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Preface

Essential to the understanding of global climate change and improved weather
forecasts is the gathering of basic data of variables such as temperature, pressure,
wind, and the distribution of water vapor, clouds, and other active constituents.
Microwave, which we consider as a generic term to include the centimeter,
millimeter, and submillimeter regions of the spectrum, plays a special role in
the remote sensing of these variables. Microwave signal penetrates through
clouds and provides a measurement capability under all weather conditions. It
also provides a direct means for the determination of cloud water content and
precipitation. In the past years, I had been working on a variety of microwave
instruments for retrieving the atmospheric and surface parameter. I began with
the Special Sensor Microwave Imager (SSM/I) and developed several algorithms
for operational uses. Then, I have also developed a suite of microwave products
from Advanced Microwave Sounding Unit (AMSU), which started in 1998 with
continuing efforts for further improvements of these satellite retrievals. Today,
we have a flood of new satellite microwave data that are available fromMicrowave
Humidity Sounder (MWHS), WindSat, SSMIS, AMSR-E, AMSR2, MHS, and
ATMS, to name a few. These instruments provide unprecedented observations
of Earth’s environments and offer many unique opportunities to further improve
our understanding of weather and climate changes and to significantly benefit
to the numerical weather prediction. The WindSat measures the four Stokes
channel components at 10, 18, and 37GHz and allows simultaneous retrievals
of wind speed and direction over oceans. The Special Sensor Microwave Imager
and Sounder (SSMIS) observes, for the first time, the atmospheric temperature
and water vapor profiles from a conical scanning mode. SSMIS and MHS have
some channels in millimeter wavelengths ranging from 89 to 191GHz, which
are vital for the improvement in precipitation analysis and estimation. The
observations from AMSR-E, AMSR2, and Windsat at 6 and 10GHz over land
are used to retrieve soil moisture content and other land surface parameters.
My early work from the 1990s to 1999s was mostly centered on developing the
operational products from various operational and research satellite microwave
sensors. It is emphasized that the formulation of the remote sensing algorithms
could be sensor specific. In the early 2000s, I began simplifying the radiative
transfer process so that the inversion process can be more physically based and
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the retrieval algorithms can be easily adapted for new instruments under most
environmental conditions. Recently, a general variational approach has also been
developed for deriving the atmospheric and surface parameters from microwave
sounding instruments.
While writing this book, I was faced with the usual problems encountered in

compiling a work on a rapidly advancing field of microwave remote sensing and
applications. In response, I first lay the fundamentals in the microwave remote
sensing and then develop problem-specific algorithms and applications. This
book condenses a large amount of information into a limited space, including
microwave spectroscopy, particle scattering, radiative transfer, instrument
calibration, and data applications in weather and climate research. It is intended
for the broad class of scientists, researchers, and students who are interested
in the environment and wish to be acquainted with the impact that microwave
technology has on remote sensing. I have attempted to make this book as
self-contained and thus have the first three chapters on microwave radiometer
systems, atmospheric absorption and scattering, and radiative transfer modeling
in the atmosphere. Today, the radiative transfer model is becoming a powerful
tool in microwave instrument calibration and sensor data validation. Thus,
Chapter 4 is fully developed for simulations of microwave observations using
the Community Radiative Transfer Model (CRTM). Microwave instrument
calibration is also introduced in Chapter 5. In Chapter 6, the algorithms for
detecting the radio-frequency interference at microwave frequencies are illus-
trated. Since the scope of microwave remote sensing is very broad, I choose
some typical parameters to illustrate the principle of algorithms. Chapter 7
discusses remote sensing of surface parameters including ocean wind vector and
sea surface temperature, land emissivity. Chapters 8 and 9 are devoted to the
microwave algorithms for retrieving clouds and atmospheric temperature and
water vapor profiles. For applications of microwave data, I illustrated the impacts
of assimilation in numerical weather prediction models in Chapter 10 and the
uses of microwave data in deriving atmospheric temperature and water vapor
trend in chapter 11.
I am indebted to many researchers in the field who have contributed materials

and offered encouragement in preparing this book. I would also like to offer special
thanks to Professor Xiaolei Zou for many of her elegant research work and artistic
figures and to Dr Lin Lin, who was kind enough to review the whole manuscript.
Also, I am happy to acknowledge here the moral support of my wife, which was
essential to carry me through the years of work on the manuscript.

Maryland, United States
December 10, 2016 Dr. Fuzhong Weng
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1
Introduction

Microwave remote sensing infers the physical parameters from satellite radiome-
ters that operate at wavelengths ranging frommillimeters to centimeters (1.0mm
to 20.0 cm). The microwave radiometers are generally of two types: imagers that
have channels in the window regions of the spectrum to monitor surface, cloud,
and precipitation; and sounders that have channels in opaque spectral regions to
profile atmospheric temperature andwater vapor under all weather conditions. All
the current and planned instruments are flown aboard low Earth-orbiting satel-
lites.The vantage point of the geosynchronous orbit would be valuable for obtain-
ing the synoptic and continuous views of the atmosphere provided by optical and
infrared sensors.
This chapter introduces some fundamental parameters used in microwave

remote sensing.

1.1
A Microwave Radiometer System

A typicalmicrowave radiometer uses the so-called heterodyne principle applied at
radio frequencies. A heterodyne receiver is one inwhich the received signal, called
the radio frequency (RF) signal, is translated to a different and usually lower fre-
quency (the intermediate-frequency (IF)) signal before it is detected.The simplest
heterodyne radiometer is shown in Figure 1.1. It is an example of a total-power
radiometer and illustrates the features common to most microwave radiometers.
As a signal at some frequency is incident upon the antenna of the radiometer,
it couples the RF signal into a transmission line (a waveguide, for example), the
function of which is to carry the RF signal to and from the various elements of
the circuit. In the example, this signal is introduced directly into a mixer, which is
a nonlinear circuit element in which the RF signal is combined with a constant-
frequency signal produced at the output of this element because of its nonlinearity.
These products include a signal whose frequency is the difference between the RF
and local oscillator (LO) frequencies. This signal has the important property that
its power is proportional to the power in the RF signal under the condition that the

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Local oscillator

Mixer IF amplifier Filter Detector DC amplifier

LO

RF IF

VFeed

Reflector

Figure 1.1 Schematic of a microwave radiometer with a circuit that produces an output
voltage proportional to the received signal power.

latter ismuchweaker than the LO signal. It is then filtered to exclude the unwanted
products of the mixing and amplified to produce the IF output signal.
The total-power radiometer produces an output voltage V , which is a polyno-

mial function of the input current I:

V = a1I + a2I2 + a3I3 + a4I4. (1.1)

For a perfect square-law detector, the last two terms vanish. After integration over
time and considering the current as a sinusoidal function of time, the average volt-
age is a function of the current squared:

V = (a2 + 3a4I2)I2. (1.2)

Using theNyquist theorem, this current squared is related to the total power input
to the IF system, which is the sum of the thermal radiation R(TA) from the mea-
surement target and the noise R(Tn):

I2 = KBG[R(TA) + R(TN )], (1.3)

where TA, G, B, and TN are the temperature of the measurement target, ampli-
fier gain, bandwidth, and noise temperature, respectively, and K is the Boltzmann
constant.
It is seen from Eq. (1.3) that for the total-power radiometer, the amplifier gain

and noise affect the mean voltage. In order to reduce the effect of the internal
amplifier noise on the output stability, Dicke [1] introduced a radiometer circuit
that can eliminate the noise term through differentiating the signals from the
measuring target and an internal load with a known temperature during one inte-
gration cycle.TheDicke radiometerwas a great invention andwas used tomeasure



1.2 Blackbody Emission 3

the low power levels associated with thermal microwave radiation. The use of an
internal noise diode injecting noise at a known temperature into the receiver can
also reduce the effects of the gain instability and internal noise on the output of
the total-power radiometer.
Combining Eqs. (1.2) and (1.3) results in

V = b0 + b1R(TA)[1 + 𝜇R(TA)], (1.4a)

where 𝜇 is the nonlinear parameter, and b0 and b1 are the parameters that can
be directly determined from two-point calibration. They are mathematically
expressed as

b0 = [a2 + 3a4KBR(T)]KBGR(T), (1.4b)

b1 = [a2 + 6a4KBR(T)]BG, (1.4c)

𝜇 = 3a4
KBG

a2
. (1.4d)

1.2
Blackbody Emission

A blackbody is an object that absorbs light at a certain wavelength and also emits
radiation at the same wavelength.The total amount of energy radiated by a black-
body can be described through Planck’s law in a special function. The function
is valid for electromagnetic radiation pervading any medium, regardless of its
constitution, that is in thermodynamic equilibrium at a definite temperature. If
the medium is homogeneous and isotropic, then the radiation is homogeneous,
isotropic, unpolarized, and incoherent. The law is named after Max Planck, who
originally proposed it in 1900. It is a pioneer result of modern physics and quan-
tum theory. For a wave number 𝜐, Planckian radiation or spectral radiance (in unit:
W/m2/sr/cm) is expressed as

B𝜐(T) = 2hc2𝜐3

exp
(

hc𝜐
kT

)
− 1

≡ C1𝜐
3

exp
(C2𝜐

T

)
− 1

, (1.5)

where the Planck constant h = 6.626 × 10−34 J s; the Boltzmann con-
stant k = 1.381 × 10−23 J∕K; c is the speed of light, C1 = 2hc2 = 1.1909 ×
10−8 W∕m2∕sr∕cm3, and C2 =

hc
k
= 1.438786 cm∕K.

It should be pointed out that the Planck function can be expressed in terms
of wavelength or frequency, but the resultant unit is different. When the energy
is integrated within a wavelength, wave number, or frequency domain, the
unit for the radiance should be all the same (W/m2/sr). For example, in a
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frequency domain f ,

Bf (T) =
2hf 3

c2
1

exp
(

hf
kT

)
− 1

, (1.6)

which represents the energy in W/m2/sr/Hz. Alternatively, it can be written in
terms of the wavelength 𝜆, as

B𝜆(T) = 2hc2
𝜆5

1

exp
(

hc
𝜆kT

)
− 1

, (1.7)

which represents the energy in W/m2/sr/cm.
An integration for radiancewithin a spectrum can be derived using any function

from Eqs. (1.5)–(1.7) with a relationship to the frequency, wavelength, and wave
number for changing the limits in the integration. For instance, we can use Eq.
(1.6) with f = c𝜐 and f = c

𝜆

I = ∫
f2

f1
Bf (T)df = ∫

𝜐2

𝜐1

B𝜐(T)d𝜐 = ∫
𝜆2

𝜆1

B𝜆(T)d𝜆. (1.8)

Thus, we can also understand the equivalence of the Planck function expressed as
Eqs. (1.5)–(1.7), which are interchangeable through

B𝜐(T) ≡ Bf (T)c, (1.9)

B𝜆(T) ≡ Bf (T) c2
𝜆2

, (1.10)

B𝜐(T) ≡ B𝜆(T)𝜆2. (1.11)

1.3
Linearized Planck Function

Assuming C2𝜈

T
≪ 1, the exponential term in the Planck function can be expressed

as a Taylor series:

exp
(C2𝜐

T

)
= 1 +

C2𝜐

T
+ 1

2

(C2𝜐

T

)2

+ · · · + 1
n!

(C2𝜐

T

)n

+ · · · . (1.12)

Substituting the first-order approximation of the given Taylor expansion into
Eq. (1.5), one obtains the following linear relationship between the black-
body temperature (T) and radiance B𝜐(T), which is also referred to as the
Rayleigh–Jeans (RJ) approximation:

BRJ
𝜐 (T) =

C1𝜐
2

C2
T . (1.13)
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Figure 1.2 (a) Relative and (b) absolute variations of the brightness temperature with black-
body temperature varying from 100 to 300 K at frequencies 23.8, 53.6, 89.0, and 190.3 GHz.
(Weng and Zou 2013 [2]. Reproduced with permission of Optical Society of America.)

The accuracy of the radiance calculated from Eq. (1.5) and the linear approx-
imation Eq. (1.13) varies with the frequency and temperature. Figure 1.2 shows
the relative accuracy of the first-order approximation of the Planck function
(BRJ

𝜈 − B𝜈)∕B𝜈 with respect to temperature at four arbitrarily selected frequen-
cies of 23.8, 53.6, 89.0, and 190.3GHz. At a fixed temperature, the higher the
frequency, the larger the error. Alternatively, at a fixed frequency, the lower the
temperature, the larger the error. At a high frequency near 190.3GHz, there
is a 4.5% error in radiance. The error decreases rapidly with an increase in
temperature. More analyses of the RJ approximation can be found in Weng and
Zou [2].

1.4
Stokes Vector and Its Transformation

When an electromagnetic wave propagates in space, both its electric andmagnetic
fields are expressed as vectors, and they travel through space by exciting the field
of each other. As a result, the radiation field is a Stokes vector with four elements
which are related to the amplitudes of the electric field in the form

𝐈 = (I,Q,U,V ) (1.14a)

or

𝐈 = (I∥, I⟂,U,V ) (1.14b)

where

I = ⟨E∥E∗
∥⟩ + ⟨E⟂E∗

⟂⟩, (1.15a)

Q = ⟨E∥E∗
∥⟩ − ⟨E⟂E∗

⟂⟩, (1.15b)

I∥ = ⟨E∥E∗
∥⟩, (1.15c)
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I⟂ = ⟨E⟂E∗
⟂⟩, (1.15d)

U = ⟨E∥E∗
⟂⟩ + ⟨E⟂E∗

∥⟩, (1.15e)

V = i⟨E∥E∗
⟂⟩ − ⟨E⟂E∗

∥⟩, (1.15f)

where E∥ and E⟂ are the horizontal and vertical components of the electric field,
respectively, the star (∗) denotes the conjugate of a complex value, and the angu-
lar brackets indicate the time average over an interval longer than the oscillation
period of the electric field.
The component expressed by Eq. (1.15a) also represents the total energy from

the electromagnetic field and thus is also referred to as the radiation intensity.
In the microwave remote sensing field, the subscripts ∥ and ⟂ are often replaced
with h and v in the first two Stokes components.Thus, in this textbook, we use the
following notations for the Stokes brightness temperature components:

𝐓b = (Th
b ,Tv

b ,T3
b ,T4

b ), (1.16)

where the superscripts (3, 4) are used in the brightness temperature components
in Eq. (1.16) to replace the third and fourth Stokes components in Eqs. (1.15c) and
(1.15d) for avoiding the repetition of the superscripts used in the first two com-
ponents. The four brightness temperature components are related to the Stokes
parameters in Eq. (1.15) through the Planck function.
The law of transformation of the Stokes parameters for a rotation of the axes

through an angle 𝜃 is derived in two forms. For the Stokes parameters expressed
in Eq. (1.14a), the transformation matrix [3] is given as

𝐋i =

⎛⎜⎜⎜⎜⎝

1 0 0 0
0 cos 2i − sin 2i 0
0 sin 2i cos 2i 0
0 0 0 1

⎞⎟⎟⎟⎟⎠
. (1.17a)

Alternatively, it can be written as

𝐋i =

⎛⎜⎜⎜⎜⎜⎝

cos2i sin2i 1
2
sin 2i 0

sin2i cos2i −1
2
sin 2i 0

− sin 2i sin 2i cos 2i 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, (1.17b)

when the Stokes parameters in Eq. (1.14b) are used [4].
Equation (1.17b) is often used in microwave remote-sensing applications. For

a Stokes vector having zero third and fourth components in one coordinate
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system, its rotation to other coordinate systems may result in nonzero third and
fourth components. The third and fourth Stokes components can also contribute
to the first and second components through a coordinate transformation. For
a microwave scanning radiometer, Eq. (1.17b) is applied for converting the
brightness temperature components at the local coordinate to those at a scan
angle 𝜃 with respect to the nadir position such that

TQh
b = Th

b cos
2𝜃 + Tv

bsin
2𝜃 − T3

b
1
2
sin 2𝜃, (1.18a)

and

TQv
b = Th

b sin
2𝜃 + Tv

bcos
2𝜃 + T3

b
1
2
sin 2𝜃, (1.18b)

respectively, where the subscripts on the left-hand side of Eq. (1.18) denote the
first two components of the Stokes vector after the coordinate transformation.
The third terms on the right-hand side are normally neglected in microwave cal-
ibration [5]. However, for the window channels over the polarized surfaces, the
third term could be significant, and further studies are needed to quantify the
magnitude in microwave instrument calibration.

1.5
Microwave Spectrum

In microwave remote sensing, the spectrum ranges from centimeter wave-
length to millimeter wavelength. The microwave spectrum is usually defined
as electromagnetic energy ranging from ∼1 to 200GHz in frequency, but older
usage includes lower frequencies. Most common applications are within the
1–60GHz range. Microwave frequency bands, as defined by the Radio Society
of Great Britain (RSGB), are shown in Table 1.1. L-band technology is used for
remote sensing of soil moisture. C- and X-bands are more utilized for remote
sensing of ocean properties such as sea-surface temperature and wind vector.
K-band is more sensitive to atmospheric clouds, water vapor, and precipitation.
V-band is explored for probing the atmospheric temperature profile. W- and
G-bands are used for remote sensing of ice cloud and of atmospheric moisture
profile. F-band is also considered as an alternative for atmospheric temperature
sounding at a high spatial resolution.
The microwave bands used for meteorological applications are always pro-

tected from other emission sources operating at the same frequencies for
commercial and military applications. The growing competition may result in
strong interferences of the weather microwave instruments with active sources.
It is important to develop some techniques to detect the RF interferences on
microwave instruments [6, 7].
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Table 1.1 Microwave frequency bands used for Earth environmental and atmospheric
remote sensing.

Band Frequency
range (GHz)

Major remote sensing applications RFI sources

L 1–2 Soil moisture content, water salinity Radar, cell phone,
garage door

S 2–4 No applications in passive microwave remote
sensing

Radar

C 4–8 Sea surface temperature, soil moisture Radar, speed
monitor

X 8–12 Sea surface wind, sea surface temperature Direct TV
Ku 12–18 No applications in passive microwave remote

sensing
K 18–26.5 Precipitation, atmospheric water vapor, cloud

water, sea surface wind
Direct TV

Ka 26.5–40 Precipitation, water vapor, cloud water, sea
surface wind

Q 30–50 No applications in passive microwave remote
sensing

U 40–60 No applications in passive microwave remote
sensing

V 50–75 Atmospheric temperature profile
E 60–90 No applications in passive microwave remote

sensing
W 75–110 Precipitation over land, cloud water, and cloud ice
F 90–140 Atmospheric temperature and moisture profile
D 110–170 No applications in passive microwave remote

sensing
G 150–190 Atmospheric moisture profile

1.6
Spectral Response Function

For a typical instrument, the radiance received at a central wavelength corre-
sponds to the radiation within a spectral band and can be expressed as

If = ∫
f +Δf

f −Δf
Bx(x)S(x)dx, (1.19)

where f is the instrument central frequency, and 2Δf is the instrument bandwidth,
which is determined by the 3-dB window in S(x).
In the past, the instrument spectral response function was not well character-

ized for many microwave sensors. Thus, it is often assumed as a boxcar function
or a Gaussian distribution function. As shown in Figure 1.3, the boxcar, S(x),
for the Advanced Technology Microwave Sounder (ATMS) at some channels
could be significantly different from the one measured from the laboratory data.
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The radiance differences between a boxcar spectral response function (SRF)
and the laboratory SRF were recently studied and could be significant for some
instruments [8].

1.7
Microwave Antenna Gain and Distribution Function

A microwave radiometer system requires an antenna to collect the radiative
energy from the Earth and other targets. The antenna gain or efficiency is deter-
mined by its power distribution function, as shown in Figure 1.4. An antenna
having a higher gain tends to have a main lobe or beam with a larger power value.
The secondary and third peaks are called the side lobes. For an antenna sub-
system, the magnitude of the side lobes depends on both the frequency and the
antenna size. In general, the higher the frequency and the larger the antenna size,
the narrower the main beam and the smaller the side-lobe effect. The antenna
pattern is often shown at a decibel scale through normalizing the measured
intensity in each direction by the sum of the co- and cross-polarized radiations.
The antenna’s main beam width 𝜃 is defined through the half-power points in

the antenna power function. Based on the normalized antenna pattern, the main
beam efficiency is integrated with the antenna angles within 2.5 times the beam
width, as follows:

𝜂
pp
m = ∫Ωm

GppdΩ∕∫Ω
(Gpp + Gqp)dΩ. (1.20)

The antenna side-lobe efficiency is similarly derived as

𝜂
pp
s = ∫Ωs

GppdΩ∕∫Ω
(Gpp + Gqp)dΩ, (1.21)

where the superscripts pp and qp stand for either v or h polarization state; Gpp and
Gqp are the normalized antenna gains in the far field (i.e., Earth and cold space)
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Figure 1.4 ATMS normalized antenna pattern for channel 1 at (a) co-polarization and
(b) cross-polarization. (Replotted from Weng et al. 2013 [9].)
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for co- and cross-polarization, respectively; and Ωm and Ωs are the solid angles
corresponding to the antenna’s main beam and side lobes, respectively. Normally,
the side-lobe efficiency is derived according to the portions that intercept the
energy from the unwanted targets [9].

1.8
Microwave Instrument Scan Geometry

Similar to a radar system, a satellite microwave instrument also requires an
antenna subsystem to scan and collect the energy within its field of view (FOV).
Currently, two scanning modes (stepwise or continuous) are deployed in space
for cross-track scanning instruments, with the two specific examples illustrated
here. The most important parameters are listed in Table 1.2.
The Advanced Microwave Sounding Unit (AMSU-A) is a stepwise scanning

instrument. It has a scan angle of ±48.33∘ with respect to the nadir direction.
The instantaneous field of view (IFOV) of each channel is ∼57.6 mrad (3.3∘),

Table 1.2 Parameters from stepwise and continuous scanning microwave radiometer
systems.

Parameter Symbol Definition AMSU
(1–15)

ATMS
(3–16)

Instantaneous
field of view

IFOV Angular range corresponding to 3-dB
points in antenna gain distribution function

3.3∘ 2.1∘

Effective field
of view

EFOV Angular range during which the antenna
collects the signal to produce a mean signal

3.3∘ 2.3∘

Angular
swath width

𝜃m The maximum value of the instrument scan
angle

±48.33∘ ±52.75∘

Number of
field of views

Ns The number of scan-angle positions across
each scan

30 96

Scan cycle T Total time for antenna viewing Earth,
calibration target, then returning to its
original position

8 s 8/3 s

Earth view
time

Tc The time of antenna viewing the Earth
scene

6 s 1.73 s

Sample time ΔT The time for the two consecutive samples
made within a scan line

200ms 18ms

Sampling
angle

𝜃s The time for the two consecutive samples
made within a scan line

3.3∘ 1.1∘

Integration
time

Δt The time during which the antenna collects
the signal to produce a mean signal

158ms 17.6ms

Earth view
scan rate

R The scan rate with which the antenna views
the earth scene. These parameters are often
related with each other

n/a 61.6 ∘/s
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leading to a circular IFVO size close to 47.63 km at nadir and a swath width
of ±1026.31 km for a nominal satellite altitude of 833 km. Its sampling time is
200.0ms, with 160ms for integration and 40ms for stepping to the next scan
position. The sampling angular interval is close to 58.18 mrad (3.3333∘). The
distance between two consecutive scans is ∼52.69 km. On each scan line, there
are 30 Earth views. Each scan takes 8.0 s to complete.
Microwave instruments can continuously scan across the track. For ATMS,

channels 3–16 have a beam width of 2.2∘, which is smaller than that of the
AMSU-A channels 1–15. However, the beam width for ATMS surface channels 1
and 2 is 5.2∘, which is much larger than that of the corresponding AMSU channels
1 and 2. Six of the seven ATMS channels above 60GHz, channels 17–22, have
a beam width of 1.1∘, which is the same as that of the water vapor sounding
channels of AMSU-A and the microwave humidity sounder (MHS).
The aforementioned differences of the beam width between ATMS and AMSU

channels, along with the difference in the satellite altitudes between Suomi NPP
(National Polar-orbiting Partnership) (824 km) and its predecessors such as
NOAA-19 (870 km), result in significant differences in FOV sizes between ATMS
and AMSU. At ATMS channels 1 and 2, its single FOV is ∼1.6 times the AMSU
FOV in diameter, which is mostly determined by the beam width differences
between the two instruments.There is no overlap between the neighboring FOVs
and between the neighboring scan lines of AMSU, but significant overlaps occur
for ATMS FOVs and scan lines of channels 1 and 2 (Figure 1.5). For example, the
FOV48 has overlaps with the neighboring four FOVs and four scan lines.
A single AMSU FOV for channels 3–15 is about 1.5 times larger than that

of ATMS channels 3–16. At these channels, a single ATMS FOV overlaps with
its surrounding four FOVs. The differences in FOVs for water vapor channels
between ATMS and AMSU are rather small. There is a small difference in the
integration time between ATMS (18ms) and MHS (19ms).
Theoversampling features of ATMS allow the estimation of brightness tempera-

tures at resolutions higher or lower than the raw ATMS data resolution. However,
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an optimal balance between the desirable resolution and the resulting data noise
must be taken into consideration when developing such an estimate for investi-
gating specific weather systems.

1.9
Microwave Data Records and Their Terminology

A microwave radiometer measures the energy averaged within its FOV. Its
antenna brightness temperature is defined as

Tp
a = ∫Ωme

(GppTp
b + GqpTq

b )dΩ + ∫Ωse

(GppTp
b + GqpTq

b )dΩ

+ ∫Ωsc

(GppTp
b + GqpTq

b )dΩ + ∫Ωss

(GppTp
b + GqpTq

b )dΩ, (1.22)

where Tp
b is the brightness temperature at the polarization state of p. Note that

Tp
b has a spatial distribution covering the Earth, cold space, and the spacecraft.

Ωse and Ωss are the solid angles of the side lobes facing the cold space and the
satellite platform, respectively. The solid angle Ωme corresponds to 2.5 times the
main beam width. The first term in Eq. (1.22) is the Earth radiation entering into
the receiver system through themain beam; the second term is the Earth radiation
through the side lobes that are out of the main beam but within the Earth view
sector, the third term is the cold space radiation through the side lobes, and the
fourth term is the radiation scattered and emitted from the satellite platform to the
receiver. Equation (1.22) can also be expressed in terms of the antenna efficiency
associated with each term as

Tp
a = 𝜂

pp
meTp

b + 𝜂
qp
meTq

b + 𝜂
pp
se Tq

b,se + 𝜂
qp
se Tq

b,se + 𝜂
pp
sc Tq

b,sc + 𝜂
qp
sc Tq

b,sc + 𝜂
pp
ss Tp

b,ss + 𝜂
qp
ss Tq

b,ss.

(1.23)

The sensor brightness temperature is derived from Eq. (1.23) by correcting the
effects of the cross-polarization and side-lobe contributions from the Earth, cold
space, and spacecraft on the antenna brightness temperature:

Tp
b = 1

𝜂
pp
me

(Tp
a −𝜂

qp
meTq

b −𝜂
pp
se Tq

b,se −𝜂
qp
se Tq

b,se −𝜂
pp
sc Tp

b,sc −𝜂
qp
sc Tq

b,sc −𝜂
pp
ss Tp

b,ss −𝜂
qp
ss Tq

b,ss).

(1.24)

Determination of the contributions from cross-polarization and side lobes
requires both accurate antenna gain efficiencies and brightness temperatures
within various sectors viewed by the antenna.
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2
Atmospheric Absorption and Scattering

2.1
Introduction

Atmospheric absorption and scattering models are required for radiative transfer
modeling. For microwave remote sensing applications, a number of spectroscopy
databases have been developed as part of the radiative transfer model. For
example, HITRAN (an acronym for high-resolution transmission) is a compila-
tion of spectroscopic parameters that a variety of computer codes use to predict
and simulate the transmittance and emission of light in the atmosphere [10].
The line-by-line radiative transfer model (LBLRTM) is an accurate, efficient,
and highly flexible model for calculating spectral transmittance and radiance
[11]. In addition, GEISA (Gestion et Etude des Informations Spectroscopiques
Atmosphériques) is a publically accessible spectroscopic database designed
for accurate forward radiative transfer calculations using a line-by-line (LBL)
and layer-by-layer approach. However, the LBL computations of atmospheric
transmittance are very costly and must be further parameterized for fast but
accurate radiative transfer simulations required in satellite data assimilation
systems [12–14]. In this chapter, we provide a comprehensive overview of the
absorption lines in microwave to millimeter wave regions and also present our
unique efforts in the parameterization of the absorption lines for fast and efficient
computations. In addition, the techniques developed for fast computations of
scattering from aerosol, cloud, and precipitation particles are discussed [15, 16].
The fast atmospheric transmittance models and the lookup table for particle
scatterings are the key components in the community radiative transfer model
(CRTM). The concept of CRTM was conceived when the United States Joint
Center for Satellite Data Assimilation (JCSDA) was established in 2002. The
CRTM is a software library for computing the satellite instrument radiances and
their gradients with respect to various atmospheric and surface state variables
required in the data assimilation systems. The CRTM is based on a design
framework that emphasizes modularity and code reuse. Some modules are based
on those components that already existed in the NCEP global forecast system

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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(GFS), while others were developed to handle more sophisticated atmospheric
and surface radiative transfer problems. From its initial conception, the JCSDA
CRTM library was designed to be both platform independent and assimilation
system independent for ease of implementation by the JCSDA partners. The
CRTM has progressed into a system for use primarily at infrared and microwave
frequencies, with development opportunities for visible wavelengths.

2.2
Microwave Gaseous Absorption

For a clear atmospheric condition, transmittance, Υ, at altitude z with respect to
the top of atmosphere (TOA) is related to the optical depth, 𝜏 , as follows:

Υ𝜈(z) = exp
(
−
𝜏𝜈

𝜇

)
= exp

(
−∫

∞

z

𝜅 (𝜈, z)
𝜇

dz
)
, (2.1)

where 𝜅(𝜈, z) is the volumetric absorption coefficient expressed in the unit of
cm−1, 𝜇 = cos(𝜃), and 𝜃 is the observing angle. The absorption coefficient is
usually derived from laboratory measurements of transmittance through layers
of gas at fixed temperatures. All the physics related to the interaction of radiation
with matter (gases and particles) is contained within the absorption coefficient.
The optical depth in Eq. (2.1) is related to the integration of the volumetric
absorption coefficient, given in units of inverse distance, over the thickness of the
layer. In many applications, the gaseous mass absorption coefficients are used and
are given in the unit of cm2g−1. A conversion from themass absorption coefficient
to the volumetric coefficient is performed through the gaseous density, 𝜌(z). For
the atmospheric sounding, the integration in Eq. (2.1) is often derived through a
summation of all the absorptions within each thin layer. Usually, the absorption
characteristics of the gaseous constituents are a function of the pressure and
temperature or a function of the partial pressure of other gases. The quantity
of gas within a planet’s atmosphere increases exponentially with depth (due
to hydrodynamic equilibrium) and may also be a function of depth due to the
chemical and photolysis processes.

2.2.1
Absorption Line and Shape

In the troposphere, the absorption coefficient is dominated by pressure broad-
ening due to collisions with the molecules of all species in the atmosphere. Each
absorption line can be represented by a Lorentz line shape with a half-width [17]:

𝜅(𝜈 − 𝜈0) =
𝛾∕𝜋

(𝜈 − 𝜈i)2 + (𝛾)2
, (2.2)
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where 𝛾 = 1∕2𝜋tc and tc is themean time amolecule spends in the perturbed state.
The absorption coefficient at a given wave number requires a summation over all
lines in a given spectral interval. Note that the far wings of a large number of lines
can contribute to absorption even in window regions as such

𝜅(𝜈, p,T) =
Ni∑

i=1

niSi
𝜋

𝛾i

(𝜈 − 𝜈i)2 + (𝛾i)2
, (2.3)

where Si is the absorption line intensity, ni is the number of absorbers, 𝜈i is the cen-
tral wave number of absorption line, and 𝛾i is the pressure-broadened absorption
line half-width, which is

𝛾i ≅ 𝛾0i
p
p0

√
T
T0

, (2.4)

For low pressures (p ≤ 1 hPa), the following correctionsmust be included in com-
puting the absorption. Thermal broadening due to Doppler shifting of lines is
important at high temperatures and low pressures. If T is the kinetic temperature,
the probability of finding a molecule with a velocity V in the range of (V ,V + 𝛿V )
is given by a Maxwellian distribution

W (V )dV = 1√
𝜋V0

exp

(
−V 2

V 2
0

)
dV , (2.5)

where V0 =
√
2kBT∕m, kB is the Boltzmann constant, and m is the mass of the

molecule. When observed at wave number 𝜈, the absorbing wave number is given
by 𝜈[1 − (V∕c)]. The Doppler frequency shift from the distribution of molec-
ular velocities causes absorption line broadening and results in Gaussian line
shape as

𝜅d(𝜈 − 𝜈0) =
1

𝛾D
√
𝜋
exp

[
−
(
𝜈 − 𝜈0

)
𝛾2D

2]
. (2.6)

When the pressure-broadened Lorenz half-width becomes comparable to the
Doppler width, the broadened absorption coefficient, 𝜅d, is given by a convolution
integral of the unbroadened absorption coefficient, 𝜅, Doppler-shifted by the
velocity distribution

𝜅d(𝜈) = ∫
∞

−∞
𝜅(𝜈 − 𝜈V∕c)W (V )dV . (2.7)

Thus, Doppler broadening results in a Voigt line profile, which does not have any
particular analytic form of line shape [18].
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2.2.2
Oxygen Absorption

The primary gaseous absorbers in the troposphere and lower stratosphere at
frequencies below 300GHz are diatomic oxygen (O2) and water vapor (H2O).
Carbon dioxide (CO2), carbon monoxide (CO), nitrous oxide (N2O), and ozone
(O3) exhibit resonant absorptions, and nitrogen (N2) displays a weak nonreso-
nant absorption at microwave frequencies. In general, these trace species can be
neglected at altitudes and frequencies of concern in microwave remote sensing.
The absorption of the linear molecule oxygen, O2, in the electronic ground state

arises from a fine-structure transition caused by the interaction of the molecule’s
permanentmagnetic dipole with themagnetic field produced by the rotor’s orbital
angular momentum [19, 20]. Approximately 33 transitions of significant strength
in the atmosphere are located between 50 and 70GHz, and a single isolated tran-
sition is located at 118.75GHz. Zeeman splitting of microwave O2 lines by the
Earth’s magnetic field is important at altitudes starting in the upper stratosphere
[21, 22]. Absorption by the isotopic species 16O18O is normally negligible for the
purpose of passive tropospheric and lower stratospheric remote sensing.
The microwave absorption spectrum of H2O is due to rotational transitions

induced by the interaction of external fields with the molecule’s permanent
electric-dipole moment. Water vapor resonances at microwave frequencies are
modeled by the van Vleck–Weisskopf (VVW) line shape [23]. An additional
absorption contribution by water vapor takes the form of a continuum that
varies slowly with frequency. Empirical characterization of H2O continuum and
resonant absorption was developed by Liebe [24–26].
Currently, the absorption coefficients for microwave spectrum were consid-

ered primarily from Rosenkranz [27] and Liebe et al. [28]. For molecular oxy-
gen, the absorption arises from complicated magnetic-dipole transitions in which
the two unpaired electron spins of the electronic ground state change alignment
with respect to the rotational angular momentum, which is given by the quantum
number, N. The allowed transitions are from J=N to J = N ± 1, where J is the
resultant angular momentum quantum number. The absorption coefficients are
complicated functions of the frequency (f in GHz), pressure (p in mb), temper-
ature (T in K), and amount of O2 derived from water vapor density, and can be
written in terms of the line parameters

𝜅O2 (f , p,T , 𝜌v) = 𝜅O2−NR
f + 10−10nO2

•
∑
j≥0

Sj(T)F(f , f0,j), (2.8)

where 𝜅O2−NR
f is the absorption from nonresonant absorption, and nO2

is the num-
ber density of O2

nO2
= 0.503384 × 1022pdry • 𝜃, (2.9)

where 𝜃 = 300∕T , pdry = p − pH2O, and pH2O = 𝜌wT∕217.
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The nonresonant absorption arises from the relaxation spectrum of oxygen’s
magnetic dipole moment, which is related to the imaginary component of the
refractivity (N = N ′ + iN ′′)

𝜅
O2−NR
f = 0.04191 • f • N ′′

≡ 2.57327 • 10−6 • p • 𝜃2 •
f 2𝛾NR

f 2 + 𝛾2NR
, nepers∕km (2.10)

The line half-width parameter for nonresonant absorption, wNR, has a value of
0.56GHz/bar (bar is a non-Si unit of pressure, 1 bar= 100 000, Pa= 1000mb) [28],
and with pressure given in mb, the pressure-broadened half-width is given by

𝛾NR(j) = (wNR∕1000) • (pdry • 𝜃0.8 + 1.1pH2O
• 𝜃) (2.11)

For pressures greater than 0.1mb, the pressure-broadened line shape is given as
follows [27]:

F(f , f0,j) =
1
𝜋

(
f

f0,j

)2 [
𝛾c +
(

f − f0,j
)

• Y (j)
(f − f0,j)2 + 𝛾2c

+
𝛾c − (f + f0,j) • Y (j)
(f + f0,j)2 + 𝛾2c

]
(2.12)

where the overlap correction is given by

Y (j) =
p

1000
• 𝜃0.8 • [y(j) + (𝜃 − 1) • y(j)], (2.13)

and the line strength is given by

Sj(T) = S′ • Qelec • Qvib • Qrot • exp[b(j) • (1 − 𝜃)], (2.14)

where y(j), fb(j), and other parameters in Eqs. (2.12)–(2.14) are shown in [27].
Figure 2.1 displays an absorption spectrum for frequencies ranging from 50 to

70GHz, corresponding to a pressure of 50mb and a temperature of 211K. There
are a total of 34 rotational absorption lines in this region. Each is named with
the O2 rotational energy transition quantum, as summarized in Table 2.1. Those
lines at frequencies less than 58GHz are widely used for atmospheric temperature
sounding; for example, the Advanced Technology Microwave Sounder (ATMS)
onboard SuomiNational Polar-orbiting Partnership (SNPP) satellite with its chan-
nels 3–10 located in the region. Normally, the channels are selected at the valleys
of two resonant absorption lines where the instrument noise can be designed to be
lower through a large band pass. In addition, the channel having a higher absorp-
tion coefficient is sensitive to the upper atmospheric temperature.
However, other ATMS channels from 11 and 15 are located on the slopes of two

absorption lines at 56.968 and 57.612GHz, respectively, as shown in Figure 2.2.
In addition, there are two to four subbands for each channel, as indicated by the
identical channel numbers. Use of more subbands allows for noise reduction.
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Figure 2.1 Oxygen absorption coefficients between 50 and 70 GHz at pressure of 50 mb
and temperature of 211 K. Labeled in numeric are the resonant frequency locations where
the magnetic-dipole transitions occur with +sign for quantum number J from N to N+ 1
and −sign from N to N− 1.

Table 2.1 Frequency location with the magnetic dipole
quantum number.

N− Frequency N+ Frequency

1− 118.7503 1+ 56.2648
3− 62.4863 3+ 58.4466
5− 60.3061 5+ 59.5910
7− 59.1642 7+ 60.4348
9− 58.3239 9+ 61.1506
11− 57.6125 11+ 61.8002
13− 56.9682 13+ 62.4112
15− 56.3634 15+ 62.9980
17− 55.7838 17+ 63.5685
19− 55.2214 19+ 64.1278
21− 54.6712 21+ 64.6789
23− 54.1300 23+ 65.2241
25− 53.5958 25+ 65.7648
27− 53.0670 27+ 66.3021
29− 52.5424 29+ 66.8368
31− 52.0215 31+ 67.3695
33− 51.5034 33+ 67.9008
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Figure 2.2 Oxygen absorption coefficient near the central frequency of 57.29 GHz at pres-
sure of 50 mb and temperature of 211 K. Labeled in numeric are the frequency locations at
ATMS channels 10–15.
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Figure 2.4 Volumetric oxygen absorption coefficient near 118 GHz at pressure of 50 mb and
temperature of 211 K. The channel locations for MWHS are also indicated.

However, the unbalanced subband receiver gains can introduce other issues such
as bias, if not properly characterized. It is shown that for channels 13–15, the
absorption coefficients at the subbands near 56.968GHz are different from those
at 57.612GHz.Thus, the radiative components received at the four subbands arise
from different atmospheric levels. A fast radiative transfer model parameterized
at the central frequency for accurate calculation must carefully reflect the subtle
effects from the instrument subband design.
There is growing interest in using 118.75GHz oxygen absorption lines for space

remote sensing (Figures 2.3 and 2.4). However, the absorption line is often com-
plicated by the continuum water absorption, as discussed in Section 2.2.3.

2.2.3
Water Vapor Absorption

The absorption coefficient for water vapor is a function of frequency (f in GHz),
pressure (p in mb), temperature (T in K ), and amount of H2O derived from water
vapor density (𝜌v in g∕M3). It is given by Rosenkranz [27] as follows:

𝜅H2O(f , p,T , 𝜌v) = 𝜅
H2O,con
f + 10−4 • nf

∑
j≥0

Sj(T) • F(f , f0,j). (2.15)

The constant 10−4 is a conversion from 10−9 GHz∕Hz and 105cm∕km. The water
number density, nw, is given in units of molecules cm−3 by

nw = 3.343 × 1016𝜌v. (2.16)
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The continuum absorption coefficient, 𝜅H2O,con
f , is also developed by Rosenkranz

[27] as

𝜅
H2O,con
f = pH2O(4.74 × 10−10pdry𝜃

3 + 1.50 × 10−8pH2O × 𝜃10.5)f 2. (2.17)

The strength term, Sj(T), is given by Eq. (2.14) with Qrot = 𝜃2.5, and f0(j), S′(j), and
b(j) are given by Rosenkranz [22]. For p ≥ 0.1 mb, the pressure-broadened VVW
line shape is

F(f , f0,j) =
1
𝜋

(
f

f0,j

)2 ⎡⎢⎢⎣
𝛾c(

f − f0,j
)2 + 𝛾2c

+
𝛾c

(f + f0,j)2 + 𝛾2c

⎤⎥⎥⎦ (2.18)

and

𝛾c(j) =
w(j)
1000

(pdry𝜃
x(j) + 4.8 × pH2O × 𝜃0.8) (2.19)

2.2.4
Nitrogen and Ozone Absorption

The nitrogen absorption coefficient in nepers∕km (note: dB∕nepers= 8.68588,
nepers = ln(a∕b), db = 20 log(a∕b)) is given as a function of frequency (f in
GHz), pressure (p in mb), and temperature (T in K) as

𝜅N2 (f , p,T) = 6.4 × 10−14 × p2 × f 2 × (300∕T)3.55, (2.20)

and the absorption coefficient for ozone is a function of frequency (f in GHz),
pressure (p in mb), temperature (T in K), and amount of O3 derived from ozone
density, 𝜌o

𝜅O3 (f , p,T , 𝜌o) = 10−4 × nO3
×
∑
j≥0

Sj(T) × F(f , f0,j), (2.21)

where the ozone number density, nO3
= 1.255 × 1016𝜌O3

, and Sj(T) and F(f , f0,j)
are the line intensity and line shape, respectively, forO3 absorption [27].Theozone
lines dominate in the stratosphere and are quite narrow (≈ 60MHz).The net effect
of the ozone lines on a broadband instrument is negligible in a typical microwave
remote sensing problem.

2.2.5
Line-by-Line Radiative Transfer Model (LBLRTM)

LBLRTM was developed for computing the transmittance and radiances across
all the spectra [11]. Figure 2.5 shows an atmospheric transmittance spectrum
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Figure 2.5 Atmospheric transmittance spectrum computed from the U.S. standard atmo-
sphere using line-by-line radiative transfer model (LBLRTM) [11]. The HITRAN spectroscopy
data base is used in LBLRTM calculation.

from 0 to 200GHz at the U.S. standard atmospheric pressure levels of 1013.95
and 706.57mb, respectively. The frequency allocation for most of the satellite
microwave instruments is based on the transmittance spectrum as indicated. For
an instrument located at the higher transmittance region, it allows for sensing
the surface or lower atmospheric features. To obtain atmospheric temperature
and water vapor profiles, we need to select a spectral range within which the
transmittance strongly varies with frequency. In the frequency domain, there
are several water vapor absorption regions near 22.23, 183, 325, and 380GHz,
which are associated with variable transmittance values. Two oxygen absorption
bands are located near 60 and 118GHz, respectively. At 100mb, the smaller
transmittance values at frequencies above 100GHz are due to ozone absorption.

2.2.6
Zeeman Splitting Absorption

If magnetic fields are present, the atomic energy levels are split into a larger num-
ber of levels, and the spectral lines are also split.This splitting is called the Zeeman
effect and can be characterized by the orbital angular momentum quantum num-
ber, J , of the atomic level. J can take nonnegative integer values, and the number
of split levels in the magnetic field is 2J + 1.
Atomic physicists use the abbreviation “S” for a level with J = 0, “p” for J = 1,

and “d” for J = 2, and so on. It is also common to precede this designation with the
integer principle quantumnumber,n.Thus, the designation “2p”means a level that
has n = 2 and J = 1. For an atom having its lowest level of an “S” level, it has J = 0
and 2J + 1 = 0, so it is not split in the magnetic field, while the first excited state
has J = 1 (“p” level), so it is split into 2J + 1 = 3 levels by the magnetic field.Thus,
a single transition is split into three transitions by the magnetic field, according to
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the azimuthal quantum number M = −J , … , 0, … , J . The selection rules permit
transitions with ΔJ = ±1 and ΔM = 0,±1, or

ΔM =
⎧⎪⎨⎪⎩

0 → 𝜋

+1 → 𝜎+

−1 → 𝜎−

. (2.22)

Figure 2.6 displays the energy level transition, and the resulting absorption lines
are shown in Figure 2.7 [29]. The line center frequency of a single Zeeman com-
ponent (in MHz) is

𝜈z,N± = 𝜈N± + 2.8026Be𝛼(N±,M,ΔM), (2.23)

where 𝜈0 is the center frequency of the unsplit resonance line corresponding to
N±, Be is the Earth’s magnetic field strength in Gauss (∼0.22–0.65 near the Earth’s
surface), and 𝛼 is the coefficient that depends on N , M, and ΔM [21] as follows:

𝛼(N+,M,+1) = 1
(N + 1)

(
1 + M N − 1

N

)
, (2.24a)

𝛼(N−,M,+1) = − 1
N

(
1 + M N + 2

N

)
, (2.24b)

𝛼(N+,M, 0) = M
(N + 1)

N − 1
N

, (2.24c)

𝛼(N−,M, 0) = −M
N

N + 2
N + 1

, (2.24d)
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𝛼(N+,M,−1) = 1
(N + 1)

(
−1 + M N − 1

N

)
, (2.24e)

𝛼(N−,M,−1) = − 1
N

(
−1 + M N + 2

N + 1

)
. (2.24f)

The line intensities of radiation emitted by the 𝜋 and 𝜎±, components are given by

I𝜎± ∼ |𝜇(N ,M,ΔJ ,±1)|2𝜌𝜎±, (2.25a)

and

I𝜋 ∼ |𝜇(N ,M,ΔJ , 0)|2𝜌𝜋 , (2.25b)

respectively, where 𝜃 is the angle between the magnetic field direction and the
direction of propagation, and

𝜌𝜎± =

[
1 ∓i cos 𝜃

±i cos 𝜃 cos2𝜃

]
, (2.26a)

𝜌𝜋 =

[
0 0
0 sin2𝜃

]
, (2.26b)

|𝜇(N ,M,+1,+1)|2 = 3N(N + M + 1)(N + M + 2)
4(N + 1)2(2N + 1)

, (2.26c)
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|𝜇(N ,M,−1,+1)|2 = 3(N + 1)(N − M)(N − M − 1)
4N2(2N + 1)

, (2.26d)

|𝜇(N ,M,+1, 0)|2 = 3N[(N + 1) − M2]
(N + 1)2(2N + 1)

, (2.26e)

|𝜇(N ,M,−1, 0)|2 = 3(N + 1)(N2 − M2)
4N2(2N + 1)

, (2.26f)

|𝜇(N ,M,+1,−1)|2 = 3N(N − M + 1)(N − M + 2)
4(N + 1)2(2N + 1)

, (2.26g)

|𝜇(N ,M,−1,−1)|2 = 3(N + 1)(N + M)(N + M − 1)
4N2(2N + 1)

. (2.26h)

The effect of the Zeeman splitting on the 3+ resonance line is shown in Figure 2.7.
Since the Zeeman splitting occurs in the upper atmosphere, the split line

spectrum is also broadened by Doppler shifting and pressure-induced collision.
To take these two processes into account, Lenior [21] obtained the combined
absorption profile by convolving the collision-broadened line-shape function of
van Vleck–Weisskopf [23] with the Doppler line-shape function and then derived
the total attenuation for 𝜎 and 𝜋 components of given N+ and N− transition
lines as

AN± ,𝜎± (𝜈) = C
pmb𝜈

2

T3 e−EN∕T𝜌𝜎± ×
N∑

M=−N
|𝜇(N ,M,±1,±1)|2

× F(𝜈, 𝜈0,Δ𝜈c,Δ𝜈D), (2.27a)

AN±,𝜋(𝜈) = C
pmb𝜈

2

T3 e−EN∕T𝜌𝜋 ×
N∑

M=−N
|𝜇(N ,M,±1, 0)|2

× F(𝜈, 𝜈0,Δ𝜈c,Δ𝜈D), (2.27b)

where pmb is the pressure in millibars; 𝜈 is the frequency in GHz; T is the tem-
perature in K; En is the energy of the nth rotational state and equals 2.0685N
(N + 1) in K; F is the Voigt function with the frequency being the shifted reso-
nance frequency, as described in Eq. (2.23); and C = 0.229. The total attenuation
matrix (in the unit of km−1) for a given transition line is given by Lenior [21]:

AN± (𝜈) = AN± ,𝜎+ (𝜈) + AN± ,𝜎− (𝜈) + AN± ,𝜋(𝜈). (2.28)

Overall, the Zeeman-induced line spectrum overlays on the major resonant
absorption line, as shown in Figure 2.8, at 61.15056GHz. The transmittance
spectrum without the magnetic field is a typical resonant shape through Doppler
broadening. Under the magnetic field, the resonant shape flattens with small local
resonant shapes. In addition, the angle between the wave propagation direction
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and the magnetic vector further affects the Zeeman splitting spectrum. The
double sides of the frequencies near each resonant line can be used to reduce the
impact of the Zeeman splitting on microwave sounding.
The Zeeman splitting effects are important applications in upper atmospheric

remote sensing. AMSU-A channel 14 and ATMS channel 15 are located near
O2 rotational lines 11– and 13–. SSMIS channel 19 has two narrow passbands
centered onO2 rotational lines 15+ and 17+, and SSMIS channel 20 has two pass-
bands on lines 7+ and 9+. SSMIS channels 21 and 24 have four passbands each,
paired and situated symmetrically on the opposite sides of the transition lines 7+
and 9+ with increased bandwidths and band frequency offsets in the line cen-
ters as the channel number increases. These channels are mostly affected by the
Zeeman splitting absorption, and the simulations of the atmospheric transmit-
tance at these channels must take the Zeeman splitting absorption profiles into
account, as shown in Figure 2.8 [29].

2.2.7
Parameterized Transmittance Model

In satellite data assimilation system and remote sensing applications, atmospheric
gaseous absorption must be calculated fast and accurately. A common approach
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is to derive a parametric relationship between the transmittance and pressure,
temperature, and water vapor mixing ratio.
Thepolychromatic gas absorptionmodel beginswith the channel layer-to-space

transmittance, Υch, which is defined as the convolution of the monochromatic
transmittance, Υ(𝜈), with the channel spectral response function (SRF), 𝜙(v):

Υch = ∫Δ𝜈
Υ(𝜈)𝜙(𝜈)d𝜈. (2.29)

Let Υw(𝜈) and Υo(𝜈) be the monochromatic transmittances of water vapor and
ozone, respectively, and Υd(𝜈) the transmittance of the dry gas, which is a collec-
tive component including all the absorbing gases except water vapor and ozone.
Then, the total monochromatic transmittance can be expressed as the product of
these three components:

Υ(𝜈) = Υw(𝜈)Υo(𝜈)Υd(𝜈). (2.30)

The total channel transmittance Υch defined in (2.29) can also be expressed in a
similar form through an effective transmittance:

Υch = Υch ,wΥ
∗

ch,oΥ∗
ch,d , (2.31)

where Υch,w is the channel transmittance of water vapor and is defined as

Υch,w = ∫ Υw(𝜈)𝜙(𝜈)d𝜈, (2.32)

and Υ∗
ch,d and Υ∗

ch,o are the effective channel transmittances of the dry gas and
ozone, respectively. The effective dry gas Υ∗

ch,d is defined as

Υ∗
ch,d = Υch,d+w∕Υch,w, (2.33)

where Υch,d+w is the channel transmittance of the combined dry gas and water
vapor,

Υch,d+w = ∫ Υd(𝜈)Υw(𝜈)𝜙(𝜈)d𝜈, (2.34)

and the effective ozone transmittance Υ∗
ch,o is defined as

Υ∗
ch,o = Υch∕Υch,d+w. (2.35)

Equation (2.31) is used to derive the channel transmittance. The three transmit-
tance components, Υch,w, Υ∗

ch,d, and Υ∗
ch,o, are estimated using the regression

technique. For simplicity, let the index i represent water vapor, ozone, or dry gas
and Υch,i(Ai) represent one of the three transmittance components, Υch,w, Υ∗

ch,d ,
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andΥ∗
ch,o, at the level with the integrated absorber amount Ai (from space to the

pressure level p), which is computed as

Ai = ∫
p

0

ri
g cos(𝜃)

dp′, (2.36)

where ri is the gas specific amount, 𝜃 the zenith angle, and g the gravitation con-
stant. With the symbols defined, the transmittance is calculated as

Υch,i(Ai) = e
−∫

Ai

0
kch,i(A′

i)dA′

, (2.37)

where

ln(kch,i(Ai)) = ci,0(Ai) +
6∑

j=1
ci,j(Ai)xi,j(Ai). (2.38)

In Eqs. (2.37) and (2.38), kch,i(Ai) is the absorption coefficient and ln() is the natural
logarithm. The predictors xij(Ai)(j = 1, 6) are the functions of atmospheric state
variables, and the coefficients ci,0(Ai) and ci,j(Ai) are polynomial functions of Ai in
the form

ci,j(Ai) =
N∑

n=0
ai,j,n ln (Ai)n, (2.39)

where ai,j,n are the regression coefficients (also referred to as transmittance coef-
ficients). The set of six predictors varies among different channels and is selected
from a 29-predictor pool, as listed in Table 2.2. The predictor pool includes 11
standard predictors, which are not specific to any of the three transmittance com-
ponents, and 18 integrated predictors, which are evenly divided into three sub-
sets, each belonging to a particular transmittance component. Let u represent the
atmosphere pressure P or temperature T; the integrated predictors for the com-
ponent i may be expressed as

ui
∗(Ai) =

∫
Ai

0
u(A′

i)dA′
i

∫
Ai

0
dA′

i

, (2.40a)

ui
∗∗(Ai) =

∫
Ai

0
u(A′

i)A
′
idA′

i

∫
Ai

0
A′

idA′
i

, (2.40b)

ui
∗∗∗(Ai) =

∫
Ai

0
u(A′

i)A
′2
i dA′

i

∫
Ai

0
A′2

i dA′
i

. (2.40c)
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Table 2.2 Predictors for the optical thickness at SSMIS
Zeeman splitting channels.

Channel Predictors

19,20 𝜃, 𝜃B−1, cos2(𝜃B), 𝜃cos2(𝜃B),B−1,B−2, cos2(𝜃B)B2

21,22 𝜃, cos2(𝜃B),B,B3, cos2(𝜃B)B, cos2(𝜃B)B2

23 𝜃, 𝜃2, cos2(𝜃B),B
24 𝜃, 𝜃2

𝜃 = T∕300, T is temperature in Kelvin; B, the Earth’s magnetic
field strength; 𝜃B, angle between magnetic field and
propagation direction.

The transmittance coefficients, ai,j,n, in Eq. (2.39) are obtained through a training
process with a statistical data ensemble, in which the predictands and predictors
are calculated from a set of diversified atmospheric profiles. For the dry gas
component, the mixing ratio profile does not change in different atmospheric
states. Because of this, the dry gas is also called fixed gas. An exhausting search is
performed for each gas component and channel to select the best set of predictors
and order N(≤ 10) of the polynomial function, which minimize the fitting resid-
ual. Low order is considered if the fitting accuracy is not degraded significantly for
better computational stability. In addition, an automated procedure is adopted to
make sure that the set of predictors with strong correlations between the selected
predictors is not selected, which may cause the transmittance calculation to
become unstable (Table 2.3).
The fitting errors for AMSU channels on NOAA 16 are shown in Figure 2.9.

The fitting errors are measured with the brightness temperature calculated with
the radiative transfer under a clear-sky condition. On average, the errors are less
than 0.1 K.
Using Rosenkranz’s models [22], Han et al. [29] parameterized an averaged

Zeeman optical thickness within an SSMIS frequency passband and predicted

Table 2.3 Standard and integrated predictors.

Standard
predictors

Integrated predictors

1 T 1 Tw* 12 Po***
2 P 2 Tw** 13 Td*
3 T2 3 Tw*** 14 Td**
4 P2 4 Pw* 15 Td***
5 T P 5 Pw** 16 Pd*
6 T2 P 6 Pw*** 17 Pd**
7 T P2 7 To* 18 Pd***
8 T2 P2 8 To**
9 4

√
P 9 To***

10 Q 10 Po*
11 Q∕

√
T 11 Po**
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Figure 2.9 RMS fitting errors for AMSU on NOAA-16.

with predictors of atmospheric temperature, geomagnetic field strength, and
angle between the geomagnetic field vector and the electromagnetic wave
propagation direction. The coefficients of each predictor are trained with an LBL
model [11] that accurately computes the absorption at each Zeeman splitting
frequency using 48 atmospheric profiles. It is shown that

𝜏i = ci,0 +
m∑

j=1
ci,jXi,j, (2.41)

where m is the number of predictors. For SSMIS affected by Zeeman splitting,
Han et al. [29] used the predictors as listed in Table 2.2.
The fast model produced very accurate computations for brightness tempera-

ture simulations at SSMIS upper-air sounding channels, comparedwith LBL com-
putations (see Figure 2.10).

2.3
Cloud Absorption and Scattering

2.3.1
Scattering Parameters

It is worth mentioning about the general particle scattering fromMie theory [30].
For a sphere having a radius of r, the scattering efficiency (dimensionless) can be
written as

Qs =
2
x2

∞∑
n=1

(2n + 1)(|an|2 + |bn|2), (2.42)
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Figure 2.10 The performance of fast Zeeman splitting models.

and the extinction efficiency is

Qe =
2
x2

∞∑
n=1

(2n + 1)Re(an + bn) (2.43)

where x = 2𝜋r∕𝜆 is the size parameter and 𝜆 is the wavelength of incident radia-
tion. For an arbitrary shape of particle, the particle scattering phase matrix 𝐒 has
16 components and can be generalized as follows:

𝐒 = k
⎡⎢⎢⎢⎣

S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

⎤⎥⎥⎥⎦
, (2.44)

where k is the normalization factor. In general, the elements in 𝐒 are of nonzero
values for nonspherical particle scattering. For a spherical particle, the scattering
matrix is expressed as

S = 𝜆2

𝜋𝜎s

⎡⎢⎢⎢⎣
S11 S12 0 0
S12 S11 0 0
0 0 S33 S34
0 0 −S34 S33

⎤⎥⎥⎥⎦
, (2.45)

where 𝜎s = 𝜋r2Qs is the particle scattering cross section. Each element, Sij , in
Eq. (2.45) depends on the Mie scattering functions, which is related by

S11(Θ) = S1(Θ)S∗
1(Θ) + S2(Θ)S∗

2(Θ), (2.46a)
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S12(Θ) = S2(Θ)S∗
2(Θ) − S1(Θ)S∗

1(Θ), (2.46b)

S33(Θ) = Re[S2(Θ)S∗
1(Θ)], (2.46c)

S34(Θ) = Im[S2(Θ)S∗
1(Θ)], (2.46d)

where Θ is the scattering angle, and Re and Im are used to derive the real and
imaginary parts of a given complex value.The scattering functions S1(Θ) and S2(Θ)
are derived from the Mie scattering theory.
The aforementioned equations are only applied for the scattering phase matrix

of a single spherical particle.When the radiation transfers in amedium containing
spherical particles with different radii, the radiation interference among the par-
ticles can be neglected if separation distances between the particles are assumed
to be sufficiently large in comparison to the electromagnetic wavelength.The ele-
ments of the scattering matrix for polydispersed spherical particles with a distri-
bution density,n(r), are derived by adding individual elements of the single particle
at every scattering angle, that is,

Sij(Θ) = ∫
∞

0
sij(Θ, r)n(r)dr, ij = 11,22, 33,34, (2.47)

where r is the particle diameter. Note that the phase matrix of polydispersed par-
ticles is similar to that in Eq. (2.45) but should be scaled with 𝜆2

𝜋𝛽s
, where 𝛽s is the

scattering coefficient with a unit of inverse length. In addition, the scattering and
extinction coefficients, (𝛽e), and single-scattering albedo (𝜔) are derived from

𝛽s = ∫
∞

0
𝜎s(r)n(r)dr, (2.48)

𝛽e = ∫
∞

0
𝜎e(r)n(r)dr, (2.49)

𝜔 =
𝛽s
𝛽e
, (2.50)

where 𝜎s and 𝜎e are the scattering and extinction cross sections, respectively. For
a single spherical particle, the extinction and scattering cross sections are given
according to Mie’s theory [30]. For nonspherical particles having their maximum
dimension, which are randomly oriented in space, the phase matrix only has six
independent nonzero elements and takes the same form as Eq. (2.45) [23].

2.3.2
Particle Size Distribution

In computing the scattering and absorption parameters, the size spectrum
of hydrometeors in Eqs. (2.47)–(2.49) can be modeled by a modified gamma
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distribution

n(D) = N0(ΛD)P exp(−(ΛD)Q), (2.51)

where n(D) (m−3mm−1) is the number of particles with the equivalent spherical
diameters between D and D + dD (mm), and N0, Λ (mm−1), P, and Q are free
parameters. The mean diameter D, diameter variance 𝜎D, mode diameter DM,
total number density of particles n0, fractional volume f , and water (liquid or ice)
content M follow from Eq. (2.51):

D = 1
Λ

Γ
(

P + 2
Q

)

Γ
(

P + 1
Q

) (mm), (2.52a)

𝜎D = 1
Λ

√
Γ(P + 3∕Q)
Γ(P + 1∕Q)

−
Γ2(P + 2∕Q)
Γ2(P + 1∕Q)

(mm), (2.52b)

DM = 1
Λ

P
Q

1∕Q
, (mm), (2.52c)

n0 =
N0
ΛQ

Γ
(

P + 1
Q

)
(m−3), (2.52d)

f = 𝜋 × 10−9
N0

6Λ4Q
Γ
(

P + 4
Q

)
, (2.52e)

M = 106f (g∕mm3) (2.52f)

where Γ(n + 1) = n! is the gamma function.The parameter P describes the rate of
increase of particles at small diameters, and the parameter Q describes the falloff
in particle concentration at large diameters. When computing these parameters
using numerical quadrature, care must be taken so that the Mie resonances are
adequately sampled within the region of support of the particle size spectrum and
that concentrations up to several mean particle diameters are included.
The natural size distribution of raindrops was defined by Marshall and Palmer

(MP) as a simple exponential law over a wide range of meteorological conditions
and precipitation rates, that is,

n(D) = N0 exp(−ΛD), (2.53)

where

N0 = 8 × 103 (m−3mm−1), (2.54)
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and

Λ = 4.1R−0.21(mm−1), (2.55)

where R is the rain rate inmm/h. Similar exponential distributions weremeasured
by Laws and Pawson and by Joss et al., who classified the size spectra according to
the type of precipitation: drizzle, widespread, or thunderstorm. Sekhon and Sri-
vastava (SS) derived an exponential relationship for the equivalent liquid-sphere
size distribution of snowflakes near the ground with the different parameters

N0 = 2.50 × 103R−0.94(m−3mm−1), (2.56)

and

Λ = 2.29R−0.45(mm−1), (2.57)

where R is the equivalent liquid-water precipitation rate inmm/h.Theoretical cal-
culations of spherical hydrometeor absorption and scattering coefficients using
theMP size distribution for liquid and the SS size distribution for ice are shown, for
various precipitation rates at 0 ∘C, in Figure 2.11.The liquid calculations compare
favorably with the independent calculation by Salvage, as indicated by specific
points in Figure 2.11.
In microwave remote sensing of ice clouds, a full set of single-scattering prop-

erties of nonspherical particles are used in radiative transfer calculations [31–34].
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Figure 2.11 Polydispersed Mie hydrometeor absorption and scattering. (a) Liquid, assuming
a Marshall–Palmer drop-size distribution. Computations from Salvage for absorption (•) and
scattering (×) are plotted for comparison. (b) Ice, assuming a Sekhon and Srivastava distri-
bution. Calculations are shown for precipitation rates of 1, 10, and 40 mm/h for both phases
and 100 mm/h for liquid.
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Figure 2.12 Extinction efficiency Qext, single-scattering albedo 𝜔, and asymmetry factor g as
a function of maximum dimension D at 640 GHz for the six nonspherical ice habits. (Hong
et al. 2009 [34]. Reproduced with permission of Wiley.)

For six nonspherical ice habits (e.g., hexagonal solid and hollow columns, hexago-
nal plates, 3D six-branch solid bullet rosettes, aggregates, and droxtals) are com-
puted from the discrete dipole approximation (DDA) [34]. Figure 2.12a–f shows
the extinction efficiency, single-scattering albedo, and asymmetry factor as a func-
tion ofmaximumdimension size. In general, the single-scattering properties differ
between the various habits except for the hexagonal solid and hollow columns,
which have similar features. In the particle size range considered in this study, pro-
nounced oscillations of scattering parameters tend to occur for droxtals at high
frequencies. The distribution of phase matrix elements with scattering angles is
also derived and can be found in the studies [33, 34].
To obtain the bulk-scattering properties that may be more representative of ice

clouds, the single-scattering properties of the individual particles are integrated
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over the particle size distribution (PSD) for an assumed habit mixture. The
effective particle size De (e.g., [35–37]) is computed as

De =
3
2

∫
Dmax

Dmin

[ M∑
i=1

fi (D)Vi(D)

]
N(D)dD

∫
Dmax

Dmin

[ M∑
i=1

fi (D) Si(D)

]
N(D)dD

, (2.58)

where N(D) is the number density of ice particles with D,
M∑

i=1
fi(D) = 1, fi(D) is the

ice particle habit percentage for habit i at D for up to M habits, Vi(D) and Si(D) are
the volume and project area, respectively, of the habit i for a given D, and Dmin and
Dmax are the minimum and maximum sizes of D in the given N(D), respectively.
Bulk ice-cloud scattering properties were first developed by assuming that the

cloud is composed of a single habit (i.e., M = 1 in Eq. (2.53)) [34]. Figure 2.13
shows the mean optical parameters of ice clouds composed of each of six habits
at De = 100 μm as a function of frequency. Both the mean extinction efficiency
and asymmetry factor increase monotonically with frequency, for all habits. The
mean single-scattering albedo also increases with frequency until it reaches its
asymptotic value.

2.3.3
Rayleigh Approximation

Formost of the cloud droplets in liquid phase, the radius (∼10 μm) ismuch smaller
than the wavelength at microwave (∼1 cm). Consequently, scattering becomes
negligible and the extinction reduces to absorption. At the small particle limit,
the absorption cross section,

𝜎s =
8
3

x4
||||m

2 − 1
m2 + 2

||||
2
, (2.59)

and

𝜎e = 4x Im
{

m2 − 1
m2 + 2

[
1 + x2

15
× m2 − 1

m2 + 2
× m4 + 27m2 + 38

2m2 + 3

]}

+ 8
3

x4Re

{(
m2 − 1
m2 + 2

)2
}

, (2.60)

and absorption coefficient after neglecting the smaller terms in Eq. (2.60) is

𝜎a = 4x Im
{

m2 − 1
m2 + 2

}
(2.61)
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Figure 2.13 Mean extinction efficiency Qext, mean single-scattering albedo 𝜔, and mean
asymmetry factor g as a function of frequency for the six nonspherical ice habits for
De = 100 μm. The error bars indicate the standard deviations. (Hong et al. 2009 [34]. Repro-
duced with permission of Wiley.)
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Thus, for polydispersed cloud size distribution, we can derive the total extinction
from Rayleigh scattering as

𝛽e = ∫
∞

0
𝜋r2Qa(r)n(r)dr

= 6𝜋
𝜆
Im
{

m2 − 1
m2 + 2

}
∫

∞

0

4
3
𝜋r3n(r)Er

= 6𝜋
𝜆𝜌w

Im
{

m2 − 1
m2 + 2

}
LWC, (2.62)

where LWC = ∫
∞

0

4
3
𝜋r3𝜌wn(r)dr is the cloud liquidwater content. Equation (2.62)

has been extensively used for microwave remote sensing of cloud liquid water
from space- and ground-based measurements. This is mainly because cloud
optical thickness can be directly related to the vertically integrated water
content as

𝜏L = ∫ΔZ
𝛽edz

= ∫ΔZ

6𝜋
𝜆𝜌w

Im
{

m2 − 1
m2 + 2

}
LWCdz

= 6𝜋
𝜆𝜌w

Im
{

m2 − 1
m2 + 2

}
LWP, (2.63)

where LWP = ∫ΔZ
LWC(z)dz and is also referred to as the liquidwater path, that is,

vertically integrated liquid water content. Here, we have assumed that the com-
plex water dielectric constant is independent of height. In reality, the dielectric
constant of water is also a function of height due to its temperature dependence.
Thus, the mass absorption coefficient in Eq. (2.63) is also dependent on the tem-
perature, as shown in Figure 2.14. Since the absorption coefficient decreases as the
cloud temperature increases, a cloud for a given amount of liquid would be less
opaque in tropics compared to middle latitudes. In addition, microwave radiation
at lower frequencies is less affected by liquid-phase clouds.
Normally, the cloud-layer mean temperature is a prior parameter that can be

estimated from other independent sources and is then used to compute the com-
plex dielectric constant of clouds. FromEq. (2.63), we find that the optical depth of
cloud droplets at microwave frequencies is proportional to the liquid water path
and is not a function of droplet size. This physical mechanism provides a basic
foundation for remote sensing of the cloud liquid water path. It is worthwhile
mentioning that ice clouds nearly have minimal impacts on the radiation at low
microwave frequencies.The imagery part of the refractive index m of ice is about 3
orders smaller than that of water at low frequencies. Consequently, the term Im{}
for ice is close to 0. Therefore, the ice emission/absorption is generally negligible.
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Figure 2.14 The mass absorption coefficient at Advanced Microwave Sounding Unit (AMSU)
channels as a function of temperature.

This property allows liquid water alone to be inferred in a mixed-phase cloud or
liquid water cloud covered by cirrus ice cloud. For rainfall remote sensing, the
problem becomes more complicated compared to sensing of liquid water path of
nonprecipitating clouds because of the following three factors. First, raindrops are
comparable to microwave wavelength, and the scattering by raindrops cannot be
ignored. Thus, the brightness temperature varies with not only liquid water path
but also size distribution of raindrops. The 𝜏w − LWP relationship can no longer
be expressed by an analytic equation, as is shown in Eq. (2.61). Second, the rainfall
rate is a measure of water flux at the ground level, while the satellite-received radi-
ation reflects the vertically integrated property of the column, resulting in that the
brightness temperature is a function of the vertical profile of rain, not just the rain-
fall rate at the surface.The third complication arises from the fact that the rainfall
field often has a very high horizontal variability, and the field of view (FOV) of a
microwave sensor is large, typically several tens of kilometers, so that rainfall is
not uniformly distributed within a satellite FOV.These problems are discussed in
later chapters where we deal with cloud and precipitation retrievals.
The extinction of ice clouds at microwave frequencies is strongly dependent

on the frequency. From Rayleigh approximation, the extinction from ice clouds
is dominated by scattering since the imaginary part of the ice dielectric constant
is very small and the absorption coefficient can be neglected (see Eq. (2.60)). With
the derivation similar to Eq. (2.62), we have

𝜏ice = ∫ΔZ
dz128𝜋

5

3𝜆4

[
m2 − 1
m2 + 2

]2
∫

∞

0
r6n(r)dr

= ∫ΔZ
dz 24𝜋3

3𝜆4𝜌2i

[
m2 − 1
m2 + 2

]2
∫

∞

0
n(r)M2(r)dr, (2.64)
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where M is the mass of an ice sphere with a radius of r. Unlike liquid water
absorption, which is proportional to the mass of the liquid water content, the
ice scattering cross section is proportional to the 6th power of r under Rayleigh
approximation. Therefore, the ice optical depth, which is the vertical integration
of ice cloud extinction, is not only related to ice water path (IWP) but also strongly
depends on the PSD. Increasing either the amount or the size of particles will lead
to an increase in ice optical depth and, in turn, a decrease in brightness temper-
ature. To conduct ice water retrieval requires either a prior knowledge of PSD or
performing simultaneous retrieval of both size distribution and IWP. In addition,
the IWP retrieval problem is further complicated by the bulk density of ice parti-
cles, which may vary from less than 0.1 cm−3 to larger than 0.9 g/cm3, depending
on the ice particle type. The simultaneous retrieval of IWP and ice PSD may be
achieved by observing the radiances at two high microwave frequencies [38, 39].
In addition, the large ice particles must be included in the retrievals through Mie
calculations, which are discussed in the chapters on cloud property retrievals.
When the particle size is much smaller than the incident wavelength, the scat-

tering amplitudes can also be approximated in the same manner as its scattering
cross section as in Eqs. (2.59) and (2.61). As a result,

S1 =
3
2

a1, (2.65)

S2 =
3
2

a1cos(Θ), (2.66)

a1 = − i2x3
3

m2 − 1
m2 + 2

, (2.67)

and the corresponding scattering matrix is

S(Θ)ray =
3
4

•

⎛⎜⎜⎜⎜⎝

1 + cos2Θ 1 − cos2Θ 0 0
cos2Θ − 1 1 + cos2Θ 0 0

0 0 cosΘ 0
0 0 0 cosΘ

⎞⎟⎟⎟⎟⎠
. (2.68)

2.3.4
Henyey–Greenstein and Rayleigh Phase Matrix

AHenyey–Greenstein (HG) phase function is a parameterized phase function for
radiation scattered by particles in the atmosphere and is often applied in visible
and infrared ranges in which the asymmetry factor (i.e., the first moment) of the
phase function represents the asymmetric forward and backward scattering. The
formula for scattering through angle Θ is given by

S(Θ, g) =
1 − g2

(1 + g2 − 2g cosΘ)3∕2
, (2.69)

where g is the asymmetry factor.
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For a small scatter, the Rayleigh phase function is widely applied in intensity
and polarization calculations. It is normally valid for molecular scattering in vis-
ible and ultraviolet wavelength ranges and for nonprecipitation cloud scattering
at low frequencies of the microwave range. In general, the actual phase function
differs from the Rayleigh and HG phase functions. Here, a new analytical phase
function called the HG and Rayleigh phase function is proposed for small asym-
metry scattering.TheHG–Rayleigh phase function is a normalized product of the
Rayleigh phase function and the HG phase function with a modified asymmetry
factor (G). The modified asymmetry factor is related to the original asymmetry
factor (g) of the phase function through the following derivations. For intensity
radiative transfer, the HG–Rayleigh phase function can be written as [40]

S(Θ, g) = CSray(Θ) × HG[Θ,G(g)]

= C 3
16

(1 + cos2Θ) × 1 − G2

(1 + G2 − 2G cosΘ)3∕2
, (2.70)

where G is the modified asymmetry factor. Through normalizing the zeroth and
the first moment of phase normalization function, we can obtain

C = 4
2 + G2 ,

G = 5
9

g +
{1
2

(10
9

g + 250
729

g3
)
+
√
Δ
}1∕3

−
{√

Δ − 1
2

(10
9

g + 250
729

g3
)}1∕3

, (2.71)

where

Δ =
[1
2

(
−10

9
g − 250

729
g3
)]2

+
[1
3

(
4 − 25

27
g2
)]3

. (2.72)

The modified asymmetry factor G can be calculated from the original asymmetry
factor g in Eqs. (2.70) and (2.71) and is shown in Figure 2.15.
For polarimetric radiation, theHG–Rayleigh scatteringmatrix can bewritten as

S(Θ) = 1
2 + G2

1 − G2

(1 + G2 − 2G cosΘ)3∕2

× 3
4
×

⎛⎜⎜⎜⎜⎝

1 + cos2Θ 1 − cos2Θ 0 0
cos2Θ − 1 1 + cos2Θ 0 0

0 0 cosΘ 0
0 0 0 cosΘ

⎞⎟⎟⎟⎟⎠
, (2.73)

which is applied to the Stokes vector (I,Q,U,V ). The phase matrix is then
the product of the scattering matrix and the associated rotational matrices,
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Figure 2.15 Modified asymmetry factor, G, in relation to g. (Liu and Weng 2006 [40]. Repro-
duced with permission of Optical Society of America.)

as discussed in Chapter 3. The main advantage of this combined function is
that it allows the use of analytic forms of scattering matrix in radiative transfer
calculation and maintains the properties of HG and Rayleigh scattering function.

2.4
Summary and Conclusions

Oxygen and water vapor are two main absorbers in microwave regions.Their res-
onant lines can be well characterized as Lorenz line shapes with the intensity and
line width as a function of temperature and pressure. In addition, the continuum
absorption in the microwave regions from water vapor is also parameterized. In
atmospheric particle scattering, a general Mie theory can be used for spherical
scatters, and a discrete dipole approximation is used for nonspherical scatters.The
analytic phase matrices from Rayleigh and HG approximations are also discussed
for general applications.
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3
Radiative Transfer Modeling at Microwave Frequencies

3.1
Introduction

At microwave frequencies, effects of scattering and emission by atmospheric
hydrometeors on upwelling radiance at the top of the atmosphere are simulated
through various radiative transfer schemes. Since the first plane-parallel model
was proposed by Wilheit et al. [41] to simulate microwave brightness temperature
at 19.35 GHz, more advanced radiative transfer schemes were developed for
simulations of microwave brightness temperatures at a wide range of microwave
frequencies [42]. To account for the horizontal as well as the vertical variability
over scale lengths that are often smaller than the radiometer footprint size, the
outputs from a finite cloud model including precipitation-sized hydrometeors
were used as inputs of a three-dimensional radiative transfer model [43]. A
plane-parallel polarized radiative transfer model was solved using the doubling
and adding scheme to compute the radiances exiting an atmosphere containing
the randomly oriented particles [3]. This doubling and adding technique was
improved for fast computations through an analytic formula for the layer source
function [44].

The discrete-ordinate method was developed to solve the scalar radiative trans-
fer equation [45], and later it was extended to a vector radiative transfer calculation
[46–48]. A computationally efficient and accurate vector radiative transfer model
is needed for radiance and Jacobian calculations of the polarized measurements
used in numerical weather prediction (NWP) models. In this chapter, we intro-
duce two radiative transfer schemes including the discrete-ordinate method and
the doubling–adding technique. As part of the radiative transfer model, we also
introduce microwave ocean and land emissivity models.

3.2
Radiative Transfer Equation

Radiative transfer theory has been discussed in many literatures and textbooks.
Here, we emphasize the polarized or vector radiative transfer problem and pay

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. Fuzhong Weng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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more attention to those areas that are specifically developed for microwave remote
sensing of the environmental parameters. Since microwave instruments that have
been deployed in space measure partial or full Stokes components, it is necessary
to understand the complete radiative transfer process in scattering and emission
atmosphere and surfaces.

Normally, when a particle intercepts radiation, the scattered radiation is related
to the incident radiation through the relation

𝐈s = PIi, (3.1)

where 𝐈s and 𝐈i are the scattering and incident radiative vectors, respectively, each
of which is given by

𝐈i = (I,Q,U,V )T
i , (3.2)

and
𝐈s = (I,Q,U,V )T

s , (3.3)

where the superscript T executes a transpose to a row matrix that is used in the
following sections. Four components in the radiative vectors are related to the
amplitudes of the electric field, as shown in Eq. (1.15). For a scattering and absorb-
ing atmosphere, the radiative vector 𝐈(𝜏, 𝜇, 𝜙) emerging at the optical depth 𝜏 in
the direction (𝜇, 𝜙) is given by

𝜇
d𝐈(𝜏, 𝜇, 𝜙)

d𝜏
= −𝐈(𝜏, 𝜇, 𝜙) + 𝜔(𝜏)

4𝜋 ∫
2𝜋

0 ∫
1

−1
𝐌(𝜏, 𝜇, 𝜙, 𝜇′, 𝜙′)I(𝜏, 𝜇′, 𝜙′)d𝜇′d𝜙′

+ 𝐒(𝜏, 𝜇, 𝜙, 𝜇0, 𝜙0), (3.4)

where 𝜔(𝜏) is the single-scattering albedo, 𝐌(𝜏, 𝜇, 𝜙, 𝜇′, 𝜙′) is the phase matrix,
and the direct radiance is from the direction (𝜇0, 𝜙0). Note that the wave-
length dependencies of all variables are implicit. The source matrix includes
single-scattering and thermal emission and is given by

𝐒(𝜏, 𝜇, 𝜙, 𝜇0, 𝜙0) = (1 − 𝜔)B
⎛⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎠
+

𝜔F0
4𝜋

exp(−𝜏∕𝜇0)

⎛⎜⎜⎜⎜⎝

M11
(
𝜙, 𝜇0, 𝜙0

)
M12(𝜙, 𝜇0, 𝜙0)
M13(𝜙, 𝜇0, 𝜙0)
M14(𝜙, 𝜇0, 𝜙0)

⎞⎟⎟⎟⎟⎠
, (3.5)

where F0 is the solar spectral constant; B(T) the Planck function at a temperature
T; F0 the solar spectral constant; 𝜇0 the cosine of sun zenith angle; 𝜔 the single-
scattering albedo; and 𝜏 the optical thickness. The phase matrix 𝐌(𝜏, 𝜇, 𝜙, 𝜇′, 𝜙′)
is derived from a linear transformation of the scattering matrix 𝐒(Θ) in Eq. (2.4)
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according to spherical trigonometry [49] as follows:

𝐌(𝜏, 𝜇, 𝜙, 𝜇′, 𝜙′) = 𝐋(𝜋 − i2)𝐒(Θ)𝐋(i1), (3.6)

where 𝐋 is expressed as Eq. (1.17a) and i1 and i2 are the angles at which the radi-
ation vector rotates from the incident plan to the outgoing plan. For a spherical
particle scattering, the phase matrix can be derived by rotating the Mie scattering
matrix in Eq. (2.44) through Eq. (1.17a). Thus, Eq. (3.6) can be written as

𝐌(𝜏, 𝜇, 𝜙, 𝜇′, 𝜙′) =

⎡⎢⎢⎢⎢⎣

S11 S12 cos 2i1
S12 cos 2i2 S11 cos 2i1 cos 2i2 − S33 sin i1 sin 2i2
S12 sin 2i1 S11 cos 2i1 sin 2i2 + S33 sin i1 cos 2i2

0 −S34 sin 2i1

−S12 sin 2i1 0
S11 sin 2i1 cos 2i2 − S33 cos i1 sin 2i2 −S34 sin 2i2
−S11 sin 2i1 sin 2i2 + S33 cos i1 cos 2i2 S34 cos 2i2

−S34 cos 2i2 S33

⎤⎥⎥⎥⎥⎦
.

Chandrasekhar [4] derived analytic expressions for all the 16 elements in Eq. (3.6)
from the Rayleigh phase matrix shown in Eq. (2.70).

3.3
Vector Discrete-Ordinate Method

Equation (3.4) can be solved by some standard routines such as the multi-
layer discrete-ordinate method [46, 48], the doubling–adding method [3],
and the matrix operator method [50]. Dave [49] showed that the phase matrix
𝐌(𝜏, 𝜇, 𝜙, 𝜇′, 𝜙′) can be expanded into the following Fourier cosine and sinusoidal
series:

𝐌(𝜏, 𝜇, 𝜙, 𝜇′, 𝜙′) =
2N−1∑
m=0

[𝐌c
m(𝜏, 𝜇, 𝜇′) cos m(𝜙′ −𝜙) +𝐌s

m(𝜏, 𝜇, 𝜇′) sin m(𝜙′ − 𝜙)].

(3.7)
where 𝐌c

m and 𝐌s
m are the mth cosine and sine mode Fourier expansion matrices,

respectively.
The radiative vector may also be expanded in this manner to give

𝐈(𝜏, 𝜇, 𝜙) =
2N−1∑
m=0

[𝐈c
m(𝜏, 𝜇) cos m(𝜙0 − 𝜙) + 𝐈s

m(𝜏, 𝜇) sin m(𝜙0 − 𝜙)], (3.8)
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where 𝐈c
m and 𝐈s

m are the mth cosine and sine mode Fourier expansion vectors,
respectively, and are related to the mth Fourier expansion coefficients of radiative
components in the following expressions:

𝐈c
m(𝜏, 𝜇) = (Ic

m,Qc
m,Uc

m,V c
m)T , (3.9a)

and

𝐈s
m(𝜏, 𝜇) = (Is

m,Qs
m,Us

m,V s
m)T . (3.9b)

The source vector may be expanded to yield

𝐒(𝜏, 𝜇, 𝜙) =
2N−1∑
m=0

[𝐒c
m(𝜏, 𝜇) cos m(𝜙0 − 𝜙) + 𝐒s

m(𝜏, 𝜇) sin m(𝜙0 − 𝜙)], (3.10)

Substituting Eqs. (3.7)–(3.10) into Eqs. (3.4) and (3.5), manipulating some inte-
grations, and comparing the coefficients for the cosine and sine Fourier modes
result in

𝜇
d𝐈c

m(𝜏, 𝜇)
d𝜏

= 𝐈c
m(𝜏, 𝜇) −

𝜔(𝜏)
4 ∫

1

−1
[(1 + 𝛿0m)𝐌c

m𝐈c
m

− (1 − 𝛿0m)𝐌s
m𝐈s

m]d𝜇′ − 𝐒c
m(𝜏, 𝜇), (3.11a)

and

𝜇
d𝐈s

m(𝜏, 𝜇)
d𝜏

= 𝐈s
m(𝜏, 𝜇) −

𝜔(𝜏)
4 ∫

1

−1
[(1 − 𝛿0m)𝐌c

m𝐈s
m

+ (1 − 𝛿0m)𝐌s
m𝐈c

m]d𝜇′ − 𝐒s
m(𝜏, 𝜇), m = 0, … , (2N − 1).

(3.11b)

A further discretization of integrals in Eq. (3.11) using Gaussian quadrature
scheme is as follows:

𝜇
d𝐈c

m(𝜏, 𝜇i)
d𝜏

= 𝐈c
m(𝜏, 𝜇) −

𝜔(𝜏)
4

N∑
j=−N

aj[(1 + 𝛿0m)𝐌c
m(𝜏, 𝜇i, 𝜇j)𝐈c

m(𝜏, 𝜇j)

− (1 − 𝛿0m)𝐌s
m(𝜏, 𝜇i, 𝜇j)𝐈s

m(𝜏, 𝜇j)] − 𝐒c
m(𝜏, 𝜇i), (3.12a)

𝜇
d𝐈s

m(𝜏, 𝜇i)
d𝜏

= 𝐈s
m(𝜏, 𝜇) −

𝜔(𝜏)
4

N∑
j=−N

aj[(1 − 𝛿0m)𝐌c
m(𝜏, 𝜇i, 𝜇j)𝐈s

m(𝜏, 𝜇j)

− (1 − 𝛿0m)𝐌s
m(𝜏, 𝜇i, 𝜇j)𝐈c

m(𝜏, 𝜇j)] − 𝐒s
m(𝜏, 𝜇i), (3.12b)

i = ±1, … ± N ,m = 0, … , (2N − 1).

where aj and 𝜇j are the Gauss quadrature expansion coefficients and points.
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For a scattering sphere, Dave [49] proved that the elements Mij of the phase
matrix (ij = 11,12, 21,22, 33,34, 43,44) are even functions of 𝜙′ − 𝜙, whereas
those with ij of 13,14, 23,24, 31,32, 41,42 are odd functions of 𝜙′ − 𝜙. This result
means that

𝐌c
m =

⎛⎜⎜⎜⎝
Mc

11m Mc
12m 0 0

Mc
21m Mc

22m 0 0
0 0 Mc

33m Mc
34m

0 0 Mc
43m Mc

44m

⎞⎟⎟⎟⎠
, (3.13a)

and

𝐌s
m =

⎛⎜⎜⎜⎝
0 0 Ms

13m Ms
14m

0 0 Ms
23m Ms

24m
Ms

31m Ms
32m 0 0

Ms
41m Ms

42m 0 0

⎞⎟⎟⎟⎠
. (3.13b)

These matrix properties result in the radiative components Ic
m(𝜏, 𝜇) and Qc

m(𝜏, 𝜇)
of the cosine mode Fourier expansion vector 𝐈c

m being coupled with the compo-
nents Us

m(𝜏, 𝜇) and V s
m(𝜏, 𝜇) in the sine mode Fourier expansion vector 𝐈s

m. On
the other hand, the radiative components Is

m(𝜏, 𝜇) and Qs
m(𝜏, 𝜇) of 𝐈s

m are cou-
pled with the components Uc

m(𝜏, 𝜇) and V c
m(𝜏, 𝜇) of 𝐈c

m. Thus, we defined two
4N-dimensional specific vectors for a combined cosine Stokes vector as

𝐈c
m(𝜏,−𝜇i) =

⎛⎜⎜⎜⎝
Ic

m
(
𝜏,−𝜇i

)
Qc

m(𝜏,−𝜇i)
Us

m(𝜏,−𝜇i)
V s

m(𝜏,−𝜇i)

⎞⎟⎟⎟⎠
1×4N

, 𝐈c
m(𝜏, 𝜇i) =

⎛⎜⎜⎜⎝
Ic

m
(
𝜏,+𝜇i

)
Qc

m(𝜏,+𝜇i)
Us

m(𝜏,+𝜇i)
V s

m(𝜏,+𝜇i)

⎞⎟⎟⎟⎠
1×4N

; (3.14)

with the source vectors of

𝐒c
m(𝜏,−𝜇) =

⎛⎜⎜⎜⎝
Ic

m
(
𝜏,−𝜇i

)
Qc

m(𝜏,−𝜇i)
Us

m (𝜏,−𝜇i)
V s

m (𝜏,−𝜇i)

⎞⎟⎟⎟⎠
1×4N

, 𝐒c
m(𝜏, 𝜇) =

⎛⎜⎜⎜⎝
Ic

m
(
𝜏,+𝜇i

)
Qc

m(𝜏,+𝜇i)
Us

m (𝜏,+𝜇i)
V s

m (𝜏,+𝜇i)

⎞⎟⎟⎟⎠
1×4N

. (3.15)

The amplitude of each Fourier component is a function of the zenith angle. Fur-
thermore, the amplitude is discretized at a series of zenith angles (or streams)
so that the combined Stokes vectors for each cosine and sinusoidal mode can be
generalized as

𝜇i
d

d𝜏

[
𝐈m
(
𝜏, 𝜇i

)
−𝐈m(𝜏, 𝜇−i)

]
=
[
𝐈m
(
𝜏, 𝜇i

)
𝐈m(𝜏, 𝜇−i)

]

− 𝜔

N∑
j=1

[
𝐌m

(
𝜇i, 𝜇j

)
𝐌m(𝜇i, 𝜇−j)

𝐌m(𝜇−i, 𝜇j) 𝐌m(𝜇−i, 𝜇−j)

] [
𝐈m
(
𝜏, 𝜇j

)
𝐈m(𝜏, 𝜇−j)

]
wj −

[
𝐒m

(
𝜏, 𝜇i

)
𝐒m(𝜏, 𝜇−i)

]
,

(3.16)
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where wj = aj∕4 and 𝜇−i = −𝜇i. The discretization to the integral term in the
vector (or polarized) radiative transfer equation is fundamental toward the final
solution of the radiative vector. The rest of the work is to solve a set of ordinary
differential equations through finding the general and specific solution and then
to determine the coefficients in the general solution through the internal and
external boundary conditions. Eq. (3.16) can also be expressed as a one-vector
equation as

d𝐈
d𝜏

= AI − 𝐒, (3.17)

where

𝐈 = [𝐈(𝜏, 𝜇1), 𝐈(𝜏, 𝜇2),… , 𝐈(𝜏, 𝜇N ), 𝐈(𝜏, 𝜇−1), 𝐈(𝜏, 𝜇−2),… , 𝐈(𝜏, 𝜇−N )]T , (3.18)

and the composite phase matrix

𝐀 =
[
𝐮−1 0
0 −𝐮−1

] [
𝐄 − 𝜔𝐌 (𝜇, 𝜇) 𝜔𝐌(𝜇,−𝜇)
𝜔𝐌(−𝜇, 𝜇) 𝐄 − 𝜔𝐌(−𝜇,−𝜇)

]
=
[
𝛂1 𝛃1
−𝛃2 −𝛂2

]
, (3.19)

where 𝜶 and 𝜷 are the 4N by 4N matrices and related to the elements of the phase
matrices as

𝛂1(𝜇i, 𝜇j) = [𝐄 − 𝜔𝐌m(𝜇i, 𝜇j)]∕𝜇i, (3.20a)

𝛃1(𝜇i, 𝜇−j) = 𝜔𝐌m(𝜇i, 𝜇−j)∕𝜇i, (3.20b)

𝛂2(𝜇−i, 𝜇−j) = [𝐄 − 𝜔𝐌m(𝜇−i,𝜇−j)]∕𝜇i, (3.20c)

𝛃2(𝜇−i, 𝜇j) = 𝜔𝐌m(𝜇−i, 𝜇j)∕𝜇i. (3.20d)

In addition, u is a 4N by 4N matrix that has nonzero elements at its diagonal
direction such that

𝐮 = [𝜇1, 𝜇1, 𝜇1, 𝜇1, 𝜇2, ......, 𝜇N , 𝜇N , 𝜇N , 𝜇N ]diagnonal. (3.21)

Note that the source term for the cosine Stokes vector is

𝐒 = (1 − 𝜔)B(T)𝛿m0

[
𝐮−1 0
0 −𝐮−1

]
𝚵 +

𝜔F0
𝜋

exp(−𝜏∕𝜇0)𝚿, (3.22)

where 𝚵 and 𝚿 are the vectors that has 8N elements as

𝚵 = [1, 0, 0, 0, 1, 0, 0, 0, … , 1, 0, 0, 0]T (3.23a)

and

𝚿 = [M11(𝜇1, 𝜇0)∕𝜇1,M12(𝜇1, 𝜇0)∕𝜇1,M13(𝜇1, 𝜇0)∕𝜇1,M14(𝜇1, 𝜇0)∕𝜇1,

M11(𝜇2, 𝜇0)∕𝜇2,M12(𝜇2, 𝜇0)∕𝜇2,M13(𝜇2, 𝜇0)∕𝜇2,M14(𝜇2, 𝜇0)∕𝜇2,
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T0
P1(μ,ϕ,μ΄,ϕ΄),ω1

Pi(μ,ϕ; μ΄,ϕ΄),ωi

Pl(μ,ϕ; μ΄,ϕ΄),ωl

P2(μ,ϕ; μ΄,ϕ΄),ω2

I0(τ0, μ, ϕ)

I1(τ1, μ, ϕ)

I2(τ2, μ, ϕ)

Ii–1(τi–1, μ, ϕ)

Ii(τi, μ, ϕ)

Il–1(τl–1, μ, ϕ)

Il(τl, μ, ϕ)

T1

Ti–1

Tl–1

Tl

Ti

T2

Figure 3.1 A schematic diagram of a multilayer medium for the vector radiative transfer
calculation. The temperature at each level is specified as known; the phase matrix, single-
scattering albedo, and optical thickness at each layer are calculated from the Mie theory.
The radiative vector, including four radiative components, at each level, is calculated from
the multilayer discrete-ordinate method.

…,M11(𝜇−N , 𝜇0)∕𝜇−N ,M12(𝜇−N , 𝜇0)∕𝜇−N ,M13(𝜇−N , 𝜇0)∕𝜇−N ,

M14(𝜇−N , 𝜇0)∕𝜇−N ]. (3.23b)

Equation (3.17) is a linear differential system, and its solution within a homoge-
neous layer labeled as l (see Figure 3.1) can be written as

𝐈 = exp[𝐀(𝜏 − 𝜏l−1)]𝐂l + 𝐒l, (3.24)

where 𝐒l is the matrix associated with the thermal and solar source terms and 𝐂l
is the matrix of the coefficients having 8N elements in each layer that can be fur-
ther derived from the continuity conditions required for radiances at the internal
boundaries

𝐒l = 𝛿m0{B(𝜏l−1)𝚵 +
B(𝜏l−1) − B(𝜏l)

𝜏l−1 − 𝜏l
[𝐀−1

l Ξ + (𝜏 − 𝜏l−1)Ξ]

+ 𝜇0[𝜇0𝐀l + 𝐄]−1 𝜔F0
𝜋

exp(−𝜏∕𝜇0)𝚿}, (3.25)

where 𝜏l and 𝜏l−1 are the optical depths at the top and bottom of the layer. Note
that the coefficient vector𝐂l (8N elements in each layer) in Eq. (3.24) can be deter-
mined from the continuity condition of the internal boundary.
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However, the continuity conditions at the external boundaries are dependent
on the mode. For example, for the cosine mode and at the top of the atmosphere,

𝐈l(𝜏l−1) = 𝐈l−1(𝜏l−1), (3.26a)

and at the top of atmosphere, we also have

𝐈1(0) = 𝐈0, (3.26b)

and on the surface

𝐈L(𝜏L) = 𝛆B(Ts) + 𝐑𝐈L(𝜏L) + 𝐑0
F0
𝜋

exp(−𝜏L∕𝜇0)Ξ, (3.26c)

where

Ξ = [1, 0, 0, 0, 1, 0, 0, 0, ...., 1, 0, 0, 0]T
4N×1, (3.27)

and 𝛆 is the surface emissivity vector (4N), 𝐑 is the surface reflection matrix (4N
by 4N), 𝐑0 is the surface reflection vector (4N) at the sun zenith angle, and Ts is
the surface temperature. Substituting Eq. (3.24) into (3.26) yields a set of algebraic
equations for the determination of 𝐂. This approach is generally referred to as the
discrete-ordinate radiative transfer (DISORT) method and has been discussed in
detail in many previous studies [46–48].

Substituting Eq. (3.24) into Eqs. (3.26a–c) results in a set of algebraic equations
for solving the coefficient cl such that

𝐏𝐂=𝐕, (3.28)

where

𝐏=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐄 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝐞𝟏 −𝐄 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝐞𝟐 −𝐄 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 .. .. .. .. .. .. 𝟎
𝟎 𝟎 .. 𝐞l−1 −𝐄 .. .. .. 𝟎
𝟎 𝟎 .. .. 𝐞l −𝐄 .. .. 𝟎
𝟎 .. .. .. .. .. .. .. 𝟎
𝟎 𝟎 𝟎 .. .. .. 𝐞L−2 −𝐄 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐞L−1 −𝐄
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐄𝐞L − 𝐑𝐄𝐞L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.29)

𝐂 = [𝐜1, 𝐜2, ......, 𝐜L−1, 𝐜L]T , (3.30)

𝐕 = [𝐄𝐬1(0), 𝐬2(𝜏1) − 𝐬1(𝜏1), … , 𝐬L(𝜏L−1) − 𝐬L−1(𝜏L−1), 𝛆B(Ts)𝛿om

+ 𝐑𝐄𝐬L(𝜏L) + 𝐑0𝜇0
F0
𝜋

exp(−𝜏L∕𝜇0)Ξ − 𝐄𝐬L(𝜏L)]T , (3.31)
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where E and 0 are unit and zero matrices (8N × 8N), respectively; 𝟎 is a matrix
with all elements of zero (4N × 8N); 𝐄 and 𝐄 are the matrices corresponding to
the upper and lower 4N rows, respectively, in E; and

𝐞l = exp[𝐀l(𝜏l − 𝜏l−1)]. (3.32)

For a vertically stratified atmosphere with a total of L layers, a total of 8N
by L equations are coupled to derive all coefficients. Since P in Eq. (3.29) is a
band matrix, the storage for its elements in computer memory can be optimally
designed for speeding up the numerical calculations [45]. This formulation also
allows for the derivation of the radiance gradient (or Jacobian) in an analytic
form, as discussed in the next section.

3.4
Radiance Gradient or Jacobians

Since the radiance solution from the vector discrete radiative transfer (VDISORT)
model is analytic in form, the Jacobian can also be explicitly obtained from Eq.
(3.24). At the top of the atmosphere [e𝐀(𝜏−𝜏0) = 1, l = 1], the radiance gradient cor-
responding to a geophysical parameter (xl) at the lth layer can be expressed as

𝜕𝐈1
𝜕xl

=
𝜕𝐜1
𝜕xl

+ 𝛿1l
𝜕𝐬1
𝜕xl

, (3.33)

where the second term on the right side of Eq. (3.33) can be derived directly from
Eq. (3.25). Thus, the complexity of the Jacobians is largely dependent on the deriva-
tive of the coefficient matrix related to xl. From Eq. (3.28),

𝜕𝐂
𝜕xl

= 𝐊
[
𝜕𝐕
𝜕xl

− 𝜕𝐏
𝜕xl

𝐂
]

, (3.34a)

where 𝐊 = 𝐏−1. Manipulating Eqs. (3.24) and (3.34a) results in

𝜕𝐈1(𝜇)
𝜕xl

=
L∑

k=l

4N∑
j=−4N

𝐊k(𝜇, j)

{
𝜕
(
𝐬k (𝜏) − 𝐬k−1(𝜏)

)
𝜕xl

|𝜏=𝜏l−1

}
j

+ 𝛿1l
𝜕𝐬1(𝜇)
𝜕xl

−
4N∑

j=−4N
𝐊l(𝜇, j){ 𝜕

𝜕xl
exp[𝐀l(𝜏 − 𝜏l−1)]|𝜏=𝜏l

𝐜l}j, (3.34b)

where the subscript index j outside the bracket {} represents the j-th element of
the vector; 𝐊l(𝜇, j) is a vector at the lth layer. The first summation in the first term
is the effect of the perturbation of the geophysical parameter (xl) on the direct
solar radiation. The derivatives on the right-hand side of Eq. (3.34a) can be directly
derived using Eqs. (3.19) and (3.25). Note that Eq. (3.34a) is valid only for the layers
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above the surface. For the layer adjacent to the surface, the derivative includes
more terms due to the surface reflection such that

𝜕𝐈1(𝜇)
𝜕xL

=
4N∑

j=−4N
𝐊L(𝜇, j){[𝐑𝐄 − 𝐄]

𝜕𝐬L(𝜏)
𝜕xL

|𝜏=𝜏L

− 𝐑0
F0
𝜋

exp(−𝜏L∕𝜇0)
𝜕𝜏

𝜕xL

||||𝜏=𝜏L

𝚵}j + 𝛿1L
𝜕𝐬1(𝜇)
𝜕xL

−
4N∑

j=−4N
𝐊L(𝜇, j){[𝐄 − 𝐑𝐄][ 𝜕

𝜕xL
exp[𝐀L(𝜏 − 𝜏L−1)]|𝜏=𝜏L

𝐜L}j.

(3.34c)

In Eq. (3.34c), the derivatives of the source term (𝐬) and the composite phase
matrix (𝐀) on the right-hand side can be all analytically derived from Eqs.
(3.24)–(3.25) if xl is set for the optical thickness and single-scattering albedo.
Thus, Jacobians including 𝜕𝐈1(𝜇)

𝜕𝜏l
and 𝜕𝐈1(𝜇)

𝜕𝜛l
are analytic in form and can be

computed very efficiently.
The Jacobian associated with the phase matrix variation may be derived if the

angular dependence of all elements can be characterized in terms of the opti-
cal parameters. For example, in the phase function, the asymmetry parameter is
introduced and used to characterize the angular distribution in the two-stream
approximation. However, for a polarized two-stream approach, two additional
parameters including phase polarization and asymmetry factors must be intro-
duced so that the errors in the polarization forward modeling can be substantially
reduced [51]. Thus, the Jacobian of the asymmetry parameter (g) can be directly
computed from Eq. (3.34) (note that matrix A is analytically related to g). How-
ever, the derivation of the Jacobians related to the general phase matrix remains
difficult.

The Jacobians related to the surface parameters (e.g., temperature and wind
speed) can be derived as

𝜕𝐈1(𝜇)
𝜕xs

=
4N∑
j=1

𝐊L(𝜇, j){B(Ts)
𝜕𝛆
𝜕xs

+
𝜕B(Ts)
𝜕xs

𝛆 + 𝜕𝐑
𝜕xs

𝐄𝐬L(𝜏L)

+
𝜕𝐑0
𝜕xs

F0
𝜋

exp(−𝜏L∕𝜇0)𝚵}j

+
4N∑
j=1

𝐊L(𝜇, j)
{

𝜕𝐑
𝜕xs

𝐄 exp
[
𝐀L

(
𝜏L − 𝜏L−1

)]
𝐜L

}
j
. (3.35)

Thus, the radiance gradient related to other physical parameters can be directly
deduced from Eq. (3.35). For example, the Jacobian of water vapor mixing ratio is

𝜕𝐈1(𝜇)
𝜕ql

=
𝜕𝜏l
𝜕ql

𝜕𝐈1(𝜇)
𝜕𝜏l

+
𝜕𝜛l
𝜕ql

𝜕𝐈1(𝜇)
𝜕𝜛l

= 𝜅abs
l

[
𝜕𝐈1 (𝜇)
𝜕𝜏l

−
𝜛l
𝜏l

𝜕𝐈1(𝜇)
𝜕𝜛l

]
, (3.36)
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where ql and 𝜅abs
l are the integrated water vapor (kg/m2) and the mass absorption

coefficient (m2/kg) of the water vapor at layer l, respectively. By the same token,
the Jacobian of cloud liquid water can be derived as

𝜕𝐈1(𝜇)
𝜕wl

=
𝜕𝜏l
𝜕wl

𝜕𝐈1(𝜇)
𝜕𝜏l

+
𝜕𝜛l
𝜕wl

𝜕𝐈1(𝜇)
𝜕𝜛l

=
𝜏l − 𝜅abs

l ql

wl

𝜕𝐈1(𝜇)
𝜕𝜏l

+
𝜛l𝜅

abs
l ql

wl𝜏l

𝜕𝐈1(𝜇)
𝜕𝜛l

,

(3.37)

where wl is the integrated cloud liquid water within layer l. Furthermore, the tem-
perature Jacobian is

𝜕𝐈1(𝜇)
𝜕Tl

=
𝜕𝐈1(𝜇)
𝜕Tl

+
𝜕𝜏l
𝜕Tl

𝜕𝐈1(𝜇)
𝜕𝜏l

+
𝜕𝜛l
𝜕Tl

𝜕𝐈1(𝜇)
𝜕𝜛l

=
𝜕𝐈1(𝜇)
𝜕Tl

+ ql
𝜕𝜅abs

l
𝜕Tl

[
𝜕𝐈1 (𝜇)
𝜕𝜏l

−
𝜛l
𝜏l

𝜕𝐈1(𝜇)
𝜕𝜛l

]
, (3.38)

where the derivative of the absorption coefficient related to temperature is gen-
erally negligible at visible wavelengths while that at thermal wavelengths can be
either analytically derived or numerically evaluated. Thus, it is obvious that these
Jacobians can be readily derived from a linear combination of those Jacobians
related to the optical thickness and single-scattering albedo. Resulting computa-
tion efforts are optimally designed.

3.5
Benchmark Tests

Brightness temperatures computed from the VDISORT are compared with
those from the doubling–adding polarized model [3] for a nonprecipitating
atmosphere. The atmosphere ranges from 0 to 8 km and is divided into three
layers, including a cloud layer between 3 and 4 km (see Table 3.1 for detailed
parameters). In each layer, the thermal source term in terms of Planck’s func-
tion linearly varies with the optical thickness. The parameters such as optical
thickness, single-scattering albedo, and phase matrix within the cloudy layer
are obtained from Mie calculations. Since the cloud droplets are spherical, the
thermal source is essentially unpolarized. However, the underlying surface is in a
fully polarized oceanic state and has an emissivity vector and a reflectivity matrix
computed from an ocean polarimetric emissivity model. These parameters are
computed at a surface wind speed of 10 m/s and a surface temperature of 300 K.

Table 3.1 also lists and compares the Stokes vectors computed from two mod-
els. The discrepancies between the two models are less than 0.01 K for the first
two Stokes components, whereas the results are identical for the third and fourth
components. Thus, the forward model calculations including beam and thermal
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Table 3.1 Stokes vectors at the top of the atmosphere calculated from the VDISORT and
compared with the results from the doubling–adding model for a microwave frequency of
37 GHz.

𝝓 Doubling–adding VDISORT

I Q U V I Q U V

0 228.599 32.371 0.000 0.000 228.604 32.367 0.000 0.000
15 228.385 32.088 −0.671 0.148 228.390 32.083 −0.671 0.148
30 227.846 31.343 −1.172 0.258 227.851 31.339 −1.172 0.258
45 227.231 30.403 −1.391 0.299 227.237 30.398 −1.391 0.299
60 226.799 29.575 −1.309 0.259 226.805 29.571 −1.309 0.259
75 226.678 29.080 −0.997 0.146 226.684 29.076 −0.997 0.146
90 226.802 28.976 −0.578 −0.010 226.808 28.972 −0.578 −0.010
105 226.966 29.161 −0.182 −0.170 226.971 29.157 −0.182 −0.170
120 226.950 29.458 0.102 −0.290 226.956 29.454 0.102 −0.290
135 226.663 29.712 0.238 −0.335 226.668 29.708 0.238 −0.335
150 226.193 29.853 0.239 −0.291 226.198 29.849 0.239 −0.291
165 225.759 29.900 0.143 −0.168 225.765 29.896 0.143 −0.168
180 225.584 29.906 −0.000 0.000 225.590 29.902 0.000 −0.000
195 225.759 29.900 −0.143 0.168 225.765 29.896 −0.143 0.168
210 226.193 29.853 −0.239 0.291 226.198 29.849 −0.239 0.291
225 226.663 29.712 −0.238 0.335 226.668 29.708 −0.238 0.335
240 226.950 29.458 −0.102 0.290 226.956 29.454 −0.102 0.290
255 226.966 29.161 0.182 0.170 226.971 29.157 0.182 0.170
270 226.802 28.976 0.578 0.010 226.808 28.972 0.578 0.010
285 226.678 29.080 0.997 −0.146 226.684 29.076 0.997 −0.146
300 226.799 29.575 1.309 −0.259 226.805 29.571 1.309 −0.259
315 227.231 30.403 1.391 −0.299 227.237 30.398 1.391 −0.299
330 227.846 31.343 1.172 −0.258 227.851 31.339 1.172 −0.258
345 228.385 32.088 0.671 −0.148 228.390 32.083 0.671 −0.148
360 228.599 32.371 −0.000 0.000 228.604 32.367 0.000 −0.000

Microwave problem 
Frequency: 37 GHz; atmosphere stratification: three layers
Gamma size distribution of cloud droplets; 
Effective radius: 10 mm; liquid water path (3 – 4 km): 0.5 mm; 
Surface temperature: 300 K; surface wind speed: 10 m/s 
Local zenith angle: 53°. 

Vapor and cloud
Vapor

Vapor245 K

273 K

280 K

300 K

8 km

4 km

3 km

0 km

The radiances are converted to brightness temperatures and shown as a function of the relative
azimuthal angle (𝜙) between the viewing direction and wind direction with a fixed zenith angle of
53∘. Ocean surface emissivity vector is calculated from the polarimetric model with a wind speed
of 10m/s.

sources, scattering, and surface polarization are reliable and accurate. The polar-
ization signals arise primarily from the ocean emission that is fully polarimetric.
Atmospheric gases and cloud hydrometeors in the second case mainly attenuate
the surface polarization and thermally emit unpolarized radiation.

Radiance Jacobians corresponding to various geophysical parameters can be
calculated using the finite differential method (FDM) that computes the radiance
twice with one related to the basic state and the other corresponding to the



3.5 Benchmark Tests 57

perturbed condition. In this approach, a perturbation to the parameter within
a layer requires new calculations of all the optical parameters at other layers;
thus, the technique demands huge computational resources. Furthermore, the
perturbation to each parameter should be small but large enough to produce
a meaningful radiance perturbation. Strictly speaking, the ratio of radiance
perturbation to the variable increment approaches the actual gradient when the
increment approaches zero. In general, there is no criterion for selecting the
perturbation magnitude. Thus, there is always an uncertainty in using the FDM
for the radiance gradient calculation.

To illustrate how the FDM is converged to the VDISORT Jacobian model, we
compute and compare the Jacobians relative to the various parameters under a
cloudy atmosphere where the hydrometeors in various phases coexist. The atmo-
spheric profiles including temperature, water vapor, cloud liquid, ice, and rain
water contents are the outputs of the mesoscale model version 5 (MM5) simu-
lations of Hurricane Bonnie (see Figure 3.2). At 37 GHz, both cloud liquid (non-
precipitating) and rain water (precipitating) contents are used because ice clouds
are relatively transparent and their radiative effects can be neglected at this fre-
quency. Table 3.2 displays the mean single-scattering albedo and optical thickness
at 37 GHz from Mie calculations. A general gamma size distribution function
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Figure 3.2 Vertical distributions of temperature, cloud liquid, and ice water content
contributed from nonprecipitating hydrometers, rain water content from precipitating
hydrometers. (Weng and Liu 2003 [46] http://journals.ametsoc.org/doi/pdf/10.1175/1520-
0469%282003%29060%3C2633%3ASDAINW%3E2.0.CO%3B2.)
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Table 3.2 Optical thickness and single-scattering albedo
at 37 GHz for cloud liquid and rain water profiles.

Layer (km) Single-scattering
albedo

Optical
thickness

14–15 0.00000 0.00040
13–14 0.00000 0.00060
12–13 0.00000 0.00070
11–12 0.00000 0.00100
10–11 0.00004 0.00890
9–10 0.00005 0.01870
8–9 0.00005 0.01120
7–8 0.00313 0.02870
6–7 0.09686 0.11930
5–6 0.28951 0.61180
4–5 0.35888 0.76450
3–4 0.37552 0.83850
2–3 0.37512 0.86530
1–2 0.32877 0.55410
0–1 0.29511 0.21940

is used with an effective radius of 10 μm for nonraining clouds and 500 μm for
raining clouds. At 37 GHz, both the optical thickness and single-scattering albedo
vary significantly with altitude and peak between 3 and 4 km where the rain water
content is maximal. However, a maximum of single scattering albedo is only 0.38,
which indicates that the scattering is not a predominate process.

Table 3.3 displays the ratio of the Jacobians of the optical thickness derived
from the VDISORT to those derived from the FDM at 37 GHz. At a smaller Δ𝜏 of
0.01, the Jacobian ratio approaches unity for all four components throughout most
of the atmosphere. At 37 GHz, Δ𝜏 of 0.001 may be needed for the FDM to obtain
an accuracy approaching that obtained from the VDISORT. This again illustrates
that the perturbation used in the FDM must be small but large enough relative to
the basic state so that the radiance perturbation is computed to be numerically
meaningful. Table 3.4 displays the ratio of the Jacobians of the single-scattering
albedo derived from the VDISORT to those derived from the FDM at 37 GHz. It
shows that the two methods agree well.

The VDISORT Jacobian model is further utilized to compute various Jacobian
profiles. Figure 3.3a,b displays the Jacobians at 37 GHz relative to cloud liquid
water and rain water content, respectively. The Jacobian in I-component is
positive, whereas that in Q-component is slightly negative (see Figure 3.3a). This
implies that nonprecipitating cloud emits the radiation at this frequency and
results in an increase in the brightness temperatures as the cloud liquid content
increases. However, for precipitating clouds (see Figure 3.3b), the Jacobian is
initially positive between 7 and 9 km and then becomes largely negative between
3 and 6 km. This is due to the emission from a small amount of the raining
droplets aloft and the scattering from the large raindrops at lower levels. The
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Table 3.3 The ratio of the optical thickness Jacobian at 37 GHz computed from the dou-
bling and adding method to that obtained from the finite differential method, as a function
of an increment of the optical thickness.

Z (km) 𝚫𝝉 = 0.1 𝚫𝝉 = 0.01 𝚫𝝉 = 0.001

I Q I Q I Q

15 0.988 0.994 0.994 0.997 0.993 0.994
14 1.003 0.995 0.996 0.997 0.994 0.994
13 1.035 0.997 1.000 0.998 0.994 0.994
12 1.114 0.999 1.010 0.998 0.995 0.994
11 1.416 1.001 1.047 0.998 0.999 0.994
10 −2.909 1.003 0.513 0.999 0.944 0.994
9 0.531 1.004 0.938 0.999 0.988 0.994
8 0.734 1.008 0.963 0.999 0.990 0.994
7 0.785 1.008 0.969 0.999 0.991 0.994
6 0.809 0.956 0.972 0.991 0.991 0.993
5 1.024 0.888 0.997 0.982 0.994 0.992
4 0.946 −5.059 0.988 0.346 0.993 0.928
3 0.945 0.972 0.988 0.991 0.993 0.993
2 0.941 0.955 0.988 0.989 0.993 0.993
1 0.955 0.954 0.989 0.989 0.993 0.993

Table 3.4 The ratio of the single-scattering albedo Jacobian at 37 GHz computed from the
doubling and adding method to that obtained from the finite differential method, as a func-
tion of an increment of the single-scattering albedo.

Z (km) 𝚫𝝉 = 0.1 𝚫𝝉 = 0.01

I Q U V I Q U V

15 1.060 0.634 1.372 0.907 1.007 0.959 1.041 0.991
14 1.061 0.658 2.228 0.900 1.007 0.962 1.136 0.990
13 1.030 1.091 0.979 1.000 1.004 1.010 0.996 1.000
12 1.016 1.001 1.062 1.000 1.002 0.996 0.996 1.000
11 0.999 1.041 1.000 1.000 1.000 1.000 1.000 1.000
10 0.999 1.035 1.000 1.000 1.000 1.000 1.000 1.000
9 0.999 1.038 1.000 1.000 1.000 1.000 1.000 1.000
8 0.999 1.031 1.000 1.000 1.000 1.000 1.000 1.000
7 0.999 1.030 1.000 1.000 1.000 1.000 1.000 1.000
6 0.999 1.030 1.000 1.000 1.000 1.000 1.000 1.000
5 0.999 1.030 1.000 1.000 1.000 1.000 1.000 1.000
4 1.354 1.000 1.000 1.000 1.041 1.000 1.000 1.000
3 0.982 1.036 1.000 1.000 0.998 0.998 1.000 1.000
2 0.996 1.031 1.000 1.000 1.000 1.000 1.000 1.000
1 0.997 1.031 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 3.3 Vertical distributions of Jacobians of (a) cloud liquid water and
(b) rain water. Note that both Jacobians are divided by a factor of 10.
(Weng and Liu 2003 [46] http://journals.ametsoc.org/doi/pdf/10.1175/1520-
0469%282003%29060%3C2633%3ASDAINW%3E2.0.CO%3B2.)

positive Jacobian in Q-component at the lower levels results from the scattering
of larger raindrops.

3.6
The Zeroth-Order Approximation to Radiative Transfer Solution

Microwave radiative transfer can be simplified if single and multiple scattering
terms are neglected and there are no azimuthally dependent terms. Thus, we can
rewrite Eq. (3.12) in a scalar form as

𝜇
dI(𝜏, 𝜇)

d𝜏
= I(𝜏, 𝜇) − B(𝜏), (3.39)

where I is the zeroth-order term of radiance in the cosine mode in Eq. (3.11).
For convenience, we neglect the subscript of Fourier zeroth component. When
the terms from single and multiple scattering are neglected, Eq. (3.39) can be
expressed in the following form:

I(𝜏0, 𝜇) = I(𝜏s, 𝜇)exp(−𝜏s∕𝜇)

+ ∫
1

0
r𝐬(𝜇, 𝜇′)d𝜇′∫

𝜏s

𝜏0

B(𝜏,T)exp

[
−
(
𝜏 − 𝜏0

)
𝜇′

]
d𝜏∕𝜇

+ ∫
𝜏0

𝜏s

B(𝜏,T)exp

[
−
(
𝜏s − 𝜏

)
𝜇

]
d𝜏∕𝜇, (3.40)
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or

I(𝜏0, 𝜇) = I(𝜏s, 𝜇)exp(−𝜏s∕𝜇) + Iu + Id, (3.41)

Iu = ∫
𝜏0

𝜏s

B(𝜏,T)exp

[
−
(
𝜏s − 𝜏

)
𝜇

]
d𝜏∕𝜇, (3.42)

Id = ∫
1

0
r𝑠(𝜇, 𝜇′)d𝜇′∫

𝜏s

𝜏0

B(𝜏,T)exp

[
−
(
𝜏 − 𝜏0

)
𝜇′

]
d𝜏∕𝜇, (3.43)

where Iu and Id are the downwelling and upwelling radiances, respectively; and
rs is the surface reflectivity. At the microwave frequencies, radiance is related to
brightness temperature under Rayleigh–Jean approximation. In addition, we only
consider the first Stokes component (i.e., intensity), which is the brightness tem-
perature. After some manipulation, we can derive

Tb = 𝜀Tsexp(−𝜏s∕𝜇) + Tu + (1 − 𝜀)(1 + Ω)(Td + Tc)exp(−𝜏s∕𝜇), (3.44)

Tu = ∫
𝜏0

𝜏s

B(𝜏,T)exp

(
−
(
𝜏s − 𝜏

)
𝜇

)
d𝜏∕𝜇, (3.45)

Td = ∫
𝜏s

𝜏0

B(𝜏,T)exp

(
−
(
𝜏 − 𝜏0

)
𝜇

)
d𝜏∕𝜇, (3.46)

where 𝜀 is the surface emissivity, Ts is the surface temperature, and Tc is the cosmic
background brightness temperature. The parameter Ω is introduced for nonspec-
ular effect of surface reflection and varies with surface roughness, sea surface
wind speed, frequency, and atmospheric transmittance [52]. For an isothermal
atmosphere, upwelling and downwelling components in terms of brightness tem-
peratures can be approximated as

Tu ≈ Td = (1 − Υ)Tm, (3.47)

where Υ = exp
(
−(𝜏s−𝜏0)

𝜇

)
and Tm is the atmospheric temperature. Thus,

Tb = Ts[1 − (1 − 𝜀)Υ2] − ΔT(1 − Υ)[1 + (1 − 𝜀)Υ], (3.48)

where ΔT = Ts − Tm. It is apparent that brightness temperatures under
these approximations are directly related to the layer mean temperature and
atmospheric transmittance. Under a low emissivity condition, the bright-
ness temperature increases as the atmospheric transmittance decreases.
This physical principle drives the microwave remote sensing of clouds over
oceans.
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3.7
The First-Order Approximation to Radiative Transfer Solution

For a scattering and absorbing medium, the radiance may be considered
azimuthally independent so that the radiative transfer equation is given as

𝜇
dI(𝜏, 𝜇)

d𝜏
= I(𝜏, 𝜇) − 𝜔(𝜏)

2 ∫
1

−1
P(𝜇, 𝜇′)I(𝜏, 𝜇′)d𝜇′ − (1 − 𝜔(𝜏))B(T), (3.49)

where I is the radiance; 𝜔(𝜏) the single-scattering albedo; P(𝜇, 𝜇′) the phase func-
tion; B(T) the Planck function; T the thermal temperature; 𝜏 the optical thickness;
𝜇 the cosine of incident zenith angle; and 𝜇′ the cosine of scattering zenith angle.
A solution for Eq. (3.49) is derived at a viewing angle with a two-stream approxi-
mation [53] as follows:

𝜇
dI(𝜏, 𝜇)

d𝜏
= [1 − 𝜔(1 − b)]I(𝜏, 𝜇) − 𝜔bI(𝜏,−𝜇) − (1 − 𝜔)B, (3.50a)

−𝜇dI(𝜏,−𝜇)
d𝜏

= [1 − 𝜔(1 − b)]I(𝜏,−𝜇) − 𝜔bI(𝜏, 𝜇) − (1 − 𝜔)B, (3.50b)

where b and 1 − b is the ratio of the integrated scattering energy in the backward
and forward directions, respectively. For an isotropic scattering, b = 1∕2 so that
the scattered energy is the same in both directions. Since b = (1 − a)∕2 and
is generally less than 1∕2 for the Mie scattering case, the forward scattering
is much stronger than backward scattering, and the resulting upwelling radi-
ation is reduced. Equation (3.50a,b) can be combined into two second-order
differential equations for the final solution [53], assuming that 𝜔, b, and B are
independent of 𝜏 .

3.8
Ocean Emissivity Model

3.8.1
Ocean Roughness Phenomena

The roughness over oceans is the result of winds blowing over the surface, trans-
ferring energy to the surface and generating waves. The energy transfer between
near-surface winds and oceans results in a directional surface wave height spec-
trum. The directionality is dependent on the local wind direction. Wind waves,
capillary waves, and foam result from a momentum balance between wind input
and dissipative processes such as viscous damping and wave breaking. The initial
ocean response to wind forcing is the formation of capillary waves. Under con-
tinued wind forcing, wind waves can grow continuously until the water surface
becomes unstable and breaks. This process dissipates the excess energy provided
by the wind and entrains air bubbles. The process is completed when the air bub-
bles rise to the surface forming whitecaps and foam.
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Figure 3.4 Sea surface roughness producing the coherent and incoherent reflections.

Microwave radiation is affected by the scattering and emission from the Earth’s
atmosphere and surface. In radiative transfer modeling, the contribution from the
surface to the upwelling radiance or brightness temperature is expressed as a prod-
uct of surface emissivity and radiance as well as the surface reflection term. It is
generally dependent on the frequency and surface conditions. The hydrodynamic
processes affect the sea surface brightness temperatures through three primary
scattering mechanisms. First, capillary waves having a wavelength comparable to
the radiation wavelength affect the brightness temperature through Bragg scatter-
ing. Second, tilting effects, caused by the waves with wavelengths longer than the
radiation wavelength, change the effective incidence angle and rotate the polariza-
tion states and, as a result, the observed brightness temperature. Third, whitecaps
and foam significantly increase the emissivity of the sea surface, thus altering the
observed brightness temperature. Thus, the emissivity at microwave frequencies
over oceans depends on polarization, surface roughness, foam, and water dielec-
tric constant. A novel ocean wave model approximates roughness with two scales,
as shown in Figure 3.4. In this model, small-scale (or capillary) waves are super-
imposed onto large-scale (or gravity) waves that are called local facets.

For a rough oceanic surface whose slopes have a normal distribution, the angular
distribution of diffusely reflected radiation can be well approximated if the surface
is considered to be composed of many small facets, each reflecting independently
and specularly [54–57]. For fast computations of ocean reflectivity or emissivity, a
model called fast microwave emissivity model (FASTEM) was developed [58]. In
the latest version of FASTEM, the reflection coefficients in describing the large-
scale wave effects are derived by a regression, that is, fitting the results generated
from the geometric optics (GO) theory [54]. The GO model is a first-order approx-
imation to the full-scale reflectivity or emissivity model, and the accuracy of the
derived emissivity is not adequate for microwave remote sensing applications
at low frequencies. In particular, the GO model lacks coherent and incoherent
interactions among the bistatic scattering coefficients and does not produce the
fourth Stokes component, besides significantly underestimating the wind speed
dependence of the horizontally polarized radiation. The wind-induced sea surface
emissivity was also derived from the two-scale ocean roughness theory. All the
coefficients in the surface emissivity model are derived through a regression
against the satellite observations [59] and the model function is referenced to
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the five frequencies and 49∘ incidence angle at which the satellite observations
operate. In general, the sea surface emissivity is accurately represented by a
composite model in which the emission from the rough and foam-free water is
given by two-scale scattering theory, and the foam emission is given by a layered
dielectric theory [60]. The two-scale model takes the same facet treatment as the
GO model for the large-scale wave but uses the bistatic scattering coefficients
instead of the earlier approach through which the Fresnel reflection coefficients
are multiplied by an exponential function of the height variance for small ripples.
The coherent part of the bistatic scattering coefficients is the sum of the Fresnel
reflection coefficients and the correction of the specular reflection coefficients
caused by the small surface perturbation, which depend on the shortwave part
of the surface roughness spectrum. The incoherent scattering coefficients are
proportional to the shortwave part of the surface roughness spectrum.

In calculating the Fresnel reflectivity of the small facets, the dielectric constant
is based on the single Debye relaxation law [61] and is a function of salinity, sur-
face temperature, and frequency [62]. With all the updates to the water dielectric
models from laboratory measurements [60, 63, 64], the model frequencies are
now valid between 1.4 and 410 GHz. The FASTEM is further improved with the
two-scale sea surface roughness model by Durden and Vesecky [65, 66]. In the
following subsections, the theoretical basis for the FASTEM is described in detail.

3.8.2
Approximation of Water Dielectric Constant

When an electric field is applied in water, charge separation and molecular
rearrangement within water occur, causing the phenomenon of polarization.
The magnitude of the polarization can be measured by the water dielectric
constant. This macroscopic property is related to the microstructure through the
molecular polarizability and dipole moment. The dipole orientation takes place
as the molecule attempts to align with the electric field to adopt a low-energy
configuration. By neglecting intermolecular interaction, Debye [61] proposed
an approximate equation to describe the dielectric constant (also referred to as
permittivity) as follows:

e = e∞ +
es − e∞

1 + j2𝜋f 𝜏
, (3.51)

where es and e∞ are the dielectric constant at zero (static) and infinite frequen-
cies, respectively; 𝜏 is the relaxation time constant; and f is the electromagnetic
frequency in gigahertz. All the three parameters are a function of water temper-
ature. For seawater, dissolved salts render it a good conductor and contribute to
the imaginary part of the dielectric constant as

e = e∞ +
es − e∞

1 + j2𝜋f 𝜏
+ j 𝛼

2𝜋f e0
, (3.52)
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where 𝛼 is the ionic conductivity, and e0 is a parameter. The conductivity of
seawater increases with the number of ions, and the extent of polarization due
to the displacement of bound charges in seawater depends on its salinity [67].
Therefore, the static dielectric constant, relaxation time, and ionic conductivity
depend on the salinity of seawater. Below 20 GHz, the effect of salinity on the
permittivity is not negligible. Klein and Swift [62] presented the permittivity
as a function of frequency and water temperature as well as salinity, based
on laboratory measurements. Klein and Swift used measurements at 1.43 and
2.653 GHz to derive the coefficients of their permittivity model. Their model has
sufficient accuracy for the very low frequency range of microwaves and has been
used in numerous applications for many years. Guillou et al. [68] published a new
permittivity model based on the measurements performed at the Laboratoire
de Physique des Interactions Onde Matière in France. Seawater samples were
collected from different regions to cover the natural salinity variations over
the globe. Samples from the Mediterranean Sea exhibited salinities at 38‰
and 38.9‰. Medium-salinity samples (35.7‰) were found in the mid-North
Atlantic, while low-salinity samples were taken from the Atlantic–Gironde
estuary, rich in sediment content (23.2‰, 28‰), and from polar seas (30.2‰).
The measurements were performed between −2 and 30 ∘C with two vector
network analyzers. In the same year (1998) and in the same journal, Radio
Science, Ellison et al. [69] published another new permittivity model based on
the measurements over the frequency range of 3–20 GHz in 0.1 GHz steps and
over the temperature range between −2 and 30 ∘C in 1∘ steps. The measurements
at 23.8, 36.5, and 89 GHz and at selected temperatures between −2 and 30 ∘C
are also applied in their model derivation. Later work published by Ellison et al.
[60] shows the large discrepancy on the permittivity at high frequencies between
measurements and model simulations using the Debye formula. The work may
evidence that intermolecular interaction, which is ignored in the Debye approxi-
mation, needs to be taken into account for high frequencies. The intermolecular
interaction may be the second polarization that can be considered in a double
Debye model [60]:

e = e∞ +
es − e1

1 + j2𝜋f 𝜏1
+

e1 − e∞
1 + j2𝜋f 𝜏2

+ j 𝛼

2𝜋f e0
, (3.53)

where e1 is the permittivity at an intermediate frequency and f is the frequency in
Hz. Barthel et al. [70] have pointed out that the double Debye form is necessary
and sufficient for the permittivity at high frequencies. For lower alcohols, a triple
Debye form is needed. The permittivity at the infinite frequency is a function of
the water temperature. The permittivity at zero and intermediate frequencies as
well as relaxation times is a function of salinity and temperature. The function is
empirical. Most of permittivity models use a polynomial function [68, 71]. Meiss-
ner and Wentz [72] used combined functions: polynomial functions, fraction with
polynomials in both numerator and denominator, and exponential function. All
those empirical functions rely on the coefficients that fit the measurement data.
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The permittivity formulation was also derived by Ellison et al. [60] and was
used in the FASTEM model [58]. It is a double Debye model with the coefficients
determined by fitting the permittivity measurement data. The permittivity of
synthetic seawater with a constant salinity of 35‰ in about 2 GHz steps from 30
to 105 GHz and at temperatures of −2, 5, 10, 15, 20, 25, and 30 ∘C was obtained
from a free-air propagation method by using the ABMM measuring system [58].
The permittivity model by Ellison et al. [60] fits the measurements very well, but
it does not include sensitivity to salinity. The Soil Moisture and Ocean Salinity
(SMOS) satellite has carried the L-band microwave radiometer from space to
measure ocean salinity and soil moisture. The Y-shape that carries 69 separate
antenna receivers measures radiation at 1.4 GHz band (1.400–1.427 GHz) to
derive the information on soil moisture and ocean salinity [73]. The new capability
drives this study to develop an upgraded permittivity model in the FASTEM for
studying ocean salinity. The measurement data from 1.4 to 410 GHz are used to
determine the fitting coefficients in a new permittivity model. The permittivities
at 23.8 and 36.5 GHz and 89 GHz are measured at a constant salinity of 38.89‰
and at water temperatures of −2, 12, 20, and 30 ∘C [69]. The dielectric properties
of seawater are derived at 1.43 and 2.653 GHz [74, 75], and the permittivity
of synthetic seawater is also observed at constant salinity of 35‰ from 30 to
105 GHz and at temperatures of −2, 5, 10, 15, 20, 25, and 30 ∘C. The pure water
permittivity is obtained from 1.7 to 410 GHz [70, 71]. The wide variability of
the permittivity measurement data with temperature, salinity, and frequency
is unique for determining the fitting coefficients for the permittivity model.
The double Debye model is applied, and its coefficients are derived through
polynomial fitting using water temperature, T, in Celsius and water salinity, S, in
parts per thousand, according to the following expressions:

e∞ = a0 + a1T , (3.54a)

es = (a2 + a3T + a4T2 + a5T2)(1 + a6S + a7S2 + a8TS), (3.54b)

e1 = (a9 + a10T + a11T2)(1 + a12S + a13S2 + a14TS), (3.54c)

e0 = 8.8429 × 10 F∕m, (3.54d)

𝜏1 = (a15 + a16T + a17T2 + a18T3)(1 + a19S + a20ST + a21ST2), (3.54e)

𝜏2 = (a22 + a23T + a24T2 + a25T3)(1 + a26S + a27ST + a28S3), (3.54f)

𝛼 = 𝛼25 exp(−𝛽𝛿), (3.54g)

where

𝛿 = 25 − T , (3.54h)

𝛽 = a29 + a30𝛿 + a31𝛿
2 + S(a32 + a33𝛿 + a34𝛿

2), (3.54i)

and the ionic conductivity at a temperature of 25 ∘C

𝛼25 = S(a35 + a36S + a37S2 + a38S3). (3.54j)

The coefficients ai are determined by fitting the measurement data.
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Figure 3.5 Water permittivity corresponding to freshwater and salty water at 25 ∘C and
salinity of 35‰. The solid and dashed lines represent the permittivity in real and imaginary
parts, respectively.

Figure 3.5 shows the comparison of the permittivity in both real and imaginary
parts between measurements and our model calculations. The black line denotes
pure water at a temperature of 25 ∘C. The red line denotes seawater at a temper-
ature of 25 ∘C and at a salinity of 35‰. In general, the difference between the
measured and the modeled permittivity is less than 3%, within the uncertainty
of the measurements. The root-mean-square errors (rms) of the real and imag-
inary parts between the measurements and the new model simulations are 0.91
and 0.50, respectively. The slightly large error in the real part of the permittivity for
salted water may be due to a bias in the measurement. The permittivity real parts
above 30 GHz show a large difference between freshwater and salt water, contrary
to the common knowledge that both freshwater and salted water should have the
same permittivity at high frequencies.

3.8.3
Ocean Roughness Heights and Spectrum

Sea surface roughness is mainly driven by the surface wind vector [76], but wind
vector alone cannot fully resolve the surface roughness spectra since the boundary
stability and wave development stage also affect the roughness. In the infrared and
visible surface emissivity and reflectivity model, the surface slope variance, 𝜎2, is
often used for a surface roughness of a Gaussian distribution. The slope variance
measured by Cox and Munk [56] for a clean surface is a linear function of wind
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speed U12.5 (in m/s) at 12.5 m above the surface, namely,

𝜎2
u = 0.003 + 0.00316 × U12.5, (3.55a)

for an upwind direction and

𝜎2
c = 0.00192 × U12.5, (3.55b)

for a crosswind direction.
Wind vector is usually accepted to be a unique vector describing the sea sur-

face state. Wu and Fung [77] applied a simple function (BK−4) in terms of a wave
number, K , and a wind-dependent constant, B, to calculate the microwave surface
emissivity. The full-wave models developed by Bjerkaas and Riedel [78], Durden
and Vesecky [65] (hereinafter referred to as DV), Donelana and Pierson [79], Apel
[80], and Elfouhaily et al. [81] are widely used in microwave sea surface emissiv-
ity models. Dinnat et al. [82] have investigated the effect of the surface roughness
models by Durden and Vesecky and Elfouhaily et al. Their results suggested that
the DV surface roughness spectrum is more adequate for microwave emissivity
calculation at the L-band. Using the surface roughness spectrum by Elfouhaily
et al., the sensitivity of the brightness temperature to wind speed is obviously prob-
lematic for surface wind speeds below 7 m/s. The spectrum model by Bjerkaas
and Riedel [78] was used in a Monte Carlo emissivity model [83] and was able
to simulate the brightness temperatures comparable to satellite measurements.
But the spectrum is sophisticated and divided into four subspectra. The spectrum
does not have a smooth and continuous derivative to the wave number, which may
cause problems in tangent-linear and adjoint calculation in the data assimilation.
Thus, we chose the DV surface spectrum for this study. The DV surface roughness
spectrum can be written as

W (K , 𝜙) = 1
2𝜋K

S(K)Φ(K , 𝜙), (3.56a)

where S(K) is an omnidirectional spectrum, Φ(K , 𝜙) is the angular portion of the
spectrum, and 𝜙 is the wave direction relative to the wind. The DV omnidirec-
tional part is described by the Pierson–Moskowitz spectrum,

S(k) = a
2𝜋

K−3 exp[−0.74(K0∕K)2], (3.56b)

for the wave number K <Kj and K0 = g∕U2
19.5, where the gravity acceleration con-

stant g = 9.8 ms−2, and U19.5 is the wind speed at 19.5 m above the surface.
Using a dimensional analysis, Durden and Vesecky [65] have proposed the spec-

trum for K ≥Kj as

S(K) = a
2𝜋

K−3
( bKu2

∗

g + 𝛾K 2

)clog10(K∕Kj)

exp[−0.74(K0∕Kj)2], (3.56c)
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where 𝛾 = 7.25 × 10−5. The angular portion of the spectrum is written as

Φ(K , 𝜙) = 1 + d[1 − exp(−sK 2)] cos 2𝜙. (3.56d)

Obviously, the aforementioned spectrum depends on the empirical parameters,
Kj, a, b, c, d, and s. Here, the values for these parameters are set as

Kj = 2 m−1, b = 1.75, c = 0.25, s = 0.00015 m2.

The friction velocity of the surface wind u∗ can be calculated from the surface
wind at a given elevation. Conversely, the wind speed at any elevation z can be
calculated from the friction velocity by

U(z) =
u∗

0.4
log

(
z

Z0

)
, (3.57a)

where

Z0 = 0.0000684∕u∗ + 0.00428 × u2
∗ − 0.000443. (3.57b)

From Eqs. (3.57a,b), the friction velocity of the surface wind, u∗, can be cal-
culated from the surface wind speed at a height of z, and vice versa. It is found
that a = 0.008 as suggested by Yueh et al. [84], who compared the model simula-
tions with the measurements. In our revised ocean two-scale model, a = 0.016 is
applied, which is referred to as the DV2 model.

The parameter d is an important parameter used to describe the angular por-
tion of the spectrum (see Eq. (3.56d)). For a symmetric distribution (i.e., d = 0) of
the ocean roughness spectrum, the wind direction cannot be resolved from the
remote sensing data. In the existing spectrum models, the parameter d is positive
[85]. Thus, the upward slope variance is mathematically larger than the crosswind
slope variance. For the DV model, the parameter d is determined by forcing the
ratio of the slopes between crosswind and upwind to equal the ratio given by the
Cox and Munk model [84], which is

d = 2
1 − N

(1 − R
1 + R

)
, (3.57c)

where

N = ∫
∞

0
K 2S(K) exp(−sK 2)dK∕∫

∞

0
K 2S(K)dK . (3.57d)

For the parameter R, an offset of 0.003 is added to avoid a zero value in the
denominator and to ensure that the ratio is less than 1, that is,

R =
0.003 + 0.00192U12.5
0.003 + 0.00316U12.5

. (3.57e)
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It is worth emphasizing that the slope variance calculated from the spectrum is
generally different from the slope variance value obtained from the Cox and Munk
model, although the ratio of the slope variance between crosswind and upwind is
adopted from the Cox and Munk model. In fact, for the full spectrum, the mean
slope variance of a rough sea surface can be calculated from its roughness spec-
trum by

𝜎2 = ∫
∞

0 ∫
2𝜋

0
K 3W (K , 𝜙)dK d𝜙, (3.58a)

The slope variance along the up- and downwind direction is then given by

𝜎2
u = ∫

∞

0 ∫
2𝜋

0
K 3W (K , 𝜙)dKcos2𝜙 d𝜙 = 𝜎2

1 + R
, (3.58b)

and the slope variance along the crosswind direction is given by

𝜎2
c = ∫

∞

0 ∫
2𝜋

0
K 3W (K , 𝜙)dKsin2𝜙 d𝜙 = R𝜎2

1 + R
, (3.58c)

and the height variance (i.e., displacement variance) is given by

𝜉2 = ∫
∞

0 ∫
2𝜋

0
KW (K , 𝜙)dK d𝜙. (3.58d)

Using Eq. (3.56a) and integrating over the direction component, the height vari-
ance for a cutoff wave number Kc can be written as

𝜉2
c = ∫

∞

Kc

S(K)dK . (3.58e)

The DV2 spectrum model is applied for computing the surface slope variance.
The slope variance obtained from the original DV model is just half of the slope
variance obtained from the DV2 model. Figure 3.6 shows the dependence of the
total slope variance on the wind speed at 10 m above the surface for the DV2 model
(dark black), the DV model (light gray), and the Cox–Munk model (moderate
gray). The Cox–Munk slope variance is a linear function of the wind speed. The
DV2 and DV total slope variances display a slightly parabolic relationship. Both the
original DV and the Cox–Munk model agree, but the variance is far lower than
the DV2 total slope variance. For the microwave radiation, the surface effective
slope variance is smaller than the total slope variance obtained using Eq. (3.58a).

Figure 3.6 shows that the DV2 model is adequate for computing the microwave
surface emissivity because of the significant small-scale slope variance to the elec-
tromagnetic wavelength [86]. However, for an infrared or a visible spectrum, Kc is
very large, and the small-scale slope variance is negligible. The DV model should
be used because its slope variance agrees with the Cox–Munk model that consists
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Figure 3.6 The surface slope variance versus wind speed at 37 GHz for three ocean rough-
ness models.

in photographing the Sun’s glitter pattern on the sea surface from a plane, for
determining the statistics of the surface slope distribution.

Figure 3.7 shows the omnidirectional spectra for three wind speeds. A high wind
speed corresponds to a large spectrum. The spectrum part for a large wave number
is important for determining the capillary wave, which is used to correct a small-
scale of the microwave reflectance.

It can be seen from Figure 3.8 that Kc increases as the frequency or surface wind
speed increases. For a given frequency and a given surface wind speed, the cutoff
wave number can be calculated from Eq. (3.58c). Figure 3.8 shows the variation of
Kc with frequencies for surface wind speeds of 3, 7.5, and 15 m/s.

For microwave remote sensing applications, the electromagnetic wavelength
can be comparable to the small irregularities, and both gravity and capillary waves
need to be taken into account in the surface microwave emissivity calculation.
The large-scale surface roughness is governed by the gravity force (gravity waves),
while the small-scale surface roughness (capillary waves) is mainly driven by the
surface tension. Several criteria to separate the small-scale surface from the large-
scale surface have been suggested in the literatures [87, 88]. The criteria for the
small-scale surface were derived by Guissad and Sobieski [89]:

k𝜉c ≪ 1, (3.59a)

and

Kc
k

≪ 1, (3.59b)

with k (k = 2𝜋f
c

, c is the speed of light, and f is the frequency) the wave number
of the incident electromagnetic wave, Kc the cutoff wave number separating the
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small-scale surface roughness from the large-scale surface roughness, and 𝜉c the
height variance for small ripples. Using Eqs. (3.58a,b) and (3.57e) by postulating
k𝜉c =

Kc
k

, the cutoff wave number Kc is obtained from

K 2
c

k4 = 𝜉2
c = ∫

∞

Kc

S(K)dK . (3.59c)

Obviously, the cutoff wave number Kc of the surface roughness to a large-scale
or a small-scale wave depends on the wind speed and the electromagnetic wave-
length acting on the surface [83]. For microwave frequencies, the cutoff wave
number is between 10 and 300 m−1, depending the surface wind speed and elec-
tromagnetic wavelength. The cutoff value will affect the slope variance for the
large-scale wave, which is used in the GO and two-scale models [84]. The slope
variance for the large-scale wave and for a given Kc can be adjusted by chang-
ing the integration upper limit of (Eq. 3.58a–c) from ∞ to Kc. For an infrared
or visible wavelength, Kc is large enough, and adjustment is not necessary. How-
ever, the adjustment to the large-scale slope variance for microwave sensors is
significant.

3.8.4
Foam Coverage

For a wind speed larger than several meters per second, foam starts to affect the
surface emissivity. Foam is often a mixture of air and water. The air volume fraction
in the foam can be very high and is greater than 0.95. The foam coverage was
expressed by Tang [90]:

fc = 7.75 × 10−6
(

V
V0

)3.231

, (3.60)

where V is the wind speed in m/s at 10 m above the sea surface and V0 is a
constant of 1 m/s. The total reflectivity is calculated from the sum of the foam
reflectivity weighted with the foam coverage (fc) and the reflectivity of water
weighted with the water coverage (1 − fc). Both foam emissivity and coverage
affect the surface emissivity, and the two parameters may also depend on the
stability in a lower boundary layer. Schrader [91] explicitly treated sea foam as
the third scale in his microwave ocean emissivity model. Stogryn [92] derived
an empirical sea foam emissivity model as a function of frequency, incidence
angle, and sea surface temperature from radiometric measurements. However, a
recent study by Rose et al. [93] shows that the measurements of foam emissivity
at 10.8 and 36.5 GHz are greater than the foam emissivity obtained using the
Stogryn model. According to their measurements, the measured foam emissivity
is greater than 0.9 over a range of incidence angles between 30∘ to 60∘ for the
vertical polarization. Kazumori et al. [94] further improved the foam emissivity
model that depends on polarization, angle, and frequency.
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3.8.5
Surface Emissivity Vector

The two-scale modeling of the ocean surface emissivity [77, 84, 88] requires
integrations over the ocean wave spectrum and over all facet directions, which
demand huge computational resources. The Monte Carlo two-scale microwave
emissivity model [83] demands even more computational time. A new approach
has been developed for effective calculations for various applications such as
satellite radiance assimilation and in the retrieval of geophysical parameters.
The first version of the fast emissivity model (FASTEM) is an empirical and
parameterized model that is based on the two-scale accurate simulations. It
is composed of small-scale corrected Fresnel reflection coefficient, large-scale
adjustment, and foam. FASTEM-1 is found to be problematic when it is used for
simulating the special sensor microwave/imager (SSM/I) brightness tempera-
tures. In the revised FASTEM (version 2), the total atmospheric transmittance is
used in a correction factor to the reflectivity to account for angular-dependent
downward radiation. The FASTEM-1 and -2 do not include the Stokes third
and fourth emissivity components. To enable the processing of a polarimetric
sensor, the FASTEM is extended to its version 3 by including the polarimetric
components.

The theoretical basis for the FASTEM starts from a modified GO model in
which a small-scale correction is applied to the Fresnel reflectivity. The modified
GO model for the vertically and horizontally polarized reflectance can be written
as [83][

Γv (𝜃)
Γh(𝜃)

]
= ∫ ∫ Rot1

[
Fm

v 0
0 Fm

h

]
Rot2

[
1
1

]
P sin 𝜃sd𝜃sd𝜑s, (3.61)

where 𝜃, 𝜑 and 𝜃s, 𝜑s are the zenith and azimuth angles of the incident and
scattering direction, respectively; and P is the probability function of facets that
depends on the surface slope variance. The modified Fresnel reflectance, Fm

v and
Fm

h as shown in eq. (3.61), are evaluated at a local plane of the facet. The rotation
matrix Rot2 first rotates the incident radiation vector into the local plane of the
facet, and the rotation matrix Rot1 rotates from the facet reflected radiation
vector to the meridian plane, which contains the surface normal direction and
the outgoing radiation direction [83, 89], showing that the modified GO model
achieves a good accuracy for the vertically and horizontally polarized brightness
temperatures in comparison to the Hollinger’s measurements and the satellite
measurements. The model was also validated between the model calculation
and the satellite measurements. The calculated brightness temperatures agree in
general with the satellite measurements. The rms error between the modeled and
the measured microwave brightness temperature is less than 2 K for 19.35, 22.235,
and 37 GHz.
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Assuming that the ocean surface reflection is a quasi-specular, the product of
the rotation matrices and the modified Fresnel reflectance around the incident
direction in Eq. (3.61) can be expanded as[

Γv (𝜃)
Γh(𝜃)

]
= ∫ ∫

[
Fm

v (𝜃) 0
0 Fm

h (𝜃)

] [
1
1

]
P sin 𝜃sd𝜃sd𝜑s

+ ∫ ∫ L
[

1
1

]
P sin 𝜃sd𝜃sd𝜑s

≈
[

Fm
v (𝜃)

Fm
h (𝜃)

]
+
[

RLv
RLh

]
. (3.62)

The second term on the right side of Eq. (3.62) represents the large-scale correc-
tion. The surface emissivity also depends on the relative azimuth angle between
the wind direction and the sensor azimuth angle. Here, three cosine harmonic
functions are used for the vertical and horizontal polarization and three sinu-
soidal harmonic functions for the third and the fourth Stokes components [95],
as suggested by St Germain and Poe [96]. The emissivity at a zenith angle, 𝜃, and
a relative azimuth angle, 𝜑R, thus can be summarized as follows:

𝜀v = (1 − fc)[1 − Fv exp(−ycos2𝜃)] + Large corv]

+ fc × 𝜀foam v +
3∑

m=1
cm cos(m𝜑R), (3.63a)

𝜀h = (1 − fc)[1 − Fh exp[−ycos2𝜃)] + Large corh]

+ fc × 𝜀foam h +
3∑

m=1
dm cos(m𝜑R), (3.63b)

𝜀3 =
3∑

m=1
em sin(m𝜑R), (3.63c)

𝜀4 =
3∑

m=1
gm sin(m𝜑R), (3.63d)

where the small-scale correction parameter y = h(k𝜉c)2, and the large-scale cor-
rection terms, Large corv and Large corh, are determined by fitting the rigorous
two-scale model calculations. The coefficients cm, dm, em, gm are obtained by fitting
both surface measurement data and the rigorous two-scale model calculations,
which enable us to apply the azimuthal part to various zenith angles and frequen-
cies. The effects of sea foam on the emissivity for the third (𝜀3) and fourth (𝜀4)
Stokes components are not explicit and may be partially included by fitting to the
measurement data.
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In Eq. (3.63), the small-scale correction parameter, y, is also parameterized
according to surface wind speed by fitting it with the results derived from the
small-scale correction parameter:

y = h1 × W × f + h2 × W × f 2 + h3 × W 2 × f + h4 × W 2 × f 2 + h5 × W 2∕f

+ h6 × W 2∕f 2 + h7 × W + h8 × W 2, (3.64)

where W is the wind speed with a unit of meter per second, and f is the frequency
in GHz. The coefficients hi are obtained by fitting the height variance computed
from the surface roughness.

The large-scale correction parts are written in the following regression
equations:

Large corv = z1 + z2f + z3f 2 + (z4 + z5f + z6f 2)∕ cos 𝜃

+ (z7 + z8f + z9f 2)∕cos2𝜃 + (z10 + z11f + z12f 2)

× W + (z13 + z14f + z15f 2) × W 2 + (z16 + z17f + z18f 2)

× W∕ cos 𝜃, (3.65a)

Large corh = z19 + z20f + z21f 2 + (z22 + z23f + z24f 2)∕ cos 𝜃

+ (z25 + z26f + z27f 2)∕cos2𝜃 + (z28 + z29f + z30f 2)

× W + (z31 + z32f + z33f 2) × W 2 + (z34 + z35f + z36f 2)

× W∕ cos 𝜃. (3.65b)

The regression coefficients zi are evaluated using the large-scale contribution
extracted from the rigorous two-scale model calculations with a constraint to
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Figure 3.9 Variation of the surface brightness temperature with the seawater salinity for the
sea surface temperatures at 0, 15, and 30 ∘C.
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ensure the same emissivity value for both vertical and horizontal polarization
at nadir.

Figure 3.9 shows brightness temperatures at 1.4 GHz as a function of seawa-
ter salinity. In general, brightness temperatures linearly decrease as the salinity
increases. Under higher temperature conditions, the brightness temperatures are
sensitive to salinity. For salinity less than 30 per thousand in volume, the brightness
temperatures are more sensitive to temperature. Note that these computations are
performed for a wind speed of 7 m/s and under the nadir condition.

Figure 3.10 shows the variation of surface emission at the third and fourth Stokes
components from the ocean Stokes emissivity model calculated from the radiative
transfer model. The variation of Stokes vector to the wind direction is generally
less than 3 K. The amplitude of the variation for the fourth component of the
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Figure 3.10 Variation of third and fourth Stokes components at 1.4, 6.8, 10.7, 19.35, 37, and
85.5 GHz for wind of 10 m/s above 19.5 m with relative azimuthal angle simulated from the
two-scale emissivity model for a wind speed of 10 m/s at a height of 19.5 m and a surface
temperature of 300 K. (Weng and Liu 2003 [46] http://journals.ametsoc.org/doi/pdf/10.1175
/1520-0469%282003%29060%3C2633%3ASDAINW%3E2.0.CO%3B2.)
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Stokes vector is only about 0.5 K and depends on the frequency, although the
envelope is similar. Thus, under nonprecipitation conditions, the measurements at
higher microwave frequencies such as 37 GHz may be very valuable for light wind
retrievals because of the increasing sensitivity. The measurements at 85 GHz are
also sensitive to wind direction, but the noises from atmospheric absorption and
scattering limit the high frequency applications for wind vector retrievals.

3.9
Land Emissivity Model

Microwave emissivity spectra over land were simulated and measured over a lim-
ited range of frequencies and surface conditions. For bare soil, the emissivity was
derived as a function of soil moisture, soil textural components (e.g., clay and
sand), and surface roughness [97, 98]. However, the bare soil emissivity was only
modeled at lower frequencies where the soil dielectric constants are empirically
adjusted using the ground-based measurements. The emissivity of the vegetation
canopy was also simulated, using a simplified radiative transfer model, and the
canopy optical parameters in the model were derived from Rayleigh’s approxi-
mation [99], which is only valid for low frequencies. More sophisticated radiative
transfer schemes were proposed to simulate the effects of the vegetation canopy on
the microwave emissivity [100–102]. For a snow-covered surface where ice par-
ticles have a high fractional volume, the optical parameters were approximated
using an effective wave propagation constant for the medium [103]. Alternatively,
the Mie phase matrix must be modified to account for scattering interaction of
closely spaced scatterers [101] and then used in the radiative transfer equation.
In addition to modeling the emissivity, the techniques were developed to retrieve
the microwave emissivity over land using the data from satellite window channels
together with some auxiliary data [104–108].

In this section, the latest improvements on microwave land emissivity model are
discussed. A general radiative transfer scheme and its approximated solution used
for simulating land emissivity of scattering and emitting medium are proposed.

3.9.1
Theoretical Approach for Land Emission

The microwave land emissivity over various surfaces such as snow, deserts, and
vegetation is computed from a radiative transfer scheme [106]. The reflected and
emitted components occurring at the interfaces above and below the scattering
layer are taken into account, and the cross-polarization and attenuation due to
surface roughness are parameterized as a function of roughness height and fre-
quency (see Figure 3.11). For the vegetation canopy, the optical parameters are
derived using GO. For a medium with a higher fractional volume of particles such
as snow and deserts, the scattering and absorption coefficients are approximated
using the dense medium theory. The model takes satellite zenith angle, frequency,
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Scattering medium

Figure 3.11 A schematic diagram illustrating the radiative transfer process through a three-
layer medium. The boundary layer is generalized to include the interface reflection caused
by the dense particles. (Weng et al. 2001 [106]. Reproduced with permission of Wiley.)

soil moisture content, vegetation fraction, soil temperature, land surface temper-
ature, and snow depth as inputs and computes surface emissivity at both vertical
and horizontal polarization states.

In general, the upwelling and downwelling radiances can be derived as

I(𝜏, 𝜇) =
I′0[𝛾1e𝜅(𝜏−𝜏1) − 𝛾2e−𝜅(𝜏−𝜏1)] − I′1[𝛽3e𝜅(𝜏−𝜏0) − 𝛽4e−𝜅(𝜏−𝜏0)]

𝛽1𝛾4e−𝜅(𝜏1−𝜏0) − 𝛽2𝛾3e𝜅(𝜏1−𝜏0)
+ B, (3.66a)

I(𝜏,−𝜇) =
I′0[𝛾4e𝜅(𝜏−𝜏1) − 𝛾3e−𝜅(𝜏−𝜏1)] − I′1[𝛽2e𝜅(𝜏−𝜏0) − 𝛽1e−𝜅(𝜏−𝜏0)]

𝛽1𝛾4e−𝜅(𝜏1−𝜏0) − 𝛽2𝛾3e𝜅(𝜏1−𝜏0)
+ B, (3.66b)

where 𝜇 is the cosine value of the local zenith angle, 𝜅 is the eigenvalue for solving
the differential equations and is related to the particle optical parameters, and B
is the Planck function of the scattering medium.

The parameters I′1 and I′0 are defined as

I′1 = I1 − B(1 − R23),

I′0 = I0(1 − R12) − B(1 − R21), (3.66c)

where I1 is the upwelling radiance at 𝜏 = 𝜏1 from the bottom layer, I0 is the down-
welling radiance at 𝜏 = 𝜏0 from the top layer, and Rij is the reflectivity at the inter-
face between the two layers. The coefficients (𝛾i, 𝛽i) are derived as

𝛾1 = 1 − R23∕𝛽,

𝛾2 = 1 − R23𝛽,

𝛾3 = 1∕𝛽 − R23,

𝛾4 = 𝛽 − R23,

𝛽 = (1 − a)∕(1 + a), (3.66d)
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and

𝛽1 = 1 − R21∕𝛽,

𝛽2 = 1 − R21𝛽,

𝛽3 = 1∕𝛽 − R21,

𝛽4 = 𝛽 − R21, (3.66e)

respectively, where

𝛽 = (1 − a)∕(1 + a),

a =
√
(1 − 𝜔)(1 − 𝜔g),

𝜅 =
√
(1 − 𝜔)(1 − 𝜔g)∕𝜇. (3.66f)

where 𝜔 and g are the single-scattering albedo and the asymmetry factor,
respectively. Note that we have introduced the generalized conditions at upper
and lower boundaries so that the solutions can be used for both surface and
atmospheric scattering cases. If I′1 = 0, the upwelling radiance emanating from
the second layer is

I(𝜏0, 𝜇) =
I′0[𝛾1e𝜅(𝜏0−𝜏1) − 𝛾2e−𝜅(𝜏0−𝜏1)]
𝛽1𝛾4e−𝜅(𝜏1−𝜏0) − 𝛽2𝛾3e𝜅(𝜏1−𝜏0)

+ B. (3.67)

The interface between layers 1 and 2 can also cause an additional reflection to the
incident radiation. Thus, the downwelling radiance from the first layer is reflected
and the upwelling radiation from the second layer is internally reflected at the
interface so that the total radiance is given by

It(𝜏0, 𝜇) = I0R12(𝜇) + I(𝜏0, 𝜇t)[1 − R21(𝜇t)], (3.68)

where 𝜇t is the cosine of the upwelling angle being related to 𝜇 through Snell’s law.
The emissivity of the three-layer medium is defined as a ratio of the total radi-

ance emanating from the medium to the blackbody radiance calculated using the
Planck function, that is, 𝜀 = It∕B. As a result,

𝜀 = 𝛼R12 + (1 − R21)
{

(1 − 𝛽) [1 + 𝛾e−2𝜅(𝜏1−𝜏0)]
(1 − 𝛽R21) − (𝛽 − R21)𝛾e−2𝜅(𝜏1−𝜏0)

,

+
𝛼
(
1 − R12

)
[𝛽 − 𝛾e−2𝜅(𝜏1−𝜏0)]

(1 − 𝛽R21) − (𝛽 − R21)𝛾e−2𝜅(𝜏1−𝜏0)

}
, (3.69)

where 𝛼 = I0
B

, 𝛽 = 1−a
1+a

, and 𝛾 = 𝛽−R23
1−𝛽R23

. Since the reflectivity at the interface
depends on polarization, the emissivity derived from Eq. (3.69) is also a function
of polarization.
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3.9.2
Optical Parameters of Vegetation Canopy

According to Eq. (3.69), the most important parameters affecting the emissivity
are the optical thickness (𝜏1, 𝜏0) and the interface reflection coefficients (Rij). The
scatterers within layer 2 could have very complicated shapes. For instance, a decid-
uous forest consists of leaves, small twigs, branches, and even trunks, which are
disk- and needle-shaped and cylindrical. The computation of the optical thick-
ness for different vegetation shapes was discussed elsewhere [109–116]. However,
most of these results are only valid at low frequencies (e.g. <10 GHz) and there-
fore have limited applications. Recently, Wegmüller et al. [102] applied the GO
for canopy leaves to compute the optical parameters at a wide frequency range
(1–100 GHz) and concluded that the results were much improved in comparison
with the commonly used Rayleigh approximation [99]. This might have an impor-
tant application for the satellite microwave sensors because of the simplicity of the
computational procedure. Thus, the approach proposed by Wegmüller et al. [102]
is briefly discussed here and used together with this emissivity model.

The canopy leaf is approximated through a slab with a thickness and a dielectric
constant as shown in Figure 3.12. If a leaf size is much larger than the EM wave-
length, the geometrical optics is applied to compute the reflectivity and transmis-
sivity from the Fresnel equation. The reflectivity, transmissivity, and absorptivity
for the leaf are given as follows [88, 102]:

Rp =
|||||

rp
(
1 − e−i2𝜅z1d)

1 − r2
pe−i2𝜅z1d

|||||
2

, (3.70)

Th =
|||||

4𝜅z0𝜅z1ei(𝜅z0−𝜅z1)d

(𝜅z1 + 𝜅z0)2(1 − r2
he−i2𝜅z1d)

|||||
2

, (3.71a)

H

d - leaf thickness

β - leaf orientation angle
θ - incident angle of EM wave

H - canopy height
LAI - leaf area index
md - dry matter content

β

θ

d

Figure 3.12 Vegetation canopy model used for microwave optical parameter calculation.
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Tv =
|||||

4𝜅z0𝜅z1ei(𝜅z0−𝜅z1)d

(𝜅z1 + 𝜅z0)2(1 − r2
v e−i2𝜅z1d)

|||||
2

, (3.71b)

Ap = 1 − Rp − Tp, (3.72)

respectively, where i =
√
−1; p = v, h and stands for vertical and horizontal polar-

ization; d is the leaf thickness and

𝜅z0 = 𝜅0cos𝜉, (3.73)

𝜅z1 = 𝜅0(eveg − sin2𝜉)
1
2 , (3.74)

rh =
𝜅z0 − 𝜅z1

𝜅z0 + 𝜅z1
, (3.75)

rv =
eveg𝜅z0 − 𝜅z1

𝜅z0 + 𝜅z1
, (3.76)

where 𝜉 is the leaf orientation angle. The leaf dielectric constant, eveg , is obtained
using a formula that treats the canopy leaf as a matrix of saline water, bound water,
and dry matter [117].

eveg = 1.7 − (0.74 − 6.16mg)mg + mg × (0.55mg − 0.076)

× [4.9 + 75.0∕(1 + yi) − yi] + 4.64m2
g∕(1 + 7.36m2

g )

× [2.9 + 55.0∕(1.0 +
√

yi)], (3.77)

where yi is a complex value given as

yi = i𝜈∕18.0,

and mg is the gravimetric water content (g/kg), and 𝜈 is the frequency in GHz.
Other mixing formulas were also derived and validated for leaves [118] having a
higher gravimetric water content (e.g., > 0.5), which is

eveg = (0.52 − 0.69md)ew + 3.84md + 0.51, (3.78)

where md is the dry matter content and ew is the dielectric of water.
If canopy leaves are considered as independent scatterers, the absorption (Kap)

and scattering (Ksp) coefficients are calculated by integrating the individual opti-
cal parameters according to the leaf orientation function and density distribution
function, namely,

Kap = LAI
H ∫

𝜋∕2

0
A∗cos𝜉n(𝜉)d𝜉, (3.79)



3.9 Land Emissivity Model 83

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

6 10 20 30 40 50 60 70 80 90 100

LAI = 2

θ = 53.1
md = 0.5

Frequency (GHz) 

d = 0.05 mm 

d = 0.20 mm 

d = 0.10 mm 

S
in

gl
e-

sc
at

te
rin

g 
al

be
do

, ω

Figure 3.13 Single-scattering albedo versus frequency as a function of leaf thickness.

and

Ksp = LAI
H ∫

𝜋∕2

0
R∗ cos 𝜉n(𝜉)d𝜉, (3.80)

where LAI is the leaf area index, n is the leaf orientation function, H is the canopy
depth, and A∗ and R∗ are the absorption and reflectivity, respectively, of each leaf
averaged between two polarizations.

Vegetation leaf thickness has a significant impact on its bulk absorption and
scattering properties. Figure 3.13 shows the leaf albedo as a function of frequency.
The albedo first decreases with frequency and then increases. Larger leaf thickness
results in higher albedo. The computation of this albedo result is derived for a leaf
area index of 2 and a volumetric water content of 0.5.

3.9.3
Optical Parameters of Snow

In addition to their complex shapes, the surface scatterers may occupy a large frac-
tional volume. Various procedures have been developed to handle the coherent
scattering effects resulting from closely spaced particles. In the early development
of the radiative transfer theory, only diffuse media containing sparsely populated
scatterers were treated. Here, the particles are located in the far-field zone of one
another, and it was sufficient to define the optical properties and phase function
in terms of the scattered properties of an isolated particle without accounting for
the effects of neighboring particles.

For snow, the scatterers are ice needles, which are closely spaced, occupying
typically 20% to 40% of the volume. Thus, the adjacent scatterers are not always
in the far field of one another, and it is necessary to use the exact scattered field
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without the far zone approximation in the calculation of the optical parameters.
A modified Mie phase function was introduced to account for the interference
effects of closely spaced neighboring particles having arbitrary sizes [101, 119].
This procedure further complicates the traditional Mie calculations of the optical
parameters, although it offers a valuable tool for future research. An alternative
method for analyzing the scattering in dense media is to use the perturbation the-
ory, as proposed by Tsang et al. [103]. Since the optical parameters can be derived
analytically, this methodology offers a very good physical understanding and is
computationally efficient. However, the theory is only valid when the particle size
is smaller than the wavelength.

Dense media are represented by an inhomogeneous dielectric constant whose
effective propagation constant is determined by applying the perturbation theory
to Maxwell equations [103]. For scattering particles of radius, r, having a dielectric
constant, es, immersed in a uniform background dielectric content, e0, the effective
propagation constant of the medium, K , is [103]

K 2 = 𝜅2
0 +

3va𝜅
2
0 y

1 − vay

[
1 + i 2

3

(
𝜅0r

)3y(1 − va)4

(1 − vay)(1 + 2va)2

]
, (3.81)

where va is the fraction volume and y is a complex variable given by

y = yr + iyi =
es + e0

es + 2e0
, (3.82)

where yr and yi are the real and imaginary components, respectively.
It should be noted that the aforementioned derivations are strictly valid when

𝜅0r < 1, which limits the range of particle radii for which the theory can be applied.
Further decomposing the wave propagation constant in Eq. (3.81) into real and
imaginary parts yields

Kr = 𝜅0

[
1 + 2vayr
1 − vayr

−
4vayryi

(
𝜅0r

)3(1 − va)4

(1 + 2va)2(1 − vayr)3

] 1
2

, (3.83a)

and

Ki =
𝜅2

0
2Kr

[
3vayi(

1 − vayr
)2 +

2va(𝜅0r)3(1 − va)4y2
r

(1 + 2va)2(1 − vayr)2

]
, (3.83b)

respectively, where the imaginary part, Ki, represents the total attenuation caused
by the dense medium particles and can be further decomposed into scattering and
absorption coefficients assuming that K 2

r ≫ K 2
i [103]:

Ks =
𝜅0vay2

r (𝜅0r)3(1 − va)4

(1 + 2va)2(1 − vayr)2

( 1 − vayr
1 + 2vayr

) 1
2

, (3.84)
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Figure 3.14 Snow optical parameter versus frequency as a function of volume fraction of
particle.

Ka = Ki − Ks. (3.85)

The characteristic of snow single-scattering albedo calculated from dense medium
is different than that from the diffuse, especially for a high volume fraction of par-
ticles. As shown in Figure 3.14, the albedo is small or close to zero, and thus the
medium is more or less an interface problem.

After snow experiences a metamorphosis process, it forms stratification and
snow grains become sticky and form clusters. The aged snow requires a dense
media radiative transfer (DMRT) theory with the quasicrystalline approximation
(QCA), which provides more accurate results when compared to emissions
determined by a homogeneous snowpack and other scattering models [120]. The
DMRT model accounts for adhesive aggregate effects, which lead to dense media
Mie scattering by using a sticky particle model. With the multilayer model, both
the frequency and polarization dependencies of the brightness temperatures
from representative snowpacks are derived and compared to the results from
a single-layer model. It is found that the multilayer model predicts higher
polarization differences, twice as much, and weaker frequency dependence [120].

3.9.4
Surface Reflection at Layer Interfaces

As shown in Eq. (3.69), the emissivity is also affected by the surface reflection. It is
found that the reflective energy from a rough surface at small angles of incidence
can be approximated by the GO approximation [121], whereas the reflectivity at
large angles is obtained using the perturbation solution [101]. This leads to the
development of a two-scale model, which is particularly useful for modeling the
sea surface emissivity [83, 86, 88, 122, 123]. Over land, however, the two-scale



86 3 Radiative Transfer Modeling at Microwave Frequencies

models remain impractical because of the unpredictable relationship between
surface roughness and geophysical parameters. Instead, various empirical rela-
tionships, though being limited by frequency, were derived to relate the surface
reflectivity with roughness parameters [97].

For a smooth interface, the reflectivity is obtained from the Fresnel equations,
which is a function of the incident angle and the dielectric constant of the lay-
ers. An empirical dielectric constant was derived for bare soil using a dielectric
soil–water mixing model [124]. The dielectric constant is expressed as a func-
tion of the soil volumetric moisture content with soil temperature and sand and
clay fractions as parameters. Of particular interest is the dielectric constant for
dry and wet snow [125]. These surfaces are composed of scatterers having a high
fractional volume so that the dielectric constant of the dense medium is derived
from the effective propagation constant given by Eq. (3.81) using K 2 = 𝜅2

0 e and is
expressed as

e =
1 + 2vay
1 − vay

+ i
2vay2(𝜅0r)3(1 − va)4

(1 − vay)2(1 + 2va)2 . (3.86)

Surface roughness modifies the Fresnel reflection coefficients [97]. For example,
the dynamic range of reflectivity of wet and dry soil decreases as the surface rough-
ness increases. There is also a cross-polarization contribution, which must be
taken into account, namely,

R′
h = [(1 − Q)Rh + QRv]P, (3.87a)

R′
v = [(1 − Q)Rv + QRh]P, (3.87b)

where

P = e−4𝜅2
0𝜎

2cos2(𝜃), (3.88)

Q = 0.35(1 − e−0.61f 𝜎2 ). (3.89)

where P and Q depend on the frequency, incident angle, and standard deviation
of the surface roughness height, 𝜎 (in unit of centimeter).

The cross-polarization factor derived from Eq. (3.89) is close to zero as the fre-
quency is near 20 GHz. Thus, its applications are very limited. Thus, a general
hyperbolic tangent function is proposed with

P = 1
2

[
A + B tanh

(x − x0
w0

)
+ C tanh

(x − x0
w1

)]
, (3.90)

Q = 0.35(1.0 − e−15.0x), (3.91)

where x = 4𝜋f cos(𝜃)∕30.0. This revision renders much better performance in
terms of roughness and cross-polarization correction. The reflectivity data over
bare soil from various studies can be fit well, as shown in Figure 3.15. In addition,
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Figure 3.15 Microwave land reflectivity of bare soil derived from new roughness model,
compared with the measurements [126–128].

the dependence of the reflectivity on roughness height and angle is significantly
improved, compared to the measurements.

3.9.5
Soil Dielectric Constant

Dobson et al. [124] developed a mixing rule for soil dielectric constant [106],
which is

e𝛼m = 1 +
𝜌b
𝜌s
(e𝛼s − 1) + m𝛽

v e𝛼w − mv, (3.92)

where mv is the soil volumetric moisture, es is the dielectric constant of solids, and
𝜌b is the density of soil, 𝜌s is the density of solids, which are calculated from sand
and clay fractions. The exponents 𝛼, 𝛽 depend on the soil type as:

𝛼 = 0.65, (3.93a)

𝛽 = 1.09 − 0.11S + 0.18C, (3.93b)

es = (1.01 + 0.44 × 𝜌s)2 − 0.062, (3.93c)

3.9.6
Simulated Surface Emissivity Spectra

From this new emissivity model, land microwave emissivity spectra are calculated
for these four surface conditions. For a wetland, its volumetric moisture content
is 0.3. The fractions of sand and clay are 0.2 and 0.8, respectively. For a corn field,
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Figure 3.16 Microwave emissivity spectra corresponding to various Earth surface
conditions derived from land and ocean models as discussed in the following
sections. Shown are the values of two polarization states at a local zenith angle
of 53∘. (Weng and Liu 2003 [46] http://journals.ametsoc.org/doi/pdf/10.1175/1520-
0469%282003%29060%3C2633%3ASDAINW%3E2.0.CO%3B2.)

the leaf area index is 4. For a snow and desert scattering medium, the particle size
is 0.5 mm and its volumetric fraction is 0.3 for snow and 0.8 for deserts, as shown
in Figure 3.16. The emissivity of snow decreases as the frequency increases due
to the scattering of snow particles. The characteristics of wetland emissivity are
similar to those over oceans in that the emissivity increases and the polarization
decreases as the frequency increases. However, the emissivity spectra of other land
surfaces do not exhibit a large variability in most of the frequency range. Thus,
the uncertainty in simulating land emissivity is the largest over snow-covered and
desert regions where the dense medium scattering may still be problematic.

3.10
Summary and Conclusions

The discrete-ordinate method is a fundamental tool for solving the atmospheric
radiative transfer problem and derives an analytic form of radiance in mathemat-
ical elegancy. In principle, it is an idea for remote sensing applications since the
Jacobians (radiance gradient) can also be derived accurately with low cost of com-
putational resources. The vector form of solution for the scattering medium that
contains spherical or nonspherical particles is also entirely analytic. Its research
codes have been updated several times in history and linked to more applications
in radiance data assimilation systems and remote sensing applications. However,
knowledge of surface emissivity vector or reflectivity matrix is further required.
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The dependence of surface emission or reflection on azimuthal angle must be in
good harmony with atmospheric particle scattering phase matrix so that the sinu-
soidal and cosine modes of Fourier harmonics in radiances can be fully decoupled,
as discussed in this chapter.

For computing the surface emissivity over oceans, the coefficients in the dou-
ble Debye water dielectric constant or permittivity model are derived with the
laboratory measurements collected from various studies, and the new model can
be applied for a wide range of microwave frequencies from 1.4 to 200 GHz. This
update is critical for use in simulations of surface reflectivity with the Fresnel
formula. The two-scale roughness model is used to compute the surface Stokes
emissivity vector. It is shown that the first two emissivity components at hori-
zontal and vertical polarization states are dependent on the azimuthal angle and
can be uniquely expanded as a series of Fourier cosine harmonics, whereas the
third and fourth components are expanded as a series of sinusoidal harmonics.
This property allows for a solution of the vector radiative transfer when its lower
boundary is specified as the oceanic condition.

A general approach is also developed for simulating the land emissivity over bare
soil, vegetated land, and snow. The inputs to the emissivity model are primarily
based on the available information from the current land data assimilation system.
There are many parameters set as fixed values (e.g., leaf thickness, snow grain size).
More studies are needed for the medium that is more vertically stratified, and, as
a result, more sophisticated radiative transfer schemes are more appropriate.
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4
Microwave Radiance Simulations

4.1
Introduction

Clouds and precipitation affect microwave radiative transfer process through
scattering and emission. A simple rain cloud model was used by Wilheit et al.
[41] to simulate the relationship between brightness temperature and rain rate.
The model has two free parameters: the surface rain rate and height of the
freezing level. Other rain cloud properties, such as temperature, humidity, and
precipitation rate profiles, were “hard-wired” in terms of these parameters, and
other properties, such as column-integrated cloud liquid water, were assumed
constant. The rain intensity was assumed constant between the freezing level and
the surface, and the drop size distribution assumed was that used by Marshall
and Palmer [129]. Later, Spencer [130] found out that frozen precipitation aloft in
rain clouds causes scattering at a frequency of 37GHz or higher. This scattering
signature is much less directly related to the surface rain rate. At higher rain
rates, large precipitation size in liquid phase can also result in scattering; thus,
a relationship between brightness temperature and rain rate over the ocean is
nonlinear, and thus, there is an ambiguity in deriving the surface rain rate from
a single-channel microwave measurement, especially under heavy precipitation
conditions. Mugnai and Smith [131] and Smith and Mugnai [132] further
studied the multifrequency responses to precipitation using a 2D numerical
cumulus model output as input to a plane-parallel radiative transfer model. Their
results demonstrated that the cloud water content can alter and obscure the
relationship between microwave brightness temperature and rain rate, and its
influence is dependent on the frequency. To utilize multichannel information
for precipitation retrieval, we need sophisticated models of the relationship
between rain cloud properties and observed radiances: for example, if the low
frequencies of a microwave sensor can be viewed as primarily responding to
the rain water path below the freezing level and high frequencies as responding
primarily to scattering by frozen precipitation aloft. Some of the better known
current methods for utilizing multichannel information in physical retrievals are
based on the output of three-dimensional numerical cloud models using bulk
microphysical parameterization schemes to generate ensembles of realistic rain

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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cloud structures that are then fed to a suitable radiative transfer model. Surface
rain rates and hydrometeor profiles are retrieved by identifying the cloud model
structure(s) whose computed brightness temperatures most closely match the
multichannel observations [133–135]. Olson et al. [135] also addressed some of
the complexities and potential uncertainties associated with modeling microwave
radiative transfer in rain clouds.
While the simulations of microwave imager radiance under various clouds

and precipitation conditions and the relationships between the brightness
temperature and hydrometeor contents are well characterized, the impacts of
clouds and precipitation on sounder channel radiances are less understood. In
this chapter, we develop a method to characterize the uncertainty of simulated
radiances with respect to observations. First, various modules used in Com-
munity Radiative Transfer Model (CRTM) are introduced in Section 4.2. The
algorithm for the calculation of antenna brightness temperature is presented in
Section 4.3. In Sections 4.4–4.6, simulations of the radiances of an ATMS and
characterization of the errors of forward models are carried out using the global
forecast model outputs, the level 2 data from Global Positioning Satellite (GPS)
Radio Occultation (RO) data and Tropical Rainfall Measuring Mission’s (TRMM)
Microwave Imager (TMI) collocated with the Advanced Microwave Sounding
Technology (ATMS) measurements as the input to CRTM. Advanced radiative
transfer simulation is described in Section 4.7. In Section 4.8, the bias between
ATMS simulations and observations is presented.

4.2
Fast Radiative Transfer Simulations

In data assimilation systems or satellite retrieval algorithms, simulations of satel-
lite radiances and/or brightness temperatures need to be performed at a high
speed and with a high accuracy. The concept of CRTM was conceived when the
Joint Center for Satellite Data Assimilation (JCSDA) was established in 2002. The
CRTM is a software library for computing the satellite instrument radiances and
their gradients with respect to various atmospheric and surface state variables
required in the data assimilation systems. The CRTM is based on a design frame-
work that emphasizes modularity and code reuse (see Figure 4.1). From its initial
conception, the CRTM library was designed to be both platform independent and
assimilation system independent for ease of implementation for all of the JCSDA
partners.TheCRTMhas progressed into a system for use primarily at infrared and
microwave frequencies, with development opportunities at visible wavelengths.
The gaseous absorption module in CRTM is developed for each individual

instrument. As discussed in Chapter 2, the gas absorption coefficient profiles
in the module are directly predicted using atmospheric state variables or their
integrated products. In addition, the oxygen absorption at microwave frequencies
associated with Zeeman splitting is parameterized in terms of the atmospheric
temperature, geomagnetic field strength, and angle between the geomagnetic
field vector and the electromagnetic wave propagation direction. The Zeeman



4.2 Fast Radiative Transfer Simulations 93

CRTM initialization

Surface
emissivity/reflectivity

model(s)

2-Scale MW, IR ocean
Snow//Ice, Land, BRDF

LUT, Mie, T-Matrix,
GO, DDA

ADA, SOI, Delta-4 stream,
DOTLRT

Thermal, Beam,
Polarimetric

LUT, Mie, T-Matrix,
GO, DDA

SARTA, RTTOVS,
OPTRAN, OSS, LBL

Aerosol
absorption/scattering

model

RT solution Source functions

Cloud
absorption/scattering

model

Gaseous
absorption

model

Forward CRTM

Public interfaces

Community Radiative Transfer Model
(CRTM)

Jacobian CRTM CRTM clearance

Figure 4.1 The CRTM for fast and accurate calculations of satellite radiances and Jacobians
at the top of atmospheres. (Chen et al. 2008 [158]. Reproduced with permission of Wiley.)

splitting absorption model, Special Sensor Microwave Imager/Sounder (SSMIS)
on board the Defense Meteorology Satellite Program (DMSP) F-16 satellite
probes the atmospheric temperature from the surface to 100 km. SSMIS channels
19–22 are significantly affected by Zeeman splitting, which is dependent on the
Earth’s magnetic field. Thus, in satellite data assimilation or retrieval systems,
SSMIS brightness temperatures and their Jacobians (or gradient with respect to
temperature) must be computed with a fast radiative transfer scheme that takes
into account the Zeeman splitting effect. In CRTM, an averaged transmittance
within the channel frequency passbands is parameterized and predicted with
the atmospheric temperature, geomagnetic field strength, and angle between
the geomagnetic field vector and the electromagnetic wave propagation direc-
tion [136]. As discussed in Chapter 2, the coefficients of the predictors are
trained with a line-by-line radiative transfer model that accurately computes the
monochromatic transmittances at fine frequency steps within each passband.
Parameterization of gas absorption near 14 μm for the Stratospheric Sounding
Unit (SSU) on the early NOAA satellites takes into account CO2 cell pressure
leakage. The absorption models of historical satellite instruments such as the
29-year-old SSU satellite data records are required for numerical weather model
reanalysis and climate studies.The SSUmeasures temperatures in the middle and
upper stratosphere. However, the SSU is a complicated infrared sensor because
of its additional spectral response to a CO2 cell pressure. The CO2 cell pressure
leaking during the mission life complicates the use of the data. An algorithm is
developed to parameterize the gas absorption coefficients at each optical level as
a function of the cell pressure. The fast SSU algorithm achieves accuracy better
than 0.1K in comparison to a detailed line-by-line calculation. A good agreement
is obtained between the SSUmeasurements and simulations using the microwave
limb sounder (MLS)-derived temperatures.



94 4 Microwave Radiance Simulations

Cloud and precipitation scattering and absorption are computed for liquid-
phase cloud (liquid water and rain clouds) and solid-phase cloud (ice, snow,
graupel, and hail clouds). Spherical scatters are used for liquid clouds in the
infrared andmicrowave ranges.The size distribution for these clouds is described
by the modified Gamma distribution. Various effective radii of the size distri-
bution for a fixed effective variance are chosen for these clouds. For any given
effective radius, the layer water content is used to determine the total number
of cloud particles and to scale the optical quantities for the normalized size
distribution. A lookup table contains the extinction coefficients, single-scattering
albedo, asymmetry factor, delta truncation factors for removing the forward
peaks, and expansion coefficients from the Lorentz–Mie calculations. For ice
clouds, nonsphericity of ice crystals is accounted for in the development of
the lookup tables for the extinction coefficients, single-scattering albedo, and
asymmetry factors. A database of nonspherical ice particles based on the discrete
dipole approximation (DDA) is also included in CRTM [33].
Cloud and aerosol optical properties at visible and infrared wavelengths also

constitute a fast lookup table. All the particles are assumed to be spherical and
distributed with a bi-mode lognormal function. The scattering and absorption
coefficients, asymmetry factor, and the Legendre expansion coefficients for
scattering-phase matrices are precalculated using the Lorentz–Mie theory and
stored in a lookup table. The expansion coefficients can be used to produce
the phase function according to the number of streams and the number of the
components in the Stokes vector in the radiative transfer solver. Dust particles
can also be spheroids with an aspect ratio of 1.7. To compute the single-scattering
properties of these particles, we applied a combination of the T-matrix method
[137] and an improved geometric optics method that includes the edge effects
[138]. It is found that the optical properties of nonspherical (spheroidal) particles
are quite different from their spherical counterparts in the backscattering
directions. For ice clouds, the habit (shape) distribution of ice crystals is assumed
to be consistent with that used in the MODIS operational (Collection 5 version)
cloud retrieval [139]; that is, ice crystals are assumed to be 100% droxtals for
size bins less than 60 μm; 35% plates, 15% bullet rosettes, 50% solid columns, for
size bins between 60 and 1000 μm; 45% solid columns, 45% hollow columns, 10%
aggregates for size bins between 1000 and 2000 μm; and 3% aggregates and 97%
bullet rosettes for size bins larger than 2000 μm. In total, 1117 size distributions
from in situ measurements are used to derive the bulk optical properties of ice
clouds on the basis of the single-scattering properties of individual ice crystals
[140]. Furthermore, we plan to improve the aerosol and cloud lookup tables,
considering more realistic particle morphologies such as surface roughness for
ice crystals and triaxial ellipsoidal model for dust particles.
A fast emissivity model (FASTEM) [58, 66] is implemented into CRTM to

compute the ocean emissivity at microwave wavelengths. This model had been
updated several times in the past. Its sixth release (FASTEM-6) primarily corrects
the larger biases for microwave imager radiance simulations. An empirical cor-
rection was made to adjust the coefficients in FASTEM-5 [141]. The microwave
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land emissivity model is generally designed for a two-layer scattering and
emission medium with the top layer representing scatters related to vegetation
and snow and the bottom layer for soil. The soil reflectivities at both polarization
states are first calculated from the Fresnel formula and weighted with roughness
and cross-polarization factors [106]. The emissivity from vegetation or snow
is then further derived from the two-stream radiative transfer solutions. The
recent improvements in land surface roughness model allows for much better
simulations of microwave imager radiances within a wide frequency range [142].
The infrared sea surface emissivity model utilizes a lookup table (LUT) of sea

surface emissivities derived from the emissivity model for a wind-roughened sea
surface [143, 144]. The sea surface is modeled by numerous small facets whose
slopes approximately follow the normal and isotropic distribution [56]. Each of
the facets is treated as a specular surface, and emission at the observation angle
is computed with the geometrical optics, taking into account wave shadowing
effects and surface reflection of surface emission taken. The LUT variables are
zenith angle, frequency, and wind speed. Currently, linear interpolation is per-
formed between LUT values.The infrared surface emissivities for snow-free land,
snow, and sea ice are provided as a database [145]. The database contains sur-
face reflectance measurements as a function of wavelength in both visible and IR
spectral regions for the 24 surface types. The emissivity is calculated as 1 minus
the reflectance under the assumption of a Lambertian surface in the IR spectral
region.
At present, the advanced doubling–adding (ADA) method is used as CRTM

radiative transfer solver [44]. The new study strictly derived an analytical
expression replacing the most complicated thermal source terms in the
doubling–adding method. The solution within any layer is given by the optical
properties and the Planck source function of the layer, and the radiance at the
top of the atmosphere is integrated from the surface and vertical layers using
a stack procedure. However, only the scalar ADA is implemented into CRTM.
A general polarimetric doubling and adding [3] is considered for future CRTM
implementation. In addition, VDISORT [47] is an alternative scheme for full
vector radiative transfer simulations.
Snow and sea ice emissivities are also developed for microwave instruments

such asMicrowave Humidity Sounder (MHS) onNOAA-18 andMETOP-A satel-
lites and SSMIS on DMSP F-16 and F-17 satellites, which are new sensors, and
the snow and sea emissivity calculations are updated with new coefficients in the
empirical part [146].The empirical snow and sea icemicrowave emissivity models
are derived primarily using satellite brightness temperatures at window channels
and static databases from the early measurements at the discrete microwave fre-
quencies and a fixed viewing angle. This data set is utilized to produce a variety
of empirical emissivity spectra according to the snow/sea ice types, which are
applicable for a frequency range from 5 to 200GHz. The emissivity at a zenith
angle of 50∘ is calculated from one of empirical emissivity spectra specified using
a snow/sea ice type identification algorithm associated with window channels of
satellite brightness temperatures, while angular dependence of emissivity relies on
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the microwave land emissivity model developed previously by Weng et al. [106].
This so-derived emissivity results in much improved accuracy in simulating the
brightness temperatures at the top of the atmosphere and improves the uses of
satellite microwave data in numerical weather prediction models.

4.3
Calculations of Antenna Brightness Temperatures

For a cross-track scanning microwave radiometer such as ATMS, the quasi-
vertical and quasi-horizontal antenna brightness temperatures (TDR), TQv

a and
TQh

a , are derived as follows [5]:

TQv
a = 𝜂vv

meTQv
b + 𝜂hv

meTQh
b + 𝜂vv

se TQv
b,se + 𝜂hv

se TQh
b,se + (𝜂vv

sc + 𝜂hv
sc )Tc,RJ + SQv

a ,

(4.1a)

TQh
a = 𝜂hh

meTQh
b + 𝜂vh

meTQv
b + 𝜂hh

se TQh
b,se + 𝜂vh

se TQv
b,se + (𝜂hh

sc + 𝜂vh
sc )Tc,RJ + SQh

a ,

(4.1b)

where 𝜂vv
me and 𝜂hh

me are the co-polarized and cross-polarized antenna main beam
efficiencies; 𝜂vh

me and 𝜂hv
me , are the cross-polarized ones; 𝜂vv

se , 𝜂hh
se , 𝜂hv

se , and 𝜂vh
se are the

co-polarized and cross-polarized antenna side-lobe beamefficiencies; and 𝜂vv
sc , 𝜂hh

sc ,
𝜂hv

sc , and 𝜂vh
sc are the co-polarized antenna and cross-polarized side-lobe cold-space

beam efficiencies. It is reminded that for ATMS, each frequency is only measured
at a single polarization state, that is, either horizontal or vertical (see Table 4.1).
Therefore, there are only one co-polarization efficiency and one cross-polarization
antenna beam efficiency for the main beam, side lobes, and cold-space side lobes.
Values of the antenna beam efficiencies for the Earth-scene main beam, Earth-
scene side lobes, and cold-space side lobes are also required (see [5]).
The last term in Eq. (4.1a) or (4.1b) (SQv

a or SQh
a ) come from the radiation con-

tributed by the antenna near-field side lobe or other effects such as the emit-
ted radiation from ATMS flat reflector, and its net effect was estimated from the
ATMS pitch maneuver data [147]. The quasi-vertical and quasi-horizontal sen-
sor brightness temperatures (SDR), TQv

b and TQh
b , are related to the pure vertically

andhorizontally polarized brightness temperatures,Tv
b andTh

b , throughEq. (1.18).
Neglecting the third component of the Stokes vector results in

TQh
b = Tv

bsin
2𝜃 + Th

b cos
2𝜃, (4.2a)

TQv
b = Tv

bcos
2𝜃 + Th

b sin
2𝜃, (4.2b)

where 𝜃 is the scan angle.
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Table 4.1 Requirements and characteristics of ATMS and their weighting function peak for
a US standard atmospheric condition.

Channel Center
frequency
(GHz)

Total
bandpass
(GHz)

Polarization Accuracy
(K)

NE𝚫T
(K)

EFOV
cross-
track(∘)

EFOV
along-
track(∘)

Peak of
weight
function
(hPa)

1 23.8 0.27 Qv 1.00 0.50 6.3 5.2 Window
2 31.4 0.18 Qv 1.00 0.60 6.3 5.2 Window
3 50.3 0.18 Qh 0.75 0.70 3.3 2.2 Window
4 51.76 0.40 Qh 0.75 0.50 3.3 2.2 950
5 52.8 0.40 Qh 0.75 0.50 3.3 2.2 850
6 53.596± 0.115 0.17 Qh 0.75 0.50 3.3 2.2 700
7 54.4 0.40 Qh 0.75 0.50 3.3 2.2 400
8 54.94 0.40 Qh 0.75 0.50 3.3 2.2 250
9 55.5 0.33 Qh 0.75 0.50 3.3 2.2 200
10 57.29 0.33 Qh 0.75 0.75 3.3 2.2 100
11 57.29± 0.217 0.078 Qh 0.75 1.20 3.3 2.2 50
12 57.29± 0.322±

0.048
0.036 Qh 0.75 1.20 3.3 2.2 25

13 57.29± 0.322±
0.022

0.016 Qh 0.75 1.50 3.3 2.2 10

14 57.29± 0.322±
0.010

0.008 Qh 0.75 2.40 3.3 2.2 5

15 57.29± 0.322±
0.0045

0.003 Qh 0.75 3.60 3.3 2.2 2

16 88.2 3 Qv 1.00 0.30 2.2 2.2 Window
17 165.5 3 Qh 1.00 0.60 2.2 1.1 Window
18 183.31± 7.0 2 Qh 1.00 0.80 2.2 1.1 800
19 183.31± 4.5 2 Qh 1.00 0.80 2.2 1.1 700
20 183.31± 3.0 1 Qh 1.00 0.80 2.2 1.1 500
21 183.31± 1.8 1 Qh 1.00 0.80 2.2 1.1 400
22 183.31± 1.0 0.5 Qh 1.00 0.90 2.2 1.1 300

Figure 4.2 shows the brightness temperature with pure horizontal and vertical
polarization states as well as quasi-horizontal and vertical polarization. The
polarization differences at ATMS channels 1–2 are the largest and decrease with
increasing frequency. The difference between the pure vertically and horizontally
polarized brightness temperatures, that is, Tv

b − Th
b , is zero at the nadir and

increases with the scan angle. The difference between the quasi-vertical and
quasi-horizontal sensor brightness temperatures (SDR), that is, TQv

b − TQh
b , are

zero at both nadir and 45∘ scan angle. The polarization differences of the bright-
ness temperatures between quasi-vertical and quasi-horizontal polarization
states are smaller than those at the pure polarization states.
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Figure 4.2 The brightness temperature with pure (dashed curve) and quasi- (solid curve) horizontal polarization (circle) and vertical (star) polarization
states using the US standard atmospheric profile with sea surface wind speed being 5 m/s and sea surface temperature being 290 K. (Weng et al. 2013
[5]. Reproduced with permission of Wiley.)
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4.4
Simulations of ATMS Sounding Channels Using Global Forecast Model Outputs

An important application of ATMS data is for improving the numerical weather
prediction (NWP) forecast skill through data assimilation. All data assimilation
methods employ either a maximum likelihood estimate or a minimum variance
estimate under the assumption that both observations and models are unbiased.
Any bias related to the instrument and forward modeling must be quantified and
removed in satellite data assimilation. Since the weighted differences between
observations and model simulations, O − B, are minimized in satellite data
assimilation, the observation bias (𝜇o) and model bias (𝜇b) can be lumped
together as follows:

(O − 𝜇o) − (B − 𝜇b) = O − B − (𝜇o + 𝜇b). (4.3)

Therefore, O − B statistics can be used to estimate the sum of observation and
model biases.
An assessment of the ATMS data biases requires a forward radiative transfer

model for calculating the microwave radiation at 22 ATMS frequencies at the top
of the atmosphere for any given atmospheric state (e.g., temperature and water
vapor profiles) and the Earth’s surface properties (e.g., surface temperature, sur-
face emissivity, and surface wind speed). In this study, the CRTM and National
Center for Environmental Prediction (NCEP) global forecast system (GFS) 6 h
forecasts are used for bias characterization. The NCEP GFS 6 h forecast fields
have a horizontal resolution of 0.3125∘ × 0.3125∘ and 64 vertical levels. The high-
est vertical level is around 0.01 hPa.
Brightness temperatures simulated by CRTM using NWP analysis/forecast

fields can be used to evaluate the performance of ATMS, especially for the
sounding channels under clear-sky conditions over oceans. Here, ATMS obser-
vations under clear-sky conditions during December 20–27, 2011, are used for
characterizing the performance of the ATMS temperature sounding channels
5–15. To detect a cloud-affected ATMS field of view (FOV) measurement, an
algorithm similar to that developed by Weng et al. [47] for AMSU-A is used for
retrieving atmospheric cloud liquid water path (LWP) fromATMS channels 1 and
2measurements. As demonstrated, microwave measurements at lower frequency
window channels can be directly related to LWP and water vapor path (WVP)
through an emission-based radiative transfer model [47, 106, 119, 148–151]. The
effects of surface parameters such as emissivity and temperature on the measure-
ments at two ATMS channels are taken into account from GFS forecast fields.
Figure 4.3 presents the global distributions of brightness temperatures at

channels 1 and 2 from ATMS and AMSU-A (Figure 4.3a–d) as well as the LWP
retrievals derived from these two channels for the ascending nodes on December
20, 2011.The sensitivity of these two window channels to the Earth’s surface (e.g.,
surface emissivity and surface skin temperature) yields a sharp contrast between
land and ocean. Due to much large surface emission, the brightness temperatures
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Figure 4.3 Brightness temperatures at (a), (b) channel 1 and (c), (d) channel 2, as well as (e),
(f ) LWP retrievals over ocean from ATMS (left panels) and AMSU-A (right panels) from the
ascending nodes on December 20, 2011. (Weng et al. 2012 [147]. Reproduced with permis-
sion of American Geophysical Union.)

over land are higher than those than over ocean. The relative contribution of the
atmospheric absorption to the total radiance over ocean is thus higher than that
over land, leading to a stronger scan dependence of the brightness temperatures
over ocean than over land. The global LWP distribution deduced from ATMS
(Figure 4.3e) compares favorably with the AMSU-A-derived LWP (Figure 4.3f ).
The ATMS provides a nearly continuous distribution of global LWP while
AMSU-A has large orbital gaps in low latitudes. Spatial features of large LWP
(Figure 4.3e,f ) can be seen in the global distribution of brightness temperature
of channel 2 (Figure 4.3c,d), which is the primary channel for the LWP retrieval.
Channel 1 is the most sensitive to atmospheric WVP, which is usually high over
cloudy areas.
An LWP of 0.05 kg/m2 is used as a threshold for detecting cloud-affected ATMS

sounding channels. An ATMS sounding channel corresponding to the LWP less
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than this threshold is treated as clear FOV [150]. During the study period, there
are more than 250 data counts within any 1∘ × 1∘ grid boxes over the globe.
Differences betweenATMSdata and its predecessor AMSU-A could be inferred

from the differences between ATMS raw and remapped data. The differences in
the observation resolutions betweenATMS raw and remapped data are first exam-
ined (Figure 4.4). The ATMS FOV diameter at the nadir is 31.6, while that of the
remapped data FOV is 48.6 km.The cross-track FOV size increases much rapidly
than that in the along-track direction.The differences in the along-track FOV size
between the raw and remapped ATMS TDR remain nearly constant with respect
to the scan angle, while the size differences in the cross-track FOVs between the
raw and remapped data decrease with the increase in the scan angle. The cross-
track and along-track FOV sizes of ATMS at the largest scan angle (e.g., ±52.77∘)
are 136.7 and 60 km, respectively, while those of the remapped one at the largest
scan angle (e.g., ±48.33∘) are 155.2 and 85.6 km, respectively.
ATMS remapped data is a weighted average of the ATMS raw data. Differences

in the observational resolutions between ATMS raw and remapped data change
the dynamic ranges and standard deviations of the differences between observa-
tions and model simulations (O–B). The scatter plots of the temperature depen-
dence of O–B for ATMS channel 6 is illustrated in Figure 4.5. It is shown that the
originalATMShas a larger spread compared to the remapped data.This is partially
due to higher channel noise and partially due to the fact that small-scale features
of the real atmosphere, which vary rapidly in time, are not captured by the GFS
fields, and the averaging improves the agreement between satellite data andmodel
simulations. It is noticed that the O–B data points within the same FOV num-
ber appear to increase with respect to the observed brightness temperature value



102 4 Microwave Radiance Simulations

6
4
2
0

–2

O
–B

 (
K

)

–4
–6
–8

235 240

(a) (b)

245 250

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

161718192021222324252627282930

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

505254565860626466667072747678808284868890929496

O (K)
255 260 265

6
4
2
0

–2

O
–B

 (
K

)

–4
–6
–8

235 240

(c)

245 250
O (K)

255 260 265

6
4
2
0

–2

O
–B

 (
K

)

–4
–6
–8

235 240 245 250
B (K)

ATMS FOV

Remapped FOV

ATMS FOV

Remapped FOV

255 260 265

(d)
6
4
2
0

–2
O

–B
 (

K
)

–4
–6
–8

235 240 245 250
B (K)

255 260 265

Figure 4.5 (a) and (b) Scatter plots of the temperature dependence of O–B for ATMS chan-
nel 6 with respect to the observed (left panels) and modeled (right panels) brightness tem-
peratures at ATMS FOVs 1–48 (upper color bar) and ATMS remapped FOVs 1–15 (lower
color bar) for all the data within 10S–10N on December 20, 2011. (c), (d) Same as (a), (b)
except for ATMS FOVs 49–96 and remapped FOVs 16–30. (Weng et al. 2012 [147]. Repro-
duced with permission of American Geophysical Union.)

(Figure 4.5a,c) but not with respect to the simulated brightness temperature, espe-
cially near the nadir.This is due to a larger variability in the observations compared
to that in model simulations, especially near the nadir where the peakWF altitude
is the lowest for ATMS channel 6. The observed temperature range for the same
FOV (Figure 4.5a,c) is larger than that for themodel simulation (Figure 4.5b,d). It is
also noticed that the observations for the ending half of the scan line (FOVs 49–96,
Figure 4.5c,d) aremore negatively biased compared to those for the beginning half
of the scan line (FOVs 1–48, Figure 4.5a,b).
Figure 4.6 shows the biases and standard deviations of brightness temperatures

for ATMS temperature sounding channels and the remapped data within [60S,
60N] under clear-sky conditions over ocean during December 20–27, 2011. It is
reminded that the biases as shown in Figure 4.6a are not in the absolute sense but
are relative to the GFSmodel fields. Negative biases are found for ATMS channels
5–9 located within the troposphere and low stratosphere, and positive biases are
found for ATMS channels 10–14 in the stratosphere and higher. Channel 15 peak-
ing at the last level has a negative bias. Impacts of remap on data biases are rather
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small (e.g., ≤ 0.1 K) except for channels 5 and 15 (∼0.2–0.3K). The remap does
not change the sign of the biases. The standard deviations of the remapped data
are smaller than those of the ATMS raw data as expected, with a larger reduction
of standard deviations for higher level channels.
The latitudinal dependence of bias and standard deviation is shown in Figure 4.7

and reveals that the biases of ATMS data in the middle and low troposphere (e.g.,
channels 5–7) are slightly higher at the high latitudes than at the middle and low
latitudes, and the reverse is true for the remaining upper-level sounding chan-
nels except for channel 15. The standard deviation is larger for channels 14–15
at all latitudes and channel 5 at the middle latitudes with high terrain areas. The
standard deviation is reduced at all latitudes after remapping.
A unique feature of a cross-track scanning radiometer instrument is the

so-called limb effect, which arises from the variation of the optical path length
with the scan angle. This limb effect is modeled through CRTM. Therefore, an
a priori limb adjustment is not required for ATMS data assimilation. However,
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the atmospheric inhomogeneity increases with the scan angle, which may not
be explicitly simulated in radiative transfer models. An obstruction to satellite
observations by the spacecraft radiation may occur at large scan angles, which
is usually difficult to be taken into account in the forward model and calibration
process. Therefore, scan-angle-dependent biases of both observed brightness
temperatures and those simulated from radiative transfer models are anticipated
for cross-track scanning radiometer instruments. In many applications such as
NWP radiance assimilation, angular-dependent biases between the observed
brightness temperatures and those simulated from radiative transfer models
must be quantified and be removed from the data [8, 47, 152].
Figure 4.8 presents scan-dependent biases of ATMS channels 5–15 estimated

separately for ascending and descending nodes. If the atmospheric inhomogeneity
is the only source of biases, a symmetric bias distribution is expected. However,
an asymmetric scan bias pattern is noticed for all ATMS channels examined.
Channels 5–12 are more negatively biased near the ends of the ATMS scan line,
and channels 13–15 are more negatively biased at the beginning of the ATMS
scan line toward a cold temperature. A temperature dependence of scan biases is
observed, evidenced by the different bias magnitudes for ascending and descend-
ing nodes of the same channel (e.g., channels 10–14) and the different bias
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Figure 4.8 Scan-dependent biases of ATMS channels 5–15 at ascending (solid) and
descending nodes (dashed) within [60S, 60N]. (Weng et al. 2012 [147]. Reproduced with per-
mission of American Geophysical Union.)

magnitudes for different channels. This probably arises from the contributions
from its near- (e.g., spacecraft) and far-field (e.g., Earth view) side lobes. Further
studies are needed for finding and confirming the root causes of the asymmetric
bias pattern found for ATMS antenna temperatures using pitch maneuver data.

4.5
Simulations of ATMS Sounding Channels Using GPSRO Data

4.5.1
Collocation of GPS RO and ATMS Data

TheGPS RO is a limb-sounding technique that makes use of radio signals emitted
from the GPS satellites for sounding Earth’s atmosphere. Under the assumption
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of the spherical symmetry of the atmospheric refractive index, vertical profiles
of bending angle and refractivity can be derived from the raw RO measurements
of the excess Doppler shift of the radio signals transmitted by GPS satellites. The
profiles of refractivity are then used to generate profiles of the temperature and
water vapor retrieval using a one-dimensional variational data assimilation (1D-
Var) algorithm [153, 154].
The COSMIC satellite system consists of a constellation of six low-Earth-orbit

(LEO) microsatellites and was launched on April 15, 2006. Each LEO follows a
circular orbit 512 km above the Earth surface, with an inclination angle of 72∘.
Currently, there are about 1000 soundings daily. The vertical resolution is 0.1 km
from the surface to 39.9 km, and each GPS RO measurement quantifies an inte-
grated atmospheric refraction effect over a few hundred kilometers along a ray
path centered at the tangent point. The global mean differences between COS-
MIC and high-quality reanalysis within the height range between 8 and 30 km are
estimated to be∼0.65K [155].The precision of COSMICGPS RO soundings, esti-
mated by comparison of closely collocated COSMIC soundings, is approximately
0.05K in the upper troposphere and lower stratosphere [156]. In the water-vapor-
abundant region in the lower troposphere or the ionosphere regions, GPS profiles
become less accurate.
The COSMIC RO soundings are collocated with ATMS measurements for

assessing the accuracy of ATMS measurements. The collocation criteria are set
by a time difference of not more than 3 h and a horizontal spatial separation
of less than 50 km at the altitude of peak weight function. If there are more
than one ATMS pixel measurement satisfying these collocation criteria, the one
that is closest to the related COSMIC sounding is chosen and the others are
discarded. Because surface state variables and parameters are not provided by
COSMIC ROs, only upper-level temperature sounding channels are simulated
using COSMIC GPS RO data. The global biases and the angular dependence of
biases are estimated.
As the GPS radio signal passes through the atmosphere, its ray path is bent over

due to variations of the atmospheric refraction. Therefore, the geolocation of the
perigee point (also called tangent point) of a single RO profile varies with altitude.
On the other hand, a satellite measurement at a specific frequency represents a
weighted average of radiation emitted fromdifferent layers of the atmosphere.The
magnitude of such a weighting is determined by a channel-dependent weighting
function (WF). The measured radiation is the most sensitive to the atmospheric
temperature at the altitude where the WF reaches a maximum. The level of the
peak WF also varies with the scan angle (see Figure 4.9 for ATMS channel 8). For
each channel, the altitude of the peak WF is the lowest at the nadir and increases
with the scan angle. Considering the geolocation change of the perigee point of a
GPS RO profile with altitude, the geolocation of a GPS RO at the altitude where
the WF for each collocated ATMS FOV of a particular sounding channel reaches
the maximum is first considered, and then, the spatial distance between the GPS
RO and ATMS channel must be less than 50 km. The altitude of the maximum
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WF used in the collocation study is precalculated by the use of CRTM with the
US standard atmospheric profile (see [8]).
Since ATMS brightness temperatures at lower peaking sounding channels are

affected by clouds, thus a cloud detection algorithm [147] is applied to separate
the data under clear-sky conditions over ocean from the total ATMS measure-
ments. Figure 4.10 presents the spatial distribution of the ATMS observations that
are collocated with the COSMIC data under clear-sky conditions over ocean and
between 60S and 60N from December 10, 2011 to June 30, 2012. Most collocated
data are located in the subtropical regions in the Northern Hemisphere and mid-
dle latitudes in the Southern Hemisphere.

4.5.2
ATMS Bias with Respect to GPS RO Data

Simulations of the ATMS brightness temperatures using GPS RO profiles as
input to CRTM are denoted BGPS hereafter. The altitudes of the maximum WF
of ATMS channels 14–15 are above 40 km, which is the top of COSMIC RO
data. Therefore, biases of ATMS channels 14–15 are not included in this study.
Figure 4.11 presents scatter plots of brightness temperature from ATMS obser-
vations (O) and GPS RO simulations (BGPS) for all collocated data points under
clear-sky conditions over ocean between 60S and 60N fromDecember 10, 2011 to
June 30, 2012.
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In general, CRTM simulations with GPS RO input profiles correlate quite
well with ATMS observations. A noticeable temperature dependence of the
differences (O–BGPS) between observations and simulations is seen in channel 6.
Global biases estimated by the mean differences (O–BGPS) are positive for
channels 6 and 10–13 with values smaller than 0.5K and negative for channels 5
and 7–9 with values greater than −0.7K (Figure 4.12). The standard deviation is
smallest for channel 8 (∼0.25K) and increases with the channel number to about
2.0 K at channel 13 (see Figure 4.12). The standard deviations for channels 5 and
6 are 0.4 and 0.6K, respectively.
For a cross-track scanning radiometer such as ATMS, the variation of the

optical path length with the scan angle is modeled through CRTM. However,
the variation of atmospheric inhomogeneity with the scan angle has not been
explicitly simulated in CRTM. In addition, effects of the spacecraft radiation
on brightness temperatures can also vary with the scan angle. Therefore, a
scan-angle-dependent bias is expected for the cross-track scanning radiometer.
In many applications such as weather predictions through radiance data assimi-
lation, angular-dependent biases must be properly quantified so that they could
be removed before data applications.
Figure 4.13 presents scan-dependent biases and standard deviations of ATMS

channels 5–13 estimated by using GPS RO data. Variations of GPS RO profile
numbers collocated with ATMS data are also shown in Figure 4.13. As expected,
the total number of collocated GPS ROs increases with scan angle since the size
of FOV increases with scan angle. An asymmetric scan bias pattern is noticed for
ATMS channels 5–10. ATMS temperature sounding channels aremore negatively
biased near the end of ATMS scan lines. The standard deviations of ATMS chan-
nels 6, 12, and 13 are much larger than those of the remaining channels. The root
causes of the asymmetric bias pattern came from the contributions from the near-
field (e.g., spacecraft) side lobes, which were confirmed by using the ATMS pitch
maneuver data [9].
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Figure 4.11 Scatter plots of brightness temperature from ATMS observations and CRTM sim-
ulations at six channels with the inputs from collocated COSMIC data under clear-sky over
ocean between 60S and 60N from December 10, 2011 to June 30, 2012. (Zou et al. 2014 [8].
Reproduced with permission of IEEE.)

4.6
Uses of TRMM-Derived Hydrometeor Data in Radiative Transfer Simulations

4.6.1
Collocation of ATMS and TRMM Data

Tropical Rainfall Measurement Mission (TRMM) generated the vertical hydrom-
eteor profile products from its microwave imager and radar. The TRMM
Microwave Imager (TMI) is a multichannel dual-polarized passive microwave
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2014 [8]. Reproduced with permission of IEEE.)
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Figure 4.13 Angular-dependence of brightness temperature biases (solid curve) and stan-
dard deviations (shaded area) estimated by the differences between ATMS observations and
GPS RO simulations (O–BGPS) for collocated data under-clear sky over ocean between 60S
and 60N. The GPS RO profiles numbers collocated with ATMS data are also shown (dashed
curve). (Zou et al. 2014 [8]. Reproduced with permission of IEEE.)
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radiometer with nine channels at four frequencies: 10.65, 19.35, 21.3, and
85.5GHz. The TRMM 2A12 products include surface rainfall and vertical
hydrometeor profiles generated from Goddard Profiling algorithm, GPROF2010.
Atmospheric hydrometeor types include cloud liquid water, rain water, cloud ice,
snow, and graupel. The TMI hydrometeor profiles are distributed in 28 levels
from the surface to 18 km in height. In forward calculations, temperature and
humidity profiles are generated from the European Center for Medium range
Weather Forecasting (ECMWF) 6-h forecast fields. In addition, atmosphere
pressure, water vapor, ozone, surface temperature, wind speed and direction, and
surface type are also provided in the ECMWF forecast field. Whereas ECMWF
forecast fields have 91 vertical levels, ECMWF output data are interpolated into
the TRMM 28 levels.
Brightness temperatures at each ATMS channel are calculated using CRTM

with the TRMM hydrometeor profiles as inputs. In addition, the brightness
temperatures at both horizontal and vertical polarization states are computed
for each set of TRMM profiles, and within each ATMS FOV, they are combined
to produce the quasi-polarization brightness temperatures. The quasi-vertical
and -horizontal brightness temperatures are then averaged with the antenna gain
function to obtain the antenna brightness temperature (TDR). Figure 4.14 is a
schematic diagram of ATMS channels 1 and 2 FOV coverage (elliptical shape)
and TMI measurements (small dots). Essentially, ATMS FOV can be described in
an elliptical equation as

(x − x0)2

a2 +
(y − y0)2

b2 = 1, (4.4)

where (x–x0) and (y–y0) are the distances between the ATMS and TMI centers
along the ATMS FOV major (cross-track) and minor (along-track) axes. The
lengths of the semimajor and -minor axes are represented by a and b. If a value
on the left side of Eq. (4.4) is less than 1, then TMI pixel is within ATMS FOV.
The spatial considering as well as the temporal considering will be included. The
interval between ATMS and TRMM observations less than 15min is acceptable
for brightness temperature calculations.

32.0°S

32.5°S

33.0°S

33.5°S

34.0°S
12°E 13°E 14°E 15°E 16°E 17°E

ATMS FOV

TMI pixel

Figure 4.14 A spatial coverage of ATMS field of view (FOV) at channels 1 and 2 and TMI
pixels within and near the ATMS FOV.
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4.6.2
ATMS Biases With Respect to TRMM-Derived Simulations

Direct and accurate information on atmospheric hydrometeors can increase the
accuracy of radiance simulation over cloudy regions. For the simulation of cloudy
radiance, the inputs to CRTM consist of three major parts: atmospheric state
(including surface parameters, vertical profiles of temperature/water vapor, the
pressure level, and also absorption gases), vertical profiles of hydrometeor, and
cloud optical properties. CRTM can deal with six cloud types: liquid cloud, ice
cloud, rain, snow, graupel, and hail. In order to speed up the cloud radiance sim-
ulations, cloud optical properties are computed offline and stored as LUTs. For
microwave, both liquid and ice cloud particles are assumed to be spherical, and
following the modified gamma size distribution, the scattering properties are cal-
culated based on theMie theory. Table 4.2 lists the cloud size parameters used for
calculating the size distributions of spherical particles in CRTM.
In this study, the DDA scattering database is tested when ice cloud particles are

assumed to be nonspherical. This database contains single-scattering properties
at frequencies ranging from 15 to 340GHz, with temperatures from 0 to 40 ∘C,
or particle size from 50 to 12 500mm, and for 11 particle shapes. In the current
experiment, the shapes of 6-bullet rosettes, dendrite snowflakes, thick plate and
sector snowflakes are selected for ice cloud, snow, hail, and graupel, respectively.
In deriving the single-scattering properties, all ice particles are assumed to be ran-
domly oriented in space [33].
In this study, vertical hydrometeor profiles from the TRMM 2A12 product are

used as inputs to CRTM to simulate the ATMS antenna brightness temperatures
at 22 channels. Our case studies focus on simulations of Typhoon Neoguri on July
10, 2014, in the Northwestern Pacific ocean. ATMS and TRMM satellites observe
the storm as shown in Figure 4.15.
Since TRMM 2A12 product only includes five hydrometeor contents, the par-

ticle size and the bulk volume density are set for each type of hydrometeor as
summarized in Table 4.2. In CRTM, these values are required for searching the
scattering parameters fromMie or DDA lookup tables. In future, when GPM data
are available, the particle size for each hydrometeor will be retrieved through its
dual polarization radar, and thus, it is deemed to improve the simulation accuracy.
Figure 4.16a–d shows the difference between ATMS observations and simula-

tions at four selected ATMS channels 2, 3 16, and 17 as a function of ice water path
(IWP), which is integrated from TRMM 2A12 products. Mie scattering lookup
table is used in the forward simulations. As the IWP is less than 0.1 kg/m2, ATMS

Table 4.2 Cloud hydrometeor size and bulk volume density used in CRTM simulations.

Hydrometer type Cloud water Cloud ice Rain water Snow Graupel

Effective radius (μm) 10 50 500 500 500
Volume density (kg/m3) 1000 920 1000 100 400
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Figure 4.15 Typhoon Neoguri observed by ATMS and TMI over Pacific region at 0351 to
0401 UTC 10 July 2014. Hydrometeor profiles including cloud water, rain water, ice water,
graupel, and snow derived from TMI 2A12 products are vertically integrated.
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Figure 4.16 A difference between observation (O) and simulation (S) versus ice water path
at four ATMS channels (a) 31.4 GHz, (b) 50.3 GHz, (c) 88.2 GHz, and (d) 165.5 GHz. The mean
differences of brightness temperature (O–S) are indicated by black solid lines in each panel.
Simulations are made through uses of Mie scattering table. The color bar indicates the dis-
tance of the data point to the storm center in km.
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Figure 4.17 The same as Figure 4.16, except for using DDA scattering table.

observations have smaller biases. As the IWP is greater than 0.5 kg/m2, the bias
becomes larger, while the biases at higher frequencies become negative.Thus, the
current Mie table results in warmer brightness temperature simulations in storm
regions. Compared to the simulations with theMie table, the brightness tempera-
tures simulated from the DDA scattering table reduces the overall bias, especially
at 165.5GHz, as shown in Figure 4.17a–d. However, the O–S from DDA shows a
similar scattering as IWP is greater than 1 kg/m2, compared toMie computations.
Overall, O–S at 31.4GHz does not show any specific dependence on IWP.
Figure 4.18a–d further illustrates O–S at four ATMS upper-air temperature

sounding channels. In general, for IWP less than 0.7 kg/m2, an inclusion of cloud
and precipitation scattering in the simulation results in smaller biases for most
of these temperature channels. Overall, the impact of clouds and precipitation on
the ATMS temperature sounding channel diminishes as the WF becomes higher.
For example, O–S at channel 7 (54.4GHz) does not vary with IWP.
Figure 4.19a–d further illustrates O–S at four ATMS upper-air water-vapor

sounding channels. Except for ATMS channel 18 at 183.31± 7GHz,O–S does not
significantly vary with IWP. Overall, the impact of clouds and precipitation on the
ATMS water-vapor sounding channel also diminishes as theWF becomes higher.
For example, O–S at channel 21 (183.31± 1.8GHz) does not vary with IWP.
Figure 4.20 shows the dependence of O–S bias on IWP for the ATMS chan-

nels included in Figures 4.17–4.19 when the simulations are performed through
the use of Mie and DDA scattering tables. For lower frequency window channels
1–2, themain cause of O–S is the water-phase cloud, and the scattering has some
impact on the lower air temperature channels but not on the higher temperature
channels. For water vapor channels, the difference betweenMie and DDA is more
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Figure 4.18 A difference between observation (O) and simulation (S) versus ice water path
at four ATMS channels at (a) 51.76 GHz, (b) 52.8 GHz, (c) 53.6 GHz, and (d) 54.4 GHz. Simula-
tions are made through uses of DDA scattering table.
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Figure 4.19 A difference between observation (O) and simulation (S) versus total water
path at four ATMS channels (a) 183.31± 7 GHz, (b) 183.31± 4.5 GHz, (c) 183.31± 3 GHz, and
(d) 183.31± 1.8 GHz. Simulations are made through uses of DDA scattering table.
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ice water path at ATMS channels (a) 31.4 GHz, (b) 50.3 GHz, (c) 51.76 GHz, (d) 52.8 GHz, (e)
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Figure 4.20 (Continued)

obvious in channel 17 than in other channels. This is because the water vapor
absorption in 183GHz channels can compensate some of the scattering effect.
Spatial distribution of observed and simulated brightness temperatures for

ATMS channels 2, 5, 17, and 22 are shown in Figure 4.21. Consistent with the
results shown, for high-frequency channels, simulation using DDA can correct
the insufficient scattering in Mie simulation and match with the observation
more closely. Moreover, for channels 2, 5, and 22, the differences between Mie
and DDA simulations are not obvious at channel 17.

4.7
Advanced Radiative Transfer Simulations

Microwave instruments measuring the full Stokes parameters can also be
simulated through some advanced radiative transfer models. Here, we use the
mesoscale model version 5 to generate three-dimensional fields of microphysical
parameters such as for Hurricane Bonnie in 1998 [157]. The hydrometeors and
wind fields are for 48 h simulation with the finest grid size of 4 km. The surface
wind speed is between 30 and 60m/s. Figures 4.22 and 4.23 show that the third
and fourth Stokes components at 10.7 and 37GHz reveal the hurricane vortex
very well. Microwave polarimetric measurements correlate well with the wind
direction and speed in hurricane environments. Note that the magnitudes of
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Figure 4.21 Typhoon Neoguri observed by ATMS (O, upper panels), and simulated using
Mie (SMie, middle panels) and DDA (SDDA, lower panels) at ATMS channels (a) 31.4 GHz,
(b) 52.8 GHz, (c) 165.5 GHz, and (d) 183.31± 1 GHz.

the Stokes components increase as frequency and wind speed increase. The
amplitude at 37GHz is much larger than that at 10.7GHz.
The spatial heterogeneous properties also modify the Stokes components of

microwavemeasurements. Here, we appliedMonte Carlo radiative transfermodel
[50] to simulate the Stokes signals fromHurricane Bonnie after landfall. As shown
in Figure 4.22, the inhomogeneous clouds may indeed produce comparable signa-
tures at 37GHz to the third and fourth Stokes components because in our simula-
tions, surface emissivity is constant for the first two Stokes components and zero
for the third and fourth components. Notice that the third component responds
well to the precipitation structures as indicated in the lower right panel.
Microwave observations from WindSat are consistent with the theoretical

interpretations and display the third Stokes component near the cloud edge. In
addition, the fourth component is strong and has not been fully understood (see
Figure 4.23). Notice that over Antarctic and central Greenland, the WindSat
fourth component can be as large as 10–20K [44] at its 10GHz channel. Of
course, vicarious calibration of the WindSat polarimetric channels can reduce
to its third and fourth components by 0.5 K over global regions [44]. Physical
interpretation of the surface polarimetric signals requires more theoretical
understanding (Figures 4.24 and 4.25).
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Figure 4.22 Simulated Stokes components at 10.7 GHz using MM5 model hydrometeors and
atmospheric parameters of Hurricane Bonnie, August 26, 1998. Wind speed with a full bar
represents 5 m/s. (Weng 2002 [157]. Reproduced with permission of Taylor and Francis.)
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Figure 4.23 Simulated Stokes components at 37 GHz using MM5 model hydrometeors and
atmospheric parameters of Hurricane Bonnie, August 26, 1998. Wind speed with a full bar
represents 5 m/s. (Weng 2002 [157]. Reproduced with permission of Taylor and Francis.)
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Figure 4.24 The first three Stokes components simulated under hurricane Bonnie and rain
water path when it landfalls. The third Stokes component is purely generated from the 3D
cloud effects and precipitation inhomogeneity.

4.8
Summary and Conclusions

Understanding the uncertainty in the forward model in simulation of microwave
radiance is important for many applications. The uncertainty in simulations can
come from the inputs to forward models as well as the accuracy of the radia-
tive transfer scheme. In simulating the microwave sounding channels, we use the
atmospheric and surface parameters from NWP models, GPS RO sounding pro-
files, and TRMM hydrometeor profiles as inputs to CRTM.The current radiative
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Figure 4.25 WindSat fourth Stokes component at 10 GHz channel. Note that clouds, ice
edge, sea ice, clearly delineates water/land, and water/ice boundaries.

transfer solver used in CRTM is a plane-parallel doubling and adding scheme
and does not handle polarization. In a strong precipitation condition, the plane-
parallel approachmay not be able to resolve the radiative effects of clouds in three
dimensions. Finally, the instrument calibration may also contribute to the bias
between observations and simulation.
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5
Calibration of Microwave Sounding Instruments

5.1
Introduction

Over the past two decades, microwave observations improved the numerical
weather predictions and contributed to the long-term climate monitoring. In
the weather arena, the Advanced Microwave Sounding Unit (AMSU) on board
the series of National Oceanic and Atmospheric Administration (NOAA) Polar
Orbiting Environmental Satellites has been a major factor in significantly increas-
ing the accuracy of global medium-range forecasts to the point where the current
5-day forecast accuracies are about the same as the 3-day forecast accuracies were
10 years ago. For climate studies, the nine microwave sounding units (MSUs)
on board the early NOAA satellites have provided a unique 26-year-old time
series of the global tropospheric temperature as well as its trend [159–162].
Differences in instrument calibration are accounted for by intercalibrating the
MSU instruments using overlapping orbital data (see, e.g., [162, 163]). In order to
extend the temperature and trend analysis to longer time periods, it is necessary
to continue the MSU time series using AMSU data. On October 28, 2011, the
Suomi National Polar-Orbiting Partnership (SNPP) satellite was successfully
launched into an orbit which has an inclination angle of 98.7∘ to the Equator
and is 824 km above the Earth. On board the SNPP satellite, the Advanced
Technology Microwave Sounder (ATMS) is a cross-track scanning instrument
and has 22 channels at frequencies ranging from 23 to 183GHz for profiling the
atmospheric temperature and moisture under clear and cloudy conditions. The
ATMS instrument is well calibrated and is now in its third-year mission for both
weather and climate applications [147].
In this chapter, we present various aspects of operational calibration of ATMS

instruments. In Section 5.2, a general concept on microwave calibration is
introduced. In Section 5.3, ATMS instrument description is presented. In Section
5.4, ATMS calibration algorithm is presented. In Sections 5.5 and 5.6, impacts
of ATMS antenna emission on two-point calibration and retrieval of reflector
emissivity using ATMS pitch-over data are given, respectively. In Section 5.7,
we investigate the uses of Allan deviation for ATMS noise characterization
and compare the result with the traditional standard deviation approach.

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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In Section 5.8, conversion from antenna to sensor brightness temperature is
described. A summary and conclusions are given in Section 5.9.

5.2
Calibration Concept

Calibration refers to the process of quantitatively determining a sensor’s response
to known, controlled signal inputs. Prelaunch laboratory calibration establishes a
sensor’s characteristic response function.Theprelaunch calibration algorithm can
then be carried into the postlaunch era by requiring only straightforward coeffi-
cient updates after a satellite is in orbit. However, the need for new postlaunch
calibration algorithms becomes evident when unforeseen behavior or an unchar-
acteristic sensor response is identified through detailed scientific analysis of the
on-orbit sensor data. Postlaunch effects leading to abnormal measurements may
come from obstructions to the Earth’s view and calibration signals, space environ-
ment, variation in instrument spectral response, receiver coherent noises, slow
deterioration of the electronic system, or even mechanical malfunction following
the intense rigors of launch. In such situations, the new postlaunch calibration
algorithms must make use of the calibration data from onboard sources, ground
truth data, and intersensor comparisons so that the measurements become con-
sistent over time.
During the prelaunch phase, microwave calibration consists of evaluating the

sensor in a thermal vacuum (T/V) chamber using three calibration targets: (i) a
cold calibration target that is cooled with liquid nitrogen to about 80K, (ii) a vari-
able temperature target from about 80 to 330K placed in the scene field of view
(FOV), and (iii) the sensor’s on-orbit warm calibration load.The radiometer’s two-
point calibration is determined from the warm and cold targets within the T/V
chamber. It is tested at a variety of “scene temperatures” that are simulated by
changing the temperature of the variable temperature target.
A combination of model-based and empirical corrections to the two-point

instrument calibration is necessary in order to take into account the uncer-
tainties from the antenna spillover energy emanating from the spacecraft,
cross-polarization, and antenna side lobes beyond the Earth’s horizon, and so
on. It is difficult to claim that the on-orbit calibration achieves better than 1K
residual calibration accuracy. Corrections based on prelaunch laboratory data
have been found to be in error when applied to the on-orbit sensor calibration.
Accordingly, new corrections based on on-orbit measurements can be applied to
improve sensor calibration.

5.3
ATMS Instrument Description

ATMS scan angle ranges within 52.725∘ from the nadir direction. It has 22
channels, with the first 16 channels primarily for temperature soundings from
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Table 5.1 Requirements and characteristics of the ATMS 22 channels, including the peak
values of the channel weighting-functions of a US standard atmospheric condition.

Channel Center
frequency
(GHz)

Total
bandpass
(GHz)

Polari-
zation

Accuracy
(K)

NE𝚫T
(K)

EFOV
cross-
track
(∘)

EFOV
along-
track
(∘)

Peak of
weight
function
(hPa)

1 23.8 0.27 Qv 1.00 0.50 6.3 5.2 Window
2 31.4 0.18 Qv 1.00 0.60 6.3 5.2 Window
3 50.3 0.18 Qh 0.75 0.70 3.3 2.2 Window
4 51.76 0.40 Qh 0.75 0.50 3.3 2.2 950
5 52.8 0.40 Qh 0.75 0.50 3.3 2.2 850
6 53.596± 0.115 0.17 Qh 0.75 0.50 3,3 2.2 700
7 54.4 0.40 Qh 0.75 0.50 3.3 2.2 400
8 54.94 0.40 Qh 0.75 0.50 3,3 2.2 250
9 55.5 0.33 Qh 0.75 0.50 3.3 2.2 200
10 57.29 0.33 Qh 0.75 0.75 3.3 2.2 100
11 57.29± 0.217 0.078 Qh 0.75 1.20 3.3 2.2 50
12 57.29± 0.322±

0.048
0.036 Qh 0.75 1.20 3.3 2.2 25

13 57.29± 0.322±
0.022

0.016 Qh 0.75 1.50 3.3 2.2 10

14 57.29± 0.322±
0.010

0.008 Qh 0.75 2.40 3.3 2.2 5

15 57.29± 0.322±
0.0045

0.003 Qh 0.75 3.60 3,3 2.2 2

16 88.2 3 Qv 1.00 0.30 2.2 2.2 Window
17 165.5 3 Qh 1.00 0.60 2.2 1.1 Window
18 183.31± 7.0 2 Qh 1.00 0.80 2.2 1.1 800
19 183.31± 4.5 2 Qh 1.00 0.80 2.2 1.1 700
20 183.31± 3.0 1 Qh 1.00 0.80 2.2 1.1 500
21 183.31± 1.8 1 Qh 1.00 0.80 2.2 1.1 400
22 183.31± 1.0 0.5 Qh 1.00 0.90 2.2 1.1 300

the surface to about 1 hPa (∼45 km) and the remaining 6 channels for humidity
soundings in the troposphere from the surface to about 200 hPa (∼15 km). The
ATMS channels 3–16 have a beam width of 2.2∘, which is smaller than that of
the corresponding AMSU-A channels 3–16. However, the beam width of the
ATMS channels 1–2 is 5.2∘, which is much larger than that of the corresponding
AMSU-A channels 1–2. The ATMS channels 17–22 have a beam width of 1.1∘,
which is the same as that of the AMSU-B and MHS channels (see Table 5.1).
Figure 5.1 shows a schematic diagram of the assembling position of ATMS on

the SNPP platform.The antenna reflectors rotate counterclockwise relative to the
spacecraft direction of motion (i.e., the x-direction) to complete three revolutions
in 8 s. The scan mechanism is synchronized to the spacecraft clock with a “sync”
pulse every 8 s (i.e., at every third revolution). As shown in Figure 5.2, each ATMS
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Figure 5.1 Schematic diagram of ATMS instrument layout. (Weng et al. 2013 [5]. Repro-
duced with permission of American Geophysical Union.)
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Alternate cold cal. position
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Start of scan

4 Hot cal. samples

Figure 5.2 ATMS scan cycle during which 96 Earth views, and 4 cold and 4 warm calibra-
tions are made. The angle at each cold calibration position is defined with respect to the
y-axis of antisun direction. (Weng et al. 2013 [5]. Reproduced with permission of American
Geophysical Union.)
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scan cycle is divided into three segments. In the first segment, the Earth is viewed
at 96 different scan angles, which are distributed symmetrically around the nadir
direction. Ninety-six such ATMS FOV samples are taken “on the fly,” with each
FOV sample representing themidpoint of a brief sampling interval of about 18ms.
With a scan rate of 61.6∘ per second, the angular sampling interval is 1.11∘.There-
fore, the angular range between the first and last (i.e., 96th) sample centroids is
105.45∘ (i.e., 52.725∘ relative to the nadir). As soon as one scan line is completed,
the antenna accelerates and moves to a position that points to an unobstructed
view of space (i.e., between the Earth’s limb and the spacecraft horizon). Then,
it resumes the same slow scan speed as it scans across the Earth scenes. In this
period, four consecutive cold calibration measurements are performed. Next, the
antenna accelerates again to the zenith direction where the blackbody target is
located and performs four consecutive warm calibration measurements with the
same slow scan speed. Finally, it accelerates back to the starting position and then
slows down to the normal scan speed for continuing the next scan cycle. More
details of the ATMS scan mechanism can be found in [5, 164].
ATMS has two sets of receiving antenna and reflector. One serves for channels

1–15 with frequencies below 60GHz, and the other serves for channels 16–22
with frequencies above 60GHz. Each receiving antenna is paired with a plane
reflector mounted on a scan axis at a 45∘ tilt angle so that the incoming radiation
is reflected from a direction perpendicular to the scan axis to a direction along the
scan axis (i.e., a 90∘ reflection) (see Figure 5.3). With the scan axis oriented in the
along-track direction, this results in a cross-track scan pattern.The reflected radi-
ation is focused by a stationary parabolic reflector onto a dichroic plate and then
either reflected on to or passed through a feedhorn. Each aperture/reflector serves
two frequency bands for a total of four bands. With a 45∘ incident and reflecting

Fixed reflector

Scan drive
mechanism

Rotating reflector

Polarizing grid

Ch 1–2

Ch 17–22

Ch 16

Ch 3–15

Feedhorn

Figure 5.3 Schematic diagram of ATMS antenna subsystem. The top portion shows the
antenna subsystem for K/Ka and V bands, whereas the lower portion is for W/G bands.
(Weng et al. 2013 [5]. Reproduced with permission of American Geophysical Union.)
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angle for two reflectors, the polarization state from the scene remains the same,
although each individual reflector switches the polarization states.

5.4
ATMS Radiometric Calibration

A radiometric calibration at radiance was derived as follows [165]:

R = Rw + w(Rw − Rc)

(
Cs − Cw

Cw − Cc

)
+ Q, (5.1)

Q = 𝜇(Rw − Rc)2
(Cs − Cw)(Cs − Cc)

(Cw − Cc)2
, (5.2)

G =
Cw − Cc
Rw − Rc

, (5.3)

Cx =
Ns∑

i=−Ns
WiCx, x = w or c. (5.4)

Here, all variables in the equation should be channel specific. For simplicity,
the channel subscript is omitted in all the following deviations. In the history of
NOAA operational calibration, Eq. (5.1) is expressed in a quadratic form

R = a0 + a1Cs + a2C2
s . (5.5)

So, the calibration coefficients, a0, a1, and a2 can be expressed as follows:

a0 = Rw −
Cw
G

+ 𝜇
Cw Cc

G2 , (5.6)

a1 =
1
G

− 𝜇
Cw + Cc

G2 , (5.7)

a2 =
𝜇

G2 . (5.8)

In the given radiometric calibration equations, the Earth-scene counts are typ-
ically converted to the radiance. In general, the radiance describes the amount
of electromagnetic energy radiated from an Earth scene in a specified direction, a
solid angle, and a frequency interval. FromEq. (1.5), the radiance can be computed
by its kinetic temperature (T) and wave number (𝜐) as follows:

R𝜐(T) = 2hc2𝜐3

exp
(

hc𝜐
kT

)
− 1

≡ C1𝜐
3

exp
(C2𝜐

T

)
− 1

, (5.9)
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where k is the Boltzmann constant, h is the Planck constant, c is the
speed of light (in m), C1 = 2hc2 = 1.1909 × 10−8 W∕m2∕sr∕cm cm3, and
C2 =

hc
k
= 1.438786 cm∕K. Equation (5.9) is known as the Planck radiation law.

Assuming C2v
T

≪ 1, the exponential function in Planck function can be
expressed in Taylor series:

exp
(C2𝜐

T

)
= 1 +

C2𝜐

T
+ 1

2

(C2𝜐

T

)2

+ · · · + 1
n!

(C2𝜐

T

)n

+ · · · . (5.10)

Substituting the first-order approximation of the given Taylor expansion into Eq.
(5.9) results in the following linear relationship between the blackbody tempera-
ture (T) and radiance (R𝜈):

RRJ
𝜐 (T) =

C1𝜐
2

C2
T . (5.11)

Using the Rayleigh–Jeans (RJ) approximation to Planck’s function from Eq. (1.13),
C2𝜐 is generally less than 10K for a range of 23.8 GHz ≤ f ≤ 190.3 GHz.Thus, the
temperature in Eq. (5.10)must be above 100K. Substituting Eq. (5.11) into Eq. (5.1)
results in

Tb = Tw + w(Tw − Tc)

(
Cs − Cw

Cw − Cc

)
+ Qb, (5.12)

Qb = 𝜇(Tw − Tc)2
(Cs − Cw)(Cs − Cc)

(Cw − Cc)2
. (5.13)

The accuracy of the radiance calculated from RJ approximation varies with fre-
quency and temperature. The radiometric calibration is processed through the
use of Eq. (5.12). As a result, the two-point calibration is derived in the form of
brightness temperature as

Tb = Tw + G−1
b (Cs − Cw) + Qb = Tb,l + Qb, (5.14)

where the linear and nonlinear terms are expressed as

Tb,l = Tw + G−1
b (Cs − Cw), (5.15)

Qb = 𝜇G−2
b (Cs − Cw)(Cs − Cc) = 𝜇(Tw − Tc)2x(1 − x), (5.16)

Gb =
Cw − Cc
Tw − Tc

, (5.17)

respectively, where

x =
Tb,l − Tc

Tw − Tc
.
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Themaximumnonlinearity value can be derived by performing the derivativewith
respect to x, which is f ′(x) = 1 − 2x. Using Taylor’s expansion for f (x) = x(1 − x)
at x0 = 0.5, which is equal to Cs = 0.5(Cw + Cc), then

Qb = 1
4
𝜇(Tw − Tc)2[1 − 4(x − 0.5)2] = Qmax[1 − 4(x − 0.5)2]. (5.18)

If the first two terms in Eq. (5.18) are maintained as the nonlinearity terms,

Qmax = 1
4
𝜇(Tw − Tc)2, (5.19)

The ATMS antenna/receiver system measures the radiation from two calibra-
tion sources during every scan cycle. The first source is the well-known cosmic
background radiation.This source (often called cold space) is viewed immediately
after the Earth has been scanned. The second source is an internal blackbody
calibration target (often called warm load), whose physical temperature is the
same as the instrument internal ambient temperature.This warm source is viewed
immediately after the space calibration view. Every scan cycle (8/3 s) contains the
aforementioned three consecutive views: Earth scene, cold space, and warm cali-
bration measurements. Such a thorough radiometer calibration procedure allows
the most impacts from ATMS system gain variations to be automatically elimi-
nated since the two calibrationmeasurements used for computing the gain involve
the same optical and electrical signal paths as those of the Earth scene mea-
surements. Thus, ATMS has an advantage over those calibration systems using
switched internal calibration sources, which yields calibration measurements
having slightly different signal paths compared to the Earth scene measurements.
The two calibration measurements are used to accurately determine the so-

called radiometer transfer function, which converts the measured digitized out-
put (i.e., counts) to a radiometric brightness temperature [5]. The current ATMS
antenna brightness temperature at each channel is obtained through the following
equation:

Tb,ch = Tw
b,ch +

Cs
ch − Cw

ch

Cw
ch − Cc

ch

(Tw
b,ch − Tc

b,ch) + Qmax
ch [1 − 4(x − 0.5)2]

≡ Tw
b,ch + (Gch)−1(Cs

ch − Cw
ch) + Qch, (5.20)

where Qch is the channel-based (subscript, ch) quadratic correction term, Gch(i) is
the averaged gain function at the ith scan line, defined via

Cw
ch(i) =

i+Ns∑
k=i−Ns

4∑
j=1

Wk−iCw
ch(k, j), (5.21a)

Cc
ch(i) =

i+Ns∑
k=i−Ns

4∑
j=1

Wk−iCc
ch(k, j), (5.21b)
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Gch(i) =
Cw

ch(i) − Cc
ch(i)

Tw
b,ch(i) − Tc

b,ch

. (5.21c)

The other terms used in Eq. (5.20) are as follows: Tw
b,ch, the warm-load brightness

temperature; Cs
ch, the scene count; Cw

ch(i, j), the warm-load count at the ith scan
line of the jth sample; Cc

ch(i, j), the cold-space count at the ith scan line of the jth
sample; Wi, the weighting coefficient obtained by using either a triangular or a
boxcar function for averaging the warm and cold counts of (2Ns + 1) consecutive
scan lines; and Gch(i), the calibration gain at the ith scan line.The overbar on each
variable represents an average over a number of scan lines.
Calculations of the averagedwarm-load and cold-space counts,Cw

ch(i) andCc
ch(i),

depend on the weighting coefficients as well as the number of scan lines involved
in the averaging (i.e., 2Ns + 1). For example, with the application of a triangular
function, the weighting coefficients of all ATMS channels for the kth scan line are
averaged as follows:

Wk = 1
Ns + 1

(
1 − |k|

Ns + 1

)
(5.22)

The nonlinearity parameter Qch in Eq. (5.20) is estimated using the prelaunch
thermal vacuum (TVAC) data sets that were measured at different scene tem-
peratures. For the SNPP ATMS TVAC test, the scene temperature is typically
measured between 93 and 330K. However, for ATMS on-orbit calibration, the
cold calibration temperature is approximately 3K. Thus, the nonlinearity value
must be estimated by extrapolating the TVAC data down to 3K. In general, the
nonlinear parameter Qch can be expressed as a quadratic function of the scene
temperature (Tb,ch) as

Qch = b0,ch + b1,chTb,ch + b2,ch(Tb,ch)2, (5.23)

where bi,ch (i = 0, 1, 2; ch = 1, … , 22) are unknown coefficients. These values
can be obtained by applying a least-squares fit to the TVAC data measured within
the temperature range of 93–330K.Then, by applying these coefficients back into
Eq. (5.23), one can compute Qch for all scene temperatures within and beyond the
range of 93–330K. One example of bi,ch can be found in Weng [5]. Figure 5.4
presents an example of the Qch of ATMS channel 1, obtained by applying the
TVACmeasured scene temperatures for cold plate (CP) at 5 ∘C from redundancy
configuration 1 (RC1).The peak nonlinearity is located near 170K, which is about
in the middle between 3 and 330K.The ATMSmaximum nonlinearity, Qmax

ch , can
be derived from the TVAC data for a scene temperature range between 3 and
276K for four redundant configurations [5].
In the current ATMS antenna brightness temperatures (TDR) processing

algorithm, the blackbody brightness temperature, Tw
b,ch, is directly determined

from its physical (or kinetic) temperature measured by the embedded platinum
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Figure 5.4 Nonlinearity of ATMS channel 1, calculated for cold plate (CP) at 5 ∘C for redun-
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curve represents the regression curve. Dashed line represents the peak nonlinearity. (Weng
et al. 2013 [5]. Reproduced with permission of American Geophysical Union.)

resistance thermometers (PRTs). This approach may be problematic if the ATMS
antenna reflector has its own thermal emission. The details are discussed in the
next section. The blackbody and cold-space calibration counts, Cw and Cc, are
averaged over several calibration cycles before being used in Eq. (5.21c) to obtain
the calibrated gain.
The ith channel cold-space brightness temperature, Tc

b,ch (ch = 1, … , 22),
is estimated by adding two correction terms to the cold-space temperature, Tc.
The first correction term, ΔTc,SL

b,i , takes into account the Earth’s radiation into the
antenna side lobes, and the second correction term, ΔTc,RJ

b,ch , corrects the error
introduced by the RJ approximation. Specifically, Tc

b,ch is written as

Tc
b,ch = Tc + ΔTc,SL

b,ch + ΔTc,RJ
b,ch . (5.24)

Details on these two correction terms can be found in Weng et al. [2, 147].
The averaged warm-load temperature for the ith scan is determined from the

multiple PRT temperatures Tw(k, j) (k = i − Ns, … , i + Ns; j = 1, … ,Np).
Depending on the user’s need, a temperature-dependent bias correction from
either ATMS telemetry file (i.e., ΔTshelf

w,ch ) or user-defined values can be applied via
Eq. (5.25).

Tw
ch(i) =

i+Ns∑
k=i−Ns

Np∑
j=1

Wk,jTw(k, j)

i+Ns∑
k=i−Ns

Np∑
j=1

Wk,j

+ ΔTshelf
w,ch , (5.25)
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where Tw(k, j) is the jth PRT temperature for the kth scan, ΔTshelf
w,ch is the energy

contributed by the channel-dependent receiving shelf temperature; and Wi,j is the
weighting coefficient. If a PRT is deemed to be bad by the user, it is then excluded
from the calibration process and the corresponding weighting coefficient is set to
zero in the parameter file.Theoretically, the warm-load temperature also needs to
be adjusted for the error introduced by the RJ approximation, that is,

Tw
b,i = Tw

ch + ΔTw,RJ
b,ch . (5.26)

Since the normally operating warm-load temperature is above 280K, the errors
are typically negligible at lower ATMS frequencies [2].

5.5
Impacts of ATMS Antenna Emission on Two-Point Calibration

As shown in Figure 5.3, ATMShas a plane reflectormounted on a scan axis at a 45∘
tilt angle. It was found that this reflectormay have its own thermal emission.Thus,
the impacts of the reflector emission on calibration need to be investigated further.
In Eqs. (5.1) and (5.12), the radiances or brightness temperatures of calibration tar-
gets are directly used since the calibration targets are assumed to be blackbodies
and unpolarized. While some terms are added to correct the warm-load temper-
ature as shown in Eq. (5.25), there remain additional radiative sources such as
the thermal emission from ATMS reflector. For simplicity, we only consider the
linear term in Eq. (5.12) for demonstrating the effects of antenna emission on the
two-point calibration. For ATMS quasi-vertical and quasi-horizontal polarization
channels, we have the two-point calibration equations as follows:

TQv
b = TQv

b,w + (TQv
b,w − TQv

b,c )
⎛⎜⎜⎝

CQv
s − CQv

w

CQv
w − CQv

c

⎞⎟⎟⎠ , (5.27a)

TQh
b = TQh

b,w + (TQh
b,w − TQh

b,c )
⎛⎜⎜⎝

CQh
s − CQh

w

CQh
w − CQh

c

⎞⎟⎟⎠ , (5.27b)

where TQv
b and TQh

b are the brightness temperatures at quasi-vertical and quasi-
horizontal polarization states, respectively; TQv

b,w and TQh
b,w are the warm-load

brightness temperatures at two-quasi polarization states, respectively; TQv
b,c

and TQh
b,c are the cold-space brightness temperatures at two polarization states,

respectively. In Eq. (5.27), all the counts are also labeled with polarization in
consistence with the calibration target definition.
For an emitting antenna, brightness temperatures in the aforementioned

two-point calibration should be corrected with the emitted energy. Since the
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polarization vector is rotated by 90∘ after reflection, brightness temperatures in
both vertical and horizontal polarizations including the emission from ATMS
plane reflector are derived as

Tv
b,r = (1 − 𝜀h)Tv

b + 𝜀hTr , (5.28a)

Th
b,r = (1 − 𝜀v)Th

b + 𝜀vTr , (5.28b)

where Tr is the plane reflector physical temperature, and 𝛆 = (𝜀v, 𝜀h, 𝜀3, 𝜀4) is
the reflector emissivity vector. For ATMS plane reflector, the incident angle
of the radiation at horizontal and vertical polarization states is 45∘ to the normal,
the reflective waves after the plane reflector have a 90∘ rotation in its Stokes
vector. From Eq. (1.18) neglecting the third Stokes component,

TQv
b,r = Th

b,rcos
2𝜃 + Tv

b,rsin
2𝜃, (5.29a)

TQh
b,r = Th

b,rsin
2𝜃 + Tv

b,rcos
2𝜃, (5.29b)

Substituting Eq. (5.28) into Eq. (5.29) results in

TQv
b,r = TQv

b + 𝜀h(Tr − Tv
b) + [𝜀v(Tr − Th

b ) − 𝜀h(Tr − Tv
b)]sin

2𝜃, (5.30a)

TQh
b,r = TQh

b + 𝜀h(Tr − Tv
b) + [𝜀v(Tr − Th

b ) − 𝜀h(Tr − Tv
b)]cos

2𝜃. (5.30b)

Thus, the total antenna brightness temperatures at quasi-vertical and horizontal
polarization states are contributed by additional terms related to the antenna
emissivity and reflector physical temperatures. Applying Eq. (5.30) to cold-space
and warm-load calibration targets yields

TQv
b,w = Tw + 𝜀h(Tr − Tw) + [𝜀v(Tr − Tw) − 𝜀h(Tr − Tw)]sin2𝜃w, (5.31a)

TQh
b,w = Tw + 𝜀h(Tr − Tw) + [𝜀v(Tr − Tw) − 𝜀h(Tr − Tw)]cos2𝜃w, (5.31b)

and

TQv
b,c = Tc + 𝜀h(Tr − Tc) + [𝜀v(Tr − Tc) − 𝜀h(Tr − Tc)]sin2𝜃c, (5.32a)

TQh
b,c = Tc + 𝜀h(Tr − Tc) + [𝜀v(Tr − Tc) − 𝜀h(Tr − Tc)]cos2𝜃c. (5.32b)

In the ATMS scan cycle, 𝜃c = 83.3∘ and 𝜃w = 195∘. Equations (5.31) and (5.32) can
be used to improve the calibration accuracy if the reflector emissivity is known,
and the corrected warm-load and cold-space temperatures can be used in Eqs.
(5.20) and (5.28).
The effects of the plane reflector emission on simulated brightness temper-

atures at six ATMS channels are simulated using Eq. (5.30). In the past, the
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radiative transfer simulation for ATMS channels did not include the reflector
emission, which is associated with the second and third terms. We define the
total of the second and third terms as the biases. The biases are simulated and
shown in Figure 5.5. When ATMS scans the Earth, the bias of the brightness
temperature for quasi-vertical polarization channels varies with scan position
and is the smallest at the nadir, increases to a maximum at a local zenith angle
of 45∘ off the nadir, and decreases with the angle after 45∘. The most significant
angular-dependent feature is shown at 31.4GHz, where the atmosphere is less
opaque. For the quasi-horizontal polarization, the maximum bias occurs at
the nadir and decreases with the scan angle. Comparing the two O2-sounding
channels at 50.3 and 54.4 GHz, there are less number of scan-angle-related biases
for the upper-air sounding channels.
When ATMS scans the cold space, the bias at the quasi-vertical polarization is

also the smallest at the nadir and increases with the scan angle, and there are no
fluctuations in the trend of increase. This is referred to as a “smile pattern.” For
the quasi-horizontal polarization, the biases are the maximum at the nadir and
decrease with the scan angle. This is a “frown” pattern.

5.6
Retrieval of Reflector Emissivity Using ATMS Pitch-Over Data

Fresnel’s equations simplify at normal incidence so that the reflection coefficients
in both vertical and horizontal polarization are the same. At the Brewster angle,
the reflected beam is completely polarized in the s direction or perpendicular to
the incident plane (in microwave remote sensing, s direction is the same as hor-
izontal polarization direction). However, there is another angle where Fresnel’s
equations also simplify. In general, the perpendicular and parallel reflection ampli-
tudes (Rs and Rp) are

Rs =
n1 cos 𝜃i − n2 cos 𝜃r
n1 cos 𝜃i + n2 cos 𝜃r

Es, (5.33a)

Rp =
n2 cos 𝜃i − n1 cos 𝜃r
n2 cos 𝜃i + n1 cos 𝜃r

Ep, (5.33b)

where n1 and n2 are the refractive indices of media 1 and 2, respectively. Using the
Snell law (n1 sin 𝜃i = n2 sin 𝜃r),

Rs = −
sin(𝜃i − 𝜃r)
sin(𝜃i + 𝜃r)

Es, (5.34a)

Rp =
tan(𝜃i − 𝜃r)
tan(𝜃i + 𝜃r)

Ep. (5.34b)
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Figure 5.5 (a) Brightness temperature biases simulated for an ocean condition with a mid-
latitude atmospheric profile, ocean wind speed of 10 m/s and surface temperature of 285 K.
(b) Brightness temperature biases simulated for cold space view where the microwave radi-
ation is uniform across the scan angle. Notice that the biases at 50.3 and 54.4 GHz are the
same and overlay each other. Reflector temperature is assumed as 283 K and its emissivity
varies from 0.0025 to 0.0065.
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At an incident angle of 𝜃i = 45∘,

Rs =
cos 𝜃r − sin 𝜃r
cos 𝜃r + sin 𝜃r

Es, (5.35a)

Rp =
[cos 𝜃r − sin 𝜃r
cos 𝜃r + sin 𝜃r

]2
Ep. (5.35b)

Let rs = Rs∕Es, and rp = Rp∕Ep. Thus,

rv = r2h. (5.36)

Remarkably, the resulting simplification in Fresnel’s equations (5.36) appears to
have been first noticed by Humphreys-Owen only around 1960. The emissivity
between two polarization states can also be related to each other:

𝜀v = 1 − rv ≡ 2𝜀h − 𝜀2h. (5.37)

When ATMS scans over the cold space, the scene brightness temperatures from
Eq. (5.30) become

TQv
c,r = Tc + 𝜀h(Tr − Tc) + [𝜀v(Tr − Tc) − 𝜀h(Tr − Tc)]sin2𝜃s, (5.38a)

TQh
c,r = Tc + 𝜀h(Tr − Tc) + [𝜀v(Tr − Tc) − 𝜀h(Tr − Tc)]cos2𝜃s. (5.38b)

On February 20, 2012, the Suomi NPP satellite made its pitch-over maneuver.
The spacecraft is pitched completely off the Earth to enable ATMS to acquire full
scans of deep space. During about 18-min pitch-over maneuver, ATMS continu-
ally scans over cold space across its 96 FOVs. These data sets are collected from
homogenous and unpolarized cold space. To reduce the impacts of the Earth’s
contamination in deep space view, only±25 scan lines at themaximumpitch angle
were selected for retrievals of antenna emissivity.
Substituting Eqs. (5.30), (5.31), (5.32), (5.37), (5.38) into Eq. (5.27) results in the

emissivity equation for the horizontal polarization. For the quasi-vertical polar-
ization channels,

𝜀h =
𝛿Qv(Tw − Tr)

𝛿Qv[(Tw − Tr)sin2𝜃w − (Tc − Tr)sin2𝜃c] − (Tc − Tr)(sin2𝜃s − sin2𝜃c)
. (5.39a)

For the quasi-horizontal polarization channels,

𝜀h =
𝛿Qh(Tw − Tr)

𝛿Qh[(Tw − Tr)cos2𝜃w − (Tc − Tr)cos2𝜃c] − (Tc − Tr)(cos2𝜃s − cos2𝜃c)
,

(5.39b)
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Figure 5.6 SNPP ATMS K, V, W, and G band reflector emissivity retrieved from the pitch-
maneuver data on February 20, 2012 from the orbit number 1637 with Tr = 283 and Tc = 3.

where

𝛿Qv =
⎛⎜⎜⎝

CQv
s − CQv

w

CQv
w − CQv

c

⎞⎟⎟⎠ ,

𝛿Qh =
⎛⎜⎜⎝

CQh
s − CQh

w

CQh
w − CQh

c

⎞⎟⎟⎠ .
Figure 5.6 shows the retrieved ATMS emissivity spectrum at the horizontal

polarization. The spectral emissivity is in the range of 0.002–0.007 and increases
with frequency.

5.7
ATMS Noise-Equivalent Difference Temperature (NEDT)

Satellite data quality is mainly characterized by accuracy, precision (i.e., sensitiv-
ity), and stability. From a statistical point of view, the standard deviation can prop-
erly represent the precision of measurements that have a stable mean. However,
for the data having a nonstationary mean, the standard deviation is dependent on
the total sample size [166]. In our earlier studies, it was shown that themean value
of the ATMS calibration measurements (i.e., warm counts) varies along an orbit.
As a result, the standard deviation is, in general, inappropriate for ATMS noise
characterization if the total sample size used in the calculation is not optimized.
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However, currently, the ATMS noise magnitudes at all channels are computed for
a nonoptimal sample size, and thus they are inaccurate and should be corrected
in various applications.
The overlapping Allan deviation was proposed for noise characterization

[17, 166] and was suggested for ATMS noise characterization [5, 167]. It was
indicated that the overlapping Allan deviation is much more stable than the stan-
dard deviation by using the ATMS warm counts. However, the noises estimated
by the overlapping Allan deviation are much smaller than the standard deviation
for all the ATMS channels [5]. The causes of those discrepancies were not well
known. In this research, an optimal averaging window size in the overlapping
Allan deviation is derived through a theoretical analysis.
The overlapping Allan deviation was introduced for assessing the ATMS mea-

surement sensitivity. In that study, for a comparison purpose, the averaging win-
dow size used in the overlapping Allan deviation was set to be the same as that
used in the current ATMS operational calibration system for all the channels.The
noise magnitudes calculated by the two methods, the overlapping Allan deviation
and the standard deviation, showed large discrepancies in all ATMS channels.The
following three major questions arise before a final decision can be made: (i) how
to optimally determine the window size from a trend of convergence, (ii) how to
optimally determine the window size when the convergence trend is not clear, and
(iii) what do the values calculated under an optimal window size actually repre-
sent? Do they really represent the sensitivity or instrument noise? To answer the
given questions, the so-called two-sample (i.e., neighborhood) Allan deviation is
studied here along with the overlapping Allan deviation.
The overlapping Allan deviation is defined as follows:

𝜎2
Allan(M,m) = 1

2m2(M − 2m + 1)

M−2m+1∑
j=1

[j+m−1∑
i=j

(
yi+m − yi

)]2

, (5.40)

where m is the averaging window size. If m is set to 1, the overlapping Allan devi-
ation is simplified as

𝜎2
Allan(M) = 1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)2, (5.41)

where M is the total sample size of a data series {yi}, and Eq. (5.40) constitutes the
two-sample Allan deviation.
For comparison purposes, two data sets are constructed to represent slowly

and rapidly varied noise measurements, respectively. The first data set, {yi, i =
1, … , 1000}, is constructed by adding a Gaussian noise, N(0, 1), to a constant sig-
nal, 10. The second data set is constructed by adding the same Gaussian noise to
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Figure 5.7 Dependence of the overlapping Allan deviation (gray curve) on the window
size for the datasets constructed by the addition of (a) Gaussian noise and constant
signal; (b) Gaussian noise and sinusoidal signal, respectively. The standard deviation of the
added Gaussian noise is denoted by the dark black line and the two-sample Allan devi-
ation is denoted by the gray circle. (Tian et al. 2015 [167]. Reproduced with permission
of IEEE.)

a periodic signal ysignal
i = 𝛼 sin(𝜔x), where 𝛼 represents the amplitude and 𝜔 is the

frequency.The values of the amplitude 𝛼 vary from 10−3 to 103, and the frequency
𝜔 ranges from 100 to 10−4. As shown in Figure 5.7a, for the slowly varied data,
the noise magnitude calculated from the overlapping Allan deviation (gray curve)
monotonically decreases as the averaging window size increases. On the other
hand, the magnitude calculated from the two-sample Allan deviation (gray cir-
cle) is very close to the standard deviation of the Gaussian noise (dark black line).
For the sinusoidal signal with 𝛼 = 10 and 𝜔 = 0.1, the magnitudes of the over-
lapping Allan deviation oscillate around the noise standard deviation, as shown
in Figure 5.7b. However, the two-sample Allan deviation still derives a noise very
close to the true value. Hence, it suggests that the two-sample Allan deviation
is more appropriate for quantifying the measurement precision compared to the
overlapping Allan deviation.
Taking the expectation on both sides of Eq. (5.41) gives

E(𝜎2
Allan(M, 1)) = E

(
1

2 (M − 1)

M−1∑
i=1

[yi+1 − yi]2
)

= 1
2(M − 1)

(M−1∑
i=1

E
(

y2i+1
)
− 2

M−1∑
i=1

E(yi+1yi) +
M−1∑
i=1

E(y2i )

)
.

(5.42)

If the measurements are independent of time, then it yields

M−1∑
i=1

E(yi+1yi) =
M−1∑
i=1

E(yi+1)E(yi). (5.43)
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Substituting Eq. (5.43) into Eq. (5.42) yields

E(𝜎2
Allan(M, 1)) = 1

2(M − 1)

(M−1∑
i=1

E
(

y2i+1
)
− 2

M−1∑
i=1

E(yi+1)E(yi) +
M−1∑
i=1

E(y2i )

)

= 1
2(M − 1)

{M−1∑
i=1

[
Var

(
yi+1

)
+ E2(yi+1)

]

−2
M−1∑
i=1

E
(

yi+1
)

E(yi) +
M−1∑
i=1

[Var(yi) + E2(yi)]

}

= 1
2(M − 1)

{M−1∑
i=1

[
𝜎2 + 𝜇2] − 2

M−1∑
i=1

𝜇2 +
M−1∑
i=1

[𝜎2 + 𝜇2]

}

= 1
2(M − 1)

{2(M − 1)𝜎2}

= 𝜎2. (5.44)

Equation (5.44) theoretically proves that the two-sample Allan variance gives an
unbiased estimate of the noise true variance.
For the second data set (i.e., nonstationary), two methods, the two-sample

Allan deviation and the standard deviation, are compared numerically, and the
relative errors are derived against the true noise. As shown in Figure 5.8a and
5.8b, when the amplitude factor 𝛼 is less than 10, both methods can provide
estimates that are very close to the true noise standard deviation within 10%
of error (see the light-gray shaded areas). This is because in this situation, the
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Figure 5.8 Variation of the relative errors defined via (a) Allan deviation: (𝜎Allan−𝜎noise)
𝜎noise

and

(b) standard deviation: (𝜎Std−𝜎noise)
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with varying the frequency factor, 𝜔 and the amplitude

factor, 𝛼 of the signal defined as f (x) = 𝛼 sin(𝜔x). The added noise follows a Gaussian distri-
bution N(0, 1). (Tian et al. 2015 [167]. Reproduced with permission of IEEE.)
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sinusoidal data series is actually very close to the data set having a stable mean,
and, therefore, the two-sample Allan deviation coincides with the standard
deviation. As the amplitude factor 𝛼 increases, the relative errors increase in both
methods. However, the area with errors less than 10% from the two-sample Allan
deviation is much larger than that from the standard deviation. This is due to the
fact that the standard deviation involves the calculation of the distance between
each sample and the mean of data, while the two-sample Allan deviation only
uses the distance between two consecutive samples. The latter avoids including
the variation from any long period trend as the data size increases.
The SNPP with ATMS onboard was launched on October 28, 2011. ATMS is

a cross-track scanning instrument and has 22 channels at frequencies ranging
from 23 to 183GHz. It measures the atmospheric temperature and moisture
under most weather conditions. Since its on-orbit, the functioning of S-NPP
ATMS is stable, and all specifications are well within the requirements. As
mentioned before, the ATMS channel sensitivity is currently computed through
noise-equivalent differential temperature (NEDT), which is fundamentally
derived from the standard deviation via the following formula [5]:

NEDTch =
⎡⎢⎢⎣

1
4M

M∑
i=1

4∑
j=1

(
Cw

ch

(
i, j
)
− Cw

ch(i)

Gch(i)

)2⎤⎥⎥⎦
1∕2

(Unit∶ in K), (5.45)

where C represents the warm counts per channel and G is the averaged calibra-
tion gain. For comparison purposes, the two-sample Allan deviation is expressed
either as

Adevch =
⎡⎢⎢⎣

1
2 (M − 1)

M−1∑
i=1

(
Cw

ch

(
i + 1, j

)
− Cw

ch(i, j)

Gch(i)

)2⎤⎥⎥⎦
1∕2

, (5.46)

for the use of thewarm counts fromone of its four scan positions (i.e., j = 1, … , 4)
or as the averaged version as

Adevch = 1
4

4∑
j=1

⎡⎢⎢⎣
1

2 (M − 1)

M−1∑
i=1

(
C
(

i + 1, j
)
− C(i, j)

Gch(i)

)2⎤⎥⎥⎦
1∕2

. (5.47)

TheATMS on-orbit data are utilized in this study to further explore the difference
in the NEDT calculations based on the standard deviation and the Allan devia-
tion. Figure 5.9 shows the typical ATMS on-orbit warm counts of four selected
channels, using the entire orbit data obtained on December 15, 2014.These warm
counts are all from the second warm scan position. As shown in Figure 5.9, in
comparison with channels 16 and 22, channels 14 and 15 exhibit smaller orbital
variations in their warm counts; thus, both channels have more stable mean val-
ues. In this case, the noise magnitudes of the two channels estimated by the two-
sample Allan deviation and the standard deviation should be very close. On the
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Figure 5.9 On-orbit warm counts of ATMS channels 14, 15, 16, and 22. The warm counts
of the second scan position from the orbit 16 299, December 15, 2014, are used. (Tian et al.
2015 [167]. Reproduced with permission of IEEE.)

contrary, since channels 16 and 22 exhibit much stronger orbital variations, a
larger discrepancy between the estimated noise magnitudes can be expected.
The dependencies of the two-sample Allan deviation on the total sample size

for the ATMS channels are shown in Figure 5.10. The Allan deviations based on
Eqs. (5.46) and (5.47) are illustrated by different colors. In general, the noise mag-
nitudes are stabilized at M = 300 for most channels. Thus, for ATMS, the total
sample size, M, should be set to at least 300 in the operational calculation.
Figure 5.11 compares NEDTs calculated by the two-sample Allan deviation and

the standard deviation using the first 300 warm counts from the same orbit for
all 22 ATMS channels. As expected, for the channels with stable warm counts
(i.e., channels 1–15), NEDTs calculated from both the methods are very close to
each other. However, it is clear that for the channels with relatively strong orbital
variations (i.e., channels 16–22), the discrepancy between the two methods is
large, since the current operational NEDT overestimates the noise magnitudes
by including the impact of those orbital variations. Thus, the two-sample Allan
deviation is recommended for noise characterization of ATMS and other instru-
ments alike.

5.8
Conversion from Antenna to Sensor Brightness Temperature

For a cross-track scanning microwave radiometer, pure vertical (v) or horizontal
(h) polarization measurements only occur in the nadir direction. At the other
scan angles, the measurements represent a mixed contribution from both
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v and h polarizations. Thus, it is necessary to define the quasi-vertical and
quasi-horizontal TDR, TQv

a and TQh
a , via [9]

TQv
a = 𝜂vv

meTQv
b + 𝜂hv

meTQh
b + 𝜂vv

se TQv
b,se + 𝜂hv

se TQh
b,se + (𝜂vv

sc + 𝜂hv
sc )Tc,RJ + SQv

a ,

(5.48a)

TQh
a = 𝜂hh

meTQh
b + 𝜂vh

meTQv
b + 𝜂hh

se TQh
b,se + 𝜂vh

se TQv
b,se + (𝜂hh

sc + 𝜂vh
sc )Tc,RJ + SQh

a ,

(5.48b)

where (𝜂vv
me, 𝜂hh

me) are the co-polarized antenna main beam efficiencies; (𝜂vh
me, 𝜂hv

me)
are the cross-polarized antennamain beam efficiencies; (𝜂vv

se , 𝜂
hh
se ) and (𝜂vh

se , 𝜂
hv
se ) are

the co-polarized and cross-polarized antenna side-lobe beam efficiencies, respec-
tively; (𝜂vv

sc , 𝜂
hh
sc ) and (𝜂vh

sc , 𝜂
hv
sc ) are the cold-space co-polarized and cross-polarized

side-lobe beam efficiencies. It is worth pointing out that each ATMS frequency
channelmeasures only one polarization, that is, either horizontal or vertical polar-
ization (see Table 5.1). Therefore, in Eq. (5.48), there are, correspondingly, only
one co-polarization antenna beam efficiency and one cross-polarization antenna
beam efficiency in pair for each of the antenna main beam, antenna side lobe, and
cold-space side lobe.
The quasi-vertical and quasi-horizontal sensor brightness temperatures, TQv

b
and TQh

b , are related to the pure vertically and horizontally polarized brightness
temperatures, Tv

b and Th
b , through the following relationships, neglecting the third

Stokes components:

TQv
b = Tv

bcos
2𝜃 + Th

b sin
2𝜃, (5.49a)

TQh
b = Tv

bsin
2𝜃 + Th

b cos
2𝜃, (5.49b)

where 𝜃 is the scan angle. From Eq. (5.49), it can easily be seen that both TQv
b and

TQh
b vary with the scan angle and are the same at the nadir and 45∘ scan angle.
The last terms in Eqs. (5.48a) and (5.48b), SQv

a and SQh
a , are considered as the

radiation contributions from the antenna near-field side lobe or other effects. As
discussed in the previous section, emitted radiation from ATMS flat reflector is
mostly removed in TDR data. Here, we can neglect these two terms for simplicity.
Assuming TQv

b,se ≈ TQv
b and TQh

b,se ≈ TQh
b , Eqs. (5.48a) and (5.48b) can be

rewritten as

TQv
a = (𝜂vv

me + 𝜂vv
se )T

Qv
b + (𝜂hv

me + 𝜂hv
se )T

Qh
b + (𝜂vv

sc + 𝜂hv
sc )Tc,RJ , (5.50a)

TQh
a = (𝜂hh

me + 𝜂hh
se )T

Qh
b + (𝜂vh

me + 𝜂vh
se )T

Qv
b + (𝜂hh

sc + 𝜂vh
sc )Tc,RJ . (5.50b)

For a fixed scan angle and under a given surface condition,TQv
b andTQh

b are related
to each other via the following empirical models:

TQh
b = Ah(𝜃)TQv

b ,

TQv
b = Av(𝜃)TQh

b ,
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where Ah(𝜃) and Av(𝜃) are functions dependent on the scan angle. At scan angles
of 0∘ and 45∘, and for the channels that are not impacted by the surface polar-
ization, Ah(𝜃) = 1 and Av(𝜃) = 1. Thus, Eqs. (5.50a) and (5.50b) can be further
written as

TQv
a = [(𝜂vv

me + 𝜂vv
se ) + Av(𝜂hv

me + 𝜂hv
se )]T

Qv
b + (𝜂vv

sc + 𝜂hv
sc )Tc,RJ , (5.51a)

TQh
a = [(𝜂hh

me + 𝜂hh
se ) + Ah(𝜂vh

me + 𝜂vh
se )]T

Qh
b + (𝜂hh

sc + 𝜂vh
sc )Tc,RJ . (5.51b)

Tables 5.2 and 5.3 list all the coefficients needed for the aforementioned
conversion between antenna temperatures (TDR) and brightness temperatures
(SDR). Note that ATMS channels 1–3 and 16 have 1% to 4% polarization spillover
radiation. Thus, a correction must be made to account for the contribution of
polarization spillover effect between TDR and SDR conversions. Moreover, for
ATMSW- and G-bands (channels 16–22), the beam efficiencies listed in the table
remain highly uncertain. The ATMS vendor, NGES, has provided the W- and G-
band beam efficiencies; however, the results have not been verified by others. Fur-
ther investigation on this issue is required. Thus, for ATMSW- and G-bands, the

Table 5.2 ATMS antenna main beam efficiencies analyzed from co- and
cross-polarization antenna gain distribution functions.

Channel 𝜼
pp
me (%) 𝜼

pq
me (%)

B1 B48 B96 B01 B48 B96

1 95.5 95.3 95.9 0.84 0.73 0.81
2 97.0 96.4 96.8 0.64 0.65 0.64
3 96.2 95.6 96.3 1.01 1.05 0.90
4 96.2 95.7 96.6 0.95 0.94 0.70
5 96.2 95.8 96.1 0.87 0.91 0.98
6 96.3 95.9 96.2 0.88 0.94 1.04
7 96.5 96.1 96.6 0.87 0.86 0.82
8 96.6 96.1 96.2 0.90 0.90 1.13
9 96.7 96.2 96.6 0.90 0.88 0.86
10 97.3 97.1 97.2 0.92 0.91 0.93
11 97.3 97.1 97.2 0.92 0.91 0.93
12 97.3 97.1 97.2 0.92 0.91 0.93
13 97.3 97.1 97.2 0.92 0.91 0.93
14 97.3 97.1 97.2 0.92 0.91 0.93
15 97.3 97.1 97.2 0.92 0.91 0.93
16 90.9 91.3 91.7 4.71 4.65 4.54
17 86.2 83.9 86.6 3.71 3.40 5.18
18 86.5 85.2 85.2 3.31 3.46 5.12
19 86.0 87.4 89.3 4.03 2.25 1.85
20 86.0 87.4 89.3 4.03 2.25 1.85
21 86.0 87.4 89.3 4.03 2.25 1.85
22 86.0 87.4 89.3 4.03 2.25 1.85
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Table 5.3 ATMS antenna side-lobe Earth beam efficiencies analyzed from co- and cross-
polarization antenna gain distribution functions.

Channel 𝜼
pp
se (%) 𝜼

pq
se (%) 𝜼

pp
sc + 𝜼

pq
sc (%)

B1 B48 B96 B01 B48 B96 B1 B48 B96

1 2.30 3.10 2.01 0.56 0.54 0.35 0.78 0.29 0.95
2 1.55 2.25 1.53 0.35 0.37 0.22 0.49 0.36 0.76
3 1.71 2.46 1.74 0.45 0.51 0.44 0.60 0.38 0.58
4 1.93 2.49 1.83 0.43 0.45 0.33 0.52 0.42 0.57
5 1.86 2.40 1.80 0.47 0.50 0.39 0.56 0.44 0.72
6 1.75 2.32 1.72 0.44 0.51 0.44 0.60 0.35 0.63
7 1.66 2.21 1.66 0.44 0.43 0.32 0.52 0.41 0.61
8 1.62 2.11 1.54 0.37 0.46 0.45 0.53 0.40 0.66
9 1.63 2.13 1.61 0.33 0.41 0.34 0.46 0.34 0.55
10 1.18 1.47 1.12 0.27 0.28 0.26 0.35 0.22 0.48
11 1.18 1.47 1.12 0.27 0.28 0.26 0.35 0.22 0.48
12 1.18 1.47 1.12 0.27 0.28 0.26 0.35 0.22 0.48
13 1.18 1.47 1.12 0.27 0.28 0.26 0.35 0.22 0.48
14 1.18 1.47 1.12 0.27 0.28 0.26 0.35 0.22 0.48
15 1.18 1.47 1.12 0.27 0.28 0.26 0.35 0.22 0.48
16 1.34 2.12 1.45 1.33 1.36 0.87 1.70 0.53 1.40
17 3.83 5.68 3.49 1.73 1.83 1.66 4.53 5.23 3.08
18 5.10 5.30 4.80 1.41 1.59 1.51 3.69 4.42 3.36
19 5.10 5.30 4.80 1.41 1.59 1.51 3.69 4.42 3.36
20 5.17 5.37 5.01 1.44 1.37 0.95 3.41 3.59 2.89
21 5.17 5.37 5.01 1.44 1.37 0.95 3.41 3.59 2.89
22 5.17 5.37 5.01 1.44 1.37 0.95 3.41 3.59 2.89

current TDR data are only corrected for the near-field side-lobe contributions for
the SDR data by setting the antenna main beam efficiency to 1.
For ATMS channels 1, 2, and 16, TDRs are converted to SDRs using the follow-

ing equation:

TQv
b = [TQv

a − (𝜂vv
sc + 𝜂hv

sc )Tc,RJ ]∕[𝜂vv
me + 𝜂vv

se + Av(𝜂hv
me + 𝜂hv

se )]. (5.52a)

For the other ATMS channels,

TQh
b = [TQh

a − (𝜂hh
sc + 𝜂vh

sc )Tc,RJ ]∕[𝜂hh
me + 𝜂hh

se + Ah(𝜂vh
me + 𝜂vh

se )]. (5.52b)

5.9
Summary and Conclusion

In this chapter, the ATMS Earth scene counts are calibrated to antenna brightness
temperatures (TDR) through a two-point calibration algorithm with a quadratic
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nonlinear correction. The nonlinearity term is derived from the prelaunch TVAC
data with a maximum value less than 0.5 K. After applying the nonlinear cor-
rection, the absolute accuracy of TDR for all ATMS channels is generally about
0.2–0.5 K,whichmeets the specification.UnlikeAMSU-A/MHScalibration oper-
ating at radiance, ATMS calibration to TDR is directly carried out at brightness
temperature based on the RJ approximation. Thus, the cold-space temperatures
are corrected to the apparent brightness temperatures prior to use in the two-
point calibration. In future, we plan to modify the current ground processing
system into a full radiance space.
The current algorithm for quantifying the precision of the ATMS radiomet-

ric measurements, NEDT, is described. The NEDT values for all the channels are
well within the instrument specification. However, through the sensitivity study of
NEDT and the Allan deviation, we found that the Allan deviation may be a better
metric for precision.
Currently, noise magnitudes of the operational satellite instruments are mostly

quantified by computing the standard deviation of the measurements from their
calibration targets. The standard deviation is valid for describing the spread of
a statistical distribution of the measured values around its mean that is stable.
However, themeasurements of awarmcalibration target such asATMSblackbody
can exhibit a considerable variation in each orbit. In this study, we propose to use
Allan deviation to characterize the ATMS noise. It is found that in the overlapping
Allan deviation formula, the averaging window size has to be set to 1 in order
to accurately assess the noises for both stationary and nonstationary time series.
From the ATMS on-orbit data, the noise magnitudes at several channels show a
large discrepancy between the Allan deviation and the current operational NEDT.
Thus, the Allan deviation method is recommended for the noise characterization
of all the ATMS channels.
The two-sample Allan deviation is introduced here as an alternative approach

for characterizing the ATMS measurement precision, NEDT. Firstly, it is math-
ematically proved that the two-sample Allan variance provides an unbiased
estimate of a quasi-stationary data. In addition, this chapter shows that the
two-sample Allan deviation always provides an estimate closer to the true
noise standard deviation compared with the traditional standard deviation. For
characterizing the ATMS on-orbit channel precision, this chapter shows that
for the channels with stable warm counts, both the two-sample Allan deviation
and the current operational NEDT provide very close estimates. However,
for the channels with unstable warm counts, the current NEDT that is based
on the standard deviation may overestimate the noise magnitudes by including
the impact of the variations. Moreover, use of the two-sample Allan deviation
avoids the determination of the optimal sample size, which is critical, but is vague
and ad hoc in the calculation of the current NEDT. The aforementioned merits
render the two-sample Allan deviation superior to both the overlapping Allan
deviation and the standard deviation. It is thus suggested that the two-sample
Allan deviation is a better choice for noise characterization of ATMS and other
satellite microwave sensors.
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The conversion from TDR to SDR is very important since SDR products can
be directly used in the Numerical Weather Prediction (NWP) models for satellite
data assimilation. One thing that needs to be pointed out is that the convertibility
is not always unique if ATMS antenna subsystem has a significant polarization
spillover effect and/or a side-lobe contribution from the nearby scene cells. While
ATMS antenna gain distribution functions were measured during the prelaunch
period, there remain some uncertainties in the characterization of side lobe
and cross-polarization at high frequencies. Under the conditions where ATMS
brightness temperatures at quasi-vertical and quasi-horizontal polarization states
are the same, the conversion from TDR to SDR becomes unique, assuming that
all the side-lobe contributions are estimated. At 45∘ scan angle, ATMS SDR can
be uniquely derived from its TDR and therefore directly compared with the
simulations. It is shown that the biases of ATMS SDRs with respect to GPS RO
and GFS simulation are similar in magnitude. The largest biases are found for
surface-sensitive channels at both low and high frequencies. Further investigation
is planned to assess the errors in the forward modeling associated with surface
emissivity and surface parameters obtained from GFS.
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6
Detection of Interference Signals at Microwave Frequencies

6.1
Introduction

Microwave instruments on board satellites observe the Earth’s surface, and atmo-
spheres have some channels operating at L-, C-, and X-bands.Themeasurements
of the natural Earth’s thermal emission from satellites could bemixed with the sig-
nals from lower frequency active transmitters including radar, air traffic control,
cell phone, garage door remote control, GPS signal on highway, defense tracking,
vehicle speed detection for law enforcement, and so on. Such a phenomenon of
satellite-measured passive microwave thermal emission being mixed with the
signals from the active sensors is referred to as radio-frequency interference (RFI).
The operating frequencies by some ground active sensors are shown in Figure 6.1
and are within the bandwidth of microwave radiometers. For example, satellite
television broadcasts in Europe are transmitting the signals using 10–13GHz and
thus interfere with the microwave radiometer measurements in the X-band while
the direct TV in the United States operates in 18–24GHz and contaminates the
microwave K-band data. Some ground-based sources such as garage door openers
and radar transmit the signals at lower frequencies near microwave radiometer
L-band frequencies. With the expanding demand for fixed-satellite service
(FSS) technology, increasing amounts of Television-frequency interference (TFI)
are now affecting the oceanic measurements from satellite passive microwave
instruments. The RFI signatures in brightness temperature measurements, if
not identified and removed, would introduce errors in microwave products. It is
therefore important to identify RFI-contaminated data before carrying out the
product retrieval and data assimilation.
Existing methods for identifying RFI signatures at C-, X-, and K-band channels

of various sensors include the spectral difference method [168], the mean and
standard deviation method [169], principal component analysis (PCA) method
[7], and the normalized PCA method [6]. For global land and ocean RFI detec-
tion, we present several methods for detecting the RFI from variable sources in
all seasons. In this chapter, the double principal component analysis (DPCA)
method is developed to detect the RFI signals in advanced microwave scanning
radiometer–EOS (AMSR-E) data over the global oceans.

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 6.1 Examples of radio-frequency interference sources from human activities includ-
ing communication satellite, radar, cell phone, vehicle speed monitor, and garage door
opener.

Table 6.1 Satellite missions carrying microwave radiometers on board.

Sensor WindSat AMSR-E AMSR2

Spacecraft Coriolis Aqua GCOM-W1
Agency NRL NASA JAXA
Launch date January 6, 2003 May 4, 2002 May 17, 2012
Altitude (km) 840 705 700
EIA (∘) 49.9–55.3 53.1 55.0
Swath (km) 1025/350 (Fore/Aft) 1445 1450
ECT 6:00 am 1:30 pm 1:30 pm

6.2
Microwave Imaging Radiometers and Data Sets

Microwave imaging radiometers onboard satellite platforms are selected to
demonstrate the RFI signals over different regions. They include WindSat,
AMSR-E and AMSR2, and SSM/I as listed in Table 6.1. The data sets from these
radiometers for retrieval of environmental products will be further used in later
chapters.
WindSat radiometer is carried on board the Coriolis satellite. From an altitude

of 840 km,WindSat scans the Earth in a forward-looking swath of 1000 km and an
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aft-looking swath of 400 km. The antenna beams view the Earth at different inci-
dence angles, varying from 50∘ to 55∘, for different frequency channels. The four
low-frequency channels of WindSat at 6.8, 10.7, 18.7, and 23.8GHz measure the
radiation for both vertical and horizontal polarization. At 10.7, 18.7, and 37.0GHz,
the third and fourth components of Stokes vector are also observed, and these
frequencies are referred to as full polarimetric channels. The WindSat raw data
counts are converted into antenna temperatures at its footprint resolution after
applying calibration, geolocation, and quality control. The antenna temperature
data at this stage is called temperature data record (TDR).The footprint resolution
of antenna temperatures in TDR varies with frequency.The antenna temperatures
in TDR are further processed into the so-called sensor data record (SDR), in which
the antenna temperatures at different frequencies are resampled to the same com-
mon resolution and beamwidth.There are twoWindSat SDRswith three different
resolutions: the coarse resolution has the same footprint resolution as 6.8GHz,
the middle resolution SDR has the same footprint resolution as 10.7GHz, and the
high resolution SDR has the same footprint resolution as 18.7GHz. The coarse
resolution swath WindSat SDR data is finally binned into a latitudinal and longi-
tudinal grid with a 1/3 degree resolution over the globe. The gridded data set in
February 2011, are used in this study.
AMSR-E is one of the six instruments on board the NASA EOS Aqua satellite.

For the Aqua satellite, its equator crossing time (ECT) at its ascending node is 1:30
pm. From an altitude of 705 km, AMSR-E can scan the Earth with a swath width
of 1445 km at an incidence angle of 55∘. AMSR-E is a 12-channel, 6-frequency,
total power passive-microwave conical-scanning radiometer system. It measures
vertically and horizontally polarized brightness temperatures at 6.925, 10.65, 18.7,
23.8, 36.5, and 89.0GHz. The across-track and along-track spatial resolutions
of the individual ground instantaneous field-of-view (IFOV) measurements are
75× 43 km at 6.925GHz, 51× 29 km at 10.65GHz, 27× 16 km at 18.7GHz,
32× 18 km at 23.8GHz, 14× 8 km at 36.5GHz, and 6× 4 km at 89.0GHz. The
sampling interval is 10 km for 6–36GHz channels and 5 km for the 89GHz
channel. The AMSR-E TDR data at its original resolution is used for RFI study.
It is worth mentioning that the successor of AMSR-E is AMSR-2, which was on

board the Global Change Observation Mission 1st–Water (GCOM-W1) satel-
lite launched on May 18, 2012 [170]. AMSR-2 is a conical-scanning microwave
imager with 14 channels located at the following 7 frequencies: 6.925, 7.3, 10.65,
18.7, 23.8, 36.5, and 89.0GHz. It has a local incident angle of 55∘ from an orbit
of 700 km above the Earth’s surface. The AMSR-2 antenna reflector size is 2m,
which is larger than AMSR-E and therefore provides better spatial resolution.
Specifically, the across-track and along-track spatial resolutions of the individual
ground IFOV measurements are 62× 35 km at both 6.925 and 7.3GHz frequen-
cies, 42× 24 km at 10.65GHz, 22× 14 km at 18.7GHz, 26× 15 km at 23.8GHz,
12× 7 km at 36.5GHz, and 5× 3 km at 89.0GHz frequencies. The sampling inter-
vals between two neighboring field of views are 5 km for the 89GHz channels
and 10 km for the remaining channels. The two additional channels at 7.3GHz
channels allow for mitigating the RFI effectively at C-bands [169, 171, 172].
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6.3
Radio-Frequency Interference Signals in Microwave Data

Under clear-sky conditions, brightness temperature spectrum at microwave
frequency is driven by surface emissivity. Over land free from surface scattering
medium, the brightness temperature displays a typical emitting spectrum as
shown in Figure 6.2 (solid lines). In horizontal polarization, the brightness
temperature increases as the frequency increases. However, when a channel is
RFI-contaminated, the brightness temperature spectrum then departs its typical
emission or scattering spectrum. Over land, the typical RFI contamination occurs
in the C-, X-, and K-bands and the RFI signals can significantly increase the
brightness temperatures near these bands as shown in Figure 6.2 (dashed line).
Note that natural phenomena such as flooding and wet surface at lower frequen-
cies tend to decrease the brightness temperatures at this channel. Human-made
radiation from active microwave transmitters is different from natural radiation
in terms of intensity, spatial variability, spectral characteristics, and channel
correlations. RFI signals typically originate from a wide variety of coherent point
target sources, that is, radiating devices and antennas, and are often directional,
isolated, narrow-banded. On the other hand, as distributed targets, the Earth’s
surfaces often produce smooth, ultra-wideband, and incoherent microwave
radiation. At 30GHz and below, scattering effects from natural targets are
relatively weaker than the emission signals. RFI can significantly increase the
brightness temperatures at a particular frequency and generate a negative spectral
gradient [171].
The spectral difference in brightness temperatures at lower frequencies is

used to quantify the RFI magnitude and extent. For example, the land RFI at

370

350

330

310

290

B
rig

ht
ne

ss
 te

m
pe

ra
tu

re
 (

K
)

270

250

230
6.9 7.3 10.65 18.7

Frequency (GHz)
23.8 36.5

RFI-free v-Pol

RFI-free h-Pol

RFI v-Pol

RFI h-Pol

Figure 6.2 Observed brightness temperatures for horizontal and vertical polarization at all
frequencies observed by AMSR2 on January 28, 2016. The locations of the selected observa-
tion pixels are at [51.5N 0E] (London) and [51.5N, 7.5E].
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AMSR-E 6.925GHz horizontal polarization channel is defined, if it exceeds 5K,
as follows:

RFI = TB6h − TB10h

=
⎛⎜⎜⎝
5 − 10 K weak
10 − 20 K moderate
> 20 K strong

⎞⎟⎟⎠ . (6.1)

The exact threshold used for eachmicrowave radiometer depends on the radiome-
ter sensitivity, channel frequency and polarization, surface type, and intensities
of active sources. A generalized detection scheme is discussed in the following
sections.

6.4
Detection of RFI over Land

6.4.1
Double Principal Component Analysis (DPCA)

TheDPCAmethod developed for RFI detection consists of two PCA steps. In the
first PCA step, a vector of 10-component brightness temperature is defined at each
grid (i.e., 1/3 degrees latitudinal and longitudinal resolution) as

V⃗i = (TB6h,i,TB6v,i,TB10h,i,TB10v,i,TB18h,i,TB18v,i,TB23h,i,TB23v,i,

TB37h,i,TB37v,i)T , i = 1, 2, … ,N , (6.2)

where the superscript T represents the transpose to a matrix and N is the total
number of data points over the domain of interest.
A data matrix is first defined for PCA of V⃗i as follows:

𝐀10×N =

⎛⎜⎜⎜⎜⎜⎝

TB6h,1 TB6h,2 · · · · · · TB6h,N
TB6v,1 TB6v,2 · · · · · · TB6v,N

⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

TB37v,1 TB37v,2 · · · · · · TB37v,N

⎞⎟⎟⎟⎟⎟⎠
. (6.3)

A 10× 10 covariance matrix 𝐑10×10 is then constructed from 𝐀10×N :𝐑10×10 =
𝐀𝐀T, for an eigenvalue/eigenvector analysis. Specifically, the eigenvalues 𝜆i (i= 1,
2, … , 10) and eigenvectors−⇀e i = [e1,i, e2,i, … , e10,i]T are found by solving the fol-
lowing equation:

𝐑−⇀e i = 𝜆i
−⇀e i, i = 1, 2, … , 10, (6.4)
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where i indicates the ith PC mode (i = 1, 2, … , 10) and −⇀e i is called the ith
principal component (PC) mode. The ith eigenvalue 𝜆i quantifies the variance
contribution of the ith PC mode to the total variance of data. The first PC mode
−⇀e 1 spans in the direction of the maximum variance in the data, the second PC
mode −⇀e 2 spans in the direction of the largest variance not accounted for by the
first vector, and so on.
By expressing the eigenvalues and eigenvectors in matrix form,

Λ =
⎛⎜⎜⎝
𝜆1 · · · 0
⋮ ⋱ ⋮

0 · · · 𝜆10

⎞⎟⎟⎠ , 𝐄 = [e⃗1, e⃗2, … , e⃗10]. (6.5)

Equation (6.4), can, be equivalently written as

𝐑𝐄 = 𝐄Λ or 𝐑 = 𝐄Λ𝐄T, (6.6)

where 𝐄 is an orthogonal matrix; thus, 𝐄−1 = 𝐄T.
By projecting the data matrix 𝐀 onto an orthonormal space spanned by the

eigenvectors −⇀e 1,
−⇀e 2, … ,

−⇀e 10, we obtain the so-called PC coefficients:

𝐔10×N = 𝐄T𝐀 =

⎛⎜⎜⎜⎜⎝

u⃗1

u⃗2

⋮

u⃗10

⎞⎟⎟⎟⎟⎠
, (6.7)

where −⇀u i = [ui,1, ui,2, … ,ui,N ] is the PC coefficient for the ith PC mode.
The data matrix 𝐀 in Eq. (6.3) can finally be reconstructed using the PC coeffi-

cients and the PC modes:

𝐀 =
10∑

i=1

−⇀e i
−⇀u i, (6.8)

which could be decomposed into the following two parts: 𝐀 ≡ 𝐀1 + 𝐀2, where

𝐀1 =
𝛼∑

i=1

−⇀e i
−⇀u i, 𝐀2 =

10∑
i=𝛼+1

−⇀e i
−⇀u i, (6.9)

where 𝛼 is an integer parameter to be determined later. The matrix 𝐀2, which is
the sumof the PCmodes frombrightness temperatures from the (𝛼 + 1)th to 10th,
is used in the normalized PCA analysis. The first 𝛼 PC modes (𝐀1) reflect the
strong channel-by-channel correlations of scatteringmedium.The residualmatrix
𝐀2 contains the RFI signals in snow surfaces.
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Thesecond step of theDPCAmethod is a normalized PCA applied to thematrix
𝐀2. A normalized RFI index vector is defined as

R⃗A2
indices =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TB10h − TB18h − 𝜇

𝜎

TB18v − TB23v − 𝜇

𝜎

TB18h − TB23h − 𝜇

𝜎

TB23v − TB37v − 𝜇

𝜎

TB23h − TB37h − 𝜇

𝜎

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠A2

, (6.10)

where 𝜇 and 𝜎 are the mean and standard deviation of the corresponding five
RFI indices, and is used for another PCA analysis. The higher values of the PC
coefficient for the first PC mode of 𝐀2 would suggest larger probabilities of RFI.
The multichannel correlations of radiometer data from natural land and ice sur-
face radiations are much higher than those RFI-induced signatures. A PCA of
multichannel brightness temperatures is thus used to separate the correlated com-
ponents (𝐀1) from less correlated components (𝐀2).
Figure 6.3 presentsWindSat-measured brightness temperatures at 6.8, 10.7, and

18.7GHz for horizontal polarization over Greenland during February 1–10, 2011.
The brightness temperature varies by more than 100K, from the coastal land area
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Figure 6.3 Brightness temperatures at (a) 6.8, (b) 10.7, and (c) 18.7 GHz for horizontal polar-
ization averaged over the period of February 1–10, 2011. (Zhao et al. 2013 [7]. Reproduced
with permission of IEEE.)
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Figure 6.4 Brightness temperatures of 6.8 GHz (left panels), 10.7 GHz (middle panels), and
18.7 GHz (right panels) from the 10-channel average for horizontal polarization recon-
structed by (a)–(c) the first to the fourth and (d)–(f ) the fifth to the tenth PC modes. (Zhao
et al. 2013 [7]. Reproduced with permission of IEEE.)

to frozen ice sheet away from the coast (Figure 6.3b), with a significant jump in
the brightness temperature values occurring at the edge of frozen ice.
The spatial distributions of the two components of brightness temperatures 𝐀1

and𝐀2 at 6.8, 10.7, and 18.7GHz are shown in Figure 6.4, when 𝛼 is set to 4. Large
variations in the brightness temperature from coastal land area (∼210–230K)
to frozen ice ground (∼110–150K) as seen in Figure 6.3 are captured by 𝐀1
(Figure 6.4a–c). The sharp gradient found at the edge of frozen ice is not seen in
the 𝐀2 fields (Figure 6.4d–f). The first PC mode explains more than 99.67% of
the total data variances. The first four PCs capture the majority of data variance
in Greenland (>99.99%).
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Figure 6.5 RFI distributions of 6.8 GHz for (a) horizontal polarization and (b) vertical polar-
ization over Greenland using the DPCA method. (Zhao et al. 2013 [7]. Reproduced with per-
mission of IEEE.)

By applying a normalized PCA to 𝐀2, we may obtain RFI distributions. Sensi-
tivities of the DPCA method to parameter 𝛼 for RFI detection could be assessed
by examining the variation of the first PC coefficients in the second step of DPCA
for different values of 𝛼. For WindSat 6.8GHz channel for both polarization, we
set 𝛼 = 4. Figure 6.5 shows RFI distributions over Greenland for both horizontal
and vertical polarization at 6.8GHz. The RFI signals are found mostly near the
southwest coastal areas where research stations are more populated. The RFI for
horizontal polarization is slightly stronger than that for the vertical polarization.
The same DPCA method is also applied to WindSat data over Antarctic, and it
is shown that RFI-contaminated WindSat data correlates well with the research
stations located within two longitude zones of 75W–55W and 75E–90E [7].
Having demonstrated the performance of the DPCA method over Greenland

and Antarctic, it is important to test if the same method also works in other areas
of the globe. Figure 6.6 displays the RFI distributions of 6.8GHz for horizontal
polarization identified by the PCA method [172] and the DPCA proposed in this
study over the United States. The PCA method cannot detect RFI in WindSat
winter data. The anomaly associated with the snow in high latitudes dominates,
making the RFI signals undetectable. The DPCA, however, successfully detects
winter RFI signals over the United States.
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Figure 6.6 RFI distributions of 6.8 GHz for horizontal polarization identified by (a) PCA and
(b) DPCA methods over the United States during February 1–10, 2011.

6.4.2
Spectral Difference Method

In general, land surface emissivity increases with frequency, resulting in higher
brightness temperatures at 10.65GHz (channels 3–4) compared to those at
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6.925GHz, that is, TB6v < TB10v or TB6h < TB10h. Natural phenomena such as
flooding andwet surfaces further decrease the brightness temperatures, especially
at lower microwave frequencies such as 6.925 GHz. The measured brightness
temperatures at low frequencies can thus be used for retrieving the soil moisture
content. The presence of RFI at 6.925GHz, however, increases the brightness
temperature at this frequency, resulting in a reversed spectral gradient, that is,
TB6v > TB10v or TB6h < TB10h [168]. By examining the spatial distributions
of the inequality about RFI-sensitive spectral difference indices TB6v − TB10v
and/or TB6h − TB10h (e.g., differences between brightness temperatures at two
different frequencies for a given polarization), RFI-contaminated data can be
identified. Since RFI signals typically originate from a wide variety of coherent
point target sources and are often directional and narrow-banded, they are often
isolated in space and persistent in time.
Figure 6.7 presents the spatial distributions of the spectral differences TB6h −

TB10h (Figure 6.7a), TB7h − TB10h (Figure 6.7b), TB6v − TB10v (Figure 6.7c) and
TB7v − TB10v (Figure 6.7d) for AMSR-2 data from descending nodes over North
America on December 11, 2012. Since the presence of RFI at 6.925GHz would
increase the brightness temperature at this frequency, RFI-contaminated data at
the 6.925GHz horizontal polarization state could be identified by their excessively
positive values of spectral differences, that is, TB6k − TB10k ≫ 0. Similarly, RFI-
contaminated data at the 7.3GHz horizontal polarization state could be identified
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Figure 6.7 Spatial distributions of AMSR-2 RFI signals in descending nodes at (a) 6.925 GHz
(left panels) and 7.3 GHz (right panels) for (a)–(b) horizontal and (c)–(d) vertical polarization
using the spectral difference approach over North America on December 2, 2012.
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by their excessively positive values of spectral differences, TB7k − TB10k ≫ 0.
Figure 6.7 shows that isolated RFI signals characterized by large positive spectral
differences in brightness temperatures at 6.925GHz are found in many places
over the United States (Figure 6.7a,c), while RFI signals at 7.3GHz seem to occur
only in Mexico, Washington DC, and New York (Figure 6.7b,d).

6.5
RFI Detection over Oceans

At microwave frequencies, the ocean surface has higher reflectance compared to
land surface due to the high permittivity of seawater.Thus, the transmitted signals
from the communication geostationary satellites can be reflected by the ocean
surfaces, and the reflected signals can also be received by microwave radiometer
and mixed with the thermal emission from the oceanic environments. The geo-
stationary satellites such as Astra, Hot Bird, Atlantic Bird 4A, and DirecTV-10/11
transmit the signals at frequencies near X- and K-bands and cause interference
in microwave data. Figure 6.8 schematically illustrates the RFI to the microwave
radiometer from satellite TV broadcast system [173].

Geostationary
TV satellite

AMSR-E

58 dBW

54 dBW
52 dBW
50 dBW
48 dBW

46 dBW

Figure 6.8 A schematic illustration of RFI of AMSR-E Earth views (light gray) with TV signals
reflected off from ocean surfaces (dark black dashed). Satellite downlink beam coverage is
shown in moderate gray curves. Numbers on the contours indicate the strength of the TV
signal expressed in the decibel watt (dBW). (Zou et al. 2014 [173]. Reproduced with permis-
sion of American Meteorological Society.)
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Microwave emissivity over oceans is much lower than that over land. Cloud
and precipitation can also increase the thermal emission and therefore signifi-
cantly increase the brightness temperature at lower frequencies. Such an increase
in the measured brightness temperatures could be of a similar magnitude to the
increase introduced by RFI from the ocean surface. It is important to develop a
robust technique for detecting the oceanic RFI signals so that the weather signals
do not appear as “false” RFI signals. There are two methods that were employed
for identifying RFI signatures over oceans: a chi-square probability method [174]
and a regression method [172]. In the chi-square probability algorithm, an RFI
detection method is developed using a time-averaged statistical quantity based
on the fact that the source of the oceanic RFI, TV signals, is fixed in location
and time, while weather signals associated with cloud and precipitation are tran-
sient. The goodness of fit (i.e., chi-square probability) is used for RFI detection.
The lower the goodness of fit, the higher the probability of the presence of RFI
is expected. A regression model is first established to predict RFI-free brightness
temperatures at X- and K-bands from the other WindSat channels. The differ-
ence between microwave observations and regression-model-predicted bright-
ness temperatures is then used for oceanic RFI detection.The larger the difference,
the stronger the RFI intensity is likely to be. The DPCA was applied for WindSat
data and shown to work at any geographical location including snow and sea ice
conditions. It is also applied for RFI detection over oceans. Since AMSR-E data are
used for RFI studies, a vector of normalized brightness temperatures including a
high frequency at 89GHz is first constructed as follows:

V⃗i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TB6h,i − 𝜇6h

𝜎6h
TB6v,i − 𝜇6v

𝜎6v

....

TB89h,i − 𝜇89h

𝜎89h
TB89v,i − 𝜇89v

𝜎89v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i = 1, 2, … ,N , (6.11)

where N is the total number of data points over an AMSR-E swath (about 2000
scan lines) excluding data over land and sea ice, 𝜇𝜆 and 𝜎𝜆 are the mean and
standard deviation of brightness temperatures at the frequency 𝜆 at all the data
points.
A data matrix is first defined for PCA of V⃗i as follows:

𝐀12×N =

⎛⎜⎜⎜⎜⎜⎝

TB6h,1 TB6h,2 · · · · · · TB6h,N
TB6v,1 TB6v,2 · · · · · · TB6v,N

⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮

TB89v,1 TB89v,2 · · · · · · TB89v,N

⎞⎟⎟⎟⎟⎟⎠
. (6.12)
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A 12× 12 covariance matrix𝐑12×12 = 𝐀𝐀T is then constructed from𝐀12×N .The
eigenvalues and eigenvectors of the covariance matrix 𝐑 are found by solving the
following equation:

𝐑e⃗i = 𝜆ie⃗i, (i = 1, 2, … , 12), (6.13)

where 𝜆i is the ith eigenvalue, and e⃗i = [e1,i, e2,i, … e12,i]T is called the ith PC
mode, i= 1, 2, … , 12. The ith eigenvalue 𝜆i (i= 1, 2, … , 12) quantifies the
variance contribution of the ith PC mode to the total variance of data. The eigen-
values/eigenvectors are sorted by the magnitude of the eigenvalue in decreasing
order.
The eigenvalues and eigenvectors can be expressed in a matrix form:

Λ =
⎛⎜⎜⎜⎝
𝜆1 · · · 0
⋮ ⋱ ⋮

0 · · · 𝜆12

⎞⎟⎟⎟⎠
, 𝐄 = [e⃗1, e⃗2, … , e⃗12]. (6.14)

Equation (6.13), can, be equivalently written as

𝐑𝐄 = 𝐄Λ or 𝐑 = 𝐄Λ𝐄T (6.15)

Since 𝐄 is an orthogonal matrix, 𝐄−1 = 𝐄T.
By projecting the data matrix𝐀 onto an orthogonal space spanned by the eigen-

vectors e⃗1, e⃗2, … , e⃗12, we obtain the so-called PC coefficients:

⎛⎜⎜⎜⎜⎝

u⃗1

u⃗2

⋮

u⃗12

⎞⎟⎟⎟⎟⎠
= 𝐄T𝐀, (6.16)

where u⃗i = (ui,1,ui,2, … ,ui,N ) is the PC coefficient for the ith PC mode.
The data matrix, 𝐀, in Eq. (6.12) can finally be reconstructed using PC

coefficients and PC modes:

𝐀 =
12∑

i=1
e⃗iu⃗i, (6.17)

which could be further separated into the following two parts: 𝐀 ≡ 𝐀1 + 𝐀2,
where

𝐀𝟏 =
𝛼∑

i=1
e⃗iu⃗i, 𝐀𝟐 =

12∑
i=𝛼+1

e⃗iu⃗i, (6.18)
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where 𝛼 is the integer parameter to be determined later. The matrix 𝐀2, which
is the sum of the PC modes from the (𝛼 + 1)th to the 12th, is called a residual
datamatrix.The large-scale variability in natural emission associatedwithweather
systems is mostly captured by the first 𝛼 PCmodes (𝐀1) due to strong channel-by-
channel correlations. Small-scale weather features and RFI signals are contained
in the residual matrix 𝐀2.
The data after taking out the large-scale part (i.e., A1) are then used to create

the spectral difference vectors for detecting RFI signals. Since the multichannel
correlations of microwave data are often high for natural radiations and are low
for RFI signatures, the spectral difference vectors (also called RFI indices) are
analyzed using the PCA, technique, which linearly transforms a set of correlated
RFI indices into a smaller set of uncorrelated variables so that RFI signals can be
effectively separated from natural radiations. Specifically, the following RFI index
vectors are defined after A1 is removed from the original data. For RFI detection
at 10GHz horizontal polarization state, the following spectral difference vector
is constructed:

R⃗𝐀2
10h =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

TBA2
10h − TBA2

6h

TBA2
10h − TBA2

18h

TBA2
18v − TBA2

23v

TBA2
18h − TBA2

23h

TBA2
23v − TBA2

36v

TBA2
23h − TBA2

36h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.19a)

which consists of the spectral differences of the 10GHz horizontal polarization
channels from its neighboring channels (6 and 18GHz) at the same horizontal
polarization state, (i.e., the first and second components in R⃗𝐀2

10h), as well as the
spectral differences between two neighboring channels with the same polariza-
tion states for the remaining frequencies (i.e., the fourth to sixth components in
R⃗𝐀2
10h). Similarly, RFI detections for the 10GHz vertical polarization channel and

18GHz horizontal and vertical polarization channels are constructed as follows:

R⃗𝐀2
10v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

TBA2
10v − TBA2

6v

TBA2
10v − TBA2

18v

TBA2
18v − TBA2

23v

TBA2
18h − TBA2

23h

TBA2
23v − TBA2

36v

TBA2
23h − TBA2

36h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, R⃗𝐀2

18h =

⎛⎜⎜⎜⎜⎜⎜⎝

TBA2
10h − TBA2

6h

TBA2
18h − TBA2

10h

TBA2
18h − TBA2

23h

TBA2
23v − TBA2

36v

TBA2
23h − TBA2

36h

⎞⎟⎟⎟⎟⎟⎟⎠
,

R⃗𝐀2
18v =

⎛⎜⎜⎜⎜⎜⎜⎝

TBA2
10v − TBA2

6v

TBA2
18v − TBA2

10v

TBA2
18v − TBA2

23v

TBA2
23v − TBA2

36v

TBA2
23h − TBA2

36h

⎞⎟⎟⎟⎟⎟⎟⎠
, (6.19b)
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A data matrix 𝐁6×N (or 𝐁5×N ) is constructed from each of the vectors R⃗𝐀2
10h, R⃗𝐀2

10v,
R⃗𝐀2
18h, and R⃗𝐀2

18v, where N is the total number of data points over an AMSR-E swath.
The eigenvectors of the covariance matrix 𝐒6×6 = 𝐁𝐁T (or 𝐒5×5 = 𝐁𝐁T) are then
calculated, which is denoted as e⃗A2

1 , e⃗A2
2 , … , e⃗A2

5 and called PC modes. The data
matrix 𝐁 can be reconstructed from the total five PC modes:

𝐁 = 𝐄𝐔 =
5∑

i−1
e⃗A2

i u⃗A2
i (6.20)

where u⃗A2
i = [uA2

i,1 ,uA2
i,2 , … ,uA2

i,N ] is the PC coefficient for the ith PCmode.Thehigh
values (greater than 0.4) of the PC coefficient for the first PC mode, −⇀u 1, indicate
the presence of RFI.
As the large-scaleweather systems have beenmostly captured inA1, the remain-

ing small-scale weather variability associated with wind, cloud, and precipitation
and RFI signals remains in A2. In order to effectively distinguish between false
alarms associated with small-scale weather features and RFI signals, an additional
condition on satellite glint angle is added. RFI occurs only when the RFI glint angle
is small enough so that the TV broadcast signals can be reflected into AMSR-
E IFOV. The satellite glint angle being smaller than 50∘ is used as an additional
criterion for the identification of RFI signals.
Figure 6.9a provides a spatial distribution of horizontally polarized brightness

temperatures at 10.65GHz on February 16, 2011 over ocean around Europe.
Brightness temperatures at this channel vary from 80 to 170K. Warmer tem-
peratures are found in the coastal areas in the Mediterranean Sea and B area
in Figure 6.9a as well as over the Atlantic Ocean. The latter shows some spatial
patterns closely related to variations in ocean surface wind, cloud, and rains.
In order to see the temperature differences among various AMSR-E channels
in different regions, we select two pairs of data points: points A and B located
at the same latitude 45.4N and points C and D located at the same latitude
39.2N. In general, brightness temperatures increase with frequency, and the
horizontally polarized brightness temperatures are lower than those at vertical
polarization (Figure 6.9b,c). Brightness temperatures at all frequencies at a
clear-sky data point A located at (45.4N, 33.0W) in the middle of Atlantic ocean
are consistently warmer than those at point B except for 10.65GHz channels
(Figure 6.9b), indicating a potential RFI at 10.65GHz at point B located at (45.4N,
2.1W). Brightness temperatures at all AMSR-E frequencies at a clear-sky data
point C located at (39.2N, 34.3W) in the middle of the Atlantic Ocean are
consistently colder than those at point D located at (39.2N, 12.0W) except for
89GHz channels (Figure 6.9c), indicating the presence of cloud and precipitation
at point D. The cloud scattering has the largest impact on the highest AMSR-E
frequency channels at 89.0GHz. The scattering effects of cloud particles reduce
the 89GHz brightness temperatures at both vertical and horizontal polarization
channels. Impact of cloud emission dominates the remaining AMSR-E channels.
Due to low ocean emissivity and higher cloud-emitted radiation, the presence of
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Figure 6.9 (a) Spatial distribution of brightness temperatures of the 10.65 GHz horizontally
polarized channel on February 16, 2011, over oceans around Europe. Brightness temper-
atures of all AMSR-E channels at four arbitrarily chosen data points (b) A (left bars) and B
(right bars), and (c) C (left bars) and D (right bars) on February 16, 2011. The geographic
locations of points A–D are indicated in (a). (Zou et al. 2014 [173]. Reproduced with permis-
sion of American Meteorological Society.)
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Figure 6.10 Brightness temperatures corresponding to the data matrices (a) A1, (b) A2, and
(c) RFI signal intensity found by the DPCA method when 𝛼 = 7 for the 10.65 GHz horizontal
polarization channel observations on February 16, 2011. (d) Satellite glint angle.

cloud increases the brightness temperatures at lower frequencies from 6.925 to
36.5GHz.
Figure 6.10 shows the spatial distributions of brightness temperatures corre-

sponding to the data matrices𝐀1 (Figure 6.10a) and𝐀2 (Figure 6.10b) and the RFI
intensity map (Figure 6.10c) when the parameter 𝛼 is set to 7 for the 10.65GHz
horizontal polarization channels, which can be compared to the spatial distribu-
tion of satellite glint angle (Figure 6.10d), in two descending passes on February 16,
2011, near Europe. It is seen that weather-related features are maintained mostly
in the 𝐀1 matrix (Figure 6.10a). The RFI signals found by the DPCA method are
consistentwith the distributions of small glint angles (Figure 6.10d, which could be
used to flag for RFI from the geostationary TV satellites) and are in the 𝐀2 matrix
(Figure 6.10b).TheDPCA successfully identifies oceanic RFI signals (Figure 6.10d)
located mostly in the Mediterranean Sea, Bay of Biscay, and North Sea.
The eigenvalues and eigenvectors of the covariance matrix 𝐀𝐀T are also pro-

vided in Figure 6.11.The ith eigenvalue (Figure 6.11a) quantifies the variance in the
data that is explained by the ith eigenvector (i= 1, … , 12) (Figure 6.11b–d). It is
seen that the first PCmode explains the largest amount of the total data variances,
the second PC mode explains the second largest amount of the total data vari-
ances, and so on.The first seven PCmodes capture the majority of data variances.
When the RFI indices are not normalized, the first PC remains positive, reflecting
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Figure 6.11 (a) Eigenvalues and (b)–(d) eigenvectors of the covariance matrix AAT corre-
sponding to data in Figure 6.10.

the overall magnitude of all radiometer channels. The variability of eigenvectors
increases with the increase in mode number.
When applying the DPCA for identifying the RFI signals in AMSR-E data over

ocean, a key parameter (i.e., 𝛼) must be determined for defining the𝐀2 fields. Sen-
sitivities of the DPCAmethod to parameter 𝛼 for RFI detection could be assessed
by examining the variation of the first PC coefficients with respect to parameter 𝛼
in the second step ofDPCA. Figure 6.12 presents such a variation for RFI detection
of 10.65GHz horizontally polarized channel in four selected regions indicated in
Figure 6.10c. The first PC coefficient in both C and D regions has a rapid increase
when 𝛼 is equal to 6–8, suggesting the appropriateness of choosing 𝛼 = 7 for the
RFI detection using theDPCAmethod, since large values of the first PC coefficient
suggest higher probabilities of the presence of RFI signals.The first PC coefficient
in box A, which is located in a cloud system, peaks at 𝛼 = 3. By choosing 𝛼 = 7, the
weather-related signals are removed for the RFI detection in the second step of the
DPCA analysis. A variation of the first PC coefficient with parameter 𝛼 under a
clear-sky condition (box B) is also provided as a benchmark. It is seen that the first
PC coefficient decreases nearly monotonically with respect to 𝛼 under a clear-sky
condition, which is very different from the cases when either RFI signals or clouds
are present.
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Figure 6.12 Variations of the first PC coefficient with respect to parameter 𝛼 used in the
DPCA method for all the data points averaged in a cloudy box A, a clear-sky box B, as well
as two boxes C and D with RFI signals detected by the DPCA using 𝛼 = 7, respectively. Boxes
A–D are indicated in Figure 6.10c.

A quantitative relationship between the RFI signal strength in 10.65GHz
horizontal polarization channel and the magnitude of the spectral differences
between this channel and its neighboring higher frequency channels at the same
polarization on February 16, 2011, is provided in Figure 6.13b. For convenience,
spectral differences between 10.65 and 18.7GHz with horizontal polarization
(i.e., Tb, 10.65h–Tb, 18.7h) are also provided (Figure 6.13a). Although the spectral
difference method could in fact detect much of the ocean RFI signals seen in
Figure 6.13a, it also misidentified a cloud weather system west of 8W between
37 and 51N as “RFI” signals. Similarly, Figure 6.14 shows the spatial distributions
of RFI signals detected at 18.7GHz with horizontal polarization by the DPCA
(Figure 6.14a), spectral differences between 18.7 and 23.8GHz with horizontal
polarization (i.e., Tb, 18.7h–Tb, 23.8h, Figure 6.14b), and a scatter plot between RFI
signals and the spectral differences (Figure 6.14c) for data on February 16, 2011.
In general, the spectral differences increase with the RFI intensity. However,
the spectral differences for those observations without RFI could have the same
magnitude as those with strong RFI intensity, suggesting a need to apply the
DPCA method for RFI detection.
Figure 6.15 presents daily and accumulative RFI intensity maps at 10.65GHz

horizontal polarization channel for the period of February 5–12, 2011 around
west Europe. The exact geographical distribution of AMSR-E swath over west
Europe varies daily. The geographical areas of high RFI potential shifting with
respect to the locationwithin theAMSR-E scan suggest a fixed, directional source.
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10.65 GHz horizontal polarization during February 5–12, 2011 around Europe. (Zou et al.
2014 [173]. Reproduced with permission of American Meteorological Society.)
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RFI signals are found in areas with small satellite glint angles [6]. Strong RFI sig-
nals are not found when the strength of the TV signal is weak even if the satellite
glint angle is small.
The RFI signals are seen in the Bay of Biscay and North Sea on the east side

of those AMSR-E swaths west of 13E, the Mediterranean Sea, the Adriatic Sea
along the longitude 13E independent of AMSR-E FOVs, or on the west side
of the AMSR-E swaths east of 13E. The likely sources of these RFI signals are
broadcasting signals from European geostationary television (TV) satellites.
The European FSS satellites, such as Hot Bird 6, 7A, or 8 operated by Eutelsat1,
transmit signals within the bands from 10.7 to 12.75GHz, which are very close
to AMSR-E channels at 10.65GHz. The geostationary satellites identified as Hot
Bird 6, 7A, or 8 were positioned at 13E longitude, which are reflected off the
ocean surfaces and received together with the Earth’s passivemicrowave radiation
by AMSR-E. The RFI locations and strength are only found in the descending
pass of AMSR-E because the TV satellite signals are in the forward-looking
direction of AMSR-E. RFI signals are quite persistent for every AMSR-E overpass
with similar observation geometry, eliminating any other possibility such as
mobile-source- or weather-system-induced false alarms over the ocean.
The RFI distribution in the US coast is shown in AMSR-E 18.7GHz

(Figure 6.16). There are two DirecTV satellites, DirecTV 10 and DirecTV
11, which transmit to the United States in AMSR-E’s K-band (18.7GHz) channel.
DirecTV 10 and DirecTV 11 are positioned at 103W [175] and 99W [165],
respectively, above the equator. Both satellites use a nationwide beam for general
broadcasting and multiple spot beams for local high-definition channels. The
nationwide beam for general broadcasting operates from 18.3 to 18.6GHz, and
multiple spot beams for local high-definition channels operate from 18.6 to
18.8GHz. It is anticipated that the AMSR-E channels at 18.7GHz are interfered
with DirecTV signals reflected off the ocean surfaces around the US coastal
areas. Figure 6.16 shows daily and accumulative RFI intensity maps at 18.7GHz
horizontal polarization during February 5–12, 2011 around the United States.
The RFI-contaminated AMSR-E data are found near the east edge of the AMSR-E
swath west of 99W or 103W and on the west side of the AMSR-E swath east of
99W or 103W around the coastal areas. Such a characteristic of RFI contamina-
tion of AMSR-E data is determined by the geometric relationship between Aqua
and DirecTV satellites. Therefore, there are many RFI-free AMSR-E data over
coastal areas, depending on their scan positions.
When examining the monthly average global RFI intensity maps for AMSR-E

18.7 GHz channels for all descending portions of AMSR-E orbits during Febru-
ary 1–18, 2011, RFI signals are found only in the east coast, west coast, and Gulf
of Mexico coast. It is therefore important to separate weather signals from RFI
signals in these coastal regions beforeAMSR-Edata is used for geophysical param-
eter retrieval and data assimilation.
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6.6
Summary and Conclusions

RFI detection for satellite low-frequency microwave imager radiances over land
is extremely important before these data could be used for either geophysical
retrieval or data assimilation in numerical weather predictionmodels. In addition
to using the traditional spectral difference method, a generalized DPCA method
is utilized for detecting RFI signals in WindSat, AMSR-E, and other microwave
imagers over global areas including Greenland, Antarctic, and the United States.
A strong RFI is seen at C-band channels for both horizontal and vertical polar-

ization over Greenland. Over Antarctic, strong RFI is also found at both C- and
X-bands. The RFI signals are more populated over areas where research stations
exist over Greenland and Antarctic. Strong RFI signals are populated over the
cities of United States at the 6.8GHz horizontal polarization channel.
The DPCA works at any geographical location over the globe and on both non-

scattering and scattering surfaces. It is also tested that the double PCA can be
applied at the granule data level, offering a real-time RFI detection method before
C- and X-band data are delivered to the users.
In order to mitigate the RFI in C-band channels, two new C-band channels cen-

tered at 7.3GHz are added to the AMSR-2. These C-band channels can be used
for validating RFI signals derived from the spectral difference channels over the
United States andCentral AmericanContinents. For the case studied, a strong RFI
signal is detected at the AMSR-2 C-band channels at 6.925GHz for both horizon-
tal and vertical polarization over North America. The RFI signals are populated
near the metropolitan areas of the United States. However, the newly added C-
band channels at 7.3GHz are mostly RFI-free, except inMexico,Washington DC,
and New York. There are no RFI over Mexico at 6.925GHz for both polarization
states. The only places where RFI occurs at both C-bands of AMSR-2 are Wash-
ington DC and New York, for the horizontal polarization state. Thus, it can be
concluded that a successful mitigation of RFI is achieved in AMSR-2 observations
over the United States and Central American Continents.
RFI detection for satellite low-frequency microwave imager radiances over

ocean is challenging. The DPCA method is proposed for detecting RFI signals in
AMSR-E data over oceans. A strong RFI is visible for X- and K-band channels for
both horizontal and vertical polarization over ocean near coastal regions. Consis-
tent with the cause of the ocean RFI signals, measurements of the natural thermal
emission from AMSR-E satellite over ocean are interfered by the geostationary
satellite signals reflected off the ocean surfaces. Strong RFI signals are populated
along the east, south, and west coastal areas of the United States in the AMSR-E
K-band data in descending nodes.There are also very strong oceanic RFI signals in
theAMSR-EX-band data in theMediterranean Sea, theAdriatic Sea north of Italy,
and around Sicily. The RFI locations are also quite persistent for every AMSR-E
descending swath passing over these regions with similar observation geometry.
It is believed that the likely sources of the oceanic RFI occurrences come from the
broadcasting signals from European geostationary satellites above the equator.
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7
Microwave Remote Sensing of Surface Parameters

7.1
Introduction

Sea surface temperature (SST) and sea surface wind (SSW) are critical parameters
affecting the formation and development of tropical cyclones. Warm oceans hav-
ing temperatures greater than 26.5 ∘C are essential for the genesis of a tropical
cyclone [176, 177]. This is because only such warm water can provide sufficient
sensible and latent heats. In addition, SSWprovides an essential link of heat trans-
fer from the surface into marine boundary layer. The stronger the surface winds,
the more effective the heat transfer from the ocean [178]. For tropical systems,
the maximum SSW also indicates their intensity: a tropical depression has a max-
imum sustained surface wind of less than 17m/s, a tropical storm has at least
17m/s, and a hurricane has at least 33m/s.
SST and SSW can be observed from in situ sensors on ships, buoys, and

remotely from satellites and airborne radiometers. With satellite infrared mea-
surements, SSTs are retrieved with high accuracy (e.g., the root-mean-square
errors better than 0.5 K) under mostly clear-sky conditions. However, the
infrared retrievals become unreliable under cloudy and high aerosol condi-
tions [179–181]. By using satellite microwave measurements, the retrievals
are extended to cloudy conditions because microwave radiation emitted from
oceanic surface can penetrate through cloudy atmospheres. With the special
sensor microwave imager (SSM/I) measurements, SSW speed is derived under
clear-to-cloudy conditions [76]. Since the SSM/I frequency ranges from 19 to
85GHz and the measurements tend to be saturated by high winds, the retrievals
for wind speeds above 15m/s are rather difficult [76, 182]. Although the SSM/I
SSW algorithm is calibrated and validated using globally comprehensive buoy
data sets [151], the retrievals are applicable in rain-free atmospheres. Using the
tropical rainfall measuring mission (TRMM) tropical microwave imager (TMI)
observations, simultaneous retrievals of SST and SSW are improved primarily
under nonprecipitating conditions [183–185]. In this chapter, the retrievals
of SST and SSW in the presence of precipitating clouds are explored by using
the measurements from Earth Observing System (EOS) aqua satellite advanced
microwave scanning radiometer–EOS (AMSR-E) and Navy Coriolis WindSat.

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Remotely sensed radiation at various wavelengths has been widely used to
derive the surface temperature over land. The infrared split-window technique
for obtaining the land surface temperature is based on the fact that transmission
through atmospheres at one wavelength is closely correlated with that of a
nearby wavelength (e.g., [186, 187]). Since the surface emissivity is essentially
the same, the difference between two measurements in nearby channels is due
to differential absorption by atmospheric water vapor. Following the removal
of atmospheric effects, the land surface temperature is obtained using a priori
estimates of surface emissivity. However, the accuracy of the land surface
temperature is affected by the surface emissivity used in the algorithm. The
studies also show that the infrared emissivity may vary significantly under certain
conditions. The largest variation occurs in the spectral range of 8–10 μm. The
land surface temperature based on infrared split-window techniques is also
limited to clear-sky conditions. Microwave measurements are also used to derive
land surface properties such as soil moisture [188–190], canopy cover [191], and
surface temperature [192–194]. In comparison with the infrared methods, the
microwave measurements can provide useful information on the land surface
properties under nearly all weather conditions. One of the unique microwave
sensors used for land surface studies is the SSM/I. Here, two SSM/I Ku-band
channels are utilized for physical retrieval of land surface temperature.
In addition to the retrievals of land surface temperature, land surface emissivity

can be derived frommicrowavemeasurements [105, 107, 108, 195]. In this chapter,
an analytic scheme is used to demonstrate the process for deriving the land surface
emissivity from microwave measurements.

7.2
Remote Sensing of Ocean Surface Parameters

7.2.1
Retrievals of Surface Wind Vector

For an atmosphere in the absence of scattering and having an emission azimuthally
independent, radiative transfer equations can be simplified as [196]

Tv = 𝜀vTsΥ + Tu + (1 − 𝜀v)Td, (7.1)

Th = 𝜀hTsΥ + Tu + (1 − 𝜀h)Td, (7.2)

T3 = 𝜀3TsΥ, (7.3)

T4 = 𝜀4TsΥ, (7.4)

where Ts is the surface temperature, Tu and Td are the upwelling and downwelling
radiation, Υ = exp(−𝜏s∕𝜇) is the atmospheric transmittance, 𝜀v, 𝜀h, 𝜀3, and 𝜀4 are
the components of the surface emissivity vector. Note that the specular surface is
assumed for approximating the reflection in Eqs. (7.1–7.4). The third and fourth
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Stokes components of brightness temperatures are only contributed by the sur-
face, and they are attenuated by the atmosphere.
Eqs. (7.1–7.4) have six unknown parameters. SST is assumed to be obtained

from the operational SST product [197]; therefore, SST is treated as a known
variable. The upward and downward atmospheric radiations at frequencies lower
than 37GHz are almost identical [196] with the correlation coefficient of 0.99
and a maximum difference of 0.2 K, and thus, they are denoted as variable Ta
hereafter. This high correlation is due to the fact that most of the water vapor
locates near the surface, thereby reducing the difference between the SST and
the effective atmospheric temperature. In addition, atmospheric radiation is not
sensitive to the vertical distribution of the atmospheric temperature because the
absorption coefficient decreases slightly with temperature.Thus, the six unknown
parameters are reduced to four unknown parameters, which lead to a closure in
the physical inversion.
Using Eqs. (7.1–7.4), the inversion equations can be also derived as

⎛⎜⎜⎜⎝
Δw
Δ𝜙
ΔΥ
ΔTa

⎞⎟⎟⎟⎠
= (𝐀t𝐀 + 𝐄)−1𝐀t

⎛⎜⎜⎜⎝
ΔTv
ΔTh
ΔT3
ΔT4

⎞⎟⎟⎟⎠
, (7.5)

where

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Υ
(

Ts − Ta
) 𝜕𝜀r
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𝜕𝜀3
𝜕w

ΥTs
𝜕𝜀3
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ΥTs
𝜕𝜀4
𝜕w
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𝜕𝜀4
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7.6)

where the matrix 𝐄 represents an error matrix, depending on the measurement
and radiative transfer model errors.
The inversion equation can be solved using an iterative method. For a set of

microwave frequencies, an initial set of atmospheric and surface parameters (e.g.,
w0, 𝜙0,Ta0,Υ0) is used to calculate the brightness temperatures at the four Stokes
components. Then, the increment vector between the observed brightness tem-
peratures and simulated values are derived. The matrix 𝐀 in Eq. (7.6) can also be
calculated from the initial parameters. The emissivity gradients are derived from
the theoretical emissivity model. The increment vector is then used to determine
the change in the atmospheric and surface parameters. The iteration continues
until the retrieval converges.
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Thevariation of the Stokes vector to thewind direction is generally less than 3K.
The amplitudes of the variation for the vertically and horizontally polarized com-
ponents are about 2K.The amplitudes of the variation are about 3 and 0.5K for the
third and the fourth components of Stokes vector, respectively. For the retrieval
of the wind direction, the algorithm must be designed carefully for convergence
with accurate knowledge of instrument error and radiative transfer model errors
through the matrix 𝐄.
Since the retrieval is a nonlinear process and requires an iterative process, care-

ful selections of initial values can result in fast convergence. An initial value of
the wind speed is derived from the regression equation developed by Goodberlet
[76]. The total precipitable water vapor is based on an algorithm by Petty [182].
For the wind direction, it is found that the ratio of the third to the fourth Stokes
component can be used (see Figure 7.1). Using the two-scale emissivity model, the
wind direction is in the range of 0∘–90∘ or 270∘–360∘ when the ratio at 37GHz
is less than −4. Wind direction is within 90∘–270∘ as the ratio is greater than −2.
The phase of the third and fourth Stokes component allows for further separation
of the wind direction. The third component is typically negative in the first quad-
rant (0∘–90∘) and positive in the fourth quadrant (270∘–360∘). The fourth Stokes
component is negative in the second quadrant (90∘–180∘) and positive in the third
quadrant (180∘–270∘).Thus, the ratio of the third and the fourth components and
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Figure 7.1 Ratio of the third to fourth Stokes component versus azimuthal angle for a
local zenith angle of 53∘ . Solid, dashed–dotted, and dotted lines denote the wind speed
of 5, 10, and 15 m/s, respectively. (Liu and Weng 2003 [196]. Reproduced with permission
of Wiley.)
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themselves provides the first guess of the wind directionwith a sufficient accuracy.
If the third and fourth components are approximated as

T3 = U1sin𝜙 + U2sin2𝜙, (7.7)

T4 = V1sin𝜙 + V2sin2𝜙, (7.8)

then,

𝜙 = arccos

[
T3V1 − T4U1

2
(

T4U2 − T3V2
)
]
. (7.9)

It is important to know that this algorithm is based on radiative transfer
equation without atmospheric scattering. In the presence of large raindrops or
ice particles, brightness temperatures may be affected by particle scattering.
To quantify the raindrop-induced scattering effects, the difference between the
brightness temperatures computed from the emission-based RTM and those
from the complete radiative transfer process is calculated. Here, the vector RTM
(scattering radiative transfer model (RTM)) developed by Weng and Liu [46,
47] is used to simulate the brightness temperature in the scattering atmosphere.
The vector RTM is for a vertically stratified scattering and emitting atmosphere,
where the optical parameters for cloud drops, raindrops, and ice particles are
calculated using theMie theory [30] as discussed in Chapter 3. In our calculations,
cloud and rain water contents are vertically distributed between 3 and 6 km.
The raindrop size is distributed according to the Marshall–Palmer function
[129] with an effective diameter of 0.5mm. The brightness temperatures from
the emission-based RTM can be readily computed from the full RTM by simply
setting a zero value of single-scattering albedo at each model layer. Figure 7.2
shows the scattering effects at 6.925 and 10.65GHz, respectively. Note that scat-
tering intensity increases as frequency and liquid water increase: at 6.925GHz,
the scattering intensity of clouds and precipitation is typically small and less than
1K, whereas the magnitude at 10.65GHz can be several degrees in Kelvin. It is
concluded that under a raining atmospheric condition, the scattering effect at
10.65GHz remains important and must be taken into account in the retrievals.
The retrieval algorithm is applied to the WindSat datafor ocean wind vector

retrieval.WindSat is amicrowave polarimetric radiometer developed by theNaval
Research Laboratory and designed to demonstrate the capability of polarimetric
microwave radiometry to measure the ocean surface wind vector from space. It is
the primary payload on the WindSat/Coriolis mission, which is jointly sponsored
by the DoD Space Test Program and the U.S. Navy.The satellite was launched on a
Titan II rocket from Vandenberg Air Force Base on January 6, 2003. The environ-
mental parameters derived from WindSat include SST, total precipitable water,
integrated cloud liquid water, and rain rate over the ocean. Table 7.1 provides the
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Figure 7.2 Simulated scattering intensity of cloud/rain droplets as a function of cloud liquid
water path. (Yan and Weng 2008 [198]. Reproduced with permision of Springer.)

Table 7.1 WindSat instrument characteristics and parameters.

Frequency (GHz) Channel BW (MHz) 𝝉 (ms) NEDT EIA (∘) IFOV (km)

6.8 v, h 125 5.0 0.48 53.5 40× 60
10.7 v, h, ±45,lc,rc 300 3.5 0.37 49.9 25× 38
18.7 v, h, ±45,lc,rc 750 2.00 0.39 55.3 16× 27
23.8 v, h 500 1.48 0.55 53.0 12× 20
37.0 v, h, ±45,lc,rc 2000 1.00 0.45 53.0 8× 13

key instrument performance parameters. The 10.7, 18.7, and 37.0GHz channels
are fully polarimetric. At 6.8 and 23.8GHz, the measurements under both verti-
cal and horizontal polarization are performed. At the remaining frequencies, the
brightness temperatures are measured under vertical and horizontal polarization
as well as linear polarization of ±45∘ and circular polarization (left and right).
WindSat has a 1.8m offset antenna and 11 feed horns feeding from the antenna.

The antenna scans the Earth at various incidence angles ranging from 50 to 55∘.
The satellite orbits the Earth at an altitude of 840 km in a Sun-synchronous orbit
and completes over 14 orbits per day. The orbit and antenna geometry result in
a forward-looking swath of approximately 1000 km and an aft-looking swath of
about 350 km.The fully integratedWindSat payload stands 10 feet tall and weighs
approximately 675 lbs.
The retrieval was performed for Hurricane Isabel, which was a long-lived

hurricane that reached Category 5 status on the Saffir–Simpson Hurricane
Scale. It made landfall near Drum Inlet on the Outer Banks of North Carolina
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as a Category 2 hurricane. Isabel is considered to be one of the most significant
tropical cyclones to affect portions of northeastern North Carolina and east-
central Virginia since Hurricane Hazel in 1954 and the Chesapeake–Potomac
Hurricane of 1933. Isabel formed from a tropical wave that moved westward
from the coast of Africa on 1 September. Over the next several days, the wave
moved slowly westward and gradually became better organized. By 0000 UTC 5
September, there was sufficient organized convection for satellite-based Dvorak
intensity estimates to begin. Development continued, and it is estimated that
a tropical depression formed at 0000 UTC 6 September, with the depression
becoming Tropical Storm Isabel 6 h later.
Isabel turned west-northwestward on 7 September and intensified into a

hurricane. Strengthening continued for the next 2 days while Isabel moved
between west-northwest and northwest. Isabel turned westward on September
10 and maintained this motion until September 13 on the south side of the
Azores–Bermuda High. Isabel strengthened to a Category 5 hurricane on
September 11, with maximum sustained winds estimated at 145 kt at 1800 UTC
that day. After this peak, the maximum winds remained in the 130–140 kt range
until September 15. During this time, Isabel displayed a persistent 35–45 n mi
diameter eye.
WindSat observed hurricane Isabel on September 13 as it entered its mature

stage. As shown in Figure 7.3, Isabel surface vortex can be detected clearly by
its third Stokes component as its magnitude changes from negative to positive.
Retrieved wind vector from 10.7GHz recovers all the wind vectors in relation to
surface cyclonic circulation.

7.2.2
Simultaneous Retrieval of Sea Surface Temperature and Wind Speed

Microwave remote sensing of SST is primarily based on the measurements per-
formed at lower frequencieswhere atmospheric scattering can be neglected.How-
ever, it is shown in Figure 7.4 that an increase in scattering and emission from
large raindrops can result in an increase in brightness temperatures at 6.925 and
10.65GHz by several degrees in Kelvin under severe weather conditions. These
effects should be taken into account in the retrieval process.
The effects of nonspecular surface on the reflection term in Eq. (3.42) can also

be included. Note that Ω is derived by Wentz [51] for AMSR-E instrument as

Ωv = [2.5 + 1.8 × 10−2(3.7 × 101 − 𝜈)][Δ2 − 7.0 × 101Δ𝜎6]Υ3.4, (7.10)

and

Ωh = [6.2 − 1.0 × 10−3(3.7 × 101 − 𝜈)2][Δ2 − 7.0 × 101Δ𝜎6]Υ2, (7.11)

where

Δ𝜎2 = 5.22 × 10−3[1.0 − 7.48 × 10−3(3.7 × 101 − 𝜈)1.3], 𝜈 < 37 GHz. (7.12)
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Using Eqs. (7.10–7.12), we can estimate the reflection magnitude contributed
from nonspecular surfaces at 6.925 and 10.65GHz. For amoderate wind of 10m/s
and relatively heavy raining atmosphere, Ωv at 6.925GHz is about 0.04 and Ωh is
0.09, which result in an increase of about 0.40 and 1.28K in V- and H-polarized
brightness temperatures, respectively, while at 10.65GHz,Ωv, h are about 0.05 and
0.11, respectively, which result in an increase of about 0.89 and 3.18K in V- and
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Figure 7.4 Sensitivity of brightness temperatures at 6.9 and 10.7 GHz of (a) v-Pol and
(b) h-Pol for nonraining and heavy raining clouds versus sea surface temperature. Cloud liq-
uid water path is 0.1 mm for nonraining clouds and 5 mm for heavy raining clouds. Surface
wind speed is assumed to be 10 m/s. (Yan and Weng 2008 [198]. Reproduced with permi-
sion of Springer.)

H-polarized brightness temperatures, respectively.The contribution to brightness
temperatures increases as the wind speed increases.
From Eq. (3.44), brightness temperatures at lower microwave frequencies are

derived as a function of SST and emissivity.The emissivity is a function of surface
wind and can be further used to retrieve wind speed. In general, brightness
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temperature increases as surface temperature increases. For example, the
vertically polarized brightness temperature at 6.925GHz can increase by 10–20K
as the surface temperature varies from 280 to 300K. However, the sensitivity of
brightness temperatures to SST decreases as atmospheric cloud water increases
(see Figure 7.4). Thus, in SST retrieval, the correction for atmospheric emission
at 10GHz or higher is still significantly important for achieving a high accuracy.
To formulate a closure of equations for a set of retrieval unknowns, we utilize

dual-polarization measurements from 6.925 and 10.65GHz, which are the four
AMSR-E channels. Using an approach similar toWindSat retrieval, we can derive

⎛⎜⎜⎜⎝
Δw
ΔTs
ΔTa6
ΔTa10

⎞⎟⎟⎟⎠
= (𝐀t𝐀 + 𝐄)−1𝐀t

⎛⎜⎜⎜⎝
ΔTv6
ΔTh6
ΔTv10
ΔTh10

⎞⎟⎟⎟⎠
, (7.13)

where 𝐀 is a 4 × 4 matrix, and its elements are the partial derivatives of bright-
ness temperatures relative to surface temperature and wind speed, atmospheric
emission components at 6.925 and 10.65GHz [198], which are

a11 = 𝜀v6Υ6 + Υ6[Ts − Ta6(1 + Ωv6)]
𝜕𝜀v6
𝜕Ts

, (7.14a)

a12 = Υ6[Ts − Ta6(1 + Ωv6)]
𝜕𝜀v6
𝜕w

+ (1 − 𝜀v6)Υ6Ta6
𝜕Ωv6
𝜕w

, (7.14b)

a13 = 1 + (1 − 𝜀v6)Υ6

(
1 + Ωv6 + Ta6

𝜕Ωv6
𝜕Ta6

)

+ [𝜀v6Ts + (1 − 𝜀v6)Ta6(1 + Ωv6)]
𝜕Υ6
𝜕Ta6

, (7.14c)

a14 = 0, (7.14d)

a21 = 𝜀h6Υ6 + Υ6[Ts − Ta6(1 + Ωh6)]
𝜕𝜀h6
𝜕Ts

, (7.14e)

a22 = Υ6[Ts − Ta6(1 + Ωh6)]
𝜕𝜀h6
𝜕w

+ (1 − 𝜀h6)Υ6Ta6
𝜕Ωh6
𝜕w

, (7.14f)

a23 = 1 + (1 − 𝜀h6)Υ6

(
1 + Ωh6 + Ta6

𝜕Ωh6
𝜕Ta6

)

+ [𝜀h6Ts + (1 − 𝜀h6)Ta6(1 + Ωh6)]
𝜕Υ6
𝜕Ta6

, (7.14g)

a24 = 0, (7.14h)

a31 = 𝜀v10Υ10 + Υ10[Ts − Ta10(1 + Ωv10)]
𝜕𝜀v10
𝜕Ts

, (7.14i)

a32 = Υ10[Ts − Ta10(1 + Ωv10)]
𝜕𝜀v10
𝜕w

+ (1 − 𝜀v10)Υ10Ta10
𝜕Ωv10
𝜕w

, (7.14j)
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a33 = 0, (7.14k)

a34 = 1 + (1 − 𝜀v10)Υ10

(
1 + Ωv10 + Ta10

𝜕Ωv10
𝜕Ta10

)

+ [𝜀v10Ts + (1 − 𝜀v10)Ta10(1 + Ωv10)]
𝜕Υ10
𝜕Ta10

, (7.14l)

a41 = 𝜀h10Υ10 + Υ10[Ts − Ta10(1 + Ωh10)]
𝜕𝜀h10
𝜕Ts

, (7.14m)

a42 = Υ10[Ts − Ta10(1 + Ωh10)]
𝜕𝜀h10
𝜕w

+ (1 − 𝜀h10)Υ10Ta10
𝜕Ωh10
𝜕w

, (7.14n)

a43 = 0, (7.14o)

a44 = 1 + (1 − 𝜀h10)Υ10

(
1 + Ωh10 + Ta10

𝜕Ωh10
𝜕Ta10

)

+ [𝜀h10Ts + (1 − 𝜀h10)Ta10(1 + Ωh10)]
𝜕Υ10
𝜕Ta10

, (7.14p)

where the derivatives of emissivity relative to wind speed and surface tempera-
tures can be calculated using ocean emissivity models as discussed in the previous
section, and the derivatives of Ω relative to wind speed and transmittance Υ are
obtained as

𝜕Ω
𝜕Ta

= 𝜕Ω
𝜕Υ

•
𝜕Υ
𝜕Ta

, (7.15)

where at lower frequencies,

Υ = d0 + d1Ta. (7.16)

Since the retrieval is also a nonlinear process, initial values of atmospheric
upwelling and downwelling radiation, Ta , at 6.9 and 10.7GHz and surface wind
are estimated from brightness temperatures, whereas the initial guess of SST is
derived from dual polarization at 6.925GHz with

Ts =
1

1 − C
Tv −

C
1 − C

Th, (7.17)

C =
1 − 𝜀v
1 − 𝜀h

.

The algorithm is applied for the AMSR-E data on board the EOS Aqua satellite,
whichwas launched onMay 4, 2002. AMSR-E providesmicrowave observations at
frequencies ranging from 6.925 to 89GHz (see Table 7.2). Its antenna has an aper-
ture of 1.6m and rotates continuously about an axis parallel to the local spacecraft
vertical at 40 revolutions per minute (rpm). At an altitude of 705 km, it measures
the upwelling scene brightness temperatures over an angular sector of±61∘ about
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Table 7.2 AMSR-E instrument characteristics and parameters.

Frequency (GHz) Channel BW (MHz) 𝝉 (ms) NEDT EIA (∘) IFOV (km)

6.925 v, h 350 2.6 0.3 55 43× 74
10.65 v, h 100 2.6 0.6 55 30× 51
18.7 v, h 200 2.6 0.6 55 16× 27
23.8 v, h 400 2.6 0.6 55 18× 31
36.5 v, h 1000 2.6 0.6 55 8× 14
89.0 v, h 3000 1.3 1.1 54.5 4× 6

the subsatellite track, resulting in a swath width of 1445 km. During a period of
1.5 s, the spacecraft subsatellite point travels 10 km. Even though the instanta-
neous field of view for each channel is different, active scene measurements are
recorded at equal intervals of 10 km (5 km for the 89GHz channels) along the
scan. The half-cone angle at which the reflector is fixed is 47.4∘, which results in
an Earth incidence angle of 55.0∘.
AMSR-E’s calibration system has a cold mirror that provides a clear view of

deep space (a known temperature of 2.7 K) and a hot reference load that acts as
a blackbody emitter; its temperature is measured by eight precision thermistors.
After launch, large thermal gradients due to solar heating developed within the
hot load, making it difficult to determine the average effective temperature from
the thermistor readings or the temperature displayed on the radiometer. The hot
load temperature is not uniform or constant, and empirical calibration methods
are developed. The radiometer calibration accuracy budget, exclusive of antenna
pattern correction effects, is composed of three major contributors: warm-load
reference error, cold-load reference error, and nonlinearity and errors with
radiometer electronics. The total sensor bias error ranges from 0.66K at 100K to
0.68K at 250K.
NOAA receives AMSR-E level 1B data from NASA Distributed Active Archive

Center (DAAC). The data was so far mainly used to test the new algorithm
developments. Figure 7.5 displays the global SST retrievals from newly developed
algorithms. Note that over high latitudes, SST retrievals are not reliable because
of the persistent sea ice cover. Overall, global SST distribution is not affected by
clouds and precipitation.
The AMSR-E SST algorithm is validated with in situ measurements from

National Data Buoy Center (NDBC). The NDBC moored buoy stations are
deployed mostly in the coastal and offshore water from the western Atlantic to
the Pacific Ocean around Hawaii and from the Bering Sea to the South Pacific.
NDBC’s moored buoys measure barometric pressure; wind direction, speed, and
gust; air and sea temperature; and other sea parameters. The time resolution of
these measurements is 1 h. Since the continuous wind measurements associated
with Coastal-Marine Automated Network (C-MAN) sites also provide six
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(a) SST Derived from AMSRE Measurements at 6.925 and 10.65 GHz
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Figure 7.5 Sea surface temperature derived from EOS Aqua AMSR-E using brightness tem-
peratures at 6.925 and 10.65 GHz.

10-min average values of wind speed and direction reported each hour, the
time resolution of the wind speed used in our validation is 10min. Buoy mea-
surements of SST and SSW from May to October (a season with hurricane of
high occurrence) of 2004 and 2005 are matched with AMSR-E observations of
brightness temperatures. In the match process, the AMSR-E measurements near
the coasts and contaminated by land are first removed. The differences in the
buoy and AMSR-E time and location (latitude and longitude) are smaller than or
equal to 10min and 0.5∘, respectively, where we assume that the ocean surface
temperature is the same within 1 h. There are totally 21 754 of matchup data sets
between AMSR-E and buoy measurements including clear and cloud weather
conditions.
Figure 7.6 displays the comparisons of the SST retrieved from these AMSR-E

matchup data under both clear and cloud weather conditions, respectively. The
retrieved SST is plotted through its mean value. The sample interval of the buoy
SST measurement is 0.5 K. The number of the retrieved SST corresponding to a
certain buoy SSTmeasurement varies fromhundreds to thousands. It is noted that
the algorithms show a better retrieval accuracy of SST at higher SST than at lower
SST. For example, over areas where SSTs are greater than 295K, the correspond-
ing RMS error is around 1K. This is primarily due to relatively higher sensitivity
of brightness temperatures to SST over warm oceans. Overall, the algorithms pro-
duce an RMS error of 1.5 K in SST under all conditions including clear and clouds
for the SST ranging between 275 and 300K.
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Figure 7.6 Sea surface temperature derived from EOS Aqua AMSR-E using brightness tem-
peratures at 6.925 and 10.65 GHz validated against the NDBC Buoy data under all weather
conditions. (Yan and Weng 2008 [198]. Reproduced with permision of Springer.)

7.3
Remote Sensing of Land Surface Parameters

7.3.1
Retrievals of Land Surface Temperature

Using the emission-based radiative transfer approximation (see Eq. 3.44), the
brightness temperature measured from the satellite consists of three radiative
components: (i) upwelling radiation emitted by the atmosphere; (ii) surface-
emitted radiation attenuated by the atmosphere; and (iii) downwelling radiation
from the atmosphere and cosmic background reflected by the surface and
attenuated by the atmosphere. At frequencies when the atmospheric absorption
resides in the lower troposphere, the atmosphere can be considered isothermal
(Tm) so that brightness temperature can also be expressed as Eq. (3.44). For a
specular surface,

Tb = Ts[1 − (1 − 𝜀)Υ2] − ΔT(1 − Υ)[1 + (1 − 𝜀)Υ], (7.18)

where ΔT = Ts − Tm, which is the difference between the surface temperature
and the isothermal atmospheric temperature. Responses of brightness temper-
atures to surface and atmospheric variables are shown in Figure 7.7. For a sur-
face emissivity of 0.95, brightness temperature decreases slowly with increasing
atmospheric transmittance. At a lower emissivity (0.90), brightness temperature
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Figure 7.7 Brightness temperature versus (a) transmittance, (b) surface-air temperature dif-
ference, (c) surface emissivity, and (d) surface temperature. (Weng and Grody 1998 [194].
Reproduced with permission of Wiley.)

decreases rapidly with transmittance. Thus, microwave measurements under low
emissivity conditions are primarily used for retrieval of atmospheric parameters
such as cloud liquid and water vapor. However, for a blackbody, the brightness
temperature increases with increasing transmittance. The minimal variation of
brightness temperature occurs for an emissivity near 0.95, which is the average
value of surface emissivity at 20GHz for a dry land [118].
Figure 7.7b shows the sensitivity of the brightness temperature toΔT . The vari-

able ΔT depends on the surface–air temperature difference in the atmospheric
boundary layer. Positive values ofΔT as large as 20K correspond to strong supera-
diabatic conditions, while small or negative values are associatedwith temperature
inversion that may be caused, for example, by the long-wave radiative cooling at
night. For the three surface emissivity values (0.90, 0.95, and 1.00), the brightness
temperature varies within a range of 5K.
Figure 7.7c,d shows that the brightness temperature increases linearly with

increasing surface emissivity and temperature, respectively. The brightness tem-
perature variability over land is therefore primarily due to the changes in surface
emissivity and temperature, with minimal effects due to transmittance variations.
For example, over deserts where the soil moisture (i.e., emissivity) varies little
with time, the brightness temperature variability is mainly driven by changes
in the surface temperature. In general, brightness temperature measurements
at a single frequency cannot differentiate between the changes due to surface
temperature or emissivity. Multisensor techniques using microwave and infrared
information measurements have been used to determine emissivity and surface
temperature [199].
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From radiative transfer simulations, it is found that the second term on the
right-hand side of Eq. (7.18) is indeed insensitive to emissivity and can be param-
eterized primarily in terms of total precipitable water, V. The impact of clouds is
also negligible for low microwave frequencies. This results in

Tb = Ts[1 − (1 − 𝜀)Υ2] − 𝛾V , (7.19)

where 𝛾 is a constant that depends on the frequency. Apparently, brightness tem-
peratures obtained at two nearby frequencies can be used to derive the surface
temperature after the emissivity is eliminated. For an optimum retrieval of surface
temperature, the surface emissivity should be similar, and the atmospheric emis-
sion should be significantly different for both frequencies. This requires the use
of the SSM/I measurements at 19.35 and 22.235GHz because both frequencies
are located at different regions near the 22GHz water vapor line. The emissivity
values for both frequencies are very similar from the in situ measurements near
20GHz [118]. Using the measurements at 19.35 and 22.235GHz with the vertical
polarization (TB19v, TB22v), we obtain the relationship

Ts − TB19v − 𝛾19V
Ts − TB22v − 𝛾22V

=
(Υ19
Υ22

)2

, (7.20)

where Υ19 and Υ22 are the atmospheric transmittances at 19.35 and 22.235GHz,
respectively; Υ19 = 0.047; and Υ22 = 0.136.
Owing to the stronger water vapor absorption at 22.235GHz, its atmospheric

transmittance is smaller than that at 19.35GHz. The transmittance ratio in Eq.
(7.20) is only a function of the total precipitable water. This can be illustrated as
follows:

Υ𝜈 = Υ𝜈(oxygen)Υ𝜈(vapor)Υ𝜈(cloud), (7.21a)

where the transmittance of oxygen and clouds is nearly the same at both 19.35 and
22.235GHz, and the transmittance of water vapor is exponentially related to the
precipitable water

Υ19 = Υ𝜈(oxygen)Υ𝜈(cloud) exp(−V∕V19), (7.21b)

Υ22 = Υ𝜈(oxygen)Υ𝜈(cloud) exp(−V∕V22), (7.21c)

where V19 = cos(𝜃)∕𝜅19 and V22 = cos(𝜃)∕𝜅22. Here, 𝜃 is the local zenith angle and
53.1∘ for SSM/I. 𝜅19 and 𝜅22 are themeanwater vapormass absorption coefficients
at 19.35 and 22.235GHz, respectively, and they can be derived from the slopes
of regression relationships between microwave optical thickness and precipitable
water. Combining Eqs. (7.20) and (7.21) yields

Ts − TB19v − 𝛾19V
Ts − TB22v − 𝛾22V

= ecV , (7.22)



7.3 Remote Sensing of Land Surface Parameters 193

where c = 2(1∕V22 − 1∕V19) = 1∕42357 × 10−2. Thus,

Ts = [ecV (TB22v + 𝛾22) − (TB19v + 𝛾19V )]∕(ecV − 1). (7.23)

Thus, for accurate remote sensing of surface temperature, it is important to know
the atmosphere total precipitablewater vapor,V . Typically, it can be approximated
from numerical weather prediction (NWP) model. Notice that under some land
conditions, the total precipitable water correlates well with the surface tempera-
ture. For example, the measurements from the First International Satellite Land
Surface Climatology Project (ISLSCP) Field Experiment (FIFE) over Konza Prairie
show these two variables can be fitted well [194]

V = 108.2bea(Ts−288), (7.24)

where a = 0.064 K−1 and b is dependent on the surface relative humidity and the
shape of the water vapor profile. Under dry conditions (smaller b), precipitable
water is less affected by Ts, when the temperature is less than 300K. Under moist
conditions (larger b), the precipitable water rapidly increases as the surface tem-
perature rises. Thus, Eqs. (7.23) and (7.24) formulate a closure for retrieving the
surface temperatures using microwave split-window technique.
It is also important to understand the retrieval accuracy when Eq. (7.23) is

applied for in situ SSM/I measurements. Owing to the difficulty in obtaining
global temperatures measured at the ground, we use the routine temperature
observations made at 1.2-m shelter heights. Using the shelter air temperatures
to test the algorithm results in errors due to the differences between the surface
and shelter-height air temperatures. In particular, for the regions where a large
lapse rate occurs near the surface (e.g., either superadiabatic or inversion), the
shelter-height temperature can deviate significantly from the surface tempera-
ture. As the FIFE data indicated, the difference between the shelter and surface
temperatures is found to be minimum in the morning and typically less than
a couple of degrees [200], which is not strongly affected by the atmospheric
conditions (dry and wet). This means that the shelter air temperature in the
morning can be used to closely approximate the land surface temperature. To
illustrate this fact, Figure 7.8 displays the seasonal variation of the difference
between the surface and shelter air temperatures over the FIFE regions. The four
time periods shown here correspond to the local times at which the current
SSM/I sensor passes over the local area. At 0600 LT, the difference typically
varies between −2 and 2K. At 1000 LT, it becomes predominately positive, which
means that the surface temperature becomes warmer than the air temperature.
This is due to the initial heating of solar radiation on the surface. The difference
becomes more negative at 1800 LT, which results from the long-wave radiation
cooling at the surface. At 2200 LT, the difference is less negative and moves
toward the smallest difference, which typically occurs in the morning. For this
validation study, the SSM/I measurements were matched with the shelter-height
air temperatures at 0600 LT. The entire 1993 hourly global surface observational
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Figure 7.8 The difference between skin surface and shelter-height air temperatures at (a)
0600 LT, (b) 1000 LT, (c) 1800 LT, and (d) 2200 LT, for the FIFE region. The smallest difference
occurs in the morning at about 0600–0800 LT. (Weng and Grody 1998 [194] Reproduced
with permission of Wiley.)

data set was obtained from the National Climate Data Center. To maximize the
use of surface and satellite observations, we allow certain spatial and temporal
displacements in the matchup procedure. In particular, the geophysical locations
between the surface and SSM/I measurements are limited to within 15 km, and
the time difference should be less than 30min.
The data are also filtered for heavy precipitation and deep snow-covered

surfaces since these conditions can affect low-frequency measurements. These
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conditions are identified using a scattering index (SI), which is a brightness
temperature difference between 22.235 and 85.5GHz over land [201]. The SI
exceeding 15K indicates moderate-to-heavy precipitation or significant snow
cover on the ground. As mentioned previously, the initial value (or the first
guess) of surface temperature for the Newtonian iterative solution of Eq. (7.22) is
obtained using the vertically polarized brightness temperature at 85.5GHz.
With no correction being made for atmospheric emission and scattering, the

first guess is given by

Ts0 = TB85v∕𝜀85v (7.25)

whereTB85v is the brightness temperature and 𝜀85v = 0.955, which are similar to in
situ measurements [118]. Figure 7.9a shows that the first guess correlates with the
shelter air temperature, especially for the higher temperature conditions (>280K),
but has an RMS error of 6.22K. The measurements with the triangle symbols are
obtained from the scattering conditions excluding heavy precipitation and deep
snow-covered surfaces, whereas those with the plus signs are from the nonscat-
tering conditions. Apparently, the first guess estimates the surface temperatures
very well for the nonscattering conditions, with large biases occurring under the
scattering conditions.
The iterative solution of Eq. (7.22) converges very fast as soon as the first guess

based on Eq. (7.25) has a bias less than 15K from the actual surface temperature.
As shown in Figure 7.9b, the retrieved surface temperatures correlate with the
surface measurements very well. In general, the data points (plus signs) identi-
fied as nonscattering conditions converge more to the 1 : 1 line. In particular, the
large errors of the first guess caused by the scattering (triangle) become much
smaller for most cases. This significant improvement is achieved with the use of
low frequencies, which have negligible scattering effects.

7.3.2
Retrieval of Land Surface Emissivity

Direct microwave emissivity measurements are not available under various land
surface conditions. Thus, the “truth” emissivity must be also derived from the
retrievals, which requires accurate knowledge of atmospheric emission, surface
temperature, and surface types. From Eq. (3.44), we have

𝜀 =
Tb − Tu − (Td + Tc)(1 + Ω)Υ
[Ts − (Td + Tc)(1 + Ω)]Υ

, (7.26)

where the transmittance, upwelling, and downwelling radiation are calculated
from the temperature and water vapor profiles. Here, we use NWP analysis of the
profiles four times a day. Even over areas where the radiosonde measurements
are sparsely distributed or not available, the Global Data Assimilation System
(GDAS) still performs the analysis based on physical parameterization using the
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Figure 7.9 The surface temperature retrieved from the physically based retrieval using SSM/I
brightness temperatures at 19.35 and 22.235 GHz in comparison with the shelter air temper-
atures in the morning (0600 LT): (a) the first guess based on vertically polarized brightness
temperature at 85.5 GHz and (b) the iterative solution using the Newtonian method. The tri-
angles in both figures represent the measurements having a scattering index greater than
5 K, which is most likely due to precipitation or surface snow. (Weng and Grody 1998 [194]
Reproduced with permission of Wiley.)
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numerical weather predictionmodel. However, since the GDAS does not produce
cloud parameters such as liquid and ice water content, the computed parameters
contain larger errors under cloudy conditions.
Brightness temperatures from DMSP SSM/I are utilized to estimate land sur-

face emissivity using Eq. (7.26). The contributions to SSM/I measurements from
the atmospheric emission and surface temperature are first removed using an
emission-based radiative transfer equation. This is typically referred to as “truth”
emissivity if the correction from atmosphere is performed very accurately.
The SSM/I instrument consists of an offset parabolic reflector of dimen-

sions 24× 26 in., fed by a corrugated, broadband, seven-port horn antenna.
The reflector and feed are mounted on a drum that contains the radiometers,
digital data subsystem, mechanical scanning subsystem, and power subsystem.
The reflector–feed–drum assembly is rotated about the axis of the drum by
a coaxially mounted bearing and power transfer assembly (BAPTA). A small
mirror and a hot reference absorber are mounted on the BAPTA and do not
rotate with the drum assembly. They are positioned off axis such that they pass
between the feed horn and the parabolic reflector, occulting the feed once each
scan. The mirror reflects the cold sky radiation into the feed, thus serving, along
with the hot reference absorber, as calibration reference for the SSM/I. This
scheme provides an overall absolute calibration that includes the feed horn.
Corrections for spillover and antenna pattern effects from the parabolic reflector
are incorporated in the data processing algorithms.
The SSM/I rotates continuously about an axis parallel to the local spacecraft ver-

tical at 31.6 rpm and measures the upwelling scene brightness temperatures over
an angular sector of 102.4∘ about the subsatellite track.The scan direction is from
the left to the right when looking in the forward (F10, F11) or aft (F8) direction
of the spacecraft with the active scene measurements lying ±51.2∘ about the for-
ward (F10, F11) or aft (F8) direction.This results in a swathwidth of approximately
1400 km.The spin rate provides a period of 1.9 s during which the spacecraft sub-
satellite point travels 12.5 km. During each scan, 128 discrete uniformly spaced
radiometric samples are taken at the two 85GHz channels, and on alternate scans,
64 discrete samples are taken at the remaining five lower frequency channels.The
antenna beam intersects the Earth’s surface at an incidence angle of 53.1∘ as mea-
sured from the local Earth normal (see Table 7.3).
The retrievals of seven channel emissivity were performed from F13 SSM/I

for each descending orbit and were then averaged in March of 1999. Retrievals

Table 7.3 SSM/I instrument characteristics and parameters.

Frequency (GHz) Channel BW (MHz) 𝝉 (ms) NEDT (K) EIA (∘) IFOV (km)

19.35 v, h 250 7.9 0.6 53.1 43× 69
22.235 v 250 7.9 0.6 53.1 40× 60
37.0 v, h 1000 7.9 0.6 53.1 28× 37
85.5 v, h 1500 3.89 1.1 53.1 13× 15
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are not performed over areas where atmospheres are identified with clouds and
precipitation. An SI [201] is used to detect rain-bearing clouds.

SI = F − TB85v (7.27)

where F represents the brightness temperature from the scattering-free clouds
and can be estimated from SSM/I lower frequencies as

F = 256.2 − 0.375 × TB19 − [0.20 − 0.00217 × TB22]TB22 (7.28)

The index used in Eq. (7.28) can also be very large for surface media such as
snow, sea ice, and deserts. Some additional checks must be performed through
the polarization index for the separation of surface scattering from that from the
atmospheric clouds.
Figure 7.10 shows the mean monthly emissivity at three SSM/I frequencies

(19.35, 22.235, and 85.5GHz) for March 1999. Several pronounced features in
global emissivity are seen from this SSM/I emissivity atlas. First, the emissivity
over desert is highly polarized at all three SSM/I frequencies with the largest at
19.35GHz. The emissivity decreases as frequency increases (Figure 7.10). Snow
over Greenland and Antarctic also displays a similar characteristic.
Deserts over North Africa and Northwestern China display the largest polar-

ization difference at lower frequencies (see Figure 7.11). A main reason may be
smaller roughness. It is also shown that the polarization difference decreases as
frequency increases.

7.3.3
Error Sensitivity of Land Surface Emissivity

Note that the retrieval is most accurate for the microwave window channels since
these measurements are least affected by the atmospheric absorption, emission,
and scattering (due to precipitation). However, as previously discussed [105],
inaccurate profiles can still result in some retrieval errors. Additional errors can
be associated with inaccurate surface temperature and inaccuracies of the water
vapor absorption model. The total error in the retrieved emissivity at frequencies
lower than 37GHz was found to be generally less than 1% when using the Special
Sensor Microwave Imager [105]. This error, however, increases as the surface
wetness and atmospheric moisture content increase. The emissivity sensitivity
can be generally derived from Eq. (7.26) as follows:

𝛿𝜀

𝜀
≈ −

𝛿Tb
Tb

(
1 +

Tu + TdΥ
Tb

)
, (7.29)

where Ω effect is neglected in this analysis.
It is seen that the errors in brightness temperatures are directly related to

the emissivity errors. The errors of brightness temperatures are most likely
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19v

37v

85v

Figure 7.10 Global monthly (March 1999) mean emissivity at 19.35, 37 and 85.5 GHz
retrieved from special sensor microwave imager (SSM/I).

related to the instrument calibration process. An increase in noises and biases in
brightness temperatures may be from improper along-track averaging, inaccurate
spillover correction, ignorance in nonlinear correction, and degradation of
onboard calibration targets. This is an outstanding problem in conical scanning
instruments because of a lack of end-to-end calibration. The conversion from
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19v

37v

85v

Figure 7.11 Global monthly (March 1999) mean polarization difference in emissivity at
19.35, 37, and 85.5 GHz retrieved from special sensor microwave imager (SSM/I).

antenna to sensor brightness temperatures is several degrees in magnitude at
lower frequencies. Such conversion results in the spectra shift from the emission-
to scattering-type brightness temperatures for most of land surfaces. Prigent et al.
[105] estimated the range of these errors. A typical value of 0.6 K of radiometric
noise in brightness temperature would induce small uncertainties in retrieved
emissivity. Our analytic result shows that an error of 1% in Tb results in more than



7.3 Remote Sensing of Land Surface Parameters 201

15

10

E
m

is
si

vi
ty

 r
el

at
iv

e 
er

ro
r 

(%
)

5

0

1

0.8

0.6

0.4

0.2

0

0 2 4

Surface temperature relative error (%)

6 8 10

19 GHz 22 GHz

92 GHz

150 GHz

37 GHz

50 GHz

E
m

is
si

vi
ty

 r
el

at
iv

e 
er

ro
r 

(%
)

0 2 4

Surface temperature relative error (%)

6 8 10

19 GHz 22 GHz

92 GHz

150 GHz

37 GHz

50 GHz

Figure 7.12 Emissivity error sources from water vapor and surface temperature.

1% error in emissivity, depending upon the upwelling and downwelling radiation.
In tropical atmospheres where these two components are larger, the errors in Tb
can be amplified (see Figure 7.12).
Under clear atmospheric conditions, most of the errors are related to uncer-

tainty in surface temperatures and atmospheric temperature profiles that are used
to calculate the atmospheric emission and transmittance.

𝛿𝜀

𝜀
≈ −

𝛿Ts
Ts

(
1 +

Td
Ts

)
, (7.30)

and

Δ𝜀
𝜀

= −ΔΓ
Γ

[
1 +

Td + T ′
u + T ′

dΓ(
Ts − Td

)
𝜀

−
T ′

dΓ
(Ts − Td)

]
, (7.31)

respectively. In particular, 1% error in the surface temperature would result in less
than 1% error in land emissivity. The error from water vapor results in the largest
error in emissivity at 22V that is located at the water vapor absorption line.
In a cloudy atmosphere, the emission-based radiative transfer model becomes

less accurate. As shown in Figure 7.13, the errors increase significantly at higher
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Figure 7.13 Emissivity errors under cloudy and precipitation conditions.

frequencies. The errors can be of several percent. In a raining atmosphere, the
error can be as large as 50–60% at 150GHz if the retrieval process does not con-
sider the scattering from precipitating hydrometeors.

7.3.4
Fast Land Emissivity Algorithms

Since global temperature and water vapor profiles are not always available,
the atmospheric upwelling and downwelling effects in Eq. (7.26) are not read-
ily derived. Thus, the land surface emissivity algorithm can be derived from
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Figure 7.14 Regression-type emissivity retrieval from SSM/I brightness temperatures over
land and its performance against the physical retrieval from the emission-based radiative
transfer model.

regression against the “truth” (see Figure 7.14). The truth is a training data set
from the analytical retrievals. From SSM/I seven channels, the land emissivity at
each SSM/I channel is expressed as

𝜀j = a0 +
7∑

i=1
(a1,iTb,i + a2,iT2

b,i), (7.32)

where j = 1, 7. This formula is applied to the prediction of the emissivity at all of
seven SSM/I channels with a different set of coefficients as shown in Table 7.4.
The emissivity at seven SSM/I channels can be retrieved under various land con-
ditions.
Surface emissivity over land is modulated by many surface parameters such

as vegetation, topography, flooding, and snow and, thus, contains information
on the surface properties. The surface emissivity spectra express the differences
in the surface properties. Here, the monthly mean land emissivity is computed
using Eq. (7.32) at seven SSM/I channels for 10 years and a group of monthly
mean emissivity spectra are analyzed over nine different surface conditions.
The nine surface conditions are classified as (i) dense vegetation (jungle), (ii)
agricultural/rangeland vegetation, (iii) arable soil (dry), (iv) soil (moist surface),
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Table 7.4 Coefficients in SSM/I emissivity retrieval algorithms, channel order, 19v, 19h, 22v,
37v, 37h, 85v, 85h.

𝜺19v 𝜺19h 𝜺22v 𝜺37v 𝜺37h 𝜺85v 𝜺85h

a0 −1.20E-01 −1.45E-01 −1.02E-01 −2.16E-01 −2.08E-01 −2.31E-01 −2.63E-01
a11 5.57E-03 8.55E-04 −3.00E-03 −1.05E-03 −2.01E-03 −4.99E-03 −6.45E-03
a12 2.98E-06 5.46E-06 1.93E-05 7.75E-06 1.07E-05 2.30E-05 3.02E-05
a13 7.05E-01 1.15E-02 9.81E-03 7.21E-03 7.05E-03 9.97E-03 1.08E-02
a14 −1.44E-05 −1.57E-05 −2.21E-05 −1.44E-05 −1.45E-05 −2.21E-05 −2.49E-05
a15 −3.59E-03 −3.57E-03 1.54E-03 −3.98E-03 −3.20E-03 −3.19E-03 −2.28E-03
a16 −9.27E-06 −9.88E-06 −1.87E-05 −8.78E-06 −1.10E-05 −1.92E-05 −2.55E-05
a17 2.63E-03 2.25E-03 2.33E-03 9.97E-03 4.85E-03 5.86E-03 4.15E-03
a21 1.17E-06 9.04E-07 1.84E-06 −4.00E-06 −3.37E-06 −4.48E-06 −1.13E-06
a22 −3.78E-03 −3.19E-03 −3.83E-03 −3.96E-03 1.39E-03 −4.40E-03 −3.04E-03
a23 7.37E-06 7.23E-06 9.78E-06 7.09E-06 6.08E-06 1.02E-05 9.00E-06
a24 7.06E-03 5.16E-03 9.56E-03 7.85E-03 5.85E-03 1.24E-02 1.05E-02
a25 −1.66E-05 −1.15E-05 −2.18E-05 −1.88E-05 −1.36E-05 −1.73E-05 −2.35E-05
a26 −7.09E-03 −5.02E-03 −8.43E-03 −7.60E-03 −5.58E-03 −6.78E-03 −4.34E-03
a27 1.40E-05 8.35E-06 1.59E-05 1.56E-05 1.02E-05 1.23E-05 1.73E-05

(v) semiarid surface, (vi) desert, (vii) composite vegetation and water, (viii)
composite soil and water/wet soil surface, and (ix) snow, by using a classification
algorithm [202] from SSM/I measurements. Table 7.5 lists mean emissivity spec-
tra and polarization differences at SSM/I frequencies under these nine surface
conditions that are calculated by averaging the monthly mean emissivity spectra
for 10 years. It is shown that the polarization difference is sensitive to surface
type. Vegetated land produces a smaller polarization difference.This is consistent
with our knowledge that a smaller polarization difference implies that the region
is heavily vegetated region and the most noticeable low maximum polarization

Table 7.5 Mean emissivity spectra for two polarizations and mean emissivity polarization
difference under nine different surface conditions.

Type 19v 22v 37v 85v 19h 37h 85h 19v–h 37v–h 85v–h

1 0.927 0.900 0.930 0.911 0.920 0.927 0.907 0.007 0.003 0.003
2 0.930 0.909 0.936 0.918 0.913 0.924 0.909 0.017 0.012 0.009
3 0.940 0.921 0.942 0.914 0.908 0.919 0.900 0.032 0.023 0.013
4 0.930 0.910 0.935 0.919 0.898 0.910 0.899 0.032 0.025 0.021
5 0.940 0.924 0.930 0.906 0.875 0.881 0.871 0.065 0.048 0.035
6 0.942 0.933 0.941 0.923 0.823 0.841 0.857 0.119 0.099 0.067
7 0.918 0.891 0.920 0.908 0.900 0.907 0.898 0.018 0.013 0.010
8 0.888 0.876 0.880 0.887 0.787 0.799 0.827 0.100 0.081 0.060
9 0.907 0.893 0.833 0.760 0.805 0.751 0.705 0.103 0.082 0.056

1, dense veg; 2, agri veg; 3, dry soil; 4, moisture soil; 5, semiarid; 6, desert; 7, corn; 8, wet grnd;
9, snow.
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difference areas are the forest regions. In contrast, a larger polarization difference
implies that the region is over desert and/or snow, as summarized in Table 7.5.

7.4
Summary and Conclusions

Surface parameters over oceans and land can be retrieved frommicrowave imager
data under all weather conditions.With the new polarimetric data fromWindSat,
the ocean wind vectors can be derived using a physical retrieval. A ratio of the
third to the fourth Stokes component offers a robust first guess of the wind direc-
tion retrieval. In general, retrieval of oceanic SST requires use of data at lower
microwave frequencies where the scattering from precipitation is minimal.
A microwave split-window algorithm is developed to retrieve the land surface

temperatures. To form a closure without using any ancillary data, the total pre-
cipitable water vapor should be parameterized as a function of land surface tem-
perature. Better accuracy can be derived if atmospheric total precipitable water is
provided from some independent sources such as NWP model output.
For the land surface emissivity, we derive a retrieval form in an analytic form.

The terms affecting the emissivity retrievals are all computed from NWP model
outputs. The global emissivity atlas is derived and made available for all the NWP
centers for data assimilation experiences.
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8
Remote Sensing of Clouds from Microwave Sounding
Instruments

8.1
Introduction

Clouds play a vital role in modulating the climate and Earth’s radiation budget
[203]. In the atmosphere, the latent heat release or consumption occurs either
directly in clouds or in the precipitation produced by them. Clouds strongly affect
the radiative fluxes through the atmosphere. Thus, the measurements on cloud
hydrometeors in various phases critically affect the numerical weather prediction
(NWP) models.
Global measurements of cloud liquid water path (LWP) are best determined

by satellite-measured microwave brightness temperatures due to their direct
response to the thermal emission of cloud particles. Early in the 1970s, Nimbus-6
scanning microwave spectrometer experience demonstrated the feasibility of
the microwave measurement of cloud liquid water. A statistical relationship was
first derived between the brightness temperatures at 21 and 31GHz and cloud
liquid water using Nimbus-6 scanning microwave spectrometer data [204], and
large-scale distribution of cloud liquid water was obtained over the Pacific Ocean
[205].The capability was further displayed fromNimbus-7 scanningmultichannel
microwave radiometer (SMMR) data [206, 207]. However, more algorithms for
cloud liquid water were developed for the special sensor microwave imager
(SSM/I) flown on the defense meteorological satellite program (DMSP) (e.g.,
[148, 151, 208–210]). In the SSM/I algorithm for cloud liquid water algorithm
[149], the liquid water in nonprecipitating and some precipitating clouds over
oceans was estimated from the brightness temperature measurements at 19.35,
37, and 85.5GHz. The algorithm was further revised as a full physical retrieval
for the Advanced Microwave Sounding Unit (AMSU) measurements at 23.8 and
31.4GHz [211].
With the millimeter-wavelength measurements from satellites, cloud ice water

can also be retrieved [38, 39, 53]. Ice clouds, because of their high albedo in visible
wavelengths, the reflection of short-wave radiation by ice clouds reduces the solar
energy reaching the Earth’s surface. On the other hand, ice clouds can trap the
long-wave radiation emitted from the surface, resulting in less radiation to space
compared to clear-sky conditions. The net radiative flux at the Earth’s surface

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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resulting from the aforementioned two processes, however, depends on accurate
description of the ice cloud parameters for radiative transfer calculations in cli-
mate models [212, 213]. Therefore, a quantitative measurement of microphysical
parameters in ice clouds is important for both the validation of global climate
models and understanding the nature variability of the Earth’s climate [214–216].
In this chapter, we present the algorithms of remote sensing of cloud liquid and

ice water using the microwave sounding instruments. In Section 8.2, we demon-
strate the sensitivity of brightness temperatures to cloud liquid water at lower
frequencies and then derive the physical retrieval of cloud liquid water. In Section
8.3, the algorithms of retrieving cloud ice water and particle size are derived using
the brightness temperatures at high frequencies. In Section 8.4, we investigate the
new methodology for remote sensing of hydrometeor profiles using the double
oxygen bands in microwave regions.

8.2
Remote Sensing of Cloud Liquid Water

8.2.1
Principle of Microwave Remote Sensing of Clouds

As shown in Eq. (3.46), the brightness temperatures under these approximations
are directly related by the layer mean temperature and atmospheric transmit-
tance. Under a low emissivity condition, the brightness temperature increases
as the atmospheric transmittance decreases. This physical principle drives the
microwave remote sensing of clouds over oceans. The sensitivity of microwave
measurements to cloud LWP over oceans is further analyzed using a vector radia-
tive transfer model [46, 47]. The LWP is the sum of the vertically integrated liq-
uid water content in nonraining and raining clouds. This vector radiative trans-
fer model (RTM) is for a vertically stratified scattering and emitting atmosphere
where the optical parameters for cloud drops, raindrops, and ice particles are cal-
culated using theMie theory. Cloud particles in nonraining clouds are distributed
in a gamma distribution, and rain droplets in raining clouds are distributed in a
Marshall and Palmer distribution [129]. In simulations, the atmosphere is divided
into 20 layers, and the nonraining and raining clouds appear below the freezing
level.The atmospheric temperature andwater vapor profiles inNCEPGlobal Data
Assimilation System (GDAS) are used as inputs to calculate the brightness tem-
peratures at three frequencies at an angle of 55∘.
Figure 8.1 displays the brightness temperatures against LWP under a condi-

tion of sea surface wind (SSW) of 10m/s and sea surface temperature (SST) of
300K. Note that the lower frequencies respond to cloud liquid water approxi-
mately linearly within a large dynamic range.When cloud liquid water is low (e.g.,
in nonraining clouds), the brightness temperature at 36.5GHz is the most sensi-
tive channel.The variation in brightness temperature under vertically polarization
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Figure 8.1 Simulated brightness temperatures at 10.65, 18.7, and 36.5 GHz as a function of
cloud liquid water path for (a) vertically polarized and (b) horizontally polarized.

is about 75K as cloud liquid water varies from 0 to 1.0mm. However, the cor-
responding measurements at 36.5GHz become saturated and further decrease
when cloud liquid water is greater than about 1.0mm.This is caused by scattering
of raindrops and large cloud particles. Cloud liquid water corresponding to satu-
ration point in brightness temperatures at 10.65, 18.7, and 36.5GHz is about 8, 3,
and 1mm, respectively. Since the actual LWP can be up to 6mm [149] in hurricane
situation, it is necessary to use the brightness temperature at 10.65GHz to retrieve
the LWP for various raining clouds. Brightness temperatures at 6.925GHz are the
least sensitive to low cloud liquid water (not shown here).The brightness temper-
ature at 6.925 varies by 4K, when the cloud LWP varies from 0 to 2mm.While the
brightness temperatures at horizontally polarized channels are sensitive to cloud
liquid water, they are also strongly affected by wind roughness [149]. Thus, in the
cloud liquid water algorithm, we normally utilize the vertically polarized bright-
ness temperatures.
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8.2.2
Cloud Liquid Water Algorithm

Using Eq. (3.46), the brightness temperatures can be further linked to cloud LWP
(L) and precipitable water path (V ) [211] by further assuming an isothermal atmo-
sphere (ΔT = Ts − Tm = 0), that is,

Tb = Ts[1 − (1 − 𝜀)Υ2], (8.1)

where 𝜀 and Ts are the surface emissivity and temperature, respectively, and

Υ = exp[−(𝜏O + 𝜏V + 𝜏L)∕𝜇)], (8.2)

where 𝜏O, 𝜏V , and 𝜏L are the optical thicknesses of oxygen, water vapor, and liquid,
respectively.

𝜏L = ∫ΔZ
𝜅RayLWC dz, (8.3)

where

𝜅Ray = 6𝜋
𝜆𝜌w

Im
{

m2 − 1
m2 + 2

}
, (8.4)

and

𝜏V = ∫
∞

0
𝜅H2O𝜌V dz, (8.5)

where 𝜅
H2O is the mass absorption coefficient of water vapor having a unit of

m2∕kg, and 𝜌v is the water vapor density in atmosphere. Let us assume 𝜅Ray and
𝜅H2O to be independent of height. Then, we have

𝜏L = 𝜅LL, (8.6)

where 𝜅L is the mass absorption coefficient of liquid-phase cloud, namely

𝜅L = 6𝜋
𝜆𝜌w

Im
{

m2 − 1
m2 + 2

}
, (8.7)

Here, we use a different notation to indicate there is a further approximation being
performed for cloud absorption coefficient, which can be derived from a mean
cloud temperature in the complex dielectric constant. We also have

𝜏V = 𝜅V V , (8.8)



8.2 Remote Sensing of Cloud Liquid Water 211

where

V = ∫
∞

0
𝜌V dz, (8.9)

and

L = ∫ΔZ
LWC dz, (8.10)

are the vertically integratedwater vapor and liquidwater, respectively.Thus, atmo-
spheric transmittance becomes

Υ = exp[−(𝜏O + 𝜅V V + 𝜅LL)∕𝜇). (8.11)

These deviations enable the fundamental microwave remote sensing of LWP and
water vapor path (WVP) in an emission atmosphere. Normally, at least two chan-
nels are required, with one beingmore sensitive to liquid and other to water vapor.
The emission regime can be identified from the relationship between brightness
temperature and LWP at a saturation point (see Figure 8.1) where the brightness
temperature no longer increases as the LWP increases. Of course, the saturation
points are defined when the relationships are simulated over ocean surfaces. Over
land where the emissivity is high, Eq. (8.1) most likely produces a monochromatic
decrease as liquidwater increases (say, emissivity is greater than 0.9). In such cases,
the brightness temperature depression from clouds is very small, less than a few
degrees, compared to cloud-free areas. Thus, it is difficult to detect liquid-phase
clouds over land, given the same cloud microphysical distribution.
The primary channel used for liquid water remote sensing is dependent on the

particular problem. For example, if we would like to detect the cloud liquid cov-
ering lower-to-moderate cloud liquid path, we use microwave brightness temper-
ature at 30–40GHz, which can measure a range up to 1.0mm (or kg∕m2). The
secondary channel used for the correction of water vapor effect would be near the
22GHz absorption line. Two channels should have a frequency not far apart so
that they can be valid in terms of the Rayleigh approximation. In general, a loga-
rithmic function to the brightness temperature is obtained because the quantities
we try to solve (e.g., V and L) are as exponents in the exponential function of the
transmittance in Eq. (8.11). Thus, we now derive

𝜅V V + 𝜅LL = −𝜇

2

{
ln(Ts − Tb) − ln

[
Ts (1 − 𝜀)

]
+

2𝜏O2

𝜇

}
. (8.12)

Using two channel measurements, we can derive

L = a0𝜇[ln(Ts − Tb,1) − a1 ln(Ts − Tb,2) − a2], (8.13)
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and

V = b0𝜇[ln(Ts − Tb,1) − b1 ln(Ts − Tb,2) − b2], (8.14)

respectively. Tb,1 is the channel sensitive to liquid, and Tb,2 is the channel sensitive
to water vapor. The coefficients ai, i = 0123 and bi, i = 012 are related to water
vapor and liquid water mass absorption coefficients as

a0 = −0.5𝜅V2∕(𝜅V2𝜅L1 − 𝜅V1𝜅L2), (8.15)

b0 = 0.5𝜅L2∕(𝜅V2𝜅L1 − 𝜅V1𝜅L2), (8.16)

a1 = 𝜅V1∕𝜅V2, (8.17)

b1 = 𝜅L1∕𝜅L2, (8.18)

a2 = −2(𝜏O,1 − a1𝜏O,2)∕𝜇 + (1 − a1) ln[Ts(1 − 𝜀1)]

− a1ln(1 − 𝜀2), (8.19)

b2 = −2(𝜏O,1 − b1𝜏O,2)∕𝜇 + (1 − b1)ln[Ts(1 − 𝜀1)]

− b1ln(1 − 𝜀2). (8.20)

From Rayleigh’s approximation, 𝜅L can be parameterized as a function of cloud
layer temperature, TL , in Celsius as

𝜅L = aL + bLTL + CLT2
L . (8.21)

Oxygen optical thickness is parameterized as a function of SST through

𝜏O = ao + boTs. (8.22)

Table 8.1 lists some of the coefficients that can be used for various AMSUwindow
channels. In the study by Weng et al. [211], AMSU measurements at 23.8 and
31.4GHzwere used for L and V retrievals. Figure 8.2 displays a global distribution

Table 8.1 The parameters calculated at four AMSU-A channels and used in liquid water and
water vapor path algorithms.

23.8 GHz 31.4 GHz 50.3 GHz 89 GHz

𝜅v 4.80423E-3 1.93241E-3 3.76950E-3 1.15839E-2
𝜅1–a1 1.18201E-1 1.98774E-1 4.53967E-3 1.03486E00
𝜅1–b1 −3.48761E-3 −5.45692E-3 −9.68548E-3 −9.71510E-3
𝜅1–c1 5.01301E-5 7.18339E-5 8.57815E-5 −6.59140E-5
𝜏0–a0 3.21410E-2 5.34214E-2 6.26545E-1 1.08333E-1
𝜏0–b0 −6.31860E-5 −1.04835E-4 −1.09961E-3 −2.21042E-4
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Figure 8.2 Global cloud liquid water path derived from AMSU onboard NOAA-16 satellite.

of cloud liquid water over oceans derived using the AMSU onboard NOAA-16
satellite. As discussed earlier, the AMSU antenna temperatures are first corrected
for the asymmetric bias. The correction scheme is also obtained separately for
individual satellites. Note that the AMSUdescendingmeasurements during a 24 h
period do not completely cover the globe because of the orbital gaps. It is shown
that the algorithm depicts cloud liquid water associated with various systems.The
low clouds over oceans off the west coast of South America are detected although
the amount of cloud liquid is low.

8.3
Remote Sensing of Cloud Ice Water

8.3.1
Microwave Scattering from Ice-Phase Cloud

The sensitivity of brightness temperatures to the ice water path (IWP) at higher
frequencies or millimeter wavelengths is nearly independent of the cloud
temperature. Vivekanandan et al. [217] studied the possibility of retrieving
precipitation-sized ice water amount using simulated measurements at lower fre-
quencies and found that the brightness temperature monotonically decreases as
the cloud optical thickness increases. At higher frequencies, satellite microwave
measurements provide estimates of cloud IWP (or vertically integrated ice
water content) associated with both raining and nonraining ice clouds [39, 53].
Figure 8.3 displays the simulated brightness temperatures at 85 and 91GHz for
an ice cloud that is 2 km thick. The cloud base is set at an altitude of 330mb,
the cloud mean particle size is 0.5mm, and all the particles constitute a bulk
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Figure 8.3 Brightness temperatures at 85 and 91 GHz simulated from scattering radiative
transfer model for an ice cloud layer of 2 km thick, located at 330 hPa.

volume density of 400 kg∕m3. It is seen that a typical 10–20K depression in the
brightness temperature occurs as IWP increases from 0 to 0.7mm (kg∕m2).
Ice cloud scattering is also demonstrated from a six-channel Millimeter-wave

imaging radiometer (MIR), which was built for the National Aeronautics and
Space Administration (NASA) by the Georgia Institute of Technology and flown
on the NASA ER-2 aircraft to measure the atmospheric water vapor, clouds, and
precipitation parameters [218, 219]. The MIR measures microwave radiation at
three frequencies (183.6± 7, 183.6± 3, and 183.6± 1GHz) near the 183.31GHz
water vapor line and at three frequencies (89, 150, and 220GHz) in the window
regions. It is a cross-track scanner that covers an angular swath of ±50∘ centered
at the nadir. Of particular importance to the National Oceanic and Atmospheric
Administration (NOAA) is the fact that theMIR operates at the same frequencies
as the NOAA AMSU-B module and offers a unique validation/calibration
purpose for algorithm development. Measurements from the MIR were acquired
during the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere
Response Experiment (TOGA COARE) period (6 January–24 February 1993) in
the western tropical Pacific. Accompanying theMIR data are radarmeasurements
from the Airborne Rain Mapping Radar (ARMAR) that was installed on the
NASA DC-8 aircraft, which provided detailed vertical profiles of hydrological
parameters with a 60-m resolution. Radar backscatter measurements were per-
formed at a frequency of 13.8GHz and are thus most sensitive to hydrometeors
of relatively large size. In addition to the MIR and ARMAR, measurements
from several other instruments such as Advanced Microwave Precipitation
Radiometer (AMPR) and Moderate-Resolution Imaging Spectrometer (MODIS)
were collocated in both space and time for all scanning angles. However, this
study only uses the measurements obtained at the nadir position. Figure 8.4
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Figure 8.4 NASA ER2 and DC8 observations of convective systems over TOGA/COARE areas
with (a) AMPR and MIR, and (b) MODIS-like channels, and (c) ARMAR.

shows a composite image from all the instruments for a tropical cloud system
on February 22, 1993, over the equatorial Pacific to northeastern Australia.
Clearly, several precipitating ice clouds are identified from radar vertical cross
section of reflectivity. The precipitation between 21:22:00 and 21:25:19 is mainly
stratiform because of an obvious melting bright band occurring near 4.5 km
height. The rainfall type during 21:31:59 and 21:35:19 is likely convective due to
high reflectivity values throughout the vertical column.
Figure 8.4 further displays and inter-compares various sensor responses to the

cloud system. Note that the AMPR 10.7 and 19.35GHz measurements increase
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rapidly from 21:33:48 to 21:38:08 of ER-2 flight time as a result of increasing
precipitating liquid water amounts at low levels. Brightness temperatures at 19.35
and 37GHz show depressions near 21:38:00 primarily due to ice particles in the
deep convective region, although large raindrops under heavy rain conditions
(rain rate greater than 15mm/h) may also result in significant scattering [149].
It is important to recognize that the MIR is affected by both precipitating and
nonprecipitating ice. This is clearly indicated at the ER-2 flight times between
21:31:28 and 21:34:48. Brightness temperatures at three window frequencies (89,
150, and 220GHz) gradually decrease before entering the precipitating regions.
An initial decrease before 21:32:00 is presumably due to thick anvil cirrus situated
at higher altitudes. A detrainment of ice particles from the convective region
is likely the primary process responsible for the generation of anvil clouds. Ice
clouds are likely present during most of the study period. Note that the brightness
temperatures at MODIS 11 μm are well below the 235K threshold used for a
typical cold cloud indicator [220]. The clouds between 21:28:08 and 21:34:48
are mainly identified as cirrus since they produce very little radar reflectivity.
However, the cirrus between 21:31:28 and 21:34:48 must be very thick, since the
IR temperatures are only 180K, and the ice particles must be of millimeter size,
since the MIR measurements are significantly depressed.

8.3.2
Cloud Ice Water Retrieval Algorithm

The several algorithms were developed and tested to retrieve IWP using aircraft
millimeter-wavelength measurements [53, 221, 222]. Liu and Curry [221] pre-
sented amethod to retrieve IWP using airborneMIR data at 89, 150, and 220GHz
channels. The algorithm was further modified to derive the IWP in the tropical
cloud systems using the satellite microwave data [38]. Although the IWP algo-
rithm works well for cirrus clouds in the Tropics, an uncertainty arises due to an
unknownparticle size.Weng andGrody [53] proposed an algorithm to derive both
IWP andDe using dual submillimeter-wavelengthmeasurements.They found that
for a given particle bulk volume density, the brightness temperature at microwave
frequencies can be uniquely related to IWP and De through a two-stream radia-
tive transfermodel solution.The algorithmwas also testedwith themeasurements
obtained from theMIR.The retrieved IWP andDe display a reasonable spatial dis-
tribution comparable to the radar and infrared measurements. Zhao and Weng
[39] further improved the algorithm by Weng and Grody [53] and applied it for
satellite measurements. Physical basis of retrieval algorithm is from a two-stream
approximation. Weng and Grody [53] first derived a relationship between radi-
ance and emanating from the ice clouds and ice cloud microphysical parameters
by letting the interface reflection. Assuming optically thin cloud (i.e., k𝜏1≪1.0),
the upwelling and downwelling radiances from the ice cloud layer are

I(𝜏0, 𝜇) =
I1 + 2Ba2Ω(𝜇) + I0Ω(𝜇)(1 − a2)

1 + Ω(𝜇)(1 + a2)
, (8.23)
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and

I(𝜏1,−𝜇) =
I0 + 2Ba2Ω(𝜇) + I1Ω(𝜇)(1 − a2)

1 + Ω(𝜇)(1 + a2)
, (8.24)

where B is the Planck function; a is the similarity parameter; and I1 and I0 are
the upwelling and downwelling radiances at the bottom and top of the ice cloud,
respectively. The ice cloud scattering parameter, Ω(𝜇), is defined as

Ω(𝜇) = 𝜅𝜏

2a
= 1

2a
(1 − 𝜔g)𝜏, (8.25)

where 𝜏 is now the ice cloud optical thickness, g is the asymmetry factor, and 𝜇 is
the cosine of the zenith angle. Note that the similarity parameter a is smaller than
1 at microwave frequencies [53]. Thus, Ωa2 may be much less than 1. In addition,
the contribution by I0 is assumed to be negligible because it is typically close to
the very low cosmic background radiation. As a result,

I(𝜏0, 𝜇) =
I1

1 + Ω(𝜇)
(8.26)

and

I(𝜏1,−𝜇) =
I1Ω(𝜇)(1 − a2)

1 + Ω(𝜇)
, (8.27)

The upwelling and downwelling radiances (or brightness temperature) at
microwave frequencies are directly proportional to the incident radiation at the
cloud lower boundary (i.e., I1). From a space platform (satellite or aircraft), the
upwelling radiance decreases as the scattering parameter increases. Conversely,
the downwelling radiance, observed from a ground-based instrument looking up,
increases as the scattering parameter increases. The variation of the scattering
parameter may result from changes in the cloud IWP and particle size. The cloud
optical thickness is defined as

𝜏 = ∫
zt

zb

dz∫
∞

0

𝜋

4
D2Ωe(x,m)N(D)dD, (8.28)

where zb and zt are the cloud base and topheights, respectively;Ωe is the extinction
efficiency of ice particles; N(D) is the particle size distribution function; x is the
size parameter (x = 𝜋D∕𝜆); m is the complex refractive index, which might vary
with the ice particle bulk volume density. For spherical ice particles with the size
distribution N(D), the IWP can be expressed as

IWP = ∫
zt

zb

dz∫
∞

0

𝜋

6
D3N(D)dD, (8.29)
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where 𝜌i is the ice particle bulk volume density. For polydispersed ice particles,
the scattering parameter can be expressed as a function of IWP and De [39]

Ω(𝜇) = IWP
𝜇𝜌iDe

ΩN (x,m), (8.30)

where ΩN (x,m) is the normalized scattering parameter defined as

ΩN = 3
4
(1 − 𝜔g)ΩN , (8.31)

and the mean extinction efficiency of the ice particles is defined as

ΩN =
∫

∞

0
D2Ωe(x,m)N(D)dD

∫
∞

0
D2N(D)dD

. (8.32)

If the brightness temperature at the cloud base is known, then Ω can also be
determined through Eq. (8.26),

Ω =
I1(𝜏b, 𝜇) − I(𝜏0, 𝜇)

I1(𝜏b, 𝜇)
, (8.33)

and IWP can also be derived as

IWP = 𝜇De𝜌i
Ω
ΩN

. (8.34)

As shown in Eq. (8.34), IWP is directly proportional to the scattering parameter.
However, the relationship between ΩN and De is nonlinear and may depend on
the particular ice particle size distribution and bulk volume density. Therefore,
measurements at two distinct frequencies are normally required to unambigu-
ously determine both IWP andDe for a given particle bulk volume density [31, 53].
Provided that the bulk volume density of ice particles can be determined indepen-
dently from other sources (i.e., assumed to be either a constant or a function of
ice particle size), the IWP essentially only depends on the scattering parameters,
Ω and De. Since the most published bulk density–size relations are derived for ice
particles in nonprecipitating cirrus clouds, there are some uncertainties in using
these relationships in the retrieval because the AMSUmeasurements are primar-
ily sensitive to the precipitating ice clouds. Thus, a constant density of 600 kg∕m3

is used in this study.
Using two channel brightness temperaturemeasurements (say 89 and 150GHz),

the scattering parameter ratio is directly related to the particle effective diameter
[39, 53] by

r(De) =
Ω89
Ω150

=
ΩN89(x,m)
ΩN150(x,m)

, (8.35)
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Note that the scattering parameter ratio ideally varies between 0 and 1. For ice
clouds having small ice particles, Ω89 nearly vanishes and the ratio approaches
zero. For ice particles having a larger effective diameter, the scattering parameter
ratio approaches unity when the scattering intensities at 89 and 150GHz reach
their geometrical optical limit. An empirical relationship between r and De is
derived using simulated data from a radiative transfer model [46].TheMie theory
is applied to determine the scattering and absorption properties of the ice parti-
cles at 89 and 150GHz.During the simulation, cloud icewater content is randomly
generated within a range of 0–0.5 g/m3, and the cloud ice particles are assumed
to be spherical and distributed using the modified gamma distribution with an
exponent of 2 [223]. The ice cloud base is at 9 km with a thickness of 1 km, which
simulated a general atmosphere condition for ice clouds. The effective particle
diameter randomly varies within the range of 0.1–3.5mm.The incident radiation
at the cloud base is set to a constant value corresponding to a brightness tempera-
ture of 280K. Cumming’s mixing formula is used to compute the refractive index
of ice–air mixture [224]. The simulations were performed with various combina-
tions of Dn and N0 (a total of 62 500 gamma size distributions), and the results are
shown in Figure 8.5. Note that the ratio initially increases as De increases and then
approaches to constant value when the ice particle effective sizes become very
large. For small De < 0.4 mm, the scattering parameter of 89GHz is small due to
its lack of sensitivity to the small-size ice particles. Therefore, the size informa-
tion cannot be uniquely determined by the scattering parameter ratio of 89 and
150GHz. A higher frequency pair (i.e., 150 and 220GHz) is required for detecting
these small-size ice particles [32]. For De between 0.4 and 2.5mm, ΩN at both 89
and 150GHz linearly increases with De, andΩN at 150 is significantly higher than
that at 89GHz. However, for a larger De (greater 3.5mm),ΩN at both frequencies
tends to approach the same constant value. The minimum detectable ice particle
size is about 0.5mm at 89GHz.With the dual-frequency measurements at 89 and
150GHz, reliable results are expected with the ratio ranging from 0.2 to 0.8.
Regression relations of De ∼ r and ΩN ∼ De are obtained as follows:

De = a0 + a1r + a2r2 + a3r3, (8.36)

and

ΩN = exp[(b0 + b1ln(De) + b2(lnDe)2], (8.37)

where ai, i = 0, 1, 2, 3 and bi, i = 0, 1, 2 are the regression coefficients that may be
dependent on the ice particle bulk volume density and assumed size distribution.
A set of coefficients were derived for AMSU brightness temperatures at 89 and
150GHz [39] as summarized in Table 8.2.
When the brightness temperatures at ice cloud base are estimated, the scattering

parameter ratio can be computed using Eq. (8.22) with satellite measurements
from two frequencies.Thus, IWP and De can be unambiguously determined from
Eqs. (8.23)–(8.26) for a given bulk volume density. Over oceans, we can use an
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Figure 8.5 (a) Relationships between the particle effective diameter and the scattering
parameter ratio, and (b) the relationship between the normalized scattering parameter and
the particle effective diameter.

Table 8.2 The coefficients used in the IWP and De algorithms.

a0 a1 a2 a3

−0.24843 3.86726 −4.67150 4.70782
b0 b1 b2

De < 2mm −11.74663 1.90711 0.73029
De ≥ 2mm −1.58571 1.52230 −0.52437

emission-based radiative transfer model to calculate the brightness temperatures
at the ice cloud base. Alternatively, we can also use the measurements at lower
frequencies to estimate the brightness temperatures at higher frequencies [201],
assuming that lower frequencies can penetrate through ice clouds.
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Over land, the cloud base brightness temperature is estimated using an
empirical relationship between the AMSU lower and higher frequencies [39].The
AMSUbrightness temperatures are collected under the scattering-free conditions
and are then used to derive the relationships. The AMSU clear radiances are
identified using infrared data from the advanced very-high-resolution radiometer
(AVHRR)and surface temperature. The AVHRR is also onboard NOAA-15 and
-16 satellites. The AMSU measurements corresponding to IR temperatures less
than 275K are excluded from the collocated data since the data possibly contain
ice clouds [225]. The AMSU collocation data are also limited to within ±45∘ of
scan angles to eliminate the effects of large footprints.
As shown in Figure 8.6, the brightness temperatures at 89 and 150GHz at the ice

cloud bases can be estimatedwith a root-mean-square (RMS) error of about 4.0 K,
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which is equivalent to the results over oceans. This implies that the brightness
temperature depressions at 89 and 150GHz due to clouds must be greater than
4.0 K so that the clouds can be reliably identified. This RMS error corresponds
to a minimum threshold of 0.01 and 0.02 for the scattering parameters at 89 and
150GHz, respectively.
The scattering signatures resulting from desert, sea ice, and snow particles at

higher microwave frequencies are quite similar to that of the ice particles because
the dielectric constants among these scatters are almost the same. Therefore, for
global application of the IWP and De retrieval algorithm, a procedure must be
developed to discriminate the scattering signatures between atmospheres and
various surface materials [39]. However, the satellite measurements alone provide
very limited information on surface types. Other data sets such as AVHRR
infrared and GDAS surface temperature and surface types are used as part of the
proposed screening procedure.
Surface scattering from snow and sea ice can be largely removed using the

measurements at lower AMSU-A frequencies [39]. AMSU-A-derived products
of snow cover and sea ice concentration are first used to indicate their presence.
The GDAS surface temperature (Ts) of less than 269K is used as an additional
threshold to identify the scattering signatures of frozen surfaces. The retrieval of
atmospheric ice is not performed under these surface conditions. Furthermore,
there is no retrieval over high terrains such as Tibetan plateau, where the surface
temperatures are usually less than 273K. Deserts also scatter at AMSU 89 and
150GHz [106]. However, the scattering from clouds can be easily separated
from the surface using the satellite infrared measurements and GDAS surface
temperatures. If the atmosphere is free from ice clouds, the IR temperature is
close to the surface temperature, and therefore, the scattering at 89 and 150GHz
must be from the surface. More specifically, for desert scatters, the temperature
difference between the frequencies is less than 10K and Ω is greater than 0.01. In
the case that the satellite infrared data are not available, AMSU measurements at
183± 7GHz can be used as a substitute because the channel peaks in the lower
troposphere and is less affected by the surface. Note that the upwelling brightness
temperatures at 89 and 150GHz are corrected to the two-stream brightness
temperatures before they are used in the retrieval.
Figure 8.7 displays a tropical cyclone (TC) IR, IWP, and De over an oceanic

cyclone system. All images illustrate some interesting features such as spiral rain
bands associated with larger IWP and particle size. In particular, IWP and cloud
top temperature are well correlated, especially for precipitation clouds with
cloud top temperature colder than −40 ∘C. Large IWP values correspond to
colder cloud top temperature, which is a typical feature of convective precipitat-
ing systems. This result is also similar to that found in the previous studies for
nonraining cirrus clouds [38, 226].
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Figure 8.7 (a) IR temperature measurements for a tropical cyclone system occurred on February 28, 2000; (b) retrieved cloud ice water path;
(c) ice particle effective diameter; and (d) cloud ice water versus cloud top temperature.
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8.4
Cloud Vertical Structures from Microwave Double Oxygen Bands

The microwave radiation with channels near the oxygen absorption lines at
50–70GHz and 118.75GHz was explored for profiling the hydrometeors
in precipitation systems using their differential responses to absorption and
scattering [227–229]. There are two main advantages of using these sounding
channels over window channels: (i) lesser sensitivity to surface contributions
and, therefore, more global applicability; (ii) the possibility of cloud slicing
caused by the increasing height of weighting function peaks with increasing
clear-sky absorption [230]. In this section, we further study the impacts of clouds
and precipitation on upwelling radiation at microwave sounding channels and
quantify the relationship in terms of the hydrometeor size and condensed water
content. Observational atmospheric profiles including temperature, vapor, and
clouds are used as inputs to the radiative transfer model.
The oxygen absorption band at 50–60GHzhas been used in the first-generation

microwave sounding unit (MSU) for probing the atmospheric temperature from
space since the launch of NOAA TIROS-N satellite on October 13, 1978. Initially,
MSU only had four channels within the band and can provide four deep-layer
mean temperatures within the troposphere and low stratosphere. Since the
launch of NOAA-15 satellite on May 13, 1998, MSU has been replaced by
AMSU-A. AMSU-A has 12 channels (channels 3–14) located at 50–60GHz
oxygen absorption band, and 3 window channels 1, 2, and 15 are located at 23.8,
31.4, and 89GHz, respectively. The three AMSU-A window channels can be used
to detect clouds and precipitation, providing vertically integrated cloud LWP
within the TCs through physical retrievals [211]. The eight AMSU-A sounding
channels (channels 5–14) can be utilized to detect three-dimensional (3D) warm
core structures of TCs [231, 232]. On October 28, 2011, Suomi National Partner-
ship Polar-Orbiting (NPP) satellite was launched with the Advanced Technology
Microwave Sounder (ATMS) on board. ATMS not only inherited all the channels
from AMSU-A for profiling atmospheric temperature but also added a new
channel with its central frequency located at 51.76GHz to provide temperature
information in the lower troposphere. With a higher spatial resolution and
broader swath, ATMS can depict much more details of cloud and warm core
structures [147, 232]. A direct assimilation of ATMS radiance measurements
in Hurricane Weather Research and Forecast (HWRF) model system has a
large positive impact on the prediction of 2012 superstorm Sandy track and
intensity [233].
A substantial investment has recently been made in China to build and

enhance meteorological satellite capabilities. The FY-3 satellite series is a new
generation of polar-orbiting satellite series and consists of seven satellites, with
about a 2-year interval between two subsequent launches [234]. The first two
experimental satellites FY-3A and FY-3B were successfully launched on May 27,
2008 and December 5, 2010, respectively.The third one in the FY-3 series, FY-3C,
was launched on September 23, 2013.Both FY-3A and -3C are configured in
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the mid-morning orbits with their local equator crossing times (LECTs) around
10 am, and FY-3B is in an afternoon orbit with its LECT around 2 pm. There
are 11 instruments on board all the missions, providing the measurements in
ultraviolet, visible, infrared, and microwave wavelengths [235]. Of particular
interest for NWP applications and atmospheric remote sensing is two sound-
ing instruments: Microwave Temperature Sounder (MWTS) and Microwave
Humidity Sounder (MWHS). The MWTS on board the first two missions are
similar, but not identical, in channel specification to MSU, and the MWHS on
board FY-3A and -3B are similar to MHS on board the NOAA’s Polar-Orbiting
Environmental Satellites (POES) series, which started in 1998 [236]. MWHS
and MHS have three channels at 183GHz and the other two at 89 and 157GHz.
However,MWTS andMWHS on board FY-3C are enhanced withmore channels,
compared to the previous missions. The FY-3C MWTS has 13 channels and
is located at 50–60GHz oxygen absorption band, whereas the FY-3C MWHS
includes additional eight sounding channels located near the 118GHz oxygen
absorption band.
It is the first time for an operational agency to explore the applications of

118GHz for profiling atmospheric temperature and humidity by a space-borne
cross-track microwave sounding instrument. The dual use of 60 and 118GHz
measurements from airborne platforms for assessing cloud and precipitation
could be found in Blackwell et al. [227] and Bauer and Mugnai [228]. Based
on the data from the NPOESS Aircraft Sounder Testbed-Microwave (NAST-
M), it was pointed out that brightness temperatures at 118GHz were much
lower than those at 54GHz due to strong frequency dependence of ice particle
scattering in convective areas [227]. Two oxygen sounding channel data at
50–57 and 118.75GHz during NAST-M were used in the Baysian retrieval
algorithm to derive the hydrometeor profiles [228]. This study presents a
new capability of using these FY-3C dual oxygen bands to detect the vertical
structures of cloud and precipitation associated with hurricane and typhoon
systems.

8.4.1
FY-3C Microwave Sounding Instruments and Their Channel Pairing

FY-3C MWHS is a 15-channel cross-track scanning instrument. The MWHS
channels 1, 10, 11, 13, and 15 have their central frequencies located at 89,
150, 183.31± 1, 183.31± 3, and 183.31± 7GHz, respectively, which are sim-
ilar to those of the five MHS channels (e.g., 89, 157, 183.31± 1, 183.31± 3,
183.31± 7GHz). The MWHS channels 2–9 are located in the oxygen band near
118.75GHz. Specifically, the weighting functions of MWHS channels 5–7 are
located near 230, 340 hPa and the Earth’s surface, respectively. The antenna scans
within the angles of ±53.35∘, leading to a swath width of about 2600 km. There
are a total of 98 field of views (FOVs) along each scan line. The nominal spatial
resolution of FY-3C MWHS is 15 km at the nadir for channels 10–15, and that
for channels 1–9 is 33 km.
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FY-3C MWTS has 13 channels in the frequency range from 50.3 to 57.6GHz
for profiling the atmospheric temperatures from the Earth’s surface to about 1 hPa.
These 13 channels have the same central frequencies as those of the 13 AMSU-A
sounding channels 3–14 [237] and respond to the thermal radiation of the atmo-
sphere at various altitudes. The FY-3C MWTS has an instantaneous FOV of 2.2∘
and a nominal spatial resolution of 33 km at its nadir. It scans to±52.725∘ from the
nadir with a total of 90 FOV over a swath of 2600 km. Since MWTS has a smaller
beamwidth, compared toAMSU, the temperature structureswithin typhoons and
hurricanes can be better depicted [5]. Since MWTS does not have the window
channels at 23.8, 31.4, and 89GHz, it is very difficult to detect the clouds and pre-
cipitation fromMWTS alone. However, the cloud information is contained in the
sounding channel measurements and can also be detected using a cloud emission
and scattering index (CESI) [2]. In this study, a combination of FY-3C MWTS
and MWHS dual oxygen bands are investigated for more details of the cloud and
precipitation associated with typhoon systems.
Figure 8.8 shows the weighting functions calculated by the Community

Radiative Transfer Model (CRTM) from a standard US atmospheric profile for all
channels of both MWHS and MWTS on board FY-3C [29, 238]. Five microwave
humidity sounding channels (i.e., channels 11–15) with their frequencies cen-
tered around 183.31GHz have their weighting functions evenly distributed in
the middle and low troposphere. The weighting functions of these channels are
narrowly peaked and are similar to those of MHS. The eight new microwave
humidity sounding channels (i.e., channels 2–9, color) with frequencies centered
near 118.75GHz were added to FY-3A/B MWHS to allow profiling both temper-
ature and water vapor from a single instrument since the 118.75GHz is located
at the O2 absorption band and its absorption intensity is temperature dependent.
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These new MWHS O2 channels have broader weighting functions compared
to MWHS channels 11–15 and extend from the surface to about 20 hPa. The
weighting functions at MWTS channels are distributed from the Earth’s surface
to about 1 hPa and are identical to those of AMSU-A sounding channels. Thus,
the two instruments (MWTS and MWHS) can be paired in channels for remote
sensing of vertical structures of clouds. Specifically, the three paired MWHS
and MWTS channels indicated in color bars – MWHS channel 5 and MWTS
channel 6; MWHS channel 6 and MWTS channel 5; and MWHS channel 7
and MWTS channel 3 – are chosen for this study. The three paired MWHS and
MWTS channels have similar oxygen absorption intensity in magnitude. Here,
the variation of the total optical depth with respect to frequency is computed
by the line-by-line radiative transfer model [11, 239] using the US standard
atmosphere. Each of the three MWTS channels has a single band located in
the valley of the oxygen absorption line. Each of the three MWHS channels has
two bands located symmetrically on the two sides of the absorption peak near
118.7GHz. Since the absorption intensities at both sides are similar, the addition
of receiver signals at both sides allows reducing the random noise. In addition,
the shift in the receiver carrier frequency does not significantly affect the average
absorption intensity, and thus, the radiometer has a stable performance.
Antenna brightness temperatures from both FY-3C MWHS and MWHS for

Super TyphoonNeoguri that occurred over the PacificOcean on July 6, 2014, have
been used in this study. Calibration details on the conversion from radiance to
antenna brightness temperature can be found inGu et al. [240] andYou et al. [241].
TheEuropeanCenter forMedium-RangeWeather Forecasting (ECMWF) analysis
profiles of temperature and water vapor within 55S–55N on July 1, 2014, are used
for generating a linear relationship for each of the three pairedMWHSandMWTS
channels with the same weighting function peak altitude. Detailed structures of a
CESI calculated from the three paired MWHS and MWTS channels with their
weighting function peaks located at three different altitudes are calculated and
shown. As a reference, the cloud liquid and ice water contents from the ECMWF
analysis are provided.

8.4.2
Typhoon Neoguri Observed by MWHS and MWTS

The spatial distributions of brightness temperatures observed fromdouble oxygen
band microwave sounding instruments on board FY-3C within Super Typhoon
Neoguri at 1236 UTC July 6, 2014, are shown in Figure 8.9. The following three
paired channels are selected: MWHS channel 5 and MWTS channel 6; MWHS
channel 6 and MWTS channel 5; and MWHS channel 7 and MWTS channel
3. The center of Super Typhoon Neoguri was located at (130.1∘E, 19.1∘N) at
this time. Since both MWHS and MWTS are the cross-track radiometers, the
brightness temperatures have an obvious scan-dependent feature. For the six
selected tropospheric channels shown in Figure 8.9, the weighting functions
peak at a lower altitude at a smaller scan angle compared to that at a larger
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Figure 8.9 Spatial distributions of brightness temperatures for the three paired channels: (a)
MWHS channel 5 (118± 0.8 GHz) and (b) MWTS channel 6 (54.94 GHz); (c) MWHS channel 6
(118.75± 1.1 GHz); (d) MWTS channel 5 (54.40 GHz); (e) MWHS channel 7 (118.75± 2.5 GHz);
and (f ) MWTS channel 3 (52.80 GHz) at 1236 UTC July 6, 2014. The center of Super Typhoon
Neoguri is located at (130.1∘E, 19.1∘N) and indicated by a hurricane symbol in black.

scan angle. The weighting function is the lowest at the nadir (e.g., zero scan
angle), and thus, the brightness temperatures in the atmospheres under clear-sky
conditions are the highest as expected. However, typhoon perturbations to the
brightness temperature fields are visibly present in the FY-3C measurements of
all six channels shown in Figure 8.9. A typhoon rain-band-like cold brightness
temperature distribution is located in the southeast half of the ring surrounding
the typhoon center at MWHS channels 5–7 (Figure 8.9a, c, d) and MWTS
channel 3 (Figure 8.9f ). For MWTS channels 5 and 6, whose weighting functions
are located near 400 and 250 hPa, respectively, a warm perturbation can be
noticed at the center of Typhoon Neoguri.
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Figure 8.10 Cross sections of brightness temperatures for (a) MWHS channels 2–9 and (b)
MWTS channels 1–13 in the along-track direction through Super Typhoon Neoguri’s center
(see the black line in Figure 8.9).

Figure 8.10 shows two cross sections of antenna temperatures for MWHS
channels 2–9 (Figure 8.10a) and MWTS channels 1–13 (Figure 8.10b) in the
along-track direction that passes through the center of Super Typhoon Neoguri.
The limb effect of cross-track radiometer on brightness temperature mentioned
before is avoided in such cross sections along a fixed scan angle. The brightness
temperature is as low as 204K for MWHS window channel 9 to the south of
the Super Typhoon Neoguri center (Figure 8.10a). MWHS channel 5 with its
peak WF located at 850 hPa is the warmest. A warm anomaly is found near the
hurricane center throughout the troposphere.The eye of Super Typhoon Neoguri
is characterized by a warm brightness temperature of a similar magnitude to
that in the Neoguri’s environment for all eight MWHS channels. The measured
MWHS brightness temperature is as high as 274K at the typhoon center below
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850 hPa. In other words, the brightness temperatures in the rain-band regions
are more than 100K lower than those in the hurricane eye and its environment.
There are two narrow bands of low brightness temperatures next to the warm
center that are associated with the upward motion, cloud, and precipitation in the
eyewall region. Outside the eyewall region, there are two narrow bands of warm
brightness temperatures, which reflect the locations of clear streams within Super
Typhoon Neoguri. Such a large brightness temperature contrast between rain
bands and clear streaks (including the eye) suggests the robustness for MWHS to
capture the thermal and cloud features of typhoons. The asymmetric structures
of Super Typhoon Neoguri are fully captured by MWHS observations.
The cross section of MWTS brightness temperature distribution (Figure 8.10b)

does not provide as much detailed structures as that of MWHS within Neoguri
due to a weaker cloud emission and scattering effect at lower frequency oxygen
band. The brightness temperatures within the eye and clear streaks are about 6K
higher than those in the rain bands and the environment at the same altitudes,
which are of a similar magnitude to the known warm temperature anomaly in the
eye of typical typhoons or hurricanes. This number is much smaller than the dif-
ference in the brightness temperatures between the troposphere and stratosphere,
which is more than 60K (see Figure 8.10b).

8.4.3
The Cloud Emission and Scattering Index (CESI)

Early studies [53, 211] show that microwave radiometers, such as AMSU-A and
MHS, offer limited information regarding cloud vertical structures. Microwave
measurements at lower frequency window channels could be used to derive the
total cloud LWP of nonraining clouds. By using the measurements from multiple
microwave window channels, the atmospheric WVP and cloud LWP can be
resolved simultaneously. Specifically, the cloud LWP can be derived from two
AMSU-A window channels at 23.8 and 31.4GHz [211]. Microwave radiation
interacts with ice particles primarily through scattering. Since ice clouds are
above the absorbing part of the atmosphere, the emission and cloud temperatures
simply modulate the upwelling microwave radiation from below. Therefore, the
cloud IWP can be derived from twoMHSwindow channels at 89.0 and 157.0GHz
[53, 211].
Instead of relying on the two low-frequency surface channels for obtaining

cloud information, FY-3C involved an additional higher frequency oxygen band
centered around 118.75GHz with eight new MWHS channels. By combining
these channels with the low-frequency oxygen band of MWTS, it is expected that
cloud LWP from the top of the atmosphere to different pressure levels can be
derived. Figure 8.11 provides four scatter plots of CRTM simulated and FY-3C
observed brightness temperatures at MWHS channel 6 and MWTS channel 5.
The brightness temperature simulations are obtained by using the diverse profile
data sets from the ECMWF 91-level short-range forecasts [242] as input to
CRTM. Only the clear-sky data at the nadir within a latitude range of 55S–55N
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Figure 8.11 Scatter plots of CRTM calculated brightness temperatures using ECMWF anal-
ysis as input (left panels) and FY-3C observations (right panels) for the paired MWHS
channel 6 (118.75± 1.1 GHz) and MWTS channel 5 (54.40 GHz) using all clear-sky data at
the nadir over (a)–(b) land and (c)–(d) oceans within a latitude range of 55S–55N, on
July 1, 2014.

on July 1, 2014, are shown in Figure 8.11. A linear relationship between the two
paired channels is found for bothmodel simulations and FY-3C observations over
both land (Figure 8.11a,b) and ocean (Figure 8.11c,d). The slopes of the variation
in the MWHS brightness temperatures with respect to MWTS brightness
temperatures are all greater than 1. More variability and larger slopes are found
in the observations. A linear regression relationship is also obtained for each of
the other two selected paired MWHS and MWTS channels.
As a conceptual demonstration for using microwave radiometers to probe the

vertical structures of cloud, a CESI can be defined [243]:

CESI = Treg
b, H − Tobs

b, H , (8.38)

where Tobs
b,H is the level-1b MWHS brightness temperature, and Treg

b,H is calculated
from the level-1b MWTS brightness temperature (Tobs

b,T ) using the following
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linear regression model:

Treg
b, H = 𝛼Tobs

b,T + 𝛽, (8.39)

where 𝛼 and 𝛽 are the regression coefficients calculated through a linear fit
between the MWHS brightness temperature observations (Tobs

b, H ) and simula-
tions (TECMWF

b, H ) using ECMWF analysis profiles; we have atmospheric profiles
including temperature within a latitude zone of 55S–55N on July 1, 2014. Since
the ECMWF model does not have hydrometer size and size distribution, a fixed
size of all-phase particles with a gamma size distribution is used in radiative
transfer model simulation.
Figure 8.12 shows the spatial distributions of CESI within Super Typhoon

Neoguri at 1236 UTC July 6, 2014, derived from the three selected paired
channels. The ECMWF integrated water paths from the top of the atmosphere
to three different pressure levels close to the peaks of the weighting function of
the three paired channels at 1200 UTC July 6, 2014 are also shown in Figure 8.12.
Super Typhoon Neoguri’s eye, eyewall, and rain bands are clearly seen in the
CESI distributions. A vertical continuity of the cloud structures is reflected in
the CESI distributions derived from the three paired channels located at three
different altitudes. On the contrary, except for a broad region of cloud located
to the southeast of the Typhoon Neoguri center, the detailed eye and eyewall
structures are not well defined in the ECMWF forecasts.

8.5
Summary and Conclusions

Microwave sounding instruments have some channels that can be uniquely uti-
lized to derive cloud liquid water and IWPs.The cloud liquid algorithms are physi-
cally based using two channels at 23.8 and 31.4GHz. In the past, cloud liquidwater
algorithms for SSM/I and special sensormicrowave imager/sounder (SSMIS)were
regression-based and thus required some in situ measurements to generate the
regression coefficients.The in situ measurements are rarely available for the algo-
rithm developments of new mission, and thus, the new instrument data need to
be calibrated to the heritage sensors prior to the generation of the cloud products
from the newmission.With the developments of the physical retrieval algorithms
for AMSU-A and ATMS instruments, the cloud liquid water products can be
developed right after the satellite launch.
For cloud IWP retrieval, we developed a physical retrieval algorithm that

determines both cloud IWP and ice particle size simultaneously using 2-mm
wavelength channels from MHS and ATMS WG band measurements. It has
been shown from both aircraft and satellite observations that the cloud ice water
depicted at the millimeter wavelengths is mostly associated with the convection
and surrounding anvil cirrus clouds. In the deep convective regions, the retrieval



8.5 Summary and Conclusions 233

(a) (b)

(c) (d)

(e) CESI

CESI TWP (kg/m2)

TWP (kg/m2)

CESI TWP (kg/m2)

(f)

0 3 6 9 12

0 3 6 9 12 15 18 21 24

0 3 6 9 12 15 18 21 24 35 50

0.018 0.050 0.135

0.018 0.050 0.135 0.368 1.000

0.018 0.050 0.135 0.368 1.000 2.718

22N

20N

18N

16N

14N

12N
124E 126E 128E 130E 132E 134E 136E

22N

20N

18N

16N

14N

12N
124E 126E 128E 130E 132E 134E 136E

22N

20N

18N

16N

14N

12N
124E 126E 128E 130E 132E 134E 136E

22N

20N

18N

16N

14N

12N
124E 126E 128E 130E 132E 134E 136E

22N

20N

18N

16N

14N

12N
124E 126E 128E 130E 132E 134E 136E

22N

20N

18N

16N

14N

12N
124E 126E 128E 130E 132E 134E 136E

Figure 8.12 Cloud emission and scattering index (CESI) derived from FY-3C (a) MWHS chan-
nel 5 (118± 0.8 GHz) and MWTS channel 6 (54.94 GHz); (c) MWHS channel 6 (118.75± 1.1
GHz) and MWTS channel 5 (54.40 GHz), and (e) MWHS channel 7 (118.75± 2.5 GHz); and
(f ) MWTS channel 3 (52.80 GHz) for Typhoon Neoguri at 1236 UTC July 6, 2014, and the
vertically integrated liquid and ice (total) water path (TWP) from the top of the atmo-
sphere to (b) 200 hPa, (d) 500 hPa, and (f ) 850 hPa at 1200 UTC July 6, 2014. The center of
super typhoon Neoguri is indicated by a hurricane symbol in black. TWP is calculated from
ECMWF global model analysis field.
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algorithm becomes insensitive to the total amount of ice since the scattering from
large ice particles is in the geometrical optical regime.
The launch of Chinese FengYun-3C satellite is remarkable since there are two

unique microwave sounders on board. MWHS andMWTS have provided us new
tools for monitoring the atmospheric temperature, water vapor, and cloud due to
their unique capability through the dual oxygen absorption band sounding chan-
nels. It is demonstrated that the vertical and horizontal structures of cloud and
precipitationwithin TyphoonNeoguri (2014) can be detected using a simple CESI
that is computed from the MWHS and MWTS paired channel measurements.
It is pointed out that the frequency location of theMWHSchannels can bemade

more evenly distributed around 118.75GHz compared to the current MWHS on
board FY-3C so that more paired channels can be made available with MWTS.
Currently, there are almost no high-frequency oxygen band channels in themiddle
and low troposphere, yet there are threeMWHS channels (i.e., channels 7–9) that
have the peak weighting functions located near the surface. It is anticipated that
an improved channel designwill be explored for the futuremissions of other space
agencies.
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9
Microwave Remote Sensing of Atmospheric Profiles

9.1
Introduction

Microwave sounding measurements carried out under cloudy and precipitation
conditions carry a wealth of information on the temperature and water vapor
profiles as well as cloud hydrometeors. The effect of hydrometeors on the
brightness temperatures measured by the microwave sensors may be negligible,
significant, or something in between, depending on the spectral region consid-
ered and on the type and intensity of the precipitation, making these microwave
and millimeter-wave sensors an ideal tool to probe the atmosphere in weather
active areas. Kidder et al. [244] have provided a comprehensive overview of the
utilization of advanced microwave sounding unit (AMSU) data in estimating
tropical cyclone (TC) intensity, retrieving upper tropospheric temperature
anomaly and gradient wind, and determining the TC precipitation potential.
Knaff et al. [245] and Zhu et al. [231] have retrieved and analyzed the atmospheric
temperatures in hurricane systems. Spencer and Braswell [246] estimated TC’s
maximum sustained wind (MSW) using the temperature gradient derived from
AMSU-A measurement. Demuth et al. [247, 248] have developed regression
algorithms to estimate TC MSW, minimum sea-level pressure (MSLP), and TC
size (radii of winds). In addition to monitoring TCs, microwave observations
can be easily utilized in numerical weather prediction (NWP) models because
microwave radiances respond linearly to atmospheric temperatures. Zhu et al.
[231] have developed a scheme to construct the TC’s initial vortex for a mesoscale
model simulation of Hurricane Bonnie (1998). The atmospheric temperatures
were retrieved from AMSU-A data, and then a nonlinear balance equation was
used to derive the 3D wind field of Hurricane Bonnie. Zhu and Gelaro [249] have
indicated that AMSU-Ameasurements have the largest positive impact on global
medium-range forecasts among all the satellite observations in the Gridpoint
Statistical Interpolation (GSI) data assimilation system.
In this chapter, we first present a regression-based algorithm to derive the tem-

perature profiles under hurricane conditions from microwave oxygen sounding
measurements. Then, we propose a physical algorithm to simultaneously retrieve
the vertical profiles of temperature, water vapor, and hydrometeor parameters.

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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The surface boundary layer is also treated dynamically by including the surface
emissivity spectrumand the skin temperature as part of the control parameter vec-
tor. Including the hydrometeors in the retrieved state vector increases the number
of degrees of freedom in the solution-finding process. It is important to note that
these degrees of freedom are also due to the limited number of channels available.

9.2
Microwave Sounding Principle

As illustrated in Figure 2.2, a number of channels within the oxygen absorption
band can be used to profile the atmospheric temperature. The sounding principle
at themicrowave frequency can be proved through a radiative transfer equation in
which single- andmultiple-scattering terms are neglected and there is no azimuth-
dependent terms. For a channel that is not affected by the surface emission, the
brightness temperature is the same as the upwelling radiation in Eqs. (3.44) and
(3.45), namely

Tb = ∫
1

Υs

T(Υ) dΥ, (9.1)

where Υ is the atmospheric transmittance with the reference to the top of the
atmosphere, and T is the atmospheric temperature. The subscript s denotes the
parameter at the surface. The transmittance is related to the atmospheric optical
thickness such that

Υ = exp

[
−
(
𝜏s − 𝜏

)
𝜇

]
. (9.2)

The atmospheric weighting function is defined as

W = 𝜕Υ
𝜕 ln p

, (9.3)

where p is the atmospheric pressure. Here, a logarithmic function is used in the
pressure coordinate. Thus, the brightness temperature for a channel i can be
written as

Tb,i = ∫
0

ps

T(p)Wid ln p. (9.4)

The integration in Eq. (9.4) can also be discretized as

Tb,i =
L∑

j=1
ciTjWi, j, (9.5)
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where L is the number of layers for atmospheric vertical stratification, and ci is the
coefficient relating the temperature to the Planck function, which is dependent on
the wavelength.
Equation (9.5) illustrates that the microwave brightness temperature is deter-

mined from a linear combination of vertical temperature profile with the weight
determined by Wi,j. Since atmospheric sounding channel is selected with its
weighting function having peaked at a certain height, the brightness temperature
measured from satellites can directly reflect the physical temperature roughly
at that height. However, since the function W is of a particular shape as seen in
Figure 9.1, the radiation at a given channel is also contributed from a layer of
atmosphere.
Microwave temperature sounding instruments including AMSU-A/B,

Microwave Humidity Sounder (MHS), and Advanced Technology Microwave
Sounder (ATMS) have been launched on board US and European satellites. Both
AMSU-A and ATMS measure the thermal radiation at microwave frequencies
ranging from 23.8 to 89.0GHz and are mainly designed to provide information on
the atmospheric temperature profiles. In particular, AMSU-A channels (3–14)
and ATMS channels (3–16) respond to the thermal radiation at various altitudes
because of their weighting function distributions. Several window channels at
frequencies of 31.4, 89, and 150GHz have been used as primary channels to
determine the liquid water and ice water content of the clouds because they
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directly respond to the thermal emission of liquid droplets and scattering of ice
particles, as discussed in Chapter 8.
When a sounding channel becomes semitransparent, the contributions to the

brightness temperature from surface emission and reflected downwelling radia-
tion can be significant. Typically, an uncertainty in the surface emissivity model
can result in major errors in probing the lower tropospheric profile near the sur-
face boundary. Using Eq. (3.44), we can study the impacts of the surface emissivity
on the sounding channel through

ΔTb = (Ts − Td)ΥΔ𝜀. (9.6)

Thus, an error in emissivity is directly translated into an error in brightness
temperature. Table 9.1 summarizes the brightness temperature perturbations at
a few selected frequencies to a surface emissivity variation of 0.04. Obviously,
at a window channel where the transmittance is relatively large and Td is small,
the emissivity uncertainty has a much larger impact on the brightness tempera-
tures. For example, at 150GHz, Tb is ∼7.0K for a surface pressure of 1000 hPa
(mb). For a surface pressure of 600 hPa, Tb increases to ∼8.0K. At the sounding
channels near the 50–60GHz oxygen absorption band, Tb decreases as the fre-
quency approaches the center of the absorption band. At 52.8GHz, Tb increases
from 0.2 to 2.3 K as the surface pressure decreases from 1000 to 600mb.
At the sounding channels near the 183.3-GHz water vapor absorption band, Tb

strongly varies with the water vapor amount, surface pressure, and frequency. At
183.3± 7GHz, which is furthest from the band center, Tb increases from 1.8 to
6.0 K as the water vapor amount increases from 0.5 to 2.0mm. When the surface
pressure decreases from 1000 to 600mb, Tb reaches up to 7.9 K. At 183.3± 1GHz,

Table 9.1 Brightness temperature responses to surface emissivity of 0.04.

Frequency (GHz) Ts = 230 K and TPW = 0.5 mm

Ps = 600 (mb) Ps = 1000 (mb)

Td (K) 𝝉 𝚫TB (K) Td (K) 𝝉 𝚫TB (K)

6.925 1.50 0.99 9.08 4.00 0.98 8.87
10.65 1.60 0.99 9.07 4.40 0.98 8.84
18.7 2.30 0.99 9.02 6.20 0.97 8.70
23.8 3.30 0.98 8.93 8.50 0.96 8.51
36.5 7.10 0.97 8.63 19.10 0.91 7.69
50.3 49.30 0.77 5.59 112.50 0.49 2.29
52.8 111.20 0.49 2.34 188.60 0.15 0.25
89 8.20 0.96 8.54 22.30 0.99 7.46
150 4.40 0.98 8.84 12.50 0.94 8.21
183.3 ± 7 16.60 0.93 7.89 43.50 0.81 6.02
183.3 ± 3 55.30 0.75 5.24 104.10 0.54 2.71
183.3 ± 1 134.60 0.39 1.50 160.10 0.29 0.81
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the impact of surface emissivity on the brightness temperature is the smallest
(0.01K) for a water vapor amount of 2mm. This implies that the uncertainty
in surface emissivity over a high-elevation terrain and in a moisture-deficient
atmosphere will significantly increase the uncertainty in simulating the brightness
temperatures at microwave sounding channels.

9.3
Regression Algorithms

From a set of surface blind channels, Eq. (9.5) illustrates a much simplified
approach for atmospheric temperature sounding. Essentially, the retrieval of the
temperature profile from microwave measurements is a linear problem because
the weighting functions at various temperature sounding channels are relatively
stable and therefore are the fixed coefficients. Alternatively, temperatures at
any pressure level can be expressed as a linear combination of brightness
temperatures measured at various sounding channels, namely

T(p) = C0(p, 𝜇) +
11∑

j=4
Cj(p, 𝜇)Tb, j(𝜇), (9.7a)

where C is derived using collocated radiosonde and satellite data, and j is the
AMSU-A channel index. For AMSU-A, C is derived separately at each pressure
level and at the cosine of the local zenith angle [231]. In collocating AMSU and
rawinsonde observations, two observations within 1 h in time and 100 km in space
are collected. At each angle, the data pairs should be large enough (100–200)
to make the regression results statistically reliable. A similar algorithm was also
developed for ATMS applications, but the coefficients are independent of the local
zenith angle as a predictor [232], namely

T(p) = C0(p) +
12∑

j=5
Cj(p)Tb, j(𝜇) + Csz(p)𝜇−1, (9.7b)

where Tb,j is the ATMS antenna brightness temperature at channel j, and all the
regression coefficients are as listed in Table 9.2.
The performance of the AMSU-A temperature retrieval can be illustrated from

a vertical profile of the root-mean-square (RMS) error. The RMS is computed on
the basis of all the rawinsonde observations used in the regression. As shown in
Figure 9.2, the RMS increases from 700 hPa downward due partly to the lack of
sharp weighting function and partly to the atmospheric structures being more
variable closer to the boundary layer. Large errors also occur above 250 hPa where
the reversal of the temperature lapse rate results in small changes in the brightness
temperature.
In general, the vertical layers of temperature profiles from a regression-type

of algorithm should be set close to the number of sounding channels available.



240 9 Microwave Remote Sensing of Atmospheric Profiles

Table 9.2 Coefficients of the ATMS regression-based temperature retrieval algorithm.

Level (hPa) C0 C5 C6 C7 C8 C9 C10 C11 C12 Csz

50 −19.380 −0.010 −0.173 0.071 0.592 −0.325 0.061 1.115 −0.240 −0.259
70 21.016 0.197 −0.634 0.209 0.493 −0.371 0.852 0.495 −0.274 −7.434
100 52.627 −0.069 0.508 −0.578 −0.870 0.641 2.034 −0.690 −0.140 −12.392
125 92.005 −0.074 0.664 −0.975 −1.070 1.610 1.249 −0.706 −0.050 −10.029
150 112.761 0.168 0.229 −1.015 −0.848 2.173 0.320 −0.611 0.137 −9.430
175 106.053 0.460 −0.384 −0.878 −0.248 2.197 −0.520 −0.307 0.257 −7.987
200 105.279 0.681 −1.076 −0.516 0.720 1.474 −1.155 0.196 0.242 −5.098
225 118.178 0.657 −1.415 0.007 1.420 0.494 −1.473 0.668 0.109 1.775
250 105.111 0.520 −1.350 0.534 1.644 −0.373 −1.350 0.848 −0.008 10.234
275 60.489 0.368 −1.012 0.983 1.393 −0.882 −0.962 0.756 −0.041 17.970
300 19.265 0.248 −0.649 1.296 0.987 −1.116 −0.577 0.562 −0.010 23.244
350 −34.306 0.109 −0.108 1.573 0.353 −1.199 −0.076 0.265 0.023 29.276
400 −62.373 −0.026 0.433 1.555 −0.197 −1.042 0.221 0.062 0.047 32.267
450 −65.056 −0.201 0.966 1.398 −0.692 −0.763 0.380 −0.119 0.097 34.310
500 −60.065 −0.409 1.470 1.207 −1.081 −0.486 0.462 −0.245 0.126 36.971
550 −46.377 −0.588 1.872 1.009 −1.326 −0.290 0.492 −0.295 0.116 38.936
600 −29.615 −0.651 2.063 0.831 −1.405 −0.176 0.484 −0.307 0.095 38.910
650 −14.066 −0.621 2.124 0.649 −1.410 −0.063 0.436 −0.310 0.084 37.242
700 −10.486 −0.541 2.146 0.440 −1.344 0.051 0.357 −0.256 0.043 35.241
750 −19.197 −0.440 2.131 0.247 −1.205 0.129 0.262 −0.153 −0.013 33.533
800 −39.417 −0.293 2.001 0.113 −0.942 0.123 0.157 −0.031 −0.058 31.782
850 −74.453 −0.015 1.736 −0.036 −0.611 0.141 0.064 0.078 −0.105 28.477

1000 23.847 1.189 −0.279 −0.147 0.545 −0.001 −0.430 0.248 −0.092 1.447
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Figure 9.2 Vertical distribution of RMS errors of the AMSU-derived temperatures.
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The retrieval accuracy for a temperature profile with an inversion is generally
poor because of the coarse vertical resolution of the microwave sounding chan-
nels. Similarly, it is also difficult to determine the temperature profile near the
tropopause because of a sign reversal of the temperature lapse rates from the tro-
posphere to the stratosphere. In addition, some sounding channels are affected by
surface radiative and thermal properties, which are functions of the geophysical
parameters such as canopy water content, terrain height, desert constituents, and
snow and glacial age. In addition, some channels may be strongly affected by the
emission and scattering from raindrops and large ice particles during storms.
Using the ATMS retrieval algorithm, we first studied several TCs that occurred

in the Southern Hemisphere TC season of 2012 and compared the results with
the retrieval results from the NOAA-15 AMSU-A observation using the old
algorithm. TC Giovanna is the second intense TC in the 2011–2012 Southern
Indian Ocean cyclone season. TC Giovanna developed off the eastern coast of
Madagascar during February 9–21, 2012. Figure 9.3a shows the vertical cross-
section of the ATMS temperature anomaly (temperature minus environmental
temperature at each level) retrieved at 2130 UTC on February 11, 2012. The tem-
perature anomaly is computed with respect to the environmental temperature,
which is an averaged temperature within 15∘ lat/lon of the storm but without
the temperature perturbations near the core region depending on the size of the
storm. Giovanna was a category-3 hurricane according to the Saffir–Simpson
scale, with an MSW of 100mph and MSLP of 948 hPa. A maximum warm
core of ∼6K can be found at the 250 hPa level. The cold anomalies below 500
hPa correspond to the heavy precipitation regions in the storm eyewall, which
indicated that the radius of maximum wind was ∼100 km at that time. As a
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retrieved from (a) Suomi NPP ATMS along 58.2E longitude at 2130 UTC, (b) NOAA-15
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comparison, NOAA-15 AMSU-A-retrieved temperatures (Figure 9.3b) were
derived at 1300 UTC on February 12, 2012, when the satellite passed over
Giovanna, which was about 8.5 h earlier than the ATMS observations. Giovanna
stayed as category-3 hurricane at this time, with an MSLP of 944 hPa. ATMS
measurements show a wider scan swath and finer horizontal resolution compared
to AMSU-A. Over 850 hPa, ATMS retrievals clearly depict the cold temperature
anomalies in TC’s spiral rain bands and the warm core of the storm. The TC’s
warm core feature retrieved from ATMS extended from the 200 hPa level to
the ocean surface. However, the AMSU-A retrievals could not fully resolve the
storm’s eye at lower levels because of its coarse resolution. AMSU-A-retrieved
warm core over 250 hPa and lower level cold anomalies are stronger than those
of ATMS. It can be seen that the warm core heights and cold eyewall locations
are similar for the two retrievals. The differences in the intensity of temperature
anomaly are due partially to the different algorithms used for the retrievals and
also to the difference between the overpassing times of NOAA-15 and Suomi
NPP satellites.
Hurricane Sandy was the most devastating storm that occurred in 2012 in the

Northern Hemisphere. It started as a tropical wave in the Eastern Caribbean Sea
on October 19, 2012, and strengthened into the 18th Atlantic tropical depression
at 1500 UTC 22 October 2012. Figure 9.4a indicates that there was a weak, warm
corewith amaximumof about 4.0K at the incipient stage at 0630UTC24October.
The maximum warm anomaly is located at the 400 hPa level. The lower level cold
temperature anomalies were located at ∼100–200 km to the north and south of
the storm center, corresponding to a broad range of precipitation surrounding the
storm. At 1500 UTC 24 October, Hurricane Sandy intensified as the 10th hurri-
cane of the 2012 Atlantic hurricane season, with anMSLP of 973 hPa andMSWof
80mph. During the period from 0600 UTC 25 October to 0000 UTC 26 October,
Sandy reached category-2 hurricane intensity with a maximum wind exceeding
100mph. Later, on October 25, Sandy encountered an upper-level trough from
its west. The large vertical wind shear weakened Sandy and created asymmetric
structures of the storm. Precipitation was mostly concentrated on the northwest
side of the storm, which was consistent with the temperature anomaly feature
retrieved from ATMS (Figure 9.4b). The first peak of maximum warm anomaly
of the storm, 8.9 K over the 400 hPa level, was found at 0710 UTC 26 October.
Weak upper-level warm anomalies could also be found on the south side of the
storm, where less rainfall occurred. The cold anomalies developed on the north
side of the storm correspond to the rainfall bands over there. The asymmetric
pattern of Sandy lasted for about 2 days until October 28, during which another
mid-latitude cold frontal system encountered with Sandy. The ATMS-retrieved
temperature anomaly captured the asymmetric structure at 1810UTC27October
(Figure 9.4c). There was a partial eyewall (cold anomaly) on the northwest side of
the storm.The warm core tilted northwestward with height on upper levels. After
the interaction with the cold frontal system, Sandy experienced a second intensifi-
cation period and reached a peak of 940 hPa for MSLP on October 29. Figure 9.4d
shows an 8.5K maximum warm core at ∼450 hPa level at 1730 UTC 29 October,
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when the storm reached a maximum wind speed of 90mph. Sandy made landfall
at 0200 UTC 30 October at about 8 km southwest of Atlantic City.The warm core
feature quickly diminished after the landfall.
Throughout the lifetime of Sandy, the maximum warm core was located at

∼400 hPa level, which is much lower than that of a typical TC (∼250 hPa, to
be discussed). It was mostly because Sandy took place in the fall season and
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middle latitudes.The averaged 850 hPa temperature retrieved from ATMS within
15∘ radius of Hurricane Sandy center was calculated and compared with that
of another nine TCs in 2012, that is, hurricanes Ernesto, Isaac, and Kirk in the
Atlantic Ocean; typhoons Guchol, Bolaven, Tembin, and Sanba in the Northwest
Pacific Ocean; TC Giovanna in the South Indian Ocean; and TC Jasmine in the
South Pacific Ocean. It is found that the averaged 850 hPa temperatures for Sandy
and the other nine storms are ∼11.7 and 15.8K, respectively. It may suggest
that the relative lower supply of thermal energy in the lower levels is one of the
main factors that prevented the development of deep convections and vertical
circulations in Hurricane Sandy. Therefore, the height of maximum warm core
is lower than that of a typical TC. The lower level cold anomalies indicated that
Sandy’s radius of maximum wind was generally ∼200 km. Sometimes, there
was no strong cold temperature anomaly or heavy rainfall seen within 400 km
from the center at a certain quadrant. The large size of Hurricane Sandy was
likely a result of interactions with an upper-level trough and an extratropical
frontal system. These processes enhanced Sandy’s asymmetric structures and
strong convections far away from the center but restrained the development
and concentration of the storm near the core region. The variation of maximum
temperature anomaly reflects the evolution of storm intensity. The retrieved
warm core data on October 24 evening and on October 25 are not used, because
the centers of Hurricane Sandy were located at the very edge of the observation
swath at these three times as shown in Figure 9.4, and they were over or close to
the Caribbean islands. The hurricane’s warm core and eyewall structures cannot
be resolved at a very large field of view (FOV) because the signal is smoothed
out under coarse resolution. The correlation coefficient between the maximum
warm core and MSW is 0.86, which passes the 99% confidence level. However,
the correlation between the maximum warm core and MSLP is just 0.38, which
fails in the 95% significance test. One possible reason is that Hurricane Sandy was
a very large sized storm, so the intensity of the warm core at the center cannot
represent the mass (pressure) features of the whole system very well.

9.4
One-Dimensional Variational (1DVAR) Theory

The mathematical basis of one-dimensional variation retrieval (1DVAR) is a
proven and widely used variational approach [250]. We briefly review it here for
the purpose of showing that it is valid for general applications in atmospheric
sounding.There are three important assumptions made for this type of retrievals:
the forward problem is locally nonlinear; both the geophysical state vector and
the errors associated with the forward model and the instrument noise are
Gaussian; and, finally, the measurements and the forward operator are nonbiased
to each other. It is important to keep in mind that the variational, Bayesian,
optimal estimation theory, maximum probability all give the same solutions
(if the same assumptions are made), although reached through different paths.



9.4 One-Dimensional Variational (1DVAR) Theory 245

The following aspect links the probabilistic approach to the variational solution,
which seeks to minimize the cost function. Intuitively, the retrieval problem
amounts to finding the geophysical vector x that maximizes the probability of
simulation of the measurements vector y using x as the input and using H as
the forward operator. The Bayes theorem states that the joint probability P(x∕y)
could be written as

P(x, y) = P(y∕x)P(x) = P(x∕y)P(y). (9.8)

Therefore, the retrieval problem amounts to maximizing

P(x∕y) =
P(y∕x)P(x)

P(y)
, (9.9)

where x is assumed to follow a Gaussian distribution:

P(x) = exp
[
−1
2
(

x − xb
)T B−1 (x − xb

)]
, (9.10)

where xb and B are the mean vector (or background) and covariance matrix of x,
respectively. Ideally, the probability P(y∕x) is a Dirac delta function with a value
of zero except for x. Modeling errors and instrumental noise all influence this
probability. For simplicity, it is assumed that the PDF of P(y∕x) is also a Gaussian
function with y(x) as the mean value (i.e., the errors of modeling and instrumental
noise are nonbiased), which can be written as

P(y∕x) = exp
[
−1
2
(

y − H (x)
)T R−1 (y − H (x)

)]
, (9.11)

where R is the measurement and/or modeling error covariance matrix. In a vector
form of x, maximization of P(x∕y) is the minimization of −ln(P(x∕y)), which can
be computed from the given equations as

J(𝐱) = 1
2
(𝐱 − 𝐱b)T𝐁−1(𝐱 − 𝐱𝐛) +

1
2
[H(𝐱) − 𝐲]T𝐑−1[H(𝐱) − 𝐲], (9.12)

where J(𝐱) is called the cost function, whichwewant tominimize.Thefirst termon
the right-hand side, Jb, represents the penalty in departing from the background
value (a priori information), and the second term, Jr , represents the penalty in
departing from themeasurements.The solution thatminimizes this two-termcost
function is sometimes referred to as a constrained solution. The minimization of
this cost function is also the basis for the variational analysis retrieval. In theory,
one can also find another optimal cost function for a non-Gaussian distribution
and nonlinear problems. It is just not a straightforward problem.The solution that
minimizes this cost function is easily found by solving

𝜕J(𝐱)
𝜕𝐱

= 0, (9.13)
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and assuming local linearity around x, which is generally a valid assumption if
there is no discontinuity in the forward operator

H(𝐱𝐛) = H(𝐱) + K(𝐱𝐛 − 𝐱), (9.14)

where K , in this case, is the Jacobian or derivative of H with respect to x. This
results in the following departure-based solution:

Δ𝐱 = 𝐱 − 𝐱𝐛 = {(𝐁−1𝐊T𝐑−1𝐊)−1𝐊T𝐑−1}[𝐲 − H(𝐱𝐛)]. (9.15)

If the given equations are ingested into an iterative loop, each time assuming
that the forward operator is linear, we end up with the following solution to the
cost function minimization process:

𝐱n+1 = {(𝐁−1𝐊T𝐑−1𝐊)−1𝐊T𝐑−1}[𝐲 − H(𝐱𝐛)] +𝐊nΔ𝐱n, (9.16)

where n is the iteration index. The previous solution can be rewritten in another
form, after matrix manipulations, as

𝐱n+1 = {𝐁𝐊T
n (𝐊nB𝐊T

n + 𝐑)−1}{[𝐲 − H(𝐱n)] +𝐊nΔ𝐱n}, (9.17)

The latter is more efficient, as it requires the inversion of only one matrix. At
each iteration n, we compute the new optimal departure from the background,
given the derivatives as well as the covariance matrices. This is an iterative-based
numerical solution that accommodates moderately nonlinear problems or/and
parameters with moderately non-Gaussian distributions. This approach to the
solution is generally labeled under the general term of physical retrieval and is
also employed in NWP assimilation schemes along with horizontal and temporal
constraints. The whole geophysical vector is retrieved as one entity including
the temperature, moisture, and hydrometeor profiles as well as skin surface
temperature and emissivity vector, ensuring a consistent solution that fits the
radiances.
In the 1DVAR inversion process, a forward operator is called to simulate the

brightness temperatures or radiances including multiple-scattering effects due to
ice, rain, snow, graupel, and cloud liquid water at all microwave frequencies and to
generate the corresponding Jacobians for all atmospheric and surface parameters.
The forward operator is the Community Radiative TransferModel (CRTM) devel-
oped at the Joint Center for Satellite Data Assimilation (JCSDA) [251]. CRTM
produces radiances as well as Jacobians for all geophysical parameters. It is valid
under clear, cloudy, and precipitating conditions. Derivatives are computed using
theKmatrix developed by tangent linear (TL) and adjoint (AD) approaches.This is
ideal for retrieval and assimilation purposes.The different components of CRTM,
briefly, are the OPTRAN fast atmospheric absorption model [252], a microwave
emissivity model [53, 66], and the advanced doubling–adding radiative transfer
solution for the multiple-scattering modeling [44].
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The covariance matrix plays an important role in variational algorithms. Lopez
(2001) estimated an error covariance matrix of cloud and rain from the French
global model ARPEGE [253] and simply defined an empirical covariance matrix
of clouds with large errors. Moreau et al. [254] used the regular covariance matrix
of temperature and humidity, which they convolved with moist convection and
large-scale condensation schemes to produce an ensemble of rain water and cloud
profiles. In their study, the covariance was computed for each grid point. Bouk-
abara et al. [255] related the part of the covariance matrix B to temperature and
humidity using a set of globally distributed radiosondes (known as the NOAA-88
set) and the part related to the cloud parameters, which is built independently.The
statistics of clouds are generated from multitude runs based on fifth-generation
mesoscale model (MM5) simulations, corresponding to Hurricane Bonnie (1998),
with 4 km resolution and 23 vertical levels, extrapolated to the internal pressure
grid at 100 layers. The ability of these runs to represent the hydrometeor global
variability is not fully established, but this is believed to be accurate enough for
the case of hurricanes and tropical storms. Impact studies (not shown) were also
performed, which show that the system is able to reach convergence (therefore, a
radiometric solution) under many conditions that are independent of the set that
was used to generate these covariances.

9.5
Multiple 1DVARs for All-Weather Profiles

The 1DVAR system can begin with the background information that has already
been retrieved from the previous 1DVAR. Each time, the new 1DVAR retrieval
is built on robust background information and by concentrating on additional
profiles with newly added channels. In the case of microwave 1DVAR design,
we can first retrieve the atmospheric temperature profiles from oxygen sounding
channels near 50–60GHz. The problem is almost linear, and the forward model
can be purely emission-based, which is applied for most of the atmospheric con-
ditions. The products can be less affected by precipitation ice scattering.
Next, the 1DVAR adapts the temperature profiles from the previous retrievals

and uses them as background information. At this time, the unknowns are the
water vapor profiles. Cloud ice water path was derived prior to this process
(Figure 9.5) [256].
A good first guess can allow fast converge to a local minimum of the cost

function J(x) in Eq. (9.12). In the temperature 1DVAR process, Liu and Weng
[256] also developed a regression algorithm [257] to retrieve temperature as
a first guess (i.e., x0) in Eqs. (9.16) and (9.17). The first guesses are obtained
at a maximum of 42 levels from the surface to 0.1 hPa. Here, the regression
coefficients for temperature and water vapor profiles are predetermined using
our collocated radiosondes and satellite measurements. Note that the first guess
for cloud water profile is set to zero above the freezing level and to a small value
of 0.005 for the rest of the profile, since the in situ cloud liquid water profile is
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Figure 9.5 Flowchart of the microwave one-dimensional variation algorithm. The core
module describes the retrieval procedure.

not sufficient for the development of the regression algorithm. For the rain water
profile, we need to identify the precipitating atmospheres. In doing so, the rain
is determined through an algorithm that uses AMSU-B measurements at 89 and
150GHz [258]. While the rain pixel is identified, a vertically uniform distribution
of rain water below the freezing level is assumed.
The first guess of ice water content is assumed to be uniformly distributed

above the freezing level if the scattering signature is larger than a threshold
[211]. The ice particle’s effective diameter is calculated from the scattering
parameter ratio at 89 and 150GHz, which in turn is defined as the ratio of the
difference between the predicted and measured brightness temperatures to
the measured brightness temperature. The predicted brightness temperature is
computed from AMSU-A channels 1 and 2 brightness temperatures based on
a regression technique. The ice water path is then calculated from the effective
diameter and the scattering parameter. As required by 1DVAR, the surface
pressure and ocean wind speed are taken from the 6-h forecast data from the
National Centers for Environmental Prediction (NCEP) global forecast system
(GFS). A high-resolution dataset having a 1/6 degree resolution is used to define
surface elevation and 24 surface types. The surface types are as follows: water, old
snow, fresh snow, compacted soil, tilled soil, sand, rock, irrigated low vegetation,
meadow grass, scrub, broadleaf forest, pine forest, tundra, grass soil, broadleaf
pine forest, grass scrub, oil grass, urban concrete, pine brush, broadleaf brush,
wet soil, scrub soil, broadleaf 70–pine 30, and new ice.
It should be pointed out that an individual AMSU-A channel is not sensitive to

the water vapor profile. However, AMSU-A measurements at channels 1 and 2
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Figure 9.6 Comparison of the total precipitable water between radiosondes and retrievals
using the data from AMSU on the NOAA-16 satellite.

are sensitive to the total precipitable water vapor (e.g., 23.8GHz), and those from
channels 3 to 15 are more sensitive to the vertical temperature profile. Thus, the
initial water vapor profile can still be estimated from the AMSU-A because of the
correlation between the temperature and water vapor profiles and the AMSU-A
channel 1 sensitivity to the total precipitable water. Thus, in the temperature
1DVAR, water vapor profiles are also treated in the state vector; however,
the convergence is controlled only by the difference between two consecutive
retrievals in temperatures.
The 1DVAR retrieval algorithm is also validated with collocated satellite

measurements and radiosonde data. The radiosonde stations are distributed
globally and are shown in the website http://raob.fsl.noaa.gov/. All AMSU and
radiosonde data are matched with a spatial distance of less than 50 km and a
temporal difference of less than 2 h. Figure 9.6 compares the total precipitable
water from radiosondes with that retrieved from NOAA −15, −16, and −17
AMSU data. Note that the entire matchup data during 2002 are used in this
analysis, and the comparisons are only performed with the radiosonde data under
clear conditions. Overall, the biases are relatively small, and the RMS error is
stable and nearly 2.5mm (or 2.5 kg/m2), which is better than the results from our
previous study [211].
It is also important to assess the performance of the 1DVAR under cloudy and

precipitation conditions. In this study, theAMSUobservations inHurricane Isabel
are used for our tests. Hurricane Isabel was one of the most powerful storms that
affected the eastern portion of the United States in 2003. From the AMSU data
at 150GHz, we can clearly define the hurricane center near 21.75∘N and 56.55∘W
and the spiral rainfall bands surrounding the eye (Figure 9.7). Figure 9.7a–d shows
the retrieved cloud ice water path, surface rain rate, cloud liquid water path, and
total precipitable water. Notice that the area covered by the cloud ice water is
much broader than that covered by surface precipitation.The nonprecipitating ice
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Figure 9.7 (a) Retrieved atmospheric temperature at 850 hPa through a scattering radiative transfer model. (b) Emission radiative transfer
model; (c) Retrieved atmospheric temperature at 200 hPa through the scattering radiative transfer model. (d) Emission radiative transfer model
for Hurricane Isabel on September 12, 2003.
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clouds are primarily depicted by the AMSU at 150GHz. In addition, both cloud
liquid water and total precipitable water fail to detect the hurricane eye regions
because of the poor spatial resolution of the AMSU data, although the amounts
are generally higher near the center.
The effects of cloud and precipitation scattering on the temperature retrievals

can be demonstrated by comparing the results from a forward model including
scattering with those from the emission-based model. In Figure 9.7a, the mag-
nitude of the cold temperature anomaly at 850 hPa derived from the scattering
model is more agreeable with the other results [231, 259] compared to that from
the emission-based model shown in Figure 9.7b. Because of the scattering of
liquid-phase hydrometeors, the microwave brightness temperatures at sounding
channels are strongly depressed. If this scattering effect were not properly taken
into account in the retrieval process, the physical temperatures at 850 hPa would
have been forced to the lower values, which becomes highly nonphysical (see
Figure 9.7b). Using the scattering model, the retrieved structure of cooling at
850 hPa is smooth, and the anomaly of ∼3K is realistic according to Hawkins and
Rubsam.
The quality of the temperature distribution at 200 hPa has also been improved

significantly using the scattering model. Note that the temperature at the center
is ∼10 K higher than that of its environment (Figure 9.7c) and compares favorably
with other early observations [231, 259]. It is also interesting to see that the
retrieved temperature from the emission model (Figure 9.7d) is higher than
that from the scattering model (Figure 9.7c), which is opposite to the pattern at
850 hPa. This can be explained as follows: for the clouds at high altitudes, the
transmittance in the emission model is smaller, attenuating the high radiance
from lower warm and humid/cloudy atmosphere. Since the measured brightness
temperatures are higher than those predicted by the emission-based model, the
retrieval algorithm must enforce a higher temperature there when the emission
model is applied.

9.6
Microwave Integrated Retrieval System (MIRS)

The microwave integrated retrieval system (MIRS) performs the retrieval in the
empirical orthogonal function (EOF) space so that the system can handle a large
array of the state vector and can converge when all microwave channels are uti-
lized simultaneously. An integrated retrieval of atmospheric temperature, water
vapor, and hydrometeor profiles has run into a number of technical difficulties. (i)
Microwave measurements are obtained from a limited number of channels. We
have many more unknowns than measurements. (ii) All channels can be affected
by the scattering of large rain and ice particles. If we like to perform the retrievals
under precipitating atmospheres, how canwe run a scattering forwardmodel at an
affordable CPU time? (iii)When the products are developed independently of any
background information, from where can we obtain the background information
and covariance matrices for all state variables?
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MIRS addresses all these technical issues by integrating the CRTM, which
produces both radiances under all-weather conditions and the corresponding
Jacobians for all parameters including cloud and hydrometeor parameters
(Figure 9.8). The MIRS methodology described here is based on consistently
treating all the parameters that impact the measurements. It is also independent
of NWP-related information. The ill-posed nature of the inversion is handled
through the use of the eigenvalue decomposition technique, which renders the
inversion very stable and results in a high convergence rate. It was shown, in
an ideal simulation case, that the null space is a limiting factor. This translates
into cases where the retrieval process reaches a solution that satisfies the mea-
surements but is different from the actual, in terms of hydrometeor and cloud
profiles. Because of this and the limited information content of the radiances,
the aim of this retrieval was essentially to target the temperature and moisture
profiles as well as the surface parameters in very active weather regions. The
effects from the scattering and emission of hydrometeors onmeasurements could
be similarly produced by other parameters which are not explicitly accounted
in the control variables. Improvement in the cloud and hydrometeor profiling
is, however, expected if the temperature and moisture profiles are provided
externally, for example, through accurate NWP forecasts. Designing the retrieval
of cloud and hydrometeors in the profile form presents a number of advantages
including the avoidance to explicitly account for the cloud top pressure and the
cloud thickness, which could, in certain cases, cause instability or oscillation. The
designed system could also, in theory, provide information about the multilayer
nature of the clouds and mixture of phases within the cloud/precipitating layers,
provided enough information on the radiances exists.The retrieval system is used
under clear, cloudy, and precipitating conditions. It was shown by simulation
and confirmed with real data that the performances, when applied to clear skies,
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are not degraded and that the retrieval algorithm is able to reach a zero-amount
solution for all cloud and hydrometeor parameters if the radiances indicate so.
The 1DVAR retrieval is performed in the EOF space through projections back

and forth, at each iteration, between the original geophysical space and the
reduced space. This method has been routinely used in operational centers as a
standard transform approach for control variables [260]. It has also been used
in the context of retrieval of trace gases, sounding, and surface properties [256,
261–263]. Applying it in the context of our 1DVAR retrieval is therefore not very
original, except maybe for its extension to cloud and precipitation profiles, which
is, to our knowledge, new. Only a limited number of eigenvectors/eigenvalues
are maintained in this reduced space. The selection of the number of EOFs to
be used for each parameter is somehow subjective but depends on the number
of channels available that are sensitive to that parameter. Other approaches
exist, such as in [264] where an objective way for choosing the parameters to
be included in the control parameters is suggested, using the ratio between the
background covariance matrix and the a posteriori covariance (ratio of diagonal
elements). This ratio, however, depends on the Jacobian, which is only known at
the end of the iterative process unless the problem is purely linear (not the case
when cloud and precipitation as well as high-frequency channels are involved).
The advantages of performing the retrieval in the EOF space are as follows: (i)
handling the strong natural correlations that sometimes exist between parameters
that usually create a potential for instability (or oscillation) in the retrieval process
(small pivot), which is reduced significantly by performing the retrieval in an
orthogonal space, and (ii) time saving by manipulating and inverting smaller
matrices. The projection in the EOF space is performed by diagonalizing the a
priori covariance matrix:

B × L = L × Θ, (9.18)

where L is the eigenvector matrix, also called the transformation matrix, and Θ
is the eigenvalue diagonal matrix, which contains independent pieces of informa-
tion.The retrieval can therefore be performed using the originalmatrices as stated
before (retrieval in original space), or alternatively, by using the matrices/vectors
(retrieval in reduced space). The transformations back and forth between the two
spaces are performed using the transformation matrix L. It is important to note
that, at this level, no errors are introduced in these transformations. It is merely
a matrix manipulation. However, the advantage of using the EOF space is that
the diagonalized covariance matrix and its corresponding transformation matrix
can be truncated to retain only the most informative eigenvalues/eigenvectors. By
doing so, we are bound to retrieve only the most significant features of the pro-
file, leaving out the fine structures. How much truncation to use depends on how
much information the channels contain. In the AMSU configuration, six EOFs
are used for temperature, four for humidity and surface emissivity, one for skin
temperature, one for nonprecipitating cloud, and two for both rain and frozen
precipitation (20 in total).
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Several criteria have been reported for deciding on the convergence of
variational methods, among which are (i) testing that the increment in the
parameter values at a given iteration is less than a certain threshold (usually a
fraction of the associated error of that particular parameter), (ii) testing that
the cost function J(x) decrease is less than a preset threshold, or (iii) checking
that the obtained geophysical vector x at a given iteration produces radiances
that fit the measurements within the noise level impacting the radiances. We
have chosen the last criterion, as it maximizes the radiance signal extraction. A
convergence criterion based on J(x) while being mathematically correct would
produce an output that carries more ties to the background and therefore would
be more inclined to present artifacts due to it. The convergence criterion adopted
is when

𝜙2 = |(ym − y(x))T E−1(ym − y(x))| ≤ N , (9.19)

where N is the number of channels used for the retrieval process. Mathemati-
cally, this means that the convergence is declared to have reached if the residuals
between the measurements and the simulations at any given iteration are less
than or equal to one standard deviation of the noise that is assumed in the radi-
ances. Note that fitting the radiances within the noise level is a necessary but not
sufficient condition.We should note here that the convergence criteria do not alter
the balance of weights to the radiances (or to the background) in the cost function
minimized by 1DVAR.
The evolution of the humidity profile is monitored for supersaturation in the

iterative process. A maximum of 130% relative humidity is allowed. Currently,
it is set in an ad hoc manner at each step. This has the potential to nonlinearly
steer the convergence from its mathematical path and should, in general, be
avoided, but our experience has shown that this does not significantly increase
the divergence rate.
Microwave imaging and sounding data from the NOAA-18 satellite were

used to validate the retrieval system described under both clear and extreme
weather conditions, in the eye and within the eyewall of hurricane Dennis in the
summer of 2005. This was performed by comparing the retrievals of temperature
and humidity profiles to the measurements performed by GPS dropsondes.
Before retrieval is performed, the brightness temperatures of the two sensors
are collocated and corrected for any bias when compared to the forward model
simulations. The collocation is performed in two different ways: (i) averaging of
3× 3 MHS footprints is performed to fit the AMSU spatial coverage (low reso-
lution), or (ii) it is assumed that the AMSU footprint is valid within all subpixel
MHS footprints (high resolution). In the latter case, the subpixel heterogeneity
is computed from the MHS footprints and translated into AMSU channels but
only for those that are sensitive to the same geophysical parameters, namely
channels 23.8, 31.4, 50.3, and 89GHz. Bias removal is effected by simulating the
brightness temperatures over ocean using the NCEP global data assimilation
system (GDAS) analyses as inputs.These biases were found to be scan-dependent.



9.6 Microwave Integrated Retrieval System (MIRS) 255

The instrumental/modeling error covariance matrix E is also built partly during
this process by using the variances of the same comparisons. These variances are
subjectively scaled down to account for the uncertainties in the GDAS inputs and
collocation errors. The diagonal elements (in standard deviation, in kelvin) of the
forward modeling error matrix E for the AMSU and MHS channels from 1 to 20
are the following:

E = (1.9, 1.7, 1.2, 0.6, 0.3, 0.2, 0.3, 0.4, 0.4, 0.3, 0.8,

0.0, 0.0, 0.0, 2.1, 2.2, 1.4, 1.6, 1.3, 1.1)diagonal (9.20)

where channels 12–14 peak above the maximum altitude reported by GDAS,
so the comparison to GDAS simulation is not very meaningful; therefore, the
variances for these channels were deemed unreliable, and the channels were dis-
abled.These modeling errors are used more predominantly than the instrumental
errors (NEΔT values), which are computed exclusively from the rawAMSU/MHS
Level-1B data available from NOAA using the approach in [165]. For window
channels, modeling errors are dominant over instrumental errors. These values
are slightly lower than those found in the previous studies [264, 265]. They, how-
ever, allow stable convergence in most cases. Note that these modeling errors are
computed over ocean under clear-sky conditions.The same values are used under
cloudy/rainy conditions.
Figure 9.9a shows the field of 157GHz MHS brightness temperature for

Hurricane Dennis, which occurred in July 2005. The dropsonde launch location
is near the eye and within the eyewall of the hurricane and close in time to the
satellite measurements. MIRS retrieved the vertically integrated graupel-size ice
amount computed from the retrieved profile (Figure 9.9b). This is shown as a
qualitative validation. Although the retrieval is performed in profile form, the
resulting integrated value displays physically plausible features and values. The
retrieval corresponds to the same hurricane Dennis on July 8, 2005 (the same
descending orbit shown before). First, where no activity is present (from the
157GHz Tb field), the retrieval reports no ice or rain even though the first guess
used is actually a nonzero profile (the same used everywhere). Second, the large
values of graupel amount are concentrated in the middle of the active area and
decrease gradually at the edges. One can even see that in what seems to be the
eye of the hurricane, the value of the integrated ice amount is actually very small
compared to the surrounding pixels.
Figure 9.9c,d shows the comparison of MIRS retrievals to a few selected sondes

that were dropped within the eye and eyewall of the hurricane. GDAS is also
represented as reference. These figures correspond to temperature and moisture,
respectively. Both time difference and distance between the space-based mea-
surement and the dropsonde are shown on the plots. Note that the vertical extent
reaches 700 hPa only for this particular aircraft that dropped the sondes. GDAS
and MIRS still report retrievals up to 20 and 0.1 hPa. It is found that these com-
parisons show a rather good agreement between MIRS and the dropsondes, at
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Figure 9.9 NOAA-18 MHS 157 GHz and MIRS retrieved graupel-size ice content, tempera-
ture, and water vapor profiles within the eyewall of Hurricane Dennis, 2005, passing through
Cuba Island. Retrievals were performed at MHS resolution (roughly 20 km).

least for temperature. The differences are indeed well within the intra-variability
of the sonde measurements [266]. In addition to the intra-variability and the
representativeness issues reported before, the vertical descent of the sondes
apparently tends to drift horizontally more drastically within very active regions.
Although the distance at the launch location was reported to be 2.6 km for
the first sonde, for instance, we can see that when reaching the surface, the
distance was around 10 km. Again, in fast-moving features such as hurricanes,
this factor could make a significant difference. For the closest collocation (less
than 12min and less than 3 km in distance), the difference in water vapor is
actually also within the previously reported intra-variability. When the time and
distance differences are larger, the moisture differences are larger. But the errors
of representativeness and the vertical drift of the sondes could at least, in part,
explain the remaining differences. It is worth mentioning that NCEP GDAS does
ingest the dropsonde measurements within its assimilation cycle but not the
rain-impacted AMSU/MHS radiances. It is interesting to notice in this case that
GDAS analyses exhibit similar differences with the dropsondes as with MIRS
retrieval, although the latter is based solely on microwave radiances measured
from AMSU and MHS.
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9.7
Summary and Conclusions

Satellite microwave sounding measurements are used for deriving the TC’s inner
core dynamics and constructing the initial vortex for the storm simulation. With
AMSU-A andATMS observations, a regression algorithmwas developed by using
the collocated microwave data and radiosonde data. Since these algorithms are
trained with the clear-sky data, they are ideal for uses in the regions where satellite
data are not affected by the scattering from precipitation.Thus, for AMSU-A and
ATMS, those channels with the weighting functions having peaked below 500 hPa
are not used in the regression algorithms.
The 1DVAR retrieval algorithmhas been developed to retrieve a comprehensive

suite of geophysical parameters from spaceborne microwave measurements. The
suite of parameters consists of those that most directly impact the measurements:
atmospheric profiles of temperature, moisture, liquid and ice cloud, liquid
precipitation, and surface emissivity spectrum and its skin temperature. The
design of the MIRS is generic, and it can accommodate any microwave sensor
that can be handled by the forward operator CRTM. It is currently operational
for AMSU-A/MHS, SSMI/S, and ATMS. It also significantly reduces the amount
of time needed to develop an algorithm for a new sensor. It is noteworthy that,
in MIRS, the same code is used for all sensors, as well as the same atmospheric
covariance, background, and forward model. Therefore, applying MIRS to a new
sensor comes with a high degree of confidence stemming from the previous
tuning, improvement, and assessment performed for the previous sensors.
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10
Assimilation of Microwave Data in Regional NWP Models

10.1
Introduction

Effective and accurate environmental prediction based on numerical modeling
requires several elements. One of these is a set of observations that is accurate and
comprehensive enough to help establish the initial conditions for the prediction
model. Since most environmental prediction problems are of a global nature,
space-based observing systems are the only practical means of achieving the
required data coverage, and satellite sensors are, therefore, by far the largest
and most important data source. Currently, satellite data comprise 99% of all
observations received by operational weather and climate prediction centers.
Satellite data that have been used in global numerical weather prediction (NWP)
models include primarily the sounding measurements observed from microwave
and infrared instruments on board the National Oceanic and Atmospheric
Administration (NOAA) and EUMETSAT satellites. In addition, satellite-
estimated parameters such as ocean winds, atmospheric cloud and water vapor
track winds, and atmospheric temperature and water vapor information inferred
from global position satellite (GPS) radio occultation (RO) are also effectively
assimilated. The relative importance of all the sensors in the NWP system can
be quantified through an adjoint sensitivity, which calculates the 24-h forecast
error (the so-called energy norm) reduction by adding the data of each category
of instrument into the data assimilation system. Although this kind of analysis is
not a full observing system experiment, it has drawn the same conclusion on the
current observing systems, that satellite microwave sounding data are critical and
as effective as that from the conventional radiosondes in improving the global
medium-range forecasts [249]. The full observing system experiments with the
National Centers for Environmental Prediction (NCEP) global forecast system
(GFS) were conducted to demonstrate the impacts from the use of each specific
sounding system on the global medium-range forecast.
In this chapter, the radiance data from cross-track and conical-scanning

microwave sounders are used for assimilation in NWPmodels. The impacts from
assimilating the two sounder data on global forecast skills are compared [267, 268].
After launching the new generation of the polar-orbiting satellite, Suomi National

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Polar-Orbiting Partnership Satellite (NPP), all the NWP centers have reported
large positive impacts from the assimilation of Suomi NPP Advanced Technology
Microwave Sounder (ATMS). It has been shown that the use of ATMS data in
US GFS alone results in an increase of 70% in forecast score as measured by the
global 500-hPa geopotential height anomaly correlation coefficient (ACC) [268].
ATMS radiances are also directly assimilated in the Hurricane Weather Research
and Forecast (HWRF) system, and the impacts from assimilating ATMS data on
hurricane tack and intensity forecasts are significantly positive [233].

10.2
NCEP GSI Analysis System

The NCEP uses a gridpoint statistical interpolation (GSI) analysis system in
its global and regional NWP models. GSI is a three-dimensional variational
(3D-Var) data assimilation system, and detailed description of the theory and
development of the GSI system can be found in [269]. The GSI analysis system is
more advantageous than the earlier NCEP Spectral Statistical Interpolation (SSI)
analysis system [270] in that it has more flexibly in situations where observations
are greatly inhomogeneous in terms of their data density and quality.Through the
application of recursive filters, the spectral definition of background errors in the
SSI analysis system is replaced with a nonhomogeneous gridpoint representation
of background errors [269, 271, 272]. The GSI system was made available for
the NWP community, along with a GSI User’s Guide, providing a step-by-step
procedure for users to install, compile, and run the GSI system on different local
computer systems.
The GSI data assimilation system finds optimal analysis fields from forecast

fields, conventional observations, some retrieval products as observations, and
satellite radiances under dynamic constraints following a set of physical laws.The
Community Radiative Transfer Model (CRTM) discussed in the earlier chapters
is used in GSI for the direct radiance assimilation [251].
The variational approach in deriving the NWP initial conditions uses both

satellite measurements and an initial guess. Specifically, assuming that the errors
in the observations and in the a priori information are unbiased, uncorrelated,
and have Gaussian distributions, the best estimate of atmospheric state vector
(x) will minimize the cost function

J(𝐱,𝜷) = (𝐱 − 𝐱b)T𝐁−1(𝐱 − 𝐱b) + (𝜷 − 𝜷b)T𝐁𝛽
−1(𝜷 − 𝜷b)

+
[
H (𝐱) − 𝐲 − 𝐛(𝐱,𝜷)

]T𝐑−1 [H (𝐱) − 𝐲 − 𝐛(𝐱,𝜷)
]
+ Jc, (10.1)

where B is the error covariance matrix associated with the background state
vector xb; R is the error covariance matrix associated with observations and
forward models, respectively; and H is the so-called observation or forward oper-
ator. For satellite radiance assimilation, the radiance vector is simulated for a set
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of channels (or frequencies) at the state vector x, and y denotes the observations.
The parameter 𝜷 denotes a set of coefficients for the dynamic bias correction b.
In general, the element of b is related to a set of predictors chosen from the state
vector x. For AMSU-A bias correction, the predictors are the satellite viewing
angle, cloud liquid water, and atmospheric temperature lapse rate such as

b =
N∑

i=1
𝛽i pi, (10.2)

where the cloud water predictor is turned off for other instruments. Note that
the first two terms in Eq. (10.1) correspond to the background constraints for x
and 𝜷 , the third term is the bias-corrected observation constraint, and the final
term is an additional constraint (e.g., balance wind). The minimum of the cost
function is found from an iterative process that computes the descent direction
at the state x and 𝜷 .
For the radiance assimilation, the adjoint operator of Jacobian matrix or the

derivative of the radiance with respect to the state vector is required during
the minimization process. This is a typical three-dimensional variational data
assimilation scheme implemented in the current NWP models. The tangent
linear and adjoint techniques allow avoiding an explicit computation of Jacobians
in the data assimilation model. The tangent linear operator of a forward model
analytically computes the output perturbations corresponding to the input
perturbations with a computational cost typically only about twice as much as
that of the forward model.
In a data assimilation system, we are often exposed to numerous variables such

as analysis field, state vector, observation, departure, or innovation.They are sum-
marized as follows.
An analysis is the production of an accurate image of the true state of the atmo-

sphere at a given time, represented in a model as a collection of numbers. An
analysis can be useful in itself as a comprehensive and self-consistent diagnostic
of the atmosphere. It can also be used as input data to another operation, notably
as the initial state for a numerical weather forecast or as a data retrieval to be used
as a pseudo-observation. It can provide a reference against which the quality of
observations is checked. The basic objective information that can be used to per-
form the analysis is a collection of observed values provided by observations of
the true state. If the model state is overdetermined by the observations, then the
analysis reduces to an interpolation problem. In most cases, the analysis problem
is underdetermined because data is sparse and only indirectly related to themodel
variables. In order to make it a well-posed problem, it is necessary to rely on some
background information in the form of an a priori estimate of the model state.
Physical constraints on the analysis problem can also aid in this. The background
information can be climatological or a trivial state; it can also be generated from
the output of a previous analysis, using some assumptions of consistency in time
of the model state, such as stationarity (hypothesis of persistence) or the evolu-
tion predicted by a forecast model. In a well-behaved system, one expects that
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this allows the information to be accumulated in time into the model state and to
propagate to all the variables of themodel.This is the concept of data assimilation.
State vector in a forecast model is a collection of variables required to rep-

resent the atmospheric state of the model, which is a column matrix. How the
vector components relate to the real state depends on the choice of discretization,
which is mathematically equivalent to a choice of the basis. The state vector can
be derived from a best set of observations, forecasts, and analysis fields.
Control variables are those components that are allowed for performing the

correction to the background field. Observation vector denotes the number of
observed values. To use them in the analysis procedure, it is necessary to be
able to compare them with the state vector. It would be better if each degree of
freedom was observed directly. In practice, there are fewer observations com-
pared to variables in the model, and they are irregularly disposed, so that the only
correct way to compare the observations with the state vector is through the use
of a function from model state space to observation space called an observation
operator. Departure or innovation is the discrepancy between observations and
the state vector.
The process of assimilating satellite microwave sounding data in NWP systems

is typical and requires robust data quality control (QC) including checks of geolo-
cation errors, calibration uncertainties, and the effects of cloud and rain. Satellite
measurements must also be corrected to be consistent with the simulations from
the forward models. This is also referred to as bias correction processes.

10.3
ATMS Data Assimilation in HWRF

10.3.1
Hurricane Weather Research and Forecast (HWRF) System

The HWRF system was developed at NOAA’s National Weather Service (NWS).
TheHWRFhas a non-hydrostaticmesoscalemodel dynamic solver [273, 274].The
initial single-domain version of the HWRF system became an operational hur-
ricane track and intensity guidance tool in 2007 [275]. A 3-km nesting domain
was then added to the operational HWRF system for improved hurricane inten-
sity forecasts [276–279]. Finally, a triply nested version of the HWRF system was
developed, which was configured with a parent domain of 27 km horizontal reso-
lution and about 750× 750 model gridpoints, an intermediate two-way telescopic
moving nesting domain at 9 km with about 238× 150 gridpoints, and an inner-
most two-way telescopic moving nesting domain at 3 km with about 50× 50 grid-
points [276]. Figure 10.1 provides an example showing the outer domain, the ghost
domain, the middle nest, and the inner nest for forecasting the track and inten-
sity change of Hurricane Beryl. The surface pressure field from the background
field at 0000 UTC on May 27, 2012 within the outer domain is also shown. It is
seen that the outer domain is reasonably large for capturing tropical cyclone (TC)
environmental flow evolution.
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Figure 10.1 Surface pressure (shaded) from the background field at 0000 UTC 27 May 2012,
for Hurricane Beryl. The outer domain, ghost domain, middle nest, and inner nest are also
indicated. (Zou et al. 2013 [233]. Reproduced with permission of Wiley.)

TheHWRF atmosphericmodel employs the following suite of advanced physics
parameterization: Ferrier microphysics, NCEP GFS boundary layer physics, GFS
SAS deep convection, and GFS shallow convection. The HWRF also includes the
Geophysical Fluid Dynamics Laboratory (GFDL)GFDL surface physics, including
GFDL land surface model and radiation, to account for air–sea interaction over
warm water and under high wind conditions.The atmosphere component is cou-
pled to the Princeton Ocean Model (POM) for all three domains, which employs
feature-based initialization of loop current, warm and cold core eddies, and cold
wake during the spin-up phase of the TCs.This version of the model also includes
surface and boundary layer physics appropriate for higher resolution [280].
The triply nested 2012 version of the HWRF system is used for this study. Both

the intermediate and innermost domains are centered at the initial storm loca-
tion and configured to follow the projected path of the storm. The HWRF has 43
hybrid vertical levels with more than 10 model levels located below 850 hPa and a
model top located at 50 hPa. The 50 hPa model top is too low for including many
upper-level ATMS channels in data assimilation. Figure 10.2a shows theweighting
functions for all 22 ATMS channels, the pressures of the 43 vertical levels, and the
pressure differences between two adjacent vertical levels. In order to include those
high-level ATMS channels with their weighting functions peaking in the strato-
sphere, the model top is raised to 0.5 hPa, and the model levels are increased to 61
accordingly (Figure 10.2b).
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Figure 10.2 Weighting functions for ATMS channels 1–16 (light gray) and channels 17–22
(moderate gray), the pressures of the 61 vertical levels (gray horizontal line), and the
pressure differences between two adjacent vertical levels (black curve) for (a) 43-level
and (b) 61-level HWRF models. (Zou et al. 2013 [233]. Reproduced with permission
of Wiley.)

The vortex initialization in the HWRF is performed at the 9-km resolution
domain, with model fields in the 3-km resolution domain being downscaled
from those over the 9-km domain. It consists of merging a specified bogus vortex
with an environmental field extracted from the GFS analysis. Two prespecified
symmetric vortices are made available: one for shallow or medium vortex, and the
other for a deep vortex. A storm size correction and an intensity correction are
performed to the prespecified vortex fields according to the tropical prediction
center (TPC)-provided storm size and intensity data.
The merged field with a corrected vortex and the GFS analysis environment is

used as the background field for data assimilation of conventional observations.
Such a procedure is repeated at 6-h intervals. To eliminate the complications asso-
ciated with double use of data, in this study, the 6-h HWRF forecasts are used for
the environmental fields described earlier.

10.3.2
Hurricane Events in 2012

Tropical storms Beryl andDebbie and hurricanes Isaac and Sandy, which occurred
in 2012, over the Atlantic Ocean, are selected for this investigation.They were the
four landfall cases. The best track of each of the cases is shown in Figure 10.3.
Tropical storm Beryl developed from a tropical low on May 22, 2012, and

became a subtropical storm on May 26 and a tropical storm on May 27, 2012. It
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Figure 10.3 Best tracks of Hurricane Beryl from 0000 UTC 22 May to 1800 UTC 30 May
Debby from 0000 UTC 21 June to 0000 UTC 30 June, Isaac from 0000 UTC 22 August to
1800 UTC 30 August, and Sandy from 1200 UTC 19 October to 1800 UTC 30 October 2012.
The storm intensity is indicated at 12-h intervals at 0000 UTC and 1200 UTC. (Zou et al.
2013 [233]. Reproduced with permission of Wiley.)

first moved northeastward, then turned to move southwestward on May 24, and,
finally, made landfall around 0410 UTC 28 May near Jacksonville Beach, Florida.
After landfall, Beryl moved northeastward across northeastern Florida. Beryl
was the strongest pre-season tropical storm on record. Tropical storm Debby
developed from a low-pressure system in the Gulf of Mexico on June 23, 2012.
Debby turned from a northward movement to an east-northward movement on
June 24 and made landfall in Florida on June 26 (Figure 10.3).
Hurricane Isaac was initiated from a tropical wave in the west coast of Africa

on August 21, 2012. It became a tropical storm later that day. Isaac moved
westward before August 25 and moved northwestward afterward (Figure 10.3).
Isaac remained as a tropical storm in the subsequent 7 days and intensified into a
category-1 hurricane in the morning of August 28 before its landfall.
Hurricane Sandy developed from a tropical wave in the western Caribbean Sea

on October 22, 2012. It quickly strengthened and developed into a tropical storm
on the same day. Sandy became a category-1 and -2 hurricane after October
24. Sandy moved initially westward in the Caribbean Sea, northward over
Bahamas, then northeastward when entering the middle latitudes, and, finally,
northwestward onOctober 28 (Figure 10.3). It made landfall near Atlantic City on
October 30. Hurricane Sandy was the largest Atlantic hurricane on record, which
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earned it a nickname Superstorm Sandy by the media and government agencies.
It affected 24 states, resulting in severe damage particularly in New Jersey and
New York. It caused an estimated damage of over $63 billion and a casualty of at
least 111 in the United States.

10.3.3
ATMS Data Quality Control

The QC for ATMS data in GSI employs six parameters associated with cloud,
water vapor, and temperatures, three parameters associated with surface
emissivity estimated from ATMS-observed and CRTM-simulated brightness
temperatures, and one parameter related to the observation error. First, a cloud
liquid water path (LWP) index (LWPo

index) and a total precipitation water index
(TPWo

index) are calculated over ocean using the ATMSmeasurements at 23.8GHz
(channel 1) and 31.4GHz (channel 2) [281]:

IWPo
index = 𝜇[c1 − 𝜇(c2 − 𝜇c3) + c4 × log(285 − To

b,1)

− c5 × log(285 − To
b,2)], (10.3)

TPWo
index = 𝜇[t1 − 𝜇(t2 − 𝜇t3) − t4 × log(285 − To

b,1)

+ t5 × log(285 − To
b,2)], (10.4)

where To
b,i (i= 1, 2) represent the ith ATMS channel measurements, and 𝜇 = cos 𝜃

with 𝜃 representing the satellite zenith angle; ci (i= 1, 2,… , 5) are regression
coefficients for IWP whose values are set to 8.24, 2.622, 1.846, 0.754, and 2.265,
respectively; and ti are regression coefficients for TPW whose values are set
to 247.92, 69.235, 44.177, 11.627, and 73.409, respectively. By replacing To

b,i
with Tm

b,i (i= 1, 2) in Eqs. (10.3) and (10.4), IWPm
index and TPWm

index are also
calculated.
Then, a cloud liquid water index is calculated as follows:

CLWindex =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−0.754 ×
To

b,1 − Tm
b,1 − 𝛼1

285 − Tm
b,1

+2.265 ×
To

b,2 − Tm
b,2 − 𝛼2

285 − Tm
b,2

if Tm
s > 273.15 K

0 otherwise

, (10.5)

where 𝛼i is the scan-angle-dependent bias of the ith channel (i= 1, 2); Tm
b,i (i= 1, 2)

are the brightness temperature simulations of the ith channel; and Tm
s is the 2-m
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surface air temperature from the background fields. Two more indices, f1 and f2,
are then calculated as follows:

f1 =

⎧⎪⎪⎨⎪⎪⎩

(
𝜇 × LWPindex

0.3

)2

+

(
To

b,5 − Tm
b,5

1.8

)2

ocean surface

0.36 +

(
To

b,5 − Tm
b,5

1.8

)2

other surface

, (10.6)

f2 =

⎧⎪⎪⎨⎪⎪⎩

(
ds
10

)2

+

(
To

b,7 − Tm
b,7

0.8

)2

ocean surface

0.64 +

(
To

b,7 − Tm
b,7

0.8

)2

other surface

, (10.7)

where

ds =
(
2.41 − 0.098 ×

(
To

b,1 − 𝛼1

))
×
(

To
b,1 − Tm

b,1

)
+ 0.454 ×

(
To

b,2 − Tm
b,2

)
−
(

To
b,16 − Tm

b,16

)
.

Three additional surface-emissivity-related parameters are calculated forATMS
channels 1–3:

ri =
To

b,i − Tm
b,i

𝜀i
, (i = 1, 2, 3), (10.8)

where 𝜀i is the surface emissivity of the ith channel.
The last parameter that is employed in the GSI QC algorithm is the modified

observation error e′i , which is defined as follows:

e′i =

{
êi × fH2 × fH4,i × ftropic × 𝜏

top
i for i = 1 − 8, 16 − 22

êi otherwise
, (10.9)

where

êi =
⎧⎪⎨⎪⎩
5 × (IWPindex − 0.05) ×

(
ecloud

i − ei
)

if 0.05 ≤ IWPindex < 0.25
4 × (IWPindex − 0.05) × (ecloud

i − ei) if 0.25 ≤ IWPindex < 0.5
ei otherwise

, (10.10)

In Eqs. (10.9) and (10.10), ei is the observation error of the ith channel (see
Table 10.1); 𝜏 top

i is the transmittance at the model top for the ith channel;
IWPindex = 0.5 × (IWPo

index + IWPm
index); ecloud

i is the observation error for cloudy
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Table 10.1 Prescribed ATMS observation error and maximum observation error.

Channel Observation
error (K)

Maximum
observation
background
error (K)

Channel Observation
error (K)

Maximum
observation
background
error (K)

1 5.0 4.5 12 0.4 1.0
2 5.0 4.5 13 0.55 1.0
3 5.0 3.0 14 0.8 2.0
4 3.0 3.0 15 3.0 4.5
5 0.55 1.0 16 5.0 4.5
6 0.3 1.0 17 2.5 2.0
7 0.3 1.0 18 2.5 2.0
8 0.3 1.0 19 2.5 2.0
9 0.3 1.0 20 2.5 2.0
10 0.3 1.0 21 2.5 2.0
11 0.35 1.0 22 2.5 2.0

radiance and is currently set to zero; and ftropic, fH2, and fH4 are defined as follows:

ftropic =

{
0.01 × 𝜑 + 0.75 f 𝜑 ∈ [25S, 25N]
1 otherwise

, (10.11)

fH2 =

{
2000

H
if H > 2000 m

1 otherwise
, (10.12)

fH4,i =

{
4000

H
if H > 4000 m, i = 8

1 otherwise
, (10.13)

where 𝜑 is latitude and H is the terrain height.
The QC procedure in the GSI system is implemented based on the values of

the aforementioned 10 parameters calculated by Eqs. (10.3), (10.4), (10.6), and
(10.9), as well as the sum of the mixing ratios of cloud liquid water content and
ice water content from the background field (i.e., qh = qm

liquid + qm
ice). It consists of

the following nine tests:

1) If qh > 0 and f2 > 1, data outside the latitudinal range [60S, 60N] are rejected
for channels 1–7 and 16–22.

2) If qh > 0, f2 ≤ 1, and f1 > 0.5, data outside the latitudinal range [60S, 60N] are
rejected for channels 1–6 and 16–22.

3) If qh > 0 and |Tb
o
,i − Tb,i

m| > 3e′i , all data are rejected.
4) If qh > 0 and either LWPo

index > 0.5 or LWPm
index > 0.5, data over ocean within

the latitudinal range [60S, 60N] are rejected for channels 1–6 and channels
16–22.
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5) If qh = 0 and f2 > 1, data of channels 1–7 and 16–22 are rejected.
6) If qh = 0 and f2 ≤ 1 and f1 > 0.5, data of channels 1–6 and 16–22 are rejected.
7) If qh = 0 and |Tb

o
,i − Tb,i

m| > max{3e′i , ei,max}, all data are rejected, where
ei,max is the maximum observation error (see Table 10.1).

8) If qh = 0, f2 ≤ 1, f1 ≤ 0.5, but either r1 > 0.05, or r2 > 0.03, or r3 > 0.05, data
over ocean for channels 1–6 and 16–22 are rejected.

9) All data over a mixed surface are rejected, where a mixed surface is defined as
a surface with none of the ocean, land, ice, or snow cover interpolated from
the background field exceeding 99%.

The ATMS channel 15 is not assimilated over both land and ocean. The first
three QC tests remove the outliers under cloudy conditions when model simu-
lations greatly deviate from observations. The fourth QC test removes the data
points when either modeled (LWPm

index) or observation-retrieved (LWPo
index) LWP

is greater than 0.5 kg/m2. The last five QC tests remove the outliers under cloudy
conditions.The fifth and seventh tests identify the outliers under clear-sky condi-
tionswhenmodel simulations greatly deviate fromobservations.The sixthQC test
considers not only the model and observation differences but also the sensitivity
to LWP.The eighth test is used to remove the outliers associated with uncertainty
in surface emissivity. The ninth test is to remove a field of view (FOV) over which
any single type of surface covers less than 99% of the FOV area.
An example of data distributions retained and removed by the aforementioned

QC procedure is shown in Figure 10.4. The brightness temperatures of the
Advanced Very-High-Resolution Radiometer (AVHRR) channel 4 at 10.4 μm
are used for showing the cloud distribution (Figure 10.4a) (O – B) values of
ATMS channel 19 for those data that pass GSI QC (Figure 10.4b) and data points
removed by different QC criteria (Figure 10.4c) within and around Hurricane
Sandy at 0600± 0300 UTC 26 October 2012 are also shown. As expected, cloud
is populated within and around Hurricane Sandy. However, still there are many
ATMS data points distributed under clear-sky conditions within and around
Hurricane Sandy. Most cloudy radiances (i.e., cross symbols in clouds as shown in
Figure 10.4a–c) are successfully identified and removed by the GSI QC procedure
for the ATMS data described earlier. Data points rejected by the GSI QC in this
case are mostly by QC criteria 5 and 9 listed earlier.
Bias correction radiance measurements from meteorological satellites are not

absolutely calibrated. Therefore, a global constant observation bias is expected
with passive microwave data from a polar-orbiting satellite. For a cross-tracking
satellite instrument, observations at large scan angles could be obstructed by
the spacecraft radiation, which is difficult to quantify. Therefore, an angular-
scan-dependent observation bias is also expected. Model simulations could also
have biases. Although the limb effect of a cross-track instrument is modeled
in a forward radiative transfer model, the atmospheric inhomogeneity arising
from cloud and other sources within an FOV, which is not explicitly/accurately
simulated in radiative transfer models, is larger at larger scan angles. In addition,
the altitude of the peak weighting function increases with the scan angle, and the
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Figure 10.4 Spatial distributions of (a) brightness temperatures of AVHRR channel 4
(TAVHRR

b,4
), (b) (O – B) values of ATMS channel 19 for those data that pass (dots) and fail in

(crosses) the GSI QC overlapped on TAVHRR
b,4

(shading), and (c) data points rejected by the
fifth to ninth QC criteria at 0600 UTC 26 October 2012. (Zou et al. 2013 [233]. Reproduced
with permission of Wiley.)

atmospheric inhomogeneity within an FOV varies with altitude.The atmospheric
radiative transfer models are more accurate near nadir than at large scan angles.
Therefore, an angular-scan-dependent model bias is expected.
On the other hand, all data assimilation systems are developed under the

assumption that observation and forward model errors are unbiased. Therefore,
any bias related to satellite instruments and forward models must be removed
in satellite data assimilation. Therefore, it is important for the ATMS data biases
to be properly quantified and removed prior to assimilation of ATMS data
[147, 152, 233].
The GSI bias correction consists of the following three parts: (i) scan biases,

which are calculated as mean differences between observations and model
simulations for each scan position; (ii) residual biases that depend on air mass
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distributions and geographical locations [282]; and (iii) residual biases that vary
with time on both diurnal and seasonal scales [283]. Specifically, the biases for
the ith channel and the jth FOV of ATMS data, bi,j (i= 1,… , 22; j= 1,… , 96),
consist of a static scan bias term (b(1)

i,j ), an air-mass-dependent bias term (b(2)
i,j ),

and an adaptive scan bias term (b(3)
i,j ) written as follows:

bi,j = b(1)
i,j + b(2)

i,j + b(3)
i,j

≡ 𝛼i,j +
5∑

l=1
𝜔l × pi,j,l +

M∑
m=1

𝛾i,j,m(𝛽i,j)m, (10.14)

where 𝛼i,j denotes the static scan biases, which are calculated as mean differences
between observations and model simulations for each scan position; 𝜔l (l = 1,… ,
5) are the five bias correction coefficients for the five air mass predictors pi,j,l; and
𝛽i,j and 𝛾i,j,m (m= 1,… , M) are the scan angle and the polynomial coefficients up
to the order of M, respectively. The adaptive scan bias term (b(3)

i,j ) is not applied
for ATMS bias correction.
The five air mass predictors are defined as follows:

pi,j,1 = 1, (10.15a)

pi,j,2 =
( 1
cos 𝜃

− 1
)2

, (10.15b)

pi,j,3 =

{
(cos 𝜃)2 × CLWindex, if qm

liquid + qm
ice = 0

0, otherwise
, (10.15c)

pi,j,4 = (Γ𝜏

i,j − Γ𝜏

i )
2, (10.15d)

pi,j,5 = Γ𝜏

i,j − Γ𝜏

i , (10.15e)

where Γ𝜏

i,j is the lapse rate of transmittance of the ith channel and the jth FOV, and
Γ𝜏

i is the mean lapse rate of transmittance of the ith channel for all FOVs. Values
of 𝛼i,j (i= 1,… , 22; j= 1,… , 96), Γ𝜏

i (i= 1,… , 22) and𝜔l (l = 1,… , 5) are fixed and
provided in the GSI input file.
The lapse rate of transmittance that appears in Eqs. (10.15d) and (10.15e) is cal-

culated by the following expression:

Γ𝜏

i,j = −
K∑

k=1

𝜏i,k+1 − 𝜏i,k

Tj,k+1 − Tj,k−1
, (10.16)

where the subscript k indicates the kth vertical level, K is the total number of
model levels, 𝜏i,k+1 is the atmospheric transmittance of the ith channel integrated
from the kth vertical level to the top of the atmosphere, and Tk is the atmospheric
temperature at the kth vertical level.
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The biases of ATMS data bi,j described earlier are subtracted from the term
To

b,i − Tm
b,i, which appears in the cost function of the 3D-Var method in the GSI

system.

10.3.4
Comparison between (O – B) and (O – A) Statistics

Figure 10.5 shows the data count distributions as a function of the differences
between ATMS data and background (O – B) or the differences between ATMS
data and analysis (O – A) at the 8th, 13th, 18th,… , 93th ATMS FOVs for three
tropospheric ATMS channels 6–8 and three stratospheric channels 9–11. The
angle-dependent biases and standard deviations are also plotted in Figure 10.5. It
is seen that the (O – B) data spread is much broader than that of (O – A) for all
ranges of (O – B) or (O – A) brightness temperature values.There is a scan-angle-
dependent bias such as channels 7 and 11 in (O – B) distributions.The biases and
standard deviations are also reduced at all scan angles.The (O – A) biases remain
constant for all scan angles.
Values of the mean and standard deviation of (O – B) and (O – A) at nadir for

all ATMS channels assimilated in the experiment SAT+ATMS forHurricane Isaac
are presented in Figure 10.6. The biases are reduced for all channels except for
channels 13 and 18. The standard deviations of (O – A) are significantly reduced
for all channels except for channel 14. This confirms a better fit of NWP model
fields to ATMS observations resulting from data assimilation.

10.3.5
Impact of ATMS Data on Forecasting Track and Intensity

Impacts of ATMS data assimilation on hurricane track and intensity forecasts
are examined in this section. First, we show daily variations of an added value of
ATMS data to conventional data on Hurricane Isaac’s track and intensity fore-
casts (Figures 10.7–10.10). Figure 10.7 shows the forecast tracks of Hurricane
Isaac with model forecasts initialized at 0000 UTC and 1200 UTC during August
23–29, 2012 for CTRL1 and CTRL1+ATMS. Forecast results initialized at 0600
UTC and 1800 UTC during the same time period from August 23 to 29, 2012,
are similar and not included in Figure 10.7 for clarity. The forecast tracks have
an overall eastward bias compared to the observed track. Impacts of ATMS data
assimilation on track forecasts were seen for the forecast started at 0000 UTC on
August 25 and became more significant on August 26 and afterward. While the
center of the observed Hurricane Isaac moved over the Gulf of Mexico, the fore-
cast tracks at 0000 UTC on 25, 0000 UTC, and 1200 UTC on August 26 were
over the coastal land in the CTRL experiment. Such an error in forecast track will
introduce a significant error in the intensity forecasts.
Daily impacts of ATMS data assimilation on both track and intensity forecasts

for Hurricane Isaac are shown in Figure 10.8. Specifically, an average of four 5-day
forecasts initialized at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC on each
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Figure 10.5 Data counts calculated at an interval of 0.025 K (color shading) as a function
of FOV and the difference between observations and model simulations calculated from
the background fields (left panels) and the analysis fields (right panels) for three tropo-
spheric ATMS channels 6–8 in the experiment CTRL2+ATMS for Hurricane Isaac. The angle-
dependent biases and standard deviations are indicated in solid and dashed curves, respec-
tively. (Zou et al. 2013 [233]. Reproduced with permission of Wiley.)
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Figure 10.6 (a) Mean and (b) standard deviation of O – B (solid bar) and O – A (dashed
bar) at nadir (FOV 48) from the experiment CTRL2+ATMS for Hurricane Isaac. (Zou et al.
2013 [233]. Reproduced with permission of Wiley.)

day from August 22 to 27, 2012, is calculated as a function of forecast lead time in
both the CTRL1 and CTRL1+ATMS experiments. The track errors are relatively
small on the first 3 days from August 22 to 23, 2012, in both experiments when
Hurricane Isaac was in the open ocean. A rapid increase in track error with
forecasting time occurred on August 25 and 26 in the CTRL1 experiment when
Hurricane Isaac moved into Porto Rico. The track errors exceed 400 and 600 nm
when the forecast time reaches 96 h in the CTRL1 experiment. When ATMS
data are added for data assimilation, the track errors remain around and below
200 nm even during the entire 5-day forecast period of August 25–27, 2012.
In other words, ATMS data assimilation had a marginal impact on Hurricane
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Figure 10.7 The forecast tracks of Hurricane Isaac with model forecasts initialized at 0000
UTC (solid) and 1200 UTC (dotted) during August 23–26 (top panels) and August 27–29
2012 (bottom panels) for CTRL1 (left panels) and CTRL1+ATMS (right panels). The observed
track is indicated by hurricane symbols. (Zou et al. 2013 [233]. Reproduced with permission
of Wiley.)

Isaac’s track forecasts when the CTRL1 experiment had a reasonably good track
forecast in the first 3 days. It had a significant positive impact on Hurricane Isaac’s
track forecasts when the CTRL1 experiment did not perform well. Impacts of
ATMS data assimilation on intensity forecasts for Hurricane Isaac were most
significant on August 25 and 26, 2012. Improvements of ATMS data to intensity
forecasts occurred at the same time when track forecasts were improved for
Hurricane Isaac.
The maximum wind speeds and the minimum sea level pressure (SLP) from

all the 5-day forecasts, four times a day for August 23–29, 2012, for Hurricane
Isaac, in CTRL1, CTRL2, CTRL1+ATMS, and CTRL2+ATMS experiments are
presented in Figures 10.9 and 10.10, respectively. The HWRF forecasts without
satellite data assimilation tend to produce a stronger Sandy than observed. Such
a bias in intensity forecasts is reduced after satellite data are assimilated. Assim-
ilating ATMS data reduces the spread of both the maximum wind speed and the
minimum SLP from different 5-day forecasts throughout the time period of Octo-
ber 23–31.
The track forecast of Hurricane Sandy was a well-known challenge in 2012.

Impacts of ATMS data assimilation on Hurricane Sandy’s track forecasts are
shown in Figures 10.11 and 10.12. Figure 10.11 is a spaghetti map showing the
observed and model-predicted tracks of the 5-day forecasts initialized at 0000
TUC, 0600 UTC, 1200 UTC, and 1800 UTC from October 23 to 29, 2012, by
the four experiments CTRL1, CTRL2, CTRL1+ATMS, and CTRL2+ATMS. The
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Figure 10.8 Daily mean forecast errors of hurricane track (a), the maximum wind (b), and
the central SLP (c) for hurricanes Isaac from the experiments CTRL1 (solid) and CTRL1+ATMS
(dashed) from August 22 to 27, 2012. (Zou et al. 2013 [233]. Reproduced with permission of
Wiley.)

forecast tracks from the CTRL1 experiment have a systematic northeastward
bias. Such a track bias is significantly reduced for forecasts initialized after 1200
UTC 26 October 2012. The forecast tracks from the CTRL2+ATMS experiment
followed the observed track very closely.
In order to show the forecast track differences between CTRL2 and

CTRL2+ATMS more clearly, the 5-day forecast tracks of Hurricane Sandy
with the HWRF model forecasts initialized at 0000 UTC and 1200 UTC during
the first 4 days (October 23–26) and the later 3 days (October 27–29) are sepa-
rately presented in Figure 10.12. It is seen that the forecast tracks by the CTRL2
experiment before October 25 all moved northeastward while the observed track
turned from its northeastward to northwestward moving direction. Assimilation
of ATMS observations results in a much improved track prediction. The track
of the CTRL2+ATMS forecasts followed the observed track when the forecast
model is initialized as early as 0000 UTC 25 October. The CTRL2+ATMS exper-
iment produced a reasonably good track forecast one day earlier than the CTRL2
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Figure 10.9 The maximum wind speed of all the 5-day forecasts for Hurricane Isaac from
CTRL1, CTRL1+ATMS, CTRL2, and CTRL2+ATMS. (Zou et al. 2013 [233]. Reproduced with per-
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[233]. Reproduced with permission of Wiley.)
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Figure 10.11 Five-day forecast tracks of Hurricane Sandy by the four experiments CTRL1,
CTRL1+ATMS, CTRL2, and CTRL2+ATMS with HWRF initialized from October 23 to 29, 2012
at 6-h intervals. The NHC best track is shown in black. (Zou et al. 2013 [233]. Reproduced
with permission of Wiley.)

experiment. The forecast tracks of both CTRL2 and CTRL2+ATMS experiments
made the right turn from their northeastward movement to a northwestward
movement for all the forecasts initialized during October 27–29. However, the
landfall position from the CTRL2+ATMS forecasts initialized on October 27 is
more precise than that in the CTRL2 experiment.
The largest difference in the track forecasts of Hurricane Sandy with and with-

out ATMS data assimilation occurred in the forecasts initialized at 1200 UTC
26 October 2012. It is found that the improvement on track forecasts by ATMS
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Figure 10.12 Tracks of Hurricane Sandy with the HWRF model forecasts initialized at 0000
UTC (solid) and 1200 UTC (dotted) during October 23–29 2012 for CTRL2 (left panels) and
CTRL2+ATMS (right panels). The observed locations of Hurricane Sandy in different days are
indicated by colored hurricane symbols. (Zou et al. 2013 [233]. Reproduced with permission
of Wiley.)

data arises from a more realistic development of an Ω-shaped ridge in the
middle latitudes when Sandy moved into it. Figure 10.13 shows the potential
vorticity and wind distributions at 200 hPa at 1200 UTC 28 October, 1200 UTC
29 October, and 0000 UTC 30 October 2012, from the NCEP GFS analysis. The
position of Hurricane Sandy is indicated. Based on the large-scale environmental
flow pattern shown in Figure 10.13, it is pointed out that the track of Hurricane
Sandy changed from a northeastward movement to a northwestward movement
due to the fact that it moved into a mid-latitude trough or the west-side neck
of an Ω-shaped ridge downstream of the trough. The cyclonic flow of the
trough, or the anticyclonic flow of the ridge, seems to significantly contribute
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Figure 10.13 Potential vorticity (shading) and wind vector (black arrow) at 200 hPa at
(a) 1200 UTC 28 October, (b) 1200 UTC 29 October, and (c) 0000 UTC 30 October from
the NCEP GFS analysis for Hurricane Sandy. Purple hurricane symbol indicates the
center location of Hurricane Sandy. (Zou et al. 2013 [233]. Reproduced with permission
of Wiley.)

to the northwestward movement of Hurricane Sandy. As seen in Figure 10.13c,
Hurricane Sandy made landfall at 0000 UTC 30 October 2012.
Improvements of Hurricane Sandy’s track forecasts thus depend on how well

these large-scale features in the middle latitudes are forecast by HWRF. The 48-,
72-, and 84-h forecasts from the two forecast experiments initialized at 1200 UTC
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26 October 2012, for CTRL2 and CTRL2+ATMS are presented in Figures 10.14
and 10.15, respectively. It is mentioned that the 48-, 72-, and 84-h forecasts
shown in Figures 10.14 and 10.15 are valid at 1200 UTC 28 October 1200 UTC
29 October, and 0000 UTC 30 October 2012. Compared with Figure 10.13,
it is concluded that the large-scale flow patterns are better predicted by the
CTRL2+ATMS experiment. The model-predicted Ω-shaped ridge downstream
north of Sandy is too weak in the CTRL2 experiment. In other words, the ATMS
data assimilation positively contributes to the prediction of Hurricane Sandy’s
environmental flow.
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Figure 10.14 Potential vorticity (shading) and wind vector (black arrow) at 200 hPa from (a)
48 h, (b) 72 h, and (c) 84 h the CTRL2 forecast initialized at 1200 UTC 26 October 2012. Pur-
ple hurricane symbol indicates Sandy’s center location predicted by the CTRL2 experiment.
(Zou et al. 2013 [233]. Reproduced with permission of Wiley.)
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10.4
SSMIS Data Assimilation

10.4.1
SSMIS Instrument

The US Defense Meteorology Satellite Program (DMSP) F-16 satellite was
launched successfully on October 18, 2003. On board F-16, the Special Sensor
Microwave Imager Sounder (SSMIS) measures the Earth’s radiation at 24
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Table 10.2 Characteristics of SSMIS channels.

Channel Center
frequency (GHz)

3-dB width
(MHz)

Frequency
stability (MHz)

Polarization NEDT (K) Sampling
interval (km)

1 50.3 380 10 v 0.34 37.5
2 52.8 389 10 h 0.32 37.5
3 53.596 380 10 h 0.33 37.5
4 54.4 383 10 h 0.33 37.5
5 55.5 391 10 h 0.34 37.5
6 57.29 330 10 RCP 0.41 37.5
7 59.4 239 10 RCP 0.40 37.5
8 150 1642(2) 200 h 0.89 12.5
9 183.31± 6.6 1526(2) 200 h 0.97 12.5
10 183.31± 3 1019(2) 200 h 0.67 12.5
11 183.31± 1 513(2) 200 h 0.81 12.5
12 19.35 355 75 h 0.33 25
13 19.35 357 75 v 0.31 25
14 22.235 401 75 v 0.43 25
15 37 1616 75 h 0.25 25
16 37 1545 75 v 0.20 25
17 91.655 1418(2) 100 v 0.33 12.5
18 91.655 1411(2) 100 h 0.32 12.5
19 63.283248

± 0.285271
1.35(2) 0.08 RCP 2.7 75

20 60.792668
± 0.357892

1.35(2) 0.08 RCP 2.7 75

21 60.792668
± 0.357892
± 0.002

1.3(4) 0.08 RCP 1.9 75

22 60.792668
± 0.357892
± 0.0055

2.6(4) 0.12 RCP 1.3 75

23 60.792668
± 0.357892
± 0.016

7.35(4) 0.34 RCP 0.8 75

24 60.792668
± 0.357892
± 0.050

26.5(4) 0.84 RCP 0.9 37.5

channels (see Table 10.2) from 19 to 183GHz and scans conically at an Earth inci-
dence angle of 53∘ (see Figure 10.16). This instrument can, in principle, provide
improved atmospheric temperature and water vapor sounding under all weather
conditions after imaging and sounding channels attain the same viewing geome-
try. A simultaneous retrieval of surface and atmospheric parameters is developed
to produce operational SSMIS products [255]. As shown in Figure 10.17, the
upper atmospheric sounding is extended to 100 km altitude through the use of
Zeeman absorption lines (discussed in Chapter 2). Compared with the previous
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Figure 10.16 SSMIS scan geometry [289].
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Figure 10.17 SSMIS weighting functions for a standard atmosphere [289].
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SSM/I instrument on board F-8 to F-15 satellites, the SSMIS scan swath increases
to 1700 km with much less orbit gap from the 833-km spacecraft altitude.
SSMIS brightness temperatures from the Earth scene are derived from a satel-

lite microwave radiometer through a series of instrument calibrations. First, a
raw receiver voltage count is converted to an antenna-beam-averaged tempera-
ture through a so-called calibration equation, which requires the measurements
from warm and cold calibration targets. This antenna temperature is then con-
verted to the main-beam-referenced brightness temperature where the side-lobe
contribution is removed. For SSMIS polarization channels, an additional correc-
tion is made for a spillover effect from the cross-polarization leakage. Thus, any
remaining error in the antenna brightness temperature (TDR) is translated into
sensor brightness temperature (SDR) during the calibration process. It has been
noted that several anomalies are shown in SSMISTDRdata for all channels, which
result primarily from the thermal emission of the main reflector as well as the cal-
ibration target count perturbation [284]. Similar anomalies are also observed in
SSMIS SDR data. These anomalies can severely downgrade the applications of
SSMIS measurements in various environmental applications. Figure 10.18 dis-
plays the biases of SSMIS observations to the simulations at 55.5GHz, where the
simulations are calculated from temperature and water vapor profiles analyzed in
the GFS analysis of NCEP GFS data assimilation system (GDAS). Normally, the
(O – B) should be fairly uniform for the microwave sounding channels on NOAA
satellites. Here, the bias varies with the latitude by an order of several degrees
kelvin.
The root cause of these anomalies has been investigated by the SSMIS instru-

ment calibration team since the instrument was launched and is mainly the
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Figure 10.18 F-16 SSMIS O – B biases on ascending node at channel 5 (55.5 GHz) on Febru-
ary 15, 2012.
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emission of the main reflector and the direct solar and stray light contamination
on two calibration targets [284]. SSMIS antenna and calibration subsystem
consists of a main reflector, six corrugated feedhorns, a warm calibration load,
and a subreflector for viewing cold space. In each scan, the radiation from the
Earth’s atmosphere is focused via the main reflector on to the feedhorns and then
to the receiver subsystem. At the end of the scan, the feedhorns also pass beneath
a stationary warm load and cold space reflector, providing periodic calibration of
the measured Earth-viewing radiances at the input to the feedhorns. The receiver
subsystem accepts the energies from the six feedhorns and performs amplifi-
cation, filtering, and additional frequency multiplexing to output 24 discrete
frequency bands to the signal processing subsystem. Then, the received scene
count of the Earth-viewing radiance is converted to antenna temperature (scene
temperature) by a calibration equation, which is associated with the temperatures
and counts of two calibration targets. Thus, the emission from the main reflector
and the solar heating of the calibration targets can result in the anomalies in the
SSMIS antenna temperatures.
A methodology is developed to correct the SSMIS anomalies at the TDR

level, which includes predicting the reflector face temperature and detecting and
removing the warm target calibration count anomalies [285]. Essentially, the total
energy in terms of antenna brightness temperature received at the feeds is

T ′
A = TA + 𝜀R(TR − TA), (10.17)

where TA is the antenna brightness temperature corresponding to the Earth scene
temperature, and TR the reflector face temperature. If the reflector emissivity and
face temperature are known, TA can be calculated. From the NRL antenna model,
the emissivity of the main reflector is estimated as 0.012, 0.016, 0.020, 0.025, and
0.035 at 19.35, 37, 60, 91.65, and 183GHz, respectively, for vertically polarized
channel at an incident angle of 20∘ [284]. The reflector face temperature can be
estimated from antenna arm temperatures [286, 287].
The locations of the SSMIS warm target anomalies are detected through the

fast Fourier transform (FFT) analysis of one-orbit of calibration target infor-
mation (warm count and platinum resistance thermometer (PRT) count) [287].
From a linear algorithm, the anomaly in antenna brightness temperature can be
expressed as

ΔTA = −
TA − TC
CW − CC

ΔCW −
TW − TA
CW − CC

ΔCC +
CS − CC
CW − CC

ΔTW , (10.18)

where ΔCW, ΔCC, ΔTW are jumps in warm and cold counts, PRT temperature,
respectively. Thus, for solar heating, the warm target count anomaly is positive
and depresses the antenna temperature, whereas the PRT temperature anomaly is
also positive and increases the antenna temperature. Fromour analyses,ΔTA from
ΔCW varies from −0.5 to −1.5K at most of channels. Among the three anomalies
(ΔCW, ΔCC, ΔTW), ΔCW dominates and depresses the SSMIS antenna tempera-
tures at almost all channels.
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The antenna emission and the calibration target anomaly are important error
sources to produce the anomalous SSMIS radiances over most of the global
areas. The antenna emission occurs at all channels over all global areas, but it
becomes significant (1–3K) near the North Pole, where the solar heating of the
main reflector reaches a maximum. Among the calibration target anomalies,
the warm load count anomaly is the most noticeable and can alone depress the
SSMIS temperature by about 1K.The warm load count anomaly occurs only over
several latitudinal zones, but it affects almost all channels. More importantly,
the location and magnitude of the emission and calibration target anomaly vary
with season.

10.4.2
SSMIS Data Quality Control

The SSMIS instrument has nine channels measuring the thermal emission from
the Earth’s surface and atmosphere at 19.35, 22.235, 37, and 91GHz with both
horizontal and vertical polarizations, except for the 22.35GHz channel which is
vertically polarized. In the cases of clouds over oceans, each of the four channels
responds differently to cloud liquidwater with different sizes of the cloud droplets.
The 19.35GHz channel provides the most direct measurement of liquid water for
rain-bearing clouds; the 37GHz channel is more sensitive to the nonprecipitating
clouds with small droplet sizes; and the 85GHz channel has higher sensitivity to
the low-lying thin stratus clouds, which have the smallest amount of liquid water
and are strongly affected by the scattering from precipitation of ice particles. To
measure the large dynamic range of LWP, Weng and Grody [149] developed a
composite LWP algorithm for SSM/I as

LWP =
⎧⎪⎨⎪⎩
LWP19V ,

LWP37V ,

LWP85H

LWP19V > 0.70mm,

LWP37V > 0.28mm
otherwise,

orWVP ≥ 30mm, (10.19)

where WVP is the vertically integrated water vapor, which is calculated as

WVP = 232.89 − 0.1486 × TB19h − 0.3695 × TB37h

− (1.8291 − 0.006193 × TB22v) × TB22v. (10.20)

The composite LWP is the vertically integrated liquid water path, and each item
on the RHS of Eq. (10.19) is derived by a regression equation using measurements
of two SSM/I channels as follows:

LWPfreq = a0[ln(290 − Tfreq
a ) − a1 − a2 ln(290 − T22V

a )], (10.21)

where the superscript “freq” represents 19v, 37v, and 85h, respectively, and Tfreq
a

is the antenna temperature at a specific SSM/I frequency. The coefficients a0,
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Table 10.3 SSM/I coefficients in LWP algorithm.

Frequency (GHz) a0 a1 a2

19v −3.20 2.80 0.420
37v −1.66 2.90 0.349
85h −0.44 −1.60 −1.354

Table 10.4 Remapping coefficients for linearly remapping
the F16 SSMIS antenna temperatures at SSM/I-like channels
to F15 SSM/I antenna temperatures.

Frequency (GHz) 𝜶 𝜷

19h 0.00424 1.00027
19v −2.03627 1.00623
22v −2.52875 0.99642
37h 0.80170 0.99139
37v −3.86053 1.00550
91v −7.43913 1.03121
91h 1.53650 0.99317

a1, and a2 are listed in Table 10.3 [149]. As seen in Eq. (10.19), this algorithm is
developed for SSM/I based on known antenna temperatures. However, the bright-
ness temperatures are provided to the operational model HWRF. Therefore, the
brightness temperatures need to be first converted to the corresponding antenna
temperatures before they can be used in Eq. (10.19).
The composite LWP retrieval algorithm described earlier was designed for

SSM/I. To apply it to SSMIS (on board F16–F19) in the current GSI system, the
imager channels 12–18 of SSMIS need to be remapped to SSM/I-like channels
based on the following equation:

Tfreq
SSM∕I = 𝛼Tfreq

SSMIS + 𝛽, (10.22)

where Tfreq
SSM∕I and Tfreq

SSMIS are the antenna temperatures of SSM/I-like channel and
SSMIS channel (freq), respectively.The remapping coefficients 𝛼 and 𝛽 used in the
current GSI system are provided by Yan and Weng [287] and listed in Table 10.4.

10.4.3
SSMIS Bias Correction

Biases in the GSI system consist of three parts. Specifically, for the bias of the ith
channel of SSMIS (bi,j), they are (i) a static scan bias term (b(1)

i,j ), (ii) an air-mass-
dependent bias term (b(2)

i,j ), and (iii) an adaptive scan bias term (b(3)
i,j ). In the current
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HWRF GSI system, only the first two terms are applied to SSMIS bias correction,
shown as follows:

bi,j = b(1)
i,j + b(2)

i,j = 𝛼i,j +
5∑

k=1
𝜔k × pi,j,k , (10.23)

where 𝛼i,j is the static scan bias of the ith channel at jth scan position, and 𝜔k
(k = 1,… , 5) are the five bias correction coefficients for the five airmass predictors
pi,j,k , respectively. Values of 𝛼i,j (i= 1,… , 24; j= 1,… , 60) and 𝜔k are predefined.
The five air mass predictors are defined as the same expressions by Eqs. (10.15)
and (10.16).
The described SSMIS biases are subtracted from the term To

b,i − Tm
b,i in the ith

channel, which appears in the cost function of the 3D-Var method in the GSI sys-
tem. In the default configuration of SSMIS bias correction, the predefined param-
eters are all set to be zero:

𝛼i,j=0 (i = 1, … , 24; j = 1, … , 60), (10.24a)

𝜔k = 0 (k = 1, … , 5), (10.24b)

Γ𝜏

i = 0 (i = 1, … , 24). (10.24c)

To determine the data affected by scattering effect in SSMI/S channels 9–11,
the parameter ri, is defined in the current GSI system:

ri = f (1)i − f (2)i Ts
b,17 + f (3)i Ts

b,8, (10.25)

where i= 9, 10, or 11. Ts
b,8 and Ts

b,17 are the simulated brightness temperatures
of channel 8 and 17, respectively. The coefficients f (1)i , f (2)i , and f (3)i are listed in
Table 10.5.
TheQC procedures in the GSI system are based on the values of LWP andWVP

and implemented over ocean and land separately. In general, there are eight steps
in the current QC procedures:

1) In the ith channel, if the absolute brightness temperature difference of O – B
is greater than (or equal to) 3.5 K, that is, |To

b,i − Tm
b,i| ≥ 3.5 K, data from that

channel will be rejected.

Table 10.5 Coefficients f (1)i , f (2)i , and f (3)i
for detecting scattering effected data.

i f (1)
i

f (2)
i

f (3)
i

9 271.252327 0.485934 0.473806
10 272.280341 0.413688 0.361549
11 278.824902 0.400882 0.270510
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Table 10.6 SSMIS channel characteristics and the related LWP* (kg/m2) for cloud check.

Channel Center frequency (GHz) Polarization LWP∗ (kg/m2)

1 50.3 V 0.10
2 52.8 v 0.20
3 53.596 v 0.60
4 54.4 v 2.00
5 55.5 v 2.00
6 57.29 RCP 2.00
7 59.4 RCP 2.00
8 150 h 0.10
9 183.31± 6.6 h 0.10
10 183.31± 3 h 0.10
11 183.31± 1 h 0.10
12 19.35 h 0.20
13 19.35 v 0.20
14 22.235 v 0.20
15 37 h 0.20
16 37 v 0.20
17 91.655 v 0.10
18 91.655 h 0.10
19 63.283248± 0.285271 RCP 10.00
20 60.792668± 0.357892 RCP 10.00
21 60.792668± 0.357892± 0.002 RCP 10.00
22 60.792668± 0.357892± 0.0055 RCP 10.00
23 60.792668± 0.357892± 0.016 RCP 10.00
24 60.792668± 0.357892± 0.05 RCP 10.00

RCP, right-hand circular polarization.

2) If ri − To
b,i − Tm

b,i − Ts
b,i> 2K (=9, 10, or 11), data from the ith channel will be

rejected.
3) If the LWP retrieval described in Eqs. (10.19)–(10.21) fails, or the retrieved

TPW is less than zero, data obtained over that particular part of ocean will be
rejected.

4) If the retrieved LWP > LWP∗ over sea, the data will be rejected. The LWP∗ is
used as a threshold listed in Table 10.6.

5) If cloud is detected while |To
b,ch2 − Tm

b,ch2 − bch2,j| ≥ 1.5K not over sea, data of
channels 1, 2, and 12–16 are rejected.

6) Data from channels 1–3 and 8–18 data will be rejected if the data is over
a mixed surface, which is a surface other than a sole sea, ice, land, or snow
surface.

7) Data from channel 9 data will be rejected if the surface elevation is higher
than 2 km.

8) Data from channels 3 and 10 will be rejected if the surface elevation is higher
than 4 km.
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Figure 10.19 Distribution of brightness temperature differences on August 5, 2008, for F-
16 UPP at (a) 54.4 GHz and (b) 55.5 GHz, and for MetOp-A AMSU-A at (c) 54.4 GHz and (d)
55.5 GHz, which are calculated using the data passing the current GFS quality control test
after the GFS bias correction [270] is applied. The acronym sdt represents the standard devi-
ation of the brightness temperature difference. (Yan and Weng 2012 [267]. Reproduced with
permission of American Meteorological Society.)

Figure 10.19a,b displays distributions of brightness temperature differences
(DTB) on August 5, 2008, for F-16 UPP at 54.4 and 55.5GHz, respectively. For
comparison, the biases at these two frequencies in the data from the AMSU-A
on board the Meteorological Operational Satellite Programme (MetOp) satellite
are also shown in Figure 10.19c,d, respectively. It is seen that the biases from the
SSMIS data are dependent on the latitude and orbit node and vary substantially
from month to month. Note that the results shown in the figures are generated
after applying the original GFS bias correction (BC) algorithm [270]. This implies
that the aforementioned regional biases in F-16 SSMIS data cannot be simply
removed by GFS BC algorithm. An additional BC algorithm is required for
further improvements.
For SSMIS data distributed from DMSP ground processing, the biases are

high in some regions but do not change significantly on a weekly basis. Thus,
the weekly mean O – B biases are first generated according to the satellite
ascending/descending orbit and latitudes (𝜃). The mean biases are referred to
as ΔTCal

B (𝜃,node). At a given time and location, the brightness temperature is
corrected as

TCal
B = Tobs

B − ΔTCal
B (𝜃,node), (10.26)

where TObs
B is the original UPP brightness temperatures. The O – B bias,

ΔTCal
B (𝜃,node), is derived from longitudinal mean O – B biases attained in the

previous week. Since some of the lower atmospheric sounding (LAS) channels
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(e.g., 50.3 and 52.8GHz) are affected by clouds and/or surface emissivity, a QC
procedure must be developed. For the LAS channel at 52.8GHz, which is affected
by raining clouds, a threshold approach is used to detect cloud contamination,
depending on the surface type.This channel is also sensitive to surface emissivity,
especially for high-elevation terrain. Thus, ΔTCal

B (𝜃,node) is derived from all the
data over the land where the surface pressure is greater than 700mb.
Figure 10.20a,b displays the variations in the daily averaged biases at channels 4

(54.4GHz) and 5 (55.5GHz) from August 5 to 11, 2011. The main features of the
O – B biases vary slowly from day to day, including the locations and magnitudes
of themaximum andminimum biases and themagnitude of the longitudinal aver-
age of theO – Bbiaseswith latitude.The slow change inΔTB with time is related to
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Figure 10.20 Daily average of longitudinally averaged biases from August 5 to 11, 2011, at
(a) 54.4 GHz and (b) 55.5 GHz. Weekly mean of longitudinally averaged bias from August 5
to September 30, 2011, at (c) 54.4 GHz and (d) 55.5 GHz. (Yan and Weng 2012 [267]. Repro-
duced with permission of American Meteorological Society.)
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the pattern of the original calibration anomaly in F-16 [284, 285]. Figure 10.20c,d
displays the time series of the weekly averagedΔTB (inmoderate gray color) at the
same channels for a few weeks from August 5 to September 30, 2011. Although
the regionally dependent biases exist at each channel during 2 months, their loca-
tions andmagnitude have a small change fromweek toweek.Therefore, theweekly
averaged ΔTCal

B (𝜃,node) is used to correct the residual biases for each day. Using
the correction in Eq. (10.26) to the original SSMIS brightness temperature data,
the time series of the longitudinal mean, ΔTB, at 54.4 and 55.5GHz is replotted
in Figure 10.20c,d, and the bias is more uniform than the original data. After this
analysis is applied to other LAS channels except for 50.3GHz channel, the bias dis-
tribution becomes more uniform across all the latitudes for all the channels. Note
that the 50.3GHz channel is not analyzed here because of a large uncertainty in the
simulated brightness temperature caused by the uncertainty in surface emissivity.

10.4.4
Impacts from SSMIS and AMSU-A Data Assimilation

Since the frequencies of the SSMIS LAS channels are similar to those of many
of the AMSU-A channels, it was expected that the SSMIS LAS data would
produce similar effects as AMSU-A when they are used in NWP systems. In
addition, the SSMIS is a conically scanning instrument and has a constant
viewing angle, so the bias should be independent of the scan position. Using
simulated data, Rosenkranz et al. [288] showed that the retrieval accuracy from a
conically scanning instrument is better than that from cross-track scanning data.
However, assimilation of real satellite data involves a number of other issues,
such as bias characterizations and corrections, and QC criteria, which are very
different from the uses of simulated data. Therefore, it is necessary to compare
the impacts on forecast skill from conically (e.g., SSMIS LAS) and cross-track
(e.g., AMSU-A) scanning data in our NWPmodel. In the control run (Crntl exp),
only conventional data (radiosondes, buoy data) are assimilated. In AMSUA runs
(AMSUA Exp1 and AMSU-A Exp2), conventional data and AMSU-A data from
NOAA-18 and MetOp-A, respectively, are assimilated. In SSMIS runs (SSMIS
Expl and SSMIS Exp2), SSMIS UPP (Unified Preprocessing Package) LAS data
without and with the new BC are assimilated.
In SSMIS experiments, the LAS data from 52.8GHz (channel 2) to 59.4GHz

(channel 7) are assimilated with and without the new BC correction. For the
AMSU-A experiments, similar data from channel 4 (52.8GHz) to channel 9
(57.3GHz) are assimilated. The 50.3 GHz channel in both the AMSU-A and
SSMIS datasets is not used in the experiment since the SSMIS UPP data at this
channel have a large uncertainty.
Figure 10.21a,b shows the ACCs at 500 mb geopotential height for Northern

Hemisphere (NH) and Southern Hemisphere (SH), respectively, for a 2-month
period fromAugust 1–30 to September 30, 2008. Both SSMIS LAS and AMSU-A
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Figure 10.21 Anomaly correlation (AC) coefficient (ACC) at 500 mb in the (a) Northern Hemi-
sphere and (b) Southern Hemisphere for one control and four experimental runs, which
cover the period from August 1 to September 30, 2008. (Yan and Weng 2012 [267]. Repro-
duced with permission of American Meteorological Society.)

have positive impacts on the global medium-range forecasts in both hemispheres.
The impact of the satellite data, including the SSMIS LAS data, in NH is smaller
than that in SH. With the new bias correction algorithm, the impact from
assimilating the SSMIS LAS data is comparable to that of the AMSU-A data
from NOAA-18 and MetOp-A over both NH and SH, while the impact of the
SSMIS data without the new BC displays a smaller impact on the forecast skill
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compared to the AMSU-A in SH. This demonstrates that the impact of the data
can be reduced if the bias of the satellite data is geographically dependent. To
further infer the relevant importance of the anomaly correlation, the standard
deviations of the ACCs are also shown in Figure 10.21. Generally, the ACC
standard deviation increases with forecast length in all experiments. Among
the five experiments, the ACC standard deviations of the three experiments
(NOAA-18 AMSU-A, MetOp-A AMSU-A, and F-16 UPP LAS with the new
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Figure 10.22 Anomaly correlation coefficient in SH at (a) 500 mb and (b) 1000 mb for
one control and two experimental runs for the period from August 1 to September 15,
2008. (Yan and Weng 2012 [267]. Reproduced with permission of American Meteorological
Society.)
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BC) are smaller than those of the control experiment and the SSMIS experiment
without the new BC. This suggests that the new BC improves the impact of the
SSMIS LAS data on forecasts.

10.4.5
Impact of SSMIS LAS Data on GFS Operational Forecasts

It is also important to assess the impact of the SSMIS LAS data on the GFS
operational forecasts. GFS/GSI has assimilated the data from conventional
and many satellite data sources (e.g., HIRS, AIRS, and IASI) and microwave
sounders (AMSU-A and MHS), Geostationary Operational Environmental
Satellite (GOES) sounder radiances, SSM/I ocean surface wind speeds, Moderate
Resolution Imaging Spectroradiometer (MODIS) winds, and so on. For this pur-
pose, a new control run and two experimental runs are designed.The control run
uses all the GFS operational data during the period from August 1 to September
15, 2008, without SSMIS data. Two SSMIS experimental runs are conducted by
adding the SSMIS UPP LAS data with and without the new BC. Note that the
SSMIS LAS data only includes channels from 52.8GHz (channel 2) to 59.4GHz
(channel 7). Numerical results show that in NH, the impact of SSMIS LAS data on
the forecast skill at both 500 and 1000mb is neutral. In SH, the SSMIS LAS data
with the new BC algorithm produce a slightly positive impact on the forecast skill
at both 500 and 1000mb (Figure 10.22a,b). The limited impact of the SSMIS LAS
data here is due primarily to the use of many other satellite data sources in the
control run.This is also demonstrated by the fact that the AC standard deviations
in the SSMIS experiments are similar to those in the control experiment.

10.5
Summary and Conclusions

ATMS data are added to conventional and other satellite data streams and assimi-
lated inHWRF forecast fields throughGSI. Specifically, the added values of ATMS
radiances to conventional data for improved TCs over the Atlantic Ocean are
compared with a conventional-data-only experiment and with an experiment in
which the conventional data and satellite data were from the other three types
of instruments (i.e., AMSU-A, AIRS, and HIRS). It is found that ATMS radiance
data assimilation in the HWRF system positively contributes to both the track
and intensity.The improvements brought by theATMSdata assimilation aremore
significant when the benchmark HWRF forecasts, without incorporating ATMS
data, deviate more from the best track data.
Assimilation of the SSMIS LAS data into the GFS is developed and turned into

operation. A new algorithm is used for removing the geographically dependent
biases in the SSMIS LAS data. It is shown that the new bias correction improves
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assimilation of LAS data with positive impacts on the forecast skills. The impact
of SSMIS data is similar to that of the AMSU-A data from either NOAA-18 or
MetOp-A after the regionally dependent biases are removed in the LAS data.
When the control run uses all the GFS operational data, the F-16 SSMIS LAS data
produces some neutral or slightly positive impacts on the forecast skill. This new
bias correction methodology can also be applied to other instruments that have
calibration anomaly similar to that of SSMIS.
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11
Applications of Microwave Data in Climate Studies

11.1
Introduction

The Microwave Sounding Unit (MSU) and the Advanced Microwave Sounding
Unit-A (AMSU-A) on board the National Oceanic and Atmospheric Administra-
tion (NOAA) polar-orbiting satellites measure the atmospheric radiation from
23 to 89GHz. Under a clear-sky atmospheric condition, the radiative energy
primarily comes from the oxygen emission. Since the oxygen concentration is
nearly uniformly distributed through the Earth’s atmosphere and is stable with
time, MSU and AMSU-A are unique satellite instruments for remotely sounding
the atmospheric temperature.TheMSU instruments on board Tiros-N, NOAA-6
to NOAA-14 have four channels and provided data from 1979 to 2006. Each
of the four channels provides measurements of a weighted average of radiation
emitted from a particular layer of the atmosphere at a specified frequency. The
relative contributions to the total measured radiance from different levels of the
atmosphere are quantified by the so-called weighting function (WF), which is
channel dependent. The measured radiation is most sensitive to the atmospheric
temperature at the altitude whereWF reaches the maximum value.The AMSU-A
instruments on board NOAA-15 to NOAA-19 have 15 channels, among which
four channels (i.e., AMSU-A channels 3, 5, 7, and 9) are similar, but not identical,
to the four MSU channels in frequency (50.30, 53.74, 54.96 and 57.95GHz). The
other 11 AMSU-A channels sample more atmospheric layers compared to MSU.
By combining MSU and the MSU-like AMSU-A channels, a long-term series of
global satellite microwave sounding data of more than 30 years is available for
climate study related to atmospheric temperature changes [290, 291].
The atmospheric temperature trends derived from the MSU and AMSU-A

on board the NOAA polar-orbiting satellites have been a subject of debate.
Pioneering investigations by Spencer and Christy [292, 293] and their follow-
on work at the University of Alabama at Huntsville (UAH) [160, 294, 295]
showed nearly no warming trends for the mid-tropospheric temperature time
series derived from the MSU channel 2 (53.74GHz) and AMSU-A channel 5
(53.71GHz) observations (called T2). However, the Remote Sensing Systems
(RSS) [296, 297] and University of Maryland [159] and NOAA/NESDIS/Center

Passive Microwave Remote Sensing of the Earth: For Meteorological Applications, First Edition. FuzhongWeng.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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for Satellite Applications and Research (STAR) [290] groups obtained a small
warming trend from the same satellite observations. The most recent analysis of
different data sets shows a global ocean mean T2 trend of 0.080± 0.103K/decade
for UAH, 0.135± 0.113K/decade for RSS, 0.22± 0.07K/decade for University
of Maryland (UMD), and 0.200± 0.067K/decade for STAR for the time period
from 1987 to 2006 [290]. In the past, the analysis of the MSU and AMSU-A
decadal trend focused on the following areas: (i) diurnal adjustment of various
instruments; (ii) correction of Earth incidence angle; and (iii) intercalibration of
co-orbiting satellite [297]. Qin et al. [298] pointed out a nonlinear behavior of the
decadal climate trends of most AMSU-A channels using data from NOAA-15
satellite over the time period from October 26, 1998 to August 7, 2010.
Earlier a concern was also raised on how much of the MSU signal arises from

nonoxygen emission. For example, for MSU channel 2, Spencer et al. [299]
predicted a small influence of contamination from precipitation-sized ice in deep
convection, cloud water, water vapor, and surface emissivity. It was concluded that
the largest effects come from precipitation-sized ice in deep convection, causing
a brightness temperature depression of up to several degrees Celsius. Therefore,
theMSU data have been filtered to remove this particular contamination. Spencer
[300] also developed a technique for calculating the anomalous temperature
increase in MSU channel 1 (50.3GHz) and then calibrating it to a rainfall rate.
Prabhakara et al. [301, 302] suggested that a substantial hydrometeor effect exists
in the MSU records, which was criticized by Spencer et al. [303] who argued that
the residual hydrometeor contamination effects were greatly overestimated by
Prabhakara et al. [301, 302].
In this chapter, we first discuss the climate trend uncertainty derived from

the observations related to the instrument noise and the data record length. To
produce a robust climate data record (CDR) from satellites, we illustrate that
the longer data record can be generated after all the instruments from the same
category are cross-calibrated with sensor-to-sensor biases. In understanding the
impacts of both cloud and precipitation on trending the atmospheric tempera-
ture, tropospheric and low-stratospheric temperature trends are generated and
compared with and without precipitation contributions. We also aim at directly
deriving the atmospheric temperature at different pressure levels from all four
MSU and MSU-like AMSU channels so that the climatology of the atmospheric
temperature at specific pressure levels could be deduced globally.

11.2
Climate Trend Theory

Global warming is a well-known phenomenon. However, large uncertainties exist
in the quantitative estimate of global climate trend of the atmosphere. Here, we
briefly describe a simple statistical method – the linear regression method – for
climate trend detection using observations and point out a few factors controlling
the precision of such an estimate.
Given a time series of data {xobs

i = xobs(ti), i = 1, 2, … ,N}, where x repre-
sents a measured variable (such as annual global mean near-surface atmospheric
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temperature), ti represents the ithmeasurement in time, andN is the total number
of measurements in the time series. Assume that the mean value of the variable x
for the N measurements has been removed from the data, that is,

−−→
xobs

i = 0.
Firstly, we can express the observed time series as follows: xobs = xtrue + 𝜀, where

xtrue represents the truth, and 𝜀 is the observation error whose variance is denoted
as 𝜎2

obs. Secondly, the variable x is modeled by a linear function of time: xmodel =
a(t − t), where a is the regression coefficient (e.g., the climate trend to be deter-
mined) and t represents the average year.Thirdly, the true value of the variable x is
expressed as xtrue = xmodel + e, where e is the nonlinear term representing the nat-
ural variability whose variance is denoted as 𝜎2

nc. We may write these expressions
in the following matrix form:

𝐱true = 𝐀a + 𝐞, (11.1)

𝐱true =

⎛⎜⎜⎜⎜⎜⎜⎝

xtrue
1

xtrue
2

⋮

xtrue
N

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝐞 =

⎛⎜⎜⎜⎜⎜⎜⎝

e1
e2
⋮

eN

⎞⎟⎟⎟⎟⎟⎟⎠
,𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎝

t1 − t

t2 − t

⋮

tN − t

⎞⎟⎟⎟⎟⎟⎟⎠
.

The linear regression coefficient a is obtained by a least-squares fit, which min-
imizes the differences between the observations and the linear regression model:

𝜎2(a) = (𝐱obs − 𝐀a)T (𝐱obs − 𝐀a) (11.2)

Assuming that there is no temporal error correlation for both observations and
regressionmodel and the observation andmodel errors are independent, onemay
obtain the minimum solution of a∗ = min

a
𝜎2(a) by setting the first derivative to

zero, 𝜕𝜎2(a)∕𝜕a = 0, which gives the following expression for trend detection:

a∗ =

N∑
i=1

(
xobs

i − xobs
) (

ti − t
)

N∑
i=1

(
ti − t

)2 =

N∑
i=1

xobs
i

(
ti − t

)
N3 − N

12

. (11.3)

Equation (11.3) is used for estimating the trend from the data. It is pointed out
that in the derivation of Eq. (11.3), we used the following equality for equating the
denominators in Eq. (11.3) (notice t = (N + 1)∕2):

N∑
i=1

(
ti − t

)2= N∑
i=1

(
t2i + t2 − 2tit

)
=

N∑
i=1

t2i + N
(N + 1

2

)2
− 2N(N + 1)

2
N + 1
2

= N(N + 1)(2N + 1)
6

− N
(

N (N + 1)
2

)2

= N3 − N
12

.
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By substituting Eq. (11.3) into Eq. (11.2), one may obtain the precision for the
trend detection using Eq. (11.3), which is equal to

𝜎2
trend ≡ 𝜎2(a∗) =

12
(
𝜎2

obs + 𝜎2
nv
)

N3 − N
, (11.4)

where 𝜎2
obs is the observation error variance and 𝜎2

nv represents the natural
variability. Based on Eq. (11.4), it is seen that the precision of the trend deduced
from the data depends on the observation error (𝜎2

obs), the length of data (N), and
the natural variability (𝜎2

nv) of the variable whose trend is under investigation.
The larger the observation error and the natural variability are, the longer the
required data record for an accurate estimate of climate trend.
An example is provided in Figures 11.1 and 11.2 to show the sensitivity of climate

trend calculated from data tomeasurement precision. Firstly, threemonthlymean
temperature time series are generated over a 300-year period by adding three
different random noises (with 𝜎obs = 0.1, 0.3, and 1 K) to the same climate trend
of 0.2 K/decade (i.e., the truth). The natural variability is assumed to be 𝜎obs =
0.1 K. The trends calculated by Eq. (11.2) from these three time series with vary-
ing length of data are presented in Figure 11.1. It is seen that the true trend of
0.2 K/decade could be deduced from a shorter time series when the observation
error is smaller (𝜎obs = 0.1 − 0.3 K). When the observation error is increased to
1K, a much longer time series of data is required to deduce the decadal trend.The
precision for the trend estimate (i.e., 𝜎trend in Eq. (11.4)) is shown in Figure 11.2.
It is indicated that the measurement precision has a significant impact on climate
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Figure 11.2 Variations of 𝜎trend with respect to data length for the trends shown in
Figure 11.1.

trend detection. As a consequence, the required data length increases from 82
years when 𝜎obs = 0.1 K to 140 years when 𝜎obs = 0.3 K and to 300 years when
𝜎obs = 1 K, for detecting a climate trend on the order of 0.2 K/decadewith the same
precision of about 𝜎trend = 1.5 × 10−5 K.
It is thus concluded that providing measurement precision along with data is

extremely important for climate trend detection. When obtaining and applying
data for climate study, it is important to also obtain the measurement bias and
precision from data providers so that the data length required for reliable climate
trend detection can be estimated.

11.3
A Long-Term Climate Data Record from SSM/I

The history of environmental satellite measurements now spans several decades,
which is relatively sufficient to form a CDR for climate-related studies. Based on
the 2004 National Research Council’s (NRC) definition, a CDR is a time series
of measurements of sufficient length, consistency, and continuity to determine
the climate variability and change. The Special Sensor Microwave Imager
(SSM/I) series provides one of the longest time series of the satellite microwave
measurements from July 1987 to the present. These observations are being
followed with a similar sensor, the Special Sensor Microwave Imager/Sounder
(SSMIS). The long record of consistent measurements from multiple similar
sensors is extremely important in generating CDRs for climate change research
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and analysis. However, the long-term multiple SSM/I measurements are not
accurate enough to be directly applied in climate-related studies. The uncertainty
caused by simply stitching multiple SSM/I data together as a CDR arises from
instrument offsets, instrument degradation, signal interference, satellite orbital
drift, missing data, and so on. In addition, when these Defense Meteorology
Satellite Program (DMSP) instruments were originally designed, the instrument
calibration was mainly focused on their weather and environment applications,
and their long-term performance stability has not been thoroughly assessed
to date. Therefore, different SSM/I sensors have to be carefully calibrated to a
reference satellite or a stable reference system in order to produce a consistent
and high-quality CDRs for climate analysis and reanalysis.
Intersensor calibration between SSM/I and SSMIS was explored and geared

toward climate applications [304, 305]. The SSM/I anomaly due to the antenna
field-of-view intrusion by the spacecraft and the glare suppression system was
successfully corrected (e.g., [306]). The SSM/I measurements are calibrated
with respect to the radiative transfer simulations over oceans [307], and the
well-calibrated SSM/I data reduces the discrepancy between the observed
precipitation trend and the climate model prediction [304]. Recently, the obser-
vational anomalies of the first SSMIS on board the F16 satellite were investigated
and found to be caused by solar illumination on the SSMIS warm calibration
target and antenna reflector emission [287, 308].
Several approaches have been commonly used for satellite intersensor cal-

ibrations, including the following: (i) intercomparison between satellite and
ground-based measurements; (ii) comparison with clear-sky radiative transfer
model simulations; (iii) analysis of two overlapping sensor measurements at
nearly simultaneous temporal and spatial locations; and (iv) matching up the
statistical properties of two sensor measurements at selected spatial scales. The
simultaneous nadir overpass (SNO) technique was developed by Cao et al. [309]
for infrared sensor cross-calibration and has been widely used for MSU and
AMSU temperature retrievals [162]. A simultaneous conical overpass (SCO)
technique was developed for conically scanning instruments, and the preliminary
results show that the SCO calibration scheme can effectively remove the biases
between SSM/I or SSMIS sensors [287, 305].

11.3.1
Simultaneous Conical Overpassing (SCO) Method

For DMSP satellites, the intersensor calibration can be performed at either
antenna temperature (Ta) or brightness temperature (Tb). The data record of
satelliteTb measurements is called the sensor data record (SDR).Ta is the effective
blackbody temperature of the radiance on the feedhorn, while Tb is the calibrated
effective blackbody temperature of the radiance on the antenna reflector. The
conversion of Ta to Tb is to conduct the antenna pattern correction (CPA)
in correcting the incomplete radiometric coupling between the reflector and
feedhorn and the cross-polarization coupling between the channels and side-lobe
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Figure 11.3 (a) shows the time series of oceanic rain-free monthly Tb (K) at the SSM/I 37v
GHz during the time period of 1987–2006; and (b) presents the time series of the SSM/I
intersensor bias of oceanic rain-free monthly Tb at the 37v GHz during the time period of
1987–2006 for any overlapped sensors. The mean absolute bias (K) against F13 is shown
at the lower-left corner. (Yang et al. 2011 [305]. Reproduced with permission of American
Meteorological Society.)

contamination [306]. Here, we present a methodology for intercalibrating the
SSM/I SDR. The impacts of this scheme on the SSM/I-derived total precipitable
water (TPW) are demonstrated.
The SSM/I measurements are available at five frequency channels with

polarization, except at the water vapor channel, that is, 19.35 (v, h), 22.235 (v), 37
(v, h), and 85.5 (v, h) GHz. Figure 11.3 displays the time series of rain-free monthly
mean brightness temperature (Tb) at 37v GHz from valid SSM/I measurements
over the 60S–60N oceanic areas. It is obvious that SSM/I instruments provide
a continuous measurement averaged over the oceanic region since July 1987;
however, the brightness temperature trends from different sensors are quite
different. The Tb biases of all overlapped SSM/I sensors shown in the bottom
panel indicate that the bias varies with time and different SCO pairs by as much
as ±1.2 K, while their mean absolute intersensor Tb bias against the F13 is 0.39K.
This large bias among different sensors demonstrates that the SSM/I SDRs and
their derived environmental data records (EDRs) from the existing calibrations
may not be suitable for climate studies. Thus, the calibration efforts for all SSM/I
sensors must be conducted in order to generate unbiased and high-quality CDRs
for climate change analysis and trend studies.
The SSM/I measurements during their overlapping periods provide an alterna-

tive way to check their consistency and to select a reference frame for the SSM/I
intersensor calibrations. Figure 11.4 shows the local equatorial crossing times of
the SSM/I sensors at their ascending nodes. It is evident that F13 and F14 have
more overlapping time periods with other SSM/I sensors. F13 has the longest data
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Figure 11.4 The local equatorial crossing times (h) of available DMSP satellites with SSM/I
instruments on board for ascending node, except F08 on descending mode due to its 12 h
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Meteorological Society.)

record and the smallest change of equatorial crossing time from the satellite orbit
drift and is selected as a reference satellite.
The SSM/I measurements from a pair of the DMSP satellites are matched when

they are simultaneously overpassing a local area, typically at high latitudes. These
measurements are called the SCO pairs. They are supposed to be identical if the
sensors with the incident and azimuth angles are all well calibrated. Figure 11.5
shows the locations of the SCO pairs in the Northern and Southern hemispheres.
However, a bias between two different SSM/I sensors normally exists due to many
factors such as instrument calibration, instrument degradation, sources of inter-
ference to signals, satellite orbital drift, and incidence and azimuth angles.Thebias
between the SCO pairs should be removed in order to generate consistent SDRs,
EDRs, and CDRs. We do not explicitly correct any possible error due to differ-
ent sensor incident and azimuth angles although this bias should be very small

(a) (b)

Figure 11.5 The locations of the selected SSM/I SCO pairs using F13 as a reference satel-
lite near the (a) North Pole region and (b) the South Pole region. (Yang et al. 2011 [305].
Reproduced with permission of American Meteorological Society.)
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due to the SCO pair selection procedure. The data quality control of these SCO
pixels is one of the key procedures in the calibration process. A double-difference
technique (DDT) is applied for SSM/I data sets if there is no direct interception
between F13 and another satellite (SA), that is, a third satellite (SB), which has good
overlapping with both F13 and SA, will be used as a transfer radiometer to connect
F13 and SA. Thus, F14 is applied as the transfer radiometer between F13 and F15
for SCO over water surface.

11.3.2
Bias Characterization of Specific SSM/I Instrument

TheSSM/I scan-angle-dependent bias was previously reported by Colton and Poe
[306] to be due to the antenna field-of-view intrusion by the SSM/I spacecraft
near the beginning of the scan and the glare suppression system near the end of
the scan.The spacecraft intrusion and the glare suppression system have the least
impact on SSM/I at its scan central position, so a measurement at this position
can be regarded as an accurate reference.This bias is sensor dependent and varies
at different channels and satellite orbit orientations and must be removed prior to
the SSM/I SDR intersensor bias corrections.
As an example, Figure 11.6 shows the scan-angle-dependent bias at 37GHz

averaged from all available SSM/I measurements of oceanic rain-free pixels
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Figure 11.6 The mean scan-angle-dependent Tb bias (K) of oceanic rain-free pixels within
60S–60N against the scan central position for all SSM/I sensors at the 37 GHz vertical (a)
and horizontal (b) polarization. (Yang et al. 2011 [305]. Reproduced with permission of
American Meteorological Society.)
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within 60S–60N at the low-frequency channel pixel locations against its central
scan position. It is evident that the scan-angle-dependent bias patterns are similar
for each SSM/I sensor, but with certain differences.The bias reaches−1.75K near
the end of the scan, but only−0.3K near the start of the scan.The bias patterns are
also similar for other SSM/I low-frequency channels. Similar bias patterns with a
maximum of −2.5K and a minimum of −0.5 K are seen at SSM/I high-frequency
channels. In addition, there are also prominent bias differences for ascending
and descending nodes. During the calibration processes, the five-scan position
weighted average bias curve is applied so that the possible noise associated with
the scan positions is minimized. A linear interpolation scheme is used to estimate
the bias at any pixel position of a SSM/I high-frequency channel that is not
collocated with the position of the low-frequency channel. Finally, the seasonal
variability of the bias patterns is analyzed. The results indicate a small seasonal
change of the scan-angle-dependent bias patterns, but this seasonal variation is
not considered in this study.

11.3.3
RADCAL Beacon Interference with F15 SSM/I

RADCAL, a system of instruments on the DMSP F-15 spacecraft, consists of
redundant C-band transponders with unique antennas, Doppler transmitters
operating at 150 and 400MHz, and a deployable antenna. The purpose of the
RADCAL C-band transponder/antennas is to provide a signal source for ground-
based C-band radar interrogation and tracking, while the primary purpose of
the Doppler transmitters and antenna is to determine the satellite position for
comparison with the radar data. A secondary purpose of the Doppler systems
is to support the Coherent Electromagnetic Tomography (CERTO) experiment.
RADCAL has been operational since August 14, 2006, and considerably affects
the F15 SSM/I and Special Sensor Microwave Temperature-2 (SSMT-2) sensor
data. In particular, the 150MHz beacon produces considerable increases in the
brightness temperatures at 22GHz [310].
Since the RADCAL beacon interference on F15 22v GHz channel is steady, the

correction algorithm is applied to remove the interference. Figure 11.7 exhibits
the SSM/I F15 Ta error at 22v GHz due to the RADCAL beacon interference
on August 30, 2006, as a function of the scan position for the ascending and
descending nodes, respectively [285, 311]. The errors are based on the mean
differences between the global SSM/I observations and the radiative transfer
model simulations under oceanic cloud-free conditions. A polynomial function
is applied to fit the error curves. Then, this error is subtracted from the raw
Ta at 22v GHz.

Ta(err) = a0 + a1 × X + a2 × X2 + a3 × X3, (11.5)

Ta(cal) = Ta(obs) – Ta(err). (11.6)
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where X is the scan position. The coefficients of a0, a1, a2, and a3 are given in
Table 11.1.The fitted lines are overlapped, as shown in Figure 11.7, to clearly show
the reasonable fitting applied for this study. This correction of the F15 RADCAL
beacon interference is applied before the scan angle bias correction.

Table 11.1 The Ta correction coefficients used in Eq. (11.5) for the RADCAL beacon interfer-
ence error at F15 SSM/I 22v GHz.

Satellite status Coefficients Scan position

1 2–37 38–62 63–64

Ascending node a0 10.01136 9.607 2.2655 4.78003
a1 0 2.2651× 10−1 −3.7596× 10−1 0
a2 0 −1.2794× 10−3 1.5069× 10−4 0
a3 0 −1.2039× 10−4 2.1233× 10−5 0

Descending node a0 10.28697 9.989 28.191 5.40614
a1 0 2.286× 10−1 −8.4842× 10−1 0
a2 0 −3.38.4× 10−3 1.21016× 10−2 0
a3 0 −7.877× 10−5 −6.8437× 10−5 0

Unknown node a0 10.14 9.798 28.578 5.05
a1 0 2.2756× 10−1 −8.52× 10−1 0
a2 0 −2.3314× 10−3 1.1749× 10−2 0
a3 0 −9.9581× 10−5 −6.4806× 10−5 0
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However, Poe et al. [310] indicate an increased RADCAL interference during
Earth’s shadow, resulting in approximately 1.3 K increase in the vicinity of the
maximum interference at beam position 25. This effect is apparent for the
descending orbits, which enter the Earth’s shadow for part of the year due to
the Earth’s elliptical orbit and leads to a clear impact on EDRs, especially TPW
during Earth’s shadow. This Earth shadow effect on TPW is small at global or
tropical ocean averages, while it could create a notably artificial spatial variation at
regional scales, especially when the time of Earth shadow increased considerably
during the summer of 2007. In addition, the RADCAL interference also affects
the F15 85.5 GHz channels at a lesser degree. Since only 4-month F15 data sets
affected by the RADCAL interference were used in this study, impact on the
85GHz channels should not substantially change the results from this study.
Therefore, we do not discuss the influence of the interference, during Earth’s
shadow and its impact on the 85.5GHz channels in this chapter.

11.3.4
SSM/I Intersensor Bias Correction

Based on the assumption that simultaneous measurements at a location from two
different sensors of the same design should be highly correlated. If one sensor is
regarded as a reference, the other can be calibrated to this reference.The skill of the
SCO technique requires minimization of the measurement differences caused by
noninstrumental factors.Thus, the SCOdifferences between two different sensors
are primarily due to instrumental errors, which should be removed during the
postlaunch calibration processes.
Many experiments with different SCO constraints are conducted for an optimal

result. All possible SCO pairs are first quality-controlled for the same orbital node
(e.g., ascending or descending) and similar pixel positions. A spatial distance (Δd)
of 3 km between the SCO pair is used to ensure that at least the footprints of two
SSM/I instruments are overlapped by 75–90%. A reasonable time difference (Δt)
between two sensors is required to lead to a reliable analysis. Figure 11.8 displays
the mean bias, standard deviation, and the SCO pair samples against the time dif-
ference criterion at 22v GHz between F13 and other SSM/I sensors over water
surface. It is evident that the bias and standard deviation vary slightly with differ-
ent time criterion, except the F13/F11 bias increases dramatically when the time
difference is less than 2min due to the increase in uncertainties with limited sam-
ples. Similar results exist for other channels. Over land (figure omitted), the SCO
bias difference is very small with the different time criterion (0.5, 1, and 2min).
However, the bias increases considerably when the time difference is greater than
5min. Thus, in general, the 2 min criterion is used, and the SCO samples are
enough for the analysis of the intersensor bias correction. In addition, the sam-
ples under inhomogeneous background conditions are eliminated by applying the
standard deviation (𝜎) of nine neighboring pixels surrounding a candidate SCO
pair. The SCO pair is taken as a good one if 𝜎 is less than 2K for a regular sur-
face. Similar features to the water surface are found for SCO pairs over ice and
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Figure 11.8 The Tb bias (K) and standard deviation (K) of the SSM/I SCO pixels over ocean
between F13 and other DMSP satellites at the 22v GHz channel as a function of the SCO
time difference. The inset plot shows the number of the SCO samples as a function of the
SCO time difference. (Yang et al. 2011 [305]. Reproduced with permission of American Mete-
orological Society.)

coast surface types, except that 𝜎 of less than 5K is used for coastal areas. Finally,
the absolute Tb difference (|ΔTb|) of an SCO pair should be less than 10K. Only
about 1% (0.06%) of oceanic (continental) SCO pairs were excluded from this
criterion.
After careful analysis of the SCO pairs using F13 as a reference satellite, the

criteria of collecting high-quality SCO pairs are set up as follows:

Δd ≤ 3 km,Δt ≤ 2min, 𝜎 ≤ 2 K (5 K for coast case), and |ΔTb| ≤ 10 K

In addition, the same orbital nodes and similar scan positions (less than three-
scan position difference) are also required. The bias distribution with the SCO
time differences is inspected to eliminate any potentially large bias caused by small
samples of the SCO pairs that were not well distributed.
All SCO pixels are sorted into four categories based on the surface type (i.e.,

water, land, ice, and coast) to avoid the contamination caused by mixing these
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surface types and carefully analyzed accordingly. As an example, Figure 11.9
presents the SCO Tb bias [Tb(F13)−Tb(F14)] at 37v GHz against their inter-
ception time difference over the water background. It is evident that 2059 SCO
pixels are well distributed around the exact interception time (Δt = 0) between
F13 and F14. The statistical mean bias is −0.58K with a standard deviation of
0.60K. Since it is difficult to find many exactly simultaneous measurements
between any two SSM/I sensors, the statistical mean bias of the SCO pixels with
nearly simultaneous measurements is a reliable choice for obtaining the bias
between these two sensors. Similar processes are conducted for all other SSM/I
channels to estimate the intersensor bias coefficients between F13 and other
SSM/I satellites.
Due to the limited SCO pixels between F13 and F15 over water surface, a

DDT approach is utilized to estimate Tb bias, that is, using F14 (which has better
overlaps with both F13 and F15) as a transfer radiometer to connect them so
that subtraction of Tb bias between F15 and F14 from that between F13 and F14
results in the Tb BiasF13–F15 because the F14 effect is literally cancelled out from
the double difference (BiasF13–F15 =BiasF13–F14 −BiasF15–F14). Note that the DDT
can be applied only when there are insufficient good-quality SCO pixels between
two SSM/I sensors so that a third sensor must be used as a transfer radiometer.
Finally, no bias correction is applied with F08 because there are no reliable SCO
pixels between F08 and F13 and no sufficient F08–F10 matchups to apply a
DDT. The final intersensor bias correction coefficients and standard deviations
for F10, F11, F13, F14, and F15 using F13 as the reference satellite are listed in
Table 11.2.
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Table 11.2 The calibration coefficients of the SSM/I intersensor bias (K) derived from the
SCO technique using F13 SSM/I as a reference radiometer for surface types of water, land,
ice and cost.

Satellite Surface
type

19v 19h 22v 37v 37h 85v 85h

Bias 𝝈 Bias 𝝈 Bias 𝝈 Bias 𝝈 Bias 𝝈 Bias 𝝈 Bias 𝝈

F10 W 0.22 2.84 −0.27 2.04 1.62 2.37 −0.03 2.05 −0.05 4.26 −0.71 3.01 −1.12 4.04
L 0.18 1.30 0.65 1.34 1.82 1.79 0.49 1.20 1.10 1.50 0.02 2.42 0.05 2.76
I 0.08 1.05 0.14 1.77 1.39 1.03 0.20 0.85 0.58 1.97 −0.01 1.13 0.06 3.37
C −0.47 1.75 0.18 2.38 1.40 1.35 0.22 1.05 1.18 1.92 −0.11 2.65 0.41 2.29

F11 W −0.32 0.76 0.0 0.88 −0.33 1.05 0.35 0.65 0.89 1.17 −0.38 1.26 −0.53 1.63
L 0.04 1.04 −0.16 1.09 0.23 1.10 0.40 0.90 0.34 1.03 −0.54 1.70 −1.14 1.58
I 0.31 0.88 −0.03 1.01 0.45 0.93 0.81 0.94 0.79 1.15 −0.22 2.03 −0.99 2.06
C 0.02 1.18 −0.03 1.28 0.19 1.06 0.89 0.91 0.79 1.61 0.0 2.27 −0.80 2.36

F14 W −0.16 0.68 0.28 0.60 −0.14 0.83 −0.58 0.60 0.34 0.84 −0.11 1.06 0.20 2.11
L 0.0 0.76 0.12 0.76 0.09 0.89 −0.42 0.63 −0.09 0.72 0.02 1.31 0.20 1.27
I 0.02 0.25 0.25 0.85 0.13 0.91 −0.39 0.65 −0.04 0.81 0.17 1.36 0.34 1.41
C 0.29 0.83 0.44 1.23 0.41 0.96 −0.11 0.76 0.23 1.24 0.13 2.05 0.55 2.25

F15 W 0.77 0.65 −0.14 0.69 0.26 0.82 0.11 0.55 0.21 0.77 0.55 0.95 0.05 1.74
L 0.41 1.05 0.13 0.98 0.59 1.47 0.14 0.80 −0.08 0.84 0.12 1.13 −0.21 1.21
I 0.59 0.84 0.11 0.75 0.83 1.07 0.26 0.66 0.10 0.70 0.21 1.14 −0.11 1.30
C 0.56 1.11 −0.07 1.72 0.24 1.21 0.45 0.93 0.28 1.29 0.65 2.33 0.44 2.32

𝜎 is the standard deviation (K).
Criterion: |Δt| ≤ 2min; Δd ≤ 3 km; 𝜎 ≤ 2 K; |ΔTb| ≤ 10 K.
W, water; L, land; I, Ice; C, Coast.
Coast, 𝜎 ≤ 5 K; F13_F15 (water) bias is the combined F13_F14 and F14_F15 SCO biases.

11.3.5
Impact of Cross-Calibration on SSM/I SDR

With the continuously increasing time span of environmental satellite measure-
ments, the satellite remote-sensing-derived EDRs are becoming more important
in climate-related studies. Since the climate trends of meteorological parameters
are small compared to the natural variability in the system, improvements in
satellite remote-sensing data sets are important for use in quantifying the climate
trends. After implementation of the SDR intersensor calibration procedure, the
trends from all SSM/I SDR time series are now more consistent. Figure 11.10
shows the time series of SSM/I oceanic rain-free monthly mean intersensor
calibrated Tb and their intersensor bias at the 37v GHz channel. When compared
to Figure 11.13, it is apparent that the new time series has a considerably improved
consistency among these SSM/I sensors, with the intersensor bias being reduced
dramatically. The variation of the intersensor biases with time and different over-
lapping SSM/I sensors is only around±0.5K, indicating a 58% decrease in the bias
(±1.2 K) after intersensor calibration.Weuse themean absolute bias to summarize
how calibration offsets affect the consistency of themonthly Tb time series among
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different sensors.This parameter is the average absolute monthly Tb biases, which
highlights the spread, as opposed to the grand-average offsets captured by a
sample average of the monthly biases. The mean absolute bias after calibration is
only 0.20K, indicating a bias deduction of 49%. Similar results are found for other
SSM/I channels. Therefore, these results demonstrate that the newly developed
SSM/I SDR intersensor calibration scheme is very useful and can substantially
improve the consistency of the SSM/I SDR time series with dramatically reduced
intersensor biases that have a considerably smaller temporal variation.
The improved consistency of the SSM/I SDRs should lead to amore reliable SDR

trend analysis.Thus, the trend analysis is only based on SSM/Imeasurements from
the time period 1990–2006. Figure 11.11 presents the time series of the SSM/I
oceanic rain-free monthly Tb before and after intersensor SDR calibration at the
37v GHz channel.The SSM/I Tb time series before calibration presents a standard
deviation (𝜎) of 0.49K and a linear trend of −0.12K/decade at 2.5% significance
level. After calibration, the monthly Tb time series has the same mean value, but
much smaller 𝜎 (0.32) and larger trend (−0.32K/decade) at 0.1% significance level.
Similar analyses are conducted for other channels, and the results are summarized
in Table 11.3. It is obvious that SDR intersensor calibration using F13 as the refer-
ence satellite does not substantially change the averagedmonthly Tb but leads to a
more consistent time series among multiple SSM/I sensors with a mean reduced
𝜎 of 21.4% for all channels. The most important impact of this calibration is its
role in changing the Tb trend considerably at every SSM/I channel, that is, the
trend is reduced by 37.1%, 72.2%, 74.1%, and 77.3% for channels 19v, 37h, 85v, and
85h GHz, respectively, while increasing by a larger percentage at 19h, 22v, and 37v
GHz because the original trend was small.
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11.3.6
Impacts of SSM/I Intersensor Calibration on TPW

The TPW product is a key variable retrieved from SSM/I measurements [312].
Although there are discrepancies between different TPW and precipitation
algorithms, the oceanic TPW and precipitation estimates based on satellite
passive microwave measurements are considered as robust retrievals [313, 314].
Therefore, they are used to demonstrate the intersensor calibration impact on
the SSM/I-based EDRs. Figure 11.12 presents the monthly TPW intersensor
bias over the global ocean and the tropical ocean between any two overlapped
SSM/I sensors of F10, F11, F13, F14, and F15 before and after the intersensor
SDR calibration. The relatively large TPW intersensor biases before calibration
are obvious, especially between F10 and F11 and between F10 and F13 that have
large biases of −1.5mm over the global ocean and −3.0 mm bias over the tropical
ocean. The averaged absolute TPW intersensor bias is 0.358 and 0.264mm for
the global and tropical oceans, respectively. After the intersensor calibration, the
amplitude of the associated TPW intersensor biases is only about ±0.10mm over
the global ocean and ±0.50mm over the tropical ocean, showing a dramatic bias
reduction from before calibration. By the same token, the mean absolute TPW
bias is only about 0.089 and 0.209mm, respectively. Thus, SSM/I intersensor
calibration has a large positive impact on the TPW retrievals with a resultant
decrease in the mean absolute intersensor bias by 75% over the global ocean and
20% over the tropical ocean.
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Figure 11.12 Time series of monthly TPW intersensor bias (mm) for any overlapped SSM/I sensors of F10, F11, F13, F14, and F15. Different SSM/I
pairs are marked by different symbols. The left and right panels are for before and after SDR intersensor calibration, respectively. The top pan-
els are for the global ocean, while the bottom panels are for the tropical ocean (20S–20N). The averaged absolute TPW intersensor bias (mm) is
shown in the bottom-left corner of each panel. (Yang et al. 2011 [305]. Reproduced with permission of American Meteorological Society.)
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Figure 11.13 Time series of monthly TPW (mm) derived from F10, F11, F13, F14, and F15 SSM/I measurements. Different symbol is used for dif-
ferent SSM/I satellite. The left and right panels are for before and after SDR intersensor calibration, respectively. The top panel is for the global
ocean, while the bottom panel is for the tropical ocean. The overlapped heavy dash line denotes the linear fitting curve based on the least abso-
lute deviation method. The key stats of trend (mm/decade), t test significance (%), mean TPW (mm), and standard deviation (mm) are listed at
the bottom of each panel. (Yang et al. 2011 [305]. Reproduced with permission of American Meteorological Society.)
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We have demonstrated that the newly developed SSM/I SDR intersensor
calibration scheme improves the consistency of the multisensor SSM/I measure-
ments and associated EDRs. Figure 11.13 presents the TPW trend analysis over
both global and tropical oceans before and after the SDR intersensor calibration
for F10, F11, F13, F14, and F15. The key statistics are also shown in each panel. It
is apparent that the improved TPW consistency among different SSM/I sensors
results in a reliable trend analysis. Prior to the intersensor calibration, the
mean TPW, standard deviation, and trend are at 21.30, 0.67, 0.54mm/decade,
respectively, for the global ocean and at 44.80, 1.57, 1.35mm/decade, respectively,
for the tropical ocean. The corresponding values after the intersensor calibration
are only about 21.60, 0.40, 0.34mm/decade over the global ocean and 45.30, 1.24,
and 0.63mm/decade over the tropical ocean. The trend is at 0.1% significance
level for all cases. The mean TPW is only increased by 1% with the calibration;
however, the TPW standard deviation and trend are decreased by 40% and
38%, respectively, over the global ocean and 21% and 54%, respectively, over the
tropical ocean. The impacts of the TPW mean absolute intersensor bias and
trend from the SDR calibration are summarized in Table 11.4. Therefore, this
study illustrates the importance of the SSM/I intersensor calibration in TPW
climate-related studies. Although uncertainties especially at detailed horizontal
distributions in TPW retrievals based on passive microwave measurements exist,
different TPW algorithms are generally in agreement with each other (Sohn and
Smith, 2003).The TPW retrieval error should be smaller compared with the error
associated with the uncalibrated Tb. The 0.34mm/decade (or 1.59% per decade)
of the global oceanic TPW trend in this study agrees well with the analysis by
Trenberth et al. (2005) at 0.40± 0.09mm/decade (or 1.3± 0.3% per decade)
over the 1988–2003 period and the results obtained by Wentz et al. (2007) at
0.354± 0.114mm/decade (or 1.2± 0.4% per decade) over the 1987–2006 period.
Our results also indicate that the TPW trend is 1.39% per decade for the tropical
ocean within the 20∘ latitude zonal belts.

Table 11.4 Intercomparison summary of TPW mean absolute intersensor bias (mm) and
trend (% per decade) before and after the SSM/I intersensor calibration and their associated
percentage change.

Mean absolute intersensor bias Trend

Before
calibration

After
calibration

Change (%) Before
calibration
(% per decade)

After
calibration
(% per decade)

Change (%)

TPW
(mm)

Global
ocean

0.358 0.089 −75.1 2.54 1.57 −38.2

Tropic
ocean

0.264 0.209 −20.8 3.01 1.39 −53.8
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11.4
A Long-Term Climate Data Record from MSU/AMSU

Previous studies based on MSU on board the NOAA polar-orbiting satel-
lites show that the tropospheric temperature warms up within a range of
0.08–0.21K/decade [160, 162, 290, 295]. The MSU intersensor calibration also
has a prominent impact on the temperature climate trend not only on increasing
the confidence of estimating the climate trend but also on raising the consistency
of temperature trends at the surface and in the troposphere [161, 290]. The
most recent study indicates a trend of 0.2 K/decade for the global tropospheric
temperature [290].
The first MSU was launched on board the first NOAA Tiros-N satellite in 1978

and performed the measurements at four frequencies (50.3, 53.74, 54.96, and
57.95GHz). Channels 1 and 3 measure the microwave emitted and scattered
radiation at the quasi-vertical polarization at the nadir, whereas channels 2 and 4
correspond to that of the quasi-horizontal polarization.TheMSU antenna system
was designed with a nominal beam width of 7.5∘ at the half-power points, which
results in a cross-track resolution of 105 km near the nadir.TheMSU scans across
the track within ±47.4∘ from the nadir and produces a scan swath of 2400 km.
Beam positions 1 and 11 are the extreme scan positions of the Earth views, each
separated by 9.47∘, while beam position 6 is in the nadir direction. The radiation
from the nadir position arises from the atmosphere in the vertical direction,
which is ideal for weather and climate applications. Onboard calibration using
blackbody and cold space observations is performed once every 25.6 s for each
scan line. The main MSU characteristics are provided in Table 11.5.
The AMSU-A has been operational since 1998 and is flown on board NOAA-

15 to 19 and Metop-A and -B satellites. Similarly to MSU, AMSU-A is mainly
designed to vertically probe the atmosphere under nearly all-weather conditions
(except for heavy precipitation). It contains 15 channels quantifying the thermal
radiation atmicrowave frequencies ranging from23.8 to 89.0GHz (seeTable 11.6).
The AMSU-A has an instantaneous field of view of 3.3∘ and scans ±48.7∘ from
the nadir with 15 different viewing angles at both sides. Atmospheric tempera-
ture profiles are primarily based on the measurements obtained at channels near
50–60GHz. In particular, the AMSU-A sounding channels (3–14) respond to the
thermal radiation at various altitudes, whereas channels 1 and 2 are primarily

Table 11.5 MSU channel characteristics and noise.

Channel
number

Center
frequency (GHz)

Number of
passbands

Bandwidth
(MHz)

Center frequency
stability (MHz)

NE𝚫T (K)

1 50.30 1 220 10 0.30
2 53.74 2 220 10 0.30
3 54.96 1 220 10 0.30
4 57.95 1 220 0.5 0.30
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Table 11.6 AMSU channel characteristics and noise.

Channel
number

Center
frequency (GHz)

Number of
passbands

Bandwidth
(MHz)

Center frequency
stability (MHz)

NE𝚫T (K)

1 23.80 1 251 10 0.30
2 31.40 1 161 10 0.30
3 50.30 1 161 10 0.40
4 52.80 1 380 5 0.25
5 53.59± 0.115 2 168 5 0.25
6 54.40 1 380 5 0.25
7 54.94 1 380 10 0.25
‘8 55.50 1 310 0.5 0.25
9 57.29= f 0 1 310 0.5 0.25

10 f 0 ± 0.217 2 76 0.5 0.40
11 f 0 ± 0.322± 0.048 4 34 0.5 0.40
12 f 0 ± 0.322± 0.022 4 15 0.5 0.60
13 f 0 ± 0.322± 0.010 4 8 0.5 0.80
14 f 0 ± 0.322± 0.004 4 3 0.5 1.20
15 89.00 1 2000 50 0.50

designed for obtaining the information on surface and cloud properties. Since
the satellite provides a nominal spatial resolution of 48 km at its nadir, the tem-
perature perturbations from synoptic scale to large mesoscale can be depicted
reasonably well.
Figure 11.14 displays theWFs for four MSU andMSU-like AMSU channels at a

0∘ local zenith angle.TheMSUchannel 2 has two bands located at both sides of the
center frequency and AMSU channel 5 has only one band. The center frequency
absorption is covered in AMSU channel 5, but not in MSU channel 2. Such a dif-
ference is reflected in theWFs shown in Figure 11.14.TheWF of theMSU channel
4 is slightly broader and peaks slightly higher than that of the AMSU-A channel 9
due to slight differences in the center frequency and bandwidth for these two cor-
responding channels. Similar but smaller differences exist between MSU channel
3 and AMSU channel 7. TheWF differences between MSU channel 1 and AMSU
channel 3 are the smallest.
In history, all MSU and AMSU instruments from Tiros-N, NOAA-6 to NOAA-

19 were designed for day-to-day operational uses in weather forecasting. The
requirements on satellite data calibration for climate studies are different from
weather forecasting applications. Issues such as variable calibration accuracy (or
bias) associated with each satellite instrument and accuracy (bias) changes with
respect to time due to the satellite orbital drift must be resolved since they may
be mistakenly interpreted as climate influences.
TheMSU instruments performed soundingmeasurements using four channels.

Channel 3 contains substantial errors in the NOAA-6 and NOAA-9 instruments
and thus is only valid from 1987 onward [297]. Channel 1 (50.3GHz) is sensi-
tive to the lowest 2 or 3 km of the atmosphere. Data from this channel is heavily
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Figure 11.14 Weighting functions of MSU channels 1–4 (solid) and AMSU-A channels 3, 5,
7, and 9 (dash) for the US standard atmosphere.

contaminated by emissions from the surface and atmospheric water and ice and is
of limited utility for tropospheric temperature studies [315]. Nash and Forrester
[316] reported possible radiometric calibration bias existing for NOAA-9 in chan-
nels 1 and 2 when comparing NOAA-9 with NOAA-6. It was found that there is
a spurious trend in the differences for AMSU channels 5–9 between the mea-
surements performed by the NOAA-15 and NOAA-16 satellites, and they argued
that NOAA-16 is the source of these trends [297]. Channels 1 and 2 on NOAA-9
ceased operation in early 1987 after only 102 days of simultaneous observations
with NOAA-10.
Merging multiyear satellite data from different MSU instruments requires

careful adjustments of the observations to account for drifts caused by orbital
decay and changes in local observing time and determination of intersatellite
offsets and errors caused by changes in the temperature of the calibration
sources. NOAA/STAR has recently released its level-1c intercalibrated 30+ year
(1979–2011) MSU/AMSU-A observations [317]. The instrument nonlinearity
is updated using SNO data. Diurnal drift errors, incident angle errors, warm
target temperature correction, and residual intersatellite biases are accounted
for. Figure 11.15 provides MSU data periods on board NOAA’s earlier eight
polar-orbiting satellites (from Tiros-N, NOAA-6 to NOAA-14) and the AMSU-A
data period on NOAA-15, which are used in this study.
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Figure 11.15 MSU data period on board NOAA’s earlier eight polar-orbiting satellites from
NOAA-6 to NOAA-14 and AMSU-A data period on NOAA-15.

11.4.1
Impacts of Clouds and Precipitation on AMSU-A Trends

NOAA-15was launched onMay 13, 1998, in a polar orbit with an inclination angle
of 98.7∘, a local equator crossing time (LECT) of about 7:30 pm in its ascending
node at its launch time, and an altitude of 833 km above the Earth. Since the noises
in the AMSU-A sounding channels are about 0.2–0.3K, the data record from sin-
gle AMSU-A on board from 1998 to date is long enough for climate trend study.
Recently, the trend uncertainty from the natural variability of clouds and precipi-
tation was investigated [318] and is briefly highlighted in this section.

11.4.2
Emission and Scattering Effect on AMSU-A

The emission and scattering of clouds and precipitation modulate the brightness
temperatures from both MSU and AMSU-A. In order to assess the effects of
the radiation from clouds and precipitation on the atmospheric temperature
trend derived from microwave temperature sounding instruments (e.g., MSU
and AMSU-A), cloud-affected brightness temperature measurements must
be identified. Fortunately, the information from AMSU-A window channels
1 and 2 can be used for retrieving the atmospheric cloud liquid water path
(LWP) using the algorithm developed by [211]. For this reason, temperature
trends for AMSU-A channels 3, 5, 7, and 9 from NOAA-15 are investigated
in this study. Here, the Community Radiative Transfer Model (CRTM) is first
used for simulating the responses of AMSU-A brightness temperatures to the
clouds characterized by rain rate [29, 238]. For calculations of cloud and aerosol
absorption and scattering, lookup tables of the optical properties of six cloud and
eight aerosol types are included in the cloud/aerosol optical property module.
The fast doubling–adding method is used to solve the multistream radiative
transfer equation.



324 11 Applications of Microwave Data in Climate Studies

An idealized cloud distribution similar to that found in Liu and Curry [210] is
assumed for the sensitivity study. Namely, a 0.8-km nonprecipitating cloud layer
with an LWP of 0.5 kg/m2 is added to the atmosphere below the freezing level, and
the precipitation layer is set below the cloud. Each specific rain rate is assumed for
the entire precipitation layer. A schematic diagram of the cloud and precipitation
system is illustrated in Figure 11.16. Note that an atmospheric profile including
temperature and water vapor is used as input to CRTM, and the surface emissivity
is set to 0.5, which is close to that of the ocean surface.
For a given atmospheric temperature condition, the emission and scattering of

clouds and precipitation could increase or decrease the brightness temperatures
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Figure 11.16 Weighting function of AMSU-A channel 3, channel 5, channel 7, and channel 9
from NOAA-15 calculated by the CRTM using the US standard atmosphere profile, which is
overlapped with the schematic illustration of a stratiform cloud with rainfall consisting of a
0.8-km-deep nonprecipitating cloud layer located below the freezing level with liquid water
path of 0.5 kg/m2 and the raindrops below the nonprecipitating cloud layer with the rainfall
rates unchanged vertically. Emissivity is set to 0.5. (Weng et al. 2014 [318]. Reproduced with
permission of Springer.)
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Figure 11.17 Variations of brightness temperature of AMSU-A channels 3, 5, 7, and 9 with
respect to rainfall rate with effective diameters of cloud droplets of 0.05 mm, 0.1 mm,
0.3 mm, 0.5 mm, and 0.7 mm and 1.0 mm. The emissivity is set to 0.5. (Weng et al. 2014
[318]. Reproduced with permission of Springer.)

measured by AMSU-A. As an example, Figure 11.17 presents variations in the
model-simulated AMSU-A brightness temperatures at the satellite nadir position
versus rain rate with the mean raindrop size as a parameter. The droplet radius
varies from 0.05 to 1.0mm for the clouds as shown in Figure 11.16. Since the
assumed cloud is distributed below 4 km, the higher the channels, the smaller
the impact that the clouds have on the brightness temperature. It is seen that the
brightness temperature at AMSU-A channel 3 increases as the rain rate increases
due to the cloud emission when the mean radius of raindrops is less than 0.1mm
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(Figure 11.17a). When the rain droplets are less than 0.1mm, the size parameter
(i.e., 2π∕𝜆, where 𝜆 is the wavelength) of clouds and raindrops all fall into the
Rayleigh scattering regime where the absorption dominates over scattering [319].
In addition, the absorption coefficient is proportional to the liquid water content
or rain rate [211]. Note that the brightness temperature at AMSU-A channel
3 in clear-sky atmosphere is much lower due to the lower surface emissivity
over ocean, and thus, an increase in cloud and raindrop absorption results in an
increase in brightness temperature. When the raindrop size increases to 0.3mm,
the brightness temperature first rapidly increases with the rain rate and then
remains nearly constant (e.g., saturated) as the rain rate further increases. For
the larger raindrops whose radius exceeds 0.5mm, the brightness temperature
increases more rapidly with rain rate compared to smaller raindrops when the
rain rate is low; the brightness temperature slightly decreases as the rain rate
further increases (Figure 11.17b). Except for very small rain rate, the brightness
temperature at channel 5 decreases as rain rate increases, which is due to increas-
ing precipitation scattering (Figure 11.17b). A decrease in brightness temperature
occurs when the radiation from other atmospheric layers is scattered out of the
instrument field of view. At AMSU channel 7 (Figure 11.17c), cloud and precip-
itation have very small effects on brightness temperature since their WFs peak
mostly above the clouds, and therefore, the brightness temperature decreases
with rain rate for all raindrop sizes. For AMSU-A channel 9 (figure omitted),
clouds and precipitation have negligible effects on brightness temperature since
this channel has its WF completely above the cloud and precipitation layer (see
Figure 11.16), and the radiation arises from the oxygen absorption and emission
in the atmosphere.
Based on the results in Figures 11.16 and 11.17, it is concluded that the larger

the raindrop size is, the larger the scattering and emission effects of clouds on the
brightness temperatures are. The cloud emission dominates when the rain rate is
low and the raindrop size is small. In reality, clouds are of different types and are
located at different altitudes. Only the integrated effect of clouds on the tempera-
ture trend can be estimated from real data.

11.4.3
AMSU-A Brightness Temperature Trend

Since the launch of NOAA-15 satellite onMay 13, 1998, the AMSU data has been
used in NOAA operational applications for over 13 years. The cloud algorithm
developed by Weng et al. [211] for NOAA-15 AMSU-A data over ocean obtains
an estimate of the cloud impact on the possible trend using AMSU-A data. The
two AMSU-A window channels 1 (23.8GHz) and 2 (31.4GHz) can be used for a
physical retrieval of cloud LWP over oceans [211]. Figure 11.18a provides a distri-
bution of an annual data count with LWP being less than 0.5 kg/m2 within each of
5∘ × 5∘ grid boxes over the global ocean for NOAA-15 AMSU-A data in 2008.The
data in Figure 11.20a are further separated into two groups: one for clear-sky con-
ditions (Figure 11.18b) and the other for cloudy (Figure 11.18c) conditions, where
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Figure 11.18 Global distributions of data counts within 5∘ × 5∘ grid boxes for NOAA-15
AMSU-A FOVs 15 and 16 in 2008 with (a) LWP <0.5 kg/m2, (b) 0.01≤ LWP< 0.5 kg/m2, and
(c) LWP <0.01 kg/m2. (Weng et al. 2014 [318]. Reproduced with permission of Springer.)



328 11 Applications of Microwave Data in Climate Studies

the clear-sky and cloudy data are identified by LWP being less than 0.01 kg/m2

and between 0.01 and 0.5 kg/m2, respectively. More cloudy data with LWP val-
ues between 0.01 and 0.5 kg/m2 are found in the east Pacific, east Atlantic, and
east Indian oceans in the Southern Hemisphere compared to the middle latitudes
(Figure 11.18b). In the Northern Hemisphere, more cloudy data are found in the
tropical warm pool and mid-latitude storm track regions than in other oceanic
regions (Figure 11.18b). The tropical area has more clear-sky areas compared to
the middle latitudes (Figure 11.18c). The LWP threshold of 0.5 kg/m2 is used for
identifying the precipitation.
In the following trend analysis, a threshold of LWP being greater than

0.01 kg/m2 is used as an indicator of cloudy AMSU data. Figure 11.19 shows
a latitudinal variation of the averaged daily counts of the total and clear-sky
AMSU-A nadir FOVs from NOAA-15 satellite over global oceans. In general,
about 30–50% and 20–30% of oceanic observations are cloud-affected in the
middle to high latitudes and the low latitudes, respectively.
The temperature trends derived from AMSU-A channels 3, 5, 7, and 9 with

and without the cloudy microwave measurements are shown in Figure 11.20.
The global temperature trends calculated from AMSU-A data between 60S and
60N for the window channel 3, the mid-tropospheric channel 5, the upper-
tropospheric channel 7, and the upper-stratospheric and low-stratospheric
channel 9 are 0.04, 0, −0.01, and −0.16K/decade, respectively, under all-
weather conditions (Figure 11.20a). When the cloud effect is eliminated, the
global temperature trend for both channels 3 and 5 is increased to 0.03 and
0.07K/decade, respectively, leading to more than 43% decrease in the warming
trend. The brightness temperatures at AMSUA channels 3 and 5 are sensitive
to the emission and scattering from clouds and precipitation. A decrease in the
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Figure 11.19 Averaged daily count of AMSU-A nadir data in each of 5∘ latitudinal bands
averaged from August 1, 1999 to June 30, 2012, under clear-sky and all-weather conditions
over ocean. (Weng et al. 2014 [318]. Reproduced with permission of Springer.)
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Figure 11.20 Decadal temperature trends between (a) 60S–60N, (b) 0S–60S, and (c)
0N–60N under clear-sky (left bars) and all-weather (right bars) conditions. (Weng et al. 2014
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brightness temperature can be associated with cloud and precipitation scattering,
rather than with the physical temperature in the lower and middle troposphere;
therefore, the trends from microwave sounding data could be misleading if
the brightness temperatures from all-weather conditions are averaged as a
representation of the atmospheric physical temperature.
The global impacts of clouds on temperature trends in the upper troposphere

and low stratosphere are negligible. If we separate the Northern Hemisphere from
the SouthernHemisphere, impacts of clouds on temperature trends becomemore
significant compared to the global average. In the Southern Hemisphere, the
warming trends for both window channel 3 and the mid-tropospheric channel
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5 are 0.06 and 0.03K/decade, respectively, which decrease to nearly zero when
clouds are present (Figure 11.20b). The temperature cooling trends for channels
7 and 8 are slightly increased by the clouds (Figure 11.20b) in the Southern
Hemisphere. Cloud impact on the temperature trend for channel 5 in the
Northern Hemisphere is similar to that in the Southern Hemisphere, that is,
cloud reduces the warming trend. Cloud impact on channel 7 is also negligible in
the Northern Hemisphere. However, an opposite effect of cloud on temperature
trend is found in the Northern Hemisphere near the surface and in the upper
troposphere and low stratosphere: clouds cause an overestimate of the tem-
perature warm trend of the mid-tropospheric channel 5 and an underestimate
of temperature cooling trend of the upper-tropospheric and low-stratospheric
channel 9. The global ocean mean trends for channel 5 within the time period
from October 26, 1998 to August 7, 2010 with or without cloud-affected data
obtained in this study are much smaller than those obtained by UAH, UMD,
and STAR for the time period from 1987 to 2006 [298]. Further investigation
is needed to clarify if the different trends can be caused by the data record
length.

11.5
Atmospheric Temperature Trend from 1DVar Retrieval

11.5.1
Climate Applications of 1DVar

As discussed in Chapters 10 and 11, the best estimate of atmospheric vector can
be derived by minimizing the cost function

J(𝐱) = 1
2
(𝐱 − 𝐱b)T𝐁−1(𝐱 − 𝐱b) +

1
2
(H(𝐱) − 𝐲)T𝐑−1(H(𝐱) − 𝐲), (11.7)

where x is the control vector, xb is the background state vector;B is the background
error covariance matrix; y includes brightness temperature observations from
MSU orMSU-like AMSU-A channels; H(𝐱) represents the forward operator such
as CRTM, which calculates the radiance at the top of the atmosphere for a given
set of input parameters including the atmospheric state variables x; R is the sum
of observation error covariance matrix (O) and CRTM error covariance matrix
(F). The state variable (x) in Eq. (11.7) includes the atmospheric temperature
profile, water vapor profile, and surface parameters (e.g., sea surface temperature
(SST), surface emissivity). Here, a climatological atmospheric profile is taken as
the background field (xb).
The minimum solution, x, in Eq. (11.7) is obtained through an iterative pro-

cedure [320] in two sequences: one assuming a clear-sky condition for CRTM
simulation and the other one cloudy conditions. The largest iteration numbers
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in the two sequences are set to 2 and 7, respectively. The minimization procedure
is stopped if

𝜀 = 1
4
(H(𝐱) − 𝐲)T𝐑−1(H(𝐱) − 𝐲) ≤ 1. (11.8)

For AMSU and MSU instrument, which has a noise of 0.25K, Eq. (11.8) mathe-
matically means that the convergence is declared to have reached if the residuals
between themeasurements and the simulations at any given iteration are less than
or equal to one standard deviation of the noise that is assumed in the radiances.

11.5.2
MSU and AMSU-A Cross-Calibration

The MSU and AMSU-A data set available from June 1979 to December 2009
were assimilated for obtaining microwave temperature retrieval. From NOAA-6
to NOAA-15, the data during the overlapping period of two satellites are inter-
calibrated, and the retrievals from two MSUs are almost identical. Thus, in our
analysis, only the retrieval from the newer instrument is used in the time series. It
is worthmentioning thatNOAA-8 has only 2 years of data andNOAA-12missed 8
months of datawithin a 5-year period.Note thatMSUdata at FOV6 andAMSU-A
data at FOV 15, which are all close to the nadir, were extracted for this study. Since
the variational retrieval requires some ancillary data such as SST, the monthly
mean SST analysis from the climate prediction center is used. This SST clima-
tology has been only available for the months after 1981. The retrieval fromMSU
between June 1979 andOctober 1981 are based on SST and SSWclimatology after
1981. As mentioned before, 1DVar was developed for AMSU-A applications, and
thus, MSU data are also linearly remapped to AMSU-A channels through regres-
sion relationships.
The consistency in brightness temperature observations between MSU and

AMSU-A can be illustrated using the SNO data between NOAA-14 MSU and
NOAA-15 AMSU-A during their overlapping period. For SNO collocation, a
spatial separation between two observations is set to less than 100 km, with a
temporal separation being less than 100 s. From SNO data in 2002, Figure 11.21
shows that SNO data points are distributed along the diagonal with the MSU
and AMSU-A brightness temperatures as coordinates, confirming a reliable bias
correction for satellite observations from NOAA-14 and NOAA-15 by Zou and
Wang [317].

11.5.3
Cloud Detection Algorithm for MSU Applications

Since the WF of AMSU-A channel 3 (or MSU channel 1) has a WF peak near
the surface, the clouds in the atmosphere can affect the brightness temperature
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Figure 11.21 The brightness temperature correlations between NOAA-14 MSU channels and
the corresponding NOAA-15 AMSUA subset channels for SNO data in 2002. The total num-
ber of data count is 5166. Collocation criteria: spatial separation <100 km and temporal sep-
aration <100 s. (Weng and Zou 2014 [243]. Reproduced with permission of Springer.)

through their emission and scattering. Thus, this channel is a dirty window
channel in a clear atmosphere and is sensitive to both lower tropospheric temper-
ature and surface temperature. It becomes opaque when clouds and precipitation
occur in the atmosphere. Brightness temperatures at AMSU-A channel 5 (or
MSU channel 2) are much less sensitive to the presence of clouds since most
clouds occur below its weighting peak and have smaller impacts. Therefore, these
two channels could be used for cloud detection due to their differential sensitivity.
A cloud detection algorithm similar to that in [149] is developed. Firstly, cloud
LWP is estimated from brightness temperatures at MSU channels 1 and 2 (or
AMSU-A channels 3 and 5) using the following formula:

LWPindex = c0 + c1 log(290 − Tb,Ch 1) + c2 log(290 − Tb,Ch 2), (11.9)
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where c0 = 4.4313, c1 = −1.3801, and c2 = 0.4138. The coefficients may also
depend on the range of cloud liquid water as well as the scan angle.
A logarithmic form is selected in Eq. (11.9) due to an exponential relationship

between the brightness temperature at channel 3 and cloud LWP.The coefficients
c1, c2, and c3 in the algorithm are derived from AMSU-A data simulated with a
set of 1900 radiosonde profiles distributed over all the geographical regions. For
each profile, a cloud layer below the freezing level with a randomly selected value
of liquid water content within a range of 0–0.3 g/m3 is added to the profile. Since
the brightness temperature over ocean is also sensitive to surface roughness, wind
speed is also varied within 0–10m/s for producing the simulated data set.
Cloud LWP can be estimated from MSU-like AMSU-A channels 3 and 5.

Figure 11.22a compares LWP index derived from MSU-like AMSU-A channels
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Figure 11.22 (a) Scatter plot of LWP index derived from MSU-like AMSU-A channels 3
and 5 using Eq. (11.4) (y-axis) and LWP derived from AMSU-A channels 1 and 2 at the
nadir only over ocean on August 1, 2011. The black line represents a parabolic fitting:
LWPindex =−0.16× LWP2 + 0.87× LWP+ 0.15. (b) Global distribution of monthly mean cloud
LWPindex (unit: kg/m2) within 1∘ × 1∘ grid box over ocean in August 2011. (Weng and Zou
2014 [243]. Reproduced with permission of Springer.)
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3 and 5 using Eq. (11.9) with the LWP derived from AMSU-A channels 1 and
2 [211] at the nadir only over ocean on August 1, 2011. It is seen that LWPindex
varies quadratically with LWP: LWPindex = 0.87×LWP+ 0.15− 0.16×LWP2. The
global distribution of monthly mean cloud LWPindex is presented in Figure 11.22b
for August 2011. If LWPindex is greater than 0.5 kg/m2, clouds are identified as a
precipitating type within the satellite field of view. Any microwave observational
data with an LWPindex greater than this threshold was not used for the 1DVar
temperature profile retrieval.
Another technique for dealing with cloud effects in the temperature retrieval is

to include the cloud liquid water in the state control variable. However, a limited
amount of information from four-channel MSU data on clouds makes it difficult
to simultaneously resolve all the profiles of temperature, water vapor, and cloud
liquid water content.

11.5.4
Temperature Trend from 1DVar

Figure 11.23 provides the mean and standard deviation of the differences between
observations and model simulations before and after the 1DVar data assimilation.
Both mean and standard deviations are reduced by more than an order of dif-
ferences for channels 3, 5, 7, and 9. Before examining the 30-year variations of
atmospheric temperature deduced from satellite observations, a verification of the
1DVar results with GPS RO data is carried out first.
Figure 11.24 provides the 30-year variations of the global temperature anomaly

at 10 pressure levels from June 1979 to December 2009 by a 1DVar approach. It is
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Figure 11.23 (a) Mean and (b) RMS differences of brightness temperatures between obser-
vations and model simulations from initial guess (O-I, unit: 10 K, left bars) and 1DVar analysis
(O-A, unit: K, right bars) on August 28, 2011. (Weng and Zou 2014 [243]. Reproduced with
permission of Springer.)
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Figure 11.24 Monthly mean temperature anomaly (dark black dots) at 10 pressure levels
over ocean and the linear trend (moderate gray line). (Weng and Zou 2014 [243]. Repro-
duced with permission of Springer.)

seen that the temperature anomaly is consistently negative in the earlier years and
positive in the later years below 200 hPa, as a result of global warming. A reversed
sign of temperature anomaly is seen between 50 and 100 hPa,
The vertical and latitudinal distribution of the global mean temperature linear

trend calculated from the temperature retrieval from 1980 to 2009 is presented
in Figure 11.25a. The decadal warming trend is about 0.5 K at 1000 hPa in the
low and middle latitudes, decreases to 0.3–0.4K/decade in the low troposphere
(e.g., around 800 hPa), and increases to about 0.9 K between 200 and 300 hPa.
A larger warming trend from 0.3 to 0.5 K/decade in the lower troposphere from
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1000 to 800 hPa is consistent with the climate-model-predicted trend [321,
322]. In Santer’s studies [321], it was found that there is no longer a serious
discrepancy between modeled and observed trends in tropical lapse rates. The
constructed T2LT for MRI model ensemble mean shows about 0.371C/decade
in the lower tropospheric temperature warming over the tropical regions. Note
from Figure 11.25 that a weak cooling trend (∼0.2K/decade) is seen at 100 hPa.
Trends above 90 hPa are not reliable due to the lack of upper-level channels and
are therefore not shown in this study.
As a self-validation, the retrieved profiles are used as input to CRTM to

calculate synthetic MSU brightness temperatures. The long-term trends in
the synthetic temperatures (Figure 11.25c) are then compared to those in the
MSU/AMSU-A data (Figure 11.25b). The decadal linear trends in brightness
temperature observations compared favorably with the trends derived from
synthetic brightness temperature simulated using the 1DVar retrieval as input
to CRTM, suggesting that the retrieval process does not introduce any spuri-
ous trends. The retrieved tropospheric warming trends (Figure 11.25a) in the
upper troposphere are considerably larger than those directly inferred from
MSU/AMSU brightness temperature data (Figure 11.25b). Since MSU channel
brightness temperatures always represent deep-layer atmospheric temperatures,
trends in MSU/AMSU-A brightness temperature data would be different from
those of the retrieved temperatures. It is seen that the warming trends of MSU
channel 3 are significantly smaller than the temperature trends in the upper
troposphere where the peak WF of channel 3 is located; the warming trends
of MSU channel 2 are slightly larger than the temperature trends in the low
troposphere, and the cooling trends of MSU channel 4 are slightly smaller than
the cooling trends of the retrieved atmospheric temperature trend.

11.6
Summary and Conclusions

The uncertainty in the climate trend from the observation is derived as a func-
tion of data record length and the noise of the measurements and the natural
variability. To reduce the trend uncertainty, a longer data record is required.With
a smallmeasurement noise, and a small natural variability, the trend can be derived
with a great accuracy within a shorter time.
SSM/I SDR intersensor calibration scheme is developed for constructing a long

data record.This calibration scheme is built on the SCO technique, which collects
observations as well as location from two SSM/I sensors that have an overlapping
time period. The SCO intersensor calibration scheme requires an SSM/I sensor
to be the reference radiometer so that other sensors can be calibrated against this
reference sensor. F13 is selected as a reference sensor because of its most stable
local equatorial crossing time and has the most interceptions with other satellites.
Results demonstrate that the newly developed SSM/I SDR intersensor cal-

ibration scheme substantially improves the consistency of the monthly mean
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oceanic rain-free Tb time series for all sensors, in terms of 58% reducedmaximum
intersensor bias, 30% declined mean absolute bias, and 21% decreased standard
deviation. In addition, as we expected, the intersensor calibration has little impact
on the mean rain-free oceanic monthly Tb; however, it exerts a dramatic influence
on the climate trend of the monthly Tb series. Due to the consistency of the Tb
series for all SSM/I sensors, the SDR’s climate trend becomes more reliable. The
SDR’s climate trend over ocean varies from −0.70 to 0.36K/decade before the
intersensor calibration and from −0.44 to 0.09K/decade after the calibration,
resulting in a percentage change of 37% at 19v GHz channel and more than 70%
at other channels.
The SSM/I SDR intersensor calibration has large impacts on the water vapor

trend. The maximum TPW intersenor bias before and after the calibration
changes from −1.5 to ±0.1mm for the global ocean and from −3 to ±0.5mm
for the tropical ocean, resulting in a 75% and 20% deduction, respectively, of
the mean absolute intersensor bias. The corresponding TPW standard deviation
is also decreased by 40% and 21%. The TPW climate trend after the intersen-
sor calibration is 0.34mm/decade (or 1.59% per decade) for the global ocean
and 0.63mm/decade (or 1.39% per decade) for the tropical ocean, showing a
trend decrease of 38% and 54%, respectively, before the calibration. The TPW
trend with the intersensor-calibrated SSM/I measurements is in good agreement
with previously published results.
Cloudy and cloud-free atmospheric temperature trends are derived from

satellite microwave temperature sounding observations. The global daily mean
brightness temperatures observed by the NOAA polar-orbiting satellite NOAA-
15 AMSU-A instrument over the 13-year time period from August 1, 1999 to
June 30, 2012 over ocean are used in our analysis.The traditional linear regression
method is applied to the 13-year global brightness temperatures of AMSU-A
channels 3, 5, 7, and 9 to obtain global and hemispheric averaged warming
and cooling trends. By binning all AMSU-A channel brightness temperature
measurements within 5∘ latitudinal bands, the latitudinal dependence of the
cloud impact on global warming trend is calculated, and its relationship with
global average warming/cooling is determined. It is shown that the atmospheric
warming trends in the middle latitudes are significantly larger when cloud effects
are removed from the 13-year microwave sounding data of AMSU-A channels
3 and 5 in both hemispheres. The scattering and emission effect of clouds and
precipitation significantly reduces the values of the warming trends in the low
and middle troposphere derived from the microwave data.The cooling trends are
found in the high latitudes in the Southern Hemisphere and in all latitudes in the
Northern Hemisphere.The high-altitude clouds tend to reduce the cooling trends
of AMSU-A channel 9 in the Northern Hemisphere, especially in the middle and
high latitudes in the Northern Hemisphere. The cloud impacts on the cooling
trends in the Southern Hemisphere are negligible. However, their impacts on
the temperature trends could be much larger in the latitudinal zones than on the
global warming trend.
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The 1DVar method is used for deriving atmospheric temperatures at each pres-
sure level in the troposphere and low stratosphere from MSU and AMSU-A on
board the NOAA polar-orbiting satellites over the time period from June 1978
to August 2010. The 30-year atmospheric temperature profiles are then derived
from the satellite observations, detecting the global warming/cooling trends.
The high accuracy of the CRTM for the forward simulation of satellite-observed
microwave radiances makes the 1DVar approach extremely appropriate for
deriving the TCDRs. As the first step, only temperatures over oceanic surfaces
are derived and analyzed. The retrieved tropospheric warming trends in the
upper troposphere are considerably larger than those directly inferred from
MSU/AMSU brightness temperature data, an expected result of MSU channels
representing a deep-layer average atmospheric temperature. The warming trends
of MSU channel 2 are slightly larger than the temperature trends in the low
troposphere where the peakWF of channel 2 is located. The cooling trends of the
low stratospheric MSU channel 4 are slightly smaller than the cooling trends of
the retrieved atmospheric temperature trend in the low stratosphere.
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