in an evolutionary tree. A new
nomenclature, the PhyloCode, currently under development, is intended to address
the evolutionary tree.

The categories of Cat(D) are divided into a set of principal categories of D,
denoted by PrincCat(D) of D, into a set of elementary categories of D, designated
by ElemCat(D), into a set of aspectual categories of D, symbolized by AspCat(D),
and into a linguistically defined category, denoted by LingCat(D). These sets of cat-
egories form an increasing chain, i.e. suppose that PrincCat(D) ⊆ ElemCat(D) ⊆
AspCat(D) ⊆ LingCat(D). The system (PrincCat(D), ElemCat(D), AspCat(D)) is
called a graduated conceptualization for the domain D. The principal categories are
the most fundamental of a domain. For the biological domain, the organism cate-
gory is accepted as principal. Identifying a domain’s principal categories is usually
the result of an evolution of domain-knowledge.

The elementary categories of a domain are introduced and determined by a
classification based on the domain’s classification principles; they usually present
a taxonomy. There is a great variety of combinations of the classification prin-
ciples being applied to specify elementary categories. A domain D is called
simple if it has only one view and one classification principle, and if the tax-
onomy based on (Obj,V,CP) exhibits a tree-like structure. If the domain has
multiple views, then the taxonomic ordering of elementary concepts cannot be
assumed to be tree-like. Multiple views can explain the occurrence of multiple
inheritances.

In addition to the elementary categories, there is an open-ended set of aspec-
tual categories derived from the fact that any entity stands in many relations to
other entities. Aspectual categories are derived from elementary categories by
aspectual composition and deployment. Presently, there are no clearly formu-
lated and complete principles for defining and deriving aspectual categories. The
notion of aspectual analysis corresponds roughly to the notion of facet analy-
sis in (Ranganathan, 1962), whereas the notions of aspectual composition and
deployment are concerned with the construction of new categories from particular
constituents.

New concepts can be introduced along dimensions or basic aspects. Basic aspects
are categories or basic relations of a top-level ontology, which is in the sequel GFO.
An intuitive, informal relation aspect (X, Y, Z) means: X is a domain category, Y a
basic category or a basic relation of GFO and Z a category derived from X using the
category or relation Y in the role of an aspect. Therefore, Z is an aspectual category
of X via Y.
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16.4 Analyses of Terminological Systems

An ontological analysis of a medical terminological system should uncover some
of its basic features. These features include the presupposed classification prin-
ciples, the sub-domains and core categories, the distinction between elementary
and aspectual concepts and an explication of the used relations. This analysis will
provide a necessary basis for constructing knowledge extensions of terminological
systems and biomedical ontologies, which will enhance their applicability to the life
sciences.

The fragmentary exposition in Section 16.3 of the architecture of a concep-
tualization can be used to clarify and analyze some problems recently raised in
the literature. In the paper (Bodenreider et al., 2004a) the authors analyze and
investigate phenomena that they call the intrusion of epistemology into biomedical
terminology. They find that every term in terminological systems used in clinical
practice or in biomedical research is assumed to designate a corresponding class or
concept. They then claim that only some of these terms represent classes (univer-
sals), while many others are merely assertions about such classes that are formulated
in order to meet current practical coding requirements. They contend that genuine
classes must reflect a special categorization principle based on the notion of similar-
ity with respect to a set of qualities that do not depend on relations. However, there
are categories that are not based on such a principle. A domain’s categories are
determined by the associated classification principles, and the exorbitant diversity
of domains excludes a universal invariant basis for categorization.4

Bodenreider, et al.’s analyses (2004a) are based on an overly restricted under-
standing of categories and their formation, which hampers a comprehensive and
well-established analysis of the observed phenomena. The concepts described in
(Bodenreider et al., 2004a) as illustrating example are actually aspectual derivatives
of elementary concepts. These aspectual derivatives are important for presenting
knowledge about a domain. Aspectual categories include epistemologically loaded
concepts as a special case. Furthermore, from an ontological point of view, episte-
mology is included in the mental-psychological stratum of reality.5 Four examples
are evaluated below.

Example 1(Variation).

(Bodenreider et al., 2004a): The terms Gram-negative bacteria and Gram-positive
bacteria do not correspond to particular classes in reality; hence, they do not present
classes.

4E. Rosch doubts whether an invariant basis exists for categorization; hence, there may be a flaw
in the so-called classical theory, according to which the invariant features are categorized (Cohen
and Lefebere, 2005; Rosch, 1975).
5Ontology questions what an entity is and what mode of existence it exhibits. Epistemology ques-
tions how a subject relates to an object and how knowledge is acquired and processed. But ontology
may raise questions of existence about epistemology. In turn, epistemology may ask questions
regarding how an ontologist, as a subject, relates to the reality. This process may be iterated on
both sides. For purposes of this chapter, the ontological view to which epistemology belongs is the
mental-psychological stratum.
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GFO-analysisThe notions of Gram-negative bacteria and Gram-positive bacte-
ria are aspectual concepts (extensionally) subsumed by the concept bacteria. They
are not introduced by the classification principles applied to bacteria, but are aspec-
tual derivatives of the concept bacterium. Aspectual derivatives can be important for
further sub-classification of a category C. For example, it might be important to sub-
divide a certain group of individuals into subgroups according to certain properties
and relational conditions. A specialist for environmental studies might be interested
in investigating elephants living in a certain location of Africa during a particular
time interval. This is a concept, but it is not derived from a biological classification
principle.

Example 2(Conjunction).

(Bodenreider et al., 2004a): In ICD-9-CM one may find the following term:
Tuberculosis of adrenal glands, tubercle bacilli not found (in sputum) by

microscopy, but found by bacterial culture. This expression does not present a
class, because it includes epistemological information. Only the term tuberculosis
of adrenal glands corresponds to a class.

GFO-analysis: The cited expression denotes a concept that is an aspectual
derivative of the elementary concept Tuberculosis of adrenal gland. Similarly,
the following terms can be analyzed: Closed skull fracture without intracranial
injury, Open skull fracture without intracranial injury, Closed skull fracture with
intracranial injury and Open skull fracture with intracranial injury. These aspectual
concepts may be adequately represented in the GFO framework.

Example 3(Modality).

(Bodenreider et al., 2004a): Definite tubo-ovarian abscess, Probable tubo-ovarian
abscess, Possible tubo-ovarian abscess. The authors observe that this is a com-
pletely different issue; these terms do not describe subclasses of tubo-ovarian
abscess.

GFO-analysis:These terms do not classify types of tubo-ovarian abscess, but they
are related to another domain, the domain of diagnostic decisions, estimation, and
evaluations. Any disease described in ICD-10 could be, in principle, augmented
with an additional but separate set of concepts pertaining to diagnostic decisions,
estimations and evaluations. These entities span a new domain that exhibits inter-
relations between the domain of diseases themselves.6

Example 4(Vagueness and underspecification)

(Bodenreider et al., 2004a): Open fracture of unspecified cervical vertebra,
Concussion with loss of consciousness of unspecified duration, Replacement of
unspecified heart valve, Poisoning by unspecified drug or medicinal substance.
These terms do not describe classes.

6It might be possible to explicate and represent this additional information adequately, but for
current ICD-10 use this would generate a superfluous overhead. The situation changes, of course,
if knowledge extensions of ICD are established, which can be used for inferences. In this case a
clear separation of these distinct domains and an explication of their inter-relations are necessary.
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GFO-analysis. These concepts are associated to the domain of diagnostic
decisions and evaluations and can be treated as Example 3.

16.5 Medical Terminological Systems

This section provides a brief overview of several important medical terminological
systems and discusses some of their ontological features.

16.5.1 ICD

The International Statistical Classification of Diseases (ICD) is one of the most
important international medical terminological systems; it was first issued in 1893.
Its sixth revision was in 1948, and since this time it has been maintained by
the World Health Organization (WHO). The current version is the tenth revision
(ICD-10), which was issued in 1992. The initial aim of the ICD was to provide
an international classification of death causes in order to produce internationally
uniform and thus comparable mortality statistics. The WHO family of interna-
tional classifications also includes other systems, notably the ICF (International
Classification of Functioning, Disabilities and Health) and ICHI (International
Classification of Health Inventions).

The 22 main sub-categories of ICD-10 include, among others, diseases of the
blood and blood-forming organs (D50–D89), endocrine, nutritional and metabolic
diseases (E00–E90), mental and behavioral disorders (F00–F99), diseases of the
nervous system (G00–G99) and certain infections and parasitic diseases (A00–
B99). We present some preliminary observations about ICD-10 and consider the
sub-domains I–XVII (codes A00–Q99). A core ontology of ICD-10 must expli-
cate what sub-domains I–XVII address. Six of these domains are classified with
respect to systems (nervous system, circulatory system, respiratory system, digestive
system, musculo-skeletal system, genito-urinary system), three pertain to special
organs (eye, ear, skin), one domain relates to infectious diseases (A00–B99) and one
domain addresses mental and behavioral disorders (F00–F99). Sub-domain level
categories Level(i), i= I,. . .,XVII, may be introduced; their instances are subsumed
by the corresponding chapters. The instances of a level category Level(i) in ICD-10
exhibit a taxonomic structure.

Consider the domain of infections and parasitic diseases (A00–B99) and the
associated domain-level category level(I). One of the classification principles is
based on the pathogens that cause the disease. Hence, the concepts in Level(I)
have a taxonomic concept, “infectious and parasitic diseases” (diseases caused by
pathogens). With respect to the classification of pathogens, elementary concepts and
aspectual derivatives can be explained. Among the elementary concepts are viral
diseases, bacterial diseases, rickettsioses, mycoses and protozoal diseases. These
concepts are further classified with respect to a sub-classification of pathogens. A
number of concepts in Level(I) can be easily identified as aspectual derivatives of
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elementary concepts, among them intestinal infectious diseases (aspect of local-
ization), infections with a sexual mode of transmission (aspect of transmission)
and viral infections characterized by skin and mucous membrane lesions (aspect
of location and symptoms).

These hierarchies are associated with different domains, whose ontological anal-
ysis is a challenging task. According to the principles expounded in Section 16.3,
sub-domains and their corresponding classification principles must be identified.
These exhibit the basis for a division into elementary and aspectual concepts.

16.5.2 SNOMED-CT

SNOMED (Systematized Nomenclature of Medicine) is a graph-based system
whose basic components are concepts and relationships, together with a descrip-
tion logic formalism for defining complex concepts. “SNOMED Clinical Terms”
(SNOMED CT) is the latest in a long series of works of terminology developed
and distributed by the College of American Pathologists (CAP) for the purpose
of encoding, storing and retrieving information on disease and health. Beginning
in the mid-1990s, the CAP started a radical re-engineering of SNOMED with the
understanding that manual coding would become an activity of the past, and that
substantial changes were required to support increasingly sophisticated electronic
systems in healthcare and public health. This work enabled CAP to publish the
SNOMED Reference Terminology (RT) in 2000. An even larger transformation
occurred when SNOMED RT was merged with the UK National Health Service’s
(NHS) Clinical Terms version (CTV3), resulting in the first release of SNOMED
Clinical Terms (CT) in January 2002. Since that time there have been an additional
four releases, one every 6 months. In 2003, the US Government licensed SNOMED
CT, and the National Committee on Vital and Health Statistics (NCVHS) recom-
mended its use as the general terminology for patient medical record information in
the US. In the UK, SNOMED CT is a draft national standard and a key element of
the NHS National Program for IT. Thus, SNOMED is being developed with serious
expectations and demands for practical use.

SNOMED consists of eighteen independent hierarchies reflecting, in part, the
organization into axes such as Disease, Drugs, Living organism, Procedure and
Topography. Among these top-level concepts belong clinical finding, procedure,
organism, physical force, substance, specimen, social context, attribute, body
structure, context-dependent category, evens, observable entity, physical object,
environment and geographical location, qualifier value, staging and scales, special
concepts, pharmaceutical-biological product and record artefact.

SNOMED CT does not exhibit a tree-like taxonomic structure, but neither do the
is-a nor the int-sub relations. Every concept of SNOMED CT can be linked hierar-
chically to exactly one top-level class; this implies that SNOMED CT consists of
eighteen independent hierarchies. With respect to the int-sub relation (C is an inten-
sional sub-concept of D) these nodes represent minimal elements, while with respect
to the is-a relation they are maximal elements. These hierarchies are associated to
different domains.
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Bodenreider et al. formulated principles that a good ontology should satisfy and
then measured SNOMED against these criteria (Bodenreider et al., 2004b). They
first consider classification principles: (a) each hierarchy must have a single root;
(b) each class, except for the root, must have at least one parent; (c) non-leaf classes
must have at least two children; and (d) each class must have a different definition
from all others. In particular, each child must differ from its parent, and siblings
must differ from each other. Since a root is a class without a parent by defini-
tion and (a) is assumed, the condition (b) follows automatically and need not be
stated. Furthermore, condition (d) is automatically satisfied, because concepts (cat-
egories) are defined by intentions. Hence, Bodenreider’s classification principles
can be reduced to: (1) each hierarchy must have single root and (2) non-leaf classes
(concepts) must have at least two children.

Bodenreider et al. observed that there are 23,174 single child classes
(Bodenreider et al., 2004b). They analyzed the single child concepts and proposed
the following classification: (a) the incompleteness of the hierarchy, (b) the pres-
ence of a hybrid class, resulting from the intersection of two parent classes as the
single child of at least one of the parent classes, and (c) redundant concepts, where
a parent and a child concept do not differ. It can easily be seen that case (b) cannot
be avoided, and that case (c) is incorrectly analyzed. They claim that the concepts
Closed fracture of skull without intra-cranial injury and Closed fracture of skull
represent one biomedical entity. However, the concepts differ, because Closed frac-
ture of skull without intra-cranial injury is an aspectual concept derived from the
concept fracture of skull, which can be understood as an elementary concept.

16.5.3 UMLS

The Unified Medical Language System (UMLS) is a project that has been under
development at the U.S. National Library of Medicine (NLM) since 1986. The
creation of the UMLS was motivated by the increasing number of heterogeneous
terminological systems that represent, classify and name the same concepts differ-
ently, thus hampering the retrieval and integration of information from different
sources. The goal of UMLS is to integrate multiple machine-readable biomedi-
cal information sources (e.g. ICD, LOINC, SNOMED, etc.) as transparently as
possible.

The UMLS consists of three parts or knowledge sources:

– the Metathesaurus,
– the Semantic Network and
– the SPECIALIST lexicon and other related lexical programs.

The Metathesaurus is the component that ties together the different source
vocabularies. A concept in the Metathesaurus links concepts from different source
vocabularies that the UMLS editors judge to have the same meaning. An important
principle of the Metathesaurus is to preserve the information from the underlying
source vocabularies (terms, concepts, codes, attributes, hierarchical and other
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relations) in order to achieve transparent integration. Synonym information and
other relations between terms and concepts from different vocabularies are added
by the UMLS editors in order to achieve this integration. The UMLS combines
over 2 million names for more than 900,000 concepts from more than 60 fami-
lies of biomedical vocabularies, as well as 20 million relational links among these
concepts. Vocabularies integrated into the UMLS Metathesaurus include the Gene
Ontology, the NBCI taxonomy, the Medical Subject Headings (MeSH) and the
Digital Anatomist Symbolic Knowledge Base. Some UMLS concepts have also
been linked to external resources such as GenBank. The Semantic Network pro-
vides a categorization of the concepts contained in the Metathesaurus. The current
version of UMLS defines 135 semantic types, which are organized hierarchically
(by the is-a relationship) into two distinct hierarchies, rooted by Entity and Event.
Each concept is assigned to at least one semantic type. The semantic network is
developed independently of the domain specific vocabularies and serves as a basic,
high-level ontology for the biomedical domain. It includes 135 semantic types and
54 relationships. Each semantic type in the network has a textual definition and
occurs within one of the hierarchies. In addition to the taxonomy, relationships of
five subcategories are introduced between semantic types. Since each Metathesaurus
concept is associated to at least one semantic type, relationships between semantic
types also define the admissible semantics for relationships between concepts.

There are many relational links in the Metathesaurus that originate from the
source vocabularies. The UMLS does not directly connect Metathesaurus relational
links to Semantic Network relationships. These missing connections demonstrate
that UMLS is not semantically founded and coherently organized. This implies, in
particular, that the Semantic network relationships cannot be used directly to val-
idate Metathesaurus relationships, as noted in (Vizinor et al., 2006). Furthermore,
it is not easy, perhaps even impossible, to transform the UMLS into a semantically
founded and coherently organized ontology. But it may be interesting to extract
from UMLS semantically founded and coherently organized sub-ontologies, which
can then be used for knowledge extensions.

16.5.4 LOINC

LOINC is an acronym for Logical Observation Identifier Names and Codes. It has
been under development since 1994 in a voluntary effort initiated and coordinated
by the Regenstrief Institute for Healthcare in Indianapolis (USA). LOINC’s purpose
is to facilitate the exchange and reporting of laboratory and other clinical observa-
tions, such as blood hemoglobin and serum potassium for clinical care, management
and research. Many laboratories and diagnostic services use HL7 to transmit their
results electronically from their reporting systems to their receiving systems, which
include hospitals and research groups. The Health Level Seven standard (HL7)
provides a standardized syntax for specifying messages, but does not employ stan-
dardized terms and codes to be used for identifying laboratory tests. LOINC was
developed to close this gap: it provides a universal coding system that can be used
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in current messaging standards like HL7 for identifying laboratory data and clinical
observations, such as blood pressure and temperature.

The laboratory domain covered by LOINC not only includes categories of sub-
domains such as chemistry, hematology, serology, microbiology and toxicology, but
also incorporates categories for drugs and cell counts. LOINC’s clinical domain
covers categories for vital signs, hemodynamics, EKG, cardiac echo, urologic imag-
ing, pulmonary ventilator management, selected survey instruments and others.
LOINC’s domain includes as individuals laboratory tests and clinical observations.

LOINC’s concepts are based on six axes, aspects or facets. They are component
(potassium, hemoglobin, hepatitis C antigen), property measured (mass concen-
tration, enzyme activity), timing (whether the measurement is an observation at
a moment of time, or an observation integrated over an extended time), type of
sample (urine, blood), type of scale (whether the measurement is quantitative (true
measurement), ordinal (a ranked set of options), nominal (e.g. E. coli) or narrative
(e.g. dictation results from x-rays) and method (used to produce the result or other
observation).

To any of LOINC’s 6 axes, denoted by ax(1),. . .,ax(6), domains D(ax(i)) can be
associated, and for any of these domains D(ax(i)) a system of categories/concepts
Cat(ax(i)) can be introduced. The domain of scale, for example, is sub-divided into
entities of quantity (numerical values), ordinal quantity (positive, negative, reactive,
indeterminate etc.), narrative (texts narratives, such as the description of a micro-
scopic part of a surgical test). Laboratory tests and clinical observations are very
complex individuals. But neither all their possible properties are relevant, nor are all
their relations useful in the clinical context. Hence, the axes or aspects choose from
a possibly infinite number of aspects of tests, only those that are clinically relevant.
An individual test is characterized by an aggregate of individual entities that are
instances of the aspect categories. This information is collected and represented in
a schema with six slots, which differs from other ontologies such as ICD.

16.5.5 GALEN

GALEN is an acronym for Generalized Architecture for Languages,
Encyclopaedias and Nomenclatures in Medicine. GALEN is a terminological
system that provides an entire framework for medical terminology. The GALEN
Common Reference Model is geared toward reusable application-independent
representation of medical concepts; the basis of GALEN terminology services
supports electronic health care records, clinical user faces, classification and coding
systems, decision support systems, knowledge management systems and natural
language processing. A key feature of GALEN provides a set of building blocks
and constraints from which concepts can be composed.

GALEN’s development has been influenced by the development of traditional
terminologies designed for specific purposes that have an impact on specific organi-
zation principles supporting the terminology’s intended usage in the chosen axes
or basic aspects and the level of granularity in concept representation. GALEN
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is designed for developing a framework that is independent in both purpose
and application. The Common Reference Model, as an ontology, is formulated
in a specialized description logic, called GALEN Representation and Integration
Language (GRAIL). This ontology aims to represent all relevant medical concepts,
independent of any application (Rector et al., 1997).

A crucial characteristic of GALEN is its construction on the basis of a top
level ontology and specific representation formalism. Furthermore, GALEN pro-
vides a mechanism for combining simple concepts with more complex ones.7 The
basic division of the top level categories is between Phenomenon, subsuming struc-
tures, processes and substances and Modifier Concept. The category Phenomenon
covers entities with independent existences, like physical objects, whereas the cat-
egory Modifier covers dependent entities, including properties, states and roles.
Furthermore, GALEN provides a rich system of associative relationships.

16.5.6 MeSH

The MeSH (Medical Subject Headings) is a thesaurus published, revised and
adapted by the US National Library of Medicine (NML). It is used for catalogu-
ing library holdings and serves as a basis for retrieving bibliographical citations. The
basic components of thesauri are descriptors, also called (main) headings, keywords,
topics or subjects. According to ISO 2788, they are connected by three relationships
“Broader-than” (BT), “Related-to” (RT) and “used-for” (UF). The relationships
and other instruments are used to guide and control the choice and combination
of descriptors for indexing and searching through information. MeSH, in particu-
lar, includes, among others, the following constituents: descriptors, qualifiers, and
relations. Ingenerf et al. claim that the main purpose of MeSH is epistemology,
rather than ontology, and that ontological principles should be applied to thesauri
with great caution (Ingenerf and Lindner, 2006). They analyzed MeSH with respect
to certain ontological principles related to the is-a relation and to epistemology.
These principles state that overloading the is-a relation and allowing epistemology
to intrude must be avoided. They then claim that a rigorous application of these prin-
ciples to terminological systems, including the elimination of epistemology-loaded
terms, will increase the mismatch between purified ontologies and epistemologically
“infected” terminology systems.8

7It seems that these principles cover only a tiny fragment of rules for concept formation, com-
pared with the vast body of knowledge about concept formation available in cognitive linguistics
and cognitive psychology. In particular, the description logic formalism includes only a small frag-
ment of predicate logic, and predicate logic provides only a small fragment of concept formation
principles expressible in other formal languages.
8One can imagine a situation in which only purified ontologies survive, and the epistemologically
spoiled terminological systems, together with the mismatch problem, disappear from the scene.
There are proposals whose realization would lead to such a consequence. In Smith et al. (2005), for
example, the authors criticize the work of the ISO Technical committee and claim that it produces
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We show that the mismatch problem is not caused by ontology in general, but is a
consequence of an overly narrow view of a particular kind of philosophical realism
and a restricted understanding of a top level ontology. The GFO approach, which
provides several kinds of categories, higher order categories and a theory of levels,
may cope with these problems. Outlined below are some ideas regarding how the
MeSH constituents can be ontologically reconstructed in the GFO-framework using
the theory set forth in this paper. The analyses are restricted to the new notion of
descriptor and to the broader-than relation. A complete ontological reconstruction
will be published elsewhere.

Nelson et al. propose a new structure for MeSH that centers on descriptors, con-
cepts, and terms (Nelson et al., 2000). A descriptor is defined as a class of concepts,
and a concept as a class of synonymous terms within a descriptor class. Such a
descriptor (Descr) can be considered as a higher order concept, whose instances are
the concepts within a class. There are preferred concepts with a selected term that
serves to denote the (higher order) concept Descr. The concept Descr itself is speci-
fied by information related to instances and their inter-relations. A concept in Descr
is denoted by a set of synonymous terms. As instances of Descr, the concepts stand
in relation to the preferred concept (narrower, broader, related). The descriptor’s
name is used for any of its instances.

The hierarchical relationships in MeSH are implicitly included in the “broader
than” relationship BT. The BT relation has many meanings, among them “is-a”
(extensional subsumption), “part-of” (mereology), “conceptual-part-of” (resem-
bling the relation categorial-part-of) and “process-of”. If “is-a” is the primary
meaning, then the phenomenon of is-a-overloading occurs, which must be, accord-
ing to the principles of ontological purity, excluded (Guarino and Welty, 2002).
But the BT relation cannot be reduced to the before-mentioned relations, because
another important facet must be considered, namely the search for documents.
Soergel defines the BT relation in a manner considered to capture this rela-
tion’s nature (Soergel, 1985). Should a search for documents be dealing with
(the term/concept/descriptor) A find all (or most) documents dealing with (the
term/concept/ descriptor) B? If yes, then A is broader than B (and conversely, B
is narrower than A).

This definition is, of course, not an explicit mathematical definition; nonetheless,
it can be described in terms of higher-order concepts that are included in GFO. Let
D be a document and C(D) a higher-order concept having all concepts occurring
in D as instances. Furthermore, let SetDok be a fixed set of documents. Then the
above relation may approximately be described as follows: a descriptor c is broader
than the descriptor d with respect to the set SetDok, if for all D in SetDok the

weak results inherited from the earlier work of the ISO TC 37. The ISO TC 37 was influenced by a
“certain Eugen Wüster (1898–1977), an Austrian businessman, saw-manufacturer,..., and devotee
of Esperanto” (Smith et al., 2005). This “saw-manufacturer” and “devotee of Esperanto” is, in the
opinion of Smith et al., responsible for an aberration of terminology research that hampers the
development of purified ontologies.
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condition d::D implies e::D. The relation BT depends, obviously, on the reference
set of documents SetDo k.9

In many cases the relation BT represents the taxonomic is-a relation, for example
“Pain BT Abdominal Pain”, in others not, for example “Abdomen BT Stomach”.
MeSH’s ontological foundation includes an analysis and explication of those
relations implicitly contained in BT, which present relations between primitive con-
cepts.10 Such an analysis is a necessary presupposition for solving the matching
problem between MeSH and other medical terminological systems. Furthermore,
it seems to be an interesting task, as a part of the ontological analysis, to extract
a maximal taxonomic tree from the MeSH thesaurus. The 16 broadest headings of
MeSH include, among others, anatomy, organisms, diseases, chemicals and drugs,
psychiatry and psychology, biological sciences, humanities, information sciences,
named group and, geography.

16.6 Conclusions and Future Research

The field of terminologies is complex and needs to include elements from several
sources, including philosophical ontology, linguistics and logic, artificial intelli-
gence. Ontologies may help to clarify the most general principles for building
terminologies. The approach presented here admits several ontological types of cat-
egories. Furthermore, it also introduces, according to a domain, several kinds of
categories, called principal categories, elementary categories and aspectual cate-
gories; these exhibit a system which we introduce as a graduated conceptualization.
The principal and elementary categories establish the backbone of the ontology
of a domain. An open-ended number of aspectual categories may then be added.
Between the categories certain basic relations hold; the most basic are the is-a
relation and the categorial-part relation. The categorial-part relation addresses the
intention of a category; the is-a-relation is associated with the categories’ exten-
sion. Furthermore, a number of domain specific relations between categories must
be added to the ontology. To develop the next generation of medical ontologies,
additional topics, we believe, must be investigated, which are listed below.

(1) Integration Schemata and Coherent Organization of Ontologies. It seems to be
useful and efficient to introduce an integrated view on a domain by taking into
account the sub-domains of the (main) domain and their representation by using
higher-order categories. For this purpose a new type of integration schema must
be introduced that allows for a systematic unification of distributed, scattered
information and knowledge about a domain. This needs a deeper understanding
of the architecture of concepts.

9A more accurate definition must consider the distinction between terms and concepts.
Furthermore, this definition has a relative nature, because it depends on a reference set of doc-
uments. Also, one must clarify whether the BT relation behaves monotonically with respect to the
reference set SetDok. However, this does not appear to be true.
10A concept is said to be primitive if its instances are individuals.
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(2) Knowledge Extensions of Graph-based Ontologies. Most ontologies hitherto
are presented in a graph-based form; in these ontologies the only axioms are
presented as relational links between concepts. A knowledge extension of such
an ontology adds more expressive axioms to it. Such knowledge extensions
can be used to solve problems and create hypotheses in biology, biomedicine,
and medicine. We hold that a sound knowledge extension must be based on
coherently organized and semantically founded ontology.

(3) Default Knowledge and Non-Monotonic Reasoning. The integration of the
diverse bio-medical ontologies needs a broader framework that allows con-
sistent inferences. One of the severe unresolved problems is concerned with
integrating ontologies that present default knowledge with ontologies con-
taining exceptions and deviations from idealized cases. To overcome these
problems, principles of non-monotonic reasoning must be introduced. Existing
non-monotonic systems, studied in artificial intelligence (McCarthy, 1980,
1986; Reiter, 1980), do not suffice to capture the diversity of situations that
occur in life sciences. A first contribution for establishing the basis for such
framework is expounded in (Hoehndorf et al., 2007).

(4) Ontology of higher order concepts and their architecture. The structure and
formal representation of concepts, notably of higher order concepts, are not yet
sufficiently understood. An integration schema of natural concepts, for example,
can be understood as concept representation. A concept can be unfolded by
adding aspectual categories, derived from it. Aspectual categories of a category
add further information and show how the instances of concepts can be further
structured.

(5) Ontology of Levels of Reality. The theory of levels is one of the most diffi-
cult unresolved problems in ontology. A number of open problems pertains to
levels, among them the ontology of multiple inheritance taxonomies, the clarifi-
cation of views and the ontology of multiple view domains, as well as a deeper
understanding of classification principles.

(6) Computer-based Ontology-Tools. An important idea is collaborative ontology
development. This is one of the most active areas of research today.
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Chapter 17
Ontologies of Language and Language
Processing

John A. Bateman

17.1 Introduction

Automatic language processing is a particularly knowledge-intensive enterprise.
Understanding natural language texts, producing such texts, finding the most impor-
tant information in a collection of texts for the purposes of summarization or
information extraction, and translating texts from one language to another are all
examples of natural language processing applications that benefit from a detailed
representation of what is being communicated (cf. Dale et al., 2000). For this
reason, language processing and knowledge representation are regularly found in
combination and there is a long history of interaction. The need for explicit domain
representation also overlaps with the task of constructing domain ontologies: clearly,
one way of making available information about the content of some collection of
potential texts is to draw on ontologies of the domains treated in those texts.

This leads to two inter-related problems. First, in the vast majority of areas where
natural language processing is attempted, there are no ready made domain ontolo-
gies available for use. This is the problem of breadth – natural language processing
typically calls for a very broad coverage of commonsense and specialised domains
of application. Second, even when there are domain ontologies available, it is by no
means straightforward to relate those ontologies to the kinds of knowledge organi-
sation supportive of natural language processing. This is the problem of mediation
between ontological organisations motivated by domain and application and organ-
isations motivated by the needs of expressing that information in natural language.
These distinct purposes do not necessarily lead to organizational structures that
align.

The relationship of natural language processing to ontological engineering is
therefore complex and makes contact with several central theoretical issues of cur-
rent concern. In this chapter, we set out those approaches where the two areas
of research – linguistic processing and ontology – come the closest and where
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current research involves both areas in combination. We will see that some quite
diverse organizational assumptions are made by the accounts that we consider. This
is because they represent different starting points, different methodologies, differ-
ent purposes and different criteria for success. Comparing such diverse approaches
requires us to be aware of these differences; the distinct kinds of information con-
tributed may all be useful for the overall task but bringing them together is not
straightforward. Approaches to achieving such combinations vary in sophistica-
tion and there are many open questions. In many respects even the use of the
term “ontology” in this domain is not uncontroversial. There is considerable over-
lap between the approaches we discuss and traditional work on lexical databases
and machine-readable dictionaries, where the ontological import of what is being
described is at best debatable. The precise nature of the information contributed
from linguistically oriented ontological development therefore needs to be carefully
considered.

The distinctive feature shared by all the frameworks that we discuss is that they
are intended to capture significant aspects of the organisation of natural language.
Just how they set about this depends on both philosophical orientation and prac-
tical demands. We find influences from traditional linguistic positions concerning
the relation between language and world, from psychological considerations of the
relation between language and its processing by the human brain, from semiotic
considerations of the nature of signs, from computational considerations of how
best to construct broad-scale lexicons, and many others. However, since the pur-
pose of this chapter is primarily to show linguistic processing as an “application
domain” for ontology, we will not delve more deeply into philosophical positions
taken on the ontology of language-as-such (cf. Pease and Niles, 2002; Bateman,
2004). Moreover, some of the approaches we deal with have also been introduced
in other chapters of these volumes: for these, therefore, our focus will be on bring-
ing out more clearly their relationships with the other accounts in the area that we
discuss.

We will characterize the different approaches to ontology and language in terms
of the status they assign to linguistic semantics. This is also the clearest point of
contact with the variety of philosophical positions taken on language – particularly
in regard to the relationship between language and the world. If we consider any
example sentence, this can generally be seen as picking out some state of affairs in
the world. But how this relationship is theorised more precisely opens up space for
several alternative treatments.

If, for example, the sentence is taken to refer “directly” to its corresponding
state of affairs, then we have a view where the meaning of the sentence is best
articulated in the same terms that are used to describe such states of affairs in gen-
eral. Formulating linguistic semantics then overlaps to a considerable extent with
the tasks of constructing individual domain ontologies. This perspective sees lit-
tle difference between semantics and knowledge engineering for a domain and is,
accordingly, most commonly found in approaches driven by Artificial Intelligence
or Computer Science. It also occurs in some approaches to language that start
from ontology. However, there is strong linguistic evidence that these kinds of
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information should be held apart: conflating them is superficially plausible but only
for relatively unsophisticated uses of language and language processing.

If the sentence is then taken to create some additional level of semantic represen-
tation that must first be related to its corresponding states of affairs for the meaning
to be found, then we begin to see a distinct contribution from linguistic semantics
over and above that provided by the modelling of some domain. Most sophisti-
cated views of language adopt some variant of this view. In general, a context-free
semantic representation corresponding to the linguistic expression at issue needs to
be contextualized to provide a context-dependent interpretation: i.e. one in which,
for example, the concrete referents corresponding to linguistically open expressions
such as “I”, “you”, “this box” and so on have been identified. This simplifies the
specification of a compositional semantics for linguistic expressions and gives a
firm place for contextualisation procedures to start. In more recent approaches, the
range of linguistic expressions for which this kind of two-stage contextualisation is
found useful has grown considerably.

Several distinct kinds of approach can be recognised according to how this rela-
tion between linguistic semantics and domain is conceived. At one extreme, little
difference in kind is seen between the representation of linguistic semantics and
representations of domain knowledge apart from the degree of specificity: linguistic
semantic representations are then “under-specified’ versions of their contextualized
interpretations (cf. van Deemter and Peter, 1996). At the other extreme, there need
be no particular relationship between the two levels of representation at all: they are
just placed in “correspondence”. Stone (2003a), for example, proposes that linguis-
tic semantics provide descriptions of domain states of affairs but do not correspond
to them more directly.

This latter position leads to the final bifurcation that we will build on. If we
have two relevant levels of representation, the linguistic semantics and the domain
model, then we can ask about the connection between ontology and each of these
levels separately. This gives rise to a further range of approaches: at one extreme,
the linguistic semantics is not given anything resembling an ontological treatment
while, at the other, ontological methods are applied for linguistic semantics also
(as done, for example, each from a rather different perspective, by Bateman et al.,
1995a; Nirenburg and Raskin, 2001; Cimiano and Reyle, 2006). Debate continues
both about which of these possible approaches to the relationship between language
and world is the most appropriate and about whether this has anything to do with
ontology.

The three positions that we have set out are summarised graphically in Fig. 17.1.
Model (I) is the situation in which the meaning of linguistic expressions is nothing
other than the representation of some domain state of affairs; model (II) interposes
some semantic organisation that is distinct from the domain state of affairs but which
is not strongly structured in its own right; and model (III) finally assumes that both
linguistic semantics and domain representations may be approached ontologically
and that their contributions are distinct from one another. With these three positions
established, it is rather more straightforward to characterize the diverse positions on
language, language processing and ontology currently being pursued.
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Fig. 17.1 Three different positions taken with respect to language, the world, and the role of
linguistic semantics in mediating between them

17.2 Lexical Databases and Ontology

Much of linguistic thinking at present is dominated by the lexicon. Essentially the
lexicon is the repository of meaningful units that may be employed in a language
and which need to be learnt rather than derived by more general principles, such
as the combinatorial rules of syntax. It is evident, however, that the lexicon of
any language is far more than simply a list of form-meaning pairs. There is con-
siderable organisation within the lexicon and so a major goal remains to capture
sources of generalisation and productivity so as both to make more accurate state-
ments and predictions concerning how people use their lexical stock and to achieve
an appropriately strong theoretical position on just what the organisation of a lexi-
con can be. There are accordingly many large-scale “lexical database” projects that
are attempting to document the range of lexical material available in various lan-
guages. In general, the relationship of this work to questions of ontology is at best
indirect, but there are also approaches, particularly those conforming to model (I)
in Fig. 17.1, that invite a conflation of concerns in which the line between work on
lexical organisation and work on domain ontologies becomes quite blurred.

Early psychological work on how people use words provided evidence that there
is a strong associative aspect to lexical organisation. Given a particular word, an
experimental participant is far more likely to name certain associated words rather
than others. Moreover, within traditional semantics there had also been characteriza-
tions of just what kinds of associations there might be. These are usually termed lexi-
cal semantic relations (Cruse, 1986) and encompass such relationships as hyponomy
(an “is-a” relationship), meronymy (a “part-of” relation), synomony, antonymy and
so on. This kind of organisation forms the basis for the development of the original
Princeton WordNet for English (cf. Chapter 10). Words (or rather, word senses) that
were considered synonyms were grouped into collections called synsets so that the
members of a synset mutually disambiguate one another. Lexical semantic relations
are then defined between synsets and this gives rise to a net-like lexical organisation
resembling a multidimensional thesaurus. The main descriptive work covered by
WordNet was initially its treatment of nouns and verbs, although now the coverage
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of adjectives is also quite broad; the current WordNet version (3.0 at time of writing)
contains 81,426 noun synsets, 13,650 verb synsets and 18,877 adjective synsets.

Although the developers of WordNet generally refer to it as a lexical-semantic
net or lexical database, others commonly use the term lexical ontology or lexical-
semantic ontology. This usage rests on the similarity between aspects of WordNet’s
organisation and that typically found in lightweight domain ontologies: i.e. a class-
subclass inheritance backbone. Then, since the WordNet organisation often provides
information in areas for which there is no domain ontology, it appears a natural
candidate to take on this role. This has been most useful in applications that need a
notion of “related” words without a deep axiomatisation of the meanings involved –
for example, in information retrieval, where simply expanding a query to include
a disjunction of the words in a synset (and its superclasses) can increase the range
of documents retrieved substantially. It has also been suggested for use in enriching
Semantic Web ontologies (cf. Chapter 9), which again are generally constrained to
be lightweight with respect to their axiomatisation.

The loose axiomatisation results, however, in a structure for which it is difficult
to gauge the accuracy of the statements that it entails concerning the elements it
relates. The “upper” part of its class-subclass hierarchies fails to capture a number
of generalisations and relationships that would be expected and so reduces the
value of the organisation as a whole when inferences are to be performed. To solve
this problem there have been several attempts to augment the WordNet lexical
information with a stronger semantics. One of these is OntoWordNet (Gangemi
et al., 2002), which replaces the upper parts of the noun taxonomy with categories
drawn from the DOLCE (cf. Chapter 13) ontology, and another is the combination
of SUMO (cf. Chapter 11) with WordNet (Niles and Pease, 2003). This has also
been attempted in some of the multilingual versions of WordNet, particularly
EuroWordNet, which has its own “upper” organisation (Vossen et al., 1997).
There are some indications that the problems go deeper than simply adjusting the
inter-relationships among the top level classes, however. Trautwein and Grenon
(2004), for example, argue that dealing with role information adequately from
an ontological perspective will require more substantial changes. Again we need
here to consider just why a lexically motivated organisation should benefit from
the foundational ontologies proposed: this only follows as a consequence of
model (I) above where the boundaries between lexical and ontological information
is unclear. Nevertheless, there are also strong arguments that an explicit orientation
to ontological principles is beneficial when designing lexical resources, for example
to avoid the well-known knowledge representation problem of “is-a”-overloading
(cf. Guarino, 1998).

A further framework that characterizes itself as describing lexical semantics but
which also appears as a candidate for domain ontologies of various kinds is that of
FrameNet (Baker et al., 1998; Fillmore and Atkins, 1998). FrameNet is a devel-
opment of Fillmore’s (1976) notion of frame semantics, in which the semantics of
lexical units is captured by associating within single bundles, termed frames, some
identifiable action or situation and those roles, termed frame elements, that regu-
larly participate in that action or situation. Lexical units are said to “evoke” frames.
FrameNet is also being used to annotate corpora of naturally occurring texts: this
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proceeds by finding occurrences of head lexical items and then annotating accompa-
nying linguistic elements with their corresponding frame element roles. An example
of such an annotated expression is the following:

[
Cook Matilde

]
fried

[
Food the catfish

] [
Heating_instrument in a heavy iron skillet

]

Here the frame elements (roles) are given as subscripts to the phrases expressing
them; the entire example is an illustration of the COOKING CREATION frame.

Frames are organised into an inheritance hierarchy where child frames inherit
the frame elements of their parents. The COOKING CREATION frame, for example,
inherits from the INTENTIONALLY CREATE frame (with frame elements “creator”
and “created entity”), which in turn inherits from CREATING and INTENTION-
ALLY ACT (which brings in an “agent” frame element). However, since frame
elements range across roles that are specific to particular frames (e.g. the “defen-
dant” frame element in a VERDICT frame) and quite general roles (e.g. agent),
the relation between frame elements of frames standing in inheritance relation-
ships is not straightforward. Probably partly as a consequence of this, the FrameNet
hierarchy is relatively shallow.

A hierarchy of additional semantic types defines categories that appear to run
orthogonally to the frame hierarchy. Two examples of such types are “sentient” and
“container”. The FrameNet developers suggest that these can be related straightfor-
wardly both to WordNet synsets and to “ontological” categories, although they also
note that there is no guarantee that the precise class-subclass relations will be found
in any other resource in quite the same way. As usual, there are many fine-grained
differences between the particular reading of these categories given in FrameNet
and any particular definition in other ontologies, which suggests that the categories
involved have not yet been sufficiently understood.

There are also a variety of further relationships defined between frames. For
example, a TRANSFER SCENARIO frame defines a situation in which an entity play-
ing the role of the frame element “donor” transfers an entity playing the role of a
“theme” to an entity playing the role of a “recipient”. This frame is related by per-
spectivalisation to the frames of GIVING SCENARIO and RECEIVING SCENARIO.
The former then combines with INTENTIONALLY ACT to yield the GIVING frame
that most directly corresponds (or is evoked by) sentences with the verb “give” in
them. There is little explicit representation of the precise semantic consequences
involved in these inter-frame relationships however; the task remains lexicographic
rather than that of providing a formal semantics for linguistic expressions that
might support reasoning. It is up to the human interpreter to understand the distinct
annotations and glosses of particular frames that are defined.

Nevertheless, it was in early knowledge representation systems (Minsky, 1975)
that the notion of frames was first employed and, in certain respects, FrameNet
still resembles what one would expect in a generic domain model or ontology. In
particular, certain relations defined between frames allow complex situations to be
described with internal structure made up of contributing subframes. An exam-
ple of this is the CRIMINAL PROCESS frame, which has subframes of ARREST,
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ARRAIGNMENT, TRIAL and SENTENCING. This “script-like” use of frames clearly
goes well beyond what would be expected of a straightforward lexical database and
also contributes to readings of FrameNet as another kind of rather general domain
ontology.

But, as with WordNet, the accuracy both of the hierarchy of frames that is
proposed and their interrelationships requires substantially more theoretical and
empirical verification. The motivations for distinguishing frame elements are essen-
tially lexicographical with corpus support. This means that frames are proposed
on the basis of intuition and then actual occurrences of lexical items are checked
in corpora to see whether the frame elements proposed for the class are suffi-
cient. Appeal is made to grammatical distinctions, i.e. whether classes have similar
selection restrictions, but the developers appear willing to deviate from any partic-
ular grammatical evidence if their semantic intuition suggests otherwise. In order
to improve on this situation and to provide inferential capabilities, Burchardt and
Frank (2005) report on an experiment in text interpretation where FrameNet frames
are linked with SUMO (cf. Chapter 11) to provide some of the missing semantic
axiomatisation. Far more work of this kind will be necessary to bring out to what
extent the hierarchical relationships proposed in FrameNet do in fact correspond to
formalizations useful for domain modelling.

The current version of FrameNet (May 2010) covers over 10,000 lexical
units involving more than 1014 semantic frames, exemplified in more than
135,000 annotated sentences. The explicit link that FrameNet provides between
natural examples of linguistic expressions and frames and frame elements pro-
vided by FrameNet therefore provides an excellent position from which to start
validation.

17.3 Grammatical Motivation and Linguistic Ontology

Whereas the original WordNet contained very little information concerning the syn-
tactic properties of its elements, such information is usually an important part of
lexical organisation. That is, it is important not only to know how words are related
lexical-semantically, but also to know in which kinds of grammatical contexts they
can be employed. Information of this kind is included within FrameNet, particularly
in the form of the annotated corpus examples, but does not play a strong role in the
motivation of categories and relationships between frames.

A further range of approaches to capturing semantic organisations entailed by
language take a rather different position and include grammatical evidence as one
strong source of motivation for the organisations constructed. This builds on a basic
premise of many modern schools of linguistics: that is, that regularities in syntactic
distribution are indicative, or symptomatic, of underlying commonalities in seman-
tic classes. Here accounts draw on a variety of syntactic evidence and use this to
motivate semantic categories of various kinds.

One early example of this is the lexico-conceptual structure proposed by
Jackendoff (1983). Jackendoff states that:
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... every major phrasal constituent in the syntax of a sentence corresponds to a conceptual
constituent that belongs to one of the major ontological categories. (Jackendoff, 1983, p. 67)

The following is then an approximation to the conceptual structure for the sentence
The man put the book on the table (Jackendoff, 1983, p. 68):

⎡

⎢⎢
⎣

event

put(

[
thing
the man

]
,

[
thing
the book

]
,

⎡

⎣
place

on(

[
thing
the table

]
)

⎤

⎦)

⎤

⎥⎥
⎦

The structure may be glossed as stating that a predicate put of type event holds
over three arguments: the first two are of type thing, the latter is an on-relation of
type place. Each of the predicates are taken to be defined as semantico-conceptual
categories motivated primarily by linguistic patterning. This corresponds most
closely to model (II) in Fig. 17.1 since the semantics and the domain representation
clearly overlap but begin to show distinct organisations.

Further examples of the motivation of semantico-conceptual categories from lin-
guistic evidence can be seen in the following list of categories offered by Jackendoff:

Interrogative probe supports category:
a. What did you buy? [thing]
b. Where is my coat? [place]
c. Where did they go? [direction]
d. What did you do? [action]
e. What happened next? [event]
f. How did you cook the eggs? [event]
g. How long was the fish? [amount]

Subsequently, further categories of differentiations are made working from intu-
itions concerning the meanings of sentences and their constituents supported by
example sentences. Particular co-occurrence regularities over these categories are
then defined by well-formedness rules and this goes some way towards establishing
a hierarchy of interrelated categories analogous to the standard hierarchical orga-
nizations we see in ontology construction. A similar but different set of categories
is motivated in an identical manner by Talmy (1987), particularly for spatial mean-
ings. By considering how a range of languages construct their views of space, Talmy
is led to the following characterisation of the distinct types of entities that can be
located in space:

dimension continuous discrete

space : matter objects
time : action events
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Further distinctions Talmy motivates are plexity, a generalisation of singular and
plural to include events, and boundedness. The approach as a whole is set out in
considerable detail in Talmy (2000, 2006).

Although in these classifications we can observe similarities to categories found
in other ontological approaches, it is important to note that these organisations
are driven by linguistic facts rather than by a consideration of how the world
must be – i.e., the evidence and way of reasoning is explicitly linguistic rather
than world-oriented and ontological. Several researchers have produced organi-
sations, or ontologies, based on linguistic evidence in this way (cf. Langacker,
1987; Wierzbicka, 1988; Frawley, 1992; Dahlgren, 1995). As Talmy, Halliday and
Matthiessen, and others note (see below), open-class lexical distinctions are not so
revealing here and so the organisations that result are largely dependent on the
breadth of grammatical information considered. Whereas some approaches aim
at broad descriptions of the semantics of language over all, others focus on quite
specific areas in detail: e.g. Asher’s (1993) and others’ investigation of “abstract
objects” such as facts and propositions, Bierwisch and Lang’s (1989) consideration
of dimensional information, Vendler’s (1957) analysis of the temporal profiles of
events and states, Davidson’s (1967) and Parsons’s (1990) analysis of the internal
structure of “events”, and many more. One common aspect for many of the “onto-
logical” characterisations motivated from linguistic sources, however, is the primacy
given to events and objects. Information is generally centered around an event frame
or configuration, and objects are related to this single entity by binary role relations.
Although this in fact directly follows from natural language semantics, it is also
regularly, and often independently in separate disciplines, proposed as an effective
organisation for knowledge representation as such (e.g., Bateman, 1990; Park, 1995;
Kuhn, 2001; Stone, 2003a; Zarri, 2005); debate on the issue continues.

The use of linguistic evidence rests on the basic principle that if a distinction
is drawn in language, then it may be beneficial to consider this for its ontological
import also. This then goes considerably beyond populating domain ontologies with
the entities that are demarcated by lexical items. For example, a description of the
lexical field of furniture – tables, chairs and so on – will probably differ little from
that which a commonsense domain ontology of furniture would deliver. Since the
domain of furniture is a socially constructed set of artefacts maintained largely by
the explicit naming conventions established by its society of users, there are few
places to look for evidence of its structure other than the associated lexical items
and their usage in language (although there are also difficult questions here to be
raised about precisely whose language usage is relevant). Distinctions of this kind
can be invented more or less at will and it is unlikely that they raise significant issues
for ontology. They will be described by some bundle or configuration of properties
that are ontologically grounded without themselves effecting that ground.

The import of grammatical organisation, rather than lexical distinctions of the
kind seen in WordNet and FrameNet, is very different. In contrast to the more or
less arbitrary distinctions accumulated in the lexicon, the grammar of a language is a
complex system that has evolved over time to meet all representational requirements
of its users. As such it can be considered as a culture’s “theory” of its world and
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applies to all meaning-making that that culture undertakes (with language). This is
necessarily far less susceptible to arbitrariness (cf. Halliday and Matthiessen, 1999;
Talmy, 2000) and may well have a sufficiently strong influence on our construction
of reality as to warrant ontological consideration.

This sets up a useful contrast between lexically-based developments, such as that
of WordNet and FrameNet, and a further range of “linguistically-motivated’ ontolo-
gies where it is grammatical evidence that takes on the role of the prime source
of evidence for the categories proposed. Of these, closest to FrameNet is probably
VerbNet (Kipper-Schuler 2005), an extension of the original work by Levin (1993)
on verb alternations. Alternation is a linguistic relationship defined over contrasting
but similar grammatical constructions. The most well known example is the dative
alternation illustrated in the following pair:

(a) She gave a book to the man
(b) She gave the man a book

There are a substantial number of such alternations but they do not apply uniformly
to all clauses. Levin’s premise was that the particular set of alternations that any
particular class of verbs undergoes is an indication of an underlying semantic sim-
ilarity that all those verbs share. That is: verbs that undergo dative shift may be
distinguished semantically from those that do not. Mapping the alternations of a
language is then one way of discovering the implicit semantic categories involved:
these categories are not subject to definition and discussion by language users in the
same way that, for example, the distinction between “chair” and “sofa” might be,
but instead form part of the implicit (for its users) meaning-making potential of the
language itself.

On the basis of the classes proposed by Levin and several further alternations
that have been investigated since, VerbNet distinguishes 237 distinct verb classes
for English. Each class includes information concerning the grammatical construc-
tions possible for its members, the semantic restrictions holding for grammatical
constituents (e.g. whether a constituent must express an “animate” entity or not),
and a skeleton semantics in terms of configurations drawn from around 90 semantic
predicates. As with FrameNet, the constituents associated within any particular class
are defined in terms of so-called thematic roles such as “agent”, “recipient”, etc. In
contrast to FrameNet, however, the roles are taken from a fixed set of generic modes
of participation and are not specific to particular classes. The result is again some-
thing like a lexicon of verbs, with a range of semantic categories associated with
those lexical items, but the organisation of this lexicon is assumed to be semantically
motivated. The semantic predicates invoked here are not themselves well organised,
however, and so the approach as such conforms to model (II) in Fig. 17.1, i.e. a
semantics lacking strong organisation.

VerbNet’s developers believe that VerbNet will prove more reliable and help-
ful in automatic processing than efforts such as FrameNet precisely because of the
explicit link that is maintained with grammatical motivation. In addition, VerbNet
classes include specifications of the grammatical contexts in which they may appear,
expressed in terms of the extremely detailed XTAG grammar of English (Doran
et al., 1994): this is considerably more detailed than the looser lexicographically
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inspired syntactic characterizations found in FrameNet. In opposition to this, how-
ever, Baker and Ruppenhofer (2002) argue that FrameNet will produce better results
because it does not force apart lexical items simply because they do not share alter-
nation patterns: FrameNet allows forms with quite varied syntactic properties to be
grouped together as members of single frames whenever its developers believe that
the semantic relation is strong enough. But this may have as a consequence that its
categories are not sufficiently tied to linguistic realisation, which may render it more
difficult to employ for automatic processing, not less.

Another approach where grammatical motivation is considered fundamental is
the Ideation Base of Halliday and Matthiessen (1999). This is the broadest “lin-
guistically motivated” ontology in terms of the phenomena addressed, although it is
not equally developed in all areas. Whereas VerbNet extends the original approach
of Levin by considering more of a verb’s syntactic “context” than just noun phrase
and prepositional phrase complements, the Ideation Base goes further and accepts
grammatical evidence of any kind, regardless of where in the grammar it is to be
found. The resulting organisation is not then a lexicon of any particular grammati-
cal classes – such as verbs in VerbNet’s case – but is itself a linguistically motivated
organisation of the underlying semantic predicates required. This organisation is
then itself considered to be subject to ontological principles and so moves the entire
account into our model (III) in Fig. 17.1.

The Ideation Base is being developed further as a computational ontology called
the Generalized Upper Model (GUM: Bateman et al., 1995a, 1995b, 2008) which
is itself descended from the PENMAN Upper Model (Mann et al., 1985, Bateman,
1990), a domain- and task-independent knowledge organisation originally used to
mediate between domain knowledge and the Penman natural language text gen-
eration system. For this system it was necessary to support a form of modularity
by which the linguistic components of the generation system could be “insulated”
from any specific knowledge modelling commitments made in individual domains –
otherwise the system would not itself have been domain-independent. This was
achieved by placing the Upper Model “between” domain model and generator.
Using the generator in a specific domain of application then involved classifying
the categories of the domain ontology in terms of the categories provided by the
Upper Model. The linguistic components of the generator were defined only to rely
on distinctions made in the Upper Model.

The Upper Model organisation therefore takes on the task of classifying knowl-
edge according to its possibilities for linguistic expression. This relationship is
depicted graphically in Fig. 17.2. The Generalized Upper Model now takes this
basic model further, refining and extending the categories maintained and, moreover,
applying principles of ontological engineering to the categories proposed. Thus,
while the original Upper Model, as with other linguistically motivated organisations
such as WordNet, FrameNet, VerbNet etc., did not include explicit axiomatisations
of its categories, current developments of the Generalized Upper Model seek also
to find axiomatisations for the linguistically motivated categories proposed; there is
also work in progress exploring the use of the Generalized Upper Model for auto-
matic analysis, thereby extending beyond its previous use for language generation
(cf. Bateman, 2010).
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Fig. 17.2 Traditional relation
between the generalized
upper model and domain
ontologies

The top-level categorizations found in the Generalized Upper Model follow the
basic category distinctions broadly familiar from Jackendoff above and other lin-
guistically motivated organisations: the semantic categories corresponding to entire
clauses are termed configurations, while those corresponding to the phrases that
can occur as subconstituents of clauses are termed elements. By virtue of the
broader grammatical basis accepted for motivation, however, the model goes on to
provide substantially more detail. Distinct subtypes of configurations are motivated
according to general classes of clauses that behave differently within the grammar.
Thus, the first-level distinctions drawn are: Being&Having, Saying&Sensing, and
Doing&Happening – the grammatical clauses falling under these categories each
have a distinctive range of grammatical phenomena that can be used for their identi-
fication. This is considered symptomatic of distinct underlying semantic categories
and is therefore similar to VerbNet’s use of alternations, but goes further to include
differences in valency patterns, tense usage, possible circumstantial information,
selection restrictions and much more (cf. Halliday and Matthiesen, 2004).

Each of these categories also commits to a particular distinct set of semantic
roles. This differs from VerbNet’s rather more traditional adoption of a generic
set of semantic roles that potentially hold for any verb, and to a certain extent
resembles FrameNet’s adoption of frame-specific roles for frames higher in the
frame-inheritance hierarchy. Issues of semantic roles are not straightforward, how-
ever, and there have been few convincing attempts to provide sound axiomatisations
for the distinct kinds of “participation” found. Some possible definitions from
ontological perspectives are discussed by Sowa (1995) and Loebe (2003); such
approaches tend to fall back within our model (I) above, however, and do not bring
out the particularly linguistic contribution that such roles involve. Several other
non-linguistically oriented ontologies include inventories of similar roles, such as
SUMO’s CaseRoles, but these are freely used across all definitions, not only those
that are concerned with linguistic semantics.

The Generalized Upper Model approach as a whole shows some similarities with
the proposals of Cimiano and Reyle (2006), who argue that linguistic semantics
should incorporate aspects of foundational ontologies. This they term foundational
semantics, which

. . . is concerned with identifying that abstract meaning layer which remains constant across
domains and applications. . . . From a theoretical point of view, foundational semantics aims
at identifying the core components of the domain-independent meaning layer as well as to
clarify their interplay, thus contributing to the understanding of the principles of semantic
construction (Cimiano and Reyle, 2006: 52).
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In distinction to the Upper Model, however, the starting point they adopt for their
proposed account is given by established non-linguistic foundational ontologies,
such as DOLCE (cf. Chapter 13). This is then only weakly connected to the concrete
linguistic demands of the semantics of particular languages. Whereas it is to be
hoped that such foundations will feed into improving the adequacy of linguistically
motivated semantic organisations also, there remain many open questions about
how these levels of description are best to be brought together. One possibility
would be to embed a linguistically motivated organisation as a description within
the Descriptions and Situations ontological extension proposed by Gangemi and
Mika (2003), but the precise relationships between all these approaches still needs
to be explored. Several approaches to this complex issue can be found in Huang
et al. (2008).

17.4 Discussion

Given the range of, sometimes quite substantial, organisations of information that
are being developed on the basis of linguistic evidence, including both lexical and
grammatical motivations, it is natural that there is a considerable effort currently
being extended to relate them. It remains to be seen how these efforts will continue
and what the results will be.

For lexically-based organisations, such as WordNet and FrameNet, it can be
expected that they will benefit substantially from a more rigorous foundation in
ontology proper, although the extent to which the organisations drawn on lexical
distinctions will match those motivated ontologically is still unclear. The utility
of domain ontologies for natural language processing is also being increased by
relating such ontologies to lexical resources: for example, there are now map-
pings between WordNet and many of the “middle level” extensions to SUMO.
Connections between WordNet, VerbNet and FrameNet are also under development.
Adding in the ability to move across WordNets for distinct languages, for exam-
ple, by means of the inter-lingual index introduced by EuroWordNet, is also very
promising. For grammatically-based organisations, such as VerbNet and GUM, their
relationship with foundational ontologies still requires clarification. This work will
move us further towards understanding the relationship between linguistic semantics
and ontology, which becomes increasingly necessary as more sophisticated natural
language processing is attempted (cf. Stone, 2003b).

We can also expect moves into further areas of useful interactions between lin-
guistics, language processing and ontology that have not so far been prominent –
for example, the increasingly explicit and broad coverage of speech acts (Bunt and
Girard, 2005) and generalisations of linguistic information across different modali-
ties (e.g. Niekrasz and Purver, 2006) are both being considered from an ontological
perspective. Moreover, several dialogue systems already draw heavily on ontolog-
ical characterisations of both their domains of discourse and their possibilities for
action (e.g. van Diggelen et al., 2007).

We can also consider explicit representations of linguistic information itself,
rather than of the semantic or ontological categories that languages may help
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impose on the world. Such information includes details of types of clauses, parts of
speech, morphological information and linguistic features of all kinds. Ontologies
of this type are now being standardised in order to improve information exchange
among different communities of linguistic researchers. The two most developed of
these initiatives are GOLD (General Ontology for Linguistic Description: Farrar
et al., 2002) and the Linguistic Annotation Framework (Ide et al., 2003; ISO/TC
37/SC 4). Such efforts can also be added to existing ontologies to further char-
acterize any categories they may already have concerning language. For example,
Farrar (2003) adds aspects of the GOLD ontology to SUMO, while Buitelaar et al.
(2006) explore a combination of current linguistic standardisation efforts within a
DOLCE/SUMO-hybrid called SWIntO (Oberle et al., 2007).

A driving motivation for all of these efforts currently is the promise that a thor-
ough incorporation of ontologically-relevant information holds out for improving
automatic text analysis, both with respect to its robustness (via better access to lin-
guistic information) and to the depth of semantic processing possible (via better
access to domain knowledge). Particularly in the context of the Semantic Web, such
capabilities are now urgently required. We can be sure, therefore, that the interaction
between ontology and natural language processing will continue to intensify.
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Chapter 18
Business Ontologies

Peter Rittgen

18.1 Introduction

Ontologies are typically divided into foundational (or top-level), domain and appli-
cation ontologies (Bugaite and Vasilecas, 2005). Foundational ontologies cover the
most general concepts that can be expected to be common to all domains, such as
“individuals” vs. “universals” or “substantials” vs. “moments”. They are therefore
domain-independent. Domain ontologies are tailored for a specific area of human
activity, e.g. medicine, electrical engineering, biology or business. Application
ontologies further restrict attention to a particular activity in a domain, e.g. the diag-
nosis of lung diseases in medicine or a computer-based order handling system in
business. Figure 18.1 shows the level architecture and names a few examples on
each level.

It can be argued, though, whether three levels of ontology are adequate to cover
the whole breadth of ontological endeavors. In the business domain, for example,
we can identify a number of dimensions that justify further ontological levels. Let us
consider a few examples. We distinguish between private-sector and public-sector
organizations. Each organization belongs to some industry (banking, car manu-
facturing, retail, etc.) and it is divided into functional units such as procurement,
production, marketing, sales and so on. Along the hierarchy we have the strategic,
tactical and operational levels. In addition to these we might also consider a level
below the application domain level, the personal level that takes into account, e.g.
the way in which an individual uses a particular information system for a particular
task which is often different from the way others use the same system for the same
or a similar task (Carmichael et al., 2004; Dieng and Hug, 1998; Haase et al., 2005;
Huhns and Stephens, 1999).
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Fig. 18.1 Ontology levels

18.1.1 Domain-Level Ontologies

The diversity of phenomena along all these dimensions makes it difficult to find
an adequate level of abstraction that fits the whole business domain. In organiza-
tional theory a number of metaphors have been suggested to understand and explain
organizational behavior at a high level of abstraction. Metaphors establish a link
between a source field and a target field and explain phenomena in the target field
in terms of the source field. For organizational theory as a target field the follow-
ing source fields have been proposed: the machine metaphor (Scott, 1997), living
systems (biology) (Kendall and Kendall, 1993), open systems (Flood, 2005), the
brain metaphor (Gareth, 1997), learning systems (Senge, 1990), social networks
(Davern, 1997), complex adaptive systems (Anderson, 1999), autopoietic social sys-
tems (Luhmann, 1990) and so on. A metaphor is a vehicle for explaining a target
domain in terms of a source domain, e.g. the steering of a ship (source) as a metaphor
for the steering of a company (target). Using a metaphor therefore implies a shift of
domain. Existing ontologies for the source domain can therefore be transferred to
the business domain.

But metaphors also imply some severe restrictions. By viewing organizations
as, e.g. living systems we fail to capture those parts of organizational behavior
that are not found in biology. Established approaches to a business ontology draw
therefore on a number of different related theories to develop a richer picture
of the domain. Theoretical contributions can come from communication theo-
ries, e.g. Speech Act Theory (Austin, 1975; Searle, 1997, 1999) and Theory of
Communicative Action (Habermas, 1984); social theories, e.g. Actor Network
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Theory (Law, 1992; Walsham, 1997) or Structuration Theory (Giddens, 1986); eco-
nomic theories, e.g. Agency Theory (Jensen and Meckling, 1976; Ross, 1973) or
Transaction Cost Economics (Klein et al., 1978; Williamson, 1981, 1983, 1998) and
others.

Examples of existing approaches to a general ontology of the business domain
are: Core Enterprise Ontology (CEO) (Bertolazzi et al., 2001), Edinburgh Enterprise
Ontology (EEO) (Uschold, King, Moralee and Zorgios, 1998), Toronto Virtual
Enterprise (TOVE) (Fox and Gruninger, 1998), Business Model Ontology (BMO)
(Osterwalder, 2004), e3value Ontology (EVO) (Gordijn, 2004), Socio-Instrumental
Pragmatism (SIP) (Goldkuhl, 2002, 2005) and Enterprise Ontology (EO) (Dietz,
2006).

CEO introduces a framework that only specifies the concepts that are common to
the whole business domain. They are grouped into four areas: Passive entities (busi-
ness objects); active entities (actors, agents); transformations (actions, processes);
and conditionals (business goals and rules, constraints and states). It is up to the
ontology designer to build the actual ontology refining the basic concepts into the
specific ones of the respective application domain.

EEO takes a different approach. Instead of just providing a framework they actu-
ally specify a supposedly complete repository of detailed enterprise terms. The
ontology user therefore only has to choose the ones s/he needs for the particu-
lar application. EEO provides both a natural-language and semi-formal definition
for all the terms ranging from the foundational concepts of the meta-ontology (e.g.
entity, relationship, actors) to the domain concepts that are divided into 4 main areas:
activities, organization, strategy and marketing.

TOVE is similar to EEO in that they also try to capture a complete enterprise
terminology in a number of ontologies. The base ontology is a general Activity
ontology from which more specific ontologies are derived such as Organization
Ontology and Resource Ontology. But contrary to EEO the concepts and relations
are defined in a completely formal way including theorems and proofs of important
properties such as soundness and completeness.

BMO is based on the balanced scorecard and defines four so-called pillars:
Product, customer interface, infrastructure management and financial aspects. These
pillars are then refined into a set of nine building blocks: Value proposition (concern-
ing the product); target customer, distribution channel and relationship (concerning
the customer interface); value configuration, capability and partnership (infrastruc-
ture management); and cost structure and revenue model (financial aspects). The
important difference to the above mentioned approaches is that BMO takes a wider
view of a business including also concepts that lie outside the focus of the actual
enterprise but which have considerable impact on it such as the ones related to
the customer interface. BMO also introduces the concept of value (of a prod-
uct or service) whereas other business ontologies are often restricted to the cost
perspective.

After having discussed a few business ontologies on a general level we shall
describe two examples in greater detail. They are: Socio-Instrumental Pragmatism
(Goldkuhl, 2002, 2005) and Enterprise Ontology (Dietz, 2006). They represent two
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diagonally opposed ends of the spectrum spanned by the dimensions scope and
degree of elaboration. This allows the reader to get an impression of the band-
width of the approaches. The former has a wide scope that covers any kind of
social behavior including business action. But it is not yet a full-blown ontology
but rather a basic taxonomy complemented by a set of relations between the basic
concepts. Enterprise Ontology, on the other hand, is exactly the opposite: It is a
highly elaborated and formalized ontology that provides a substantial level of detail
regarding concepts and their relations, and also a set of axioms defining the seman-
tics. But its scope is much narrower as it makes a clear commitment to a very
specific conceptualization of the business world, thereby excluding other points of
view. Enterprise Ontology has been criticized for that (Goldkuhl and Lind, 2004;
Verharen, 1997) but due to its rigidity this approach can nevertheless serve as an
illustrative example of a business ontology. The chosen example ontologies are
described in the sections Socio-Instrumental Pragmatism and Enterprise Ontology,
respectively.

18.1.2 Application-Level Ontologies

As such a general ontology of the business domain cannot be used directly in any
concrete business application. It is therefore necessary to have at least one more
level, the application ontology. Some researchers suggest additional levels, e.g. task
ontologies (Guarino, 1998). But instead of introducing a multitude of levels we
propose to interpret them as different domain ontologies instead because most of the
interesting problems already occur in the case of a second level. So we only abstract
from the complexity levels that do not contribute to our discussion. We do not argue
that a reduction to three levels is indeed sufficient. According to this definition, a
domain ontology can be task-specific, company-specific etc. We illustrate most of
the following discussions in the context of information systems where most of the
business ontology research is located.

When we take a look at the application-ontology level we discover that the idea
of having a separate ontology for every application is fraught with a severe prob-
lem as many individuals and organizations make use of several applications within
the context of a single task or business process. Let us consider two of the solu-
tions that have been proposed to solve this problem. The first one, a bottom-up
approach, aims at integrating the affected application ontologies, each of which
could have been developed independently, to derive a higher-level domain ontol-
ogy for the task or the specific organization. An example of this is given in
(Corbett, 2003).

The second solution is top-down. It assumes the existence of a library of ontolo-
gies that is used to build an application ontology (e.g. on the task level) by re-using
existing domain ontologies (e.g. on the business process level). Systems that support
this are called ontology library systems. Examples of such systems are WebOnto
(Domingue, 1998), Ontolingua (Farquhar et al., 1997) and SHOE (Heflin and
Hendler, 2000).
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18.2 Socio-Instrumental Pragmatism

Socio-Instrumental Pragmatism (SIP) is an ontology that combines social, commu-
nicative and instrumental aspects of business behavior. The basic assumption behind
SIP is that business action is performed by a human being (possibly on behalf of an
organization) with the help of some instrument (tool) to create a result for another
human being or organization. The social aspect consists in the action being directed
from one human being to another. The instrumental aspect aims at the technical
(or material) dimension of this action. The instrument can be anything from an
axe to a complex IT (Information Technology) system. As social action requires
communication between individuals the communicative element is also present.

SIP is based on six ontological concepts (Goldkuhl, 2002): Human being, human
inner world, human action, sign, artifact and natural environment. They are defined
in the following paragraphs.

Human being is the most fundamental concept because they are the actors in the
social world described; they act in the world based on meanings and perceptions
that they derive from the world.

The human inner world represents the knowledge that a human being has
acquired over time about themselves and the external world; this inner world is
intended to be seen as part of the human being.

Human action is an important aspect of the human being; it can be overt, which
means that the actions are intended to intervene in the external world, thus trying to
change something about it. And they can be covert, when they are aimed to change
some other human being’s inner world; covert actions try to change knowledge that
resides in the human inner world.

Signs are the result of communicative actions; for instance, when we write a note
saying, “I will be at the store”, the writing of the note is by itself a communicative
action, but the note created is a sign which will mean something to the person who
will read it.

Artifacts are things which are not symbolic and not natural but which are mate-
rial and artificially created. Examples of artifacts are cars, clothes, a knife, etc. The
difference between signs and artifacts is that while signs are intended to mean some-
thing to someone (symbolic), artifacts perform material actions. For instance, a
human might use a knife (artifact) to cut some carrots, i.e. artifacts are needed to
perform material actions.

Natural environment means the objects present in the environment that are not
artificially created by humans (e.g. trees).

Figure 18.2 shows the different realms of the world according to the SIP
ontology.

18.2.1 Restructuring the Taxonomy

In an attempt to formalize the conceptual system of SIP and the inter-concept rela-
tions, we have developed a meta-model in the form of a class diagram of the UML
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Fig. 18.2 Realms of the world in SIP (Goldkuhl, 2002)

(Unified Modeling Language). A meta-model defines a language for modeling, i.e.
it specifies the terms of that language and the way in which they are related and
thereby indirectly also defines the semantics to some degree by setting constraints
that restrict the use of the language to the admissible models and excluding the
ones that are not meaningful. Meta-models can be seen as one way of represent-
ing an ontology where the terms of the modeling language are the concepts of the
ontology.

A UML Class Diagram is a language that allows for the expression of meta-
models (as well as object-level models of a domain). It offers classes, associations
and generalization as meta-concepts (among others). Classes are collections of
objects that share common attributes and behavior and they can be used to repre-
sent concepts of an ontology. Associations are relations between classes which refer
to the concept relations in the ontology. Generalization declares one class as the
generalization of another thereby introducing a taxonomical relation in terms of the
ontology. For further details about UML see (OMG, 2005, 2006).

The meta-modeling process involved a restructuring of the taxonomy suggested
by (Goldkuhl, 2002). Human action has been generalized to (social) action and
human being to actor. The other concepts become sub-concepts of object. This
leaves us with four main concepts: Actors, agents, objects and actions, where
agent is a new concept that was introduced to handle artifacts that can perform
actions.
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18.2.1.1 Actors

Actors are the main entities in our model, and they can perform either as locutor or
addressee within the communicative context. When actors perform actions that are
directed towards another actor we speak of social actions. They can be performed
either in a human-human relation or in a human-artifact-human relation. When per-
forming as locutor the actor is trying to change some aspect of the world by means
of his/her actions. For instance, when a person pays the phone bill she is trying to
avoid the interruption of her phone service. When performing as addressee the actor
receives and interprets an action directed to him and can act himself as a conse-
quence of that action. Taking our example the addressee will be the phone company,
which at the moment of receiving the payment will not make any attempt to interrupt
the customer’s phone service.

Besides locutor and addressee we can distinguish between organizational actors
and human actors. The former is an actor that performs as an agent on behalf of the
organization; the latter performs an action on behalf of herself.

18.2.1.2 Objects

An object may be physical or conceptual and it may be formed by other objects or
related to them, but every object is unique (Embley et al., 1992). Under the object
concept we have artificial and natural objects. Artificial are those that are created
by human beings, natural objects are those created by nature and found in the envi-
ronment. Among the artificial objects we have artifacts (material objects) and signs
(can be material or immaterial). Artifacts are created to extend actors’ capabilities.
An artifact is seen as a tool. Signs on the other hand are not tools but messages
in a static phase waiting to be interpreted by actors or artifacts. A message can
take either a physical form (a written text) or a non-physical form (an utterance)
(Goldkuhl, 2002).

We can distinguish between 4 different types of artifacts: static, dynamic, auto-
mated and multi-level. Static artifacts are those that cannot perform any operation
by themselves, e.g. a stone, a knife or an axe. Dynamic objects are those capable
of performing some operations by themselves but they need constant control by a
human being to function properly, for example a car or a driller. Automated arti-
facts are those that can operate entirely by themselves and only need to be started
by an actor. Here we can mention a washing machine as an example (Goldkuhl and
Ågerfalk, 2005).

Multi-level artifacts are those that have a mix of capabilities and can perform
either as static, dynamic or automated artifacts depending on the circumstances.
Multi-level artifacts have an important property which is the capability of creat-
ing and interpreting signs. They lack consciousness and are ruled by a pre-defined
set of instructions that serve as a guide to perform the pre-defined actions they do.
IT systems are an example of multi-level artifacts. Signs can be created either by
human beings or artifacts, and every sign can be interpreted by human beings only,
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by artifacts only, or by both (Goldkuhl, 2005). A written note is a sign; an utter-
ance performed by an actor is another example of a sign as well as a ticket printed
by a system in an electronic store.

18.2.1.3 Actions

The objective of human actions is to change something in the world. They can
be communicative or material. The main difference between these two types of
actions lies in the fact that communicative actions are intended to change knowl-
edge. Knowledge is implicitly meaningful to someone; and knowledge handling is
an exclusive characteristic of actors within an IS (Information System). On the other
hand, material actions are aimed at material conditions and aspects of the world
which are meaningful to someone. They are intended to change something physical
in the external world. As a human characteristic, knowledge can be learned through
actions, either communicative actions (for instance, a conversation) or material
actions (e.g. when studying an object). Knowledge is the result of the actor’s inter-
pretation of both communicative and material actions, and it can be acquired in a
social context (from other actors transferring knowledge e.g. in a classroom) or in a
non-social context (a person reading a book on her own) (Goldkuhl, 2001).

We can divide actions into i-actions (intervening actions) and r-actions (receiving
actions). I-actions are those intended to make a change in the external world, e.g. the
action of opening a window is intended to change a particular aspect of the external
world (the window will move from closed to open). R-actions are those executed
covertly, for example when two people are going out and person A tells B “It’s cold
outside” (communicative i-action). Then person B listens and interprets the message
(r-action). Following this, person B will take a jacket on the way out (material i-
action) (Goldkuhl, 2001). Among i-actions and r-actions we have indefinite and
predefined actions.

Indefinite actions are those performed by humans. We call them indefinite since
it is not certain how they will be performed by the actor. The same action can
vary from actor to actor. When two employees are ordered to clean a shelf, they
will both do it but not in the same way, one can do it better or faster than the
other one. Indefinite actions can be either r-actions or i-actions. On the other hand
we have pre-defined actions which are performed by artifacts. These actions will
always be performed in the same way following previously programmed instruc-
tions (Goldkuhl, 2005). Pre-defined actions are i-actions, since they are intended to
change an aspect of the external world. Among indefinite and pre-defined actions
we find both communicative and material actions.

Both material and communicative actions aim at changing an aspect of the world
surrounding the actor or artifact, but communicative actions have at least two phases
where actor A first performs a communicative action that is directed towards another
actor or artifact B. In the second phase B (if A was successful) executes the action
that A desired. Although material, the last action can sometimes be performed
without an initial communicative action.

Material and communicative actions within organizations form patterns.
Although human beings perform them, we can also say that the organization acts. An
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organizational action has human origins and purposes and is done through humans,
by humans or by artifacts that act on behalf of the organization (Goldkuhl et al.,
2001). We will consider actions as organizational if they constitute an interaction
between two or more actors or agents of the organization within an organizational
context. We can say that a worker at a clothes factory using a sewing machine to
manufacture clothes is performing an organizational action. He is acting to per-
form an organizational objective (to produce clothes). But for instance a man on a
farm that goes to the forest to chop wood using an axe, although using an artifact
to perform the action, is not performing an organizational action since there is no
organizational purpose if he merely burns the wood to warm up his house.

When performing actions by means or with the help of IT systems we can
distinguish between three different types of actions: interactive, automatic and con-
sequential actions. Interactive actions are supported by and performed through IS
and they consist of one or more elementary interactions. Elementary interactions
(e-actions) consist of 3 phases: a user action, an IT system action and a user inter-
pretation (Goldkuhl, 2001). Let us take the example of an online bank transfer done
by the user online. The user will initially introduce his username and password to
access the bank system (phase 1), after this the IT system will check in the database
if the information is correct and if it is it will grant access to the user and display
a welcome screen (phase 2). The welcome screen is interpreted, and the user now
knows that he can start his transaction. This is the end of the elementary interaction.
Later on the user inputs the data to make the bank transfer, such as account number,
amount to be transferred, etc. (phase 1 of a second e-interaction), and so on.

Automatic actions are performed by IT systems that produce messages for the
actors or other systems. They are done entirely without human intervention. Let
us take the banking system again: After logging on, a message pops up telling the
customer that the due date for the credit card payment is very close. The system will
execute this operation by itself and present it to the user.

Consequential actions are those performed as a consequence of a message.
Taking the bank example again, when the customer sees that his payment is due
he might proceed to execute the payment, or he might decide not to do it and wait
for the final day.

18.2.1.4 Agents

Agents are a special type of object. They are created by actors, and perform actions
to help them complete their tasks. They can be seen as servants of actors, but they
have a level of communicative capabilities that allow them to act as communicative
mediators, and they are also capable of creating signs for the actors or other agents
to interpret. The difference between agents and actors lies in the fact that actors can
perform social actions while agents cannot (Rose and Jones, 2004).

IT systems can perform as agents. They can be seen as static artifacts, automated
artifacts or dynamic artifacts (Goldkuhl and Ågerfalk, 2005). In all three cases
the common denominator is communication. Communication is seen as a kind of
action that IT systems can perform and by doing so they become communication
mediators. IT systems as well as actors have the capability to create signs and
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to process them. Actors can also interpret them (Goldkuhl, 2001). The relation
between the signs and their interpreters/processors is called pragmatics. Within IS
pragmatics, actions are divided into those that occur within the sign transfer and con-
sequential actions that are performed in response to the transferred sign (Goldkuhl
and Ågerfalk, 2000).

18.2.2 The Resulting Meta-model

As a result of the contemplations in the previous sections we have developed a meta-
model (see Fig. 18.3) that covers the most important aspects of Socio-Instrumental
Pragmatism as outlined in Section 18.2. Technically the meta-model takes the form
of a UML class diagram with generalization/specialization and association.

18.3 Enterprise Ontology

Enterprise Ontology has its roots in the ontological frameworks of Bunge and
Wittgenstein (Bunge, 1977; Wittgenstein, 2001). According to it a world can be
in any of a number of states. The ability to move from one state to another is called
transition. An occurrence of a transition is an event. An event is caused by an act.
Worlds consist of two kinds of objects, stata and facta. A statum is a thing that
exists in all states of the world independent of any act. A factum is the result of an
act that brings it about. Stata can be declared (i.e. original) or derived (from other
stata). Existence laws determine the possible states of the world by specifying which
combinations of stata are allowed in a state (the state space).

A factum is associated with an event (i.e. the occurrence of a transition).
Ocurrence laws determine the possible orders of transitions by specifying which
sequences of transitions are allowed (the transition space). An ontology is defined
by specifying the state and transition spaces. It is done with the help of a language,
the World Ontology Specification Language. It uses a graphical notation borrowed
from conceptual modeling, i.e. ORM (Halpin, 2001).

18.3.1 World Ontology Specification Language

A statum can be declared intensionally via its properties, or extensionally by enu-
merating the instances that belong to the statum type. The intension is an n-ary
predicate that is denoted as a rectangle with n horizontal fields with an inscribed
placeholder each. Underneath we write a predicative sentence detailing the role of
each placeholder. On top we write the name of the statum type in bold lower-case
letters. The extension is a set denoted by a rounded rectangle and inscribed with the
name of the statum type in capital letters. Intensionally defined statum types can be
entified (extensionalized) by surrounding them with a rounded rectangle.
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Fig. 18.4 Declaration of statum types

Categories are primal statum types in the sense of ultimate sortals according to
(Guizzardi et al., 2004), i.e. they do not rely on other stata for their definition. They
are denoted by a thick borderline around the respective shape. Classes are defined
by establishing a reference to another class or a category. They are surrounded by a
normal line. Figure 18.4 shows the different ways of declaring statum types.

We have 4 different types of existence laws that can be applied to restrict the
space of allowed states: Reference laws, dependency laws, unicity laws and exclu-
sion laws (see Fig. 18.5). With the help of a reference law we can define the domain
of a placeholder in a statum type. In the example a lecturer must always be a teacher
(but not every teacher is a lecturer). Dependency laws imply a mutual reference, e.g.
every employee has a boss and everyone with a boss is an employee. A unicity law
excludes that a statum can participate in multiple instances of the same predicate, for
example, an employee cannot have two bosses. An exclusion law prevents a statum
that is engaged in one relation to participate in another, e.g. a CEO does not have

Fig. 18.5 Existence laws for stata
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a boss as denoted by the exclusion relation between the boss and CEO objects in
Fig. 18.5 (an encircled symbol X on a dashed line).

Statum types can also be derived from others. The shape of the derived type is
in that case hatched (i.e. the shape’s background area is filled with diagonal lines).
Derivation rules include aggregation, generalization and specialization. Aggregation
is the same as entification. Specialization and generalization are not complementary.
For instance, student can be seen as a specialization of the category PERSON, but
PERSON is not a generalization of student, teacher and other classes as PERSON is
a primal type. The class VEHICLE, on the other hand, is a generalization of HORSE
CART, BICYCLE, CAR, and so on. The latter are not specializations of the former
as the first mode of transport that was developed was a horse cart and not a vehicle.
Only later, when additional transport modes had been devised, did it make sense to
generalize on their common ability to transport human beings and to address them
collectively as vehicles.

Factum types are denoted by a diamond inscribed with a placeholder. Above
it a predicative sentence specifies the transition that marks the occurrence of the
factum (see Fig. 18.6, above the line). Occurrence laws indicate the restrictions on
the transition space. They can prescribe a certain sequence, e.g. an order must have
been placed before it can be shipped, or forbid it, e.g. an order that has already been
shipped cannot be cancelled anymore (see Fig. 18.6, below the line).

18.3.2 The Axioms of Enterprise Ontology

The World Ontology Specification Language allows for the specification of almost
any world (or domain). In order for the resulting ontology to be a business ontology
a number of axioms must be satisfied. They are the operation axiom, transaction
axiom, composition axiom and distinction axiom.

18.3.2.1 The Operation Axiom

The operation axiom claims that business action takes place in two worlds: the
coordination world (or C-world) and the production world (or P-world). P-acts can
be material (transport, manufacturing, storage) or immaterial (e.g. decisions). C-acts

Fig. 18.6 Declaration of
facta and occurrence laws
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Fig. 18.7 Worlds of
enterprise ontology

are used to coordinate, i.e. manage, the productive behavior. C-acts are communica-
tive acts that allow us to establish and follow up commitments. Both types of acts
lead to respective facts that in turn are evaluated by the actors to determine further
acts. Actors in roles are minimal units of authority and responsibility. Figure 18.7
depicts the implications of the operation axiom.

18.3.2.2 The Transaction Axiom

The transaction axiom states that coordination acts are performed according to pat-
terns. The standard pattern assumes that both parties go on confirming each other’s
acts. It is shown in Fig. 18.8. If the parties disagree they move to a different layer, the
discussion layer to resolve the conflict. If this fails they can move to the discourse
layer where general norms and values can be addressed. There are also additional
patterns that deal with cancellation (Dietz, 2006).

Here we will only look at the standard pattern. In it two parties, called initia-
tor and executor, try to establish and follow up a commitment that concerns the
execution of a P-act by the executor. The transaction is divided into three phases,
order, execution and result. The order phase is an actagenic (i.e. action generating)

Fig. 18.8 Interaction pattern of a transaction according to (Dietz and Habing, 2004)
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conversation that results in a commitment of the executor to perform the P-act (pro-
duce). In the second phase the P-act is actually done and a corresponding factum
is established (“P-act has been executed”). The result phase is a factagenic con-
versation that aims at reaching an agreement on this factum to assess whether the
commitment has been met.

The order phase starts with a request from the initiator to perform a certain P-
act. Should the executor decline it, the initiator can decide to quit or to make another
request, possibly after having convinced the executor on the discussion layer to con-
sider his original request again, or after having realized the inappropriateness of his
request and formulated a new one. If the executor accepts the request it becomes
a promise, i.e. a binding commitment. The executor will then perform the P-act
(execution phase) and enter the result phase by stating that he has done the P-act
as agreed. The initiator can now reject this statement upon which the executor can
stop (unsuccessful termination) or make another statement. If the initiator accepts
the statement the whole transaction is terminated successfully.

18.3.2.3 The Composition Axiom

The composition axiom claims that each transaction is either activated externally
(e.g. by a customer), or it is embedded in another transaction, or it is self-activated.
In the first case the transaction is started by some person or organization in the envi-
ronment, i.e. that lies outside the borders of the organization in question. Embedded
transactions take into account that products and services typically have a hierarchi-
cal structure which must be mirrored by the transactions that produce them. Finally,
a transaction can activate itself. This takes care of repeated activities, e.g. periodical
transactions.

18.3.2.4 The Distinction Axiom

The distinction axiom states that all human activities, and thereby also business
activities, can be divided into three categories: forma, informa and performa. Forma
concerns the “outer appearance”. In the C-world this corresponds to passing on or
receiving information. Informa is concerned with the content that is “in the form”.
In the C-world it comprises the expression or interpretation of thoughts. Performa
is related to the creation of new things with the help of the form, i.e. “through
the form”. Regarding the C-world this could involve establishing and following up
commitments (creation of commitments and facts). These levels apply also to the
P-world.

18.4 Conclusion

We have introduced two different approaches to a domain ontology for busi-
ness that mark the opposite ends of a plane spanned by scope and elaboration.
Socio-Instrumental Pragmatism makes a weak ontological commitment that can
be applied to any business context and even beyond that. But in order to do this
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the concept system, the taxonomy and the relations have to be refined, and axioms
or rules need to be introduced. Enterprise Ontology, on the other hand, makes a
strong ontological commitment which might be in conflict with a particular view on
a business. Its scope is therefore limited but in an appropriate context it can provide
a strong support.

But in order for business ontologies to be really applicable they must support
activities in a multitude of interrelated domains. No single ontology can achieve
that. We therefore need mechanisms to connect related ontologies in an effective
way. This implies that ontology X may import or derive concepts and relations from
another ontology Y. But it also means that it must be possible to integrate ontologies
from different but related domains to a new one that covers all these domains and
resolves the conflicts that exist between them (see Section 18.1.2). It is the combi-
nation of the bottom-up and top-down approach that can bridge the gap between a
general ontology for the business domain and the application-specific ontology.
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Chapter 19
Ontologies for E-government

Knut Hinkelmann, Barbara Thönssen, and Daniela Wolff

19.1 Motivation

Serious efforts have been made for years to bring e-government forward. Although
according to an e-government study 2006 nearly 50% of the examined services
offered by EU states are fully available online (Capgemini, 2006) the majority of ser-
vices on governmental web sites (especially of small municipalities) are in “stage 1”
(information) or “stage 2” (interaction)1. That is: providing online information about
public services, e.g. opening hours or addresses of departments or provision of
downloading of forms. Processing of forms, including authentication, (“stage 3” -
two-way interaction) and mainly “stage 4” (transaction, that is full case handling,
decision and delivery e.g. payment) is reached only for a few services. Taking into
consideration that only 20 basic public services (12 for citizens, 8 for businesses)
have been evaluated in the study (Chevallerau, 2005) – out of more than 1,000
(e.g. in Switzerland approximately 1,200 services have been identified (eCH0015,
2006)) – the necessity for new approaches is palpable.

There are recent developments and trends on various levels that can have
significant influence on the progress of e-government:

– architecture: In a service-oriented architecture processes are supported by inde-
pendent services that are made available on a network instead of having complex
monolithic systems. They can be accessed via defined interfaces while implemen-
tation details are hidden to the user. This is particularly useful in administrative
processes where various authorities are often involved.

– technology: web services are a technology for implementing service-oriented
architectures in an internet environment. They provide standards for identification

K. Hinkelmann (B)
University of Applied Sciences Northwestern Switzerland FHNW, Olten, Switzerland
e-mail: knut.hinkelmann@fhnw.ch
1The classification is taken from IDABC (Interoperable Delivery of European eGovernment
Services to public Administrations, Businesses and Citizens) (Chevallerau, 2006)
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and invocation of services. In particular, they offer the advantage of using common
services instead of each administration having to implement each service itself.

– semantics: With the semantic web new standards for ontologies are developed
for a machine-understandable representation of the semantics of (web) services,
thus enabling the finding of relevant information as well as an intelligent discov-
ery, composition, invocation, monitoring and maintenance of (web) services on
the internet. Thus, ontologies can be seen as an enabler bringing service-oriented
approaches to their full potential.

As public services are based on legal rules and regulations binding for all pub-
lic authorities, various service providers (e.g. all municipalities) have a (broadly)
similar service portfolio. However, neither naming nor service presentation at the
particular portals, nor least of all service execution are similar. This challenges the
citizen to find the same service provided by different municipalities and hinders the
administrations’ provision of one-stop-services or even integration. Ontologies are
a promising answer to particular challenges in e-government:

– finding services and information: Ontologies contribute to a common understand-
ing of service description. Information about services can be found on web pages
of public authorities and on specific portals (e.g. www.ch.ch in Switzerland).
Although most of the web pages use life events as a structuring principle, they
differ a lot in naming and structuring of life events. A “life event” is understood
as a special situation in a person’s life, like marriage, childbirth, house building
etc. that requires a public administration’s services; similarly, “business situa-
tions” are defined for companies, reflecting their requirements such as applying
for work permits or importing goods. Ontologies can contribute to a common
understanding of a domain and allow for mapping different information struc-
tures, e.g. mapping of life events differently presented on different e-government
portals or web sites.

– process design and implementation: As various service providers have broadly the
same service portfolio, the sharing and reuse of experiences and domain knowl-
edge can significantly reduce effort and increase quality of services. Initial steps
are made with repositories of reference models, best practices and use cases.
Adding semantic metadata to these resources improves the identification of rel-
evant resources. In addition, enhanced modelling methodologies with explicit
representation of design rationales and design decisions help a service provider
to customize a process for a new context. Both semantic metadata and design
decisions can be modelled as ontologies to provide the needed control.

– interoperability and composition of services: One stop e-government (Wimmer
and Tambouris, 2002) makes it possible for any public authority to act as a front
office for delivering e-government services regardless of the administrations actu-
ally involved. Semantic Web Services enable interoperability of administration
by automatic discovery and composition of appropriate web services. Consider,
for example, the service “change of residence”. In one-stop e-government the
citizen can start the process (either at a portal or on the web site of his/her old
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or new municipality) and the registration and deregistration services of the con-
cerned municipalities have to be identified automatically. Exploring the semantic
metadata is the initial step of that approach.

– flexibility and adaptivity of process execution: Web services are basic building
blocks for building online processes. Semantic process models combined with
inference rules and integrity constraints facilitate self-adaptivity and flexibility of
process execution, allow for context-dependent resource allocation and ensure that
constraints and guidelines are satisfied.

– Maintenance and change of services: As public services are based on legal rules
and regulations, any change of these regulations can cause adaptation of pro-
cesses. To ensure compliance of processes with regulations, the affected process
and activities can be found easily if a law or regulation changes. This can be
achieved by explicitly representing and inferring the reasons for design decisions.

In recent years ontologies have become common for semantically enriched for-
malization of knowledge. Chapter 2 provides a framework for modelling knowledge
with ontologies in the e-government domain completed by examples of efforts
already undertaken in our research projects covering all of the abovementioned
challenges. Even though the e-government domain is a very important application
area, our approach is not limited to it but can be used in any business domain.
However, the proceeding introduced has been used in several e-government projects
and proofed eligible.

19.2 State of the Art in E-Government Ontologies

Several European countries are currently working on a common service description
aiming for a consistent presentation on portals run by the various service providers
and establishing a basis for realising one stop e-government. With this approach e-
government is no longer regarded as a portal where public administrations publish
“passive” information but as an active source for knowledge and service sharing.
In addition it is perceived that knowledge sharing is no longer limited to humans
but include software agents. As ontologies are supposed to be representations of
the agents’ agreements about the set of concepts that underlie the information to
be shared (Gruber, 1993b) they are an appropriate instrument of e-government
knowledge representation (cp. (Gugliotta et al., 2006)).

In (Abecker et al. 1998) a methodology for organizational memories has been
presented that distinguishes three ontologies (see Fig. 19.1):

– The information ontology describes the different kinds of information resources
with their respective structure and format properties. The vocabulary for the
information resource metamodels comes from the information ontology.

– The enterprise ontology defines the context in which information resources are
used and generated. The top-level of the enterprise ontology defines a meta model
for processes or organisational structure
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Fig. 19.1 Types of
ontologies (Abecker et al.
1998)

– The domain ontology defines concepts modeling the content of information
resources and services. It is obvious that in particular the domain ontology is
specific for each new application area.

Throughout our lives, we all experience many events such as birth, marriage,
building a house, retirement, and even losing one′s wallet. The “life” of a business
also follows a series of predictable events such as the registration of a new business,
relocation of a business or government forms and reports associated with various
stages in a business’ life. These events are called “life events”. To help citizens and
businesses deal with these kinds of events, most of the administration portals or
web sites that have gathered information resources and services have a navigation
structure that corresponds to these life events. In this sense, life events are organized
as taxonomies – a simple form of ontologies (Daconta et al., 2003). Analysis of
various portals and web sites has shown, however, that there is no consensus on
what these life events should be called and structured.

In the SmartGov project a combined enterprise and domain ontology was built
that provides a conceptual description of e-government services (Fraser et al., 2003).
A representation in RDF is a cyclic graph and can become quite complex. This can
cause problems both for public authority staff to maintain the ontology and also for
user navigation. To avoid these problems in SmartGov the structure of the ontology
was simplified in the form of a directed acyclic graph. This graph was extracted
directly from the ontology, starting from a set of relevant top-level concepts that
adequately describe public authority service provision. The top-level concepts are
activities, actors, issues, legislation, needs, process, requirements, responsibilities,
results, rights and service types. The subsequent structure has been engineered to
enable searchability and function. Each concept has an optimal number of children,
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which represent the domain as accurately as possible, while at the same time creat-
ing a logical search path to give an unambiguous route to the desired target (Fraser
et al., 2003).

The Terregov project makes use of semantic technologies for achieving inter-
operability and integration between e-government systems. Rather than providing
ontologies they implemented ontology creation and storage tools to allow ontologies
to be created by domain experts (Wroe, 2005).

In the OntoGov2 project we defined the top-level structure of e-government
domain ontologies including life events and legal concepts as well as service and
life-cycle ontologies (Stojanovic et al., 2006). The life event ontology was based on
the life event structure of the national web site of Switzerland3 (www.ch.ch). The
idea, however, was not to define a standard ontology for life events but to provide
a general structure that can be reused and adapted to specific applications and that
enables information exchange and interoperation between web services of different
service providers (for problems associated with reusing the life event ontology see
Section 19.3.3).

As can be seen, there is no standard domain ontology – even for life events a con-
sensus will barely be enforceable. Potentially, for every application a new ontology
has to be built and maintained.4

19.3 Ontologies to Formalize a Shared Understanding
of Meaning

Even though there is an agreed definition of an ontology as a “formal specification
of a shared conceptualisation”, as stated by Gruber (1993a) and refined by Borst
(1997), the meaning of “conceptualisation” can be regarded differently (cp. (Pinto
and Martins, 2004)). Here we follow the view of Pinto and Martins where concep-
tualisation is regarded as “an abstract conceptual model for the knowledge to be
represented in the ontology” (Pinto and Martins, 2004). To bridge the gap between
knowledge, phrased ambiguously in natural language (e.g. in regulations) and its
unambiguous representation in an ontology we introduce the intermediate stage of
semi-formalization.

Since the early 1990s there has been a lot of research on ontology design and
creation (amongst others Gruber (1993b), CommonKADS (Schreiber et al., 1999)
or Ontology Development 101 (Noy and McGuinness, 2002)). However, no standard
methodology for ontology building exists.

2OntoGov (Ontology Enabled E-Gov Service Configuration) is a project funded in the IST
Programme of the European Union (IST-2004-27090). For further information consult http://www.
ontogov.com/
3The Swiss Federal Chancellery was a partner in the OntoGov consortium
4Application here is understood as any kind of software developed to execute public services (using
semantic technologies)
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As ontology development is part of an IT project, it has to be embedded into a
project framework. We suggest using the waterfall model as it is widely accepted for
IT projects in the public sector (e.g. HERMES, which follows the waterfall model,
is the stipulated IT project management method in Switzerland (FSUIT, 2004)).
Figure 19.2 depicts our ontology development process.

In the first phase, the pilot study, the purpose and goal of the project should
be investigated with respect to the business strategy. The various possibilities of
knowledge formalization should be considered to ascertain that ontologies are the
appropriate model. This is variously called “specification” (Pinto and Martins, 2004)
or “capture motivating scenarios” in TOVE (Gruninger and Fox, 1995) or “iden-
tify purpose and scope” in ENTERPRISE (Uschold, 1996, Uschold et al., 1998) or
“requirement specification” in METHONTOLOGY (Fernández et al., 1997).

Within the concept phase ontology development is performed comprising three
levels of formalisation: informal (knowledge is captured in natural language),
semi-formal (knowledge is represented in a semi-formal way e.g. in structured
templates) and formal (knowledge is strictly formalized in OWL,5 SWRL6 and
OWL-S7). Therefore ontology conceptualisation, formalization and implementation
are conducted in this phase.

Pilot Study

Specification
Conceptualization / Formalization

Implementation
Implementation

Concept Realisation Operation

Maintenance

legacy system

change management

Ontology Development

informal semi-formal formal

 

Fig. 19.2 Ontology lifecycle

5OWL: Web Ontology Language (McGuiness and vanHarmelen, 2004)
6SWRL: Semantic Web Rule Language (Horrocks et al., 2004)
7OWL-S: Web Ontology Language for Services (Martin, 2004)
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The realisation phase is about implementation of ontologies, that is making
ontologies accessible out of program code (e.g. legacy systems or web services).
This can be achieved by migrating it into Java code, thus implementing application
programming interfaces (APIs) to access the ontology via ontology management
systems like Protégé8

Maintenance is performed in phased operations comprising ontology manage-
ment like updates (add or delete concepts or properties), merging or integration of
ontologies (q.v. Section 19.3.3 of this chapter).

In the following we focus on the concept phase with its three levels of for-
malization (informal, semi-formal and formal). We need the formal level to make
ontologies machine understandable. In most cases, however, a domain expert will
not be able to transform informally described knowledge (e.g. guidelines written in
natural language) into a formal representation like OWL, using Protégé as ontol-
ogy management tool. To bridge the gap we introduce the semi-formal level where
domain knowledge, services and rules are formalized in a way domain experts are
able to phrase and IT staff is able to transform without missing or misinterpreting
business logic.

19.3.1 Starting with Terms

In general there are two ways to build ontologies: either from scratch or by reusing
existing ones. Gugliotta (2006) gives a detailed overview of current (research) activ-
ities in this field. Please refer amongst others to Peristeras and Tarabanis (2006) for
“top-level reusable models for the overall e-government domain”.

In the document at hand we talk about ontology development from scratch
but starting not immediately with concept modelling but with term9 definition.
What Oscar Chappel stated for rule modelling can be adapted for ontology mod-
elling: “everything starts with terms” (Chappel, 2006), that are candidates for main
concepts. Sources for terms can be “anything” that reflects business behaviour:

– documents

– lists of services and their descriptions (eCH, 2006)
– theme-catalogues (e.g. lifecycle aspects, business situations (eCH, 2008)
– handbooks
– guidelines
– policy papers
– glossaries

8Protégé is a free, open source ontology editor and knowledge-base framework (http://protege.
stanford.edu).
9Merriam Webster Online: Definition 4a: a term is a word or expression that has a precise mean-
ing in some uses or is peculiar to a science, art, profession, or subject <legal terms>, URL:
http://www.m-w.com/cgi-bin/dictionary
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– data

– meta-data, descriptors, identifiers
– key-words for search engines
– database entity and attribute names

– mind

– expressions passed on orally.

When questing for terms, the goal and scope of the ontology to be built should
be kept in mind. Not every term written in a handbook should become a concept
candidate even though every main concept supposed to be in the ontology should be
explicitly represented.10 Therefore relevance is an eligibility criterion for ontology
inclusion as the list of terms could quickly become complex.

Within the public sector – especially in federal states – finding and defining rele-
vant terms is even more complex as there is no “authorized decision maker”. Several
terms will be used for the same circumstances and one term will be used to describe
different facts. As we will see later, ontologies provide a good solution for handling
synonyms and homonyms without offending sensibilities. In the term building phase
the various terms will be collected, their relation or specific meaning identified and
documented.

There are several approaches for automated ontology creation (amongst oth-
ers TextToOnto,11 supporting semi-automatic creation of ontologies by applying
text mining algorithms (Maedche and Staab, 2004)). This could be a good starting
point for term capturing as ontology building is time consuming. As ontologies are
complexity prone, ontology creation can be machine supported. However, a lot of
manual labour is still necessary.12

Regardless of which approach is chosen the following attributes13 should be
defined for every term (they will become data properties in the ontology):

– Manually defined attributes

– label (the human-readable label including language information)
– definition (a statement that represents the concept and essential nature of the

term)
– source (where the term has been taken from, e.g. out of a handbook)14

10completeness is a criteria very difficult to prove (cp. (Gómez-Pérez, 2001))
11The system is freely available and can be downloaded at http://sourceforge.net/projects/
texttoonto/
12An interesting topic for research is how term and fact modeling could be automated (as it is
less formal) and how the semi-formal representation could then be used as input for automated
ontology creation
13The attributes “label”, “definition” and “date issued” are attributes, “source” and “creator” are
defined as meta-data terms by the Dublin Core Metadata Initiative (2006)
14In case the terms are extracted automatically this attributes can be created automatically, too
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– Automatically created attributes

– date issued
– creator (e.g. domain expert who records the term).

The result of this step is a collection of terms with their attributes. Again,
there are several methods of presenting the terms (as well as concepts), either as
mind-maps (as introduced by Sure et al. (2002)) or simply as a (flat) list – where
appropriate in alphabetical order.

We propose a repository where concepts can be stored in a structured but semi-
formal way understandable by IT staff and by domain experts. An example of a
structured term representation is given in Fig. 19.315 for the term “Application”.
A term is represented graphically as a named circle (labelled with a “T” for term);

Label English

Source Handbook for Request Handling

Creator Franz Muster

Date
issued

22-12-2006

Fig. 19.3 A concept and its properties

15The interface is adapted from the FIT Buildtime for Adaptive Processes developed by BOC Asset
Management (http://www.boc-eu.com) within the FIT project.
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its attributes are captured in a so-called “notebook”. Several user workshops (per-
formed within the FIT project16) have shown that this simple formalization is much
easier to understand than using an ontology modelling tool like Protégé from the
very beginning. As Macias and Castells (2004) pointed out: “Generally speaking,
emerging web-based technologies are mostly intended for professional developers.
They pay poor attention to users who have no programming abilities but need to
customize software applications”.

After capturing the terms (along with their attributes) they can be grouped,
initially by considering relationships between terms. Figure 19.4 shows a group-
ing of terms based on their graphical representation. Business people group terms
along business aspects: life cycle events (leading to the group of “Environ-
ment&Construction”), project management issues (leading to the group of “Proj-
ectAspects”), elements of business tasks (leading to the group of “Application
Handling”) or stakeholder (leading to the group of “People”). Even though business
people are not familiar with relating concepts, the two different kinds of groups in
the example are easy to understand:

Environment&Construction

Fig. 19.4 Visual grouping of concepts

16FIT (Fostering self-adaptive e-government service improvement using semantic technologies)
is a project funded in the IST programme by the European Union (IST-2004-27090). For further
information consult http://www.fit-project.org
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(a) terms and specialisations of terms as in the ProjectAspects group (where the
terms “BuildingProject” and “SocialProject” are specialisations of the term
“Project”) and

(b) terms related because of a specific business topic as the life event
“Environment&Construction” (where the terms “Application”, “Application
Form”, “Applicant”, “ProjectOwner”, “Project” and “BuildingProject” belong
together).

Having grouped the terms, the next step is to make the relations explicit. Again
we recommend a semi-formal way of building facts (Fig.19.5) that is, relating terms
either in an hierarchical way (a “BuildingProject” IS A “Project”) or as a network (a
“Application” is based on an “ApplicationForm”, a “ApplicationForm” is the same
as a “RequestForm” etc.) The result of this step is a semi-formal term model.

Modelling facts is the last step in ontology building that can be done in such a
convenient way for domain experts. Adding more properties, e.g. to express con-
straints for domain or range restrictions, would quickly make the forms complex
and would lead to a kind of “ontology modelling simulation”.

It turned out that collecting terms and modelling facts is an iterative process. A
good possibility is to start with terms extracted from standards (for example the

an Application Formis based onan Application

PersonIS Aan Applicant

at  a Place of Residencelivesa Citizen   

TermRelation
(IS A / VERB)

Term

an Application Formis based onan Application

PersonIS Aan Applicant

at  a Place of Residencelivesa Citizen   

TermRelation
(IS A / VERB)

Term

Fig. 19.5 Relating terms to build facts
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documents published by eCH for Switzerland). Having consensus on that specific
terms invented by communities can be considered and incorporated.

19.3.2 Transforming Terms and Facts to Concepts and Properties

To transform terms and facts to concepts and properties we suggest that IT staff
or knowledge engineers, who are familiar with ontology modelling, take the
semi-formal models of terms and facts as input for formal ontology modelling,
e.g. using a specific ontology modelling tool like Protégé. While the transition
from terms to concepts (attributes to data-properties) and from facts to relations
is currently performed manually, automation is planned.

During ontology modelling concepts may be added (e.g. to build a super-
concept), data-properties will be completed (e.g. for cardinality) and properties will
be extended or newly set up (e.g. relations between terms reflecting business aspects,
domain and range constraints or simply stating synonymy).

Therefore the ontology model will probably differ from the term model. To
ensure consistency between the ontology model and the term model “reverse engi-
neering” is recommended. Transforming the ontology model “back” to the term
model allows business people to continue with modelling business from their
point of view. Using OWL as an interchange format,17 BOC’s modelling tool, for
example, allows the import of ontologies and its representation as a term model.

As in the majority of cases public administration officers will not model the
ontology on their own, a graphical presentation will make the cooperative develop-
ment by business analysts or IT staff and domain experts less difficult (Fig. 19.6).18

19.3.3 Negotiating Reuse

It cannot be expected that one e-government ontology can be built for the entire pub-
lic administration of a state let alone across borders. More likely, several ontologies
will be available and could be joined, if reasonable, in two ways: fusion/merging
or composition/integration. A lot of research has been done in the field of ontology
reuse (cp. amongst others Pinto and Martins, 2002; Kalfoglou and Schorlemmer,
2005) and several tools have been developed to support the process.19

It is beyond the scope of this document to go deeper into that topic. However,
as a rule of thumb it can be said, that merging ontologies is preferred if there

17An interchange format is a format that allows transformationen from one model to another
without loss based on agreed standards.
18For ontology modeling Protégé is taken; for graphical presentation the Ontoviz tab is activated
19A comprehensive overview is given by the IOWA State University, Departement
of Computer Science: http://www.cs.iastate.edu/˜baojie/acad/reference/2003-07-09_dataint.htm
(Date 20-12-06)
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is a significant overlapping of concepts whereas integration is favoured if the
overlapping is restricted.

Regarding the e-government domain, reuse of ontologies seems to be a promising
approach. For example the “life event concept” is implemented on most govern-
mental web sites worldwide. As already mentioned in Section 19.2, in the OntoGov
project an ontology has been built based on the “life event concept” of the national
web site of Switzerland (http://www.ch.ch). It was assumed that the ontology could
be reused in any municipality in Switzerland or even in other countries. When
verifying this intention, however, significant differences have been detected with
respect to

– point of view (what has been defined as a life event concept in the ontology has
not been regarded as one in an municipality and vice versa)

– structure (what has been modelled as super-concept in the ontology has been
regarded as sub-topic in an municipality and vice versa)

– granularity (in some municipalities the life event structure is very detailed where
as in others it is not).

Reusing/joining ontologies is in any case not only a technical demand but
requires expertise (by domain not IT experts) to negotiate the goal, scope and con-
tent of the new ontology. Public administrations move in the direction of knowledge
sharing (and reuse) but federalism is still pronounced hindering the possibilities the
technique already provides.

From this point of view integration seems to be the better approach for reuse.
However the mentioned problems cannot be overcome simply and further research
is needed for an applicable solution.

19.4 Ontologies for Modelling Semantically Enriched Processes

In Section 19.3 of this chapter we introduced a method for getting to (main) con-
cepts and relations of a domain ontology. In the following section we will focus on
metadata related to the business processes.

Although municipalities provide virtually identical services, implementation of
these services takes place individually and is continually repeated.20 For example:
nearly every municipality in Switzerland (about 2,700) performs the service of reg-
istration (for someone moving in) and deregistration (for someone moving away).
Even though there are efforts to standardize the processes, the real implementation
differs significantly, due to a range of factors including the different IT infras-
tructure of the municipalities. The same is true for services of federal states and
administrations like courts.

20For example: the public service “Anmelden/Abmelden” is performed by ne
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The exchange of experience and sample process models between similar institu-
tions could drastically reduce the effort of service implementation. For example, in
Germany the “Virtual Community Geschäftsprozess-Management21” (virtual com-
munity for business process management) is based on a repository of process
models. Members can provide experience in the form of process models and profit
from the experience of other members.

A similar approach is the propagation of reference models for e-government
services and organisational structures that can be used and customized directly by
municipalities and federal states. Reference models are abstract models of a domain
of interest that represent best practices. As administrative organisations – as opposed
to companies – do not have to protect a competitive advantage and their processes
are based on legal foundations, e-government services are well suited for reference
models.

Nowadays, repositories of (reference) models mainly use textual descriptions;
thus, they are hard to quest and only indirectly reusable. Adding semantic meta-
data to process models would be much more helpful in finding adequate services
and reusing the models (instead of their description) – an approach that is widely
accepted for semantic web services. This, however, is still an open research issue,
in particular as no standards for e-government ontologies exist.

Even without reference models, business process management in general must
cope with the problem of life-cycle management, i.e. how to ensure compliance of
models with regulations and how to customize process models. Adding not only
metadata to a process but also information about design decisions is an approach for
dealing with the problem.

Virtually all public administration processes are based on legal foundations or
decrees that are derived from them. Therefore, such regulations also determine the
design of a process. If a law is modified, all processes that are based on this law
have to be checked for compliance. Besides legal aspects, organizational or technical
reasons can also determine the design of a process. If one administration wants to
reuse and customize a process from another administration it can be important to
know what is specific to the administration and thus can be modified and what is
vital for the process to work.

In Hinkelmann et al. (2006a) we presented an approach for life-cycle manage-
ment of e-government services. To ensure consistency of services, all the decisions
are documented. For each design decision at least one reason must be given. A
decision includes a description in natural language and a formal reference to the
elements forming the basis of the decision (e.g. the respective law). Analogous to
IBIS (Issue Based Information System, (Kunz and Rittel, 1970), a design decision
is regarded as a topic which is based on a reason. As a design decision can possibly
lead to other design decisions, a line of argumentation results. Figure 19.7 shows
the structure of a line of argumentation according to the graphic notation gIBIS
(Conklin & and Begeman, 1998, pp. 140–152).

21http://www.fhvr-berlin.de/vc-gpm/ (information in German only).
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Fig. 19.7 Extending process models with life-cycle information

Apart from the natural language documentation, it is vital for knowledge-based
support to also formally describe the design decisions and reasons. This is done by
linking design decisions and reasons using an ontology in which the reasons for the
design decisions are explicitly modelled and refer to the underlying law. This ontol-
ogy is called “lifecycle ontology” as all activities performed on process models are

Fig. 19.8 Part of the OntoGov lifecycle ontology (developed using KAON)
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captured, e.g. when adding a new activity to a process the reason must be expressed
and the respective decision is saved along with further informations like user or
creation date. Figure 19.8 shows the relevant part of the lifecycle ontology. The
rectangles represent concepts and the hexagons represent relations. It can be seen
that DesignDecision is a subconcept of Decision and that Decision is a subconcept
of Reason, because every decision can have consequences, and so can be a reason
for another decision. In this way we can model the decision-reason chains shown in
Fig. 19.7.

In addition, extended process models are formally linked with the design deci-
sions of the lifecycle ontology (see Fig. 19.7). In this way, design decisions and
reasons that define process (or reference) models become transparent and traceable.

Details on how the design decision can be used for change propagation can be
found in Hinkelmann et al. (2006a).

19.5 Ontologies for Modelling Business Rules

As already shown, public services are based on legal rules and regulations binding
for all municipalities but at the same time municipalities may maintain distinctive
features, so the business processes are quite similar but not identical.22 Additionally,
a lag time can occur between adoption and implementation of rules, so delays and
human errors can arise.

Second, e-government services are knowledge-intensive processes resulting in
manually performed process execution. Even though ICT supports most of the func-
tions (e.g. tax system) very few tasks are automated. In addition, it is not only the
knowledge about how to perform the tasks within a process (the so called functional
knowledge) but also the knowledge about the process flow (the so called process
knowledge) that isn’t explicitly documented.

So the next step in enhancing business processes is adding business rules.
Business rules can be regarded as an appropriate approach not only to make that
knowledge explicit, to have greater control and oversight, but also to ensure consis-
tent implementation of policies in an automated way, because changes to the rules
can be immediately reflected in all services related to them.

19.5.1 Business Rules Classification

The Business Rules Group defines a “Business Rule” as:

...a statement that defines or constrains some aspect of the business. It is intended to assert
business structure, or to control or influence the behavior of the business” (Business Rules
Group, 2006).

22The terms service and process differ in their coverage: whereas service comprises all aspects
of e-government service provision a Public Administration has to offer, process is about the (IT-
supported) tasks performed within a service.
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Fig. 19.9 Classification scheme after Barbara von Halle (2002)

There are several classification schemata for Business Rules formalization. Since
it is well understood and comprehensive, we follow the classification scheme given
by von Halle (2002, p. 27 ff.) in order to explain the different kinds of business rules.

Business rules consist of terms, facts and rules. “The terms and facts are the
semantics behind the rules. They will also become the foundation for a logical data
model and physical database [. . .]” (von Halle 2002, p. 32). In Section 19.3 we
already explained how terms and facts can be identified and and transformed to
concepts and properties (Fig. 19.9). Rules are split up into five sub-classes:

– mandatory constraints
– guidelines
– action enablers
– computation rules
– inference rules

In the following discussion we explain these rule types in more detail. Similar to
the approach for determining terms and facts we follow a two-step approach starting
with a semi-formal representation that can easily be understood by people in public
administrations and that can later be formalized in cooperation with IT people and
knowledge engineers.

19.5.2 Semi-Formal Rule Respresentation

Semi-formal representation is the starting point for rule development. Each rule type
has a specific structure or uses predefined relations. The rules should be phrased
using previously defined terms and facts (see Section 19.3). It can also be the case,
however, that new terms and facts are identified while formulating the rules thus
leading to an extension of the ontology.



19 Ontologies for E-government 447

Mandatory Constraints

Mandatory Constraints are statements which must always be applied. To express
this kind of rule the auxiliary verb “must” is used as a predicate. The phrase “must
not” is used to express negative constraints.

Subject Predicate Object

a resident MUST provide a lease contract or contract of purchase for her place
of residence

a decision MUST BE in list application decision (‘applicaiton approved’,
‘application denied’, ‘decision postponed’)

Guidelines

Guidelines are rules which could be followed but are not mandatory. Their form is
similar to mandatory constraints but using the auxiliary verb “should” or “should
not” to express the negation

Subject Predicate Object

a confirmation SHOULD BE sent within 5 days
a decision SHOULD include an explanation

Action Enablers

Action Enablers initiate a process (step), if the condition holds.

Term Condition Action

IF a building is closer than 50 meters to a
natural water

DO approve environmental
compatibility

a building is under protection of
historical heritage

historical preservation agency
approves application

Computations

Computations are rules to perform calculations, like sum and difference.

Subject Computation

fee IS COMPUTED AS days of delay x 10 CHF
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Inferences

Inferences are statements which establish the truth of a new fact, if the condition
holds.

Term Condition Consequence

IF an application is delayed THEN a fee is payable
a building is older than 100 years it is an historical building

19.5.3 Formalization

To automatically apply rules, a formal, executable rule language is required for all
kinds of business rules. There is a broad spectrum of formalisms with different levels
of expressiveness. Terms and facts, for instance, can be represented as vocabulary,
database schema or ontologies. In Chapter 3 we introduced modelling terms and
facts as concepts and properties. To formalize rules it makes sense to use the ontol-
ogy as knowledge base. In this section we describe how to express business rules
using ontologies.

19.5.3.1 Property Restriction

Some mandatory constraints can be expressed by constraining the range of a prop-
erty (value restrictions) or the number of values a property can take (cardinality
restrictions).

Subject Predicate Object

a decision MUST BE in list application decision (‘applicaiton approved’,
‘application denied’, ‘decision postponed’)

This sample rule can be expressed by using a value restriction. The concept
“decision” provides the property “hasApplicationDecision” which contains a list
of possible values (Fig. 19.10).

The following document fragment expresses the same restriction in OWL:

<owl:Class rdf:ID="decision">
<rdfs:subClassOf>

<owl:Restriction>
<owl:allValuesFrom>

<owl:Class>
<owl:oneOf rdf:parseType="Collection">
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<applicationDecision rdf:ID="Application_denied"/>
<applicationDecision rdf:ID="Application_approved"/>
<applicationDecision rdf:ID="Decision_postponed"/>

</owl:oneOf>
</owl:Class>

</owl:allValuesFrom>
<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasApplicationDecision"/>
</owl:onProperty>

</owl:Restriction>
</rdfs:subClassOf>

<!-abbreviated -->
</owl:Class>

Fig. 19.10 Value restriction modelled in Protègè

19.5.3.2 Semantic Web Rule Language

Restrictions cannot be used to express every kind of constraint; in particular they
cannot be used to express inferences, computations and guidelines. Therefore we use
the Semantic Web Rule Language (SWRL) which has been published as a Member
Submission by W3C. The aim of SWRL is to combine the Ontology Web Language
OWL DL and OWL Lite with the Datalog RuleML sublanguage (Horrocks et al.,
2004). It thus extends the set of OWL axioms to include Horn-like rules and enables
Horn-like rules to be combined with an OWL knowledge base.

The proposed rules are of the form of an implication between an antecedent
(body) and consequent (head). Whenever the conditions specified in the antecedent
hold, the consequent must be true. Antecedent and consequent consist of zero or
more atoms. Atoms in these rules can be of the form C(x), P(x,y), sameAs(x,y) or
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differentFrom(x,y), where C is an OWL concept, P is an OWL property, and x,y are
either variables, OWL individuals or OWL data values (Horrocks et al., 2004).

Inferences

Inferences can be expressed using SWRL. If a condition holds, then the fact in the
consequence must hold, too. In ontologies e.g. a value of a property is derived.

Term Condition Consequence

IF a building is older than 100 years THEN it is an historical building

To express the inference written above the term “a building” can be presented as
a concept, which contains the datatype property “age”. To present the consequence,
a concept called “ancientBuilding” has to be added, which can be modeled as a
sub-concept of “building”.

building(?x) ∧
age(?x, ?y) ∧
swrlb:greaterThan(?y, 100)

→ historicalBuilding(?x)

If the condition “an instance of building exists, whose age is greater than 100”
holds, the found instance is also an instance of “ancientBuilding”.

Mandatory Constraints

Mandatory constraints which cannot be represented as property-restrictions can be
expressed by using SWRL. Consider for example the mandatory constraint below.

Subject Predicate Object

a person MUST be Older than 18 to make an application

Several concepts have to be created to be able to present the rule. First the two
terms “person” and “application” have to be modeled as concepts. To present the fact
“an application is filled out by a person” the object property “filledOutByPerson” is
defined with the domain “application” and the range “person”.

The constraint can be expressed by a rule using negation stating that there is
an inconsistency if the age of an application is not 18 or older. Thus, we use
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the concepts “exception”, “ontology” and “ontologyStatus”. The “ontologyStatus”
provides the datatype property “inconsistent”. To have a hint about the reason
for the inconsistency an object property “hasException” links from “ontology” to
“exception”.

application(?x) ∧
filledOutByPerson(?x, ?y) ∧
age(?y, ?z) ∧
swrlb:lessThan(?z, 18) ∧
ontology(?o)

→ hasException(?o, ExceptionPersonMustBeOlderThan18)

The SWRL rule above expresses that the ontology has the exception
“ExceptionPersonMustBeOlderThan18”, if an application is filled out by a person
who is younger than 18.

The atom “application(?x)” holds, if an instance of the concept “application”
exists. The atom “filledOutByPerson” holds, if the instance of “application” is
related to an instance of the concept “person” by property “filledOutByPerson”.
If the found instance of “person” is of “age” ?z, this atom holds. The built-in rela-
tion “swrlb: lessThan” holds, if ?z is less than 18. If an instance of “ontology” is
found, the condition of the last atom is fulfilled, so the whole condition is true. The
consequence is that the instance “ExceptionPersonMustBeOlderThan18” of the
concept “exception” is linked to the ontology by the object property “has
Exception”.

If a constraint is violated the status of the ontology is inconsistent. It can be
expressed by following rule:

ontology(?x) ∧
hasException(?x, ?y) ∧
ontologyStatus(?z) →
inconsistent(?z,true)

Guidelines

As with the constraints, guidelines can also be represented as logical rules, using
the reserved property “warning” instead of inconsistent and the concept “guideline”
to have a hint about the reason for the warning.
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Subject Predicate Object

A confirmation SHOULD BE sent within 5 days

To express the guideline below the term “confirmation” should be represented as
a concept. It contains the datatype-property “sent”.

confirmation(?x) ∧
sent(?x, ?y) ∧
swrlb:greaterThan(?y, 5) ∧
ontology(?z)
→ violatedGuideline (?z, ConfirmationShouldBeSentWithin5Days ) ∧

accept(ConfirmationShouldBeSentWithin5Days,false)

The guideline has the datatype-property “accept”, so that an officer can accept
the violation. To express that the status of the ontology is “warning”, the rule can be
expressed as follows:

ontologyStatus(?x) ∧
ontology(?y) ∧
violatedGuideline(?y, ?z) ∧
accept(?z, false)

→ warning(?y, true)

Action Enablers

Action enabling rules trigger planning and refinements of a process from predefined
activities like the rule below.

Term Condition Action

IF a building is closer than 50 meters to a
natural water

DO approve environmental compatibility

Based on the context of the actual service execution, action enabling rules asso-
ciated to particular process steps are invoked at runtime to dynamically determine
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and initiate the appropriate actions. Therefore, every process must be modeled as
an OWL-S process. To express the sample action enabling rule above, an atomic
process23 called “ApproveEnvironmentalCompatibility” must be executed.

To present the condition of the rule an instance of the class “SWRL-Condition” of
the OWL-S-Ontology must be created and the following condition must be entered
at the property “expressionObject”.

building (?x) ∧
distanceToNaturalWater (?x, ?y) ∧
swrlb:lessThan(?y, 50)

To express the consequence, an instance of the class “If-Then-Else”, which is
subclass of “ControlConstruct” has to be created, which object-property “ifCondi-
tion” link to the condition and the property “then” link to the atomic process.

Computations

The statement provides an algorithm to compute the value of a term.

Subject Computation

Fee IS COMPUTED AS days of delay x 10 CHF

To represents the computational rule, a concept “BuildingApplication” is used.
This concept contains the two datatype properties “daysOfDelay” and “fee”. These
two properties are used to compute the product.

BuildingApplication(?x) ∧
daysOfDelay(?x, ?y)

-> swrlb:multiply(?fee, ?y, 10) ∧
fee(?x, ?fee)

23A process model is composed of atomic processes and/or composite processes. An atomic pro-
cess is defined as a non-decomposable process, e.g. in a process implementation with web-services
it can be executed using a single call.
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For every instance of “BuildingApplication” which has a delay, the fee is com-
puted as the value of “daysOfDelay” multiplied by 10. Similar to multiplication,
built-ins for subtraction, addition and division can be used.

Negation

A problem exists in expressing negations. In the above examples negation is
expressed by an inverse predicate “lt” (less than) instead of “NOT greater than”.
However, in the current version of SWRL such inverse predicates are not available
in every case. For example, the rule “If the construction plan is not available, do
request documents.” cannot be represented directly in SWRL. This constraint can
be expressed by a rule that stated that there is an inconsistency. This kind of nega-
tion is called negation as failure: it is true if no construction plan is mentioned in the
knowledge base.

Rule Set

Every rule expressed in SWRL can be combined into rule sets. For example, all rules
which are defined for a process to evaluate an application form can be combined in
a rule set called “FormEvaluationRules”. Our approach is to use the following three
concepts to express rule sets: “Rule”, “RuleSet” and “File” (Fig. 19.11).

The concept “Rule” provides the datatype properties “RuleID”, “RuleName” and
“RuleDescription” to store the name, id and description of a rule. The SWRL-file
itself will be stored in an external file. To retrieve the file, the instance of ‘File’
contains the datatype property “filePath”. To have a relation between a file and
the expressed rule, the ontology provides the object properties “containsRule” and
“isStoredIn” respectively. All rules could be combined into rulesets by creating an
instance of “RuleSet” and using the object property “comprisesRule” to link to the
rules. One benefit of not storing rules directly in a rule set is that a rule can be
combined to multipe rule sets.

To have a link between processes and rule set, the concept “process” of the OWL-
S ontology has to be extended by the object property “containsRuleSet”, the range
of which links to “RuleSet”.

File

RuleSet

Rule

containsRule
isStoredIn

RuleID
RuleDescription

RuleName

filePath

comprisesRule

Fig. 19.11 Rule ontology
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19.6 Ontologies for Modelling Agile E-Government Processes24

Although there are legally binding rules and regulations every administration has to
obey, dealing with people’s concerns means dealing with different circumstances
every time. In this sense, e-government services are often knowledge intensive
processes, where the actual process execution and the involved participants and
administrations depend on various factors. Consider for example the process of
building permission in a European municipality. Under particular circumstances an
environmental compatibility check is required or the historical preservation agency
has to be involved, in which case complex clarifications have to be made. Modelling
all possible variants of a process can lead to complex process models. Sometimes
this modelling can even be impossible if the tasks are mutually dependent on one
another.

To deal with these kind of agile processes, the Agile Process Management (APM)
approach combines business and knowledge work processes by linking process
models and business rules (Hinkelmann et al., 2006b). The business rules extend
process execution on three ways:

– Variable process execution: Determine activities and processes to be executed
thereby accounting for dependencies between activities

– Intelligent resource allocation at run time: Selection of employees based on
special skills and selection of particular web services adequate for the actual
circumstances

– Intelligent branching and decision making: deriving workflow-relevant data using
inferences and computing values

– Consistency checking: Avoid violation of integrity constraints and guidelines

Agile processes management includes all of the previous modelling approaches
to provide adaptable, flexible and reusable e-government services: Ontologies build
the basis for modelling and executing semantically enriched processes and business
rules.

At run time action-enabling rules select the activities that have to be executed
depending on the actual context of the process instance. Inference rules allow for
resource allocation and support the user in decision making, while integrity con-
straints and guildelines (in combination with inference rules) ensure consistency
checking and compliance.

Figure 19.12 shows the three aspects of ontology modelling and use:

– domain modelling to make business knowledge explicit,
– business rules modelling to make rules and regulations explicit,

24A process is considered “agile” when its execution model is created flexible at runtime, based
on the results of triggered rules instead of static pre-defined models.
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Fig. 19.12 Modelling agile services with ontologies, rules and semantically enriched process
models

– process (life-cycle) metadata to make design decisions explicit and allow for
change management.

The far right of the figure depicts the agile process modelling, combining ontolo-
gies with rules. Let us explain the agile process management framework with an
example:

The first phase of designing agile processes is sketching a “process skeleton” that
means the main activities (atomic processes) of a (composite) process. Figure 19.13
depicts a skeleton of a process model for building permission where parts are
marked as knowledge intensive tasks. As already mentioned, depending on partic-
ular circumstances different activities are to be executed during the process, e.g.
checking for environmental compatibility or historical preservation. The conditions
for these activities are not always given at the beginning but may appear only after
additional clarifications are made. Thus, we have an unforeseeable sequence of data
collections, clarifications and decision making which cannot be modelled exactly
but must be determined at run-time. Decision making, however, may require spe-
cific skills, in which case experts with relevant experience should be allocated to
perform the task. Since laws and regulations in this area are quite complex, a lot of
guidelines and constraints have to be considered.

Thus, the knowledge-intensive parts in the process can than be regarded as agile,
containing variable processes, intelligent branching and flexible resource allocation.
To cope with this agility, we extended process modelling in two ways:



19 Ontologies for E-government 457

Fig. 19.13 Building
permission process skeleton
with knowledge-intensive
parts

– First, to each activity we can associate sets of rules that are executed at run time
and affect the execution by selecting resources, deriving values and checking con-
straints and guidelines. As shown in Section 19.5, these rules refer to concepts
modeled in an ontology.

– Second, we have a new modelling object for variable process parts. A variable
process corresponds to a subprocess with the particularity that the activities of
the subprocess are determined at run-time instead of modeling time using action-
enabling rules (see Section 19.5.1).

In Fig 19.14 the activities with a question mark are variable processes. The first
variable process has a reference to various possible activities: formal investigation,
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Variable processes part
•   clarifications
•   data collection
•   check layout plan
•   check environmental 
    compatibility

•   involve historical preservation
    agency

•   formulate recommendation

Intelligent  branching: 
Is permission necessary or is
announcement sufficient? 

Variable  process part:  discussion
with mayor,  design committee, 
involve citizens if appropriate

Resource allocation: 
•   select participants with
    appropriate skills

Fig. 19.14 Building permission as agile process

collection of data, check layout plan, check environmental compatibility, check for
historical preservation, and formulate recommendation. The second one is executed
if a design discussion with the mayor, experts and citizens is necessary.

Intelligent branching depends on inference and computation rules that are exe-
cuted at run time. In the sample process there are two possibilities depending on
the decision in previous phases: One branch starts a subprocess to handle a building
permission application. The second branch leads to a subprocess for simpler cases
where a building announcement is sufficient and no formal permission is necessary.

Using OWL, OWL-S and SWRL as interchange formats allows the migration of
ontologies, process models and rules into executable code that can be Java, BPEL or
commercial software to provide the appropriate interfaces. With that approach the
agile process model can be executed. Fig. 19.15 shows the overall picture of agile
process management. Rule sets are associated to business process models, terms and
facts of the business rules are defined in an ontology. For execution a rule engine25

is linked to a workflow engine,26 both having access to application data.

25A business rule engine or inference engine is a software component that separates the business
rules from the application code and allows deriving answers from a knowledge base.
26“The workflow enactment software interprets the process description and controls the instan-
tiation of processes and sequencing of activities, adding work items to the user work lists and
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Fig. 19.15 Agile process management framework

19.7 Conclusion

Recent studies have shown that there is a significant advance in e-government
in nearly every country but there are still many challenges. In this chapter we
have presented some work to reinforce e-government that is based on the use of
ontologies.

One of the greatest challenges is the effort required in building and maintain-
ing ontologies. Although the public sector is strongly regulated and the services are
nearly identical in many municipalities and public administrations, there is still no
standard vocabulary. Even life events, a concept used to organise most of the portals
and web sites differ in naming, granularity and structure. In many countries, how-
ever, there are projects and initiatives to define a standard vocabulary for describing
resources and services. This will have an important influence in finding services on
the web and in interoperability of services between public administrations. There
are also international consultations to enforce compatibility, in particular in the
European Union.

invoking application tools asnecessary. This is done through one or more co-operating workflow
management engines, which manage(s) the execution of individual instances of the various pro-
cesses.” (TC00-1003 Issue 1.1 Workflow Reference, Workflow Management Coalition Page 14 of
14, URL: http://www.wfmc.org/standards/docs/tc003v11.pdf.
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We presented an approach for ontology building that starts with the collection and
consolidation of terms which in subsequent steps are related to facts and then can be
transformed to ontologies. A major advantage of this approach is that it takes into
account the fact that domain experts in the public administrations must be involved
in this process.

Building ontologies, however, is only an initial step. We also described how
ontologies can be used for semantic process modelling. This allows a public admin-
istration to exchange experiences in process design and lifecycle management.
In combination with business rules this semantically enhanced process modelling
results in what we called agile process management.
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Chapter 20
An Ontology-Driven Approach and a Context
Management Framework for Ubiquitous
Computing Applications

Christos Goumopoulos and Achilles Kameas

20.1 Introduction

Pervasive or Ubiquitous computing is a new technological paradigm in which
every thing around us has built-in and interconnected computers (Weiser, 1991;
Disappearing Computer, 2007). Embedded in everyday objects these interconnected
devices (also called artifacts) open up an unlimited number of possibilities for many
new applications and services (Norman, 1999; Bergman, 2000). Applications result
from the dynamic and adaptive composition of such artifacts, triggered via explicit
user/application requests, application/task templates, or even more autonomic inter-
action schemes. Then, in this context, a “system” is defined to be the collective,
complex service that emerges as an aggregation of simpler services offered by
independent artifacts.

Ontologies can help address some key issues of Ubiquitous computing envi-
ronments such as knowledge representation, semantic interoperability and service
discovery. One important issue, for example, to be resolved in building a Ubiquitous
computing system, is the development of interfaces between heterogeneous and
incompatible components, objects or artifacts. This can be dealt with by develop-
ing an ontology of concepts so that different types of functionality and interactions
or artifact bindings can be described in a way that is natural and consistent across
different systems. If the services provided by artifacts are to be properly exploited,
then it must be ensured that they will be able to interpret the representations sent to
them and to generate the representations expected from them. Following a service-
oriented approach, applications state their requirements in terms of concepts that are
part of the application’s ontology rather than specific resource instances.

It is also important to capture complex interactions between many different
artifacts. Thus, apart from simple peer-to-peer interactions, appropriate descrip-
tions are needed to support more complex interaction structures; both synchronous
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and asynchronous schemes are required to cater for the complexity of pervasive
computing applications. To achieve synergy, the system has to apply global decision
making procedures in order to cope with distributed resource management, service
composition and performance optimization. At the same time, each artifact employs
local decision making procedures in order to adjust its autonomous operation to
changes of context, to learn and to maintain its stable operation.

The goal of this chapter is to present an ontology-driven approach and a con-
text management framework for the composition of context-aware Ubiquitous
computing applications. The next section outlines how context is modeled and
used in various Ubiquitous computing systems emphasizing on ontology-oriented
approaches. Then we describe the ontology that was developed in order to con-
ceptually represent context-aware Ubiquitous computing systems. This ontology is
designed taking into account both the autonomous nature of components, objects
and artifacts and the necessity of their interoperability; so it is divided into two
layers, a private (application-specific) and a common (core) one. The core ontol-
ogy defines a meta-model of the Ubiquitous computing domain based on the
Bunge-Wand-Weber (BWW) ontology. Then we present a hierarchical approach
for engineering context-aware Ubiquitous computing systems including the con-
text management and decision-making processes as well as the analysis of the
mechanism that was developed based on that processes. Finally, we conclude by
evaluating our ontology-driven approach and presenting the lessons learned. A pro-
totype application is also outlined where an augmented plant is incorporated in a
Ubiquitous computing environment in order to collaborate with other augmented
objects, providing thus a communication channel between plants and people.

20.2 Ontology Based Modeling of Context Aware Ubiquitous
Computing Systems

According to (Dey, 2001) context is: “Any information that can be used to char-
acterize the situation of entities (i.e. whether a person, place or object) that are
considered relevant to the interaction between a user and an application, including
the user and the application themselves. Context is typically the location, identity
and state of people, groups and computation and physical objects.” In Ubiquitous
computing applications different kinds of context can be used like physical (e.g.
location and time), environmental (e.g. weather and light) and personal information
(e.g. mood and activity). Nevertheless, the term context mostly refers to information
relative to location, time, identity and spatial relationships.

A number of informal and formal context models have been proposed in var-
ious Ubiquitous computing systems; a survey of context models is presented in
(Strang and Linnhoff-Popien, 2004). Among systems with informal context models,
the Context Toolkit (Dey et al., 2001) represents context in form of attribute-value
tuples. The Cooltown project (Kindberg et al., 2000) proposed a Web based model
of context in which each object has a corresponding Web description. Both ER
and UML models are used for the representation of formal context models by
(Henricksen et al., 2002).
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As ontologies are a promising instrument to specify concepts and their inter-
relations, they can provide a uniform way for specifying the core concepts of a
context model, as well as an arbitrary amount of subconcepts and facts, altogether
enabling contextual knowledge sharing and reuse in a Ubiquitous computing system
(De Bruijn, 2003). Thus several research groups have presented ontology-based
models of context and used them in Ubiquitous computing applications. In the
following, we briefly describe the most representative ones.

In the GAIA framework (Ranganathan and Campbell, 2003), an infrastructure
is presented that supports the gathering of context information from different sen-
sors and the delivery of appropriate context information to Ubiquitous computing
applications. The project aim was to develop a flexible and expressive model for
context able to represent the wide variety of possible contexts and to support com-
plex reasoning on contexts. Context is represented with first-order predicates written
in DAML+OIL. This context model allows deriving new context descriptions from
other sensed context.

GLOSS (GLObal Smart Space) is a software infrastructure that enables the inter-
actions between people, artifacts, and places, while taking account of both context
and movement on a global scale (Dearle et al., 2003). By exploiting the features of
physical spaces, it uses people’s location and movement as a source of task-level
context and as a guide to provide appropriate information, or services. Therefore,
GLOSS facilitates the low-level interactions (such as tracking a user’s location) that
are driven by high-level contexts (such as a user’s task). This system accommodates
both service heterogeneity and evolution, using ontologies. The GLOSS ontologies
describe concepts, which provide the precise understanding of how services (phys-
ical and informational) are used and how users interleave various contexts at run
time.

CoBrA (Context Broker Architecture) is a pervasive context-aware comput-
ing infrastructure that enables Ubiquitous agents, services and devices, to behave
intelligently according to their situational contexts (Kagal et al., 2001). It is a broker-
centric agent architecture that provides knowledge sharing, context reasoning, and
privacy protection support for Ubiquitous context-aware systems, using a collection
of ontologies, called COBRA-ONT, for modeling the context in an intelligent meet-
ing room environment (Chen et al., 2003). These ontologies are expressed in the
Web Ontology Language (OWL), define typical concepts associated with places,
agents, and events and are mapped to the foundational ontologies that are relevant
to smart spaces.

Wang et al. created an upper ontology, the CONON (Wang et al., 2004) context
ontology, which captures general features of basic contextual entities, a collection
of domain specific ontologies and their features in each subdomain. The upper
ontology is a high-level ontology which defines basic concepts about the phys-
ical world such as “person”, “location”, “computing entity”, and “activity”. The
domain-specific ontologies, are a collection of low-level ontologies, which define
the details of general concepts and their properties in each sub-domain where they
apply to (like home domain, office domain). All these context ontologies help in
sharing a common understanding of the structure of contextual information coming
from users, devices, and services, so as to support semantic interoperability and
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reuse of domain knowledge. The CONON ontologies are serialized in OWL-DL
which has a semantic equivalence to the well researched description logic (DL).
Thus CONON supports two types of reasoning: reasoning to detect and correct
inconsistent context information and reasoning as a means to derive higher level
context information. The latter type of reasoning is based on properties like symme-
try and transitivity, as well as on user-defined rules. The CONON ontology is part
of the SOCAM (Service-Oriented Context-Aware Middleware) architecture, which
supports the building and rapid prototyping of context-aware services in pervasive
computing environments (Gu et al., 2004).

The Context Ontology Language (CoOL) (Strang et al., 2003) is based on
the Aspect-Scale-Context Information (ASC) model. Aspects represent classi-
fications (e.g. Temperature), while scales are individual dimensions of aspects
(e.g. Celsius). Context information is attached to a particular aspect and scale;
quality metadata (e.g. meanError) is associated with information via quality prop-
erties. This contextual knowledge is evaluated using ontology reasoners, like
F-Logic and OntoBroker. In addition to the determination of service interoper-
ability in terms of contextual compatibility and substitutability, this language is
used to support context-awareness in distributed service frameworks for various
applications.

The CADO (Context-aware Applications with Distributed Ontologies) frame-
work (De Paoli and Loregian, 2006) relies on distributed ontologies that are shared
and managed in a peer-to-peer fashion. It is composed of three layers and designed
to support mobility of workers in complex work settings. The three layers ensure
semantic interoperability via the process of ontology merging, while context and
application interoperability are ensured using Context and Interaction Managers
respectively.

The CoCA (Collaborative Context-Aware) system is a collaborative, domain
independent, context-aware middleware platform, which can be used for context-
aware application development in Ubiquitous computing (Ejigu et al., 2007).
This architecture for context-aware services focuses on context-based reason-
ing in Ubiquitous computing environments, using semantic-based collaborative
approaches. The model uses an ontology for modeling and management of con-
text semantics and a relational database schema for modeling and management of
context data. These two elements are linked through the semantic relations built in
the ontology.

The GAS Ontology (Christopoulou and Kameas, 2005) is based on a different
approach for modeling Ubiquitous computing applications that are composed of
artifacts. It adopts GAS, the Gadgetware Architectural Style (Kameas et al., 2003)
according to which artifacts are called eGadgets, their services are called Plugs and
the combination of two services is called a Synapse. GAS Ontology aims to con-
ceptualize GAS by describing the semantics of these basic terms and by defining
the relations among them. Thus the GAS Ontology provides a shared means for the
communication and collaboration among artifacts, even though they may be pro-
duced by different manufacturers. This approach serves as the basis of our work
that is presented later in this chapter.
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Although each research group follows a different approach for using ontolo-
gies in modeling and managing context in Ubiquitous computing applications, it
has been acknowledged by the majority of researchers (Dey, 2001; Henricksen
et al., 2002; Ranganathan and Campbell, 2003; Christopoulou and Kameas, 2005)
that it is a necessity to decouple the process of context acquisition and interpreta-
tion from its actual use. This can be achieved by introducing a consistent, reliable
and efficient context framework which can facilitate the development of context-
aware applications. In this respect, we propose an approach for a context-aware
Ubiquitous computing system that eases the composition of such context-aware
Ubiquitous computing applications and separates this process from the process of
context acquisition.

The use of ontologies to model context-aware systems facilitates knowledge
sharing across different systems and context reasoning based on semantic Web tech-
nologies. An important distinction between the approaches presented above and the
one we adopted to develop the GAS ontology is that the former are based on under-
standing of ontology as a specification of some conceptualization (Guizzardi et al.,
2002), whereas we approach ontology in philosophical terms, e.g. as in (Milton and
Kazmierczak, 2004); this led to the development of an abstract meta-model for the
Ubiquitous computing environment.

20.3 An Ontology-Driven Meta-Model for Ubiquitous
Computing Systems

20.3.1 Underlying Concepts

From the system engineering perspective, conceptual modeling is at the core of
systems analysis and design. Our approach for developing a conceptual model
that represents the structural, relational and behavioral elements of the targeted
Ubiquitous computing systems is based on the so-called Bunge-Wand-Weber
(BWW) ontology. Ontology in this context represents a well-established theoretical
domain within philosophy dealing with the models of reality. Wand and Weber have
taken and extended an ontology presented by Mario Bunge (Bunge, 1977, 1979)
and developed a formal foundation for modeling information systems (Wand and
Weber, 1990). BWW Ontology has been widely applied in the information systems
research field in contexts such as comparison of information systems analysis and
design grammars, ontological evaluation of modeling grammars, information sys-
tems interoperability and for requirements engineering for commercial-off-the-shelf
software and alignment in enterprise systems implementations (Rosemann et al.,
2004).

Although the BWW ontology constructs have been originally defined using a
rigorous set-theoretic language in many subsequent works the researchers attempted
to simplify and clarify the explanation of the constructs by defining those using plain
English (Weber, 1997). Following is the description of selected core ontological
constructs of the BWW ontology:
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• Thing: A thing is the basic construct in the BWW ontological model. The world is
made of things that have properties. Two or more things (composite or primitive)
can be associated into a composite thing.

• Property: We know about things in the world via their properties. A property
is modeled via a function that maps the thing into some value. Properties are
classified in a number of categories: hereditary, emergent, intrinsic, binding/non-
binding and mutual.

• Mutual Property: A property that is meaningful only in the context of two or
more things.

• State: The vector of values for all property functions of a thing is the state of the
thing.

• Conceivable State: The set of all states that the thing may ever assume.
• Stable state: A stable state is a state in which a thing, subsystem, or system

will remain unless forced to change by virtue of the action of a thing in the
environment (an external event).

• Transformation of a Thing: A mapping from a domain comprising states to a
co-domain comprising states.

• System: A set of things will be called a system, if, for any bi-partitioning of the
set, interactions exist among things in any two subsets.

• System Composition: The things in the system are its composition.
• System Environment: Things that are not in the system, but which interact with

things in the system are called the environment of the system.
• System structure: The set of couplings that exist among things within the system,

and among things in the environment of the system and things in the system.
• Subsystem: A system whose composition and structure are subsets of the

composition and structure of another system.

For developing a conceptual model for the Ubiquitous computing application
domain, instead of using the entire BWW ontology, a more focused ontology is
derived, by taking into consideration the requirements of the target application
domain. Therefore, an appropriate subset of concepts is selected by applying elimi-
nation and specialization processes. In a similar perspective (Rosemann and Green,
2000), argue that taking into account the objectives of the modeling tasks in a
specific problem domain as well as the type of users to be involved can assist in
developing new ontologically based specific modeling grammars. In the next sec-
tion we extend the concept of Thing to the concept of Entity and the concept of
Composite Thing to the concept of Ambient Ecology. New concepts are introduced
like the Plug and Synapse in order to provide detailed representation of the interac-
tion among entities. The main advantage of this process is that the focused ontology
is based on a well-established ontology with theoretical foundations. In addition,
in order to communicate clearly and relatively easily the concepts of the derived
conceptual model, we developed a description of the ontological constructs using
a meta-model. Through this meta-model, the understanding of the ontological con-
structs and how they relate to each other can be explained clearly. We have used the
UML meta-language for that purpose.
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20.3.2 Focused Ontology

Our model defines the logical elements necessary to support a variety of applica-
tions in Ubiquitous computing environments. Its basic definitions are given below.
A graphical representation of the concepts and the relations between them is given
as a UML class diagram in Fig. 20.1.

eEntity: An eEntity is the programmatic bearer of an entity (i.e. a person, place,
object, biological being or a composition of them). An eEntity constitutes the basic
component of an Ambient Ecology. “e” stands here for extrovert. Extroversion is
a central dimension of human personality, but in our case the term is borrowed
to denote the acquired through technology competence of an entity to interact with
other entities in an augmented way for the purpose of supporting the users’ everyday
activities meaningfully. This interaction is mainly related with either the provision
or consumption of context and services between the participating entities. A coffee
maker, for instance, publishes its service to boil coffee, while context for a person
may denote her activity and location. An augmented interaction between the coffee
maker and the person is the activation of the coffee machine when the person awakes
in the morning. For this to happen we need probably a bed instrumented with pres-
sure sensors (an artifact) and a reasoning function for the persons’ awaking activity,
which may not be trivial to describe. An eEntity in general possesses properties
of three types: structural which belong to the entity itself; relational which relate
the entity to other entities; and behavioral which determine possible changes to the
values of structural and relational properties.

Artifacts: An artifact is a tangible object (biological elements like plants and ani-
mals are also possible) which bears digitally expressed properties; usually it is an
object or device augmented with sensors, actuators, processing, networking unit
etc. or a computational device that already has embedded some of the required

Fig. 20.1 A meta-model for the Ubiquitous computing Environment
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hardware components. Software applications running on computational devices
are also excessively considered to be artifacts. Examples of artifacts are furniture,
clothes, air conditioners, coffee makers, a software digital clock, a software music
player, a plant, etc.

Ambient Ecology: Two or more eEntities can be combined in an eEntity syn-
thesis. Such syntheses are the programmatic bearers of Ambient Ecologies and can
be regarded as service compositions; their realization can be assisted by end-user
tools. Since the same eEntity may participate in many Ambient Ecologies the whole-
part relationship is not exclusive. In the UML class diagram (see Fig. 20.1) this is
implied by using the aggregation symbol (hollow diamond) instead of the com-
position symbol (filled diamond). Ambient Ecologies are synthesizable, because
an Ambient Ecology is itself regarded as an eEntity and can participate in another
Ambient Ecology.

Properties: eEntities have properties, which collectively represent their physical
characteristics, capabilities and services. A property is modeled as a function that
either evaluates an entity’s state variable into a single value or triggers a reaction,
typically involving an actuator. Some properties (i.e. physical characteristics, unique
identifier) are entity-specific, while others (i.e. services) may be not. For example,
attributes like color/shape/weight represent properties that all physical objects pos-
sess. The service light may be offered by different objects. A property of an entity
composition is called an emergent property. All of the entity’s properties are encap-
sulated in a property schema which can be send on request to other entities, or tools
(e.g. during an entity discovery).

Functional Schemas: An entity is modeled in terms of a functional schema: F =
{f1, f2, . . . , fn}, where each function fi gives the value of an observed property i in
time t. Functions in a functional schema can be as simple or complex is required
to define the property. They may range from single sensor readings to rule-based
formulas involving multiple properties, to first-order logic so that we can quantify
over sets of artifacts and their properties.

State: The values for all property functions of an entity at a given time represent
the state of the entity. For an entity E, the set P(E) = {(p1, p2 . . . pn) |pi = fi(t) }
represents the state space of the entity. Each member of the state vector represents
a state variable. The concept of state is useful for reasoning about how things may
change. Restrictions on the value domain of a state variable are then possible.

Services: Services are resources capable of performing tasks that form a coher-
ent functionality from the point of view of provider entities and requester entities.
Services are self-contained, can be discovered and are accessible through synapses.
Any functionality expressed by a service descriptor (a signature and accessor inter-
face that describes what the service offers, requires and how it can be accessed) is
available within the service itself and is manifested by plugs.

Transformation: A transformation is a transition from one state to another. A
transformation happens either as a result of an internal event (i.e. a change in
the state of a sensor) or after a change in the entitys’ functional context (as it is
propagated through the synapses of the entity).
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Plugs: Plugs represent the interface of an entity. An interface consists of a set of
operations that an entity needs to access in its surrounding environment and a set of
operations that the surrounding environment can access on the given entity. Thus,
plugs are characterized by their direction and data type. Plugs may be output (O) in
case they manifest their corresponding property (e.g. as a provided service), input
(I) in case they associate their property with data from other artifacts (e.g. as ser-
vice consumers), or I/O when both happens. Plugs also have a certain data type,
which can be either a semantically primitive one (e.g. integer, boolean, etc.), or a
semantically rich one (e.g. image, sound etc.). From the user’s perspective, plugs
make visible the entities’ properties, capabilities and services to people and to other
entities.

Synapses: Synapses are associations between two compatible plugs. In prac-
tice, synapses relate the functional schemas of two different entities. Whenever
the value of a property of a source entity changes, the new value is propagated
to the target entity, through the synapse. The initial change of value caused by
a state transition of the source entity causes finally a state transition to the tar-
get entity. In that way, synapses are a realization of the functional context of the
entity.

20.3.3 Core vs. Application Ontology

The ontology that supports the development of Ubiquitous computing applications
is divided in two basic layers: the Core and the Application layer. The discussed
approach is in line with the design criteria proposed in (Gruber, 1993) for efficient
development of ontologies:

– Maximum monotonic extensibility: new general or specialized terms can be
included in the ontology in such a way that it does not require the revision of
existing definitions.

– Clarity: terms which are not similar (common-sense terms vs. specialized domain
ontologies) are placed in different taxonomies.

Core ontology – represents core knowledge of the Ubiquitous computing envi-
ronment. This layer is designed to ensure syntactic and structural interoperability
between various artifacts. Since the core ontology describes the language that arti-
facts use to communicate and collaborate it must be the same for all artifacts. A key
issue is that the core ontology cannot be changed and contains only the necessary
information in order to be small. In that way even artifacts with limited memory
capacity can store and have access to the basic definitions. A graphical representa-
tion of the core ontology is given in Fig. 20.1. The basic classes of the core ontology
have been discussed in the previous section.

Application ontology – represents knowledge about the application environ-
ments such as specific type of users and artifacts and acquired knowledge through
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synapses. This layer is designed to ensure semantic interoperability. The knowledge
represented by application ontology is described as instances of the classes defined
in the core ontology. In that sense the application ontology is not a stand-alone
ontology as it does not contain the definition of its concepts and their relations.
The application ontology represents the description of each artifact that is related
with an application containing information about physical properties, plugs and the
services that are provided through these plugs. For example, the application ontol-
ogy of the eLamp artifact contains knowledge about the physical characteristics of
eLamp, such as luminosity, the description of a plug with an identifier “OnOff”
based on the definition provided by core ontology as well as the declaration that
this plug is associated with the service “light”. As services are the primary con-
stituents of Ubiquitous computing systems the application ontology must contain
specific service descriptions in order to support the service discovery and invoca-
tion mechanism. The application ontology describes also the synapses, the plugs
of the artifact that participate in synapses, and the information about the capabili-
ties/services of other artifacts that has been acquired via the synapses. Contrary to
core ontology, the size of which must be small, the size of the application ontology
can be as large as required, bounded only by the artifacts’ memory capacity. In addi-
tion, the application ontology is dynamic and can change over time without causing
problems to artifact collaboration. The dynamic nature of the application ontology
results from the knowledge that can be acquired through the various synapses that
may be established between artifacts.

20.4 Context Management Framework

20.4.1 Context Management Process

A Ubiquitous computing application typically consists of an infrastructure used to
capture context and a set of rules governing how the application should respond
to changes in this context. In order to isolate the user from the process of context
acquisition and management and on the other hand provide her with a Ubiquitous
computing system that enables the composition of context-aware applications we
propose that the system is organized in a hierarchy of levels.

The design approach for composing context-aware Ubiquitous computing appli-
cations needs to be backed by an engineering methodology that defines the correct
formulation of the context and behavior. The proposed context management pro-
cess is depicted in Fig. 20.2. The motivation for this process emerged from the fact
that artifacts in Ubiquitous computing environment may be in different “states” that
change according to the artifacts’ use by users and their reaction is based both on
users’ desires and these states.

The first step in this context management process is the acquisition of the low
level context, which is the raw data given by the sensors (Lexical Level). A set of
sensors are attached to an artifact so that to measure various artifact parameters, e.g.
the position and the weight of an object placed on an augmented table. As the output
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Fig. 20.2 Context
management process

of different sensors that measure the same artifact parameter may differ, e.g. sensors
may use different metric system, it is necessary to interpret the sensors’ output to
higher level context information (Syntactical/Representation Level). Aggregation
of context is also possible meaning that semantically richer information may be
derived based on the fusion of several measurements that come from different homo-
geneous or heterogeneous sensors. For example, in order to determine if an object
is placed on a table requires monitoring the output of table’s position and weight
sensors.

Having acquired the necessary context we are in a position to assess an arti-
fact state (Reasoning Level) and decide appropriate response activation (Planning
Level). Adopting the definition from Artificial Intelligence, a state is a logical propo-
sition defined over a set of context measurements (Russell and Norvig, 2003). This
state assessment is based on a set of rules defined by the artifact developer. The
reaction may be as simple as turn on an mp3 player or send an SMS to the user, or it
may be a complex one such as the request of a specific service, e.g. a light service.
Such a decision may be based on local context or may require context from exter-
nal sources as well, e.g. environmental context, location, time, other artifacts. The
low (sensor) and high (fused) level data, their interpretation and the local and global
decision-making rules are encoded in the application ontology. The basic goal of
this ontology is to support a context management process that is based on a set of
rules which determine the way that a decision is taken and must be applied on exist-
ing knowledge represented by this ontology. The description of the different types
of these rules is given in the next section.

20.4.2 Rules

The application model specifies the behavior of an application and in our case this
behavior is represented by Event-Condition-Action (ECA) rules. The categories
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of rules that will support the decision-making process in the context management
framework are as follows.

20.4.2.1 Rules for Artifact State Assessment

The left part of these rules denotes the parameters that affect the state of an arti-
fact and the thresholds or the values for these specific parameters that lead to the
activation of the rule, while the right part of these rules denotes the artifact state
that is activated. These rules support the “translation” of low level context (values
of parameters measured by sensors) to state assessment; they may also incorporate
the translation from low level context to high level context (e.g. perform a set of
operations to values measured by sensors like estimate the average value).

20.4.2.2 Rules for the Local Decision-Making Process

These rules exploit exclusively knowledge from the artifact that uses them. Their
left part denotes the artifact states that must be detected and their possible activation
level and their right part denotes the artifact requests and needs. When an artifact
has a specific need we can consider that it needs a type of service offered by another
artifact. When a rule from this category is activated, the artifact has to search its
synapses in order to find a synapse which is associated to another artifact plug that
provides the requested service. If such a synapse is found then the artifact can select
it in order to satisfy its need. The situations, where more than one synapse is found
that may be used to satisfy the request or no synapses are found, are handled by
the local decision process using another kind of rules. The rules that define the final
reaction of an artifact can be defined by the user or can be based on specifically
user-defined policies. These rules support both the context delivery and the reaction
of an artifact based on the local decision from state assessments.

20.4.2.3 Rules for the Global Decision-Making Process

These rules are similar to the rules for the local decision-making. Their main dif-
ference is that the rules for the global decision-making process have to take into
account the states of other artifacts and their possible reactions so that to preserve a
global state defined by the user.

20.4.3 Implementation

The architecture of the system that implements the aforementioned context manage-
ment and reasoning process is shown in Fig. 20.3. The core modules of this system,
Ontology Manager, Rule Manager and Inference Engine, are part of the updated
version of the GAS-OS kernel (Drossos et al., 2007).

The Ontology Manager is the module responsible for the manipulation of knowl-
edge represented into the artifact ontology. Specifically, it can only query the artifact
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Fig. 20.3 Systems’ architecture

common (core) ontology, since this ontology cannot be changed during the deploy-
ment of an application. On the other hand, it can both query and update the artifact
private (application) ontology. The basic functionality of the Ontology Manager is
to provide the other modules of the system with knowledge stored in the artifact
ontology by adding a level of abstraction between them and the ontology.

The Rule Manager manages the artifact rule base and is responsible for both
querying and updating this rule base. Note that the rules stored in an artifacts’ rule
base may only contain parameters, states and structural properties that are defined
into the artifacts’ private ontology. For the initialization of the context management
process, apart from the rules, a set of initial facts are necessary. The Rule Manager
is also responsible for the creation of a file containing the initial facts for an artifact.
For example an initial fact may define the existence of an artifact by denoting its
parameters, states and reactions that can participate in its rules and their initial val-
ues. In order to create such an initial fact, the Rule Manager uses knowledge stored
in the artifacts’ ontology. Subsequently, it queries the Ontology Manager for any
information that it needs, like the artifacts’ parameters, states and reactions.

The Inference Engine supports the decision-making process and is based on the
Jess rule engine (Java Expert System Shell) (Jess, 2007). In order to initialize its
process execution, the Inference Engine needs the artifact initial facts, which are
defined by the Rule Manager, and the rules stored in the rule base. Note that in the
current version of our system the rules in the rule base are stored in Jess format. The
Inference Engine is informed of all the changes of parameters values measured by
artifacts sensors. When it is informed of such a change, it runs all the rules of the
rule base. If a rule is activated, this module informs the artifacts operating system of
the activation of this rule and the knowledge that is inferred. The artifact’s state and
reaction is determined from this inferred knowledge.

The ontology describes the semantics of the basic terms of our model for
Ubiquitous computing applications and their interrelations. One of the ontology
goals is to describe the services that artifacts provide in order to support a service
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discovery mechanism. Thus the Ontology Manager provides methods that query
the ontology for the services that an artifact offers as well as for artifacts that pro-
vide specific services. GAS-OS gets from the Ontology Manager the necessary
service descriptions stored in the artifact local ontology, in order to implement a
service discovery mechanism. Finally the Ontology Manager using this mechanism
and a service classification can identify artifacts that offer semantically similar ser-
vices and propose objects that can replace damaged ones. Therefore, it supports the
deployment of adaptive and fault-tolerant Ubiquitous computing applications.

20.4.4 Engineering Applications

To achieve the desired collective functionality a user has to form synapses by
associating compatible plugs, thus composing applications using eEntities as com-
ponents. The idea of building Ubiquitous computing applications out of components
is feasible only in the context of a supporting component framework that acts
as a middleware. The kernel of such a middleware is designed to support basic
functionality such as accepting and dispatching messages, managing local hard-
ware resources (sensors/actuators), the plug/synapse interoperability and a semantic
service discovery protocol.

In terms of the application developer, plugs can be considered as context-
providers that offer high-level abstractions for accessing context (e.g. location, state,
activity, etc.). For example, an eLamp may have a plug that outputs whether the
eLamp is switched on or switched off and an eRoom a plug informing if some-
one is in this room or not. In terms of the service infrastructure (middleware), they
comprise reusable building blocks for context rendering that can be used or ignored
depending on the application needs. Each context-provider component reads input
sensor data related to the specific application and can output either low level con-
text information such as location, time, light level, temperature, proximity, motion,
blood pressure or high-level context information such as activity, environment and
mood. An artifact has two different levels of context; the low level which contains
information acquired from its own sensors and the high level that is an interpre-
tation of its low level context information based on its own experience and use.
Additionally an artifact can get context information from the plugs of other arti-
facts; this context can be considered as information coming from a “third-person
experience”.

The application developers may establish synapses between plugs to denote both
their preferences and needs and to define the behavior of the Ubiquitous computing
application. From the service infrastructure perspective, the synapses determine the
context of operation for each artifact; thus each artifact’s functionality is adapted to
the Ubiquitous computing application’s structure.

By providing users with this conceptual model, we manage to decouple the low-
level context management from the application business logic, which is captured
as expressions in terms of high-level concepts that are matched with services avail-
able in the current application context. Instead of the classical approach of using
established interfaces for resource access, this approach decouples the high-level
concepts from the instances implemented by each context.
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20.5 Prototype Application Example

20.5.1 Scenario

The example illustrated in this section deals with establishing communication
between plants and artifacts. The prototype is a Ubiquitous computing application
that is deployed in an indoor environment (e.g. home, office) and aims at facilitat-
ing the user in looking after her indoor plants. This ambient intelligence scenario
demonstrates the concept of “communicating plant” (Goumopoulos et al., 2004) in
the context of an every-day environment with several layers of decision-making.

The scenario is quite simple. A person has a plant in her office. However busy
she may be, she still loves to take care of the plant. Several everyday objects are
at her disposal for giving her an appropriate feedback (Lamp, MP3Player, Mobile
Phone). Our aim is to form such an application where the plant will be able to
provide the human with the appropriate feedback about its condition. The sequence
of the scenario’s interactions is shown in Fig. 20.4.

The core artifact is the ePlant, which is constructed by adding sensors to the soil
or the leaves of a plant. The ePlant “decides” whether it needs water or not by using
its sensor readings and the appropriate decision making mechanism incorporated
in it. The eCarpet is used to record whether the plant owner is inside her office or
has stepped outside. Similarly, a eMoodCube (a glass brick that the user can set in
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flowchart diagram
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one of six possible positions) is used to provide an indication whether the user is
available or not.

An augmented Lamp (eLamp) and an MP3Player (eMP3Player) are used to pro-
vide visual and aural notification respectively to the user. This notification is given
according to the status of the eMoodCube. If the eMoodCube is set to “Do not dis-
turb” status (which has been mapped by the plant owner to one of the six possible
positions), the user is not notified at all. Lastly, in the case the user is not in her office,
the application uses the eMobilePhone (an augmented Mobile Phone) to send her a
SMS and inform her about the watering needs of the plant.

20.5.2 Components

The artifacts that are necessary for the realization of the above scenario are described
as follows:

ePlant: The ePlant is capable of deciding whether it needs water or not, based
on its sensor readings. These sensors fall into two categories: Thermistors, that is
sensors that can perceive the temperature of the plants leaves and the environment
and Soil Moisture Probes, which are able to measure the moisture level of the soil.
Decision making rules, specific to the plant species, which combine the information
given from the sensors above in order to provide a concrete decision on the current
plant’s state, are added in the ePlant local ontology.

eMobilePhone: The eMobilePhone is a personal java enabled mobile phone,
used for sending SMS to other mobile phones. When it receives a request to
notify the user via an SMS, it will send the SMS to the corresponding telephone
number.

eLamp: The eLamp is an augmented floor lamp used for visual notifications. The
lamp switch is controlled by a micro-controller, which adjusts the state of the eLamp
accordingly.

eCarpet: The eCarpet is an augmented carpet with pressure sensors attached,
used for sensing the occupancy of the office (i.e. if the user is in the office). Based
on the sequence that the pressure sensors are pressed, the eCarpet is capable of
deducing if someone is entering or leaving a room, thus if the user is present
or not.

eMoodCube: The eMoodCube is a glass brick containing a set of colored light
bulbs with tilt switches attached. Each of the six different positions can be used for
defining the current status or mood of the user.

eMP3Player: The eMP3Player is used to play audio files.

20.5.3 Implementation

A high-level view of the plugs and synapses that are necessary for the implementa-
tion of the Smart Plant application is given in Fig. 20.5.
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Fig. 20.5 Plugs and synapses for the implementation of the smart plant application

We note that for the ePlant, eCarpet and eMoodCube, the evaluation of the state,
service or capability is based on a local decision making scheme, because the assess-
ment logic depends only on knowledge that is managed by the specific component
through its attached sensor network and rule-base. On the other hand, the service
provided by the eMobilePhone, eLamp and eMP3Player depends on a global deci-
sion making scheme, because the rules that govern the decision to offer a service
have to take into account the state and capability information of several eEntities.
For example, to decide whether to make the eLamp blink (as a visual notification
service to the user), we have to take into account the state of the ePlant, provided
by the NeedWater plug, the capability of the eCarpet to sense the presence of the
user in the office, provided by the OfficeOccupied plug, and the capability of the
eMoodCube to map the mood of the user, through the Mood plug. Thus, to turn on
or off the eLamp we have to define a rule that takes into account all the above plugs.

The following table summarizes the properties, plugs and operation rules (func-
tional schemas) of each eEntity participating in the Smart Plant application. This
knowledge is part of the application ontology defined for the application. We have
omitted information, such as physical properties, or other plugs, which may reflect
services that are not required by the specific application (Table 20.1).

By specifying the rule structure and semantics in an ontology that defines various
parameter and state types, as well as the arguments that the rules are based upon,
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we can use the ontology to verify the validity of the rules. This also facilitates the
inclusion of context parameters in rules, since we know the rule structure and the
value types of different arguments. Furthermore, the use of ontological descriptions
allows heterogeneous entities to interoperate and interact with one another in a way
dictated by the application domain under examination.

20.5.4 Semantic-Based Service Discovery

Service and resource discovery will play an integral role in the realization of
Ubiquitous computing systems. Since artifacts are resource limited, they must be
able to discover and use the services of neighboring devices. A service discovery
mechanism is needed so that if a synapse is broken, e.g. because of an artifact fail-
ure, another artifact that offers a semantically equivalent service could be found.
In the example application scenario discussed previously, suppose that the synapse
between ePlant and eLamp is broken because of eLamp failure. Then, a new artifact
having a property that provides the service “light” must be found. Therefore, for a
Ubiquitous computing environment the infrastructure must be enhanced to provide
a semantic-based service discovery, so that it is possible to discover all the relevant
services.

Since for the Ubiquitous computing applications a semantic service discovery
mechanism is useful and the replacement of artifacts depends on the services that
artifacts offer, a service classification is necessary. In order to define such a service
classification we first identified some services that various artifacts may offer; for
the application scenario discussed indicative services are presented in

Table 20.2. From these it is clear that the services offered by artifacts depend on
artifacts physical characteristics and/or capabilities and their attached sensors and
actuators.

Next we had to decide how we should classify the services. The classification
proposals that we elaborated are the following: by object category, by human senses
and based on the signals that artifacts sensors/actuators can perceive/transmit. We
decided to combine these proposals so that to describe a more complete classifi-
cation. So we initially defined the following elementary forms of signals that are
used: sonic, optic, thermal, electromagnetic, gravity and kinetic. These concepts are

Table 20.2 Services that may be offered by artifacts

Artifact Offered services

ePlant needs water yes/no, needs nutrients yes/no, species, other physical
characteristics.

eCarpet object on it yes/no, objects’ position, direction, pressure, weight, frequency
eMoodCube current position
eMobilePhone send sms, send email, make phone call, get calendar, get contacts
eLamp switch on/off, light, heat
eMP3Player sound, sound volume, kind of music, play/pause/stop, next/previous track
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divided into lower level services (subclasses); e.g. the sonic service may be music,
speech, environmental sound, and noise. Additionally services may have a set of
properties; e.g. sonic can have as properties the volume, the balance, the duration,
the tone, etc. Finally we enriched this classification by adding services relevant to
environmental information, like humidity and temperature.

We have defined a lightweight Resource Discovery Protocol for eEntities (eRDP)
where the term resource is used as a generalization of the term service. The pro-
tocol makes use of typed messages codified in XML. Each message contains a
header part that corresponds to common control information including local IP
address, message sequence number, message acknowledgement number, destina-
tion IP address(es) and message type identification. The prototype was written in
Java using J2ME CLDC platform. kXML is used for parsing XML messages.

One of the ontology goals is to describe the services that the artifacts provide
and assist the service discovery mechanism. In order to support this functionality,
the Ontology Manager provides methods that query the application ontology for
the services that a plug provides as well as for the plugs that provide a specific ser-
vice. Therefore, the Ontology Manager provides to the calling process the necessary
knowledge (which is retrieved from the artifact) that is relevant to the artifact ser-
vices, in order to support the service discovery mechanism. Similarly the Ontology
Manager can answer queries for plug compatibility and artifact replace-ability.

Let’s return to the scenario discussed above, where the synapse between ePlant
and eLamp is broken. We said that when this happens, the system will attempt to find
a new artifact having a plug that provides the service “light”. The system software
is responsible to initiate this process by sending a message for service discovery
to the other artifacts that participate in the same application or are present in the
surrounding environment. This type of message is predefined and contains the type
of the requested service and the service’s attributes. A description of the eLamp
service is shown in Fig. 20.6.

When the system software of an artifact receives a service discovery message,
it forwards the message to the Ontology Manager. Let’s assume that the artifact
eBunny is available and that this is the first artifact that gets the message for service
discovery. The eBunny Ontology Manager firstly queries the application ontology of
eBunny in order to find if this artifact has a plug that provides the service “light”. If

<res_spec>
<res name> eLamp </ res name>
<res classification> light </res classification >
<res id> eRDP:PLUG:CTI-RU3-eLamp-ONOFF_PLUG </res id  >
<res location> 150.140.30.5 </res location> 
<res data> <attrName=“power” type=”bool” value=”false”
<attrName=”luminocity” type=”integer”, value=”10”
</res data>
<res timestamp> 4758693030 </res timestamp>
<res expiry> Never </res expiry>
</res_spec>

Fig. 20.6 XML description of eLamp service
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we assume that the eBunny has the plug “LampBlink” that provides the service light,
the Ontology Manager will send to the system software a message with the descrip-
tion of this service. If such a service is not provided by the eBunny, the Ontology
Manager queries the eBunny application ontology in order to find if another artifact,
with which the eBunny has previously collaborated, provides such a service. In case
of a positive answer it returns as a reply the description of this service. If the queried
artifact, in our example the eBunny, has no information about an artifact that pro-
vides the requested service, the control is sent back to system software, which is
responsible to send the query message for the service discovery to another artifact.

20.6 Conclusions

The ontology and the context management framework that we developed sufficiently
supports the composition of context-aware Ubiquitous computing applications from
everyday enhanced physical objects and it also address a number of key issues of
such applications like application model dynamic adaptability and semantic service
discovery. The context model that we selected for both these Ubiquitous computing
applications is the same ontology-driven model.

Future Ubiquitous computing environments will involve hundreds of interact-
ing and cooperating devices ranging from unsophisticated sensors to multi-form
actuators. Although the majority of these devices may have limited resources (com-
putation, memory, energy, etc) or may be only oriented to certain tasks, their
collective behavior that results from local interactions with their environment may
cause coherent functional global patterns to emerge. Hence, the combination and
cooperation of locally interacting artifacts with computing and effecting capabil-
ities may trigger the continuous formation of new artifact ecologies that provide
services not existing initially in the individuals and exhibit them in a consistent and
fault-tolerant way. As these societies are dynamically reconfigured aiming at the
accomplishment of new or previous related tasks, their formation heavily depends
not only on space and time but also on their context of previous local interactions,
previous configured teams, successfully achieved goals or possibly failures. This
means that in order to initially create, manage, communicate with, and reason about,
such kinds of emergent ecologies, we need somehow to model and embed to these
entities social memory, enhanced context memory, and shared experiences. One step
to this end is the design and implementation of evolving multidimensional ontolo-
gies that will include both nonfunctional descriptions, and rules and constraints of
application, as well as aspects of dynamic behavior and interactions.
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Chapter 21
Category Theory as a Mathematics
for Formalizing Ontologies

Michael John Healy

21.1 Introduction

This chapter has a twofold purpose. First, since a knowledge of category theory
is uncommon, it serves as a tutorial in this subject. The intent is to provide a suf-
ficient background for the chapters by Baianu and Poli, Johnson and Rosebrugh,
Kalfoglou and Schorlemmer, Kent, and Vickers, and in this spirit examples are pro-
vided along with explanation. Second, since a knowledge of both the potential and
current application of category theory is also uncommon, this Introduction attempts
to motivate the tutorial by providing some discussion of why this subject is worth
the concentrated effort required to learn about it.

Category theory is a recent branch of mathematics and, as one might expect,
expresses a special meaning of the term “category” that differs somewhat from the
common informal use. The common use derives from that of Aristotle: A class or
collection of things all of one type, where typicality is determined by a mental rep-
resentation or concept. To Aristotle a category had an overall, abstract sense of that
which determines membership within it: substance, quality, position, etc. would be
categories determined by explanation and argument among philosophers. In much
modern work, a concept is often represented as a set of “features” such as shape,
color, or function. In the classical view, all examples of a concept – often called cate-
gory members – are equally good representatives of it. However, recent research has
led to the view that members have degrees of typicality (Medin, 1989); for example,
a domestic cat may be seen as a more typical feline than a tiger. In fact, the structure
within a category determined by relationships among members is a subject of much
current research. Ultimately, this leads back to the more classical idea that concepts
are closed systems of knowledge, where items are categorized based upon explana-
tion rather than typicality alone. In the modern view, the explanatory determinant
or concept for a category determines an internal structure given by relationships
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among its members, which may in turn suggest degrees of typicality. Put another
way, the relationships reflect the fundamental knowledge expressed in the concept
that explains why something is a member of the category; it is included because of
its sharing of certain features with certain other somethings.

Since ontology is often regarded as a categorization of that which exists, issues
involving structure in categories are important. Since more than one category may
be involved, relationships between categories are also worth considering, and thus
there is a structure determined by the categories and their relationships as well. This
implies a two-level notion of structure: between and within categories. But why stop
there? In modern research, there are hierarchies of categories within categories, so
there can be many levels of structure. In fact, as we shall see, relationships can
themselves have relationships, which leads to the notion that there are categories
whose members are relationships.

Further, there can be levels within a structure; that is, the relationships within
many categories form a hierarchical structure. Often, this takes the form of a hier-
archy of abstractions or – in the opposite direction – specializations. To give a
taxonomic example of this, consider a system of categories of types of animals,
where the categories are related by superordination; for example, the category of
birds is a superordinate of the category of robins. Categories of this kind, related by
superordination, form a hierarchical structure which is also a category. The superor-
dinate, bird category is more abstract in the sense that fewer descriptive features
are needed to characterize birds than would be required for a full characteriza-
tion of robins. Therefore, the superordinate category, because its concept imposes
fewer constraints on membership, has relatively more members. The perceptual and
other features defining typicality of members of a “basic” category such as “dog” or
“domestic cat” are greater in number than those determining membership in a super-
ordinate such as “mammal”, where features are equivalenced or deleted or specific
descriptions such as “has retractable claws” are replaced by an abstraction such as
“has nails”.

Another important facet of categories is the notion of relationships between struc-
tures. Consider the superordination relationship between the categories “domestic
cats” and “mammals”. Within this relationship, each member of the category
“domestic cat” corresponds to (has a manifestation as) a member of the category
“felines”, and each feline (there are many more of these, including tigers, etc.) has
in turn a manifestation as a “mammal”; by ignoring the constraints specializing
“domestic cat” category members, we obtain members of the category “felines”,
and further ignoring the constraints specifying felines, one obtains members of the
category “mammals”. The fact that we can associate each member of a category
with a unique member of a superordinate category implies that the superordination
relation on a pair of taxonomic categories is an example of what mathematicians
call a mapping. Notice that in the example, the superordination relation is transitive:
Each domestic cat corresponds to a feline and each feline corresponds to a mammal,
and, hence, each domestic cat corresponds to a mammal. We say that the individual
superordination relationships are composable. As we shall see, this is a special case
of a fundamental property of structural relationships.
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As it turns out, all that has been said in the foregoing can be formalized – or
approximated by a formalization, if you prefer – in the mathematical discipline of
category theory. Indeed, category theory is the mathematical theory of structure,
and its greatest significance lies in its capacity to express relationships between
structures. An elementary example of this is the superordination relation between
categories discussed in the preceding paragraph. As was mentioned initially, how-
ever, the mathematical notion of a category is different from that in common use,
and would be if for no other reason than that it must be precise according to the
usual criterion of mathematical rigor. It differs in other ways as well. The use of
the term “category theory” arose out of studies of the relationship between differ-
ent kinds of mathematical structure. Specifically, in algebra, one studies operations
on numbers – or for permutation groups on geometric shapes or on particles in
physics, one studies symmetries or orientations of a shape or the allowed config-
urations (manifestations, states) of a particle in a mult-dimensional configuration
space. In topology, on the other hand, one studies continuity, as in the continuous
functions of calculus. There are different algebraic and topological systems, and
operations and continuity are two wholly different concepts – and are two sides
of mathematics. Yet, certain algebras have structures – multiples of an integer, for
example – that are directly related to certain topological structures – a “rubber-
sheet” space such as a bagel or a tire, which includes a hole, for example. The
study of the relationship between these two kinds of structure was the beginning of
category theory. Each kind of structure – algebraic and topological – forms a math-
ematical category. Each category has members, called objects – algebras in one,
topological spaces in the other. These are related in pairs – an algebra to a space.
But they are categories because of their internal structure. Algebras are related; for
example, an Abelian group, exemplified by the operation of addition on the inte-
gers, is also a group, which type includes also permutation groups which generally
behave nothing like the integers other than sharing the basic operation of a group
(addition in the integer example, concatenation of permutations in the other). Spaces
are also related, by continuous functions. Because of these facts, the importance of
category theory stems from the importance it attaches to the following concept: A
relationship between two categories involves more than just a pairing of objects
from each; it is intimately involved with the pairing of the relationships between
objects in the two categories. This will be explained in greater detail, with exam-
ples drawn from computer science. For now, realize that there is a distinction in the
use of the term “category” in this and the other mathematical chapters. At the most
general level, category theory is useful because it provides a vehicle for the formal-
ization of ontologies with mathematical rigor. Formalisms based in mathematical
logic allow individuals to be represented with variables and constants in formu-
las. These are accompanied by a model-theoretic foundation that allows an analysis
of the instances that satisfy the closed formulas, or sentences, of a theory in the
logic. The sentences separate the instances, called models, into categories and state
constraints on them. This provides a structure on and within the models – classes of
individuals, functions mapping individuals between classes, and sub-classes defined
by predicates.
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Kalfoglou and Schorlemmer (Schorlemmer and Kalfoglou, 2005) view an ontol-
ogy as a theory in formal logic. They introduce a category-theoretic notion of
semantic alignment between ontologies, by which they mean a system of relation-
ships (morphisms – see the next section) which they call an information system.
An information system shows how the terms in different ontologies are associated.
Category theory has proven not only a powerful medium for expressing struc-
tures and their relationships (theories, for example), but also has led to a new
paradigm in their study known as categorical logic. Vickers discusses a formalism
in a categorical logic and its accompanying model theory based upon set-theoretic
interpretations. This logic has been used for formal specifications for software and
for analyzing database semantics (Vickers, 1992). Kent describes the categorical
formalism used in the Information Flow Framework (IFF) (Kent, 2003). The latter
provides a framework for ontology development and use within category theory.
Here, the categories include categories of theories, of models, and items related to
formal concept analysis (FCA), making it possible to communicate between the
categorical and FCA formalisms. The result is a mathematical system for knowl-
edge representation that can be applied to investigations in ontology. Johnson and
Rosebrugh describe an approach for ontology formalization that has proven par-
ticularly effective in solving problems for enterprise information systems (Colomb
et al., 2001); for example, it has provided a new and more general theory-based and
yet practical solution method for the view updating problem in database manage-
ment (Johnson and Rosebrugh, 2001). Baianu and Poli propose a new paradigm for
the study of the many levels of reality and complex systems, from physical (atoms,
molecules, etc) to biological to social and beyond. They propose a combination of
category theory and novel mathematical frameworks which they call non-Abelian
mathematics (Baianu et al., 2007).

There are many applications of category theory, most of them recent. Application
areas in addition to those already mentioned include other kinds of logic (Lawvere,
1963; Goguen and Burstall, 1984; Meseguer, 1989; Goguen and Burstall, 1992;
Crole, 1993), system theory (Goguen, 1973), software synthesis (Burstall and
Goguen, 1980; Jullig and Srinivas, 1993; Williamson and Healy, 2000), the math-
ematical study of biological systems (Rosen, 1958; Baianu, 1988; Ehresmann and
Vanbremeersch, 1997; Gust and Kühnberger, 2005; Healy and Caudell, 2006), and
other efforts in the formalization of ontologies (Uschold et al., 1998; Dampney et al.,
2001). The following sections provide an initial exploration of category theory.

21.2 Categories

Category theory grew out of the mid-1940s investigations of Samuel Eilenberg and
Saunders Mac Lane into the relationships between certain kinds of mathemati-
cal structures. F. William Lawvere’s 1963 paper (Lawvere, 1963) opened up the
field of categorical logic and model theory and has led to the widespread use of
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category theory in mathematical semantics. The reader interested in acquiring depth
in category theory or seeing more examples of its applications is encouraged to
consult one of the available introductory texts, including (Mac Lane, 1971; Adamek
et al., 1990; Pierce, 1991; Walters, 1991; Crole, 1993; Lawvere and Schanuel, 1995).

The Introduction elaborated on the non-mathematical notion of categories in
terms of the notion of structure. Thinking of structure brings a graphical picture
to mind; after all, structure is, at the most basic level, a system of interrelated items,
where the relationships between items appear as links. Consider, then, the structure
consisting of all the subsets of a set. Here, the links express the subset relation,
where X ⊆ Y is shorthand for “X is a subset of or is the same set as Y”. This means
that any element of X is also an element of Y, that is, x ∈ X implies x ∈ Y . Here
is where the graphical notion, with the subset relationships as links, ends. Notice
that if also Y ⊆ Z , then the transitivity of the ⊆ relation can be used to infer
the additional relationship X ⊆ Z . The hyponymy relation on noun synsets in
WordNet (see Chapter 10, by Fellbaum, this volume) provides another example of
transitivity. Transitivity makes a relational system more than a graph; it makes a
relation compositional. Functions defined on sets also express composition. A func-
tion f from X to Y associates each element x of a set X, denoted x ∈ X , with a
unique element y ∈ Y (notice that there is no requirement that a function must map
some x to every y, and many x’s may map to one y). This relationship is represented
externally to X and Y as f : X −→ Y and internally, or elementwise, by the function
evaluation y = f (x) . A numerical example is given by the expression y = x2 ,
defining a function f : R −→ (R+ ∪ { 0 }) , where R and R+ ∪ { 0 } denote the
sets of real numbers and nonnegative real numbers, respectively. If X, Y and Z are
sets and f : X −→ Y and g: Y −→ Z are functions and x ∈ X , the composition
g ◦ f : X −→ Z maps x as (g ◦ f )(x) = g(f (x)) , obtaining g(f (x)) ∈ Z by way of
f (x) ∈ Y .

The uses of function composition in mathematics are legion, and so are its uses
in computational theory. A simple example is that of data type coercion in com-
puter programming. It is sometimes desirable to use a data item of one type as an
argument to a computerized function whose arguments are of a different type. A
popular C language programming book (Kernighan and Ritchie, 1988) provides the
example of converting a member of the integer data type int to a double preci-
sion value, of type double, when it is desired to find the square root of an integer,
where the sqrt function in C requires an argument of type double. Letting int
and double serve as mathematical names for the sets of computer-representable
members of the types int and double, respectively, let (double) : int →
double denote mathematically the type conversion function and sqrt:
double → (double ∪ E) denote the square root function. Here, E is a set
of elements of an error type, to provide for occurrences such as the domain error in
which the double argument to sqrt is negative. Mathematically, the type coer-
cion followed by sqrt evaluation is the composition (sqrt ◦ (double)): int
→ (double ∪ E). In category theory, a composition like this is illustrated with a
diagram that is said to commute:
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int

(double)
(sqrt◦(double))

double
sqrt

(double ∪ E)

A non-compositional relation can usually be replaced with little or no loss
of expressive power by a compositional one. For example, the “is the son
(daughter) of” relation can be replaced by the “is a descendant of” or “is a male
(female) descendant of” relation. However, the single primitive upon which classi-
cal set theory is based – the element relation ∈ , where for example x ∈ X – is
inherently not compositional in nature. Category theory, on the other hand, is based
upon a primitive −→ that represents a compositional relation, a −→ b on entities
a and b. As a consequence, powerful as it is, set theory has had to share with its
newer cousin category theory the role of fundamental mathematical theory.

A category is a mathematical structure consisting of entities of some kind
together with the relationships between them that express the structure. Formally,
a category consists of objects (the entities) and morphisms (the relationships),
together with a law of composition for the morphisms. Generically, the notation
for a morphism of a category C is f : a −→ b , where a and b are objects of C;
a and b are called the domain and codomain, respectively, of f (f and f : a −→ b
are used interchangeably when the context is clear). Given morphisms f : a −→ b
and g: b −→ c in C, where the domain of g is the codomain b of f, there must exist
in C a morphism g ◦ f : a −→ c , their composition. Composition is associative,
meaning that in triples of morphisms which have a domain-to-codomain match by
pairs, f : a −→ b , g: b −→ c and h: c −→ d , the result of successively forming
compositions is order-independent, so that h ◦ (g ◦ f ) = (h ◦ g) ◦ f : a −→ d .
Also, for each object a, there is an identity morphism ida: a −→ a such that the
equations ida ◦ g = g and f ◦ ida = f hold for any arrows f : a −→ b and
g: c −→ a .

That this notation is identical with the function composition notation ◦ of the
preceding section is no coincidence, for in the first categories studied the morphisms
were functions with special properties. Categories are still a novelty to many people,
while sets are more familiar and, indeed, category theory has a place for them: The
category Set (or Sets , to some authors) has sets as its objects and (total) functions as
its morphisms. In the C programming example of the previous section, the sets int,
double and (double ∪ E) are objects of Set and the functions (double),sqrt,
and (sqrt ◦ (double)) are morphisms. Another example of a category is given
by any lattice: There is exactly one morphism for each pair of objects a, b for which
a ≤ b holds. The transitive property: a ≤ b and b ≤ c implies a ≤ c , yields
the composition operation, which is easily seen to be associative, and the identity
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morphism for a is a ≤ a . Lattices also provide an elementary example of two
mathematical constructs built on composition, colimits and limits, which in a lattice
are the join or least upper bound and meet or greatest lower bound. This is because a
lattice is a partial order in which every pair of elements (a, b) has a join a ∨ b and
also a meet a ∧ b . These two examples, any lattice and Set, represent two extremes
in the following sense. A lattice has at most one morphism in a single direction
between two distinct elements. For two objects of Set, however, there can be many
morphisms in both directions.

The equations of category theory are commutative diagrams (or commuting dia-
grams). Informally, a diagram in C is simply a collection of objects and morphisms
of C. The domain and codomain objects of a morphism are considered part of it,
so these are automatically included in the diagram if the morphism is included. In
a commutative diagram, any two morphisms with the same domain and codomain,
where at least one of the morphisms is the composition of two or more diagram mor-
phisms, are equal. This is a formalization of the notion that there can be more than
one way to obtain a particular relationship by passing through intermediaries. For a
simple example, consider the category N+| in which the objects are nonzero natural
numbers and in which there is a morphism |n,m: n −→ m exactly when n is a divi-
sor of m, n | m . In fact, this is a lattice in which composition is just the transitive
property of the divisor relation and the join and meet of two elements are their least
common multiple (lcm) and greatest common divisor (gcd), respectively. The dia-
gram commutes, expressing the fact that the knowledge that 2 | 24 can be obtained

24

4

|4,24

6

|6,24

2
|2,4 |2,6

|2,24

either by knowing that 2 | 4 and 4 | 24 , or that 2 | 6 and 6 | 24 . The diagram
expresses this as an equality of compositions, |4,24 ◦ |2,4= |2,24= |6,24 ◦ |2,6 .
Here, the common domain of the two compositions is 2 and their common codomain
is 24, and they are equal because there is only one divisor relationship between 2
and 24. Of course, the lcm of 4 and 6 is 12, or 4 ∨ 6 = 12 , which would yield a
different commutative diagram. In general, a commutative diagram is a graph-like
expression of a system of equations involving compositions of morphisms, a useful
way of visualizing a system of constraints on mathematical structures in a category.

The principle of duality is a fundamental notion in category theory. The dual or
opposite Cop of a category C has the same objects but the arrows and compositions
are reversed, (g ◦ f )op = f op ◦ gop . The dual of a statement in category theory is
the statement with the words “domain” and “codomain”, “initial” and “final”, and
the compositions reversed. If a statement is true of a category C, then its dual is
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true of Cop . If a statement is true of all categories, the dual statement is also true
of all categories because every category is dual to its dual. Roughly speaking, “half
the theorems of category theory are obtained for free”, since proving a theorem
immediately yields its dual as an additional theorem; see any of (Adamek et al.,
1990; Pierce, 1991; Mac Lane, 1971).

In addition to the widely-used notion of duality, category theory provides a math-
ematically rigorous notion of “isomorphism”, a term which is often used in a loose,
intuitive sense. One sometimes hears a statement such as “the two [concepts, data
types, program constructs, etc.] are in some sense isomorphic”. If the entities under
discussion can be formalized as objects in a category, one can make such statements
with mathematical rigor. If a, b are objects of a category C such that there exist
arrows f : a −→ b and g: b −→ a with f ◦ g = idb and g ◦ f = ida , then
the morphism f is called an isomorphism (as is g also) and g is called its inverse
(and f is called the inverse of g), and the two objects are said to be isomorphic. The
property of an identity morphism ensures that isomorphic objects in a category are
interchangeable in the sense that they have the same relationships with all objects of
the category. In the category Set an isomorphism is a bijective function or bijection
f : X −→ Y . That is, f (x) = f (x′) implies x = x′ (f is one-to-one, or injective)
and for all y ∈ Y , there exists x ∈ X with y = f (x) (f is onto, or surjective). In
N+| , the only isomorphisms are identities, n | n .

An initial object of a category C is an object i that serves as the domain of a
unique morphism f : i −→ a for every object a of C. A terminal object t is the
dual notion, obtained by reversing arrows in the definition of i – that is, it serves as
the codomain of a unique morphism f : a −→ t for every object a of C. It is easy
to show that all initial objects in a category are isomorphic, and ditto for terminal
objects. For initial objects, suppose that i, i′ are initial in C. Then, applying initiality
to each object, there must be unique morphisms f : i −→ i′ and f ′: i′ −→ i . But
the compositions f ′ ◦ f : i −→ i and f ◦ f ′ : i′ −→ i′ must be unique as well,
implying that f ′ ◦ f = idi : i −→ i and f ◦ f ′ = idi′ : i′ −→ i′ . Therefore, i and
i′ are isomorphic. Terminal objects in C are isomorphic by duality. The empty set,
∅ , is the single initial object of Set, since for any set a there is a unique function
f : ∅ −→ a whose domain is ∅ and whose codomain is a, namely, the vacuous
function, since there are no elements in ∅ to map to an element of a. There is an
infinite number of terminal objects in Set, namely the singletons {x} , since there is
a single function f : a −→ {x} mapping the elements of any set a to x.

21.3 Limits, Colimits, and Concepts as Theories

An important use of commutative diagrams and terminal and initial objects is in
the definition of a limit of a diagram and the dual type of quantity, a colimit. In the
many important categories in which they exist universally, colimits express complex
structures in terms of simpler sub-structures. Colimits will be described here in some
detail because of the author’s familiarity with them in applications; limits are equally
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important where they exist, and they can be described by dualizing the following
discussion. See Mac Lane (1971) for an in-depth mathematical treatment of limits
and colimits.

Consider an example � of a diagram in a category C as shown in Figs. 21.1
and 21.2, with objects a1, a2, a3, a4, a5 and morphisms f1 : a1 −→ a3, f2 :
a1 −→ a4, f3 : a2 −→ a4, f4 : a2 −→ a5 . The cone-like extensions of � shown,
such as K in Fig. 21.1, have an apical object b and leg morphisms gi : ai −→ b
(i = 1, . . . , 5) , where for each object of � there is a gj having that object as
domain and b as codomain. These have the property that the triangles formed by
each fi and two of the gj commute, g1 ◦ f1 = g2 = g3 ◦ f2 and g3 ◦ f3 = g4
= g5 ◦ f4 . The structure K is called a cocone for �. In general, a diagram can
have many cocones or it can have few or none, depending upon the available objects
and morphisms in C. Given cocones K′ and K′′ for � in Fig. 21.2 , with respective
apical objects b′, b′′ and leg morphisms g′i and g′′i (i = 1, . . . , 5) , a cocone

b

K Δ

a3 a4 a5

a1

f1 f2

a2

f3 f4

Δ

g1 g2 g3
g4 g5

Fig. 21.1 A cocone for a
diagram �

b

b

h

K

K

a3 a4 a5

a1

f1 f2

a2

f3 f4

Δ

g 1

g 2
g 3

g 4

g 5

g 1

g 2

g 3 g 4
g 5

Fig. 21.2 A cocone
morphism h: K′ −→ K′′ in
coc�
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morphism with domain K′ and codomain K′′ is a C-morphism h: b′ −→ b′′ having
the property

g′′i = h ◦ g′i (i = 1, . . . , 5) . (21.1)

That is, h is a factor of each leg morphism g′′i of K′′ with respect to the correspond-
ing leg morphism g′i of K′. Re-using the symbol h for notational efficiency, we
denote the cocone morphism determined by the C-morphism h as h: K′ −→ K′′ .

With morphisms so defined, and the composition for cocone morphisms fol-
lowing directly from the composition for C-morphisms, the cocones for � form
a category, coc� . A colimit for the diagram � is an initial object K in the category
coc� . That is, for every other cocone K′ for �, there exists a unique cocone mor-
phism h: K −→ K′ . If the cocone in Fig. 21.1 is a colimit, the original diagram
� is called its base diagram and � , formed by adjoining K to �, is its defining
diagram. Note that, as all initial objects are isomorphic, all colimits for a given base
diagram are isomorphic.

Limits are the dual notion to colimits; that is, the one notion is obtained from the
other by “reversing the arrows” and interchanging “cocone” and “cone” and “initial”
and “terminal”. Limits are as important as colimits, but many of their applications
differ. A very important kind of limit, called a product, occurs in many categories; its
base diagram is discrete, having objects but no morphisms. The limit of a diagram
with two objects a and b is illustrated in Fig. 21.3. The limit cone has an apical
object denoted a × b ; its cone leg morphisms, denoted πa : a × b −→ a and
πb : a × b −→ b , are called projections. An arbitrary cone with apical object
c and leg morphisms f : c −→ a and g : c −→ b is shown to illustrate the
terminal cone property of the product. That is, there is a unique morphism denoted
(f , g) : c −→ a × b such that f = πa ◦ (f , g) and g = πb ◦ (f , g) . Products
are the familiar cartesian products of sets in Set, which has products for all discrete
diagrams including infinite ones.

A theory morphism shows how the symbols of its domain theory map into corre-
sponding quantities in its codomain theory, transforming the axioms of its domain

c

f g

a × b

a b

(f, g)

πa πb

Fig. 21.3 A product is a
limit for a discrete diagram
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into axioms or theorems of its codomain. Let us view an example which, although
almost trivial, illustrates this idea. The following is a theory expressed in a sorted
first-order logic:

Theory Red

sorts Colors, Items

op has_color: Items, Colors -> Boolean

const red: Colors

Axiom red-is-expressed is

exists (it: Items) (has_color (it,red))

end

It has sorts for colors and items of an unspecified nature; sorts are an alternative to
the use of predicates for distinguishing different classes of objects expressed in a
theory. The sorts are to be interpreted as sets in any model of the theory (assum-
ing that the theory is to be interpreted using sets). Operation symbols such as
has_color are to be interpreted as total functions. The operation has_color
has two arguments, a color and an item, and maps a pair of these to a Boolean
value indicating truth or falsehood (“the item x has the color y”, true or false).
Of course, there is really no color theory here, so the models of this theory
can be practically anything. The single axiom decrees that there exists an item
that is red, where red is a constant of sort Color. Next, consider the following
theory:

Theory RYG

sorts Colors, Apples

op has_color: Apples, Colors -> Boolean

const red: Colors

const yellow: Colors

const green: Colors

Axiom some-apple-colors is

exists (x, y, z: Apples)

(has_color (x,red))

and (has_color (y, yellow))

and (has_color (z, green))

end

The theory RYG is just slightly more complex and specialized. Its single axiom
decrees that there exists an apple of each one of the three colors red, yellow, green
(or not, depending upon whether a model of this theory really has anything to do
with apples or colors; in any case, it says that there are at least three items each
of which satisfies a two-argument predicate together with a distinct one of three
items of a different sort). Now consider a morphism from Red to RYG, expressed as
follows:
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Morphism s : Colors �→ Colors

Items �→ Apples

has_color �→ has_color

red �→ red

This morphism appears to do nothing because each symbol is mapped to itself. This
can be very important, however, because it expresses the importation of Red into
RYG. In order for s to be a theory morphism, the axiom of Red must map, through
symbol translation, to an axiom or a theorem of RYG. Trivially, it maps to a theorem,
so s is a theory morphism. But there is more than one morphism with Red as domain
and RYG as codomain. Consider the following perfectly valid morphism:

Morphism s′ : Colors �→ Colors

Items �→ Apples

has_color �→ has_color

red �→ yellow

This extremely simple example can be used to illustrate an important point. A
concept hierarchy can be expressed as a lattice, where a lattice link (a morphism)
simply means that its codomain is at least as abstract as its domain. However, a the-
ory category is more expressive than a lattice. Its “links” are theory morphisms,
oriented in the direction of specialization, opposite abstraction. Each morphism
expresses more than just the fact that its codomain is at least as specialized as its
domain; it expresses how, in what sense it is specialized. Therefore, using a the-
ory category to express a concept hierarchy conveys significantly more information
about the hierarchical structure.

The effect of this on analysis can be seen in the categorical constructs made
available. First, it allows concepts to be “calculated” as colimits of relatively abstract
concepts by “blending” theories along shared sub-theories in a diagram. In Fig. 21.1,
for example, let a3, a4 and a5 be theories such as RYG and let a1, a2 represent
sub-theories such as Red. The colimit theory b is a specialization derived from the
diagram. The “blending” is a consequence of the commutative triangles in the defin-
ing diagram: where two triangles have a common side, such as g2 : a1 −→ b , the
image of the domain a1 of g2 must appear only once within the combination of
a3, a4 within b. This cannot be accomplished simply by forming what some call a
union of theories, because such a union entails no sharing, only a disjoint combina-
tion. In fact, the union of theories is just the colimit of a discrete diagram, which,
being the dual notion to a product, is called a coproduct. The colimit provides an
example of the idea that certain philosophical notions can be formalized with math-
ematical rigor, at least in so far as the concept representation of the theory category
is a philosophically useful one. In this example, the base diagram morphisms f1, f2
and f3, f4 can be seen as sharings of ontological commitment to theory a1 by theo-
ries a3, a4 and to a2 by a4, a5 . For examples, see Jullig and Srinivas (1993; Healy
and Williamson (2000). Colimits have a history of use in system theory, software
synthesis and knowledge representation (Goguen, 1973; Burstall and Goguen, 1977;
Goguen and Burstall, 1992).



21 Category Theory as a Mathematics for Formalizing Ontologies 499

Dually to colimits, limits represent abstraction, deriving a theory that expresses
what theories in a diagram express in common given the theories within which they
are used via the morphisms. Colimits exist for all diagrams in a theory category,
but limits exist only for certain diagrams, making the situations they express special
in some sense. Limits play a fundamental role in an important class of categories
called topoi, where limits for finite diagrams always exist (Mac Lane and Moerdijk,
1992), as do colimits. Geometric logic arises in a natural way from a certain kind of
topos (Vickers, 1992), and the chapter by Vickers, although not making it explicit,
draws on a topos of theories which are derived from topoi.

As a final note, theories include not just their presentations, which are shown
here, but also their theorems and quantities definable given the presented sym-
bols. The distinction is essential if a strict definition of “presentation morphism” or
“specification morphism” is to be enforced as opposed to the more general “theory
morphism”, but that is not the case here.

21.4 Structural Mappings

The importance of category theory lies in its ability to formalize the notion that
things that differ in matter can have an underlying similarity of form, or structure. A
house plan exists as a complex of forms either inscribed in ink on paper or electron-
ically within a computer. The plan can be implemented many times, with variations
in the fine details of construction. Each instance of building a house from the plan
can be thought of as a mapping from the structure detailed in the architectural plan
to a structure made of wood, brick, stone, metal, wallboard, and other materials. The
material substances of the plan and the house may differ in each case, but the struc-
ture given in the plan is essentially the same in the constructed house. The import
of this statement is that the mapping of the details in the plan to the details of the
constructed house is more than just an association between elements, associating a
particular line in a floor plan with a particular wall of the house, for example: It is
also a mapping of structural relationships – for example, two lines that denote walls
in a floor plan and meet at a corner must map individually to two walls that meet at
a corner in the corresponding position in the house.

A structure-preserving mapping between categories, a functor F: C −→ D with
domain category C and codomain category D, associates to each object a of C a
unique object F (a) of D and to each morphism f : a −→ b of C a unique mor-
phism F(f ): F(a) −→ F(b) of D, such that F preserves the compositional structure
of C, as follows (see Fig. 21.4). Just this once, let symbols ◦C and ◦D denote
the composition operations in categories C and D, respectively. Normally, symbols
such as ◦ are “overloaded” to denote the same kind of thing appearing in different
contexts. Now, preservation of structure means that for each composition g ◦C f in
C, F must satisfy the equation F(g ◦C f ) = F(g) ◦D F(f ) , and for each identity
morphism of C, F(ida) = idF(a) . As a consequence, F preserves commutativity,
that is, the F-image of a commutative diagram in C is a commutative diagram in D,
and isomorphisms are preserved because identities are preserved. These facts, taken
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Fig. 21.4 A functor
preserves composition,
F(g ◦C f ) = F(g) ◦D F(f )

together, mean that any structural constraints expressed in C are translated into D
and, hence, F is truly a structure-preserving mapping.

For a simple example, let N+| be the divisibility category for the positive natural
numbers as before. Let N≤ denote the category whose objects are all the natu-
ral numbers ( 0, 1, 2, 3, . . . ) and with a morphism ≤n,m: n −→ m exactly when
n ≤ m . Let the functor F: N+| −→ N≤ be defined as follows. The image of each
positive natural number n is itself, that is, F(n) = n , and the image of |n,m is given
by F(|n,m) =≤n,m . That F can be defined is a consequence of the fact that n | m
implies n ≤ m . Notice that the compositional structure of N+| is appropriately
preserved, F(|m,r) ◦ F(|n,m) =≤m,r ◦ ≤n,m=≤n,r = F(|n,r) . Therefore, F is a
functor.

Not only are there structure-preserving mappings between categories, but also
structure-preserving relations between the mappings themselves. After building one
house of many to be built from a plan, experienced builders can transfer lessons
learned from one to the next without having to refer back to the plan for every detail,
as long as this transfer is consistent with the plan. Also, there could be changes
to details that do not affect the plan structure – finish work, say – requiring only
changes made in going from house to house. By analogy – thinking of each house
as a “functor” – this transfer of practice must be consistent with the two mappings
from the structure specified by the plan to the fitting-together of building materials.
The transfer of structural detail from one functor to another is captured in the notion
of a natural transformation α : F −→ G with domain functor F : C −→ D
and codomain functor G : C −→ D . This consists of a system of D-morphisms
αa , one for each object a of C , such that the diagram below commutes for each
morphism f : a −→ b of C . That is, the morphisms G(f ) ◦ αa: F(a) −→ G(b) and
αb ◦ F(f ): F(a) −→ G(b) are actually one and the same, G(f ) ◦ αa = αb ◦ F(f ) .
In a sense, the two functors have their morphism images F(f ) : F(a) −→ F(b) ,
G(f ) : G(a) −→ G(b) “stitched together” by other morphisms αa,αb existing in
D , indexed by the objects of C. Composition of the morphisms along the two paths
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leading from one corner F(a) of a commutative square to the opposite corner G(b)
yields the same morphism, independently of the path traversed.

F(a)
F (f)

αa

F(b)

αb

G(a)
G(f)

G(b)

Functors and natural transformations underlie the constructs of computer science
(Pierce, 1991; Walters, 1991; Crole, 1993). Pierce describes the functor List :
Set −→ Mon that maps each set X to the monoid (ListX , ∗, [ ]) where ListX

is the set of finite strings, or lists, that can be formed from the elements of X; thus,
List(X) = (ListX , ∗, [ ]) . A monoid is an algebra (A, σ e) where A is a set,
σ : A× A −→ A is a binary operation on A mapping pairs of elements to elements,
z = σ (x, y) where x, y, z ∈ A , and e, where e ∈ A , is an identity element for
σ . Binary operations are normally written in infix form, so one writes σ (x, y) as
x σ y . The element e has the property that x σ e = x and e σ x = x for all x ∈ A .
Pairs of equations like this with a common left or right hand side are condensed
to the form x σ e = x = e σ x . The monoid operation σ is also associative,
x σ (y σ z) = (x σ y) σ z . The monoid operation σ for (ListX , ∗, [ ]) is list con-
catenation [x1, x2, . . . , xn] ∗ [y1, y2, . . . , ym] = [x1, x2, . . . , xn, y1, y2, . . . , ym] ,
where x1, x2, . . . , xn, y1, y2, . . . , ym ∈ X ; e is the null list [], where for exam-
ple, [x1, x2, . . . , xn] ∗ [ ] = [x1, x2, . . . , xn] . A monoid homomorphism h :
(A, σ , e) −→ (A′, σ ′, e′) is a function h : A −→ A′ that preserves the monoid
operation, h(x σ y) = h(x) σ ′ h(y) and h(e) = e′ . Notice that h has been used in
two ways here, to denote both a homomorphism and its underlying set function. This
is common practice among algebraists, and is used by mathematicians in other fields
as well for economy of notation. The objects of the category Mon are monoids and
its morphisms are monoid homomorphisms.

The fact that List is a functor, and not just a function from sets to monoids,
can be seen by applying it to any function on list elements (which are elements of
sets) as the familiar maplist operator: If X and Y are sets (objects of Set) and
f : X −→ Y is a function (a morphism of Set), then

List(f )([x1, x2, . . . , xn])= [f (x1), f (x2), . . . , f (xn)]

=maplist(f )([x1, x2, . . . , xn]).

This shows the underlying set function of List(f ) with domain ListX and
codomain ListY . It is easily shown that List(f ) is a monoid homomorphism
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List(f ) : (ListX , ∗, [ ]) −→ (ListY , ∗, [ ]) (hereafter written List(f ) :
List(X) −→ List(Y) ), that is, that

List(f )([x1, x2, . . . , xn] ∗ [y1, y2, . . . , ym]) =
List(f )([x1, x2, . . . , xn]) ∗ List(f )([y1, y2, . . . , ym])

and List(f )([ ]) = [ ] . For our purpose, it is more instructive to show that List
itself is a functor. Note that if f : X −→ Y and g: Y −→ Z are Set morphisms, then
for a monoid element [x1, x2, . . . , xn] of ListX ,

List(g ◦ f )([x1, x2, . . . , xn]) = [(g ◦ f )(x1), (g ◦ f )(x2), . . . , (g ◦ f )(xn)]
= [g(f (x1)), g(f (x2)), . . . , g(f (xn))]
= List(g)([f (x1), f (x2), . . . , f (xn)])
= List(g)(List (f )([x1, x2, . . . , xn]))
= (List(g) ◦ List(f ))([x1, x2, . . . , xn]),

and therefore List(g ◦ f ) = List(g) ◦ List(f ) . Finally,

List(idX)([x1, x2, . . . , xn]) = [idX(x1), idX(x2), . . . , idX(xn)]
= [x1, x2, . . . , xn]
= idList (X)([x1, x2, . . . , xn]),

so List(idX) = idList (X) .
An example of a natural transformation is given by the reversal operation on

lists, rev : List −→ List , whose component for each object X of Set is the
monoid homomorphism revX : List(X) −→ List(X) , defined on elements
[x1, x2, . . . , xn] ∈ ListX by revX([x1, x2, . . . , xn]) = [xn, . . . , x2, x1] . Then,
for any Set morphism f : X −→ Y ,

(List(f ) ◦ revX)([x1, x2, . . . , xn]) = List(f )(revX([x1, x2, . . . , xn]))
= List(f )([xn, . . . , x2, x1])
= [f (xn), . . . , f (x2), f (x1)]
= revY ([f (x1), f (x2), . . . , f (xn)])
= revY (List(f )([x1, x2, . . . , xn]))
= (revY ◦ List(f ))([x1, x2, . . . , xn]).

Then revX : List(X) −→ List(X) and revY : List(Y) −→ List(Y)
commute with the List-image of any f : X −→ Y , and therefore, rev is a
natural transformation mapping the functor List to itself.

21.5 Categories of Categories, Functors, and Natural
Transformations

Applications of category theory inevitably involve functors, many with special
properties. Often, in fact, they involve categories of categories and functors, and
categories of functors and natural transformations. Two functors F : C −→ D
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and G : D −→ E , where C, D, and E are categories, have a composition
G ◦ F : C −→ E , defined as follows using two C-morphisms f : a −→ b and
g : b −→ c of C :

(G ◦ F)(g ◦C f ) = G(F(g ◦C f )) = G[F(g) ◦D F(f )] = G(F(g)) ◦E G(F(f ))

Natural transformations have two (quite natural!) notions of composition. First,
consider three functors having the same domain and codomain category, R, S, T :
C −→ D , and two natural transformations α : R −→ S and β : S −→ T .
The vertical composition of α and β , β · α : R −→ T , is defined simply by
forming the compositions of the corresponding components αa : R(a) −→ S(a)
and βa : S(a) −→ T(a) , (β · α)a = βa ◦ αa , which after all are just mor-
phisms of D, the common codomain category of the three functors (the reason
for using · rather than ◦ to denote vertical composition will be made clear
presently). For any pair a, b of objects of C, the resulting commutative diagram
for β · α is obtained by “pasting together” the commutative diagrams for α and
β along their common side as shown below. Commutative diagrams with a com-
mon side can always be merged to form a larger diagram. In this case, simply
observe that

(βb ◦ αb) ◦ R(f ) = βb ◦ (αb ◦ R(f ))
= βb ◦ (S(f ) ◦ αa)
= (βb ◦ S(f )) ◦ αa

= (T(f ) ◦ βa) ◦ αa

= T(f ) ◦ (βa ◦ αa)

R(a)
R(f)

αa

R(b)

αb

S(a)
S(f)

βa

S(b)

βb

T (a)
T (f)

T (b)

The compositions of functors and natural transformations as defined are both
easily shown to be associative. In addition, for each category C there is an identity
functor idC: C −→ C mapping its objects and morphisms to themselves, and also
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an identity natural transformation idF : F −→ F for each functor F : C −→ D
which has the identity morphisms idF(a) : F(a) −→ F(a) of D as components.
This leads to the notion of categories in which the objects are categories and the
morphisms are functors, and also the notion of functor categories DC for categories
C and D, which have functors F: C −→ D as objects and natural transformations
with vertical composition as the morphisms.

In fact, many applications involve both kinds of natural transformation compo-
sition. Consider two pairs of functors S, T : C −→ D and S′, T ′ : D −→ E and
two compositions S′ ◦ S, T ′ ◦ T : C −→ E . The horizontal composition of two
natural transformations α : S −→ T and β : S′ −→ T ′ is a natural transforma-
tion β ◦ α : S′ ◦ S −→ T ′ ◦ T whose components (β ◦ α)a : (S′ ◦ S)(a) −→
(T ′ ◦ T)(a) for each object a of C can be obtained via either of the two compositions
T ′(αa) ◦ βS(a) or βT(a) ◦ S′(αa) . This is because the diagram on the right below
commutes, since β is natural for morphisms of D, and, in particular, for the mor-
phisms αa . Actually proving that β ◦ α is natural involves more diagrams but is
not difficult; see the classic book (Mac Lane, 1971). The diagram on the left shows
the overall situation involving the three categories, two pairs of functors, and two
natural transformations.

C

S

α D

S

β E

T T

S S(a)
βS(a)

S (αa)

T S(a)

T (αa)

S T (a)
βT (a)

T T (a)

Oddly enough, functors can be composed with natural transformations. This is
because a functor T can be regarded as the natural transformation idT : T −→ T .
Letting S = T in the above right-hand diagram and α = idT , and thinking
of T also as idT , one defines a composition which is usually denoted βT by the
equations βT = β ◦ T = β ◦ idT . Making the appropriate substitutions in the
diagram shows that a typical component of βT is (βT)a = βT(a) . On the other
hand, letting, instead, S′ = T ′ and β = idT′ , one obtains T ′α by the equations
T ′α = T ′ ◦ α = idT′ ◦ α, with typical component (T ′α)a = T ′(αa) .

Having both vertical and horizontal composition leads to categories having a two-
dimensional structure. Because the identity natural transformations are the same for
both compositions, these are called 2-categories. Both kinds of composition can
be applied to the simpler functor categories DC with certain restrictions. The case
E = D = C yields a 2-category CC of endofunctors T: C −→ C which includes
compositions of the form αT and Tα. Mac Lane’s classic is probably the best refer-
ence for vertical and horizontal composition, as with most of the concepts discussed
in this section.
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21.6 Universal Arrows and Adjunctions

The images of the objects and morphisms of a category C mapped into a category
D by a functor S: C −→ D typically cover only a part of D. In many cases, S is
accompanied by morphisms in D that act as prime factors in connecting an arbitrary
object d of D with the objects S(c). Such morphisms are called universal arrows.
Formally, a universal arrow from d to S is a pair (r, u) , where r is an object of C and
u is a morphism u: d −→ S(r) of D, such that for every D-morphism of the form
f : d −→ S(c) , there is a unique C-morphism f ′ : r −→ c in C with f = S(f ′) ◦ u .
The picture for this involves a C-arrow and a commutative triangle in D:

In C

r

f

c

S

In D

d
u

f

S(r)

S(f )

S(c)

The dual notion of a universal arrow from S to d is obtained by reversing
the arrows u, f , and f ′ and the order of composition but leaving everything else
unchanged (in particular, notice that dualizing does not mean reversing the func-
tor). In either case, the occurrence of universal arrows entails a special relationship
between C, D, and S.

To illustrate, let us make further use of the example involving the functor
List : Set −→ Mon, as does Pierce (1991). First, recall that the monoid homo-
morphism symbol List(f ) , where f : X −→ Y is a set function (morphism), was
overloaded so that it meant both the homomorphism List(f ) : (ListX , ∗, [ ]) −→
(ListY , ∗, [ ]) and its underlying set function List(f ) : ListX −→ ListY ,
as is common practice. This practice will continue here where needed for econ-
omy of notation, however, this example will now involve a functor U that will
make the distinction between monoids and their underlying sets explicit. For an
arbitrary monoid (A, σ , e) , let U(A, σ , e) denote the operation of extracting its
underlying set, so that A = U(A, σ , e) ; so, now, ListX = U(ListX , ∗, [ ]) .
Likewise, the underlying function of a monoid homomorphism h : (A, σ , e) −→
(A′, σ ′, e′) can be expressed as either of the equivalent forms U(h) : A −→ A′
and U(h) : U(A, σ , e) −→ U(A′, σ ′, e′) . Similarly, applying U to List(f ) yields
U(List(f )) : U(ListX , ∗, [ ]) −→ U(ListY , ∗, [ ]) , which is another way of
expressing the set function U(List(f )) : ListX −→ ListY .

Now let X be an arbitrary object of Set and let ηX : X −→ ListX be the function
that maps each element x ∈ X to the singleton list [ x ] in the set of lists ListX ,
which is just another name for U(ListX , ∗, [ ]) . Let (A, σ , e) be an arbitrary
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monoid, and let f : X −→ U(A, σ , e) be a function (note carefully: f is an arrow in
Set). Stated another way, f : X −→ A , so for each x ∈ X , there must be a unique
monoid element f (x) ∈ A . Correspondingly, there is a monoid homomorphism
(note: an arrow in Mon ) ψ(f ) : List(X) −→ (A, σ , e) obtained as follows: Let
ψ(f )([ ]) = e , ψ(f )([ x ]) = f (x) where x ∈ X , and ψ(f )([ x1, x2, . . . , xn ]) =
f (x1) σ f (x2) σ . . . σ f (xn) . This is easily shown to define a homomorphism: Simply
note that

ψ(f )([x1, x2, . . . , xn] ∗ [y1, y2, . . . , ym])
= ψ(f )([x1, x2, . . . , xn, y1, y2, . . . , ym])
= f (x1) σ f (x2) σ . . . σ f (xn) σ f (y1) σ f (y2) σ . . . σ f (ym)
= (f (x1) σ f (x2) σ . . . σ f (xn)) σ (f (y1) σ f (y2) σ . . . σ f (ym))
= ψ(f )([x1, x2, . . . , xn]) σ ψ(f )([y1, y2, . . . , ym]).

The underlying set function of the homomorphism ψ(f ) : List(X) −→ (A, σ , e)
can now be extracted, yielding a Set morphism U(ψ(f )) : U(List(X)) −→
U(A, σ , e) . Then for x ∈ X , (U(ψ(f )) ◦ ηX)(x) = U(ψ(f ))(ηX(x)) =
U(ψ(f ))([ x ]) = f (x) , since U(ψ(f )) simply extracts the underlying set function f
of ψ(f ) . Therefore, ηX is a universal arrow from X to U. The situation is pictured
as follows with the monoids displayed in full:

In Mon

(ListX , ∗, [ ])

ψ(f)

(A, σ, e)

U

In Set

X
ηX

f

U(ListX , ∗, [ ])

U(ψ(f))

U(A, σ, e)

But there is more to this example, this time in Mon : For any monoid
(A, σ , e) , the universal arrow from List to (A, σ , e) is the arrow ξ(A, σ , e) :
List(U(A, σ , e)) −→ (A, σ , e) , or ξ(A, σ , e): (ListA, ∗, [ ]) −→ (A, σ , e) ,
whose underlying function is defined on [a1, a2, . . . , an] ∈ ListA by
ξ(A, σ , e)([a1, a2, . . . , an]) = a1 σ a2 σ · · · σ an . The proof that it is a homomor-
phism is identical with that for the homomorphism ψ(f ) . To see that ξ(A, σ , e) is
universal as stated, let h: List(X) −→ (A, σ , e) be an arbitrary homomorphism
given some object X of Set. Because h is a homomorphism,

h([x1, x2, . . . , xn]) = h([ x1 ] ∗ [ a2 ] ∗ · · · ∗ [ an ])
= h([ x1 ]) σ h([ x2 ]) σ · · · σ h([ xn ]).

Now, for each singleton [ x ] ∈ ListX , h([ x ]) is an element of the underlying set
A, h([ x ]) ∈ A . This says that there is an arrow φ(h): X −→ A = U(A, σ , e) in Set
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given by φ(h)(x) = h([ x ]) . Then, List(φ(h)): List(X) −→ List(U(A, σ , e))
is given by List(φ(h))([x1, x2, . . . , xn]) = [φ(h)(x1), φ(h)(x2), . . . , φ(h)(xn) ] .
Then

h([x1, x2, . . . , xn]) = h([ x1 ]) σ h([ x2 ]) σ · · · σ h([ xn ])
= φ(h)(x1) σ φ(h)(x2) σ · · · σ φ(h)(xn)
= ξ(A, σ , e)([φ(h)(x1), φ(h)(x2), . . . , φ(h)(xn) ])
= ξ(A, σ , e)(List(φ(h))([x1, x2, . . . , xn]))
= (ξ(A, σ , e) ◦ List(φ(h)))([x1, x2, . . . , xn]).

This shows that h = ξ(A, σ , e) ◦ List(φ(h)) . Therefore, ξ(A, σ , e) is a universal
arrow from List to (A, σ , e) . The situation is pictured as follows:

In Mon

List(X)

List(φ(h))
h

List(U(A, σ, e))
ξ(A, σ, e)

(A, σ, e)

U

List

In Set

X

φ(h)

U(A, σ, e)

Let us replay the picture involving the universal arrow ηX , where the picture
below has been modified so that the actions of both functors U and List are
explicitly shown, as was done for the picture involving ξ(A, σ , e) :

In Mon

List(X)

ψ(f)

(A, σ, e)

U

List

In Set

X
ηX

f

U(List(X))

U(ψ(f))

U(A, σ, e)

Now notice that there is evidently a function η assigning a universal arrow ηX

to each object X of Set and also a function ξ assigning a universal arrow ξ(A, σ , e)
to each object (A, σ , e) of Mon. In fact, replacing X in the picture for η by its
identical functor image idSet(X) is suggestive, because η: idSet −→ U ◦List is a



508 M.J. Healy

natural transformation; simply notice that the following diagram in Set commutes,
where f : X −→ Y , shown as idSet(f ) : idSet(X) −→ idSet(Y) , is a Set morphism:

idSet(X)
ηX

idSet(f)

(U ◦ List)(X)

U(ψ(f))

idSet(Y )
ηY (U ◦ List)(Y )

(The sense of this diagram has been rotated ninety degrees compared to previously-
shown diagrams for natural transformations.) A similar diagram can be constructed
for the natural transformation ξ : List ◦ U −→ idMon . It can also be shown that
φ and ψ are natural transformations on certain categories, such that there is a one-
to-one correspondence between the pairs of arrows h and φ(h) , f and ψ(f ) used to
illustrate the example.

There are yet more aspects to this example, and there is a resulting symmetry
between the two systems of universal arrows and Set, Mon, U and List . This
kind of situation occurs very often in category theory and is so important that it
is given a name: adjunction. The functor List is called the left adjunct (or left
adjoint) of the functor U, and U is called the right adjunct (or right adjoint) of
List . Adjunctions are central to mathematical semantics, and it is with regret that
this chapter must end without further exploration of this concept. Even more regret-
tably, no attention has been given to topoi, another concept essential for semantics.
The chapters by Johnson and Rosebrugh and Kent do explore adjunctions, and
Vickers explores geometric theories, which are derived from topoi.
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Chapter 22
Issues of Logic, Algebra and Topology
in Ontology

Steven Vickers

22.1 Introduction

In my book “Topology via Logic” (Vickers, 1989) I motivated the application of
topology to computer science by presenting topologies as observational accounts
of (e.g.) computer programs, with open sets representing observable properties and
the axioms of topology reflecting a logic of observations. This developed ideas of
Smyth and Abramsky, and seemed to provide a useful explanation of how topologies
were used in denotational semantics.

The logic involved (geometric logic) is well known in topos theory, and has a
predicate form going somewhat beyond the propositional logic of my book. This
chapter is presented as an ontological examination of the logic, developing the
observational ideas in my book. (To some extent these were already sketched in
Vickers (1992).)

The title mentions logic, algebra and topology, which together cover vast parts
of mathematics, and indeed geometric logic does have deep and subtle connections
with all those. It should, however, be clear that a short chapter such as this cannot
give a comprehensive survey of the connections between those parts of mathematics
and ontology. Instead, we shall focus on geometric logic as a case study for an onto-
logical examination, and briefly mention its connections with those broader fields.
The logic brings together topology and algebra in some rather remarkable ways, and
has an inherent continuity.

We shall describe in fair detail the presentation of geometric logic as given in
Johnstone (2002b), and from this technical point of view there is little new. However,
we shall also use that as the basis for a novel ontological discussion, with particu-
lar emphasis on the question What is the ontological commitment of the logic? The
logic in itself avoids certain ontological problems with classical logic, and that is our
primary reason for choosing it as a case study. However, we shall also see that the
mode of presentation in Johnstone (2002b), using sequents rather than sentences, in
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itself facilitates the analysis. This is because it makes a clear distinction between for-
mulae and axioms, and that reflects an ontological distinction between observations
and hypotheses.

Our naive view of ontological questions is that they concern the connection
between symbols and the world. Russell (1945, Chap. XVIII, Knowledge and
Perception in Plato) says that for a symbolic formula to exist we must demonstrate
an instance of it in the world. If we say “lions exist, but unicorns don’t”, then to
prove our point with regard to lions, we go to the zoo and identify something that
we can agree is an instance of “lion”. Of course, this presupposes an understanding
of what would constitute such an instance, but we think the scenario is a plausible
one. Another day we instead go looking for a unicorn and this time our outing is
less successful. Despite our seeing a rhinoceros, a goat with a horn missing, a plas-
tic toy unicorn and a royal coat of arms, none of these seems truly satisfactory and
we return home still not knowing whether unicorns exist. Nonetheless, we can agree
it was still worth trying.

This ontological connection between symbols and world is clearly not in itself
part of formal logic. Nonetheless, we shall argue informally how formal features of
the logic can make it easier to analyse the informal connection.

Our main thesis has two parts.
First, we shall be arguing that a formal logic (with connectives and rules of infer-

ence) carries a certain ontological commitment to how it could be interpreted “in
the real world”. Classical first-order logic uses various symbols that on the face of it
have a straightforward relationship with concepts of everyday life: ∧ (conjunction)
means “and”, ∨ (disjunction) means “or”, ¬ (negation) means “not”, → (implica-
tion) means “implies”, ∀ (universal quantification) means “for all” and ∃ (existential
quantification) means “for some”. However, we shall argue that the way classical
logic deals with these adds up to a very strong ontological commitment that could
be problematic in reality. Specifically, negation (¬), implication (→) and universal
quantification (∀) cannot be expected to have a uniform interpretation on the same
level as conjunction (∧) and disjunction (∨). This suggests a need to consider other
less standard logics to describe “the real world”.

In fact, even in formal mathematics this need can make itself felt. The strong
ontological commitment of classical logic can be sustained in formal mathe-
matics (in particular, in set theory), but only because that ontological commit-
ment is already built in to the way set theory is formalized. In other settings
it may cause problems. One example we shall briefly mention later (Section
22.6.1) is sheaves over a topological space X. The geometric logic that we shall
describe was invented to be used with sheaves, and indeed for more general
contexts known as toposes. That background is not needed here, but it means
there is a well established mathematical setting in which geometric logic can be
interpreted.

The second part of our thesis is that it is fruitful to examine the ontological com-
mitment of geometric logic, and explore how it might be interpreted in “the real
world”. We do not claim that it is the right logic to use, but it avoids the more
immediate problems of classical logic.
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In Section 22.6 we shall touch on the relationship with categories, a pervasive
theme in other chapters in this collection.

22.2 Ingredients of Logic

We first review the ingredients of logic. We shall adopt a sequent approach, specifi-
cally that set out in Johnstone (2002b). Technically, this is all well established (apart
from some of the notation); what is new is the ontological discussion. We include
enough in this Section to show how the sequent approach facilitates a more careful
ontological analysis. In Section 22.3 we shall discuss in more detail geometric logic
and an ontology for it.

A many-sorted, first-order signature has a set of sorts, a set of predicate sym-
bols, and a set of function symbols. Each predicate or function symbol has an arity
stipulating the number and sorts of its arguments, and (for a function) the sort of its
result. A predicate symbol with no arguments is propositional, while a function with
no arguments is a constant. We shall express the arities of predicates and functions
thus:

P ⊆ A1, ..., An (for a predicate)
P ⊆ 1 (for a proposition)
f : A1, ..., An → B (for a function)
c : B (for a constant)

These symbols in the signature are extra-logical – outside the logic. They are
meaningless until interpreted. Since the nature of the interpretation will be very
important in our ontological discussion, we shall introduce a non-standard notation
that makes the interpretation quite explicit. Suppose we have an interpretation that
we call M. Mathematically, M must interpret each sort A as a set, the carrier for A,
which we shall write as {M|A}.

Note that we do not presume that {M|A} has any elements. The normal account
of classical logic requires each carrier to be non-empty, but this is actually a big
ontological commitment.

A function symbol f : A1, ..., An → B is used to construct terms of sort B by
applying f to n arguments of sorts A1, . . . , An. In M, therefore, the interpretation of
f should tell us how, if we are given arguments in the form of values ai ∈ {M|Ai},
there is then a corresponding result f (a1, . . . , an) ∈ {M|B}. Hence f is interpreted as
a function from the cartesian product

∏n
i=1{M|Ai} to {M|B}. To simplify notation

we shall write {M|A1, . . . , An} for that cartesian product, and to simplify it further
we shall often use vector notation {M|�A}. Then the vector (a1, . . . , an) = �a ∈ {M|�A}
and the interpretation of f is as a function

{M|f } : {M|�A} → {M|B}.
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A constant c : B is a function in the special case of having no arguments and so is
interpreted as an element

{M|c} ∈ {M|B}.

For a predicate P ⊆ A1, ..., An, the interpretation needs to say for which argument
tuples �a ∈ �A the predicate P(a1, . . . , an) is true. Hence it is equivalent to specifying
a subset of the set of all tuples (of the right sorts):

{M|P} ⊆ {M|�A}.

Just as with constants, a proposition P ⊆ 1 is a predicate in the special case
of having no arguments. This is, as one would expect, interpreted as a truth value.
However, we can also see this as a special case of predicates with arguments. If the
vector �A is empty – its length is zero – then for {M|�A} we are looking for the “carte-
sian product of no sets”. The most natural interpretation of this is the 1-element set
whose only element is the empty (zero length) vector ε (say). A subset {M|P} ⊆ {ε}
is determined solely by the truth value of ε ∈ {M|P}. If the truth value is true then
{M|P} = {ε}, while if the truth value is false then {M|P} = ∅. Any one-element set
will do for this purpose, which is why we write P ⊆ 1 to say that P is a propositional
symbol.

Once the signature is given, terms can be built up in the usual way. A term will
usually contain variables, and if �x is a list of distinct variables xi, each with a stip-
ulated sort σ (xi), then we say that a term t is in context �x if all its variables are
amongst the xis. We also say that (�x.t) is a term in context.

• Each variable x is a term of sort σ (x).
• Suppose f : A1, ..., An → B is a function symbol in the signature, and for each

i (1 ≤ i ≤ n), ti is a term in context �x of sort Ai. Then f (t1, . . . , tn) (or f (�t)) is a
term in context �x of sort B.

If an interpretation M is given for the signature, then it extends to all terms.
Consider a term in context (�x.t) of sort σ (t). If values �a ∈ {M|σ (�x)} are given, then
they can be substituted for the variables �x and then the whole expression can be
evaluated in an obvious way to get an element of {M|σ (t)}. Thus the term in context
is interpreted as a function

{M|�x.t} : {M|σ (�x)} → {M|σ (t)}.

More systematically, we can say how to evaluate this using the structure of t.
The simplest case is when t is just one of the variables, say xi. Then the function

is the projection function

{M|�x.xi}(�a) = ai.
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Note something important here. The context has variables that are not used in the
term, but they still influence the way the term is interpreted. We cannot define the
interpretation of the term xi without also knowing what context �x it is taken to be in.

Now suppose we have a term of the form f (�t) where each ti is a term in context
�x. Once we have calculated {M|�x.ti}(�a) for these subterms, then we can say

{M|�x.f (�t)}(�a) = {M|f }({M|�x.t1}(�a), . . . , {M|�x.tn}(�a)).

In the special case where the context �x is empty (so the term is closed – it has no
variables), we use exactly the same procedure but bearing in mind that the vector �a
is empty (ε). This gives us a function from {ε} to {M|σ (t)}, which is equivalent to
picking out an element {M|ε.f (�t)} ∈ {M|σ (f (�t))}.

Next we look at formulae in context. We start by describing all the ways that
formulae can be constructed in classical first-order predicate logic. However, we
shall later retreat from this in the face of problems that are essentially ontological in
nature, problems of what kind of interpretations are envisaged. The standard account
does not meet these problems. The reason is that it takes its interpretation in the
formal set theory of mathematics, and that formal theory already presupposes the
ontological commitment of classical logic.

•  (true) and ⊥ (false) are formulae in any context.
• Suppose P ⊆ A1, ..., An is a predicate in the signature, and for each i (1 ≤ i ≤ n),

ti is a term in context �x of sort Ai. Then P(t1, . . . tn) is a formula in context �x.
• If s and t are terms in context �x, and their sorts σ (s) and σ (t) are the same, then

s = t is a formula in context �x. (We make equality an explicit part of the logic,
rather than relying on its introduction as a predicate in the signature.)

• If φ and ψ are formulae in context �x, then so too are φ ∧ ψ (φ and ψ), φ ∨ ψ
(or), φ→ ψ (implies) and others to taste.

• If φ is a formula in context �x, then so is ¬φ.
• If φ is a formula in context �xy, then (∃y)φ and (∀y)φ are formulae in context �x.

Note that it is the free variables of a formula that appear in its context – the bound
variables do not. However, it is possible for a context to include variables that are
not used in the formula. For example,  and ⊥ have no free variables but can be
considered in any context.

Just as with terms, the interpretation {M|�x.φ} of a formula in context depends
on the context, not just the formula. {M|�x.φ} will be a subset of {M|σ (�x)} =∏n

i=1{M|σ (xi)}. This allows us to discuss the interpretation of formulae in a more
discerning way than if we just took the free variables of a formula to be its context
(which is what the standard account in effect does).

The interpretation of formulae in context can now be defined from their structure.
Here are the rules. We take �a ∈ {M|σ (�x)}, in other words �a is a list with each ai in
{M|σ (xi)}.
{M|�x. } = {M|σ (�x)}, {M|�x.⊥} = ∅. (Note how the interpretation depends on the

context.)
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�a ∈ {M|�x.s = t} if {M|�x.s}(�a) = {M|�x.t}(�a) as elements of {M|σ (s)}.
�a ∈ {M|�x.φ ∧ ψ} if �a ∈ {M|�x.φ} and �a ∈ {M|�x.ψ}.
�a ∈ {M|�x.φ ∨ ψ} if �a ∈ {M|�x.φ} or �a ∈ {M|�x.ψ}.
�a ∈ {M|�x.¬φ} if �a /∈ {M|�x.φ}.
�a ∈ {M|�x.φ → ψ} if �a /∈ {M|�x.φ} or �a ∈ {M|�x.ψ}. (This conforms with the

logical equivalence (φ→ ψ) ≡ (¬φ ∨ ψ).)
�a ∈ {M|�x.(∃y)φ} if there is some b ∈ {M|σ (y)} such that �ab ∈ {M|�xy.φ}.
�a ∈ {M|�x.(∀y)φ} if for every b ∈ {M|σ (y)} we have �ab ∈ {M|�xy.φ}.
In essence, this is the Tarskian definition of semantics: ∧ is “and”, ∨ is “or”, etc.

22.2.1 Interpretations and Ontology

If ontology is the discussion of being, or existence, then our position is that inter-
pretations are the basis of this discussion. It is the interpretation that provides
the instances of formulae. As we have stated it, these instances are elements of
sets, and at first we understand those as mathematical constructs in formal set
theory. However, for any kind of philosophical or applicational discussion we
shall want to be able to conceive of M as the “real-world interpretation” of the
signature, with each {M|�x.φ} a collection of real-world things. Though this connec-
tion is informal, we shall later look at how this ambition might affect the formal
logic.

The use of particular connectives represents an ontological commitment that
those connectives should have meaning in the setting where we find our interpre-
tations. To see how this could be a problem, let us examine negation. In the example
of “there is a lion”, we went to the zoo, saw a lion, and believed. But what about its
negation, “there is no lion”? How do we ascertain the truth of that? Certainly it is
not enough to visit the zoo and fail to see a lion. Maybe there are lions at the zoo,
but they all happen to be asleep in a private part of the cage, or we looked in the
sealion pool by mistake. Or maybe there are no lions at the zoo, but there are some
on the African savannah. We know how to recognize lions, and we know how to
ascertain their existence by seeing one. But that does not tell us at all how to ascer-
tain their non-existence. In other words, there is no uniform ontological account of
negation.

Implication is even worse than negation, since negation is a special case of it –
¬φ is equivalent to φ→⊥.

Similarly, there is no uniform ontological account of universal quantification. We
might know how to recognize brownness in lions, but that would not tell us how to
ascertain the truth of “all lions are brown”.

We shall admit only those formulae that use the connectives to which we are
prepared to make the ontological commitment in the interpretations we are con-
sidering. For those connectives, we shall take it that the rules given above for
determining {M|�x.φ} still make sense, so {M|�x.φ} is well defined as a “set” in
whatever interpretational sense it is that we have in mind.



22 Issues of Logic, Algebra and Topology in Ontology 517

22.2.2 Theories and Models

If � is a signature, it is usual to define a theory over � to be a set of sentences
over �, where a sentence is a formula in the empty context. However, we have now
envisaged making an ontological restriction to the admissible formulae, and that
may rule out implication and negation. It is hardly possible to conduct logic without
them, since they lie at the heart of the notion of logical deduction. We shall give
a slightly different definition of “theory” that allows for this. This sequent form of
logic is well known. We shall follow closely the presentation in Johnstone (2002b).

Definition 22.1 A sequent over � is an expression φ #�x ψ where φ and ψ are
formulae (with whatever connectives we are using) in context �x.

This can be read as meaning the sentence (∀x1 · · · ∀xn)(φ → ψ), but in logics
without→ and ∀ this will not be a formula.

Definition 22.2 A theory over � is a set T of sequents over �, called the axioms of
T. An interpretation M satisfies the sequent φ #�x ψ if {M|�x.φ} ⊆ {M|�x.ψ}, and it is
a model of a theory T if it satisfies every axiom in T.

As part of the logic, we shall need to say not only what are the admissible con-
nectives but also what are the rules of inference. Each will be presented in the form
of a schema

α1 · · · αn

β

where each αi (a premiss) and β (the conclusion) is a sequent. We shall not list rules
yet, but typical would be the cut rule

φ #�x ψ ψ #�x χ
φ #�x χ

The soundness of a rule is then that if an interpretation satisfies all the premisses it
must also satisfy the conclusion. This would normally have to be justified in terms
of the ontological explanation of the connectives. For the cut rule it would usually be
plain that if {M|�x.φ} ⊆ {M|�x.ψ} and {M|�x.ψ} ⊆ {M|�x.χ} then {M|�x.φ} ⊆ {M|�x.χ}.

Using the rules of inference, one can infer, or derive, many more sequents from
the axioms of a theory. If the rules are all sound, then a model of a theory also
satisfies all the sequents derived from the axioms.

Note that the sequent formulation (and in particular the explicit context on the
turnstile) makes it easier to deal correctly with empty carriers. As an example, con-
sider the two valid entailments (∀y)φ #x φ[x/y] and φ[x/y] #x (∃y)φ. Applying
the cut rule to these we obtain (∀y)φ #x (∃y)φ. Even if σ (x) has an empty carrier
this is valid, since then {M|x} is the empty set and so are both {M|x.(∀y)φ} and
{M|x.(∃y)φ}. However, the rules do not allow us to deduce (∀y)φ # (∃y)φ (with
empty context), and it would not be valid with the empty carrier because we would
have {M|ε.(∀y)φ} = 1 but {M|ε.(∃y)φ} = ∅.
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Unlike the case with formulae, with axioms we make no ontological commitment
to being able to ascertain that an interpretation satisfies even a single sequent, let
alone a possibly infinite set of them in a theory. There is thus a definite ontological
distinction between formulae and sequents. We should understand theories as being
like scientific hypotheses or background assumptions. In fact there is a Popperian
flavour to theories.

Suppose we have a theory T and an interpretation M. Suppose also we find some
elements in M and ascertain for them some properties from the signature of T. This
amounts to finding an element of {M|�x.φ} for some formula in context (�x.φ). The
ontological commitment is that we know what is required for our claim to have
found such elements. Now suppose also that from the axioms of T we can, using
the inference rules, logically deduce the sequent φ #�x ⊥. It should follow that
{M|�x.φ} ⊆ {M|�x.⊥}. But this is nonsense, since {M|�x.⊥} is by definition empty but
we have found an element of {M|�x.φ}. Thus the interpretation M cannot possibly be
a model of T. If M is a “real world” interpretation, then we cannot simply reject it.
Possibly we made a mistake in the way we interpreted φ. But if not, then we were
mistaken in thinking the axioms of T would apply in the real world. Our observations
have led to a Popperian Big No to our theory T.

Note that this process can be carried through only if a sequent φ #�x ⊥ can be
derived from the theory T, with φ not logically equivalent to ⊥. In other words, T
must be falsifiable . In the example of geometric logic, to which we turn next, this
can happen only if T has explicit axioms of the form φ #�x ⊥.

22.3 Geometric Logic

We now turn to geometric logic, a positive logic that rejects negation (and also impli-
cation and universal quantification) in its formulae. Its ontological commitment is
to conjunction, disjunction, equality and existential quantification. Note that we are
not claiming it as the absolute irreducible logic. We just say that, because of prob-
lems with negation and universal quantification, geometric logic is more likely to be
applicable in “real world interpretations”. It still carries ontological commitments of
its own. For example, consider conjunction. We said that, if φ and ψ are formulae in
context �x, then to ascertain that �a is in φ ∧ ψ we have to ascertain that �a is in φ and
�a is in ψ . This makes assumptions about our ability to form tuples of things. The
logic also presupposes that the two tasks, ascertaining that �a is in φ and ascertaining
that �a is in ψ , do not interfere with each other and can be done in either order. Also,
our use of equality means that we expect to be able to ascertain equality between
things, but not necessarily inequality. This says something about the kind of things
we are prepared to talk about.

The connectives of geometric logic are  ,⊥,∧,∨,= and ∃. However, note one
peculiarity: we allow infinitary disjunctions

∨
. If S is a set of formulae, then

∨
S

is also a formula, the disjunction of all the elements of S, and {M|�x.
∨

S} is defined
in the obvious way. This does lead to subtle ontological questions of its own, since
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we should examine the nature of the set S and how its members are found. Is S also
intended to be a “real-world” collection? If it is purely a mathematical construct,
what mathematics are we using? Once we start thinking about different logics, it
raises the question of what logic to use for mathematics itself. We shall largely
ignore these questions here, except (Section 22.5) to say some brief hints about a
fascinating connection between the infinitary disjunctions and algebra.

We shall first present the formal logic, still following Johnstone (2002b), and
then (Section 22.3.4) discuss its ontology.

22.3.1 Rules of Inference

The rules of inference for geometric logic as given here are taken from Johnstone
(2002b). The first group are propositional, in the sense that they have no essential
interaction with the terms or variables. The propositional rules are identity

φ #�x φ,

cut

φ #�x ψ ψ #�x χ
φ #�x χ ,

the conjunction rules

φ #�x  , φ ∧ ψ #�x φ, φ ∧ ψ #�x ψ ,
φ #�x ψ φ #�x χ
φ #�x ψ ∧ χ ,

the disjunction rules

φ #�x
∨

S (φ ∈ S),
φ #�x ψ (all φ ∈ S)

∨
S #�x ψ

and frame distributivity

φ ∧
∨

S #�x
∨
{φ ∧ ψ | ψ ∈ S}.

Note that
∨∅ plays the role of ⊥ (false). To find an element of {M|�x.

∨ ∅} we
must find a formula φ in ∅ and then find an element of {M|�x.φ}. But clearly there
can be no such φ, so {M|�x.

∨∅} is empty. From the general disjunction rules we can
then derive the rule of ex falso quodlibet,

⊥ #�x ψ
for any ψ in context �x.

Next come the rules specific to predicate logic. These involve terms and
variables.
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For the first rule, substitution, we use the following notation. Suppose φ is a
formula in context �x, and �s is a vector of terms in another context �y such that the
vector �s has the same length and sorts as �x – we can write σ (�s) = σ (�x). Then φ[�s/�x]
is φ with �s substituted for �x – the variables in �x are all replaced by the corresponding
terms in �s. Some notes:

• Since the terms si may have their own free variables, taken from �y, φ[�s/�x] is in
the context �y instead of �x.

• There is no particular problem if �x and �y have variables in common. For example,
suppose φ is the formula (in context x) g(x) = a and s is the term f (x) where
f : σ (x) → σ (x). We can substitute f (x) for x,

(g(x) = a)[f (x)/x] ≡ (g(f (x)) = a).

• There can be a problem of “capture of variables” if one of the context variables
in �y is also used as a bound (quantified) variable in φ. To avoid this, the bound
variables should be renamed to be distinct from the context variables.

The substitution rule is

φ #�x ψ
φ[�s/�x] #�y ψ[�s/�x]

The next rules are: the equality rules

 #x x = x, (�x = �y) ∧ φ #�z φ[�y/�x]

In the second �z has to include all the variables in �x and �y, as well as those free in
φ, and the variables in �x have to be distinct. Our substitution φ[�y/�x] is not quite in
accordance with the definition, since �x is not the whole of the context. However,
we can easily replace it by a licit substitution φ[�t/�z] where �t is defined as fol-
lows. If zi is xj for some j, then ti is defined to be yj. Otherwise, ti is defined to
be zi.

The substitution rule justifies context weakening

φ #�x ψ
φ #�x,y ψ

.

In other words, a deduction in one context will still be valid if we add extra vari-
ables, though not if we remove unused variables (which is what would be done for
a deduction of (∀x) φ(x) # (∃x) φ(x)). Note that φ here (and ψ likewise) is in two
separate contexts: �xy and �x. We shall consider it given as in context �x. Then since �x
can be considered to be a vector of terms in context �xy, we can get φ in the extended
context as (�xy.φ[�x/�x]).
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The existential rules are

φ #�x,y ψ

(∃y)φ #�x ψ ,
(∃y)φ #�x ψ
φ #�x,y ψ

.

The Frobenius rule is

φ ∧ (∃y)ψ #�x (∃y)(φ ∧ ψ).

22.3.2 Soundness

In a mathematical semantics, the soundness of most of the rules can be readily jus-
tified from the semantics of connectives given above. For example, for the final
conjunctive rule one has that if {M|�x.φ} ⊆ {M|�x.ψ} and {M|�x.φ} ⊆ {M|�x.χ} then

{M|�x.φ} ⊆ {M|�x.ψ} ∩ {M|�x.χ} = {M|�x.ψ ∧ χ}

from the definition of {M|�x.ψ ∧ χ}. (In more general semantics we shall see how
the rules have subtle consequences for the ontological commitment.)

However, where substitution is involved we have to be more careful. The seman-
tics of a formula is defined in terms of how that formula is structured using the
connectives. When a formula is described using a substitution, as in φ[�s/�x], that
substitution is not part of the connective structure of the formula and so we do not
have a direct definition of the “semantics of substitution”. It is nevertheless pos-
sible to describe the semantic effect of substitution, but it has to be proved as a
Substitution Lemma. The Substitution Lemma in effect analyses how substitution
interacts with the different connectives.

Recall that each term in context (�y.si) gets interpreted as a function {M|�y.si} :
{M|σ (�y)} → {M|σ (si)}. Putting these together, we get

{M|�y.�s} : {M|σ (�y)} →
∏

i
{M|σ (si)} = {M|σ (�s)} = {M|σ (�x)}

defined by {M|�y.�s}(�a) = ({M|�y.s1}(�a), . . . , {M|�y.sn}(�a)).

Lemma 22.3 (Substitution Lemma) Let �x and �y be contexts, and let �s be a vector
of terms in context �y with σ (�s) = σ (�x).

1. If �t is a vector of terms in context �x then {M|�y.�t[�s/�x]} is the composite

{M|�x.�t} ◦ {M|�y.�s} : {M|σ (�y)} → {M|σ (�s)} = {M|σ (�x)} → {M|σ (�t)}.
2. If φ is a formula in context �x, then {M|�y.φ[�s/�x]} is the inverse image under
{M|�y.�s} of {M|�x.φ}, in other words if �a ∈ {M|σ (�y)} then

�a ∈ {M|�y.φ[�s/�x]} iff {M|�y.�s}(�a) ∈ {M|�y.φ}.



522 S. Vickers

Proof Induction on the structure of t or φ. �
This Lemma is needed for the soundness of the substitution and equality rules.

As an illustration of how it is used, consider the substitution rule

φ #�x ψ
φ[�s/�x] #�y ψ[�s/�x]

If {M|�x.φ} ⊆ {M|�x.ψ} then

�a ∈ {M|�y.φ[�s/�x]} ⇔ {M|�y.�s}(�a) ∈ {M|�y.φ}
⇒ {M|�y.�s}(�a) ∈ {M|�y.ψ} ⇔ �a ∈ {M|�y.φ[�s/�x]}.

One of the more interesting rules here is the second equality rule,

(�x = �y) ∧ φ #�z φ[�y/�x].

Recall that �x here is a sequence of distinct variables from the context �z, and �y is a
sequence of variables from �z, not necessarily distinct, that is sort-compatible with �x.
Actually, we might as well assume that �x is the whole of �z, since by reflexivity we can
add extra equations, for the variables of �z that are not in �x, to say that they are equal
to themselves. We are therefore justifying (�x = �y) ∧ φ #�x φ[�y/�x] where each yi is a
variable xα(i), say. Now an element �a ∈ {M|�x.(�x = �y)∧φ} is an element �a ∈ {M|�x.φ}
such that for each possible index i of the sequence �x, we have ai = aα(i). Now
consider {M|�x.φ[�y/�x]}. Since each yi is a term in context �x we have a substitution
function {M|�x.�y} : {M|σ (�x)} → {M|σ (�x)} mapping �b to �c, defined by ci = bα(i). By
the Substitution Lemma, we have �b ∈ {M|�x.φ[�y/�x]} if �c ∈ {M|�x.φ}. Now given our
�a as above, we can take �b = �c = �a and the required conditions are satisfied. Hence
�a ∈ {M|�x.φ[�y/�x]}.

22.3.3 Beyond Rules of Inference

Each inference rule operates within a single signature, and this imposes a limit
on what can be expressed with them. There are more subtle intensions regarding
the way different signatures relate to each other. Our main example of this for the
moment is the property for mathematical sets that a function is equivalent to a total,
single-valued relation – its graph. To express this in logical terms, suppose (�xy.�)
is a formula in context that is total and single-valued. In other words, it satisfies the
properties

 #�x (∃y)�

� ∧ �[y′/y] #�xyy′ y = y′.
Then in any model there is a unique function f : σ (�x) → σ (y) such that � holds
iff y = f (�x). This principle is not a consequence of the rules of geometric logic.
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Indeed, there are mathematical systems (geometric categories (Johnstone, 2002a)
that happen not to be toposes) in which the rules are all sound, but the principle
does not hold. Nonetheless, the principle does hold in those systems (toposes) in
which geometric logic was first identified, and we take it to be an implicit part of
geometric logic. In other words, geometric logic is not just logic (connectives and
inference rules). We shall not try to give a complete account of these non-logical
principles, though we shall meet some more later.

These principles carry their own ontological commitments. In the above example,
the interpretation of a function symbol must be the same as that of a total, single-
valued predicate.

22.3.4 Geometric Ontology

We now examine, as carefully as we can, the ontological commitments implicit in
geometric logic.

The ontological commitment of the connectives as such does not seem deep.
Their interpretation as given above is more or less that of Tarski: ∧ is “and”, ∨ is
“or”, ∃ is “there exists”, etc. But note that the logic does expect something of the
“sets” used as carriers. Clearly we must know something about how to find ele-
ments of them – how to apprehend elements, to use the word of Vickers (1992).
To form cartesian products {M|�A}, we must also know how to form tuples of ele-
ments. This is perhaps not so obvious as it seems. How do you apprehend a tuple
of lions? Is it just a bunch of lions? But that would not allow a tuple with the same
lion in more than one component (e.g. 〈Elsa, Lenny, Elsa, Parsley〉), which is cer-
tainly allowed by the logic. (Otherwise the equality relation is empty.) So clearly
the components of the tuple are more like pointers, “that lion over there, Elsa”. And
is it properly understood how the interpretation works with observations made at
different times? Next, because = (though not �=) is built in to the logic, we must
know something about how to ascertain equality between a pair of apprehended
elements.

Let us suppose – in some interpretation M – we know how to apprehend elements
and ascertain equality for each sort. (The discussion is not quite finished yet, because
we need to examine what properties these ingredients have. We shall return to it
later.) Let us suppose we also know how to form tuples. Equality between tuples
will be ascertained componentwise. This will then tell us about the sets {M|�A} for
each sort tuple �A. For a predicate P ⊆ �A, the interpretation {M|P} ⊆ {M|�A} must
tell us what it takes to ascertain P(�a) for �a ∈ {M|�A}. This then lifts to formulae in
context (�x.φ).

Note that there may be different ways of ascertaining φ(�a) for the same �a, hence
different manifestations of the same element of {M|�x.φ}. What is important is that
equality between them is determined by equality for the underlying �a. An illumi-
nating example is when φ is of the form (∃y)ψ . To ascertain that �a is in {M|�x.φ},
one must actually apprehend an element �ab of {M|�xy.ψ}. Hence apprehending an
element of {M|�x.φ} is exactly the same as apprehending an element of {M|�xy.ψ}.
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But ascertaining equality between them is different, since in the former case the y
component is ignored.

Now there is a rather fundamental question about the meaning of a sequent
φ #�x ψ . We have already explained it as meaning {M|�x.φ} ⊆ {M|�x.ψ}. But what
does this mean in terms of apprehension? Suppose an element �a is apprehended in
{M|�x.φ}. What does it mean to say it is also in {M|�x.ψ}? To put it another way, is it
possible to apprehend some �b in {M|�x.ψ} such that �b and �a are equal as elements of
{M|σ (�x)}? Three possible interpretations spring to mind.

1. “Already done”: Whatever it took to apprehend �a as an element of {M|�x.φ}, that
is already enough to apprehend a suitable �b.

2. “Nearly done”: A well defined program of extra work will yield a suitable �b
given �a.

3. “Can be done”: There is some suitable �b, though we don’t necessarily know how
to find it.

The “already done” interpretation would be extremely strong, since it means that
validity of sequents follows directly from knowing how formulae are interpreted.
This is clearly incompatible with the idea mentioned above that theory axioms
represent background assumptions, or scientific hypotheses.

The “nearly done” interpretation is less strong, since some ingenuity might be
required to find the “well defined program of extra work”. In fact, this interpretation
is roughly speaking the standard one for intuitionistic logic. There one thinks of the
elements of {M|�x.φ} as the proofs of φ. A proof of (∀�x)(φ → ψ) (and so of the
sequent φ #�x ψ) is an algorithm that takes a tuple �a and a proof of φ(�a) (in other
words, an element of {M|�x.φ} for some M) and returns a proof of ψ(�a). Nonetheless,
it is hard to see this as compatible with the idea of axioms as scientific hypotheses.

We shall follow the “can be done” interpretation.
Note that this makes the cut rule,

φ #�x ψ ψ #�x χ
φ #�x χ ,

more subtle than it looks. Suppose we believe the sequents φ #�x ψ and ψ #�x χ for
an interpretation M, and we want to justify φ #�x χ . Suppose we have �a in {M|�x.φ}.
The first sequent tells us that there is, somewhere out there waiting to be found, a
�b in {M|�x.ψ} equal to �a as elements of {M|�x.ψ}. However, it does not tell us how
to find it. The second sequent tells us that when we do find it, we can then believe
there is a �c in {M|�x.χ} equal to �b. The cut rule asserts that we do not have to go to
the trouble of finding �b. Our belief that it is there, and one day might be found, is
already enough to justify us in believing in �c. Hence we justify the sequent φ #�x χ .

We can put this another way. Our explanation of the “can be done” interpretation
of a sequent φ #�x ψ , was that if we have an element of {M|�x.φ}, then there is
(out there somewhere) an equal element of {M|�x.ψ}. The cut rule uses the idea
that we can equivalently weaken on the left hand side, and start from there is an
element of {M|�x.φ}.
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For geometric logic, “can be done” governs how we interpret function symbols.
Recall that a function f : �A → B is expected to be logically equivalent to its graph,
a predicate �f ⊆ �A, B (or, more generally, a formula in context) that is total and
single-valued:

 #�x (∃y)�f (�x, y)

�f (�x, y) ∧ �f (�x, y′) #�x,y,y′ y = y′.

These sequents too are given a “can be done” interpretation. Think of the graph
�f as being a specification of the function. Given arguments �a and a candi-
date result b, �f provides a way for ascertaining whether b is indeed the result
for f (�a), but it does not in any way tell us how to find b. (That would in
fact be a “nearly done” interpretation.) The totality axiom tells us (or hypoth-
esizes) that there is such a b waiting to be found, and single-valuedness says
that any two such bs are equal. It follows that when we talk about a “function”
between “real world sets”, we must not in general expect this to be a method or
algorithm.

This style of interpretation can actually be internalized in the logic by eliminat-
ing function symbols in favour of predicates for their graphs (together with axioms
for totality and single-valuedness). Suppose we have a graph predicate �f for each
function symbol f, characterized by

�f (�x, y) %#�xy y = f (�x).

Then we can define a graph formula in context (�x�y.��t) for each term tuple in context
(�x.�t), where σ (�y) = σ (�t). For a single term t, if t is a variable xi then �t is just the
formula y = xi. If t is f (�s), suppose we have defined ��s in context �x�z. Then we
can define �f (�s) in context �xy as (∃�z)(��s ∧ �f (�z, y)). Once that is done, formulae
can be replaced by alternatives without function symbols. For example, P(�t) can be
replaced by (∃�y)(��t ∧ P(�y)).

If we look at the inference rules, we find that some of them are obvious, but some
have hidden subtleties. We have already mention the cut rule.

The next interesting ones are the conjunction rules. Examining conjunction itself
in more detail, to apprehend an element of {M|�x.φ∧ψ}, we must apprehend elements
�a and �b of {M|�x.φ} and {M|�x.ψ} and then ascertain that they are equal as elements
of {M|σ (�x)}. Now consider the rule

φ #�x ψ φ #�x χ
φ #�x ψ ∧ χ .

For the conclusion, suppose we have apprehended �a in {M|�x.φ}. The premiss
sequents tell us that there are �b and �c in {M|�x.ψ} and {M|�x.χ} such that �b and
�a are equal in {M|σ (�x)}, and so are �c and �a. To deduce that there is an ele-
ment of {M|�x.ψ ∧ χ}, clearly we need to make assumptions about “ascertaining
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equality” – it needs to be symmetric and transitive. In fact the equality rule  #x

x = x will need it to be reflexive too, so it must be an equivalence relation.
For the rules involving substitution, we need to consider the Substitution Lemma.

This is most conveniently understood in terms of the logical style explained
above, in which function symbols are replaced by predicates for their graphs. The
Substitution Lemma (or at least, part (ii) of it) then says the following. Suppose φ
is in context �x, and �s in context �y is sort compatible with �x. Then finding an element
�a ∈ {M|�y.φ[�s/�x]} is equivalent (in the “can be done” sense) to finding elements
�a�b ∈ {M|�y�x.��s} and �c ∈ {M|�x.φ} such that �b is equal to �c.

22.4 Topology

The links between geometric logic and topology arise from a very direct correspon-
dence: the disjunctions and finite conjunctions in the logic correspond to the unions
and finite intersection that characterize the behaviour of open sets. There is a then
a rough correspondence between propositional geometric theories and topological
spaces: the space is the space of models for the theory, topologized using the logical
formulae.

Using the theories instead of topological spaces is generally known as “point-free
topology”, and has been found useful in various fields, especially in constructive
mathematics (e.g. as “locales” (Johnstone, 1982), in topos theory, and as “for-
mal topologies” (Sambin, 1987) in predicative type theory). The applications in
computer science, based on ideas of observational theory, could even be read as
suggesting that topology in some sense arises from an ontological shift in the
understanding of propositions.

A major idea in topos theory is to generalize this correspondence to predicate
theories, leading to Grothendieck’s new notion of topos as “generalized topological
space”. The theory then corresponds to its “classifying topos”, representing (in an
indirect way) the “space of models”. These ideas are implicit in the standard texts
on toposes, such as MacLane and Moerdijk (1992), Johnstone (2002a, b), though
often hidden. Vickers (2007) attempts to bring them out more explicitly.

In the space available here it has only been possible to hint at the deep connec-
tions between geometric logic and topology, but the curious reader is encouraged to
explore the references suggested.

22.5 Algebra

We now turn to a feature of geometric logic that makes essential use of the infinitary
disjunctions, and sets it quite apart from finitary logics. The effect is that geometric
logic can be considered to embrace a variety of set-theoretic constructions on sorts,
and we shall examine the ontological aspects of this.
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22.5.1 Lists and Finite Sets

In any geometric theory T, suppose A is a sort. Consider now an extended theory
that also has a sort B, together with function symbols

ε : B

γ : A× B → B.

We shall in fact use infix notation for γ , writing x◦y for γ (x, y). We also add axioms

x ◦ y = ε #xy ⊥
x ◦ y = x′ ◦ y′ #xyx′y′ x = x′ ∧ y = y′

 #y
∨

n∈N

(∃x1) · · · (∃xn)(y = x1 ◦ . . . ◦ xn ◦ ε).

Here N denotes the set {0, 1, 2, 3, . . .} of natural numbers, so the right hand side of
the last axiom is

y = ε ∨ (∃x1)y = x1 ◦ ε ∨ (∃x1)(∃x2)y = x1 ◦ (x2 ◦ ε) ∨ · · · .

In any model M of this extended theory, each list (a1, . . . , an) of elements of
{M|A} gives an element a1 ◦ · · · ◦ an ◦ ε of {M|B}. The third axiom says that any
element of {M|B} can be got this way, and the first two axioms say that the list is
unique – if

a1 ◦ · · · ◦ am ◦ ε = a′1 ◦ · · · ◦ a′n ◦ ε

then m = n and each ai = a′i. It follows that {M|B} is isomorphic with the set of
finite lists of elements of {M|A}, which we write {M|A}∗.

This ability to characterize list sets (up to isomorphism) by logic relies essentially
on the infinitary disjunctions in geometric logic. It cannot be done in finitary logic.
It means that in effect geometric logic embraces sort constructors. Instead of adding
all the axioms explicitly, we could allow ourselves to write a derived sort A∗, with
the interpretation {M|A∗} = {M|A}∗.

Moreover, this fits with our previous ontology. To apprehend an element of
{M|A∗}, we should apprehend a tuple �a of elements of {M|A}. The tuple can have
any finite length. To ascertain that �a and �a′ are equal, we should find that they have
the same length and then that each component of �a is equal to the corresponding
component of �a′.

In a similar way, we can use geometric logic to characterize the finite power set,
FA. We use the same symbols ε and ◦, but now ε is to mean the empty set ∅ and
a ◦ b means {a} ∪ b. Hence a1 ◦ · · · ◦ an ◦ ε means {a1, . . . an}. We keep the third
axiom, but we replace the first two so as to give a different definition of equality.
For this we take axioms
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x1 ◦ · · · ◦ xm ◦ ε = x′1 ◦ · · · ◦ x′n ◦ ε %#�x�x
′

m∧

i=1

n∨

j=1

xi = x′j ∧
n∧

j=1

m∨

i=1

x′j = xi

for all possible m, n. This in effect says {a1, . . . am} = {a′1, . . . a′n} iff {a1, . . . am} ⊆
{a′1, . . . a′n} (i.e. every ai is equal to at least one of the a′js) and {a′1, . . . a′n} ⊆
{a1, . . . am}.

Again, this fits our ontology. To apprehend an element of {M|FA}, we should
apprehend a tuple �a of elements of {M|A}, just as we did for {M|A∗}. However, this
time the equality is different.

22.5.2 Free Algebras

The list sets and finite power sets are both examples of a much more general con-
struction, of free algebras. These arise from a particular kind of geometric theory,
namely algebraic theories. An algebraic theory is defined by operators and equa-
tional laws, and in terms of geometric theories as defined above this means there are
no predicates, and the axioms are all of the form

 #�x s = t.

The models are then often called algebras.
Many examples are widely known, for example the theories of groups, rings,

vector spaces and Boolean algebras.
The fact that algebraic theories are geometric is interesting, but not very deep.

A much more significant fact about geometric theories emerges when one consid-
ers free algebras, and this is something that relies on very specific properties of
geometric logic, and in particular its use of infinitary disjunctions.

Let T be an algebraic theory, with only one sort, A. (Similar results hold for
theories with more than one sort, but they are more complicated to state.) A free
algebra, on a set X, is constructed in two stages. First, we consider all the terms
that can be formed, in the empty context, using the operators of T, and also using
the elements of X as constants. Next, we define two terms s and t to be congruent
if the sequent  # s = t can be inferred (using the inference rules of geometric
logic) from the axioms of T. The set of congruence classes is an algebra for T,
and is called the free T-algebra on X, denoted T〈X〉. It can be proved to have a
characteristic property that is actually rather fundamental: given any T-algebra A,
then any function f : X → A extends uniquely to a T-homomorphism from T〈X〉,
got by evaluating the terms (representing elements of T〈X〉) in A.

List sets and finite powersets are both examples of free algebras.
The logical significance of these constructions is that in geometric theories, geo-

metric structure and axioms can be used to constrain the carrier for one sort to be
isomorphic to a free algebra over the carrier of another. (This is not possible in
finitary first order predicate logic.) Hence geometric logic may be understood as
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including an inherent type theory, with constructions that can be applied to sorts.
The list sets and finite powersets were the first examples. This again is something
that goes beyond the strict logic, analogous to issues discussed in Section 22.3.3.

On the other hand, there is also an ontological significance. Construction of terms
can be understood as a process of apprehending elements (by gathering together
other elements in a structured way), and then finding a proof of congruence is ascer-
taining equality between elements. Thus we may see a “real-world” significance in
the free algebra constructions, as typified by list sets and finite powersets.

22.6 Categories

We have described a connection between, on the one hand, the formal structure of
formulae, constructed using formal symbols such as ∧ and ∨, and, on the other,
the informal ideas of how we might interpret those formulae in the real world.
At first sight the interpretation is straightforward, once we have assigned mean-
ing to the primitive symbols of the signature. After that one might think it is just a
matter of interpreting ∧ as “and”, ∨ as “or”, and so on. However, we saw that par-
ticular connectives could easily be problematic. Having particular connectives and
particular logical rules about their use imposes an ontological commitment on our
interpretations.

This comparison between the logic and the real world may seem unavoidably
vague, because of the transformation from formal to informal. However, it actu-
ally has two separate transformations bundled up together: one is from formal to
informal, but the other is from a logical formalism of terms and formulae to an
explanation that is more about collections and functions. There is a way to sepa-
rate these out using category theory. A category is a mathematical structure whose
“objects” and “morphisms” may embody intuitive ideas of collections and functions
between them. The idea is discussed in other chapters in this collection, and in par-
ticular that of Johnson and Rosebrugh. It is that the formal category structure can
represent – and more directly than logic – the informal structure of the real world
that we want to capture.

For example, one of the assumptions we made, in Section 22.3.4, of real world
objects was that it is possible to yoke them together in pairs or longer tuples. This
corresponds directly to the categorical idea of product. If X and Y are two collec-
tions, then there should be another collection X × Y whose elements are pairs of
elements, one from X and one from Y. More generally, if we have two functions
f : Z → X and g : Z → Y , then we should be able to pair their results to get a
function 〈f , g〉 : Z → X × Y . Category theory uses this idea to characterize X × Y
as the “product” of X and Y, so the informal idea of pairing elements corresponds
naturally to the formal idea that the category has products.

In the formal world, on the other hand, we can transform from the logical style
to the collections style, by interpreting the logic inside a category. This is known
as categorical logic. The ontological commitment can now be discussed in a pre-
cise mathematical way in terms of the properties of the category. Then each logical
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theory whose connectives and rules respect that ontological commitment gives rise
to a theory category (see Barrand Wells (1984); also known as classifying category)
with those properties, freely constructed so as to have in it a model of the logical
theory. The relation between theory and category is in fact similar to the way a
sketch presents a category, as discussed in Chapter 24, by Johnson and Rosebrugh,
this volume.

More on how geometric logic corresponds to categorical structure, with pointers
to reading the standard texts such as Johnstone (2002b) and MacLane and Moerdijk
(1992) , can be found in Vickers (2007).

22.6.1 Sheaves

Sheaves provide a fundamental example of a formal setting where geometric logic
can be interpreted, but other parts of ordinary logic – including negation – go wrong.
They cannot support the ontological commitment of full classical logic.

We shall not define sheaves in detail here. A good intuition is that if we have a
topological space X, then a sheaf over it is a set “continuously parametrized” by a
point of x. For each x there is a set Ax (the stalk of the sheaf at x), and as x varies,
the stalk, the set Ax, varies with it in a continuous way – no sudden jumps. If a ∈ Ax

then there is a neighbourhood U of x such that for each y ∈ U, the stalk Ay has an
element corresponding to a. Also, if there are two such ways of choosing “elements
corresponding to a”, then there is some neighbourhood of x where the two choices
agree. That is very vague, but it can be made precise and defines the notion of “local
homeomorphism” (see, e.g. Vickers (2007) again).

Without saying any more about the general notion, we can describe a very simple
example where the problems with negation are easy to see. Sierpinski space has two
points, ⊥ and  . The topology can be described using the idea of neighbourhoods,
referred to above. { } is a neighbourhood of  , but the only neighbourhood of ⊥
is {⊥, }. When one works out what a sheaf is, it turns out to be a pair of sets A⊥
and A (the stalks), together with a function f : A⊥ → A . The function is needed
because, for each a ∈ A⊥, the definition of sheaf requires a neighbourhood U of ⊥
(and in this case U can only be {⊥, }), and an element a ∈ A corresponding to
a. The function f shows how to pick a for each a.

Subsheaves are analogous to subsets. A subsheaf of the sheaf A (given by f :
A⊥ → A ) is a pair of subsets B⊥ ⊆ A⊥ and B ⊆ A such that when f is restricted
to B⊥, it maps into B :

B⊥ ⊆ A⊥
↓ ↓ f

B ⊆ A 
Now suppose we have another subsheaf, C. We can try to define more subsheaves

B ∪ C and B ∩ C “stalkwise” by

(B ∪ C)x = Bx ∪ Cx,

(B ∩ C)x = Bx ∩ Cx.
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for x = ⊥, . But are these subsheaves? The question is whether f restricts properly.
In fact, for ∪ and ∩ it works. This shows that the geometric connectives ∨ and ∧
can be interpreted in the expected way.

Now let us look at ¬. We try to define a subsheaf ¬B by (¬B)x = Ax − Bx =
{a ∈ Ax | a /∈ Bx}. Our question about f now amounts to the following. We know
that if a ∈ B⊥ then f (a) ∈ B . Can we deduce that if a /∈ B⊥ then f (a) /∈ B ? No,
in general. For a simple example, take B⊥ = ∅, B = A .

For an intuitive idea of what is happening here, think of A as “the reality of A”,
and A⊥ as “what we have seen of it”. f translates our observations into real things.
However, (i) we may not have seen everything – there may be elements of A that
are not f of anything; and (ii) we may have observed two things that are in reality one
and the same. Now ∨ and ∧ work just as well for our observations as for reality, but
¬ doesn’t. Failure to observe (calculating A⊥ − B⊥) does not map to non-existence
(A − B ).
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Chapter 23
The Institutional Approach

Robert E. Kent

Systems, scientific and philosophic, come and go. Each method
of limited understanding is at length exhausted. In its prime
each system is a triumphant success: in its decay it is an
obstructive nuisance.

Alfred North Whitehead, Adventures of Ideas

23.1 Introduction

The institutional approach for the logical semantics of ontologies provides a prin-
cipled framework for their modular design; in particular, it provides a natural
framework for formulating the “lattice of theories” (LOT) approach to ontologi-
cal organization. According to Sowa, the purpose of LOT is to provide a systematic
way of relating all possible ontologies in order to facilitate their inevitable upgrades
and conversions. The goal of LOT is to create a framework “which can support an
open-ended number of theories (potentially infinite) organized in a lattice together
with systematic metalevel techniques for moving from one to another, for testing
their adequacy for any given problem, and for mixing, matching, combining, and
transforming them to whatever form is appropriate for whatever problem anyone is
trying to solve” (Sowa, 2000). The theories of Institutions (Goguen and Burstall,
1992), Information Flow (Barwise and Seligmann, 1997) and Formal Concept
Analysis (Ganter and Wille, 1999) have independently formulated and developed
various concepts surrounding the LOT construction. But the institutional approach
gives the most comprehensive treatment.

Within an institution the lattice of theories is the indexing of the context of
theories by the context of languages (an index can be thought of as a list or a
pointing device; a context (Goguen, 1991) represents a kind of mathematical struc-
ture, such as algebraic structure, topological structure or logical structure; contexts
and indexed contexts are discussed below). The central relation inside the lattice of
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theories is logical entailment. However, in problem solving we are always supposed
to be willing to “think outside the box.” In this situation, the institutional approach
instructs us to think outside the lattice of theories. Inside is the entailment relation
between theories, but outside are links between theories. Theory links specialize to
theory entailment within the fiber over a language (this fiber consists of all theo-
ries having that language; the idea of a fiber is defined in the section on passages).
Theory links (discussed further below) are logical language maps between theories
that preserve entailment. Theories and links between theories form the context of
theories.

The institutional approach starts with the motivation to unify the numerous
efforts to use logic for the representation and organization of the knowledge space
of various communities. In order to accomplish this, the institutional approach uses
the two related distinctions (the general versus the special) and (the abstract versus
the concrete). Both generalization and abstraction can have many levels or degrees.
The correct level or degree depends on the goal in mind. In order to reach a certain
level of generality we need to abstract from the unimportant and superfluous details,
but still retain the essential ones. In the institutional approach, a logical system is
identified with an institution. The institutional approach, whose goal is the repre-
sentation and maintenance of systems of ontologies, generalizes by abstraction over
various logical systems such as first order, second order, higher order, Horn clause,
equational, temporal, modal and infinitary logics.

This chapter discusses the institutional approach within the theory and appli-
cation of ontologies. One caveat: although the institutional approach to ontologies
extensively uses category theory, this chapter has not been written for a reader with
background knowledge of category theory. Instead this chapter has been written for
philosophers, computer scientists and the general public. For this reason less techni-
cal and more common terminology has been used in describing the basic concepts.
Such an approach has been used before. Goguen has used the term “(mathemati-
cal) context” for the category concept (this may be an especially useful alternative
for philosophers), Manes has used the term “passage” for the functor concept, and
Lawvere and others regard the concept of adjoint functors as a generalized “inverse
pair” of functors. There is a key1 for this terminology. In addition, very few abstract

1Here is a key to the terminology used in this paper.

This Paper Category theory
Object Object
Link Arrow, morphism, 1-cell
Connection 2-cell
Beginning, origin(ation) Source, domain
Ending, destination Target, codomain
Context Category
Passage Functor
Bridge Natural transformation
Invertible passage Adjunction
Equivalence Natural equivalence
(Co)relation (Co)cone
Sum (product) Colimit (limit)
Relative sum Left Kan extension
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symbols have been used. This is a mixed blessing, since, although the intimidation of
abstract mathematics has been removed, the advantage of the extremely useful idea
of “commutative diagram” (studded with abstract symbols) cannot be easily used.
For example, the general discussion about the architecture only uses the symbol V
for a general ambient context and the symbol Cls for the specific ambient context
of classifications (an ambient context is a background encompassing context within
which we form diagrams; the institutional approach uses the ambient context Cls of
classifications and infomorphisms). For an overview of category theory, see Chapter
21, by Healy, this volume.

23.1.1 Ontologies

Ontologies are of two types: populated and unpopulated. Populated ontologies
contain instance data, whereas unpopulated ontologies do not. Instances (tokens,
particulars) are things that are classified, whereas types (universals) are things that
classify. “Aristotle” is a particular individual in the ancient world, whereas “human”
and “philosopher” are types that classify and describe that individual. “It is particu-
lars, things in the world, that carry information; the information they carry is in the
form of types” (Barwise and Seligman, 1997).

Any ontology is situated within the context of the logical language of a domain
(of discourse), which often consists of the generic ideas of the connectives and quan-
tifiers from logic and the specific ideas of the signature (the constant, function and
relation symbols) for that context (Goguen and Burstall, 1992). An unpopulated
ontology is represented as a theory consisting of a collection of statements or sen-
tences based on the language. The theory allows for the expression of the laws and
facts deemed relevant for the domain. A structure of a domain provides a universe
of discourse in which to interpret statements of a theory. Both theory and structure
are described and constrained by the logical language. A populated ontology is rep-
resented as a (local) logic or knowledge base having two components, a theory and
a structure that share the same underlying language. This notion of logic is a precur-
sor to the local logics defined and used in Information Flow (Barwise and Seligman,
1997), which are more closely represented by the composite logics defined below.
In general, the logics in the institutional approach are neither sound nor complete.
A logic is sound when each sentence of the theory is true when interpreted in the
structure; that is, when the structure satisfies each sentence of the theory. A logic
is complete when every sentence satisfied by the structure is a sentence entailed by
the theory. Associated with any structure is a natural logic whose theory consists
of all sentences satisfied by the structure. The natural logic is essentially the only
sound and complete logic over a given language. Associated with any logic is its
restriction – the sound logic with the same underlying structure, whose theory con-
sists of all sentences satisfied by the structure and entailed by the theory. There is
a projective component passage from logics to structures. In the opposite direction,
there is a natural logic passage from structures to sound logics. With structure pro-
jection and natural logic, the context of structures forms a reflective subcontext of
the context of sound logics. There is a restriction passage from logics to sound log-
ics. With restriction and inclusion, the context of sound logics forms a coreflective
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subcontext of the context of logics. A composite logic, the abstract representation of
the (local) logics of the theory of Information Flow (Barwise and Seligman, 1997),
consists of a base logic and a sound logic sharing the same language and theory,
where any sentence satisfied by the base logic structure is also satisfied by the
sound logic structure. Composite logics form a context with two projective compo-
nent passages to general logics and sound logics. Information systems (see below)
can be defined in either theories, logics, sound logics or composite logics. In the
sketch institution Sk, the category-theoretic approach to ontological specification
(discussed in detail below), a sound logic is a sketched interpretation (generalized
universal algebra) consisting of a sketch and an interpretation that satisfies that
sketch. In the logical environment IFC, the basic institution for Information Flow
(defined below), a logic consists of a classification (structure) and a theory sharing
a common set of types (language); in addition, there is a subset of instances, called
normal instances, which satisfy all sequents (sentences) in the theory. The local log-
ics of Information Flow are the composite logics of IFC with the classification and
theory providing the base logic component and restriction to the normal instances
providing the sound logic component.

Institutions, which represent logical systems, abstract and generalize the seman-
tic definition of truth (Goguen and Burstall, 1992), which consists of a relation of
satisfaction between structures and sentences. In short, the institutional approach is
abstract model theory. The first step of abstraction in the institutional approach is to
regard each structure as an instance, each sentence as a type and each occurrence
of satisfaction as a classification: a structure satisfies a sentence when the sentence-
as-type classifies the structure-as-instance. In this regard, the theory of institutions
and the theory of Information Flow are very compatible; indeed, one can regard the
theory of institutions as an indexed or parametric theory of information flow, with
each institution (the parameter) having a theory of information flow constructed over
it and links between institutions (parameter map) providing comparisons between
these theories of information flow. The second step of abstraction in the institu-
tional approach is to regard the logical language, which provides the context for
an ontology, to be an indexing object. The institutional approach refers to such an
indexing object as a language (signature in Goguen and Burstall, 1992). The lan-
guage of an institution often contains nonlogical symbols for constants, functions
and relations. However, in the institutional approach such a detailed description is
inessential, and hence is ignored in the abstraction. In summary, each ontology is
indexed by a language and described by a classification.

The representational power of the institutional approach comes from the link-
ages between objects, such as languages and classifications. Languages are linked
by language morphisms, which typically map the constant, function and rela-
tion symbols of one language to the constant, function and relation symbols
of another language. A classification has instance and type collections and a
classification relation between the two. For example, cars are classified by the com-
bination structure-make-year – a particular car is an instance, and the combination
“Honda-Civic-1987” is a type. Classifications are linked by infomorphisms, which
map between instance collections in the reverse direction (the instance map is said
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to be contravariant), map between type collections in the forward direction (the type
map is said to be covariant), and require invariance of classification: a type classifies
at the origin the image of an instance if and only if the image of the type classifies
at the destination the instance. Just as languages index classifications in the insti-
tutional approach, so also language morphisms index infomorphisms. When two
ontologies are indexed by languages linked by a language morphism, and described
by two classifications, then the language morphism indexes an infomorphism that
links the two classifications, thereby relating the two ontologies by invariance of
satisfaction (invariance of truth under change of notation).

23.1.2 Semantic Integration

An information system (Barwise and Seligman, 1997) is a diagram of ontologies,
where each ontology is represented as a logic or a theory. Since each logic (theory)
has an underlying structure (language), an information system has an underlying dis-
tributed system, which is a diagram of structures (or languages). A channel over a
distributed system is a corelation that covers the system (satisfies its semantic align-
ment constraints) with its vertex called the core of the channel. The optimal channel
over a distributed system with sum vertex is an optimal (most refined) covering core-
lation. Semantic integration2 (Kent, 2004; Goguen, 2006) is the two-step process of
alignment and then closure. The alignment of a distributed collection of ontologies
is a human-oriented and creative process that builds a suitable information system.

2We describe the semantic integration of ontologies in terms of theories.
Alignment: Informally, identify the theories to be used in the construction. Decide on the seman-

tic interconnection (semantic mapping) between theories. This may involve the introduction of
some additional mediating (reference) theories. Formally, create a diagram of theories of shape
(indexing) context that indicates this selection and interconnection. This diagram of theories is
transient, since it will be used only for this computation. Other diagrams could be used for other
sum constructions. Compute the base diagram of languages with the same shape. Form the sum
language of this diagram, with language summing corelation. Being the basis for theory sums,
language sums are important. They involve the two opposed processes of “summing” and “quo-
tienting”. Summing can be characterized as “keeping things apart” and “preserving distinctness”,
whereas quotienting can be characterized as “putting things together”, “identification” and “syn-
onymy”. The “things” involved here are symbolic, and for a first order logic institution may involve
relation type symbols, entity type symbols and the concepts that they denote.

Unification: Form the sum theory of the diagram of theories, with theory summing corelation.
The summing corelation is a universal corelation that connects the individual theories in the dia-
gram to the sum theory. The sum theory may be virtual. Using direct flow, move the individual
theories in the diagram of theories from the “lattice of theory diagrams over the language diagram”
along the language morphisms in the language summing corelation to the lattice of theories over
the language sum, getting a homogeneous diagram of theories with the same shape, where each
theory in this direct flow image diagram has the same sum language (the meaning of homoge-
neous). Compute the meet of this direct flow diagram within the fiber “lattice of theories” over
language sum, getting the sum theory. The language summing corelation is the base of the theory
summing corelation. Using inverse flow, move the sum theory from the language sum back along
the language morphisms in the language summing corelation to the language diagram, getting the
system closure.
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Alignment is called intersection in Chapter 24, by Johnson and Rosebrugh, this vol-
ume. The closure of the information system is an automatic process of information
flow. Closure has three phases: the first two phases are called unification (i) direct
flow of the distributed system along the optimal channel (summing corelation over
the underlying distributed system), and (ii) meet expansion of the direct flow image
within the lattice of logics (theories) indexed by the sum distributed system; the last
phase is called projective distribution (iii) inverse flow back along the same optimal
channel. Unification is called theory blending in Chapter 21, by Healy, this volume.
For further details on the concepts discussed here, see Chapter 4, by Kalfoglou and
Schorlemmer, this volume.

The logics (or theories) in the alignment diagram represent the individual ontolo-
gies, and the links between logics (or theories) in the alignment diagram represent
the semantic alignment constraints. The alignment diagram is an information system
with individual logics (or theories) representing parts of the system. The closure of
an information system may be relative (partial) or absolute (complete) – relative clo-
sure is defined along an indexing passage, whereas absolute closure is defined along
the unique indexing passage to the terminal indexing context. Absolute closure can
be approximated by indexing passage composition. The relative sum information
system along an indexing passage represents the whole system in a partially central-
ized fashion with the target indexing context defining the degree of centralization.
The sum logic in the construction of the absolute closure of an information system
represents the whole system in a centralized fashion, whereas the original infor-
mation system and its closure represent the whole system in a distributed fashion.
Ignoring the semantic constraints in the closure information system, the absolute
closure is called the distributed logic of the information system in (Barwise and
Seligman, 1997) (see also Chapter 4, by Kalfoglou and Schorlemmer, this volume);
but it is probably best to recognize it as an information system in its own right and
to understand the properties of the closure operator.

Since logics (theories) over the same language are ordered by entailment, infor-
mation systems with the same indexing context are ordered pointwise by entailment.
Two information systems are pointwise entailment ordered when the component
logics at each index are entailment ordered. Two information systems are ordered
by system entailment when the closure of the first information system is pointwise
entailment below the second information system. Hence, the following analogies
hold between theories and information systems: theory closure ↔ system closure;
reverse subset order for theories↔ pointwise entailment order for systems; and the-
ory entailment↔ system entailment. A very important problem in distributed logic
is the understanding of how one part of a system affects another part. System clo-
sure provides a solution. System closure, which is a closure operator with respect
to reverse pointwise entailment order, describes how a distal part (ontology) of the
system constrains a proximal part (ontology) of the system.

Figure 23.1 provides a graphic representation of semantic integration: in the
Logic (Theory) context information systems are represented as ovals, ontolo-
gies are represented as nodes within ovals, and alignment constraints between
ontologies are represented as edges within ovals; and in the Structure (Language)
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context distributed systems are represented as ovals, structures (languages) are
represented as nodes within ovals, and channels are represented as triangles. The
detailed theory of semantic integration in logical environments via system closure
is developed in (Kent, 2008, Distributed logic: Information flow in logical environ-
ments, unpublished). A simple example of semantic integration, (analogous to one
discussed in Chapter 4, by Kalfoglou and Schorlemmer, this volume), starts with a
collection of two ontologies represented as theories: (1) the alignment step might
create a third bridging, mediating or alignment theory, whose types represent equiv-
alent pairs of types in the two original ontologies, with two mappings from these
mediating types back to the types in the equivalent pairs – the alignment diagram
(information system) would then have indexing context generated by an inverted
vee-shaped graph with three nodes and two edges; (2) the two phases in unification
create a sum theory, and the projective distribution phase creates the absolute system
closure information system (this corresponds to the integration theory mentioned in
Chapter 4, by Kalfoglou and Schorlemmer, this volume). For a more general and
heterogeneous (across logical systems) approach to semantic integration, see the
paper (Schorlemmer and Kalfoglou, 2008).

23.1.3 Architecture

Here we give a quick overview of the architecture (unifying or coherent form or
structure) of the institutional approach; later sections provide more detail. Most of
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institution contextcore
fuseSpecial Theory: V = Cls 

indexed
context

V-diagram 

V-indexed
fiber 

× context
coalesce fuse

fuseGeneral Theory:

The indexed context icon is a large triangle, which represents a link between 
two indexed contexts, with origin on the left side and destination on the right. 
These linked indexed contexts have indexing contexts at the top and the context
of contexts (the dark circular disk) at the bottom.   

The diagram icon is a small triangle, which represents a link between two 
diagrams, with origin on the left side and destination on the right. These linked 
diagrams have indexing contexts at the top and the ambient context V (the 
stippled circular disk) at the bottom.  Institutions are the special case V = Cls. 

The fiber icon is a lens-shaped figure, which represents a link between two 
indexed contexts having the same fixed indexing context (the stippled circular
disk) at the top, with origin on the left side and destination on the right. The 
context of contexts (the dark circular disk) is at the bottom.   

The combined diagram-fiber icon (a product notion) represents a pair of links, a 
link between diagrams at the top and a link between fibered indexed contexts at
the bottom. In a diagram-fiber the ambient context of the diagrams (the stippled
circular disk) is the indexing context of the fibered indexed contexts.    

The context icon is a rectangle, which naturally represents a bridge between two 
passages, with origin on the top side and destination on the bottom. These linked 
passages have originating context on the left and destination context on the right. 

The combined fiber-context icon (an exponential notion) represents a link
between two fiber-to-context passages, with origin on the left side and 
destination on the right. These linked fiber-to-context passages map a core 
diagram of fibered indexed contexts at the top to a context at the bottom.    

Fig. 23.2 Architecture

the sections in this chapter discuss elements illustrated in Fig. 23.2. Where these and
related elements are defined in this chapter, they are italicized. The architecture of
the institutional approach to the theory and application of ontologies is illustrated in
this figure. The first thing that we see is the separation of the architecture into a gen-
eral and a special theory. Dual notions (reversed linkage orientation) exist in both
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general and special theories. The three basic ideas in the general theory are contexts
(rectangle), indexed contexts (large triangle) and their indexed fibers (lens-shaped
figure) and diagrams (small triangle). The two basic processes (passages) in the gen-
eral theory are coalescence and fusion. Coalescence is composition. For an ambient
context V, coalescence operates on V-diagrams and V-indexed contexts and returns
index contexts (these terms are defined below). Here V is a valuation context for dia-
grams and an indexing context for indexed contexts; coalescence bonds diagrams to
indexed contexts. In the special case where V is the context classification Cls (Cls-
diagrams are institutions), by holding the institution (Cls-diagram) fixed and letting
S denote its indexing language context, we can regard coalescence as a map from the
core context of Cls-indexed contexts to the core context of S-indexed contexts; for
example, mapping the logic indexed context for classifications to the logic indexed
context for the fixed institution (by applying fusion to this process, in Fig. 23.8 we
define a logic map from the diamond-shaped core diagram for an arbitrary institu-
tion on the left to the diamond-shaped core diagram for classifications on the right).
Fusion or the Grothendieck construction (Grothendieck, 1963) is a way for homo-
geneously handling situations of structural heterogeneity (Goguen, 2006). It maps
the heterogeneous situations represented by indexed contexts to the homogeneous
situations represented by contexts. There are two kinds of fusion. The basic fusion
process operates on indexed contexts and returns contexts. The derived fusion pro-
cess has two stages: coalescence, then basic fusion. There are two versions of the
general theory architecture (Fig. 23.2), one the normal version and the other the
dual version. These are linked by the three involutions (see the discussion on duality
below) for contexts, indexed contexts and diagrams. Because these involutions are
isomorphisms, the normal and dual processes for coalescence, basic fusion and
derived fusion can be defined in terms of one another. However, the dual versions
have simpler definitions from more basic concepts. All notions in the architecture for
the institutional approach are 2-dimensional notions, having not just links between
objects but also connections between links (Fig. 23.4).

The special theory fixes the ambient context to be the context of classifica-
tions V = Cls (This equality represents assignment of the constant context Cls
to the variable context V). The context Cls is the central context in the theories
of Information Flow and Formal Concept Analysis (Ganter and Wille, 1999). The
two basic ideas in the special theory are contextcores (rectangle with lens-shaped top
edge) and institutions (small triangle). The context of contextcores is a subcontext
of (core-shaped diagram within) the context of passages from Cls-indexed contexts
to contexts (the Theory node in the core diagram (Fig. 23.8) is the fusion of one
example of a Cls-indexed context that maps a classification to its context of theories
and maps an infomorphism to its theory passage via inverse flow). Hence, the con-
text of contextcores is an exponential context – a product-exponent adjoint currying
operator (upper corners) is used on fusion in the general theory before specializ-
ing. Connections (links of links; Fig. 23.4) in contextcore are called modifications.
Institutions are Cls-diagrams, diagrams in the ambient context of classifications.
The basic process in the special theory is fusion: the fusion of an institution
is a passage from the context of contextcores to the context of contexts. The
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core-shaped fusion diagram for an institution (left side Fig. 23.8) is embeddable
into the universal core-shaped fusion diagram based only on the context of classi-
fications (right side Fig. 23.8). However, this universal core-shaped fusion diagram
is actually just one of the core-shaped fusion diagrams (left side Fig. 23.8) got-
ten by using the terminal institution consisting of the identity classification passage
1Cls. Links between embeddings is coherently connected through modifications.
Although potentially large, the core diagram shape is actually quite small for
practical purposes. And it is different depending on duality. Just like the gen-
eral theory, there are two versions of the special theory architecture, normal and
dual, and these are also linked by involutions, a diagram involution for institu-
tions and a composite (core and context) involution for contextcores. The normal
version (institutions and institution morphisms) has a naturally defined core dia-
gram consisting of structures, theories and logics, plus linking and connecting
elements. The dual version (institutions and institution comorphisms) has a sim-
ple core diagram consisting only of theories. The advantage of the normal version is
the existence of (local) logic contexts (the Logic node in the core-shaped fusion
diagram for an institution (left side Fig. 23.8) is the fusion of one example of
a indexed context that maps a language to its logic order and maps a language
morphism to its logic order map). The advantage of the dual version is the cocon-
tinuity of theory passages (they preserve sums of theories). For either notion of
fusion (normal or dual), the theory index in the core represents the lattice of
theories construction as a passage from the context of institutions (normal ver-
sion) or the context of coinstitutions (dual version) to the context of contexts (the
context of coinstitutions has institutions as objects and institution comorphisms
as links).

23.2 Contexts

23.2.1 General Theory

Both languages and classifications are objects of a mathematical context. A math-
ematical context (Fig. 23.2) corresponds to some species of mathematical structure
(Goguen, 1991) (see Chapter 21, by Healy, this volume, for a more detailed discus-
sion). It consists of a collection of objects, a collection of links relating one object
to another, a way to compose links into new links, and a special identity link for
each object. A link in a context (Fig. 23.3) has an orientation or direction; that is,
it begins or originates at one object and ends or has destination at another. The link
relates the beginning or originating object with the ending or destination object. Two
links are composable when the destination of one is the origin of the other. A link
in a context is an isomorphism when there is another bicomposable link, where the
two compositions are identity. Any order is a context with the orderings being the
links. A 2-dimensional mathematical context also has a collection of connections
(Fig. 23.4), which relate one link to another link – connections are links between
links. There are vertical and horizontal ways to compose connections into new
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connections. The horizontal way corresponds to link composition (see the discus-
sion of 2-categories in Chapter 21, by Healy, this volume).

A passage (Fig. 23.5) from a beginning or originating context to an ending or des-
tination context consists of a map from the beginning object collection to the ending
object collection and a map from the beginning link collection to the ending link
collection that preserves linkage direction and composition. Passages themselves
can be composed. Two passages are composable when the destination of one is the
origin of the other. The composition passage is defined coordinate-wise: compose
the object maps and compose the link maps. An order map is a passage between two
orders with order-preservation representing the link map. A 2-dimensional passage
between 2-dimensional contexts also has a map of connections that preserves con-
necting direction and vertical and horizontal composition. For any map beginning in
one collection and ending in another collection, a fiber over a fixed item in the des-
tination collection is the collection of all elements in the beginning collection that
map to that fixed item. Similarly, for any passage, a fiber over a fixed object in the
ending context is a subcontext of the beginning context consisting of the collection
of all objects that map to that fixed object and the collection of all links that map to
the identity link on that fixed object. For a 2-dimensional passage, the fiber contains
the collection of connections that map to the identity connection on that identity link.

A bridge (Fig. 23.6) from a beginning or originating passage to an ending or des-
tination passage (between the same mathematical contexts) consists of a map from
the originating context’s object collection to the destination context’s link collec-
tion, which naturally preserves linkage. These links in the destination context are
called components of the bridge. Passages and bridges can be (horizontally) com-
posed when the destination context of one is the originating context of the other.
In the passage-bridge composition, the object that indexes a component is initially
mapped by the passage. In the bridge-passage composition, the component (that is

context context
passage

Fig.23.5 Passage

bridge

passage

passageFig. 23.6 Bridge
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indexed by an object) is finally map by the passage. Bridges themselves can be com-
posed, both vertically and horizontally. Two bridges are vertically composable when
the destination of one is the origin of the other. The vertical composition bridge is
defined component-wise: for each object in the originating context, compose the
components in the destination context. Vertical composition is orthogonal to passage
composition. Two bridges are horizontally composable when the destination context
of one is the originating context of the other. The horizontal composition bridge has
two equal and interchangeable definitions. One is the vertical composition of the
composition of the first bridge and the originating passage of the second bridge
and the composition of the destination passage of the first bridge and the second
bridge. The other has a dual definition. Horizontal composition is parallel to pas-
sage composition. Any ordering on a pair of order maps is a bridge. Bridges enrich
the context of contexts into a 2-dimensional mathematical context with contexts as
objects, passages as links and bridges as connections.

Philosophically, the notion(s) of identity takes on several forms. Two objects in a
context are equal up to identity when they are the same; they are equal up to isomor-
phism when they are linked by an isomorphism; and they are equal up to morphism
when they are linked. Two contexts are identical when they are equal; they are iso-
morphic when they are linked by an isomorphism: and they are equivalent when
they are linked by an equivalence.

An invertible passage (equivalence) or inverse pair of passages from a beginning
or originating context to an ending or destination context is a pair of bicomposable
passages, a left passage in the same direction and a right passage in the opposite
direction, which are generalized (relaxed) inverses for each other in the sense that
the compositions are identity naturally up to (iso)morphism. This means that the
identity passage at the beginning context is connected to the left-right composite
by a bridge called the unit, and that the right-left composite is connected to the
identity passage at the ending context by a dual bridge called the counit. Unit and
counit can be composed with the left and right passages. Unit and counit bridges are
coherently related by two “triangle equalities” that are dual to each other: the vertical
composition of the unit-left (right-unit) composite with the left-counit (counit-right)
composite is the identity bridge at the left (right) passage. The context of invertible
passages has contexts as objects and invertible passages as links. There are left and
right projections from the context of invertible passages to the context of contexts
with left being covariant and right being contravariant.

Duality (Fig. 23.7) is important in the institutional approach to ontologies, and
can be confusing if not approached with some caution. In the institutional approach,
there are several kinds of duality at work. The opposite of a context flips the
direction of its links. The opposite of a passage has the same action, but maps a

Fig. 23.7 Involution
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flipped link to the flip of the image link. The opposite of a bridge has the same
components, hence has its direction flipped. The opposite of an invertible passage
applies the opposite to all of its components, left, right, unit and counit. It flips its
direction and changes dual notions: the left (right, unit, counit) of the opposite is
the opposite of the right (left, counit, unit). A contravariant passage is a (covariant)
passage from the opposite of a context – same action, but change of perspective.

Duality leads to some important involutions in the institutional approach, which
are defined on the basic ideas in Fig. 23.2 – contexts, indexed contexts and dia-
grams. The context involution maps a context, passage or bridge to its opposite.
It is a 2-dimensional isomorphism on the context of contexts, which is covariant
on passages and contravariant on bridges. The indexed context involution maps a
dual indexed context, a dual indexed link or a dual indexed connection to itself, but
changes from a contravariant to a covariant perspective. It is a 2-dimensional iso-
morphism between the context of dual indexed contexts and the context of indexed
contexts, which is covariant on dual links and contravariant on dual connections.
There is a fibered version of this: for any ambient context V, there is a V-indexed
context involution from the context of dual Vop-indexed contexts to the context of
V-indexed contexts, where Vop is the opposite of V. For any ambient context V,
the diagram involution maps a Vop-diagram or Vop-diagram colink to its opposite
V-diagram or V-diagram link, defined by flipping its components, either indexing
context and passage or indexing passage and bridge. It is an isomorphism between
the context of Vop-codiagrams and the context of V-diagrams, which is covariant on
morphisms.

Several constructions beyond duality are also used in the institutional approach.
The product of two collections contains all pairs of elements, where the first (sec-
ond) element is from the first (second) collection. Similarly, the product of two
contexts contains all pairs of objects and all pairs of links from the component con-
texts, which preserve products of origins and destinations. The two original contexts
are called the components of the product. The exponent of two collections has all
the maps between the collections as elements. Similarly, the exponent of two con-
texts has all the passages between the contexts as objects, the bridges between these
passages as links, and vertical composition of these bridges as composition. Finally,
any passage with a product origin has an adjoint form, which is a passage from
one product component to the exponent of the other product component and the
destination of the passage.

23.2.2 Special Theory

The context of classifications Cls has classifications as objects and infomorphisms
as links.3 A classification has instance and type collections and a classification

3The category Cls of classifications and infomorphisms is the ambient category that is used for
indexing in the institutional approach to ontologies. This is the category of “twisted relations” of
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relation between the two. Classifications are linked by infomorphisms, which map
between instance collections in the reverse direction (the instance map is said to be
contravariant), map between type collections in the forward direction (the type map
is said to be covariant), and require invariance of classification: a type classifies
at the origin the image of an instance if and only if the image of the type classi-
fies at the destination the instance. There are two component projection passages,
instance and type, from the context of classifications to the context of sets; instance
is contravariant and type is covariant.

A theory of a classification is a subset of types. For any classification, the intent
of an instance is the (theory) subcollection of types that classify the instance, and
dually the extent of a type is the subcollection of instances classified by that type. A
theory classifies an instance of a classification when each type in the theory classifies
the instance. Thus, any classification lifts to its theories; that is, any classification has
an associated instance-theory classification, where types are replaced by theories.
The extent of a theory is the subcollection of all instances classified by that theory;
that is, the intersection of the extents of the types in the theory. A theory entails a
type when any instance classified by the theory is also classified by the type; that
is, when the extent of the theory is contained in the extent of the type. Theories are
linked by type maps that preserve entailment. The collection of all types entailed by
a theory is called the closure of the theory. Closure is an operator on theories. Types
in the theory are called axioms, whereas types in the closure are called theorems. A
(local) logic of a classification has two components, a theory and an instance, with
a common underlying language.

For any classification, the three collections of instances, theories and logics are
ordered. Two instances are ordered when any type that classifies the second instance
also classifies the first instance; that is, when the intent of the first contains the intent
of the second. Two theories are ordered when any axiom of the second is a theorem
of the first; that is, when any type in the second theory is entailed by the first theory;
that is, when the closure of the first theory contains the (closure) of the second
theory; that is, when the extent of the first is contained in the extent of the second.
Two logics are ordered when their instance and theory components are ordered. In
any classification, the intent of an instance is maximal in subset order and minimal
in entailment order. This defines a maximal theory map from instances to theories.

Give any map, direct image and inverse image form an invertible pair of maps
between subsets that preserves inclusion. For any infomorphism, the (covariant)
direct flow on theories is the direct image of the type function and the (contravariant)
inverse flow on theories is the composition of closure followed by the inverse image
of the type function. For any infomorphism, the type function preserves entailment:
if any theory entails a source type at the origin, then the direct flow of the theory
entails the image of the type at the destination. When the instance function of the

(Goguen and Burstall, 1992). This is also the basic category used in the theory of Information Flow
and Formal Concept Analysis (Kent, 2002).
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infomorphism is surjective, the type function allows borrowing (useful in theorem-
proving): any theory entails a type at the origin if and only if the direct flow of the
theory entails the image of the type at the destination. Any infomorphism lifts to its
theories, where the type map is replaced by the direct flow map. Lifting to theories
is a passage on the context of classifications. For any infomorphism, the (contravari-
ant) logic map, which maps between logic collections in the reverse direction, has
two components, the inverse flow and the instance map. For any infomorphism,
the instance map preserves order on instances, the direct and inverse flow preserve
(entailment) order on theories, and the logic map preserves order on logics. Direct
and inverse flows form an invertible map on theories. They also form an invert-
ible map on logics. Direct flow on logics preserves soundness; the direct image of a
sound logic is also sound. Inverse flow on logics preserves completeness; the inverse
image of a complete logic is also complete. Direct and inverse flow on logics forms
the basis of the theory of Information Flow.

The context of classifications is fundamental in the institutional approach, and
it is (co)complete. But the context of concept lattices is equivalent to it (Kent,
2002), and the context of concept orders is pseudo-equivalent to it. Hence, these
also are cocomplete. A concept order (complete order with two-sided generators)
consists of an order with all meets and joins, an instance set, a type set, a map that
embeds instances (types) as order elements, such that any element is the join (meet)
of some subcollection of embedded instances (types). When a concept order satis-
fies antisymmetry (isomorphic elements are identical) it is called a concept lattice.
A concept morphism links concept orders. It consists of an invertible pair of order
maps called the left (right) inverse, and a map linking the instance (type) collections
in the opposite (same) direction, where the left (right) inverse preserves embed-
ded instances (types). Compositions and identities are defined component-wise. The
context of concept orders (lattices) has concept orders (lattices) as objects and con-
cept morphisms as links. The context of concept lattices is a full subcontext of the
context of concept orders. Each of the three contexts (classifications, concept lattices
and concept orders) comes equipped with, and is definable in terms of, component
projection functors. The 2-dimensional diagram consisting of these three contexts,
along with their connecting passages and bridges, is called the conceptual core.

23.3 Indexed Contexts

23.3.1 General Theory

An index is a pointer used to indicate a value. A map or list is the simplest math-
ematical representation for an index, mapping an indexing set to a set of items of
a certain type. A passage is a structured representation for an index, mapping an
indexing context to a context of objects of a certain type. A structured index of
a certain type X is describe as an indexed X. An indexed context (Fig. 23.2) is a
passage into the context of contexts. As such, it is a special kind of diagram. It orig-
inates at an indexing context, maps indexing objects to component contexts, maps
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indexing links to component passages, inverts direction (it is contravariant) and pre-
serves composition and identities up to isomorphism. An indexed order is the special
case of a passage into the context of orders – the passage maps indexing objects to
component orders, and maps indexing links to component order maps. The involute
of an indexed context is the composition of the indexed context with the context
involution. A dual indexed context is the same; except it preserves direction (it is
covariant). The indexed involution maps a dual indexed context to an indexed con-
text by flipping the indexing context to its opposite and changing the perspective
from covariance to contravariance.

An inversely-indexed context (corresponding to the notion of a locally reversible
indexed context in Tarlecki et al. (1991) is a passage into the context of invertible-
passages. It also originates at an indexing context, mapping indexing objects to
component contexts and indexing links to component invertible passages, invert-
ing direction, and preserving composition and identities up to isomorphism. There
are two components, a left component indexed context and a right component dual
indexed context. We think of the modifiers “inversely” and “locally reversible” as
applying to the left component indexed context; thus, inversely indexed contexts
are special indexed contexts with right inverses. We define cocompleteness for
dual indexed and inversely-indexed contexts. A dual index context is component-
complete when all component contexts are complete. It is component-continuous
when it is component-complete and all the component passages are continuous. It
is cocomplete when it is component-continuous and the indexing context is cocom-
plete. An inversely indexed context is component-complete (component-continuous,
cocomplete) when its right inverse dual indexed context is so.

An indexed link from a beginning or originating indexed context to an ending
or destination indexed context consists of an indexing passage from the indexing
context of origin to the indexing context of destination and a bridge from the begin-
ning passage to the composition of the opposite of the indexing passage with the
ending passage. Indexed links can be composed. Two indexed links are composable
when the destination of one is the origin of the other. The composition of a compos-
able pair is defined by the composition of their indexing passages and the vertical
composition of their bridges. An indexed order map between indexed orders is the
special case where the bridge components are order maps. A dual indexed link is the
same, except that it links dual indexed contexts. The indexed involution maps a dual
indexed link to an indexed link by flipping the indexing passage to its opposite and
changing the perspective from covariance to contravariance. We define cocontinuity
for only dual indexed links. A dual indexed link is component-continuous when it
links component-continuous dual indexed contexts, and the component passages of
its bridge are continuous. It is cocontinuous when it links cocomplete dual indexed
contexts, it is component-continuous, and its indexing passage is cocontinuous.

An indexed connection from a beginning or originating indexed link to an ending
or destination indexed link consists of an indexing bridge from the beginning index-
ing passage to the ending indexing passage, which preserves bridging up to mor-
phism in the sense that the beginning bridge is linked to the vertical composition of
the ending bridge with the opposite of the indexing bridge. Indexed connections can
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be composed by vertical composition of their indexing bridges. A dual indexed con-
nection is the same, except that it links dual indexed links. The indexed involution
contravariantly maps a dual indexed connection to an indexed connection by flipping
the indexing bridge to its opposite and changing the perspective from covariance to
contravariance.

The context of indexed contexts is a 2-dimensional context, whose objects are
indexed contexts, whose links are indexed links, and whose connections are indexed
connections. The context of indexed-orders is a special case. Similar comments hold
for the dual notions. The indexed involution is a 2-dimensional isomorphism from
the context of dual indexed contexts to the context of indexed contexts, which is
covariant on indexed links and contravariant on indexed connections. There is a
2-dimensional indexing passage from the context of indexed contexts to the context
of contexts, which maps an indexed context to its indexing context, maps an indexed
link to its indexing passage, and maps an indexed connection to its indexing bridge.
Also, there is a 2-dimensional indexing passage from the context of indexed orders
to the context of contexts.

In the institutional approach we are interested in the fibers for the 2-dimensional
indexing passage from the context of indexed orders to context of contexts. The
indexed fiber (Fig. 23.2) over a fixed context consists of the following: the objects
are the indexed orders with that fixed context as indexing context, the links are
the indexed order maps with the identity passage on that fixed context as index-
ing passage, and the connections are the indexed connections with the identity
bridge on that identity passage as indexing bridge. Hence, an indexed link in a fiber,
called an indexed order map, consists of a bridge between origin and destination
indexed orders, and an indexed connection in a fiber, called an order pair of indexed
order maps, consists of an ordering between origin and destination indexed order
maps. We have inversely-indexed orders in fibers. Furthermore, we can define dual
versions of all these notions. Finally, we define an additional notion in a fiber: an
indexed invertible pair of order maps is a pair of bicomposable indexed order maps,
a left indexed order map in the same direction and a right indexed order map in the
opposite direction, which are generalized (relaxed) inverses for each other in the
sense that the bridge components are invertible pairs of order maps; that is, vertical
composition of the bridges is unique up to order both ways.

23.3.2 Special Theory

Here we discuss the core-shaped universal diagram in the special theory of the archi-
tecture. Consider the fiber of indexed orders over the fixed context Cls. Instance is
an indexed order that maps a classification to its order of instances and maps an
infomorphism to its instance order map. Inverse flow is an indexed order that maps
a classification to its theory (entailment) order and maps an infomorphism to the
inverse flow of its type map. Logic is an indexed order that maps a classification
to its logic order and maps an infomorphism to its logic order map. Direct flow is
a dual indexed order that maps a classification to its theory (entailment) order and
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maps an infomorphism to the direct flow of its type map. This dual indexed order
is component-complete, since for any classification the component theory order
is a complete lattice. It is component-continuous, since for any infomorphism the
component direct image passages are continuous, being right inverses of inverse
image. The direct flow dual indexed order is cocomplete, since it is component-
continuous and the indexing context of classifications is cocomplete. Inverse and
direct flow form an inversely-indexed order with inverse flow as left component
and direct flow as right component. This inversely-indexed order is component-
complete (component-continuous, cocomplete), since its direct image right adjoint
dual indexed context is so. There is a maximal theory indexed order map between
the instance and inverse flow indexed orders, whose bridge has the maximal the-
ory maps as its components. From the logic indexed order, there are two projection
indexed order maps to the instance and the inverse flow indexed orders. The normal
core diagram shape has three nodes or index orders (instance, inverse flow and logic)
and three edges or indexed order maps (maximal theory and logic projections). Its
fusion (Fig. 23.8), a core diagram in the context of contexts, has four contexts (clas-
sification, instance, theory and logic) and five passages (projections, base passages,
and maximal theory). The instance projection passage within the core diagram for
classifications, just like the structure projection passage within the core diagram
for an institution (Fig. 23.8), is the lifting of its base passage originating from the
context of theories. The dual core diagram shape has one node or dual index order
(direct flow) and no edges. Its fusion is just the context of theories and the context
of classifications with a base passage in between. A link in the context of instances
is an infomorphism that maps the instance at the destination to a specialization of
the instance at the origin. An instance is more specialized that another when it is
classified by more types. A link in the context of theories is an infomorphism that
maps the theory at the destination to a specialization of the theory at the origin;
equivalently, maps the theory at the origin to a generalization of the theory at the
destination. A theory is more specialized that another when any axiom of the second
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is a theorem of the first. A link in the context of logics is an infomorphism that is
both an instance link and a theory link.

23.4 Diagrams

23.4.1 General Theory

Let V be any context within which we will work. Of course, one would normally
choose a context V that has some useful properties. We keep that context fixed
throughout the discussion and call it the ambient context. We regard the objects and
links in the ambient context V to be values that we want to index, and we focus on
a particular part of the ambient context V. We use a passage into V for this pur-
pose. A diagram (Fig. 23.9) is a passage from an indexing context into the ambient
context V. The objects in the indexing context are called indexing objects and the
links are called indexing links. A diagram may be presented by using a directed
graph to generate an indexing path context. If so, such a graph is usually called
the shape of the diagram. By extension, the indexing context of any diagram can
be called its shape. The diagram involution maps a Vop-diagram to its opposite
V-diagram, defined by flipping its indexing context and passage.

Diagrams can be linked. A diagram link (Fig. 23.10) from a beginning or orig-
inating diagram to an ending or destination diagram consists of a passage between
indexing contexts called an indexing passage and a bridge from the composition of
the indexing passage with the destination passage to the beginning passage. Two
diagram links are composable when the destination of one is the origin of the other.
The composition diagram link is defined coordinate-wise: compose the indexing
passages and vertically compose the bridges. Diagrams can also be linked in a dual
fashion. A diagram colink from a beginning or originating diagram to an ending or
destination diagram consists of an indexing passage as before, but a bridge in the
opposite direction: from the beginning passage to the composition of the indexing
passage with the destination passage. Composition is defined similarly. The diagram
involution maps a Vop-diagram colink to its opposite V-diagram link, defined by

indexing
conext

ambient 
context V

pointer

Fig. 23.9 Diagram

indexing
context

ambient 
context V

pointer

indexing 
context

pointer

indexing

pointer

Fig. 23.10 Diagram link



552 R.E. Kent

flipping its indexing passage and bridge. There is a context of V-diagrams with dia-
grams as objects and diagram links as links, and there is a context of V-codiagrams
with diagrams as objects and diagram colinks as links. There is an indexing passage
to the context of contexts from the context of V-(co)diagrams, which maps a dia-
gram to its indexing context and maps a diagram (co)link to its indexing passage.
The diagram involution is an isomorphism between the context of Vop-codiagrams
and the context of V-diagrams, which is covariant on morphisms. There is a termi-
nal diagram consisting of the identity passage on the ambient context V, so that V
is the indexing context. From any diagram there is a trivial diagram (co)link to the
terminal diagram with the indexing passage being the passage of the diagram and
the bridge being identity.

Although dual, the links and colinks between diagrams seem to be independent.
However, a strong dependency exists when their indexing passages are invertible.
Such a strongly dependent pair is called a duality. More precisely, a duality is a pair
consisting of a diagram colink and a diagram link whose indexing passages form
an invertible pair of passages with the left component the indexing passage for the
diagram colink and the right component the indexing passage for the diagram link.
This implies that colink and link are between diagrams in opposite directions. Then
colink and link are definable in terms of each other: (loosely) the bridge of the colink
is the vertical composition of the unit with the bridge of the link and the bridge of
the link is the vertical composition of the bridge of the colink with the counit.

In the institutional approach we are interested in the fibers for the indexing pas-
sage from the context of V-codiagrams to context of contexts. The indexed fiber
over a fixed context consists of the following: the objects are the V-diagrams with
that fixed context as indexing context, and the links are the V-diagram colinks with
the identity passage on that fixed context as indexing passage. If we think of the
indexing passage as a means of moving diagrams along indexing contexts, then a
fiber link is one with an identity indexing passage. That is, a fiber link is just a bridge
between two passages with the same shape that map into the ambient context V; it is
a bridge from the passage of origin to the passage of destination. A constant diagram
is a diagram that maps all indexing objects to a particular object in V and maps all
indexing links to the identity on that object of V. For any object in V and any context
(as shape), there is a constant diagram over that object with that shape. A corelation
is a fiber link to a constant destination diagram. A constant diagram link is a fiber
link between two constant diagrams (with the same shape) whose bridge compo-
nents are all the same – a particular link in V between the objects of the constant
diagrams. For any link in V and any context (as shape), there is a constant diagram
link over that link with that shape.

For any diagram, a summing corelation is an initial corelation originating from
that diagram: any other corelation originating from that diagram is the vertical com-
position of the summing corelation with the constant diagram link over a unique
link in V. Any two summing corelations for the same diagram are isomorphic, and
hence conceptually identical. For a summing corelation the object is called a sum of
the diagram and the component links are called sum injections. The sum of a dia-
gram is a kind of constrained sum: disjointly sum the component objects indexed by
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the diagram, and constrain these objects with the links indexed by the diagram. The
ambient context V is said to be cocomplete when sums exist for all diagrams into it.
Relations, producting relations, products and completeness are defined dually. Two
equivalent contexts have the same sums up to isomorphism – a sum in one context is
isomorphic to a sum in an equivalent context. Two pseudo-equivalent contexts have
the same sums up to equivalence – a sum in one context is equivalent to a sum in
a pseudo-equivalent context. The context of V-diagrams is complete (cocomplete)
when V is complete (cocomplete), and the context of V-codiagrams is complete
(cocomplete) when V is cocomplete (complete) (Goguen and Roşu, 2002). Hence,
the context of Vop-codiagrams is complete (cocomplete) when Vop is complete
(cocomplete). This is compatible with the fact that the context of Vop-codiagrams
is isomorphic to the context of V-diagrams via the diagram involution. There is an
issue about the “smallness” of diagrams that we are ignoring here. Composition by
a passage maps a diagram in the originating context (an originating diagram) to a
diagram in the destination context (a destination diagram). A passage is cocontin-
uous when the passage maps the sum of any originating diagram to a sum of the
corresponding destination diagram. Continuity of a passage has a dual definition
using limits.

23.4.2 Special Theory

An institution or logical system (Fig. 23.11) is a diagram in the ambient context of
classifications Cls. The context of institutions is the context of Cls-diagrams, where
links are called institution morphisms (Fig. 23.12). The context of coinstitutions
is the context of Cls-codiagrams, where links are called institution comorphisms.
There is a terminal institution, which is the terminal Cls-diagram; it consists of the
identity classification passage 1Cls. The ambient context Cls is both complete and
cocomplete. Hence, the context of institutions and the context of coinstitutions are
both complete and cocomplete, with the identity passage on Cls being the terminal
institution. (Much of the theory of Information Flow is based upon the fact that
Cls is cocomplete – the distributed systems of Information Flow are represented
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as diagrams in Cls, channels covering such distributed systems are represented as
corelations in Cls, and minimal covering channels are represented as sums in Cls.)

In more detail, an institution (Goguen and Burstall, 1992) consists of an indexing
language context and a classification passage into the ambient context of classi-
fications. Indexing objects for an institution are called languages or vocabularies,
and indexing links are called language or vocabulary morphisms. The classification
passage maps a language to a classification called the “truth classification” of that
language (Barwise and Seligmann, 1997). For any language, the instances of its
classification are called structures, the types are called sentences, and the classifi-
cation relation is called satisfaction. For any structure and sentence in a satisfaction
relationship, we say that “the structure satisfies the sentence” or “the sentence holds
in the structure” or “the sentence is satisfied in the structure” or “the structure is
a structure of the sentence”. The classification passage maps a language morphism
to an infomorphism, and the invariance of classification expresses the invariance of
truth under change of notation: the image of a structure satisfies a sentence at the
origin if and only if the structure satisfies the image of the sentence at the desti-
nation. A structure satisfies (is a model of) a theory when it satisfies all axioms of
(sentences in) the theory. A theory entails a sentence when that sentence is true in all
models of the theory. The closure of a theory is the collection of sentences entailed
by the theory. Two theories are ordered by entailment when the first theory entails
every axiom of the second theory; that is, when the closure of the first theory con-
tains the second theory. Two models are entailment ordered when the theories that
they induce are so ordered. Two logics are entailment ordered when their component
models and theories are so ordered.

The equivalences between the context of classifications and the context of
concept lattices or the context of concept preorders allows either of these to be
equivalently used as the ambient context in defining the context of (co)institutions
(Kent, 2004). That is, we can equivalently regard an institution to be a diagram of
concept lattices. Here each language indexes a concept lattice, where the intent of
a concept is a closed theory and concept order is reversed subset order on closed
theories. Or, we can equivalently regard an institution to be a diagram of concept
preorders. Here each language intentionally indexes a “lattice of theories” with each
preorder element being a theory and order on theories being entailment order.

Examples of institutions include the following (Goguen and Burstall, 1992;
Goguen and Roşu, 2002; Goguen, 2007): first order logic with first order struc-
tures as structures, many sorted equational logic with abstract algebras as structures,
Horn clause logic, and variants of higher order and of modal logic. Other exam-
ples (Mossakowski et al., 2005) of institutions include intuitionistic logic, various
modal logics, linear logic, higher-order, polymorphic, temporal, process, behavioral,
coalgebraic and object-oriented logics. Here are more detailed descriptions of some
institutions.

In the institution EQ of equational logic (universal algebra), a language is a family
of sets of function symbols, and a language morphism is a family of arity-preserving
maps of function symbols. The set of sentences indexed by a language is the set
of equations between terms of function symbols. The sentence translation function
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indexed by language morphism is defined by function symbol substitution. A struc-
ture of equational logic is an algebra, consisting of a set (universe) and a function for
each function symbol in the language. Structure translation is a substitution passage;
it is reduct with symbol translation. Satisfaction is as usual.

The institution FOL of unsorted first-order logic with equality extends the insti-
tution of equational logic by adding relation symbols. A language is a family of sets
of function symbols as above, plus a family of sets of relation symbols with arity.
A language morphism is a family of arity-preserving maps of function symbols as
above, plus a family of arity-preserving maps of relation symbols. Sentences are the
usual first order sentences. The set of sentences indexed by a language consists of
closed first order formulae using function and relation symbols from the language.
The sentence translation function indexed by a language morphism is defined by
symbol substitution. Structures are the usual first order structures. A structure is a
set (universe), a function for each function symbol (that is, an algebra, as above),
and for each relation symbol a subset of tuples of that arity. Structure translation is
reduct (substitution) with symbol translation. Satisfaction is as usual.

The theory of sketches (Barr and Wells, 1999) is a categorical approach for speci-
fying ontologies. A sketch signature is a graph plus collections of cones and cocones
each with an arity base in that graph. In an interpretation of a sketch the nodes of the
underlying graph are intended to specify sorts (or types), the edges are intended to
specify algebraic operations, and the cones (cocones) are intended to specify prod-
ucts (sums). A morphism between sketch signatures is a graph morphism between
the underlying graphs of origin and destination, which preserves arity by mapping
source cones (cocones) to target cones (cocones). Any context has an underlying
sketch signature, whose graph is the underlying graph of the context (nodes are
objects and edges are links), and whose cones (cocones) are the limiting cones (col-
imiting cocones) in the context. Given a sketch signature, a diagram in that signature
is a diagram in the underlying graph; in a diagram any pair of paths with common
beginning and ending nodes is called an equation. Given a sketch signature, an inter-
pretation of that sketch signature in a fixed context (the context of finite sets is used
in Johnson and Rosebrugh, 2007) is a sketch signature morphism into the underlying
signature of the context, a graph morphism that maps cones (cocones) in the sketch
to limiting cones (colimiting cocones) in the context. An interpretation morphism
is a graph bridge from one interpretation to another. Given a sketch signature, an
interpretation and a diagram in that signature, the interpretation satisfies the dia-
gram when it maps the diagram to a commutative diagram in the fixed context; a
commutative diagram in a context is a diagram where the composition of each side
of an equation is equal.

A sketch consists of a sketch signature plus a collection of diagrams (equiva-
lently, equations) in the underlying graph. The diagrams are intended to specify
commutative diagrams in an interpretation. For any interpretation and sketch having
the same signature, the interpretation satisfies the sketch, and is called a model (or
an algebra) of the sketch, when it satisfies every diagram in the sketch. A homo-
morphism of models (algebras) is an interpretation morphism between models. Any
interpretation defines a sketch (for which it is a model) having the same underlying
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signature and consisting of all diagrams satisfied by the interpretation. A sketch
entails a diagram in its signature when any model of the sketch satisfies that dia-
gram. Two sketches are ordered by entailment when they have the same underlying
signature and any diagram of the second sketch is entailed by the first sketch.
This is a preorder (reflexive and transitive). The closure of a sketch is another
sketch with the same signature, but which contains all entailed diagrams. This is a
closure operator on reverse entailment order (monotonic, increasing and idempo-
tent). A sketch and its closure are isomorphic w.r.t. entailment order. A sketch is
closed when it is identical to its closure. A sketch morphism is a sketch signature
morphism, which maps entailed diagrams of the first sketch to entailed diagrams of
the second sketch.

In the institution Sk of sketches, a language is a sketch signature and a lan-
guage morphism is a sketch signature morphism. The set of sentences indexed by
a sketch signature is the set of diagrams in that signature. The sentence translation
function indexed by a sketch signature morphism maps source diagrams to target
diagrams by graph morphism composition. The set of structures indexed by a sketch
signature is the set of interpretations of that signature. The structure translation func-
tion indexed by a sketch signature morphism is reduct (substitution). Satisfaction is
defined above. Given any sketch signature morphism, the invariance of satisfaction
expresses the invariance of truth under change of notation: the reduct of an interpre-
tation satisfies a diagram at the origin if and only if the interpretation satisfies the
translation of the diagram at the destination. There a several special kinds of sketch
signatures useful for particular purposes: linear sketch signatures (or graphs) with
neither cones nor cocones used, product sketch signatures (or multi-sorted equa-
tional logic languages) with only discrete cones and no cocones used, limit sketch
signatures with any cones but no cocones used, and limit-coproduct sketch signa-
tures (see Chapter 24, by Johnson and Rosebrugh, this volume) with any cones but
only discrete cocones used. Each of these special kinds of sketch signatures forms
its own institution. In general, there is a trivial inclusion institution morphism from
any one of these kinds to a more powerful kind; for example, from limit sketch sig-
natures to general sketch signatures. Often in these special sketches, the (co)cones
and graphs are required to be finite. The notion of a limit-product sketch is used
to define the entity-attribute data model in (Johnson and Rosebrugh, 2007), which
is an enriched extension of the traditional entity-relationship-attribute data model.
The paper (Johnson and Rosebrugh, 2007) requires the model reduct passage to be
a (op)fibration in order to define universal view updatability; a notion of cofibration
is defined on sketch morphisms to ensure that this holds. It is an interesting question
whether these notions have meaning and importance for an arbitrary institution.

Information systems for any institution of sketches can be defined over the con-
text of sketches (theories), the context of models or algebras (sound logics), or even
over a larger context of logics (not defined here). Within this institution a theory is
a sketch and a theory morphism is a sketch morphism. This defines the context of
theories. From this context there is an underlying passage to the context of sketch
signatures. Any sketch signature has an associated context of interpretations and
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their morphisms. Any sketch signature morphism has an associated reduct (substi-
tution) passage from target fiber context of interpretations to source fiber context
of interpretations; this is defined by composition of the sketch signature morphism
with interpretations and their morphisms. Hence, there is an indexed context from
the context of sketch signatures (languages). The Grothendieck construction on this
indexed context forms the context of structures (interpretations): an object is a pair
consisting of a sketch signature and an interpretation having that signature; and a
morphism is a pair consisting of a sketch signature morphism and a graph bridge
from the originating interpretation to the reduct of the destination interpretation.
From this context there is an underlying language passage (split fibration) to the
context of sketch signatures. Any sketch has an associated a context of models (alge-
bras) and their homomorphisms. For any sketch morphism, structure translation
(reduct) preserves model satisfaction. Thus, any sketch morphism has an associated
reduct passage between fiber contexts of models. Hence, there is an indexed context
from the context of sketches (theories). See the model category functor in (Barr and
Wells, 1999). Fusion (the Grothendieck construction) on this indexed context forms
the context of sound logics (models or algebras): an object is a pair consisting of a
sketch and a model (algebra) of that sketch; and a morphism is a pair consisting of a
sketch morphism and a homomorphism from the originating model to the reduct of
the destination model. From this context there are projection passages to the context
of sketches and the context of interpretations.

A harmonious unification between the theories of institutions and Information
Flow works best in a logical environment. A logical environment is a structured
version of an institution, which takes the philosophy that semantics is primary. A
logical environment requires a priori (1) the existence of a context of structures that
is cocomplete and (2) the existence of a fibration (Cartesian passage) from the con-
text of structures to the context of languages that factors through the order-theoretic
and flatter context of structures built by fusion from just the underlying institution.
An even more structured version of logical environment requires existence of a left
adjoint to the fibration. The basic institution of Information Flow and an analo-
gous institution of sorted first order logic are important examples of such logical
environments.

The logical environment IFC is the basic institution for Information Flow.
A structure is a classification, and a structure morphism is an infomorphism. A
language is a set (of types) and a language morphism is a (type) function. The under-
lying language passage from the context of classifications to the context of sets is the
type projection passage. A sentence is a sequent of types consisting of pairs of type
subsets, antecedent and consequent. Sentence translation is direct image squared on
types. A theory consists of sets of sequents; equivalently, a theory consists of a (type)
set and an endorelation on subsets of types. A closed theory is known as a regular
theory in Information Flow (satisfies for example, identity, weakening and global
cut). A theory morphism is a (type) function maps source sequents into the target
closure. When the target theory is closed, a theory morphism maps source sequents
to target sequents. A classification satisfies a sequent when any instance classified
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by all types in the antecedent is classified by some type in the consequent. The logi-
cal environment IFC is a subenvironment of the first order logical environment FOL
when types are regarded as unary relation symbols.

23.5 Coalescence

Based upon the horizontal composition of passages and bridges, there is a com-
position called coalescence (Fig. 23.2) from the context product of V-diagrams and
V-indexed contexts to the context of indexed contexts. There is also a dual version of
coalescence from on the context product of Vop-codiagrams and dual Vop-indexed
contexts to the context of dual indexed contexts. By using the involution on indexed
contexts and the involution on diagrams, these two versions of coalescence can be
defined in terms one another: the dual coalescence followed by the indexed context
involution is the same as the passage product of the involutions for V-diagrams and
V-indexed contexts followed by coalescence.

However, the dual version of coalescence can be defined directly in terms of hor-
izontal composition. For any ambient context V, in the context of codiagrams an
object is essentially a passage and a morphism contains a bridge, both with destina-
tion context V. Also, in the context of dual indexed contexts an object is essentially
a passage and a morphism is essentially a bridge, both with originating context V.
Hence, horizontal composition can be applied to both. The coalescence of a
V-diagram and a dual V-indexed context is a dual indexed context, whose indexing
context is that of the diagram and whose passage is the composition of compo-
nent passages. The coalescence of a V-diagram colink and a dual V-indexed link
is a dual indexed link, whose indexing passage is that of the V-diagram colink and
whose bridge is the horizontal composition of component bridges.

23.6 Fusion

23.6.1 General Theory

Following the paper (Goguen, 2006), fusion4 (Fig. 23.2) or the Grothendieck con-
struction (Grothendieck, 1963) is a way for homogeneously handling situations of
structural heterogeneity. Such situations are represented by indexed contexts, where
one kind of structure is indexed by another, are a central structure found in the
institutional approach to ontologies. The fusion process transforms by structural
summation an indexed context into a single all-encompassing context. There are two

4The fusion of an indexed context might be called “fusion in the large” or “structural fusion”. The
sums of diagrams, in particular sums of diagrams of theories of an institution, which takes place
within the fused context of theories, might be called “fusion in the small” or “theoretical fusion”.
Both are kinds of constrained sums.
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zones involved in fusion: the zone of indexing and the zone of structural summation.
The zone of indexing often contains pseudo notions, where structure is unique only
up to isomorphism. However, the zone of structural summation is strict. Links in
the fused context can represent sharing and translation between objects in the struc-
turally heterogeneous indexed context, and indexed objects in the fused context can
be combined using the sum construction. Examples include ontologies.

In overview, the component contexts of an indexed context are assembled
together by fusion into a single homogeneous context obtained by forming the
disjoint union of their object collections and then adding links based on the index-
ing links. In detail, given an indexed context, define the fusion context as follows:
objects are pairs called indexed objects, which consist of an indexing object and an
object in the corresponding component context; and links from one indexed object
to another indexed object are pairs called indexed links, which consist of an index-
ing link and a component link from the object of the beginning indexed object
to the contravariantly mapped image of the object of the ending indexed object.
Composition of indexed links is defined in terms of composition of the underlying
indexing links and component links. The fusion of a dual indexed context is the
opposite of the fusion of the corresponding indexed context under index context
involution. For any indexed context, the fusion of the indexed context involute has
the same indexed objects, but has indexed links whose component link is flipped.
The fusion of an inversely indexed context is the fusion of the left component
indexed context involute or, by the definition of invertibility, the fusion of the right
component dual indexed context. An (dual, inversely) indexed context has a base
projection passage from its fusion context to its indexing context. The fibers of an
indexed context are the component contexts, whereas the fibers of a dual (inversely)
indexed context are the opposite of the component contexts.5 The fusion context of a
cocomplete dual or inversely indexed context is cocomplete, and its base projection
passage is cocontinuous.

The fusion of an indexed link is a passage from the fusion of the originating
indexed context to the fusion of the destination indexed context. It maps an indexed
object by applying the indexing passage to its indexing object and applying the
bridge to its component object, and it maps an indexed link by applying the indexing
passage to its indexing link and applying the bridge to its component link. The
fusion of an indexed link commutes with its indexing passage through the base
projection passages of the origin and destination indexed contexts. The fusion of
an indexed connection from one indexed link to another indexed link is a bridge
from the fusion passage of the beginning indexed link to the fusion passage of the
ending indexed link. The indexing link of the components of the fusion bridge is
obtained by applying the bridge of the indexed connection to the indexing objects
in the fusion of the beginning indexed context. Hence, the basic fusion process is a
2-dimensional passage from the context of (dual) indexed contexts to the context of

5This explains the flip in the definition of cocompleteness and cocontinuity for dual (inversely)
indexed contexts.
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contexts. The ordinary and dual versions are definable in terms of one another via the
involutions for contexts and indexed contexts. The fusion passage of a cocontinuous
dual indexed link is cocontinuous.

For any ambient context V, the derived fusion process is the composition of coa-
lescence with basic fusion. As a result, it maps a V-diagram and an (dual) V-indexed
context to the context that is the fusion of their coalescence. It maps a V-diagram
(co)link and an (dual) V-indexed link to the passage that is the fusion of their coales-
cence. There is an adjoint derived fusion process that maps a V-diagram to a process
that maps a (dual) V-indexed context to the fusion context. The same process applies
to links. Here, the (dual) V-indexed contexts and links are usually restricted to a
relevant subcollection called the core.

23.6.2 Special Theory

In the institutional approach, unpopulated ontologies are represented by theories,
and populated ontologies are represented by (local) logics. Structures provide an
interpretative semantics for languages, theories provide a formal or axiomatic
semantics for languages, and logics provide a combined semantics, both interpre-
tative and axiomatic. Theories are the most direct representation for ontologies. The
notion of a (local) logic in an institution generalizes the notion of a (local) logic in
the theory of Information Flow. Hence, for institutions and institution morphisms the
relevant core indexed contexts are structure, inverse flow and logic. The fusions of
these comprises the core diagram (Fig. 23.8) consisting of the context of structures
representing interpretative semantics, the context of theories representing formal
or axiomatic semantics and the context of logics representing combined semantics,
respectively. Since the identity passage on classifications can be regarded as a ter-
minal institution, the core diagram for classifications is just the very special case of
the core diagram for this identity institution. The core diagram for an institution is
linked to the core diagram for classifications by the classification passage and others
built upon it. Each institution morphism generates a link between the core diagrams
at origin and destination, which consists of passages for structures, theories and log-
ics. For institutions and institution comorphisms there is only one relevant indexed
context: direct flow. The fusion of direct flow is the same theory context given by
inverse flow, since inverse and direct flow are components of the same inversely
indexed context.

In the institutional approach to ontologies the “lattice of theories” construction
is represented as the theory passage from the context of (co)institutions to the con-
text of contexts. For any fixed institution the “lattice of theories” construction is
represented “in the large” by the context of theories, and for any language of that
institution the “lattice of theories” construction is represented “in the small” by
either the concept preorder of theories or the concept lattice of closed theories.
From each theory in the order of theories, the entailment order defines paths to the
more generalized theories above and the more specialized theories below. There are
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four ways for moving along paths from one theory to another (Sowa, 2000): con-
traction, expansion, revision and analogy. Any theory can be contracted or reduced
to a smaller, simpler theory by deleting one or more axioms. Any theory can be
expanded by adding one or more axioms. A revision step is composite – it uses a
contraction step to discard irrelevant details, followed by an expansion step to added
new axioms. Unlike contraction, expansion or revision, which move to nearby the-
ories in the order, analogy jumps along a language link to a remote theory in the
context (in a first order logic institution this might occur by systematically renam-
ing the entity types, relation types, and constants that appear in the axioms). By
repeated contraction, expansion and analogy, any theory can be converted into any
other. Multiple contractions would reduce a theory to the empty theory at the top of
the lattice. The top theory in the lattice of theories is the closure of the empty the-
ory – it contains only tautologies or logical truths; i.e. sentences that are true in all
structures (it is “true of everything”). Multiple expansions would reduce a theory to
the full inconsistent theory at the bottom of the lattice. The full inconsistent theory
is the closed theory consisting of all expressions; i.e. expressions that are true in no
structures (it is “true of nothing”).

The context of theories, which is the fusion of the inverse-direct flow, is cocom-
plete, since inverse-direct flow is a cocomplete inversely Cls-indexed order (Tarlecki
et al., 1991). An institution is said to be cocomplete when its direct flow coalescence,
a dual indexed context, is cocomplete; equivalently, when its context of languages is
cocomplete. For any institution, the projection passage reflects sums. Hence, if the
institution is cocomplete, then its context of (closed) theories is cocomplete and its
projection passage is cocontinuous (Goguen and Burstall, 1992). When ontologies
are represented by theories (formal or axiomatic representation) in a cocomplete
institution, semantic integration of ontologies can be defined via the two steps of
alignment and unification6 (Kent, 2004). When ontologies are represented by (local)
logics (interpretative and axiomatic representation) in a logical environment, seman-
tic integration of ontologies can be defined by an analogous process (see the lifting
in Fig. 23.8). An institution colink is cocontinuous when its direct flow coales-
cence, a dual indexed link, is cocontinuous; equivalently, when it links cocomplete
institutions and its language passage is cocontinuous. If an institution colink is
cocontinuous, then its theory passage is cocontinuous. For any institution duality
(institution colink and link) based on an invertible passage of languages, there is a
(closed) invertible passage of theories, with right (left) component being the fusion
of the institution (co)link. Hence, the left (closed) theory passage is cocontinuous.

According to the dictionary, a cosmos is an orderly harmonious systematic
universe. A polycosmos (Patrick Cassidy) is an unpopulated modular object-
level “ontology that has a provision for alternative possible worlds, and includes
some alternative logically contradictory theories as applying to alternative possi-
ble worlds”. The mathematical formulation of polycosmic is given in terms of the

6See Footnote 2



562 R.E. Kent

sum of a diagram of theories for some institution. A diagram of theories is mono-
cosmic when its sum is consistent (satisfiable by some structure). A diagram of
theories is pointwise consistent when each indexed theory in the direct flow along
the summing corelation is consistent. A monocosmic diagram of theories is point-
wise consistent by default. A diagram of theories is polycosmic when it is pointwise
consistent, but not monocosmic; that is, when there are (at least) two consistent but
mutually inconsistent theories in the direct flow. In some institutions, there are some
extreme polycosmic diagrams of theories, where any two theories are either entail-
ment equivalent (isomorphic) or mutually inconsistent. Each of the theories in these
diagrams lies at the lowest level in the lattice of theories, strictly above the bottom
inconsistent theory containing all sentences.

23.7 Formalism

The Information Flow Framework (IFF) (Kent et al., 2001–2007) is a descriptive
category metatheory under active development, which was originally offered as the
structural aspect of the Standard Upper Ontology (SUO) and is now offered as a
framework for all theories. The IFF architecture is a two dimensional structure
consisting of metalevels (the vertical dimension) and namespaces (the horizontal
dimension). Within each level, the terminology is partitioned into namespaces. In
addition, within each level, various namespaces are collected together into mean-
ingful composites called meta-ontologies. The IFF is vertically partitioned into the
object level at the bottom, the supra-natural part or metashell at the top, and the
vast intermediate natural part. The natural part is further divided horizontally into
pure and applied aspects. The pure aspect of the IFF is largely concerned with
category-theoretic matters. The applied aspect of the IFF is largely governed by
the institutional approach to the theory and application of ontologies.

The IFF has had two major developmental phases: experiment and implemen-
tation. The experimental phase of the IFF development occurred during the years
2001–2005. The present and future development is mainly concerned with the final
coding and the implementation of the IFF. Initially, the plan of development was
for the IFF to use category theory to represent various aspects of knowledge engi-
neering, but more recently this strategy was augmented and reversed, thus applying
knowledge engineering to the representation of category theory. The institutional
approach is the main instrument used by the IFF to connect and integrate axiom-
atizations of various aspects of knowledge engineering. It is being axiomatized in
the upper metalevels of the IFF, and the lower metalevel of the IFF has axiomatized
various institutions in which the semantic integration of ontologies has a natural
expression as the sum of theories.

Both semantics and formalisms are important for ontologies. The connec-
tion between semantics and formalism is through interpretation. The institutional
approach is centered on interpretation and represents it as a parameterized rela-
tion of satisfaction between semantics and formalism. Although in many common



23 The Institutional Approach 563

examples the formal side of the satisfaction relation is set-theoretically small and
the semantical side is set-theoretically large, in the IFF axiomatization of the insti-
tutional approach both sides can range through the hierarchy of metalevels. Hence,
we think of the institutional approach as existing at a higher level, with its domain
including the triad (semantics, formalism, interpretation) and its formal system
encoded in category-theoretic terms. However, it incorporates category theory also,
with the contents of category theory as its semantics and the axiomatization of cate-
gory theory (as done in the IFF) as its formal system. So category theory provides a
formalism for the institutional approach, and the institutional approach provides an
interpretation for category theory.
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Chapter 24
Ontology Engineering, Universal Algebra,
and Category Theory

Michael Johnson and Robert Rosebrugh

24.1 Introduction

Ontology engineering is most often used to refer to the (indeed vitally important)
process of constructing ontologies.

Thus it was once with traditional engineering – engineers were concerned with
building essentially unique artifacts: bridges, roads and buildings for example.
The engineer had learnt from other examples and would bring general concepts,
known solutions, rules-of-thumb, and scientific calculation to the particular prob-
lems presented by a new site. Sometimes the engineer could effectively reuse a
design, adjusting only a few parameters (height of the towers, length of a span
etc) because a new site was sufficiently like an old site, but essentially each
new artifact called for a newly engineered solution. In contrast much modern
engineering is fundamentally about developing interoperations among extant sys-
tems – telecommunications is almost by definition thus, and most modern man-
ufacturing depends very significantly on planning and managing the interactions
between known systems.

The irony of ontology engineering needing to focus on constructing individ-
ual ontologies (whether small and domain specific (see examples in Bontas and
Christoph (2006)) or extensive and intended to establish standards over a wider field
(BizDex)) is of course that ontologies themselves were introduced to aid system
interoperability. A good theory and detailed processes for ontology interoperabil-
ity will significantly aid the development of new ontologies incorporating old ones.
Then extant ontologies can be used to support systems interoperation even when
the distinct systems are based themselves in separately developed ontologies. This
was the goal of the Scalable Knowledge Composition group’s algebra of ontologies
(Mitra and Wiederhold, 2004).
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This chapter follows and further develops (Johnson and Dampney, 2001) in
drawing ideas from categorical universal algebra, a field which might be viewed
as ontology engineering for mathematics, and using them to support ontology
engineering in a manner that leads naturally, and mathematically, to support for
interoperations among ontologies.

The ideas presented here have a strong theoretical foundation in the branch of
mathematics called category theory (see Chapter 21, by Healy, this volume), and
they have been developed and tested in a range of industrial applications over the
last 15 years.

24.2 Representing Ontologies

Formal ontologies are at least “controlled vocabularies” and can take many forms
ranging from glossaries to first order logical theories (Smith and Welty, 2001). Often
ontologies are expressed as trees or directed graphs because subsumption is such an
important (real-world) relationship and we are used to representing subsumption
relationships as directed edges. In fact, subsumption is a particular example of a
function (to each instance of the subclass, there corresponds a particular instance in
the superclass), and graphically or not, ontologies depend fundamentally on being
able to represent functions.

For us, it is largely unimportant how we represent ontologies because there is
substantial software support for ontology engineering. It is vital that a proposed
ontology is given via a precise representation, but then that representation can be
compiled into other forms. For more on representation see Chapter 22, by Vickers,
this volume.

In this chapter we will consider ontologies represented as categories. This will
have several advantages for us, including the use of the technical tools of category
theory (see Chapter 21, by Healy, this volume) to support our analysis of ontolo-
gies, the use of categorical logic (see Chapter 22, by Vickers, this volume) to make
clear the link between ontologies as categories and ontologies as logical theories,
and the graphical representation and reasoning of category theory to easily allow
fragments of ontologies to be represented in their more usual form as graphs or
trees.

As an example we present a fragment of an ontology for air traffic control sys-
tems. For those not used to category theory it will suffice to contemplate the diagram
(Fig. 24.1) and we will explain the categorical constructions in that diagram in log-
ical terms. For ease of exposition we have focused upon the part of the ontology
related to aircraft planning a landing.

Nodes in the directed graph shown in Fig. 24.1 are the main subject matter of
the ontology. In this case we are concerned with airports, runways, navigational
aids (VOR, which stands for VHF Omni-Range, and NDB, which stands for Non-
Directional Beacon), and aircraft approaches to airports. As noted by Gruber (2009),
ontologies are typically represented using classes, relationships (between classes)
and attributes (of instances of classes). In Fig. 24.1 classes are represented by nodes
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NDB
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Overshoot
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at

Airport

Fig. 24.1 A fragment of an
air traffic control ontology

and functional relationships by arrows. Attributes, while important and easily rep-
resented in our category theoretic approach, are suppressed to keep the diagram
simple.

At this point it is worth making three remarks about our use of functional
relationships.

First, all traditional (many-to-many) relationships can be represented as a “span”
of functional relationships. For example Approach might be a relationship between
Runway and NavAid (some navigational aids can be used as final approach fixes for
particular runways). Here that is expressed by the directed edges to and faf (final
approach fix). As is often the case, an attempt to “tabulate” the (many-to-many)
relationship between Runway and NavAid in fact records a class that has semantic
significance and which might itself be explicitly recorded as a class in other related
ontologies. So, choosing to represent only functional relationships doesn’t limit
our representational power, and may (in practice, does often) assist in identifying
meaningful classes.

Second, because ontologies are intended to be more abstract than data models,
what in many ontologies appears as a functional relationship in fact may be only a
partial function. If one were to say for example that an airport has a radio frequency
used for approaches, one would be largely correct. And it is certainly worth record-
ing that an airport may have such a frequency, and that that relationship is in general
functional, but strictly the function would be partial since there are uncontrolled
airports. Such partiality most often arises with optional attributes and can be dealt
with by introducing a (tabulated as just discussed) relation. How one does this turns
out to include some theoretical surprises, and we will discuss it in more detail in
Section 24.8.

Third, is_a relationships, among others, are denoted here by edges indicated
>—> . Those edges are intended to be realised not just as functions, but as injec-

tive (one-to-one but not necessarily onto) functions. This makes sense since if every
instance of X is an instance of Y, then we certainly expect that given an instance
of X we have a corresponding instance of Y (ie we have a function), but further-
more no two distinct instances of X would correspond under the is_a relation to
the same instance of Y (ie the function is injective). It is also valuable to be able
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to specify that other (functional) relationships are also required to be injective. For
example, the function faf specifies, for an approach to a particular runway, which
navigational aid provides the final approach fix. We will return to the specification
of >—> arrows in Section 24.3.

Remembering that Fig. 24.1 is a representation of part of a category, there are
other constraints. For example, in a category, arrows can be composed and so dia-
grams do, or do not, commute (see again Chapter 21, by Healy, this volume). In our
example, both rectangles commute. To check the commutativity of the lower rect-
angle we note simply that an Approach uses as final approach fix a NavAid which is
located at an Airport, and that the approach is to a Runway which must be at the same
airport as the navigational aid. On the other hand the triangle does not in general
commute: An Approach has associated with it an Overshoot which indicates which
NavAid an aircraft should go to in the case of failing to land after the particular
approach. The overshoot navigational aid will not usually be the aid that was used
as the final approach fix for the approach.

It is important to emphasise that whether or not a diagram commutes is a ques-
tion of real-world semantics – a question that should be asked, and a question whose
answer should be recorded as part of the ontology. Further examples of the impor-
tance of specifying commutative and not necessarily commutative diagrams are
given in Johnson and Dampney (1994).

Finally there are other, also categorically and logically expressible, interactions
between the nodes shown in Fig. 24.1. The is_a arrows into NavAid tell us that all
instances of VOR and NDB are NavAids. There is nothing in the diagram that tells
us that the “subobjects” are disjoint from each other, nor is there anything to say
whether or not there can be NavAids which are of other types. If, as is the case in the
real ontology, NavAid is known to be the coproduct of the two subobjects, then that
ensures that both these conditions are satisfied. In set theoretic terms the coproduct
requirement ensures that NavAid can be obtained as the disjoint union of VOR and
NDB. Similarly NDBApproach can be computed as a pullback in set theoretic terms,
which in this case is the inverse image of the inclusion of NDB’s in NavAid’s along
faf. It selects those Approaches whose NavAid is an NDB.

Note that although NavAid and its two is_a arrows can be computed from other
classes, it needs to be presented in Fig. 24.1 as it is the codomain of two further
arrows. On the other hand the ontology would not be changed at all if NDBApproach
were left out. It, and its two arrows, and the commutativity of its rectangle, are
all determined and can be recomputed as needed. This flexibility is at the heart of
ontology interoperation discussed in Section 24.5.

24.3 Presenting Ontologies

In the last section we noted (by example) that an ontology may seem to take a
different form merely because classes may not be included although they may
still be fully determined by other classes and relationships which are present.
This is the essence of the semantic mismatch problem which has made system
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interoperability so difficult and has motivated many of the developments of ontolo-
gies. Probably the potential complications are obvious to those who have worked
with independently developed but partially overlapping ontologies: each of the
ontologies contains enough information to model the application domain, but they
seem hardly comparable because classes, often sharing the same name, can be two
different specialisations of a more general class that doesn’t appear in either ontol-
ogy, and because each ontology seems to contain important classes that are absent
from the other.

In this section we briefly review mathematical presentations and the forms of
category theoretic presentation that the authors have found empirically sufficient for
ontology engineering. See also the discussion of ontological commitment in Chapter
22, by Vickers, this volume.

A presentation is a specification of the generators and axioms that are required
to determine a mathematical object. Common examples include in group theory
presentations of a group, or in the theory of formal languages presentations of a
language. A presentation is important because it gives a precise and usually finite
specification which suffices to fully determine the object. Yet presentations are not
usually the subject of mathematical study since a given mathematical object will
usually have many different presentations.

Categories are presented using sketches (Barr and Wells, 1995). At its most basic,
a sketch consists of a directed graph (like Fig. 24.1) together with a set of diagrams
in the graph (pairs of paths of arrows with common start and endpoint) which are
intended to be the commutative diagrams. The category presented by the sketch is
simply the smallest category, generated by the graph, subject to the commutativity
of the diagrams (and hence of all others that follow logically from those diagrams).

More generally a mixed sketch is a sketch together with sets of cones and cocones
(see Chapter 21, by Healy, this volume) in the graph which are intended to be limit
and colimit cones. The category presented by the (mixed) sketch is simply the small-
est category with finite limits and finite colimits, generated by the graph, subject to
the commutativity of the diagrams and to the requirement that the cones and cocones
do indeed form limit cones and cocones.

The formal development of the theory of (mixed) sketches is not important for
us here but one empirical observation is important: over a wide range of practical
studies finite limits and finite coproducts have sufficed to specify ontologies. So,
we will limit our attention to these kinds of mixed sketches. Furthermore, it turns
out that finite limits and finite coproducts are sufficient to support, via categorical
logic (see Chapter 22, by Vickers, this volume) a large fragment of first order logic.
This fragment is sufficient to model all usual “queries” for example. It is a powerful
tool for specifications, and easily supports, for example, the specification of monic
arrows which are modelled by injective functions. Indeed, an arrow is monic exactly
if its pullback along itself can be obtained with equal projections.

Having settled on the presentations we use, we now note in the strongest of terms:
An ontology is not its presentation. If you accept our claim that finite limits and
finite coproducts should be used in the category theoretic definition of an ontology,
then whenever you ask to see an ontology you will be shown a presentation. This is
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simply because the category with finite limits and finite coproducts specified by the
presentation will in general be infinite, so can’t reasonably be shown to you. But,
as with other mathematical presentations, the object of study is not the presentation,
but rather the (infinite) category.

When one takes this point of view many of the difficulties of independently devel-
oped but overlapping ontologies disappear. If two such ontologies really do capture
the same real-world domain then the independent presentations have the incompati-
bilities discussed at the beginning of this section, but the ontologies that they present
will be the same.

Of course, other ontologists have recognised this point in their own frameworks.
In particular, taking an ontology as a first order logical theory (rather than a collec-
tion of logical sentences) corresponds to taking the ontology as a category rather
than as a presentation. Nevertheless, it is apt to be forgotten when working with
tools that support and indeed display only finite fragments.

24.4 Views Versus Sub-Ontologies

An immediate benefit of recognising ontologies as categories rather than presenta-
tions comes with the definition of views. In many practical treatments a view of an
ontology is in fact a sub-presentation. When such a view exists, it will behave well.
Certainly a subpresentation is a view. But there are many views of ontologies whose
basic classes include some which do not occur in the presentation.

Instead, a view of on ontology O should be a presentation V together with a
mapping of that presentation into the entire ontology O, not just into the presentation
for the ontology O.

The idea here is worth emphasising: A view of an ontology should be given
just like any other ontology would be, via a presentation V, but when it comes
to instances the ontology generated by that presentation should be populated by
instances determined by the mapping of the presentation into the ontology O.

Incidentally, in the category theoretic treatment, a mapping of a presentation
V into an ontology O is the same as a functor, preserving limits and coproducts,
between the ontology V generated by the presentation V and the ontology O. If
in a particular application the ontology O has sets of instances associated with its
classes, then the view is obtained for any class V by following the functor to O,
obtaining a class in O, and then seeing what set of instances is associated with that
class.

We choose to work always with views and to eschew the use of subontology
except for the very simple cases which arise as a result of subpresentations.

24.5 Interoperations

The last section dealt carefully with views and subpresentations because some par-
ticularly forward looking work in the 1990s was intended to develop interoperations
for ontologies via an algebra of ontologies (Mitra and Wiederhold, 2004). The
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algebraic operations were based on the “intersection” of ontologies, and we claim
that the notion of view introduced in the preceding section supports an appropriate
generalisation of the notion of intersection.

The idea is as follows.
First, let’s review the familiar notion of intersection. Given two structures A and

B their intersection is the largest structure C which appears as a substructure of both
A and B. Diagrammatically A ← C → B, where the arrows are inclusions and
C is the largest structure that can be put in such a diagram. Thus if we seek the
intersection of two presentations of two ontologies the construction is fairly clear:
We merely take the set-theoretic intersection of the classes of the ontologies, and
the set theoretic intersection of the relations between those classes.

Of course, the foregoing is too naive. Two different ontologies may have two
common classes X and Y, and in each ontology there may be a functional relation
X → Y , but the two relations may be semantically different. Perhaps we could
require that the relations carry the same name when we seek their intersection, but
this brings us back to the very problem ontologies are intended to control – people
use names inconsistently.

Instead, we take seriously the diagram A ← C → B, developed with insight-
ful intervention to encode the common parts of A and B and record that encoding
via the two maps. Thus an f : X → Y will only appear in C when there are cor-
responding semantically equivalent functions in A and B, whatever they might be
called.

The requirement to check for semantic equivalence is unfortunate but unavoid-
able. Mathematically structures can be linked by mappings provided the mathemat-
ical form that they take does not contradict the existence of such a mapping, but
whether such mappings are meaningful is a semantic question that requires domain
knowledge.

Now we need to note that so far we have only dealt with presentations. If we
want an appropriate generalisation of intersection for ontologies we need to recog-
nise that two ontologies can have common classes. The commonality only becomes
apparent when one moves from the presentations, to the ontologies. For example,
two ontologies might both have a class called Product, but if the ontologies were
developed for different domains those classes are very unlikely to be semantically
equivalent. Nevertheless, it might happen that the ontologies do both deal with prod-
ucts of a certain type. To find an “intersection” it will be necessary to specialise both
of the Product classes, perhaps by restricting them to products with certain attributes
(likely different in the two different ontologies) or that have certain relationships
with other classes (again likely different in the two different ontologies). In our
experimental work such situations arise frequently, but with the limits and coprod-
ucts that are available in the two ontologies (represented as categories with finite
limits and finite coproducts) we can analyse the specialisations and determine the
corresponding classes in the two ontologies. Thus, if the two ontologies are called
O and O′ we develop a view V together with mappings into O and O′ obtaining
O← V → O′.

The largest such V might be viewed as the “generalised intersection” of O
and O′.
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In fact, in our empirical work we can rarely be confident that we have obtained
the largest such V. No matter, V together with its mappings provides an explicit
specification of identified common classes in the two ontologies that should be kept
synchronised if we expect the ontologies to interoperate. In practical circumstances
two industries will have specific intentions about how they will interoperate, and
so there is guidance as to which general areas of their ontologies will need to be
synchronised. There may be other commonalities (for example, Person might be
semantically equivalent in the two ontologies), but if as industries they keep those
parts of their operations distinct we need not necessarily support interoperations on
those commonalities.

It is worth emphasising here that views are better than subpresentations, and
ontologies as categories with finite limits and finite coproducts are better than mere
presentations of ontologies, because, at least in our experience, only in very fortu-
itous circumstances will ontologies be able to be “linked” via classes which happen
to appear already in their presentations.

24.6 Solving View Updates

Although this chapter has dealt mostly with ontologies, rather than with the appli-
cations of ontologies (often databases of some kind) that store the instances of the
classes that occur in the ontology, it is important to consider carefully the interaction
between views and instances.

In one direction the interaction is straightforward. As noted in the previous sec-
tion, a view’s classes should be populated with the instances from the corresponding
classes in the ontology. In category theoretic terms, the assignment of instances to
classes is a functor from the ontology (viewed as a category) to a category of (usu-
ally finite) sets. Then a view, being not simply a presentation V but also a functor
between the ontology V determined by that presentation, and the fundamental ontol-
ogy O, can be composed with the instances functor O → set to yield an instances
functor V → set.

Thus modifying the recorded instances of an ontology automatically modifies the
instances of any view of that ontology.

The reverse direction presents significantly more complications. In particular, if
one were to treat a view and its instances as if it were simply an ontology, and one
were to modify (update) the recorded instances of the view, it’s a very significant
problem to determine how best to correspondingly modify the recorded instances of
the ontology. In database theory this has been known as “the view update problem”
and has been the subject of research for nearly 30 years.

The difficulty of the view update problem is easily underestimated when one
concentrates on the classes, as we so often do when working with ontologies, and
neglects the relations between classes. But fundamentally the information about an
instance of a class is contained in the way that that instance is related to other
instances of other classes, or indeed to attributes. Thus, when one introduces or
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deletes an instance from a class in the view, an instance must be likewise introduced
or deleted from the corresponding class in the ontology. But what happens to the
relationships that that instance might participate in? In some cases the relationships
will also be present in the view, and then we can see what we should do to them in
the ontology, but inevitably there will be relationships which are not present in the
view but which need to be modified in the ontology. How should we modify them
if we want to update the instances of the ontology to match the instances of the
view?

Over the years there have been many solutions proposed for the view update
problem. We won’t review them here, but we will point out that there is one solu-
tion suggested naturally by the category theoretic approach – category theory makes
extensive use of so-called universal properties (properties like those used to define
limits and colimits in Chapter 21, by Healy, this volume), and there is a natural such
property, well-known in category theory, which can provide arguably optimal solu-
tions to view update problems. The required property is the existence of cartesian
and op-cartesian arrows, and the details are presented in the authors’ Johnson and
Rosebrugh (2007).

Rather than embarking on the category theoretic details, we will proceed now
to show how solutions to view update problems, when they exist, can be used to
develop ontology interoperation, and hence ultimately to aid ontology engineering
in the sense discussed in the introduction – engineering new ontologies by carefully
developing interoperations among existing ontologies.

24.7 Interoperations with Instances

For many purposes, including an algebra of ontologies, and for many ontologists,
the identification of a common view in the manner of Section 24.5 suffices. A new
ontology incorporating both extant ontologies and respecting their common views
can be calculated by taking the colimit of O ← V → O′ in the category of cate-
gories with finite limits and finite colimits. This corresponds to Healy’s “blending
of theories”. Nevertheless, we can ask for more.

Many ontology projects, including both BizDex and aspects of e2esu (End-
to-End Service Utility), seek to develop interoperations based on independently
developed domain-based ontologies. Interoperations in these cases mean interop-
erations at the instance level, and as we saw in the preceding section, interop-
erations at the instance level are more subtle than the colimit ontology would
suggest.

We say that ontologies O and O′ interoperate via a view V when in the diagram
O ← V → O′ the view update problems have both been solved. In such a case the
ontologies support interoperating systems. Suppose that we have two information
systems I and I ′ based respectively in the ontologies O and O′, then the systems
can interoperate as follows. Suppose that a change is made to the information stored
in system I. Immediately that results in a change to the V view of I. Because we
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have a solution to the view update problem for the V view of I ′ that change in the
view can be “propagated” to the information system I ′. Similarly, changes in the
information stored in I ′ are propagated via the common view to I. The result is that
the two systems remain synchronised on their common views while they operate
independently and, apart from the view update code, without any modification to
the original stand-alone information systems.

A detailed example for e-commerce systems is presented in Johnson (2007). That
paper also points out that this “full-duplex” interoperability is in fact stronger than
is often required in business. Instead, a “half-duplex” approach to interoperability
often suffices. This takes advantage of the empirical observation that for particular
interoperating businesses information only flows one way on certain classes, and the
other way on other classes, and these limited flows reduce the difficulty of solving
the view update problems.

We reserve the term interoperating ontologies for cases like those discussed in
this section where view update problems have been solved, at least in the half-
duplex sense, and so the V-linking of ontologies yields a corresponding and effective
linking of extant systems constructed using those ontologies.

24.8 Nulls and Partial Functions

It is notoriously difficult to precisely distinguish ontologies from data mod-
els. Even Gruber’s definition (Gruber, 2009), in common with other treatments,
can only broadly distinguish ontologies by discussing their expected indepen-
dence of data-structures and implementation strategies. He also notes that pri-
mary keys are the kind of thing that one would not expect to find in an
ontology.

One only half-facetious proposal put forward by the authors is that ontologies
are, at least often in practice, those data models in which all functional relationships
are partial. This does correspond with remarks about primary keys, since a defining
property of primary keys is that they are mandatory attributes. But more than this,
ontologies frequently provide a controlled vocabulary that indicates what might be
said about instances. Thus attributes are optional, or in other words, attributes are
always allowed to take null-values.

This suggests that in a theory of ontologies it is very important to determine how
one represents null-values or partial functions.

There are two widely used representations, both in databases and in category
theory. In one, a partial function is modelled by including an explicit null-value.
Thus a partial function X → A is represented by total function X → A + 1 with
the same domain X, but whose codomain is augmented by summing it with a single
null value. When the function is undefined on a particular x ∈ X the value at x for
the total function is by definition the extra or null value of the codomain A + 1. In
the other approach a partial function X → A is modelled by a relation X <—< X′ →
A in which X′ should be viewed as the subobject of X for which the function is
defined. Surprisingly a careful analysis of these two approaches shows that in the
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context of instances, viewed as categories of models, they are not equivalent. See the
discussion of ontological problems with “not” discussed in Chapter 22, by Vickers,
this volume.

Although the explicit use of null-values is probably the most widespread repre-
sentation of partial functions in databases, the authors choose to represent partial
functions using the relation approach. Using this approach we accept ontologies in
which explicit functional relations are drawn as arrows, but interpret those arrows
X → A as an abbreviation standing for X <—< X′ → A. This is in contrast to our
treatment of data models in which an arrow X → A is interpreted as a total function.
When it comes to making precise category theoretic calculations in ontologies the
spans X <—< X′ → A need to be explicitly included.

24.9 Universal Nulls

One of the great advantages of interpreting functions in ontologies as partial func-
tions is that view update problems much more often have straightforward solutions.
Perhaps this is easy to see. If a view includes a class, but not an attribute of that class
which is present in the ontology, then solving a view update problem will be very
difficult. After all, new instances of the class in the view don’t come with an attribute
value, but in the ontology, at least if functions are interpreted as total functions, each
new instance needs to be associated with a particular value for the attribute. Recall
that view update problems are solved using category theoretic universal properties.
When a function needs to take a value, but no value is in any sense canonical, then
there is very little chance of finding a universal solution.

One might reasonably expect that when functions are allowed to be partial, the
null-value will in some sense be canonical. Certainly, assigning the null-value in
cases where no other value is determined by the view is the minimal change.
Unfortunately, an explicit null-value is not category theoretically distinguishable
from any other value of an attribute, and so the difficulty in finding a universal
solution remains.

Happily, using the relation approach from the previous section, assigning a null-
value to an instance x in the relation X <—< X′ → A simply means not including
x in the subobject of defined values X′. This is again the minimal change, but this
time it is also minimal with respect to natural transformations among the set-valued
functors which keep track of the assignment of instances to classes. It turns out that
this minimality is exactly what is required to provide a universal solution for the
view update problem.

24.10 Conclusion

Developing interoperating systems is one of the most important uses of ontologies.
Over recent years category theory has been used to develop new approaches to
ontology presentation, and new solutions to view update problems. View update
solutions can be used to engineer systems interoperation.
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In this chapter we have studied the relationship between category theoretic spec-
ification and ontologies. We have noted how views can be used in a general way
to support calculating the colimit of two ontologies so as to create a new ontology
which includes them both and recognises their commonalities. We have shown fur-
ther how solving view update problems can lead to systems interoperation without
a need to modify the basic systems. In this latter case we call the ontologies interop-
erating ontologies. We have noted briefly how view update solutions can be aided
by the limitations of half-duplex interoperation, and by the very common if often
inexplicit use of partial functions in ontologies.

Over all we have found that new and mathematically precise treatments of dif-
ficult problems in the foundation of ontologies and information systems support
ontology interoperation.

It’s always pleasing when theoretical developments yield practical advantages
and new insights as well as stronger theory.
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