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Foreword 

Seismological data analysis is currently undergoing a major change. Digital data 
acquisition has become the standard method for recording seismic data. Strong 
national and international programs have been launched with the goal to increase 
the number of digital seismic stations worldwide. During the upcoming Interna- 
tional Seismological Observing Period (ISOP), one of the major goals will be the 
enhancement of seismological observatory practice worldwide ~ b o o s  et al., 
1990). In this context, on-site analysis of digital seismograms will play a central 
role. It is now possible for seismologists with as little equipment as a PC and a 
modem to gain access to high quality digital seismic data and to perform high qual- 
ity analysis. 

Dealing with digital data, however, doesn't make the analysis easier than the ana- 
log era. On the contrary, even basic tasks such as reading of onset times or ampli- 
tudes from seismic records may require quite a bit of programming effort, not to 
speak of tasks such as filtering, spectral analysis, polarization analysis, etc. In addi- 
tion, the application of digital sit, hal processing techniques is not always straight- 
forward. Even with all the software nowadays available for analysis of digital 
seismograms, a basic understanding of continuous and discrete system theory is 
essential for the correct application of digital analysis tools. Focusing on a model 
of modem seismic recording systems as a sequence of analog and continuous, lin- 
ear, time invariant (LTI) systems, this course introduces the basic concepts of dig- 
ital signal processing in a very pragmatic way. 

In order to create the examples and most of the problems treated within this text, I 
have been using PITSA, a program written by myself and Jim Johnson (Scherbattm 
and Johnson, 1993). The program is available as Vol. 5 of the IASPEI Software 
Library through the Seismological Society of America, 201 Plaza Professional 
Building, E1 Cerrito, CA 94530, USA (Phone: 510-525-5474: Fax: 510-525-7204). 
PITSA was primarily designed for research purposes and the application in day-to- 
day station-based seismological analysis. With the analysis tools becoming theoret- 
ically more and more demanding, however, we started out to add some educational 
features, mainly to test the behaviour and to teach ourselves the proper application 
of certain algorithms. This led to the first version of a Short Course on the First 
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Principles of Digital Signal Processing for Seismologists which started out as an 
undergraduate course at the University of Munich in 1991 (Scherbaum, 1993). 

Since 1991, I have taught thin course to different audiences in different environ- 
ments. In March of 1992, it was given as a three-day block course at the Geophysi- 
cal Institute of UNAM, Mexico City, and in 1993, part of the material was 
presented as a two-day SiL~,nal Prcr, essing Workshop in Baltimore, organized by the 
Incorporated Research Institutions in Seismology (IRIS). I have benefited enor- 
mously from the feedback and the enthusiasm of the participants of these courses. 
As a consequence, the original lecture notes have been completely revised and 
grown (especially on the theoretical side) to what has become this text. During all 
the revisions, I have tried to keep the concept of a hands-on-let's-check-it-out 
approach. Most importantly, solutions to the problems presented in the course have 
been added to the lecture notes. 

Although most of the problems and examples in this course have been produced 
and are discussed using P1TSA, access to this program is not of absolute necessity 
to follow the material presented. Readers with access to programs such as Math- 

CAD 1 , Mathematica 2, or Maple 3 will find that they can reproduce all of the essen- 
tial examples with only moderate programmin~ efforts. For readers who 
completely lack access to any of these programs, PITSA screendumps for the most 
important steps of the solutions are given in "Appendix A: Solution to Problems" 
starting on page 111. 

I am indebted to the students at the University of Munich who involuntarily had to 
test PITSA in a teaching environment. I have benefited from numerous discussions 
on signal processing with Ariel Plesinger, Miroslav Zmeskal, Jim Johnson and 
Joachim (Jo) Wassermann (who also prepared the original manuscript for Frame- 

Maker4). Wang-Ping Chen deserves special thanks for his critical reading of the 
manuscript. 

Mtinchen, August 1993 Frank Sclmrbaum 

1. MathCAD is a registered trademark of MathSoft, Inc. 
2. Mathematica is a registered trademark of Wolfram Research, Inc. 
3. Maple is a registered trademark of Waterloo Maple Software. 
4. FrameMaker is a registered trademark of Frame Technology. 
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1 Introduction 

By r~.ording seismic ground motion, seismologists are trying to obtain information 
about physical processes within the earth. A central target of attention has histori- 
cally being the earthquake source. However, ground motion recorded at a seismic 
station on the earth's surface differs considerably from seismic signals originated at 
the earthquake source ~ig.  1.1). 

© 

A 
- refract ions and reflections 
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Fig. 1.1 Signal distortion during wave propagation from the earthquake source to the sur- 
face. 

In Fig. 1.1, some of the conceivable changes in waveform along the propagation 
path are sketched schematically. Attenuation causes frequency dependent reduction 
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of the amplitudes and phase shifts. Scattering will produce complicated superposi- 
tions of wavelets with _different paths, and reverberation in shallow sedimentary 
layers will cause frequency dependent amplification. Finally, the recording system 
and the sampling process produce additional signal distortions. 

Fig. 1.2 illustrates the influence of the recording system on the observed waveform 
by showing the same seismic signal as it would be recorded on three different 
instruments. The first visible wave group is PKP, a signal that has traversed the 
earth's core while the second one is pPKP, its surface reflection. Each immanent 
distorts the incoming signal in a different way, emphasizing different frequency 
components of the signal. 

FIJI ISLANDS: 1990/06/26 08:00 
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Fig. 1.2 PKP and pPKP wave group of an earthquake in the Fiji islands region recorded at 
station C1 of the Seismological Central Observatory Graefenberg (GRF) ata distance of 
151 °. Shown from top to bottom are the vertical component records for a: WWSSN SP, a 
KIRNOS BB, and a WWSSN LP instrument simulation. 

Before we can even begin to think about the interpretation of recorded seismic sig- 
nals in terms of properties of the source and/or the earth, we have to understand and 
possibly correct for the effects caused by the recording process. In the following 
chapters we will see how these effects can be understood and modeled in a quanti- 
tative way. 

In addition to the effects of the seismometers, we have to understand the limitations 



of the data imposed by the sampling process. For maximum resolution, current 
state-of-the-art recording systems often make use of oversampling/decimation 
techniques. For masons which will be discussed later, digital low-pass filters with 
two-sided impulse responses similar to the top trace in Fig. 1.3 are commonly used 
in this context. As a consequence, the onset times for very impulsive seismic sig- 
nals may be obscured by precursors and become hard, if not impossible, to deter- 
mine, especially forautomatic phase pickers. 

QDP 380 STAGE 3 

0.42901 i I I " I I I I I I 

- 0 . 0 9 3 0 8 2  
0 . 3 4 5 4  
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I I I 
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0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .O  
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1 

(2)  
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Fig. 1.3 Impulse response of stage 3 of the two-sided decimation filter incorporated in the 
Quanterra QDP 380 system (top trace). The bottom trace shows a filter response with an 
identical amplitude but different phase response. 

In chapter 8 The DigitalAnti-Alias Filter, we will see how to treat this problem the- 
oretically as well as practically. We will learn how to remove the acausal (left- 
sided) portion of such a filter response from seismic signals for the determination 
of onset times. In other words, we will see how to change the two sided filter 
response shown in the top trace of Fig. 1.3 into a left-sided equivalent, as shown in 
the bottom trace of Fig. 1.3. 

In the final introductory example, we are going to look at a typical sequence of sig- 
nal processing steps to determi~ seismic source parameters from local earthquake 
records (Fig. 1.4). 
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Fig. 1.4 VerticM component, velocity records of stations 204, 206, 262, and 263, respec- 
tively of event 4 of the Chalfant Valley aftershock sequence (of. Luzitano, 1988). Notice the 
monochromatic noise that has been artificially superimposed on the data to simulate the 
effects of crosstalk. 

Fig. 1.4 shows four short-period, vertical component retards for an aftershock of 
the 1986 Chalfant Valley earthquake recorded at temporary stations of the USGS. 
Monochromatic 60 Hz signals have been artificially superimposed on the original 
records in order to simulate the potential effect of crosstalk. After the correction for 
the preamplifier gains, a typical first step of digital signal processing would be the 
removal of this and other kinds of unwanted 'noise' from the data. The techniques 
covered in this course will enable us to design and apply simple filters for this pur- 
pose. After noise removal, the records from stations 204, and 262 look like in Fig. 
1.5 
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Fig. 1.5 Velocity records of stations 204, and 262, respectively, of event 4 of the Chalfant 
Valley aftershoek sequence after noise removal. 

What we ideally would like to obtain by applying signal processing techniques to 
the recorded data is either an approxlm~tion to the true ground motion or at least a 
simulation of records of some standardized instruments. In technical terms, the first 
problem is called signal restitution, while the second one is known as instrument 
simulation problem. For both of these tasks, the behaviour of the recording system 
must be described in a q-Rntitative way. As two of tim most pow~all tools in this 
context, we will become acquainted with the concepts of the transfer function and 
the frequency response function. The modulus of the latter provides a very illustra- 
tive way to visualize the frequency dependent amplification and damping of seis- 
mic signals by a specific instrument. For the recording system used for the data 
shown above, the theoretical frequency respense function (modulus) is shown in 
Fig. 1.6 
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Fig. 1.6 The theoretical frequency response function (modulus) for the USGS short- period 
refraction system (normalized response to ground displacemen0. After Luzitano (1988). 

After we learn how to describe the effects of seismic recording systems, we will 
also learn how to describe their interactions with the ground motion. This will lead 
us to the topic of convolution as one of the essential key topics of system theory. In 
the context of restitution and/or simulation, however, we are even more interested 
in the inverse process, which is called deconvolution. Again, there are many differ- 
ent deconvolution techniques with different advantages and drawbacks. Here, we 
touch upon the spectral division technique to illustrate some of the basic effects. If 
we apply this method to the data in Fig. 1.5, we will obtain the records shown in 
Fig. 1.7. 
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Fig. 1.7 Instrument corrected displacement records of the signals shown in Fig. 1.5. 

Once the signals are corrected for the immanent response, they can be used for 
seismic source parameter inversion. What we conventionally try to determine from 
this kind of records are estimates of the seismic moment M o, which is proportional 

to the product of source size (radius) and source dislocation, the stress drop, as well 
as of the attenuation properties along the ray path. In this context, it is quite com- 
mon to do the interpretation in the spectral domain, by calculating the Fourier 
liansform of the data. If we do this for the P wave portion of the top trace in Fig. 
1.7, we obtain the spectrum shown in Fig. 1.8. Its shape is more or less typical for a 
displacement specgum, with an essentially flat specmun plateau (here roughly 
between 1 and 10 I-Iz), and a high frequency region in which the spectral ampli- 
tudes decay rapidly with increasing frequency (here above 10 - 20 Hz). The transi- 
tion region is c ~ m o u l y  described by the so-called corner frequency, fc, defined as 
the frequency at which the spectral amplitude of the source signal is 1/2 of the pla- 
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teau value. In a double logarithmic plot, the comer frequency appears roughly at 
the intersection of two asymptotes: one for the plateau and the other for the high- 
frequency region of the spectatm. 

1@-8188 l: 

1e-997 - 

te-QlO - 

le-911 - 

l@-a12 
0,1 

CHAT,FliNT Pa hl.+~Y 
I I I l i l l ] l  I I I I I I I I I  I I 

1 l g  J.l~ 
]P]~PJIU D,IC'~ [Hz] 

(1) 

Fig. 1.8 Displacement spectrum for the P- wave portion of the instrument corrected dis- 
placement record of station 204 (top trace in Fig. 1.7). 

Under very general assumptions, the displacement spectrum of an observed seis- 
mic P or S wave signal can be modelled as the productof different spectral factors: 

S j ( f )  = A (3') . l j (]) . R j (]) . B j (J) (1.1) 
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Here Sj (fi represents the observed spectrttm with j being the station index. On the 

right hand side, the conlfibuting factors are the far field source spectrum A (D, the 

instrumental response I j (f) , the site response R j CO, and the attenuation spectrum 

By b0 • The far field displacement source spectnma is commonly modelled as: 

Mo " R (O, O~) J~ 

A(]3 4 . n . p . s . v 3  fcr+f ~ (1.2) 

Here M o denotes the seismic moment, R (0, ¢) the radiation pattern, p tim den- 

sity, s the hypocentral distance, v the P-, or S- wave velocity, respectively, fc the 

source comer frequency, ~, the high frequency decay factor (assumed to be 2 c, 3 

for P waves), and ] the frequency, respectively. The attenuation spectrum B (]) is 

givenby: 

B (f0 = e - r C f s / ( v Q )  = e "~ft/Q 
(1.3) 

with t being the traveltime. Once the immanent response has been removed equa- 
tion (1.1) reduces to 

Sj (]) = A (]) . Rj (]) ' Bj (,t) (1.4) 

If we know or make reasonable assumptions about the attenuation factor Q, the 
elastic parameters of the medium, and the site spectrum Rj (]),  equation (1.1) 

could directly be used to invert the specmJm in Fig. 1.8 for seismic source parame- 
ters. Inverse theory, however, is beyond the scope of this text. Readers interested in 
the topic of inversion are mfemxt to books by Meake (1984), Tarantola (1987) and 
Hjelt(1992). 

In order to understand the power as weU as the limitations of the methods used for 
processing digital seismic data in the context of analysis and interpretation, we 
have to get a basic understanding of the principles of signal processing, or in other 
words, the theory of filters and systems. We will do this in a very practical way by 
starting out with trying to get a basic feeling for the underlying concepts. These 
concepts are - as we can see from the following definition - very general and not 
restricted to seismic s~a l s .  
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• D e f i n i t i o n  - -  Filters or systems are, in the most general sense, devices 
(in the physical world) or algorithms (in the mathematical world) which 
act on some input signal to produce a - possibly different - output sitmal. 

Systems are often visualized in of block diagrams with a line or an arrow represent- 
ing the input signal, and another representing the output signal (Fig. 1.9). 

input output 

, . - -  SYSTEM 

Fig. 1.9 Block diagram of a system 

Using the concept of systems to model a seismic signal under very simplified 
assumptions, a possible way of representation is shown in Fig. 1.10. As seismolo- 
gists, we are especially interested in isolating the left half of the diagram for inter- 
pretation in terms of geophysical models. 

earth system 

Fig. 1.10 System diagram of a seismogram 

So far, the concept of a system is of  little help, if it is only used to display the logi- 
cal struc~re of a sequence of physical processes. In order to make real use of this 
concept, we first have to learn how to quaulitafively describe the properties of sys- 
tems and the way they act on signals. If a system meets some simple requirements 
(lineadty, time invariance), we will see that we do not need to know what is physi- 
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cally going on inside of the system box. All we need to know in order to describe 
the properties of such a system and how it changes an arbitrary input signal is to 
know how it changes some very simple input signals like impulses or sinusoids. It 
will turn out that systems are most conveniently described in the so-called 'fre- 
quency' domain which is related to the time domain via the Fourier- or Laplace- 
transform. 



2 RC Filter 

We will start out with an example of a very simple filter which will enable us to 
know some of the basics from the theory of systems. The filter consists of a combi- 
nation of a capacitor C and a resistor R in series (Fig. 2.1). 

° ° 

u (t) C 

© © 

y (t) 

Fig. 2.1 RC filter. 

It is easy to understand and aUows us to compare different ways of quantifying the 
properties of this system (physical and non-physical one). 

2.1 T h e  s y s t e m  d i a g r a m  

Making use of the little knowledge we have so far about tt~ theory of filters, let us 
start out with the graphical representation of the RC filter as a simple block dia- 
gram (Fig. 2.2). All this teUs us is that for the input signal u(t), we obtain an output 
signal which we call y(t). 
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u(t) 
---"-- R C - f i l t e r  

y(t) 
Y 

Fig. 2.2 System diagram for the RC filter in Fig. 2 A. 

2.2 The differential equation 

If we apply a time dependem input voltage u(0 to the left outlets of the circuit, a 
current I(0 will flow through the resistor R and the capacitor C. The voltage differ- 
ence measured across the resistor will be R/(t). If we call the voltage at the two 
fight pins Y(O we get for the overall voltage balance: 

Rl  (t) + y ( t )  = u( t )  (2.1) 

The current is controlled by the capacitance C: 

I (t) --- C~(t)  (2.2) 

Inserting equation (2.2) into equation (2.1) we obtain the differential equation of 
the electric circuit: 

RC~(t )  + y ( t )  - u ( t )  = 0 (2.3) 

We have just arrived at a physical way to describe the properties of this circuit by a 
differential equation. Equation (2.3) is an example of a first order linear differential 
equation. For that reason, we call the corresponding system a linear system. Lin- 
ear systems have tbe property that if Yl (t) ,Y2 (0 are the output signals corre- 

spondln~ to the input signals x 1 (t) ,x 2 ( t ) ,  respectively, the input signal 

X 3 (t)  ---- OtlX 1 (t) + O~2X 2 (t) (2.4) 

will produce the output signal: 
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Ya (t) = a ly  1 (t) + ct2y 2 (t) (2.5) 

We would also call this system time invariant since the properties of the filter (as 
described by its resistor and the capacitor) are assumed to be constant in time. 

2.3 The frequency response function 

For a zero input signal (u(t) : 0) we obtain the homogeneous equation 

RC)~ (t) + y (t) : 0. We can easily see by restitution that 

1 -t/(RC) 
y (t) = -R--Ce is a solution. However, we want to know how our filter 

acts on any kind of input signals. Arbitrary functions can be described as a super- 
position of harmonics under very general conditions (Fourier series or Fourier inte- 
grals). These powerful concepts will be used quantitatively in some detail in later 
chapters. At this point, a qualitative understanding of a few essential properties will 
be completely sufficient. We can think of the Fourier transform of mapping a 'time 
domain' signal into a 'frequency domain' signal which is called the corresponding 
spectrum. The actual transformation is done by projecting the signal to be trans- 
formed onto general harmonic functions (complex exponential functions) which 
can be thought of as some sort of ctx~dinate system in a function space. In other 
words, the ~ e c m ~  can be thought of representing the components of a 'time sig- 
nal' in terms of harmonic functions. In the context of filtering, this provides a very 
convenient way to describe general linear systems. We can obtain the output signal 
corresponding to an arbitrary input signal by considering the output signals for har- 

monic input signal u(O =Aie i°'t and then superimpose the responses for the 

individual frequencies. This would correspond to the calculation of the inverse 
Fourier transform. To solve equation (2.3) for a general harmonic signal, we make 
the classical Ansatz for the output signal: 

y (t) - -  Aoei°~t (2.6) 

( t) = jcoAo #°~t ~ 

Inserting equations (2.6) and (2.7) into equation (2.3) we obtain: 

(2.7) 
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and 

Ao e/°~t (RCjo~ + 1) = Ai e/ot (2.8) 

Ao 1 
m 

A i RCjco + 1 
- U (jo~) (2 .9)  

U (jo) is called the frequency response function. It is a complex quantity and we 
can separate it in its polar form using 

I /  (a+jf3) = a / ( f f . 2 + [ ~  2) - j f S /  (a2 +~ 2) and ¢~ = atan(Im/Re) : 

U (]co) = 1 ~ (2.10) 
~/1 + (RCo~) 2 

eo = atan ( - o R C )  = -atan ( ¢oRC) 

For an harmonic input sisnal with frequency co, the phase shift depends on fre- 
quency as well as on the product of capacitance and resistance. Some very general 
lessons can be learned from this example so far: 

• The frequency response values are the complex eigenvalues of  the sys- 
tem - -  The output of the filter for an harmonic input signal is again a har- 
monic signal with different amplitude and phase. Therefore, the values of 
the frequency response function are the eigenvalues of the system (cf. 

A3c = LCc, ~ ¢0 input signal; A~ ¢~ output signal , 
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• The frequency response is valid for arbitrary input signals - -  If 

A i (jo3) is the harmonic component of an arbitrary input signal, A o (jo~) 

becomes the corresponding harmonic component of the output signal. 
Hence, the frequency response function relates the Fourier spectrum of 
the output signal A o (jco), to the Fourier specmun of the input signal 

A i (jo~) : 

A o (jo~) 
U (jo~) - Ai (.I'~) (2.11) 

For an arbitrary linear filter, the frequency response function uniquely 
describes its properties. The spectrum of the filter output signal is 
obtained by multiplying (complex multiplication) the spectrum of the 
input signal by the frequency response function of the filter. 

• The frequency response function is the Fourier transform of  the impulse 
response - -  For an impulsive input signal ug (t) • 5 (t),  the specmma 

is Ai(Jco) = 1 and the output spectrum becomes Ao(Jco ) = U(]co). 

In other words, the frequency response function is the Fourier transform 
of the impulse response of the system. The multiplication of the spectrtnn 
of the input signal with the frequency response function of the filter is 
equivalent to convolving the input signal with the impulse response of 
the filter. This property of linear systems is described by the convolution 
theorem and is discussed in some detail in chapters <pitsa>7.1 Fourier 
transform of continuous-time signals and <pitsa>7.5 The Discrete Fou- 
rier Transform (DFr). Here it is simply stated as an essential property of 
linear systems which will allow us to apply a filter operation either in the 
'time domain' or in the 'frequency domain'. 

The frequency response function is an extremely important tool in signal process- 
ing. It can be measured by comparing output and input signals to the system with- 
out further knowledge of the physics going on inside the filter. Once we know the 
frequency response function of a filter, we can predict the output of a filter to an 
arbitrary input signal. 
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2.4 The transfer function 

The frequency response function is closely related to the concept of the transfer 
function. To show that let us solve equation (2.3) again by using the Laplace trans- 
formation. The bilateral Laplace transform of a function f (t) is defined as: 

o o  

f_~ De(t)] = f fCt )  e-St dt (2.12) 
m o o  

with the complex variable s ffi a +jo~. f_If(t)] will be written as F(s). A n  impor- 
tant property of the Laplace transform in the context of solving differential equa- 
tions is that the derivative in the time domain corresponds to a multiplication with s 
in the Laplace domain (which is also called the complex s plane): 

f_, ~ ( t )  ] = sF  (s) (2.13) 

Transforming equation (2-3), we obtain: 

R C s Y  (s) + Y (s) - U (s) -- 0 (2.14) 

with Y(s) and U(s) being the Laplace transforms of y(t) and u(t), respectively. 

• Definition - -  The  transfer function T(s) is defined as the Laplace trans- 
form of the output signal divided by the Laplace transform of the input 
signal: 

Y (s) 1 1 
T ( s )  - - - (2.15) 

U (s) 1 + s R C  1 + s-c 

If we set s = jco we obtain equation (2.9), the frequency response function. This is 
due to the fact that the Fourier transform equals the Laplace transform evaluated 
along the imaginary axis of the s plane as we can see by replacing s by jc0 in equa- 
tion (2.12). In other words, the frequency response function can be defined as the 
Fourier lxansform of the output signal divided by the Fourier transform of the input 
signal. In signal processing literature, the term transfer function is sometimes used 
for the frequency response function as well. Although this is unfortunate, it should 
become clear from the context. 
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If we look at equation (2.15), we can see that T(s) grows b,yond limits for 
s ffi -1 / 'c .  It is said, that T(s) has a pole at this location. We will see in the follow- 

hag that the existence and the position of the pole at s = -1/-r are sufficient to 
describe most the properties of the transfer function. 

2.5 The impulse response 

The transfer function given in equation (2.15) can be written as 
F(s) = K / ( s + a )  with C = 1/-~ and a = 1/-c. Considering the signal 

f ( t)  = e"ath(t) ,with h(t) beingthetmitstepflmction(e.g. StrumandKirk, 
1988), we obtain its Laplace transform fi:om (2.12) as 

oo ~o e _ ( S + a ) t  oo 

F(s) = f e-ate-Sth(t)dt -- fe-(S+a)tdt --- s ~  0 (2.16) 
_oo 0 

We can see fight away that (2.16) exists only for Re{s+a} > 0 ~ Re{s} > -a where 
the result becomes 1 / ( s + a )  Hence, equation (2.15) is the Laplace trans- 
form of 

1 

y ( t ) - - - e  for t>O (2.17) 

In the context of introducing the frequency response it was stated that the fre- 
quency response function is the Fourier transform of the impulse response of a sys- 
tem. With respect to the Laplace tranfform, we can make a similar statement. The 
transfer function of a system is the Laplace transform of its impulse response func- 
tion. Hence, equation (2.17) describes the response of the RC filter to an impnlsive 
input voltage. 

The region where (2.16) exists is called region of convergence of the Laplace trans- 
form and in this case becomes the fight half plane with Re { s } > - 1/-c as shown 
by the shaded region in Fig. 2.3. 
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Fig, 2.3 Region of convergence of (2.16). The pole location at -1/-~ is marked by an X. 

Since we are using the bilateral Laplace transform, it should be noted, that the 

Laplace transform of f ( t )  ffi - e - a t h  ( - t ) ,  with h (-t)  being the time inverted 
unit step function: 

oo 0 e_(S+a) t  0 
F ( s )  ffi - ~ e " a t e - S t h ( - t ) d t  ffi - ~ e - ( S + ~ ) t d t  = ~ 

~ 0 0  ~ 0 0  

(2.18) 

also comes out to be 1 / ( s  + a ) .  However, we see that it exists only for Re{ s+a } 
< 0 or Re{s] < -a which corresponds to the shaded region in Fig. 2.4, 
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jco 

Fig. 2.4 Region of convergence of (2.18). The pole location at -1/x is marked by an X. 

When we formally calculate the impulse response function from the transfer func- 
tion we have to calculate the inverse Laplace transform, defined as 

¢~ +joo 
1 

f_.-1 [F(s)]  = f ( t )  = ~ f F(s)eStds (2.19) 
¢~ ~jo0 

The path of integration must lie in the region of convergence. If we evaluate (2.19) 
on the imaginary axis, which means for s -- jo~, (2.19) becomes the equation of 
the inverse Fourier transfornl. Since for s = jo~ the transfer function becomes the 
frequency response function, this means that the impulse response can either be 
calculated by inverse Fourier transform from the frequency response ftmcfion or by 
inverse Laplace transform from the transfer function. 

Depending on whether the region of convergence which is going to be considered 
for the evaluation of (2.19) is a right half plane or a left half plane we will get a 
right-sided or a left-sided impulse response function, respectively. For the given 

example F(s) = 1/(s+a),theright~dedfunction f ( t )  =e-ath(t) cot- 
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responds to a causal system (f(t) ffi 0 for t<O) while the left-sided function 

f ( t )  = -e-ath (-t) corresponds to an anti-causal signal which vanishes for 
t > 0 and is physically not realizable. 

2.5.1 The condition for stability 

The physically realizable impulse response of the RC filter 

[y(t) ffi (1/ 'Oe(-1/X)th(t)] has an exponential time dependence with the 
exponent(- 1/~) being exactly the location of the pole of the transfer function. As 
long as the pole is located in the left half of the complex s plane, the causal impulse 
response will decay exponentially with time. However, if the pole is located within 
the right half plane, the impulse response will become unstable (growing beyond 
limits). This rule is valid also for more complicated transfer functions: 

l In order for a causal system to be stable, all the poles of the transfer ftmc- 
fion have to be located within the left half of the complex s plane. 

It should be noted however, that for anticausal signals the opposite is true. For a 

pole at l / x ,  the anticausal signal y( - t )  = (1 / -0e  (t/x) (-Oh(-t) would well 
be stable, although physically unrealizable. 

2.6 The frequency response function and the pole position 

Given the pole location of the transfer flmction on the cc~nplex s plane we can 
determine the frequency response function of the system using a simple graphical 
method (Fig. 2.5). 
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j 
-I/z 

jco 

a 

ID 

Fig. 2.5 Representation of the RC filter in the s plane. The pole location at -1 / ' c  is marked 
by anX. 

Far s = jco, co moves along the imaginary axis. Rewriting equation (2.15) we get: 

T(s) - l+s'~ - "c 
q+ 

and with s = jco 

1111 T (_/co) = (2.21) ~ T---S- +jco 

Written as a c.omplex number, 1/z + jco represents the pole vector ~ (co) which is 
pointing from the pole position towards the actual frequency on the imaginary axis. 

Using fi (co) and polar coordinates we obtain for the frequency response function: 
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1Eil I xr l T(jco) = ~ ~(co)lej 6 -- ~ _ ~  j = jrcjco)le/¢ (2.22) 

For the given example, the amplitude value of the frequency response function for 

frequency co is inversely proportional to the length of the pole vector ~ (co) from 
the pole location to the point jco on the imaginary axis. The phase angle equals the 

negative an~le between fi (co) and the real axis. 

Problem 2.1 Determine graphically the amplitude characteristics of the frequency 
response for a RC filter with R = 4.0f2 and C = 1.25F/2rc = 0.1989495F 
(lf2 = I ( V / A ) , IF = 1A sec / V ). Where is the pole position in the s plane? For 
the plot use frequencies between 0 and 5 Hz. 

The graphical way to determine the frequency response function is quite instruc- 
tive, since it provides a quick look at the system's properties in the frequency 
domain. However, for a quantitative analysis we would of course determine 
T (jco) by directly evaluating equation (2.21) for different frequency values. The 
result of solving Problem 2.1 numerically using P1TSA is shown in Fig. 2.6. 

e . ~ 2 3 2 3 4  
0 . 0  

Rgi £ t l l ~ e t  ~ r ~ e q p L t ~ n ~ , M  t ~ e ~ p ~ r b J e  £teRc,  t i m a t  
I I I I I I I I I I I I I I f " l  I I | I I 

I 
J . . D  ~ . 0  S . O  4 . 0  

I I 

( 1 }  

I I I J  

Fig. 2.6 Frequency response function (amplitude only) of the RC filter of example 2.1 

We see that for high frequencies, the amplitude values of the frequency response 
function decrease continuously. We could have guessed this already (or known 
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from physics class) since for low frequencies, the capacitor will act like an resistor 
of infinite resistance, while for high frequencies it will act like a short circuit. 
Therefore, the high frequency components of the input signal will not make it to 
the output signal. In other words, the circuit acts as a low pass filter. 

Problem 2.2 Calculate the frequency response of the RC filter from problem 2.1 
using P1TSA. 

We can learn some more about the effect of the pole on the frequency response 
function by displaying the same amplitude spectrum again in a log - log scale (Fig. 
2.7). 

g , l  
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Fig. 2.7 Same plot as Fig. 2.6 only on a log-log scale 

In the log-log plot, we can see that the amplitude portion of the fiequency response 
function can be approximated in the high- and low frequency limit ronghly by two 
straight lines. These lines intersect at a frequency of .2 Hz which is called the cor- 
ner frequency of the filter. In the case of the RC filter, it is equal to IlRC = 1/(5 see) 
which turned out also to be the exponential term in the impulse response. 

We can understand this more quantitatively by going back to equation (2.21) and 
concentrating on the amplitude portion of it. 

1fl 1 (2.23) 
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If we define I- 1/x I , the distance of the pole position from the origin of the s plane, 

as co c, we get 

1 
I T (Jco) I - 11+--2co2 (2.24) 

COc 

For co ---> 0, IT (jco) I ---> 1 = const and for co >> co we easily see that 
C 

] T (Jco) I ~ c°-1- Thus, the slope of the frequency response function (amplitude por- 

tion) in a log-log plot changes from being 0 for frequencies much smaller than co 
C 

to -1 for frequencies much larger than coc" If we measure the slope in dB (decibel) 

which is defined from the amplitude ratio of two reference signals 

Area x and Ami n- we obtain SlopedB = 20log 10 (Amax/Amin) " 

Amax, and Ami n are normally taken either a decade (factor 10) or an octave (fac- 

tor 2) apart in frequency. A slope of -1 corresponds to 20 dB/decade and 6 dB/ 
octave, respectively. We can state the gen, eral rule: 

Rule: A single pole in the transfer function causes the slope of the ampli- 
tude portion of the frequency response function in a log-log plot to 
decrease by 20 dB/decade or 6 dB/octave. 

We can also apply this rule the other way round. From the decrease of the slope of 
the amplitude portion of a given frequency response function at a corner frequency 
co c, we can suspect a pole to exist which has to be located at a distance lcocl away 

from the origin of the s plane. We will see later how this rule can be extended to 
zeroes of the transfer function and to more complicate transfer functions as well. 

2.7 The difference equation 

Yet mother method to represent systems, extensively used in processing discrete 
data, is by difference equations. For the RC circuit, we arrive at such a representa- 
tion by approximating the derivative at time t in equation (2.3) by a finite differ- 
ence at time nT, with the discretization interval being T. 
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y~ ( t) 
_ dy (t) _ dy (nT) ~ y (nT) - y  ( (n - 1) T) (2.25) 

dt dt T 

Equation (2.3) becomes 

RCY(nT)  - y (  ( n -  1)T) 
T 

- -  + y(nT)  .-- u(nT) (2.26) 

Writing y Cnr) as y (n) this leads to 

y (n) = bou (n) - a l y  (n - 1) 

with 

(2.27) 

b 0 ~ _ _  

al-- 

T 
RC 

T 
1 + R--C (2.28) 

T 
I + - -  

RC 

The output signal y(n) at time nT depends on the value of the input signal u(n) at 
time nT as well as on the value of the output s i g ~  at time (n- 1)T. Equation (2.27) 
can be solved for arbitrary input signals by numerical recursion. 

Problem 2.3 Let us end this chapter by considering an example directly related to 
our daily life. Consider a savings account with a monthly interest rate of ct percent. 

The money which is deposited at time t = nT is supposed to be x ( n T ) ,  y (nT)  

represents the money in the account at time nT (before the deposit of x(nT)  is 

made), and y ( n T  + T) is the money one sample (1 month) later. Determine the 
difference- and differential equations of the system using the forward difference 

y ( n T  + T) - y (nT)  
( ) ( t )  ~ T ). Start out with the balance at time t --- n T + T  

which can be written as y ( nT + T) = y ( nT) + oty ( nT) + ax ( nT) + x ( nT) . 
Calculate the transfer function using Laplace transform (use equation (2.13)). Is the 
system stable. Could we use an RC filter to simulate the savings account? 
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2.8 Review 

The central theme of this chapter was to study the behaviour of a simple electric 
RC circuit. We introduced the term filter or system as a device or algorithm which 
changes some input signal into an output signal. We saw that the RC filter is an 
example for a linear, time invariant (LTI) system, which could be described by a 
linear differential equation. From the solution of the differential equation for har- 
monk: input we obtained the result that the output is again a harmonic sit, hal. We 
introduced the concept of the frequency response function as the Fourier trans- 
form of the output signal divided by the Fourier transform of the input signal. TI~ 
frequency response function was seen to have important properties: 

• The values of the frequency response function are the eigenvalues of the system. 

• Knowing the frequency response function, we can calculate the output of the filter 
to arbitrary input signals by multiplying the Fourier transform of the input signal 
with the frequency response function. 

• The frequency response function is the Fourier transform of the impulse response. 
Knowing the impulse response function, we can calculate the output of the filter to 
arbitrary input signals by convolving the input signal with the impulse response 
function. 

We then introduced the concept of the lransfer function as an even more general 
concept to describe a system as the Laplace transform of the output signal divided 
by the Laplace transform of the input signal. The transfer ftmctkm can also be 
seen as the Laplace transform of the impulse response function.The frequency 
response function could be derived from the tran~er function by letting s = jco. 
We found that the transfer function of the RC circuit has a pole at the location -1/ 
RC (on the negative real axis of the s plane). We also found that the (causal) 
impulse response of a system with a single pole is proportional to an exponential 

function e pt with p being the location of the pole. Therefore the causal system can 
only be stable if the pole is located within the left half plane of the s plane. We 
found a way to graphically determine the frequency response function given the 
pole position in the s plane, From analysing the fxequency response function in a 
log-log plot, we derived the rule that a pole in the transfer function causes a change 
of the slope of the frequency response function at a frequency coc by 20 dB/decade 

with co c being the distance of the pole from the origin of the s plane. We finally 

approximated the differential equation of the RC circuit by its difference equation 
which could be solved iteratively. 
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3.1 Generalization of concepts 

The reason for studying the simple RC circuit in as much detail as we did was that 
the concepts we used for its analysis stay valid fox much more complicated sys- 
tems. In the following we will assume a general system with the only restriction of 
it being linear and time invariant (LTI system). We will start out by looking at the 
differences that makes to our tools for the analysis of systems. Table 3.1 shows 
how the different concepts we have been using to describe the RC-filter have to be 
formally extended in order to describe general LTI systems. For example, if we 
rewrite the differential equation for the RC l~ter (2.3): 

d 
R C :  (t) + y (t) - x (t) = CXl~tY (t) + % y  (0  + [~o x (t) = 0 (3.1) 

we can see it as a special case of an Nth order LTI system 

N dk L dk 
Ctkd-/-y (t) + ~ 15k~-x (t) = 0 .  

k = O  k = 0  

(3.2) 

Similarly, we can see in Table 3.1 how the other concepts are extended to the gen- 
eral case. 

In chapter 2.5 we have seen that for a system with a single pole, the impulse 
response could be left-sided or right-sided depending on the region of convergence 
considered. For a general LTI system, the region of convergence consists of bands 
parallel to the imaginary (.j¢o) axis which do not contain any poles of the transfer 
function. 
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Table 3.1 Correspondences between the RC filter (lst order system) and a general Nth order 
LTI system 

Concept 
I 

Differential 
equation 

Transfer 
function 

Frequency 
response 
function 

Poles and 
z e r o e s  

Difference 
equation 

RC filter 

a l d y  (t) +aoy (t) 

+ ~o x (t) = o 

T(s) = - - -  
c~ 0 + al  S 

I~ o 
T (jo)) ffi 

a o + ct lJCO 

A single pole at the 
root of the denomi- 
nator polynomial 

y (n)  = - a l Y  (n - 1) 

+ box (n) 

General system 
I I l l l l  

N dk L dk 
E ak-d-tY(t) + E [3k'd-t-x(t) = 0 

kffiO k = O  

r (s) = 
I~o +l~ls+ 132s2 +... +~Ls L 

%+,~:+%~2+- + ¢,s/ 

t~ ° + 1~ 1 (/co) + i~ 2 (/co) 2 + , , .  + ~L ( j ~ ) L  
r (/co) = 

~0 + al (j~) + a2 (j~) 2 +... + aN (j~) N 

N poles at the roots of the denominator poly- 
nomial, L zeroes at the roots of the numera- 
tor polynomial 

N L 

y(n) = - Y. akY(n-k) + ~ bkx<n-k) 
k = l  k = O  

For a right-sided signal, the region of ccmvergence is always a right half plane, 
while for a left-sided signal it is a left half plane. For a two sided signal it consists 
of a finite band. For the general LTI systems which will be considewM here, the 
transfer functions are always rational functions. In this case the regions of conver- 
gence are always bounded by poles. Finally, for a signal of finite duration the 
region of convergence is always the complete s plane which means it cannot be 
represented by poles an zeroes, an issue of importance at a later state. Fig. 3.1 
shows the different types of convergence regions for a general LTI system with an 
existing Laplace transform and the corresponding types of stable impulse response 
functions fiR). A system which does not belong to any of these four classes does 
not have a Laplace transform at all. 
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Fig. 3.1 Types of convergence regions for general LTI systems with existing Laplace trans- 
form and the corresponding types of stable (infinite duration) impulse response (IR) func- 
tions. 

When an impulse response function is calculated numerically for a given pole-zero 
distribution, commonly the inverse Fourier transform is used (actually the discrete 
Fourier transform, but we can ignore the differences for the following argument). 
Thus the path of integration is fixed to the imaginary axis. The type of impulse 
respome calculate~ will therefore be the one whose region of convergence contains 
the imaginary axis. 
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Problem 3.1 Change the pole-zero distribution from Problem 2.2 to describe a sys- 
tem with two poles. Consider three different cases, a) Put both poles at -1.2566, 0. 
b) Put one pole at location -1.2566, 0 and the other one at 1.2566, 0. c) Put both 
poles at 1.2566, 0. For the input signal, use a spike at the center position of the win- 
dow. What types of impulse response functions do you expect in all three cases? 
Will the frequency response functions be different7 What will be the changes you 
expect for the frequency response functions with respect to Problem 2.27 

3.2 Graphical estimation of the frequency response function 

We see that the transition from the RC filter to the Nth order LTI system does not 
require a change of the concepts, only some extensions which are quite straightfor- 
ward. The one new aspect is the occurrence of zeroes in addition to poles. How- 
ever, as it turns out, they can be treated in a very similar way to poles. Let us 
assume a system with a pole and a zero on the real axis of the s plane (Fig. 3.2) 

x" JP 

jco 

Fig. 3.2 Complex s plane representation of a system with a single pole and zero. The pole 
and zero locations are marked by an X, and a 0, respectively. 

The transfer function for this case becomes: 
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S-- S O 
T ( s) - (3.3) 

s - Sp 

with s o and Sp being the position of the zero and the pole, respectively. For the fre- 

quency response function (s = jco) we get 

jco - s o 
(3.4) T (jco) = jco_ so 

Written as a complex number, jco - Sp and jco - s o represent the vectors I)p (co) 

and Po (co) which are pointing from the pole position and the zero position, respec- 
tively, towards the actual frequency on the imaginary axis. For the frequency 
response function we obtain: 

_~ " 1 -j0 
"(jco) = tpo(co)tJ °°. _~ e Ip.(co)l (3.5) 

The amplitude value of the frequency response function for frequency co equals the 

length of the vector Oo (co) from the zero location to the point j co on the imaginary 

axis divided by the length of the vector tip (co) from the pole location to the point 

jco on the imaginary axis. The phase angle equals the angle between Po (co) and 

the real axis minus the angle between ~p (co) and the real axis. 

Extrapolating this example, we obtain a graphical method for the determination of 
the frequency response function of an arbitrary LTI system: 

The amplitude part of the frequency response function of an arbitrary LTI 
system can be determined graphically by multiplying the lengths of the 
vectors from the zero locations in the S plane to the point jco on the 
imaginary axis divided by the product of all lengths of vectors from pole 
locations to the point jco on the imaginary axis. Likewise, to determine 
the phase part, the phase angles for the vectors from the zero locations in 
the S plane to the point jco on the imaginary axis have to be added 
together. Then, the phase angles of all the vectors from pole locations to 
the point jco on the imaginary axis have to be subtracted. 

Problem 3.2 Use the argument given above to determine the frequency response for 
Problem 2.2 if you add a zero at position 1.2566, 0? 
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3.3 The phase properties of general LTI system 

In the preceding discussion it has been shown that for the amplitude part of the fre- 

quency response only the lengths of the pole- and zero-vectors tip(O) and 

rio ( ° ) ,  respectively, have to be considered. For the example shown in Fig. 3.3 this 

means that because the zeroes in a) and b) appear as mirror images with respect to 
the imaginary axis, both systems will have the same amplitude response. For the 

phase response we can easily see that the angle between Po (0~) and the real axis 

will always be greater for a zero in the fight half plane ffig. 3.3b) than for a zero in 
the left half plane ~ig. 3.3a). 

./% I% 

~jo 

-~o (o) 

t- 

a) 

'jo 

~ o 0  (°) 

b) 

Fig. 3.3 Complex s plane representation of two systems with a single pole and zero having 
the same amplitude response. The pole and zero locations are marked by an X, and a 0, 
respectively. 

For general LTI systems, zeroes in the fight haft plane will always yield larger 
phase response contributions than zeroes in the left half plane. For a given ampli- 
tude response, the phase response will have the smallest possible values if all 
zeroes are located in the left half plane. This leads us quite naturally to the concept 
of minimum and maximum phase: 

. Definition - -  A causal stable system (no poles in the right half plane) is 
minimum phase provided it has no zeroes in the right hand plane. It is 
maximum phase if it has all its zeroes in the right hand plane. 
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Minimum phase systems have a number of desirable properties which are espe- 
cially important in the context of digital filters. Systems which are neither mini- 
mum phase nor maximum phase are called mixed phase. If a filter performs no 
phase distortion but causes a constant time shift for all f~equencies, its phase 
response must be directly proportional to frequency. This can be understood from 
the shifting property of the Fourier transform (see(7.4) on page 76). These types of 
filters are called linear phase. Filters for which have the phase response is zero for 
all frequencies are called zero phase filters. They can implicitely be created by ill- 
tering the same signal twice in opposite directions, thus cancelling their phase 
responses. 

Problem 3.3 How can the following two statements be proven for a general LTI 
system? a) If a system is minimum phase it will always have a stable and causal 
inverse filter, b) Any mixed phase system can be seen as a convolution of a mini- 
mum phase system and an aUpass filter, which only changes the phase response but 
leaves the amplitude response as is. 

Problem 3.4 How can we change the two-sided impulse response from Problem 
3.1b into a right-sided one without changing the amplitude response? Keyword: 
allpass filter. 

3.4 The interpretation of the frequency response function 

From the interpretation of the RC circuit we had concluded that a single pole in the 
transfer fimction causes the slope of the amplitude portion of the frequency 
response function in a log-log plot to decrease by 20 dB/decade (6 dB/octave). The 
transition takes place at the frequency c0 c which has been found to be equal to the 

modulus of the pole position. If we take the inverse of the transfer function, a sin- 
gle pole will become a single zero and we can conclude likewise that a single zero 
in the transfer function causes the slope of the amplitude portion of the frequency 
response function in a log-log plot to increase by 20 dBldecade or 6 dB/octave. The 
transition takes place at a frequency co c which is equal to the modulus of the zero 

position. 

Problem 3.5 Consider a system with a pole ~nd a zero on the real axis of the s 
plane. Let the pole position be (-6.28318, 0), and the zero position (.628318,0). 
What is the contributien of the zero to the frequency response function? 

Usiag the general rule above, we can directly interpret the shape of the amplitude 
part of the frequency response of a general LTI system in terms of the locatien of 
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poles and zeroes. Multiple poles or zeroes will contribute slope changes by a multi- 
ple of 20 riB/decade. 

Before we end the discussion of t ~  effects of poles and zeroes on the transfer func- 
tion, there is one more point to discuss. So far, we have only considered poles and 
zeroes on the real axis of the s plane. On the other hand, from the definition of the 
corner frequency co c, we have seen that it is only dependent on the distance of the 

singularity from the origin of the s plane. In other words, all poles located on a cir- 
cle around the origin of the s plane will produce the same comer frequency co c in 

the frequency response function. So what is changing if we cban~e the position of, 
let's say our single pole to along a circle? Let's check it out! 

Just walt a second! Can we just shift a single pole along a circle? We have assumed 
so far that all our systems are linear time invariant systems. This means the systems 
could be described by linear differential equations, As long as the coefficients of 
the differential equations wonld be real quantifies, however, the coefficients of the 
polynomials making up the tranffer function would be real as well. The roots of a 
polynomial with real coefficients, however, can only be real or appear in complex 
conjugate pairs. So to answer our question: No, we cannot just shift a pole from the 
real axis. Poles and zeroes appearing off the real axis of the S plane have to appear 
in conjugate complex pairs. 

Problem 3.6 Move the pole position of a double pole at (-1.2566, 0.) in steps of 15" 
(up to 75", and 85 °) along a circle centered at the origin and passing through the 
original double pole. Calculate the impulse response functions and the amplitude 
portions of the corresponding frequency response functions. 

We can conclude that moving the poles along a circle around the origin of the s 
plane does not change the spectral roll off away from tl~ corner frequency. How- 
ever, it changes strongly the behaviour of the falter at the comer frequency. The 
closer the poles move towards the imaginary axis, the more do the impulse 
responses show 'resonance' effects, 

Problem 3.7 Use the pole-zero approach to design a notch filter suppressing 
unwanted frequencies at 6.25 I-Iz. What kind of singularities do we need? How can 
we make use of the result of Problem 3.6? 
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Problem 3.8 Frown the shape of the frequency response function in Fig. 3.4, deter- 
mine the poles and zeroes of the corresponding transfer function. 
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4 The seismometer 

Up to this point we have encountered different methods to describe a linear time 
invariant system. We have learned to analyze and design simple filters in terms of 
poles and zeroes of the trsn~er function. We have also seen some of the intercon- 
nections between the different approaches. 

Here we are now going to apply these concepts to the classical pendulum seismom- 
eter. From the analysis of the frequency reslxmse function and the transfer function 
of the seismometer we should get a better understanding of why and how seismic 
signals are changed when passing through a seismometer. This will bring us a step 
closer towards our final goal to possibly correct recorded seismograms for the 
effects of the recording process. 

In cxder to ,_-derstand how seismic signals are efleeted passing through a seismom- 
eter and how the output signal relates to the true ground motion, we will use the 
concepts of the last chapter to model a seismometer as a linear time invariant sys- 
tem. We will restrict ourselves to a simple vertical pendulum seismometer as it is 
schematically sketched in Fig. 4.1. It consists of at least three different elements 
tied together A mass, which is connected to the frame by a spring and a damping 
mechanism. The frame is assumed to be firmly connected to the ground. What con- 
trois the actions of the seismometer is the superposition of all forces acting on the 
mass simultaneously: 

• The  iner t ia  o f  the  m a s s  - -  T h e  inert ial  force is acting on the moving mass m. It is 
directed into the optx~ite direction of the motion of the mass u m ( t )  (downwards if 

the ground moves upwards). It is most conveniently measured with respect to the 
inertial reference frame deno~d as u. 

f~ = -mira (t) (4.1) 



40 4 The sei~mometer 

U 

I A Ug 

U m 

u=0 

Fig. 4.1 Model of a vertical pendulum seismometer. The inertial coordinate system is 
denoted u, while the x coordinate system is moving with the frame. 

• The spring - -  A second force fsp will be exerted by the spring, if it is elongated. 

fsp is proportional to the elongation (x r = X m - X  o measured within t ~  refea'enoe 

frame x which is attached to the seismometer frame). If the spring is elongated 
(x r < 0), the force ]:sp will be positive (pointing upwards). 

fsp = -kXr (t) 

k = spring constant (strength) (4.2) 

• The dashpot - -  Finally, the frictional force f / i s  acting on the mass. It is propor- 

tional to the velocity "~m (t) with which the mass is moved with respect to the 

dashpot. As with the elongation of the spring, this quantity is best described within 
the reference frame x which is attached to the frame of the seismometer. If the 
movement is up, the frictional force will be directed downwards. 

fy = -Dxm (t) 

D = friction coefficient (4.3) 
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In equilibrium, all these forces add up to zero: 

- m ~  m ( t )  - D5¢ m ( t )  - lcx r ( t )  = 0 (4.4) 

S i n c e  urn( t )  -- U g ( t) + Xm ( t ) ,weobtain 

- m ( ~ g ( t )  +~m(t))  - D ~ m ( t )  - k X r ( t )  = 0 (4.5) 

With ~m ( t )  = "~r ( t )  and 3~ m ( t )  = 3~ r ( t )  we get 

m~ r (t) + DYe r (t) + kx r (t) = -mUg (t) (4.6) 

Dividing by m we obtain the equation of motion for the seismometer 

Xr(t)  + D x r ( t )  + m k--xr (t) = -~g (t) (4.7) 

Rewriting the constant terms we can write 

YC r ( t) + 2r.~ r ( t) + coaX r ( t) ---- --'lJ g ( t) (4.8) 

where co2 = k and 2E - D _ 2hco ° " h e 
o m m coo 

stant of the seismometer. 

At this point we have already learned some important lessons: 

is called the damping con- 

- -  For slow movements, the "~r and ~?r become negligible and x,. dominates the left 

hand side of (4.8). This corresponds to the seismometer measuring ground acceler- 
ation ~g. 

-- For fast movements, the Xr dominates the left hand side of (4.8) and the seis- 

mometer is measuring ground displacement. 

In order to obtain the true motion of the ground for the general case. we have to cal- 
culate a weighted sum of the relative movement between the moving mass and the 

scismometer frame (x r) and its first and second time derivative ('~?r and "~?r' respec- 
tively). Therefore, we need to know the damping factor E or damping constant h. 

respectively, as well as the natural period of the seismometsr co o. 
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4.1 The solution for simple initial conditions (release test) 

One way to determine the damping factor and the natural period of a seismometer 
is by releasing the seismometer mass from a known starting displacement at time 
t = 0. (For an electrodynamic system this is normally done by applying a step in the 
current to the calibration coil). The ctx~sponding initial conditions are: 

x~ (0) = X~o 

(starting displacement) 

.rr(O) = 0 

(mass is at rest at time t = 0) 

~g (t) = 0 

(ground excitation is zero) 

Equation ((4.8)) then becomes the homogeneous s~cmd order differential equation 
of the damped harmonic oscillator: 

Ycr (t) + 2eft r (t) + cO2Xr (t) = 0 (4.9) 

Making the classical Ansatz: Xr( t  ) = Ae  ctt with fCr(t ) = otAe at and 

)?r ( t) = ot2Aeat, we obtain 

(Or 2 + 2ea  + co 2) A e  ctt = 0 (4.10) 

Since e ctt • 0 for all t we get 

Ot2+2eCt+Co 2 = 0 (4.11) 
O 

and tl~ two solutions: 
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E•_ 2 
5 1  - - - - - - - £ +  CO 0 

5 2 ----- -- g -- CO 0 (4.12) 

From the theory of linear differential equations we know that any linear combina- 
tion of solutions is again a solution of the differential equation. Therefore, the gen- 
eral solution of equation (4.9) can be written as: 

~l ' t  ct2t Xr(t ) ffi Ale +A2e = 

ffi t ie-(E- ~ o ~ ) t +  m2e-(e + 4/JJ +to~) t 

The coefficients A 1 and A 2 have to be estimated from the initial conditions: 

xr(O) ffi XrO • A I + A  2 

.~r(0) = 0 ffi 51A1 +52A 2 

We get 

(4.13) 

(4.14) 

51A 1 -- -52A 2 - - - 5 2 ( X r o - A 1 )  ---XrO52+52A 1 

A 1 (51 - 52) = -Xro52 (4.15) 

and the coefficients A 1 and A 2 become: 
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A 
1 = XrOa2_al  

~÷ co 2 
ct 2 

= XrO 2 - o  2 

2 
-Or 1 - E +  ~ j ~ -  O) 0 

A 2 = XrO 
2 ~ 2  -- Otl X r°  2^/e~-COo 

(4.16) 

The solution of equation (4.9) finally becomes: 

x r (t) - 
X~o _~,( ~-~,o ~, 
_ _ e  ee 

2~/~2 2 
- (1) 0 

+ J E  2 -  O~oe 

\ ~v w 0 

(4.17) 

Depending on the values of E and co o we have to distinguish three different cases: 
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4.1.1 Underdamped case (co o > E) 

• f 2 _ g 2  In this case, ~/r2~-% 2 becomes imaginary, namely :,,/% . Equation (4.17) 

becomes: 

-e t  
X r(t) = Xroe ( 

2t I 
- e  

~ffg02 g 2 2 j  

~ -i,~- :, I J:%-:'+e 
2 ) 

(4.18) 

With Eulefs formulas: cosy = 

equation (4.18) to: 

e jy + e-JY eJY _ e-JY 
and sin y - 

2 2j 
we can rewrite 

~,( ~ • ~ , / 2  - ) Xr (t) = Xroe- [~~m(~/O,O-~:t) +co~q,%-:t) 
2 2 

£ 

(4.19) 

E 
With the damping constant h -- - -  = sind~ we obtain 

co o 

sine ~/C°o E 

cosd~ /1_ e2/o3~ ~02_E 2 
(4.20) 

and 

Xr (t) 
-El . ¢/~-i~ 2 9 .  , sin• sin ( ~ / ~ _  e2t ) + COS (~C00-E-t))  

= Xroe (-~--~ 

-~t 
Xroe 

I cos¢ ( s i n C s i n ( 4 % - E  t) ÷ 
(4.21) 
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~2 2 With cos (c t -  15) = cosacos15+ sinasin15 and o =  o - e  weget: 

XrO -et 
X r ( t ) = - ~  e cos(~jro~col-e2t-(~) 

- x-X--~Ooe"etcos ( o t -  d~) 

d~= arcsin(-~-ol 
(4.22) 

In the onderdamped case (h< 1), the seismometer oscillates with the period 

2n 
T = - -  which is always larger than the ~mdamped natural period T O: 

T _ 
2n 2n 2n 2n 1 

ro 
l~-h  2 (4.23) 

4 .1 .20verdamped case ( o  o < E) 

For the overdamped case, the damping constant h becomes greater than 1 and the 
solution of (4.13) becomes: 

Xr ( t ) A1 e ' f e -  ~l/~e2-O~2o) t . - (e  + . ~2fi~-~) t = +A2e 

-clt -c2t 
= A le  +A2e (4.24) 

Since both c 1 and C 2 a r e  real and positive, the solution will be an decaying expo- 

nential function. It will never oscillate. 
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4.1.3 Critically damped case (to o -- e) 

2 2 (~o02-~2t) --> 1. Hence For co o ---) e ::~ sin ( ~ 2  o - e ' t )  .-) ~ 2 o -  e t and cos 

(4.19) returns to: 

x r (t) = Xro (e t  + 1) e -et (4.25) 

4.1.4 Comparison 

In Fig. 4.2, the output signals for an initial displacement of - 1 units corresponding 
to four different values of the damping constant arc shown 

~ l P m d  o s c i l l m l l : o : p  [ £ o  : 1 n z .  t ~ m =  - 1 1  

- 1 .  la I I I I I I I I I I I I I~. I I I I 
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. 1 1 . 8  I I I I I I I I I I I I I 
m. I I ~ I l I I I I I I I 

I I I I ~ I I I I I I ! g I 

- J . , e  ~ / ~ I  I t 1 I I I I I I I I 1 f ~ ] I I _ . L ~ l  I I I I 
o,1~ o . 5  2.18 2 , 5  

, L t )  

¢ 3 }  

( 4 )  

)*Q 1.5 

THM~ £~wc) 
3 . l l  

Fig. 4.2 Dependence of  the output signal of  a displacement seismometer (fo ffi 1Hz) on the 
damping constant h. From top to bottom h changes frorn.25, .5, 1.0, to 2.0. The initial dis- 
placement was assumed to be -1. 
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4.2 The  determinat ion  of  the d a m p i n g  constant  

For the determination of the damping constant, let us rewrite (4.19) 

x r (t) = Xro e-et (cls in (,f~02- E2t) +c2cos  (410/~02- ~2t)) (4.26) 

Since the amplitude ratio of two consecutive maxima or minima are solely deter- 
mined by the exponential term in equation (4.26), we can use this ratio to estimate 
the damping constant. We obtain: 

ak e -et  e -et  eT 
- - = e (4.27) 

ak + 2 e -e ( t+T)  e-e te-eT 

In = aT = A = logarithmic decrement 

and 

ak e - s t  e (T/2) 
- - e (4.28) 

ak+ 1 e-e (t+T/2) 

(4.29) 

Between the logarithmic decrement A and the damping constant h, the following 
relationship exists: 

21t 
E - -  

~To % 2nh  
A = eT - - - (4.30) 

21-h2 ~ - h  2 Ji -h ~ 
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h _ 
A 

~ 2  + A 2 
(4.31) 

Problem 4.1 Most seismometers operate on the principle of a moving coil within a 
magnetic field. Hence, they do not record the ground displacement but the ground 
velocity. Are equations (4.27) - (4.30) also valid for this kind of systems? 

4.2.1 The determination of the damping constant for an electromagnetic sen- 
sor 

Most commonly, the pendulum motion x r (t) (cf. Fig. 4.1) is measured by an elec- 

trodynamic sensor (Fig. 4.3) 

x N 

lq i 

lind F1a I uind 

Fig. 4.3 Schematic model of an electromagnetic sensor. The dashpot in figure 4.1 is 
replaced by a coil moving in a magnetic field. 

In this case, the dashpot in Fig. 4.1 is replaced by a coil which is fixed to the mass 
and moving through a permanent magnetic field. A voltage Uin d Is generated across 

the coil proportional to kr ( t )  , the velocity of the seismometer mass with respect to 
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the seismometer frame. If the coil is shunted by a resistance R a, the generated cur- 

rent Iin d will be: 

Uind 
lin d - Ra + R i (4.32) 

Here R i is the internal resistance of the damping circuit including the coil. The cor- 

responding magnetic field will be orieated in a way to damp the movement produc- 

1 
ing tl~ voltage Uin~. The damping factor E will be proportioaal to Ra + R---~." 

1 
(4.33) 

R a + R i 

Taking into account the mechsnical attenuation of the pendulum (e0) as weLl, we 

obtain(h = E/COo): 

1 
E = hco o = e - +  b (4.34) 

o Ra + Ri 

For the damping constant h, this becomes 

1 
h = h o + b ' - -  (4.35) 

R a + R i 
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with h 0 describing the mechanical damping of the pendulum, 
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( 1 )  

Fig. 4.4 Seismometer calibration pulse (response of an ¢lectrodynamic seismometer to a 
step function in acceleration) 

In addition to the elements shown in Fig. 4.3, electromagnetic seismometers often 
have an additional calibration coil to impose a predefiued displt~anent onto the 
seismometer mass. Switchln£ the calibration current on/off produces a step func- 
tion in acceleration which corresponds to releasing the seismometer mass from a 
constant initial displacement. An example for the reslxmSe curve to such a calibra- 
tion signal is shown in Fig. 4.4. 

Problem 4.2 The calibration signal shown in Fig. 4.4 corresponds to the response 
of a velocity sensor to a step function in acceleration, a) What is the theoretical 
relationship between this signal and the displacement impulse response? b) The 
first few peak amplitude values are: 0.0869349, -0.014175, 0.00231063, 

0.000376618, and 6.1422 x 10 "s. ~ i n e  the damping constant h and the natural 
frequency f0 of the system. 
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4.3 The frequency response function 

Looking at the solution of the seismometer equation (4.8) under the initial condi- 
tions described above provided us with a tool to obtain the system parameters. 
What we actually want to know, however, is the response of a seismometer to an 
arbitrary input signal. Since an arbitrary function can be described as a superposi- 
tion of harmonics under very general conditions (Fourier series or Fourier integral), 
we are looking in some more detail at the solution of the seismometer equation to 

an harmonic input signal us (t) = Ai ej°~t . The corresponding ground acceleration 

is iJg (t) = -¢o2Ai d°~t and equation (4.8) becomes: 

)Or ( t) + 2eYc r ( t) + 020X r ( t) = o~2Ai ej°~t (4.36) 

Again, we are making the Ansatz: 

X r (0  = AoeJ°~t 

= j O A o  el fc r ( t) " 'o t  

Xr ( t) = -tO ZA o ei°' (4.37) 

In general, A i and A o are complex quantifies, Inserting (4.37) into (4.36), we get: 

-o~2Ao + 2EjoA o +o32Ao = o)2Ai (4.38) 

and 

Ao j 
- = U (jco) (4.39) 

mi ¢o 2 - o 2 + j 2 E o  

U (jco) is called the frequency response function, Separating the real and imagi- 
nary parts and after some manipulation we get: 

A o  _ 0)2 _ _  d ° 

Ai /(o02_ o2) 2 + 4e2m2 
(4.40) 
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with 

= . ( c o )  
- 2 e c o  

a r c t a n  
2 o)2 

COO- 

-2hcooco 
- a r c t a n  

2 2 
coO -- co 

- 2 h c o /  co o 
= a r c  tan  - -  

1 - ( co~coo)  2 

Rewriting equation (4.40) in terms of the damping constant h = e/co o we get 

I u ( j c o )  j = 
032 

2 2 2 2  j.(co02-co z) +4h cooco 

0)2/(002 

2 2 2 2 2  2 
~ ( l - c o / c o o  ) +4h co/coo 

•/ 2 A.2  2 .  2 
(co2/co2_ 1) +4n coo/co (4.41) 

with 

-2hcooco - 2 h c o /  co o 
• (co)  = a r c t a n  - a r c t a n  (4.42) 

2 co2 1 - o2/co~ coO-- 

For an harmonic input signal with co = co o, the phase shift is n /2  independent of 

the damping. 

For an electrodynamic system, the output voltage is proportional to ground velocity 
(instead of displacemen0. In addition, it depends on the generator constant G of the 
seismometer coil. Equation (4.41 ) becomes 
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IUUco) I ffi G 
J 

2 . . ~ 2  2 2 J (O)2--~  2) -I-4n 0)0~ 

= G  
JIo>  

J ( 1 -  co2/ o~2)2+ 4h2 o)2/¢o2 
(4.43) 

output voltage ~ - - - -~1  
G ffi ground velocity 

4.3.1 The transfer function 

In order to obtain an expression for the transfer ftmction, let us now solve tl~ seis- 
mometer equation (4.8) using the Laplace transform. Assuming that for t ffi 0 all 

the initial conditions (Xr, for, Yr" Yr = O, we obtain for the Laplace transform of 

(4-8) (~¢r (t) + 2Kfc r (t) -I- O~2Xr (t) = -~g (t) ): equation 

$2X r ( S) + 2esX r ( s ) +  Q) 2X r ($) m --S2Ug (5') (4.44) 

and 

($2 4" 2E8 4" (0 2) X r (s) -~ -S2Ug (8) 

For the transfer function we obtain: 

(4.45) 

Since 

Xl, 2 

X r (s) _8 2 
T (s) - - -  - (4.46) vg(s) s2+2Es+%2 

a quadratic equation x 2 + bx + c ffi 0 has 

ffi - b / 2  4" ~ c ,  we get for the pole positions p 1, 2: 

the roots 
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Pl,2 = - E-t- ~ 

= - hco o + ~o,, h ~ -  1 

= - ( h +  h ~ - l )  coo (4.47) 

Problem 4.3 Calculate the impulse response (and specmma) for a displacement 
seismometer with an eigenfrequency of 1 Hz and damping factors of 
h = 0.25, 0.5, 0.62, respectively. How do the locations of the poles change for the 
different damping constants? 

Problem 4.4 How do we have to chsnge the pole and zero distribution if we want to 
change the seismometer from Problem 4.3 into an electrody~amic system record- 
ing ground velocity? 



5 The sampling process 

In this chapter we take a first look at the effects of the sampling process. We will 
simulate the sampling of analog data and the reconstruction of analog data from 
sampled values (Whittaker reconstruction). We will find that an analog signal can 
only be reconstructed from its sampled values, if the frequency content of the sig- 
nal to be sampled contains no energy at and above half of the sampling frequency 
(sampling theorem). We will simulate what happens if we deliberately violate this 
rule (aliasing effecO. 

5.1 The sampling of analog data 

When we use a computer program to model continuous phenomena - like simulat- 
ing the output voltage of a seismometer for certain boundary conditions - we nor- 
really do not think about the prerequisites we have to meet in order to do so. We 
just do it and assume the results are meaningful. In terms of system theory, how- 
ever, we have performed an important transition. We have gone from a continuous 
system to a discrete system. That's fine as long as we are aware of the fact that there 
are some rules we better not violate. 

The same transition from a continuous system to a discrete system takes place 
when we acquire data in digital form. There we are actually doing two different 
processes: 

• Sampl ing  or discretization - -  Taking discrete samples of a continuous data 
stream. The data could still be in analog representation after the sampling process. 

• Ana log  to digital conversion (quantization) - -  For voltage signals, this stage is 
normally done using an electronic device which is called ADC, 'analog to digital 
converter'. After having gone through this process, the data ate digital and discrete. 
We will treat this process in chapter 6 "Analog to digital conversion". 
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Below, some of the effects of discretization of 'continuous' signals are demon- 
strated using the discretization tool within PITSA. Of course, all the data traces in 
P1TSA are already in digital loire. We are only approximating a continuous signal 
by one which has been sampled at a sampling frequency which has to be much 
higher than the one at which we want to re-discretize the trace. Lefs assume for 
now without proof that this is a valid approximation. After going through this chap- 
ter it should have become clear under which conditions we are allowed to do so. In 
addition, we need to reverse the process of discretization. In P1TSA, a pr~,xlure 
called Whittaker reconstruction (Steams, 1975) is used. Again, let's assume for 
now without proof that we can reverse the sampling pme, ess and get back the con- 
tinuous signal. 

In Fig. 5.1, the input signals for tl~ simulation of the discretization pr~ess are dis- 
played. They consist of three sinusoidal signals with frequencies of 3.5, 6.5, and 
13.5 Hz. 
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Fig. 5.1 Input signals for the simulation of the discretization process. The signal frequencies 
from top to bottom are 3.5, 6.5, 13.5 Hz, respectively. 

During discretization, the 'continuous' input signals are 're-sampled' at the loca- 

tions defined by the discretization frequency 1. (Fig. 5.2). 

1. When using the term discretization in the context of Fig. 5.2, what is actually 
done is zeroing out all but the 'discretized' samples without changing the internal 
sampling rate. An input sequence of n points will still contain n points after discre- 
tization in PrrSA. This is different when using the option resampling or A/D con- 
version. 
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Fig. 5,2 DiscretiT.ing channel i of Fig. 5,1 using a discretization frequency of 10 Hz, The 
vertical bars show the locations and the values of the samples. 

Fig. 5.3 shows the result of discretizing all the traces in Fig. 5.1 using a discretiza- 
tion frequency of 10 Hz and reconstructing them again into a 'continuous' repre- 
sentation using a Whittaker reconstruction. 
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Fig. 5.3 Reconstructed traces 1-3 of Fig. 5.1 (after discretizing all of them with 10 Hz prior 
to reconstruction). Notice that channel 2 is just phase shifted by n in comparison to channel 
I and3. 
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You can see from comparison Fig. 5.3 and Fig. 5.1 that only trace 1 is reconstructed 
correctly. Reconstructed trace 2 looks like a phase shifted version of trace 1. The 
reconstructed trace 3 is identical to trace I. Although the original signals had quite 
different frequencies, the frequencies of the reconstructed traces in this special case 
are identical dig. 5.3). 

Problem 5.1 What is the highest frequency which can be reconstructed correctly 
using a discretization frequency of 10 I-Iz? 

Once a signal has been discretized at a sampling frequency too low for the actual 
frequency content, the signal can not uniquely be reconstructed. In order to recon- 
struct a continuous signal from its sampled values, the following rule has to be 
obeyed: 

• Sampling theorem - -  For a continuous time signal to be uniquely repre- 
seated by samples taken at a sampling frequency of faig, (every 1/fdig 

time interval), no energy must be present in the signal at and above the 
frequency 1/2 fdig" 1/2 fdig is called the Nyquist frequency. Signal 

components with energy above the Nyquist frequency will be mapped by 
the sampling process onto the so called alias frequencies within the fre- 
quency bond of 0 to Nyquist frequency. This effect is called the alias 
effect. 

An example for the alias effect can be seen in old western movies. If the wheels of 
a stagecoach seem to nan backwards, then the sampling of the images was to slow 
to catch the movement of the wheels uniquely. 

In order to meet the requirements of the sampling theorem, analog signals have to 
be filtered in a way to remove all the unwanted frequency components (Anti Alias 
FilmY). The reconstruction of a continuous signal from its sampled values (e. g. the 
Whittaker reconstruction) is also done by low pass filtering. The Whittaker recon- 
struction simply takes out all frequencies above the Nyquist frequency. 

Problem 5.2 What would be the alias frequency for an input signal of 18.5 Hz and a 
discretization frequency of 10 Hz? Try to infer the rule for calculating the alias fre- 
quency for a given signal frequency and a given digitization frequency. Hint: The 
Nyquist frequency is also referred to as the folding frequency. Think of the fre- 
quency band as a foldable band which is folded at multiples of the Nyquist fre- 
quency. Mark the cxtresponding pairs of (input frequency, alias frequency) on this 
band. For problem 5.1, this would be (3.5, 3.5), (6.5, 3.5) (13.5, 3.5). If you have a 
lack of imagination, it may actually help to cut out a paper band and to actually per- 
form the folding. 



6 Analog to digital conversion 

In this chapter we will look at the properties of analog to digital conversion (ADC) 
and the limitations they introduce to sampled data. We will discuss the relationship 
between resolution and dynamic range Of A/D conveners (ADCs). We will end this 
chapter by simulating techniques for improving the dynamic range of ADCs by 
gain-ranging and oversampling. 

6.1 The principle of analog to digital conversion 

We have seen that the timing of the sampling process puts limits onto the fi'equency 
contents of the data to be sampled. The way we were simulating the sampling proc- 
ess in PITSA, was that we were taking a subset of the original input sequence. The 
important point is, that the amplitudes for this subset were identical to the original 
values. When we are doing a conversion of a continuous analog input signal into a 
digital sequence of samples using electronic analog tO digital converters on voltage 
signals, this is no longer true. 
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Fig. 6.1 Principle of a single slope analog to digital converter (after Jaeger, 1982). 

To understand the sources of errors involved, we are going to look at the working 
principles of a simple type of a n01og to digital converter, the single slope ADC 
(Fig. 6.1). It is assumed that an input voltage U x is going to be converted into a dis- 

crete, digital value. The voltage U x is assumed to be constant during the time 

needed for the converfion. For this example we also assume (without loss of gener- 
afity) U x to be positive. A start signal initiates the actt~ conversion and starts an 

analog ramp generator which produces a voltage U A which linearly increases with 

time (cf. Fig. 6.1 uppermost fight panel). The voltage U A is checked by a compara- 

tor (COMP 2) to determine whether it is equal or larger to 0 voltage. Once it 
reaches 0 voltage, output line U 2 of COMP 2, which is connected to a logic ele- 

meat, goes high. The line between the logic element (AND element) and the n bit 
counter will go high if all the input lines are high. In addition to the comparator 2, 
the remaining input lines of the logic element are connected to a clock (which goes 
high every clock cycle) and a flip flop. A flip flop is a bistable oscillator which can 
only have two different states (I-RGH or LOW). Since the flip flop is assumed to 
start out in a high state, once the voltage U 2 is high, the counter will receive a volt- 

age pulse every clock cycle. All the counter does is counting the pulses it receives. 
The counter, however, has only a certain number of bits available to store the result 

of its counting process. For n bits, it can only count from 0 to 2 n - 1. 
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Once the counting process has started, the voltage U A is increasing. At a second 

comparator (COMP 1), it is continuously compared to the input voltage U x. Once 

U A ~ U x, a high output voltage U 1 will toggle the flip flop off. This in turn will 

prohibit the logic element to send a signal to the counter. In other words, the con- 
version stops. 

The input voltage U x is converted into a digital value by counting the time it takes 

for the ramp generator m produce a voltage as high as the input voltage. If the 
counter has n bits for storing the result of its counting, the ADC is called a n-bit 

ADC, which means it has 2 n output states. Input voltages ranging from 0 to the full 
scale range voltage of the ADC are mapped onto discrete values between values 

from 0 to 2 n -1. For a 3 bit ADC and a full scale input voltage of 10 V, this situation 
is shown in Fig. 6.2. 

The smallest input voltage change that can cause a change of the ontput value of 
the ADC, is called quantum or least siL~nificant bit (LSB). For a n-bit ADC, it is 
given by 

FULL SCAI,E VOLTAGE 
Q--  1LSB -- (6.1) 

2 n 

Since the value of the quantum which controls the resolution of the ADC is directly 
depending on the number of bits of the ADC, a n-bit ADC is said to have n bits of 
resolution. For the linear increasing input signal in Fig. 6.2, the probability density 

function of the error signal is flat between +Q/2  with a variance of Q2/12 (Oppen- 
heim and Schafer, 1989, p. 120). As can be imagined from Fig. 6.2, the error of the 
ADC can strongly depend on the input signal. 
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Fig. 62 Mapping of input voltage to output states for a 3 bit ADC. The lower panel shows 
the error signal. Q corresponds to the quantum or least significant bit (LSB). 

An additional measure of the quality of an ADC is the dynamic range. For analog 
signals, the dynamic range is defined as the ratio between the largest and the small- 
est signal which can be measured. It is expressed in decibels (dB). 

D = 20log lo (Amax/Amin) [dB ] (6.2) 

For a n bit ADC, the dynamic range is defined as: 

D = 20log 1o (2n) [dB ] (6.3) 

i bit = 6.021 dB 

The ADC in Fig. 6.2 would be said to have a resolution of 3 bits and a dynamic 
range of 18 dB. In Fig. 6.3 it is demonstrated what happens if an ADC is fed with 
an input signal with larger amplitudes than it can represent. The upper trace in Fig. 
6.2 shows a decaying sinusoid with a maximum amplitude of 839.46. Below the 
output signal for an ADC with a resolution of 12 bit and a LSB of 0.1 is shown. 
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Notice that the output trace is saturated at an amplitude of 

0.1.  (212-  1) = 0.1-2047 = 204.7. 
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Fig. 6.3 The saturation effect for an ADC with insufficient dynamic range, 

A simple way to get rid of the saturation (clipping) problem would be to attenuate 
the input cb~nnel before it is fed into the ADC as shown in Fig. 6,4. 
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Fig. 6.4 Removing the saturation effect by attenuating the input signal using an attenuation 
by a factor of I0 (cf. channel 3 and 2). 
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In Fig. 6A, the ADC input signal (top trace) is attenuated by a factor of 10. before 
being fed into the ADC with the same parameters as being used for Fig. 6.3. As can 
be seen in the lowermost trace, the dynamic range is now sufficient to convert the 
complete waveform without saturation. However, what we run into using this sim- 
ple minded approach is a different problem which can be seen if we are lookin~ at 
the later portion of the resampled signal (Fig. 6.5). 
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Fig. 6.5 Lack of resolution. 

The original trace after attenuation is shown in the top trace of Fig. 6.5 while the 
bottom trace shows the result of applying an ADC to the top trace using an LSB of 
0.1 and a resolution of 12 bit. For the displayed data window, most of the changes 
in signal amplitude are below what the ADC can resolve. Hence, we have traded 
the gain in dynamic ran£e (which helped with the big amplitudes) with a lack of 
'resolution' for the small amplitudes. 

Problem 6.1 What is the dyDamic range needed to record magnitude 0 as well as 
magnitude 6 (Pdchter magnitude based on Wood-Anderson seismographs) earth- 
quakes on displacement recording systems in a distance of 100 km? 
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6.2 Increasing dynamic range and resolution 

Since the dynamic range needed for on scale recording of a reasonable magnitude 
range of interest is still touching the limits of currently available ADCs at reasona- 
ble costs, people have found ways to increase both the dynamic range as well as the 
resolution. Two different methods are going to be discussed and simulated within 
this context. Gain ranging and oversampling. The first technique trades dynamic 
range for resolution while the second technique increases the resolution by 
decreasing the influence of quantization noise and consequently increases the 
dynamic range. 

6.2.1 Gain ranging 

Fig. 6.6 sketches the structure of a gain ranging ADC. The key elements are a reg- 
ular n bit ADC, a programmable gain amplifier ~ A ) ,  and a control logic. As long 
as the analog input signal is small in comparison with the full scale range of the 
ADC, the gain ranging ADC works just like a plain ADC. However, once the input 
signal reaches a certain level ('switch up fraction', e.g 0.25. of the FULL 
SCALE RANGE of the ADC) the control logic will cause the PGA to decrease the 
gain of the pre-amplifier. As a consequence, thesignal will again fit into tt~ full 
scale range of the ADC easily, tf the signal amplitude is further increasing, the gain 
of the pre-amplifier will be switched down again and again. 

GAIN IN l CONTROL ] LOGIC 

~ PROGRAMMABLE ~IIAI~CE I tq f t  AMPLIFIER GAIN __ i MANTfS$A 
n BIT 
EXPONENT 
m (<n) BIT 

Fig. 6,6 The principle of a gain ranging ADC. 

On the other hand, if the signal amplitude has been below a certain threshold for a 
certain number of cycles, the control logic will cause the PGA to switch up the gain 
again. 

What is recorded in a gain ranging ADC, are both the output values of the plain 



68 6 Analog to digital conversion 

ADC (mantissa) and the status of the PGA (gain). If we use m bits for recording the 

gain status, we can record 2 m gain states. Since the PGA is switching gain in pow- 

ers of 2, the actual gain changes corresponding to 2 m gain states makes up a factor 
2 ra 

of 2 . The dynamic range of a gain ranging ADC of m + n bits is therefore: 

Dg r = 20log lo (2n" 22m) [dB ] 

= 201Oglo(2 n+2") [dB] 
(6.4) 

For a given number of total bits, the increase in dynamic range is traded for a gain 
dependent change of resolution. In Fig. 6.7, the data trace in Fig. 6.3 is resampled 
using a gain ranging ADC with 8 bit of resolution for the mantissa and 4 bits for the 

exponent (negative gain). From the 16 (24)possible states of the programmable 
gain amplifier (PGA), however, only 11 are used in this example (in real gain rang- 
ing ADCs, some bits of the exponent are sometimes used as error flag). Visually we 
do not see a difference between the result of the gain ranging ADC (bottom trace) 
and the original input trace (top trace) even in tt~ 'low amplitude' range of the sig- 
nal. For comparison, the second and the third trace in Fig. 6.7 show the correspond- 
ing data window for trace 2 in Fig. 6.3 (insufficient dynamic range) and trace 2 in 
Fig. 6.5 (insufficient resolution), respectively. We can see that the result of the gain 
ranging ADC is visually indistinguishable from the input trace. 
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Fill. 6.7 Resolution and dynamic range of plain- and gain ranging ADC. 
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As final example for the action of gain ranging ADCs, Fig. 6.8 shows from top to 
bottom the input trace, the quantized values, the negative gain, and the error signal 
for a half wave of a cosine signal with a maximum amplitude of 2000. The resolu- 
tion was chosen to be 12 bit, the LSB = 0.1, and the number of possible gain states 
as 11. 
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Fig. 6.8 Input signal, quantized value, mantissa, negative gain states, and error signal for a 
gain ranging ADC 1. 

The quanfized value in channel 2 equals (chAnnel 3) x 2 (channel 4), The error signal 
in channeA 5 is the difference between the input signal and the quantized values. As 
a consequence of the tradeoff between dynamic range and resolution for gain rang- 
ing ADCs, the error signal becomes dependent on the gain state. 

6.2.20versampling 

A different technique which has become popular in the context of seismic record- 
ing only recently is based on the assumption that the variance of the q,  antization 
noise is independent of the sampling rate under certain conditions (Oppenheim and 

1. In the present example, the logic for the gain switching is different depending on 
whether the signal is increasing or decreasing its amplitude. This is also the case in 
some real ADCs. 
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Schafer, 1989). I f  the qnantization noise has a probability density ftmction which is 

flat between +Q/2 (of. Fig. 6.2), the variance of the quantization noise is Q2/12 (Q 
= q~_l~nmm of the ADC) which is independent of the sampling rate. Hence, follow- 
hag Parseval's theorem, the area covered by the quantization noise in the frequency 
domain is independent of the sampling rate. This situation is sketched in Fig. 6.9 
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Fig. 6.9 Noise reduction by oversampling. 

In order for the noise areas (hatched areas) corresponding to the two given Nyquist 
frequencies (F-NYQUIST 1 and F-NYQUIST 2, in Fig. 6.9, respectively) to be 

equal, NOISE LEVEL ~ has to be equal to F-NYQUtST 2 By sampling the input sig- 
NOISE I ~ V E L  2 F-NYQUIST t " 

nal at a much higher frequency thzn finally desired (corresponding to F-NYQUIST 
2), and subsequently low pass filtering and digitally resampling without further loss 
of resolution, the available dyoAmic range (signal to noise ratio) will be larger than 
the case in which the input signal is sampled at the lower sampling frequency 
directly. 

Fig. 6.10 shows two synthetic signals which will be used to demonstrate the effects 
exploited in this context. The top trace shows a noisefree sinusoid with a maximum 
amplitude of 0.1 and a signal frequency 10 Hz, created at a digitization frequency 
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of 1000 Hz. The bottom irace contains the same signal, however, superimposed by 
Gaussian noise with a variance of 0.5. 
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Fig. 6.10 Synthetic traces to demonstrate the effects of oversampling. The top trace shows a 
sinusoid of 10 Hz signal frequency and a peak amplitude of 0.1. The bottom trace shows the 
same signal superimposed by Gaussian noise with a variance of 0.5. 

We will use two different approaches to decimate the bottom trace down to 50 Hz 
using 12 bits of resolution and a LSB of 0.2. Notice, that the LSB of 0.2 is larger 
than the peak amplitude of the signal. Hence, sampling the top trace using these 
values would result in a zero trace. Nevertheless, we will see that we will be able to 
resolve the 10 Hz signal to a reasonable degree in the presence of noise. The pres- 
ence of noise also assures that the quantization noise is sufficiently well-distributed 
in the fi'equency domain (cf. Fig. 6.9) for the oversampling technique to work. 

Fig. 6.11 shows the result of decimating the bottom trace in Fig. 6.10 to 50 I-Iz.The 
top trace is the result of antialias filtering at 15 Hz, followed by resampling at 50 
Hz using an LSB of 0.2 and 12 bits of resolution. The bottom trace was resampled 
at I000 Hz (corresponds to oversampling) with the same LSB urn!_ resolution, sub- 
sequently antialias filtered and digitally resampled (at full floating point resolution) 
to 50 Hz. For the digital antialias filter, a 4 pole, zero-phase Butterworth filter was 
used in both cases. 
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Fig. 6.11 Decimating the bottom trace in Fig. 6.10 to 50 Hz with (bottom panel) and without 
(top panel) oversampling. 

The spectra of the decimated traces are shown in Fig. 6.12. Notice that except for 
the different ways to obtain t ~  final sampling rate and resolution, both traces have 
been treated identically within the frequency band displayed. 
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Fig. 6.12 Amplitude spectra of trac~ in Fig. 6.11. 
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Both Fig. 6.11 and Fig. 6,12 show that the quantizadon error is less, if the trace is 
originally sampled at higher frequency and subsequently decimated digitally at full 
floating point resolution. This technique has become one of the standard methods 
employed in modern digital recording systems, Digital seismograms from these 
kind of instruments can be seen as the output of a sequence of filter stages which 
commonly involve both analog and digital components (Fig. 6.13). 

i Samplingl 
" i ~ i Seismometer ~ ~ ~ '2L~-Filter DAA-Filter 

Analog LTI system Digital LTI system 

Fig. 6.13 Building blocks of modern seismic aquisition systems. AAA-iilter denotes the 
analog antialias filter, whereas DAA-filter is the digital antialias filter to be applied ~fore 
decimation. 

In addition to the gain in dynamic range, this allows instrument designers to use 
fairly simple analog antialias filters and do most of the work in the digital domain 
where powerful and easy to implement digital antialias filters can be used. 



7 From infinitely continuous 
to finite discrete 

Up to this point, the concepts we have been using to describe the properties of LTI 
systems were developed for continuous LTI systems, corresponding to the analog 
part in Fig. 6.13. On the other hand, when we have been using PITSA to demon- 
strate these properties such as for calculating the frequency response function for a 
given pole-zero distribution, we were of course working with sequences of num- 
bers. This was acceptable in the context of the examples we have been dealing with 
so far, however, in a general context we need to be well aware of some important 
differences between discrete and continuous systems. By now we should have 
enough intuitive feeling about some of the most important system properties so that 
we can extend our view by a more formal approach. This not only will provide us 
with additional tools for actual data processing, but also will give us some insight 
into the links between the worlds of the infinitely continuous and the finite discrete. 
In the following the notation of Oppenheim and Schafer (1989) will be used. 

7.1 Fourier transform of continuous-time signals 

Let us start out with a review of some of the elementary properties of the Fourier 
transform for continuous-time signals. In the context in which we have been using 
it, the Fourier transform can be thought of as mapping a 'time' signal x (t) from the 

'time domain' onto a 'frequency' signal X (J) in the 'frequency domain' by the fol- 
lowing equation: 

OO 

F{x(t) } = X(f) = f x(t)e -j2r~ft dt (7.1) 
--0o 

Of course, the meaning of 'time-' and 'frequency domains' are not restricted to 
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physical time and frequency. It is common practice to write the frequency in terms 
of angular fi~luency o = 2 n f ,  and since (7.1) describes a complex quantity to 
write: 

o o  

X (jo~) = f x ( t )  e -j°~t dt (7.2) 
, , - oo  

For the back tran~ormafion we have: 

oo 

I 
x(t) = ~ fX(j0~)e/°~t do  

_ o o  

(7.3) 

One reason for using jco is that this allows us fight away to see the Fourier trans- 
form as a special case of the Laplace transform evaluated on the imaginary axis 
(jo~) of the complex s plane (cf. chapter 'q'he impulse response" on page 19). The 
Fourier transform is a linear transform, which means that the transform of the 
scaled sum of two signals is the scaled sum of the individual transforms. In the fol- 
lowing, we give a list of most important transform properties ( ~ indicates a 
tran orm pair, r (0 x 

• Time shifting - -  x ( t  - a) ¢:~ X (jo~) e -j°~a for a > 0 (7.4) 

• Derivative - -  d x  (t) ¢ : ~ j o X  ( j o )  (7.5) 

t 

• Integrat ion - -  f x ('0 dx ¢:~ .1X (jo) (7.6) 
Jm 

In case the signal has certain symmetry properties in one domain such as being 
even or odd, etc. it will have c~responding symmetry properties in the other 
domain Crab. 7.1). 
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Table 7.1 Symmetry properties of the Fourier transform 

time domain 

x(t) real 

x(t) imaginary 

x(t) even 

x(t) odd 

x(t) real and even 

x(t) real and odd 

x(t) imaginary and even 

x(t) imaginary and odd 

frequency domain 

x(-jco) = [x(ico)]* 

x(-jo))  = -[x(j¢o)]* 

x(-jco) = x(jo))  

x(-jco) = -x(jo))  

X(jo~) real and even 

X(j¢o) imaginary and odd 

X(jco) imaginary and even 

X(jco) real and odd 

* denotes complex conjugate 

These symmetry properties are used for once to increase the computational effi- 
ciency for the calculation of Fourier transfolms but they are also helpful to under- 
stand some properties of linear filters. 

Of special importance in the context of filtering are the properties of the Fourier 
transform with respect to the convolution of two signals. The convolution of two 
functions h(O and g(O is defined as 

o o  

g*h = f g ('0 h ( t -  ~) d~ (7.7) 
~ o o  

If the corresponding spectra are denoted H (jco) and G (./'co), the transform pair is 
given by the 

• Convolution Theorem - -  g (t) *h (t) ¢~ G (rio) H Q'o~) 
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In earlier chapters, we have already made use of this theorem without explicitly 
stating it. It becomes extremely important in the context of deconvolution, since it 
tells us that we can remove the effect of a filter by simply dividing the specmma of 
the signal by the frequency response function of the system. In the time domain this 
operation has no equally simple equivalence. 

7.2 Fourier transform of discrete-time signals 

When dealing with discrete-time signals, the Fourier transform is defined as 

o o  

F { x [ n ]  } = X(e/co) -- ~ x [n l e  -icon (7.8) 
? /  _-- - - o o  

Here, x [n] denotes a discrete-time sequence which may be defined for infinitely 

many integer values (a function whose domain is integer) and ca is the angular 
frequency. Together with the inverse transform: 

7~ 
1 9 ( x  ( J ° b )  -- x In] = f x (Jco)~condca (7.9) 

equation (7.8) and (7.9) form a Fourier transform pair (Oppenheim and Schafer, 
1989). The Fourier transform for a discrete-time signal is always a periodic func- 
tion with a period of 2n. This can easily be seen by replacing ca in (7.8) by ca + 2r~ 

which results in X ( e  i (c° + 2r 0 ) = X (rico) or more general 

X ( J  (co + 2rcr) ) -- X (Jco) for any integer r. Since for the synthesis of x In] fre- 

quencies of ca and co + 2r~ can not be distinguished, only a frequency range of 

length 2re needs to be considered. Since the frequency response function of a lin- 
ear system equals the Fourier transform of the impulse response, the frequency 
response function of  a discrete-time system is always a periodic function. 

It is interesting to note at this point that the argument of the integral to obtain the 
Fourier series representation of a periodic continuous-time signal is of the same 
form as (7.8). Note also that in contrast to the continuous-time case, there is an 
asymmetry between equations (7.8) and (7.9). This corresponds to a modification 
of the equivalence between convolution and multiplication. While convolution of 
sequences corresponds to multiplication of periodic Fourier tran.fforms, multiplica- 
tion of sequences corresponds to periodic convolution (with the convolution only 
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carded out over one period) of the corresponding Fourier transforms. 

In the case of digital seismic signals, we are dealing with discrete-time signals 
which are obtained by taking samples from continuous signals at discrete times n T  

with T being the sampling interval in sec. In order to see the cousequences of 
sampling in the frequency domain more formally, we can view this process as 
being caused by the multiplication of the continuous signal with a periodic impulse 
train 

o o  

s ( O  -- ~., 5 ( t - n T )  (7.10) 
n = m o o  

with 5 ( t -  nT) being time shifted delta functions. If the continuous-time signal 
would be x c ( t ) ,  the sampled sitrnal can be written 

x s ( t)  = xc ( t)  s ( t )  (7.11) 

The Fourier transform of x s ( t)  is the convolution of the Fourier transforms of 

s ( t )  and xc ( t )  which are denoted S (jco) and X c rico), respectively. From the 

properties of the delta function and the shifting thex~em it follows that 

o o  

2re 
s (/co) = T ,T_., ~ (co- kco) (7.12) 

with cos being the sampling frequency in tad/see. Convolving S (jo) and X c (jto) 

yields 

OO 

1 
x s (/co) = ~ ~ x c ( /co- kjo~) 

k ~ - o o  

(7.13) 

Hence the Fourier transform of a sampled signal is periodic with sampling fre- 
quency co s. tf sampling has been done with proper anti-aliasing filtering, the Fou- 

rier transform of the continuous signal Xc (jco) can be obtained from one period of 
the Fourier transform of the sampled sigmA1 by 

X c (jco) = T .  X s (jco) (7.14) 
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7.3 The z-transform 

~ e  the analog part of the recording system shown in Fig. 7.2 can be described in 

terms of the Laplace transform of its impulse response (transfer function T (s)),  
the digital part is commonly described using its discrete counterpart, the z-trans- 
form of the discrete impulse response which again is called transfer function T (z). 

The bilateral z-transform of a discrete sequence x [n] is defined as 

Oo 

Z { x [ n l t  - ]~ x [ n l z  "-n = X ( z )  (7.15) 
n ~ ~ o o  

The z-transform transforms the sequence x[n] into a function X (z) with z being 
a continuous complex variable. We can visualize how the complex s plane is 

mapped onto the z plane if we substitute z = e sr = e°re j°~r = r J  °~r. This is 

sketched in Fig. 7.1. For points on the imaginary axis(s = jc0) r becomes 1 and 
z becomes the unit circle. In this case, equation (7.15) reduces to the Fourier trans- 
form of x [n] (see equation (7.8)). This again underlines the statement about the z- 
transform being the discrete counterpart of the Laplace transform. The origin 
( c o - - 0 )  maps onto z - - 1  while jco =jcos /2  = j r t / T  maps onto 

e/~ -- cos (r0 -- -1 .  Positive frequencies are mapped onto the upper half unit 
circle and negative frequencies onto the lower half. The complete linear frequency 
axis is wrapped around the unit circle with O~s/2 + multiples of 2r~ being mapped 

onto z = -1 (Fig. 7.1). The left half s plane (the region s -- o+jco with o < 0 )  

maps according to z = e°re j°~r = re )c°r with r < 1 onto the interior of the unit 
circle in the z plane. Likewise, the right half s plane is mapped onto the outside of 
the unit circle. 
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s plane z plane 

c°s/2 

Fig. 7.1 : Mapping of the s plane to the z plane. 

Just like the Laplace transform, equation (7.15) does not necessarily converge for 
all values of z. Those regions were it does exist are called regious of convergence. 
For continuous-time systems we have seen that we could directly relate most of the 
essential system properties to the distribution of poles and zeroes of the system in 
the s plane. The same is true for the discrete-time system. Moreover, we can 
directly transfer the relationships between pole-zero distribution in the s plane and 
system properties to the z plane if the singularities (poles and zeroes) are mapped 

according to z = e sr (Fig. 7.1). Singularities of transfer functions which lie in the 
left half s plane are mapped to singularities inside the unit circle in z while singu- 
larities in tl~ right h~nd plane map to the outside of the unit circle. 

Most of the transform properties for the z-transform could be directly guessed 
from their Laplace transform counterparts. About the two most important z-trans- 
form properties in the present context are the convolution theorem 

(x 1 [n] *x 2 [n] ¢=} X 1 (z) • X 2 (z) )  and the shifting theorem 

(x [n - no] ¢~ z-n°X (z)). In addition, it will become important in the next chapter 

that replacing z by 1/z in the z-transform (X (z)) cc~'esponds to inverting the 

input signal (x In] ) in time (x I-n] ¢:, X ( l / z ) ) .  
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s plane 

X t jc° o 

X O t- 

z plane 
Imz 

Fig. 7.2 Pole zero distribution in s plane and z plane. The poles in the s plane close to jco 
will be mapped close to the unit circle. Poles on the real axis will stay on the real axis. 

Hence from what we learned about the Laplace transform for continuous systems, 
we can intuitively justify the following properties for discrete systems: 

• The region of convergence is a ring centered at the origin. 

• The Fourier transform of x [ n] converges absolutely if and only if the unit cir- 

cle is part of the region of convergence of the z-transform of x [n] .  

• The region of convergence must not contain any poles. 

• If x [n] is a sequence of finite duration, the region of convergence is the entire 

z plane except possibly z = 0 or z = oo (see Problem 7.2). 

• For a fight-sided sequence the region of convergence extends outwards from 
the outermost pole to (and possibly including) z -- oo. 

• For a left-sided sequence the region of convergence extends inwards from the 
innermost pole to (and possibly including) z = 0. 

• For a two-sided sequence the mgien of convergence will consist of a ring 
bounded by poles on both the interior and the exterior. 

These properties are further illustrated in Fig. 7.3. 
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unit circle~ Im 

RIGHT-SIDED IR 

/m 

LEFT-SIDED IR TWO-SIDED IR 

Fig. 7.3 Region of convergence and type of resulting impulse response functions (IR) for a 
discrete system containing two poles on the real axis (ef. Fig. 3.1). 

Similar to the properties above, we can intuitively understand that for a discrete 
system to be causal and stable, all poles must lie inside the unit circle. If, in addi- 
tion, the system contains no zeroes outside the unit circle, it is called minimum 
phase system. 

Problem 7.1 Which type of impulse response function would result if we want to 
use the inverse Fourier transform for evaluation of the systems in Fig. 7.37 

Problem 7.2 How do time shifts effect the convergence of the z-transfGcm for 
z = 0 and z = ~7 Argue by using the shifting theorem for z-transforms 

(x [n - no] ¢=~ z-n°x (z)) for positive and negative n O. 
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7.4 T h e  i n v e r s e  z - t r a n s f o r m  

When we need to evaluate the inverse z-transform, e.g. in order to obtain the 
impulse response function for a given z-transform transfer function we can proceed 
in several ways. Formally, we have to evaluate a contour integral 

1 ~X(z)zn_ldz x [n] = ~-~ 

(7.16) 

with the closed contour C lying within a region of convergence and being evaluated 
counterclockwise. If the region of convergence includes the unit circle and if (7.16) 
is evaluated on it, the inverse z-transform reduces to the inverse Fourier transform 
(e.g. see Oppenheim and Schafer, 1989). However, since the type of discrete linear 
systems we are dealing with can always be described by linear difference equations 
with constant coefficients, the transfer functions will be a rational function in z. 
This is always true for sequences which can be represented by a sum of complex 
exponentials (Oppenheim and Schafer, 1989). For a general discrete LTI system 
described by the linear difference equation: 

N M 

~_, aky[n-k ] = ~,, bgx[n-k] 
k=O k=O 

(7.17) 

the discrete transfer function is defined as the z-transform of the output Z {y [n] } 

divided by the z-transform of the input Z { x [ n ]  }. Taking the z-transform of 

(7.17), we obtain using the shifting theorem(x [n - no] ¢~ z-n°X (z)) 

N M 

~., akz-kY(z) = ~ bkz-kX(z) 
k=O k=O 

(7.18) 

and 

H(z) = 

M 

bk z-k 
Y tzj  k = o 
X (z) ~v 

-k  
E akZ 

k=O 

M 

=: t 

I-I ( t - a :  - l )  
k - - I  

(7.19) 
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with ck being the non-zero zeros and d k being the non-zero poles of H (z) .  Keep- 

hag in mind the correspondence between time shift by k samples in time and the 

multiplication with z -k of the corresponding z-transform (shifting theorem), we 
can see that the coefficients of the polynomials in the transfer fimction H (z) are 

identical to the coefficients of the difference equations. Hence, we can construct 
one from the other. Furthermore, for rational transfer functions we can use a partial 
fraction expansion to separate H (z) into simpler terms for which the inverse z- 
transforms are tabulated and can be used directly. 

7.5 The Discrete Fourier Transform (DFT) 

During the discussion of the Fourier transform of discrete signals (sequences), we 
were assuming that the sequences we dealt with were of infinite duration. In reality 
of course, we are always dealing with finite duration sequences for which a differ- 
ent Fourier representation - the Discrete Fourier Transform (DFT) - is commonly 
used. In contrast to the Fourier transform for infinite sequences, it is not a-continu- 
ous function but a finite length sequence itself. It corresponds to the Fourier series 
representation of the infinite periodic sequence which is made up by periodic 
extension of the given finite sequence x [ n] .  For a finite sequence x [n] of length 
N, the DPT is defined as: 

N - 1  
[k] = ]~ x" [n] e -j2nkn/N (7.20) 

n--O 

Here .~ [n] is the (infinite) periodic sequence constructed from x [n] by periodic 

continuation. We can view the sequence x[n] as being obtained by sampling a 

continuous time signal using a sampling interval of T. The D F r  is only defined for 
discrete frequencies o k, which are related to the total number of points N, and the 

sampling interval T by: 

cok -- k- 2~- ~ fork  - - 0 , 1  . . . .  - .... N - 1  (7.21) 

You can see from equation (7.20), that the DFF is a periodic function with a period 
of N. We should keep in mind that the Fourier transform for an infinitely long dis- 
crete sequence was also periodic, but still defined at continuous frequency values 
which is no longer the case for finite discrete sequences. If the sampling was done 
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in agreement with the sampling theorem, the values of one period of the DFr  are 
related to the values of the Fourier transftnoa by: 

X(j0~) Io = % = T. J2 [k] (7.22) 

As it is sketched in Fig. 7.4, the DFr  for x [n] samples the z-transform of x [n] at 
N equally spaced points on the unit circle. 

z plane 

unit 

2re 
jk-~ T 

Ie 

Fig. 7.4 : DFr representation in the z plane. 

The set of sampled values can be recovered from the DFr  by means of the inverse 
DFr, given by: 

1 N -  1 ~ j 2 n k n / N  

J[n]  -- N ~ X[k]e 
k = 0  

(7.23) 

If the length of the sequence equals an integer power of 2, the computation of the 
DFT is normally done using the time efficient FFr  (Fast Fourier Transform) algo- 
rithm. If not, the sequences are normally padded with zeroes up to the next integer 
power of 2. 

Similar to the continuous case, the discrete convolution of two sequences 
x 1 In] and x 2 [n] is defined as 
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oo 

X 1 [n] *x2[n ] = E Xl [m]xz[n-m] (7.24) 

Again, the output of a discrete filter can be calculated from the convolution of the 
impulse response of the filter with the input signal. 

By analogy with continuous-time signals, we would expect that convolution could 
be done again in the frequency domain by simply multiplying the discrete DFF 
spectra. This is true, however, only if we take special precautions. Otherwise the 
results may be not what we want as we will see in the following example. 

First, let us create the impulse response functions of two filters which perform just 
a simple time shift. The corresponding impulse response functions simply consist 
of time shifted impulses. For a sampling rate of 100 Hz and a time shift of 5.5 sec, 
the impulse response function would consist of a spike at position 550. For a 6 sec 
delay filter, the spike would have to be located at position 600. The convolution of 
the two filters would consist of a time shifting filter with a delay of 11.5 sec. In Fig. 
7.5, you can see what happens with the naive approach simply multiplying the DFF 
spectra of the individual finite discrete signals in order to obtain the DFT spec- 
trum of the output signal. For the calculation of the FFF, 1024 points were used. 
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Fig. 7.5 The wrap around effect with discrete convolution in the frequency domain. Channel 
3 is the inverse DFF of the product of the DFF spectra of channels 1 and 2. The no. of points 
used for calculating the DFF was equivalent to 10.24 see. 
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From equation (7.24) we would expect that the output signal would have a spike at 
11.5 sec (index 1150), which is more than we can display with 1024 points. Hence 
the output signal should be zero. Instead, we see that we have a spike at position 
126. Well, we naively assumed that multiplying two DFT spectra gives the same 
result as multiplying two Fourier spectra. Instead, what we see is something called 
wrap around effect or temporal aliasing. This is due to the fact that for discrete sys- 
tems the convolution theorem is slightly different 

• Convolution Theorem for discrete systems (circular convolution) - -  If a 

sequence Jl [n] is periodic with a period N, then its discrete convolution 

with another signal x2 [m] of duration N is identical to the inverse DFr 
of the product of the corresponding DFT spectra. 

Hence, naively multiplying two DFT spectra in order to obtain the same result as 
with discrete convolution will in general fail to produce the desired result. For N 
number of points in the spectra, the result will be the same as if the input sequence 
were periodic with the period of N. What we observe as wrap around effect is this 
periodicity. Likewise, the other properties of the DFr can be intuitively derived 
from the corresponding properties of the Fourier transform, only if we do not think 

in terms of the finite sequence x [n] but always in terms of x [n] which contains 
infinitely many replicas of x [n]. 

When we want to avoid the wrap around effect we can use a simple trick which is 
called zero padding. If we artificially increase the period (N) by padding the signals 
with trailing zeroes to make it larger than the largest time lag for which the input 
signal could possibly be affected by the impulse response, no wrap around will 
Occur. 

Problem 7.3 How many points for zero padding would be needed for the example 
4.1 in order to get rid of the wrap around effect? 
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High performance seismic recording systems that make use of oversampling and 
decimation techniques relax the requirements on the analog anti-alias filters while 
performing most of the filtering in the digital domain. Since the resolution of such 
systems depends directly on the oversampling ratio, digital anti-alias filters with 
very steep transition bands are needed to gain the most from a given decimation 
ratio (cf. Fig. 6.9). On the other hand, the filter should leave a band-limited signal 
falling completely within the passband as unaffected as possible causing neither 
amplitude- nor phase distortions. 

In order to implement digital filters, we can proceed in different ways. In terms of 
the concepts we have been encountered so far with general LTI systems, we have 
seen that a filter process can be described by the multiplication of a 'spectrum' with 
a 'transfer function'. Since fight now we are dealing with discrete filters only, 
'spectrum' in the most general sense would mean the z-transform of the discrete 
signal and 'transfer function' would refer to the z-transform of the discrete impulse 
response. Evaluating the z-transform on the unit circle, for filtering we would have 
to multiply the discrete Fourier spectrum of the sit, hal (DFT) with the discrete fre- 
quency response function of the filter. Of course, we would have to worry about 
wrap around effects as discussed above. On the other hand, we could perform the 
filtering process in the time domain by directly evaluating the convolution sum. We 
could also make use of the fact, that the discrete systems we are deMing with Can 
all be described by rational transfer functions in z (7.19) 

M M 

E b k z - k  e ,, n (1--ckz-1) 
H(z) t=O |bo|k=, 

- -  N ~" N ( 8 . 1 )  
\"oJ  

z-k 1--[ ( 1 - d ~  -1) 
k = O  k- -1  

with the corresponding linear difference equation (7.17): 
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N M 

]~ aky[n-k] = ~ bex[n-k] 
k = O  k = 0  

(8.2) 

relating the output sequence y [n] to the input sequence x [n]. This concept natu- 
rally leads to two important classes of filters, recursive and non-recursive filters. 
For recursive filters, the filter output y [n], at a given sample n, not only depends 
on the input values x [n] at sample n and earlier samples n-k, but also on the out- 

put values y [n - k] at earlier samples n-k, with k varying depending on N and M. 
Hence with re.cursive filters, it is possible to create filters with infinitely long 
impulse responses (IIR filters = Infinite Impulse Response filters). It should be 
noteA however, that not all recursive filters have to be I[R filters (cf. Hannlng, 
1977; example on p. 208). If a 0 -- 1 and a k -- 0 for k > 1, y [n] will depend 

only on the input values x [n] at sample n and earlier samples, n - k (for k rnnning 
from 0 to M) and the impulse response will be finite. These filters are called FIR 
(Finite Impulse Response) filters. From equations (8.1) and (8.2), it can be seen 
that the transfer fimction H (z) of FIR filters is completely described by ( cjc ) 

while that of I ~  filters contains both poles and zeroes (ck and d k). 

The filter design for given specifications could directly be done by placing poles 
and zeroes in the complex z plane and exploiting what we have learned about sys- 
tem properties and the location of poles and zeroes of the corresponding transfer 
function (cf. chapter "The z-transform" on page 80). For many situations, continu- 
ous filters with desirable properties may already be known or can be designed very 
easily. For these cases, techniques are available to directly map continuous filters 
into discrete ones. Some of these methods are based oa sampling the impulse 
response of a given filter under certain constr~ts (e.g. impulse invariance or step 
invariance). Others, such as the bilinear z-transform, directly map the s-plane onto 
the z-plane. Advantages and drawbacks of the individual approaches are discussed 
in Oppenheim and Schafer (1989). 

Important in the context of understanding modem seismic aquisition systems is the 
fact that the kind of filter which is required for the digital antialiasing filter is most 
easily implemented as a FIR filter as is discussed below. Although a complete dis- 
cussion of the problem is beyond the scope of this text, some of the advantages and 
disadvantages of FIR and ~ filters are listed below. 
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, FIR fdters: They are always stable. For steep filters they generally need many 
coefficients, although part of this problem can be overcome by special design 
procedures. F'fltering is fairly time consl~ming, especially for long filters. Both 
physically realizable (causal) and physically un-realizable (non-causal) filters 
can be implemented. Filters with given specifications are easy to implement. 

- I]R filters: They are potentially unstable and subject to quantization errors 
(Since steep filters require poles and zeroes to be located close to but inside the 
unit circle, due to roundoff errors and the finite word length of the computer 
they may actually come to lie outside of the unit circle and causing potential 
unstabilities). They are always physically realizable (causal). Steep fdters can 
easily be implemented with a few coefficients. As a consequence, filtering is 
fast. Filters with given specifications are in general hard, if not impossible to 
implement exactly(!). [In order to create zero-phase responses from recursive 
filters, one can falter the signal twice in opposite directions which cancels the 
phase response. Obviously this can only be done with finite sequences, hence 
the name I]R filter would not be appropriate any more. Also, tlfis approach can 
not be implemented as a recursive fdter.] 

The digital anti-alias filters most commonly employed in modem seismic record- 
ing systems belong to the class of generalized linear-phase filters which cause no 
phase distortions on the signal. In general, they cause a constant time shift which 
can easily be accounted for. If the time shift is zero or is corrected for, the filter 
would be called a zero-phase filter. To my knowledge, the reasons for using FIR fil- 
ters in this context are primarily based on that well established design procedures 
exist to match given design specifications with great accuracy (McClellan et al., 
1979), that very steep stable filters are needed, (these would be potentially unstable 
as IIR filters), that the linear phase property can be implemented exactly only as 
FIR filters, and most importantly, that IJR filters will always cause a phase distor- 
tion within the pass band of the filter. 

In Fig. 8.1, the FIR filter impulse response is shown for the 8ms (125 I-Iz) data 
stream of the lennartz electronic MARS88 recording system. 
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Fig. 8.1 FIR filter impulse response of the last stage of the lennartz electronic MARS88 
recording system for an output sampling rate of 8ms (125 Hz). Before decimation to 125 Hz, 
the impulse response is perfectly symmetric. 

These types filters with symmetrical impulse responses (before decimation) are 
often called two-sided or acausal for reasons discussed below. The oscillations of 
the impulse responses occur near the corner frequencies of the filters, an effect 
called Gibb's phenomenon. It could be decreased at the cost of the width of the ill- 
ter pass band by decreasing the steepness of the filter. For seismological analysis, 
this effect may potentially obscure the onset of high frequency seismic signals. In 
Fig. 8.2, an example for this effect is shown for a record of a local earthquake in 
NE Bavaria, retarded at the station VI~ .  of the University of Munich seismic net- 
work. The trace shows the P wave portion on the vertical component decimated to 
125 Hz using the FIR filter response shown in Fig. 8.1. As can be seen for this kind 
of high frequency signal, the use of the symmetric FIR filters may obscure the seis- 
mic onset of the phase considerably and may create a spurious acausality. 
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Fig. 8.2 Vertical component record of a local earthquake in NE Bavaria recorded at station 
VIEL of the University of Munich network using a MARS88 (lennartz electronic) recording 
system. The sampling rate is 8 ms (125 Hz). The digital anti-alias filters used is shown in 
Fig. 8.1. 

One approach to deal with this problem which I will discuss below, is by construct- 
ing a filter which removes the acausal (left-sided) portion of the filtered signal and 
replaces it by its equivalent causal (fight-sided) portion. Besides its own merits, 
this particular approach will provide a good opportunity to apply some of the con- 
cepts we have been dealing with so far. 

In this context, a digital seismogram which is lowpass filtered by a general linear 
phase FIR filter (e.g., by the impulse response in Fig. 8.1) with additional correc- 
tion for the constant time shift, can be viewed in terms of the z-transform as 

Y(z)  = F ( z ) ' z  - tp ' f~(z)  (8.3) 

Here, 1 ~ (z) represents the z-transform of y [n], the digitally lowpass filtered seis- 

mic trace before decimation, F (z) the z-transform of the FIR filter, and z -tp cor- 

responds to a negative time shift by lp samples to make up for the linear phase 

component in F (z). Hence F (z) . z -lp corresponds to an acausal zero-phase ill- 
t e r .  
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8.1 Removing the acausal response of a FIR filter 

If f[n] is a general FIR filter, its z-transform F (z) is stable in the complete z 
plane (Oppeaheim and Schafer, 1989). Hence it only contains zeroes (cf. equ. 
(8.1)). These may lie inside and outside of the unit circle. The zeroes inside and on 

m/n. the unit circle t c i ) correspond to the minimum phase component 

Fmi n (z) ,while the zeroes outside the unit circle" max, tc i ) correspond to the maxi- 

mum phase component of F (z) which will be denoted Fma x (g). The zeroes out- 

side the unit circle correspond to the left-sided ('acausal') portion of the impulse 
response (el. chapter 7.3). In order to change the filter response of F (z) to a causal 
one without changing the amplitude frequency response, we have to replace the 
maximum phase component Fma x (z) by its minimum phase equivalent, which 

will be denoted 9ffinPhase { Fmax (g) } "However, in order to change Fmax (z) 
into a minimum phase filter, we simply have to replace all zeroes lying outside the 

unit circle (c max) by their reciprocal values (1/c.~ax). This, however, corre- 

sponds to simply inverting the impulse response of Fma x (z) in time, hence 

MinPhase  { Fma x ( z) } -- Fma x (1/z) .  This is one of the z-transform properties 

like the convolution theorem and/or the shifting theorem which really make one 
sometimes appreciate life in the z plane. 

The process to make the response of F (z) causal consists of deconvolving the 
maximum phase part and convolving with the equivalent minimum phase part. Ill 
terms of the z-transform this can be expressed by division and multiplication 

Y(z) = 1 "Fmax(1/z) • }'(z) (8.4) 
Fma x (z) 

Now we have a problem[ Since Fma x (z) haS only zeroes outside the unit circle, 

1/Fmax (z) will contain only poles outside the unit circle for which only the left- 

sided impulse response is stable (cf. Fig. 7.3). However, if we invert all signals in 
time before filtering 

I 
Y (1/z)  = Fmax ( i / z )  " Fmax (2) • ~r (1/Z) (8.5) 

the impulse response corresponding to 1/Fma x (1/z)  becomes a stable ([) causal 
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sequence in nominal time 1. Hence, in nominal time, filtering with the anti-causal 
signal Fma x (z) poses no problems. 

8.1.1 The difference equation 

Rewriting equation (8.5) we obtain 

r (1/z) • Fma x (1/z) = Fma x (z) " Y (1/z) (8.6) 

which can be written as 

A' (z) • Y' (z) -- B' (z) • X' (z) (8.7) 

Here, Y' (z) and X' (z) correspond to Y (1/z) and ~" (1 / z ) ,  while A' (z) and 

B' (z) correspond to Fma x (1/z) and Fma x (z),  respectively. Written as convolu- 

tion sum, this becomes 

oo oo 

a' [k] "y' [ i - k ]  = ~_, b' [k] "x' [ i -k1 
k = - o o  k = - o o  

(8.8) 

If we assume F (z) contains mx zeroes outside the unit circle, the wavelets 

a' [n] and b' In] will be of length mx+ 1. Hence, equation (8.8) becomes 

m x  m x  

]~ a '[k] "y ' [ i - k ]  = ~ b'[k] . x ' [ i - k ]  
k = 0  k = O  

(8.9) 

o r  

m x  m x  

y ' [ i ] . a ' [ 0 ]  + ~ a ' [ k ] . y ' [ i - k ]  -- ] ~ b ' [ k ] . x ' [ i - k ]  
k - - 1  k = 0  

(8.10) 

which can be written as 

1. This trick was suggested by E. Wielandt (pers. comm ,1993). 
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mx a' [k] 
Y'[i] = - Y l =  a'[O] 

mx b' [k] 
- - . y '  [i-kl  + ~ a' [01 

k = O  

- - .  x' [ i -  k] (8.11) 

which is formally identical to equation (8.2). With 

a' [k] fmax [mx- k] for k = 1 to mx (8.12) 
a [k] . . . .  

a' [01 fmax [mx] 

and 

b' [k] fma. [k] 
b [k] = ~ - fmax [mx] for k = 0 to m x  (8.13) 

equation (8.8) becomes 

m x  m x  

y'[i] = ~ a[k] .y '[ i -k]  + ~ b[k] .x ' t i -k]  (8.14) 
k =  1 k = 0  

Hence, if we know the mx coefficients of fmax [k], the maximum phase portion of 

a linear phase FIR filter, we can employ equation (8.14) to calculate y' [i], the 
time reversed sequence for which the non-causal part of the FIR filter has been 
replaced by its equivalent minimum phase part. After filtering, we can obtain y [i] 

by simply flipping y' [i] back in time. Finally (cf. eq. (8.4)), Y(z) can be written 
as  

Y(z) =/~(z)  • IT(z) (8.15) 

17 (z) is a time advanced minimum phase filter advancing the output signal by lp 
samples, which of course can be easily corrected for. 

8.1.2 Implementation in C 

So far, we have never been concerned with the details of a specific algorithm~ Here, 
we will make an exception, since this will allow us to discuss some problems com- 
monly arising when trying to implement a specific signal processing technique. In 
the following I will be briefly discussing the program mkeausal.e which eliminates 
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the noncausal part of the response of an arbitrarily asymmetric FIR filter by a direct 
implementation of equation (8.14). As a practical example for the reader, the 
source code listing is given in Appendix B. It can also be obtained through Intemet 
directly from the author 1. 

Prerequisite for all attempts to eliminate the noncausal part of a FIR filter response 
is the determination of its maximum phase component. In mkeausal.c, I have 
made use of a polynomial rooting technique to first determine the distribution of 
zeroes of F (z) using the eigenvalue method described in Press et al. (1992). In 
comparison to techniques such as cepstrum, it has the advantage that it yields both 
Fma x (Z) as well as mx, the length of the maximum phase portion of an arbitrarily 
asymmetric FIR filter. The disadvantage of this technique, however, is that it can 
only be used with relatively short FIR filter responses (cf. Scherbaum et al., 1994). 

In order to get at the maximum phase portion a FIR filter of length m + 1 we use a 

max ( i  ---- 1 to mx) of its z transform F (z) rooting technique to find the roots c i 

which lie outside the unit circle. Next, we can rewrite Fma x (z) as product of its 

roots 

m x  

~'max (Z) ---- f[m] I-I ( z -  C? ax) ( 8 . 1 6 )  
i = 1  

with f [m]  being the last FIR filter coefficient. The corresponding anticausal 
impulse response can be obt~i~d by evaluating (8.16) on the unit circle which is 

equivalent to calculating the inverse DFT for Fma x (e/°). The values for flmax [n] 

can then directly be plugged into the difference equation (8.14) and used for filter- 
ing. In principle, this is how mkcausal.e works. 

However, with the numerical implementation we are facing two common, some- 
times confusing problems: 

First, rooting algorithms such as zrhqr.¢ (Press et al., 1992) will provide the roots of 
m 

polynomials P (x) with P (x) = ~., ai xi. In contrast, however, with the definition 
i=O 

1. frank@ bavaria.geophysik.uni-mueuchen de 
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of the z-transform which we have been using so far (7.15), F (z) 

will only contain negative powers of k. 

m 

ffi ~ . , f [ k ]  "z -k 

k = 0  

Secondly, the DFr  implemented in Press et al. (1992) calculates 
N - 1  

j2rckn/N 
[k] ffi ~ :~ [ n] e while we have been using a negative exponent in our 

n~-0  

definition in equation (7.20). 

We could deal with the first problem by simply multiplying F (z) by z m which 

would correspond to a negative time shift of f[n] by m samples and would intro- 
duce additional zeroes at the origin (see Problem 7.2). Because of the symmetry 
between DFr  and inverse DFF, we could deal with the second problem by using 
the code for the D1717 from Press et al. (1992) to calculate - after appropriate scal- 
ing- the inverse DFr  according to the definition we are used to. However, there is 
an easier way out which solves both problems simultaneously, if we temporarily 
use a different definition of the z transform 

oo 

X(z)  ffi ~ x[n] "z n (8.17) 
n ~ n o o  

With this definition, we can directly use x[n] as input for the rooting algorithm. 

Furthermore, the evaluation of the z-transform X (z) on the unit circle directly cor- 
responds to the evaluation of the inverse DFr  according to Press et al. (1992). 
What becomes different, however, are the relationships between the phase proper- 
ties and the location of poles and zeroes. Using the definition of equation (8.17), 
mlniml~m phase filters must have all their poles and zeroes outside the unit circle 
while maximum phase filters have their singularities located inside the unit circle. 
For the FIR filter response of Fig. 8.1, the distribution of roots in the z plane using 
the convention of equ. (8.17) is shown in Fig. 8.3. 
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Fig. 8.3 Distribution of roots for the MARS88 PIR filter response shown in Fig. 8.1. 

The performance of the program mkcausal on the FIR filter response of the 
MARS88 decimation filter shown in Fig. 8.1 is displayed in Fig. 8.1. 

IE 

~r 

;E 

0.011029 

- 0 . 0 0 2 7 1 1 1  

0 . 0 1 0 3 3 ~  

-0.0031867 
0.0 

MAR58B 

( I )  

(2 )  

A~L_L 
5 0 . 0  iO0.O 150 .0  200 .0  250 .0  300 ,0  350 .0  

TIME £ m i l l i  8ec ]  

Fig. 8.4 Using mkcausal to remove the acausal part of the impulse response of the 
MARS88 decimation FIR filter shown in Fig. 8.1. Trace 1 shows the two-sided FIR filter 
response, trace 2 shows the filter response after making it causal. 
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In Fig. 8.5, the application of the correction filter to the data trace in Fig. 8.2 is 
shown. Notice the removal of the precursory signals before the P wave onset. 

OC 
1-4 
I.L 

<= 
-1- 

z 

3E 

0 .  87357  

-i 
0 .  8 0 6 4 5  

- 0 . 7 9 B 6 7  
0 . 0  

V I E L  910324  Z COMPONENT I I I l l l l l l l l ~  I I I I I I I I I I I I I I I  

lllllllllllil llllIllllllllll 
lllllIlllll~IIIIllllllllIll 

I I I I I I I I I I lil I I I I I I I I I I I I I I I I 
l O 0 . O  2 0 0 . 0  3 0 0 . 0  4 0 0 , 0  5 0 0 . 0  

TIME [milli sec] 

(I) 

( 2 )  

Fig. 8.5 Removing the left-sided (acausal) filter response from the signal of trace 1 of Fig. 
8.2. The top trace shows the FIR filtered trace. The bottom trace shows the result of remov- 
ing the acausal portions of the FIR ~ter response. 

The correction filter to remove the acansalifies is a pure allpass filter which leaves 
the amplitude portion of the frequency response function unaffected, however 
causing the phase to become minimum phase. For the correction filter used in 
Fig. 8,5, the frcquon~y response in amplitude, phase and the group delay is dis- 
played in Fig. 8.6. 
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Fig. 8.6 Frequency response function of the correction filter used in Fig. 8.5. Displayed 
from top to bottom are the amplitude response, the phase response, and the group delay 
(-dd~ (]) ~dr). Note that the amplitude response is constant, hence the filter is a pure all- 
pass filter. 

So far we have only considered FIR filters with zeroes away from the unit circle. 
While this turns out to be the case for the example given in Fig. 8.1, this is not nec- 
essarily in general the case. In contrary, symmetry conditions for certain FIR filter 
responses even require at least one root on the unit circle (Oppeaheim and Schafer, 
1989). The effects of roots ou the unit circle on the properties of a FIR filter 
impulse response and their implication for removing the acansal filter response 
from seismic records is discussed in detail in Scherbaum et al. (1993). In the 
present context, I will leave it to the reader to consider the following problem. 

Problem 8.1 Do roots on the unit circles belong to the minimum- or the maximum 
phase part or the impulse response? Start from reasoning by censidering a short 3 
point wavelet with roots exactly on the unit circle. 
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By now we have looked at all essential building blocks of modem seismic record- 
ing systems (of. Fig. 6.13) and seen how they may affect the wave, forms of 
recorded seismic signals. We have learned how the individual components (seis- 
mometer, ADC, etc.) can be modelled within the concepts of continuous and dis- 
crete linear time invariant systems (transfer function, frequency response function, 
impulse response function) and how there interaction can be described by convolu- 
tion both in the time and frequency domain (convolution theorem). We have 
become acquainted with the elegant and powerful concept of poles and zeroes and 
learned what they can tell us about important system properties such as minimum 
phase, maximum phase, etc. In addition, we have seen how we can use poles and 
zeroes for the design of some simple special purpose digital filters. After having 
brushed up on tt~ theoretical background of Fourier-, Laplace-, and z-transforms, 
we have taken a detailed look at the digital anti alias filter. We have seen how we 
can come up with a cure for the precursory ringing problem of high frequency sig- 
nals and discussed the design and implementation of a recursive correction filter. 

So far we have been m~jnly concerned with the forward problem, the modelling of 
an output signal for arbitrary input si~aals and known system p ~ e s .  Although 
the in depth treatment of the corresponding inverse problem, the determination of 
the input signal from a given output signal and known signal properties (deconvo- 
lution) - is beyond the scope of this course on "basic concepts", it is of major 
importance in the context of digital signal processing in seismology. For some of 
the practical aspects of this topic see Seidl (1980), Seidl and Smmmler (1984) and 
Plesinger and Zmeskal (1993). 

With the final examples in this course, I want to take an naive approach and see 
what problems are going to be encountered in that context. From the convolution 
theorem we know how to describe the interaction of a general linear time invariant 
filter with an arbitrary input signal by multiplication of the appropriate spectra. 
Hence, for the deconvolution of the impulse response of a recording system, we 
can - with the proper zero padding - calculate the DFF spectra of the seismic trace 
and divide it by the DFT spectrum of the impulse response and ... would possibly 
be surprised. The reason is that the spectral division enhances those signal compo- 
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nents for which the frequency response functic~a of the instrument has very small 
values. Fig. 9.1 shows the GRF A1 fEW component) recording of an MWA = 4.9 
earthquake below Frankfurt at a distance of about 180 kin. 

WL--]3 : 1880/05/26 11:45 

2 .  1 9 3 4 e - - 0 5  

( 1 )  

2 5 8 5 6 e - - 0 5  
0.0 0.2 0.4 0.6 O.B 1.0 1.2 1.4 1.6 1 . 8  

T I N E  [ m i n i  

Fig. 9.1 GRF A1 fEW component) recording of an MWA = 4.9 earthquake (1990 
May 26) below Frankfurt. 

The frequency response function of the rex~ding system to ground velocity is 
shown in Fig. 9.2. 
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Fig. 9.2 GRF velocity frequency response function (amplitude). 
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The digitization frequency is 20 Hz. Notice the roUoffs of the fi'equency response 
function at 0.05 Hz (seismometer) and 5 Hz (anti-alias filter), respectively. Decon- 
volution by spectral division results in the trace shown inFig. 9.3. 

8 . 4 6 9 e - 0 6  

-6.9441e-05 
0 . 0  

hlL-B : 1990/05/26 11:45 
I I I I I II I I I I I I I I I I I I I ~ 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
TIME [mini 

(1) 

Fig. 9.3 Deconvolution by spectral division of the signal shown in Fig. 9.1using the fre- 
quency response function displayed in Fig. 9.2. 

Although the deconvolution has not gone completely crazy, we can easily see that 
We are beginning to run into problems with stability. In Fig. 9.4 the deconvolution 
is visualized in the spectral domain: From top to bottom the amplitude spectrum of 
the observed trace, the amplitude part of the inverse frequency response function, 
and the amplitude spectrum of the deconvolvod trace are shown, respectively. The 
bottom trace has been obtained as the complex product of the top and central trace. 
Fig. 9.4 shows how the low frequency and high frequency portions of the signal are 
disproportionally enhanced during the deconvolufion process. As a consequence, 
the deconvolved signal may be dominated by these signal components, especially 
if they are corrupte~ by noise. One way to decrease the influence of this problem is 
to postfilter the deconvolved trace with a band pass filter selecting only the stable 
signal component. 
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Fig. 9.4 Deconvolution in the frequency domain. From top to bottom, the amplitude spec- 
trum of the observed trace, the frequency response function of the inverse filter, and the 
amplitude spectrum of the deconvolved trace are displayed. 

Another method that is in common use is the so-called water level correction. It 
consists of enforcing a threshold for the amplitude values of the denominator spec- 
trum while not changing the phase. The water level is measured from the maximum 
value of the amplitude spectnma. In other words, the dynamic range of the denomi- 
nator spectrtma is traded for the stabilization of the spectral division. There is no 
general rule for the selection of the water level. The denominator s~ctrum should 
be affected just enough to ensure stability of the deconvolution without sacrificing 
too much of the resolution. In Fig. 9.5, a waterlevel correction of 20 dB has been 
applied to the deconvolution of the si~nA1 in Fig. 9.1. Notice that this effectively 
removes the long period instability seen in Fig. 9.3. 
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2 .723e-05  
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Fig. 9.5 De.convolution by spectral division using a waterlevel stabilization of 20 dB of the 
signal shown in Fig. 9.1. The frequency response function is displayed in Fig. 9.2. 

Besides the problem of stability, there are a number of other considerations to be 
taken into account. One of the most crucial ones ft~ the measurement of onset 
times is the problem of spurious acausality which can arise in the context of decon- 
volution as well as instrtunent simulation. These topics, however, go beyond the 
aim of the present course and are treated in more specialized texts (e. g Plesinger 
and Zmeskal, 1993). 
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Appendix A: Solution to Problems 

Chapter 2 

Solution 2.1 The pole position is at -1/-c.  -c = R- C = 4.0f~. 0.1989495F 

which is 4 . 0 V / A .  0.1989495Asec / V  = 0.795798sec . Hence, the pole is at 
-1.2566 (rad/s). For each point on the imaginary axis (angular frequency axis), 
determine the reciprical of the length of the vector from the pole to that point. You 
can do this either by using a n~er and graph paper or simply by exploiting analyti- 
cal geometry. Plot this value as a function of angular frequency or frequency, 
respectively.Below, the procedure is demonstrated schematically for a frequency of 
1Hz (Fig. A2.1; note, that Fig. A 2.1 is not on 1:1 scale). 

J 
(-1.2566,0) 

jo~ Example: f=l Hz 

6.2832 co = 2n .  1 = 6.2832 

cr 

(2r0l = 6.4076 

IT (j2n) I = 

1.2566 
IT(j2n)[ - 6.4076 - 0.1961 

Fig. A 2.1 Graphical determination of the frequency response function (amplitude only) for 
the RC filter of Problem 2.1. The plot demonstrates the evaluation for a frequency of 1 Hz. 
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Solution 2.2 P1TSA simulates the action of systems defined by their tramfer func- 
tion in the complex s plane. As we will see later in more detail, a transfer function 
of a more general system can have more than one pole as well as a number of 
zeroes (at which the tran~er function becomes zero). The positions of poles and 
zeroes define the transfer function completely. 

In order to do the filtering, P1TSA needs to know the position(s) of the pole(s) and 
zeroe(s) in the complex s plane. They have to be provided in a simple ASCII file 
which can be created using your favourite text editor. In addition, you have to pro- 
vide an input signal which we will now cream using the 'test signal' tool in P1TSA. 
From the list of poles and zeroes P1TSA calculates the corresponding frequency 
response function. It then performs a complex multiplication of the frequency 
response function with the discrete Fourier spectrum of the input signal. Finally, it 
calculates the inverse Fourier transform. The whole process is equivalent to con- 
volving the input signal with the impulse response of the system. 

First you have to create an ASCII file containing tile pole position in the complex s 
plane. This file has to conform to a special format (format of the calibration section 
for GSE data, see also the P1TSA manual) which is also used in a different context: 

line [1]: has to contain the string CALl in positions 1-4; 
character position 32 - 34 have to read PAZ. 

line [2]: has to contain the number of poles (given in position 1-8) 
line [ 3 ]  - [number of poles + 2]: have to contain the real (position 1-8) 

and imaginary parts (position 9-16) of the pole 
positions in the s plane. 

line [number of poles + 3]: has to contain the number of zeroes 
(given in position 1-8) 

line [number of poles + 4] - [number of poles + 3 + number of zeroes]: 
have to contain the real (position 1-8) and imaginary 
(position 9-16) parts of the zero positions in the s plane. 

line [number of poles + number of zeroes + 4]: scaling factor 
(should be set to 1.0E09 to correct for the 
assumption that the motion is given in nanometers). 

last line: blank 
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For the RC-filter, the pole-zero file looks like: 

CALl PAZ 

1 

-1.2566 0.0 

0 

1.0E09 

Next, create one trace of a noise-free spike signal (to be found under utilities -> test 
signals) with a digitization frequency of !0.0 ttz and a trace length of 1024 points. 
For the time of the first sample, just ~,cept the default values. Create a single spike 
at index 0 with an amplitude of 1.0 (enter a -1 for the second spike position). 
Accept/append the trace to the data in memory and perform a subsequent filtering 
using the pole-zero file option. Enter the name of the ASCII file containing the pole 
position (rcfilter.cal) and take the default values for digitization fie, quency, time of 
first sample and no. of points for the FTT. The signal you are seeing as a result of 
the filtering is the impulse response of the filter (since the input signal was an 
impulse). In order to see the frequency response function calculate a spectrum 
(FFF, untapered). Accept the zoom window as is and leave the default value for the 
number of points for FFT (1024). Choose amplitude for display. The plot should 
give the same result as Fig. 2.6. 

Note: In case you put the spike not a zero position but at let's say position 512, you 
will notice some oscillations before the'  onset' of the filtered signal. This is due to 
the fact that the true spectrum of the filtered trace would not be zero at and above 
the Nyquist frequency (See '~lae sampling process" on page 57.). Since the spec- 
trum for the filtered trace is calculated only up to 5 I-Iz, this corresponds to multi- 
plying the true specmma by a boxcar window in the frequency domain. This, 
however, is equivalent to convolving the causal impulse response with the two- 
sided function sin (at) / (2rent), the inverse Fourier transform of the frequency 

boxcar window (F(jm) = 1 / (2a)  for co:ga and F(jo~) = 0 for o~>a,Fig. A 
2.2). 
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- a  

Frequency Domain 

1/2a 

L 
a frequency 

Time Domain 

sin (at) 

2r~at 

Time Domain Frequency Domain 

- a  

1/2a 

I 
a time 

sin (aco) 
a~ 

Fig. A 2.2 Boxcar windows in frequency and time domain. 
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Solution 2.3 The balance at time t = nT + T: 

y ( n T +  T) = y (nT )  + a y ( n T )  + a x ( n T )  + x (n T )  

= y (nT )  + a y ( n T )  + ( a + l )  . x ( n T )  

y (nT + T) - y (nT) = ay  (nT) + (a  + 1) . x (nT) (divide by I") 

y ( n T + T )  - y ( n T )  a ( a + l )  
T = ~ y ( n T )  + ~ . x ( n T )  

Next, replace the difference quotient by the derivative a ~  nT by t: 

a ( a + l )  . x ( t )  3~ (t) - ~ y  (t) - T 

Taking the Laplace transform yields 

a a +  1 . X ( s )  s .  Y ( s )  - ~ .  Y(s )  = T 

a a +  1 "X(s) ( s -  ~ )  . Y (s) - T 

Y(s )  a +  1 1 
T(s)  - = - -  

X (s) T a 

T 

From the equation above we see that a pole exists at s ffi a / T  

The corresponding impulse response becomes: - -  

Gt 
a + l  - - t  

-~  - e  T 

From the positive exponent we see that the impulse response is unstable! While 
this is normally an unwanted feature, for a checking account it is just was we 
expect! 
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C h a p t e r  3 

Solution 3.1 The GSE format calibration files for the solution of Problem 3.1 are 
shown in Tables A3.1-A3.3. 

Table A 3.1 GSE format pole-zero file for the solution of Problem 3.1a. 

CALl 

2 

-1.2566 0.0 

-1.2566 0.0 

0 

1.0E09 

PAZ 

Table A 3.2 GSE format pole-zero file for the solution of Problem 3.1b. 

CALl 

2 

-1.2566 0.0 

1.2566 0.0 

0 

1.0E09 

PAZ 

Table A 3.3 GSE format pole-zero file for the solution of Problem 3.1c. 

CALl 

2 

1.2566 0.0 

1.2566 0.0 

0 

1.0E09 

PAZ 
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From the argument in chapter 3.1 'Generalization of concepts'~ the resulting 
impulse response function will be a) right sided, b) two-sided, and c) left sided as 
shown in Fig. A 3.1. The amplitude portion of the fi~luency response function is 
identical in all three cases while the phase response differs. With respect to Prob- 
lean 2.2, the slope of the amplitude response is steeper by 20dB/decade since an 
additional pole is present. 

b,.l 
lO 
,_I 

0 .  
Z 
I-4 

DOUBLE POLE SYSTEM 

1 . 0  I I I I I I I I I 

( 1 )  

o.o 
2.927~-12 I I I I 

-a.39~e-15 I t J 1 - - - F  

- 3 . 9 6 8 9 e - 1 2  I I I ' ~ ' ' ' ' ' 

-i. 19Be-!5 

0.0 2.0 8.0 

(2) 

(3) 

(4) 

4.0 6.0 
TIME [sec] 

i0.0 

Fig. A 3.1 Impulse response functions for Problem 3.1. 



118 

Solution 3.2 Since the pole and the zero become symmetrical to the imaginary axis, 
the pole vectors and zero vectors are always of equal length. Hence their ratio is 
always constant. It follows that the amplitude response is the same for all frequen- 
cies, characteristic of an allpass filter (Fig. A 3.2). 

1,0 

0.0 
8.7754e-I0 

-2. 4448e-i0 

E x a m p l e  3.2 
1 I I I I I 1 I ) 1 I I I I 1 i 

I, I I ( I ) I I I I I I I I I I 
I I ) l l I I I I I I I I I I 

I I I t I I I I F l t  t I I 1 I ) 
0.0 0.2 0,4 0.6 0.8 1.0 1.2 1.4 /~.6 

(1) 

(2) 

TIME [mLn] 

1~-toF1e-09 I If ,i'~l.I''"F"J'FI'm',"' "J'J'lII.. 11 If,, i (3~ 

le-111 , i [ l l l l l l  I I I l l i l l l  I I I I I I I I I  I i I I I I I  
0.001 0.01 0.1 1 10 

FREQUENCY [Hz] 

Fig. A 3.2 Input impulse, impulse response, and amplitude part of the frequency response 
function of the allpass filter of Problem 3.2. 
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Solution 3.3 a) A ge~ral  transfer function F(s) will be described by poles and 
zeroes. Taking the inverse, 1]F(s) causes all poles to become zeroes and zeroes to 
become poles. For a minimum phase system, all the poles and zeroes of the transfer 
function F(s) are on the left half s plaN. This wiU not change for the inverse sys- 
tem. Hence, the inverse system will also be minimum phase and therefore stable. 
b)Th¢ poles and zeroes of a general mixed phase system with zeroes on either half 
plane can always be expanded into two systems. The aUpass is constructed by tab 
ing aU right half plane zeroes and addin__g symmetric poles. Tim minimum phase 
system is constructed by taking all poles (which have to be in the left half plane 
anyway because of stability) and adding zeroes where the ~llpass system had added 
poles for symmetry reasons. On multiplication of the two trander fimctions these 
additional poles and zeroes will cancel (Fig. A 3.3). 

Mixed p h a s e  s y s t e m  

X 

X 

0 
Y 

0 

Minimum phase x Allpass 

X 

X 

0 

0 

X 

X 

V 

Fig. A 3.3 Separating a mixed phase system into a minimum phase system and an aUpass. 
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Solution 3.4 Since the transfer functkm for problem 3.1b has a pole on either side 
of the imaginary axis, we need to cancel the fight-sided pole by a zero. In order not 
to change the amplitude characteristic, we have to do this with an allpass filter 
whose poles and zeroes are symmetrical to the imaginary axis. The filter we need 
has to have a zero at +1.2566 and a pole at -1.2566, which is exactly the allpass 
from Problem 3.2. The performance on the trace from Problem 3.1b is shown in 
Fig. A 3.4. 

1.0 

0.0 
1. 0408e-17 

- 3 . 8 7 7 7 e - l l  
2.g275e-20 

- I .  3247e-22 

Example 3.4 
l l l l I l l l l l l l l l l l  

I I I I I I I I I I I I I I I I 

I I I '1 'l' I I I1 I I I I I I I 

l l l l l l l l ~ l l l I l l l  
0.0 0.2 0.4 0.6 O.e 1.0 1.2 1.4 1.6 

TIME [min] 

(i) 

(2} 

(3) 

Fig. A 3.4 Changing the two sided impulse response of Problem 3.1b into a fight sided one 
by application of an allpass filter. 
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Solution 3.5 Using the pole-zero f~e filter option in P1TSA. we have to create tl~ 
file shown in Table A 3.4. The amplitude part of the correspend~ng frequency 
response function is shown in Fig. A 3.5. 

Table A 3.4 GSE format pole-zero file for the solution of Problem 3.5 

CALl 

1 

-6.28318 0.0 

1 

.6)8318 0.0 

1.0E09 

PAZ 

I 

I I .  eJ.  

a .  ImBl. | 
• ° H I .  

I P g l e  a e  ( - / ~ . ; l l l 1 3 , e ~ ,  2.e l .q  a t  ( , . 6 2 1 1 5 , 0 )  
I I ] 1 1 1 1 1  I T I I 1 1 1 1  I I ] I : 1 ; 1 1  

. J  

I I 1 

I IIIIIII ! I llllIl~ I I ~l~Itll I . I I 
e .  ~LI. o .  1_ 

r R ~ U ~ I C y  [ H i ]  

( 1 )  

I t  
£w 

Fig. A 3-g Amplitude part of the frequency response function for a system consisting a pole 
at (-6.28318.0.0) and a zero at (.628318. 0.0). 

From the pole and zero positions we expect to comer frequencies at f l  = 0.1 Hz 

and at f2 = I Hz. respectively. We can see that the frequency response function 

starts out constant, increases by 20 db/decade at It then decreases by 20 dB/dec- 

ade at f2. 
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Solution 3.6 If you use P1TSA, you could start out using the GSE format pole zero 
file in Table A 3.1 which represents the double pole at (-1.2566, 0). For tim succes- 
sive steps, the pole positions would be Pl, 2 = -1.2566 ( cosa+  isina) 

with a being incremented from 15 ° to 75 ° in steps of 15 ° (plus a = 85 °, a is 
measured clockwise from the negative real s axis). The resulting impulse response 
functions are shown in Fig. A 3.6. In Fig. A 3.7, the corresponding amplitude por- 
tions of the frequency response functions are displayed. The closer the poles get to 
the imaginary axis, the more oscillations take place in the impulse response. Or if 
we look at it the other way around, the farther the poles move away from the imag- 
inary axis, the stronger is the damping of the oscillations. 

Notice that the spectral changes significantly only near the comer frequency, not at 
the high and low ends of the spectrum. 

2 p o l e s  ( f ¢  = . 2  HZ) 
S 1 .Q 
P ~. ( J . )  
k 
E O.O 

B. n 2 9 6 4 8  I I I I I I I I I I I I I I 

1 ' (Z)  

- o ,  e e e ~ , e s  "es i I I 1 I I I I I I I I t B,  l t iS1796 
S ( 3 )  
. \ 

- I ' B,I44672835560 I I I I I I I I I I I I' I I 

4 (4) 

- e e , e 4 3 1 1 e  i I I I I I I "I I I I I I I 

- Q .  i l 7 3 8 2 8  
B ,  8 5 5 7 ¢ 1  I I I I I I I I I I I I I 

? ~ ( 6 )  
5 

- 2 . 9 2 4 4 4  ~n, e~.9 ~'1'6 I I I l I I I J I I l I 

- B .  0 5 3 i 1 5  I ~ ; * J J ! 
a~,o e ,  . . 4  e . 4  . . o  J. , ,  . , z  t , 6  

TIHE [ M i n )  

Fig. A 3.6 Impulse responses for a system with a conjugate complex pole with the pole 
positions at different angles from the real axis of the s plane (15, 30, 45, 60, 75, 85°). 
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1 

B , I  

O. B I  
B . I  

m, O l  

Q. m i l l  
g. eiNIJ. 

• .  E ~ I  
0 , 1  

e .  E l  

B .  B~B1 
8 , 1  

e .  ml  

..%~,I 
e . E @ I  

3 l ~ l e s  Cf4  = , a  HZ)  

i: 

B, a:l. g . l  £ l a  
F ~ U E H 6 ~  [ H E ]  

Fig. A 3.7 Frequency response functions (amplitude) corresponding to Fig. A 3.6. 
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Solution 3.7 In Problem 3.6 we have seen that the amplitude part of the frequency 
response functions shows a strong peak if the poles were close to the imaginary 
axis. Hence, zeroes close to the imaginary axis will correspond to strong selective 
suppression which is what we need. Therefore we need to put zeroes on or very 
close to the imaginary axis. In order to sharpen the ncXch, we also have to put poles 
close to the zeroes, canceUing their effect for frequencies away from the notch fre- 
quency. One solution is given below (pole comer frequency: 6.275 Hz, zero comer 
frequency: 6.25 Hz), The input spike, impulse response, and amplitude portion of 
the frequency response function are displayed in Fig. A 3.8. 

CALl 
2 
-27.879 27.879 
-27.879 -27.879 

2 
0.68525 39.26375 

0.68525 -39.26375 
1.0 

PAZ 

1,0i 

0.0 
7.4651e-i0 

-3.5191e-10 
0.0 

I I 

I I 

I I I 
2,0 

Zxample 3.8 
I I 

t I I 

I I 
4.0 6.0 

TIME [see] 
le -11~ I I IIIIlll i'"I IIIIIII 

F le -12~ 

l e - 1 3 |  I I l l l l l l t  t I I l l l l l l  
0.01 0.I 1 

Fig. A 3.8 Notch filter at 6.25 Hz. 
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! 
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Solution 3.8 First estimate the different slopes and determine the number of differ- 
ent poles and zeroes which are needed to model them. One reasonable interpreta- 
tion is sketched in Fig. A 3.9. Next, try to find the comer frequencies (0.5 Hz, and 
20 Hz). For the transitional portion of the spectrum, you have to experiment with 
putting the poles at different distances from the imaginary axis. 

9.1 

e.Ol  

EIH,CRL 

2 poles NN~ 

3 zeroes 

"x  

5 poles 

O,Ogl _ _ _ _ I i  t l l l l l i / ) !  lit[Ill I itltllll 
0.@1 9 ,1  1 t0  

F]~EgUDI~ [Hz] 

-q 

I II))I 
1M 

Fig. A 3.9 Frequency response function (amplitude) with an unknown pole - zero distribu- 
tion. 
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The file from which this was constructed was: 

XW01 CHE STO 000032 0339 900620 2117 C 000030 900619 
CALl OSS A700SZNG SZ MKIIIA PAZ 900101 0000 
11 
-1,8850 2.5133 
-1.8850 -2,5133 
-0,05610 0.0 
-0.49474 0.0 
-0.49474 0.0 
-118.490 -24.198 
-118.490 24.198 
-104,181 -73.251 
-104.181 73.251 
-70.19 -125.30 
-70,19 125,30 
6 
0.0 0.0 
0.0 0.0 
0,0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
1.0 

The corresponding corner frequencies are from top to bottom: 
0.5 Hz (double pole) 
0.0089 Hz (single pole) 
0.07874 I-Iz (double pole) 
19.25 Hz (double pole) 
20.269 Hz (double pole) 
22.8578 Hz (double pole) 

You will have missed the ctxner frequencies below 0.1 Hz since they are not visible 

in the frequency response function but will have started out with an ~5 3 slope above 
0.2 Hz. Also you will probably have approximated the strong decay around 20 Hs 
differently. 
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Chapter 4 

Solution 4.1 The time derivative of (4.26) is 

d x  r ( t )  

dt 
eXro e-et (ClSin ( ~ 0 2 -  E2t) +c2coS (,J-o~co02- e2t) ) 

+Xroe-Etcl~fJo~-e2cos(&-E2t) 

-Et [--2 2 • -Xro e c24o~ o -  e Sm (~/-~2_ e2t)  

With 

C 3 = --(ClE+C2~/~ 2 - E  2) 

C 4 -----(c2e+Cl~m~O2-e 2) 

we obtain 

d x  r ( t) 
dt - eXroe-~t (c3 sin (~f~2 _ e2t) + c4co s ( ~f~02 - e2t) ) 

As for the displacement seismometer, the amplitude ratio of two consecutive 
maxima or minima are solely determined by the exponential term. Therefore, equa- 
tions (4.27) and (4.28) are valid for the determination of the damping constant. 
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Solution 4.2 a) The displacement impulse response is the inverse Fourier tramform 
of: 

T (jo~) ~- Outputdisp (j(o) 
lnputdisp (j03) 

By equivalence between _differentiation in the time domain and multiplication with 
j(o in the frequency domain, the ground velocity response is related to the displace- 
ment frequency response by 

OutpUtve l fifO) -~ j(O" Outputdisp (j¢.o) or 

1 . O u t p u t , e  t (jo~) Outputdisp if(o) ~- j~-~ 

Now let us examine the input signal, a step function in acceleration, which is 
equivalent to the integral of a spike. Hence, by equivalence between integration in 
the time domain and division by j(o in the frequency domain, the frequency 
response of the input signal in acceleration is: 

1 
Inputac c ( j o )  = __"  1 

with 1 being the frequency response of an impulse (t~re in acceleration). In order 
to obtain the input signale in displacement, two times integration (division by j(o) 
has to be performed: 

~ 2  1 3 
Inputdisp (j(o) =- ( ) • [npUtac c (j(O) = (-j-~) 

Therefore, 

OutpUtd~p (/CO) = ( 1 .  OutpUt~e l (~CO)) / C .1) 3 
T (j(o) -- inputdis  p (j(o) j(o J(o 

which becomes 
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T (jco) = (jco) 2. OutpUtve 1 (jco) 

In the time domain, multiplication with Uco) 2 corresponds to double differentia- 
tion. Since high frequency noise will be greatly enhanced by differentiation, this 
explains why this approach to obtain the impulse response in practice often leads to 
difficulties. 

b) From the peak amplitude values (0.0869349,-0.014175, 0.00231063, 

-0.000376618, 6.1422 x 10 "s) we obtain: 

= 37.6 ~ A = 3.6276 

(a-~2=6.13297)=#A=l.81368 

From both values we obtain h = 0.5. From Fig. 4.4 we obtain for the period 
T ~, 1.15 sec (the exact value would be 1.15470054). This yields fo = 1Hz, 

Solution 4.3 The pole positions for the three different damping factors are: 

h=  0.25:-1.5708 + 6.0837 i 

h=0.5:-3.14159 + 5.4414i 

h = 0.62:-3.89557 + 4.9298 i 

The impulse responses and amplitude portion of the frequency responses (for a 
spike at point 100 out of 512, sampled at 20 Hz) are shown in look like Fig. A 4.1 
and Fig. A 4.2, respectively. 
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-0,58774 i I 1 I 
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(2) 

(3) 

I 
t 

( 4 )  
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TIME [~ec] 

Fig. A 4.1 Impulse response functions for a displacement seismometer with three different 
damping factors. The impulsive input signal is shown in trace 1. 
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Fig. A 4.2 Amplitude portion of the frequency response functions for a displacement seis- 
mometer with 3 different damping factors. 
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Solution 4.4 The output signal has to be differentiated. This, however, c~responds 
to multiplication of the transfer ftmcticn with s, a first degree polynomial with a 
single zero at the origin. Hence in order to simulate the output of an electrodynamic 
system, simply add a zero at the origin to the transfer function. For the damping 
factor h = 0.62, the resulting impulse response and amplitude frequency response 
are shown in Fig. A 4.3. 

r" 

L.D 

tO00 

-999.98 
0,0 

10 

I 

0,1 

0.01 

0.001 

0. 0001 
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VELOCITY SEISMOMETER I HZ 
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~ (1) 

I t I I I I 1 1 I I 
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TIME [sec] 
! ,  , , , , , , , ,  , , , , , , , , ,  , , , , , , , , ,  , 

= I I IIIIIII I I lllIlll I I lllllII I I llIlI-I1 
1 i0 100 le+03 

FREQUENCY I:Hz.] 

Fig. A 4.3 Impulse re~onse function and corresponding amplitude frequency response 
function for a 1 Hz velocity seismometer. The reason for the apparent 'acausality' of the 
impulse response is the symmetry of the differentiation filter in the frequency domain, 
already discussed in the context of Solution 2.2. 
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C h a p t e r  5 

Solution 5.1 Using P1TSA, we can attack this problem by simply checking out the 
effects of the discretization procedure fox different signal frequencies of the 'con- 
tinuous' signal. In order to create the traces in Fig. 5.1, the test signal tool from the 
utilities main menu option in PITSA has been used. They were ma ted  as noise- 
free sinusoids with a digitization frequency of 1024 I-Iz (to be high enough to 
appear continuous with respect to the discretizatiou frequency of 10 I-Iz) and 2048 
number of points per trace. For the first trace, the sinusoid parameters were 1 for 
the amplitude, 3.5 for the frequency and 0 for the phase (to be entered as: 1, 3.5, 
0.0). The start time in this context is irrelevant. Hence the default value has been 
taken. You can use the same procedure to create input signals if arbitrary signal fre- 
quencies which subsequently can be discretized. 

Using d i f f~n t  input signal ficquencies, you will n o t ~  that fox a discretization 
frequency of 10 I, Iz, the re, construction breaks down fox frequencies around 5 I-Iz. 
Fox exactly 5 I, Iz, it strongly depends on the value of the phase angle of the contin- 
uous signal, if the disc~tization results in non-zero values. For a phase angle of 
exactly zero, the signal is disoxetized exactly at the zero crossings. Hence it cannot 
be distinguished fronl a zero sio'nal. Therefore, for a unique reconstruction tl~ 
input signals have to be below 112 of 10 I-Iz (= 5 FIz). 
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Solution 5.2 Imagine the frequency band as a band folded at 1/'2 of the sampling 
frequency (folding frequency) The aliasing frequencies can then easily be obtained 
by vertical projection from a particular point on the frequency band down to the 
region between zero and folding frequency. Hence the aliasing frequency corm- 
sponding to 18.5 Hz and a sampling frequency of 10 Hz would be 1.5 Hz. 

Frequency Band 

i ~ l i a s i n g ~  

i 1.5 

Fig. 5.1 Graphical illustration of the alias effect. 

Chapter 6 

The Wood-Anderson magnitude is defined as MWA = log 1o (A) - log 1o (Ao) 

with A being the amplitude measm~ on a Wood-Anderson displacement imtru- 
meat and -log lO (Ao) being the distance correction which is exactly 3 for 100 

kin. The amplitude for a MWA = 0 earthquake on this instrument will be 

AMwa = o = 10° -3 = 0.001. For the magnitude 6 earthquake this value will be 

= 106- 3 1000. Hence the dynamic range needed is at least AMw~ = 0 = 

20. log ( 106) = 120 dB (> 20 bits). 
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C h a p t e r  7 

Solution 7.1 Since the inverse Fourier transform is evaluating the inverse z-trans- 
form on the unit circle, this means that the banded convergence region is chosen. 
Hence, it will correspond to a two-sided impulse response. 

Solution 7.2 a) positive time shifts n owill cause a multiplication of the z-transform 

with a term z n° which has a pole a at the origin 1 /0  %. b) negative time shifts 

n 0will cause a multplicafion of the z-tranfform with a term z n° which has a pole 

at infinity. Hence, depending on the sign of the shift, time shifts add poles at either 
the origin or at infinity of the Z plane. 

Solution 7.3 Let's assume we have two sequences with 1024 samples and a spike at 
position 1024 in each of them. If we convolve the two sequences in the time 
domain we expect the result to be a spike at position 2047. Hence, we have to pad 
up to this sample. If we have two sequences of different length, we have to pad 
both sequences up to one point less than twice the length of the longer sequence. 

Chapter 8 

Solution 8.1 In order to see how roots on the unit circle affect the properties of the 
impulse response of FIR filters, we first consider an impulse response function of 

length M + 1 ffi 3.  Its z-transform corresponds to a simple quadratic 

p _ ~ -I-iqb 
q + p z + z  2 with the two roots zl, 2 = - ~ ' , ' ~ ' ~ - q  = re 

the twofoUowingpropertieshold: z I + z 2 ffi - p  and Z l  " Z 2 = q . 

for which 

For complex conjugate roots re :ucP it follows that q = r 2 . Using Eulex's foxmu- 

las, we obtain that 2rcosdp ffi - p  . Hence, the discrete finite impulse response 

for a system with the two complex ccmjugate roots re ~ will  consist of the triplet 

(r 2, -2rcos~, 1) 
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If the roots are on the unit circle ( r = 1 ), this will result in a symmetric impulse 
response. This will also be the case for higher order systems which only contain 
zeros on the unit circle since the convolution of symmetric impulse response func- 
tions stays symmetric. Because of this symmetry, roots on the unit circle have to be 
corrected for, if the goal is to remove all noncausal filter effects from digital seis- 
mic recordings. What makes it even more complicated is the fact, that a system 
with only roots on the ~mit circle has only a single waveIorm repre~atation for the 
given amplitude specmma. This again can be seen from the example of the simple 
quadratic. The square of the z-transform amplitude spectrum for the last equation 
equals 

(r 2 - 2rcosipz + z 2) • ( z  2 - 2rcos~z + r 2) 

with the four roots Z l ,  2 ---- re +-i~ and z3, 4 = 1 / r ' e ~ i ~ . F o r  r ffi 1 weend 

_+i~  up with two identical pairs of complex conjugate roots z 1, 2 ---- Z3, 4 ---- e 

Since any real sequence corresponding to the z-transform amplitude spectrum has 
to be represented by a pair of complex conjugate roots, we see immediately that 
only one waveform representation exists for systems having only roots on the unit 
circle. Therefore, we cannot split up these system components in FIR filters 
exactly into minimum and maximum phase partial systems. 

If we assume these zeros belonging to the minimum phase part of the filter as it can 
be sc~netimes found in textbooks, this would be equivalent to simply ignoring them 
for the purpose of removing the acausal filter response. Depending on the number 
of zeros on the unit circle involved, this would cause ignoring an important contri- 
bution to the acausality. Consequently the correction filter would perform very 
poorly. On the other hand, if we treat them as belonging to the maximum phase 
part, they will cause an instability during the inversion because the roots will 
become poles in the ecru'coting filter. One way out of this dilemma is to approxi- 
mate suc~ a FIR impulse response function in terms of "equivalent" minimum and 
maximum phase parts without involving zeros on the unit circle (Scherbaum et al.. 
1994). 



Appendix  B: List ing of Source Codes  

Warranty Disclaimer: The foUow;-g sour= cou  Ust=gs =clu  
for educational purposes. They are provided without warranty of any k~d,  either 
expressed or implied, including but not limited to the fitness for a particular pur- 
pose. 

Listing | mkcausal.c 

NAME: mkcausal 
SYNOPSIS: 

mkcausal <flags> 
flags: -w <filter wavelet file> 

-i <data input file> 
-o <output file> 
-z <no. of zeros to append to input file. OptionaU> 
-c Corrects for linear phase of input wavelet. Optional! 

VERSION: 1.0 
DATE: 1993-04-12 (Frank Scharbaum) 
DESCRIPTION: From the coefficients of a FIR filter in the <filter wavelet file> a recursive cor- 

rection filter is constructed to remove the acausal part of the impulse response from seismic 
recording which have been filtered with the FIR filter. The input data are assumed to be in the 
<data input file>. The c~'Tected trace is written into the <output file> All files are I value per 
row ASCII text files. Using a -z <n> option, <n> number ot zeroes are appended to the data 
from the input file on input. This option prevents the supression of cutting off data from the 
output file in case the response of the correction filter is longer than the input trace (e.g. if a 
FIR filter response itself is being corrected). 

**/ 

/* begin Makefile defines "/ 
/* define DBL for double precision calculation */ 
r define SNG for single precision calculation */ 
/* define MASSAGE_CIRCLE for shifting roots from circle */ 
P this is necessary for double precision calculation "/ 
/* end Makefile defines */ 
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#ifndef DBL 
# define SNG 
#endif 

/* default precision */ 

#define NMAX 100 /* maximum wavelet length for rooting */ 
#define ONE Complex(1.0,0.0) 
#define PI 3.141592653589793 
#define SHIFT_ROOT 1.000001 /* factor by which unit circle roots are shifted */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <math.h> 
#include <ctype.h> 
#include <string.h> 
#include <malioc.h> 
#include <memory.h> 
#include "nrutil.h" 
#include "complex.h" 
main(argc,argv) 

int argc; 
char *argvrl; 

{ 
FILE *fo; 
FILE *fi; 
char fir_name[80]; 
char in_name[80]; 

/* FILE pointer output file */ 
/* FILE pointer input file */ 

/* input file name FIR filter 
/* input file name trace file 

*/ 
*/ 

*/ char ouLname[80]; /* output file name 
int i,j,k; /* indeces */ 
int nskip = 0; /* no. of lines to skip on input */ 
char ch; I* char. buffer */ 
int ntot; /* total no. of lines in file *I 

#ifdef SNG 
float *wv; /* wavelet */ 
float x_inp; /* input float buffer *1 
float re[NMAX],im[NMAX]; /* real and imaginary parts of roots[] */ 
float shift_root; /* multipl, factor for shifting roots */ 

/* away from unit circle */ 
#endif 
#ifdef DBL 

double *wv; /* wavelet */ 
double x_inp; /* input float buffer */ 
double re[NMAX],im[NMAX]; /* real and imaginary parts of rootsl] */ 
double shift_root; /* multipl, tactor for shifting roots */ 

#endif 
int ndat; /* length of wavelet */ 
int wv_m; /* degree of wavelet polynomial */ 
char text_buffer[255J; t* input text buffer */ 
char *string_.end; /* pointer to possible CR in buffer */ 
float freq; /* frequency in Hz */ 
fcomplex roots[NMAX]; /* roots o! input wavelet *t 
float *xf; /* DFT (Numerical Recipes format) */ 
int nfft; /* no. ot points lot FFT */ 
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float fdig; P digitization frequency in Hz *t 
fcomplex z; /* complex dummy variables for inverse */ 
fcomplex dum_l ;  /* complex dummy variable for inverse */ 

/* z transform calculation */ 
float max; /* scaling factor for polynomial */ 
fcomplex d~_spec; /* z-transform values on unitcircle */ 
float *min_phas, *max_phas;/* minimum phase and maximum phase 

/* components of wavelet */ 
int m_min,m_max; /* degree of minimum and maximum phase */ 

/* portions of wavelet polynomial */ 
float *equ_phas; 
int m_equ; 
int pad_zeros; 
int lead_zeros; 

int n,m; 
int ndat2; 
float max_dist; 

#ifdef SNG 
float *x2; 
float *x; 
float *y; 
float *a,*b; 

#endif 
#ifclef DBL 

double *x2; 
double *x; 
double *y; 
double *a,*b; 

#endif 
float *temp; 
int max_poe; 
float shift_samples; 

int correctt ime; 

/* equi delay part of wavelet */ 
/* degree of equi delay pert */ 

/* no. of padded zeroes for filtering */ 
/* no. of leading zeroes automatically */ 

/* put before input trace */ 
/* degrees of ARMA coeeficienst */ 
/* length of output file */ 

/* maximum root distance from origin */ 

/* input trace */ 
/* time reversed input trace */ 
/* filtered output trace */ 
/* ARMA coefficients */ 

/* input trace */ 
/* time reversed input trace */ 
/* filtered output trace */ 
/* ARMA coefficients */ 

int donLshift0; 
float len; 
pad_zeros = 0; 
correct_time = 0; 
dont_shift0 = 0; 
for (i=1; i<argc;i++) 
{ 

if (ergv[~[0] == '-' && strlen(argv[i]) >= 2 ) 
{ 

switch(argv[~[1]) 
{ 

case 'w': /* FIR filter input file name */ 
case 'IN': /* FIR filter input file name *t 
{ 

i++; 
strcpy(fk_name,&argv[~[0]); 

/* buffer for time shift */ 
/* index of maximum point of FIR filter*/ 

/* time shift in samples caused by the */ 
/* causal linear phase FIR filter: *t 
/* = (float)(ndat-1)/2.0 *t 

/* if 1 -> time correction for linear */ 
/* phase performed, else not */ 

/* if 1 -> zeroes on UC ere not shifted*/ 
/* root distance from origin */ 

*/ 
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break; 
} 
case 'i': /* input file name */ 
case 'r: /* input file name "t  
{ 

i++; 
strcpy(in__name ,&argvm[0]); 
break; 

} 
case 'o': /" output file name *t 
case '0': /" output file name */ 
{ 

i++; 
strcpy(out_name,&argv[q[O]); 
break; 

} 
case 'z': /* no. of zeros to append on input of data file */  
case 'Z': 
{ 

i++; 
pad_zeros = atoi(&argv[~][O]); 
break; 

} 
case 'c': /* correct for linear phase shift */ 
case 'C': 
{ 

correctt ime = t ; 
break; 

} 
case 'n': /* correct for linear phase shift */ 
case 'N': 
{ 

dont_s~ft0 = 1; 
break; 

} 

if ({argc < 3) II 
(strlen(fir_name) == 0)11 
(strlen(in_name) == 0)11 
(strlen(out_name) == 0)) 

printfC'USAGE: mkcausal <flags>~'); 
prinff('flags: *w <filter wavelet file>~n*); 
printf(" -i <data input file>~n'); 
prinffC' -o <output file>~n*); 
printf(" -z <no. of zeros to append to input file. Optional!>~n'); 
printfC' -c Corrects for linear phase of input wavelet. Optional!~n'); 
exit(l); 

} 
/* estimate no. of lines in file */ 
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ntot = 0; 
if ((fo = fopen(fir_.name,"rt")) i= NULL) 
{ 

while((ch=fgetc(fo)) I= EOF) 
{ 

if (ch == '~') 
ntot++; 

} 
fclose(fo); 

} 
ndat -- ntot-nskip; 
shift_samples = (float)(ndat -1)/2.; /* linear phase shift caused */ 

/* by this filter */ 
/* wavelet polynomial */ 

#ifdef SNG 
wv -- (float *)calloc(ndat,sizeof(float)); 

#endit 
#ifdef DBL 

wv = (double *)caUoc(ndat,sizeof(float)); 
#endif 

/* INPUT wavelet */ 
if((fi = fopen(fir_name,'rt")) == NULL) 
{ 

printf('input file %s cannot be openedl~",in_name); 
exit( i); 

for(k=0;k<ndal+nskip;k++) 
{ 

if(tgets(text_bufter,255,f~ I= NULL) 
{ 

if ((string_end = memchr(&text_bufter[0],~n',255)) != NULL) 
*string..end = '\0'; 

#iidef SNG 
sscanf(text_buffer,"%P,&x_inp); 

#endif 
#ifdef DBL 

sscanf(text_buffer,"%lf',&x_inp); 
#endif 

} 
else 

x_inp = 0.0; 
if(k >= nskip) 

*(wv+k-nskip) = x_inp; 
} 
fclose(f~; 
/* scale trace so that the coefficient to */ 
,1" the highest power of z (last) becomes I *t 
w v m  = ndat-1; 
/* find position of maximum of FIR filter */ 
max_pos = 0; 
max ---~[0]; 
for(k=0;k<ndat;k++) 
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if(wv[k] > max) 
{ 

max -- wv[k]; 
max_pos = k; 

} 
} 
/* scale polynomial so that coeficient to Imgest *.I 
/* power of z becomes I */ 
max = wv[wv_m]; 
for(k=0;k<ndat;k++) 

wv[k]/= max; 
pdnt f("coeificient [%d]: %f~n',wv_m,max); 
/* get roots in z */ 

#ifdef SNG 
zrh~(wv,wv_m,re,im); 

#endif 
#ifdef DBL 

zrhqrdb(wv,(Iong)wv_m,re,im); 
#endif 

free((char *)wv); 
/* output */ 
if((fo = fopen('roots','wt')) == NULL) 
{ 

printf(~output file for roots cannot be opened.r~n'); 
exit(l); 

} 
max_dist -- 0.0; 
/* complex roots of polynomial in z */ 
for(i=1 ;i<--wv_m;i++) 
{ 

#ifdef SNG 
roots[i].r = re~; 
roots[TJ.i = im[~; 

#endif 
#ifdef DBL 

roots[i].r = (float)re[n; 
roots[i].i = (float)im[i]; 

#endif 

fprintf(fo,'% 12f % 12f~n',rootsp].r,roots[i].i); 
if (Cabs(roots[i]) > max_dist) 

max_dist = Cabs(roots[i]); 
} 
fclose(fo); 
printf('Most distant root at distance %f~n',max_dist); 
/* Inverse z transform */ 
/* calculate next power of 2 */ 
nfft= 1; 
while(nfft < ndat) 

nffi*=2; 
Idig = 1 ; 
/* determine equi delay part */ 
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equ_phas = vector(1L,(Iong)nfft); 
for0=1 ;j<=nfft/2+l ;j++) 
{ 

f req = ( j q )  * fd ig / nfft; 
/* construct DFT from roots of wavelet */ 
dft_spec = ONE; 
m_equ=0; 
if(j==O 
{ 

/* output */ 
if((fo = fopenCrools.equ','wt')) == NULL) 
{ 

printf('output file roots.equ cannot be opened!~n"); 
exit(l); 

} 
} 
for(i=1 ;i<=wv_m;i++) 
{ 

z=Complex(cos(2 .*Pl*freq),sin(2.* Pl*freq)); 
if (Cabs(roots[~) == 1.0) 
{ 

if (j == 1){ 
fprintf(fo,'% 12f % 12f~n',roots[i].r,roots[i].0; 

} 
m_eqU-H-; 
dum_l = Csub(z,roots[~; 
dft_spec=Cmul(dfl_spec,dum_l); 

} 
} 
if ( j==  1) 

fclose(fo); 

/* fill spectrum */ 
if (j == 1)/* h'equency 0.0 */ 
{ 

equ_phas[1]= dft_spec.r; 
} 
else if (j == nfft/2+l)/* Nyquist frequency 0.0 */ 
{ 

equ_phas[2]= dff_spec.r; 

} 
else 

{ 
equ_phas [2"j-1] = dff_spec.r; 
equ_phas [2"1"1 = dff_spec.i; 

} 
} 
/* inverse FFT */ 
realfl(equ_phas,(Iong)nflt,- 1 ); 
/* scale back to original amplitudes */ 
for(j=1 ;j<=nfft;j++) 
{ 
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equ_phaslj] /= (float)(nfft/2); 
} 
printf('Wavelet has %d roots on unit circle.~n',m_equ); 
/* output "/ 
if((fo = fopen('wavelet.equ','wt')) == NULL) 
{ 

printfCoutput file wavelet.equ cannot be opened!~n'); 
exit(l); 

} 
for0=1 ;j <-- m_equ+l ;j-H-) 
{ 

Iprintf(fo,'%g~n',equ_phas[i]); 

} 
fclose(to); 

#ifdef MASSAGE_CIRCLE 
if(dont_shift0 != 1) 
{ 

shift_.root = 1 ./SHIFT_ROOT;/* shift first root to max. phase pert */ 
/* massage the roots on the unit circle to either inside or outside */ 
for(i=1 ;i<=wv_m;i++) 
{ 

if (Cabs(roots[~) --= 1.0) 
{ 

/* check if it is a real or a complex root */ 
if ( (i < wv_m) && 

(roots[i].r =-- roots[i+l].r) && 
(roots[i].i == -roots[i+l].~ 
){/* complex root */ 

/* shift the root opposite Irom the last on */ 
roots[i].r *= shift_root; roots[i].i *= shift_root; 
roots[i+l].r *= shift_root; rootsp+l].i *= shift_root; 
if(shift_root == SHIFT_ROOT) shift_root = 1 ./SHIFT_ROOT; 
else 

shift_root -- SHIFT_ROOT; 

} else { F real root */ 
roots[i].r *= shi~_.root; mots[i].i *= shi~._root; 
if(shift_root == SHIFT_ROOT) shift_root = 1JSHIFT_ROOT; 
else 

shi~_root -- SHIFT_ROOT; 
} 

} 
} 
printf('%d roots shifted Irom UC by a factor of %t~n',m_equ,SHIFT_ROOT); 

} 
#endif 

/* determine maximum phase part */ 
max_phas = vector(1 L,(Iong)nffi); 
for(j=1 ;j<=nfft/2+l ;j-H-) 
{ 

freq = (j-l) * fclig I nfft; 
/* construct DFT from roots of wavelet *I 
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d~_spec = ONE; 
m_max=0; 
if(j==1) 
{ 

/* output */ 
if((to = fopen(~roots.max~,'wt')) == NULL) 
{ 

printfC'output file roots.max cannot be opened~n'); 
exit(l); 

} 
} 
for(i=1 ;i<=wv_m;i++) 
{ 

z=Complex(cos(2.*Pl*freq),sin(2.* Pl*freq)); 
if (Cabs(roots[i]) < 1.0) 
{ 

if (i== 1) 
~0rintf(fo,"% 12f % 12P~n',roots[i].r~roots~.i); 

re_max++; 
dum_l = Csub(z,roots[=']); 
d~_spec=Cmul(dfl._spec,dum_l); 

} 
} 
i f( j== 1) 

fclose(fo); 

/* fill spectrum */ 
if (j == 1)/* frequency 0.0 */ 
{ 

max_phas[1]= d~_spec.r; 
} 
else if (j == nfft/2+l)/~ Nyquist frequency 0.0 */ 
{ 

max_pbas[2]= dfl..spec.r; 

} 
else 
{ 

max.p i~s [2"j-1] = d l spec . r ;  
max_phas [2"Jl = d~_spec.i; 

} 
} 
/* inverse FFT */ 
reaift(max_phas,(Iong)nfft,-1); 
/* scale back to original amplitudes */ 
for(j=1 ;j<=nfft;j+~-) 
{ 

max_phas[j] /= (float)(nfft/2); 
} 
printf(*Wavelet has %d roots in maximum phase part.\n',m_max); 
I* output *t 
if((to = fopenCwavelet.max',~,vl')) == NULL) 
{ 
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printf('output file wavelet.max cannot be opened.~'); 
exit( l) ;  

} 
for(j=1 ;j<=m_max+l ;j++) 
{ 

fprintf(fo,'%g~',max_phaslii); 

} 
fclose(fo); 
/* determine minimum phase part */ 
min_phas = vector(1L,(Iong)nfft); 
for(j=1 ;j<=nffi/2+l ;j-H-) 
{ 

freq = (j- l) * fdk] / nfft; 
/* construct DFT from roots of wavelet */ 
dR_spec = ONE; 
m_min=O; 
if(j==1) 
{ 

/* output */ 
if((fo = fopenCroots.min','wt')) == NULL) 
{ 

printf(~output file roots.rain cannot be opened~') ;  
exit(l); 

} 
} 
for(i=1 ;i<=wv re;i++) 
{ 

z=Complex(cos(2.*Pl*freq),sin(2.*Pl*freq)); 
if (Cabs(roots~) > 1.0) 
{ 

if 0 == 1) 
fprintf(fo,'% 12t % 12f~n',roots[i].r,roots[~.~; 

m_min++; 
dum_l = Csub(z,roots[i]); 
dff_spec=Cmul(dft_spec,dum_l); 

} 
} 
if(j== 1) 

fclose(fo); 

/* fill spectrum */ 
if (j == 1)/* frequency 0.0 */ 
{ 

min_phas[1]= dft_spec.r; 
} 
else if (j == nff l /2+l)/* Nyquist frequency 0.0 */ 
{ 

min_phas[2]= dft_spec.r; 

} 
else 
{ 
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min_phas [2"j-1] = dff_spec.r; 
min_ohas [2*]] = dH_spec.i; 

} 
} 
/* inverse FFT */ 
realft(min_phas,(Iong)nfft,- 1); 
/* scale back to original amplitudes */ 
for(j=1 ;j<=nfft;j-H-) 
{ 

min_phas0] /= (float)(nflt/2); 
} 
printf('Wavelet has %d roots in minimum phase part.~n',rn min); 
/* output */ 
if((to = fopenCwavelet.min','wt")) == NULL) 
{ 

printf('output file wavelet.min cannot be opened!~n'); 
exit(l); 

} 
for(j=1 ;j <= m_min+l ;j++) 
{ 

fprintf(fo,"%g~n',min_phasl~); 

/* 

} 
fclose(fo); 

GENERAL DIFFERENCE EQUATION: 

m n 

\ \ 
yp] = >a *y[i-k] + >b *x[i-k] 

f k  / k  

k=l k=0 

\- ........ o/ \- . . . . . . . . . .  / 
AR MA 

Since there is no a term, the first a term is treated as a 
0 1 

I! the moving average parts should be ignored, a single 0 should 
be given as only MA coe|icients. 

yl] = output trace 
xl] = trace to be filtered 

*/ 

/* ARMA coefficients */ 
#ifdef SNG 

b = (float *)calloc(rn_max+l ,sizeof(float)); 
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a = (float *)calloc(m_max+l ,sizeof(float)); 
#endif 
#ifdef DBL 

b = (double *)calloc(m_max+l ,sizeof(double)); 
a = (double *)cailoc(m_max+l ,sizeof(double)); 

#endif 
for(j=1 ;j<=m_max+l ;j++) 
{ 

#ifdef SNG 
b[i-1] = max_phas[l'i; 

#endif 
#ifdef DBL 

b[j- 1 ] = (double)max_phaslil; 
#endif 

} 
/* Now, the time reversed maximum phase part ot the */ 
/* FIR filter is on b[0],....,b[m_max] */ 
/* INPUT: trace to be filtered */ 
/* estimate no. of lines in file */ 
ntot = 0; 
if ((fo = fopen('m_name,'rt')) 1= NULL) 
{ 

whUe((ch=fgetc(fo)) != EOF) 
{ 

if (ch == '~n') 
ntol++; 

} 
fdose(fo); 

} 
lead_zeros = 2*wv_m; 
ndat2 = ntot - nskip + lead_zeros + pad_zeros; 

#ifdef SNG 
x = (float *)calloc(ndat2 ,sizeof(float)); 
x2 = (float *)calloc(ndat2,sizeof(float)); 

#endif 
#ifdef DBL 

x = (double *)calloc(ndat2,sizeof(double)); 
x2 = (double *)calloc(ndat2,sizeot(double)); 

#endif 
/* INPUT data file */ 
if((fi = fopen(in_name,'rt')) == NULL) 
{ 

printf('input file %s cannot be openedl~n',in name); 
exit(l); 

} 
for(k=0;k<ndat2-nskip-pad_zeros-lead_zeros;k++) 
{ 

if(fgets(text_buffer,255,fO 1= NULL) 
{ 

if ((string_end = memchr(&text_buffer[0],%n',255)) I= NULL) 
*string_end = ~0'; 

#itdef SNG 
sscanl(text buffer,'%f" ,&x._inp); 
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#endif 
#ifdef DBL 

sscanf(te xt_buffer,'%lf',&x_inp); 
#endif 

} 
else 

x._inp = 0.0; 

it(k >= nskip) 
x2[k-nskip+iead_zeros] = x_inp; 

} 
fclose(fO; 
/* flip in time *t 
for(k=0;k< ndat2 ;k-H-) 
{ 

x[k]=x2[ndat2-1-k]; 
} 
/* output trace */ 

#~def SNG 
y = (float *)cailoc(ndat2,sizeof(float)); 

#endif 
#ifdef DBL 

y = (double *)calloc(ndat2,sizeof(double)); 
#endif 

m = m_max; 
n = re_max; 
for (i=O; i<=n; i++) 

b[,] /= b[n]; 
for (i=1; i<=m; i-H-) 

a[i-1] = -b[m-,]/b[m]; 
/* filter *t 
for (i=O; i<ndat2; i-H-) { 

~ l  = o.o; 
/* MA */ 
for (k=0; k<=n; k++) { 

if ((i-k) >= 0) { 
y[='J += x[i-k]'b[k]; 

} 
} 
/* AR */ 
for (k=l;  k<=m; k++) { 

if ((~k) >=0)  { 
y[~ += y[i-k]*a[k-1]; 

} 
} 

} 
temp = (float *)calloc(ndat2,sizeot(float)); 
/* flip back in time */ 
for(k=O;k<ndat2;k++) 
{ 

templk]=(float) y[ndat2-1-k]; 
} 
if (correct_time == 1) 
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{ 
time_shilt(temp, ndat2,shift_samptes); 
pdrdfC'iinear phase correcction: %f samples~',shiff_samples); 

} 
else 

printf("Trace needs linear phase correcction: %f samples\n',shitt_samples); 
F output */ 
if((fo = fopen(out_name,"wt")) == NULL) 
{ 

printf('output file %s cannot be openedi~n*,out_name); 
exit( l);  

} 
f~'(j=O;j<ndat2-lead_zeros;j++) 
{ 

lprintf(fo,~g~n*,temp[j+lead_zeros]); 

} 
tclose(fo); 
/* reconstruct original wavelet */ 
xf = vector(1L,(Iong)nffi); 
for(j=1 ;j<=nfft/2+l ;j-H-) 
{ 

freq = (j- l) * Mig / nlft; 
/* construct DFT from roots of wavelet */ 
dft_spec = ONE; 
m_max=0; 
for(i=1 ;i<=wv_m;h.+) 
{ 

z=Complex(cos(2.* Pl*freq),sin(2.*Pi*freq)); 
{ 

re_max++; 
dum_l = Csub(z,roots[i]); 
dft_spec--Cmul(dft_spec,dum_l); 

} 
} 
/* fill spectrum */ 
if (j == 1)/* frequency 0.0 *I 
{ 

xf[1]= d~_spec.r; 
} 
else if (j == nf l t /2+l) /*  Nyquist frequency 0.0 *,t 
{ 

xf[2]= dfl..specx; 

} 
else  
{ 

xf [2"j-1] = d l s p e c . r ;  
xf [2*j] = dtt_spec.i; 

} 
} 
F inverse FFT 
reaift(xf,(Iong)nlft,- 1 ); 

*/ 
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/* scale back to original amplitudes */ 
for(j=1 ;j<=nflt;j++) 
{ 

xf[U /= (flcat)(nll1~2); 
xfiil *= max; 

} 
/* output */ 
if((fo = fopen('wavelet.rec",'wt")) == NULL) 
{ 

printf('output file wavelet.rec cannot be opened!\n"); 
exit(l); 

} 
for(j=1 ;j<=wv_m+l ;j++) 
{ 

~intt(fo, '%g~n',x~); 

} 
fclose(fo); 
/* free allocated memory */ 
tree_vect or(max_phas, 1 L, (Iong)nfll); 
free_vect or(min_phas, 1 L,(Iong)nfft); 
free_vector(equ_phas,1 L,(Iong) nffi); 
free_vector(xf, lL,(Iong) nfft); 
free((char *)a); 
free((char *)b); 
free((char *)x); 
free((char *)x2); 
free((char *)y); 
free((char *)temp); 

} 
/** 

NAME: time_shill 
SYNOPSIS: 
float *y; 
int ndat; 
float shill_samples; 
time_shill(y, ndat,extra_samples); 
DESCRIPTION- Performs a time shill in the frequency domain by 
multiplication with the corresponding phase shift operator. 
DATE: July 2, 1993 (Frank Scherbaum) 

**/ 

int time_shift (y, ndat ,shi~_samples) 
float *y; 
int ndat; 
float shift_samples; 
{ 

float *shift; /* spectrum corresponding to the desired time shill */ 
int i,j; 
float amp,phase; /* amplitude and phase of shilling spectrum */ 
float real, imag; /* real, imaginary of shilling spectrum */ 
float t_samp; /* sampling interval */ 
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int ia; /* integer part  of shift *t 
f loat extra_samples;  r lracUon of samples to shift */ 
f loat *b l ;  /* trace buffers */ 
f loat *bb l ,  *bb2; /* trace buffers */ 
f loat x l ;  /* dummy  variable */ 
int nfft; 
/* al locate bu f fe r * l  
b l  = (float *)caUoc(ndat,sizeof(float)); 
i a =  O; 
i f(shift_samples == (int)shift_samples) 
{ / * in teger  mult iple of 1 sample */ 

ia = (int)shift_samples; 
ext ra_samples = 0.0; 

} 
else 
{ 

ia = (int)shift_samples; 
e x t r a s a m p l e s  = shif t_samples - ia; 

} 
if(ia >0) 
{ 

for (j = ndat-1 ; j  >= ia; j--) 
{ 

x l  = *(y + j -  ia); 
*(bl+j) = x l ;  

} 
for (j = O; j < ia; j-H-) 

* (b l+ j )  = 0,0; 
} 
else if(ia < O) 
{ 

for (j = 0 ; j < ndat + ia-1 ; j++)  
{ 

x l  = *(y + j  - ia); 
* (b l+ j )  = x l ;  

} 
for (j = ndat-ia ; j <ndat; j++) 
{ 

*(bl+D = o.o; 
} 

} 
else if (ia == O) 
{ 

for (j = O; j < ndat; j++) 
*(131+j) = *(y + j); 

} 
/* 

every shift less than a sample is done in the 
l requency domain 

*/ 

if (extra_samples != 0.0) / *  non-integer part of shift */ 
{ 

nfft = 1; 
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while(ntft < ndat) 
nflt *= 2; 

nfft *= 2; / *  to avoid wrap around *f 
bb l  = (float *)caHoc(nfft,sizeof(fleat)); 
bb2 = (float *)calloc(nflt,sizeof(float)); 
for(j=O;j<ndat;j++) 
{ 

bb l  fi] = b l  [j]; 
} 
realft(bbl-1 ,(long)hilt,I); 
amp = 1.0; 
/* 

1 sample shift == 
phase of PI at f Nyquist (l inear in between) 
*t 
bb2[0] = amp; 
bb2[1] = amp; 
tor (j=l ; j < nftb'2; j++) 
{ 

phase = ex t rasamp les  + 
((float)j/(float)nfft)* PI; 

real = amp*cos(phase); 
imag = amp*sin(phase); 
bb2123] = real; 
bb2[2*j+l ]  = imag; 

} 
/* spectral multiplication */ 
bb l  [o] *= bb2[0]; 
bbl  [1] *= bb2[1]; 
for ( j=l ;  j < nffd2; j++) 
{ 

real = bbl[2*j]*bb2[2*j] - bbl [2* j+l ]*bb2[2* j+l ] ;  
imag = 10bl[2*j]*bb2[2*j+l] + bbl[2*j+l]*bb2[2*j~; 
bb l  [2"1] = real; 
bb l [2* j+ l ]  = imag; 

} 
/* inverse FFT */ 
realft(bbl-1 ,(Iong)nfft,- 1 ); 
/* scale amplitudes back */ 
for(j=0;j<ndat;j++) 
{ 

ybl = 2*bblb] /nm; 
} 
~ee((char *)bl);  
free((char *)bbl);  
free((char *)bb2); 
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L i s t i n g  2 Makefile for mkcausal  

DEF = -DDBL -DMASSAGE_CIRCLE 
CFLAGS = -g $(DEF) 
.c.o: 
cc -c $(CFLAGS) $*.c 

mkcausal: mkcausal.o zrhqr.o baJanc.o nrutil.o hqr.o complex.o reallt.o fourl.o 
cc $(CFLAGS) -o mkcausal mkcausal.o zrhqr.o balanc.o nrutil.o hqr.o complex.o realft.o 
four1 .o -Im 

A l l  routines other than mkcausal.c that are needed in this context are from Press et 
al. (1992). 


