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v

  It is clear from the chapters of this book that the volume and quality of research 
on spatial microsimulation is on a rising curve—and so it should be because it is 
potentially the key to much of the future of urban and regional modelling. This is for 
two reasons:  fi rst, space is key to the modelling enterprise, and second, almost any 
other approach is bedevilled by the problems of high dimensionality—arrays with 
large numbers of subscripts and superscripts most of whose elements are zero. At the 
outset, therefore, microsimulation offers an ef fi cient way of storing the complexities 
of cities and regions, reducing the storage space needed by several orders of magni-
tude. There is also a third reason: much government policy is enacted at a national 
level, and time after time, the consequences of such policies at a  fi ner spatial scale 
are not investigated. Microsimulation has already shown that it can contribute 
enormously in this area. 

 This is not the place to summarise the book: that is done very effectively in the 
 fi rst and  fi nal chapters. What I can do is echo part of the argument of the authors of 
the concluding chapter and remark on the ongoing research agenda of which this 
book will be a foundation. The early chapters, which provide a blueprint on how to 
build a spatial microsimulation model, demonstrate another virtue: that such a 
model can integrate disparate data sources, often with different spatial and sector 
classi fi cations. At present, there is often a speci fi city of purpose in these endeavours—
for example, to generate small area income distributions which are invaluable and 
which cannot be obtained in any other way. However, this suggests a  fi rst major 
research challenge: to be systematic about this and to see spatial microsimulation 
as the foundation of a comprehensive intelligence system—that has transformed 
disparate data into such a system. There are at least two ways in which this challenge 
can be approached. Perhaps not surprisingly, the mention of iterative proportional 
 fi tting and ‘constraint variables’ leads me to believe that there may be an entropy 
maximising version of the general problem which might enhance the deterministic 
route. Alternatively, I suspect there is a challenge yet to be fully taken on to articulate 
all the conditional probability distributions that underpin the stochastic route to 
microsimulation: there will be circularities here, and it will need some clever theoretical 
research to handle these. 

       Foreword  



vi Foreword

 A second challenge is re fl ected in the second half of the book: to make the 
models fully dynamic. Much progress has been made and is shown here, but a 
related challenge arises from one of the pleas of the authors of Chap.   16    : to connect 
dynamic spatial microsimulation models to other urban models. This would mean 
representing ‘players’ other than the population—economic agents such as retailers, 
for example— and this would draw the  fi eld into the areas of modelling nonlinear 
systems with all the dif fi culties of path dependence and phase changes. These would 
generate discrete jumps in population behaviour—assuming that spatial interaction 
is fully built into the population models. 

 Many of the authors in this book have been members of a relatively small 
community that has driven spatial microsimulation forward. I can only applaud that 
commitment and now recognise that their efforts will surely be rewarded with 
the continuing growth of the  fi eld. This book will be an important agent in stimulating 
that growth. 

 London Alan Wilson 

http://dx.doi.org/10.1007/978-94-007-4623-7_16
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             1.1   Introduction 

 Microsimulation as a method has been used in the social sciences since the pioneering 
work by Guy Orcutt and his colleagues (Orcutt et al.  1961  ) . Several authors have 
extended the original work of Orcutt (Sutherland  1995 ; Orcutt and Glazer  1980 ; 
Zaidi et al.  2009  ) , and the methodology has been incorporated into tools that can be 
used to examine the effects of policies before they are implemented, for example. 
The basic premise of microsimulation is that a more realistic picture of aggregate 
behaviour can be derived from looking at individual behaviour and modelling the 
interaction between the individual units in the system under consideration. 

 So far, much of this modelling has been applied at a national scale – such as the 
impact of tax changes on national income or the impact of health policy changes on 
the population. Recent advances in microsimulation by geographers have added a 
spatial dimension to these results. In the last few years, the number of spatial methods 
has expanded, and therefore this book is intended to bring together all of this recent 
research in what is now known as  spatial microsimulation . 

 This book is intended to be a guidebook for practitioners looking to learn how 
to develop a spatial microsimulation model. The chapters show what sort of data 
are required, how to prepare these data, how different types of models have been 
developed using different methods and the limitations of each type of model, how 
to validate a model and  fi nally, what the future is for spatial microsimulation. 

 The models are split into two types: static spatial microsimulation models and 
dynamic spatial microsimulation models. Static spatial microsimulation models use 
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a static ageing technique which ages variables by either uprating them (for  fi nancial 
data) or reweighting them to future populations (for demographic data). Any policy 
change modelled is applied to the population, but the demographic processes of 
ageing, being born and dying, are not modelled. Static spatial microsimulation 
models are best for ‘next day’ analyses – for example, if we change this now, how 
will it impact the population tomorrow? 

 In comparison, in a dynamic spatial microsimulation model, the characteristics 
of the underlying population in the original dataset are aged so that factors like 
births, deaths and migration are modelled. This means that the policy change is 
made to a population that represents the ‘best guess’ population for the current and 
future times. 

 Chapter   2     of this book outlines how to prepare data for a spatial microsimulation 
model. This is an important step for any spatial microsimulation model. Without 
excellent data preparation, a model will be much harder to construct, and results 
will not be reliable. In any modelling, it is true to say that what comes out is only as 
good as what goes in. 

 Chapters   3    –  10     outline a number of methods for static spatial microsimulation, 
present a projection methodology for static spatial microsimulation, show how static 
spatial microsimulation models can be linked to aggregate or macro models and 
canvass the limits of static spatial microsimulation. 

 Chapters   11    –  14     show a number of methods that have been used for dynamic 
spatial microsimulation and then outline the limits of dynamic spatial microsimula-
tion models. 

 Chapter   15     shows how spatial microsimulation models can be validated, and 
Chap.   16     provides an insightful background to the development of spatial micro-
simulation models and outlines the likely future directions for spatial microsimula-
tion models.  

    1.2   History of Spatial Microsimulation 

 While some early modelling attempts could be considered to be spatial micro-
simulation (Hagerstrand  1952 ; Wilson and Pownall  1976  ) , one of the  fi rst spatial 
microsimulation models was a model for health-care planning developed by Clarke 
et al .   (  1984  ) . The model, called HIPS (health information and planning system), 
was developed for the British health district authorities. The model generated an 
initial population from aggregate data for each location. The demographics of this 
initial population were then updated each year. 

 Clarke was also involved in other papers on spatial microsimulation modelling, 
including a spatial microsimulation model developed with Birkin called ‘Synthesis’ 
which used an iterative proportional  fi tting method, as described in Chap.   4     of this 
book (Clarke and Wilson  1985 ; Clarke and Holm  1987 ; Birkin and Clarke  1988 ; 
Birkin and Clarke  1989  ) . 

 The next step in spatial microsimulation was a model developed by Clarke and 
Williamson, which was developed to estimate demand for water (Clarke et al.  1997 ; 

http://dx.doi.org/10.1007/978-94-007-4623-7_2
http://dx.doi.org/10.1007/978-94-007-4623-7_3
http://dx.doi.org/10.1007/978-94-007-4623-7_10
http://dx.doi.org/10.1007/978-94-007-4623-7_11
http://dx.doi.org/10.1007/978-94-007-4623-7_14
http://dx.doi.org/10.1007/978-94-007-4623-7_15
http://dx.doi.org/10.1007/978-94-007-4623-7_16
http://dx.doi.org/10.1007/978-94-007-4623-7_4
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Williamson et al.  1998  ) . This model used a method developed by Williamson called 
combinatorial optimisation, which is described in Chap.   3     of this book. 

 Around this period, there was a considerable amount of work being done using 
spatial microsimulation. It was being used to look at regional changes in household 
incomes (Caldwell et al.  1998  ) , for population projections (Van Imhoff and Post 
 1998  )  and for estimating household attributes (Williamson et al.  1998 ; Ballas and 
Clarke  1999 ; Ballas et al.  1999  ) . All these models were static spatial microsimulation 
models and used either an iterative proportional  fi tting method, as described in 
Chap.   4    , or a probabilistic combinatorial optimisation method, as described in Chap.   3    . 
Other static spatial microsimulation models using combinatorial optimisation include 
the ‘SMILE’ model from Ireland (Ballas et al.  2005  ) , as described in Chap.   7    . 

 Another method being used for static spatial microsimulation is a deterministic 
reweighting method using a generalised regression method to reweight the survey 
weights provided on many survey  fi les to small area benchmarks. This method has 
been pioneered by the National Centre for Social and Economic Modelling in 
Australia (Harding et al.  2003 ; Tanton  2007  ) , and this method is described in Chap. 
  6    . In terms of static spatial microsimulation, the  fi nal method described in this book 
is a deterministic combinatorial optimisation method (Edwards and Clarke  2009  ) , 
and this is described in Chap.   5    . 

 The  fi rst dynamic spatial microsimulation model was created by staff at the Spatial 
Modelling Centre in Sweden in 1999 (Vencatasawmy et al.  1999  ) . This model is 
called ‘SVERIGE’ and is described in Chap.   12    . In Britain, a number of dynamic 
spatial microsimulation methods have been developed, and these include ‘Moses’ 
(see Chap.   11    ) and ‘MicroMaPPAS’ (see Chap.   13    ). Also, ‘SimBritain’ has been 
developed by Ballas as a dynamic microsimulation model for Britain (Ballas et al. 
 2007  ) . Note that many of these dynamic models originated as early static spatial 
microsimulation models and were subsequently developed into dynamic models. 

 There are limitations with both static and dynamic spatial microsimulation models, 
and no book is going to be complete without a discussion of these limitations, which 
are outlined in Chap.  10     for static spatial microsimulation models and Chap.   14     for 
dynamic spatial microsimulation models. This discussion means that the reader is 
aware of what the limitations are before embarking on the construction of a model 
of this type.  

    1.3   Applications of Spatial Microsimulation Models 

 There are three main applications for spatial microsimulation models:

    1.    Small area estimation  
    2.    Small area projection  
    3.    Small area policy modelling     

 Deriving estimates for small areas is a key concern for governments at all levels, 
whether for tax, health, poverty alleviation or identifying areas of disadvantage. 
Most government services can be targeted to small areas, and information on where 

http://dx.doi.org/10.1007/978-94-007-4623-7_3
http://dx.doi.org/10.1007/978-94-007-4623-7_4
http://dx.doi.org/10.1007/978-94-007-4623-7_3
http://dx.doi.org/10.1007/978-94-007-4623-7_7
http://dx.doi.org/10.1007/978-94-007-4623-7_6
http://dx.doi.org/10.1007/978-94-007-4623-7_5
http://dx.doi.org/10.1007/978-94-007-4623-7_12
http://dx.doi.org/10.1007/978-94-007-4623-7_11
http://dx.doi.org/10.1007/978-94-007-4623-7_13
http://dx.doi.org/10.1007/978-94-007-4623-7_10
http://dx.doi.org/10.1007/978-94-007-4623-7_14
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services are needed is imperative for ef fi cient service delivery. Often these data do 
not exist at a small area level, and thus estimating these data is necessary. Small 
area estimation is a technique used by statisticians to derive estimates for one variable, 
but spatial microsimulation is now becoming a technique to allow the estimation 
of cross-tabulated data. So, while small area estimation can provide an estimate of 
incomes (e.g. Bell et al.  2007  ) , spatial microsimulation can provide estimates of 
income cross-tabulated with, for example, family type (Miranti et al.  2011  ) . 

 Projections of different populations are also vital for government planning, 
particularly as overcrowding becomes a major issue in some western countries and 
concerns around how to support an ageing population are raised. Dynamic spatial 
microsimulation can be used to look at where growth in populations that will require 
services will be in the future, so governments can plan for the future. Examples are 
looking at where older, single people will be living in the future, examining the need 
for aged care services (Lymer et al.  2009  )  or looking at where young children with 
all parents working will be living to assess demand for childcare places (Harding 
et al.  2011  ) . Chapter   9     in this book shows how projections can be derived from static 
spatial microsimulation models. 

 Another application of spatial microsimulation is to look at where a policy will 
have the greatest effect. A recent example in Australia was looking at the reduction 
in poverty rates for older, single people on an age pension after an increase in the 
age pension (Tanton et al.  2009  ) .  

    1.4   Validation of Spatial Microsimulation Models 

 An important part of any statistical model is validating the model against real-world 
data. There is not much point using a model if it does not represent the real world in 
some way. Validation is also very important for governments who use the output 
from microsimulation models, as they need to be sure that any modelled changes 
that they are basing their policies on are accurate and reliable. Chapter   15     surveys 
the different validation methodologies that have been implemented in different 
spatial microsimulation models.  

    1.5   The Future 

 There are two chapters that point to the future of spatial microsimulation modelling. 
One is the linking of static spatial microsimulation models to macro models 
(Chap.   8    ). This has been done with national microsimulation models (Bourguignon 
et al.  2010 ; Colombo  2010 ; Hérault  2010  )  but has not been done with spatial 
microsimulation models, so this is a fascinating new area for research. 

 Chapter   16     summarises what we see as the future for spatial microsimulation 
modelling. It is an exciting, and developing,  fi eld with strong applications in government 

http://dx.doi.org/10.1007/978-94-007-4623-7_9
http://dx.doi.org/10.1007/978-94-007-4623-7_15
http://dx.doi.org/10.1007/978-94-007-4623-7_8
http://dx.doi.org/10.1007/978-94-007-4623-7_16
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and research. In essence, this is what drives many of the researchers in this  fi eld: the 
ability for spatial microsimulation models to inform government. These models 
really can make a difference in society by modelling potential policies and testing 
the spatial effect of these policies before they are implemented. This allows govern-
ments to see which areas are going to be affected the most by the proposed policy.  

    1.6   Conclusion 

 Spatial microsimulation modelling is an important development, enabled largely 
through increased computational capabilities. It provides valuable data to govern-
ments and researchers, allowing them to access detailed data at the small area level 
in order to understand the impact of policy changes and health outcomes in targeted 
populations.      
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 This chapter provides practical instruction and examples of some of the key issues 
that need to be considered when selecting and preparing data for building a spatial 
microsimulation model. The data underlying the spatial microsimulation model 
being built are fundamental to the accuracy and robustness of the small area results 
produced from the model. If these data are correct and as compatible as possible, the 
procedures being used to produce the spatial microsimulation model will operate 
more effectively, and the output will be more reliable. 

 There are numerous issues that may develop around data preparation for the 
model; some will have simple solutions, while others will require more thought and 
resources. Some of the considerations and issues that may arise include data require-
ments and data sources, resolving differences in variable de fi nitions and data scope 
and the absence of a particular population in the dataset being used (e.g. children). 

 As discussed in Chap.   1    , spatial microsimulation models are typically constructed 
by using data from a nationally representative sample survey and some reliable 
small geographic area data source, normally a national Census. There are variations 
around this; for example, some models use synthetically created data rather than 
sample survey data. While every country will have different national sample sur-
veys and varying national population Censuses, the following is a checklist of issues 
that have emerged during NATSEM’s (National Centre for Social and Economic 
Modelling) Australian attempts to prepare various national sample surveys for 
reweighting to the Australian Census tables. Many of the examples provided in this 
chapter relate to NATSEM’s spatial microsimulation model, SpatialMSM, but can 
be equally relevant to other spatial microsimulation models. 
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    2.1   Data Sources and Requirements 

 Two data sources are typically required to build a spatial microsimulation model. 
The  fi rst is a representative sample survey, which provides a wide variety of rich and 
detailed information but lacks geographic information—such as a survey of income 
and housing. The second dataset is one which often has limited data items and 
detail, but high geographic disaggregation—such as a Census. Typically both 
datasets will be nationally representative; however, spatial microsimulation models 
for speci fi c areas within a country or region may also be built if adequate data is 
available. 1  From this point on, we will refer to the two common datasets used in 
spatial microsimulation as a ‘sample survey’ and a ‘Census’. 

 Data from the geographically rich dataset are usually used as benchmarks or 
constraints, to which synthetic small geographic area estimates produced by the 
spatial microsimulation process must match. 

 Datasets may also be combined in order to maximise the sample size available for 
modelling and improve the output from the microsimulation model. For example, the 
latest versions of the Australian spatial microsimulation model—SpatialMSM—
combined two surveys of income and housing. This gives greater reliability to the 
model but also means the base data for the SpatialMSM model is compatible with the 
base data for NATSEM’s static microsimulation model—STINMOD. This model 
replicates the rules of the Australian income tax, social security and family payment 
programmes (Lloyd  2007 ; Percival et al.  2007  ) . By doing this, the model then has the 
added potential of providing policy analysis at a small geographic area level, if the 
research question calls for this (   Harding et al.  2009 ; Tanton et al.  2009  ) . 

 Additional data sources may also be necessary in order to facilitate special 
population imputation (see Sect.  2.4  below).  

    2.2   Sample Scope 

 One of the most important things in a spatial microsimulation method is ensuring 
that the scope of the survey sample and the Census are the same or can be amended 
to be the same. There are several common areas where the two datasets may not 
have the same scope. These include:

    1.    The unit of analysis (household, income unit, etc.).  
    2.    The inclusion or exclusion of persons in non-private dwellings, like hospitals or 

nursing homes, which are usually on the Census information but are not usually 
in survey samples.  

   1   A nationally representative survey is one that has been designed and conducted in a way so that it 
captures the characteristics of all persons and households. Households and persons within the survey 
are then assigned a ‘weight’, which, when summed, will equal the entire population of that nation.  
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    3.    The classi fi cation of households—for example, in the Australian Census, there are 
‘non-classi fi able’ households, which are households that satisfy one of a number of 
criteria which means the Census data may be unreliable. These criteria include having 
no one in the house aged over 15 and having inadequate data on the Census form.     

 Depending upon the data sources being used, the scope differences will vary, and it 
is important that these differences are identi fi ed and corrected as much as possible. 
These areas are discussed further below.  

    2.3   Unit of Analysis 

 In many cases, the sample survey and the Census may use the same income-sharing 
unit (the unit within which income is assumed to be shared). However, this is not 
always the case. It needs to be con fi rmed that a ‘household’ in the sample survey has 
the same meaning as a ‘household’ in the Census. In the Australian case, NATSEM’s 
STINMOD model uses a special ‘social security’-type income unit, which is a 
subset of the usual household income-sharing unit. In addition, some of the earlier 
ABS sample surveys used a nuclear family income unit de fi nition, which was again 
a subset of the standard household income-sharing unit. In all such cases, the smaller 
income units had to be aggregated to household units before the spatial microsimu-
lation model could be run. 

    2.3.1   Non-private Dwellings 

 While not universally the case, most national sample surveys only include the 
population that live in private dwellings within their scope. Thus, for example, 
the Australian Bureau of Statistics’ (ABS) Survey of Income and Housing (SIH) 
samples households and individuals resident in private dwellings and excludes 
those resident in non-private dwellings such as aged care and nursing homes, 
prisons, boarding schools and hospitals. The ABS Census includes people living 
in non-private dwellings. If the sample survey  fi le of households residing in 
occupied private dwellings is used in combination with information from the 
Australian Census, then the spatial microsimulation model will be biased. 

 For example, suppose that we are trying to derive estimates of health status by 
age for each small geographic area by using a spatial microsimulation model. If a 
particular small geographic area contains  fi ve large nursing homes and we use ‘age 
by gender’ Census totals as a benchmark for that small geographic area, then we are 
likely to overstate the number of healthy over-70-year-olds actually residing in that 
small area. This is because the relatively healthy over-70-year-olds are likely to be 
still living in their own homes, which means the sample survey will have been 
in fl ated to match the total number of over-70-year-olds as shown in the Census 
results for that small area (a total which will include the relatively unhealthy 
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over-70-year-olds in nursing homes). Thus, it is important to ensure consistency 
between the population in scope in the relevant sample survey and the population in 
scope for the Census. 

 In order to achieve this consistency, it may be necessary to remove or impute 
information about particular populations. For some analyses, information about 
people in non-private dwellings may be required. For example, the area of interest 
may be people aged over 80 years; however, a substantial proportion of these 
people often reside in hospitals or nursing homes. As discussed above, often people 
living in non-private dwellings are excluded from survey data but are included in 
Census data. In order to ‘match’ these populations, it will be necessary to develop a 
methodology for removing or including these persons, depending upon the research 
question or operation required by the model. More information on this process is 
provided in Sect.  2.4.2  below.  

    2.3.2   Non-classi fi able Households 

 Another area where the scope of the sample survey and Census may not match is 
when people are grouped as living in ‘other non-classi fi able households’ or some 
such similar classi fi cation. In Australia, these households are de fi ned as those 
households that contain no persons aged over 15 years; that the collector deemed 
occupied but was unable to make contact with any occupants; or where the infor-
mation supplied on the Census form was inadequate. This discrepancy between the 
two data sources was resolved by obtaining special benchmark tables from the ABS 
that excluded non-classi fi able households. Other methods may need to be employed 
in the case that these data are not available. In previous microsimulation models 
constructed at NATSEM, a non-classi fi able population was created for the survey; 
however, this was considered to be an inferior solution.   

    2.4   Population Imputation 

 As discussed above, population imputation may be necessary for a spatial micro-
simulation model if there are speci fi c populations of interest missing from either 
dataset. The most common populations of interest that are often absent from sample 
surveys but included in Censuses are children and persons living in non-private 
dwellings. Imputation of these two important populations is discussed below. 

    2.4.1   Imputation of Child Records 

 Typically, in ABS surveys, only persons aged 15 and over are included in sample 
surveys, and no individual records of children are available. The records for 
children within a household are held with the household information, and limited 
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information on children is available. Imputing child records onto the survey will 
enable child-focused research to take place, such as estimating the numbers of 
children in poverty for particular communities. 

 The problem of not having children on the survey can be overcome somewhat by 
imputing the number of children in each household through existing household 
information from the survey which shows how many children in each age group 
reside in each household. Where this information is not available, alternative 
imputation methods can be used (see Brick and Kalton  1996  for a description of 
methods); however, more often than not, the record for the household will have 
information about the number of and ages of children residing in each household. 

 These known dependent children can then be output as individual person-level 
records to the sample survey and assigned to their corresponding households. Each 
child record will need to be assigned a new individual identi fi er; however, the family 
identi fi er, income unit identi fi er, household identi fi er and the age group variables 
(where they exist) can be retained. Relevant household and income unit variables can 
then be merged onto the child-level dataset and appropriate values for person-level 
variables assigned to each child. For example, the occupation and income  fi elds 
(if included as benchmarks) will be assigned a value of zero (for not in labour force) 
and current study status a value that re fl ects full-time student for those of school age. 
Some values may need to be randomly assigned based on known values or ratios—
such as sex. 

 Another issue that may be encountered when imputing child records is the 
top-coding of variables, which is often carried out by national statistical agencies in 
an effort to maintain data con fi dentiality. For example, in the 2007–2008 Survey of 
Income and Housing, the ABS top-coded the number of children in each age range, 
resulting in a capped total number of children in the household of  fi ve or more 
children. To overcome this, the total number of usual residents in each household, 
together with the total number of children and adults, is used to re-estimate the 
number of children. Where it has been determined that a household had an ‘extra’ 
child, this child was randomly assigned within the child age ranges available. 
This imputation method retains the ABS con fi dentiality while also providing the 
information required for the model.  

    2.4.2   Imputation of a Non-private Dwelling Population 

 People living in non-private dwellings (NPDs) are often an important population to 
include in an analysis. These people, while being a relatively small population com-
pared to people in occupied private dwellings (OPD), are often recipients of income 
support and are therefore of interest to researchers and policymakers. Survey data 
does not often have information about persons living in NPDs (which includes 
dwellings such as hospitals, boarding schools, prisons and nursing homes), whereas 
Census data will typically include this information. Given this inconsistency, infor-
mation about non-private dwellings can either be deleted from or added to each data 
source in order to make them directly comparable. 



14 R. Cassells et al.

 If there is a need to create a synthetic non-private dwelling population, this can 
be done using existing data about persons living in NPDs. For the SpatialMSM 
model, special records were created for individuals in non-private dwellings by 
using information available in the 2001 Census 1% unit record  fi le (Cassells et al. 
 2010  ) . These records were then attached to the survey unit record  fi le. Both children 
and adults residing in NPDs were included in the sample, and only those persons 
classi fi ed as usual residents were included in the NPD population. Detail about 
these persons was imputed from other known values—for example, a single integer 
value of income was imputed from the income range available in the sample  fi le. 
Most other person-level detail was available, for example, labour force status, age, 
number of hours worked, study status, type of educational institution attending 
and so on. Persons in NPDs obviously receive a value of zero for all household 
and family-level variables. Each NPD record was assigned a weight of 100, given 
that the data has been derived from a 1% random sample of the 2001 Census. 
This resulted in 1,995 adult (persons aged 15 and over) NPD records and 109 child 
(persons aged under 15 years) NPD records.   

    2.5   Matching Variable De fi nitions in the Sample Survey 
and the Census 

 For the spatial microsimulation process to work correctly, the variables used to 
match in both the Census and the survey dataset must be de fi ned in the same way. 

 One key issue here involves matching variable de fi nitions used in the sample 
survey and the Census small area tables. In some cases, this may require aggre-
gating  fi ner groups contained in either the Census or the sample survey to broader 
aggregations. For example, the sample survey may have eight categories of post-
school quali fi cations, while the Census may have only four. Careful reading of 
the documentation for both data sources is required to correctly aggregate the 
various categories so that they match exactly—a process which may, for exam-
ple, ultimately end up with only two post-school quali fi cation categories in both 
data sources. 

 A second issue is that variables that at  fi rst glance appear the same—for example, 
‘labour force status’—may be de fi ned quite differently in the two data sources. For 
example, one data source may consider being ‘unemployed’ as working no hours of 
paid work per week, and another data source may de fi ne ‘unemployed’ as those who 
receive unemployment bene fi ts from the government. For SpatialMSM, because 
both data sources are from the same statistical agency (the Australian Bureau of 
Statistics), variables are often de fi ned in the same way, as ABS standard de fi nitions 
are applied across all surveys and the Census. However, this may be a more 
signi fi cant issue if the data were from different agencies. 

 A third issue will arise if a dataset has non-response values and another does not. 
These non-response values are often referred to as ‘not-stated’ values. For example, 
due to the nature of collection of Australian Census data (non-interviewer-assisted), 
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Census data often contains fully and partially not-stated values. However, any 
partial non-response value from ABS survey data is imputed. This being the 
case, the non-response values from the Census need to be redistributed amongst 
known categories so that the two data sources can be as compatible as possible. 
For SpatialMSM, this redistribution was proportional, based on the relative frequency 
of known values. Other methods may also be employed to assign not-stated values 
appropriately.  

    2.6   Uprating and De fl ating 

 Uprating or de fl ating typically involves adjusting monetary values collected within 
the sample survey to account for estimated price movements since the time of the 
survey or anticipated future movements (Harding  1996 , p. 3). For example, a static 
microsimulation model that is trying to capture the 2011–2012 tax and transfer 
systems may be built upon 2009 sample survey data. Here, the earnings of employees 
shown in the survey data need to be in fl ated by movements in average weekly 
earnings between 2009 and 2011–2012. Alternatively, the data may require de fl ating, 
if the sample survey is more current than the benchmark data. All dollar values used 
in the benchmark tables will need to be adjusted by a suitable value. For SpatialMSM, 
housing costs (rent and mortgages) and personal and household incomes are adjusted 
using consumer price index and average weekly earnings changes, respectively. 

 To be able to match the sample survey data to Census data, all the  fi nancial data 
have to relate to the same year. In most cases, it is easier to uprate the  fi nancial data 
in the surveys to the year of the Census rather than adjust the Census data.  

    2.7   Balancing Data 

 National statistical agencies will often randomise small area data to maintain a level 
of con fi dentiality. This randomisation will often result in slightly different popula-
tion totals for the benchmark tables being used. In NATSEM’s previous spatial 
microsimulation models, a complicated and time-consuming process took place in 
order to align the Census benchmark total populations, as this was thought to improve 
the reweighting process and convergence. This process was termed ‘balancing’ the 
tables. In 2007, some sensitivity analysis was conducted in order to determine if 
there was a signi fi cant bias in the results produced through using unbalanced data. 
A comparison of balanced and unbalanced results from the Australian Capital 
Territory (ACT) in Australia found that the practice of balancing data had little 
effect on the results and in some cases, the results obtained from the unbalanced 
data were closer to the true Census counts than those from the balanced data. Given 
the results of the sensitivity analysis, the current Census benchmark tables used for 
SpatialMSM are not balanced. However, work on projecting data using a spatial 
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microsimulation model, reported in Chap.   9     of this book, has found that balancing 
becomes more important for data projections, particularly for longer-term projec-
tions, and balancing is used in this instance.  

    2.8   Conclusion 

 This chapter details issues and speci fi c measures taken to prepare and harmonise 
sample survey and Census data needed to build a spatial microsimulation model. 

 Transforming and manipulating these data sources, so that they are as compatible 
as possible, will ensure that the spatial microsimulation technique being used is 
optimised, and the output gained from the model will be as accurate as possible. The 
issues discussed in this chapter are those experienced with a particular model using 
Australian data and are not exhaustive. Other issues may arise depending upon each 
model being built and the raw data being used.      
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          3.1   Background 

 Population microdata comprise a list of individuals, normally nested into families 
and households, with each individual having an associated set of personal demo-
graphic and socio-economic characteristics. Microdata offer well-known advantages 
over tabular data, including enhanced possibilities for linkage to other data sources, 
retention of maximum  fl exibility in user-determined aggregation and analysis and 
ef fi ciencies in data storage (for large multivariate datasets) (Birkin and Clarke  1995  ) . 
These advantages are re fl ected in the widespread use by researchers of public use 
microdata from censuses and social surveys. 

 To protect respondent con fi dentiality, population microdata are typically 
stripped of all subregional geography. However, a clear demand exists for microdata 
spatially coded to subregion level. This demand is re fl ected in calls for a third, 
more spatially detailed, Sample of Anonymised Records from the UK 2001 Census 
(Dale and Teague  2002  ) . In the absence of such data, a number of projects have 
been forced to generate their own synthetic small-area population microdata 
(Birkin and Clarke  1988 ; Beckman et al.  1996 ; Martin et al.  2001  ) . 

 Four main approaches to the creation of spatially detailed synthetic population 
microdata may be identi fi ed: data fusion/merging, strati fi ed sampling, reweighting 
and imputation (Williamson  2002  ) . Of these four approaches, two are not practica-
ble. Data fusion and merging requires levels of access to the original microdata not 
normally permissible due to legal safeguards on respondent con fi dentiality, whilst 
shortcomings in published small-area data mean that conventional strati fi ed sampling 
is unable to capture the highly complex and multidimensional nature of between-
area differences (Voas and Williamson  2001a  ) . The statistical reliability of the two 
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remaining approaches, although both in widespread use, has never been systematically 
and rigorously evaluated. 

 Section  3.2  introduces the two approaches to the creation of synthetic small-area 
population microdata evaluated in this chapter. The  fi rst, synthetic reconstruction, is 
an imputation-based approach. The second, combinatorial optimisation, is a 
reweighting-based approach. Fuller accounts of the original implementations of 
each approach may be found elsewhere (Birkin and Clarke  1988 ; Williamson et al. 
 1998  ) . As part of the research reported in this chapter, a number of signi fi cant technical 
improvements have been made to these methods, all aimed at maximising their 
performance. These innovations are detailed in Sects.  3.3  and  3.4 . Both methods 
share in common the use of known local area information as ‘constraints’ on their 
estimates, in an attempt to capture between-place variations in population character-
istics. Therefore, Sect.  3.5  reviews the nature of between-area diversity and within-
area homogeneity, to help better understand the nature and number of local area 
constraints required. This is followed, in Sect.  3.6 , by the presentation of a new 
framework for the evaluation and validation of small-area synthetic microdata, 
which includes innovations in both the measures of  fi t used, and in the types of  fi t 
measured. Sections  3.7  and  3.8  present an evaluation of the relative performance of 
synthetic reconstruction and combinatorial optimisation, before the chapter concludes 
(Sect.  3.9 ) with some general comments on strengths, weaknesses and potential 
utility, of the resulting synthetic small-area microdata.  

    3.2   Synthetic Reconstruction and Combinatorial 
Optimisation Methodologies 

    3.2.1   Synthetic Reconstruction 

 Synthetic reconstruction (SR) is an imputation-based approach. For the small area of 
interest, one census tabulation is used to provide an initial list of individuals with a 
set of known population attributes (e.g. the age and sex of each population member). 
All other attributes are added (imputed) by sampling from probabilities conditional 
upon one or more previously generated attributes. In as far as is possible, these 
conditional probabilities are derived from published small-area census tabulations 
but where necessary draw upon tabulations published for higher-level geographies. 

 Figure  3.1  illustrates the basic process in more detail. In step 1, the census count 
of the number of persons, by age, sex and marital status, is found for the small area 
being synthetically estimated. In the example given, this count included one married 
male aged 18. Hence, a  fi rst person is created and assigned these attribute values 
(highlighted in bold in Fig.  3.1 ). In steps 2–4, the employment status of this person 
is imputed. In step 2, the probability of the person having each possible employment 
status is identi fi ed. In this illustrative example, the probabilities are conditional 
upon age group, sex and marital status. Hence, they are different for each of the 
three persons shown. These probabilities are then converted into a set of cumulative 
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probability ‘bins’. In steps 3 and 4, a random draw is made, such that whichever 
cumulative probability ‘bin’ the random number falls within determines the person’s 
imputed employment status. For the  fi rst person, the random number (0.281) falls 
within the  fi rst cumulative probability ‘bin’ (0.0–0.4). Hence, he is imputed the 
employment status of ‘employed’. The synthetic reconstruction process then moves 
on to create additional persons, in similar fashion, until the known local area count 
of persons, by age, sex and marital status, has been satis fi ed. If additional attributes 
are required, these are then imputed in similar fashion to employment status. The 
main challenges associated with this approach include (1) producing the known 
or estimated ‘local area’ conditional probabilities required to impute additional 
attributes and (2) placing persons within families and households (if required).   

    3.2.2   Combinatorial Optimisation 

 The second approach, combinatorial optimisation (CO), involves the selection of 
a combination of households from an existing survey micro data set that best  fi t 
published small-area census tabulations. In effect, this is an integer reweighting 

Person

Steps 1st

1. Age, sex and
marital status of
persona

Age: 18
Sex: Male
M: Married

Age: 34
Sex: Male
M: Married

Age: 87
Sex: Male
M: Married

2. Probability of
employment status
given age, sex and
marital status
E: employed
U: unemployed
I:  inactive

E: 0.0 (0.0-0.0)
U: 0.0 (0.0-0.0)
I:  1.0 (>0.0-1.0)

E: 0.6 (0.0-0.6)
U: 0.3 (>0.6-0.9)
I: 0.1 (>0.9-1.0)

E: 0.4 (0.0-0.4)
U: 0.3 (>0.4-0.7)
I: 0.3 (>0.7-1.0)

3. Random number
(computer
generated)

0.281

4. Employment
status assigned on
basis of random
sampling 

Employed

5. Next person
(repeat until all
persons have been
assigned an
employment status)

Move on to next
person

Move on to next
person

End

InactiveUnemployed

Last2nd

0.481 0.709

Prob Cum Prob
Bin

Prob Cum Prob
Bin

Prob Cum Prob
Bin

  Fig. 3.1    The    synthetic reconstruction approach (Adapted from Clarke  1996  )        

 



22 P. Williamson

approach, in which most households are assigned weights of zero (i.e. not present). 
The process involves a number of steps, as outlined below. 

  Step 1     Obtain sample survey microdata  
 Combinatorial optimisation can take as in input any survey microdata, such as a 
national government survey, provided that the microdata contain (1) attributes of 
interest for post-estimation analyses and (2) attributes that map onto the small-area 
constraints to be used in the estimation process (c.f. Step 2). A simpli fi ed example 
of such survey microdata is given below, including only household-level records.  

  Size    Adults    Children  

 Household A  2  2  0 
 Household B  2  1  1 
 Household C  4  2  2 
 Household D  1  1  0 
 Household E  3  2  1 

 More commonly, the survey also includes person-level records, nested within 
families and households. In this latter case, selection of a household automatically 
includes selection of all of the family and person records within that household.   

  Step 2     Identify small-area constraints  
 A selected set of known small-area counts are used to act as constraints on the esti-
mation process. These  observed  counts are typically a subset of published census 
counts/tabulations for the small area being estimated. All of the constraint tables 
used should relate to the same small area, although inconsistencies in counts between 
tables – arising, for example, as a result of prepublication disclosure control mea-
sures – are permissible.  

 Constraint Table 1: household 
size (persons per household) 

 Constraint Table 2: age 
of occupants 

 Household size  Frequency  Type of person  Frequency 

 1  1  Adult  3 
 2  0  Child  2 
 3  0 
 4  1 
 5+  0 
  Total    2  

  Step 3     Randomly select households from the sample survey  
 The synthetic small-area microdata generated by combinatorial optimisation com-
prise a selected set of households from the sample survey. The precise number of 
households to be selected is de fi ned by one of the chosen constraint tables. In this 
case, because constraint Table  3.1  (household size) records the small area being 
estimated as comprising  two  households,  two  households are randomly selected:  

  Size    Adults    Children  

 Household A  2  2  0 
 Household E  3  2  1 
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   Table 3.1    Constraints used during synthetic microdata generation   

 Table constraints used in  fi nal version of Pop91CO 
 Tables used for comparison 
of Pop91SR and Pop91CO 

 Census tables  Variables in tabulation  As inputs  For assessment of  fi t 

 S35  Age/sex/marital status  ●  ● 
 S42  Household composition/tenure  ●  ● 
 S86  Socio-economic group of head/tenure  ●  ● 
 S06  Age/ethnic group  ●   X  
 S08  Age/sex/economic position  ●  ● 
 S09  Sex/economic position/ethnic group  ●   X  
 S34  Sex/marital status/economic position  ●  ● 
 S39  Age/sex/marital status of household head  ●  ● 
 S49  Ethnic group of household head/tenure  ●  ● 

  Step 4     Convert the synthetic microdata into estimated counts  
 In order to assess the  fi t of the synthetic microdata to known small-area constraints, 
it is  fi rst necessary to tabulate the synthetic small-area microdata to  fi nd the  esti-
mated  equivalents of the counts observed in the small-area constraint tables:  

  Estimated  household size 
(persons per household)   Estimated  age of occupants 

 Household size  Frequency  Type of person  Frequency 

 1  0  Adult  4 
 2  1  Child  1 

 3  1 
 4  0 
 5+  0 
  Total    2  

  Step 5     Assess the  fi t of the synthetic microdata to constraint data  
 Armed with the estimated counts (step 4) and observed counts (step 2) for each 
constraint table, it is now possible to calculate the size of the difference between 
them and to sum these tabular differences across all constraint tables to  fi nd the total 
absolute difference.  

 Constraint 1: household  Estimated frequency  Observed frequency  Absolute difference 

 size  (i)  (ii)  |(i)−(ii)| 

 1  0  1  1 
 2  1  0  1 
 3  1  0  1 
 4  0  1  1 
 5+  0  0  0 

  Subtotal:    4  
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 Estimated frequency  Observed frequency  Absolute difference 

 Constraint 2: age  (i)  (ii)  |(i)−(ii)| 

 Adult  4  3  1 
 Child  1  2  1 

  Subtotal:    2  

  Total absolute    difference =  4  +  2  =  6       

  Step 6     Randomly swap one of selected households  
 Next, in an attempt to improve the  fi t of the small-area synthetic microdata with the 
known small-area constraints, one of the currently selected survey households is ran-
domly swapped with another household selected at random from the survey sample. 
In the example below, Household A has been replaced at random by Household D.  

  Size    Adults    Children  

 Household D  1  1  0 
 Household E  3  2  1 

 This random household swapping can be conducted with or without replacement. 
Swapping with replacement means that the same survey household can be selected to 
appear more than once in the household combination constituting the synthetic micro-
data, which is equivalent to giving the household an integer weight of more than one. 
Swapping with replacement is recommended for reasons outlined in Sect.  3.4.5 .   

  Step 7     Assess the  fi t of the post-swap synthetic microdata  
 The  fi t of this new household selection is assessed by once again comparing the 
observed small-area constrain to their synthetically estimated counterparts (i.e. by 
repeating steps 4–6 above).  

 Estimated frequency  Observed frequency  Absolute difference 

 Household size  (i)  (ii)  |(i)−(ii)| 

 1  1  1  0 
 2  0  0  0 
 3  1  0  1 
 4  0  1  1 
 5+  0  0  0 

  Subtotal:    2  

 Estimated frequency  Observed frequency  Absolute difference 

 Age  (i)  (ii)  |(i)−(ii)| 

 Adult  3  3  0 
 Child  1  2  1 

  Subtotal:    1  

  Total absolute difference =  2  +  1  =  3       

  Step 8     Accept or reject swap  
 If the household swap leads to a worsening of the  fi t to local area constraints (i.e. an 
increased total absolute difference), then reverse the swap (i.e. remove household D 
and reinsert household A). Otherwise, retain the new household selection (D and E) 
as the current ‘best estimate’.   
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  Step 9     Keep swapping households for as long as required  
 In order to further improve the  fi t of the synthetic microdata, repeat steps 6–8 until 
no further reduction in total absolute difference is possible or at least until an accept-
able level of  fi t between synthetic microdata and the chosen small-area constraints 
has been achieved. 

 Final selected households  

  Size    Adults    Children  

 Household C  4  2  2 
 Household D  1  1  0 

 Final  fi t to known small-area constraints  

 Estimated frequency  Observed frequency  Absolute difference 

 Household size  (i)  (ii)  |(i)−(ii)| 

 1  1  1  0 
 2  0  0  0 
 3  0  0  0 
 4  1  1  0 
 5+  0  0  0 

  Subtotal:    0  

 Estimated frequency  Observed frequency  Absolute difference 

 Age  (i)  (ii)  |(i)−(ii)| 

 Adult  3  3  0 
 Child  2  2  0 

  Subtotal:    0  

  Total absolute difference =  0  +  0  =  0         

 In outlining the basic approach to combinatorial optimisation, one key re fi nement 
has been side-stepped. The approach outlined above adopts a ‘hill-climbing’ algo-
rithm, in which a household swap is only accepted if it improves the overall  fi t of 
the synthetic microdata to local constraints (c.f. Step 8). In reality, nearly all users 
of combinatorial optimisation prefer to adopt either a ‘simulated annealing’ or 
‘genetic’ algorithm, in which swaps which adversely affect the  fi t  might be  accepted 
in order to avoid getting trapped with a suboptimal selection of households 
(Williamson et al.  1998  ) .   

    3.3   Innovations in Synthetic Reconstruction 

 Section  3.2  outlined the basic approach to synthetic reconstruction. The perfor-
mance of synthetic reconstruction can be optimised if a number of additional tech-
nical innovations are adopted. The innovations implemented for the research 
reported in this chapter are reported below. 
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    3.3.1   Modi fi ed Monte Carlo Sampling 

 In conventional Monte Carlo sampling, potentially signi fi cant error in  fi nal outputs 
is introduced due to the stochastic nature of the sampling process. For example, 
even though a variable,  x , might have  fi ve categories with a known proportional 
distribution,  P , of {0.12, 0.25, 0.52, 0.04, 0.07}, one possible outcome of imputing 
this attribute to 20 ( N ) individuals is a synthetic distribution of {0, 0, 0, 0, 20}. 
A modi fi ed Monte Carlo sampling strategy has been devised which leads to an 
average 40% reduction in associated variance (Huang and Williamson  2001a  ) . First, 
a target distribution is identi fi ed, which is equal to  P  times  N . Thus, in the above 
example where  N  = 20, the target distribution would be {2.4, 5, 10.4, 0.8, 1.4}. Of 
this target, the integer part is {2, 5, 10, 0, 1}, comprising a total count of 18. Given 
this integer target distribution, 18 of the 20 individuals awaiting imputation of a 
value for  x  are selected (in random order). The  fi rst two individuals selected are 
assigned to the  fi rst category of variable  x ; the next  fi ve to the second category of  x  
and so on, such that distribution of imputed values {2, 5, 10, 0, 1} exactly equals the 
integer part of the target distribution. This leaves two individuals awaiting imputa-
tion and an unassigned target distribution of {0.4, 0, 0.4, 0.8, 0.4} (i.e. the factional 
part of the original target distribution). This fractional target is converted into a 
probability distribution, against which the value of variable  x  is imputed, in the 
usual manner, by random draw. The stochastic nature of this remaining phase of 
imputation is further reduced by reducing to zero the fractional target for any value 
of  x  once it has been randomly selected for imputation and recalculating the associ-
ated probability distribution before the next value of  x  is imputed. This has the effect 
of limiting the number of times a given value of  x  can be imputed during the 
‘fractional phase’ of the imputation process to 1.  

    3.3.2   Statistical Justi fi cation of Reconstruction Order 

 Previous approaches to synthetic reconstruction have acknowledged the subjec-
tive way in which linkages between census tabulations and the order of data impu-
tation have been selected. For this project, a mixture of logistic regression and 
CHAID analysis was used to identify the key determinants of target attributes and 
therefore to identify the most appropriate census tabulations for use in their 
reconstruction.  

    3.3.3   Modelled 100% Counts of 10% Data 

 Only a 10% sample of write-in questions, such as occupation, were coded for UK 
censuses prior to 2001. In previous synthetic reconstructions, relevant probabilities 
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have been derived using these ED-level small-area data unmodi fi ed. Such an 
approach has been found to lead to severely biased results (Voas and Williamson 
 2000a  ) . To address this problem, more extensive use has been made here of other 
known information: (1) the equivalent 10% tables from all of other EDs in the 
same ward, (2) the ward-level version of the 10% table of interest, and (3) any 
marginals for these 10% tables that have also published using the full 100% sample 
(e.g. age). First, a quasi 100% ward-level table is created by reweighting the counts 
in the 10% ward-level table to  fi t the sum of the known 100% ED-level margins. 
Iterative proportional  fi tting is then used to adjust the counts within the ED-level 
10% tables, such that they agree with the counts in the quasi 100% ward-level 
table. These adjusted ED-level tables provide best estimates of the actual small-
area distributions.  

    3.3.4   Improved Data Linkage 

 Small-area tabulations do not of themselves contain suf fi cient information to allow 
plausible synthetic reconstruction. For example, at ED level, it may not be possible 
to establish a direct link between two key population attributes. Instead, the missing 
information has routinely been drawn from tables published for higher geographical 
levels (ward, district, national) and combined with the available small-area data 
using iterative proportional  fi tting. For this chapter, a similar approach has been 
adopted. However, whereas previously data and time constraints have restricted 
researchers to combining information typically drawn from only two geographical 
levels and to creating conditional probabilities linking involving only three or four 
attributes at a time, for this chapter, the availability of Samples of Anonymised 
Records (SARs) from the 1991 UK Census has allowed information from three 
levels of geography (ED, ward and nation) to be combined to estimate conditional 
probabilities linking up to  fi ve attributes simultaneously – for example, ethnic group 
of household head conditional upon household head’s age, sex, marital status, eco-
nomic position and tenure. This greater linkage has reduced dependence on the 
assumption of conditional independence between related variables.  

    3.3.5   Data Reconciliation 

 To protect respondent con fi dentiality, all small-area census counts are subject to 
pre-release modi fi cation, leading to inconsistencies between tables. Counts from 
census tables used in the synthetic reconstruction process have been modi fi ed as 
necessary to agree with one another. This has been achieved by selecting one of the 
published census distributions and using iterative proportional  fi tting to adjust all 
other small-area constraints in which the distribution features to agree with it.   
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    3.4   Innovations in Combinatorial Optimisation 

 In similar fashion to synthetic reconstruction, a number of re fi nements to the basic 
approach to combinatorial optimisation outlined in Sect.  3.2  were implemented as part 
of the research reported in this chapter. The key innovations are summarised below. 

    3.4.1   Validated Random Number Generation 

 Combinatorial optimisation requires the generation of a number stream randomly 
different to at least the sixth digit, in order to ensure an equal chance exists of 
picking each of the approximately 250,000 households in the SAR. This is a non-
trivial requirement that not all commercially available pseudorandom number 
generators can meet. For this project, therefore, one innovation has been the for-
mal checking of potential random number generators for  fi tness for purpose (Voas 
and Williamson  1998  ) .  

    3.4.2   Sequential Table Fitting 

 A problem previously identi fi ed is that, when selecting household combinations 
from survey microdata, some constraining tabulations are easier to satisfy than 
others (Williamson et al.  1998  ) . Two steps have been taken to address this problem. 
First, tables based on 10% samples of census respondents have been replaced with 
modelled estimates of the full 100% sample distribution (as reported above). Second, 
an amended household selection routine has been tested, in which the hardest to  fi t 
tabulations were identi fi ed, based on the achieved tabular  fi t after a small number 
(e.g. 5,000) of household swaps. These hardest to  fi t tables were then used as con-
straints on household selection. Once satis fi ed, additional tables are reintroduced as 
constraints, with the added restriction that no changes in household combinations 
were allowed that impacted adversely on the level of  fi t already obtained for the 
hardest to  fi t tables (Voas and Williamson  2000a  ) .  

    3.4.3   Strati fi ed Household Selection 

 As originally implemented, combinatorial optimisation allowed any combination 
of households from the SAR to be selected that best satis fi ed small-area constraints. 
Two alternative approaches have also been evaluated, in which households can be 
selected only if they are from the same SAR region or from a ward with the same 
geodemographic ward classi fi cation (Wallace et al.  1995  )  as the small area being 
 fi tted.  
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    3.4.4   RSSZ*: A New Selection Criterion 

 When selecting the set of households that best  fi t small-area constraints, the statistical 
measure of  fi t originally adopted was Total Absolute Error (TAE). However, TAE is 
poor at capturing relative error. The estimates presented in this chapter were therefore 
constrained to  fi t local area constraints using an alternative statistical measure, RSSZ*, 
based on the use of a modi fi ed  Z -score,  Z* . (Sect.  3.6.1  provides further details.)  

    3.4.5   Stopping Rules 

 As  fi nally implemented, an initial two million household combinations are evaluated 
for each small area. If even one cell in a single constraining table is deemed to be 
poorly  fi tted, up to a further two million evaluations are undertaken. At this stage, a 
small number of areas, comprising highly atypical households, still remain poorly 
 fi tted. In these cases, a further round of household replacement occurs (0.5 million 
evaluations), with potential replacement households restricted to those already found 
within the household combination. This strategy re fl ects the observation that, by the 
end of conventional household selection, the household combination contains a high 
concentration of the relevant atypical household types.   

    3.5   Understanding Between-Area Variation 

 Whatever method is adopted for creating synthetic microdata, the constraints to be 
met are supplied by small-area census tabulations. Resource constraints, in both 
person-hours and computing power, mean that not all of the available small-area 
constraints can be incorporated into the synthetic microdata generation process. It is 
necessary, therefore, to identify the minimum set of census counts that best capture 
between-area heterogeneity. 

    3.5.1   Spatial Concentration 

 To better understand the nature of between-area variation, an analysis was undertaken 
of the spatial scale of socio-economic variation across England and Wales, based on 
an analysis of 54 census variables chosen to re fl ect the full range of census topic cov-
erage from the 1991 UK Census (Voas and Williamson  2000b  ) . This analysis used the 
smallest UK Census output area for which 1991 Census data were released, the enu-
meration district (ED), with an average population of approximately 250 persons. It 
showed that, at ED level, ethnicity, dwelling type, housing tenure, transport mode, 
central heating, lone parenthood, quali fi cations and socio-economic group were the 
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most spatially variable population attributes – that is, those displaying the greatest 
levels of within-area concentration (homogeneity) and, hence, between-area diversity 
(heterogeneity). Conversely, children (<16), persons aged 16–24, marital status, 
female employment, skilled or inactive males and long-term illness were the least 
spatially variable. When reanalysed at ward and district level, the basic ranking of the 
54 census variables analysed remained similar, if not identical. (In crude terms, 1,000 
EDs = 30 wards = 1 district). More speci fi cally, for this analysis, spatial variability was 
measured using a dissimilarity score,  D , adjusted to allow for the problems posed 
when analysing the distribution of rare populations across small areas (Voas and 
Williamson  2000b  ) . The correlation coef fi cients of D when comparing wards with 
districts were 0.96, 0.96 for EDs vs. wards and 0.86 for EDs vs. districts. 

 However, this overall correlation masks the degree to which each geographic level 
in fl uences overall spatial variability for a given variable. For example, over 80% of the 
spatial variability observable in ethnic concentrations at ED level is already observ-
able at district level (i.e. ethnicity displays higher levels of heterogeneity between 
districts that between EDs within districts). Other variables with high levels of dis-
trict-level heterogeneity are transport to work, access to cars, industry of employment 
and self-employment. The largest ward-level effects were found in professional occu-
pations, quali fi cations, socio-economic groups and student concentration. Finally, 
some variables were found to be principally segregated only at ED level, including 
age and household size. These variations re fl ect the differing scales at which various 
social processes operate, including the labour and housing markets.  

    3.5.2   Multicollinearity 

 It might be tempting to focus efforts on accurately modelling the most spatially 
concentrated variables, as these appear to drive differentiation between small areas. 
However, such an approach would fail to take account of multicollinearity. If two 
variables are highly correlated, it may be necessary to accurately model only one of 
them, as the value of the second would be given by the value of the  fi rst. 

 The question is how small a set of variables would be necessary to adequately 
capture information about a core set of desired target variables { Y }. Analysis 
reveals that few variables can be left out if a high proportion of the overall variance 
is to be controlled for (Voas and Williamson  2001a  ) . Even if an approximately 
optimal set of 25 variables is used to predict the value of each of the 29 remaining 
variables in the aforementioned census dataset, the average coef fi cient of determi-
nation ( r  2 ) is only 63%. A simple explanation for these  fi ndings is that one-sixth of 
the 54 variables considered are not strongly associated with each other at ED level 
(−0.5 <  r  < +0.5). 

 An alternative solution is to attempt to reduce the 54 selected census variables 
into a more limited set of dimensions using principal components analysis. But 
even this statistically more sophisticated approach fairs little better. The  fi rst four 
components jointly account for just over half (54%) of ED-level variation. Twenty- fi ve 
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components are required to capture 90% of the observed variation. One implication 
is that approaches to area classi fi cation based upon data reduction, such as geode-
mographic pro fi ling, are likely to only poorly summarise between-area differences. 
For synthetic estimation, the implication is that all variables of interest need to be 
directly modelled.   

    3.6   A Framework for Validating Small-Area Microdata 

 Previous evaluations of the quality of synthetic population microdata have been fairly 
rudimentary (Birkin and Clarke  1988 ; Williamson et al.  1998 ; Duley  1989  ) . 
Consideration has been given to the  fi t of microdata to at most one or two published 
small-area tabulations, despite the use of multiple constraining tabulations. Such 
evaluations were undertaken only at small-area level, with no consideration of 
possible biases that might emerge during aggregation to larger geographical units. In 
addition, measures of  fi t were con fi ned to the application of  Z -tests to constraining cell 
counts. For the evaluation reported in this chapter, a far more extensive framework for 
validating small-area microdata was developed (Voas and Williamson  2001b ; Huang 
and Williamson  2001b  ) . A summary of the framework developed is given below. 

    3.6.1   Identi fi cation of Appropriate Measures of Fit 

 A review of a dozen statistical measures concluded that the most suitable for assess-
ing the  fi t of synthetic microdata to published small-area constraints was the normal 
 Z -score and related variants (Voas and Williamson  2001b  ) . The normal  Z -score has 
the advantage of familiarity, relative ease of calculation and the ability to identify 
both distributional and absolute errors (unlike Total Absolute Error, which focuses 
solely on absolute error). 

 In the context of synthetic microdata estimation, where  E  
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 If the  Z -score for the difference between a synthetic and target cell count exceeds 
the relevant 5%  Z -score critical value, then that cell is judged to be a ‘non- fi tting 
cell’ (NFC). As a ‘non- fi tting’ cell might be attributable at least in part to statistical 
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disclosure control, a second less stringent de fi nition of cellular  fi t was also used. 
A ‘poorly  fi tting’ cell (PFC) is a synthetic count that fails to  fi t even the published 
count ±1. In addition,  S  Z   2 , the sum of the squared  Z -scores for the  n  cells in a table, 
has a   c    2  distribution with  n  degrees of freedom, allowing tabular  fi t to be assessed. 
If  S  Z   2  for a given table is greater than the relevant 5%   c   2  critical value, then it is 
judged to be a ‘non- fi tting table’ (NFT). Finally, dividing the squared  Z -scores for a 
table by the appropriate 5%   c   2  critical value gives an additional measure, RSSZ, the 
relative sum of squared  Z -scores, which when summed across all tables provides a 
measure of overall  fi t. 

 Ideally, RSSZ would replace TAE as the measure of  fi t used to help drive house-
hold selection during the process of combinatorial optimisation. Unfortunately, the 
calculation of  Z  

 ij 
  assumes that the expected and synthetic table totals match. When the 

synthetic and expected table totals differ markedly,  Z -scores can remain low because 
the relative distribution of synthetic and expected counts is still similar. For this 
reason, a modi fi ed version of  Z ,  Z *, is preferred for use in driving household selection. 
For  Z *, the table total table used to calculate  p  
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 Note that when synthetic and target table totals converge,  Z*  =  Z . 
  Z * offers the additional computational advantage; when used, via RSSZ*, as a 

driver of household swaps, the numerator of  Z  
 ij 
 * needs recalculating when a house-

hold swap affects the relevant synthetic cell count. 
 Self-evidently, the values of both  Z  and  Z * remain unde fi ned when the target small-

area count is 0 and the synthetic count is greater than 0 (  p  
 ij 
  = 0/ N  

 j 
 ). In such circum-

stances, a mathematical justi fi cation has been provided for the practise of de fi ning  Z  
(or  Z *) as equal to the equivalent synthetic count,  S  

 ij 
  (Voas and Williamson  2001b  ) .  

    3.6.2   Innovations in Types of Fit Measured 

 Sections  3.7  and  3.8  assess the performance of synthetic microdata estimated using 
synthetic reconstruction and combinatorial optimisation. These assessments involve 
 fi ve main areas of innovation in the types of goodness-of- fi t used. First, as already 
noted, the use of  S  Z   2  allows assessment for the  fi rst time of both tabular and overall 
 fi t to known constraints (NFT and RSSZ). Second, an attempt is made to allow for 
the impacts of pre-release census data modi fi cation (statistical disclosure control) 
when assessing levels of cellular  fi t (PFC). Third, multiple synthetic populations are 
created in acknowledgement of the inherently stochastic nature of both synthetic 
reconstruction and combinatorial optimisation. This allows both the average error 
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(mean  fi t) and the bias ( fi t of the mean) of each estimation approach to be assessed. 
The range within which 95% of synthetic values lie is also calculated, giving a mea-
sure of variance. Fourth, consideration of  fi t is extended to include not only variable 
interactions fully constrained during the estimation process but also partially con-
strained and wholly unconstrained interactions. Fifth, the impact of spatial aggrega-
tion on the  fi t of synthetic microdata is evaluated.   

    3.7   The Impact on Combinatorial Optimisation 
of Selected Improvements 

 Section  3.4  highlighted a number of key technical improvements to the combinato-
rial optimisation algorithm. In this section, the relative performance advantage 
offered by these improvements is assessed. The test bed for this evaluation is the 
synthetic microdata generated, via combinatorial optimisation, for the 86 enumeration 
districts comprising the suburban Cookridge and inner-city University wards of 
Leeds. The sample survey used was the 1991 Household Sample of Anonymised 
Record – a 1% public use microdata set released following the 1991 Census. Small-
area constraints to the estimation process were supplied by a set of 9 small-area 
tabulations published as part of the output from the 1991 UK Census. These small-
area constraints are listed in Table  3.1 . All 10% census counts were replaced with 
modelled 100% counts. 

    3.7.1   Substitution of TAE with RSSZ *  

 Table  3.2  illustrates the impact on combinatorial optimisation of changing the 
household selection criteria from TAE to RSSZ*. Results are presented for three 
example enumeration districts. DAGF04 and DAGF12 are inner-city EDs with 
highly atypical population compositions, falling outside the 98th and 99.8th 
percentile of EDs, respectively, when ranked by difference from the national 
average across 54 selected census variables. ED DAFJ01 is a typical suburban 
ED lying relatively close to the national average.  

 Using improvements in TAE to guide household selection, at least one constrain-
ing table does not  fi t for ED DAGF12 (NFT > 0), no matter how many evaluations 
are performed. With the use of RSSZ*, all the constraining tables are satis fi ed within 
100,000 evaluations. At the cellular level, the performance advantage of RSSZ* is 
even greater, with only one or two cells out of 597 having  Z -scores exceeding their 
critical values (NFC > 0), compared to more than 17 if TAE is used to guide selec-
tion. Similar but less dramatic gains are observed for the suburban ED DAFJ01. The 
gains in algorithmic ef fi ciency more than compensate for the 40% increase in cal-
culation time (CPU seconds) per evaluation for RSSZ* as compared to TAE. These 
gains, attributable to an improved focus on relative rather than absolute  fi t, also 
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(continued)

      Table 3.2    Results from the use of TAE and RSSZ* as the selecting criterion   

 Selection 
criterion  TAE  RSSZ* 

 Evaluations
(‘000)  TAE  RSSZ  NFT  NFC  CPU (s)  TAE  RSSZ  NFT  NFC  CPU (s) 

 (A) ED DAFJ01 in Cookridge ward (198 households) 
 0  1,438  124.60  9.0  117.8  0  1,438  124.60  9.0  117.8  0 

 10  447  7.51  1.2  28  0  495  2.71  0  15.8  0 
 100  188  1.26  0  6.4  2  185  0.52  0  0.2  3 
 500  145  0.86  0  3.4  9  111  0.30  0  0  13 

 1,000  135  0.82  0  3.6  19  97  0.27  0  0  26 
 1,500  118  0.73  0  2.6  28  93  0.26  0  0  40 
 2,000  107  0.64  0  2.2  38  86  0.24  0  0  53 
 2,500  102  0.67  0  2.6  47  81  0.24  0  0  66 
 3,000  101  0.65  0  2.4  57  81  0.23  0  0  79 
 3,500  98  0.63  0  1.8  66  78  0.23  0  0  92 
 4,000  97  0.60  0  1.4  75  80  0.23  0  0  105 
 5,000  94  0.60  0  1.4  94  77  0.22  0  0  131 
 6,000  93  0.60  0  1.4  113  76  0.22  0  0  158 
 8,000  91  0.59  0  1.4  151  74  0.21  0  0  210 

 10,000  89  0.57  0  1.2  188  73  0.21  0  0  263 

 (B) ED DAGF04 in University ward (149 households) 
 0  1,869  48.89  9.0  132.6  0  1,869  48.89  9.0  132.6  0 

 10  880  12.11  5.6  67.0  0  853  8.14  3.0  59.2  0 
 100  364  4.11  0  21.8  2  359  1.88  0  4.6  3 
 500  320  3.57  0  18.8  9  236  0.98  0  0.6  13 

 1,000  275  3.07  0  14.8  19  206  0.81  0  0.4  26 
 1,500  248  2.72  0  13.2  28  200  0.75  0  0.4  39 
 2,000  240  2.58  0  13.8  38  190  0.70  0  0.2  53 
 2,500  233  2.35  0  13.0  47  185  0.67  0  0.2  66 
 3,000  227  2.22  0  12.0  57  178  0.65  0  0.2  79 
 3,500  222  2.16  0  11.8  66  173  0.62  0  0.2  92 
 4,000  219  2.18  0  10.4  75  177  0.62  0  0.2  105 
 5,000  216  2.16  0  10.4  94  171  0.60  0  0.2  131 
 6,000  213  2.11  0  10.6  113  162  0.58  0  0.2  158 
 8,000  207  2.03  0  10.0  151  160  0.56  0  0  210 

 10,000  201  1.98  0  9.8  188  153  0.53  0  0  263 

 (C) ED DAGF12 in University ward (191 households) 
 0  2,642  106.81  9  164.6  0  2,642  106.81  9  164.6  0 

 10  1,542  35.15  8.6  116.8  0  1,421  17.24  7.8  103.2  0 
 100  659  7.56  3.4  43.6  2  680  3.97  0  19.0  3 
 500  445  5.39  1.8  23.2  9  398  1.59  0  4.2  13 

 1,000  385  4.29  1.0  20.6  19  343  1.24  0  3.0  26 
 1,500  355  3.98  1.2  18.8  28  315  1.11  0  2.0  40 
 2,000  338  3.83  1.2  16.6  38  295  1.05  0  2.2  53 
 2,500  324  3.87  1.4  17.4  47  294  1.02  0  1.6  66 
 3,000  314  3.69  1.2  17.8  57  286  0.98  0  1.6  79 
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allow RSSZ*-driven combinatorial optimisation to replace the sequential table 
 fi tting necessary when using TAE (c.f. Sect.  3.4.2 ) with the simultaneous table 
 fi tting approach outlined in Sect.  3.2 .  

    3.7.2   Strati fi ed Household Selection 

 As originally conceived, combinatorial optimisation selected the households cho-
sen to represent a small area from the whole of the SAR dataset ( W ). An alternative 
strategy ( R ) is to select households drawn from only the same SAR region as the 
small area being estimated. As Fig.  3.2  illustrates, for suburban ED DAFJ01 restric-
tion of sampling to a regional subset of the SAR leads to only a slight deterioration 
in performance, but for inner-city ED DAGF12, the outcome is signi fi cantly worse. 
The results suggest that for atypical EDs-limiting household selection to region-
speci fi c SAR signi fi cantly increases the error of estimation. The strategy  fi nally 
adopted ( R  +  W ) initially restricts household selection to region-speci fi c SAR, but 
this restriction is lifted after evaluation of 200,000 household combinations if one 
or more constraining cells remain to be  fi tted. Using this strategy, at the end of ten 
million evaluations, 100% of households selected to represent ED DAFJ01 are 
drawn from the relevant regional SAR, compared to 14% of households for ED 
DAGF12.  

 An alternative considered but subsequently discarded was to restricting selection 
to households drawn from wards of the same geodemographic type as the small area 
being estimated (Voas and Williamson  2000a  ) . The potential gains for this approach 
are necessarily limited by the weaknesses inherent in all area classi fi cations 
(reviewed in Sect.  3.2 ). It was found that selecting households on the basis of area 
type led to a marked improvement in  fi t for some but not all population attributes, 
leading to the conclusion that a better strategy would be simply to increase the 
number of constraints on the estimation process.   

 Selection 
criterion  TAE  RSSZ* 

 Evaluations
(‘000)  TAE  RSSZ  NFT  NFC  CPU (s)  TAE  RSSZ  NFT  NFC  CPU (s) 

 3,500  309  3.69  1.2  17.4  66  284  0.95  0  1.4  92 
 4,000  305  3.69  1.2  18.0  76  278  0.95  0  1.4  105 
 5,000  300  3.61  1.2  16.6  94  271  0.90  0  1.6  132 
 6,000  296  3.64  1.4  17.8  113  269  0.88  0  1.4  158 
 8,000  293  3.57  1.2  17.2  151  269  0.86  0  1.2  211 

 10,000  290  3.54  1.2  17.6  189  261  0.85  0  1.2  263 

  Figures are 5-run average 
 Total number of tables 9; Total number of cells 597 
 CPU time is central processing unit time in seconds on a 800 MHz PC  

Table 3.2 (continued)
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    3.8   Synthetic Reconstruction vs. Combinatorial Optimisation 

 For comparison with the combinatorial optimisation outputs already introduced 
(POP91CO), synthetic microdata were also generated by synthetic reconstruc-
tion (POP91SR) for the same 86 enumeration districts, using the same survey 
data and local area constraints as inputs. Additional information from higher-
level geographies was incorporated in the synthetic reconstruction process in 
order to support robust estimation of the required conditional probabilities. 
However, lack of small-area data restricted synthetic reconstruction to the allo-
cation of ethnic group for household heads only. Consequently, when assessing 
the relative performance of the two approaches, the  fi t to those tables involving 
a whole-population ethnic breakdown is disregarded. Finally, to allow for an 
assessment of the impact of random variability, 100 runs of each approach were 
undertaken. 

    3.8.1   ED-Level Mean Fit 

 The  fi t of each set of synthetic microdata to published small-area counts and tabula-
tions has been evaluated using measures based, respectively, on  Z -scores and  S  Z  2  
(as outlined in Sect.  3.6 ). 

R - region-specific SAR

W - whole SAR

R+W - region-specific and whole SAR
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 To assess the general accuracy of the two estimation strategies, the  fi t of 100 
replications per ED was calculated separately and the mean taken, giving the 
mean  fi t. Figure  3.3  presents the distribution of this mean  fi t per ED, at both tabular 
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and cellular level. As shown in Fig.  3.3a , for nearly half of all EDs in the test area, 
synthetic reconstruction (POP91SR) led to synthetic datasets with a mean number 
of NFT equal to zero (i.e. the synthetic data  fi t all constraining tables for all 100 
trials). The  fi gures for the remaining EDs are all less than 0.03, equivalent to one 
table (out of 7) in three trials (out of 100) failing to  fi t. The tabular  fi t for combinato-
rial optimisation (Pop91CO) is even better. For all but four EDs, the NFT values are 
zero. Only in two EDs is the  fi t produced by Pop91CO less good than that of 
Pop91SR.  

 At cellular level, the number of non- fi tting cells for datasets generated by syn-
thetic reconstruction (Pop91SR) ranges from 0.78 to 9.18 with a mean of 4.95 across 
all 86 EDs (Fig.  3.3b ). This result means that, on average, only 5 out of a possible 
415 cells fail the  Z -test in a given trial. Allowance for the ±1 uncertainty over actual 
cell values leads to a tenfold reduction in poorly  fi tting cells (Fig.  3.3c ). On average, 
the number of PFC is only 0.45, that is, less than one cell poorly  fi tted per trial. 
Combinatorial optimisation (Pop91CO), however, produces an even better  fi t at the 
cellular level (Fig.  3.3b, c ). The average number of NFC and PFC over 86 EDs is 
only 0.13 and 0.02, respectively. 

 The two EDs that Pop91CO fails to produce better estimates for than Pop91SR 
are the student EDs DAGF57 and DAGF58. These two EDs are extremely atypical; 
their distance from the national average has been identi fi ed as the second and third 
highest in England and Wales (Voas and Williamson  2000a  ) . In these cases, the 
required households are probably so unusual that no equivalents can be found in the 
SAR. Even for these two EDs, the actual test statistics may reasonably be described 
as very good; the hardest to  fi t ED DAGF58 averages only 0.29 non- fi tting tables 
and 1.73 non- fi tting cells per replication.  

    3.8.2   ED-Level Fit of the Mean 

 As well as assessing the mean  fi t over 100 runs, it is possible to consider the 100-run 
mean of the synthetically estimated cell values and assess the  fi t of these 100-run 
mean counts to the target census-based small-area constraints, thereby giving an 
indication of overall bias. For synthetic reconstruction (Pop91SR), the average  fi t of 
the 100-run means at ED level (as measured by RSSZ of the mean) is 0.13 and 0.18 
for Cookridge and University wards. For combinatorial optimisation (Pop91CO), 
the equivalent  fi gures are equally low, at 0.11 and 0.23, respectively. The greater gap 
in RSSZ between wards indicates that the output of Pop91CO is slightly more sensi-
tive to location that Pop91SR. 

 The strengths and weaknesses of the two approaches are summarised in Table  3.3 , 
which presents estimated counts for one of the constraining tables, a cross tabula-
tion of sex by marital status. Although the mean synthetic counts are more or less 
identical across the two simulation methodologies, the range of synthetic counts 
over 100 replications is far greater for synthetic reconstruction than for combinato-
rial optimisation. Table  3.3  also helps to make clear the meaning of ‘ fi t’. As can be 
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seen, for combinatorial optimisation, the mean synthetic counts are extremely close 
to the constraining census counts, as are the synthetic counts at the top and bottom 
of the trimmed 95% estimate range.   

    3.8.3   Ward-Level Fit 

 Superior performance at the ED level does not necessarily guarantee superior 
performance when synthetic populations are aggregated to ward level. As Table  3.4  
demonstrates, at ward level, the overall  fi t of the mean of the 100 Pop91SR estimates 
(RSSZ of mean) is closer to the target distribution than that for Pop91CO. However, 
in almost every other respect, Pop91CO continues to outperform Pop91SR, in 
particular offering markedly reduced overall levels of variance (lower average 
numbers of non- fi tting cells and tables). A similar story is found when the  fi t to 
individual constraining tables is considered. For most purposes, only a single set of 
synthetic microdata will be used. Therefore, a guaranteed close  fi t (minimal vari-
ability) is to be preferred to assurances of minimum bias over 100 trials.    

    3.8.4   Fit of Unconstrained Counts 

 So far, the focus of this evaluation has been on how well the synthetic microdata  fi t 
the target small-area counts used to constrain their estimation. As Table  3.2  shows, 
these estimation constraints include a number of local interactions between vari-
ables, such as the interaction between age, sex and economic position. However, not 
all of the possible interactions between variables in the synthetic microdata have 
been constrained during the estimation process. For example, whilst the local area 
distributions of socio-economic and marital status have been constrained, the 
interaction between these two variables has not. Given that the margins have 
been constrained, this type of interaction might best be described as ‘partially 
constrained’. An alternative scenario is one in which none of the variables involved 
in the interaction have been constrained in any way as part of the estimation process. 
This type of interaction might be described as ‘fully unconstrained’. 

 A second test for synthetic microdata, therefore, is how well they capture these 
unconstrained interactions between variables used in constraining tables. This prob-
lem has been considered for combinatorial optimisation outputs. Standard census 
outputs contain insuf fi cient overlap in variables to allow for assessment of the  fi t of 
synthetic microdata to a wide range of partial and wholly unconstrained interac-
tions. Therefore, arti fi cial enumeration districts, of average population size, were 
created via strati fi ed sampling of households from the SAR (Voas and Williamson 
 2000a  ) . Two of the arti fi cial EDs created, ‘Middle England’ and ‘Rural’, have a 
population composition very close to the national average. The ‘Deprived indus-
trial’ ED is as far from the norm as the suburban ED DAFJ01, whilst the ‘Deprived 
urban, council  fl ats’ ED is as highly atypical as the inner-city ED DAGF04, where 
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distance from the norm is measured by the Euclidean distance of each ED from the 
centroid of the 54 standardised census variables already discussed in Sect.  3.5 . As 
Table  3.2  shows, the  fi t of  fi ve partially constrained tabulations, estimated using a 
set of 8 constraint tables (Voas and Williamson  2000a  ) , was excellent and good 
(85% of runs  fi t) for the remaining tabulation of sex/marital status/tenure, which 
cuts across individual and household levels. In contrast, the  fi t on interactions 
between variables not involved in the constraining process (Table  3.5 ) is generally 
extremely poor. Similar results were found when assessing the  fi t of partially and 
totally unconstrained tabulations at ward level, for both synthetic reconstruction and 
combinatorial optimisation (Huang and Williamson  2001b  ) .   

    3.9   Conclusion 

 Combinatorial optimisation is a superior approach to synthetic reconstruction for 
the generation of small-area microdata. In particular, combinatorial optimisation 
offers a marked reduction in variability of performance between runs. Wholly 

  Fig. 3.4    The estimated distribution of ‘yuppies’ in York       
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unconstrained interactions remain poorly captured, but partially constrained inter-
actions in most cases provide good  fi t at the tabular level. As a result, synthetic 
microdata generated using combinatorial optimisation offer clear ‘added value’, 
providing reliable estimates of many previously unknown cross tabulations. An 
example is Fig.  3.4 , which maps the estimated distribution of young urban profes-
sional (‘yuppie’) households in York (households containing only residents aged 
18–34, headed by a ‘professional’ or ‘manager’). For this reason, when  fl exibility 
of aggregation or estimates of large numbers of unknown tabulations are required, 

  Fig. 3.5    Screenshots of user-friendly data extraction software       
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synthetic microdata generated using combinatorial appear to offer a better solution 
than competing methods such as iterative proportion  fi tting or the types of syn-
thetic point estimators suggested elsewhere (Ghosh and Rao  1994  ) . This holds true 
even if district-level estimates are desired, requiring small-area synthetic estimates 
to be aggregated to district level. As has been shown, in such circumstances, 
district-level aggregates of ED-level synthetic microdata outperform alternative 
estimates derived not only via iterative proportional  fi tting but also via 2% sample 
survey (Williamson  2007  ) .  

 Other than the poor estimation of wholly unconstrained interactions, the main 
limit to the utility of synthetic microdata generated using combinatorial optimisa-
tion would appear to be the computing overhead associated with their production, 
which can run into CPU days or weeks if whole country coverage is required. 
However, once produced, these microdata may be freely distributed to any inter-
ested parties, in much the same way as other survey and census data, subject only to 
any licence agreements associated with the survey data from which the synthetic 
microdata are derived. To show what can be achieved in this regard, this chapter 
concludes with Fig.  3.5 , which illustrates the user-friendly data extraction front end 
for one such set of synthetic microdata.       
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    4.1   Background 

 As the chapters in this volume make clear, there is increasing demand for the 
development of  small-area estimates  of a range of socio-economic indicators – 
not only for research and public policy use but also for commercial applications. 
In the case of the former, indicators of exclusion and deprivation (Birkin and 
Clarke  1989 ; Williamson and Voas  2000 ; Gong et al.  2011 ; Tanton, Mcnamara et al. 
 2009 ; Tanton, Vidyattama et al.  2009  )  as well as ill health (Ballas et al.  2005b ; 
Mohana et al.  2005 ; Smith et al.  2007 ; Morrissey et al.  2008 ; Edwards and Clarke 
 2009  )  and resource use (Williamson  2001 ; Druckman and Jackson  2008 ; Harding 
et al.  2011  )  are good examples. In the case of the latter, it is more usually wealth, 
consumption (expenditure) and lifestyle indicators that are of interest (Anderson 
 2008 ; Anderson et al.  2009a ; Birkin and Clarke  2011 ; Vidyattama et al.  2011  ) . 

 The need for local stakeholders, and especially policymakers, to understand the 
small-area distribution of deprivation has led to a number of approaches to the 
calculation or estimation of deprivation indicators at levels that cannot be robustly 
supported by current national surveys. This need has been most clearly met in the 
 United Kingdom  by the development of the  Indices of Deprivation  (IMD) series 
that now cover the constituent countries of England, Wales, Scotland and Northern 
Ireland (Noble et al.  2006  ) . 

 Income deprivation has always been a key part of the IMD, and the income 
sub-domain provides measures of poverty through aggregation of bene fi ts claimant 
counts (Noble et al.  2004,   2006,   2008  ) . However, with the increasing focus of poverty-
related policy on the standard income deprivation measure of the percentage of 
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households below a given  income threshold  (Gordon and Townsend  2000 ; Eurostat 
 2007  ) , an alternative approach may be required (Noble et al.  2008  ) . 

 Unfortunately, reliably and robustly estimating household and individual income 
at small-area levels in the United Kingdom is, and has always been, a challenging 
exercise. Although there have been a number of studies exploring the changing 
geography of deprivation, there is a general paucity of data relating to the small-area 
geography of household income, wealth and taxation. 

 The best source of small-area socio-economic information in the UK is the census 
of population, but unfortunately, in order to preserve con fi dentiality and minimise 
non-response, the UK census does not provide any information on variables, such as 
household income, wealth and taxation (Marsh  1993  ) . Aspects of income are 
available from a range of government surveys, but in many cases, the  fi nest spatial 
scale to which these survey data are coded is the 12 UK government of fi ce regions 1  
or, in the case of some surveys, the local authority district, the main level of UK local 
administration with mean household population sizes of around 57,000. Even then, 
however, many such surveys provide incomplete geographical coverage, sampling 
only a fraction (and sometimes none) of the residents of any given district. 

 A method aimed at estimating the population of local households with incomes 
below a given threshold would ideally produce a national population distribu-
tion, which when aggregated would be within the known error bounds of the 
of fi cial estimates at the regional and national level; support the estimation of 
threshold-based income deprivation indicators; support the small-area level analysis 
of different policy outcomes; and be estimated at the lowest practical level of 
spatial geography. 

 Sensing this demand, social and economic geographers, as well as a number of 
commercial data providers, have developed a range of approaches to the estimation 
of such variables at small-area levels using both econometric (Gosh and Rao  1994 ; 
Rao  2003 ; Bates  2006  )  and  spatial microsimulation  approaches (Williamson  2005 ; 
Tanton et al.  2009a,   b  ) . This work has included a number of attempts to project 
small-area income distributions forwards in time (Ballas  2004 ; Ballas et al.  2005a  ) , 
as well as Australian experimentation on techniques for ageing the spatial microdata 
(Harding et al.  2011 ; Vidyattama and Tanton  2010  ) . 

 In this chapter, we brie fl y review some of these approaches before discussing a 
spatial microsimulation approach based on the iterative proportional  fi tting algo-
rithm which can deliver against the characteristics listed above at the Welsh Lower 
 Layer Super Output Area  2  (LSOA) level. This then allows us to  fi rstly explore the 
value of including such estimates in of fi cial indicators of multiple deprivation and 
secondly enable comparison with the income domain scores from the Welsh IMD 
(WIMD) 2005 (Noble et al.  2006  ) .  

   1   See   http://www.statistics.gov.uk/geography/gor.asp    , mean size  c  2 million households.  
   2   The second level of census aggregation (containing multiple census ‘output areas’) containing on 
average around 600 households.  

http://www.statistics.gov.uk/geography/gor.asp
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    4.2   Small-Area Income Estimation Methods 

 Perhaps the simplest method of estimating small-area income levels is the use of 
variables available in the census as proxies for income based on correlations between 
these variables and income on national sample surveys. Thus, for example, the mean 
income for different socio-economic classi fi cations can be calculated from a national 
income survey such as the Department for Work and Pensions’ Family Resources 
Survey (FRS). Given that census data provides the number of people and/or 
household response persons within a given socio-economic classi fi cation, a simple 
multiplication would provide ‘indirect non-survey-designed estimates’ of income at 
geographical levels for which we have socio-economic information. However, such 
simplistic approaches take no account of more complex relationships between 
socio-economic variables and income distributions nor of the manner in which such 
relationships may vary in space. 

 Williamson and Voas  (  2000  )  used data from the large-scale UK Census Rehearsal 
of April 1999 which included a banded income question to test a range of household 
and area level predictors of small-area income levels (Williamson and Voas  2000  ) . 
In this case, their analysis suggested that there was a high degree of income hetero-
geneity even at small-area level and that a relatively small number of indicators 
were the optimal predictors of area level income measures. Williamson suggested 
that by far, the most effective simple proxy for income is the proportion of the 
economically active population in National Statistics Socio-economic Classi fi cation 
(NS-SEC) categories 1 and 2 (managerial and professional occupations) and that 
this  fi nding applies regardless of whether mean income is measured per person, per 
adult or per number of persons in the household. In addition, Williamson’s analysis 
suggested that this indicator performed better than contemporary deprivation indices 
and interestingly that only 1% of unexplained between-adult income variation could 
be explained by area level factors such as house prices. 

 The Of fi ce for National Statistics has subsequently developed a regression-based 
approach to the estimation of small-area income levels (Heady et al.  2003 ; Bates 
 2006  ) . Their method involves combining survey data with other data sources that are 
available on an area basis and is underpinned by the area level relationship between 
the survey and auxiliary variables such as administrative or census data. In this con-
text, they modelled ten variables at the small-area level: household income from the 
Family Resources Survey, household income from the General Household Survey, a 
measure of social capital, the number of children from ethnic minorities, the number 
of people available to help in a crisis, the number of single-parent families, over-
crowding and three measures of poor health. This small area estimation project 
(SAEP) methodology has been applied by the ONS to produce ward-level estimates 
of mean household income for 2001/2002 and middle layer super output area 3  
level-level estimates for 2004/2005. Unfortunately, the approach has not yet been 

   3   Administrative areas that are nested within local authorities and which are exact aggregates of, 
on average,  fi ve LSOAs.  
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applied to the estimation of threshold-based indicators such as the percentage of 
households below a given threshold, and it also has not been used to create estimates 
at lower levels of geography such as for LSOAs. 

 An alternative approach, generally implemented in the commercial market 
research sector, makes use of ‘lifestyle geocodes’ to estimate income distributions 
down to postcode levels. These estimates generally calculate income distributions 
using a combination of market research records, postcode level geo-demographic 
indicators, national census and survey data and statistical imputation (Webber  2004  ) . 
In effect, the national income distribution is used as the basis of the income distribu-
tion of individual postcodes, but its mean and standard deviation are allowed to vary 
between postcodes (Williamson and Voas  2000  ) . However, the dependence on life-
style surveys with potentially unknown response bias on a small number of lifestyle 
categories and on the imputation of household characteristics for postcode level 
address records has been criticised (Williamson and Voas  2000 ; McLoone  2002  ) . 

 Finally, Birkin and Clarke  (  1988,   1989  )  introduced an approach that sought to 
combine elements of several of the above to produce not a modelled estimate but 
synthetic population microdata from which relevant aggregates and summaries 
could be calculated. This approach emphasised the importance of small-area 
income estimates and was the  fi rst study to use what they termed a spatial micro-
simulation method. This method used a combination of Monte Carlo sampling and 
iterative proportional  fi tting to produce small-area level microdata for each ward of 
the city of Leeds. 

 Since this original work, there have been considerable developments and 
advances in data availability and computing resources which have enabled experi-
mentation with new techniques that can more easily and ef fi ciently generate more 
reliable small-area microdata. In this context, Williamson et al.  (  1998  )  explored 
different solutions to  fi nding the combination of UK Census Household SARs 
which best  fi t known small-area constraints. They tested various techniques of 
probabilistic combinatorial optimisation methods such as hill climbing algorithms, 
simulated annealing approaches and genetic algorithms in order to reweight cases in 
the SARs so that a good  fi t to known census-derived data was achieved when the 
estimations were re-aggregated to the small-area level. Building on these approaches, 
Ballas et al.  (  1999  )  report the testing of a number of approaches including the deter-
ministic iterative proportional  fi tting method. Ballas then applied this method to the 
estimation of small-area level trends in equivalised income in York and Leeds 
between 1991 and 2001 using a combination of census and British Household Panel 
Survey (BHPS) data (Ballas  2004  ) . He concluded that the iterative proportional 
 fi tting method was preferable on a number of dimensions including its deterministic 
nature and relatively ef fi cient algorithm. 

 More recent work has sought to improve on these initial approaches through the 
further re fi nement of methods of error estimation (Smith et al.  2009  )  and of the 
selection of small-area constraints (Chin and Harding  2006 ; Anderson  2007 ; Tanton 
et al.  2009a,   b ; Anderson et al.  2009b  ) . 

 In summary, a range of approaches to the small-area estimation of income have 
been developed. However, very few have attempted to produce measures of the 
proportion of households below a given income threshold which are now considered 
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standard in the analysis of income inequalities. In this context, the remainder of this 
chapter presents a method for estimating the percentage of households whose net 
equivalised income is below 60% of the national median. The method uses the deter-
ministic iterative proportional  fi tting approach to produce population microdata for 
each Welsh LSOA using a large sample survey and Census 2001 data for Wales.  

    4.3   The Iterative Proportion Fitting Approach 

 As we have seen in the last section, there has been considerable progress in the use 
of spatial microsimulation to produce small-area estimates. The reweighting meth-
odologies brie fl y introduced above offer considerable potential for the creation of 
synthetic small-area microdata through the reweighting of national or regional 
survey microdata, such as the Family Resources Survey (FRS), using data from the 
census of population. Put simply, the method allocates all households from the 
sample survey to each small area and then, for each small area, reweights each 
household so that the derived small-area level tables of aggregate statistics for those 
reweighted households match identical tables from the UK Census 2001 (Williamson 
et al.  1998  ) . This reweighting requires the identi fi cation of suitable constraint variables 
that must exist in both the small-area (census) and survey data in identical form 
(Williamson et al.  1998  and see Chap.   2     for the importance of preparing the raw 
data). It is these constraints that are the subject of the reweighting process. 

 As Williamson et al.  (  1998  )  and Williamson and Voas  (  2000  )  point out, there are 
many ways in which reweighting methodologies can be  fi ne-tuned through the eval-
uation of the use of more or different census small-area tables or by changing the 
model parameters. These design choices can be summarised as:

   Choice of reweighting algorithm  • 
  Choice of constraints to be used in reweighting  • 
  Selection of households from the survey to be used for each small area  • 
  Whether or not to require integer weights (i.e. produce ‘whole households’)    • 

 A wide range of techniques have been proposed for the reweighting of cases 
ranging from iterative proportional  fi tting through simulated annealing to linear 
programming and complex combinatorial optimization and generalised regression 
methods (Williamson et al.  1998 ; Ballas et al.  1999 ; Ballas and Clarke  2001 ; Tanton 
et al.  2011  ) . Birkin and Clarke  (  1988,   1989  )  demonstrate how iterative proportional 
 fi tting (IPF) and Monte Carlo sampling can be employed to generate a wide range 
of attributes at the small-area level. The IPF method is well established and appears 
in a multitude of guises, from balancing factors in spatial interaction modelling 
through the RAS method in economic accounting, and its behaviour is relatively 
well known (Birkin and Clarke  1988 ; Wong  1992 ; Simpson and Tranmer  2005  ) . 

 In essence, the method we have developed allocated all (or a speci fi c selection 
of) households from the FRS to each Welsh LSOA and then iteratively reweighted 
each case using the iterative proportional  fi tting algorithm so that LSOA level tables 
of aggregate statistics matched identical tables from the UK Census 2001. 

http://dx.doi.org/10.1007/978-94-007-4623-7_2
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    4.3.1   De fi nition of Income 

 The income survey data used was the Welsh subsample of the FRS 2003/2004 
and FRS 2004/2005, and the income variable used was the sum of all net house-
hold incomes from:

   Earnings and self-employment (net of income tax and national insurance • 
payments)  
  Investments  • 
  Disability bene fi ts  • 
  Retirement pensions plus any income support or pension credit  • 
  Working tax credit and/or child tax credit received  • 
  Other pensions  • 
  Other bene fi ts  • 
  Other/remaining sources    • 

 In order to align the income values with the of fi cial UK Department for Work 
and Pensions’ Households Below Average Income (HBAI) de fi nitions (DWP  2007 : 
Appendix 1), the following expenditures were then removed to produce the net 
income before housing costs (BHC):

   Domestic rates/council tax  • 
  Contributions to occupational pension schemes (including all additional voluntary • 
contributions (AVCs) to occupational pension schemes and any contributions to 
stakeholder and personal pensions)  
  Insurance premiums made in case of sudden loss of earnings  • 
  All maintenance and child support payments, which are deducted from the income • 
of the person making the payment  
  Parental contributions to students living away from home  • 
  Student loan repayments    • 

 To calculate after housing costs (AHC) income, ‘the total amount spent on water 
and sewerage rates, rent, mortgage interest, household rent, structural insurance 
(adjusted for combined cases to be consistent with HBAI) and service charges’ (DWP 
 2007 : Appendix 1) was removed from the before housing costs income variable. 

 In common with the of fi cial HBAI de fi nition, the UK Department of Work and 
Pensions’ variation of the Organisation for Economic Co-operation and 
Development’s modi fi ed  equivalisation  scale was 4  then used to control for house-
hold composition and to produce an equivalised measure of household income 
before and after housing costs. These were then used as the basis for the calculations 
of the Welsh BHC/AHC medians and thence the allocation of households to the two 

   4   Modi fi ed OECD scale = 1 + 0.5 × number of adults + 0.2 × number of dependent children < 14; 
HBAI scale (BHC) = 0.67 × 1 adult + 0.33 × number of further adults + 0.2 × number of children 
aged < 14; HBAI scale (AHC) = 0.58 × 1 adult + 0.42 × number of further adults + 0.2 × number of 
children aged < 14.  
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indicator groups – above or below 60% of the relevant Welsh median to create a 
within-Wales poverty indicator (Table  4.1 ).  

 It should be noted that households with negative incomes were retained. 
Households reporting negative BHC income constitute 0.55% of Welsh households 
in 2003–2004 (0.81% in 2004/2005), whilst 0.86% (1.37%) report negative AHC 
income. It was not expected that retaining households with negative incomes will 
have any signi fi cant effect on the indicators as they will not substantially affect the 
median calculations.  

    4.3.2   Choice of  Constraint  Variables 

 Having determined to use IPF to reweight the survey observations to  fi t the small-
area tables, it was then necessary to identify the constraint variables on which the 
IPF process would operate. The set of constraint variables must be:

    1.    Common to both the FRS and the census or at least derived from them  
    2.    Available at the household level – as the poverty indicator to be estimated is at 

the household level  
    3.    Known to be reasonable predictors of the indicator at the small-area level  
    4.    Reasonably good predictors of the indicator at the micro (household) level     

 A review of census and FRS data was used to produce a list of variables that satis fi ed 
criteria 1 and 2, and recommendations from the literature (Williamson and Voas 
 2000 ; Williamson  2005  )  were used to  fi lter these variables according to criteria 3 to 
produce a list of candidate constraints (Anderson  2009  ) . 

 Finally, criteria 4 was tested within the FRS using standard logistic regression 
techniques to model the relationship between the micro-level constraints and 
the probability of a household having a net equivalised income below 60% of the 
national median. The  r -squared value was used as an indicator of the value of the 
constraint variables, but in contrast to previous work which reported the use of repeated 
bivariate regressions to test each variable independently (Chin and Harding 
 2006  ) , a stepwise multivariate method was used. The multivariate approach meant 

   Table 4.1    FRS BHC/AHC 
households – below average 
income results for Wales   

 BHC  AHC 

 2003/2004 
  N   1,278  1,278 
 % HBAI  12.51%  17.76% 

 2004/2005 
  N   1,239  1,239 
 % HBAI  13.48%  16.87% 

 2003/2005 
  N   2,517  2,517 
 % HBAI  12.99%  17.32% 
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that correlations between constraint variables were taken into account and thus the 
‘pure’ effects of each constraint were revealed whilst the use of the stepwise tech-
nique automatically included only those variables which had a statistically 
signi fi cant effect on the model and ordered the resulting indicators in decreasing 
order of their effects. 

 The overall model pseudo r-squared score can then be used as an indicator of 
how well the included constraints predict the outcome variables (in this case the 
BHC or AHC HBAI) at the household level, and is thus some indicator of the 
con fi dence we can have in the robustness of the eventual results. In addition, because 
the IPF technique iteratively reweights a series of constraints, the last constraint is 
necessarily  fi tted perfectly. It is therefore important that the constraints are used in 
an order that represents their increasing predictive power so that the ‘best’ constraint 
is  fi tted last and the stepwise results allowed us to establish this ordering. 

 Table  4.2  summarises these results and shows that we can be justi fi ed in pooling 
the 2003–2004 and 2004–2005 FRS data since the predictors of each indicator at the 
household level were essentially identical, although it is interesting to note that with 
the larger pooled sample (2003–2005), there were additional signi fi cant constraint 
variables: Household Response Person (HRP) gender in the case of BHC and HRP 
age in the case of AHC.   

    4.3.3   Small-Area IPF Algorithm Implementation 

 As previously discussed, these constraints were then used at the small-area 
(LSOA) level to iteratively reweight the FRS to  fi t each Welsh LSOA and so pro-
duce an estimate of the % HBAI for each LSOA for each indicator. Whilst results 
for 2003–2004 and 2004–2005 were generated separately, we report only those 
for the pooled 2003–2005 data using the constraints identi fi ed above. 

 Following Ballas et al.  (  2005a  ) , we implemented a  regional weighting  scheme 
so that only households belonging to the same region as the particular LSOA 
are allocated to it. Ballas et al. also report using a process of integerisation to select 
the ‘best  fi t’ n weighted households for a given area where  n  was the number of 
households required for the ward. This integerisation process assigns integer weights 
to each household in the survey. Ballas et al. report that this integerisation produced 
some extremely poor results when tested against the census distributions and 
described a swapping algorithm to swap households between their 1991 wards in 
order to reduce errors and produce a better  fi t. 

 Since it is inevitable that the integerisation process would reduce within-zone 
variation, and for our purposes it was not necessary that each small area was allo-
cated a whole number of households, we did not implement the integerisation pro-
cess. Instead, our simpli fi ed method allowed the  fi nal household weights for each 
small area to remain fractional so that all possible survey households were retained. 
In our experience, this simpli fi ed method produced distributions that performed at 
least as well as Ballas et al.’s more complex combination of integerisation and 
household swapping. 
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 The objective was to produce a set of weights linking all households from the 
relevant government of fi ce region to all LSOAs in that region in the sense that the 
weights represent the ‘fractional existence’ of each household in each LSOA. 
Conceptually, the results can be thought of as a matrix of LSOAs (rows) and house-
holds (columns) where each cell contains the weight for a given household in a 
given LSOA. 

 To do this, two sets of tables were required for each constraint for each LSOA: 
the Census 2001 small-area tables for the constraints (see Table  4.3 ) and the analo-
gous small-area tables constructed from the FRS households for the region in which 
the zone was found (see Table  4.4 ).   

 Starting with LSOA 1, all household weights ( w  
i
 ) were initially set to 1 (see 

Table  4.5 ), whilst the weights for households that did not belong to the same region 
as the area in question were set to 0 rather than  w  

i
  to implement the regional weight-

ing scheme.  
 Then, for each constraint in turn, the weights were adjusted using the formula:

     
= ih hj hjw * c shN w

   

where  N w 
 h 
  was the new household weight for household  h ,  w  

ih
  was the initial weight 

for household  h , c 
hj
  was element hj of the census data table (Table  4.3 ) and s 

hj
  was 

element hj of the FRS statistical table (Table  4.4 ). 
 As an example, using the number of earners  constraint , Table  4.6  shows the 

calculations for the  fi rst weights for the  fi rst four households so that the FRS sample 
 fi ts the census distributions on this one dimension.  

   Table 4.3    Small-area table for number of earners derived from Census 2001 for the  fi rst LSOA 
in Wales   

 Zone code 
 Number 
of households 

 Number 
of earners = 0 

 Number 
of earners = 1 

 Number 
of earners = 2 

 Number of 
earners = 3+ 

 W01000001  517  294  132  85  6  

   Table 4.4    Small-area table for number of earners derived from the FRS 2003/4/5 for Wales   

 Number 
of households 

 Number 
of earners = 0 

 Number 
of earners = 1 

 Number 
of earners = 2 

 Number 
of earners = 3+ 

 1,308  608  333  320  47 

   Table 4.5    First four zone 1 households with initial weights   

 Case  Region  HRP age 
 Number 
of rooms 

 Number 
of persons 

 NS-SEC 
of HRP  Composition 

 Number 
of earners   w  

i
  

 26,115  10  2  3  0  1  2  1  1 
 26,116  10  2  2  0  3  2  0  1 
 26,117  10  2  3  4  0  0  2  1 
 26,118  10  4  3  0  0  2  1  1 
 ..  ..  ..  ..  ..  ..  ..  ..  1 
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 Having adjusted the weights for the  fi rst constraint, the process then moves 
sequentially through each constraint variable, multiplying each new weight by that 
produced by the previous step. Since the last constraint to be  fi tted will necessarily 
be  fi tted perfectly, it was necessary to order the variables in order of the contribution 
to the  r -squared in the regression model  fi tted (Table  4.2 ). This means the last vari-
able to be  fi tted was the one which accounted for the most variation in the outcome 
variable of interest (% HBAI in this case). 

 Having passed over all constraints once, the process then looped back to the 
 fi rst constraint variable and repeated the reweighting starting from the weight 
produced in the last step (by the last constraint). Ballas et al.  (  2005a  )  found that 
iterating the procedure between  fi ve and ten times produced weights that reduced 
the error in  fi tting households to areas to a point where it no longer declined. 
Our experimentation suggested that ten iterations were suf fi cient to achieve a 
stable indicator value (Anderson  2009  ) . Thus, after iterating the reweighting 
procedure ten times, the simulation then moved on to the next zone and repeated 
the process. 

 Calculating the % HBAI was thus a straightforward matter of summing the 
weighted indicator for each area and dividing by the number of households in 
that area.   

    4.4   Results 

 Figure  4.1  compares estimated before housing costs and after housing costs % 
HBAI for LSOAs in Wales. It can be seen that the two indicators produced slightly 
different results at the upper end of the distribution (higher income deprivation), 
although rather similar results for the least deprived. This was con fi rmed by a 
Spearman rank correlation of only 0.679 and by Fig.  4.1 .  

 The spatial distributions of the BHC indicator (not shown) suggested a higher 
concentration of poor households in the former mining areas of South Wales and 
in the coastal areas on the Pembrokeshire/Ceredigion border as well as in other 
pockets in speci fi c urban areas. In contrast, the areas with the highest % HBAI 
according to the AHC indicator (Fig.  4.2 ) were concentrated in the Valleys and 
South Wales urban areas.  

   Table 4.6    First four zone 1 households with weights after  fi tting to constraint 1   

 Case  Region  Number of earners  W 
1
  

 26,115  10  1  = 1 × (132/333) = 0.396 
 26,116  10  0  = 1 × (294/608) = 0.484 
 26,117  10  2  = 1 × (85/320) = 0.266 
 26,118  10  1  = 1 × (132/333) = 0.396 
 ..  ..  ..  .. 
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 Overall, the AHC indicator was considerably more diffuse in its distribution and 
thus may be a better ‘relative poverty’ indicator in comparison to the rather tighter 
BHC distribution which supports less differentiation (Fig.  4.3 ).  

 It should therefore be apparent that the utility of each indicator in a revised index 
of multiple deprivation will depend on the political objective and outcome desired 
since they reveal slightly different patterns of poverty.  

    4.5   Validation 

 In order to test the validity of the estimated distributions of the % HBAI, we made 
three kinds of comparisons:

   Comparison of the modelled results with reliable survey results at regional or • 
country level to check internal validity and that the process accurately recreated 
inter-regional or inter-country variation. In this case, we used the FRS.  
  Comparison of the estimated constraint counts with initial census constraint • 
counts to check internal validity. This was the analysis of  total absolute error  
(TAE) discussed in Ballas et al.  (  1999,   2006)  and Smith et al.  (  2009  ) .  
  Compare estimated LSOA level results with other known small-area estimates. • 
In this case, no equivalent small-area data were available, but instead, we com-
pared the results to the income domain score of the Welsh IMD 2005.    

  Fig. 4.1    Comparison of BHC and AHC HBAI indicators at LSOA for Wales (Census 2001, FRS 
2003–2005 pooled)       
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 Table  4.7  shows the % HBAI indicators (and 95% con fi dence interval) as 
calculated from the relevant FRS data and estimated from the spatial microsimula-
tion process. Overall, there appeared to be a tendency to slightly underestimate % 
HBAI compared to the FRS results. In general, we would expect the microsimula-
tion result to lie within the 95% con fi dence interval of the survey estimate, and as 
can be seen, the spatially microsimulated estimates provided a reasonable  fi t since 
they lay within these boundaries.  

 Turning to the constraint count error analysis, by entering the constraint counts 
as variables to be estimated, it is possible to compare the initial ‘true’ census constraint 
household counts with the estimated counts following the spatial microsimulation 

  Fig. 4.2    Spatial distribution of % HBAI in Wales (AHC, LSOA level, Census 2001, FRS 2003–
2005 pooled, natural breaks (Jenks))       
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  Fig. 4.3    Kdensity distributions of BHC and AHC % HBAI indicators at LSOA level for Wales 
(Census 2001, FRS 2003–2005 pooled)       

   Table 4.7    Comparison of simulated mean % HBAI results with FRS 2003–2005 pooled results   

 Source FRS 
2003–2005 
pooled  SE mean  95% CI (+/−) 

 Spatial microsimulation 
(FRS 2003–2005 pooled/
Census 2001)  Difference 

 % HBAI (BHC)  12.992%  0.670  1.314  12.259%  −0.733% 
 % HBAI (AHC)  17.322%  0.754  1.479  16.294%  −1.028% 

procedure. The total absolute error (TAE) is the difference for each constraint cate-
gory for each area summed over all areas, whilst the  standardised absolute error  
(SAE) is TAE divided by the number of units (in this case households). 

 Whilst minimising the difference between the ‘true’ and estimated counts is the 
objective, it is not yet clear in the literature what values of error are acceptable, 
although Smith et al. suggest that an SAE of less than 20% and ideally less than 
10% in 90% of the areas is desirable, especially where the prevalence rate of the 
phenomenon of interest is low (Smith et al.  2009  ) . 

 The % HBAI models for Wales performed substantially better than this, and 
elsewhere, we disaggregated the SAE to reveal the constraints that showed the poor-
est  fi t (Anderson  2009  ) . The analysis suggested that levels of error were relatively 
low for both indicators with the largest error being for households with no earners 
(11.9% in each case). The mean error was no larger than 2.1% for any constraint, 
and in all cases, 90% of areas had SAE rates of less than 4%. As expected, we also 
con fi rmed that the order of the constraints means that the last category to be  fi tted 
(HRP Employment)  fi ts perfectly. 
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 Finally, Figs.  4.4  and  4.5  show the  fi t between the Welsh IMD 2005 income 
domain score and the simulated % HBAI indicators at LSOA level. As expected, 
there was a strong rank order correlation between % HBAI using the equivalised 

  Fig. 4.4    WIMD 2005 income domain score vs spatial microsimulation results for BHC indicator 
(Spearman rho = 0.6041)       

  Fig. 4.5    WIMD 2005 income domain score vs spatial microsimulation results for AHC indicator 
(Spearman rho = 0.8834)       
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indicator and the WIMD income domain score, and this was especially the case for 
the after housing costs indicator.   

 Figure  4.4  suggests the presence of a number of outliers which were low on the 
WIMD 2005 income score but relatively high on the simulated % HBAI. This was 
particularly noticeable in the case of the AHC indicator. Deeper analysis revealed 
that the two LSOAs which were in both the top 10% of HBAI (AHC) and the bot-
tom 10% of the WIMD 2005 income score 5  had a high or relatively high propor-
tion of students (who could not claim relevant bene fi ts) according to the 2001 
census. This suggested that one of the main differences between the Indices of 
Deprivation income domain results and the HBAI (AHC) results was the inclusion 
of low-income  student  households. LSOAs with higher proportions of students 
were therefore likely to appear to be ‘more deprived’ using the HBAI indicator 
than would be the case for the WIMD income domain score.  

    4.6   Conclusions and Future Directions 

 Overall, the results of this preliminary work on estimating the proportion of house-
holds below HBAI at the small-area level were encouraging. The results provided 
a synthetic household dataset which reproduced the Welsh %HBAI (BHC/AHC) as 
measured by the UK Family Resources Survey and which also produced a good  fi t 
to the Welsh IMD 2005 income domain score at the small-area level. This was 
especially true for the AHC measure. 

 The results also suggested that a focus on %HBAI, and especially on the AHC 
indicator, would present slightly different spatial distributions of income depriva-
tion than would the WIMD 2005 income domain score. In particular, there would be 
differences where  students  make up a high proportion of survey respondents. This 
is of course likely to affect urban rather than rural areas. In addition, the differences 
between the results for the BHC and AHC indicators mean that consideration needs 
to be given to which would be the ‘best’ one to use in a future revision of the Welsh 
IMD. This cannot be answered by this chapter as it is dependent on the policy context 
and the uses to which the index and its components will be put. 

 The analysis of errors (SAE) suggested that in some small areas, the spatial 
microsimulation method produced a less accurate estimate than in others. This may 
have been because these areas were made up of an unusual combination of house-
hold types and future work could investigate extending the spatial microsimulation 
method to account for such areas and thus to reduce overall error still further. 

 The  iterative proportional  fi tting  method itself is performed in a robust, deter-
ministic manner in this context. This determinism meant that variations in input data 
coding, constraint ordering or small-area table recoding were the only source of 

   5   Somewhat counter intuitively, this means their WIMD 2005 income score would be low (i.e. not 
deprived).  
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variation in the small-area estimates. This proved extremely useful because it 
allowed the testing of different combinations of constraints and data coding options 
without the additional uncertainty caused by a probabilistic reweighting method. 

 As we have discussed, we also assumed that the order of the reweighting iterations 
mattered since the last constraint always  fi tted perfectly. We assumed that this then 
necessitated the use of the nested regression analysis to determine the ‘best’ constraint 
variable order. However, there is as yet no evidence that this ‘best’ order produces a 
substantially better  fi t than, for example, a random ordering, and we anticipate testing 
this assumption in future work. 

 Finally, we would also suggest that the ability of the IPF algorithm to produce 
 fractional weights  proved crucial to the reconstruction of accurate aggregated 
estimates for comparison with the original survey data (Table  4.7 ). It also enabled 
us to retain all relevant households in our synthetic small-area samples and so 
increase their (weighted) heterogeneity. This would prove crucial if these data were 
then to be used as a basis for the  microsimulation modelling  and thus small-area 
analysis of, for example,  policy intervention  scenarios.      
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          5.1   Introduction 

 This chapter details a deterministic method of spatial microsimulation modelling, 
which uses a set of algorithms based on combinatorial optimisation. This model, 
called SimObesity, was developed within the School of Geography, University of 
Leeds. An application of this model to estimate adult obesity prevalence is demon-
strated. The chapter discusses the value of adopting a spatial microsimulation procedure 
and brie fl y debates the pros and cons of probabilistic and deterministic techniques 
for data imputation. Having chosen the latter, the chapter discusses the data and 
methodology used to estimate small-area prevalence of obesity in northern England. 
The results are discussed both in terms of the reliability of the model outputs 
(validation) and in terms of the spatial variation in estimated patterns.  

    5.2   Why Use Spatial Microsimulation Modelling 
to Model Disease Data? 

 There are two key reasons for modelling disease data using a spatial microsimulation 
model. First, many chronic diseases are a result of multifaceted associations, including 
biological, physiological, environmental, social and economic factors. Understanding 
how all of these factors vary will facilitate an understanding of variations in the 
disease of interest. 
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 Second, disease data are not always available at the required spatial scale for useful 
policy analysis. It is clear that different spatial scales draw attention to different 
disease associations (Gatrell  2002  ) . Analysing data for large areas (e.g. a city like 
London or large area like Yorkshire) gives a broad perspective, but assumes homo-
geneity at this level and potentially falls foul of the ecological fallacy problem. 
Analysis for large areas can imply that spatial patterns are uniform over the region 
being studied and that all households in that region have the same health conditions. 
Individual conditions are thus not well modelled (Wilkinson et al.  1998  ) . 

 Similarly, drilling down qualitatively to only a handful of individuals gives great 
perspective on those people’s lives, but has limited public health perspective in terms 
of aggregating  fi ndings to the entire population. Thus, modelling at the small-area 
level (for instance, Census tract level) allows for greater heterogeneity across fairly 
small populations. Modelling data for small areas is also a cost-effective alternative 
to undertaking an expensive and time-consuming data collection in the study area. 

    5.2.1   Why Use a Deterministic Model? 

 There is a major choice to be undertaken at the start of the spatial microsimulation 
model building process: whether to use a probabilistic or deterministic model. 
Probabilistic models use random sampling at some point within the algorithm; deter-
ministic models are rule based, that is, if A is true, then B occurs. The reader will note 
that the static spatial microsimulation models described in Chaps.   3    ,   4     and   7     are all 
probabilistic, whereas this model (and the one described in Chap.   6    ) are deterministic. 

 A probabilistic algorithm will produce a different result each time the model is 
run because effectively, the input  fi les are changing as different random numbers 
are used. That is, if the model selects say 100 individuals, the selection is random 
and so the model simulation would be based on a different set of individuals each 
time the model is run. This issue can be resolved by running the model a number of 
times and using an average result. However, the key bene fi t of a deterministic 
approach is that the algorithm results in only one solution, that is, the same solution 
occurs each time the model is run (assuming the use of the same constraint variables 
and input datasets).   

    5.3   SimObesity Methodology 

    5.3.1   Data Used for the Model 

 The SimObesity methodology combines data from two sources. The  fi rst is a dataset 
aggregated at the required spatial scale including a variable descriptor for geography, 
such as postcode or output area. This will be referred to as the ‘geographic dataset’. 
So in the UK, this would normally be the latest Census data available. The second 

http://dx.doi.org/10.1007/978-94-007-4623-7_3
http://dx.doi.org/10.1007/978-94-007-4623-7_4
http://dx.doi.org/10.1007/978-94-007-4623-7_7
http://dx.doi.org/10.1007/978-94-007-4623-7_6


715 SimObesity: Combinatorial Optimisation (Deterministic) Model

is a dataset at the individual level that contains the variable to be estimated. This will 
be referred to as the ‘population dataset’. This second dataset does not need to have 
any geography variable descriptor, although this can be useful for validation. Often, 
these are datasets contained within nationally representative samples. Examples of 
suitable datasets in the UK would be the Health Survey for England, the British 
Household Panel Survey or the National Diet and Nutrition Survey. The choice 
of dataset will depend on the variable(s) being estimated, as the variable being 
estimated needs to be on the dataset. Further, a larger population dataset is preferred 
to a smaller one as it gives the algorithm more data to select from. A small dataset 
can lead to under- and overestimation at the extremes (e.g. for very deprived or very 
wealthy areas) (Huang and Williamson  2001 ; Birkin and Clarke  2011  ) . 

 These two datasets are combined using the SimObesity model, and the resulting 
output dataset contains all the variables contained in the two starting datasets (see 
Fig.  5.1 ). The output dataset is an estimation of the population living in the study area 
for all of the variables in both starting datasets. Each individual in this dataset has been 
assigned to a micro-area (at the micro-spatial scale provided in the starting geographic 
dataset); thus, it is always possible to aggregate these data upwards for analysis.  

 As the two starting datasets are combined based on common variables between 
the two datasets, it is essential that the variables used to link the datasets are present 
in both datasets. These linkage variables are often called ‘constraints’ or ‘benchmark’ 
variables. For SimObesity, it is necessary to use constraints that are associated with 
the variable(s) being estimated (Edwards and Clarke  2009  ) . These are the so-called 
optimising constraints. The simulation will only be as good as the underlying 
associations. Thus, the optimising constraints should be strong predictor(s) of the 
variable(s) being estimated. 

 Any variables that will be used in any subsequent analysis should also be included 
as constraints. For example, gender may be a variable we want to adjust for at some 
point in a study, so while it may not be associated with the variable being estimated, 
we would include it as a constraint. These are called ‘elective constraints’. 

Output data
at required spatial scale

SimObesity
algorithms

Population 
dataset

Geographic 
dataset

SimObesity
algorithms

d

  Fig. 5.1    Outline of 
SimObesity data combination       
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 SimObesity permits any number of constraints (whether optimising or elective). 
It also allows for them to be univariate (e.g. age) or to be cross-tabulated (e.g. marital 
status by age and by sex). Further, a constraint could be cross-tabulated in one 
dataset (say, the geographic dataset) but only available as a univariate table in the 
other dataset. Also, it is important to note that with this model, the resulting syn-
thetic population in the simulated dataset is chosen based on all of the constraints 
used in the model, without any one constraint taking priority or preference. That is, 
the order in which the constraint variables are entered into the model does not affect 
the resulting population. Hence, a simulation using age, ethnicity, deprivation and 
gender would result in the same simulated population as one using gender, ethnicity, 
age and deprivation (assuming, of course, that the same two starting datasets are 
used for both models).  

    5.3.2   Estimation Methodology 

 SimObesity uses two algorithms. The  fi rst is a deterministic reweighting algorithm 
(to allocate people to the geographic areas); the second, an optimization algorithm 
(so only ‘whole’ people are selected). 

 The starting point is two datasets: the population dataset (with records for indi-
viduals but no geographic variable) and the geographic dataset (with aggregated data 
at the correct geographic level). Both datasets share some common variables, some of 
which will be used as constraint variables (whether optimising or elective constraints). 
These two datasets are subdivided into constraint and summary tables before being 
inputted into the model. So, for example, if six constraint variables are used, there 
would be six constraints and six summary tables. Each ‘constraint’ table is simply the 
total number of people for each category and area from the geographic dataset for that 
variable (rows: each area, columns: each categorization for the constraint variable). 
Each constraint table should therefore have the same total number of people residing 
in each area. If not, an adjustment should be applied to ensure the tables are consistent 
(Edwards et al.  2010a  ) . The ‘summary’ tables are derived from the population dataset 
and are the total number of individuals for each category for each constraint variable 
(only one row; columns: each categorization for the constraint variable). 

 An initial weight is applied to each individual in the population dataset in order 
to compensate for bias/error. Then, for each constraint variable in turn, the reweighting 
algorithm (see Eqn.  5.1  and  5.2 ) determines what combination of individuals from 
the population dataset best matches the constraint aggregations for each geo-
graphic area. In Eqn.  5.1  and  5.2 ,  P  

 ij 
  denotes each individual in the population 

dataset, and  X  
 ij 
  denotes the weight for individual  i  in area  j . On the  fi rst run through 

the equations (i.e. for the  fi rst constraint variable),  W  
 ij 
  is the individual’s original 

weight in the population dataset. For subsequent constraint variables, it is the result-
ing weight ( Y  

 ij 
 ) from the preceding constraint.  C  

 ij 
  denotes the constraint value for 

individual  i  in area  j  for each constraint table in turn.  S  
 ij 
  denotes the value for indi-

vidual  i  in area  j  for each summary table in turn.  S  C  
 j 
  is the sum of the corresponding 

area column for each constraint variable.  S  X  
 j 
  is the sum of the  corresponding area 
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column for the reweight value determined in the preceding stage. A worked example 
of this is available elsewhere (Edwards and Clarke  2009  ) .  

 For  P  
 ij ,
 

     
= ´X W C / S ,ij ij ij ij    (5.1)  

     
= ´ å åY X C / X .ij ij j j    (5.2)   

 The end result from this  fi rst algorithm is a new dataset containing a  fi nal weight 
for each individual for each area (rows: each individual from the population dataset, 
columns: each area), which symbolises the likelihood that an individual would 
reside in that area. 

 If the concluding weights are simply aggregated up, then the model allows for 
fractions of people, which is not a realistic prospect. Thus, the second algorithm 
seeks to only allocate whole people to the  fi nal dataset. That is, this second algorithm 
is an iterative optimisation methodology to convert the  fi rst algorithm’s concluding 

  Fig. 5.2    Map of study area 
(north of England)       
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weights from decimals into integers. Ballas et al.  (  2005  )  have tested the optimal 
integerisation techniques for this process and have suggested the following procedure 
(the SimObesity version of the algorithm uses a ‘ fl oor’ function, which means that 
values are always rounded downwards). 

 First, the individuals are ranked in ascending order of weight for that area (i.e. from 
smallest to largest). The weights are aggregated one by one, starting with the individual 
with the lowest weight, adding the value for the individual with the next lowest 
weight, and so on. The cumulative weight continues to move down one row (i.e. to an 
individual with a bigger weight) at a time until each individual has been integerised.    
Each time the cumulative weight exceeds one, the corresponding individual is 
selected for inclusion in that area. Thus, if the new cumulative weight becomes 3.2, 
then three people would be allocated to that area and ‘0.2’ carried forward to aggre-
gate with the next individual’s weight. 

 These data are then used to populate the study area. Using an example of a study 
area where only ten people live, the optimised weights given in Table  5.1  show that 
there are four synthetic versions of person 5 ‘living’ in this area in the simulated 
dataset, two versions of both persons 3 and 9, but only one synthetic version of 
persons 2 and 5 and none of persons 1, 6, 7, 8 and 10. The full model produces these 
data for each area included in the model.   

    5.3.3   Validation Methodology 

 SimObesity does not automatically validate the estimates produced. It is therefore 
essential that the user spends some time both internally and externally validating 
their outputs. 

 It is recommended to start with internally validating the outputs, that is, to aggregate 
the estimated individual level data to the scale of the micro-areas in the starting geo-
graphic dataset and then to compare these results. It would be expected that there is no 
signi fi cant difference between the two datasets for all the constraint variables. Equal 

   Table 5.1    Example    of output from each of the two algorithms   

 Person ID 
 Weight resulting from the reweighting 
algorithm (algorithm 1) 

 Weight resulting from optimization 
algorithm (algorithm 2) 

 Person 1  0.0  0 
 Person 2  0.5  1 
 Person 3  2.3  2 
 Person 4  1.7  1 
 Person 5  3.2  4 
 Person 6  0.0  0 
 Person 7  0.2  0 
 Person 8  0.4  0 
 Person 9  1.7  2 
 Person 10  0.0  0 

  The right hand column represents the  fi nal synthetic population ‘living’ in this particular micro-area  
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variance two-tailed  t  tests and linear regression analyses can be used to assess any dif-
ferences between the estimated and actual datasets.  Note, this internal validation is 
only applicable to the constraint variables (e.g. age, sex and deprivation), and not for 
the output variable (e.g. obesity).  This is because the input datasets do not have output 
variable data at suf fi cient  fi ne geographic scale to undertake these internal validation 
analyses (if they did, the spatial microsimulation of these data would not be required)   . 

 External validation is when data from another source on the variable being esti-
mated are used to corroborate the validity of the estimates. For example, if the model 
were used to estimate how many obese people lived in a particular area, then a sample 
of obesity data would need to be collected from individuals actually living in that 
area, using the same measurement technique for obesity as used in the original popu-
lation dataset (e.g. body mass index with a cut-off of 30 kg m −2 ). This process is often 
more problematic than internal validation simply because data do not already exist at 
the micro-level, which is why the data are being estimated in the  fi rst place. However, 
it is sometimes possible to aggregate the estimated data to known data at a higher 
spatial scale (i.e. to match against known regional data). Although household or indi-
vidual data on health conditions is rarely available, it is occasionally known. Smith 
et al.  (  2011  )  provide a very useful case study which, reassuringly, shows that the 
deterministic reweighting procedure can produce a very good  fi t against known data 
at the small-area level (when predicting small-area smoking rates in New Zealand).  

    5.3.4   SimObesity Application: Estimating Adult 
Obesity Prevalence 

 The next section of this chapter describes the process of estimating adult obesity 
data for a large part of northern England (see Fig.  5.2 ). It is universally accepted that 
obesity is a massive problem in the UK and worldwide, with serious medical reper-
cussions for individuals. Yet obesity data are not routinely collected in the UK. 
Some sample data for the UK are available; the Health Survey for England 2008 
showed that nearly a quarter of adults were obese and 65% overweight (Craig and 
Mindell  2008  ) . However, these Health Survey for England data are not available at 
a  fi ne spatial scale, and often health data have no geographical coding.  Thus in 
order to scrutinise adult obesity data at the small-area level, it is necessary to esti-
mate these data. Spatial microsimulation models are an ideal tool for this task, and 
there are many examples of their application to estimate health data (Tomintz et al. 
 2008 ; Procter et al.  2008 ; Edwards et al.  2010b ; Morrissey et al.  2010  ) . 

    5.3.4.1   Datasets 

 For this simulation, the population dataset used data from the Health Survey for 
England dataset (which is available from the Essex University archive website: 
  http://www.data-archive.ac.uk/    ). This is because it contained individual level data 

http://www.data-archive.ac.uk/
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on body mass index (BMI), which can be used to de fi ne obesity. BMI is a ratio of a 
person’s weight and height, calculated as their weight in kilograms divided by 
the square of their height in metres. For adults, if this ratio is greater than 30 kg m −2 , 
the person is classi fi ed as obese. It also contained data on the required constraint 
variables (see below). To maximise the size of this dataset, 3 years worth of data 
were combined (2004, 2005 and 2006) (National Centre for Social Research and 
UCL  2004  ) . This resulted in data on 36,525 individuals. 

 The geographic dataset was the Census 2001, at lower super output area (LSOA) 
level. An LSOA is a socially homogenous geographic unit in the UK based on 
Census data. Each LSOA has a minimum of 400 households and 1,000 residents, 
averaging 1,500 residents. The study area included 975 wards, which constitutes 
4,318 Census LSOAs.  

    5.3.4.2   Model Constraint Variables 

 From all of the variables in common between the population and geographic 
datasets, age had the strongest correlation with BMI ( r  = 0.35). Thus, it seemed 
sensible to include age as an optimising constraint variable. Age was provided as a 
continuous (integer) variable in the population dataset and categorised (0–15, 16–19, 
20–49, 50–69, 70+ years) in the geographic dataset. 

 Sex and deprivation were selected as elective constraints because it was impor-
tant that these variables were also accurately estimated. Sex was categorised as male 
or female in both the population and geographic datasets. Deprivation was calcu-
lated using the Index of Multiple Deprivation. This is a variable that is derived from 
a combination of various data within the 2001 Census. It combines many variables 
covering seven different domains, each of which is given a different weighting: income 
(22.5%), employment (22.5%), health/disability (13.5%), education (13.5%), hous-
ing (9.3%), crime (9.3%) and living environment (9.3%) (   Communities and Local 
Government  2010 ). By amalgamating these variables, a single deprivation score is 
determined for each LSOA. The 2004 version was utilised rather than the current 
2007 version (  http://webarchive.nationalarchives.gov.uk/+/http://www.communi-
ties.gov.uk/archived/general-content/communities/indicesofdeprivation/216309/    ) 
because the oldest population dataset stemmed from 2004. The deprivation score 
was provided as a  continuous variable in both the population and geographic data-
sets. For the simulation, it was categorised into quintiles: 0.6–8.3 (least deprived) 
and 8.4–13.7, 13.8–21.1, 21.2–34.2 and 34.3–86.4 (most deprived). 

 The geographic dataset was split into three constraint tables, and the aggregate 
constraint variable data were equalised using the mean total population across the 
three tables. This is because in the UK, the aggregate Census tables have slight 
imperfections introduced into them deliberately in order to protect individual 
con fi dentiality, resulting in slightly (1 or 2 people per thousand) different population 
totals for any one area depending on which variable table is being used. Similarly, 
the population dataset was aggregated into three summary tables. An initial weight 
of 1 was applied to each individual. The SimObesity model was then run, resulting 

http://webarchive.nationalarchives.gov.uk/+/http://www.communities.gov.uk/archived/general-content/communities/indicesofdeprivation/216309/
http://webarchive.nationalarchives.gov.uk/+/http://www.communities.gov.uk/archived/general-content/communities/indicesofdeprivation/216309/
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in an individual level output (the number of each individual residing in each LSOA) 
and an aggregate level output (the number of individuals in each of the constraint 
and BMI categories for each LSOA).  

    5.3.4.3   Internal Validation 

 The output data were then internally validated, by comparing the estimated aggregate 
weighted  fi gures for each constraint category for each ward to the actual aggregate 
 fi gures. The ideal is that the estimated and actual  fi gures are identical. Thus, to 
determine the accuracy of the model, an equal variance two-tailed  t  test for each 
constraint variable was used to determine whether there were any statistical differ-
ences between the aggregated weighted simulated data and the actual benchmark 
data from the Census. Additionally, in order to assess the precision of the model, 
univariate linear regression models were run to examine the relationship between 
the simulated and actual data for each category of the constraint variables (i.e. 12 
models). For example, for each LSOA, the number of children aged 0–15 years in 
the simulated dataset can be compared with the actual number from the geographic 
dataset. An ideal, precise model would show that  y  =  x , so a coef fi cient of determination 
is equal to 1. 

 The results of the internal validation of the simulated datasets show that the 
model estimates are robust. A scatter plot visualisation of the linear regression 
models is provided in Fig.  5.3 . These clearly show how the data are clustered 
around the  y  =  x  trend line, corroborated by the high coef fi cients of determination 
(see Table  5.2 ). Also, the equal variance two-tailed  t  tests showed that there were no 
signi fi cant differences between the simulated and actual datasets for any of the 
constraint variables (see Table  5.2 ).    

    5.3.4.4   External Validation 

 In order to externally validate this model, we compared the proportion of obese, 
and overweight/obese, people in the synthetic dataset with national  fi gures for 
England. English data for 2004, 2005 and 2006 were amalgamated to coincide with 
the period of the simulated data population dataset and also because rates of obesity 
had been rising every year since 1997 (Craig and Mindell  2008  ) . These results are 
presented in Table  5.3 . There is less than 1% difference in the prevalence of obesity 
for adults, broken down as a 2% overestimate in female obesity and 2% underestimate 
in male obesity. While the difference in the prevalence of overweight and obese is 
slightly greater, it is still under 5% and due to a larger underestimate in the data 
for males. Of course, these differences could also be caused by regional variations, 
that is, geographical factors not accounted for in the model. Birkin and Clarke  (  2011  )  
discuss the impacts geography can make on actual spatial variations as opposed to 
simulation results based only on socio-economic factors.     
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    5.4   Analyses of Obesity Data 

 The simulation estimated the population for the north of England, together with all 
their attributes from both datasets (i.e. both the HSE and Census). These data showed 
that 25% of residents were obese and 62% overweight or obese. 

  Fig. 5.3    Internal validation results: linear regression models for each of the three constraint vari-
ables (sex, age, deprivation). The line on each plot represents the ‘dummy’  y  =  x  line         
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 The simulated data were then used to examine the existence, and location, of any 
LSOAs with particularly high- or low-obesity prevalence, which would be useful 
information for deciding where to target a weight loss/healthy behaviour campaign. 
Alternatively, this may also be useful for deciding which areas to undergo further 
investigation in order to  fi nd out why those residents were particularly successful in 
managing their weight status and whether this translated into lower incidence of 
obesity related co-morbidities, such as diabetes or high blood pressure. 

 Accordingly, the prevalence of obesity (the number of obese residents in an area 
divided by the total adult population for that area) was mapped at LSOA level using 
ArcGIS (version 3) (see Fig.  5.4 ). The boundary data for these maps were downloaded 
from the UKBORDERS website (  http://edina.ed.ac.uk/ukborders/    ). Figure  5.4  clearly 
shows that prevalence of obesity is not uniform across the study area, with higher 
rates in both urban and rural areas across the north of England.   

Fig. 5.3 (continued)

http://edina.ed.ac.uk/ukborders/
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   Table 5.3    Comparison of the obesity prevalence for the simulated data versus the national  fi gures 
for England (using data from the Health Survey for England for 2004, 2005 and 2006) by sex   

 Data for England  Estimated data  Difference 

 All adults  % Obese  23.5  23.7  0.1 
 % Overweight and obese  61.4  57.0  −4.4 

 Male  % Obese  23.0  21.5  −1.6 
 % Overweight and obese  66.4  59.2  −7.1 

 Female  % Obese  24.0  25.6  1.6 
 % Overweight and obese  56.4  55.1  −1.4 

   Table 5.2    Results from the 
internal validation:  R  2  from 
the linear regression models 
and  P  value from equal 
variance two-tailed  t  test   

 Variable   R  2    P  value 

 Male  0.9941  0.7009 
 Female  0.9932  0.6965 
 0–15 years  0.9159  0.5591 
 16–19 years  0.9683  0.8090 
 20–49 years  0.9725  0.8093 
 50–69 years  0.9610  0.6200 
 70+ years  0.9739  0.4912 
 Deprivation quintile 1 (least deprived)  1.0000  0.9993 
 Deprivation quintile 2  1.0000  0.9989 
 Deprivation quintile 3  1.0000  0.9986 
 Deprivation quintile 4  1.0000  0.9985 
 Deprivation quintile 5 (most deprived)  1.0000  0.9988 

 To explore these patterns further, a spatial scan statistic software, SaTScan (Kulldorf 
 2006  ) , was used to determine whether any statistically signi fi cant areas of high preva-
lence (‘hot spot’) or low prevalence (‘cold spot’) existed across the study area. This 
model adjusts for population density to verify whether any clusters are over and above 
that expected based on population distribution. Two Bernoulli models were run exam-
ining the number of obese individuals, in one instance looking for any ‘hot spots’ of 
high prevalence and the other for ‘cold spots’ of low prevalence for each area (i.e. the 
4,318 LSOAs). Both models required a ‘case’  fi le composed of the number of obese 
adults living in each area, a ‘control’  fi le being the balance of the population living 
in each area and a ‘geo’  fi le, which consisted of the Cartesian coordinates for the 
centroid of each micro-area. The model used the least subjective option for the maxi-
mum spatial cluster size, setting it at 50 % of the risk population. Further clusters 
needed to be distinct. No cluster boundaries were permitted to overlap geographically. 

 The output from these models is presented graphically in Figs.  5.5  and  5.6 . 
Figure  5.5  shows the relative risk of obesity for each LSOA. A relative risk of 1.2 
would mean that residents in that LSOA are 1.2 times more likely to be obese than 
the average for the study area. Similarly, residents with a relative risk of less than 
one are less likely to be obese. It can be seen that residents in some areas have an 
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increased risk of being obese compared to other areas. Note that this does not 
distinguish between contextual and compositional reasons for this clustering – thus 
whether obese people congregate within the same locality or whether there is an 
environmental impact of living in that neighbourhood. So what causes the residents 
to be/become obese is beyond the scope of this chapter.  

 Figure  5.6  shows the locations of the statistically signi fi cant clusters of either hot 
or cold spots of obesity. We clearly see how clusters of higher than expected (given 
the population density) prevalence of obesity are found in areas to the north-east, 
north-west and south of the study area. Conversely, cold spots are evident in the 
central section.  

  Fig. 5.4    Maps of adult obesity prevalence at LSOA level. Red shading indicates higher 
prevalence       
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  Fig. 5.6    Map of the areas of ‘hot’ and ‘cold’ spots of obesity prevalence at LSOA level       

  Fig. 5.5    Map of the clusters of relative risk of obesity for the study area. Red shading indicates 
relative risks are greater than 1; blue shading indicates relative risks are less than 1       
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    5.5   Conclusions 

 This chapter has outlined the algorithms behind SimObesity, a deterministic spatial 
microsimulation model which uses a combinatorial optimisation technique, with 
both a reweighting and integerisation algorithm. This model can be used to estimate 
new information at the micro-level and has been successfully used to estimate a 
variety of health data (Tomintz et al.  2008 ; Procter et al.  2008 ; Edwards et al.  2010b ; 
Morrissey et al.  2010  ) . To carry out a detailed survey to obtain the same extensive 
data would be extremely time consuming and expensive. 

 SimObesity can be used to construct synthetic small-area populations that are 
comprised of a wealth of socio-economic and health variables by linking data from 
different sources. This produces a new micro-level population dataset that is not 
available from published sources. These data can then be utilised to investigate 
associations between these variables at the local level. 

 Accordingly, we also show an application of the model to estimate adult obesity 
across the north of England. The validation of these data shows that the simulated 
data corresponds well with the actual data. The model is able to provide good esti-
mates for all of the input variables, with no signi fi cant differences between the sim-
ulated and actual populations. The obesity estimates were comparable with the 
sample obesity data for the UK. The output data were then used to isolate statisti-
cally signi fi cant hot and cold spots of obesity prevalence. This information increases our 
understanding about obesity in the area, highlighting that prevalence is not uniformly 
high (or low) across the north of England (a simple deprivation-type distinction), 
and some areas require more investigation than others. 

 Spatial microsimulation is by its very nature both an art and a science. Modelling 
decisions may impact the resulting dataset. Having a large population dataset will 
facilitate a more accurate simulation, as it provides more individuals to select from 
the simulated population, thus making it more likely that some rare population 
characteristics are available for selection (science!). 

 However, the choice, and number, of input (constraint or benchmark) variables 
will also impact the  fi nal output (art!). For optimum simulation accuracy (i.e. for the 
attributes of the actual and simulated population to correspond), the input variables 
should be strongly correlated (ideally,  r  > 0.5) with the output variables. Given there 
is not a linear relationship between predictive power and effect size, the predictive 
value of smaller correlation coef fi cients is not useful or reliable. Thus, this decision 
is best informed through a combination of relationships articulated in the literature 
and the strength of correlations between potential input variables and the proposed 
outcome variable(s) in the population dataset. While the original version of 
SimObesity was limited to a maximum of six input variables due to computational 
restrictions, programming improvements have removed this cap so any number of 
constraints may be utilised, either univariate or cross-tabulated or a combination of 
these. The only limitation therefore is that with too many input variables (or categories 
of the variables), the model could run into small number problems. Thus, if the 
Census dataset had zeros or low numbers for any input categories, the accuracy of 
the simulation is likely to be lower. 
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 A further dif fi culty is in the validation of the simulated data. A simple comparison 
of the estimates to actual data is generally not possible as, by de fi nition, these data do 
not already exist at the micro-level (otherwise, the simulation would not be necessary). 
Many chapters of this book suggest ways to estimate the error in the data to seek to 
achieve validation of these models, and Chap.   15     tries to summarise all these valida-
tion methods. Likewise, we advise the use of linear regression and paired unequal 
variance t tests to assess the precision and accuracy of the model estimates. 

 In conclusion, the reweighting deterministic algorithm in this chapter has been 
shown to be a useful tool for simulating micro-area data. However, spatial micro-
simulation models, although conceptually straightforward to design, are not simple 
to construct. Thus, this handbook highlights what models are available and which 
could potentially be used to  fi t/model your data.      
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 This chapter outlines a method of spatial microsimulation that uses a reweighting 
algorithm implemented with the SAS programming language. The reweighting 
algorithm derives population weights by benchmarking the unit record level survey 
data to the reliable spatially disaggregated census data. These weights can then 
be applied to the sample to derive  fi nal populations for the small area, just like 
survey weights provided by national statistical agencies allow aggregation to 
national totals. 

 This chapter describes in detail the data used, the estimation methodology, and 
the advantages and disadvantages of the generalised regression method. An appli-
cation to poverty estimation in Australia is also presented. Tanton et al.  (  2011  )  pro-
vide additional detail on the development of the model and applications of the 
model. 

    6.1   Data Sources 

 Any spatial microsimulation method that uses reweighting is going to require a 
survey dataset that contains the variables that need to be benchmarked, the variables 
for which small area estimates are required and a reliable small area dataset to 
reweight the survey dataset to. 

 The small area dataset must contain reliable small area data for a number of 
variables that are relevant to the variables for which small estimates are required. 
An example is using reliable data of the number of people in certain income groups, 
rent payment categories and mortgage payment categories for small areas to get 
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estimates of housing stress (calculated using a measure of the ratio of housing 
costs to income), which are not normally available for small areas due to data 
limitations. 

 These reliable small area estimates are usually available from a census of the 
population or from administrative data, and the tables used are called benchmark 
tables, as they are the tables that the reweighting process used is trying to hit. These 
tables will all be data related to the number of people or households in the small 
area. An example of a benchmark is the number of people with incomes between 
$30,000 and $50,000. 

 The survey that is being reweighted must have variables matching the reliable 
small area data (see Chaps.   2     and   5    ). The survey dataset should also contain, or have 
enough information to calculate, the variable or variables for which small area 
estimates are required. As an example, if we want to generate small area estimates 
of poverty rates, the survey data will need to contain a variable capturing household 
disposable income, along with data about the number of people in the household 
so that equivalised income can be calculated. That is, this procedure adjusts the 
household disposable income for the number of adults and children in that house-
hold using the modi fi ed OECD scale. 

 For the spatial microsimulation model discussed here, we use survey data from 
the Australian Bureau of Statistics (ABS) and small area census data, also from the 
ABS. The model needs unit record data from the survey, and this is available through 
a con fi dentialised unit record  fi le (CURF). 

    6.1.1   The ABS Survey of Income and Housing 

 The survey dataset used for this analysis was the Survey of Income and Housing 
(SIH), and we combined two survey years to get better estimates. The survey years 
used were 2002/2003 and 2003/2004. While there are later surveys available in 
Australia, these two were used in the version of the model (SpatialMSM08c) described 
in this chapter. 

 The Survey of Income and Housing is one of Australia’s best sources of informa-
tion on income and expenditure, essential when trying to model poverty rates and 
housing stress. Other possible sources of data include the Household, Income and 
Labour Dynamics Survey of Australia (HILDA); however, this is a longitudinal 
survey and therefore not as good as the SIH for the purpose of estimating poverty in 
1 year. This is because the sample is smaller than the SIH, and the sample does not 
change over time. 

 The 2002/2003 SIH is a survey of 10,211 households with 19,402 persons aged 
15 years and over (ABS  2004 ), and the 2003/2004 SIH is a survey of 11,361 house-
holds with 22,315 persons aged 15 and over (ABS  2005  ) . For both  fi les, a 
con fi dentialised unit record  fi le (CURF) is available from the ABS on a CD-ROM. 

 Because the surveys were from different years, and were then being benchmarked 
to 2006 census data, we needed to in fl ate any  fi nancial data (incomes, housing costs, 
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etc.) in each of the surveys to 2006 prices. We also needed to group some of the 
categories as the classi fi cations between the surveys and the census were different. 
This process is outlined in Chap.   2    . 

 The ABS provides the survey data in three  fi les: a person-level  fi le, a household-
level  fi le and an income unit  fi le. An income unit is one person or a group of related 
people within a household who share incomes. This income sharing is assumed to 
take place between married couples and parents and dependent children, and income 
units can be seen as broadly equating to families. A household is a group of related 
or unrelated people living in the same dwelling. 

 To be able to benchmark the survey data to the 2006 census small area data, the 
data from all three levels are brought together into one  fi le. This is done by matching 
each of the  fi les by the Household ID, which is on every  fi le. This matching creates 
a new person-level  fi le with household and family data. For every person within the 
same household, the household characteristics are the same, and for every person in 
the same family, the family characteristics are the same. 

 We also needed to impute records for children onto the survey dataset. This is 
because the information for children under 15 is attached to the household record; 
thus, there is no person record for children under 15. In the census data, we did 
include children in some of our benchmark tables, so we needed to have something 
on the survey to be reweighted to these totals. We created a record for children from 
information on the household record and then imputed age and sex using the overall 
probabilities that a child is of a particular age and a particular sex. We then allocated 
the child other relevant household characteristics, such as household income. 

 We also needed to impute people in non-private dwellings onto the survey 
dataset, as these were not in the original scope of the survey but they are in the 
census dataset. We did this by using a 1% sample of 2001 census data. This process 
is described in Cassells et al.  (  2010  ) . 

 The  fi nal  fi le used for reweighting to the census data, after all these adjust-
ments, has been called the ‘SIH Linkage’  fi le, as it is used to link the census to the 
survey data.  

    6.1.2   The 2006 Australian Census 

 The Australian Census of Population and Housing is conducted by the ABS every 
5 years, and it covers the entire resident population of Australia. Cross-tabulations 
using the census data are available from the ABS, and these cross-tabulations can be 
derived for relatively small areas. The small areas used for this model were Statistical 
Local Areas (SLAs). This geographical unit was chosen from the ABS Australian 
Standard Geographical Classi fi cation (ASGC) because it was the smallest unit with 
complete coverage of Australia that did not introduce the problems of data 
con fi dentiality evident at smaller area levels such as census Collection Districts. 

 There were 1,426 SLAs in Australia in 2006, ranging in population from 12 to 
181,327 people. These were distributed unevenly across Australia, with some small 
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states and territories being broken into relatively large numbers of SLAs and other 
larger states consisting of relatively few. For example, the Australian Capital 
Territory, which contains less than 2% of Australia’s population, had 109 SLAs 
(or almost 8% of SLAs), while New South Wales, which contains 34% of the total 
population, had only 200 SLAs (or just over 14% of all SLAs). Of particular note 
was Queensland, which was divided into 479 SLAs, many of them in Brisbane 
and with quite low populations. Queensland thus contained 19% of Australia’s 
population, but almost 34% of all SLAs. 

 All Australian census data is provided either for usual residents or as enumer-
ated. The ‘as enumerated’ data is based on where a respondent was located on cen-
sus night. Usual residence data places the respondent back in the area in which they 
usually reside for the purposes of an area-level population count. Because the sur-
vey data used for the model refers to where the respondent usually resides, the 
census data used is also usual residence data. 

 However, there are issues with the usual residence data that means it needs to be 
further adjusted to match the survey data. The usual residence data for people not at 
home on census night relates to the household information of where the person was 
enumerated on census night, not the area where they usually reside. So while the 
person can be (and is) moved back to their area of usual residence for the usual resi-
dence census count, the household characteristics are still for the house they were 
visiting on census night. This affects a fairly small proportion of the Australian 
population (about 4.7% of the population were not enumerated at home on census 
night), and these people were removed from the census benchmark tables, as their 
household characteristics (on which much of our benchmarking are based) do not 
re fl ect their true residential situation. 

 The other process required to get the census and survey data comparable was to 
take into account the ‘not stated’ values in the census. These are records where the 
respondent has not provided information on a particular variable. If this occurs in an 
ABS survey, the  fi gures are imputed, but these values are not imputed on the census. 
For our purposes, we have used a pro rata method to allocate the not stated catego-
ries out to valid categories. 

 This census data is then used to create a number of benchmark tables, which are 
described below. These tables all consist of data related to the number of people in 
the small area in each category of the benchmark. An example of a benchmark table 
is shown in Table  6.1 .  

   Table 6.1    Example of a benchmark table   

 Small area  Income category  Rent category  Number of people 

 1  $30,000 – <$50,000  $200 – <$250    800 
 1  $50,000 – <$100,000  $200 – <$250    700 
 1  $30,000 – <$50,000  $250 – <$300  1,000 
 1  $50,000 – <$100,000  $250 – <$300  1,100 
 2  $30,000 – <$50,000  $200 – <$250  1,200 
 … 
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 It can be seen that the benchmark tables are cross-tabulations, so the benchmarking 
process relates to marginal totals. The example shows only two categories of income 
and rent, but in reality there are many more, so the tables are quite complex and very 
large when all areas are combined. 

 Within each of these tables are a number of benchmark classes, which are the 
two income categories above ($30,000–<$50,000 and $50,000–<$100,000) and 
the two rent categories ($200–<$250 and $250–<$300). 

 This is an example of only one benchmark table. There are a number of these 
tables in the estimation process, and the weights derived for each household in the 
survey (the  fi nal 3 columns in Table  6.3 ) are designed to provide the best estimates 
for all the tables. 

 The model runs through each benchmark in turn. As more benchmarks are added 
to the procedure, the model struggles to match all of the benchmarks for all areas; 
thus, some areas are lost due to the procedure not converging. However, the areas 
that do still converge are more accurate because there have been more benchmarks 
utilised in determining the estimate. 

 This means that in selecting benchmarks, there is a trade-off between selecting 
more benchmarks and getting better estimates but having more areas for which it is 
not possible to produce a reasonable estimate, and using fewer benchmarks and get-
ting more areas with reasonable estimates but having  fi nal estimates that are not as 
accurate. An ideal set of benchmarks is one that does not lose any areas that results 
are required for, but provides reasonably accurate results. 

 Benchmarks also need to be correlated with the  fi nal estimate being derived. In 
this chapter, we are deriving an estimate for poverty rates, so the benchmarks need 
to be correlated with poverty rates. One way to identify which variables to use may 
be to conduct a logistic regression of the likelihood of being in poverty and potential 
benchmark variables to identify which ones are most strongly associated with pov-
erty. Alternatively, using relevant literature about the relationship between poverty 
and the types of benchmark variables available in the datasets is an alternative 
approach to identifying appropriate benchmark variables. 

 The benchmarks used for the model used as an example here were all chosen 
based on a review of the literature on poverty. They include housing tenure, as pub-
lic housing tenants tend to have lower incomes (Queensland Council of Social 
Services  2009  ) ; family type, as different families experience different poverty rates 
(Buddelmeyer and Verick  2007 ; Miranti et al.  2011  ) ; and household income, which 
is used as the basis for calculating the poverty line. Other variables that are associ-
ated with poverty include labour force status, age, long-term disability, years of 
work and university education (Buddelmeyer and Verick  2007  ) . Some of these vari-
ables cannot be included in the list of benchmarks because they are not available on 
both the survey and the census (a prerequisite for benchmark selection). 

 We included other benchmarks to ensure the process used for calculating poverty 
rates per person was based on accurate information. The benchmark table included 
for this was the number of people usually resident in the household. We also included 
a variable capturing the number of dwellings and a non-private dwelling bench-
mark, which is particularly relevant to estimating poverty as people in non-private 
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dwellings (hospitals, nursing homes, and so on) often have different characteristics 
to people in occupied private dwellings and usually have higher poverty rates. 

 There were also other benchmarks included in order to help derive estimates of 
housing stress, which these weights were also used for. One of the advantages of this 
spatial microsimulation method is that the weights are generalisable, so they can be used 
for a number of output variables, depending on the benchmarks chosen. The weights 
derived using the benchmarks shown in Table  6.2  have been used to estimate both 
housing stress and poverty rates. The benchmark tables added to provide estimates of 
housing stress were measures of housing costs, with rent and mortgage payments 
separately benchmarked, and both dwelling structure (separate house, semi-detached, 
unit) and housing tenure (renting, owning, purchasing, and so on).  

 The benchmark tables were all cross-tabulations of the benchmark variables. 
These cross-tabulations mean that we are benchmarking to a number of variables 
together, which provides better estimates than just benchmarking to a single variable 
in a table. So looking at Table  6.2 , we are benchmarking to the number of males 

   Table 6.3    Example of a reweighted survey  fi le   

 Unit 
record 

 Household 
ID 

 Weekly 
income 

 Weekly 
rent 

 Other 
variables 

 Household 
weight  SLA 1  SLA 2 

 Other 
SLAs 

 1  1  7  3  …  1,029  2.6  0  … 
 2  2  11  4  …  157  0  6.8  … 
 3  2  9  6  …  157  0  6.8  … 
 4  2  12  3  …  157  →  0  6.8  … 
 5  3  7  1  …  1,004  13.54  1.4  … 
 …  … 
 18,326  9,345  8,077,300  25,853  27,940 

   Table 6.2    Benchmark tables used in order used   

 Benchmark 
table  Description  Type 

 Number of 
benchmark classes 

 1  Age by sex by labour force status  Person  32 
 2  Number of occupied private dwellings  Household  1 
 3  Dwelling tenure by weekly household rent  Household  6 
 4  Dwelling tenure by household type  Household  15 
 5  Dwelling structure by household family 

composition 
 Household  24 

 6  Household size – number of persons usually 
resident 

 Household  6 

 7  Monthly household mortgage by weekly 
household income 

 Household  12 

 8  Different types of non-private dwelling  Person  4 
 9  Dwelling tenure by weekly household income  Household  25 
 10  Weekly household rental by weekly household 

income 
 Household  20 

 Total  130 
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aged 20–25 who are unemployed, rather than to all males, all people aged 20–25 
and all unemployed people. 

 The list of benchmarks used in the model presented here is shown in Table  6.2 . 
It can be seen that there are 10 benchmarks and a total of 130 benchmark classes. 
The most benchmark classes are in the  fi rst table, which is age by sex by labour 
force status with 32 classes. 

 The order in which benchmarks are entered into the model can affect the modelling 
results. In practice, the reweighting procedure places greater importance on the  fi rst 
benchmarks. The reason for this is complex and is described further in Tanton et al. 
 (  2011  ) . In the model we present here, the benchmarks were used in the order they 
appear in Table  6.2 .   

    6.2   Method 

 This model uses a deterministic reweighting methodology. It is based on the same 
method that the Australian Bureau of Statistics (ABS) used to reweight their sur-
veys to national population totals, but in this case, we use the method to reweight 
survey data to small area population totals. The method is programmed in the SAS 
statistical programming language in a macro called GREGWT. The output from the 
procedure is the full survey dataset with a weight for each record and for each SLA. 
This weight can then be used to derive estimates for that SLA, in the same way that 
the survey weight would be used to derive national estimates. 

 A hypothetical example of the  fi nal survey dataset is shown in Table  6.3 . The 
original survey weights are in the ‘household weight’ column, so summing these 
will give the total number of households in Australia. The weights for each SLA are 
shown as ‘SLA 1’, ‘SLA 2’, and so on for all SLAs. It can be seen that these weights 
are much smaller than the full survey weights, and there are more 0 weights for 
households that are not representative of any household in the SLA. The sum of all 
the SLA weights is the population for that SLA.  

 The reweighting method used is a generalised regression method. The method 
starts with an initial weight, which needs to be close to the  fi nal weight for that SLA, 
but is going to be further adjusted by the reweighting procedure. For our purposes, 
we use the household weight scaled by the population size as the starting weight. 
The general formula is

  a 
i 
=  b 

i 
* (Pop 

sla
 /Pop 

aus
 ) 

where  a  
 i 
  is the new weight,  i  is the household on the survey,  b  

 i 
  is the starting weight 

(so the  fi nal weight from the original survey  fi le for this household is scaled to 
the population of the SLA), Pop 

sla
  is the population for the SLA and Pop 

Aus
  is the 

Australian population. 
 In Table  6.3 , for household 1, it would be

 1,029 * (25,853 / 8,077,300) = 3.29.  
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 In the basic linear regression method with no constraints, if x 
i
  is a row vector 

of auxiliary variables for unit  i  on the survey, and  X  is a set of benchmark totals, 
then a  fi rst estimate of  X  using these initial weights ( X  

a
 ) can be calculated as as 

 X 
a
 = å

i
a

i
x

i
. 

 If  X  
c
  are the accurate benchmark totals from the census, then a new set of weights 

can be calculated from the  fi rst round of estimated benchmarks totals ( X  
a
 ) as

 w
i 
= a

i
(1+( X 

c
– X 

a
)(å

i
a

i
x

i
x

i
 ′ )–1x

i
 ′ )  

 These weights meet the constraint å
i
w

i
x

i
=X

c
 while minimising the generalised 

least squared distance function FGLS = å
i 
(w

i 
– a

i
)2/ a 

i
. 

 However, the procedure used for SpatialMSM uses a constrained distance function 
as there can be no negative populations, so all weights must be greater than zero. 
This constrained distance function is called the chi-squared distance function. This 
is minimised subject to the benchmark tables ( X  

c
 ). The method is described in Singh 

and Mohl  (  1996  ) , Bell  (  2000  )  and Tanton et al.  (  2011  ) . 
 Because a boundary (the weight cannot be negative) is set, a truncated chi-squared 

distance function must be used which is

 Fchi = å
i
 
 
(w

i 
– a

i
)2/ a 

i
  for  w  

 i 
  in [ L  

 i 
 ,  U  

 i 
 ].  

 This now requires an iterative approach as the boundary condition that  w  
 i 
  > 0 may 

not be met by the new weights. 
 For the  fi rst iteration ( m  = 0), let a

i
(0) = a

i 
for all  i  and  X 

a
(0) = å

i
a

i
(0)x

i
. An estimate 

for  A  (0)  can then be calculated so that

  X 
c
– X 

a
(0) =  A (0) å

i
a

i
(0) x

i
 x

i
 ′   

 This can be simpli fi ed by letting  T (0) = å
i
a

i
(0) x

i
 x

i
 ′ , so that the formula to be solved 

for  A  (0)  is

  X 
c
– X 

a
(0) =  A (0)  T (0)  

 To simplify further, the matrix  T  (0)  can be decomposed into U ′ U where U is an 
upper triangular matrix and U ′  is the inverse of an upper triangular matrix. A solu-
tion for  A  (0) U ′  can then be calculated and then for  A  (0) . 

 For each additional iteration ( m  =  m  + 1), for each record  i ,

 w*
i
 = a

i
(1+ A (m-1)x

i
 ′ ) 

if w*
i
<L

i
 then w

i
(m) = L

i
, a

i
(m)=0

Else if w*
i
 > U

i
 then w

i
(m) = U

i
, a

i
(m) = 0

Else w
i
(m) = w*

i
, a

i
(m) = a

i
 

 Similar to the  fi rst iteration (iteration 0),

  X (m) = å
i
w

i
(m)x

i
  

 A *  is calculated as a solution of

 ( X
 c
– X 

a
(m)) =  A *å

i
a

i
(m)x

i
x

i
 ′   
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 This is calculated in the same way  A  (0)  was calculated, involving a decomposition 
into a triangular matrix (U ′ U) and solving for  A  * U ′  and then  A  * . 

  A  ( m )  can then be calculated as

  A (m) =  A (m–1) + A*  

 Convergence is achieved when either all boundary conditions are met or there is 
no improvement in the weights given the convergence criteria ( e ) speci fi ed. For our 
purposes, the convergence criteria were set at 0.001. Thus, for each class in a 
particular benchmark ( p ), the iteration will stop when either the boundary conditions 
are met:

 (| X 
p
 –  X 

a
(m)

p
|) < ε 

or when there is no further improvement:

 (|  A (m)
p
 –  A (m–1)

p
|) < ε 

or when the maximum number of iterations is reached. Otherwise, the process will 
repeat until one of these conditions is met. 

 In our model, we have set the maximum number of iterations to 30. We have 
experimented around this number, but anything above 30 gave little improvement in 
the estimates with considerable increases in running time. Communications with 
the author of the GREGWT procedure con fi rmed that there was little point in iterat-
ing too many times. 

 The indication of whether the procedure has converged in GREGWT depends on 
the number of iterations. If the maximum number of iterations is reached, the pro-
cedure stops and a non-convergence  fl ag is set. In practice, we found that there were 
many SLAs that gave acceptable results with this convergence  fl ag set – they were 
very close to converging when the maximum number of iterations was reached. 

 Because of this, we used a different criterion to identify the accuracy of the  fi nal 
estimate. This criterion looked at the sum of the absolute error for all benchmarks in 
the area and identi fi ed if this was greater than the population of the area. If it was, 
then the area was rejected as inaccurate. The formula is

 å
p
|( X 

cp
– X 

ap
)| < Popsla 

where  X  
 cp 

  is the actual estimate for each benchmark class  p  from the census and  X  
 ap 

  
is the modelled estimate for each benchmark class. This procedure is termed the 
accuracy criteria, as it is a measure of accuracy of the  fi nal weights in predicting the 
benchmark characteristics. In the model described in this chapter, there were no 
areas where the convergence criteria were met and the accuracy criteria were not 
met. There were 30 areas where the convergence criteria were not met but the accu-
racy criteria were met, so these areas were included, and there were 120 areas where 
both criteria failed, so these areas were excluded from the analysis. These 120 areas 
represented only 0.5% of the Australian population. 

 The very low proportion of the population that is lost through non-convergence 
of SLAs is due to the fact that the main reasons for the procedure failing are either 
when there are very few people living in an area or where the area has unusual 
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characteristics, which make it very different from the survey data that we are using 
to represent the population. These areas tend to be remote indigenous communities 
in Australia, industrial areas where very few people live and areas with a high 
proportion of one type of population, like defence establishments and areas close 
to universities (areas which also often have relatively small resident populations). 
The problem with these areas is that the procedure has trouble benchmarking a survey 
representative of the Australian population to an area with a completely different 
type of population. The procedure works best for areas that have similar character-
istics to the overall Australian population. 

 The  fi nal output from the procedure is a set of weights for every SLA that has 
passed the accuracy criteria. As these weights have been calculated by benchmark-
ing the data to the 2006 census, they represent the population in 2006. If an estimate 
is required for a different year, then this can be done by in fl ating the weights using 
small area population estimates from another source. This method is described 
in Chap.   9    . 

 The above procedure has been implemented in an SAS macro which is available 
from the Australian Bureau of Statistics, but could also be implemented in other 
programming languages. The procedure is run for every SLA and takes about 25 s 
per SLA. This means for an Australian run of 1,426 SLAs, the time taken is about 
9 h. The  fi nal  fi le of all records from the survey for all SLAs that have passed the 
accuracy criteria is about 281 MB, so the process is very resource and storage 
intensive. 

 Once the new regional weights have been calculated, they need to be applied 
back to the survey data that was used to calculate the weights. The  fi rst step in deriv-
ing some small area results is to calculate the variable of interest from the survey. 
This survey has to be the same survey used for the spatial microsimulation process, 
so that the small area weights available for each record on the survey can be matched 
to the variable of interest calculated for each record on the survey. 

 Note that for the model described in this chapter (SpatialMSM), two surveys 
were used, so the  fi nancial data in both surveys had to refer to the same period. This 
means that the  fi nancial data in both surveys had to be in fl ated to 2006, the year of 
the benchmark census data. The in fl ation factor used for incomes was the average 
weekly earnings in fl ator from the ABS. 

 The selection of benchmark tables was done with this  fi nal variable of interest in 
mind, and in this case, it was poverty rates. We have calculated poverty rates using 
a standard Australian approach which involves  fi rst removing any households with 
a negative or zero income from the dataset and then calculating a poverty line based 
on half the median disposable household income per person. A discussion of how 
poverty rates are calculated in Australia can be found in Tanton et al.  (  2009b  )  and 
Miranti et al.  (  2011  ) . 

 For this chapter, we have used a fairly basic de fi nition of poverty to show an appli-
cation of this model. There is much discussion in the international literature on 
whether income measures of poverty are appropriate and how wealth and other 
variables contribute to poverty (see Alkire and Santos  2010 ; Tanton et al.  2010  ) . 
There are also much more complex ways to calculate poverty which include the 

http://dx.doi.org/10.1007/978-94-007-4623-7_9


976 Spatial Microsimulation Using a Generalised Regression Model

depth of poverty, and spatial microsimulation has been used to get these estimates 
of poverty for Australia (see Tanton  2011  ) . However, this chapter’s focus is the spa-
tial microsimulation method, so we have used a simple income poverty measure. 

 The poverty rate for an area is the proportion of people in the area whose equiva-
lised household income is below this poverty line (in this case half medium income). 
We have used the modifi ed OECD method to equivalise income. Because we are 
interested in the number of people in poverty in the small area, the number of house-
holds can be multiplied by the number of people in the household, which can then 
be multiplied by the weight for that household to get the number of people in the 
SLA that the particular household in the survey represents. If the poverty  fl ag is set 
for this household, then this weight is added to the total number of people in poverty 
in the SLA. 

 The formula for this is

 Povsla   =   å
i
Asla

i
 pov

i
 Pers

i
 

where  i  are the respondent households,  A  sla  
 i 
  are the  fi nal household-level weights for 

each household  i  for the SLA, pov 
 i 
  is the poverty  fl ag calculated for respondent 

household i in the survey (so it is a binary variable, 1 identifying a poor household 
and 0 otherwise), Pers 

 i 
  is the number of people in household  i  and Pov sla  is the 

number of people in poverty in the SLA. 
 The formula for the poverty rate is then

 PovRtsla
 

= Povsla/Popsla 

where Pov sla  is the number of people in poverty in the SLA and Pop sla  is the population 
in the SLA.  

    6.3   Results 

 Poverty rates for all SLAs in Australia are shown in Fig.  6.1 . This map shows the 
quintile of the poverty rate into which each SLA falls. The quintiles are population 
weighted, meaning that there is an equal number of people in each quintile, not an 
equal number of SLAs in each quintile. The white areas on the map are those where 
the accuracy criteria failed, and it can be seen that many regions of Australia’s Northern 
Territory have no estimates. While these areas have, as noted earlier, a very low popu-
lation, many are likely to also be places with relatively high poverty rates, and their 
absence from our estimates is important to note when interpreting our results.  

 In Australia, the population of SLAs ranges from very small populations in 
remote areas to very large populations in urban areas. This means that more popu-
lous SLAs are likely to have a more heterogenous population, and less populous 
SLAs will have a more homogenous population. This is known as the modi fi able 
areal unit problem, or the MAUP. This does mean that SLAs across Australia are not 
comparable. Normally, an adjustment is made to take into account this problem, and 
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this process is described further in Miranti et al.  (  2011  ) . In this chapter, for simplic-
ity, we have left all the areas at the SLA level. 

 It can be seen that poverty rates in Australia tend to be higher in remote and 
regional areas, with some areas of high poverty in the capital cities. There are pockets 
of low poverty in regional mining areas in Western Australia and north-east 
Queensland. Further analysis of Australian regional poverty rates is provided in 
Miranti et al.  (  2011  )  and Tanton et al.  (  2009b  ) .  

    6.4   Validation 

 Validation is an important part of any small area model, and it tests how well the model 
replicates the real world. Chapter   15     outlines the different methods for validating 
models, and this section outlines the results from three of these methods:

    1.    Aggregate the model results to Australian state level and validate against poverty 
rates calculated from the 2005/2006 Survey of Income and Housing.  

    2.    Apply the method outlined in 6.2 using state level benchmarks and compare to 
estimates from the 2005/2006 Survey of Income and Housing.  

    3.    Compare proxy small area poverty rates that can be calculated from the census 
data to modelled estimates using the same de fi nition.     

 The  fi rst method checks the model at a broad level (checking that we get the right 
totals for each state), but does not test the validity of the spatial distribution of poverty 

  Fig. 6.1    Poverty rates (%) for all SLAs in Australia, 2006       
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rates. The second method tests the estimation method for large areas, but does not 
test the spatial distribution of the small area results. The third method tests the 
spatial distribution of the results, but using a different de fi nition of poverty. Overall, 
these three methods will provide a picture of how well the model works. 

    6.4.1   Aggregating Small Area Poverty Rates to State Level 

 Under this method, the number of people in poverty in each SLA is aggregated to 
state level. This aggregate  fi gure is then converted to a percentage and compared to 
reliable state level estimates from the Survey of Income and Housing. 

 The results are shown in Table  6.4 . It can be seen that poverty rates estimated from 
the spatial microsimulation model are generally higher than those calculated directly 
from the survey, but usually close. The slightly higher estimates could be due to the 
fact that the spatial microsimulation model is benchmarked to 2006 census data, 
which is then being compared to the 2005–2006 Survey of Income and Housing. 
These two data sources are collected in different ways (e.g. the census income is 
collected only in ranges, and all data is based on a self-completion form, rather than 
an interview) and for slightly different time periods, so it would be expected that 
slightly different numbers would come out of each dataset. When looking at the 
ranks, rather than the proportion of people in poverty, these are very similar.  

 The main difference in the ranks appears to be in Victoria, and the main reason 
seemed to be that where the model normally overestimates poverty rates, in Victoria, 
it underestimated them.  

    6.4.2   Reweight State Level Data 

 Using this method, the model was run at the state level, so the benchmarks (instead of 
being set at an SLA level) were all instead created as state level benchmarks. State 
level estimates of poverty calculated for 2006 were then compared to state level 
estimates of poverty from the 2005–2006 Survey of Income and Housing. If reliable 

   Table 6.4    Validation of poverty rates using modelled poverty counts aggregated to state   

 NSW  VIC  QLD  SA  WA  TAS  NT  ACT  Total 

 Survey of Income 
and Housing (SIH) 
2005–2006 (%) 

 11.3  11.9  10.2  11.8  9.2  12.8  4.9  5.2  11 

 SIH 2005–2006 rank  4  2  5  3  6  1  8  7 
 Spatial microsimulation (%) a   12.4+  11.7−  10.8+  13+  10.2+  14.6+  8.7+  6.1+  11.6+ 
 Spatial microsimulation rank  3  4  5  2  6  1  7  8 

  Source: ABS Survey of Income and Housing 2005–06; SpatialMSM/08B applied to 2002/03 and 
2003/04 Survey of Income and Housing uprated to 2006 
  a + (−) is when estimates from the spatial microsimulation are higher (lower) than the estimates for 
state level analysis directly from SIH 2005–2006  
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results are achieved for each state, which can be readily checked against state level 
data from the survey, then this provides further support for the robustness of the model, 
with a higher likelihood that any errors for small areas will be due to the nature of the 
small areas, rather than any underlying errors in the modelling approach. 

 The reweighting was done at the state level for all benchmarks shown in Table  6.2 , 
and the results are shown in Table  6.5 .  

 It can be seen that the model estimates are still higher than the survey estimates, 
so the model based on the census data does provide higher estimates of poverty, 
even when results are produced based on larger geographical units. Looking at the 
ranks, the main differences seem to be in Victoria, which went from being ranked 
2nd from the survey to being ranked 4th from the model, and the Northern Territory, 
which went from being ranked 8th in the survey to being ranked 5th using the model. 
Comparing these results to Table  6.4 , it can be seen that the Northern Territory had 
a much higher poverty rate when the benchmark variables were at a state level. This 
could be because many of the smaller and high poverty areas in remote NT failed 
the accuracy criteria, so would be excluded from Table  6.4 , but they will be included 
in Table  6.5  which is all calculated at the state level. 

 The other reason for this difference could be the ABS  fi gures. The ABS sample 
for the SIH excludes remote areas in the Northern Territory, so poverty rates in the 
NT from the SIH could be low because very low-income people in remote areas are 
excluded from the ABS sample.  

    6.4.3   Compare to Small Area Proxy Poverty Rates 
from the Census 

 This method compares modelled small area poverty rates to census small area pov-
erty rates using a different de fi nition of poverty than is usually used, and one that 
can be estimated from the census. 

 The method for this technique is described in the validation chapter (Chap.   15    ). 
The proxy poverty rate which can be calculated from the census is gross income 
below $500 per week. A graph of the modelled proxy poverty rates and the proxy 

   Table 6.5    Validation of poverty rates using modelled poverty counts calculated by state   

 NSW  VIC  QLD  SA  WA  TAS  NT  ACT  Total 

 Survey of Income 
and Housing (SIH) 
2005–2006 (%) 

 11.3  11.9  10.2  11.8  9.2  12.8  4.9  5.2  11 

 SIH 2005–2006 rank  4  2  5  3  6  1  8  7 
 Spatial microsimulation (%) a   12.6+  11.7−  11.0+  13.2+  10.4+  14.6+  11.4+  6.4+  11.8+ 
 Spatial microsimulation rank  3  4  6  2  7  1  5  8 

  Sources: ABS Survey of Income and Housing 2005–06; SpatialMSM/08B applied to 2002/03 and 
2003/04 Survey of Income and Housing uprated to 2006 
  a + (−) is when estimates from the spatial microsimulation are higher (lower) than the estimates for 
state level analysis directly from SIH 2005–2006  

http://dx.doi.org/10.1007/978-94-007-4623-7_15
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poverty rates estimated from census data is shown in Fig.  6.2 . It can be seen that the 
standard error around identity (SEI) of 0.94 is very high and comparable to other 
SEIs calculated using this model (Miranti et al.  2011  ) . One interesting point is that 
if a regression line was plotted, rather than the SEI, it would be very close to the 45 ° 
line shown on this chart. This suggests that the errors from the model are random, 
showing no strong bias in either direction.  

 Overall, the small area estimates from the model have been validated in three 
ways. All these methods of validation showed reasonable results, although the best 
results came from validating the data to small area 2006 census data. Aggregating 
the data in a number of ways showed some differences and biases, which may be 
because the validation was against a different survey, which was external to the 
spatial microsimulation model and would be expected to have different results.   

  Fig. 6.2    Validation of proxy poverty rates by statistical local area, 2006       
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    6.5   Conclusions 

 This chapter has shown an example of a spatial microsimulation model being 
used in Australia for estimating poverty rates and housing stress. Validation of the 
method against comparable data using several techniques shows that it provides 
excellent results. 

 One of the real strengths of this approach to small area estimation is that the 
output is a reweighted survey  fi le for two Australian surveys. Using these reweighted 
survey  fi les with a tax/transfer microsimulation model based on the same surveys, 
policy effects can be modelled, and the small area impact of these modelled policy 
changes can be mapped. This provides a powerful tool for policy makers. Applications 
of this methodology have been published elsewhere (Harding et al.  2009 ; Tanton 
et al.  2009a  ) .      
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          7.1   Introduction 

 There has been a growing emphasis on the spatial targeting of policy options in the area 
of poverty and social exclusion in Ireland since the early 1990s. As O’Donoghue et al. 
 (  2012  )  illustrate, the National Anti-Poverty Strategy (1997) has a spatial dimension in 
two of its  fi ve priority themes: disadvantaged urban areas and marginalised rural 
communities. Along with this, the recently updated National Spatial Strategy (2010) 
presents a national programme of development actions to reduce interregional inequality. 
Within these frameworks, local partnerships have been utilised as a mechanism to target 
resources at poverty “black spots” (Haase and Foley  2009  ) . The importance of spatial 
policy such as this has been emphasised by  fi ndings that poor households tend to group 
together in speci fi c areas (Jencks and Mayer  1990 ; Hajnal  1995 ; Ravallion and Jalan 
 1997  ) . In light of this, policymakers would like to be able to identify the spatial context 
of poverty and/or target resources towards individuals/areas that need them the most 
(Watson et al.  2005 ; Tanton et al.  2009a,   b ; Vidyattama et al.  2011  ) . The bene fi t of such 
a regional approach to welfare policy has been illustrated by Elbers et al.  (  2007  ) . 

 Identifying the spatial incidence of welfare has been limited in an Irish context 
by the lack of effective spatially referenced income microdata, with studies to date 
con fi ned to aggregate spatial disaggregations at county or regional authority level 
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(e.g. O’Leary  2003 ; Morgenroth  2010  ) . A number of aspatial microdata sources 
exist. Census microdata, known as the Sample of Anonymised Records (SARS), are 
available, but these data are unsuitable due to a lack of information on household 
composition and income whilst also employing an aggregate spatial scale. National 
accounts data present the most accurate representation of income, but these data are 
only available at the aggregate county level. The Living in Ireland (LII) survey 
contains income and employment information at the individual and household level. 
The 2000 dataset contained data on 13,067 individuals and information on a variety 
of individual, demographic and socio-economic characteristics, including income, 
employment and household composition statistics. However, LII data are only avail-
able at a coarse spatial scale. In considering spatially referenced data, Haase and 
Foley  (  2009  )  have noted that the only data detailing socio-economic population 
distributions at the local level are the small area census data. Known as the small 
area population statistics (SAPS), these data contain census information disaggre-
gated to the electoral division (ED) level. The 3,440 EDs represent the most disag-
gregated spatial scale in Ireland. The population in any one ED ranges from a low 
of 55 individuals to a high of 14,238, with an average across all EDs of 885 
(Morrissey et al.  2008  ) . However, as with most censuses, data on income and welfare 
are limited. Merging LII data with the ED-level census data would create a spatially 
referenced micro-dataset containing estimates of Irish income, labour and welfare 
distributions at the local level. This would provide a much richer dataset at a very 
local level of spatial resolution. 

 In the absence of pre-existing spatial data, a spatial microsimulation model 
known as the Simulated Model of the Irish Local Economy (SMILE) was developed 
to synthesise regional distributions of welfare. This was carried out at the Teagasc 
Rural Economy and Development Programme (REDP), in collaboration with the 
School of Geography, University of Leeds. 

 It is the purpose of this chapter to give an insight into the rationale, development 
and application of SMILE in analysing the spatial incidence of welfare and income 
distribution in Ireland. This chapter continues as follows: Sect.  7.2  introduces 
SMILE, discussing the objectives of the simulation methodology relative to existing 
synthesis methodologies, whereby the requirement for a new synthesis procedure is 
motivated. This procedure, which we call quota sampling, is described in Sect.  7.3 . 
The validation procedures employed to ensure an accurate synthesis are outlined in 
Sect.  7.4 . In order to ensure that income distributions are aligned to known county-
level distributions, a calibration procedure is employed. This is outlined in Sect.  7.5 . 
Section  7.6  illustrates the application of SMILE to measure the spatial incidence of 
income redistribution in Ireland, and Sect.  7.7  provides some conclusions.  

    7.2   SMILE 

 SMILE is a static spatial microsimulation model, designed to simulate regional 
welfare, income and labour distributions and thus provide a basis for regional 
economic analysis in Ireland. As with similar international microsimulation models 
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(e.g. Ballas et al.  2005a ; Chin et al.  2005 ; Edwards and Clarke  2009  ) , SMILE may 
be used to provide government, policymakers and non-government organisations 
with detailed spatial data which could be used to improve policymaking, analyse 
sectoral and regional investments and target resources. 

 A number of techniques exist which may be used by SMILE to synthesise data. 
Ballas et al.  (  2005b  )  provide an overview, with iterative proportional  fi tting (IPF) 
and various combinatorial optimisation (CO) methodologies being of greatest 
prominence. When deciding on which procedure to employ for SMILE, the primary 
objectives are the capacity to handle a combination of individual and household 
constraints and adequate run-time ef fi ciency. The merits of existing procedures will 
now be discussed relative to these objectives. 

 Iterative proportional  fi tting (IPF – see Chap.   4    ) is a probabilistic methodology 
for constructing spatially disaggregated tables from aggregate spatial totals in the 
absence of pre-existing microdata. This is carried out by adjusting a two-dimensional 
matrix iteratively until row sums and column sums equal some prede fi ned aggregate 
values, and in a geographical context, it can be used to generate disaggregated spatial 
data from spatially aggregated data (Wong  1992  ) . For example, IPF may be used to 
create a disaggregated age/sex tabulation from separate age and sex small area totals 
(O’Donoghue et al.  2012 ). It has been found that IPF can potentially produce unre-
alistic data as probabilities are used to create synthetic microdata from regional 
aggregates, rather than using real survey data (Norman  1999  ) . IPF was employed in 
the  fi rst version of SMILE, but a preference for using actual survey data motivated 
the adoption of a new approach. It was also found that dif fi culties arose when the 
unit of analysis of the constraint was different to that of the microdata. This is because 
IPF is designed to reweight individual-level microdata according to individual-level 
constraints. However, welfare analyses require that we synthesise at the household 
level, using microdata of individuals grouped into households. The IPF procedure 
 fi nds it dif fi cult to handle the additional degree of dimensionality imposed by 
reweighting individuals grouped into households according to individual-level 
constraints, and thus is unsuitable for SMILE. 

 Combinational optimisation (CO) techniques overcome the synthesis issues of 
IPF by reweighting existing survey microdata at either the individual or household 
level. CO techniques may be either deterministic (see Chap.   5    ) or probabilistic 
(see Chap.   3    ) in nature. 

 Deterministic reweighting assigns weights to each household based on the prob-
ability of that household belonging to the region in question (Ballas et al.  2005b  ) . 
Similar to IPF, deterministic reweighting algorithms are computationally ef fi cient. 
Such algorithms are unsuitable for SMILE, however, because they have multiple 
units of analysis (i.e. individuals grouped into households) which then require the 
use of non-trivial methods of weight generation, such as generalised regression 
weight-based methods. An example of such a generalised regression weight-based 
method is GREGWT, developed by the Australian Bureau of Statistics (Bell  2000  )  
and used in the Australian spatial microsimulation model described in Chap.   6    . 

 GREGWT uses a constrained distance minimisation function which uses a gen-
eralised regression technique to get an initial weight and iterates the regression until 
an optimal set of household or individual weights for each small area is derived 

http://dx.doi.org/10.1007/978-94-007-4623-7_4
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(O’Donoghue et al.  2012  ) . Williamson  (  2009  )  highlights that when there are large 
numbers of constraints, the GREGWT algorithm does not always converge. 
Furthermore, such convergence issues are especially evident in areas of relatively 
low population density (Tanton et al.  2007  ) . As many Irish EDs are of low population 
density (25% contain less than 100 households; 57% contain less than 200), signi fi cant 
barriers to convergence may exist if a generalised regression weight-based method 
such as GREGWT were to be used for SMILE. 

 The alternative to deterministic reweighting is probabilistic reweighting processes, 
the most popular of which is simulated annealing (SA). SA allows the survey data 
and constraints to have different units of analysis. Unlike IPF, SA contains mecha-
nisms to avoid becoming trapped at local minima (Wu and Wang  1998  ) . It is also 
less sensitive to convergence issues. Williamson  (  2009  )  found that in an Australian 
simulation, SA performed slightly better at matching than GREGWT for both 
constrained and unconstrained variables. This was particularly the case in districts 
where there was no convergence. 

 The main disadvantage of SA is the high computational intensity, which is due to 
the degree to which new household combinations are tested for an improvement in 
 fi t during simulation. To illustrate, Hynes et al.  (  2009  )  found that it took two days to 
generate almost 140,000 individual farm records from 1,200 survey data points 
on a 2 G Dell workstation. Scaling this computational requirement to a population 
of over four million people using a greater number of constraints, the simulation of 
SMILE may take a number of months. This is even more burdensome as it is desired 
to carry out repeated simulations for sensitivity analyses and simulations of future 
population projections. 

 Thus, practical restrictions imposed by great computational intensity have limited 
the application of SMILE under SA, motivating the development of a more ef fi cient 
algorithm through a reduction in the number of required computations. We call this 
new process “quota sampling”.  

    7.3   Quota Sampling 

 Quota sampling (QS) is a probabilistic reweighting methodology developed by 
Farrell et al.  (  2012  ) . This procedure operates in a similar fashion to SA, whereby 
survey data are reweighted according to key constraining totals for each small area, 
with amendments made in the sampling procedure in order to improve computational 
ef fi ciency. The basic sampling procedure, and its implementation in the overall 
simulation process, is outlined below. 

    7.3.1   Conceptual Overview 

 The quota sampling procedure analyses individuals grouped into households against 
constraints at either the individual or household level (see Fig.  7.1 ). Similar to SA, 
quota sampling selects observations at random and considers whether they are suitable 
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for admittance to a given small area population based on conformance with aggregate 
totals for each small area characteristic. Unlike SA, quota sampling only assigns 
households that conform to aggregate constraint totals, and once a household is 
deemed selected, it is not replaced. To accommodate this, small area aggregate 
totals for each constraint variable are designated as the initial values for what we 
term “quotas”. These quotas may be considered as running totals for each constraint 
variable, which are recalculated once a household is admitted to a small area 
population. The basic procedure is best explained in the context of allocating one 
household at a time, in the presence of a single age constraint. If the household sum 
of each constraining characteristic (e.g. two persons aged 20–25) is less than or 
equal to the small area total (e.g. ten persons aged 20–25), the household is assigned 
to the small area population. Upon deeming a household appropriate for a given 
small area, the quota counts are reduced by the sum of the characteristics of the 
assigned household(s). For individual-level constraints, we increment the running 
totals per constraint by the number of people in the household with that particular 
constraint. For household-level constraints, we increment by 1 (in our example, the 
ED quota would be amended to eight persons aged 20–25). This procedure continues 
until the total number of simulated individuals is equal to the small area population 
aggregates (i.e. all quotas have been  fi lled). Thus, one can see that the intra-household 
variation of admitted households cumulates in a random sort which is consistent 
with aggregate constraint totals.  

  Fig. 7.1    Quota sampling synthesis procedure       
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 This mechanism of sampling without replacement avoids the repeated sampling 
procedure of SA and is fundamental to the ef fi ciency gains of the quota sam-
pling procedure. One can see that the process is analogous to the type of quota 
sampling undertaken by market researchers, whereby only individuals considered 
relevant to concurrent quota counts are admitted to a sample. This method of improving 
ef fi ciency does present a number of convergence issues, however. A process analo-
gous to the “swapping” of simulated annealing (Morrissey et al.  2008 ; Hynes et al.  2009  )  
is discussed in Sect.  7.3.4 , and this process is undertaken when constraint quotas 
approach capacity. 

 Quota sampling allows for further ef fi ciency gains to be achieved at the implemen-
tation stage. First, households which do not comply with concurrent quota counts 
are extracted from the microdata population before each iteration of the sampling 
procedure. This limits the number of households to be considered to those relevant, 
reducing the size of the candidate dataset and improving computation time. In some 
cases, the small area population is larger than the survey data. When this occurs, 
we duplicate the microdata to achieve the district’s population size. The degree of 
multiplication is subject to an ef fi ciency vs. accuracy trade-off, and the process for 
determining the optimal point is discussed in Farrell et al.  (  2012  ) . 

 Second, the procedure can consider both individual and multiple households in 
one simulation iteration. As stated, the candidate sample at each stage is limited to 
households eligible according to the quota counts at the initiation of the procedure. 
If we assign a number of households so that the total population assigned is less than 
or equal to the smallest constraining quota, we are assigning the maximum number of 
households in one iteration such that quota counts may not be exceeded, regardless of 
the distribution of characteristics. For example, if the smallest quota for a given ED 
is for 20 females aged 20–24, we can randomly assign multiple households in one 
iteration without exceeding any quota if the total population of the assigned group 
does not exceed 20 persons.  

    7.3.2   Implementation of QS in the Synthesis of SMILE 

 Having discussed the concept of QS, its implementation in SMILE is now described. 
As with all spatial microsimulation models, the initial consideration is that of choosing 
which variables constrain the data fusion (Smith et al.  2009  ) . O’Donoghue et al. 
 (  2012  )  outline the process of choosing constraints in SMILE using bivariate regres-
sions of candidate variables against disposable income in the LII microdata. In 
doing so, age, sex, level of education and household size are chosen. The additional 
constraint of household size is utilised in order to ensure an accurate distribution of 
household numbers per district. Once constraints have been decided upon, a number 
of practical limitations which can potentially prohibit convergence must be over-
come during implementation. These issues and their corrective measures will now 
be outlined.  



1117 Creating a Spatial Microsimulation Model of the Irish Local Economy

    7.3.3   Practical Issues Prohibiting Convergence 

 Problems may arise in relation to the distributions of household size. The absence 
of an explicit constraint on the number of households allows for sampling without 
replacement to provide an accurate allocation of individuals. Smaller households 
contain fewer individuals and thus a smaller sum for the constraining criteria, 
making them easier to assign than larger households. This may result in a dispro-
portionate amount of small households to be assigned per local area. This prob-
lem also affects the synthesis of households containing children. The nature of 
household structures requires children to be assigned alongside at least one adult. 
As smaller households which may not contain children are easier to assign, quotas 
for adults may  fi ll before those for children. As no further children can then be 
assigned, this leads to a consistent under-representation of households containing 
children. 

 Furthermore, disparities in population distributions between census and survey 
totals may create a number of problems for household-based microsimulation 
procedures. This is because survey microdata are representative at the national level, 
whereas SAPS data are representative at the ED level. This poses little dif fi culty in 
simulating small areas that have a population distribution similar to that of the 
national distribution, but regions that differ from the national distribution may lead 
to some demographic groups consistently being under-represented in a given ED. 
Such deviations may be further increased if an ED contains individuals who live 
in institutions such as nursing homes, religious orders, psychiatric units, etc. (i.e. 
non-household members) as survey data generally do not cover individuals that are 
not part of a household. In the case of institutions such as boarding schools, 
children’s hospitals or young offender’s institutions, for example, we may have a 
situation where there are many children in an area relative to the number of adults. 
These differences may cause some EDs to consistently fail in reaching adequate 
convergence. 

 Finally, the use of sampling without replacement in quota sampling results in 
quota counts becoming increasingly more restrictive as the simulation progresses. 
As quota counts reach their target, the search space is continuously re fi ned in accor-
dance with concurrent quotas, whereby all households no longer eligible given 
updated quota totals are removed from the subset and the procedure is repeated. 1  
When each constraint allocation reaches its target quota, all individuals with that 
characteristic are removed from the candidate search space. These mechanisms 
cumulate to offer a continuously diminishing search space and may prohibit conver-
gence, whereby no household is able to satisfy all concurrent quota counts.  

   1   For example, with a remaining quota count of  n  individuals of class  k  to be  fi lled, the search space 
is re fi ned to exclude households containing  n +  1 individuals of class  k .  
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    7.3.4   Corrective Measures 

 The problems identi fi ed in Sect.  7.3.3  are corrected by an ordered simulation procedure 
whereby  j  constraint con fi gurations are speci fi ed. Each j constraint con fi guration addresses 
an issue prohibiting convergence, determined by three criteria: the number of constraints 
consistently under-represented across all EDs, the number of constraints disproportionate 
to national disaggregations and the number of broadening criteria. These  fi ndings result 
in the creation of the ordered simulation procedure outlined in Table  7.1 .  

 This order is determined by the requirements for accurate simulation. Taking 
con fi guration 3 as the basic sampling procedure, the primary decision to be made is 
whether to introduce the other steps before or after this stage. Con fi gurations 1–2 
are carried out beforehand as it is required that under-represented households be 
assigned before all others to correct for consistent under-representation. This consists 
of an application of the basic sampling procedure outlined in Sect.  7.3.1 , but limiting 
the candidate sample to either households containing children or large households. 
For the simulation of households containing children, the candidate sample is limited 
to those households alone. For the simulation of large households, a household size 
constraint is speci fi ed, and the selection process is carried out for candidate samples 
limited to each household size in descending order (i.e. a random sample of households 
of eight persons or more are considered  fi rst, followed by those of seven persons, etc.) 
The household size constraint is dropped after this stage. The order which yields the 
most accurate simulation within these two stages is determined by a Monte Carlo 
process of repeated sampling (see Farrell et al.  2012  for a full discussion). 

 Con fi guration 2 improves the level of convergence for EDs which may have 
characteristics proportionally disparate to national population distributions. This is 
carried out by prioritising those households containing individuals who may be able 
to satisfy ED-level population distributions which are far greater than the national-
level distribution. For example, if the ED share of 15–20-year-old males exceeds 
that of the national population by a prede fi ned threshold, households containing 
individuals of this constraint classi fi cation will be simulated  fi rst. The procedure for 
determining this threshold is based on an accuracy vs. ef fi ciency trade-off, discussed 
in Farrell et al.  (  2012  ) . The degree of proportional disparity is calculated for each 
constraint, with a ranking in descending order of disparity in place if a number of 

   Table 7.1    Ordered simulation procedure   

 Con fi guration stage 
 Constraint 
con fi guration  j   Description 

 Correcting for under-
representation 

 1  Random sampling of households containing 
children/random sampling of large 
households 

 Further correcting 
for under-representation 

 2  Random sampling of under-represented 
households 

 Basic sampling procedure  3  Random sampling of all households 
 Broadening of constraints  4  Removal of constraints, one at a time 
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constraints are greater than the prede fi ned threshold. Households are then assigned 
a weight according to their ability to  fi ll the quota for the constraint of greatest disparity. 
Those households with the greatest weight are sorted randomly and considered for 
synthesis using the quota sampling synthesis procedure. This allows for greater 
convergence for EDs with particular population patterns that are different to national 
distributions, capturing a greater degree of spatial heterogeneity (for a full discussion 
of the process, see Farrell et al.  2012  ) . 

 Con fi guration 4 is carried out after con fi guration 3 to counteract the restrictions 
imposed by diminishing quotas. This involves the broadening of constraints and is 
carried out as follows. If the algorithm fails to assign any further households due to 
overly restrictive quotas, one constraint is removed. This increases the search space 
allowing households to be considered that were once excluded. This is repeated one 
constraint at a time until either all remaining quota counts are  fi lled or all constraints 
have been removed. If the algorithm fails to assign an adequate number of individuals 
during this procedure, individuals are assigned at random to meet the required 
population. Constraints are removed in reverse order of the degree to which they 
in fl uence household income, determined by pre-synthesis regression analysis (see 
O’Donoghue et al.  2012  and Farrell et al.  2012  )  for a full outline of this procedure). 
This design minimises subjectivity, whereby the broadening of constraints is only 
introduced when absolutely necessary and in a fashion which ensures that those 
variables that explain the greatest level of variability are retained to the greatest 
extent. Sometimes all quotas are  fi lled and this stage is skipped. 

 It may be suggested that broadening the constraints in such a manner may cause 
validation issues to arise in that the distribution for larger households or under-
represented groups may be less robust. To ensure this does not occur, validation of 
the QS output is an integral component of the model’s construction. Section  7.4  
outlines the validation methods used within the SMILE model.   

    7.4   Validation of the New Created Dataset 

 Once the base dataset has been synthesised, validation is carried out to ensure the 
simulated populations are consistent with empirical benchmarks both internal and 
external to the simulation process. This is dif fi cult, as the creation of synthetic 
microdata is motivated by non-existence of such data for small geographic areas. 
However, as Oketch and Carrick  (  2005  )  point out, it is only through validation that 
the credibility and reliability of a microsimulation model, and thus the regional 
welfare distributions in SMILE, can be assured. Caldwell  (  1996  )  provides an over-
view of validation techniques that may be used to ensure the robustness of synthetically 
created data. For SMILE, two validation procedures are employed:

   In-sample validation to determine whether the spatial relationship of overlapping • 
variables has been maintained  
  Out-of-sample validation to determine whether simulated data represent the spatial • 
distribution of non-constrained variables    
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    7.4.1   In-Sample Validation 

 In-sample validation aggregates simulated microdata for comparison with the 
regional benchmarks used to constrain the simulation and thus provides the primary 
method by which the statistical matching procedure is appraised. In doing so, this 
procedure also ensures the correct spatial distribution of the primary determinants 
of household welfare. For quota sampling, the in-sample procedure employed com-
pares the proportional correlation of each constraint variable to those in the SAPS. 
In our experience, the correlation coef fi cient places a greater weight on the size of 
the district rather than on the distribution of ages when using absolute totals, and 
thus validation according to proportional correlations is preferred. 

    7.4.1.1   In-Sample Validation: Results 

 For each constraint variable, proportional correlations were found to be close to 1, 
with almost all being greater than 0.98, and the majority being greater than 0.99 
(O’Donoghue et al.  2012 ). The apportioned sampling procedure has resulted in an 
equal distribution of  fi t for both children and adults, thus counteracting imbalances 
quoted previously. It was found, however, that 15–25 age groups displayed a degree 
of  fi t that was on average less than that of other age groups. Upon closer inspection, 
this seems to relate to regions with a great number of young people relative to the 
number of adults, indicating those living either in institutions (primarily boarding 
schools, university residences or shared student apartments) which are under-reported 
in the survey. Although the ordering procedure has remedied this issue somewhat, 
the sampling algorithm still struggles to  fi nd enough young individuals living alone 
to produce enough young people in certain districts dominated by students. As this 
issue affects only a relatively small number of districts and because of data limitations, 
our intention is return to this issue later when a more concentrated analysis in relation 
to education is required as in the case of Wu et al.  (  2008  ) .   

    7.4.2   Out-of-Sample Validation 

 To complement our validation of constrained variables, we validate the non-
constrained variable of disposable income. This is carried out by comparing SMILE 
county-level aggregates to county-level poverty statistics of the National Survey of 
Household Quality (NSHQ) from 2001/2, reported in Watson et al.  (  2005  ) . Although 
a survey primarily aimed at analysing housing issues, the NSHQ collects data on 
disposable income and is representative at the county level. In doing so, poverty 
rates are expressed as a function of the national average in SMILE and compared 
to the relative poverty headcount in the NSHQ at levels of 50% and 60% of median 
disposable income. 
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    7.4.2.1   Out-of-Sample Validation: Results 

 The observed relationship between the two data sources is high, with a correlation 
of 0.78 and 0.79 at the 50% and 60% levels, respectively (for a full description, see 
O’Donoghue et al.  2012 ). This indicates that the ranks for all the areas are good, but 
there is much greater spread in the NSHQ than in the SMILE output. The reason for 
these differences is due to additional spatial heterogeneity in incomes that is not 
captured by our constraint variables. This is con fi rmed by O’Donoghue et al. ( 2012 ), 
whereby controlling for region improved model  fi t in regressions to predict male 
earnings. 

 Suggested solutions have included the use of alternative or additional con-
straints, sampling of micro-units from the same (aggregated) spatial area (Voas 
and Williamson  2000  ) , separate matching methods for different spatial clusters 
(Smith et al.  2009  )  or alternative sets of constraints depending on the purpose 
(Chin and Harding  2006  ) . Given the disproportionate computational cost of 
employing additional constraints reported by Miller  (  2001  ) , along with the desire 
to have a single model con fi guration for all uses, we choose instead to adopt a 
calibration procedure.    

    7.5   Calibration 

    7.5.1   Procedure Overview 

 The calibration procedure to capture additional spatial heterogeneity draws on 
methodologies employed in a number of  fi elds including dynamic inter-temporal 
simulation (O’Donoghue  2010  ) , macro–micro literature to capture the impact of 
macroeconomic changes on income distribution (Ahmed and O’ Donoghue  2007, 
  2008  ) , data synthesis under IPF (Ballas et al.  2006 ) and development economics 
literature focussing on inter-country heterogeneity (Bourguignon et al.   2002 ). 

 The purpose of the calibration procedure is to align disaggregated data within 
SMILE to exogenous spatial distributions of income. The procedure presented here 
and discussed in full in Morrissey and O’Donoghue  (  2011  )  operates in two stages: 
equations determining the presence of an income are  fi rst estimated, followed by 
those predicting the level of that income. This process is described below. 

 A set of nested choice equations, pertaining to labour market characteristics 
and the presence of other market income sources, are estimated for each individual. 
Each equation predicts each individual’s probability of having a certain labour market 
characteristic  y  

 i 
  depending on their set of explanatory factors  X  

 i 
  and estimated 

parameters   b   
 i 
 . Depending on the format of the dependant variable in question, 

binary choice (logit), multiple choice (reduced form multinomial logit) and logged 
income regression models are used. These take the general form



116 N. Farrell et al.

     ( )= +* ,i i i iy g Xb e
   (7.1)  

where  g (  b   
 i 
  X  

 i 
 ) represents the deterministic or explained elements which affect the 

probability of having the characteristic  y  
 i 
 , and     ε i   constitutes the unexplained residual 

satisfying the condition  E [  e   
 i 
 | x  

 i 
 ] = 0. 

 This model simulates the labour market variable     = >*1 if 0iy y   . A decision rule 
is created to determine which individuals’ characteristics will be changed to meet 
the exogenous small area totals. For each individual, we rank our predicted variable 
    *

iy   de fi ned in (7.1) such that we select the  N  cases simulated with the highest value of 
    

*
iy   . For binary variables our calibration routine requires  N  cases of a particular 

unconstrained variable in the relevant district. In multiple choice models, a similar 
method is developed, ranking     

*
iy   for each choice  j  in turn to be consistent with exter-

nally de fi ned  N  
 j 
 . Use of the residual component value     ε i   is important as using the 

deterministic component alone excludes consideration of those with a low probabil-
ity of an event occurring (Morrissey and O’Donoghue  2011  ) . For example, lone 
parents tend to have a low probability of working. Without considering the residual 
component, alignment will rank     iy   and tend to produce no lone parents in work. 
However, even if the in-work probability is low, there are some who work. The 
inclusion of the error term in the ranking will tend to shuf fl e the data so that some 
of those with low risk will be predicted to work. These models are estimated on the 
original LII micro-dataset and then simulated consecutively for each ED according 
to the distribution of     iX   characteristics of units in the synthetic spatial dataset. 

 The spatial distribution of unconstrained labour market characteristics and other 
market income sources are calibrated against regional SAPS totals. Once the correct 
distribution of these variables has been established, the level of income is calibrated 
according to external county-level national accounts. De fi nitional differences prohibit 
absolute adjustment in the calibration of income, as scaling average income by 
source to the national accounts total can affect the distributional properties of the 
data. Thus, the calibration procedure is augmented to ensure average county income 
by income source corresponds to county-level national accounts. To overcome this, 
the ratio of average income by source is scaled proportionally to the national average. 
This allows the same distribution properties of the underlying income data to be 
largely maintained.  

    7.5.2   Calibration Results 

 The correlation between the unconstrained variables of employment status (in-work 
vs. out-of-work, employee, unemployed, retired), occupation and industry are 
calculated before and after calibration. It was found that there was substantial vari-
ability in correlation results across counties. Correlations vary from highs of greater 
than 0.8 to a very poor, almost random, relationship close to zero. Furthermore, we 
also see that the correlations decrease by layer of hierarchy whereby higher-order 
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characteristics such as in-work or retired perform better than lower-order characteristics 
such as employee or industry. 

 Post-calibration, a clear improvement in correlations is found, with all correlations 
close to 1. Excluding retirees, almost all variables display a correlation in excess of .99, 
with those retired being marginally less at a rate of .938–.998. This is still within 
bounds of acceptability, especially as those retired constitute a smaller proportion 
of the population than other labour market variables, and thus a small absolute 
discrepancy results in a greater proportional difference such as this. As a result, it 
may be concluded that the calibration procedure is effective at ensuring that the 
simulated population is consistent with known spatial distributions. Based on results 
reported in O’Donoghue et al. ( 2012 ), county-level correlations with SAPS-de fi ned 
target values are averaged in Fig.  7.2 , illustrating the degree of improvement, post-
calibration.    

    7.6   An Application of SMILE: Spatial Analysis 
of Income Inequality and Redistribution in Ireland 

 Having outlined the procedure of data synthesis and calibration, the data created by 
SMILE is now applied to analyse the spatial distribution of welfare and income 
redistribution in Ireland. As indicated in Sect.  7.5 , the calibration procedure aligns 
income data produced by SMILE to 2005 National Accounts county-level distributions 

  Fig. 7.2    Average unconstrained variable correlation (males)       
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of market-level income. 2  However, an accurate measure of poverty at any spatial 
level must take into account the social welfare transfers within a country. Thus, 
these newly aligned market income data are used to calculate disposable income 
(income net of taxes and bene fi ts) for each individual in Ireland using SMILE’s 
tax-bene fi t component. This section discusses the results of that process whilst also 
analysing the ability of the Irish tax-bene fi t system to reduce income inequality 
within and between spatial entities (see O’Donoghue et al.  2012 , for a full descrip-
tion of this process). 

    7.6.1   The Spatial Incidence of Income Redistribution in Ireland 

 Figure  7.3  presents the spatial distribution of the ratio of tax to disposable income, 
whilst Fig.  7.4  presents the spatial distribution of bene fi ts to disposable income. 
These  fi gures present their respective spatial distributions at the ED level for Ireland 
and are created using the data produced by SMILE (O’Donoghue et al.  2012 ). Upon 
examination, Fig.  7.3  clearly highlights that the EDs with the lowest ratios of taxes 
to disposable income are located in the border area, parts of the midlands and the 
south west (darker shading). The EDs that pay the highest ratio of taxes to disposable 
income are located on the eastern sea board (light shading). It should be noted that 
the areas with the highest ratios of income taxes to disposable income correspond to 
the areas with the highest levels of market income.   

 Figure  7.4  displays the ratio of bene fi ts to disposable income. One can see that 
the distribution of bene fi ts to disposable income is more concentrated, with the most 
rural districts having the highest concentration of bene fi ts to disposable income 
(darker shading). This is due to a greater number of bene fi t recipients residing in 
these districts, as bene fi ts are largely at  fl at rate. In particular, it is found that the 
proportion of individuals of pension age in an ED is a key determinant of the 
concentration of bene fi ts to disposable income.  

    7.6.2   Impact of Tax-Bene fi t Policy on Between 
and Within Group Income Inequality 

 In addition to identifying the spatial incidence of income redistribution, we would 
also like to understand how income is redistributed within and between spatial entities. 
To do this, we examine the variability of incomes between individuals within and 
between regions by aggregating a measure of individual income inequality into 
population subgroups. In this way, one can decompose total variability of incomes 
into a factor attributed to between group variability across space and variability 
within a district (within group variability). 

   2   Market income is income before the deduction of income taxes and addition of bene fi ts.  
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 The index used for calculating within group variability ( I  
 w 
 ) uses the  I  

2
  index, an 

index for calculating the degree of economic inequality. The  I  
2
  index may be de fi ned as 

half the squared coef fi cient of variation,     ⎛ ⎞
⎜ ⎟
⎝ ⎠

2

22

σ
μ

   (see Jenkins  1995  ) , where  s  signi fi es 

the standard deviation of incomes and  m , the mean population lifetime income. 

  Fig. 7.3    Distribution of taxes as a percentage of disposable income for EDs in Ireland       



120 N. Farrell et al.

 Thus,  I  
 w 
  may be de fi ned as

     
= ∑ ,w j j

j

I w I
   (7.2)     

  Fig. 7.4    Distribution of bene fi ts as a percentage of disposable income for EDs in Ireland       
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where     −= 2 1
j j jw v f   ,  v  

 j 
  is the income share of each person  j  in a given spatial group 

and  f  
 j 
  is the population share of person  j  in a given spatial group, in this case (1/n). 

 I  
 j 
  stands for the inequality measure,  I  

2
 . 

 The index for between group variability ( I  
 b 
 ) is de fi ned as

     

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑
2

1 1
( ) 1 ,

2

μ
μ

j
b

j

I y
n

   
(7.3)  

where     μ j   is the mean lifetime income for person j and     μ   , the mean population 
lifetime income. 

 Based on analysis in O’Donoghue et al. ( 2012 ), Fig.  7.5  displays the between and 
within group inequality by income at the ED level. Income is displayed according to 
three different de fi nitions: market income (income before adding bene fi ts and deduc-
ting income taxes), gross income (income after adding bene fi ts but before deducting 
income taxes) and disposable income (income after adding bene fi ts and deducting income 
taxes). Each de fi nition of income displays a different stage of the tax-bene fi t process 
and allows for the effect of each stage of the tax-bene fi t process on spatial inequality 
to be elicited.  

 Figure  7.5  illustrates that between district inequality accounts for a very small 
proportion of overall inequality, with most inequality existing within districts (between 
families). It may also be noted that the share of within group inequality is marginally 
greater at the more aggregate spatial level of county than at the ED level. 

  Fig. 7.5    Comparison of county and ED-level between group income inequalities       
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 One can see that the overall level of inequality reduces as one adds bene fi ts and 
subtracts taxes to get gross income and disposable income, respectively. This has 
an insigni fi cant effect on between group inequality, however, as the proportion 
accounted for by between group inequality remains roughly the same. Thus, one 
may conclude that tax-bene fi t policy does not act to reduce spatial inequality (i.e. 
between spatial group), but rather it acts more to reduce between family (i.e. within 
spatial group) inequalities. 

 Thus, in the absence of pre-existing spatial microdata, it is only through the use 
of spatial microsimulation techniques that these spatial distributions and measures 
of inequality may be elicited and compared. Given that a regional approach to policy 
analysis has potential to improve welfare disparities, such distributional data may provide 
input into determining areas of prioritisation for future spatial targeting of policy.   

    7.7   Conclusions 

 Lack of spatial microdata has signi fi cantly limited spatial analyses of welfare in 
Ireland. This chapter outlines the creation of an Irish spatial microsimulation model 
to overcome this and illustrates how within- and between-region welfare analyses 
at the small area ED level may be achieved. 

 As the household has been deemed the most appropriate unit of micro-level 
welfare analysis, a greater level of complexity is imposed on the choice of simulation 
process. The means by which SMILE has accommodated this requirement has 
evolved as successive versions have been developed. Initially, IPF was employed 
(Ballas et al.  2006  ) , but a desire to employ actual microdata motivated the use of SA 
procedures in the next version of the model (Morrissey et al.  2008  ) . SA, however, is 
computationally intensive and thus precludes the use of repeated syntheses or devel-
opment of future projections. As a result, the development of the current version of 
SMILE has involved the creation of a computationally ef fi cient method known as 
quota sampling (Farrell et al.  2012  ) . The conceptual and practical implications of 
this procedure have been outlined in this chapter. 

 As with all spatial microsimulation models, the credibility of results relies on 
how well actual population distributions are emulated. In order to ensure reliability 
of estimated welfare distributions, extensive validation procedures are required. 
The performance of quota sampling has been assessed using both in-sample and 
out-of-sample validation. Whilst these validation results are quite good given that 
different datasets were used, we note in particular an issue in relation to unexplained 
spatial heterogeneity. This has prompted a calibration procedure. This is carried out 
in two steps whereby an accurate distribution of labour force variables is simulated, 
followed by an alignment procedure whereby market incomes are readjusted to be 
representative of national accounts. On completion of the alignment process, SMILE 
offers a fully representative pro fi le of labour force participation and market incomes 
at both the household and small area level. In the absence of actual small area micro-
data, calibration ensures the most reliable estimation of spatially referenced microdata. 
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 Using this model, the spatial distribution of income and the impact that the 
tax-bene fi t system has on changing the income distribution has been estimated. 
It was found that disposable income is on average lower in rural than urban areas 
with transfers from urban to rural areas. These results correspond to those of 
Morgenroth  (  2010  )  who developed an analysis of the regional transfers across 
Ireland and showed that there is a transfer of resources from the Greater Dublin 
Area and southwest regions of the country to the rest of the country. Furthermore, it 
has been found that Irish tax-bene fi t policy is more effective in reducing within-
region inequality than between-region inequality (O’Donoghue et al.  2012 ). 

 As such, this chapter illustrates the creation of a spatial pro fi le of disposable 
income and welfare redistribution in Ireland using spatial microsimulation techniques. 
In doing so, individual-level, spatially referenced data have facilitated distributional 
analyses which would otherwise have been infeasible. Such analyses can deepen 
our understanding of the determinants of inequality and poverty and lead to improve-
ments in the design of policies tailored to local conditions.      
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          8.1   Introduction 

 There are a wide range of methodological frameworks and techniques for policy 
evaluation and socio-economic impact assessment. For example, models built on 
aggregate datasets (such as the census and national-level surveys) are widespread 
and have proved very fruitful in many areas of policy analysis (see, e.g. Longley and 
Batty  2001 ;    Stillwell and Clarke  2004 ). Nevertheless, the complex dynamics which 
underlie health-care markets, as emphasised by    Sassi and Hurst  (  2008  ) , call for 
more sophisticated tools to help in the formulation and evaluation of appropriate 
and effective health policies. In order to formulate such policies, it is necessary not 
only to understand the nature and the operation of the health sector at a macro-level 
but also to evaluate the likely impact of these policies on health activity at the local 
level. In particular, there is a need to understand, estimate or predict which individuals 
(given their demographic and socio-economic characteristics) and areas are most 
likely to bene fi t from a change in health-care policy. 

 Thus, policy-relevant modelling is a challenging research area which is better 
suited to a modelling framework which emphasises individual-level processes at the 
local level while encompassing aggregated process, such as service provision at the 
macro-level. Spatial microsimulation modelling is a means of synthetically creating 
geographically referenced micro-data. As pointed out by Ballas and Clarke ( 2001 ), 
individual-level issues may be usefully addressed in a spatial microsimulation 
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framework – as also demonstrated by the research by Lymer et al. on aged care needs 
and disability (Lymer et al.  2009,   2008  ) . However, to ensure that meso-interactions 
are accounted for, the application of spatial microsimulation models to health research 
requires a model component that accounts for these interactions. Within this context, 
this chapter aims to improve the applicability of the data created by a microsimulation 
model, not by increasing the complexity of the simulation framework, but by integrating 
the newly created data within a meso-level, spatial interaction framework. Such an 
analysis provides policymakers with information on both demand for and supply of 
health-care services, thus allowing them to shape future service provision and target 
existing health resources in a more ef fi cient and effective manner. 

 Previous work within the health-care and service provision literature linking spatial 
microsimulation models and spatial interaction models include work by Morrissey 
et al.  (  2008  )  which used a spatial interaction model (SIM) to examine whether the 
current spatial distribution of GPs in County Galway matched demand for these 
services. Morrissey et al.  (  2010  )  also examined the spatial distribution of depression 
at the small area level in Ireland and levels of access to both acute and community 
psychiatric care. Tomintz et al.  (  2008  )  linked a spatial microsimulation model to a 
location-allocation model to optimally locate smoking cessation clinics in Leeds, 
Yorkshire. Thus, linking spatial microsimulation models to macro-level models, 
such as SIM, provides a powerful tool for examining a wide range of policy ques-
tions (Smith et al.  2009  ) . Given previous work in this area, the key innovation 
offered in this chapter is the ability to endogenise the ease of access to GP services 
within a statistical model of long-term illness (LTI). This is achieved by combining the 
output from a SIM within the dataset produced by a spatial microsimulation model. 

    8.1.1   Modelling Health Status 

 The last  fi ve decades have seen a dramatic improvement in the health and longevity 
of people in countries within the Organisation for Economic Cooperation and 
Development (OECD) (Sassi and Hurst  2008  ) . However, at the same time, non-
communicable diseases are currently the main cause of both disability and mortality 
worldwide, with the burden of long-term chronic illness proportionally larger in 
OECD countries (WHO  2000  ) . At the individual level, widespread health disparities 
among population groups are becoming more pronounced (Mackenbach  2006 ; Sassi 
and Hurst  2008  ) . Research in a number of countries has found that individuals in 
lower socio-economic and income categories have worse health than individuals in 
higher socio-economic and income categories, with a continuous gradient observed 
between the two extremes (Safaei  2007  ) . In Ireland, previous research on the deter-
minants of ill-health has found that medical card ownership (used as a proxy for 
being economically disadvantaged) is a consistent indicator of poor health for the 
Irish population (Kelleher et al.  2002  ) . Tay et al.  (  2004  )  found that (self-assessed) 
low  fi nancial security and dissatisfaction with work were strong indicators of ill-health. 
Madden  (  2008  )  found that income poverty was a good, though not a perfect, indicator 
of health ‘poverty’ in Ireland. 
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 At a disaggregated spatial scale, the existence of area-based differences in 
individual health status has long been established in British literature (Mitchell 
et al.  2002  ) . Since the Black Report in 1980, a number of important studies have 
con fi rmed that spatial health inequalities exist on a wide (and widening) scale, not 
just in Britain, but across the globe (Wilkinson and Pickett  2006 ; Dorling et al. 
 2007 ; Shaw et al.  2008  ) . These studies found that clusterings of similar individual-
level factors such as income level, age and employment status increase the risk of 
mortality and speci fi c morbidities across space. This research, however, has focused 
on endogenous individual-level factors that affect health status. Exogenous forces, 
such as health service provision, medical prices and the education system within a 
country may have an indirect effect on individual health. 

 With regard to service provision, the centralised provision of national health 
policy and the costs associated with providing health services in sparsely populated 
areas (Asthana et al.  2002  )  mean that health-care services are not provided evenly 
across space. Research in the UK has focused on the effect of physical access on the 
likelihood of obtaining medical treatment. For example, Jones et al.  (  2010  )  and 
Campbell et al.  (  2000  )  found that diagnosis of cancer on death, when coupled with 
social disadvantages, may be associated with poorer geographical access to health 
services care. With regard to access to GP services and cancer survival rates, research 
in Northern England found that late-stage presentations in breast and colorectal 
cancer patients, and poorer survival in prostate cancer patients, were associated with 
longer car journeys to GP surgeries (Jones et al.  2008  ) . 

 However, from these studies, it is not possible to assert that poorer access and 
service provision will adversely affect the health status of the residents of an area. 
Given the strong (and increasingly important) role primary care plays in the man-
agement of long-term illness (‘LTI’) (Department of Health and Children  2001  ) , 
this chapter examines the relationship between LTI and GP service provision at the 
small area level. Thus, building on previous UK-based research on the relationship 
between treatment and access, this chapter continues the research and endogenises 
access to GP services as a determinant of LTI. We do this by combining the output 
from a spatial microsimulation model within a spatial interaction framework.   

    8.2   Methodology 

    8.2.1   Step 1: The Creation of Spatially Disaggregated Data 
Using a Spatial Microsimulation Model 

 Numerous attempts have been made in recent years to conceptualise the role and 
reciprocal in fl uences of different groups of health determinants (Sassi and Hurst 
 2008  ) . Quantitative models help to understand the pathways and determinants of 
health status by attempting to capture and quantify the effects of individual health 
determinants and the interdependencies between these factors. However, to establish 
the key determinants of health status (or in this case LTI), a large variety of data is 
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required at the individual level (which is not often publically available even if it 
actually exists). The  fi rst step in our modelling framework is therefore to create 
spatially disaggregated micro-data containing the necessary variables to estimate 
the determinants of LTI. 

 As outlined by Morrissey et al.  (  2008  ) , although there are a number of datasets 
containing health data for Ireland, for example, the Living in Ireland (LII) survey, 
the spatial identi fi ers in these datasets tend to be at a very high level of spatial aggre-
gation. The LII contains two location variables, a NUTS-3 regional variable (covering 
eight regions) and a 12-category locational variable, categorised into the  fi ve cities 
in Ireland, a category for Dublin County, an ‘open-countryside’ category and  fi ve 
categories for towns of varying sizes. On the other hand, the Irish Small Area 
Population Statistics (SAPS) contains detailed demographic and socio-economic 
data at the small area level, electoral district (ED) level, county level and regional 
level, but it does not contain any health variables. EDs are the smallest geographical 
output area for all statistics produced in Ireland. There are 238 EDs in Co. Galway. 
The population in any one ED ranges from a low of 77 individuals to a high of 
8,629, with an average across all EDs of 719. By merging the relevant health data 
from the LII survey with the ED census data (i.e. the SAPS dataset), a much richer 
micro-level dataset can be created. Spatial MSM may be used to accomplish this. 

 A version of SMILE is the static spatial microsimulation model used for this 
work (Morrissey et al.  2008,   2010 ; see also Chap.   7     of this book for a description 
of a later version of SMILE that uses quota sampling). It uses a combinational 
optimisation technique, simulated annealing, to match the LII (2000) and SAPS 
(2002) datasets, matching on age, sex, household size and education level, creating 
a micro-level synthetic dataset for the whole population of Ireland, which includes 
health variables. For a full discussion on the algorithm and datasets used to create 
the statistical match, please see Morrissey et al.  (  2008  ) . Ballas et al. ( 2006 ) also 
provide an outline of the simulated annealing process and various other methods 
that may be used to create synthetic data at varying spatial scales. Figure  8.1  
represents the inputs, modelling process and outputs of the creation of the spatially 
disaggregated data.  

 The dataset created by the SMILE model contains demographic, socio-economic, 
labour force, income and, importantly, health variables for both individuals and 
family units. The health data created by SMILE has previously been used to examine 
differentials in GP utilisation rates between urban and rural areas in County Galway 
(Morrissey et al.  2008  )  and access acute hospitals for individuals suffering from 
depression in Ireland (Morrissey et al.  2010  ) . Table  8.1  contains the most important 
health status drivers found in the matched SMILE dataset. It is important to note 
that the LTI variable is a self-reported variable. Individuals were asked if they 
suffered from a variety of different physical and emotional conditions and responded 
yes or no. Although SMILE produces a geo-referenced population dataset for the 
whole of Ireland, for the purposes of this chapter, only data for County Galway will 
be used. Figure  8.2  presents the population within the study area, Co. Galway, and 
its location within Ireland.   

http://dx.doi.org/10.1007/978-94-007-4623-7_7
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 Spatial microsimulation is a method used to create spatially disaggregated micro-
data that previously did not exist. Thus, an important component of model develop-
ment is validation as it is only through validation that the integrity of the model is 
established. SMILE contains a number of internal validation methods, namely, 
 Z -scores and  Z  2 -scores (Hynes et al.  2009  ) . The  Z -score is based on the difference 
between the relative size of the category in the synthetic and actual populations, 
although an adjustment is made to the formula when dealing with zero counts. 
A  Z -score can be summed and squared to provide a measure of tabular  fi t similar to 
a chi-squared statistic. If a cell’s  Z -score exceeds the critical value, the cell is deemed 
not to  fi t, while if a  Z  2 -score exceeds the critical value, then the dataset is deemed 
not to  fi t (i.e. | Z | > 1.96). The  Z -score calculation is given by

LII Dataset SAPS Dataset

SMILE Model
Underlying Algorithm 

-Simulate Annealing-
Matches the LII to the SAPS Dataset

Spatially Referenced Dataset

Inputs

Output

Modelling 
Process

  Fig. 8.1    SMILE: Spatial microsimulation modelling process       

   Table 8.1    The main demographic, socio-economic and health variables in SMILE   

 Categorisation 

 Age  Continuous 0–100+ 
 Sex  0 male; 1 female 
 Marital status  1 married; 2 separated; 3 divorced; 4 widowed; 5 never 

married 
 Household annual income 

(6-category dummy variable) 
 1 household income < €24,000; 2 household 

income < €30,000; 3 household income < €40,000; 
4 household income < €50,000; 5 household 
income < €75,000; 6 household income > €75,001 

 Education level 
(7-category dummy variable) 

 1 no education; 2 primary and some secondary education; 
3 junior certi fi cate; 4 leaving certi fi cate; 5 lower 
degree; 6 higher degree; 7 special needs education 

 Long-term illness (LTI)  0 no; 1 yes 
 GP utilisation  0 no; 1 yes 
 Medical card holder  0 no; 1 yes 
 Smoker or not  0 no; 1 yes 
 Owner of a private car or not  0 no; 1 yes 
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where     ijT   is the estimated data, column  i,  row  j , and     ijO   is the census data. The
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O
  stochastic component is added or subtracted because in some large tables, 

it is possible to have 0 values, and then we would have division by zero. The stochastic 
component is added if     ijT   <    ijO   and subtracted if     ijT   >    ijO   . If the observed and the 
expected values are the same, then  Z  is 0. The above formula is used to calculate the 
 Z -score. It is easy to see from the sample of  Z -squared results presented in Table  8.2  
which tables and which EDs  fi t the best. 

 Information on the relative error and the  Z -scores are outputted automatically in 
the static simulation. As shown in Table  8.2 , the  fi rst line in section 3 of the table 
shows the associated 95% critical value for the  Z  2 -score. For illustration, the degrees 
of freedom are the number of columns in the table that represent education level. 
As there are four such columns, the associated degrees of freedom for specialist are 
1.06. Taking ED 101004 as an example, the  Z  2 -score of zero indicates that the esti-
mated tables  fi t the actual tables. Also for this ED, the  Z -score is zero across all 
cells, indicating that the estimated cells  fi t the actual cells from the census perfectly. 

  Fig. 8.2    Study area, Co. Galway       
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On the other hand, in ED 101003, cell 3 is 0.16. This is above zero but still does not 
exceed the critical value, that is, these cells still  fi t the actual cells at the 95% 
con fi dence level, and its  Z   2 -score is also below the critical value (0.002), thus indi-
cating that the estimated table still  fi ts the actual table very well.  

 However, internal validation is only the  fi rst stage of the validation process. It is also 
necessary to compare the  fi tted model with ‘fresh’ external data. This external valida-
tion compares the newly created variables from SMILE to similar data that are not used 
in the original match (Caldwell and Keister  1996  ) . The simulated LTI variable is exter-
nally validated against the special health module of the Quarterly National Household 
Survey (CSO,  2001 ). The QNHS is a representative dataset for the whole of Ireland. 
Producing variables at the NUTS-3 and county spatial levels (Table  8.3  provides a 
description of the population distribution of each spatial scale), it was found that the 
rates of LTI were similar between the SMILE dataset and the QNHS. It was found that 
SMILE predicted 26% of Galway’s residents had a LTI, while the QNHS reported that 
22% of Galway’s population had a LTI. This indicated that the two datasets had similar 
rates for this indicator. Once validation of the synthetically created data is complete, the 
data produced by the model may be used for analysis with much more con fi dence.  

 This chapter links the output from SMILE to a SIM to examine whether ease of 
access to GP services has an impact on LTI in Ireland. The next section outlines the 
development of the spatial interaction model.  

    8.2.2   Step 2: Service Provision – Accessibility Analyses 
Using Spatial Interaction Modelling 

 To examine the effect access to GP services has on LTI, a spatial interaction model 
(SIM) was used to calculate ‘access scores’ (i.e. how easy, or otherwise, it is for a 
resident to access their GP) from each ED to the nearest GP. It is important to note 

   Table 8.2    Comparison of simulated results to SAPS aggregates   

 Education  Education 1  Education 2  Education 3  Education 4 

  1. Actual SAPS table  
 101003  675  283  177  255 
 101004  1,503  584  441  561 
 101005  1,157  319  332  567 
 101006  1,643  1,146  476  410 
  2. Simulated table results  
 101003  675  283  179  255 
 101004  1,503  584  441  561 
 101005  1,157  319  332  567 
 101006  1,643  1,146  476  410 
  3. Z-score    X -squared critical value, 1.06   Z  2 -score 
 101003  0  0  0.16  0  0.002 
 101004  0  0  0  0  >0.001 
 101005  0  0  0  0  >0.001 
 101006     0  0  0  0  >0.001 
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that there are no formal GP or primary care catchments in Ireland. Individuals may 
choose to visit whichever clinic they want. There are numerous methodologies 
available to measure accessibility to health-care services (Bertuglia et al.  1994  provide 
a comprehensive review of these methodologies). However, by far, the most popular 
methodology to be adopted has been the origin-constrained SIM (Clarke et al. 
 2002  ) . A SIM may be built to describe and predict the  fl ow of people, goods or 
services across space. They allow the modelling of the trade-off between spatial 
convenience and the attractiveness of particular destinations (measured by proxies 
such as size, brand and quality of the service). These models also allow the estimation 
of the number of trips to a particular destination, given the attributes or ‘attractive-
ness’ of that location. The attractiveness of an opportunity should be measured 
based on what characteristics of a potential destination are important to the consumer 
(Liu and Zhu  2004 ). For example, it can be measured as the number of retail outlets 
at a destination or the number of GPs in a single location or practice. In reality, the 
attractiveness of a facility often translates as its physical size (Birkin and Clarke  1991  ) . 

 Of particular interest to this chapter, is that these models can be used to build a suite 
of performance indicators. Performance indicators allow the measurement of how 
well a particular service serves the residents (Clarke et al.  2002  ) . Thus, these models 
quantify accessibility according to where individuals consume services as predicted 
by the SIM. SIMs, therefore, provide a more realistic representation of access to ser-
vices than, for example, simply taking the number of service outlets in a zone or 
estimating accessibility through a simple straight-line nearest facility type indicator. 

 A SIM can be written as

     ( )= −exp ,βij i i j ijT O A W d
   (8.2)  

where A 
i
  is a balancing factor that ensures that

     
=∑ .ij ij

T O
   (8.3)   

 A 
 i 
  is calculated as

     

=
−∑

1
.

exp( )βi
j ijj

A
W d

   (8.4)   

 The residential zone  i  refers to the centroid of each ED, while the destination  j  
refers to the  x ,  y  location of each GP centre.  T  

 ij 
  is the  fl ow of individuals from each 

ED residential zone  i  to each GP centre  j . The demand variable  O  
 i 
  is the number of 

residents with a LTI in each ED as simulated by SMILE. The attractiveness param-
eter for each health-care centre  W  

 j, 
  is the number of practitioners in each health centre 

(a measure of how easy it is to be examined quickly). The distance variable  d  
 ij 
  is the 

distance from each ED centroid ( i ) to each primary care service  (j) .  d  
 ij 
  was calculated 

using network analysis (using the current road data for Ireland) in ArcGIS. 
 As there is currently no data on interaction patterns to GP services in Ireland, a 

generic value for the distance-decay parameter was chosen. The distance-decay 
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function value   b   is 0.2. Sensitivity analysis was conducted with the regard to the 
parameter value, using values ranging from 0.1 to 0.7. These results were not overly 
different, and consulting the literature on health service accessibility in the UK 
(Smith et al.  2006 ; Tomintz et al.  2008  ) ,   b   was assigned a value of 0.2. Taking the 
results from the SIM, two effectiveness indicators were then used to predict access 
scores for each ED (Clarke et al.  2002  ) . The  fi rst effectiveness indicator calculates 
the aggregate level of provision for a particular origin zone  i  as follows:

     
= ∑

*

.ij
i jj

j

T
w W

T    (8.5)   

 The above equation for estimating the aggregate level of provision for an area is 
calculated by dividing each SIM output Eq.  8.2  by the sum of all outputs for each 
zone  j , where * indicates summation across all zones  i . This is then multiplied by 
the attractiveness of zone  j . The sum of all these values for residence zone  i  provides 
the aggregate provision for each zone  i . This indicator ensures that even if an area 
does not have a service facility, the area will not have a zero accessibility score. 
Relating this aggregate provision indicator to the population in an area will allow 
the identi fi cation of areas where a signi fi cant number of households suffer poor 
accessibility to a particular service, in this instance, poor accessibility to a GP ser-
vice centre. The level of provision per household is an indicator that divides the 
aggregate level of provision score,  w  

 i ,
  by the number of households in the residence 

zone,  i , as follows:

     
= .i

i
i

w
v

I    (8.6)   

 Using both of these performance indicators prevents areas with a small population 
or no services being automatically labelled as ‘poor access areas’, when in fact these 
areas may reside close to neighbouring zones with good access (the interaction 
based indicators provide a type of smoothing effect). Figure  8.3  presents the spatial 
distribution of access scores to a GP for County Galway as calculated by the SIM 
and accessibility indicators. From Fig.  8.3 , one can see that access is highest in the 
city and its hinterland, while access is lowest in the west and south-east of the 
county. Combining the results from the SIM within a logistic model (to examine 
the determinants of LTI) allows us to examine the impact of access to GP services 
on LTI at the sub-national level in Ireland.    

    8.3   Results: The In fl uences of Ill-Health 
at the Sub-national Level 

 Using the resulting dataset from these two models (i.e. SMILE and SIM), Table  8.4  
provides an aggregate overview of three of the key individual-level drivers of LTI 
for County Galway. Table  8.4  indicates that on average, individuals with a LTI, 
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compared to those not reporting a LTI, have lower income, are older, receive a 
higher percentage of free medical care and have poorer access to GP services.  

 In Ireland, an individual is entitled to a medical card (thus receiving free medical 
care) if their income is below a certain threshold, or they are over 70 years old, or they 
have a speci fi c long-term illness. This was measured by whether the individual had a 
medical card (indicating they are in receipt of free medical care) or not. Thus medical 
card possession may be used as an indicator of deprivation in Ireland (Kelleher et al. 
 2002  ) . It is well established in the literature that old age and lower income directly 
relate to poorer health status (Safaei  2007 ; Kelleher et al.  2002  ) . Also included in 
Table  8.4  are the access scores to GP services for individuals with and without a LTI. 
A higher access score indicates increased ease of access for an individual, in terms of 
distance to the clinic and the number of GPs per clinic. Table  8.4  indicates that on 
average individuals without a LTI have higher access scores than individuals with a LTI, 
thus suffering from poorer access to GP services. 

  Fig. 8.3    Access scores for each ED to a GP service in County Galway as calculated by the acces-
sibility indicators       

   Table 8.4    Descriptive statistics for three of the key individual-level drivers 
of LTI in County Galway   

 No LTI reported  Reporting a LTI 

 Monthly household income  €19,833  €12,041 
 Age  38  50 
 Receive free medical care (%)  22  52 
 Access to GP services  3.50  2.50 
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    8.3.1   Step 3: Logistic Regression Modelling of the Relationship 
Between Ill-Health and Individual Characteristics 

 The relationship between ill-health (using LTI as a proxy for ill-health) and 
individual characteristics was examined by constructing a logistic regression model 
for County Galway using the resulting SMILE/SIM dataset. An initial set of uni-
variate logistic regressions were undertaken to determine which variables had the 
greatest signi fi cant relationship with ill-health. The explanatory variables presented 
in Table  8.5  were chosen given the strength of their relationship with ill-health as 
found by previous national and international research. The variables included age 
(Sassi and Hurst  2008  ) , sex (Kelleher et al.  2002  ) , annual household income (dummy 
variable, see Table  8.1 ) (Safaei  2007  ) , education (dummy variable, see Table  8.1 ) 
(Alborz et al.  2005  ) , marital status (dummy variable, see Table  8.1 ) (Sassi and Hurst 
 2008  ) , whether an individual smokes or not (Sassi and Hurst  2008  ) , if the individual 
has visited a GP in the previous year (McGregor et al.  2008  ) , and whether an indi-
vidual is a medical card holder (entitled to free GP services) or not (Kelleher et al. 
 2002  ) . The  fi nal variable to be included was whether the individual has access to a 
private car. This variable was included to examine the effect of accessibility on LTI. 
An average access score for each ED to a GP service was calculated by the suite of 
performance indicators outline above and matched into the SMILE dataset.  

 Table  8.5  presents the results (coef fi cient values, their associated standard errors, 
marginal effects and signi fi cance levels) of this multivariate logistic regression. On 
average, it is found that the main drivers of LTI in County Galway were as follows: 
special needs education (those that had special needs education requirements were 
62% more likely to have a LTI), having visited a GP in the previous 12-month 
period (those that had attended a GP in the previous 12 months were 23% more 
likely to have a LTI), having an annual household income less than €24,000 (indi-
viduals with an income less than €24,000 were 11% more likely to have a LTI) and 
medical card/free medical care status (individuals with a medical card were 12% 
more likely to have a LTI). 

 Given the strong relationship between low income levels, medical card posses-
sion and LTI, this analysis is in line with other authors’ work showing that income 
levels have a strong positive effect on health status in Galway (Safaei  2007  ) . It is 
important to note that given the relationship between medical card possession and 
income, these two variables may be correlated and introduce issues of collinearity 
to the model. To check this, a correlation test for the two variables was run. The 
resulting correlation 0.24 (24%) was deemed low enough to include both variables 
in the analysis (a correlation of below 0.5 is generally deemed acceptable). With 
regard to having visited a GP in the proceeding 12-month period, previous research 
has indicated that individuals with LTI have higher rates of GP utilisation (McGregor 
et al.  2008  ) . These results corroborate this, showing that visits to a GP are found to 
have a positive effect on the probability of an individual having a LTI. This study 
also found that individuals with a special needs education have a strong positive 
relationship with LTI. Physical and mental disabilities are often found to coexist for 



1398 Linking Static Spatial Microsimulation Modelling to Meso-scale Models…

   Table 8.5    Micro-level determinants of ill-health, number of observations and chi-squared results   

 Coef fi cient 
 Standard 
error   P  value 

 Marginal 
effects 

  Education (dummy variable):  
 No education (reference category higher degree)  0.8  0.05  <0.001  0.10 
 Primary and some secondary education 

(reference category higher degree) 
 0.66  0.05  <0.001  0.09 

 Junior certi fi cate (reference category higher 
degree) 

 0.44  0.05  <0.001  0.06 

 Leaving certi fi cate (reference category higher 
degree) 

 0.51  0.05  <0.001  0.73 

 Lower degree (reference category higher 
degree) 

 0.15  0.05  0.005  0.03 

 Special needs education (reference category 
higher degree) 

 3.27  0.17  <0.001  0.62 

  Household income (dummy variable):  
 Household income < €24,0000 (reference 

category €15,000–23,999) 
 0.95  0.05  <0.001  0.11 

 Household income < €30,000 (reference 
category €15,000–23,999) 

 0.45  0.06  <0.001  0.70 

 Household income < €40,000 (reference 
category €15,000–23,999) 

 0.53  0.06  <0.001  0.09 

 Household income < €50,000 (reference 
category €15,000–23,999) 

 0.53  0.06  <0.001  0.09 

 Household income < €75,000 (reference 
category €15,000–23,999) 

 0.4  0.06  <0.001  0.07 

 Household income > €75,001 (reference 
category €15,000–23,999) 

 0.3  0.07  <0.001  0.04 

 Age  0.02  0.0003  <0.001  0.02 
 Sex  −0.4  0.01  <0.001  −0.06 
 Marital status (dummy variable): 
 Marital status: separated (reference category 

married) 
 0.21  0.06  <0.001  0.02 

 Marital status: divorced (reference category 
married) 

 −0.09  0.14  0.53  −0.01 

 Marital status: widowed (reference category 
married) 

 0.09  0.04  0.02  0.007 

 Marital status: never married (reference 
category married) 

 −0.42  0.02  <0.001  −0.07 

 GP visit in previous 12 months  1.78  0.02  <0.001  0.23 
 Smoke  0.2  0.02  <0.001  0.02 
 Medical card status  0.68  0.01  <0.001  0.12 
 Own, or have access to, a car  −0.44  0.02  <0.001  −0.04 
 Access score  −0.02  0.002  <0.001  −0.02 
 Constant  −3.85  0.08  <0.001 
 Number of observations (individuals aged 16 

and over) 
 145,983 

 Probability > chi 2   0 
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individuals (Alborz et al.  2005  ) . Research has found that individuals with learning 
disabilities do have higher GP utilisation rates (Alborz et al.  2005  ) . It is interesting 
to note that while age was found to have a signi fi cant positive association with LTI, 
this effect was not large. Females and smokers were also found to have a higher 
probability of having a LTI than males and nonsmokers. 

 However, of particular interest to these analyses is the relationship between LTI 
and the access score, as calculated by the SIM outlined in Sect.  8.2.2 . The access 
score is a continuous variable, where an increase in the score indicates an improve-
ment in ease of access. Table  8.5  shows that the access score was found to have a 
signi fi cant, but small, negative effect on having a LTI (−0.02). That is, for every 0.02 
decrease in ease of access to a GP service, an individual is more likely to have a LTI. 
These  fi ndings are consistent with Table  8.4 , which shows that overall, individuals 
in Galway without a LTI have better access to services than individuals with a LTI. 
This would indicate that physical ease of access to health-care services can have a 
direct impact on an individual’s health status. Another variable of interest that may 
be used as an indicator of ease of access to health services is private car ownership. 
Table  8.5  shows that private car ownership/availability has a signi fi cant negative 
relationship with LTI (individuals without a car are 4% more likely to have a LTI). 
Car owners are less likely to report suffering from a LTI than non-car owners. 
Further, Table  8.5  shows that although access to GP services was found to have a 
signi fi cant relationship with LTI, an individual’s income level and deprivation level 
have a stronger effect on whether an individual has a LTI. 

 This analysis indicates that individuals with poorer access to GP services are 
more likely to report suffering from a LTI. However, without further time-series 
analysis, it is not possible to infer that poor access to GP services causes LTI. 
Previous research in the UK has found that increased distances to health services 
may be associated with poorer health service utilisation (   Jordon et al.  2004,   2008, 
  2010  ) . However, by endogenising the access score within the logistic model for LTI, 
this model establishes a clear relationship between access to health services and 
LTI. Finally, it is important to note that it is the combination of the SIM and the 
spatial microsimulation that allows this analysis to be carried out.   

    8.4   Discussion 

 Although the spatial disaggregation of both health service demand and supply is 
crucial in understanding health-care needs and service requirements, it is not always 
straightforward or possible within conventional health-care modelling frameworks. 
Dif fi culties arise primarily due to data limitations. In this chapter, we have attempted 
to improve the applicability of the data created by a microsimulation model, not by 
increasing the complexity of the simulation framework, but by integrating the newly 
created data within a meso-level, spatial interaction framework. Such an analysis 
provides policymakers with information on both demand for and supply of health-
care services, thus allowing them to shape future service provision and target existing 
health resources in a more ef fi cient and effective manner. 
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 However, dif fi culties do arise when linking micro- and meso-level models. These 
issues include ensuring the consistency of the data being used between modelling 
frameworks and validation. First, in terms of data consistency, one must ensure that 
the data produced by the spatial microsimulation model can be aggregated to the 
required meso-level: that is, to ensure that both models have at least one common 
spatial scale. A second issue is model validation. As outlined above, the data provided 
by SMILE is validated across a range of parameters. Although trip data does not 
exist for individuals to GP services in Ireland and therefore cannot be validated, 
using best practice, an aggregate distance-decay parameter of 0.2 was used 
(Morrissey et al.  2010  ) . Limitations aside, a major advantage of the modelling 
methodology, combining data from a spatial microsimulation model with the number 
of individuals with a LTI at the ED level within a spatial interaction model, is the 
production of a set of access scores for GP services for each individual in Co. 
Galway. These access scores were then used with other demographic and socio-
economic variables to construct a logistic regression model of LTI to establish 
whether there was a relationship between an individual’s access to GP services and 
their likelihood of having a LTI at the ED level in County Galway. Building on 
previous UK-based research that indicated that increases in distance to health-care 
facilities were associated with decreased levels of treatment for different illnesses, 
this chapter endogenises access to GP services as a determinant of LTI.  

    8.5   Conclusions 

 In conclusion, this chapter has found that inadequate service provision may be 
linked to LTI at the small area level in Ireland. These results are of interest to both 
the Irish and international policymakers, as they indicate that to ensure ‘good’ health 
provision across the general population, governments need to ensure better access 
levels to health services across space. Although the Department of Health and 
Children in Ireland has listed ‘equity of access’ to health services as one of its main 
objectives, this analysis has shown that access levels to GP services vary across 
space. Although disparities in health services in Ireland (and internationally) are 
primarily a function of the degree of urbanisation and the need to increase ef fi ciency 
and effectiveness in the delivery of health-care services, particularly acute services 
(Asthana et al.  2002  ) , the development of a framework to allocate health services in 
a more demand-driven manner is important. 

 The provision of the Irish health service is constantly under review, rationalisa-
tion and re-focus (McDaid et al.  2009  ) . A framework that provides both demand and 
current supply-based analysis, as outlined above, allows policymakers to allocate 
scarce resources in a more effective manner. This is particularly relevant given the 
proposed roll-out of the primary care strategy and the need to allocate increased 
service provision to the primary care sector. As such, one may conclude that the 
Irish government needs to develop a framework for allocating health services on a 
more equitable basis given demand for these services across space. This chapter 
demonstrates how micro- and meso-level models may be combined to produce a 
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more holistic analysis health-care demand and supply. Spatial microsimulation 
models, given their  fl exible scale disaggregation scale, provide a useful framework 
for linking meso-level models, such as SIM.      
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          9.1   Introduction 

 So far, this book has described the process of spatial microsimulation modelling and 
has shown a number of different methods for creating static spatial microsimulation 
models. These static models provide estimates of small area statistics for the time 
period of the benchmark data – so if the benchmark data used is 2006 census    data, 
then the reference period for the spatial model will be 2006. There is also a need to 
predict what an area will look like in the future, as a key issue in development plan-
ning is knowing where particular services will be required in the future. Therefore, 
a further development has been taken to project spatial microsimulation databases 
forward through time (see Harding et al.  (  2011  )  for a summary of key issues and 
spatial research using microsimulation). 

 Creating projections means attempting to ‘age’ the spatially microsimulated 
dataset. Therefore, a temporal dynamic has to be added to the model. As noted in 
Harding and Gupta  (  2007a  ) , a conceptual distinction can be drawn here between 
spatial microsimulation models that undertake ‘static ageing’ (such as reweighting 
the small area dataset to future population projections) and those that attempt 
‘dynamic ageing’, which involves updating the characteristics of the micro-units for 
each small area through time. 

 There are a number of spatial dynamic microsimulation models already in existence 
(e.g. SVERIGE and SMILE). There are also examples of pseudo-dynamic models 
in the UK, which are not fully dynamic in that they do not model individual life 
experiences like mortality, fertility and migration (as SVERIGE and SMILE do), 
but reweight to projections of census tables, so use static ageing. Examples of these 
models include SimBritain (Ballas et al.  2005a  ) . 
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 SVERIGE (Holm et al.  2001  and Chap.   12     of this book) uses the pattern of 
emigration, immigration, employment and earnings, education, leaving home, 
divorce, cohabitation and marriage, as well as mortality and fertility as dynamic 
individual behaviours in the model. A Monte Carlo simulation picks individuals in 
the microdata to experience any of the above behaviours based on simple probabilities 
and hence updates the individual characteristics in the microdata. This means that 
accurate probabilities of each behaviour are central to creating projections in this 
model. In SVERIGE, these probabilities are obtained using either probabilities from 
past experience or estimated logistic regression equations. 

 SMILE is built as both a static and dynamic spatial microsimulation model 
(Ballas et al.  2005b  and Chap.   7     of this book). It is constructed to estimate and project 
small area statistics in Ireland. The model starts as a static model using an iterative 
proportional  fi tting (IPF) method to spatially disaggregate the aggregate microdata. 
Once this has been done, the demographic processes of mortality, fertility and 
migration are simulated. The mortality process is simulated by using the probability 
of death based on age, sex and location while the probability of birth is simulated 
based on age, marital status and location. The simulation of the migration process 
uses random sampling from calculated migration probabilities derived from the 
1991 and 1996 census of population. These data provide migration probabilities 
from one area to another by age, sex and location. 

 SimBritain (Ballas et al.  2005a  and Chap.   13     of this book) is a spatial microsimu-
lation model for Britain’s small areas. Unlike SVERIGE and SMILE, SimBritain is 
constructed as a pseudo-dynamic microsimulation model. The model projects 
benchmark tables from 2001 to 2011 and 2021 using the long-term trend of each 
small area based on data from the UK 1971, 1981 and 1991 census. The benchmark 
projections are calculated using a model of the changing population proportion in 
each category of each benchmark table. After all the six benchmark tables in 
SimBritain are projected, the microdata are reweighted to the projections, and new 
weights are calculated for each household or person on the microdata.  

    9.2   Projecting Small Areas Statistics in Australia 
Using a Spatial Microsimulation Model 

 SpatialMSM is a spatial microsimulation model that has been developed to estimate 
small area statistics in Australia and is described in Chap.   6    . The model has been 
under development for several years, initially reweighting a household expenditure 
survey to 2001 census small area benchmarks (see Chin et al.  2005,   2006 ; Chin and 
Harding  2006,   2007  and, for documentation of the earliest models, see Melhuish 
et al.  2002  ) . 

 As mentioned in Sect.  9.1 , there are at least two ways to project an estimate using 
spatial microsimulation – static and dynamic ageing. At this stage, the development 
of the projections model in SpatialMSM has concentrated on static ageing, or a 
pseudo-dynamic process. There have been several approaches to static ageing that 

http://dx.doi.org/10.1007/978-94-007-4623-7_12
http://dx.doi.org/10.1007/978-94-007-4623-7_7
http://dx.doi.org/10.1007/978-94-007-4623-7_13
http://dx.doi.org/10.1007/978-94-007-4623-7_6
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have been introduced in the model. First, a simple static ageing procedure has been 
adopted. This essentially involves in fl ating the weights for each household in the 
synthetic data using population projections for each small area and has been imple-
mented in earlier work on projecting consumer characteristics out to 2020 in 
Australia (Harding and Gupta  2007b  ) . This method can also be extended to using 
population projections by age and sex. 

 A second, more complex, approach is to project each one of the benchmark 
tables and then reweight to these new projections. This is conceptually similar to the 
approach followed in SimBritain (Ballas et al.  2005a  ) . The approach used to project 
the benchmark tables leverages directly off small area population projections but 
can also use any other projections available. A third approach is to combine the  fi rst 
and second methods. This third approach can be used when there are not enough 
small areas available to implement the second method. 

    9.2.1   Projecting by In fl ating the Microdata Weights 

 Because the survey data in SpatialMSM is benchmarked to the 2006 census (see Chap.   6    ), 
all the weights will refer to 2006 populations. One of the advantages of the reweighting 
method is that the weights can be easily in fl ated so that they will add up to a different 
year’s population. This can be done using Statistical Local Area (SLA) level population 
projections from the Australian Bureau of Statistics (ABS) (ABS  2004  ) . The formula 
used is

     ( ) ( ) ( )sla sla sla sla
i i 2007 2006A 2007 = A 2006 * Pop / Pop

   

where  i  is the record on the survey, sla is the SLA,  A  
 i 
  sla (2007) is the new weight, 

 A  
 i 
  sla (2006) is the weight benchmarked to 2006 census data, Pop  

2007
  sla   is the popula-

tion projection for that SLA in 2007 and Pop  
2006

  sla   is the population of that SLA in 
2006. This method assumes that the age/sex pro fi le is constant over these years. For 
longer projections, where it would be reasonable to expect the age/sex pro fi le to 
change, population projections by age/sex can be used to more accurately adjust the 
weights. 

 This method also assumes that any population growth is distributed to all the 
benchmarks at a constant rate over the years. If the population projections are by 
age and sex, then the assumption being made is that the relationship between the 
age/sex population projections and each of the benchmarks is constant over time. 

 This assumption that only the population size of each SLA is changing into the 
future can create problems. For instance, the long-term trend away from home 
ownership and towards private rental for younger generations will not be simu-
lated because the population projections do not capture this change in prefer-
ences. Capturing this change would require data about such long-term trends at 
the small area level, and this is where the next method of projecting small area 
data can be used.  

http://dx.doi.org/10.1007/978-94-007-4623-7_6
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    9.2.2   Projecting Each of the Benchmarks 

 One of the problems with the method outlined in Sect.  9.2.1  is that if weights are 
adjusted according to age/sex projections, then the in fl ated weights will be different 
for each person in a household. Typically, for weights on a survey, the weight for 
each person in a household is the same as the weight for the household. This is 
called ‘integrated weighting’. It means that if all the weights for people in the house-
hold are summed, then the result will be the number of people in the household 
multiplied by the household weight. So in fl ating the weights using population pro-
jections by age and sex adjusts each person in the household differently, which 
means that the weights are no longer the same for each individual in the household, 
so the weights are no longer integrated. 

 The second method of projecting avoids this problem as the weights are recalcu-
lated using a process that incorporates integrated weighting. This method also 
incorporates projections of all the benchmark tables used in the reweighting pro-
cess, providing a more accurate estimation process. This also means it is more 
 fl exible, as benchmark tables can be adjusted to incorporate different behavioural 
assumptions about the future. 

 This section describes how this method has been implemented in the SpatialMSM 
model, described in Chap.   6    .  

    9.2.3   Projecting the Benchmark Tables 

 As described in Chap.   6    , one of the  fi rst steps in the creation of SpatialMSM involves 
reweighting the two income survey sample  fi les to benchmark tables from the 2006 
census. Creating the outyear versions of the database again involves reweighting – 
but this time to newly created estimated benchmark tables for future years. 

 One of the advantages of reweighting to benchmark tables in future years is that 
the projected benchmark tables can be re fi ned in the future based on new assump-
tions and knowledge that is available, and the weights can be easily recalculated 
using the re fi ned benchmark tables. To get initial projections of each benchmark 
table, the model uses a log-linear regression model of each benchmark classi fi cation 
against age by sex by labour force status projections. One of the assumptions being 
made with this type of model is that people’s behaviours and choices do not change 
in the future. If there is some knowledge about future behavioural changes, or if the 
user wants to model some future behavioural change to see the effect, then the 
benchmark tables could be re fi ned and new weights calculated. 

 The benchmark tables used in this chapter are slightly different to those used in 
Chap.   6    , as all the analysis in Chap.   6     was done with SpatialMSM/08B using 10 
benchmarks, while the projections reported in this chapter were all done using a 
later model, SpatialMSM/08C, which split the benchmark for the number of people 
in a household into the number of adults in the household and the number of 

http://dx.doi.org/10.1007/978-94-007-4623-7_6
http://dx.doi.org/10.1007/978-94-007-4623-7_6
http://dx.doi.org/10.1007/978-94-007-4623-7_6
http://dx.doi.org/10.1007/978-94-007-4623-7_6
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children in the household. Apart from this slight change, the benchmarks are exactly 
the same as those used for Chap.   6    . The list of benchmarks for SpatialMSM/08C is 
shown in Table  9.1 .  

 The  fi rst benchmark table that is projected is the labour force by age by sex bench-
mark table, which has been projected up to 2027. To project this table, the SLA level 
population projections produced by the ABS for the Commonwealth Department of 
Health and Ageing (ABS-DOHA) (Department of Health and Ageing  2009  )  were 
combined with projections of labour force status used in the Australian Commonwealth 
Treasury’s  2007  Intergenerational Report (IGR) (Treasury  2007  ) . The long-run 
historical trend was also used in the report to project the participation rates for men 
and women of different ages. This means that the changing composition of the labour 
force in Australia is included in these projections, in particular the labour force 
changes in recent years with more women participating in the labour force. 

 Our initial problem with the ABS-DOHA SLA level population projections was 
that they are only available by age and sex and not by labour force status. Therefore, 
the projection of age by sex by labour force status was undertaken in two steps. 

   Table 9.1    Benchmark tables used in order used   

 Benchmark table  Description  Type 
 Number of 
benchmark classes 

 1  Age by sex by labour force 
status 

 Person   32 

 2  Number of occupied private 
dwellings 

 Household   1 

 3  Dwelling tenure by weekly 
household rent 

 Household   6 

 4  Dwelling tenure by household 
type 

 Household   15 

 5  Dwelling structure by 
household family 
composition 

 Household   24 

 6  Household size – number of 
adults usually resident 

 Household   6 

 7  Household size – number of 
children usually resident 

 Household   5 

 8  Monthly household mortgage 
by weekly household 
income 

 Household   12 

 9  In different types of non-
private dwelling 

 Person   4 

 10  Dwelling tenure by weekly 
household income 

 Household   25 

 11  Weekly household rental by 
weekly household income 

 Household   20 

 Total  150 

  Source: SpatialMSM/08C  

http://dx.doi.org/10.1007/978-94-007-4623-7_6
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The  fi rst was to take the ABS-DOHA age by sex by SLA projections for 2007 
(so the year after our benchmark tables 2006 reference year) and use the labour 
force by age/sex by SLA splits from the 2006 census data to apportion labour force 
status onto the 2007 age/sex population projections. The second step was then to use 
the percentage point change in the national projections of labour force status by age 
by sex from the Commonwealth Treasury’s IGR 2007 report to adjust the propor-
tion of persons in each labour force category for every SLA. It should be noted here 
that the national growth trend has been applied to each SLA, in the absence of any 
SLA-speci fi c labour force projections. 

 The labour force by age by sex table then played an important role in the projec-
tions of all the other benchmarks since it was used as the exogenous variable that is 
then used to project the other benchmark tables. The projections for all the other 
benchmark tables were calculated using the relationship between the benchmark 
table being projected and the labour force by age by sex table in the base year 
(2006). The coef fi cients used to project all the other benchmark tables were esti-
mated using a log-linear model:

     

= = =

= = =

= ∑
5 6 2

k
0 1 1
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ijk i j
i j k
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where PopBC is the population in each benchmark table category while 
PopLF 

 i 
 Age 

 j 
 Sx 

 k 
  is the population in labour force status  i , age  j  and sex  k . The estima-

tion is done using a cross section regression with every SLA in Australia as an 
observation. Given that the estimate of   b   

 ijk 
  in Eq.  9.1  is the growth elasticity of the 

population in the benchmark table to the population in labour force status  i , age  j  
and sex  k , the population growth in each benchmark table can be projected as
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 The estimation in Eq.  9.2  will give the estimated growth and hence the estimated 
number of every category’s population in the benchmark tables for any year into the 
future. Note that all the  fi nancial data has been kept in 2006 prices, so we have not 
in fl ated rents, mortgages, incomes, etc. What we are projecting is the number of 
people in each income category or the number of people in each rent category. So 
the categories stay the same each year; only the number of people in each category 
changes. 

 To derive reasonable estimates from Eq.  9.2 , the total number of people or house-
holds in each benchmark table must be the same. In many cases (due to randomisa-
tion by the ABS), these totals are not the same. Therefore, the number of people or 
households in each table is adjusted, so the totals are the same across all benchmark 
tables. This adjustment process takes one table as having the correct number and 
then adjusts all the other tables so they match this  fi rst table. In this case, the tables 
used as the basis on which to match the totals in all other tables were benchmark 
table number 1 for persons and benchmark table number 2 for households (Table  9.1 ). 
This means that there is an assumption that benchmark table number 1 has the 
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correct total for number of people, and benchmark table number 2 has the correct 
total for total number of households. All other tables are then adjusted to match the 
totals in these tables. 

    9.2.3.1   Reliability of the Projected Benchmarks 

 After the weights for future years are produced, the next step is to check the reliability 
of the estimation using this set of future weights. 

 There are two sources of model error in our projections. One comes from    the 
projections of each benchmark table, so it has something to do with the reliability of 
the coef fi cient   b   

 ijk 
  in Eq.  9.1 . The second source of error is in the generalised regression 

routine that reweights the survey data to the projected benchmarks. 
 In terms of the  fi rst source of model error, if the age by sex by labour force projec-

tion is not very good at estimating our other benchmarks, then the estimated weights 
for the projections will be inaccurate and the projections will be unreliable. 

 The estimate of the size of the errors in the forecasting of the benchmarks can be 
looked at using the coef fi cient of determination ( R  2 ) of the regression process that 
produces the elasticity coef fi cients in Eq.  9.1 . This  fi gure will show how much varia-
tion in the benchmark table in the base year can be explained by the age by sex by 
labour force structure. As the regression was done for each category in each bench-
mark table, each of these will have its own  R  2 . To simplify the analysis, the means of 
the  R  2  in the benchmark tables have been presented. The range of  R  2  values is also 
provided to give a better idea as to the reliability. The results are shown in Table  9.2 .  

   Table 9.2     R  2  for benchmarks used in the reweighting algorithm   

 Table no.  Benchmark table  Lowest  R  2   Highest  R  2   Mean  R  2  

 2  Total number of households by 
dwelling type (occupied private 
dwelling/non-private dwelling) 

 0.542  0.993  0.767 

 3  Tenure by weekly household rent  0.424  0.862  0.635 
 4  Tenure by household type  0.516  0.984  0.826 
 5  Dwelling structure by household 

family composition 
 0.386  0.975  0.706 

 6  Number of adults usually resident in 
household 

 0.952  0.995  0.971 

 7  Number of kids usually resident in 
household 

 0.957  0.997  0.977 

 8  Monthly household mortgage by 
weekly household income 

 0.176  0.928  0.643 

 9  Persons in non-private dwelling  0.295  0.719  0.420 
 10  Tenure type by weekly household 

income 
 0.428  0.977  0.760 

 11  Weekly household rent by weekly 
household income 

 0.136  0.825  0.598 

  Source: Authors’ calculations, SpatialMSM/08C  



152 Y. Vidyattama and R. Tanton

 Looking at Table  9.2 , the  R  2  indicates that most of the variation in the original 
tables can be explained by the age by sex by labour force status table. This means 
that projections of these benchmarks tables using a coef fi cient calculated in the base 
year, while not perfect, would be reasonable as a  fi rst attempt at projecting the 
base microdata. Further work could enhance these projections, and one option may 
be to introduce some historical time series where the projections are particularly 
bad (as has been done for SimBritain; see Ballas et al.  2005a  ) , but for most of the 
benchmarks, the age by sex by labour force status table explained on average more 
than 70% of the variation in the other tables. However, there are three tables where 
the average  R  2  was below 70%, which are tenure by weekly household rent, monthly 
household mortgage by weekly household income and weekly household rent by 
weekly household income. This means that further work could be conducted on getting 
better projections in terms of housing cost and income. 

 In conclusion, on the basis of the  R  2  for the model in Eq.  9.1 , it is considered that 
the projected benchmarks were reliable enough to use in the reweighting process.  

    9.2.3.2   Reweighting to the Projected Benchmark Tables 

 The reweighting process is the same as that described in Chap.   6     but with different 
benchmark tables (as discussed above). One of the problems with using this technique is 
the loss of some SLAs because of failed accuracy criteria, so the procedure failed to 
 fi nd a solution given the constraints from the 11 benchmark tables and a limit on the 
number of iterations. The SpatialMSM model used for the base year (2006) produced 
weights for 1,214 SLAs and failed to produce reliable weights (so the accuracy criteria 
failed – see Chap.   6    ) for 138 SLAs. Most of the areas where the accuracy criteria failed 
were industrial areas, of fi ce areas or military bases with very low population counts. 
As a result, the proportion of people living in these SLAs is very small (Table  9.3 ). Only 
0.7% of the total Australian population in 2006 were lost in the reweighting process.  

 The results from the reweighting process for the projected benchmarks shows 
that the further the model is projecting out, the more SLAs fail the accuracy criteria. 
In the base year of SpatialMSM/08C, there are 138 out of 1,422 SLAs in the base 

   Table 9.3    Number of SLAs dropped due to failed accuracy criteria in SpatialMSM/08C   

 State/
territory 

 SLAs with 
failed accuracy 
criteria  Total SLAs 

 Percentage of SLAs 
with failed accuracy 
criteria (%) 

 Percentage of all persons 
living in SLAs with failed 
accuracy criteria (%) 

 NSW  2  200  1.0  0.4 
 VIC  4  210  1.9  0.0 
 QLD  43  479  9.0  0.8 
 SA  7  128  5.5  0.4 
 WA  17  156  10.9  0.9 
 TAS  1  44  2.3  0.1 
 NT  48  96  50.0  25.2 
 ACT  16  109  14.7  1.0 
 Australia  138  1,422  9.7  0.7 

http://dx.doi.org/10.1007/978-94-007-4623-7_6
http://dx.doi.org/10.1007/978-94-007-4623-7_6
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year failed the accuracy criteria. The number of SLAs that failed the accuracy criteria 
increases to 157 out of 1,415 SLAs in the 2010 projection and increases further to 
208 SLAs and 236 SLAs in the 2020 and 2027 projections, respectively. Table  9.4  
shows that besides the Australian Capital Territory and Northern Territory, most of 
the additional SLAs that failed the accuracy criteria are non-capital city SLAs.  

 Losing 236 of the 1,415 SLAs in the 2027 projection is still considered as accept-
able for the purposes of this study since these SLAs only contain 2.8% of the whole 
population (Table  9.5 ). It should be noted, however, that around one-quarter to one-
third of the Australian Capital Territory and Northern Territory populations live in 
SLAs which failed our accuracy criteria test in 2027, so projections for the two ter-
ritories must be treated with caution.  

 One of the methods of validation for spatial microsimulation models described 
in Chap.   15     checks the accuracy of the estimated results from a spatial microsimula-
tion model against a variable that is not benchmarked, but is available from some 
small area data source and that is accurate for the small areas being estimated. This 
method can also be applied to a model that projects data, as long as projections of 
small area data are available. In our case, the number of children aged 3 and 4 years 
is not benchmarked (we benchmark the number of children aged 0–17 years), can 
be estimated from our model and is available from the age/sex projections. 

 The measure described in Chap.   15     to assess this accuracy is the Standard Error 
around Identity (SEI). The SEI for SpatialMSM/08C in the base year (2006) is 
99.0% for number of children aged 3–4, so we get an excellent result for the base 
year. The SEI for the projection in 2027 is 95.1%. This shows that the projected data 
match very well to the ABS population projections.   

    9.2.4   Projecting the Benchmarks When There Are Only 
a Small Number of Areas 

 The main advantage of a projection method based on projecting the benchmark 
tables compared to in fl ating the weights is that the former projection methodology 
allows the user to decide how the benchmark tables are projected forward. In the 
example used here, we have used a regression model that projects forward all the 
benchmark tables using age, sex and labour force status, but more complex methods 
could be used for different tables. In fl ating the weights does not re-benchmark the 
future weights to any projected benchmark tables, so any growth in the area is purely 
based on population growth, by age and sex if required. 

 However, there are problems with this method, particularly when only a small 
number of areas are being estimated in the model. The reason is that the regression 
model used to project the benchmarks has each area as one observation for the 
regression. The results for the regression will therefore be unreliable if there are not 
many areas to estimate the model with. 

 One way to solve this problem is to combine the approaches of in fl ating the 
weights and projecting the benchmarks. So the benchmark tables can be projected 
by in fl ating the weights from the SpatialMSM model in the base year (i.e. 2006). 

http://dx.doi.org/10.1007/978-94-007-4623-7_15
http://dx.doi.org/10.1007/978-94-007-4623-7_15
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For example, we have the growth in the population by age and sex in each SLA from 
population projections produced by the ABS for DOHA (Department of Health and 
Ageing  2009  ) , and these can be used as in fl ation factors for every individual in the 
age group and sex. However, this will now mean that the household weight will no 
longer equal the person level weights, which is always the case when integrated 
weighting has been used, but we can then aggregate the individual weights to pro-
duce benchmark tables at the person level for each SLA and take the average of 
every individual in one household and aggregate to SLA level to produce the bench-
mark table at a household level. These tables are then used in the reweighting process. 
It is also necessary to ensure that the total number of people or households in each 
benchmark table is the same using the method outlined in Sect.  9.2.3 . 

 The main advantage of this approach is the simplicity of the benchmark projection, 
which uses the results of the SpatialMSM model in the base year to project the 
benchmark tables. However, the problem with it is that we have no idea of whether 
the relationship between the SpatialMSM model in the base year and the projected 
benchmarks would hold in the longer term, as it is based on only one observation for 
a speci fi c area.  

    9.2.5   Uprating Income and Cost 

 The three projection approaches described above assume that all prices including 
wages and salary in this model stay constant. Therefore, up to this point, the model 
is designed to project the composition of the population based on dwelling tenure 
type or family type rather than projecting  fi nancial variables such as poverty or 
housing stress. So the  fi nal part of the projections model is to project increases in the 
 fi nancial information. 

 In Australia, there are several databases from the ABS that can be used to in fl ate 
or uprate  fi nancial data into the future. Ideally, the uprating should be done using 

   Table 9.5    Number of SLAs dropped due to failed accuracy criteria in the 2027 projection   

 State/
territory 

 SLAs with 
failed accuracy 
criteria  Total SLAs 

 Percentage of SLAs 
with failed accuracy 
criteria (%) 

 Percentage of all persons 
living in SLAs with failed 
accuracy criteria (%) 

 NSW  15  199  7.5  1.6 
 VIC  27  209  12.9  2.6 
 QLD  54  478  11.3  2.3 
 SA  20  127  15.7  3.4 
 WA  29  155  18.7  1.6 
 TAS  4  43  9.3  2.5 
 NT  55  95  57.9  32.5 
 ACT  32  109  29.4  24.7 
 Australia  236  1,415  16.7  2.8 

  Source: SpatialMSM/08C projections  
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projections of the in fl ation factors provided by the government or other sources; 
however, these are rarely available for a number of years into the future, so the best 
option may be to use some trend over the last 10 years. 

 In the case of the projections from SpatialMSM, income is in fl ated using the 
average weekly earnings (AWE) data up to the end period available from the gov-
ernment (2010). Longer periods are predicted using the 10-year trend in the AWE. 
The AWE is based on a survey of payments paid by various businesses to their 
employees. Because the data are based on an ABS survey and the survey is a business 
survey, not a household survey, the ABS cannot produce estimates for areas below 
state. The projections are calculated for each state and territory using the trend from 
10 years of data, and these are then used to calculate income projections for each 
SLA in that state or territory. 

 To make the estimates better, it is also possible to specify different rates for 
different genders, different industries of employment and also for full-time and 
part-time workers. 

 Another data source that can be used to in fl ate incomes is the Survey of Income 
and Housing, which can be used to get a different rate of increase for different 
income quintiles. This captures any changes in the income distribution, which we 
know changes over time (Vu et al.  2008  ) . 

 To in fl ate costs, the Australian consumer price index data from the ABS provides 
a rate of increase in general costs. One of the main costs used in estimating housing 
stress in SpatialMSM is housing costs. The two housing costs used in the model are 
the housing costs of those who are renting and of those who are paying a mortgage. 
While the rate of increase for the former can be calculated directly from the rent 
component of CPI that is available as an expenditure class component in the CPI 
publication from the ABS, the increase in mortgages is more complicated. This is 
because there are at least three factors determining the mortgage payment – the 
house price, the length of mortgage and the interest rate. In many statistical software 
packages, there is a MORT function that can calculate a mortgage payment given an 
interest rate, the house price and the length of the mortgage. 

 If we assume the length of the mortgage is constant for all mortgagees as 30 years, 
we can then estimate the change in the mortgage payment given any projected future 
change in interest rates and house prices. This is the method used to project mortgage 
costs in the SpatialMSM model. 

 Note that for all these in fl ation factors, state  fi gures have been used to in fl ate 
small area values. This is because there is no information on small area in fl ation 
factors in Australia.   

    9.3   Results 

 Results from the projection method described in Sect.  9.2  are excellent. In a paper 
describing the method and validation of the method (Vidyattama and Tanton  2010  ) , 
which created projections for a number of variables out to 2027, the results showed 
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a very good level of correlation with of fi cial population projections for small areas. 
The Standard Error around Identity (SEI) for the 2027 projections, using the projections 
of the number of children aged 3–4 from the model and from the DOHA projections 
(Department of Health and Ageing  2009  ) , was 95.1%. This is a very high level of 
correlation, showing excellent results from the model (for further results see Harding 
et al.  (  2011  ) ). 

 One of the main advantages of the spatial microsimulation projection method is 
that cross tabulations for the projections can now be derived. These can be very useful 
for planners looking at where services will be required in the future. As an example, 
Vidyattama and Tanton  (  2010  )  show in each small area the proportion of children 
aged 3–4 with both parents working, giving insights into where childcare places 
will be required in the future.  

    9.4   Strengths and Weaknesses 

 In this section, we sum up the strengths and weaknesses of the various projection 
methods outlined above. 

 The strength of the  fi rst method, in fl ating the weights using age/sex population 
projections, is that it is simple. Having said this, this simplicity is also its weakness, 
in that it does not provide the accuracy or the  fl exibility that the second method 
provides. While it is reasonable as a  fi rst attempt, it fails to take into account any-
thing except changes in the age/sex population. It also leads to different weights for 
people and households, which means it is not possible to sum the person level 
weights in a household, divide by the number of people in the household and get the 
household weight. 

 The main strength of the second method (projecting the benchmark tables) is the 
ability to provide a picture of a household’s future characteristics according to 
assumptions given by other models, such as population projections from the ABS 
and labour force projections from the Intergenerational Report. While age, sex and 
labour force projections are the main determinants of the projections from the current 
SpatialMSM model, there is the capacity to include other projections as they become 
available and incorporate these quickly into the modelling by benchmarking to the 
revised projected tables. It is important to note that the performance of this model is 
highly dependent on the assumptions and the performance of the projections being 
used to model the benchmark tables. 

 Another strength of this projection method is the independence of each SLA in 
the model. This means that each SLA can have a scenario change applied separately, 
and as long as the SLA does not fail the accuracy criteria (so we are getting reason-
able estimates in the future), then the model can provide projections for that SLA. 
However, this feature is also one of the weaknesses of this projection method, as 
those SLAs may interact through population movement, especially if unemploy-
ment rates are changed in one SLA, and this population movement is not modelled 
(although it could be in the future through a dynamic model). 
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 The main weakness of the method is the fact that the projection relies on the 
relationship between the labour force by age by sex composition and the composition 
of the other benchmark tables based on the 2006 population census. This is a rea-
sonable assumption if the model projects into the near future, but unlikely for any 
long-term projection. Any change in personal preferences could make this assump-
tion invalid. For example, one change in the housing industry that we may expect to 
see is people preferring to rent instead of buying their own house in the future, due 
to labour mobility and the increasing cost of purchasing a house. As a result, even if 
there are no changes in the structure of the labour force by age by sex, the propor-
tion of younger people who live in rental accommodation may be increasing in the 
future, and this will not be captured in this model. 

 Not only are the benchmarks based on 2006 census data projected forward, the 
survey data used in this version of SpatialMSM is from 2002/2003 to 2003/2004. 
There is a strong possibility that these data do not represent individual households 
in the long term. Cassells and Harding  (  2007  )  show that the generation born between 
1976 and 1991 (generation Y) has different characteristic to the previous generation 
in terms of working and having families, which are two variables we benchmark to. 
Because this is a static microsimulation model, we are not ageing the population at 
all; we are just benchmarking this 2002/2003 and 2003/2004 data to future projec-
tions. So in 2002, Gen Y is aged between 11 and 26. The characteristics in the 
benchmarks for this age group are projected into the future, and then, people aged 
11–26 in 2027 will be benchmarked to these tables. So we are applying the Gen Y 
characteristics to people aged 11–26 in 2027. But people aged 11–26 in 2027 may 
be very different from the Gen Y group in 2002. Further, the Gen Y group from 
2002 will be aged between 36 and 51 in 2027, and their characteristics may be very 
different from people aged between 36 and 51 in 2002. 

 Again, the  fl exibility of this model means we could assume some other prefer-
ences for this group in 2027 and adjust the benchmark tables using some behavioural 
model, but we really have no information on what preferences these people will have 
in 2027. So using the preferences from 2006 may be the best information available. 

 The advantage of the third method is that it can be used with a small number of 
areas. Using the second method, there needs to be a number of areas to run a regres-
sion of age by sex by labour force status against all the other benchmarks. This is 
not required for the third method. This also means that the projections are based on 
a small number of homogeneous areas, rather than a large number of heterogeneous 
areas, so the projections should be better. 

 The disadvantage of the third method is that there is a limited sample for projecting 
the benchmarks, and so there is not much to validate against.  

    9.5   Conclusions 

 This chapter has given an overview of a model that can address the need for small 
area information not only for the present but also for the future. In the past decade, 
this need has become more and more apparent as planning agencies in Australia 
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(such as its local and federal governments) need to focus on service delivery for 
local areas given the characteristics of individuals and households in those areas 
(see Harding et al.  2011 ; Lymer et al.  2008,   2009  ) . 

 A static ageing process is the approach taken in developing the projection model 
given the very high degree of complexity, cost and data requirements to build a fully 
dynamic microsimulation model. The static ageing model is undertaken by employing 
the currently available population and labour force projections to estimate the various 
constraint tables used in SpatialMSM/08C. The model then used the reweighting 
process in SpatialMSM/08C to allocate the microdata or unit record data according 
to the projected constraints. 

 This method has been able to produce information for small area planning into 
the future with a reasonable degree of reliability. The model is also able to take 
some simple scenarios to model some changes in the future and seems to be most 
reliable for capital cities. Nevertheless, the static ageing approach that the model 
uses means that it is dif fi cult to model any behavioural change, without identifying 
the effect of the behavioural change and implementing this in the benchmark tables. 
Further, while we have not tested this, we expect that any large changes in the char-
acteristics of the society in the future will be dif fi cult to estimate, as the large changes 
in the benchmarks will mean the reweighting process will fail to  fi nd reasonable 
weights for a high proportion of areas.      
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 This chapter outlines some of the limits of static spatial microsimulation models, 
covering data limitations; how adding different benchmark tables affects the results; 
issues with non-converging areas when too many benchmark tables are speci fi ed; and 
how a non-representative sample for the survey data affects results. 

    10.1   The Limitations Considered 

 There are a number of limitations of spatial microsimulation models discussed in 
detail in this chapter. Note that these are not all the limitations of spatial microsimu-
lation models; these are just some that research has been reported on (see    Tanton 
and Vidyattama  2010  ) . These limitations are:

    1.    Data limitations  
    2.    The effects of adding benchmark tables  
    3.    The representativeness of the survey data for smaller capital cities     

    10.1.1   Data Limitations 

 One of the main limitations of static spatial microsimulation models is around the 
data requirements. For a spatial microsimulation model, three things are required:
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    1.    Record unit survey data to benchmark  
    2.    Reliable small area data to benchmark the survey data  
    3.    The same de fi nitions for each variable on each of the two datasets     

 As an example, with the Australian SpatialMSM model described in Chap.   6    , problems 
were experienced in the early developmental stages of the model because the reliable 
small area data from the census included people in non-classi fi able households, 
whereas the survey data did not. To correct for this, special benchmark tables were 
requested from the Australian Bureau of Statistics which excluded non-classi fi able 
households from the census benchmark data. 

 Non-matching variables between the census and survey may also mean that some 
variables cannot be benchmarked due to de fi nitional differences. As an example, 
in Australia, some earlier surveys and the census before 2001 collected data on age 
left school (e.g. 15, 16 or 17), while current data collections collect data on highest 
year of school completed (year 11, year 12, etc.). This means that this variable could 
not be benchmarked if these datasets were used. 

 In other cases, some aggregation may be required to be able to benchmark the 
variable, so for example, on the Australian census, the landlord type has different 
classi fi cations to those in the 2007–2008 Survey of Income and Housing. The census 
has eight valid landlord-type categories (excluding not stated and not applicable), 
whereas the 2007–2008 Survey of Income and Housing has six valid categories 
(excluding not applicable). The census includes categories on employers, housing 
co-operatives, etc., which the survey does not include – all these are included in an 
‘Other’ category. Therefore, to make them comparable, these categories in the census 
need to be summed into one ‘Other’ category which then can be benchmarked to the 
survey ‘Other’ category. 

 In some ways, this can be overcome by using synthetic data as the basis for the 
model rather than actual survey data. This synthetic data can be created using small 
area probabilities, but the  fi nal model is not as accurate as it would have been if real 
survey data had been used. An example of model that has used synthetic unit record 
datasets is SYNTHESIS (Birkin and Clarke  1988,   1989  ) .  

    10.1.2   The Effects of Adding Benchmark Tables 

 For all static spatial microsimulation models, as more constraint tables are added, 
the procedure doing the estimation will have greater dif fi culty matching all the 
benchmark tables. This is because the complexity of the algorithm being used 
(whether IPF, CO or generalised regression reweighting) has increased – so for 
example, for the generalised regression spatial microsimulation model described in 
Chap.   6    , the constraints ( X   c  ) are met using a constrained optimisation function. As 
the number of constraint tables increases, this constrained optimisation function 
gets more complicated and has a higher likelihood of not converging. 

http://dx.doi.org/10.1007/978-94-007-4623-7_6
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 The question then is why not use an absolute minimum number of benchmarks. 
The trouble with this is that a smaller number of benchmarks mean there is less to 
constrain to, and so the  fi nal weights may not provide the accuracy required. As a 
test of reducing the number of benchmarks, a regression analysis was conducted of 
poverty rates against a set of ten benchmark variables. This regression showed that 
only six benchmark variables were signi fi cantly correlated with poverty at the 5% 
level, so eight benchmark tables were constructed from these six benchmark vari-
ables, and the SpatialMSM model described in Chap.   6     was run with these eight 
benchmark tables. The results from this version of the SpatialMSM model were that 
the number of areas passing the accuracy criteria increased from 1,302 to 1,337, so 
there were an additional 35 areas with an acceptable TAE (see Chap.   6    ). However, 
the accuracy of the model dropped from a standard error around identity (SEI – see 
Chap.   15    ) of 0.94 to an SEI of 0.82. This means that removing two benchmark tables 
led to a reduction in the accuracy of the model. So reducing the number of variables 
led to more areas technically being passed in the model, but a much lower accuracy. 

 The other advantage of increasing the number of benchmark tables is that the 
model becomes more generalisable.    For example, including education in the bench-
mark variables means that cross tabulations with education in them can be derived, 
so poverty for people who’s highest level of education was school compared to 
having a university degree. 

 In Tanton and Vidyattama  (  2010  ) , a number of benchmark tables were added to 
the SpatialMSM model, and the results were tested. This analysis showed that from 
a base model with 11 benchmarks, 1,284 areas which passed the accuracy criteria 
and an SEI of 0.93, adding two additional benchmarks (education and occupation) 
led to a reduction in the number of areas that passed the accuracy criteria to 1,257 
and an increase in the SEI to 0.94. So an additional 27 SLAs were unusable, but the 
accuracy of the model increased, and it was more generalisable (so poverty rates for 
different occupations could be calculated). 

 The appropriate number of benchmarks to be used also depends on the strength 
of the relationship between the benchmark variable(s) and the output variable(s). 
If extra tables are added where these correlations are low, the total model error can 
increase. 

 So there are obviously trade-offs between reducing the number of benchmark 
variables and getting results for more areas, and increasing the number of benchmark 
variables and getting more accurate and more generalisable weights. This trade-off 
has to be decided by the user.  

    10.1.3   The Representativeness of the Survey Data 

    For static spatial microsimulation models to work, the survey data being used must be 
similar to the areas being benchmarked to; otherwise, the reweighting procedure will 
not be able to  fi nd a population from the survey that represents the benchmark tables. 

http://dx.doi.org/10.1007/978-94-007-4623-7_6
http://dx.doi.org/10.1007/978-94-007-4623-7_6
http://dx.doi.org/10.1007/978-94-007-4623-7_15
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For some authors, this has meant that for the reweighting, they only use survey data 
from the broad region being estimated. This is the technique used by Anderson 
 (  2007  ) , which gives a weight of 0 to anyone not in the area, so they are discounted 
from the reweighting. It is described as ‘not  fi lling Shef fi eld with Londoners’ 
(Anderson  2007 , p. 15) and is called by Williamson in Chap.   3     strati fi ed household 
selection. The problem with this method is that it excludes what may be good records 
that are not in the area. Ballas extended this by deriving a geographical weighting 
technique (Ballas et al.  2005  )  which increased the chances of local households being 
used, but still allowed out-of-area households. This technique used a geographical 
constraint table as a benchmark, along with the other benchmark tables. 

 Other spatial microsimulation authors also permit households from any area to 
be included as long as they match the constraining criteria (Procter et al.  2008 ; 
Tanton et al.  2011  ) , although this choice is all down to the initial data preparation 
and it is possible to limit the models to only area-speci fi c residents if required. 

 Given that the Australian Bureau of Statistics also uses a reweighting method to 
reweight their survey data, it is interesting to look at the distribution of sample 
records across Australian state and territories. This will give some idea of where 
people come from who are then being used to derive state-level estimates from 
Australian survey data. 

 Figure  10.1  shows, for the Australian Survey of Income and Housing in 2003–2004, 
what proportion of people in the survey come from each area in Australia. The areas 
are capital cities in each state and balance of state in most states. The ACT does not 
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  Fig. 10.1    Population proportions and samples, 2002–2003 and 2003–2004 surveys of income and 
housing (Source: 2002/03 and 2003/04 survey of income and housing (ABS  2004,   2005  ) )       
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have a balance of state category, and the Northern Territory does not have a capital 
city category.  

 In Fig.  10.1 , the population bar is the proportion of the Australian population in 
that area (33 % for Sydney), and the sample bar is what proportion of the ABS 
sample came from that area (22 % for Sydney). It can be seen that the major capital 
cities in Australia (Sydney, Melbourne and Brisbane) are under-represented in the 
ABS samples, and the smaller states and capital cities in Australia (WA, SA, 
Tasmania and the ACT) are over-represented. This oversampling in smaller states is 
intentional on the part of the ABS (ABS  2002 ). 

 An obvious question to then ask is how a reweighting algorithm uses households 
from different states to represent SLAs in each state. Figure  10.2  shows the propor-
tion of households used to populate SLAs for capital cities and non-capital cities 
(Balance of State, shown as BS in Fig.  10.2 ) in Australia using the SpatialMSM 
spatial microsimulation model described in Chap.   6    . While other microsimulation 
models would give different results, the results from this model are illustrative.  

 So the  fi rst bar in Fig.  10.2  shows that 33 % of Sydney households, 10 % of NSW 
non-Sydney households, 19 % of Melbourne households and so on (all adding to 
100 %) were used to populate Sydney SLAs. 

 It can be seen from Fig.  10.2  that Sydney households are used to estimate the 
SLAs of the majority of other capital cities (e.g. 25 % of the households in the 
Melbourne model were Sydney-based households in the survey dataset), whereas 
the Hobart households are not used much at all. The reason for this is that there are 
so few of them in the sample – so while Fig.  10.1  shows that Hobart households are 
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over-represented in the sample, there are still only 731 of them in the two samples 
used for the SpatialMSM model, compared to 2,862 Sydney households. 

 The next step in this process was to test whether better results for small areas in 
each Australian capital city were obtained from the spatial microsimulation model 
if it was run with households from that capital city only. To do this, a number of 
subsets of the original sample were selected with all households in each capital city 
in each Australian state, and the spatial microsimulation modelling for small areas 
in that city was done using this subset of households only. The number of small 
areas which passed the accuracy criteria and the accuracy of the overall estimates 
were then calculated. The results are shown in Table  10.1 .  

 It can be seen that there was not much difference between the two approaches in 
terms of the number of small areas that passed the accuracy criteria; however in 
terms of the SEI, using Perth households to estimate small areas in Perth gave much 
better results than using all households to estimate small areas in Perth. For all other 
capital cities, using the households in that capital city gave slightly better results, 
except for Melbourne where they were worse. 

 Further work using the SpatialMSM model has also shown that small areas in 
Tasmania are estimated more accurately using households from Tasmania only, and 
we suspect there may be a number of reasons for this (Vidyattama and Tanton  2011 ). 
One may be that there is a more homogenous population in these areas; so where the 
population is more homogenous, better estimates are obtained using households 
from that area. If the population in an area is heterogeneous, then using a wider 
variety of households to estimate the area should provide better estimates. Another 
explanation may be that the survey being reweighted contains a much higher num-
ber of people from New South Wales (1,958 households from NSW compared to 
670 households from Sydney), which will affect the estimation process for Tasmania 
as people from Sydney are very different to people from Tasmania (higher incomes, 

   Table 10.1    Effect of using households from each capital city to estimate areas in the capital city 
using spatial microsimulation   

 Source of data for estimation 
with SPATIALMSM/08c 
(11BM) 

 Number of SLAs 
which passed the 
accuracy criteria 

 Number of SLAs 
which failed the 
accuracy criteria  SEI 

 Sydney for Sydney  63  1  0.9676 
 Australia for Sydney  63  1  0.9618 
 Melbourne for Melbourne  78  1  0.9263 
 Australia for Melbourne  79  0  0.9511 
 Brisbane for Brisbane  214  1  0.9263 
 Australia for Brisbane  212  3  0.9224 
 Adelaide for Adelaide  55  0  0.9735 
 Australia for Adelaide  55  0  0.9534 
 Perth for Perth  35  2  0.8478 
 Australia for Perth  35  2  0.7856 

  Source: SpatialMSM/08c applied to 2002/03 and 2003/04 survey of income and housing (ABS 
 2004,   2005  )   
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different age structure, etc.). In terms of proportions, Tasmania has a much higher 
representa tion in the sample (670 out of 202,400 households is 0.33 % compared to 
1,958 out of 2,651,700 households or 0.07 % in NSW – see ABS  2009  ) . What is 
important for the SpatialMSM model is the number of people being used to  fi ll an 
area, and this means NSW has a much higher number. 

 So overall using households from the area being estimated will give slightly 
better results with little difference in the number of SLAs which failed the accu-
racy criteria. The fact that the accuracy has increased more in the two most unpop-
ulated capital cities (Adelaide and Perth) shows that the Australian sample for 
these two cities may give a slightly misleading result since the sample is dominated 
by households from the larger capital cities (see Fig.  10.1 ).   

    10.2   Conclusions 

 This chapter has looked at a number of issues when conducting static spatial microsimu-
lation modelling. These issues have included data limitations, working out the optimum 
number of benchmarks, and identifying how representative the survey data are. 

 What we  fi nd is that the main limitation in the data is getting two comparable 
datasets, a survey and census dataset. There may need to be some adjustments to get 
matching data de fi nitions and categories. 

 In terms of the number of benchmarks, increasing the number of benchmarks 
makes the  fi nal weights more generalisable but increases the number of non-
converging areas. On the other hand, having too few benchmarks means the results 
are not accurate, so it is important to validate the  fi nal estimates to ensure enough 
benchmarks have been used. 

 In terms of using records from a sample that are not from the area being estimated, we 
 fi nd using within-area records may give slightly better results for some areas, but not 
for all areas. So while there may be some slight advantage in using a same-city sample 
for the smaller capital cities, generally using all records in the sample gave better 
results. The advice would be that when deriving estimates for broad areas that were not 
sampled well in the original survey, use records from that broad area; but if it is a broad 
area that was sampled well, then using all observations will give a better result.      
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          11.1   Introduction 

 Due to its vital role in human society, the study of population has always been at the 
centre of public policy and planning. People’s movements, interactions and behav-
iours will inevitably have an important impact on the society and environment that 
they are living in. At the same time, changes in these factors will also lead to an 
evolution of the population itself over time. As advances in technologies and new 
tools often bring new visions, computer-based models have now been extensively 
used in modelling complex social systems. This is not only because they can provide 
valuable groundwork when it is too expensive or impossible for practical reasons to 
experiment in reality, but also new research methods enabled by the capabilities of 
modern computers can radically transform human ability to reason systematically 
about complex social systems. This has become increasingly important as our world 
today confronts rapid and potentially profound transitions driven by social, economic, 
environmental and technological changes. 

 To facilitate strategic decision making and to plan developments for our future, 
it is vital to study and understand changes in our population. Traditionally, macro-
simulation has been used to model populations. However, macroscopic simulations 
have limits in representing small-scale (or microscopic) occurrences, discontinuity 
and heterogeneity within a system. This limits their effectiveness in studies where 
individual characteristics are important. On the other hand, the microscopic approach 
can deal with the rich details of individuals. Microsimulation provides insight into 
the behaviour of a system under a range of conditions. With the capability to provide 
valuable information over a wide range of individual inputs, microsimulation models 
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(MSMs) have become not only an excellent discovery tool but also an indispensable 
assistance to strategic decision making (Orcutt  1957 ; van Imhoff and Post  1998 ; 
Harding  2007  ) . 

 Dynamic MSMs are not only able to update the characteristics of the micro-units 
caused by the stimulation of endogenous factors but can also project them over time 
to include demographic processes and social economic transitions, such as ageing, 
mortality, fertility or social and geographical mobility (O’Donoghue  2001  ) . Therefore, 
they provide a better longitudinal representation of the studied population than static 
MSMs that traditionally use an “arithmetical calculator” approach (Harding  2007  ) . 
At the same time, human activities have a strong spatial dimension. A spatial MSM 
takes the spatial dimension into consideration. Accordingly, the population can be 
simulated within a local context and can also pick up on regional characteristics that 
may be the outcome of multiple interwoven factors that cannot otherwise be easily 
modelled all together. 

 This chapter introduces Moses, a dynamic spatial MSM that dynamically simulates 
the UK population through discrete demographic processes at a  fi ne spatial scale to 
capture the local characteristics for a duration of 30 years from 2001 to 2031. In the 
following sections, we will describe the modelling approach, the components of the 
model, followed by a discussion and analysis of results.  

    11.2   Modelling Approach 

 Moses is an individual-based model that simulates the UK population through 
discrete demographic processes at a  fi ne spatial scale for 30 years from 2001 to 2031. 
The modelling method is grounded in a dynamic spatial MSM, where each individual 
is described with their particular attributes and behaviour within a local context at 
each simulation step. In this section, we will discuss the Moses modelling approach 
in detail. 

    11.2.1   Dynamic Microsimulation Model 

 Brown and Harding  (  2002  )  de fi ne the term of social modelling as “the representation 
of social phenomena and/or the simulation of social processes” and describe micro-
simulation modelling as “a pre-eminent type of social model”. Modern social sci-
ence studies now often require detailed information about the interactions between 
the policy and the socio-economic behaviours of individuals, and MSMs model 
such interactions through the simulation of distinctive behaviours and characteris-
tics at the level of individual decision-making units. Advances in computing and 
analytical techniques now allow MSMs to portray with great sophistication answers 
to a range of questions that researchers may ask when modelling a large, complex 
social system at the level of individuals. 
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 Static and dynamic approaches give rise to two rather different types of MSM. 
In what follows, some of the main differences are identi fi ed whilst recognising that 
the terms “static” and “dynamic” are sometimes used in different ways by various 
authors. Typically, a static MSM takes a large representative sample with detailed 
information and uses synthetic reweighting techniques (although other techniques 
are also used: see Part II of this book) to generate the demographic and economic 
characteristics expected at some future time point. Normally, static MSMs simulate 
only the immediate or “morning-after” policy impact upon individual decision units. 
If changes in demographic structures over time are required, with a static MSM, this 
would be performed by using static ageing techniques and by re-running the cross-
sectional simulation using future population estimates at speci fi c time points   . Such 
static MSMs “have usually been arithmetical calculators” (Harding  2007  )  and 
normally simulate the change “under the assumption that individual behaviour 
is unchanged” (Bourguignon and Spadaro  2006  ) . Because the change in the demo-
graphic structure of the modelled population is performed by reweighting using 
some external information, it focuses on what the external information brings to the 
population, and therefore, it does not model the changes in population itself. A typical 
“what-if” static MSM scenario would be the following: if there had been no poll tax 
in 1991, which communities would have bene fi ted most and which would have paid 
more tax in other forms (Ballas et al.  2005 ; Harding  2007 ; Gilbert and Troitzsch 
 2005 ; Vidyattama et al.  2011 ; Chin et al.  2005  )  

 In view of these limitations of static MSMs, dynamic MSMs have become 
increasingly popular in recent years. Dynamic MSMs use a technique where entities 
change their characteristics as a result of endogenous factors within the model. 
A certain degree of interaction between micro population units can be found in 
dynamic MSMs. Such interaction typically includes processes such as birth and 
marriage (O’Donoghue  2001  ) . Dynamic MSMs rely on an accurate knowledge of 
the individuals and the dynamics of such interactions. Dynamic MSMs “try to move 
individuals forward through time, by updating each attribute for each micro-unit for 
each time interval” (Harding  2007  ) . In a dynamic MSM, the typical updating of the 
demographic structure is performed by ageing the modelled population individually 
(by asking “yes or no” questions on important transitions such as birth, death, 
marriage, etc.) with transition probabilities according to life tables and/or exogenous 
time series. The changes in the population itself are modelled, and the simulation in 
one year may affect an individual unit’s characteristics in the subsequent year. Thus, 
dynamic MSMs are particularly useful for longer-term “what-if” scenario explora-
tions and projection purposes. A typical future-oriented “what-if” dynamic MSM 
scenario would be the following: if the current government had raised income taxes 
in 1997, what would the redistributive effects have been between different socio-
economic groups and between central cities and their suburbs by 2011 (O’Donoghue 
 2001 ; Ballas et al.  2005  ) ? 

 In Table  11.1 , some of the most important differences between the static and 
dynamic MSMs are summarised. Although static models may be more effective at 
times for speci fi c short-run projections and often demand less in computing resource 
and skills, dynamic MSMs feature more detailed and realistic population ageing 
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and are also viewed as better at producing realistic long-term estimates, which 
account for interim changes in economic and demographic trends (O’Donoghue 
 2001  ) . In view of its many advantages, dynamic microsimulation modelling tech-
niques are used by Moses to include important demographic processes in the 
dynamic changes of the modelled population. Compared to a static MSM, the 
dynamic MSM of Moses: 

   Builds in change over time  • 
  Has processes for introducing population units into the system of interest and • 
taking them out  
  Has the capacity of reproduction (through birth) and elimination (through death) • 
of individual population members      

    11.3   Spatial MSMs 

 Hägerstrand’s space–time geography revolutionised the study of society. He pointed 
out that the spatial and temporal dimensions must be included into social studies, as 
“One cannot be at two places at the same time” (Hägerstrand  1985  ) . His research 
has explored the conceptual basis for developments in spatial MSMs, which are 
distinguished from other types of MSMs with the capability to simulate virtual 
populations in given geographical areas (Hägerstrand  1985 ; Ballas et al.  2005  ) . In a 
spatial MSM, local contexts can be taken into account when studying the character-
istics of these populations. We often  fi nd certain demographic characteristics persist 
in some areas, but it is dif fi cult to determine the exact cause and model the process. 
Often it is the outcome of multiple elements interacting with each other at the same 
time. Taking into consideration its spatial dimension, the population can be simu-
lated within a local context and picks up on regional characteristics that may be the 
outcome of multiple interwoven factors that cannot be otherwise easily modelled 
together. Location provides a useful proxy variable for the simultaneous operation 
of many variables, such as socio-economic, ethnic, lifestyle and environmental variables, 
without introducing too much theoretical and practical dif fi culty. As long as we 
know the pro fi les of the different locations, we can capture some of the effects of 
demographic change. 

 On the other hand, geography has a vital role in affecting social progress and 
welfare. Given the nature of social systems, it would not be complete without con-
sidering the spatial impact in a policy MSM. When assessing the impact of the 
policy changes on individuals, many studies have identi fi ed that the outcomes do 
vary spatially (Birkin et al.  1996 ; Ballas and Clarke  2001 ; Wu and Hine  2003 ; 
Tanton et al.  2009  ) . Indeed, there is a need to estimate the geographical impacts as 
well as the socio-economic impacts of policies. From a planning/policy point of 
view, “Means are to be employed somewhere” (De Man  1988  ) . Essentially, people 
have to live in a local area, and they are affected by what goes on around them. 
Some studies also believe that social policies can be seen as alternatives to area-based 
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policies, and in some instances, spatial impacts of social policies can even be 
validated through the respective impacts of area-based policy studies. 

 Although area-based policies have a geographical impact by de fi nition, there has 
been very limited analysis of the spatial impacts of policies that were not designed 
to have a geographical impact. They suggest that spatial MSMs can also be used for 
the design of proactive geographically oriented social policies (Ballas et al .   2005  ) . 
Spatial MSMs are concerned with the creation of large-scale datasets estimating the 
attributes of individuals within the study area and are used to analyse policy impacts 
on these micro-units (Birkin et al.  1996  ) . Spatial MSMs therefore have advantages 
over other MSMs in exploration of spatial relationships and analysis of the spatial 
implications of policy scenarios. Another feature of spatial MSMs is that they allow 
data from various sources to be linked and patterns to be explored at different spatial 
scales with re-aggregation or disaggregation of the data. They also allow updating 
and projecting, which is of particular importance in forecasting future patterns 
(Ballas and Clarke  2001 ; Wu et al.  2008  ) . 

 A spatial MSM can be either static or dynamic, but within a dynamic spatial 
MSM, both the characteristics of the individual and the context can change. Moses 
uses a dynamic spatial MSM that simulates the change of populations over time in 
small geographical areas at the intra-urban scale.  

    11.4   Description of Model 

 In this section, we will describe how the dynamic spatial MSM called Moses is 
constructed, including the details about the demographic processes, representation 
of the population within the system and the modelling method. The urban area of 
Leeds, a city with a population of approximately 730,000 (in 2001) in the north of 
England, is used for illustrative purposes throughout this chapter. However, this 
model has been generalised for the whole of the UK. 

    11.4.1   Data 

 The main datasets used in the probability calculation are:

   Census data: Individual Samples of Anonymised Records (ISAR) and Household • 
Samples of Anonymised Records (HSAR) (national level)  
  British Household Panel Survey (BHPS) data (national level)  • 
  Vital statistics (ward level)  • 
  Special Migration Statistics (ward level)  • 
  ONS mid-year estimation (2001–2006) and sub-national projections (2007–2031) • 
(sub-national level)  
  Various tables in population trend (various levels)  • 
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  Various other census tables and life tables (various levels)  • 
  Commissioned tables and bespoke data (various levels)    • 

 The baseline population is produced by a model that synthesises individual 
characteristics on a progressive basis using compound probabilities. The probabili-
ties are calculated using the technique of iterative proportional  fi tting (IPF), as used 
in many other MSMs (Birkin et al.  2006  ) . We already have a distribution of indi-
viduals (within the ISAR) that are not representative of each small area due to the 
sample size. So we need to select from the ISAR in order to de fi ne a subset which 
is more representative of the area. This iterative process can be thought as assigning 
weights of one or zero to each ISAR record until the appropriate record with suit-
able characteristics/attributes is selected (Williamson et al.  1998  ) . ISAR provides 
over 100 individual attributes. 

 HSAR and BHPS data are then used to introduce further variables, such as the 
household and lifestyle attributes (Wu et al.  2008  ) , using the same method. Vital 
statistics is used for ward level birth and death information. Various life tables have 
also been used in the mortality probability calculation. Special Migration Statistics 
have been used for the migration probability calculation. ONS mid-year estimation 
and sub-national projections and various tables in population trend have been used to 
update the population trends. There are also various other census tables, commissioned 
tables and bespoke data that have been used in various processes, for example, age 
at marriage.  

    11.4.2   Demographic Processes 

 Six important demographic processes have been modelled in Moses: ageing, mortality, 
fertility, household formation, health change and migration. Each component of 
change is simulated in separate modules, but individual components can also affect 
each other during the simulation. For instance, household formation will lead to 
migration in many cases. Mortality, fertility and migration are modelled simply 
because they are the three fundamental components of any population change. In 
this study, we also consider that knowledge about ageing, household formation and 
health is useful for public policymaking and demographic planning due to their 
impact on housing, transport, health and other public service provision. Furthermore, 
these processes can lead to changes in other demographic processes. For example, 
household formation has a key in fl uence on fertility, especially when associated 
with a transition to marriage. 

 The demographic processes which are incorporated within Moses are illustrated 
in Fig.  11.1 . Transition probabilities for each of these events are applied at discrete 
1-year intervals. The rate of change for each of the components depends on both 
observed historical trends in the area and on forecast national trends. For more 
information about how these transition probabilities are calculated for each of the 
six demographic processes, see Sect.  11.4.4  below.  
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 This sequence of events could be placed in many different orders. That said, it is 
considered more logical to evaluate fertility following the formation of marriages 
and partnerships. Similarly, mortality is considered early in the process for practical 
reasons since if an individual life course is terminated, subsequent processes can 
then be ignored. 

 Due to the nature of the demographic events, some processes are easier to model 
than others. Processes such as mortality and ageing are straightforward, whilst some 
processes are more complicated and may need to be modelled in multiple stages. 
For example, a migration process will require three stages of modelling to  fi nd out 
the answers for:

   Who to move (based on a probability of moving or staying)  • 
  How to move (based on a probability of household or individual move)  • 
  Where to move (based on a probability of moving to a certain area)    • 

 Different processes can also be interdependent, for example, marriage and migra-
tion processes are often connected, as a change in marital status will frequently 
occur alongside the move to a new home. This modularised design provides great 
 fl exibility in both model development and maintenance, as well as allowing the 
possibility of running the model with different combinations of demographic processes. 
For instance, if only the natural change of the population is of interest, the simulation 
of other processes can be “switched off”, and only the processes of ageing, mortality 
and fertility can be used.  

Population at Year Start

Ageing Process

Probability of death: remove from database

Probability of marriage: update marital status

Probability of birth: generate new individual

Probability of migration: review location flag

Change in health status

Population at Year End

  Fig. 11.1    Processes 
included in the population 
simulation       
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    11.4.3   Representation of the Population in the System 

 The studied population is modelled as individuals in households (including single 
household) or communal establishments (formal care facility, prisons, army, etc.). 
The communal establishment populations are identi fi ed specially, and transitions 
for these people are not modelled. However, the total number is included in the 
baseline population in the initiation of the simulation. Each individual is also allo-
cated to a speci fi c small area within the study area. 

 Another feature of Moses is that it includes not only individuals but also the 
households through which they interact with the rest of the world, through interac-
tions with other people and the environment that they live in. Thus, although the 
studied population is modelled as individuals, there is an interdependency between 
the household, individual and environment. 

 For instance, during the process of marriage, the formation of a new household 
between two individual households will mean changes in at least one individual’s 
location. If it involves two households, this will result in changes in both households 
if one is going to join another in an existing household or even create a third house-
hold, and changes in both old households if both move out of existing households. 
The areas that they were/are going to live in will experience both local housing 
changes and local population changes. Similar changes will be experienced from 
any migration process. Due to this interdependency, the operation of these demo-
graphic processes of individuals also leads to the formation and dissolution of 
households during the simulation process.  

    11.4.4   Modelling Method 

 Moses dynamically simulates individual changes through the application of transi-
tion probabilities for each of the six discrete events at 1-year intervals. For instance, 
assume we start with a population of entities, set  P , made up of individuals [ P  1 ,  P  2 , 
…  P   n  ] where  n  is the number of individuals in the population sample. Each indi-
vidual has a set of attributes, [    

1
ta   ,     2

ta   , …    t
ma   ], which describe the individual at the 

time  t . We therefore have an     ×n m   array of person attributes. This array is populated 
with a synthetic population recreated from the census samples (for more details of 
the population recreation, see Birkin et al.  2006  ) . 

 Then we update the population by applying transition probabilities to individual 
attributes for each simulation step so that the baseline population [    

1 2

1

...t t t
ma a a

P   ,    
1 2

2

...t t t
ma a a

P   ,

…    
1 2 ...t t t

m

n

a a a
P   ] changes to new sets with attributes/states at a point in time  t + 1, t + 2, …  

and so on. Each end population for a given year then becomes the start population 
for the next simulation year. Therefore, the impacts of previous changes have been 
taken into account for the next year’s simulation. 

 Transition probabilities for each of the six demographic processes are strongly 
in fl uenced by both age and sex (Rowland  2003  ) . They also vary by geographical 
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area as a result of the differences in social, economic and environmental pro fi le of 
area populations. Therefore, the location of individuals can provide the environ-
mental context as well as provide some impact from other relevant factors that are 
not modelled speci fi cally in this model. Accordingly, the Moses model assumes that 
all the demographic processes modelled are the functions of age, gender (except the 
fertility process where only women are concerned) and location. Therefore, a 
change/an event occurs to an individual in a demographic process if

     2 1Ran(0,1) ( , , , ),P k a s l k≤
   (11.1)  

where Ran is a random number between 0 and 1,  a  is the age,  s  is the sex and  l  is 
the location of the individual and     2 1( , , , )P k a s l k   is the probability of the event 
occurrence for an individual of age  a , sex  s  at location  l  with current characteristic 
of  k  

1
  to change to a characteristic  k  

2
 . For instance, in mortality,  k  

1
  might be “alive”, and 

 k  
2
 will be “dead”; in fertility,  k  

1
  might be “no child born alive during the year”, 

and  k  
2
  will be “child(ren) born alive during the year”. 

 Transition probabilities for each of the events within the six demographic pro-
cesses are applied at discrete 1-year intervals. According to the nature of speci fi c 
demographic process, a slight variance has to be introduced in calculating the prob-
abilities. For instance, due to the nature of the fertility process, it only considers 
women at risk by age, marital status and locations. 

 In the attempt to capture the local context, we tried to calculate localised transi-
tion probabilities for two of the six demographic changes, whilst other processes 
used more aggregated probabilities for the whole of England. A method has been 
developed to localise the probabilities for mortality and fertility processes to the 
ward level using selected national, sub-national and ward-based datasets on the 
basis of the method explained by Rees et al.  (  2004  ) . In the mortality process, tran-
sitional probabilities for individuals in each of 33 Leeds wards have been calculated 
using all three levels of data, considering both sexes and 101 single-year age bands 
(from 0 to 100+ years). For this single urban area, there are 6,666 mortality proba-
bilities in total (this is calculated as 101 age bands; for both sexes, 2 × 101 = 202; for 
33 wards in Leeds, 33 × 202 = 6,666). 

 For example, the survival probability for the Leeds population in 2001 takes the 
form shown in Table  11.2 , which summarises the 6,666 different transitional prob-
abilities for the mortality process (the survival probabilities, which are the opposite 
of mortality probabilities in the mortality process, are used in our model as only the 
survivors will remain in the rest of the simulation). Similarly, the fertility probabili-
ties are based on single year of age and the marital status of the mothers. This pro-
duces 2,112 localised probabilities (age under 15–45+, 32 age bands; for marital 
status of single or married, 2 × 32 = 64; 33 wards in Leeds, 64 × 33 = 2,112).  

 Monte Carlo simulation is used as the main simulation method. The reason it was 
used was because it is useful when it is infeasible or impossible to compute an exact 
result with a deterministic algorithm. The Monte Carlo method converts uncertainties 
about the relationship between input variables and output variables of a model into 
conditional probabilities. By combining the distributions and randomly selecting 
values from them, it recalculates the simulated model repeatedly and brings out the 
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probability of the output. Therefore, each determination of whether a transition/
event happens or not requires a new random number and a corresponding transi-
tional probability for a person with certain attributes in that year. All probabilities 
are updated annually by applying weights based on the trend revealed in relevant 
ONS projections, and any change in any factor will result in the change of the prob-
ability and in turn the simulation process and result. The general microsimulation 
process used in every demographic transition in Moses uses the Monte Carlo method 
which is illustrated in Fig.  11.2 .   

    11.4.5   Validation 

 Dynamic spatial MSM is hard to validate, due to the level of detail modelled in such 
MSMs. Often there are no appropriate microdata available that can be used to validate 
such details. However, the individual-based results can be easily re-aggregated to any 
spatial level to compare with other aggregated projections. In recent years, the ability 
to align the micro output to benchmark macro estimates has emerged as a crucial 
component of many MSMs, as alignment can help capture the macroscopic impact in 
microsimulation aggregate results and provide an indicator of the aggregate perfor-
mance of the model (Rephann  2001  ) . Typically this is achieved through adjusting the 

Update household status

Update person status

noEvent Process

Event occurrence?
(Monte Carlo simulation)

yes

Candidate enters simulation

Next event ?
yes

no

Update area status

  Fig. 11.2    General simulation 
method       
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results from a model to re fl ect new individual outcomes, totals and  fl ows (O’Donoghue 
 2001 ; Anderson  1997  ) . Moses uses a naively disaggregation model to align to the UK 
of fi cial projections for Leeds, produced by the ONS model. 

 The aggregate probabilities used in the ONS model are naively distributed to the 
small areas and simulated under the same assumptions and trend information as 
revealed in ONS projections. The alignment results are then aggregated to the level 
of Leeds to  fi nd out if the dynamic spatial MSM can produce results that are consistent 
with the ONS projections. Although the in fl uence of spatial variances is still visible 
in the aligned results, especially in fertility and mortality, those results indicate 
consistent patterns as the of fi cial projection in the total population, as well as in all 
components of change. Results of 3 years, 2002, 2007 and 2031, are presented in 
Table  11.3  to provide information on the alignment results at the start, middle and 
end of the simulation.    

    11.5   Model Result Analyses 

 The population are simulated through the six demographic processes from 2001 to 
2031, and analyses have then been conducted on the simulated results. The main 
 fi ndings from the analyses are discussed in this section. As described before, the 
local authority (LA) area of Leeds is used for illustrative purposes. The results will 
be discussed at both the aggregate level of LA and the disaggregated level of wards. 
Results are also analysed by demographic changes to provide an insight of the 
components of changes. 

    11.5.1   Population Patterns at the Level of Local Authority Area 

 Using dynamic MSM, the Moses model can provide projections of an individual-
based local population with dynamic changes that truly re fl ect the demographic 
changes in a way that they would happen in the real world. In Moses, the populations 

   Table 11.3    Result alignment analysis   

 Model  ONS  Moses 

 Year  2002  2007  2031  2002  2007  2031 
 Total population  720,000  759,400  974,300  729,101  770,290  988,151 
 Natural change  1,000  3,000  5,500  403  3,929  1,506 
 Births  8,000  9,500  11,700  8,046  10,429  10,505 
 Deaths  7,000  6,400  6,200  7,643  6,500  8,999 
 Net migration  3,500  8,100  2,400  3,336  8,433  2,430 
 Internal in  28,000  30,500  30,500  28,354  30,939  30,932 
 Internal out  29,700  31,100  36,500  30,076  31,546  37,019 
 Immigration  9,800  13,500  16,500  9,925  13,696  16,733 
 Emigration  4,600  4,800  8,100  4,867  4,656  8,216 

   Note : For details of ONS data source, see Sect.  11.4.1   
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are also simulated within small areas of wards, and the spatial variances in these 
small areas can be captured. This feature enables us to study the population with a 
local context. Such simulated results with a local context can then be summed to 
higher levels of aggregation to facilitate various study requirements. On a more 
aggregated spatial scale, they are particularly useful in providing indications of various 
population trends to facilitate strategic decisions or to explore different scenarios. 
In the following section, we will provide examples from three different aspects of 
the population changes at the LA level of Leeds. We then discuss the potential 
demographic planning applications of Moses through different uses of the simula-
tion results at the LA level. 

    11.5.1.1   Age–Sex Structure of the Population at the Level 
of Local Authority Area 

 Age and sex are the fundamental factors for population changes. Analysis of the age 
composition of populations is essential in demographic studies. The intensity of 
each of the demographic processes varies signi fi cantly by age but in different ways. 
At the aggregate level, demographers are interested in the age compositions of pop-
ulations and the ages when people engage in certain behaviours. Due to biological 
factors, behaviour and well-being differences, males and females demonstrate con-
siderable variance in their behaviours even when they are at the same age. In fact, 
the age–sex composition is so important to the nature and functioning of societies 
that all traditional population models are based on it (Rowland  2003  ) . The population 
pyramid is a popular graphical device which can be used to illustrate populations’ 
age–sex structures. In a population pyramid, the numbers/percentages of males and 
females in each age group are represented in the graph. As Moses outputs records 
of individuals with a rich set of attributes, population pyramids can be easily generated. 
Using the outputs each year, the changes of the age–sex structures in the study area 
can then be analysed over time. 

 At the local authority (LA) level of Leeds, population pyramids have been 
produced to illustrate the age–sex distribution of the Leeds population in 2001 and 
2030 to demonstrate the population changes over time (Fig.  11.3 ). The darker shade 
represents the age–sex distribution in the year 2001, and the lighter shade represents 
the age–sex distribution in the year 2030. Here, we can clearly see how the Leeds 
population evolves over 30 years. The age–sex structure indicates a steady growth 
of the Leeds population. The largest growth has been seen in the age bands between 
ages 20 and 69, especially around the 40- and 50-year age groups. However, we also 
see a substantial increase in the ages 80–100+. The proportion of the population 
over 80 has almost quadrupled from 2001 to 2030. This indicates that ageing is an 
important trend in the Leeds population. The age–sex structure also indicates that 
there are more women in the age range 80–89, but the difference gradually reduces 
in the more elderly cohorts.  

 Using annual results from Moses, the trend of the population changes year by 
year can be monitored. Through observing the evolution in age–sex structures over 
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time, various demographic trends can be revealed. Such  fi ndings can then provide 
the groundwork for strategic demographic planning. For instance, the trends revealed 
from such analysis can be used to assist the development of early interventions. 
Different scenarios can be developed to explore the “what-if” situations. Such infor-
mation can then be used to assess the impact of such demographic changes on various 
public plannings. For instance, it can be used to assess the requirement for public 
services provision, such as planning for public health services and transport services 
for an ageing society.  

    11.5.1.2   Sub-population Patterns at the Level of Local Authority Area 

 Moses can provide useful information on the Leeds population to facilitate strategic 
demographic planning in the area. However, sometimes we need to look further into 
patterns in different sub-populations to fully comprehend the changes in the whole 
population. For instance, the university student population has an important impact 
on the population structure of Leeds. Due to its central geographical location in the 
UK and its reputation for university education, Leeds has been attracting a large 
number of students to study in the local universities. However, students have a dis-
tinctive migration pattern. University students are highly mobile during their study. 
The  fi rst year students tend to stay in university accommodation. Later when they 
are more familiar with the area, they move out and  fi nd privately rented accommo-
dation, often in the same areas that their fellow students would stay. They also move 
more frequently than other residents in the area, due to renting contracts and the 
annual summer break. However, the majority of them tend to stay in areas that are 

  Fig. 11.3    The age–sex structure projections of Leeds population in 2001 and 2030       
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close to the universities where they study, which are usually in the centre of the city. 
Most of them will leave the area when they  fi nish their study, for example, to take 
up employment elsewhere. Because of such features, student migration is an impor-
tant component of Leeds migration, and we cannot understand migration in Leeds 
properly without looking into the details of this sub-population. 

 Moses allows us to focus on the student sub-population by using relevant 
characteristics (e.g. age and full-time student status) to identify students. Here, we 
present the projected university student population distribution in Leeds in years 
2001 and 2030 in Fig.  11.4 . The depth of the colour in the map indicates the density 
of the student population within the area (darker areas equate to more students). 
As we can clearly see, most of the university students in Leeds live in the city centre 
close to the universities. However, the two maps suggest that the students seem to 
move out of the areas in the northwest and south of the city and move into adjacent 
areas that are closer to the city. Thus, there is an indication in the map for 2030 that 
students will move closer to the city centre and that there will be a much more 
concentrated student population in the centre area.  

 Such  fi ndings are useful in understanding the impact of student migration on 
local migration. Similar analyses can be carried out on any sub-populations, and such 
studies help us understand the local population trends where such sub-populations 
have a signi fi cant impact. In turn, they provide a better groundwork for various 
demographic planning processes. The student migration patterns can be further 
explored in different scenarios to assess the impact on the Leeds population in 
“what-if” situations, for example, what changes will be brought to the population 
structure change in year 2030 if there is a dramatic increase in the number of student 
migrants into Leeds from 2010?  

    11.5.1.3   Demographic Changes at the Level of Local Authority Area 

 Changes in individual demographic processes also play an important role in under-
standing changes in the whole population. Moses can provide this information 
through the output of simulated population results by individual demographic 

  Fig. 11.4    Student population projections in 2001 and 2030       
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processes. Such results are individual based and can be easily aggregated for various 
planning interests. As mortality is one of the most important components of change 
in a population, Fig.  11.5  provides the map of the mortality distribution of Leeds in 
years 2001 and 2030 to compare the changes in Leeds mortality over time.  

 In the maps, we can see that overall, the mortality analysis indicates that there 
may be some improvement over the years. A couple of suburban areas in the north 
and south seem to experience a particularly good reduction of deaths in the area. 
However, certain areas seem to experience a higher mortality than in 2001. This 
may indicate that there is an elderly or ageing population whose overall impact 
offsets mortality improvement over the years. Overall, the projection map indicates 
that the north of the city has seen more improvement in mortality than the south and 
the mortality remains high in city centre area. This may suggest the impact of migration, 
as the northern areas of the city are more established suburban areas which attract 
the healthiest or more af fl uent migrants, whereas migrants seeking work and from 
ethnic minority groups, perhaps with lower life expectancies, tend to move into the 
south and the centre areas of the city (Fig.  11.5 ). Such changes in mortality have an 
important impact on the population structures. Similar analyses can be conducted 
on any demographic process, and such analyses on the LA level can provide vital 
information for strategic planning of the city.   

    11.5.2   Results: Analysis at Small Area Level of Wards 

 The aggregated results of the microsimulation model are useful in facilitating strategic 
planning or policymaking. However, at an operational level, local context plays an 
indispensible role in area-based intervention measures. Therefore, this chapter also 
assesses the Moses results by small areas to explore the spatial differences. 
Cookridge and Headingley are the two wards that have been selected as examples to 
demonstrate the spatial variance in small areas of Leeds. They are selected because 
of their distinctive local characteristics. Cookridge is an established suburban area in 

  Fig. 11.5    Mortality projections of Leeds in 2001 and 2030 generated by Moses       
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the north of Leeds, whilst Headingley is an area close to the city centre, where many 
university students and young professionals live. 

 In the following section, we will assess the spatial variance in the local popula-
tions in the two wards through analyses of the age–sex structure, sub-population 
patterns and demographic changes.  

    11.5.3   Age–Sex Structure of the Populations 
at the Small Area Level 

 The simulation results over 30 years for all 33 wards of Leeds have been analysed, 
and a substantial difference is revealed between the small area projections of 
Cookridge and Headingley. In Fig.  11.6 , the population changes over time in the 
two wards have been presented in population pyramids. As before, the darker 
shade represents results in year 2001, and the lighter shade represents results in 
year 2030.  

 From Fig.  11.6 , we can clearly see the different population characteristics in 
small areas. Headingley is an area where many students live during their university 
studies. Students tend to leave the area upon the completion of their studies, and 
new students move into the area. Due to the replenishment of the student population, 
the population in Headingley stays younger than the rest of the Leeds population. 
There are more young people, especially aged 20–29, in Headingley than in any 
other small areas. In contrast, Cookridge is a more established suburban area where 
the local population ages more obviously than Headingley. There is a substantial 
increase in population aged 90+ in Cookridge. Headingley also sees changes in this 
age group in 2030, but these are much less obvious than Cookridge. Those aged 
20–29 stay as the largest group of the local population, although there has been a 
substantial increase in the number aged 30–60 in 2030. The population in Headingley 
also grows much faster than that in Cookridge. 

  Fig. 11.6    The age–sex structure of ward population: Cookridge and Headingley in 2001 and 
2030       
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 From the age pyramids for these small areas illustrated in Fig.  11.6 , we can 
clearly see that characteristics of the local population evolve differently in small 
areas. The replenishment of the students and a younger composition of the popula-
tion allow the Headingley population to stay younger and keep growing. From the 
projections in 2030, we can see a larger cohort of older people in the small area 
populations such as Cookridge than in areas such as Headingley. Such information 
is very important for both demographic and public planning. For instance, it will 
assist the planning of the health service provision in areas such as Cookridge which 
are experiencing an increase in the number of older people. 

    11.5.3.1   Sub-populations at the Small Area Level 

    As described in Sect.  11.5.1.2 , analyses of sub-populations are useful for under-
standing the changes on the whole studied population and for providing the ground-
work for strategic planning. The analysis of the migration patterns of university 
students in Leeds using the simulation results has demonstrated the usefulness of 
the analysis of simulation results of this sub-population. 

 Such  fi ndings can be useful to understand the impact of student migration on 
the local migration, not only in the city of Leeds as a whole but also in small areas. 
In fact, it may be the most important change in some small areas where student 
migration is high. Therefore, such analysis can provide important insights for under-
standing the local population trends. Such insights can then allow planners to develop 
location-based plans or policies in order to appropriately support different areas. 

 The patterns revealed in the maps in Fig.  11.4  can be used for other planning 
purposes as well. For instance, such information can be used to assist the planning 
of student housing and even policing (e.g. to pinpoint the hot spots for antisocial 
behaviour fuelled by alcohol consumption during the weekend and burglaries related 
to student accommodation during university holiday time). Moses can provide 
information on sub-populations in each small area to meet the need of such area-
based investigations and planning.  

    11.5.3.2   Demographic Changes at the Small Area Level 

 Compared to other types of demographic models, Moses can also provide information 
about the spatial variances in different demographic processes. Headingley and 
Cookridge have again been used here for demonstration purpose. As previously 
described, the two local populations have considerable differences. 

 In this section, we will look into the differences in mortality between these small 
areas using the results from Moses. The simulation results from the mortality module 
are shown in Fig.  11.7 . The initial results suggest that Headingley may have a lower 
mortality rate than Cookridge in 2001, except for the over 100 age group (this may 
be caused by the small number of people in the age band of 100+, e.g. when there is 
only one person aged 100+ in the area, his/her death will lead to a 100% mortality 
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for this age band). However, the mortality rates then escalate in Headingley, and 
they are substantially higher than in Cookridge in 2030, especially for older ages 
(90+ and 100+). This may indicate that Cookridge experiences more improvement 
in mortality than Headingley. However, for the very old age groups, there are fewer 
older people aged 90+ in Headingley, and a single death can lead to substantially 
higher mortality rates for this age band (Fig.  11.7 ).  

 Such analysis reveals the change in the demographic processes in small areas 
which underlie the population structure changes. These patterns will in turn lead to 
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  Fig. 11.7    Projections of mortality in small areas: 2001 and 2030       
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changes at the more aggregate level. Moses enables us to understand the aggregate 
population changes from the underlying small area differences in each demographic 
process. Such understanding can play an important role in demographic planning or 
other relevant strategic decision making.    

    11.6   Conclusions 

 The Moses dynamic spatial MSM provides the characteristics of the studied population 
for individuals through a truly dynamic ageing process. A rich set of attributes can 
be updated through the evolution of demographic changes and interactions of 
the demographic processes. Individuals are modelled within small areas (wards) to 
re fl ect the local context. At each simulation step, attributes of each individual are 
updated through Monte Carlo simulations using transitional probabilities that 
are calculated using relevant demographic and spatial information in an attempt 
to capture their demographic characteristics and local area characteristics. Such 
changes are then built into the baseline population for the next simulation step. 
As all changes are dynamically simulated each year and driven by multi-criteria-based 
probabilities, including local area factors, the overall results present a much more 
robust representation of the studied population compared to static models or to 
aggregate models that overlook the spatial variance. 

 The dynamic spatial MSM features enable Moses to produce better projections 
of changes in the baseline population. Moses also allows exploration and analysis of 
various scenarios on the population by area, sub-population or demographic process. 
Using Leeds as an example, Moses has demonstrated its strength in providing a 
better representation of a studied population and provides an assessment of multiple 
scenarios for different planning applications or social futures. For example, in current 
work, the effects of an “epidemic” in obesity on health status and life expectancy are 
under exploration. Deteriorating personal health through obesity could easily mitigate 
or even reverse the improvements in life expectancy and demographic expansion, 
which have been illustrated elsewhere in this chapter. Equally, speci fi c local policies, 
especially relating to transport and housing, will in fl uence local patterns of growth 
and structural change in the population (see, e.g. Birkin et al.  2010  ) . 

 At the aggregate level of Leeds, the results from Moses can demonstrate the 
trends in population year by year. For more details, we can even trace various char-
acteristics of sub-populations or even individual demographic processes over a long 
period of time. This will not only help in understanding the underlying changes as 
a population and community evolves but also provides useful insights for strategic 
decision making. At the small area level of wards, it is found that characteristics of 
the local population changes differently. The small area analysis con fi rmed that 
population evolution does vary at a  fi ne spatial scale. Moses allows us to study the 
spatial variance in age–sex structures and in sub-population characteristics, as well 
as in different demographic processes. Such disaggregated dynamic changes in the 
studied population provide useful insights into understanding population patterns at 
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a more aggregated spatial level. At the same time, such disaggregated explorations 
provide valuable information for tactical decisions and location-based studies and 
policies. 

 As a demographic planning tool, Moses can monitor the evolution of population 
structures and various demographic changes at a  fi ne geographic scale. This provides 
vital information for demographic planning/policymaking (especially location-
based policies). Moses can also bene fi t other public policymaking or public service 
planning. For instance, the ageing trends in certain suburban areas may promote 
changes in health service and public transport service provision in order to enable 
easy access to such services for the old and frail in the area. The attributes captured 
in the system are also very useful for different policy analyses and research. 

 The Moses model has provided a framework to enable the effective modelling of 
heterogeneous decision-making units on a large scale. The model itself provides a 
useful tool in assisting decision making, exploring various “what-if” situations and 
testing different hypotheses. This modelling approach demonstrates great potential 
in demographic modelling, and we envisage that further work will show its utility 
across a wide variety of social science domains and policy applications.      
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    12.1   Background 

 When looking back on about 30 years of model design for dynamic microsimulation, 
spatial microsimulation, and agent-based microsimulation, it is obvious that the 
software platform is not stable. The dream of using generic modeling packages, 
or at least generic software packages, instead of programming each application 
model from the ground up has not yet materialized as a generally available alternative, 
despite the calls from practitioners for greater cooperation in the construction of 
such expensive models (e.g., Harding  2007  ) . For special classes of applications and 
for models with not too many object instances, promising efforts have emerged like 
the ModGen toolset from Statistics Canada  ( Statistics Canada, no date )  and all the 
R-based simulation tools contained in the UrbanSim open-source project (Waddell 
and Ulfarsson  2004  ) , just to mention two examples out of several development 
efforts. Most current applied dynamic microsimulation models so far, however, like 
the MOSART model in Norway (Fredriksen et al.  2011  ) , the Australian APPSIM 
model (Bacon and Pennec  2007 ; Harding et al.  2010  ) , and the Swedish SESIM 
model (Brouwers et al.  2011  )  are hard-coded for a speci fi c national dataset and 
application range, as were the original Dynasim and .CORSIM models (Caldwell 
and Morrison  2000  ) . Several observers have highlighted the problems when it 
comes to effective sharing of knowledge and development efforts, one late effort 
being the creation of EURODYN, the European network for dynamic microsimulation 
(Dekkers and Zaidi  2011  ) . 

 Of course, this problem has caused an enormous amount of extra work for those who 
develop microsimulation models. Many quite useful and theoretically interesting models 
do not survive because of the development effort required. If the microsimulation 
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community is going to continue and thrive, then we have to invent some clever 
methods to save mental resources. 

 The purpose of this chapter is to respond to this need by promoting design principles 
that have gradually emerged from our long-standing efforts to create agent-based 
dynamic microsimulation models in Sweden. In order to enable a judgment on 
the relevance of our speci fi c experiences, a short story of our different models is 
presented below. 

 Based on Torsten Hägerstrands time geography (Hägerstrand  1970,   1991  ) , one 
early model containing much of the intellectual content of later models was the 
“HÖMSKE” model developed as an application demonstrating an extension of time 
geography into a time geographic theory of action (Holm et al.  1989  ) .    That model 
contained individuals in families giving birth, dying, moving, getting educated, 
working, etc. The model contained 1,000 synthetically created individuals, the practical 
maximum for the computers of those times (a DEC-10 mainframe). 

 The next step was to access an early version our huge longitudinal individual 
database (ASTRID), now containing several generations of all Swedes with more 
than a hundred annually updated socioeconomic attributes, including place of living 
and working with 100 m of spatial resolution. This meant that there was no longer 
a need for a synthetic population to start a model with, and we could now estimate 
behavioral equations on a complete set of longitudinal individual data including 
individualized subsets of attributes of other persons and workplaces surrounding 
each person (e.g., the number of people with the same profession within a 50-km 
radius). The quest to model all Swedes individually soon emerged, in order to grasp 
the potential of the database. The network of relatives (based on mother and father 
pointers) is useless in a sample. A 10% random sample does not contain the moth-
ers of 90% of the children. In addition, the distribution of many attributes and 
resources in the context of the sampled population rapidly becomes distorted if the 
information for an individual does not contain all object instances – however rare 
their attributes are. 

 However, this huge dataset and potential for modeling the whole population also 
created signi fi cant problems. In particular, the modeling needed to provide a represen-
tation of all individuals in the population on a not too specialized workstation. This 
effort resulted in a series of models jointly named the “SVERIGE” models (Holm et al. 
 1996,   2002,   2007 ; Clarke and Holm  1987 ; Holm and Sanders  2007  ) . Speci fi c applica-
tions include assessments of local and regional effects of nuclear waste disposal 
(Berner et al.  2011 ; Holm et al.  2008  ) , plant shutdown (Rephann et al.  2005  ) , immigra-
tion (Rephann and Holm  2004  ) , diffusion of sick leave (Holm and Öberg  2004 ; 
Holm et al.  2004a       ) , modeling pandemics (Holm and Timpka  2007  ) , labor supply 
(Holm et al.  2004  b  ) , and the aging population (Strömgren and Holm  2004  ) . 

 Dynamic microsimulation models invariably contain localized individuals and 
often interaction between individuals within and outside the family, and interaction 
between individuals and  fi rms and schools, similar to the ambition of agent-based 
simulation as reported in Boman and Holm  (  2004  )  and Holm and Sanders  (  2007  ) . 
A few models applied in countries outside Sweden further the techniques for creating 
synthetic populations from aggregate data and surveys while otherwise conforming 
to the SVERIGE tradition (Strömgren and Holm  2010 ; Aschan-Leygonie et al.  1999  ) . 
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Other applications include the development of a “twin”-based model applied to 
exploring the development of the balance between local supply and demand for 
elderly care, a regional population projection system (ACPOP), and a model for 
assessment of the endogenous growth impact of infrastructure investments 
(“InfraSim”).  

    12.2   The Wish List 

 There are a number of aims that we want to achieve when developing a spatial 
microsimulation model. These include:

   Using the most modern software  • 
  Using standard methods, shared by many users  • 
  Backward compatibility (so keeping our old models and subsystems running)  • 
  Avoiding relearning  • 
  Developing solutions that are theoretically well designed  • 
  Transferring knowledge and know-how to new colleagues    • 

 Achieving all these aims fully in one model is going to be very dif fi cult, as some 
of them could be taken as contradictory. For example, we want to use the most modern 
software, but we also want backward compatibility. When looking at the whole model, 
we can see three levels of components involved in the model building process:

    1.    The internal logic of the model (the kernel)  
    2.    The input-output system and other general tools used in the model (the tools)  
    3.    The surface of the model (the user interface and presentation of results)     

 At the extreme ends, the choice is simple: if you have found a useful and stable 
programming environment, keep using it. This advice applies at least for the kernel 
but also for the tools. While new and useful methods have been emerging using 
other environments, the cost of moving to a new environment can be signi fi cant in 
terms of programmer training in the new environment. Most end users also want to 
use the interface design of the current generation of software, particularly if there is 
menu-driven interaction with the program. 

 Most of the remarks below are connected to the tool level. We argue that the 
kernel and the tools should be kept apart but still kept in the same stable program-
ming environment. These two together, which we refer to as the  application program , 
should be strictly independent of the surface level – the user interface. That is not to say 
that the user interface has to remain the same for different application programs – 
typically, it is as easy to construct a tailor-made user interface in a certain application 
as it is to do it in Excel. 

 To design a generic package that enables model building without programming is 
desirable but so far unrealistic. It might be possible, but the risk is that it would end 
up as a new language that is far more technically complicated than the one that was 
being avoided. Instead, the model design can be constructed at a number of levels:
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   Identify the fundamental functionality needed.  • 
  Separate clearly the kernel of the model from the rest of the model, which will • 
be either parameters for controlling the model experiments, code for handling 
the simulated objects, or output which enables the user to analyze the outcome of 
the experiments.  
  Only elaborate the kernel and the user interface in detail as parts of the simulation • 
program. These are the parts that are most speci fi c to each application.  
  The rest of the model (the tools) should be able to be shared between many models.     • 

    12.3   Quasi-Independent Subsystems 

 The choice of design principles and other functionality will be discussed under the 
following headings:

   Parameter input  • 
  Matrix input  • 
  Equation evaluator  • 
  Result aggregation  • 
  Biography aggregation  • 
  Memory allocation  • 
  Random number generation and use  • 
  Handling of sets  • 
  Random choice between many alternatives  • 
  Primary and secondary attributes  • 
  Parallel execution  • 
  Twins or equations    • 

 In the models developed by us over the last 20 years, all of these subsystems have 
been part of the process. In a few cases, something that is close to a generic package 
has been emerging, i.e., a module that can be utilized as a ready-made component 
in later models. More typical has been the copying and modifying of code from one 
model to another, sometimes simplifying it, sometimes adding features required for 
the new application. Therefore, we have not presented these subsystems as existing 
packages or modules. Instead, we are content to contribute some methodological 
remarks concerning each of the points above. 

    12.3.1   Parameter Input 

 Parameters in this case signi fi es single values, either describing the world simu-
lated, the experiment done, or references (e.g.,  fi le names) to more elaborate data. 
We recommend that this is kept very simple: just a text  fi le with pairs (parameter 
name:parameter value). Of course, a more elaborate user interface is an advantage, 
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but we prefer to keep this outside the application, and then it can take many different 
forms in the interface, so values can be provided by menu choices to support updates, 
and error checks can be used to avoid illegal values. 

 All of this can be designed very ambitiously if a model is used heavily and less 
ambitiously when it is used once or twice and then forgotten, but it is not part of the 
application. In order to get started with the most dif fi cult parts of the modeling, it is 
better to start out with very simple parameter handling that can be copied from earlier 
models and then modi fi ed. 

    12.3.1.1   Matrix Input 

 Often, there are some fundamental data that occur in many models, typically two-
dimensional tables (e.g., age and sex), or just one column of numbers or names. 
Input of these matrices can often be done by a standard procedure common to many 
models.   

    12.3.2   Equation Evaluator 

 It is convenient and relatively straightforward to implement behavioral equations so 
that they can be changed without recoding instead of being directly hard-coded, 
computing an expression like the following:

     = + + +…0 1 1 2 2* * *i iV p p v p v p v    

where the  p  
 i 
  are estimated parameters and the  v  

 i 
  are values. Some of them are attributes 

of the simulated objects or other values dynamically calculated in the model. The 
 fi nal calculation is nearly always simple and can often be done by calling a general 
function. The parameters are then inputted from an external table, which is simple 
to do. The values are a bit more dif fi cult: sometimes they are simply attributes of the 
simulated object and sometimes results of rather elaborate calculations based on 
these attributes and other state variables in the model. Most of this can be de fi ned in a 
common top-level case statement where each case corresponds to one of the variables. 
Usually, we call this procedure  eval  and there is one eval function for each kind of 
simulated object.  

    12.3.3   Result Aggregation 

 There are two fundamental output streams from a microsimulation model:

    1.    The yearly object (population,  fi rms, regions, etc.) status  
    2.    The stream of events     
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 These streams of events must be monitored through a set of well-designed functions 
that are called at the end of the year and whenever an event (a change of an attribute 
for a person or family) occurs. These procedures should produce aggregate informa-
tion of a general multidimensional kind and also micro-data in a compact form. 
Any other ad hoc printing of output should be avoided. Ideally, the application will 
construct a set of standard tables from the aggregate data and print them on a set of 
standard  fi les in a form that makes them directly suitable for post-processing and 
analysis work after the simulation. It is usually not suf fi cient to restrict this output 
to the most basic kind of log  fi les at the microlevel. This will only add additional 
workload and delay for the user.  

    12.3.4   Biography Aggregation 

 A useful tool for debugging is biographies. A biography is all the historical data 
associated with a person in a microsimulation model. To be informative enough, 
biographies must be able to track a substantial part of the context of each event 
(e.g., for a birth, not only the id of the mother but also other attributes, also information 
on the father, the region of birth, etc.). The log  fi les for biographical information 
will be very large and will have to be in a compact binary form (if not constrained 
to a chosen subset of the object instances), but still contain a lot of information to 
capture the context of each event.  

    12.3.5   Memory Allocation 

 For smaller samples (a few hundred thousand persons), it is possible to store all 
persons as individual objects in an object-oriented program like C++ and keep them 
in primary storage. 

 It is also possible to keep all the families in primary storage as class objects 
linked together in a linked list. Within each family, the members are also built as 
class objects and linked together in a list. This imposes an enormous overhead, 
considering that the memory allocation mechanism in C and C++ will use about 15 
bytes extra for each item stored. There is also a large overhead in computing time to 
maintain these structures. However, it is not necessary to allocate all objects by 
individual calls to the C++ new function. Instead, a large buffer can be allocated by 
one call in the program, and then the persons in the sample should be allocated as 
objects through pointers into this buffer. This will save a lot of storage and also 
processing time. 

 When the number of objects reaches the level of millions, then another approach 
must be taken. They can still be kept in primary storage, but now they must be com-
pacted as well. The internal program logic will then be similar to an old-fashioned 



20112 Design Principles for Micro Models

data processing program where one family at a time is read from a  fi le, and another 
 fi le with the updated families is written. When reading the family, it is expanded to 
the normal problem-oriented class objects. And at the end of the year, the output  fi le 
is closed and reopened as the input  fi le for the next year. 

 So the processing is similar to reading and writing compressed or encrypted  fi les, 
unpacking them one family at a time. However, the  fi les are kept in primary storage, 
and there is one important reason for this apart from the processing speed for reading 
and writing on disk as compared to moving data from buffers. The reason is that it 
must sometimes (e.g., for the matching algorithms) be possible to reach any other 
person in the population while treating another person. This is solved by saving 
pointers to the starting points of the family and the relative number within the family 
for the person. 

 In the simplest kind of model, there is only one kind of person object. But within 
the engine that drives the scanning of the buffers, reducing the number of types of 
people can be used to save space. As an example, if we de fi ne people of three kinds: 
children, active adults, and passive pensioners. Only active adults will need a com-
plete storage of all attributes. For the others, it is enough to set a  fl ag that will cause 
a number of standard values to be assigned to certain attributes. Stored in this way, 
nearly 8.6 million persons – with about 50 attributes each – can be  fi tted into a buffer 
of about 340 Mb. 

 While constructing another model (InfraSim) with only about 15 attributes per 
person, an explicit comparison was made between directly using a conventional 
object representation of each of the nine million persons in Sweden and using a 
vector with 15 million (to cover expected population increase) elements indexed by 
person id for each of the 15 attributes. The object representation required close to 
20 Gb of core memory. The vector representation  fi tted within 300 Mb, showing 
that signi fi cant increase in ef fi ciencies can be gained using a vector representation.  

    12.3.6   Random Number Generation and Use 

 Very simple and ef fi cient algorithms can be used to produce pseudorandom numbers. 
This section recommends some criteria for evaluating these algorithms:

    • Degree of distribution . Usually, if one million numbers between zero and one are 
drawn, they will have a continuous uniform distribution. However, intervals near 
0 and 1 may need to be checked closely to ensure a continuous uniform 
distribution.  
  Check for autocorrelation between one number drawn and the next few. Ideally, • 
this correlation should be very low, but there are algorithms where this correla-
tion is high. Such algorithms may still work  fi ne in many models as long as the 
continuous uniform distribution is maintained, but in some cases, they might 
cause very biased results. One example is when very small numbers tend to be 
followed by other small numbers. This might result in events with low probabilities 
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occurring more frequently than expected because they occur concurrently due to 
the autocorrelation.  
  In many cases, these algorithms repeat an identical sequence after a speci fi c • 
number of draws. This is OK, but the number of draws used should not be too 
short.  
  The inbuilt random number generator of some development environments some-• 
times deteriorates if used too many times with the same start seed. One remedy 
is to create a new random variable at certain points in time and execution.  
  In some cases, simulations can be biased due to the order that the objects are • 
processed in. Usually, the objects are stored in a speci fi c order, and this order is 
kept from 1 year to the next. Often this is quite OK, but when the model involves 
matching (searching and forming combinations with other objects), the order 
may cause a bias. There is one simple remedy: scramble the whole database at the 
end of each year. This may sometimes take more time than the simulation itself, 
so make this optional so that scrambling is skipped during test and development.     

    12.3.7   Handling of Sets 

 There are many general tools for this in the Microsoft class libraries. Sometimes 
they are OK, but when dealing with large sets of objects, care needs to be taken. 
In many cases, it is better to design some code yourself. When doing this, ef fi ciency 
with storage and computing time is essential. Bitmaps are useful for representing 
sets of objects, provided they have id numbers as dense series of integers. Arrays are 
usually ef fi cient and it is not too dif fi cult to design a class where arrays of dynamic 
size are allocated and expanded when needed. Care needs to be taken with structures 
involving lists. They are easy to create but might be wasteful of space. In particular, 
removing elements might be a waste of time. For each deleted item in the list, the 
method wrapper copies all elements but the removed one into a new vector and then 
replaces the old vector with the new one. To do that a million times within a loop 
through, the whole population is an enormous waste of computing resources. It is 
possible to keep using lists if the remove method is avoided and replaced by giving 
the elements to be removed a  fl ag and then performing the actual remove by copying 
as if the list was a vector, i.e., at the end of the year.  

    12.3.8   Random Choice Between Many Alternatives 

 Sometimes in a model, choices are made between many alternatives according to a 
probability distribution. If this is done only a few times, then it can be done in a loop 
where a drawn random number is compared to the limits in a cumulative distribution. 
But when this is done for a large population and the number of choices is large (like 
when choosing between the 290 local administrative areas of Sweden, the municipalities), 
then this will take a lot of time. The process can be sped up considerably by generating 
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an auxiliary data structure before the simulation is started or at the start of each year 
if the probabilities change over time. To do this, the program needs to generate a 
large vector of values, and for each alternative, store it repeatedly in proportion to 
the probability for that alternative. Then a choice can be made by just drawing one 
single random number. In the case of migration between municipalities, the large 
municipalities will have a large number of alternatives, so then a large vector is 
needed to represent them all with some precision. Smaller municipalities will have 
fewer alternatives so then a smaller vector can be used. While these vectors will take 
a lot of memory space, the gain in computing time will be enormous. 

 The same method can be used for other attributes, e.g., professions, and also in 
matching procedures, combining persons with other persons or with workplaces. 

 As a general point, there has been a shift of balance between storage and computing 
time. We are often impressed by the great improvement in computing time but tend 
to forget that the improvement in terms of memory in computers, both in terms of 
size and price, is even bigger. A large amount of memory can now be devoted to 
auxiliary data that will speed up the search in large sets of data.  

    12.3.9   Primary and Secondary Attributes 

 The simplest models only deal with one kind of object (the person). Other models 
contain several object classes like family, workplace, and municipality. The additional 
objects may possess static as well as dynamic attributes which can change during 
the simulation (e.g., the number of members in families or workplaces, or the mean 
income in a workplace). Persons have their own attributes, but are also connected 
by pointers to other objects, and so they can access attributes of the other objects. 
All of these attributes can be used in the model equations. This means all attributes 
should be accessed in the same way through a function (eval) containing a case 
statement with cases for both the primary attributes and other cases that will call 
the eval functions of the connected objects or other functions that make additional 
calculations to transform or recombine the stored attributes. The inbuilt “property” 
construct might sometimes give a useful alternative.  

    12.3.10   Parallel Execution 

 One obvious emerging option to increase the speed of a large simulation is to make 
use of the threading capabilities of current multi-core computers. There are now tools 
available to organize this at the source code level, e.g., by partitioning the program 
and assigning different processors to simulate these partitions in parallel. This works 
only if each partition is strictly independent of the others, so it’s easy to achieve only 
for the simplest kinds of models. We have moved towards more and more interac-
tion between different parts of the model, so these mechanisms are not easy to use 
in our models without complicating the source code considerably. 
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 For certain parts of the program, high-level methods like the canned parallel for 
loop of the .NET framework are sometimes useful. One advantage of using such 
constructs is that it just doesn’t work if the parameters of the called function are not 
strictly independent of the calculations in the function. That gives a kind of addi-
tional run time consistency check. 

 The increased speed seen using parallel execution is larger for the development 
phase than it is for  fi nal production runs of an application. During development, one 
very soon approaches the situation when it is necessary to run the full model many 
times with the entire population in order to discover remaining bugs. This can be 
very tedious if the compile–run cycle takes a long time. 

 A typical production run often requires many replications and/or different alter-
native experiments. In these cases, it is easier to use the parallel machinery at process 
(operator) level. The simplest solution is to run several simulation experiments in 
parallel. Another way that was implemented in the SVERIGE model is to imple-
ment some of the housekeeping activities needed to collect aggregates during the 
simulation or to maintain auxiliary data that supports rapid access in memory as 
parallel processes running concurrently with the simulation.  

    12.3.11   Twins or Equations 

 A demanding analytical task is to accurately model the outcomes for large choice 
sets, like the choice of destination when moving geographically or the choice of 
speci fi c education or profession or place of work. Geographic mobility and connected 
family changes are core events in spatial population modeling. A Wilson/
Fotheringham-type interaction model tends to require  fi ne-grained alignment in 
order to produce reasonably accurate local outcomes, almost to the point where the 
output largely reproduces the alignment factors. Therefore, especially in situations 
with a large and diverse choice set like destination choice combined with simultaneous 
family changes, imitating empirical twins might stand out as a simple viable alter-
native to multiple logit-based equations or interaction models. Instead, a random 
assignment scheme is applied based on imitating observed behavior of similar indi-
viduals (“twins”) as discussed by Klevmarken  (  1997  ) . 

 We have tested this alternative as demonstrated by the following simple example 
model tested on a database of the Swedish population. The example model contains 
three time-independent variables (birth year, sex, and place of birth) and four time-
dependent variables (municipality, education level, civil state, and disposable 
income). Municipality is fully represented (290 values) but the other variables have 
been reduced to make a complete match of twins possible. Twins are picked for one 
particular year in the example (1993). The year after the twin year is the result year. 
So the whole simulation procedure can be described as:

    1.    Scan the whole population and locate a twin with an identical or very nearly 
identical set of attributes.  

    2.    Pick up the set of attributes for this twin in the result year.  
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    3.    Let the simulated person inherit the whole set of attributes as values for the next 
simulated year.     

 Altogether, there are 2*4*512*290 = 1,187,840 possible combinations for the 
time-dependent variables distributed over 2*4*64 = 512 combinations of the 
time-independent variables (sex, origin, and age class). Before the simulation 
can be done, the behavior of the individuals for the past years must be aggregated 
in such a way that those having a speci fi c combination can be easily accessed. 
For each combination occurring in the dataset, a number of people are found, 
each of them having a particular combination of result variables. All of this must 
be loaded in the core before the simulation. 

 Note that twins are not unique or limited to just a few individuals. Many of the 
technically possible 1,187,840*512 cells are actually empty, but others might contain 
thousands of individuals. It is not always possible to  fi nd an exactly matching twin. 
In the example using data for the Swedish population, we applied a set of strategies 
for locating “proxy twins” which are those that are similar except for one or two 
dimensions. When simulating about nine million individuals, we get approximately 
the following outcome in terms of hits:  

 In full detail  7,000,000    
 Within age +/−1 or +/−2  1,000,000 
 Within proximate income    600,000 
 In the most frequent income    100,000 

 The hypothesis is that twin replication might sometimes outperform behavioral 
equations, especially when the outcome is complex, not binary or scalar like the 
destination choice of movers; when several events interact simultaneously like family 
formation and mobility; or when it is important to maintain a realistic heterogeneity 
in the long run like an income distribution. 

 Advantages of using twins are that heterogeneity in all attributes is maintained 
automatically and that latent information not obvious from the attributes can affect 
the results. In addition, twins might in some cases function as a consistent alterna-
tive to alignment. 

 The disadvantages of using twins’ replication are that results easily get locked into 
the sample of the empirical twins. Problems can occur when the simulation approaches 
a state not experienced by any empirical twin. Experiments changing behavior are 
easier to perform using analytical behavioral equations. In addition, the de fi nition of 
and the criteria for selecting a twin are not obvious except in very simple cases. 

 It has been demonstrated that for a simple simulation, twin replication produced 
somewhat superior results at least for the age distribution of movers and the destina-
tion of movers. For complex events, it might in some cases give a convenient alter-
native to equations that maintain consistent heterogeneity better than using a table 
look up. Questions like how to de fi ne similar, how to select twins, and how to use 
biographical individual information still need to be solved if using models with 
individuals with many attributes that make them unique. So, in this case, we have no 
general recommendation to make.   
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    12.4   Conclusion 

 Our own answer to the relevance question raised in the background section is that 
most of the discussed design principles might be even more relevant in other countries 
which don’t have the rich longitudinal individual data that exists in Sweden. 
However, these principles are recommendations about how to code and reuse code, 
and there are no ready to use software modules or modeling packages for dynamic 
spatial microsimulation. We would recommend that these principles be imple-
mented while constructing new national and regional simulation models, and we 
would particularly emphasize the use of the proposed design principles in efforts to 
create generic high-level software for dynamic microsimulation. 

 One alternative would be to integrate core parts of the discussed design principles 
into something like the already well-developed toolset of ModGen. This would then 
contribute somewhat towards moving the resulting software into a tool, replacing 
the need for a large portion of our own (as well as others’) application speci fi c coding 
for different models. It would then be possible for the next generation of social 
scientists in academia and in agencies to apply micro-based dynamic modeling on 
urgent problems instead of entirely relying on regression analysis with its obvious 
shortcomings when it comes to representing the complex dynamic interactions of 
different agents within society.      

   References 

      Aschan-Leygonie, C., Baudet-Michel, S., Gautier, D., Holm, E., Lindgren, U., Mäkilä, K., Mathian, 
H., & Sanders, L. (1999). Micro modelling of the population dynamics in a region with strong 
urban growth. In S. E. Van der Leeuw (Ed.),  Archeomedes .  

      Bacon, B., & Pennec, S. (2007).  APPSIM – Modelling family formation and dissolution  (Online 
Working Paper – WP2).   http://www.canberra.edu.au/centres/natsem/      

       Berner, B., Drottz Sjöberg, B., & Holm, E. (2011).  Social science research 2004–2010, themes, 
results and re fl ections . Stockholm: SKB. ISBN: 978-91-978702-2-1  

    Boman, M., & Holm, E. (2004). Multi-agent systems, time geography, and microsimulations. 
In M.-O. Olsson & G. Sjöstedt (Eds.),  Systems approaches and their application: Examples 
from Sweden  (pp. 95–118). Dordrecht: Kluwer.  

   Brouwers, L., Ekholm, A., Janlöv, N., Johansson, P., & Mossler, K. (2011, June 8–10).  Simulating 
the need for health- and elderly care in Sweden – A model description of Sesim-LEV . Paper 
presented at the Third General Conference of the International Microsimulation Association 
Stockholm.  

    Caldwell, S., & Morrison, R. (2000). Validation of longitudinal microsimulation models: 
Experience with CORSIM and DYNACAN. In L. Mitton et al. (Eds.),  Microsimulation in the 
new millennium . Cambridge: Cambridge University Press.  

    Clarke, M., & Holm, E. (1987). Micro-simulation methods in spatial analysis and planning. 
 Geogra fi ska Annaler Series B, Human Geography, 69 (2), 145–164.  

       Dekkers, G., & Zaidi, A. (2011). The European network for dynamic microsimulation (EURODYM) – A 
vision and the state of affairs.  International Journal of Microsimulation, V4 (1), 100–105.  

   Fredriksen, D., Knudsen, P., & Martin Stølen, N. (2011, June 8–10).  The dynamic cross-sectional 
microsimulation model MOSART.  Paper presented at the Third General Conference of the 
International Microsimulation Association Stockholm.  

http://www.canberra.edu.au/centres/natsem/


20712 Design Principles for Micro Models

       Hägerstrand, T. (1970).  What about people in regional science, regional science association 
papers, Vol. XXIV . Heidelberg: Springer.  

    Hägerstrand, T. (1991). Tiden och Tidsgeogra fi n. In G. Carlestam & B. Sollbe (Eds.),  Om tidens 
vidd och tingens ordning, T21 . Stockholm: Statens råd för byggnadsforskning.  

   Harding, A. (2007, August 21).  Challenges and opportunities of dynamic microsimulation modelling.  
Plenary paper presented to the 1st General Conference of the International Microsimulation 
Association, Vienna. Available at   http://www.euro.centre.org/ima2007/programme/day2.htm      

    Harding, A., Keegan, M., & Kelly, S. (2010). Validating a dynamic microsimulation model: Recent 
experience in Australia.  International Journal of Microsimulation, 3 (2), 46–64.  

   Holm, E., & Öberg, S. (2004). Contagious social practice?  Geogra fi ska Annaler, 86B (4).  
    Holm, E., & Sanders, L. (2007). Spatial microsimulation models. In L. Sanders (Ed.),  Models in 

spatial analysis  (Geographical information systems series). Newport Beach: ISTE.  
    Holm, E., & Timpka, T. (2007). A discrete time-space geography for epidemiology: From mixing 

groups to pockets of local order in pandemic simulations.  Studies in health technology and 
informatics, 129 , 464–8.  

   Holm, E., Mäkilä, K., & Öberg, S. (1989).  Tidsgeogra fi sk handlingsteori – Att bilda betingade 
biogra fi er . Gerum Rapport 8, Department of Geography, Ume University.  

    Holm, E., Lindgren, U., Mäkilä, K., & Malmberg, G. (1996). Simulating an entire nation. In 
G. Clarke (Ed.),  Microsimulation for urban and regional policy analysis . London: Pion.  

    Holm, E., Holme, K., Mäkilä, K., Mattsson-Kaupi, M., & Mörtvik, G. (2002).  The SVERIGE spatial 
microsimulation model – Content, validation, and example applications  (Gerum Kulturgeogra fi  
2002, Vol. 4). Umeå: Umeå Universitet.  

    Holm, E., Lindgren, U., Eriksson, M., Eriksson, R., Häggström Lundevaller, E., Holme, K., 
& Strömgren, M. (2004a).  Transfereringar och arbete  (Arbetsrapport R2004, Vol. 16). 
Östersund: ITPS – Institutet för tillväxtpolitiska studier.  

    Holm, E., Lindgren, U., & Malmberg, G. (2004b).  Arbete och tillväxt i hela landet – betydelsen av 
arbetskraftsmobilisering  (Vol. 22). Östersund: ITPS – Institutet för tillväxtpolitiska studier.  

    Holm, E., Lindgren, U., Häggström Lundevaller, E., & Strömgren, M. (2007). SVERIGE. In A. Gupta 
& A. Harding (Eds.),  Modelling our future, population ageing health and aged care: International 
symposia in economic theory and econometrics  (Vol. 16). Amsterdam/Boston: Elsevier.  

   Holm, E., Lindgren, U., & Strömgren, M. (2008). Socioekonomiska effekter av stora investeringar 
i Oskarshamn. SKB R-08–76.  

   Klevmarken, A. (1997). Behavioral modeling in micro simulation models: A survey (Working 
Paper Series 997:31). Uppsala University, Department of Economics.  

    Rephann, T., & Holm, E. (2004). Economic-demographic effects of immigration: Results from a 
dynamic, spatial microsimulation model.  International Regional Science Review, 27 , 379–410.  

    Rephann, T., Mäkilä, K., & Holm, E. (2005). Microsimulation for local impact analysis: An appli-
cation to plant shutdown.  Journal of Regional Science, 45 , 183–222.  

   Statistics Canada. (no date).  Modgen 15 years of creating models.    http://www.statcan.gc.ca/
microsimulation/pdf/modgen-hist-eng.pdf    . Accessed 20 Aug 2011.  

   Strömgren, M., & Holm, E. (2004).  Åldrande befolkning och framtida behov av kommunalskatt , 
Kulturgeogra fi ska institutionen, Umeå universitet.  

   Strömgren, M., & Holm, E. (2010).  Using downscaled population in local data generation  
(Technical Report). ESPON 2013 Database.  

    Waddell, F., & Ulfarsson, G. (2004). Introduction to urban simulation: Design and development of 
operational models. In B. Stopher & H. Kingsley (Eds.),  Handbook in transport, Volume 5: 
Transport geography and spatial systems  (pp. 203–236). New York: Pergamon Press.      

http://www.euro.centre.org/ima2007/programme/day2.htm
http://www.statcan.gc.ca/microsimulation/pdf/modgen-hist-eng.pdf
http://www.statcan.gc.ca/microsimulation/pdf/modgen-hist-eng.pdf


209R. Tanton and K.L. Edwards (eds.), Spatial Microsimulation: A Reference Guide for Users, 
Understanding Population Trends and Processes 6, DOI 10.1007/978-94-007-4623-7_13, 
© Springer Science+Business Media Dordrecht 2013

    13.1   Introduction and Background 

 This chapter presents a dynamic spatial microsimulation approach to the analysis of 
educational inequalities. The method simulates individual units over a period of time 
creating a picture of the evolving attributes of each unit. As Birkin et al.  (  1996  )  point out, 
the updating of microsimulation populations would typically involve list processing 
based on either deterministic rules (for instance, population ageing, or change in the 
allocation of family bene fi ts) or a probabilistic change of states (e.g. what is the prob-
ability that an individual will get married next year, given his/her socio-economic 
and demographic situation). There are a series of demographic and socio-economic 
transitions that can be modelled with the use of spatial microsimulation. In other 
words, dynamic spatial microsimulation projects each microunit to a future state 
altering its attribute values according to prede fi ned rules. These rules relate to the 
unit’s population changes. For a population in any geographical area, those rules may 
be functions about population ageing or mortality and birth rate. These rules reshape 
the dataset over time (annually or monthly) and create a new estimated snapshot of 
the population at these time points. Dynamic spatial microsimulation models can be 
used to model transitions such as leaving home, entering school, university, the 
labour market, etc. As Gilbert and Troitzch  (  1999  )  point out:
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  During their lifetimes, the simulated individuals have to change their educational and 
employment status. They will enter school with different probabilities when they are 
between 14 and 20 years old, they will be employed in different jobs, lose their jobs, earn 
an income which depends on their type of job, and eventually retire with different probabilities 
depending on their ages. (Gilbert and Troitzsch  1999 , p. 59)   

 For the initialisation of a spatial microsimulation process, a number of specialised 
datasets are required (see Chap.   2     for a general description of data required and data 
preparation). These datasets should include a detailed sample of the population. 
This sample is then used to create a microdataset which is the initial population for 
the microsimulation process. One of the major problems with the dynamic model-
ling of socio-economic events is the lack of relevant data on transition probabilities 
at appropriate geographical scales (e.g. the probability that an 18-year-old male of 
a given socio-economic background living in a particular locality would migrate; 
such data are typically available at a national or coarse geographical scale). One way 
of tackling this data paucity issue is by trying to formulate plausible assumptions 
about the socio-economic transition probabilities of different individuals and house-
holds and incorporate them into the model. Such assumptions could be formulated 
on the basis of the UK British Household Panel Survey (BHPS) which is a rich 
longitudinal population survey, with a large nationally representative sample, which 
has been conducted annually since 1991 (Taylor et al.  2001  ) . 

 The work presented in this chapter builds on relevant microsimulation research 
(Ballas et al.  2005a,   b ; Rossiter et al.  2009  )  utilising the BHPS in order to build a 
dynamic spatial microsimulation model for the analysis of social and spatial 
inequalities in educational attainment. It can be argued that the subject of educa-
tional attainment is particularly suitable for the development and application of a 
dynamic spatial microsimulation model given the in fl uence that education has on a 
person’s life outcomes. Additionally, there are important policy implications pertaining 
to social and spatial inequalities that can be explored with such a model. In particular, 
there is increasing evidence (Wilkinson and Pickett  2009  )  that the reduction of 
socio-economic inequality should be a major social policy goal in modern societies. 
Educational attainment and a person’s level and type of educational achievements 
typically have a major in fl uence on where he/she will end up in the distribution 
of those potentially life-enhancing “goods” (   Clarke  2003 ). In turn, access to educa-
tional opportunities is in fl uenced by both socio-economic factors as well as by 
economic and social geography. 

 Educational outcomes at personal and community levels have been well 
researched (Hall  1961 ; Fryer  1997 ; Demack et al.  2000 ; Allen and van der Velden 
 2001  ) . Subsequently, there is also a need to understand inequality geographically in 
order to be able to prevent income-related inequalities in educational opportunities. 
The use of spatial microsimulation models can be used to produce suitable output 
for a deeper understanding of inequalities and forms a valuable tool for the predic-
tion of such dynamics. 

 Figure  13.1  highlights the importance of household income and geography with 
regard to educational opportunities and outcomes. It has long been argued that the 
social and spatial divisions and inequalities in educational attainment can be seen as 

http://dx.doi.org/10.1007/978-94-007-4623-7_2
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the geographical manifestations of deeper social and spatial inequalities and 
divisions in relation to a wider range of indicators (Kasarda  1993 ; Pacione  1997 ; 
Ainsworth  2002 ; Thomas et al.  2009  ) .  

 There are a number of empirical studies throughout the past two decades that 
paint a story of social and spatial divisions in educational opportunity and attainment. 
In particular, there has been considerable research on the impact of space and place 
upon educational attainment and in particular primary and secondary educational 
attainment with the use of statistical modelling techniques (see Demack et al.  2000 ; 
Ainsworth  2002 ; Clarke and Langley  1996 ; Gibbons  2002 ; Gibbons and Machin 
 2003 ; Harris and Johnston  2008  ) . Most of this work focuses on the in fl uences of 
neighbourhood, the environment in which a child is raised and upon primary and 
secondary educational opportunities and outcomes. In particular, it has long been argued 
that neighbourhood characteristics have a very strong impact on life chances through 
their in fl uence on the educational outcomes of young residents (Ainsworth  2002  ) . 

  Fig. 13.1    Modelling 
educational attainment       
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Early school leaver and dropout rates in severely distressed or deprived neighbourhoods 
tend to be much higher than in the more well-off parts of a city or region (Kasarda  1993 ; 
Thomas et al.  2009  ) . 

 It can be argued that one of the key variables associated with educational attain-
ment is household income. There are a number of studies on income inequalities and 
educational inequalities such as the work of Azzoni and Servo  (  2002  ) , Rodríguez-
Pose and Tselios  (  2009  ) , López Bazo and Motellón  (  2009  ) , Duranton and Monastiriotis 
 (  2001,   2002  )  and Miranti et al.  (  2010  ) . It can be argued that household income plays 
a major role in determining the type of higher education a person could have access 
to. As well as determining access to better schooling opportunities (e.g. see Cheshire 
and Sheppard  2004  ) , it also determines the type and number of educational institu-
tions that the potential student may apply to (e.g. see Singleton  2009  ) . Another deter-
mining factor of the higher educational process is the geographical area a person is 
brought up and lives in, which in fl uences educational availability by determining the 
available educational institutions a potential student may apply to due to proximity 
and/or living cost expenses in the area where the institution is located (Singleton 
 2009  ) . These two factors to some extent affect the process of selecting a higher edu-
cational institution but can also affect the selection of the type and topic of study. The 
choice of an educational institution determines the value and robustness of a degree 
which will be a determining factor, to some extent, of the type of job that the indi-
vidual will  fi nd after graduation. The skills of all economically active units of the 
economy can then in a way determine the pro fi le of the economy. In other words, the 
pro fi le of the individuals, to a certain extent, in fl uences the pro fi le of the economy. 
The educational system offers a mechanism to support the economic growth and 
competitiveness of an economy. This process can be described as a “waterfall pro-
cess” (see Fig.  13.1 ). The determining factors are household income and geography 
(boxes 1 and 2 in Fig.  13.1 ). These have an effect on education (box 3) and this sub-
sequently on employment (box 4). Finally, this process has spin-offs (“by-products”) 
both for the society and the individuals themselves. These are the major milestone 
stages that are the subject matter of the research presented in this chapter. 

 The remainder of this chapter is organised as follows: the next section describes 
the data that were used to calculate the probabilities that drive the dynamic model 
(known as “transition probabilities”). This is followed by a third section describing 
the dynamic model in more detail. The fourth section presents and discusses some 
model outputs, and the  fi nal section offers some concluding comments.  

    13.2   Using Secondary Data to Estimate Transition 
Probabilities 

 The model presented here is the dynamic component of a spatial MSM approach, 
comprising both a static and a dynamic model (Kavroudakis  2009  ) . The model used a 
combination of data from both the BHPS, which contains a wealth of socio-economic 
and demographic variables (Taylor et al.  2001  )  and small area statistics tables from 
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the census of population (Census Dissemination  2008  ) . These census data are the 
product of the most authoritative social accounting of people and housing in Britain 
of its time (Cole et al.  1993 ). However, the census records demographic and socio-
economic information at a single point in time and is therefore less appropriate for 
the study of social and economic changes through time. Conversely, the BHPS is a 
very useful tool for the understanding and analysis of social and economic change 
at the individual and household level, as well as to identify, model and forecast such 
changes and their causes and consequences in relation to a range of socio-economic 
variables (Taylor et al.  2001  ) . Of particular relevance here is the wealth of information 
in the BHPS about educational quali fi cations, which can be categorised by social 
class and sex and analysed annually from 1991 (when the BHPS was launched) 
onwards. The BHPS offers a valuable resource for understanding the underlying 
mechanisms which in fl uence the life events that can be simulated like graduation 
from higher education,  fi nding a job, marriage and mortality. Nevertheless, the 
BHPS dataset is disaggregated at a relatively coarse level of geography (the smallest 
area for which any meaningful analysis can be conducted for the whole country is 
the region). This is to preserve con fi dentiality as the questions answered in the survey 
are highly sensitive and contain private information that would not be able to be 
collected without a prior assurance of con fi dentiality. However, this level of geo-
graphic detail is not suf fi cient enough for a detailed spatial analysis. 

 A thorough statistical descriptive analysis of the data in the BHPS was under-
taken in order to explore the interdependencies between socio-economic classi fi cation 
and other variables that could potentially be included in the spatial MSM. In building 
a dynamic spatial microsimulation model of educational attainment, it is important 
to  fi rst explore the temporal patterns in the relationships between key variables such 
as “higher academic quali fi cation”, socio-economic background and income. 
It should be noted that one of the major advantages of using the BHPS is that an 
individual can be tracked through all the waves. Waves are the annual datasets of 
British Household Panel Survey that contain all data collected for that speci fi c year. 
Responders were selected randomly in the  fi rst wave (1991) and ranged from all 
ages, income groups and geographical locations in order to have a diversity of 
respondents and behaviour patterns (IISER  2006  ) . The same individuals and house-
holds are then interviewed every year (or at least there is an attempt to do so) generating 
a wealth of longitudinal information. 

 The BHPS can thus be used to create educational life paths in order to track 
the individuals in every panel wave and record any change in their educa-
tional quali fi cations. The illustrated life paths are just an indication of the educa-
tional mobility of the individuals. Educational progress is also associated with other 
social characteristics which determine the choice and output of an educational process. 
The BHPS variables “Goldthorpe Class: most recent job” and “Highest Academic 
Quali fi cation” from all BHPS waves were used to create such “educational life 
paths”. These are the representation of educational quali fi cations with respect to the 
waves of BHPS data. Table  13.1  shows the different social class and academic 
quali fi cation categories as well as the proportion of individuals falling within each 
category in the  fi rst wave of the BHPS.  
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 All individuals from every social class were selected and tracked through the 
available data waves. Then average educational attainment for every social class 
was constructed using the highest educational quali fi cation obtained for individuals 
in every social class every year from 1991 to 2003. As can be seen in Figs.  13.2  and 
 13.3 , there is a pattern concerning the “educational mobility” of social classes 
(see Table  13.1  for more details on the social class categorisations). This pattern 
suggests that it is more likely for individuals from more af fl uent social classes to 
end up with a higher educational quali fi cation compared to individuals from less-
af fl uent backgrounds. This is the kind of information that can be utilised in a dynamic 
spatial microsimulation model to simulate events such as “going to university” and 
“graduating from university” at the microlevel. In particular, the BHPS is very suitable 

   Table 13.1    Social class and highest academic quali fi cation categories (from Taylor et al.  2001  )    

 Goldthorpe social class categories 
 Frequency 
(%) 

 Highest academic 
quali fi cation categories 

 Frequency 
(%) 

 Service class, higher (SC1)  10.4  Higher degree  1.2 
 Service class, lower (SC2)  16.6  1st degree  5.8 
 Routine non-manual (SC3)  14  HND, HNC teaching  4.8 
 Personal service worker (SC4)  7.8  A level  13.3 
 Small proprietors with employees 

(SC5) 
 1.6  O level  24.5 

 Small proprietors without 
employee (SC6) 

 4.6  CSE  5.2 

 Farmers, smallholders (SC7)  0.7  None of these  41.7 
 Foreman, technicians (SC8)  7.1  Missing/proxy respondent  3.6 
 Skilled manual workers (SC9)  8.5 
 Semi-skilled, unskilled, manual 

(SC10) 
 21.4 

 Agricultural workers (SC11)  0.8 
 Missing/proxy respondent  1.9 
 Never had a job  4.6 

  Fig. 13.2    Mean educational attainment of all individuals in social class 01, 1991 to 2003 (Source: 
BHPS Dataset)       
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for dynamic microsimulation as it gives insights into what factors and variables are 
important with regard to individual and household life course dynamics. In addition, 
data such as that presented in Figs.  13.2  and  13.3  can be used to calculate the so-
called transition probabilities that provide an estimate of how likely an individual is 
to undergo a transition from one state to another at one point in time. For example, 
we can calculate the probability of a 17-year-old individual from a “higher, service 
class” household entering university at age 18, graduating at age 21 and having a 
PhD degree at age 24. Such probabilities were calculated to perform the dynamic 
spatial microsimulation.   

 For instance, in order to evaluate educational life paths, the percentage of each 
social group in the BHPS with a higher degree was analysed. It was found that a 
larger percentage of social groups 1, 2 and 3 (more af fl uent) have a higher educa-
tional degree in both 1991 and 2003. This corroborates the argument that there is a 
positive correlation between household income and educational attainment. 

 Probabilities from the BHPS such as those described above were combined with 
probabilities by household income and were used in order to simulate university 
entry for every individual in our microsimulated database. In addition, data from 
UCAS have been used to determine the selection of the subject for each of the simu-
lated individuals that enter higher education. Table  13.2  presents an extract of the 
information used by the model, showing the subject for individuals applying to 
universities in the Yorkshire and Humber region. The model utilised these data to 
assign a subject to each individual simulated to enter university.  

 We also calculated employment and unemployment probabilities by age, sex, edu-
cational quali fi cation and social class using data from the BHPS. Similarly, we utilised 
data from the ONS to calculate transition probabilities for mortality. These probabili-
ties can be used to formulate dynamic microsimulation rules and to then evaluate all 
individuals every year against those rules (following an approach similar to that of 
Ballas et al.  2005a  ) . Overall, we calculated probabilities for the following transitions:

  Fig. 13.3    Higher education quali fi cations by social class, 2003 (Source: BHPS dataset)       
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   Entering university by sex, household social class and household income (using • 
data from the BHPS)  
  Assignment of subject of study (using data from UCAS)  • 
  Graduating from university by household social class (using data from the • 
BHPS)  
  Mortality (using ONS vital statistics)  • 
  Employment (using data from the BHPS)    • 

 The following sections discuss the dynamic model in more detail and describe 
some model outputs. It should be noted that the modelling exercise presented in this 
chapter focused on the region of Yorkshire and the Humber which contains several 
universities and higher education colleges, including the Universities of Leeds, 
Shef fi eld and York that make up the White Rose University Consortium  (  2010  )  that 
funded the research presented here.  

    13.3   Dynamic Model 

 The dynamic spatial microsimulation model is based on rules used for the annual 
transitions of simulated individuals as described in the previous section. In every 
year of the simulation, the population of the geographical area is  fi ltered by applying 
some rules. Those rules are the transition rules which determine the transition prob-
abilities for each individual. As discussed in the introduction, household income is 
a key variable affecting higher education attainment. Therefore, it can be argued 

   Table 13.2    Percentage of accepted applicant by subject area 2006 (UCAS  2008  )    

 Subject  Postgraduate (%)  Undergraduate (%)  Total (%) 

 Medicine and dentistry  30.8  69.2  2.3 
 Medicine related  15.0  85.0  12.3 
 Biological sciences  18.7  81.3  6.1 
 Vet. science, agriculture and related  15.3  84.7  1.0 
 Physical sciences  24.5  75.5  3.3 
 Math and computing sciences  18.5  81.5  6.2 
 Engineering and technology  25.5  74.5  6.0 
 Architecture, building and Planning  23.7  76.3  2.5 
 Social sciences (inc law)  23.0  77.0  11.8 
 Business and administrative  27.8  72.2  15.5 
 Communication and documentation  17.9  82.1  2.2 
 Languages  12.5  87.5  5.6 
 History and philosophy studies  17.6  82.4  4.2 
 Creative arts and design  9.8  90.2  6.5 
 Education  50.5  49.5  8.3 
 Other subjects  1.8  98.2  6.1 
 Unknown  0.0  100.0  0.0 
 All subjects  21.7  78.3  100.0 
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that this is a key variable that needs to be estimated at the small area level using 
spatial microsimulation and to then be used as a factor in subsequent calculations of 
transition probabilities. Once estimated, household income can then be used to clas-
sify households between different income categories. In the context of the research 
presented here, we adopted a method of categorising microsimulated incomes using 
the median of the samples to split them into  fi ve groups, as shown in Table  13.3  
(as presented by Ballas  2004  and also used by Ballas et al.  2007  ) .  

 We then calculated education-related transition probabilities by income and 
social class. In particular, as noted at the end of the previous section, we calculated 
probabilities from secondary data to model the following events: university entry, 
assignment of subject study, graduation, mortality and employment/unemployment. 
Income was a key variable with regard to entering university and graduation, 
whereas holding a degree was a key variable determining the transition to “employ-
ment”. For each event a Monte Carlo sampling process was adopted, meaning that 
a computer-generated random number was compared to the calculated transition 
probability for every simulated individual. If the number was smaller than the prob-
ability, then the individual would be assigned the respective event (for more details 
on how such a process is implemented, see Ballas et al.  2005a  ) . The following rules 
were implemented with regard to each event:

    Higher education entry : This rule determines how many individuals will enter higher 
education every year of the simulation. The model selects all potential students 
from each area (individuals with A levels and aged 16–19). Then according to the 
transition probabilities collected from the BHPS dataset by income group and social 
class, the model determines whether the individual will enter higher education.  

   Graduation : Again, social class and household income from the BHPS were used 
to calculate how many individuals will graduate each year from the educational 
institutions in the geographical area.  

   Table 13.3    Household categorization on the basis of median income   

 Very poor      ≤ 1

2
Y m   

 Poor      < ≤1 3

2 4
m Y m

   

 Below average      
< ≤3

4
m Y m

   

 Above average      
< ≤ + 1

4
m Y m m

   

 Af fl uent      

+ <1

4
m m Y

   

  (   Y = household income, m = median household income in the Yorkshire 
and the Humber region; income data based on the BHPS variable 
wFIHHYR “annual household income”; for more details on all BHPS 
variables, see Taylor et al.  (  2001  ) )  
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   Mortality : Vital statistics on mortality by age and sex were used to evaluate each 
simulated individual for mortality, following a similar procedure to that presented 
by Ballas et al.  (  2005a  ) .  

   Employment : Every simulated individual was evaluated for moving to employment 
based on a Monte Carlo sampling process using transition probabilities calculated 
from the BHPS.    

 The dynamic spatial MSM projects the population to a future state by applying 
annual transition probabilities to the population. A summary of some of the results 
of that process is depicted in Table  13.4  which shows the percentage of each income 
group from the initial simulated population that joins higher education, graduates 
and then  fi nds a job. The initial model state has almost 20 % from each income 
group. The next step (“join HE”) uses the results from the spatial microsimulation 
model to determine the number of individuals that hypothetically enter a higher 
education institution.  

 It should be noted that the dynamic spatial microsimulation model presented here 
is relatively basic and at an experimental stage. There is a need for thorough valida-
tion of the outputs, which is an immediate priority of this ongoing research. Despite 
this, the outputs from our model can provide useful insights into the relevance and 
potential of spatial microsimulation and dynamic spatial microsimulation in particu-
lar for analysing social and spatial inequality in educational attainment. The follow-
ing section presents some of these outputs, further illustrating this potential.  

    13.4   Model Results 

 The dynamic spatial microsimulation model developed was used to analyse social 
and spatial inequalities in higher education entry and attainment. In this section, we 
present some model outputs for the city of Shef fi eld, which is a major city in our 
study region. In particular, we present the outputs of three events that were mod-
elled: “higher education entry”, “graduation” and “employment”. Figure  13.4  
depicts the geographical distribution of the simulated individuals that “enter” higher 
education in the  fi rst simulation year. Figure  13.5  shows the spatial distribution of 

   Table 13.4    Results from the microsimulation model: percentage joining higher education, graduating 
and  fi nding a job by income group   

 Very poor 
(%) 

 Poor 
(%) 

 Below average 
(%) 

 Above average 
(%) 

 Af fl uent 
(%) 

  Total 
(%)  

 Initial model 
population 

 20  19  21  20  20   100  

 Join HE  16  17  19  19  20   91  
 Graduation  15  15  18  18  20   86  
 Employment  15  14  18  17  18   82  
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  Fig. 13.4    Percentages of individuals joining higher education, dynamic spatial microsimulation       

  Fig. 13.5    Percentages of individuals graduating from higher education, dynamic spatial 
microsimulation       
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the individuals across Shef fi eld (at output area level) that are simulated to graduate 
from higher education according to the results of the dynamic spatial microsimula-
tion model. Figure  13.6  shows the percentages of graduates  fi nding a job related to 
the subject studied within 1 year after graduating.    

 It should be noted that generally the highest proportion of individuals entering 
university, graduating and getting a job after university is located in areas which are 
relatively more af fl uent. This is not surprising given that, as seen in the previous 
section, the rules that drive the dynamic simulation are based on the assumption that 
income and socio-economic class play a major role in determining educational 
opportunities and outcomes. Also, as argued in the introductory section, social and 
spatial divisions and inequalities in educational attainment can be seen as the geo-
graphical manifestations of deeper social and spatial inequalities and divisions in 
relation to a wider range of indicators pertaining to social and economic geography, 
including employment and income, quality of housing and health and life expec-
tancy. The model outputs presented here should be seen in the wider economic and 
social geography context of the city of Shef fi eld (also see Thomas et al.  2009  ) . 

 In addition, an interesting possibility would be to combine dynamic spatial 
microsimulation modelling with agent-based modelling approaches. Such a combi-
nation would involve the replacement of microsimulated units driven by transition 
probabilities, with adaptive rule-based agents (Williamson  1999  ) .      

  Fig. 13.6    Percentage of graduates  fi nding a job related to the subject studied (1 year after graduation), 
dynamic spatial microsimulation       
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          14.1   Introduction 

 It is well known, indeed a commonplace observation, that microsimulation has been 
established as a technique within the discipline of economics for more than 50 years. 
It is fair to say that economists have mostly found value in microsimulation as a 
means to understand the distributional effects of aggregate policies at an individual 
level. Such questions are essentially static, or at best comparatively static in their 
approach; they consider perhaps the way a tax regime (static) or the impact of a 
change in  fi nancial policy (comparative static) affects individuals and households 
within the population. Geographers have also remarked, albeit somewhat less 
frequently, that the roots of spatial microsimulation also extend right back to the 
1950s and the work of Torsten Hagerstrand on migration, innovation and diffusion 
of technology and ideas. What is notable about this work in the current context is 
that it introduces from the  fi rst not just the importance of spatial disaggregation but 
emphasises the dynamic processes through which spatial structure evolves. 

 To the extent that the early approaches of Orcutt and Hagerstrand are distinctive, 
over time, the work of the economists and geographers has tended to converge. 
Of course, there are now notable examples of dynamic models in the arena of  fi scal 
microsimulation (such as DynaSim, DynaCan; see, e.g. Morrison  2007  )  whilst 
geographers have often been content in the use of static models as a means to disag-
gregate and re fi ne spatial distributions, for example, as a means to estimate small 
area variations of income (Birkin and Clarke  1989  ) , health (Smith et al.  2006 ; 
Procter et al.  2008 ; Tomintz et al.  2008  )  or educational attainment (see Chap.   13     of 
this book) and as a means to assess the demand for infrastructure services such as 
water (Jin  2009  ) . The essential point to make is that good examples of dynamic 
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(spatial) microsimulation are still not especially abundant. One of the objectives of 
this chapter is to explore why this might be the case, although in essence much of 
this may be condensed into the simple observation that the methods required are not 
especially straightforward! We will begin by describing our own approach to the 
development of a dynamic spatial microsimulation model of the UK population. 
From this, there follows a discussion of the problems involved in re fi nement and 
application of the model. The challenges which arise are of suf fi ciently general 
interest, we would argue, as to provide important elements of a research agenda in 
microsimulation modelling.  

    14.2   A Dynamic Spatial Microsimulation Model 
of the UK Population 

 In this section, we give a high-level description of the structure of a dynamic model 
(‘Moses’) which has evolved at Leeds over a period of time and then discuss some 
of the key features of the approach. 

 The Moses model has three essential components – a population reconstruction 
model (PRM), a dynamic projection module and a behavioural simulator. 

    14.2.1   The Population Reconstruction Model 

 The PRM recreates a base-year population for a given city or region using a combina-
tion of two inputs, both derived from the UK census but at different levels of resolution: 
household-level data from the sample of anonymised records (HSAR) and neigh-
bourhood data from the small area statistics (SAS). The model creates a complete 
representation of the national population (UK, Wales and Scotland) on an area-by-area 
basis. For each household and their component individuals, we represent a wide 
variety of key socio-economic and demographic attributes, comprising age, gender, 
marital status, occupation, ethnicity and health status, as well as housing variables 
including tenure, household size and composition. 

 Of course, methods for population reconstruction are abundant in the literature. 
We have experimented with a number of alternative approaches, including synthetic 
regeneration (Birkin and Clarke  1988 ; Beckmann et al.  1996  ) , simulated annealing 
(Williamson et al.  1998 ; Ballas et al.  2005  )  and a genetic algorithm (GA) (Williamson 
et al.  1998 ; Birkin et al.  2006  ) . If the problem is cast in terms of selecting a subset 
of individual records from the HSAR to represent the characteristics of each small 
area, then the GA is super fi cially attractive as a technique, as we have in essence 
a binary string (1 for inclusion, 0 for exclusion) which needs to be optimised. 
However, in practice, the constraints are dif fi cult to represent, the method is computation-
ally extremely expensive, and existing algorithms require signi fi cant customisation. 
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The other two methods, synthetic regeneration and simulated annealing, have both 
proved to be much more robust. Some experimental results are discussed by Harland 
et al.  (  2011  )  who argue that simulated annealing is a slightly more accurate method, 
but synthetic regeneration is nevertheless fully satisfactory. We have tended to prefer 
synthetic regeneration on the basis of its simplicity, the familiarity of the method to 
the model authors and again the ease by which constraints may be represented, 
which is especially important given the national scale and scope of this project. 
Having said this, simulated annealing is a more popular technique but most frequently 
applied at the level of a single region in which the data processing implications are 
more limited (see, e.g. Williamson et al.  1996 ; Smith et al.  2006 ; Procter et al. 
 2008  ) . SimBritain is one early example in which simulated annealing has been 
attempted at a national scale (Ballas et al.  2005  ) . 

 Individuals in Moses are completely enumerated and attributed to individual out-
put areas within local authority districts, currently amounting to 484 areas in Great 
Britain. The population can therefore be aggregated at any required scale from the 
local to the national according to purpose. One of the most useful features of the 
household SAR is that it comprises both households and their constituent indi-
viduals, so that relationships between individuals are preserved. As we shall see 
below, preservation of these relationships is a signi fi cant challenge for the dynamic 
procedures.  

    14.2.2   Dynamic Projection Module 

 The dynamics are represented as key demographic transitions in a series of discrete 
model steps.    Separate modules have been created to represent fertility, ageing and 
mortality; inter-regional migration; international migration; changing health status; 
household formation and dissolution (including partnerships and marriage); local 
migration; and housing market dynamics. The modules are at single-year time intervals 
up to 25 years in the future (for a more detailed description, see Wu et al.  2008  and 
Chap.   11     of this book). 

 The dynamics in Moses are represented as transitions rather than events. The 
bene fi ts of event-based modelling have been promoted recently by the DynaCan 
group and others (e.g. Morrison  2007 ; Gampe et al.  2007  ) , but whilst it is computa-
tionally more expensive, the transitions approach is much simpler to both imple-
ment and understand and is well suited to the data structures for this project, which 
are mostly based on aggregated transitions data rather than individual demographic 
events. Thus, for example, fertility is measured by the number of births to mothers 
in a single-year period according to their age and marital status, so it makes a lot of 
sense to represent the process as a transition (to parenthood) over a single year in the 
model. The parameterisation of processes is richly speci fi ed; for example, in the 
ageing module, survival probabilities are modelled for single years of age by gender 
for each of 33 administrative wards (for which vital statistics are available) resulting 
in a total of 6,666 survival rates for this single local authority area. 

http://dx.doi.org/10.1007/978-94-007-4623-7_11
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 Whilst the list of demographic modules is quite extensive, it can be seen that not 
all of the attributes enumerated within the PRM are explicitly accounted for by the 
dynamic model at this stage. In particular, characteristics such as education, occu-
pation and car ownership are not directly impacted by any of the transition modules. 
Therefore, one of the most important challenges is to extend the functionality of the 
Moses dynamic model so that transitions between education and age categories are 
modelled explicitly. One of the most useful resources to do this is the British 
Household Panel Survey (BHPS) in which a cohort of approximately 15,000 UK 
households has been tracked through time since 1991 (Taylor et al.  2005  ) . The 
BHPS already provides a major input to the process of household formation and 
dissolution (Birkin et al.  2009a,   b     )  and can be used to identify movers according to 
characteristics such as household size, marital status, age and ethnicity. In the same 
way, the problem of modelling transitions between educational states or from 
one occupation to another is currently underway as part of a broader study into 
the relationship between educational attainment, employment and life chances 
(Warner et al.  2010 ; Lambert and Birkin  2012 ).  

    14.2.3   Behavioural Models 

 Whilst demographic change is both interesting and fundamental, many of the applica-
tions to which Moses is directed require consideration of a much wider array of attributes 
relating to transport, health, crime and so on. In order to extend the range of the system, a 
synthetic ‘linker’ has been developed which allows individuals in the simulation to be 
linked with (demographically) similar people in survey datasets such as the National 
Travel Survey or Hospital Episode Statistics. Using this linker, we can represent the fact 
that more elderly individuals are much more likely to require treatment for, say, cataracts 
or that large households are more likely to exhibit high levels of car ownership. 

 An example at this point may be helpful. Suppose that we are interested in changing 
patterns of smoking over a 25-year period. Starting with the PRM, we can link to 
records in a dataset which captures individual variations in the propensity to smoke 
according to key characteristics such as age and ‘social class’ (occupation). Then 
we take the dynamic version of the simulation 25 years into the future and do exactly 
the same thing. For example, if the population in a given area becomes much more 
elderly, and assuming that young people are the heaviest smokers, then other things 
being equal the ratio of smokers in our area of interest will be reduced. 

 An obvious objection to this procedure is that in effect, we assume no change in 
the behaviours represented within our underlying dataset over a 25-year period, but 
this can be readily assessed. For example, one could quite easily adjust the model to 
assume instead that there will be a 1% annual reduction in smoking for the next 
25 years, or that smoking rates between the genders will equalise, or whatever other 
assumptions or scenarios are seen as appropriate (and, whilst these scenarios may 
be far from straightforward, it is more a question for the application context and the 
problem towards which the simulation is directed than for the method itself). 
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 A more fundamental problem is a con fl ict between this (naive) approach to 
behavioural linkage and the dynamics of the simulation. Suppose, for example, 
that at the start of the simulation individual x, a male aged 25, is a smoker and 
individual y, a female aged 40, is a non-smoker. After 25 years, we run an indepen-
dent linkage operation, and individual x, now aged 50, is a non-smoker and indi-
vidual y now turns out to be a smoker. Whilst the net effect is the same, it seems 
much more likely that individual x would still smoke and individual y still would 
not. This    may not be important if the ultimate objective of the analysis is just to 
estimate the number of smokers by demographic type or small geographical area 
(as could be the case with many of the static and comparative static approaches 
which we mentioned in our introduction) but could be more signi fi cant if we want 
to look at dynamics explicitly, for example, if we introduce a new policy or stop 
smoking service at time t and want to see the effect of this. The problem here is 
similar to the approach which we have sketched in relation to education and income 
in the previous subsection. So in essence, what we would like to do is to represent 
the transition between categories (e.g. from smoker to non-smoker) as a function 
of relevant demographic or socio-economic variables, using appropriate data from 
BHPS or health surveys. A generalisation and extension of this method might take 
further account of the importance of interdependence and environmental interac-
tions in the decision-making process. For example, the decision to stop smoking 
could be related to the fact that a friend or relation has already changed their behav-
iour. Alternatively, the decision to become a car owner could be dependent on a 
recent change of house or job, or moving to a location with more dif fi cult public 
transport links. For problems of this type, the technique of agent-based modelling 
has signi fi cant potential, and this is pursued further in the examples and discussion 
which follow.  

    14.2.4   Towards a Social Simulation Infrastructure 

 In the work which has been undertaken on Moses as part of the UK e-Social Science 
programme (Birkin et al.  2009a,   b  ) , a multidisciplinary team from a variety of insti-
tutions has also considered the problem of how to embed the simulations within a 
research infrastructure which makes these simulations easy to use, share and inter-
pret (Birkin et al.  2010  ) . A proposed ‘architecture’ for this work is reproduced in 
Fig.  14.1 . Here, we can see that the basic modules already discussed are embedded 
within a service-oriented framework which makes these capabilities – reconstruction, 
dynamics and linkage – easy to access and combine. In addition, the important ser-
vice of visualisation has been added, to allow for easy extraction and representation 
of key pieces of information, through maps or other graphical means. Most important 
of all, however, Fig.  14.1  emphasises the need for the  engagement  in this process of 
planners, academics, policymakers and research users.  

 We will now move on to discuss various ways in which we see dynamic micro-
simulation tools providing substantial value to applied problems.   
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    14.3   Applications 

 In this section, several applications of the dynamic spatial microsimulation technology 
are reviewed. Through these examples, it is possible to add substance to the argu-
ment that important problems can be addressed in this way. These case studies also 
serve to highlight some of the more important dif fi culties and issues as a precursor 
to the discussion of research challenges which follows in Sect.  14.4 . 

    14.3.1   Demographic Modelling, Health Care 
and Social Service Provision 

 A straightforward exploitation of the dynamic model is to explore future scenarios 
for health care and social services based on demographic change. In collaboration 
with the Deputy Director for Social Services, Leeds City Council, a needs assess-
ment for social care was produced, and although more sophisticated modelling 
has some value, much of this was achievable using the power of the basic approach. 
The essential problem here is that service providers have good information about 
the uptake of services, but  fi nd it much more dif fi cult to understand how this may be 
related to unmet requirements. The problem of how to estimate future changes in 
both need and uptake is also signi fi cant. So one important capability here is simply 
to forecast the changing pattern of key indicators into the future. The example 
of limiting long-term illness is shown in Fig.  14.2  (whilst comparable Australian 
projection attempts include Harding et al.  2011  ) .  

     Fig. 14.1    An architecture for dynamic simulation       
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 The value of microsimulation in this context is particularly evident since social 
care requirements are often dependent on the intersection of multiple risk factors at 
the level of an individual person or household. These numbers cannot be simply 
extracted from aggregate census information. For example, one high-risk group 
which can be identi fi ed in this way are codependent adults. These were de fi ned in 
the simulation as two elderly people (aged 65 and over) living together with no 
other household members and in which at least one of the residents is in a poor state 
of health (Fig.  14.3 ). In a similar way, we identi fi ed high-risk individuals living 
alone as not just elderly (65 or over), in poor health, with low-quality housing and 
with poor mobility due to lack of access to a car (Fig.  14.4 ). In both of these cases, 
it was possible to estimate current distributions and their evolution over time.   

 To    complement this approach, we were able to estimate spatial distributions of 
key indicators such as disability through an extension to the approach for smokers 
which were described in the previous section. Thus, a pro fi le of the disabled was 
obtained – in relation to age, household status, quality of health, occupation and 
employment. Measures of disability were generated from the British Household 
Panel Survey and then extrapolated 25 years into the future (see Table  14.1 ). A scenario-
based projection was also generated assuming a single-year improvement in healthy 
life expectancy for every 5 years in the simulation (e.g. in 2031, an individual aged 
65 has the same incidence of disability as an individual aged 60 in 2006).   

    14.3.2   Transport 

 In order to demonstrate the power of the simulation architecture which we sketched 
in Fig.  14.1 , a case from the transport sector was developed. The vital extension 
which facilitates this application is a simple behavioural model which can take 
detailed demographic inputs from either the baseline reconstruction or dynamic 
model and to assign transport destinations and the associated routes. In joint work 
with the Institute for Transport Studies at Leeds, the spatial microsimulation models 
were loosely coupled with Omnitrans route planning software to explore the effect 
of population change on accessibility, traf fi c congestion and sustainability. This 
operation is simple and essentially sequential. First, the demographic projections 
are produced. Second, these projections are used to generate the demand for trips 
within the transport model. A sample output from this approach is shown in 
Table  14.2  where we can see the growth in trips, reduction in average speeds and 
increase in airborne pollutants over a 25-year projection cycle (Liu et al.  2009  ) . 
The signi fi cance of this work is that traf fi c simulation tools are widespread and have 
sophisticated capabilities in relation to the allocation of trips between destinations 
and the distribution of trips between routes, but typically lack re fi nement in the trip 
generation process.  

 This work was extended in a study of the Manchester congestion charge. In 2008, 
the residents of Manchester were invited to vote on a proposal to introduce a charge 
on vehicular access to the centre of the city, similar to charges which have been 
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operational in central London since the earlier part of the decade. In order to gauge 
public opinion on this issue, our project partners at the Centre for Applied Spatial 
Analysis (CASA) at University College London were invited to prepare a web-
based survey of attitudes and responses to the charge. This survey was promoted 
via regional television (BBC North-West) and received over 15,000 responses. 
To exploit this data, we constructed a simple traf fi c simulation tool which was 
embedded within the dynamic simulation architecture. The trip patterns produced 
by this model were conditioned by parameters relating to travel times, mode prefer-
ences, trip cost and so on (for more details, see Birkin et al.  2011a  ) . For a given set 
of parameter values, then for any combination of origin characteristics, it is possible to 
extract from the traf fi c model probabilities of selecting any destination or route 
combination. These combinations can be sampled in the usual way in order to attach 
a destination and route for each individual in the microsimulation (i.e. by Monte 
Carlo selection). 

 The procedure was as follows: A dynamic microsimulation was run in order 
to update the population to the present day (i.e. 2008 at the time of the study). 
The traf fi c simulation was run with a given parameter set. From the traf fi c simula-
tion, destination and route choices were appended to the microsimulation. This could 
then be used to predict the transport behaviour of the individuals in the MSM. Then 
the same process was repeated assuming the introduction of a congestion charge, 
which naturally affects the choice of both destinations and routes quite signi fi cantly. 
From this ‘scenario’, we can gauge the effect of a congestion charge on individual 
behaviour. What we did next was to run a huge number of simulations in order to 
reproduce the stated behaviours from the congestion charge survey within the MSM. 
This required the use of a genetic algorithm to guide the search procedure, and the 
computational intensity of the process was supported by deploying the models across 
a national grid infrastructure (Birkin et al.  2011a  ) . Having achieved all this, it was 
then a straightforward exercise to use the calibrated parameters to test the effect of 
alternative charging scenarios on the transport behaviours of the local population 

   Table 14.2    Changing travel patterns in the city of Leeds   

 2001  2006  2011  2016  2021  2026  2031 

 Population  680,872  696,778  702,290  720,802  771,918  801,447  820,114 
 Average speed 

(km/h) 
 52.9  52.1  51.1  49.7  48.1  46.9  46.0 

   Table 14.1    Projections of disability for the city of Leeds   

 Year  Estimate  Disabled (%)  Comment 

 2006  Baseline  9.1  Disability rates from the BHPS, 2006 
 2031  Baseline  14.1  Continued disability rates from 2006 
 2031  Scenario  11.0  Enhanced healthy life expectancy 
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(some of the key outputs from the simulation tool are shown in Table  14.3 ) although 
a much wider range of indicators were also produced including effects on distance 
travelled, trip costs, pollution and road accidents (see also Birkin et al.  2010  ) .  

 In this example, we have therefore introduced primary survey information 
(increasingly referred to as ‘crowd-sourced data’) in order to calibrate the behaviour 
in a microsimulation model, and in which the behavioural estimation process is 
somewhat more sophisticated than the simple linkages with which we began in 
Sect.  14.3.1 . This process could potentially allow policymakers to explore the 
impact of alternative planning scenarios but might also be used more widely as an 
information tool to allow members of the public to gauge the effect of their own 
choices on the urban environment. However, a disappointing but necessary post-
script to this particular case study is that the proposal to introduce a congestion 
charge in Manchester was comprehensively rejected by the public vote before the 
end of 2008.  

    14.3.3   Crime 

 Spatial analysis of crime patterns is of great interest not just to academics (Eck 
 1995  )  but to a wide variety of groups in both the public sector (e.g. police) and 
private organisations (insurance companies and so on) (   Hirsch fi eld and Bowers 
 2001  ) . Studies have persistently identi fi ed local hotspots in the concentration of 
incidents which are relevant to both understanding the underlying behaviour 
patterns by which criminal activity is realised as well as having implications for 
resource targeting, for example, through neighbourhood policing or target harden-
ing. In addition to map-based analyses of criminal incident data, geodemographic 
analysis has been deployed to try and gain an improved analysis of spatial varia-
tions. More promising still are recent agent-based models of criminal activity; for 
example, Malleson  (  2010  )  has constructed a model of burglaries which is predi-
cated on a detailed individual-level simulation of the attributes and activity patterns 
of burglars. This model also includes a detailed assessment of opportunities relat-
ing to the characteristics of individual neighbourhoods and streets (such as quality 
of lighting, ease of access, vacant dwellings, etc.). None of these approaches, how-
ever, allow detailed assessment of the importance of victims within the criminal 
environment. 

 Environmental criminology shows that the attributes and behaviour of victims 
are of crucial importance, in relation to the occupancy of properties (e.g. at different 
times of day), the attractiveness of targets and the propensity to repeat victimisation, 
which are all strongly related to the characteristics of individual households. Recent 
work (Malleson and Birkin  2011  )  has demonstrated how to couple an agent-based 
model of burglary with a microsimulation model of the targets (i.e. potential victims). 
An ongoing project funded by the Joint Information Services Committee (JISC) in 
partnership with such agencies in Merseyside, Manchester and Leeds is seeking to 
demonstrate and exploit the value in this approach (JISC  2011  ) . Whilst it is true that 



236 M. Birkin

synthetic individual data has little direct bene fi t, the  fl exible aggregation of these 
data, for example, to the level of streets or small estates, would facilitate the forensic 
examination of patterns such as hotspots according to the social make-up of local 
communities alongside observable physical and environmental criteria. The systematic 
linkage between synthetic microdata and data about offences (from police or local 
authorities) or about victimisation rates from survey data such as the British Crime 
Survey, together with diverse information about local environments, could therefore 
furnish much valuable intelligence to both criminologists and local agencies.  

    14.3.4   Housing 

 Local housing markets have a fundamentally important place in the Moses dynamic 
model by conditioning intra-regional migration  fl ows. An understanding of housing 
and residential location patterns is therefore of vital importance to the modelling 
process; it is also capable of yielding scenarios which are important to policymaking 
in their own right. In a current doctoral research project which has been supported 
by the Chief Regeneration Of fi cer in the city of Leeds, we have considered how to 
represent housing market decisions in order to assess the effects of changes in the 
supply of accommodation (e.g. a continually changing balance between public and 
private providers) as well as broader in fl uences such as the quality of local schooling 
and the nature and availability of local employment. All of this has been grounded 
within the context of EASEL (East and South East Leeds), a project which aims to 
regenerate one of the more deprived communities in Leeds through a combination 
of physical, social and economic redevelopment (Jordan et al.  2011  ) . 

 Through a combination of literature review and examination of empirical evidence, 
local migration patterns have been assessed in relation to a simpli fi ed two-stage 
process:  fi rst, a decision to move and second, a choice of destination. Major factors 
in the decision to move are household composition and life stage, tenure, socio-
economic status and accommodation type (Jordan et al.  2011 , pp. 157–158). In relation 
to the destination choice process, seven major rules were identi fi ed relating to prox-
imity, housing type, tenure, ethnicity, transport, local schooling and neighbourhood 
quality (ibid., p. 160). Speci fi c scenarios are considered by Jordan  (  2011  )  in relation 
to changes in the housing stock (in particular, investment through ‘public-private’ 
partnerships for new builds and conversion of existing properties), a proposal 
for a new road scheme to provide better connections to the major employment centres 
of central Leeds and alternatives for the closure or revitalisation of a local school. 

 A second application of spatial MSM concerns current changes in government 
policy relating to housing bene fi t. Recent proposals are both extensive and complex 
but affect both eligibility and levels of bene fi t as part of the drive to cut £1.8 billion 
from the national budget (Birkin et al.  2011b  ) . The local impact of these changes is 
important, partly in view of potential interactions with other dimensions of social 
and economic deprivation, but also because housing markets (whether rental or 
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owner-occupied) are themselves localised and it seems unlikely that such large sums 
of money can simply be removed from the system without knock-on effects to 
the quality and availability of property (i.e. some understanding of the reaction of 
private landlords and housing providers is also required). Through ongoing research 
with Leeds City Council, we hope to shed light on the immediate geodemographic 
implications and effects of the housing bene fi t reforms; to understand the likely 
longer-term market dynamics and outcomes in relation to both local neighbour-
hoods and the city; to identify how these changes and their effects may interact with 
other austerity measures, policy changes (e.g. to social rented housing) and economic 
conditions across Leeds; and to explore issues of social and spatial justice and 
equality in relation to these reforms, for example, how they might have speci fi c 
implications for different social groups and communities across the city.  

    14.3.5   Infrastructure 

 The potential value of simulation in planning has already been considered in the 
context of transport and housing. Other services which can potentially bene fi t from 
the same treatment include energy, water, waste disposal and information and com-
munication technologies. Whilst there is some tradition in the assessment of water 
consumption through a microsimulation approach (e.g. Williamson et al.  1996 ; 
Jin  2009  ) , the other services have received less attention in the past. A current project 
with the Infrastructure Transitions Research Consortium (ITRC) aims to utilise 
microsimulation as a means to embed demographic change as a signi fi cant factor 
underpinning long-term demand for infrastructure services (water, waste, ICT, 
transport and energy – ITRC  2011  ) . The ITRC is a research grouping with academics 
from six universities but also includes supporters from many business sectors, 
including engineering, utilities and insurance, as well as supporters from government 
and regulatory groups. In this context, long term could mean anything up to the 
middle of the next century whilst recognising the uncertainties over such a times-
cale in provision and consumption of these services. 

 As a preliminary demonstration of capability, dynamic models for a coarse 
11-zone model (ten standard regions of England and Wales, plus Scotland) were 
aligned to the ONS sub-national forecasts to 2033 (ONS  2010  )  (see Birkin and Wu 
 (  2009  )  for a discussion of methods). In parallel to this, we conducted analysis of 
consumption patterns for ICT and transport using data provided from Acxiom’s 
Research Opinion Poll (see Thompson et al.  2010a ) Four demographic drivers were 
arbitrarily selected – age, household size, ethnicity and income. For transport, we 
built an index based on the question ‘how many miles did you drive in your own car 
last year’, and for ICT, we repeated this using a combination of ownership of mobile 
phones, digital television and access to broadband. The results are summarised in 
Figs.  14.5  and  14.6 , showing patterns that might generally have been expected ex 
ante. In both cases, high large income and household sizes are strongly associated 
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  Fig. 14.5    Demand for ICT       

with intense consumption. The peak ages for transport use appear to be in the ‘family’ 
life stages (i.e. early middle age, 30–45), whilst for ICT, this is slightly younger. 
Ethnic variations are not tremendously signi fi cant.   

 The forward projection of these data is shown in Figs.  14.7  and  14.8 . The baseline 
assumption is no change in the socio-demographics of consumption. Here, the major 
structural factors are a combination of differential regional growth, mostly biased 
towards the south and east, and ageing of the population. In general, demographic 
growth is offset to some degree by ageing of the population, since consumption 
rates tend to decline somewhat amongst the elderly. For example, in Great Britain 
as a whole, an increase of 22% in the number of people yields a 14% growth in the 
index of consumption for transport and 12% for ICT.   

 These early explorations obviously contain an alarming array of restrictive 
assumptions. More re fi ned analysis will concentrate on the adoption of alternative 
scenarios for both demographic change and consumption patterns and spatial disag-
gregation of the estimates to a more appropriate level of geography. However, given 
that the most acute stresses on infrastructure provision are on services like water, 
waste and transport (for which ‘national grids’ are not feasible), then the coinci-
dence of these regions as the zones of greatest expansion in demand is immediately 
thought-provoking for service providers.   
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  Fig. 14.6    Demand for motoring       

  Fig. 14.7    Growth in consumption, 2001–2033       
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    14.4   Challenges for Dynamic Spatial Microsimulation 

 The examples which have been described in the previous section are unapologetically 
ambitious. They stretch the limits of what can be achieved with current technologies 
right up to and in most cases signi fi cantly beyond its current limits. Were they not 
to do so, then these problems would have little to attract the attentions of academic 
research. In this section, some of the most important dimensions of the challenge 
are assessed. 

 In any modelling exercise, the dif fi culties of  validation  are rarely to be discounted. 
This issue is particularly acute when the underlying model is dynamic, looking 
forward to an uncertain future. As a methodological device, some form of  backcasting  
may be the best available validation tool. The general idea, expressed at its simplest, 
is to run the simulations backwards in time rather than forwards, with the obvious 
and signi fi cant bene fi t that model outcomes can then be evaluated against some-
thing that is known rather than unknown. This technique has been pioneered within 
climate change science with somewhat mixed results. Sceptics will always claim, 
not without justi fi cation, that historic analyses will do little to inform the trajectory 
of key system parameters into the future. Since the parameters of local economic 
and demographic systems may be slightly more stable and subject to regulation and 
control to a degree, then these methods could be of more interest in microsimulation. 
The case has at least been broached by Birkin and Malleson  (  2010  )  who suggested 
that backcasting at the very least provides a robust test of model consistency and 
also offer a tentative example. 

 Naturally, the future will always be uncertain. The most popular response in 
microsimulation modelling has been to adopt a procedure of  alignment  to some 

  Fig. 14.8    Growth in consumption by region       
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higher level or aggregate estimates; the alignment of individual-based estimates to 
government demographic projections, which we introduced brie fl y in Sect.  14.3.5 , 
is a representative example here. Such approaches tend to emphasise the usefulness 
of MSM in producing  fi ne-scale disaggregations of macroeconomic forecasts. They 
do less to exploit the fact that a dynamic MSM might be a better way to go about the 
forecasting problem in the  fi rst place. In other words, can the macroeconomic fore-
casts themselves be trusted? The answer to this question presumably turns to some 
degree on the quality of the estimates in question. An alternative strategy based on 
the formulation of scenarios has been adopted in the context of medium to long-
term demographic projections in the UK context (Wohland et al.  2010  )  and as part 
of a pan-European study (de Beer et al.  2010  ) . Such approaches can provide a lot of 
 fl exibility in ‘what if?’ planning, without necessarily being highly prescriptive about 
what might actually be expected to happen. 

 Academics could almost certainly learn much about the reliability of the tech-
niques, as well as their value, through a process of greater  engagement  with plan-
ners, policymakers and end users, although to be fair, microsimulation has tended to 
focus much more closely on real-world problems than the competing method of 
agent-based modelling. This argument was put forward in the plenary address at the 
second IMA conference (Gilbert  2009  )  and in the literature by Wu et al.  (  2008  ) . 
Nevertheless, continued and greater engagement provides a number of bene fi ts. 

 First is the possibility of real data with which to calibrate, test and enhance the 
models. In the examples above, we have been provided with data on housing 
schemes and tenant attitudes and behaviour relating to the EASEL scheme, a com-
plete anonymised list of housing bene fi ts claimants over a 3-year period, intelli-
gence relating to the provision and uptake of social services for Leeds primary care 
areas as well as commercial data from Acxiom for research applications. We have a 
long-standing relationship with Safer Leeds who have shared data relating to property 
theft and other non-violent crimes, by time, season and location (Thompson et al. 
 2010b  ) . In the fullness of time, we are con fi dent of extracting good information 
from the utilities about patterns of consumption in order to further inform the infra-
structure models. 

 Second, engagement with real-world users plays to the crucially important impact 
agenda, which has been a steadily important theme amongst research councils and 
envisaged to become equally signi fi cant in our teaching as the cost of tuition continues 
to rise and relevance rises ever higher up the agenda. 

 Finally, the possibility of direct  fi nancial support from third parties should not be 
discounted, as the provision of intelligence to third-party users, in both commercial 
and public sector organisations, has considerable value (Birkin et al.  2002  ) . 

 In addressing the dif fi culties posed by really hard practical problems, researchers 
have not helped themselves by a tendency towards reinvention. In the related  fi eld 
of geodemographics, Dan Vickers has argued that research has been held back 
because of the need for commercial users to protect their methods. His solution to 
this is to promote ‘open geodemographics’, in which data and techniques are made 
transparently available to all interested parties (Vickers  2007  ) . Whilst commercial 
concerns are not usually to the fore in MSM, there seems to be a great deal of duplication 
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and little agreement on the best techniques to use, for example, in the creation of 
micro-populations, let alone any move towards something like a standard set of 
simulations. Perhaps the time has come to start thinking seriously about ‘open 
microsimulation’. Certainly, we would see our NeISS project as a nudge in this 
direction, with its emphasis on the sharing of models and data sources and the pub-
lication of algorithms, model results and the ‘work fl ows’ which were used in their 
creation. 

 A second characteristic feature of academic research is the maintenance of intel-
lectual ‘silos’. An important manifestation of this in the current context is a general 
failure to bring closer together the closely related  fi elds of MSM and  agent-based 
modelling  (ABM). The two have much in common, if only at the level of system 
representation. Of course, it can be argued with much justi fi cation that the philosophy 
of the two approaches has some importance differences – on the one hand, typically 
stochastic (MSM), the other more obviously process-based and behavioural (ABM); 
one quite highly policy-focused (MSM), the other more abstract (ABM); and so on. 
We would argue that this provides all the more reason to seek synergies through 
common ground. In the work reported here, we have looked for the possibilities of 
integration, especially in demographic modelling, where agent mechanisms have 
provided for model extensions to deal with dif fi cult problems in local housing 
markets, student migration and the signi fi cance of individual and family histories 
(Wu et al.  2008,   2011 ; Jordan et al.  2011  ) . Our work on crime has also begun to 
explore this territory, as reported above (Malleson and Birkin  2011  ) , and work on 
agent-based retail models is also beginning to point in this direction (Birkin and 
Heppenstall  2011  ) . One way forward could be to build on the open microsimulation 
concept to push the integration of approaches, and in current work, we are evaluating 
the possibilities of embedding RePast, an ABM software development framework, 
within the NeISS simulation architecture of Fig.  14.1 . 

 Another disconnection between MSM and ABM is that whilst the former are 
almost always strategic in their intent, ABM are much more likely to have a real-
time emphasis. This is true in applications such as pedestrian  fl ow and crowd control 
(e.g. Helbing et al.  2005  )  whilst Kai Nagel’s model of vehicular  fl ow in Switzerland 
has been operational in real time for several years (Nagel et al.  1998  ) . Whilst the 
inputs to such agent-based models are typically via sensor networks (which in them-
selves are rapidly becoming more widespread and therefore of increasing value as 
sources), the work on SurveyMapper and our own transport example raises intrigu-
ing possibilities about the possibilities of  crowd-sourced MSM , which could be 
operational in either real time or much longer policy and planning timeframes. 
At the strategic extreme, however, the importance of higher level interdependencies 
should not be discounted. An important dimension of the ITRC project not yet 
discussed will be to examine the  co-evolution  of infrastructure systems in relation 
to both supply and demand. This is no less an issue in the other application sectors; 
for example, whilst local migration is responsive to the supply of housing, in the 
medium term, property markets should go some way to ensuring that new housing 
development begins to take place where it is most needed.  
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    14.5   Conclusion 

 In this chapter, we have presented a technical and architectural framework for 
dynamic spatial microsimulation. A range of examples have been used to illustrate 
the power and scope of interests that can be addressed within this domain. The 
major challenges in our own research agenda have also been brought forward. 
We hope to have done enough to convince the reader that this agenda is by nature 
not an ideal wish list which will never be realised but more a set of tangible objec-
tives against which concrete progress is already being made. As long as academic 
research can be mobilised to meet these challenges, and others as they arise, then 
dynamic spatial microsimulation can provide important models to aid our under-
standing of socio-economic and demographic problems, as well as continuing to 
provide useful tools for their amelioration through policy and planning.      
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          15.1   Introduction 

 Spatial microsimulation models, both static and dynamic, are a useful way to estimate 
area-level data, whether these data are regarding health, socio-economic status or 
income/ fi nance. However, in order for planners and government to be able to use 
and rely on these data, it is essential that the modellers can show that the estimates 
are an accurate representation of the real world and are reliable. 

 Generally, to verify the integrity of any model, it is necessary to validate the 
model outputs (Ballas and Clarke  2001 ; Oketch and Carrick  2005  ) , using both internal 
and external validation methods (Edwards et al.  2010  ) . Internal validation is the 
process whereby the variables that were used in the estimation of the output data are 
compared, so the input dataset is compared with the output dataset for those variables. 
This process examines the data from which the simulated dataset is drawn. External 
validation is the process whereby the variables that are being estimated are com-
pared to data from another source, external to the estimation process, so the output 
dataset is compared with another known dataset for those variables. 

 Importantly, for the external validation process, the known dataset should come 
from a different source of data than that used in the model, that is, data not used in 
the original simulation (Caldwell and Keister  1996  ) . Thus, this process examines 
whether the variables that have been estimated can be generalized to the population 
in question by comparing to an alternative dataset. That is, are the simulated data an 
accurate presentation of the population in question? 

    K.L.   Edwards   (*)
     School of Clinical Sciences ,  University of Nottingham ,   Nottingham ,  UK    
e-mail:  Kimberley.edwards@nottingham.ac.uk  

     R.   Tanton  
     NATSEM ,  University of Canberra ,   Canberra ,  Australia    

    Chapter 15   
 Validation of Spatial Microsimulation Models       

      Kimberley L.   Edwards       and    Robert   Tanton       



250 K.L. Edwards and R. Tanton

 For example, in Chap.   5    , sex, age and deprivation score were used to estimate 
obesity. Thus, the variables sex, age and deprivation should be internally validated: 
compare the input dataset for these variables to the corresponding simulated dataset. 
Similarly, obesity rates should be externally validated: the obesity simulated dataset 
should be compared to a known dataset from another source, such as actual measured 
obesity rates in that population. 

 In the speci fi c case of spatial microsimulation models validation is a massive 
challenge. This is because, generally, these models are used to estimate data that does 
not otherwise exist, perhaps due to con fi dentiality reasons (e.g. income or medical 
data for individuals) and/or because it would be expensive and time consuming to 
try to collect a large sample of data for the population in question (particularly as, 
in many countries, national sample datasets already exist, thus it would also be a 
duplication of both time and money). In many countries, sample surveys are conducted 
that provide estimates for large areas, but collecting enough sample to derive estimates 
for small areas is prohibitive in terms of cost and respondent burden. A national census 
can provide excellent small-area data which can be used for validation (and this is 
one of the main sources of validation data for the Australian spatial microsimulation 
model, SpatialMSM – see Chap.   6    ), but these are usually conducted every 5 or 
10 years and collect a limited range of information compared to surveys. 

 This means often it is not possible to compare the estimates from spatial micro-
simulation models to actual small-area data directly. Further, with dynamic spatial 
microsimulation models that project into the future, there is the additional problem 
of validating the projections – any future scenarios will be uncertain.  

    15.2   Methods of Validation for Spatial Microsimulation Models 

 Statistical model validation is a key (arguably ‘the’ key) part of the process of model 
building and historically one that has been overlooked in the spatial microsimulation 
literature, whether due to non-action or non-explanation by the author. Some models 
automatically undertake validation as part of the simulation process, but many do 
not. This necessitates that the modeller spends time validating their outputs. 

 There is no one ‘right’ accepted method to validate a spatial microsimulation 
model. This in itself may have led to the confusion over whether to report validation 
and what information to report. This book has gone some way towards remedying 
this omission. Each methodological chapter suggests a process to assess the error in 
the simulated data and to validate that model. These methodologies and the different 
internal and external validation approaches are summarized and assessed below. 

    15.2.1   Validation Methodologies 

 In validating a spatial microsimulation model, it is  fi rstly necessary to ensure the 
data are at the same spatial scale, aggregating individual level data to levels at which 
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observed (e.g. census) datasets exist, if necessary. Thus, for internal validation, it 
would be necessary to aggregate the individual level data for the constraint (benchmark) 
variables to the observed dataset level. Likewise, for external validation, we will 
need to aggregate data as described in Sect.  15.2.2 . There are then a number of 
different statistical tests that can be used to validate the data. 

 Some authors use TAE (total absolute error) and/or SAE (standardized absolute 
error) to determine the quality of the simulation (e.g. Chap.   4    ; Ballas et al.  1999, 
  2006  ) . This method provides information on the size of the difference between the 
simulated and actual datasets but does not evaluate this difference. For example, 
a TAE of 10 might be high if the population was only 20 people but low if the popu-
lation was 20,000. The SAE addresses this issue by using the population size as the 
denominator, but generally, authors seem to use total population, rather than the 
population for that categorization of the variable, which may be deemed to under-
state the size of the errors. Also, this measure does not provide any information on 
whether any differences are statistically signi fi cant. Examples of the use of SAE 
include early work using the SpatialMSM model (see Chin et al.  2005  ) . 

 It is also possible to use regression analyses (see Chaps.   4     and   5    ). This technique 
compares the simulated data to the actual data in order to understand the  fi t of the 
simulation. Obviously, this requires an awareness of the data type, and so whether 
linear, poisson or logistic regression is most appropriate. To do a simple linear scatter 
plot, converting the data to percentages can be a useful technique (Ballas et al.  2005 ; 
Edwards and Clarke  2009  ) . These results can be presented as scatter plots, with the 
simulated proportion on the x-axis and the actual (census) data on the  y -axis with a 
trend line drawn through the datapoints. The  R -squared statistic (the coef fi cient of 
determination) (R 2 ) is an indicator that ranges in value from 0 to 1, and it reveals 
how closely the simulated values for the regression trend line  fi t the actual (census) 
data. A trend line is most reliable when its  R  2  is at or close to 1. Thus, with this 
technique, we would expect to see a high coef fi cient of determination for the constraint/
benchmark variables (i.e. variables used in the input dataset for the model) and, 
if known data is available, for the variable(s) being estimated. 

 However, regression analysis does not give any information about the  fi t of the 
simulated data to the ‘ideal’ line (i.e. where  y  =  x  and the simulated data is the 
same as the actual data). Rather,  R  2  expresses the  fi t of the data to the ‘best  fi t’ 
line through that data. That is, the coef fi cient of determination is providing infor-
mation about precision, not accuracy. Thus, a high  R  2  value does not guarantee 
that the  fi t of the model to the data is good. Instead, a dummy regression line 
(identity line) can be drawn on the scatter plot to denote the ‘perfect  fi t’ of  y  =  x . 
Thus, if the data had simulated perfectly, then the actual data would equal the 
simulated data for each small area ( y  =  x ), and all the points would lie on a straight 
line of gradient 1. From this line, a ‘standard error around identity’ can be calcu-
lated as
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where SEI is the standard error around identity,  y  
est

  are the estimated values for 
each area,  y  

rel
  are the reliable estimates for each area from a census or other data 

source and  y  
rel

  is the mean estimate for all areas where reliable data are available. 
This estimate has been used in validation by both Ballas and Tanton (see Ballas 
et al.  2007 ; Tanton et al.  2011  ) and Chap.    6    . 

 To more accurately address the question of model  fi t, the residuals of the data 
should be examined. These are the differences between the observed and predicted 
(simulated) values for each variable, which can be examined graphically (e.g. with 
a scatter plot). If the model is a good  fi t, then the residuals would behave randomly; 
conversely, if any non-random structure manifests in the residuals, this clearly 
suggests a poor model  fi t. 

 An additional statistical test is required to establish whether there are any statisti-
cally signi fi cant differences between the synthetic and real populations. One way to 
do this is with a  t  test (see Chap.   5    ). With a spatial microsimulation model valida-
tion, the data are paired (given we are comparing simulated with actual data), thus 
an equal variance 2-tailed  t  test can be used to determine if there is any signi fi cant 
difference between the two datasets (i.e. simulated and actual). Thus, if the simula-
tion is robust, we would expect to see no signi fi cant differences between the simu-
lated and actual values for the input variables (and estimated/output variables, if 
known data are available). This enables the model accuracy to be assessed, as 
opposed to simply its precision. 

 Similarly a  z -score can be utilized for validation purposes (Chap.   8    ; Hynes et al. 
 2009 ; Rahman et al.  2010  ) . This test is analogous with the  t  test described above, 
depending on whether population parameters are known or not. A  z -score is a mea-
sure of how many standard deviations an observation is from the mean for those 
data (note, this technique assumes data are normally distributed). It is calculated by 
determining the difference between each individual raw score and the mean value 
for the population and then dividing this difference by the standard deviation for the 
population for each variable category. A modi fi cation is added to adjust for areas 
with zero counts. Calculating the  z -score provides a value akin to a chi-squared 
statistic, and if this  fi gure exceeds the critical value (1.96), the dataset is a poor  fi t. 

 An alternative method is to use a measure of accuracy (such as in Chaps.   6     and 
  9    ), which also seeks to calculate a statistical measure of the accuracy of the simu-
lated versus actual data. It ascertains the sum of the absolute error for all constraints 
(benchmarks) in each area and determines whether this is larger or smaller than 
the population for the area. If larger, the area is  fl agged as being an inaccurate 
simulation.  

    15.2.2   Additional Considerations for External Validation 
of the Model Output 

 For external validation, as explained above, the process can often be hampered by a 
lack of known data, particularly at the appropriate (micro) spatial scale. Three methods 
are suggested below to circumvent this dif fi culty. 
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 It may be possible to aggregate the resulting simulated data to a coarser geographic 
resolution in order to be able to compare the simulated data to existing ‘real’ survey 
data. This is because once a list of individuals and their attributes have been simu-
lated, the individuals can be aggregated up to new, coarser, geographic scales at 
which observed datasets exist. This methodology was used in Chaps.   5    ,   7     and   8    . 
This technique is useful for checking that the  fi gures are broadly correct (i.e. at a 
coarse geography) (Rephann  2001  )  but cannot assess the correctness of the spatial 
distribution at the small-area level. This method was also used for the Australian 
SpatialMSM model described in Chap.   6     and in Tanton et al.  2011 . 

 However, this may not always be possible, for example, if the study area simulated 
is very small or if it only covers part of the coarser geography that is available. For 
example, data simulated at the small-area level for, say, the city of Leeds in Yorkshire, 
could not be aggregated to the Yorkshire and Humber ‘Government Of fi ce Region’ 
(GOR) as the GOR is bigger than the city. However, if data had been simulated for the 
whole of the north of England, then it would be possible to use the data for the synthetic 
individuals that ‘lived’ in those micro-areas that fell within the boundaries of the 
Yorkshire and Humber GOR and compare the simulated data with the actual data. 
There may be a problem with tautology with this methodology. That is, if the survey 
was used in the simulation and the comparison is technically an internal one as it is 
being made against a dataset used in the simulation (albeit at a different spatial scale). 

 An important point to be aware of here is the ecological fallacy. This is where it 
is erroneously assumed that individuals within a group have the same characteristics 
as the average for that group. Thus, data that accurately describe the characteristics 
of a group do not necessarily apply to individuals within that group. A stereotype 
would be a classic example of this. For example, if a particular group is deemed to 
be, on average, shorter than the general population, it does not mean that every indi-
vidual in that group is shorter than the general population. However, if the output 
from a spatial microsimulation model is an accurate representation of the individu-
als in that group, then their mean characteristics should concur with the real group 
characteristics, thus avoiding this issue. 

 Rather than grossing up simulated micro-level data to the coarser geography of 
an existing survey dataset, an alternative method of obtaining data for an external 
validation would be to compare simulated data to a sample of actual data for that 
variable, that is, to go out and collect (assuming the data do not already exist) data 
for one or more of the micro-areas in your simulation. There are obvious cost, time 
and ethical implications involved in this methodology, but it could be usefully used. 
For example, if obesity had been estimated for all age groups for a region, and data 
were routinely collected for, say, 11-year-olds in that region, then the estimates for 
that age group could be compared to the routine survey data and validated using the 
methods described above. Thus, if internal validation suggested that age was 
robustly simulated, and external validation showed that obesity in 11-year-olds was 
an accurate estimation, it would be reasonable to assume that obesity micro-level 
estimates for other age groups truly represented the real world. 

 A third approach may be to compare the simulated data to a different but cor-
related variable for which known data at the micro-level exist. Edwards et al. 
 (  2010  )  have demonstrated this successfully for obesity micro-level estimates 
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using data for cancers known to be associated with obesity. This method relies 
on the data demonstrating a high ( r  > 0.50) correlation between the two variables 
(in this case cancer and obesity prevalence) as there is not a linear relationship 
between effect size and predictive power. Lower correlation  fi gures have almost 
no value in prediction. It is only if the two variables are highly correlated that the 
predictive values become useful. Using this correlated dataset, the techniques 
described above can be utilized to examine the errors and whether any statisti-
cally signi fi cant differences exist between the simulated and known datasets. 
Accordingly, in Chap.   4    , Anderson describes the use of a correlated variable (the 
Welsh Index of Deprivation 2005) to externally validate the simulated variable 
(the percentage of households below average income) due to a lack of availability 
of small-area data for the simulated variable. Similarly in Chap.   6    , Tanton et al. 
use a different de fi nition of poverty to externally assess the spatial distribution of 
their poverty results. This method uses a graph that compares the modelled data 
to the similar data, with a 45 ° line through the graph. The dispersion of the points 
around this line is called the standard error around identity and has been described 
in the previous section. 

 The  fi nal method of validation is to run the model for a larger area and then test 
the results against reliable estimates for the larger area from another dataset, for 
example, a sample survey. This method is a test of the method being used; if it is 
working for a large area, then there is some con fi dence that it will work for small 
areas. However, this method cannot replace validation of the output for small areas, 
as it does not capture the distribution of the estimates between the small areas; all it 
can test is that the method is working reasonably. This method was used, in conjunc-
tion with the SEI described above and an aggregation method described above, 
in Tanton et al.  2011 .  

    15.2.3   Validation of Dynamic Spatial Microsimulation Models 

 As indicated earlier, there are additional complications with validating dynamic 
spatial microsimulation models. They are more detailed models, with more data 
combinations, and thus rarely are suitable micro-data available to use to externally 
validate. They also derive projections, forecasting expected scenarios based on 
assumptions about future events. 

 A common technique to address the problem of validating these models is to 
aggregate data to levels at which appropriately detailed data do exist, thus aligning 
the geographic resolution. The example given in Chap.   14     was to sum data to gov-
ernment demographic projection spatial levels, thereby also addressing the issue of 
assessing the validation of both current and future simulated data. The Moses model 
described in Chap.   11     also uses this technique for validation purposes. This capacity 
to match the micro-level estimates to macro-level estimates has been a key element 
to validation in spatial microsimulation modelling and, as described above, provides 
an important indication about the high-level functioning of the model. Thus, to take 
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this to the next stage, authors often adjust the simulated data as necessary 
(O’Donoghue  2001  ) . 

 However, this method simply serves to illustrate that the dynamic spatial micro-
simulation model is a good model to use to disaggregate government macro-level 
forecasts of society, thus relying on the quality of the underlying forecasts in the 
 fi rst place. That is, if the forecast is poor, then whether or not the validation method 
shows a good  fi t is not representative of whether the micro-level simulations are 
truly representative of the real world or not (i.e. a poor  fi t to a poor estimate tells us 
nothing). Better methods perhaps and solutions to these problems, as suggested in 
Chap.   14    , may be to use backcasting methods (Birkin and Malleson  2010  )  or to 
model only speci fi ed scenarios which allow for different futures to be examined 
(Wohland et al.  2010 ; De Beer et al.  2010  ) .   

    15.3   Reasons Why Validation May Be Poor 

 Exasperatingly, there is both art and science to spatial microsimulation modelling. 
High errors and poor validation could be due to a number of reasons. 

 It is important that the sample population is suf fi ciently large (Huang and 
Williamson  2001  ) . If too small, there will likely be too few individuals at the 
extremes of the spectrum, for example, the very poor or wealthy, those with rare 
combinations of characteristics such as same-sex partnerships or ethnic minorities. 
Thus, the precision and accuracy of the model may tail off at these extremes and for 
those areas with relatively high proportions of these individuals. Thus large, hetero-
geneous population datasets are likely to be associated with lower errors. It is worth 
considering combining survey datasets in order to achieve this. 

 Little research has been undertaken to assess whether few (Edwards and Clarke 
 2009  )  or many (Tanton and Vidyattama  2010  )  constraint variables produce a better 
 fi tting model. It will likely be different for different research questions and different 
underlying datasets, varying with, for example, the strength of the correlations 
between constraint and output variables in the datasets. Also more constraints, and 
categories of constraint variables, lead back to the problems at the extremes of the 
populations; do any individuals in the survey match these speci fi c combinations? 
If not, small number problems can be encountered. What is clear is that different 
constraint combinations will lead to different output datasets (Huang and Williamson 
 2001  ) , thus different validation results. 

 Large variations between simulated and actual data, resulting in large errors and 
poor validation results, could be caused by legitimate regional differences, that is, 
spatial attributes that are not included in the model (Birkin and Clarke  2011  ) . This is 
particularly relevant for spatial microsimulation models that only use socio-economic 
variables to determine the simulation output. 

 Of course, poor validation could also indicate that the model is a poor  fi t and the 
assumptions underlying the simulation, such as choice of datasets and/or constraint 
variables, need to be revisited and revised in order to improve the  fi t. To proceed to 

http://dx.doi.org/10.1007/978-94-007-4623-7_14


256 K.L. Edwards and R. Tanton

use a model that does not  fi t the data well would, in turn, mean that the questions the 
model is being used to investigate (whether for government policy or scienti fi c 
investigation) cannot be provided with good, or reliable, answers.  

    15.4   Conclusions 

 This chapter has explained the common methodologies for validating spatial micro-
simulation models as well as, hopefully, enforcing the point that this is an essential 
step in the modelling process and one that cannot be skipped. 

 Research is currently lacking in comparing and assessing these different method-
ologies to determine which is ‘best’ or the gold standard. However, given the choice 
of technique is largely driven by what data are available, and that this is a primary 
dif fi culty for these models, it is likely that authors would still be driven by the avail-
ability of data. It may also be that some methods are better for particular spatial 
microsimulation algorithms but not for others. 

 Importantly, researchers should be transparent about their validation methodologies 
and realistic about the strength of the estimates and accuracy of the models. Further, 
collaborating with colleagues from other disciplines (such as statistics, economics, 
medicine) and pooling resources and knowledge would facilitate improvements in 
validation techniques. Also, continuing to tackle real-world problems with these 
models should be encouraged (Wu et al.  2008 ; Gilbert  2009  ) . Working with local 
authorities and government, explaining the methods and the rationale in lay lan-
guage, will lead to increased knowledge about, and acceptability of, these models. 
In some way, while it has little statistical rigour, the authors have found that one of 
the best ways of validating these models is to show maps of the results to practitioners 
or people in the  fi eld, and they will quickly tell you if the results look reasonable or 
not. This also assists with increasing the impact of these models in addressing 
important social, medical and economic questions.      
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    16.1   Background 

 While microsimulation has established itself across the industrialised world as a 
useful tool for estimating the distributional impacts of policy change upon house-
holds and individuals, such models have typically provided results at the  national  
level. Policy makers, however, have been keen to understand more about the char-
acteristics of  small-area  populations and to assess the small-area impact of changes 
in policy or demographics. Over the past two decades, researchers have responded 
to this challenge. 

 The speed of development has gathered pace since the 1987 journal article on 
spatial microsimulation by Clarke and Holm  (  1987  ) . The edited volumes arising 
from the international meetings of microsimulators testify to the growth in spatial 
microsimulation. For example, none of the chapters in the book arising from 
the 1993 microsimulation conference (Harding  1996  )  or from the 1997 conference 
(Gupta and Kapur  2000  )  covered spatial microsimulation. Mitton et al.  (  2000  )  covered 
the 1998 conference and contained one chapter out of 14 on the spatial SVERIGE 
model. After 2000, the spatial microsimulation  fi eld evolved rapidly. By 2007, the 
two books arising from the 2003 conference contained descriptions of four spatial 
models (out of 22 model descriptions) and one chapter with a spatial microsimulation 
application (Gupta and Harding  2007  ) . By 2009, however, spatial microsimulation 
had developed so rapidly that the  fi rst four chapters in the Zaidi et al. book (which 
covered the 2007 conference) were spatial microsimulation applications. 

 Some earlier approaches to small-area estimation came out of the discipline of 
statistics, as statisticians attempted to link survey outcome or response variables to 
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a set of predictor variables known for small areas, in an attempt to ‘borrow strength’ 
from other data (Rao  2002,   2003 ; Rahman et al.  2010  ) . In the United Kingdom, 
alternative approaches to the creation of synthetic small-area microdata were devel-
oped by geographers, such as Birkin and Clarke  (  1989  ) , who used a technique called 
synthetic estimation to attach conditional probabilities to each individual (e.g. to 
estimate income). Williamson pushed the boundaries of the emerging discipline, 
using combinatorial optimisation to reweight survey data and to develop methods 
of validation and goodness of  fi t (Williamson  2001 ; Voas and Williamson  2000  ) . 
The  fi eld of spatial microsimulation in the UK has since blossomed, expanding to 
geographers at other universities and institutes and being utilised in an ever-growing 
number of applications (with the UK experience being well documented in this 
volume and summarised in the next section of this chapter). 

 In contrast, the Australian approach has emerged from economists and public 
policy experts, almost exclusively those located at the National Centre for Social 
and Economic Modelling (NATSEM) at the University of Canberra. NATSEM’s 
staff originally specialised in  national -level microsimulation models, which were 
used for a diverse range of policy analyses, spanning taxes, government bene fi ts, 
education and so on. One of the frustrations associated with the sample survey data 
that underlaid many of the NATSEM models in the 1990s was the lack of geo-
graphic detail (which was required to maintain the con fi dentiality of the respon-
dents to national sample surveys conducted by the Australian Bureau of Statistics 
(ABS)). To overcome this de fi ciency, NATSEM staff began to experiment with the 
production of synthetic small-area microdata, with a paper on the geodemographics 
of the aged being one of the  fi rst outputs from this new stream of research (Harding 
et al.  1999  ) . 1  

 In the intervening 13 years, the spatial microsimulation techniques employed by 
NATSEM have improved substantially (see Tanton et al.  2011  ) . The reweighting 
software used has changed signi fi cantly; greater experience has resulted in new tech-
niques to assist in selection of the most relevant census benchmarks for the purpose 
in hand; there is a greater understanding of the number of census variables that the 
sample survey can be successfully matched to and the number of applications has 
grown substantially. (Detailed descriptions of the spatial microsimulation model 
construction can be found in    Chin et al.  (  2005  )  for the earlier versions and Cassells 
et al.  (  2010  )  for the more recent models.) Relevant applications have included studies 
of neighbourhood poverty and inequality (Harding et al.  2006,   2011a ; Tanton et al. 
 2009a,   2010 ; Miranti et al.  2011 ; Gong et al.  2011  ) , predicting the need for aged care 
services and regional disability estimates (Lymer et al.  2006,   2008a,   b  )  and superan-
nuation savings at the small-area level (Vidyattama et al.  2011  ) . 

 A further innovation is that NATSEM’s static microsimulation model, STINMOD, 
has been successfully grafted onto the synthetic individual and household small-area 
microdata. STINMOD models the ‘morning after’ impact of changes in income tax, 

   1   The authors would like to thank and acknowledge the NATSEM staff who contributed to the early 
days of spatial microsimulation at NATSEM, including Otto Hellwig, Anthony King, Tony 
Melhuish, Susan Day and Elizabeth Taylor.  
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tax concessions and rebates, social security system and government cash payments 
to families with children (Lloyd  2007  ) . This innovation means that research using the 
new synthetic microdata is not restricted to variables on the sample survey that was 
matched to the census data. Examples utilising these path-breaking techniques 
include local estimates of disposable income, income tax and social security bene fi ts 
(Chin et al.  2005  )  and of housing assistance (McNamara et al.  2007  ) . Further, 
STINMOD can be used to model the impact of  policy changes  in taxes and bene fi ts 
(   such as the impact on effective tax rates of a liberalisation of the income-tested family 
payment (Harding et al.  2009  ) , raising the age pension for singles (Tanton et al.. 
 2009a  ) , and the neighbourhood impact of the Australian government’s stimulus 
package following the global  fi nancial crises (Tanton and Vu  2010  )) . 

 Finally, in Australia and the UK, attempts are being made to create forecasts for 
small areas. In Australia, this has included the future need for aged care and child 
care services (Harding et al.  2011  )  and methodologies for projecting small-area sta-
tistics (Vidyattama and Tanton  2010  ) .  

    16.2   Chapter Summaries 

 As noted above, the chapters in this book are testimony to the fact that the  fi eld of 
spatial microsimulation has progressed rapidly over the last two decades. From 
humble beginnings in a small number of research centres (largely driven by early 
theoretical explorations), the  fi eld has mushroomed to include all parts of the world 
and a huge variety of application areas. This book provides a good illustration of 
that fact: authors based in the UK, Australia, Sweden and Ireland and application 
areas involving a broad range of socio-environmental issues. In addition, there are a 
number of chapters which report on progress with major theoretical developments, 
especially in relation to data matching/estimation techniques and the traditional 
thorny issues of model calibration/validation. For us, the book makes four major 
contributions. First, it provides a unique guide to implementing a spatial microsimu-
lation project. Those who are just beginning to become interested in the techniques 
will surely welcome the step-by-step guides provided in the early chapters. Second, 
it discusses alternative techniques for estimating microdata when such data are not 
available from published sources. Third, it provides a detailed assessment of various 
calibration and validation techniques. Fourth, it shows the value of microsimulation 
through a number of case studies of important application areas around the world. 
We shall discuss each of these issues as they appear in each chapter. 

 To aid understanding of how the various chapters contribute to knowledge about 
spatial microsimulation, Fig.  16.1  shows the processes typically involved in con-
struction of a spatial microsimulation model. The  fi rst step is to determine output 
requirements for the study being undertaken and select relevant benchmarks from 
the census small-area tables. For example, a study of obesity might require selection 
of different benchmarks to one on poverty rates. The second step is to ensure that, 
as far as possible, the variables on the sample survey and the census data are de fi ned 
in the same way and that the scope is comparable. Typically, the available census 
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Step 1: 
Determine output 

requirement for small area 
estimation and select 

relevant benchmarks for 
matching the census to 

the sample survey

Sample survey e.g. of 
income and housing

Census data at small area 
level

Step 2:
Ensure necessary 

variables match census 
definitions e.g. definition 
of household type. Also 

ensure the period is 
comparable e.g. by 
inflating or deflating 

income variable

Step 2:
Ensure necessary census 
variables match sample 
survey definitions eg. 

income range or 
education level. Also 
ensure time period is 

comparable with survey 
data

.

Step 3:
Combine sample survey 

and census data to create 
simulated individual or 

household at micro level 
data (e.g. by reweighting 

or synthetic 
reconstruction)

Step 4:
Check the reweighting is 
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measures of fit e.g. 

squared Z score

Step 5:
Create synthetic 
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level for each person or 
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model (i.e. the simulated 

small area population)

Step 6:
Merge the 

microsimulation or other 
estimates onto each 

person in the simulated 
small area microdatabase

Step 6:
Create new variables 

using microsimulation or 
other models e.g. of 

taxes, benefits, poverty, 
housing stress, obesity

Step 6:
Model policy for current 
and alternative policies 
e.g. tax cuts or benefit 

increases

Step 7:
Sum the results to small 
area totals (e.g. percent 

of households in poverty, 
smoking rates) and then 
validate them (it may be 

necessary to use a 
coarser geographic level)

Step 8:
Forecast of future years

Static ageing Dynamic ageing

Relevant
Chapters

4

2, 10

2

3, 7

4

8

3, 5,15

7, 8

9-14

  Fig. 16.1    Overview of steps required to construct a spatial microsimulation model       
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data will be from a different time period to the sample survey data so that uprating 
or de fl ation of incomes, housing costs, etc., is required for either the census or the 
sample survey before they can be matched.  

 The third step is to match the sample survey unit records to the census bench-
marks so as to create synthetic spatial microdata. The techniques for undertaking 
this step vary, as the chapters in this volume make clear. The fourth step is to check 
that the reweighting has worked and that satisfactory and sensible synthetic popula-
tion estimates have been created. The  fi fth step involves the summing of the individual 
household or person results so as to create small-area estimates for the variables 
under analysis. Many researchers stop at this point if their sole intent is to create 
synthetic small-area populations and/or to analyse existing variables within the 
small-area data arising from the sample survey used in the reweighting (such as 
housing tenure). 

 However, many other researchers want to create  new variables  that are not present 
in either the census or the sample survey. Thus, the sixth step for those who have 
linked their spatial microdatabase to a microsimulation model or an econometric or 
other model is to create these additional variables and then merge them onto the 
microdatabase. This step may also include variables demonstrating the impact of 
policy change (e.g. the researcher might create new variables such as ‘income tax 
paid under current system’ and ‘income tax paid after tax cut’). The seventh step is 
then necessary for those researchers adding these new variables, as a further round 
of validation is required here, to ensure that the results appear reliable (e.g. see Chin 
et al.  2005  ) . 

 The eighth possible step, which is a more recent development, is to ‘age’ the 
spatial microdatabase through time to create forecasting versions of the model. 
Examples included in this book include ‘static ageing’ and ‘dynamic ageing’. 

 As the above discussion makes clear, creating a spatial microsimulation model is 
a demanding exercise. There is no doubt that one major explanation of why there are 
not more applications of microsimulation is that the technique is hard to implement 
and thus costly – perhaps not in terms of understanding the concepts but in terms of 
learning the programming techniques. Unlike many other statistical and even math-
ematical modelling methods, there are few examples of the major steps that building 
a real model entails. Chapter   2     by Rebecca Cassells, Riyana Miranti and Ann 
Harding has provided a good introduction to the types of data required to build a 
spatial microsimulation model. This is a good starting point for a new user since the 
chapter discusses the principles of how data can be combined from geographical 
data sources such as censuses and survey data (which often have very limited spatial 
data). The former provides a link between household type, geodemographics and 
small-area geographies, whilst the latter can provide valuable information on the 
interdependencies between core variables (age, sex, social class, etc.) and additional 
variables of interest for a particular application area (health status, crime, educational 
attainment, etc.). Without these two basic ingredients, microsimulation cannot really 
work, although it may be appropriate to alternatively match two geographical data 
sets which combine different variables of interest. 

http://dx.doi.org/10.1007/978-94-007-4623-7_2
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 Once the user has understood the data requirements, the next major issue is how 
to generate the small-area estimates. In other words, what techniques are available 
to undertake the matching process? Chapters   2    ,   3    ,   4    ,   5    ,   6    ,   7     examined various alter-
native ways of estimating small-area data. Paul Williamson (Chap.   3    ) has been a 
leading expert on the pros and cons of different techniques ever since a key publica-
tion with colleagues in Leeds in 1998 (Williamson et al.  1998  ) . In this chapter, he 
has explored two commonly applied techniques: ‘synthetic reconstruction’ and 
‘combinatorial optimisation’. The  fi rst is a technique widely used in early applica-
tions of spatial microsimulation from the UK (i.e. Birkin and Clarke  1988,   1989  ) . 
It involves estimating variables through attaching conditional probabilities – for 
example, given age, sex and social class and what is the probability that an indi-
vidual will be a smoker? Then random numbers would typically be used to deter-
mine whether each individual is classed as a smoker or not in the model. 

 Combinatorial optimisation is one of a number of techniques for reweighting 
survey data so that it best  fi ts small-area distributions. In effect, individuals in samples 
are cloned whenever they match against similar household pro fi les obtained from 
censuses. Using new calibration techniques, Williamson argues the performance of 
the optimisation models is superior (this involves the speci fi cation of measures of  fi t 
based around the  Z -score and two derivations: SZ2 and RSSZ). That said, synthetic 
reconstruction is still a valid technique and especially useful when estimating 
income, which is notoriously dif fi cult data to obtain even from surveys (see also the 
contrasting evaluation of these two different methods in  Harland et al. 2011  ) . Birkin 
and Clarke  (  1989  )  used this technique for their estimates of income in Leeds in the 
mid-1980s. 

 In Chap.   4    , Ben Anderson has updated this type of approach to estimate income 
for Wales. In this case, ‘iterative proportional  fi tting’ was the technique used to 
estimate the conditional probabilities. This technique is well suited for estimating 
the likelihood of income from employment as well as a raft of different types 
of bene fi t. Both of these chapters also introduced the notion of constraint variables. 
An important choice to be made in any application is which variables to use to 
undertake the matching process. Sometimes this is an easy decision as there may 
only be a few variables common to both data sets. However, often there is more 
choice, and the end results can be very dependent on those choices made (see also 
Edwards and Clarke  2009  ) . This is a hugely important step in the microsimulation 
process, and more work needs to be done in the future on the choice of constraints 
and the differences this may produce in the  fi nal model. Elsewhere, Smith et al. 
 (  2011  )  have provided a novel approach by varying the constraints chosen according 
to the demographics of the area being modelled. They undertook a type of cluster 
analysis of the geodemographics of the population of Leeds and used different con-
straints to match on variables more appropriate to those clusters. 

 The discussion in Chap.   3     by Williamson has been extended in Chap.   5     by 
Kimberley Edwards and Graham Clarke. They noted that the combinatorial optimi-
sation procedure can be solved in various contrasting ways. The chapter  fi rst debated 
the pros and cons of probabilistic and deterministic techniques for data imputation. 
Having chosen the latter, the chapter discussed the data and methodology used to 
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estimate the small-area prevalence of obesity in Leeds. The chapter also introduced 
two types of validation –  fi rst, against the data contained in the surveys (i.e. do the 
estimates  fi t against known totals of variables in the census or sample, so-called 
internal variables) and second, data held outside the surveys (so-called external 
variables). This chapter also provided an interesting application of microsimulation – 
namely, the estimation of obesity rates at the small-area level. (This is another 
variable which is always dif fi cult to access due to con fi dentiality issues: hence the 
need for robust estimates if local resource targeting is to be adopted.) 

 Income is a key variable that was explored again in Chap.   6     by Robert Tanton, 
Ann Harding and Justine McNamara, this time for all statistical local areas (SLAs) 
in Australia. In addition, the application included the estimates of bene fi ts and housing 
stress. The chapter  fi tted nicely into the discussion to date – exploring a reweighting 
method based on a generalised regression technique. The models were validated in 
three ways, which again show the importance of robust estimates. When estimating 
microdata (whether it is for households or individuals), the outcomes are in a sense 
estimates of missing data. Thus policy makers need to be especially sure that the 
estimates are robust and considerably better than ‘guesstimates’. The results in this 
chapter were validated against SLA data, state data and proxies in the census for the 
income and bene fi t indicators being estimated. The set of maps showed the immediate 
impact of such research – a striking set of income maps for Australia. 

 Further techniques for generating small-area data sets were introduced in Chap. 
  7     by Niall Farrell, Karyn Morrissey and Cathal O’Donoghue. They also introduced 
the SMILE model for examining the socio-economic and environmental impacts of 
policy change in rural Ireland. This model has been in existence since 1999 (in various 
formats), and more details will appear in a complimentary book to this one, due for 
publication in 2012 (Ballas et al.  2012  ) . The book is complimentary in the sense that 
it focuses on one (broad) model only and explores the range of potential applica-
tions that can be built on such a foundation. It will also concentrate exclusively on 
issues of policy importance to rural communities and rural service providers. The 
data reweighting techniques used in the chapter in this book were simulated annealing 
and quota sampling. The authors discussed the relationships with the techniques 
discussed in Chaps.   3    ,   4    ,   5    ,   6    . The validation of the income and bene fi t estimates in 
this chapter introduced a new problem not discussed so far. When validating against 
known data, the estimates may not  fi t in certain locations due to spatial heterogeneity – 
that is, local or geographical factors not visible in the surveys being reweighted. 
For example, the estimation of car ownership rates from surveys based on population 
characteristics alone cannot take into account, for example, the proximity of the 
residents to key work locations (i.e. city centre living might in fact make car owner-
ship less important by allowing individuals to walk to work). 

 The solution in this chapter was to realign the small-area estimates based on real 
data known at higher levels of spatial resolution (i.e. county data). This is a well-
known technique in many spatial and aspatial (countrywide) microsimulation mod-
els (e.g. see Caldwell and Keister  1996  ) . The authors conclude that ‘on completion 
of the alignment process, SMILE offers a fully representative pro fi le of labour force 
participation and market incomes at both the household and small-area level’. 
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Outside the contents of this book, there are other ways to try and correct for spatial 
heterogeneity. Birkin and Clarke  (  2011  ) , for example, suggest that adding geode-
mographic classi fi cations to the estimated data might allow the model builder to 
adjust the results accordingly. To return to the car ownership discussion introduced 
above, for example, estimates made for locations labelled in some sense as ‘suburban’ 
would introduce a boost in local rates estimated whilst a ‘city centre location’ would 
cause the model to reduce the estimates made. 

 There was a shift in focus in Chap.   8    . Karyn Morrissey, Graham Clarke and 
Cathal O’Donoghue have shown how the SMILE model can be enhanced by adding 
new types of modelling frameworks. In this case, they introduced spatial interaction 
models (SIM) and linked them formally to the microsimulation model. SIMs are 
usually mesoscale models, in the sense that households or individuals are aggre-
gated into zones and  fl ows are modelled from these zones to service locations 
(shops, schools, health centres, etc.). The demand within these zones is often based 
on the aggregate census information for those zones. When combined with micro-
simulation models, these interaction models can be made more local in three ways. 
The  fi rst is by building the disaggregated population estimates into the zonal demand 
estimates. An example of this is provided by Nakaya et al.  (  2007  ) , who obtained 
survey data relating to various consumer groups not available directly in the Japanese 
census. By estimating the location of these consumer groups through microsimulation, 
they were able to build a citywide SIM of shopping  fl ows based on this detailed 
survey. 

 Second, SIMs can be used to estimate small-area accessibility indicators which 
can then be fed into the microsimulation model as an additional variable when con-
sidering access to services. Thus, in Chap.   8    , Morrissey et al. added accessibility 
scores from the SIM to the SMILE model to see if they could better predict the long-
term illness variable, which could be in fl uenced by access to health-care services as 
much as individual characteristics. The third possible link, not discussed in the 
chapter, is to build individual SIMs for each household in the microsimulation 
model. Thus, each individual or household would be given additional behavioural 
characteristics, such as where they shop, go to work, etc. This starts to lead into a 
discussion of the relationship between microsimulation models and agent-based 
models (see Wu et al.  2011  ) . 

 From Chap.   9     onwards, the focus shifted to issues relating to forecasting. Thus, 
instead of ‘simply’ estimating current socio-economic characteristics, the dynamic 
models attempt to ‘age’ the population forward and update those socio-economic 
characteristics to some future point in time. In Chap.   9    , Yogi Vidyattama and Robert 
Tanton discussed a static ageing process which is in fact a short-hand approach to 
population dynamics. They aged the population forward at yearly intervals but 
ignored any behavioural changes (although they did model future income earnings 
and labour market characteristics). The rationale for that is the very high degree of 
complexity, cost and data requirements to build a fully dynamic microsimulation 
model. The main advantage of the approach is to allow policy makers, in this case in 
Australia, to disaggregate the of fi cial population projections of the state governments. 
Indeed, the authors noted that although the model is relatively simple in dynamic 
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forecasting terms, the results show a very good level of correlation with of fi cial 
population projections, even for small areas. The standard error around identity 
(SEI) for the 2027 projections, using various population age groups compared with 
the DOHA projections (   Department of Health and Ageing 2009), was as high as 
95% in some cases. 

 In Chap.   10    , Robert Tanton and Kimberley Edwards summarised some of the 
main dif fi culties with static spatial microsimulation models, which helped to focus 
attention again on dynamic models. In addition to the calibration issues that most 
authors address, they concentrated on three issues: data limitations, benchmarking 
against constraints and the representativeness of the data being reweighted. The 
 fi rst relates to variables being de fi ned differently in the data sets to be matched. 
This is especially problematic when the same variables are grouped into different 
classi fi cations – with age groups being a classic example. For example, if the census 
categorises population into age cohorts, 15–25, 26–35, etc., and the survey uses 
12–18, 19–30, etc., then there are major problems to be addressed before matching 
can take place. The second problem relates back to the choice of the number of 
constraints selected for the match. The authors noted that there is a simple correla-
tion between the use of more variables and the greater computational time and costs. 
There is no simple solution to this problem. As the authors noted, the user must 
decide on whether the error margins are acceptable with fewer constraints; if not, 
then more computer time must be spent on increasing the number of constraint 
variables. The third problem is also related to the spatial heterogeneity issues 
discussed above. This time, the emphasis is not on the impact of geographical factors 
not captured in the survey data but is the fact that a national survey may not differ-
entiate internally between regional variations in key variables. So the question is, 
if simulating a population in, say, Florida in the US, is it right to use all households 
in the US to match to or simply those in Florida? The latter might be more accurate 
but gives fewer households to effectively ‘clone’. Again the authors discuss some 
interesting alternative ways to address this problem. 

 In Chaps.   11    ,   12    ,   13    ,   14    ,   15    , the book concentrates on dynamic models. In Chap. 
  11    , Belinda Wu and Mark Birkin discuss MOSES, a major UK Government spon-
sored dynamic microsimulation model. They  fi rst discussed the major difference 
between static and dynamic models and provide a brief review of the history of such 
models. This model extends the type of ageing seen in Chap.   9     by adding a fuller set 
of behavioural change variables. This means that each individual is not only aged in 
the dynamic model but is tested each year for the probability of death, marriage, 
giving birth, migration and a change in health status. These probabilities are derived 
from known data sets relating to birth rates, death rates, etc., and a Monte Carlo type 
simulation is used to test whether individuals are deemed to move to a new state 
(get married, give birth, etc.). Again, some would argue this is not a full dynamic 
model, in the sense that the labour market is downplayed and other behavioural 
components are ignored. However, the model must be functional in the sense that it 
can handle the key variables that the authors were most interested in. The model is 
validated using other population benchmarks and forecasts. The authors concluded 
by addressing the policy environment. The evolution of population structures and 
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various demographic changes can be used to drive various location-based policies. 
‘For instance, the ageing trends in certain suburban areas may promote changes in 
health service and public transport service provision in order to enable easy access 
to such services for the old and frail in the area’. 

 Chapter   12     provides a very good overview of many issues relating to the con-
struction of dynamic models. Einar Holm and Kalle Mäkilä have drawn on years of 
experience of dynamic modelling. This Swedish group of researchers has been 
important innovators in microsimulation for many years, spurred on by the fabu-
lously detailed microdata sets available in Sweden. They provided and discussed a 
very useful wish list of data and techniques required for dynamic microsimulation 
and made a commentary around each. In effect, they offered us a useful list of 
design principles which every new modeller would be well advised to visit. They 
also introduced some new issues to be addressed, such as debugging computer pro-
grammes. This is never an easy task, but the idea of plotting individual biographies 
produced from the model is an excellent suggestion for helping make sure the results 
are sensible and logical. This is also one of the techniques being used to validate the 
APPSIM model that NATSEM is constructing (Harding et al.  2010       ) . 

 In Chap.   13    , Dimitris Kavroudakis, Dimitris Ballas and Mark Birkin demonstrated 
the usefulness of a dynamic model focused on a particular application area. Many 
dynamic models are built to be multi-functional. In other words, there are many vari-
ables added in order that users and policy makers can pick and choose which outputs 
to examine. In some cases, however, needs could be more focused. In this chapter, 
the authors modelled educational attainment, university entrance and the inequalities 
produced within the UK education system. The dynamics works by tracking an indi-
vidual’s social class and income over time using the British Household Panel Survey 
(which is a longitudinal data set of immense wealth in terms of the number of vari-
ables contained within it). The likelihood of going to university is then estimated, 
along with subject of study and likelihood of graduation. The model can reveal hot 
and cold spots of university attendance and thus make a valuable contribution to the 
(UK) debate in higher education around widening participation, especially to lower-
income students. This type of application should be an important future dimension of 
dynamic microsimulation. Too often model builders feel the need to include every-
thing in dynamic models. They soon become cumbersome and dif fi cult to pro-
gramme, and their output can be dif fi cult to extract. Thus, customised models such 
as this educational attainment example should be strongly encouraged. 

 In Chap.   14    , Mark Birkin has presented an agenda for future dynamic models. 
Again this is a modeller with enormous experience in microsimulation (and now 
agent-based) models. He was a major pioneer of the synthetic reconstruction models 
at the University of Leeds in the 1980s (Birkin and Clarke  1988,   1989  )  and has also 
been a driver of the move towards reweighting models from the 1990s onwards 
(Williamson et al.  1998  ) . He has built on the material relating to MOSES in Chap. 
  11     to highlight some major research issues for the future. Again he has added some 
useful observations to areas already highlighted above, such as the future richness 
of linking microsimulation to agent-based models. However, he also has outlined 
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some interesting ideas on other issues. In terms of validation, why not try backward 
simulation – that is, can you get to the present state of affairs by simulating past 
events? What one may learn from the dynamics of past change could be invaluable 
in helping to build better predictive models of the future. If one cannot replicate past 
trends, then perhaps key variables are missing from the model. He also called for 
greater openness and transparency in model design. Although SimObesity in Leeds 
is now available as a package-type solution to starting microsimulation, more open-
source code would be valuable, in order to stop the ‘wheel being reinvented’ in 
every new application. It seems we are still a long way though from a totally generic 
model (and there is debate about whether that is even possible). Finally, Birkin 
noted the importance of discussing outputs with end users at the earliest possible 
opportunity. Not only can they often add valuable new data sources (especially for 
validation), but they can offer considerable guidance on model outputs and associ-
ated performance indicators. 

 In the  fi nal main chapter, Kimberley Edwards and Robert Tanton concluded with 
a neat summary of the issues surrounding validation. This has been a key theme 
throughout the book of course, but it is useful to see the various ideas rounded 
up into a  fi nal chapter. For many end users, validation is the key to accepting 
model results, especially when microsimulation often aims to estimate missing 
data. The authors offered a range of validation techniques to help the new researcher 
to get to grips with validation (and see again Paul Williamson’s chapter, which 
includes valuable indicators for validation). In addition to the discussion of these 
key calibration indicators, more emphasis needs to be given in the  fi eld to external 
validation. As more and more data sets become available in the public domain, it is 
getting increasingly possible to validate model outputs, at least somewhere in the 
world! A good illustration is the recent work on smoking rates by Smith et al. 
 (  2011  ) . The lack of small-area data on smoking patterns has been the impetus for a 
number of recent models to estimate smoking rates in different countries or areas 
(Tomintz et al.  2008 , for example). Often these have not been externally validated, 
given the lack of comparable small-area data. However, the availability of data in 
New Zealand has allowed Smith et al. to build a model that they could externally 
validate. The good news for microsimulation modellers everywhere is the good  fi t 
they were able to show when comparing the spatial smoking rates against their 
model predictions.  

    16.3   Future Research Directions 

 As the above discussion highlights, major advances have been made in the past 
decade in the techniques used to create and validate spatial microsimulation mod-
els: in combining microsimulation with other modelling approaches (such as agent-
based modelling) and in the subject areas covered by the modelling. However, there 
remain many possible directions for future research. 
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 Looking  fi rst at the  modelling techniques , there is ample scope for further 
improvement. It would be desirable if the spatial microsimulation community were 
able to continue to analyse which of the various reweighting/synthetic reconstruc-
tion techniques is most accurate – or to identify whether one approach is superior 
for some applications while another approach is to be preferred for other applica-
tions. This means further research on validation of the synthetic population esti-
mates produced by researchers. It also suggests that it is important to publish further 
work on areas where spatial microsimulation is  not  successful. As Ballas et al. 
observe, ‘the geographical simulation method is not suitable for the prediction of 
rare or badly reported events, such as drug use’  (Ballas   2005 , p. 117). NATSEM 
encountered similar dif fi culties when attempting to estimate small-area domestic 
violence estimates, while the UK MOSES team ran into comparable problems when 
trying to estimate student migration into and out of areas. 

 Additional research is also needed on the most appropriate spatial unit to use in 
spatial microsimulation. Many researchers have tested results using very re fi ned 
spatial levels (such as the ward in the UK and the collection district in Australia) but 
have found coarser geographic measures produce more reliable estimates – which 
is, for example, one reason why NATSEM uses the statistical local area as its geo-
graphic level. 

 There remains enormous scope for researchers to improve the validation of results, 
tackling estimates of variance, the calculation of con fi dence intervals and the ongo-
ing assessment for which external data sources provide the best benchmark against 
which to assess the simulated results (Rahman et al.  2010  ) . Additional research is 
desirable on whether and how one aligns the synthetic estimates to other benchmark 
data which suggest that the synthetic estimates are too high or too low. Systematic 
analysis of how, and when, to align model results would be of great interest. 

 It is also clear that there will be ongoing demand for spatial microsimulation 
estimates, and as con fi dence in the spatial techniques grows, we can expect more 
modellers to link their static models of taxes and bene fi ts to synthetic small-area 
population microdata. 

 A related issue is that the subject areas to which spatial microsimulation is appli-
cable will grow rapidly, with the recent introduction of models of diabetes providing 
a good example of this phenomenon. There seems little doubt that other spatial 
health and aged care models will be developed in the future. Other subject areas for 
possible future applications include analysis of consumers and the best location of 
shopping centres, driver behaviour, transport, service use and supply, water and 
electricity consumption, energy use, waste disposal and use of information and 
communication technologies (such as mobile phones or the Internet). 

 Another area to  fl ag is the likely rapid development of other types of models to 
‘mix and match’ with synthetic small-area microdata. This will include further 
exploration of the linkages between agent-based modelling and spatial interaction 
models with synthetic small-area microsimulation models. Finally, ongoing efforts 
to create forecasting versions of the spatial microdatabases will be welcome, as 
practitioners grapple with the issue of the ‘static’ versus ‘dynamic’ ageing issue. 
Simply reweighting or aligning the synthetic microestimates for a current year to 
comparable population groups in 20 years time is a relatively easy option compared 
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to the alternative. Dynamic microsimulation involves updating the characteristics of 
each individual within the model during every time period (typically 1 year at a time). 
However, apart from the numerous data and computing requirements associated 
with dynamic microsimulation, one crucial but frequently overlooked issue is that 
the probabilities of events happening to individuals are usually estimated from a 
national sample survey, which effectively means they provide national probabilities 
rather than small-area probabilities. This can be very important when the character-
istics of the small-area populations under review are very different to the national 
population averages. 

 As even this brief discussion indicates, there are myriad research opportunities in 
the expanding  fi eld of microsimulation. This book provides a very useful summary 
of the state of the art in relation to spatial microsimulation. Along with other recent 
and new texts (O’Donaghue et al.  2012 ; Zaidi et al.  2009  ) , we are beginning to pro-
vide the research community with a very impressive set of core texts.      
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