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Preface to the fourth edition

This text is aimed at students of economics and the closely related disciplines
of accountancy and business, and provides examples and problems relevant to
those subjects, using real data where possible. The book is at an elementary
level and requires no prior knowledge of statistics, nor advanced mathematics.
For those with a weak mathematical background and in need of some revision,
some recommended texts are given at the end of this preface.

This is not a cookbook of statistical recipes; it covers all the relevant con-
cepts so that an understanding of why a particular statistical test should be used
is gained. These concepts are introduced naturally in the course of the text as
they are required, rather than having sections to themselves. The book can
form the basis of a one- or two-term course, depending upon the intensity of
the teaching.

As well as explaining statistical concepts and methods, the different schools
of thought about statistical methodology are discussed, giving the reader some
insight into some of the debates that have taken place in the subject. The book
uses the methods of classical statistical analysis, for which some justification is
given in Chapter 5, as well as presenting criticisms which have been made of
these methods.

There have been some substantial changes to this edition in the light of my
own experience and comments from students and reviewers. There has been
some rearrangement of the chapters of the book, although the content remains
similar with a few changes to encourage better learning of the subject. The
main changes are:

n The old Chapters 2 (Index numbers) and 7 (Data collection and sampling
methods) have been moved to the end of the book. This allows a continuous
development from descriptive statistics, through probability concepts, to sta-
tistical inference in the first part of the book. This will suit many courses
which concentrate on the use of statistics and which do not wish to focus on
data collection. Index numbers and data collection now form the final two
chapters which may be thought of as covering the collection and prepara-
tion of data.

n The previous edition’s final chapter on time-series methods (covering sea-
sonal adjustment) has been dropped, but this chapter is available on the
website for those who wish to make use of it. It was apparent that not many
teachers used this chapter, so it has been dropped in order to keep the book
relatively concise.

n In most chapters, exercises have been added within the chapter, at the end
of each section, so that students can check that they have understood the
material (answers are at the end of each chapter). The previous edition’s
exercises (at the end of each chapter) are renamed ‘Problems’ and are mostly

Changes in this
edition
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xiv Preface to the fourth edition

unchanged (with answers to odd-numbered problems at the end of the
book). The new exercises are relatively straightforward and usually require
the student to replicate the calculations in the text, but using different data.
There is thus a distinction drawn between the exercises which check under-
standing and the problems which encourage deeper thinking and discussion.

n Some of the more challenging problems are indicated by highlighting the
problem number in colour. This warns that the problem might require
some additional insight or effort to solve, beyond what is learned from the
text. This may be because a proof or demonstration is demanded, or that the
problem is open-ended and requires interpretation.

n In a few places I have included some worked examples, but, in general, most
of the book uses examples to explain the various techniques. The new exer-
cises may be treated as worked examples if desired, as worked-out answers
are given at the end of each chapter.

n Where appropriate, the examples used in the text have been updated using
more recent data.

n There is a website (www.pearsoned.co.uk/barrow) accompanying the text.
For this edition the website contains:
– Powerpoint slides for lecturers to use (these contain most of the key

tables, formulae and diagrams, but omit the text). Lecturers can adapt
these for their own use.

– An instructor’s manual giving hints and guidance on some of the teaching
issues, including those that come up in response to some of the problems.

– Answers to even-numbered problems (available to lecturers).
– The chapter on seasonal adjustment of time-series data, mentioned above.

No more than elementary algebra is assumed in this text, any extensions being
covered as they are needed in the book. It is helpful if students are comfortable
manipulating equations so if some revision is required I recommend one of the
following books:

I. Jacques, Mathematics for Economics and Business, Prentice Hall, 2003.

E.T. Dowling, Mathematics for Economists, Schaum’s Outline Series in
Economics, McGraw-Hill, 1986.

J. Black and J. Bradley, Essential Mathematics for Economists, 2nd edn, Wiley,
1980.
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Introduction

Statistics is a subject which can be (and is) applied to every aspect of our lives.
A glance at the annual Guide to Official Statistics published by the UK Office for
National Statistics, for example, gives some idea of the range of material available.
Under the letter ‘S’, for example, one finds entries for such disparate subjects 
as salaries, schools, semolina(!), shipbuilding, short-time working, spoons, and
social surveys. It seems clear that whatever subject you wish to investigate, there
are data available to illuminate your study. However, it is a sad fact that many
people do not understand the use of statistics, do not know how to draw
proper inferences (conclusions) from them, or mis-represent them. Even (espe-
cially?) politicians are not immune from this – for example, it sometimes
appears they will not be happy until all school pupils and students are above
average in ability and achievement.

The subject of statistics can usefully be divided into two parts, descriptive
statistics (covered in Chapters 1 and 10 of this book) and inferential statistics
(Chapters 4–8), which are based upon the theory of probability (Chapters 2
and 3). Descriptive statistics are used to summarise information which would
otherwise be too complex to take in, by means of techniques such as averages
and graphs. The graph shown in Figure I.1 is an example, summarising drink-
ing habits in the UK.

The graph reveals, for instance, that about 43% of men and 57% of women
drink between 1 and 10 units of alcohol per week (a unit is roughly equivalent
to one glass of wine or half a pint of beer). The graph also shows that men tend
to drink more than women (this is probably no surprise to you), with higher
proportions drinking 11–20 units and over 21 units per week. This simple
graph has summarised a vast amount of information, the consumption levels
of about 45 million adults.

Even so, it is not perfect and much information is hidden. It is not obvious
from the graph that the average consumption of men is 16 units per week, of

Two types of
statistics

Figure I.1
Alcohol consumption
in the UK
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2 Introduction

women only 6 units. From the graph, you would probably have expected the
averages to be closer together. This shows that graphical and numerical sum-
mary measures can complement each other. Graphs can give a very useful
visual summary of the information but are not very precise. For example, it is
difficult to convey in words the content of a graph; you have to see it.
Numerical measures such as the average are more precise and are easier to con-
vey to others. Imagine you had data for student alcohol consumption; how do
you think this would compare to the graph? It would be easy to tell someone
whether the average is higher or lower, but comparing the graphs is difficult
without actually viewing them.

Statistical inference, the second type of statistics covered, concerns the rela-
tionship between a sample of data and the population (in the statistical sense,
not necessarily human) from which it is drawn. In particular, it asks what infer-
ences can be validly drawn about the population from the sample. Sometimes
the sample is not representative of the population (either due to bad sampling
procedures or simply due to bad luck) and does not give us a true picture of
reality.

The graph was presented as fact but it is actually based on a sample of indi-
viduals, since it would obviously be impossible to ask everyone about their
drinking habits. Does it therefore provide a true picture of drinking habits? We
can be reasonably confident that it does, for two reasons. First, the government
statisticians who collected the data designed the survey carefully, ensuring that
all age groups are fairly represented, and did not conduct all the interviews in
pubs, for example. Second, the sample is a large one (about 10 000 households)
so there is little possibility of getting an unrepresentative sample. It would be
very unlucky if the sample consisted entirely of teetotallers, for example. We
can be reasonably sure, therefore, that the graph is a fair reflection of reality
and that the average woman drinks around 6 units of alcohol per week.
However, we must remember that there is some uncertainty about this esti-
mate. Statistical inference provides the tools to measure that uncertainty.

The scatter diagram in Figure I.2 (considered in more detail in Chapter 7)
shows the relationship between economic growth and the birth rate in 12
developing countries. It illustrates a negative relationship – higher economic
growth appears to be associated with lower birth rates.

Once again we actually have a sample of data, drawn from the population 
of all countries. What can we infer from the sample? Is it likely that the ‘true’

Figure I.2
Birthrate vs growth
rate
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relationship (what we would observe if we had all the data) is similar, or do 
we have an unrepresentative sample? In this case the sample size is quite small
and the sampling method is not known, so we might be cautious in our 
conclusions.

By the time you have finished this book you will have encountered and, I
hope, mastered a range of statistical techniques. However, becoming a compe-
tent statistician is about more than learning the techniques, and comes with
time and practice. You could go on to learn about the subject at a deeper level
and learn some of the many other techniques that are available. However, I
believe you can go a long way with the simple methods you learn here, and
gain insight into a wide range of problems. A nice example of this is contained
in the article ‘Error Correction Models: Specification, Interpretation, Estima-
tion’, by G. Alogoskoufis and R. Smith in the Journal of Economic Surveys, 1991
(vol. 5, pp. 27–128), examining the relationship between wages, prices and
other variables. After 19 pages analysing the data using techniques far more
advanced than those presented in this book, they state ‘the range of statistical
techniques utilised have not provided us with anything more than we would
have got by taking the [ . . . ] variables and looking at their graphs’. Sometimes
advanced techniques are needed, but never underestimate the power of the
humble graph.

Beyond a technical mastery of the material, being a statistician encompasses
a range of more informal skills which you should endeavour to acquire. I hope
that you will learn some of these from reading this book. For example, you
should be able to spot errors in analyses presented to you, because your statistical
‘intuition’ rings a warning bell telling you something is wrong. For example,
the Guardian newspaper, on its front page, once provided a list of the ‘best’ schools
in England, based on the fact that in each school, every one of its pupils passed
a national exam – a 100% success rate. Curiously, all of the schools were rela-
tively small, so perhaps this implies that small schools get better results than
large ones. Once you can think statistically you can spot the fallacy in this
argument. Try it. The answer is at the end of this introduction.

Here is another example. The UK Department of Health released the follow-
ing figures about health spending, showing how planned expenditure (in £m)
was to increase.

1998–99 1999–00 2000–01 2001–02 Total increase
over 3-year period

Health spending 37 169 40 228 43 129 45 985 17 835

The total increase in the final column seems implausibly large, especially
when compared to the level of spending. The increase is about 45% of the
level. This should set off the warning bell, once you have a ‘feel’ for statistics
(and, perhaps, a certain degree of cynicism about politics!). The ‘total increase’
is the result of counting the increase from 98–99 to 99–00 three times, the
increase from 99–00 to 00–01 twice, plus the increase from 00–01 to 01–02. It
therefore measures the cumulative extra resources to health care over the whole
period, but not the year-on-year increase, which is what many people would
interpret it to be.

Introduction 3

Statistics and you
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4 Introduction

You will also become aware that data cannot be examined without their
context. The context might determine the methods you use to analyse 
the data, or influence the manner in which the data are collected. For example,
the exchange rate and the unemployment rate are two economic variables
which behave very differently. The former can change substantially, even on a
daily basis, and its movements tend to be unpredictable. Unemployment
changes only slowly and if the level is high this month it is likely to be high
again next month. There would be little point in calculating the unemploy-
ment rate on a daily basis, yet this makes some sense for the exchange rate.
Economic theory tells us quite a lot about these variables even before we begin
to look at the data. We should therefore learn to be guided by an appropriate
theory when looking at the data – it will usually be a much more effective way
to proceed.

Another useful skill is the ability to present and explain statistical concepts
and results to others. If you really understand something you should be able to
explain it to someone else – this is often a good test of your own knowledge.
Below are two examples of a verbal explanation of the variance (covered in
Chapter 1) to illustrate.

Good explanation

The variance of a set of observations
expresses how spread out are the numbers.
A low value of the variance indicates that
the observations are of similar size, a
high value indicates that they are widely
spread around the average.

Bad explanation

The variance is a formula for the devi-
ations, which are squared and added up.
The differences are from the mean, and
divided by n or sometimes by n − 1.

The bad explanation is a failed attempt to explain the formula for the variance
and gives no insight into what it really is. The good explanation tries to convey
the meaning of the variance without worrying about the formula (which is best
written down). For a (statistically) unsophisticated audience the explanation is
quite useful and might then be supplemented by a few examples.

Statistics can also be written well or badly. Two examples follow, concerning
a confidence interval, which is explained in Chapter 4. Do not worry if you do
not understand the statistics now.

Good explanation

The 95% confidence interval is given by

X ± 1.96 ×

Inserting the sample values X = 400, s2 =
1600 and n = 30 into the formula we
obtain

400 ± 1.96 ×

yielding the interval

[385.7, 414.3]

 
1600

30

s
n

2

Bad explanation

95% interval = X − 1.96 =

X + 1.96 = 0.95

= 400 − 1.96 and

= 400 + 1.96

so we have [385.7, 414.3]

 1600 30/

 1600 30/

s n2/

s n2/
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In good statistical writing there is a logical flow to the argument, like a 
written sentence. It is also concise and precise, without too much extraneous
material. The good explanation exhibits these characteristics whereas the bad
explanation is simply wrong and incomprehensible, even though the final
answer is correct. You should therefore try to note the way the statistical argu-
ments are laid out in this book, as well as take in their content.

When you do the exercises at the end of each chapter, try to get another 
student to read your work through. If they cannot understand the flow or logic
of your work then you have not succeeded in presenting your work sufficiently
accurately.

A high proportion of small schools appear in the list simply because they are
lucky. Consider one school of 20 pupils, another with 1000, where the average
ability is similar in both. The large school is highly unlikely to obtain a 100%
pass rate, simply because there are so many pupils and (at least) one of them
will probably perform badly. With 20 pupils, you have a much better chance of
getting them all through. This is just a reflection of the fact that there tends to
be greater variability in smaller samples. The schools themselves, and the
pupils, are of similar quality.

Introduction 5

Answer to the
‘best’ schools
problem
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8 Chapter 1 • Descriptive statistics
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By the end of this chapter you should be able to:

n recognise different types of data and use appropriate methods to summarise
and analyse them

n use graphical techniques to provide a visual summary of one or more data
series

n use numerical techniques (such as an average) to summarise data series

n recognise the strengths and limitations of such methods

n recognise the usefulness of data transformations to gain additional insight
into a set of data

Introduction

The aim of descriptive statistical methods is simple: to present information in a
clear, concise and accurate manner. The difficulty in analysing many phenom-
ena, be they economic, social or otherwise, is that there is simply too much
information for the mind to assimilate. The task of descriptive methods is
therefore to summarise all this information and draw out the main features,
without distorting the picture.

Consider, for example, the problem of presenting information about the
wealth of British citizens (which follows later in this chapter). There are about
17 million households on which data are available and to present the data in
raw form (i.e. the wealth holdings of each and every family) would be neither
useful nor informative (it would take about 30 000 pages of a book, for example).
It would be more useful to have much less information, but information which
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was still representative of the original data. In doing this, much of the original
information would be deliberately lost; in fact, descriptive statistics might be
described as the art of constructively throwing away much of the data!

There are many ways of summarising data and there are few hard and fast
rules about how you should proceed. Newspapers and magazines often provide
innovative (though not always successful) ways of presenting data. There are,
however, a number of techniques which are tried and tested and these are the
subject of this chapter. These are successful because (a) they tell us something
useful about the underlying data, and (b) they are reasonably familiar to many
people, so we can all talk in a common language. For example, the average tells
us about the location of the data and is a familiar concept to most people. For
example, my son talks of his day at school being ‘average’.

The appropriate method of analysing the data will depend on a number of
factors: the type of data under consideration, the sophistication of the audience
and the ‘message’ which it is intended to convey. One would use different
methods to persuade academics of the validity of one’s theory about inflation
than one would use to persuade consumers that Brand X powder washes whiter
than Brand Y. To illustrate the use of the various methods, three different topics
are covered in this chapter. First, we look at the relationship between educational
attainment and employment prospects. Do higher qualifications improve your
employment chances? The data come from people surveyed in 2003, so we
have a sample of cross-section data giving a picture of the situation at one
point in time. We look at the distribution of educational attainments amongst
those surveyed, as well as the relationship to employment outcomes.

Second, we examine the distribution of wealth in the United Kingdom in
2001. The data are again cross-section, but this time we can use more sophisticated
methods since wealth is measured on a ratio scale. Someone with £200 000 of
wealth is twice as wealthy as someone with £100 000 for example, and there is
a meaning to this ratio. In the case of education, one cannot say with any pre-
cision that one person is twice as educated as another (hence the perennial
debate about educational standards). The educational categories may be
ordered (so one person can be more educated than another) but we cannot
measure the ‘distance’ between them. We refer to education being measured on
an ordinal scale. In contrast, there is not an obvious natural ordering to the
three employment categories (employed, unemployed, inactive), so this is 
measured on a nominal scale.

Third, we look at investment over the period 1970 to 2002. This uses time
series data, since we have a number of observations on the variable measured
at different points in time. Here it is important to take account of the time
dimension of the data: things would look different if the observations were in
the order 1970, 1983, 1977, . . . rather than in correct time order. We also look
at the relationship between two variables, investment and output, over that
period of time and find appropriate methods of presenting it.

In all three cases we make use of both graphical and numerical methods 
of summarising the data. Although there are some differences between the
methods used in the three cases these are not watertight compartments: the
methods used in one case might also be suitable in another, perhaps with slight
modification. Part of the skill of the statistician is to know which methods of
analysis and presentation are best suited to each particular problem.

Introduction 9
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10 Chapter 1 • Descriptive statistics

Summarising data using graphical techniques

We begin by looking at a question which should be of interest to you: how
does education affect your chances of getting a job? With unemployment at
high levels in many developed and developing countries around the world, one
of the possible benefits of investing in education is that it reduces the chances
of being out of work. But by how much does it reduce those chances? We shall
use a variety of graphical techniques to explore the question.

The raw data for this investigation come from Education and Training
Statistics for the U.K. 2003. Some of these data are presented in Table 1.1 and
show the numbers of people by employment status (either in work, unem-
ployed, or inactive, i.e. not seeking work) and by educational qualification
(higher education, A-levels, other qualification, or no qualification). The table
gives a cross-tabulation of employment status by educational qualification and
is simply a count (the frequency) of the number of people falling into each of
the 12 cells of the table. For example, there were 8 224 000 people in work who
had experience of higher education. This is part of a total of just over 37 mil-
lion people of working age.

The first graphical technique we shall use is the bar chart and this is shown in
Figure 1.1. This summarises the educational qualifications of those in work, i.e.

Education and
employment, or,
after all this, will
you get a job?

The bar chart

Table 1.1 Economic status and educational qualifications, 2003 
(numbers in 000s)

Higher A levels Other No Total
education qualification qualification

In work 8 224 5 654 11 167 2 583 27 628
Unemployed 217 231 693 303 1 444
Inactive 956 1 354 3 107 2 549 7 966

Totals 9 397 7 239 14 967 5 435 37 038

Figure 1.1
Educational
qualifications of
people in work 
in the UK, 2003

Note: The height of each bar is determined by the associated frequency. The first bar is 8224
units high, the second is 5654 units high, and so on. The ordering of the bars could be
reversed (‘no qualifications’ becoming the first category) without altering the message.
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the data in the first row of the table. The four educational categories are
arranged along the horizontal (x) axis, while the frequencies are measured on
the vertical (y) axis. The height of each bar represents the numbers in work for
that category.

The biggest group is seen to be those with ‘other qualifications’ which is
nearly as big as the ‘higher education’ and ‘A-level’ categories put together. The
‘no qualifications’ category is the smallest though it does make up a substantial
fraction of those in work.

It would be interesting to compare this distribution with those for the
unemployed and inactive. This is done in Figure 1.2, which adds bars for these
other two categories.

This multiple bar chart shows that the sizes of the unemployed and in-
active categories get larger, the lower the level of educational qualification
obtained. The ‘no qualifications’ category is numerically unimportant relative
to the others, so is difficult to compare directly, but the unemployed and in-
active are large compared to those in work.

Figure 1.3 shows an alternative method of presentation: the stacked bar
chart. In this case the bars are stacked one on top of another instead of being
placed side by side.

A clearer picture emerges if the data are transformed to (column) percent-
ages, i.e. the columns are expressed as percentages of the column totals. This
makes it easier to directly compare the different educational categories. We can
then see, of those in higher education, what proportion are in work (88%), and
so on. These figures are shown in Table 1.2.

Having done this, it is easier to make a direct comparison of the different
education categories (columns). This is shown in Figure 1.4, where all the bars
are of the same height (representing 100%) and the components of each bar

Summarising data using graphical techniques 11

Figure 1.2
Educational
qualifications by
employment category

Note: The bars for the unemployed and inactive categories are constructed in the same way
as for those in work: the height of the bar is determined by the frequency.
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12 Chapter 1 • Descriptive statistics

Figure 1.3
Stacked bar chart 
of educational
qualifications and
employment status

Note: The overall height of each bar is determined by the sum of the frequencies of the cate-
gory, given in the final row of Table 1.1.

Table 1.2 Economic status and educational qualifications: column percentages

Higher A levels Other No All
education qualification qualification

In work 88% 78% 74% 48% 75%
Unemployed 2% 3% 5% 6% 4%
Inactive 10% 19% 21% 47% 21%

Note: The column percentages are obtained by dividing each frequency by the column total.
For example, 88% is 8224 divided by 9397; 78% is 5654 divided by 7239, etc.

Figure 1.4
Percentages in each
employment category,
by educational
qualification
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now show the proportions of people in each educational category either in work,
unemployed or inactive.

It is now clear how economic status differs according to education and the
result is quite dramatic. In particular:

n The probability of unemployment increases rapidly with lower educational
attainment (this interprets proportions as probabilities, i.e. if 10% are out 
of work then the probability that a person picked at random is unemployed
is 10%).

n The biggest difference is between the no qualifications category and the
other three, which have relatively slight differences between them.

Can we safely conclude therefore that the probability of your being unem-
ployed is significantly reduced by education? Could we go further and argue
that the route to lower unemployment generally is via investment in educa-
tion? The answer may be ‘yes’ to both questions, but we have not proved it.
Two important considerations are as follows:

n Innate ability has been ignored. Those with higher ability are more likely to
be employed and are more likely to receive more education. Ideally we
would like to compare individuals of similar ability but with different
amounts of education; however, it is difficult to get such data.

n Even if additional education does reduce a person’s probability of becoming
unemployed, this may be at the expense of someone else, who loses their
job to the more educated individual. In other words, additional education
does not reduce total unemployment but only shifts it around amongst the
labour force. Of course, it is still rational for individuals to invest in educa-
tion if they do not take account of this externality.

Another useful way of presenting information graphically is the pie chart,
which is particularly good at describing how a variable is distributed between
different categories. For example, from Table 1.1 we have the distribution of
people by educational qualification (the first row of the table). This can be
shown in a pie chart as in Figure 1.5.

Summarising data using graphical techniques 13

The pie chart

Figure 1.5
Educational
qualifications of those
in work

Note: If you have to draw a pie chart by hand, the angle of each slice can be calculated as
follows:

angle =

The angle of the first slice, for example, is

8224
27 628

360 107 2
 

    .× = °

frequency
total frequency 

  × 360
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14 Chapter 1 • Descriptive statistics

The area of each slice is proportional to the respective frequency and the pie
chart is an alternative means of presentation to the bar chart shown in Figure
1.1. The percentages falling into each education category have been added
around the chart, but this is not essential. For presentational purposes it is best
not to have too many slices in the chart: beyond about six the chart tends to
look crowded.

The chart reveals that around 40% of those employed fall into the ‘other
qualification’ category, and that just 9% have no qualifications. This may be
contrasted with Figure 1.6 which shows a similar chart for the unemployed
(the second row of Table 1.1).

The ‘other qualification’ category is about the same size, but the ‘no
qualification’ group is bigger and now accounts for 21% of the unemployed.
Further, the proportion with a degree halves from 30% to 15%.

Using such graphs we are able to present the main features revealed by the
data in an arresting way. If done correctly it is an extremely effective way of
getting a message across.

Producing charts using Microsoft Excel

Most of the charts in this book were produced using Excel’s charting facility.
Without wishing to dictate a precise style, you should aim for a similar, uncluttered
look. Some tips you might find useful are:

n Make the grid lines dashed in a light grey colour (they are not actually part of the
chart, hence should be discreet).

n Get rid of the background fill (grey by default, alter to ‘No fill’). It does not look
great when printed.

n On the x-axis, make the labels horizontal or vertical, not slanted – it is then
difficult to see which point they refer to. If they are slanted, double click on the
x-axis then click the alignment tab.

n Colour charts look great on-screen but unclear if printed in black and white.
Change the style type of the lines or markers (e.g. make some dashed) to distin-
guish them on paper.

n Both axes start at zero by default. If all your observations are large numbers this
may result in the data points being crowded into one corner of the graph. Alter
the scale on the axes to fix this – set the minimum value on the axis to be
slightly less than the minimum observation.

Otherwise, Excel’s default options will usually give a good result.

Figure 1.6
Educational
qualifications of the
unemployed
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The following table shows the total numbers (in millions) of tourists visiting each country
and the numbers of English tourists visiting each country:

France Germany Italy Spain

All tourists 12.4 3.2 7.5 9.8
English tourists 2.7 0.2 1.0 3.6

(a) Draw a bar chart showing the total numbers visiting each country.

(b) Draw a stacked bar chart, which shows English and non-English tourists making up
the total visitors to each country.

(c) Draw a pie chart showing the distribution of all tourists between the four destination
countries. Do the same for English tourists and compare results.

Looking at cross-section data: wealth in the UK in 2001

We now move on to examine data in a different form. The data on employ-
ment and education consisted simply of frequencies, where a characteristic
(such as higher education) was either present or absent for a particular indi-
vidual. We now look at the distribution of wealth, a variable which can be
measured on a ratio scale so that a different value is associated with each 
individual. For example, one person might have £1000 of wealth, another
might have £1 million. Different presentational techniques will be used to
analyse this type of data. We use these techniques to investigate questions such
as how much wealth does the average person have and whether wealth is
evenly distributed or not.

The data are given in Table 1.3 which shows the distribution of wealth in the
UK for the year 2001 (the latest available at the time of writing), taken from Inland
Revenue Statistics 2003. This is an example of a frequency table. Wealth is dif-
ficult to define and to measure; the data shown here refer to marketable wealth

Looking at cross-section data: wealth in the UK in 2001 15

Exercise 1.1

Frequency tables
and histograms

Table 1.3 The distribution of wealth, UK, 2001

Class interval Numbers (thousands)

0–9 999 3 417
10 000–24 999 1 303
25 000–39 999 1 240
40 000–49 999 714
50 000–59 999 642
60 000–79 999 1 361
80 000–99 999 1 270

100 000–149 999 2 708
150 000–199 000 1 633
200 000–299 000 1 242
300 000–499 999 870
500 000–999 999 367

1 000 000–1 999 999 125
2 000 000 or more 41

Total 16 933
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16 Chapter 1 • Descriptive statistics

(i.e. items such as the right to a pension, which cannot be sold, are excluded)
and are estimates for the population as a whole based on taxation data.

Wealth is divided into 14 class intervals: £0 up to (but not including) 
£10 000; £10 000 up to £24 999, etc. and the number of individuals (or fre-
quency) within each class interval is shown. Note that the class widths vary
up the wealth scale: the first is £10 000, the second £15 000; the third £15 000
also, and so on. This will prove an important factor when it comes to graphical
presentation of the data.

This table has been constructed from the original 16 933 000 observations
on individuals’ wealth, so it is already a summary of the original data (note
that all the frequencies have been expressed in thousands in the table) and
much of the original information is lost. The first decision to make when draw-
ing up such a frequency table from the raw data is how many class intervals to
have, and how wide they should be. It simplifies matters if they are all of the
same width but in this case it is not feasible: if 10 000 were chosen as the 
standard width there would be many intervals between 500 000 and 1 000 000
(50 of them in fact), most of which would have a zero or very low frequency. 
If 100 000 were the standard width there would be only a few intervals and the
first (0–100 000) would contain 9947 observations (59% of all observations) so
almost all the interesting detail would be lost. A compromise between these
extremes has to be found.

A useful rule of thumb is that the number of class intervals should equal the
square root of the total frequency, subject to a maximum of about 12 intervals.
Thus, for example, a total of 25 observations should be allocated to five inter-
vals; 100 observations should be grouped into 10 intervals; and 16 933 should
be grouped into about 12 (14 are used here). The class widths should be equal
in so far as this is feasible, but should increase when the frequencies become
very small.

To present these data graphically one could draw a bar chart as in the case of
education above, and this is presented in Figure 1.7. Before reading on, spend
some time looking at it and ask yourself what is wrong with it.

Figure 1.7
Bar chart of the
distribution of wealth
in the UK, 2001
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The answer is that the figure gives a completely misleading picture of the
data! (Incidentally, this is the picture that you will get using a spreadsheet com-
puter program, as I have done here. All the standard packages appear to do this,
so beware. One wonders how many decisions have been influenced by data
presented in this incorrect manner.)

Why is the figure wrong? Consider the following argument. The diagram
appears to show that there is a concentration of individuals above £60 000 
(the frequency jumps from 642 to 1361) and above £100 000 (a jump from
1270 to 2708). But this is just the result of the change in the class width at
these points (to 20 000 at £60 000 and to 50 000 at £100 000). Suppose that we
divide up the £100 000–£150 000 class into two: £100 000 to £125 000 and
£125 000 to £150 000. We divide the frequency of 2708 equally between the
two (this is an arbitrary decision but illustrates the point). The graph now looks
like Figure 1.8.

Comparing Figures 1.7 and 1.8 reveals a difference: the hump at £100 000
has now disappeared. But this is disturbing – it means that the shape of the dis-
tribution can be altered simply by altering the class widths. If so, how can we
rely upon visual inspection of the distribution? A better method would make
the shape of the distribution independent of how the class intervals are
arranged. This can be done by drawing a histogram.

A histogram is similar to a bar chart except that it corrects for differences in
class widths. If all the class widths are identical then there is no difference
between a bar chart and a histogram. The calculations required to produce the
histogram are shown in Table 1.4.

The new column in the table shows the frequency density which is defined
as follows:

(1.1) frequency density =
frequency

class width 

Looking at cross-section data: wealth in the UK in 2001 17

Figure 1.8
The wealth
distribution with
different class
intervals

The histogram
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18 Chapter 1 • Descriptive statistics

Using this formula corrects the figures for differing class widths. The prin-
ciple behind this correction is that if the class width doubles, then we halve the
frequency to compensate. If the width quadruples, we divide by four, and so
on. The simple way to carry out this correction is to divide each frequency by
the class width. Thus 0.3417 = 3417/10 000 is the first frequency density,
0.0869 = 1303/15 000 is the second, etc. Above £200 000 the class widths are
very large and the frequencies small (too small to appear on the histogram), so
these classes have been combined.

The width of the final interval is unknown, so has to be estimated in order
to calculate the frequency density. It is likely to be extremely wide since the
wealthiest person may well have assets valued at several £m. (or even £bn); the
value we assume will affect the calculation of the frequency density and there-
fore of the shape of the histogram. Fortunately it is in the tail of the distribu-
tion and only affects a small number of observations. Here we assume
(arbitrarily) a width of £3.8m. to be a ‘reasonable’ figure, giving an upper class
boundary of £4m.

The frequency density is then plotted on the vertical axis against wealth on
the horizontal axis to give the histogram. One further point needs to be made:
the scale on the wealth axis should be linear as far as possible, e.g. £50 000
should be twice as far from the origin as £25 000. However, it is difficult to fit
all the values onto the horizontal axis without squeezing the graph excessively
at lower levels of wealth, where most observations are located. Therefore the
classes above £100 000 have been squeezed and the reader’s attention is drawn
to this. The result is shown in Figure 1.9.

The effect of taking frequency densities is to make the area of each block in
the histogram represent the frequency, rather than the height, which now
shows the density. This has the effect of giving an accurate picture of the shape
of the distribution.

Having done all this, what does the histogram show? The highlights are:

Table 1.4 Calculation of frequency densities

Range Number Class width Frequency density

0– 3417 10 000 0.3417
10 000– 1303 15 000 0.0869
25 000– 1240 15 000 0.0827
40 000– 714 10 000 0.0714
50 000– 642 10 000 0.0642
60 000– 1361 20 000 0.0681
80 000– 1270 20 000 0.0635

100 000– 2708 50 000 0.0542
150 000– 1633 50 000 0.0327
200 000– 2645 3 800 000 0.0007

Note: As an alternative to the frequency density, one could calculate the frequency per 
‘standard’ class width, with the standard width chosen to be 10 000 (the narrowest class).
The values in column 4 would then be 3417; 868.7 (= 1303 ÷ 1.5); 826.7; etc. This would lead
to the same shape of histogram as using the frequency density.
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n The histogram is heavily skewed to the right (i.e. the long tail is to the
right). Most people have modest levels of wealth; a few have a great deal.

n The modal class interval is £0–£10 000 (i.e. has the greatest density: no
other £10 000 interval has more individuals in it).

n The majority of people (51.2% in fact) have less than £80 000 of marketable
wealth.

n About 16% of people have more than £200 000 of wealth.1

The figure shows quite a high degree of inequality in the wealth distribution.
Whether this is acceptable or even desirable is a value judgement. It should be
noted that part of the inequality is due to differences in age: younger people
have not yet had enough time to acquire much wealth and therefore appear
worse off, although in life-time terms this may not be the case. To get a better
picture of the distribution of wealth would require some analysis of the acquisi-
tion of wealth over the life-cycle. In fact, correcting for age differences does not
make a big difference to the pattern of wealth distribution (on this point and
on inequality in wealth in general, see Atkinson (1983), chapters 7 and 8).

The wealth distribution may also be illustrated using relative and cumulative
frequencies of the data. These values are calculated in Table 1.5.

The relative frequencies show the proportion of observations that fall into each
class interval, so, for example, 4.2% of individuals have wealth holdings

Looking at cross-section data: wealth in the UK in 2001 19

Figure 1.9
Histogram of the
distribution of wealth
in the UK, 2001

Note: A frequency polygon would be the result if, instead of drawing blocks for the his-
togram, one drew lines connecting the centres of the top of each block.

Relative frequency
and cumulative
frequency
distributions

1 Due to the compressing of some class widths, it is difficult to see this accurately on the
histogram. There are limitations to graphical presentation.
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20 Chapter 1 • Descriptive statistics

between £40 000 and £50 000. Relative frequencies are shown in the third col-
umn, using the following formula:2

(1.2) relative frequency =

The sum of the relative frequencies has to be 100% and this acts as a check
on the calculations.

The cumulative frequencies, shown in the fourth column, are obtained by
cumulating (successively adding) the frequencies. The cumulative frequencies
show the total number of individuals with wealth up to a given amount; for
example, about ten million people have less than £100 000 of wealth.

frequency
sum of frequencies

f
f  

  =
∑

2 If you are unfamiliar with the ∑ notation then read Appendix 1A to this chapter before
continuing.

The AIDS epidemic

To show how descriptive statistics can be helpful in presenting information we
show below the ‘population pyramid’ for Botswana (one of the countries most seri-
ously affected by AIDS), projected for the year 2020. This is essentially two bar
charts (one for men, one for women) laid on their sides, showing the frequencies in
each age category (rather than wealth categories). The inner pyramid (in the darker
colour) shows the projected population given the existence of AIDS; the outer pyramid
assumes no deaths from AIDS.

Original source of data: US Census Bureau, World Population Profile 2000. Graph adapted from the
UNAIDS website at http://www.unaids.org/epidemic_update/report/Epi_report.htm#thepopulation.

One can immediately see the huge effect of AIDS, especially on the 40–60 age
group (currently aged 20–40), for both men and women. These people would norm-
ally be in the most productive phase of their lives but, with AIDS, the country will
suffer enormously with many old and young people dependent on a small working
population. The severity of the future problems is brought out vividly in this simple
graphic, based on the bar chart.
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Both relative and cumulative frequency distributions can be drawn, in a 
similar way to the histogram. In fact, the relative frequency distribution 
has exactly the same shape as the frequency distribution. This is shown in
Figure 1.10. This time we have written the relative frequencies above the appro-
priate column, though this is not essential.

Looking at cross-section data: wealth in the UK in 2001 21

Table 1.5 Calculation of relative and cumulative frequencies

Range Frequency Relative frequency (%) Cumulative frequency

0– 3 417 20.2 3 417
10 000– 1 303 7.7 4 720
25 000– 1 240 7.3 5 960
40 000– 714 4.2 6 674
50 000– 642 3.8 7 316
60 000– 1 361 8.0 8 677
80 000– 1 270 7.5 9 947

100 000– 2 708 16.0 12 655
150 000– 1 633 9.6 14 288
200 000– 1 242 7.3 15 530
300 000– 870 5.1 16 400
500 000– 367 2.2 16 767

1 000 000– 125 0.7 16 892
2 000 000– 41 0.2 16 933

Totals 16 933 100.0

Note: Relative frequencies are calculated in the same way as the column percentages in
Table 1.2. Thus for example, 20.2% is 3417 divided by 16 933. Cumulative frequencies are
obtained by cumulating, or successively adding, the frequencies. For example, 4720 is 3417+
1303, 5960 is 4720 + 1240, etc.

Figure 1.10
The relative frequency
distribution of wealth
in the UK, 2001
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22 Chapter 1 • Descriptive statistics

The cumulative frequency distribution is shown in Figure 1.11, where the
blocks increase in height as wealth increases. The simplest way to draw this is
to cumulate the frequency densities (shown in the final column of Table 1.4)
and to use these values as the y-axis coordinates.

There is a mass of detail in the sections above so this worked example is
intended to focus on the essential calculations required to produce the
summary graphs. Simple artificial data are deliberately used to avoid the
distraction of a lengthy interpretation of the results and their meaning.
The data on the variable X and its frequencies f are shown in the following
table, with the calculations required:

X Frequency, f Relative frequency Cumulative frequency, F

10 6 0.17 6
11 8 0.23 14
12 15 0.43 29
13 5 0.14 34
14 1 0.03 35

Totals 35 1.00

Notes:
The X values are unique but could be considered the mid-point of a range, as earlier.
The relative frequencies are calculated as 0.17 = 6/35, 0.23 = 8/35, etc.
The cumulative frequencies are calculated as 14 = 6 + 8, 29 = 6 + 8 + 15, etc.
The symbol F usually denotes the cumulative frequency in statistical work.

Note: The y-axis coordinates are obtained by cumulating the frequency densities in Table 1.4
above. For example, the first two y coordinates are 0.3417, 0.4286.

Figure 1.11
The cumulative
frequency distribution
of wealth in the UK,
2001
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and

Cumulative frequency distribution of X

Summarising data using numerical techniques 23

The resulting bar chart and cumulative frequency distribution are:

Bar chart of variable X

Given the following data:

Range Frequency

0–10 20
11–30 40
31–60 30
61–100 20

(a) Draw both a bar chart and a histogram of the data and compare them.

(b) Calculate cumulative frequencies and draw a cumulative frequency diagram.

Summarising data using numerical techniques

Graphical methods are an excellent means of obtaining a quick overview of the
data, but they are not particularly precise, nor do they lend themselves to fur-
ther analysis. For this we must turn to numerical measures such as the average.

Exercise 1.2
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There are a number of different ways in which we may describe a distribution
such as that for wealth. If we think of trying to describe the histogram, it is use-
ful to have:

n A measure of location giving an idea of whether people own a lot of wealth
or a little. An example is the average, which gives some idea of where the
distribution is located along the x-axis.

n A measure of dispersion showing how wealth is dispersed around (usually)
the average, whether it is concentrated close to the average or is generally far
away from it. An example here is the standard deviation.

n A measure of skewness showing how symmetric or not the distribution is,
i.e. whether the left half of the distribution is a mirror image of the right
half or not. This is obviously not the case for the wealth distribution.

We consider each type of measure in turn.

The arithmetic mean, commonly called the average, is the most familiar meas-
ure of location, and is obtained simply by adding all the observations and
dividing by the number of observations. We denote the wealth of the ith
household by xi (so that the index i runs from 1 to N, where N is the number of
observations). As an example, x3 is the wealth of the third household. The
mean is then given by the following formula:

(1.3)

where μ (the Greek letter mu, pronounced ‘myu’) denotes the mean and 

(read ‘sigma x i, from i = 1 to N’, ∑ being the Greek capital letter sigma) means
the sum of the x values. We may simplify this to

(1.4)

when it is obvious which x values are being summed (usually all the available
observations). This latter form is more easily readable and we will generally use
this.

Formula 1.3 can only be used when all the individual x values are known.
The frequency table does not show all 17 million observations, however, but
only the range of values for each class interval and the associated frequency. In
this case of grouped data the following formula may be used:

(1.5)

or, more simply,

(1.6) μ  =
∑
∑
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=
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=
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Measures of
location: the mean
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In this formula:

n x denotes the mid-point of each class interval, since the individual x values
are unknown. The mid-point is used as the representative x value for each
class. In the first class interval, for example, we do not know precisely where
each of the 3417 observations lies. Hence we assume they all lie at the mid-
point, £5000. This will cause a slight inaccuracy – because the distribution 
is so skewed, there are more households below the mid-point than above it
in every class interval except, perhaps, the first. We ignore this problem
here, and it is less of a problem for most distributions which are less skewed
than this one.

n The summation runs from 1 to C, the number of class intervals, or distinct x
values. f times x gives the total wealth in each class interval. If we sum over
the 14 class intervals we get the total wealth of all individuals.

n ∑ fi = N gives the total number of observations, the sum of the individual fre-
quencies. The calculation of the mean, μ, for the wealth data is shown in
Table 1.6.

Hence we obtain:

Note that the x values are expressed in £000, so we must remember that the
mean will also be in £000; the average wealth holding is therefore £131 443.
Note that the frequencies have also been divided by 1000 but this has no effect
upon the calculation of the mean since f appears in both numerator and
denominator of the formula for the mean.

The mean tells us that if the total wealth were divided up equally between
all individuals, each would have £131 443. This value may seem surprising,

 
μ  

  .
 

  .= =
2 225 722 5

16 933
133 443
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Table 1.6 The calculation of average wealth

Range x f fx

0– 5.0 3 417 17 085.0
10 000– 17.5 1 303 22 802.5
25 000– 32.5 1 240 40 300.0
40 000– 45.0 714 32 130.0
50 000– 55.0 642 35 310.0
60 000– 70.0 1 361 95 270.0
80 000– 90.0 1 270 114 300.0

100 000– 125.0 2 708 338 500.0
150 000– 175.0 1 633 285 775.0
200 000– 250.0 1 242 310 500.0
300 000– 400.0 870 348 000.0
500 000– 750.0 367 275 250.0

1 000 000– 1500.0 125 187 500.0
2 000 000– 3000.0 41 123 000.0

Totals 16 933 2 225 722.5

Note: The fx column gives the product of the values in the f and x columns (so, for example,
5.0 × 3417 = 17 085.0, which is the total wealth held by those in the first class interval). The
sum of the fx values gives total wealth.
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26 Chapter 1 • Descriptive statistics

since the histogram clearly shows most people have wealth below this point
(approximately 70% of individuals are below the mean, in fact). The mean does
not seem to be typical of the wealth that most people have. The reason the
mean has such a high value is that there are some individuals whose wealth is
way above the figure of £133 443 – up into the £millions, in fact. The mean is
the ‘balancing point’ of the distribution – if the histogram were a physical
model, it would balance on a fulcrum placed at 133 443. The few very high
wealth levels exert a lot of leverage and counter-balance the more numerous
individuals below the mean.

Suppose we have 10 families with a single television in their homes, 12
families with two televisions each and three families with three. You can
probably work out in your head that there are 43 televisions in total (10 +
24 + 9) owned by the 25 families (10 + 12 + 3). The average number of tele-
visions per family is therefore 43/25 = 1.72.

Setting this out formally, we have (as for the wealth distribution, but
simpler):

x f fx

1 10 10
2 12 24
3 3 9

Totals 25 43

This gives our resulting mean as 1.72. Note that our data are discrete 
values in this case and we have the actual values, not a broad class interval.

We also refer to the mean as the expected value of x and write:

(1.7) E(x) = μ = 133 443

E(x) is read ‘E of x’ or ‘the expected value of x’. The mean is the expected
value in the sense that if we selected a household at random from the popula-
tion we would ‘expect’ its wealth to be £133 443. It is important to note that
this a statistical expectation, rather than the everyday use of the term. Most of
the random individuals we encounter have wealth substantially below this
value. Most people might therefore ‘expect’ a lower value because that is their
everyday experience; but statisticians are different, they always expect the
mean value.

The expected value notation is particularly useful in keeping track of the
effects upon the mean of certain data transformations (e.g. dividing wealth by
1000 also divides the mean by 1000); Appendix 1B provides a detailed explana-
tion. Use is also made of the E operator in inferential statistics, to describe the
properties of estimators (see Chapter 4).

Very often we have only a sample of data (as in the worked example above),
and it is important to distinguish this case from the one where we have all the
possible observations. For this reason, the sample mean is given by:

Worked example 1.2

The mean as the
expected value

The sample 
mean and the
population mean
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(1.8)

Note the distinctions between μ (the population mean) and X (the sample
mean), and between N (the size of the population) and n (the sample size).
Otherwise, the calculations are identical. It is a convention to use Greek letters,
such as μ, to refer to the population and Roman letters, such as X, to refer to a
sample.

Sometimes observations have to be given different weightings in calculating
the average, as the following example. Consider the problem of calculating the
average spending per pupil by an education authority. The figures for spending
on primary (ages 5 to 11), secondary (11 to 16) and post-16 pupils are given in
Table 1.7.

Clearly, significantly more is spent on secondary and post-16 pupils (a gen-
eral pattern throughout England and most other countries) and the overall
average should lie somewhere between 890 and 1910. However, taking a simple
average of these three values would give the wrong answer, because there may
be different numbers of children in the three age ranges. The numbers and pro-
portions of children in each age group are given in Table 1.8.

Since there are relatively more primary school children than secondary, and
relatively fewer post-16 pupils, the primary unit cost should be given greatest
weight in the averaging process and the post-16 unit cost the least. The
weighted average is obtained by multiplying each unit cost figure by the pro-
portion of children in each category and summing. The weighted average is
therefore

(1.9) 0.444 × 890 + 0.389 × 1450 + 0.167 × 1910 = 1277.8

The weighted average gives an answer closer to the primary unit cost than
does the simple average (1416.7 in this case) of the three figures, which would
be misleading. The formula for the weighted average is

(1.10) Xw = ∑iwixi

where w represents the weights, which must sum to one, i.e.

(1.11) ∑iwi = 1

and x represents the unit cost figures.

X X       =
∑

=
∑
∑

x
n

fx
f

or for grouped data
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Table 1.7 Cost per pupil in different types of school (£ p.a.)

Primary Secondary Post-16

Unit cost 890 1450 1910

Table 1.8 Numbers and proportions of pupils in each age range

Primary Secondary Post-16 Total

Numbers 8000 7000 3000 18 000
Proportion 44.4% 38.9% 16.7%

The weighted
average
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28 Chapter 1 • Descriptive statistics

Calculating your degree result

If you are a university student your final degree result will probably be calculated as
a weighted average of your marks on the individual courses. The weights may be
based on the credits associated with each course or on some other factors. For
example, in my university students taking law, with one year spent abroad, had
their degree mark (the grand average, G) calculated as

where L represents the mark on their law course, S the mark on the school (non-
law) course, and Y is the mark for the year-abroad dissertation.

Note that the weight on the major course is actually 0.75/1.25 = 0.60, not 0.75,
but it is felt easier to express the formula in the form above. In my experience many
people (including some faculty and administrators) have difficulty calculating a
weighted average, so you may want to check that yours has been done correctly!
You clearly have an interest in learning how to calculate the weighted average.

Returning to the study of wealth, the unrepresentative result for the mean sug-
gests that we may prefer a measure of location which is not so strongly affected
by outliers (extreme observations) and skewness.

The median is a measure of location which is more robust to such extreme
values; it may be defined by the following procedure. Imagine everyone in a
line from poorest to wealthiest. Go to the individual located halfway along the
line. Ask her what her wealth is. Her answer is the median. The median is
clearly unaffected by extreme values, unlike the mean: if the wealth of the rich-
est person were doubled (with no reduction in anyone else’s wealth) there
would be no effect upon the median. The calculation of the median is not so
straightforward as for the mean, especially for grouped data. The following
worked example shows how to calculate the median for ungrouped data.

The median

Calculate the median of the following values: 45, 12, 33, 80, 77.
First we put them into ascending order: 12, 33, 45, 77, 80.
It is then easy to see that the middle value is 45. This is the median.

Note that if the value of the largest observation changes to, say, 150, the
value of the median is unchanged. This is not the case for the mean, which
would change from 49.4 to 63.4.

If there is an even number of observations, then there is no middle
observation. The solution is to take the average of the two middle observa-
tions. For example:

Find the median of 12, 33, 45, 63, 77, 80.
Note the new observation, 63, making six observations. The median value

is halfway between the third and fourth observations, i.e. (45 + 63)/2 = 54.

G
L S Y

  
.   .   .

.
=

+ +0 75 0 25 0 25
1 25

The median

Worked example 1.3
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For grouped data there are two stages to the calculation: first we must 
identify the class interval which contains the median person, then we must cal-
culate where in the interval that person lies. To illustrate, we will find the
median of the wealth data:

1 To find the appropriate class interval: since there are 16 933 000 observations,
we need the wealth of the person who is 8 466 500 in rank order. The table
of cumulative frequencies (see Table 1.5 above) is the most suitable for 
this. There are 7 316 000 individuals with wealth of less than £60 000 and 
8 677 000 with wealth of less than £80 000. The middle person therefore falls
into the £60 000–80 000 class. Furthermore, given that 8 466 500 is quite
close to 8 677 000 it follows that the median is close to the upper boundary
of the class interval. We now go on to make this statement more precise.

2 To find the position in the class interval, we can now use formula (1.12):

(1.12) median = xL + (xU − xL)

where:
xL = the lower limit of the class interval containing the median
xU = the upper limit of this class interval
N = the number of observations (using N + 1 rather than N in the formula

is only important when N is relatively small)
F = the cumulative frequency of the class intervals up to (but not includ-

ing) the one containing the median
f = the frequency for the class interval containing the median.

The expression in the large bracket tells us how far through the interval we
need to go to arrive at the median.

For the wealth distribution we have:

median = 60 000 + (80 000 − 60 000) = £76 907

This alternative measure of location gives a very different impression: it is
not much more than half the mean. Nevertheless, it is equally valid despite
having a different meaning. It demonstrates that the person ‘in the middle’ has
wealth of £76 907 and in this sense is typical of the UK population. Note that
the median is indeed near the upper boundary of this interval. The large
bracket evaluates to 0.84, indicating that the median is 84% of the way
through the interval. Before going on to compare these measures further we
examine a third, the mode.

The mode is defined as that level of wealth which occurs with the greatest 
frequency, in other words the value that occurs most often. It is most useful
and easiest to calculate when one has all the data and there are relatively few
distinct observations. This is the case in the simple example below.

 

16 933 000
2

7 316 000

1 361 000
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The mode
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30 Chapter 1 • Descriptive statistics

Suppose we have the following data on sales of dresses by a shop, according
to size:

Size Sales

8 7
10 25
12 36
14 11
16 3
18 1

The modal size is 12. There are more women buying dresses of this size than
any other. This may be the most useful form of average as far as the shop is
concerned. Although it needs to stock a range of sizes, it knows it needs to
order more dresses in size 12 than in any other size. The mean would not be so
helpful in this case (it is X = 11.7) as it is not an actual dress size.

In the case of grouped data matters are more complicated. It is the modal
class interval which is required, once the intervals have been corrected for
width (otherwise a wider class interval is unfairly compared with a narrower
one). For this, we can again make use of the frequency densities. From Table
1.4 it can be seen that it is the first interval, from £0 to £10 000, which has the
highest frequency density. It is ‘typical’ of the distribution because it is the one
which occurs most often (using the frequency densities, not frequencies). The
wealth distribution is most concentrated at this level and more people are like
this in terms of wealth than anything else. Once again it is notable how differ-
ent it is from both the median and the mean.

The three measures of location give different messages because of the skew-
ness of the distribution: if it were symmetric they would all give approximately
the same answer. Here we have a rather extreme case of skewness, but it does
serve to illustrate how the different measures of location compare. When the

Generalising the median – quantiles

The idea of the median as the middle of the distribution can be extended: quartiles
divide the distribution into four equal parts, quintiles into five, deciles into ten, and
finally percentiles divide the distribution into one hundred equal parts. Generically
they are known as quantiles. We shall illustrate the idea by examining deciles
(quartiles are covered below).

The first decile occurs one-tenth of the way along the line of people ranked 
from poorest to wealthiest. This means we require the wealth of the person ranked
1 693 300 (= N/10) in the distribution. From the table of cumulative frequencies, this
person lies in the first class interval. Adapting formula (1.12), we obtain:

first decile = 0 + (10 000 − 0) ×

Thus we estimate that any household with less than £4956 of wealth falls into
the bottom 10% of the wealth distribution. In a similar fashion, the ninth decile can
be found by calculating the wealth of the household ranked 15 239 700 (= N × 9/10)
in the distribution.

1693 300 0
3 417 000

4956
    

  
  £

−⎧
⎨
⎩

⎫
⎬
⎭

=
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distribution is skewed to the right, as here, they will be in the order mode,
median, mean; if skewed to the left the ordering is reversed. If the distribution
has more than one peak then this rule for orderings may not apply.

Which of the measures is ‘correct’ or most useful? In this particular case the
mean is not very useful: it is heavily influenced by extreme values. The median
is therefore often used when discussing wealth (and income) distributions.
Where inequality is even more pronounced, as in some less developed countries,
then the mean is even less informative. The mode is also quite useful in telling us
about a large section of the population, although it can be sensitive to how the
class intervals are arranged. If there were a class interval of £5000 to £15 000 then
this might well be the modal class, conveying a slightly different impression.

The three different measures of location are marked on the histogram in
Figure 1.12. This brings out the substantial difference between the measures for
a skewed distribution such as for wealth.

(a) For the data in Exercise 1.2, calculate the mean, median and mode of the data.

(b) Mark these values on the histogram you drew for Exercise 1.2.

Two different distributions (e.g. wealth in two different countries) might have
the same mean yet look very different, as shown in Figure 1.13 (the distribu-
tions have been drawn using smooth curves rather than bars to improve clar-
ity). In one country everyone might have a similar level of wealth (curve B). In
another, although the average is the same there might be extremes of great
wealth and poverty (curve A). A measure of dispersion is a number which
allows us to distinguish between these two situations.

The simplest measure of dispersion is the range, which is the differ-
ence between the smallest and largest observations. It is impossible to calculate

Summarising data using numerical techniques 31

Figure 1.12
The histogram with
the mean, median and
mode marked

Measures of
dispersion

Exercise 1.3
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32 Chapter 1 • Descriptive statistics

accurately from the table of wealth holdings since the largest observation is not
available. In any case, it is not a very useful figure since it relies on two extreme
values and ignores the rest of the distribution. In simpler cases it might be
more informative. For example, in an exam the marks may range from a low of
28% to a high of 74%. In this case the range is 74 − 28 = 46 and this tells us
something useful.

An improvement is the inter-quartile range which is the difference between
the first and third quartiles. It therefore defines the limits of wealth of the 
middle half of the distribution. To calculate the first quartile (which we label Q1)
we have to go one-quarter of the way along the line of wealth holders (ranked
from poorest to wealthiest) and ask the person in that position what their
wealth is. The answer is the first quartile. The calculation is as follows:

n one-quarter of 16 933 is 4233.25
n the person ranked 4233.25 is in the £10 000–£25 000 class
n adapting formula (1.12):

(1.13) Q1 = 10 000 + (25 000 − 10 000) = 19 396.58

The third quartile is calculated in similar fashion:

n three-quarters of 16 933 is 12 699.75
n the person ranked 12 699.75 is in the £150 000–200 000 class
n again using (1.12):

Q3 = 150 000 + (200 000 − 150 000) = 151 370.18

and therefore the inter-quartile range is Q3 − Q1 = 151 370 − 19 396 = 131 974.
This gives one summary measure of the dispersion of the distribution: the

higher the value the more spread-out is the distribution. Two different wealth
distributions might be compared according to their inter-quartile ranges there-
fore, with the country having the larger figure exhibiting greater inequality.
Note that the figures would have to be expressed in a common unit of currency
for this comparison to be valid.
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Figure 1.13
Two distributions with
different degrees of
dispersion

Note: Distribution A has a greater degree of dispersion than B, where everyone has similar
levels of wealth.
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The range and inter-quartile range

Suppose 110 children take a test, with the following results:

Mark, X Frequency, f Cumulative frequency, F

13 5 5
14 13 18
15 29 47
16 33 80
17 17 97
18 8 105
19 4 109
20 1 110

Total 110

The range is simply 20 − 13 = 7. The inter-quartile range requires calculation
of the quartiles. Q1 is given by the value of the 27.5th observation (= 110/4),
which is 15. Q3 is the value of the 82.5th observation (= 110 × 0.75) which
is 17. The IQR is therefore 17 − 15 = 2 marks. Half the students achieve
marks within this range.

Notice that a slight change in the data (three more students getting 16
rather than 17 marks) would alter the IQR to 1 mark (16 − 15). The result
should be treated with some caution therefore. This is a common problem
when there are few distinct values of the variable (eight in this example).

A more useful measure of dispersion is the variance, which makes use of all of
the information available, rather than trimming the extremes of the distribu-
tion. The variance is denoted by the symbol σ2. σ is the Greek lower-case letter
sigma, so σ2 is read ‘sigma squared’. It has a completely different meaning from
∑ (capital sigma) used before. Its formula is:3

(1.14)

The variance is the average of all the squared deviations from the mean. A
more dispersed distribution (such as A in Figure 1.13) will tend to have larger
deviations from the mean, and hence a larger variance. In comparing two dis-
tributions with similar means, therefore, we could examine their variances to
see which of the two has the greater degree of dispersion. With grouped data
the formula becomes:

(1.15)

The calculation of the variance is shown in Table 1.9, and hence we obtain:
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Worked example 1.4

The variance

3 xi − μ measures the deviation of xi from the mean. These deviations are first squared
and then summed. Dividing by N gives the variance.
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This calculated value is before translating back into the original units of meas-
urement, as was done for the mean by multiplying by 1000. In the case of the
variance, however, we must multiply by 1 000 000 which is the square of 1000.
The variance is therefore 52 880 070 000. Multiplying by the square of 1000 is
a consequence of using squared deviations in the variance formula (see
Appendix 1B on E and V operators for more details of this).

One needs to be a little careful about the units of measurement therefore. If
the mean is reported at 133.443 then it is appropriate to report the variance as
52 880.07. If the mean is reported as 133 443 then the variance should be
reported as 52 880 070 000. Note that it is only the presentation which
changes; the underlying facts are the same.

In what units is the variance measured? Since we have used a squaring pro-
cedure in the calculation we end up with something like ‘squared’ £s, which is
not very convenient. Because of this, we define the square root of the variance
to be the standard deviation, which is therefore back in £s. The standard devi-
ation is therefore given by:

(1.16)

or, for grouped data:

(1.17)

These are simply the square roots of (1.14) and (1.15). The standard deviation
of wealth is therefore . This is in £000, so the standard
deviation is actually £229 957 (note that this is the square root of 52 880 070 000,
as it should be). On its own the standard deviation (and the variance) is not

52 880 07 229 957 .   .=
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Table 1.9 The calculation of the variance of wealth

Range Mid-point Frequency, f Deviation
x (£000) (x −− μμ) (x −− μμ)2 f(x −− μμ)2

0– 5.0 3 417 −126.4 15 987.81 54 630 329.97
10 000– 17.5 1 303 −113.9 12 982.98 16 916 826.55
25 000– 32.5 1 240 −98.9 9 789.70 12 139 223.03
40 000– 45.0 714 −86.4 7 472.37 5 335 274.81
50 000– 55.0 642 −76.4 5 843.52 3 751 537.16
60 000– 70.0 1 361 −61.4 3 775.23 5 138 086.73
80 000– 90.0 1 270 −41.4 1 717.51 2 181 241.95

100 000– 125.0 2 708 −6.4 41.51 112 411.42
150 000– 175.0 1 633 43.6 1 897.22 3 098 162.88
200 000– 250.0 1 242 118.6 14 055.79 17 457 288.35
300 000– 400.0 870 268.6 72 122.92 62 746 940.35
500 000– 750.0 367 618.6 382 612.90 140 418 932.52

1 000 000– 1500.0 125 1 368.6 1 872 948.56 234 118 569.53
2 000 000– 3000.0 41 2 868.6 8 228 619.88 337 373 415.02

Totals 16 933 895 418 240.28

The standard
deviation
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easy to interpret since it is not something we have an intuitive feel for, unlike
the mean. It is more useful when used in a comparative setting. This will be
illustrated later on.

As with the mean, a different symbol is used to distinguish a variance calcu-
lated from the population and one calculated from a sample. In addition, the
sample variance is calculated using a slightly different formula from the one for
the population variance. The sample variance is denoted by s2 and its formula
is given by equations (1.18) and (1.19) below:

(1.18)

(1.19)

where n is the sample size. The reason n − 1 is used in the denominator rather
than n (as one might expect) is the following. Our real interest is in the population
variance, and the sample variance is an estimate of it. The former is meas-
ured by the dispersion around μ, and the sample variance should ideally be
measured around μ also. However, μ is unknown, so X is used instead. But the
variation of the sample observations around X tends to be smaller than that
around μ. Using n − 1 rather than n in the formula compensates for this and
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The variance and
standard deviation
of a sample

Worked example 1.5 The variance and standard deviation

We continue with the previous worked example, relating to students’
marks. The variance and standard deviation can be calculated as:

X f fx x −− μμ (x −− μμ)2 f(x −− μμ)2

13 5 65 −2.81 7.89 39.45
14 13 182 −1.81 3.27 42.55
15 29 435 −0.81 0.65 18.98
16 33 528 0.19 0.04 1.20
17 17 289 1.19 1.42 24.11
18 8 144 2.19 4.80 38.40
19 4 76 3.19 10.18 40.73
20 1 20 4.19 17.56 17.56

Totals 110 1739 222.99

The mean is calculated as 1739/110 = 15.81 and from this the deviations
column (x − μ) is calculated (so −2.81 = 13 − 15.81, etc.).

The variance is calculated as ∑f(x − μ)2/(n − 1) = 222.99/109 = 2.05. The
standard deviation is therefore 1.43, the square root of 2.05. (Calculations
are shown to two decimal places but have been calculated using exact values.)

For distributions which are approximately symmetric and bell-shaped
(where the observations are clustered around the mean) there is an approx-
imate relationship between the standard deviation and the inter-quartile
range. This rule of thumb is that the IQR is 1.3 times the standard deviation.
In this case, 1.3 × 1.43 = 1.86, close to the value of 2, calculated earlier.
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36 Chapter 1 • Descriptive statistics

the result is an unbiased4 (i.e. correct on average) estimate of the population
variance.

Using the correct formula is more important the smaller is the sample size,
as the proportionate difference between n − 1 and n increases. For example, if 
n = 10, the adjustment amounts to 10% of the variance; when n = 100 the
adjustment is only 1%.

The sample standard deviation is given by the square root of equation (1.18)
or (1.19).

The following formulae give the same answers as equations (1.14) to (1.17) but
are simpler to calculate, either by hand or using a spreadsheet. For the popula-
tion variance one can use

(1.20)

or, for grouped data,

(1.21)

The calculation of the variance using equation (1.21) is shown in Figure 1.14.
The sample variance can be calculated using

(1.22)

or, for grouped data,

(1.23)

The standard deviation may of course be obtained as the square root of these
formulae.
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Figure 1.14
Descriptive statistics
calculated using Excel

4 The concept of bias is treated in more detail in Chapter 4.

Alternative
formulae for
calculating the
variance and
standard deviation
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Using a calculator or computer for calculation

Electronic calculators and (particularly) computers have simplified the calculation of
the mean, etc. Figure 1.14 shows how to set out the above calculations in a
spreadsheet (Microsoft Excel in this case) including some of the appropriate cell
formulae.

The variance in this case is calculated using the formula

which is the formula given in equation (1.21) above. Note that it gives the same
result.

The following formulae are contained in the cells:

D5: = C5*B5 to calculate f times x
E5: = D5*B5 to calculate f times x2

C20: = SUM(C5:C18) to sum the frequencies
H6: = D20/C20 calculates ∑ fx/∑ f
H7: = E20/C20–H6^2 calculates ∑ fx2/∑ f − μ2

H8: = SQRT(H7) calculates σ
H9: = H8/H6 calculates σ/μ

The measures of dispersion examined so far are all measures of absolute dis-
persion and, in particular, their values depend upon the units in which the
variable is measured. It is therefore difficult to compare the degrees of disper-
sion of two variables which are measured in different units. For example, one
could not compare wealth in the UK with that in Germany if the former uses
£s and the latter euros for measurement. Nor could one compare the wealth
distribution in one country between two points in time because inflation alters
the value of the currency over time. The solution is to use a measure of relative
dispersion, which is independent of the units of measurement. One such measure
is the coefficient of variation, defined as:

(1.24) coefficient of variation =

that is the standard deviation divided by the mean. Whenever the units of
measurement are changed, the effect upon the mean and the standard devi-
ation is the same, hence the coefficient of variation is unchanged. For the
wealth distribution its value is 229.957/131.443 = 1.749, that is the standard
deviation is 175% of the mean. This may be compared directly with the
coefficient of variation of a different wealth distribution to see which exhibits a
greater relative degree of dispersion.

Another solution to the problem of different units of measurement is to use the
logarithm5 of wealth rather than the actual value. The reason why this works
can best be illustrated by an example. Suppose that between 1994 and 2001
each individual’s wealth doubled, so that Xi

2001 = 2Xi
1994, where Xt

i indicates the
wealth of individual i in year t. The standard deviation of X2001 is therefore

σ
μ

σ μ2
2

2    =
∑
∑

−
fx
f
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The coefficient of
variation

The standard
deviation of the
logarithm

5 See Appendix 1C if you are unfamiliar with logarithms.
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38 Chapter 1 • Descriptive statistics

twice that of X1994. Taking (natural) logs, we have ln Xi
2001 = ln 2 + ln Xi

1994, so
that the distribution of ln X2001 is the same as that of ln X1994 except that it is
shifted to the right by ln 2 units. The variances (and hence standard devi-
ations) of the two logarithmic distributions are the same, indicating no change
in the relative dispersion of the two wealth distributions.

The standard deviation of the logarithm of wealth is calculated from the
data in Table 1.10. The variance is therefore:

σ2 =

and the standard deviation σ = 1.477. See below for a comparison of the 2001
distribution with one for 1979, just prior to the election of a Conservative govern-
ment which ruled throughout the 1980s and much of the 1990s.

Imagine the following problem. A man and a woman are arguing over their
career records. The man says he earns more than she does, so is more success-
ful. The woman replies that women are discriminated against and that, relative
to women, she is doing better than the man is, relative to other men. Can the
argument be resolved?

Suppose the data are as follows: the average male salary is £19 500, the aver-
age female salary £16 800. The standard deviation of male salaries is £4750, for
women it is £3800. The man’s salary is £31 375 while the woman’s is £26 800.
The man is therefore £11 875 above the mean, the woman £10 000. However,
women’s salaries are less dispersed than men’s, so the woman has done well to
get to £26 800.

One way to resolve the problem is to calculate the z score, which gives the
salary in terms of standard deviations from the mean. Thus for the man, the 
z score is

 

306 673 6
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Table 1.10 The calculation of the standard deviation of the logarithm of wealth

Range Mid-point ln (x) Frequency, f fx fx2

x (£000)

0– 5.0 1.609 3 417 5 499.4 8 851.0
10 000– 17.5 2.862 1 303 3 729.4 10 674.4
25 000– 32.5 3.481 1 240 4 316.7 15 027.6
40 000– 45.0 3.807 714 2 718.0 10 346.3
50 000– 55.0 4.007 642 2 572.7 10 309.7
60 000– 70.0 4.248 1 361 5 782.2 24 565.7
80 000– 90.0 4.500 1 270 5 714.8 25 715.3

100 000– 125.0 4.828 2 708 13 075.1 63 130.6
150 000– 175.0 5.165 1 633 8 434.1 43 560.3
200 000– 250.0 5.521 1 242 6 857.7 37 864.3
300 000– 400.0 5.991 870 5 212.6 31 231.0
500 000– 750.0 6.620 367 2 429.6 16 083.9

1 000 000– 1500.0 7.313 125 914.2 6 685.4
2 000 000– 3000.0 8.006 41 328.3 2 628.2

Totals 16 933 67 584.6 306 673.6

Note: Use the ‘ln’ key on your calculator or the =LN() function in a spreadsheet to obtain nat-
ural logarithms of the data. You should obtain ln 5 = 1.609, ln 17.5 = 2.862, etc.

Measuring
deviations from
the mean: 
z scores
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(1.25)

Thus the man is 2.5 standard deviations above the male mean salary. For the
woman the calculation is

(1.26)

The woman is 2.632 standard deviations above her mean and therefore wins
the argument – she is nearer the top of her distribution than is the man and so
is more of an outlier. Actually, this probably won’t end the argument, but is
the best the statistician can do! The z score calculation is frequently encoun-
tered in statistics and will be used again later in the book when we cover
hypothesis testing (Chapter 5).

Use of the z score leads on naturally to Chebyshev’s inequality, which tells us
about the proportion of observations that fall into the tails of any distribution,
regardless of its shape. The theorem is expressed as follows:

(1.27) At least (1 − 1/k2) of the observations in any distribution lie within k
standard deviations of the mean

If we take the female wage distribution given above we can ask what propor-
tion of women lie beyond 2.632 standard deviations from the mean (in both
tails of the distribution). Setting k = 2.632, then (1 − 1/k2) = (1 − 1/2.6322) =
0.8556. So at least 85% of women have salaries within ±2.632 standard devi-
ations of the mean, i.e. between £6800 (= 16 800 − 2.632 × 3800) and £26 800
(= 16 800 + 2.632 × 3800). At most, 15% of women therefore lie outside this
range and one might expect about 7.5% of women, at most, to have salaries
above £26 800. This presumes the salary distribution is roughly symmetric,
which may not be the case.

Chebyshev’s inequality is a very conservative rule since it applies to any dis-
tribution; if we know more about the shape of a particular distribution (for
example, men’s heights follow a Normal distribution – see Chapter 3) then we can
make a more precise statement. In the case of the Normal distribution, over 99%
of men are within 2.632 standard deviations of the average height, because
there is a concentration of observations near the centre of the distribution.

We can also use Chebyshev’s inequality to investigate the inter-quartile
range. The formula (1.27) implies that at least 50% of observations lie within
√2 =1.41 standard deviations of the mean, a more conservative value than our
previous 1.3.

(a) For the data in Exercise 1.2, calculate the inter-quartile range, the variance and the
standard deviation.

(b) Calculate the coefficient of variation.

(c) Check if the relationship between the IQR and the standard deviation stated in the
text is approximately true for this distribution.

(d) Approximately how much of the distribution lies within one standard deviation
either side of the mean? How does this compare with the prediction from
Chebyshev’s inequality?
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40 Chapter 1 • Descriptive statistics

The skewness of a distribution is the third characteristic that was mentioned
earlier, in addition to location and dispersion. The wealth distribution is heav-
ily skewed to the right, or positively skewed; it has its long tail in the right-
hand end of the distribution. A measure of skewness gives a numerical
indication of how asymmetric is the distribution.

One measure of skewness, known as the coefficient of skewness, is

(1.28)

and it is based upon cubed deviations from the mean. The result of applying
formula (1.28) is positive for a right-skewed distribution (such as wealth), zero
for a symmetric one, and negative for a left-skewed one. Table 1.11 shows the
calculation for the wealth data (some rows are omitted for brevity). Thus:

and dividing by σ3 gives

which is positive, as expected.
The measure of skewness is much less useful in practical work than measures

of location and dispersion, and even knowing the value of the coefficient does
not always give much idea of the shape of the distribution: two quite different
distributions can share the same coefficient. In descriptive work it is probably
better to draw the histogram itself.

Some useful lessons may be learned by comparing the 2001 distribution with
its counterpart from 1979. This covers the period of Conservative government
starting with Mrs Thatcher in 1979 up until the first four years of Labour
administration. This shows how useful the various summary statistics are when
it comes to comparing two different distributions. The wealth data for 1979 are
given in Problem 1.5 (see p. 61 below), where you are asked to confirm the fol-
lowing calculations.

Average wealth in 1979 was £16 399, about one-eighth of its 2001 value. The
average increased substantially therefore (at about 10% per annum, on aver-
age), but some of this was due to inflation rather than a real increase in the
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Table 1.11 Calculation of the skewness of the wealth data

Range Mid-point Frequency f Deviation (x −− μμ)3 f (x −− μμ)3

x (£000) x −− μμ

0 5.0 3 417 −126.4 −2 021 544 −6 907 616 944
10 000 17.5 1 303 −113.9 −1 479 319 −1 927 552 150

� � � � � �
1 000 000 1500.0 125 1 368.6 2 563 237 059 320 404 632 317
2 000 000 3000.0 41 2 868.6 23 604 266 037 967 774 907 513

Totals 16 933 4 674.8 26 419 423 675 1 382 901 383 966

Measuring
skewness

Comparison of 
the 2001 and 1979
distributions of
wealth
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quantity of assets held. In fact, between 1979 and 2001 the retail price index rose
from 59.9 to 183.2, i.e. it increased approximately three times. Thus the nominal6

increase (i.e. in cash terms, before any adjustment for rising prices) in wealth is
made up of two parts: (i) an inflationary part which roughly tripled wealth and
(ii) a real part, consisting of a 2.6-fold increase (thus 3 × 2.6 = 8). Price indexes
are covered in Chapter 10 where it is shown more formally how to divide 
a nominal increase into price and real (quantity) components. It is likely that
the extent of the real increase in wealth is overstated here due to the use of the
retail price index rather than an index of asset prices. A substantial part of the
increase in asset values over the period is probably due to the very rapid rise in
house prices (houses form a significant part of the wealth of many households).

The standard deviation is similarly affected by inflation. The 1979 value is
25 552 compared to 2001’s 229 957, which is about nine times larger. The
spread of the distribution appears to have increased therefore (even if we take
account of the general price effect). Looking at the coefficient of variation,
however, shows that it has increased from 1.56 to 1.75 which is not quite such
a dramatic change. The spread of the distribution relative to its mean has not
changed quite so much. This is confirmed by calculating the standard devia-
tion of the logarithm: for 1979 this gives a figure of 1.31, slightly smaller than
the 2001 figure (1.48).

The measure of skewness for the 1979 data comes out as 5.723, smaller than
the 2001 figure (6.716). This suggests that the 1979 distribution is less skewed
than is the 1994 one. Again, these two figures can be directly compared
because they do not depend upon the units in which wealth is measured.
However, the relatively small difference is difficult to interpret in terms of how
the shape of the distribution has changed.

The box and whiskers diagram

Having calculated these various summary statistics we can now return to a use-
ful graphical method of presentation. This is the box and whiskers diagram
(sometimes called a box plot) which shows the median, quartiles and other
aspects of a distribution on a single diagram. Figure 1.15 shows the box plot for
the wealth data.

Wealth is measured on the vertical axis. The rectangular box stretches (vertic-
ally) from the first to third quartile and therefore encompasses the middle half
of the distribution. The horizontal line through it is at the median and lies less
than halfway up the box. This tells us that there is a degree of skewness even
within the central half of the distribution, though it does not appear very
severe. The two ‘whiskers’ extend above and below the box as far as the highest
and lowest observations, excluding outliers. An outlier is defined to be any obser-
vation which is more than 1.5 times the inter-quartile range (which is the same

The box and whiskers diagram 41

6 This is a different meaning of the term ‘nominal’ from that used earlier to denote data
measured on a nominal scale, i.e. data grouped into categories without an obvious order-
ing. Unfortunately, both meanings of the word are in common (statistical) usage, though
it should be obvious from the context which use is meant.
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42 Chapter 1 • Descriptive statistics

as the height of the box) above or below the box. Earlier we found the IQR to
be 131 974 and the upper quartile to be 151 370, so an (upper) outlier lies
beyond 151 370 + 1.5 × 131 974 = 349 331. There are no outliers below the box
as wealth cannot fall below zero. The top whisker is thus substantially longer
than the bottom one, and indicates the extent of dispersion towards the tails of
the distribution. The crosses indicate the outliers and in reality extend far
beyond those shown in the diagram.

A simple diagram thus reveals a lot of information about the distribution.
Other boxes and whiskers could be placed alongside in the same diagram (per-
haps representing other countries) making comparisons straightforward. Some
statistical software packages, such as SPSS and STATA, can generate box plots
from the original data, without the need for the user to calculate the median,
etc. However, spreadsheet packages do not yet have this useful facility.

Time-series data: investment expenditures 1970–2002

The data on the wealth distribution give a snapshot of the situation at particu-
lar points in time, and comparisons can be made between the 1979 and 2001
snapshots. Often, however, we wish to focus on the time-path of a variable and
therefore we use time-series data. The techniques of presentation and sum-
marising are slightly different than for cross-section data. As an example, we
use data on investment in the UK for the period 1970–2002. These data were
taken from Statbase (http://www.statistics.gov.uk/statbase/) although you can
find the data in Economic Trends Annual Supplement. Investment expenditure is
important to the economy because it is one of the prime determinants of
growth. Until recent years, the UK economy’s growth record has been poor by

Figure 1.15
Box plot of the wealth
distribution
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international standards and lack of investment may be a cause. The variable
studied is total gross (i.e. before depreciation is deducted) domestic fixed capital
formation, measured in £m. The data are shown in Table 1.12.

It should be remembered that the data are in current prices so that the
figures reflect price increases as well as changes in the volume of physical
investment. The series in Table 1.12 thus shows the actual amount of cash that
was spent each year on investment. The techniques used below for summar-
ising the investment data could equally well be applied to a series showing the
volume of investment.

First of all we can use graphical techniques to gain an insight into the char-
acteristics of investment. Figure 1.16 shows a time-series graph of investment.
The graph plots the time periods on the horizontal axis and the investment
variable on the vertical.

Time-series data: investment expenditures 1970–2002 43

Table 1.12 UK investment, 1970–2002

Year Investment Year Investment Year Investment

1970 10 036 1981 43 331 1992 100 583
1971 11 243 1982 47 394 1993 101 027
1972 12 347 1983 51 490 1994 108 314
1973 15 227 1984 58 589 1995 117 448
1974 18 134 1985 64 400 1996 126 291
1975 21 856 1986 68 546 1997 133 776
1976 25 516 1987 78 996 1998 150 540
1977 28 201 1988 96 243 1999 154 647
1978 32 208 1989 111 324 2000 161 210
1979 38 211 1990 114 300 2001 166 691
1980 43 238 1991 105 179 2002 169 972

Note: Time-series data consist of observations on one or more variables over several time
periods. The observations can be daily, weekly, monthly, quarterly or, as here, annually.

Figure 1.16
Time-series graph of
investment in the UK,
1970–2002

Note: The x, y coordinates are the values {year, investment}; the first data point has the co-
ordinates {1970, 10 036}, for example.
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44 Chapter 1 • Descriptive statistics

Plotting the data in this way brings out clearly some key features of the
series:

n The trend in investment is upwards, with only a few years in which there
was either no increase or a decrease.

n There is a ‘hump’ in the data in the late 1980s/early 1990s, before the series
returns to its trend. Something unusual must have happened around that
time. If we want to know what factors determine investment (or the effect of
investment upon other economic magnitudes) we should get some useful
insights from this period of the data.

n The trend is slightly non-linear – it follows an increasingly steep curve over
time. This is essentially because investment grows by a percentage or propor-
tionate amount each year. As we shall see shortly, it grows by about 9% each
year. Therefore, as the level of investment increases each year, so does the
increase in the level, giving a non-linear graph.

n Successive values of the investment variable are similar in magnitude, i.e. the
value in year t is similar to that in t − 1. Investment does not change from £40bn
in one year to £10bn the next, then back to £50bn, for instance. In fact, the
value in one year appears to be based on the value in the previous year, plus
(in general) 9% or so. We refer to this phenomenon as serial correlation
and it is one of the aspects of the data that we might wish to investigate.
The ordering of the data matters, unlike the case with cross-section data
where the ordering is usually irrelevant. In deciding how to model invest-
ment behaviour, we might focus on changes in investment from year to year.

n The series seems ‘smoother’ in the earlier years (up to perhaps 1986) and
exhibits greater volatility later on. In other words, there are greater fluctu-
ations around the trend in the later years. We could express this more for-
mally by saying that the variance of investment around its trend appears to
change (increase) over time. This is known as heteroscedasticity; a constant
variance is termed homoscedasticity.

We may gain further insight into how investment evolves over time by focus-
ing on the change in investment from year to year. If we denote investment in
year t by It then the change in investment, ΔIt, is given by It − It−1. Table 1.13

Table 1.13 The change in investment

Year ΔΔ Investment Year ΔΔ Investment Year ΔΔ Investment

1970 970 1981 93 1992 −4 596
1971 1207 1982 4 063 1993 444
1972 1104 1983 4 096 1994 7 287
1973 2880 1984 7 099 1995 9 134
1974 2907 1985 5 811 1996 8 843
1975 3722 1986 4 146 1997 7 485
1976 3660 1987 10 450 1998 16 764
1977 2685 1988 17 247 1999 4 107
1978 4007 1989 15 081 2000 6 563
1979 6003 1990 2 976 2001 5 481
1980 5027 1991 −9 121 2002 3 281

Note: The change in investment is obtained by taking the difference between successive
observations. For example, 1207 is the difference between 10 036 and 11 243.
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shows the changes in investment each year and Figure 1.17 provides a time-
series graph.

The series is made up of mainly positive values, indicating that investment
increases over time. It also shows that the increase grows each year, with per-
haps some greater volatility (of the increase) towards the end of the period. The
graph also shows dramatically the change that occurred around 1990.

Outliers

Graphing data also allows you to see outliers (unusual observations). Outliers
might be due to an error in inputting the data (e.g. typing 97 instead of 970) or
because something unusual happened (e.g. the investment figure for 1991). Either
of these should be apparent from an appropriate graph. For example, the graph of
the change in investment highlights the 1991 figure. In the case of a straightforward
error you should obviously correct it. If you are satisfied that the outlier is not sim-
ply a typo, you might want to think about the possible reasons for its existence and
whether it distorts the descriptive picture you are trying to paint.

Another useful way of examining the data is to look at the logarithm of
investment. This transformation has the effect of straightening out the non-
linear investment series. Table 1.14 shows the transformed values and Figure 1.18
graphs the series. In this case we use the natural (base e) logarithm.

This new series is much smoother than the original one (as is usually the
case when taking logs) and is helpful in showing the long-run trend, though it
tends to mask some of the volatility of investment. The slope of the graph gives
a close approximation to the average rate of growth of investment over the
period (expressed as a decimal). This is calculated as follows:

(1.29) slope
change in investment

number of years
  

  ( ) 
  

  
.   .

  .= =
−

=
ln 12 043 9 214

32
0 088
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Figure 1.17
Time-series graph 
of the change in
investment
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46 Chapter 1 • Descriptive statistics

that is 8.8% per annum. Note that although there are 33 observations, there are
only 32 years of growth. A word of warning: you must use natural (base e) loga-
rithms, not logarithms to the base 10, for this calculation to work. Remember
also that the growth of the volume of investment will be less than 8.8% per
annum, because part of it is due to price increases.

The logarithmic presentation is useful when comparing two different data
series: when graphed in logs it is easy to see which is growing faster – just see
which series has the steeper slope.

A corollary of equation (1.29) is that the change in the natural logarithm of
investment from one year to the next represents the percentage change in the
data. For example, the natural logarithm of investment in 1970 is 9.214, while
in 1971 it is 9.328. The difference is 0.114, so the rate of growth is 11.4%. You
can verify this using the original data. This approximation is good as long as
the growth rate is around 20% or less.

Table 1.14 The logarithm of investment and the change in the logarithm

Year ln ΔΔ ln Year ln ΔΔ ln Year ln ΔΔ ln
Investment Investment Investment Investment Investment Investment

1970 9.214 0.102 1981 10.677 0.002 1992 11.519 −0.045
1971 9.328 0.114 1982 10.766 0.090 1993 11.523 0.004
1972 9.421 0.094 1983 10.849 0.083 1994 11.593 0.070
1973 9.631 0.210 1984 10.978 0.129 1995 11.674 0.081
1974 9.806 0.175 1985 11.073 0.095 1996 11.746 0.073
1975 9.992 0.187 1986 11.135 0.062 1997 11.804 0.058
1976 10.147 0.155 1987 11.277 0.142 1998 11.922 0.118
1977 10.247 0.100 1988 11.475 0.197 1999 11.949 0.027
1978 10.380 0.133 1989 11.620 0.146 2000 11.990 0.042
1979 10.551 0.171 1990 11.647 0.026 2001 12.024 0.033
1980 10.674 0.124 1991 11.563 −0.083 2002 12.043 0.019

Note: For 1970, 9.214 is the natural logarithm of 10 036, i.e. ln 10 036 = 9.214.

Figure 1.18
Time-series graph of
the logarithm of
investment
expenditures
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Finally we can graph the difference of the logarithm, as we graphed the 
difference of the level. This is shown in Figure 1.19 (the calculations are in
Table 1.14).

This is quite revealing. It shows the series fluctuating about the value of
approximately 0.10 (the average calculated in equation (1.29) above), with a
slight downward trend. Furthermore, the series does not seem to show increas-
ing volatility over time, as the others did. The graph therefore demonstrates
that in proportionate terms there is no increasing volatility; the variance of the
series around 0.10 does not change much over time (though 1991 still seems to
be an ‘unusual’ observation). We may loosely refer to this series as being 
stationary – it has a constant mean and variance. This is not a formal
definition of the statistical term, which imposes stricter conditions on the
series, but it is a useful one to refer to.

Investment is made up of different categories: the table in Problem 1.14 pre-
sents investment data under different headings: dwellings; other buildings 
and works; transport; machinery; and intangible fixed assets. Together they
make up total investment. It is often useful to show all of the series together on
one graph. Figure 1.20 shows a multiple time-series graph of the investment
data.

Construction of this type of graph is straightforward; it is just an extension
of the technique for presenting a single series. It is easily, though laboriously,
done by hand but most computer software can produce this type of chart very
quickly. The only complication arises when the series are of different orders of
magnitude and it is difficult to make all the series visible on the chart. In this
case you can chart some of the series against a second vertical scale, on the
right-hand axis. An example is shown in Figure 1.21, plotting the investment
data with the interest rate, which has much smaller numerical values.

Returning to the investment categories, Figure 1.20 shows that ‘machinery’
and ‘other buildings’ are the two largest categories and are of approximately
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Figure 1.19
Time-series graph of
the difference of the
logarithmic series

Graphing multiple
series
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48 Chapter 1 • Descriptive statistics

equal size. This has not altered much over the period. All the series demon-
strate generally similar patterns of behaviour over the time period. (One could
also produce multiple plots of the logarithm of investment and of the change.)

Overlapping the ranges of the data series

The graph below, taken from the Treasury Briefing, February 1994, provides a nice
example of how to plot multiple time-series and compare them. The aim is to com-
pare the recessions and recoveries of 1974–78, 1979–83, and 1990–93. Instead of
plotting time on the horizontal axis, the number of quarters since the start of each
recession is used, so that the series overlap. This makes it easy to see the depth of
the last recession and the long time before recovery commenced. By contrast, the
1974–78 recession ended quite quickly and recovery was quite rapid.

Figure 1.20
A multiple time-series
graph of investment
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These series may also be illustrated by means of an area graph, which plots
the five series stacked one on top of the other, as illustrated in Figure 1.22.

This shows, for example, that construction (of all types) makes up over half
of all investment and that this proportion has not changed significantly over
the period shown.
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Figure 1.21
Time-series graph
using two vertical
scales: investment
(LH scale) and the
interest rate (RH
scale), 1982–2002

Figure 1.22
Area graph of
investment
categories,
1969–2002
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Given the following data:

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Profit 50 60 25 −10 10 45 60 50 20 40
Sales 300 290 280 255 260 285 300 310 300 330

(a) Draw a multiple time-series graph of the two variables. Label both axes appropri-
ately and provide a title for the graph.

(b) Adjust the graph by using the right-hand axis to measure profits, the left-hand axis
sales. What difference does this make?

The graphs have revealed quite a lot about the data already, but we can also
calculate numerical descriptive statistics as we did for the cross-section data.
First we consider the mean, then the variance and standard deviation.

We could calculate the mean of investment itself, but would this be helpful?
Because the series is trended, it passes through the mean at some point
between 1970 and 2002, but never returns to it. The mean of the series is actu-
ally £78.379bn, which is not very informative since it tells nothing about its
value today, for instance. The problem is that the variable is trended, so that
the mean is not typical of the series. The annual increase in investment is also
trended, so is subject to the same criticism.

It is better to calculate the average growth rate, since this appears station-
ary (Figure 1.19 above). This was calculated in equation (1.29) as 8.8% per

‘Chart junk’

With modern computer software it is easy to get carried away and produce a chart
that actually hides more than it reveals. There is a great temptation to add some 3-
D effects, liven it up with a bit of colour, rotate and tilt the viewpoint, etc. This sort
of stuff is generally known as ‘chart junk’. As an example, look at Figure 1.23 which
is an alternative to the area graph in Figure 1.22 above. It was fun to create, but it
doesn’t get the message across at all! Taste is, of course, personal, but moderation
is usually an essential part of it.

Figure 1.23
Over-the-top graph of
investment

Numerical
summary
statistics

The mean of 
a time series

Exercise 1.5
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annum by calculating the slope of the graph of the investment series. We can
get an accurate value in the following way:

1 Calculate the overall growth factor of the series, i.e. xT/x1 where xT is the
final observation and x1 is the initial observation.

2 Take the T − 1 root of the growth factor.
3 Subtract 1 from the result in the previous step, giving the growth rate as a

decimal.

For the investment data we have:

1 , i.e. investment expenditure is 17 times larger in

2002 than in 1970.

2

3 1.092 − 1 = 0.092.

Thus the average growth rate of investment is 9.2% per annum, rather than the
8.8% calculated earlier. (Step 2 can be performed on a scientific calculator by
raising 16.936 to the power 1/32, i.e. 16.936(1/32) = 1.092.)

(Note that we could have obtained the accurate answer from our earlier cal-
culation as follows:

n the slope of the graph is 0.088 (equation (1.29) above);
n calculate the anti-log (ex) of this: e0.088 = 1.092;
n subtract 1, giving a growth rate of 1.092 − 1 = 0.092 = 9.2% p.a.)

Note that, since the calculated growth rate is based only upon the initial and final
observations, it could be unreliable if either of these two values is an outlier.

The power of compound growth

The Economist magazine provided some amusing and interesting examples of how
a $1 investment can grow over time. They assumed that an investor (they named
her Felicity Foresight, for reasons that become obvious) started with $1 in 1900 and
had the foresight or luck to invest, each year, in the best performing asset of the
year. Sometimes she invested in equities, some years in gold, and so on. By the end
of the century she had amassed $9.6 quintillion ($9.6 × 1018, more than world GDP,
so highly unrealistic). This is equivalent to an average annual growth rate of 55%. In
contrast, Henry Hindsight did the same, but invested in the previous year’s best
asset. This might be thought more realistic. Unfortunately, his $1 turned into only $783,
a still respectable annual growth rate of 6.9%. This, however, is beaten by the
strategy of investing in the previous year’s worst performing asset (what goes down
must come up . . . ). This turned $1 into $1730, a return of 7.7%. Food for thought!

Source: The Economist, 12th February 2000, p. 111.

In calculating the average growth rate of investment we have implicitly calcu-
lated the geometric mean of a series. If we have a series of n values, then their
geometric mean is calculated as the nth root of the product of the values, i.e.7

 16 936 1 092
32

.   .=

x
x

T

1

169 972
10 036

16 93  
 
 

  .= =
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The geometric
mean

7 The symbol Π (Greek capital ‘pi’) means ‘the product of’ in the same way as Σ means
the sum.
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52 Chapter 1 • Descriptive statistics

(1.30) geometric mean =

The x values in this case are the growth factors in each year, as in Table 1.15
(the values in the intermediate years are omitted).

The product of the 32 growth factors is 16.936 (the same as is obtained by
dividing the final observation by the initial one – why?) and the 32nd root of
this is 1.092. This latter figure, 1.092, is the geometric mean of the growth 
factors and from it we can derive the growth rate of 9.2% p.a. by subtracting 1.

Whenever one is dealing with growth data (or any series that is based on a
multiplicative process) one should use the geometric mean rather than the
arithmetic mean to get the answer. However, using the arithmetic mean in this
case generally gives only a small error, as is indicated below.

We have seen that when calculating rates of growth one should use the geo-
metric mean, but if the growth rate is reasonably small then taking the arith-
metic mean will give approximately the right answer. The arithmetic mean of
the growth factors is

giving an estimate of the growth rate of 9.5% p.a. – close to the correct value.
Note also that one could equivalently take the average of the annual growth
rates (0.1203, 0.0982, etc.), giving 0.095, to get the same result. Use of the
arithmetic mean is justified in this context if one needs only an approximation
to the right answer and annual growth rates are reasonably small.

How should we describe the variance of a time series? The variance of the
investment data can be calculated, but it would be uninformative in the same
way as the mean. Since the series is trended, and this is likely to continue in
the longer run, the variance is in principle equal to infinity. The calculated
variance would be closely tied to the sample size: the larger it is, the larger the
variance. Again it makes more sense to calculate the variance of the growth
rate, which has little trend in the long run.

 

1 1203 1 0982 1 0340 1 0197
32

1 095
.   .   . . .  .   .

  .
+ + + +

=

  
xi

i

n
n

=
∏

1

Table 1.15 Calculation of the geometric mean – annual growth factors

Year Investment Growth factors

1970 10 036
1971 11 243 1.1203 (=11 243/10 036)
1972 12 347 1.0982 (=12 347/11 243)
1973 15 227 1.2333 etc.

� � �
1997 133 776 1.0593
1998 150 540 1.1253
1999 154 647 1.0273
2000 161 210 1.0424
2001 166 691 1.0340
2002 169 972 1.0197

Note: Each growth factor simply shows the ratio of that year’s investment to the previous
year’s.

An approximate
way of obtaining
the average
growth rate

The variance of 
a time series
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This variance can be calculated from the formula:

(1.33)

where X is the (arithmetic) average rate of growth. The calculation is set out in
Table 1.16 using the right-hand formula in (1.33).

The variance is therefore

and the standard deviation is 0.075, the square root of the variance. The
coefficient of variation is

that is the standard deviation of the growth rate is about 80% of the mean.
Note three things about this calculation: first, we have used the arithmetic

mean (using the geometric mean makes very little difference); second, we have
used the formula for the sample variance since the period 1970–2002 consti-
tutes a sample of all the possible data we could collect; and third, we could
have equally used the growth factors for the calculation of the variance (why?).
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Compound interest

The calculations we have performed relating to growth rates are analogous to com-
puting compound interest. If we invest £100 at a rate of interest of 10% per
annum, then the investment will grow at 10% p.a. (assuming all the interest is rein-
vested). Thus after one year the total will have grown to £100 × 1.1 (£110), after two
years to £100 × 1.12 (£121) and after t years to £100 × 1.1t. The general formula for
the terminal value St of a sum S0 invested for t years at a rate of interest r is

(1.31) St = S0(1 + r)t

where r is expressed as a decimal. Rearranging (1.31) to make r the subject yields

(1.32) r =

which is precisely the formula for the average growth rate. To give a further exam-
ple: suppose an investment fund turns an initial deposit of £8000 into £13 500 over
12 years. What is the average rate of return on the investment? Setting S0 = 8, St =
13.5, t = 12 and using (1.32) we obtain

r =

or 4.5% per annum.
Formula (1.32) can also be used to calculate the depreciation rate and the

amount of annual depreciation on a firm’s assets. In this case, S0 represents the ini-
tial value of the asset, St represents the final or scrap value, and the annual rate of
depreciation is given by r from equation (1.32).

13 5
8 1 0 04512 .     .− =

S
S

tt

0
1  −
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Given the following data:

Year 1999 2000 2001 2002 2003

Price of a laptop PC 1100 900 800 750 700

we can work out the average rate of price growth per annum as follows.

The overall growth factor is = 0.6363. The fact that this number is

less than 1 simply reflects the fact that the price has fallen over time. It 
has fallen to 64% of its original value. To find the annual rate, we take 
the fourth root of 0.6363 (four years of growth). Hence we get

, i.e. each year the price falls to 89% of its value the previous
year. This implies price is falling at 0.893 − 1 = −0.107, or approximately an
11% fall each year.

We can see if the fall is more or less the same each year, by calculating
each year’s growth factor. These are:

Year 1999 2000 2001 2002 2003

Laptop price 1100 900 800 750 700
Growth factor 0.818 0.889 0.9375 0.933
Price fall −19% −11% −6% −7%

The price fall was larger in the earlier years, in percentage as well as
absolute terms. Calculating the standard deviation of the values in the final
row provides a measure of the variability from year to year. The variance is
given by

and the standard deviation is then 5.54%. (The calculations are shown
rounded but the answer is accurate.)

s2
2 2 2 219 11 11 11 6 11 7 11

3
30 7  

(   )   (   )   (   )   (   )
  .=

− + − + − + −
=

0 6363 0 8934 .   .=

700
1100

Table 1.16 Calculation of the variance of the growth rate

Year Investment Growth rate

x x2

1971 11 243 0.1203 0.0145
1972 12 347 0.0982 0.0096
1973 15 227 0.2333 0.0544
1997 � � �
1998 150 540 0.1253 0.0157
1999 154 647 0.0273 0.0007
2000 161 210 0.0424 0.0018
2001 166 691 0.0340 0.0012
2002 169 972 0.0197 0.0004

Totals 3.0392 0.4635

Worked example 1.6
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(a) Using the data in Exercise 1.5, calculate the average level of profit over the time
period and the average growth rate of profit over the period. Which appears more
useful?

(b) Calculate the variance of profit and compare it to the variance of sales.

Graphing bivariate data: the scatter diagram

The analysis of investment is an example of the use of univariate methods:
only a single variable is involved. However, we often wish to examine the rela-
tionship between two (or sometimes more) variables and we have to use bivariate
(or multivariate) methods. To illustrate the methods involved we shall 
examine the relationship between investment expenditures and Gross
Domestic Product (GDP). Economics tells us to expect a positive relationship
between these variables, higher GDP is usually associated with higher invest-
ment. Table 1.17 provides data on GDP for the UK.

A scatter diagram (also called an XY chart) plots one variable (in this case
investment) on the y axis, the other (GDP) on the x axis, and therefore shows
the relationship between them. For example, one can see whether high values
of one variable tend to be associated with high values of the other. Figure 1.24
shows the relationship for investment and GDP.

The chart shows a strong linear relationship between the two variables, apart
from a curious dip in the middle. This reflects the sharp fall in investment after
1990 which is not matched by a fall in GDP (if it were, the XY chart would
show a linear relationship without the dip). It is important to recognise the dif-
ference between the time-series plot and the XY chart. Because of inflation later
observations tend to be towards the top right of the XY chart (both investment
and GDP are increasing over time) but this does not have to happen; if both
variables fluctuated up and down, later observations could be at the bottom-left
(or centre, or anywhere). By contrast, in a time-series plot, later observations
are always further to the right.

Note that both variables are in nominal terms, i.e. they make no correction
for inflation over the time period. This may be seen algebraically: investment

Graphing bivariate data: the scatter diagram 55

Exercise 1.6

Table 1.17 GDP data

Year GDP Year GDP Year GDP

1970 51 515 1981 253 000 1992 610 854
1971 57 449 1982 277 090 1993 642 327
1972 64 317 1983 302 774 1994 681 327
1973 73 979 1984 324 407 1995 719 176
1974 83 742 1985 354 952 1996 763 290
1975 105 773 1986 381 317 1997 810 944
1976 125 098 1987 419 631 1998 859 436
1977 145 528 1988 468 386 1999 903 865
1978 167 806 1989 514 168 2000 951 265
1979 197 355 1990 557 300 2001 994 037
1980 230 695 1991 586 149 2002 1 043 306
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56 Chapter 1 • Descriptive statistics

expenditure is made up of the volume of investment (I) times its price (PI).
Similarly, nominal GDP is real GDP (Y) times its price (PY). Thus the scatter diagram
actually charts PI × I against PY × Y. It is likely that the two prices follow a similar
trend over time and that this dominates the movements in real investment and
GDP. The chart then shows the relationship between a mixture of prices and
quantities, when the more interesting relationship is between the quantities of
investment and output.

Figure 1.25 shows the relationship between the quantities of investment and
output, i.e. after the price effects have been removed. It is not so straight-
forward as the nominal graph. There is now a ‘knot’ of points in centre where
perhaps both (real) investment and GDP fluctuated. It is clear that something
‘interesting’ happened around 1990 that merits additional investigation.

Figure 1.24
Scatter diagram of
investment (vertical
axis) against GDP
(horizontal axis)
(nominal values)

Note: The (x, y) coordinates of each point are given by the values of investment and GDP
respectively. Thus the first (1970) data point is drawn 10 036 units above the horizontal axis
and 51 515 units from the vertical one.

Figure 1.25
The relationship
between real
investment and real
output
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Chapter 10, on index numbers, explains in detail how to derive real vari-
ables from nominal ones, as we have done here, and generally describes how to
correct for the effects of inflation on economic magnitudes.

(a) Once again using the data from Exercise 1.5, draw an XY chart with profits on the
vertical axis, sales on the horizontal axis. Choose the scale of the axes appropriately.

(b) (If using Excel to produce graphs) right click on the graph, choose ‘Add trendline’
and choose a linear trend. This gives the ‘line of best fit’ (covered in detail in
Chapter 7). What does this appear to show?

Data transformations

In analysing employment and investment data in the examples above we have
often changed the variables in some way in order to bring out the important
characteristics. In statistics one usually works with data that have been trans-
formed in some way rather than using the original numbers. It is therefore
worth summarising the main data transformations available, providing
justifications for their use and exploring the implications of such adjustments
to the original data. We briefly deal with the following transformations:

n rounding;
n grouping;
n dividing or multiplying by a constant;
n differencing;
n taking logarithms;
n taking the reciprocal;
n deflating.

Rounding improves readability. Too much detail can hide the message, so
rounding the answer makes it more memorable. To give an example, the aver-
age wealth holding calculated earlier in this chapter is actually £133 442.893
(to three decimal places). It would be absurd to present it in this form however.
We do not know for certain that this figure is accurate (in fact, it almost cer-
tainly is not). There is a spurious degree of precision which might mislead the
reader. How much should this be rounded for presentational purposes there-
fore? Remember that the figures have already been effectively rounded by allo-
cation to classes of width 10 000 or more (all observations have been rounded
to the mid-point of the interval). However, much of this rounding is offsetting,
i.e. numbers rounded up offset those rounded down, so the mean is reasonably
accurate. Rounding to £133 000 makes the figure much easier to remember,
and is only a change of 0.3% (133 000/133 443 = 0.9967), so is a reasonable
compromise. In the text above, the answer was not rounded to such an extent
since the purpose was to highlight the methods of calculation.

Rounding is a ‘trap door’ function: you cannot obtain the original value
from the transformed (rounded) value. Therefore, if you are going to need the
original value in further calculations you should not round your answer.
Furthermore, small rounding errors can cumulate, leading to a large error in

Data transformations 57

Exercise 1.7

Rounding
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58 Chapter 1 • Descriptive statistics

the final answer. Therefore, you should never round an intermediate answer,
only the final one. Even if you only round the intermediate answer by a small
amount, the final answer could be grossly inaccurate. Try the following: calcu-
late 60.29 × 30.37 − 1831 both before and after rounding the first two numbers
to integers. In the first case you get 0.0073, in the second −31.

When there is too much data to present easily, grouping solves the problem,
although at the cost of hiding some of the information. The examples relating
to education and unemployment and to wealth used grouped data. Using the
raw data would have given us far too much information, so grouping is a first
stage in data analysis. Grouping is another trap door transformation: once it’s
done you cannot recover the original information.

This transformation is carried out to make numbers more readable or to make
calculation simpler by removing trailing zeros. The data on wealth were
divided by 1000 to ease calculation; otherwise the fx2 column would have con-
tained extremely large values. Some summary statistics (e.g. the mean) will be
affected by the transformation, but not all (e.g. the coefficient of variation). Try
to remember which are affected! E and V operators (see Appendix 1B, p. 72)
can help. The transformation is easy to reverse.

In time-series data there may be a trend, and it is better to describe the features
of the data relative to the trend. The result may also be more economically
meaningful, e.g. governments are often more concerned about the growth of
output than about its level. Differencing is one way of eliminating the trend.
Differencing was used for the investment data for both of these reasons. One of
the implications of differencing is that information about the level of the vari-
able is lost and cannot be recovered.

Taking logarithms is used to linearise a non-linear series, in particular one that
is growing at a constant rate. It is often easier to see the important features of
such a series if the logarithm is graphed rather than the raw data. The logarith-
mic transformation is also useful in regression (see Chapter 9) because it yields
estimates of elasticities (e.g. of demand). Taking the logarithm of the invest-
ment data linearised the series and tended to smooth it. The inverses of the 
logarithmic transformations are 10x (for common logarithms) and ex (for natural
logarithms) so one can recover the original data.

The reciprocal of a variable might have a useful interpretation and provide a
more intuitive explanation of a phenomenon. The reciprocal transformation
will also turn a linear series into a non-linear one. The reciprocal of turnover in
the labour market (i.e. the number leaving unemployment divided by the
number unemployed) gives an idea of the duration of unemployment. If a half
of those unemployed find work each year (turnover = 0.5) then the average
duration of unemployment is 2 years (= 1/0.5). If a graph of turnover shows a
linear decline over time, then the average duration of unemployment will be
rising, at a faster and faster rate. Repeating the reciprocal transformation recovers
the original data.

Grouping

Dividing/
multiplying by 
a constant

Differencing

Taking logarithms

Taking the
reciprocal
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Deflating turns a nominal series into a real one, i.e. one that reflects changes in
quantities without the contamination of price changes. This is dealt with in
more detail in Chapter 10. It is often more meaningful in economic terms to
talk about a real variable than a nominal one. Consumers are more concerned
about their real income than about their money income, for example.

Confusing real and nominal variables is dangerous! For example, someone’s
nominal (money) income may be rising yet their real income falling (if prices
are rising faster than money income). It is important to know which series you
are dealing with (this is a common failing among students new to statistics and
economics). An income series that is growing at 2–3% per annum is probably a
real series; one that is growing at 10% per annum or more is likely to be nominal.

Guidance to the student: how to measure your progress

Now you have reached the end of the chapter your work is not yet over! It is
very unlikely that you have fully understood everything after one read
through. What you should do now is:

n Check back over the learning intentions at the start of the chapter. Do you
feel you have achieved them? For example, can you list the various different
data types you should be able to recognise (the first learning outcome)?

n Read the chapter summary below to help put things in context. You should
recognise each topic and be aware of the main issues, techniques, etc. within
them. There should be no surprises or gaps!

n Read the list of key terms. You should be able to give a brief and precise
definition or description of each one. Do not worry if you cannot remember
all the formulae (though you should try to memorise simple ones such as
that for the mean).

n Try out the problems (most important!). Answers to odd-numbered prob-
lems are at the back of the book, so you can check your answers.

From all of this you should be able to work out whether you have really
mastered the chapter. Do not be surprised if you have not – it will take more
than one reading. Go back over those parts where you feel unsure of your
knowledge. Use these same learning techniques for each chapter of the book.

Summary

n Descriptive statistics are useful for summarising large amounts of informa-
tion, highlighting the main features but omitting the detail.

n Different techniques are suited to different types of data, e.g. bar charts for
cross-section data and rates of growth for time series.

n Graphical methods, such as the bar chart, provide a picture of the data.
These give an informal summary but they are unsuitable as a basis for fur-
ther analysis.

Summary 59

Deflating
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60 Chapter 1 • Descriptive statistics

n Important graphical techniques include the bar chart, frequency distribu-
tion, relative and cumulative frequency distributions, histogram and pie
chart. For time-series data a time-series chart of the data is informative.

n Numerical techniques are more precise as summaries. Measures of location
(such as the mean), of dispersion (the variance) and of skewness form the
basis of these techniques.

n Important numerical summary statistics include the mean, median and
mode; variance, standard deviation and coefficient of variation; coefficient
of skewness.

n For bivariate data the scatter diagram (or XY graph) is a useful way of illus-
trating the data.

n Data are often transformed in some way before analysis, e.g. by taking logs.
Transformations often make it easier to see key features of the data in graphs
and sometimes make summary statistics easier to interpret. For example,
with time-series data the average rate of growth may be more appropriate
than the mean of the series.

cross-section data
bar chart
histogram
median
variance
z score
data transformation
box and whiskers plot
time-series data

pie chart
relative and

cumulative
frequencies

mode
standard deviation
skewness
compound growth
cross-tabulation

frequency table
mean
quantiles
coefficient of

variation
outliers
scatter diagram 

(XY chart)

Key terms and
concepts

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 1.1 The following data show the education and employment status of women aged 20–29
(from the 1991 General Household Survey):

Higher A levels Other No Total
education qualification qualification

In work 209 182 577 92 1060
Unemployed 12 9 68 32 121
Inactive 17 34 235 136 422
Sample size 238 225 880 260 1603

(a) Draw a bar chart of the numbers in work in each education category. Can this be
easily compared with the similar diagram for 2003 (Figure 1.1)?

(b) Draw a stacked bar chart using all the employment states, similar to Figure 1.3.
Comment upon any similarities and differences from the diagram in the text.
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(c) Convert the table into (column) percentages and produce a stacked bar chart simi-
lar to Figure 1.4. Comment upon any similarities and differences.

(d) Draw a pie chart showing the distribution of educational qualifications of those in
work and compare it to Figure 1.5 in the text.

Problem 1.2 The data below show the median weekly earnings (in £s) of those in full-time employ-
ment in Great Britain in 1992, by category of education.

Degree Other higher A level GCSE A–C GCSE D–G None
education

Males 433 310 277 242 226 220
Females 346 278 201 183 173 146

(a) In what fundamental way do the data in this table differ from those in Problem 1.1?

(b) Construct a bar chart showing male and female earnings by education category.
What does it show?

(c) Why would it be inappropriate to construct a stacked bar chart of the data? How
should one graphically present the combined data for males and females? What
extra information is necessary for you to do this?

Problem 1.3 Using the data from Problem 1.1:

(a) Which education category has the highest proportion of people in work? What is
the proportion?

(b) Which category of employment status has the highest proportion of people with a
degree? What is the proportion?

Problem 1.4 Using the data from Problem 1.2:

(a) What is the premium, in terms of median earnings, of a degree over A levels? Does
this differ between men and women?

(b) Would you expect mean earnings to show a similar picture? What differences, if
any, might you expect?

Problem 1.5 The distribution of marketable wealth in 1979 in the UK is shown in the table below
(taken from Inland Revenue Statistics 1981, p. 105):

Range Number Amount
000s £m

0– 1606 148
1 000– 2927 5 985
3 000– 2562 10 090
5 000– 3483 25 464

10 000– 2876 35 656
15 000– 1916 33 134
20 000– 3425 104 829
50 000– 621 46 483

100 000– 170 25 763
200 000– 59 30 581

Problems 61
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62 Chapter 1 • Descriptive statistics

Draw a bar chart and histogram of the data (assume the final class interval has a width
of 200 000). Comment on the differences between the two. Comment on any differ-
ences between this histogram and the one for 2001 given in the text.

Problem 1.6 The data below show the number of manufacturing plants in the UK in 1991/92
arranged according to employment:

Number of employees Number of firms

1– 95 409
10– 15 961
20– 16 688
50– 7 229

100– 4 504
200– 2 949
500– 790

1000– 332

Draw a bar chart and histogram of the data (assume the mid-point of the last class
interval is 2000). What are the major features apparent in each and what are the 
differences?

Problem 1.7 Using the data from Problem 1.5:

(a) Calculate the mean, median and mode of the distribution. Why do they differ?

(b) Calculate the inter-quartile range, variance, standard deviation and coefficient of
variation of the data.

(c) Calculate the skewness of the distribution.

(d) From what you have calculated, and the data in the chapter, can you draw any
conclusions about the degree of inequality in wealth holdings, and how this has
changed?

(e) What would be the effect upon the mean of assuming the final class width to be
£10m? What would be the effects upon the median and mode?

Problem 1.8 Using the data from Problem 1.6:

(a) Calculate the mean, median and mode of the distribution. Why do they differ?

(b) Calculate the inter-quartile range, variance, standard deviation and coefficient of
variation of the data.

(c) Calculate the coefficient of skewness of the distribution.

Problem 1.9 A motorist keeps a record of petrol purchases on a long journey, as follows:

Petrol station 1 2 3

Litres purchased 33 40 25
Price per litre 55.7 59.6 57.0

Calculate the average petrol price for the journey.

Problem 1.10 Demonstrate that the weighted average calculation given in equation (1.9) in the text is equi-
valent to finding the total expenditure on education divided by the total number of pupils.
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Problem 1.11 On a test taken by 100 students, the average mark is 65, with variance 144. Student A
scores 83, student B scores 47.

(a) Calculate the z scores for these two students.

(b) What is the maximum number of students with a score either better than A’s or
worse than B’s?

(c) What is the maximum number of students with a score better than A’s?

Problem 1.12 The average income of a group of people is £8000. 80% of the group have incomes
within the range £6000–10 000. What is the minimum value of the standard deviation of
the distribution?

Problem 1.13 The following data show car registrations in the UK during 1970–91 (source: ETAS
1993, p. 57):

Year Registrations Year Registrations Year Registrations

1970 91.4 1978 131.6 1986 156.9
1971 108.5 1979 142.1 1987 168.0
1972 177.6 1980 126.6 1988 184.2
1973 137.3 1981 124.5 1989 192.1
1974 102.8 1982 132.1 1990 167.1
1975 98.6 1983 150.5 1991 133.3
1976 106.5 1984 146.6
1977 109.4 1985 153.5

(a) Draw a time-series graph of car registrations. Comment upon the main features of
the series.

(b) Draw time-series graphs of the change in registrations, the (natural) log of registra-
tions, and the change in the ln. Comment upon the results.

Problem 1.14 The table below shows the different categories of investment, 1983–2002.

Year Dwellings Transport Machinery Intangible Other 
fixed assets buildings

1983 10 447 4 781 18 377 1 728 16 157
1984 11 932 5 938 20 782 2 229 17 708
1985 12 219 6 726 24 349 2 458 18 648
1986 14 140 6 527 25 218 2 184 20 477
1987 16 548 7 872 28 225 2 082 24 269
1988 21 097 9 227 32 614 2 592 30 713
1989 22 771 10 624 38 417 2 823 36 689
1990 21 048 10 571 37 776 3 571 41 334
1991 18 339 9 051 35 094 4 063 38 632
1992 18 825 8 420 35 071 3 782 34 485
1993 19 892 9 315 35 316 3 648 32 856
1994 21 233 11 395 38 226 3 613 33 847
1995 21 664 11 295 45 012 3 939 35 538
1996 22 516 12 222 50 197 4 136 37 220
1997 23 928 12 972 51 533 4 249 41 094
1998 25 222 16 143 59 512 4 547 45 116
1999 25 700 15 067 59 766 4 645 49 469
2000 27 394 13 444 62 698 4 966 52 708
2001 29 311 15 168 61 461 5 016 55 735
2002 35 597 15 825 54 624 5 542 58 384

Use appropriate graphical techniques to analyse the properties of any one of the invest-
ment series. Comment upon the results.

Problems 63
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64 Chapter 1 • Descriptive statistics

Problem 1.15 Using the data from Problem 1.13:

(a) Calculate the average rate of growth of the series.

(b) Calculate the standard deviation around the average growth rate.

(c) Does the series appear to be more or less volatile than the investment figures used
in the chapter? Suggest reasons.

Problem 1.16 Using the data from Problem 1.14:

(a) Calculate the average rate of growth of the series for dwellings.

(b) Calculate the standard deviation around the average growth rate.

(c) Does the series appear to be more or less volatile than the investment figures used
in the chapter? Suggest reasons.

Problem 1.17 How would you expect the following time-series variables to look when graphed? (e.g.
Trended? Linear trend? Trended up or down? Stationary? Autocorrelated? Cyclical?
Anything else?)

(a) Nominal national income.

(b) Real national income.

(c) The nominal interest rate.

Problem 1.18 How would you expect the following time-series variables to look when graphed?

(a) The price level.

(b) The inflation rate.

(c) The £/$ exchange rate.

Problem 1.19 (a) A government bond is issued, promising to pay the bearer £1000 in five years’ time.
The prevailing market rate of interest is 7%. What price would you expect to pay
now for the bond? What would its price be after two years? If, after two years, the
market interest rate jumped to 10%, what would the price of the bond be?

(b) A bond is issued which promises to pay £200 per annum over the next five years. If
the prevailing market interest rate is 7%, how much would you be prepared to pay
for the bond? Why does the answer differ from the previous question? (Assume
interest is paid at the end of each year.)

Problem 1.20 A firm purchases for £30 000 a machine which is expected to last for 10 years, after
which it will be sold for its scrap value of £3000. Calculate the average rate of deprecia-
tion per annum, and calculate the written-down value of the machine after one, two and
five years.

Problem 1.21 Depreciation of BMW and Mercedes cars is given in the following table:

Age BMW 525i Mercedes 200E

Current 22 275 21 900
1 year 18 600 19 700
2 years 15 200 16 625
3 years 12 600 13 950
4 years 9 750 11 600
5 years 8 300 10 300
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(a) Calculate the average rate of depreciation of each type of car.

(b) Use the calculated depreciation rates to estimate the value of the car after 1, 2, etc.
years of age. How does this match the actual values?

(c) Graph the values and estimated values for each car.

Problem 1.22 A bond is issued which promises to pay £400 per annum in perpetuity. How much is the
bond worth now, if the interest rate is 5%? (Hint: the sum of an infinite series of the form

is 1/r, as long as r > 0.)

Problem 1.23 Demonstrate, using Σ notation, that E(x + k) = E(x) + k.

Problem 1.24 Demonstrate, using Σ notation, that V(kx) = k2V(x).

Problem 1.25 Criticise the following statistical reasoning. The average price of a dwelling is £54 150.
The average mortgage advance is £32 760. So purchasers have to find £21 390, that is,
about 40% of the purchase price. On any basis that is an enormous outlay which young
couples, in particular, who are buying a house for the first time would find incredibly
difficult, if not impossible, to raise.

Problem 1.26 Criticise the following statistical reasoning. Amongst arts graduates 10% fail to find em-
ployment. Amongst science graduates only 8% remain out of work. Therefore, science
graduates are better than arts graduates. (Hint: Imagine there are two types of job: popular
and unpopular. Arts graduates tend to apply for the former, scientists for the latter.)

It has been claimed that, in spite of the UK government’s desire to see lower taxation,
the level of taxation in 2000 was higher than in 1979. Is this claim correct?

You should gather data which you think appropriate to the task, summarise it as
necessary and write a brief report of your findings. You might like to consider the fol-
lowing points:

n Should one consider tax revenue, or revenue as a proportion of GNP?

n Should one distinguish between tax rates and the tax base (i.e. what is taxed)?

n Has the balance between direct and indirect taxation changed?

n Have different sections of the population fared differently?

You might like to consider other points, and do the Problem for a different country.
Suitable data sources for the UK are: Inland Revenue Statistics, UK National Accounts,
Annual Abstract of Statistics or Financial Statistics.

Is the employment and unemployment experience of the UK economy worse than that of
its competitors? Write a report on this topic in a similar manner to the project above. You
might consider rates of unemployment in the UK and other countries; trends in unemploy-
ment in each of the countries; the growth in employment in each country; the structure
of employment (e.g. full-time/part-time) and unemployment (e.g. long-term/short-term).

You might use data for a number of countries, or concentrate on two in more depth.
Suitable data sources are: OECD Main Economic Indicators; European Economy (pub-
lished by the European Commission); Employment Gazette.

1
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Problem 1.27 
(Project 1)

Problem 1.28
(Project 2)
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Reference A.B. Atkinson, The Economics of Inequality, 2nd edn, Oxford University Press, 
1983.

Answers to exercises

Exercise 1.1 (a)

(b)

(c)
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It is clear the English are more likely to visit Spain than are other nationalities.

Exercise 1.2 (a) Bar chart

Histogram

Answers to exercises 67
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Exercise 1.3 (a) Midpoint, x Frequency, f fx

0–10 5 20 100
11–30 20 40 800
31–60 45 30 1350
60–100 80 20 1600

110 3850

Hence the mean = 3850/110 = 35.
The median is contained in the 11–30 group and is 35/40 of the way

through the interval (20 + 35 gets us to observation 55). Hence the median is 
11 + 35/40 × 19 = 27.625.

The mode is anywhere in the 0–30 range, the frequency density is the same
throughout this range.

(b)

Exercise 1.4 (a) Q1 relates to observation 27.5 (=110/4). This observation lies in the 11–30
range. There are 20 observations in the first class interval, so Q1 will relate to
observation 7.5 in the second interval. Hence we need to go 7.5/40 of the way
through the interval. This gives 11 + (7.5/40) × 19 = 14.6. Similarly, Q3 
is 22.5/30 of the way through the third interval, yielding Q3 = 31 + 22.5/30 ×
29 = 52.8. The IQR is therefore 38, approximately. For the variance we obtain
∑fx = 3850 and ∑fx2 = 205 250. The variance is therefore σ2 = 205 250/110 − 352

= 640.9 and the standard deviation 25.3.

(b) CV = 25.3/35 = 0.72.

(c) 1.3 × 25.3 = 32.9, not far from the IQR value of 38.

(d) 1 standard deviation either side of the mean takes us from 9.7 up to 60.3. 
This contains all 70 observations in the second and third intervals plus perhaps
one from the first interval. Thus we get approximately 71 observations within
this range. Chebyshev’s inequality does not help us here as it is not defined for
k ≤ 1.
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Exercise 1.5 (a)

(b)

Using the second axis brings out the variability of profits relative to sales.

Exercise 1.6 (a) The average profit is 35. The average rate of growth is calculated by comparing
the end values 50 and 40, over the ten-year period. The ratio is 0.8. Taking the
ninth root of this (nine years of growth) gives so the annual rate
of growth is 0.976 − 1 = −2.4%.

(b) The variances are (using the sample variance formula): for profits, ∑(x − μ)2 =
4800 and dividing by 9 gives 533.3. For sales, the mean is 291 and ∑(x − μ)2 =
4540. The variance is therefore 4540/9 = 504.4. This is similar in absolute size to
the variance of profits, but relative to the mean it is much smaller.

Exercise 1.7 (a/b)

The trend line seems to show a positive relationship between the variables:
higher profits are associated with higher sales.

 0 8 0 9269 .   .=

Answers to exercises 69
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Appendix 1A ΣΣ notation

The Greek symbol ∑ (capital sigma) means ‘add up’ and is a shorthand way of
writing what would otherwise be long algebraic expressions. For example,
given the following observations on x:

x1 x2 x3 x4 x5

3 5 6 4 8

then

= x1 + x2 + x3 + x4 + x5 = 3 + 5 + 6 + 4 + 8 = 26

To expand the sigma expression, the subscript i is replaced by successive
integers, beginning with the one below the ∑ sign and ending with the one
above it. Similarly

= x2 + x3 + x4 = 5 + 6 + 4 = 15

When it is clear what range of values i takes, the formula can be simplified to
∑ i xi or ∑xi or even ∑x.

When frequencies are associated with each of the observations, as in the
data below:

i 1 2 3 4 5

xi 3 5 6 4 8
fi 2 2 4 3 1

then

= f1x1 + . . . + f5x5 = 2 × 3 + . . . + 1 × 8 = 60

and

∑fi = 2 + 2 + 4 + 3 + 1 = 12

Thus the sum of the 12 observations is 60 and the mean is

Further examples are:

∑x2 = x2
1 + x2

2 + . . . + x2
5 = 150

(∑x)2 = (x1 + x2 + . . . + x5)
2 = 676

∑ fx2 = f1x
2
1 + f2x

2
2 + . . . + f5x2

5 = 2 × 32 + 2 × 52 + . . . + 1 × 82 = 324

∑
∑

= =
fx
f

    
60
12

5

f xi
i

i

i
=

=

∑
1

5

xi
i =
∑

2

4

xi
i =
∑

1

5
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Using ∑ notation we can see the effect of transforming x by dividing by 1000,
as was done in calculating the average level of wealth. Instead of working with
x we used kx, where k = 1/1000. In finding the mean we calculated

(1.34)

so to find the mean of the original variable x we had to divide by k again, i.e.
multiply by 1000. In general, whenever each observation in a sum is multiplied
by a constant, the constant can be taken outside the summation operator, as in
(1.34) above.

Problems on ΣΣ notation

Problem 1A.1 Given the following data on xi: {4, 6, 3, 2, 5}, evaluate:

∑xi, ∑xi
2, (∑xi )

2, ∑(xi − 3), ∑xi − 3, 

Problem 1A.2 Given the following data on xi: {8, 12, 6, 4, 10}, evaluate:

∑xi, ∑xi
2, (∑xi )

2, ∑(xi − 3), ∑xi − 3, 

Problem 1A.3 Given the following frequencies, fi, associated with the x values in Problem A1: {5, 3, 3,
8, 5}, evaluate:

∑ fx, ∑ fx2, ∑ f(x − 3), ∑ fx − 3

Problem 1A.4 Given the following frequencies, fi, associated with the x values in Problem 1.A2: {10, 6,
6, 16, 10}, evaluate:

∑ fx, ∑ fx2, ∑ f(x − 3), ∑ fx − 3

Problem 1A.5 Given the pairs of observations on x and y,

x 4 3 6 8 12
y 3 9 1 4 3

evaluate:

∑xy, ∑x(y − 3), ∑ (x + 2)(y − 1)

Problem 1A.6 Given the pairs of observations on x and y,

x 3 7 4 1 9
y 1 2 5 1 2

evaluate:

∑xy, ∑x(y − 2), ∑ (x − 2)(y + 1).

xi
i =
∑

2

4

xi
i =
∑

2

4

∑
=

+ +
=

+ +
=

∑kx
N

kx kx
N

k x x
N

k
x

N
  

    . . .
  

(     . . . )
  1 2 1 2
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Problem 1A.7 Demonstrate that

where k is a constant.

Problem 1A.8 Demonstrate that

Appendix 1B E and V operators

These operators are an extremely useful form of notation that we shall make
use of later in the book. It is quite easy to keep track of the effects of data trans-
formations using them. There are a few simple rules for manipulating them
that allow some problems to be solved quickly and elegantly.

E(x) is the mean of a distribution and V(x) is its variance. We showed above
in (1.34) that multiplying each observation by a constant k multiplies the mean
by k. We can express this as:

(1.35) E(kx) = kE(x)

If a constant is added to every observation the effect is to add that constant to
the mean (see Problem 1.23):

(1.36) E(x + a) = E(x) + a

(Graphically, the whole distribution is shifted a units to the right and hence so
is the mean.) Combining (1.35) and (1.36):

(1.37) E(kx + a) = kE(x) + a

Similarly for the variance operator it can be shown that:

(1.38) V(x + k) = V(x)

Proof:

V(x + k) =

(A shift of the whole distribution leaves the variance unchanged.) Also:

(1.39) V(kx) = k2V(x)

(See Problem 1.24 above.) This is why, when the wealth figures were divided by
1000, the variance became divided by 10002. Applying (1.38) and (1.39):

(1.40) V(kx + a) = k2V(x)

Finally, we should note that V itself can be expressed in terms of E:

(1.41) V(x) = E(x − E(x))2

∑ + − +
=

∑ − + −
=

∑ −
=

((   )  (   ))
  

((   )  (   ))
  

(   )
  ( )

x k k
N

x k k
N

x
N

x
μ μ μ2 2 2

V

∑ −
∑

=
∑
∑

−
f x

f
fx
f

(   )
    

μ μ
2 2

2

∑ −
∑

=
∑
∑

−
f x k

f
fx
f

k
(   )
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Appendix 1C Using logarithms

Logarithms are less often used now that cheap electronic calculators are avail-
able. Formerly logarithms were an indispensable aid to calculation. However,
the logarithmic transformation is useful in other contexts in statistics and eco-
nomics so its use is briefly set out here.

The logarithm (to the base 10) of a number x is defined as the power to
which 10 must be raised to give x. For example, 102 = 100, so the log of 100 is 2
and we write log10 100 = 2 or simply log 100 = 2.

Similarly, the log of 1000 is 3 (1000 = 103), of 10 000 it is 4, etc. We are not
restricted to integer (whole number) powers of 10, so for example 102.5 =
316.227766 (try this if you have a scientific calculator), so the log of
316.227766 is 2.5. Every number x can therefore be represented by its logarithm.

We can use logarithms to multiply two numbers x and y, based on the property

log xy = log x + log y

For example, to multiply 316.227766 by 10:

log(316.227766 × 10) = log 316.227766 + log 10
= 2.5 + 1
= 3.5

The anti-log of 3.5 is given by 103.5 = 3162.27766 which is the answer.
Taking the anti-log (i.e. 10 raised to a power) is the inverse of the log trans-

formation. Schematically we have:

x → take logarithms → a (= log x) → raise 10 to the power a → x

To divide one number by another we subtract the logs. For example, to divide
316.227766 by 100:

log(316.227766/100) = log 316.227766 − log 100
= 2.5 − 2
= 0.5

and

100.5 = 3.16227766

Logarithms simplify the process of raising a number to a power. To find the
square of a number, multiply the logarithm by 2, e.g. to find 316.2277662:

log(316.2277662) = 2 log(316.227766) = 5

and

105 = 100 000

To find the square root of a number (equivalent to raising it to the power )
divide the log by 2. To find the nth root, divide the log by n. For example, in
the text we have to find the 32nd root of 16.936:

1
2

Appendix 1C: Using logarithms 73

Multiplication of
two numbers

Division

Powers and roots
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and

100.0384 = 1.092

Logarithms to the base 10 are known as common logarithms but one can use
any number as the base. Natural logarithms are based on the number e 
(= 2.71828 . . . ) and we write ln x instead of log x to distinguish them from
common logarithms. So, for example,

ln 316.227766 = 5.756462732

since

e5.756462732 = 316.227766

Natural logarithms can be used in the same way as common logarithms 
and have similar properties. Use the ‘ln’ key on your calculator just as you
would the ‘log’ key, but remember that the inverse transformation is ex rather
than 10x.

Problems on logarithms

Problem 1C.1 Find the common logarithms of: 0.15, 1.5, 15, 150, 1500, 83.7225, 9.15, −12.

Problem 1C.2 Find the log of the following values: 0.8, 8, 80, 4, 16, −37.

Problem 1C.3 Find the natural logarithms of: 0.15, 1.5, 15, 225, −4.

Problem 1C.4 Find the ln of the following values: 0.3, e, 3, 33, −1.

Problem 1C.5 Find the anti-log of the following values: −0.823909, 1.1, 2.1, 3.1, 12.

Problem 1C.6 Find the anti-log of the following values: −0.09691, 2.3, 3.3, 6.3.

Problem 1C.7 Find the anti-ln of the following values: 2.70805, 3.70805, 1, 10.

Problem 1C.8 Find the anti-ln of the following values: 3.496508, 14, 15, −1.

Problem 1C.9 Evaluate: 41/4, 12−3, 25−3/2.

Problem 1C.10 Evaluate: 81/4, 150, 120, 3−1/3.176 ,303 ,

3 74 . ,102 ,

log( . )
  .

16 936
32

0 0384=

Common and
natural logarithms
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By the end of this chapter you should be able to:

n understand the essential concept of the probability of an event occurring

n appreciate that the probability of a combination of events occurring can be
calculated using simple arithmetic rules (the addition and multiplication rules)

n understand that a probability can depend upon the outcome of other events
(conditional probability)

n know how to make use of probability theory to help make decisions in
situations of uncertainty

2
Contents

Learning outcomes
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Probability theory and statistical inference

In October 1985 Mrs Evelyn Adams of New Jersey, USA, won $3.9 million in
the State lottery at odds of 1 in 3 200 000. In February 1986 she again won,
though this time only (!) $1.4 million at odds of 1 in 5 200 000. The odds
against both these wins were calculated at about 1 in 17 300 billion. Mrs
Adams is quoted as saying ‘They say good things come in threes, so . . .’.

The above story illustrates the principles of probability at work. The same
principles underlie the theory of statistical inference. Statistical inference is the
task of drawing conclusions (inferences) about a population from a sample of
data drawn from that population. For example, we might have a survey which
shows that 30% of a sample of 100 families intend to take a holiday abroad
next year. What can we conclude from this about all families? The techniques
set out in this and subsequent chapters show how to accomplish this.

Why is knowledge of probability necessary for the study of statistical infer-
ence? In order to be able to say something about a population on the basis of
some sample evidence we must first examine how the sample data are col-
lected. In many cases, the sample is a random one, i.e. the observations making
up the sample are chosen at random from the population. If a second sample
were selected it would almost certainly be different from the first. Each member
of the population has a particular probability of being in the sample (in simple
random sampling the probability is the same for all members of the popula-
tion). To understand sampling procedures, and the implications for statistical
inference, we must therefore first examine the theory of probability.

As an illustration of this, suppose we wish to know if a coin is fair, i.e.
equally likely to fall heads or tails. The coin is tossed ten times and ten heads
are recorded. This constitutes a random sample of tosses of the coin. What can
we infer about the coin? If it is fair, the probability of getting ten heads is 1 in
1024, so a fairly unlikely event seems to have happened. We might reasonably
infer therefore that the coin is biased towards heads.

The definition of probability

The first task is to define precisely what is meant by probability. This is not as
easy as one might imagine and there are a number of different schools of
thought on the subject. Consider the following questions:

n What is the probability of ‘heads’ occurring on the toss of a coin?
n What is the probability of a driver having an accident in a year of driving?
n What is the probability of a country such as Peru defaulting on its interna-

tional loan repayments (as Mexico did in the 1980s)?

We shall use these questions as examples when examining the different schools
of thought on probability.

Considering the first question above, the frequentist view would be that the
probability is equal to the proportion of heads obtained from a coin in the

The frequentist
view
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long run, i.e. if the coin were tossed many times. The first few results of such
an experiment might be:

H, T, T, H, H, H, T, H, T, . . .

After a while, the proportion of heads settles down at some particular fraction
and subsequent tosses will individually have an insignificant effect upon the
value. Figure 2.1 shows the result of tossing a coin 250 times and recording the
proportion of heads (actually, this was simulated on a computer: life is too
short to do it for real).

This shows the proportion settling down at a value of about 0.50, which
indicates an unbiased coin (or rather, an unbiased computer in this case!). This
value is the probability, according to the frequentist view. To be more precise,
the probability is the proportion of heads obtained as the number of tosses
approaches infinity. In general we can define Pr(H), the probability of event H
(in this case heads) occurring, as

as the number of trials approaches infinity

In this case, each toss of the coin constitutes a trial.
This definition gets round the obvious question of how many trials are

needed before the probability emerges, but means that the probability of an
event cannot strictly be obtained in finite time.

Although this approach appears attractive in theory, it does have its prob-
lems. One couldn’t actually toss the coin an infinite number of times. Or, what
if one took a different coin, would the results from the first coin necessarily
apply to the second?

Perhaps more seriously, the definition is of less use for the second and third
questions posed above. Calculating the probability of an accident is not too
problematic: it may be defined as the proportion of all drivers having an accid-
ent during the year. However, this may not be relevant for a particular driver,
since drivers vary so much in their accident records. And how would you
answer the third question? There is no long run that we can appeal to. We can-
not re-run history over and over again to see in what proportion of cases the

  
Pr( )  

 
H

H
=

number of occurrences of
number of trials
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Figure 2.1
Proportion of heads in
250 tosses of a coin
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78 Chapter 2 • Probability

country defaults. Yet this is what lenders want to know and credit-rating agen-
cies have to assess. Maybe another approach is needed.

According to the subjective view, probability is a degree of belief that someone
holds about the likelihood of an event occurring. It is inevitably subjective and
therefore some argue that it should be the degree of belief that it is rational to
hold, but this just shifts the argument to what is meant by ‘rational’. Some
progress can be made by distinguishing between prior and posterior beliefs.
The former are those held before any evidence is considered; the latter are the
modified probabilities in the light of the evidence. For example, one might ini-
tially believe a coin to be fair (the prior probability of heads is one-half), but
not after seeing only five heads in fifty tosses (the posterior probability would
be less than a half).

Although it has its attractions, this approach (which is the basis of Bayesian
statistics) also has its drawbacks. It is not always clear how one should arrive at
the prior beliefs, particularly when one really has no prior information. Also,
these methods often require the use of sophisticated mathematics, which may
account for the limited use made of them. The development of more powerful
computers and user-friendly software may increase the popularity of the
Bayesian approach.

There is not universal agreement therefore as to the precise definition of
probability. We do not have space here to explore the issue further, so we will
ignore the problem! The probability of an event occurring will be defined as a
certain value and we won’t worry about the precise origin or meaning of that
value. This is an axiomatic approach: we simply state what the probability is,
without justifying it, and then examine the consequences.

(a) Define the probability of an event according to the frequentist view.

(b) Define the probability of an event according to the subjective view.

For the following events, suggest how their probability might be calculated. In each
case, consider whether you have used the frequentist or subjective view of probability
(or possibly some mixture).

(a) The Republican party winning the next US election.

(b) The number 5 being drawn in next week’s lottery.

(c) A repetition of the 2004 Asian tsunami.

(d) Your train home being late.

Probability theory: the building blocks

We start with a few definitions, to establish a vocabulary that we will sub-
sequently use:

n An experiment is an action such as flipping a coin, which has a number of
possible outcomes or events, such as heads or tails.

n A trial is a single performance of the experiment, with a single outcome.

Exercise 2.1

Exercise 2.2

The subjective
view
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n The sample space consists of all the possible outcomes of the experiment.
The outcomes for a single toss of a coin are {heads, tails}, for example, and
these constitute the sample space for a toss of a coin. The outcomes in the
sample space are mutually exclusive, which means that the occurrence of
one rules out all the others. One cannot have both heads and tails in a single
toss of a coin. As a further example, if a single card is drawn at random from
a pack, then the sample space may be drawn as in Figure 2.2. Each point rep-
resents one card in the pack and there are 52 points altogether. (The sample
space could be set out in alternative ways. For instance, one could write a list
of all the cards: ace of spades, king of spades, . . . , two of clubs. One can
choose the representation most suitable for the problem at hand.)

n With each outcome in the sample space we can associate a probability,
which is the chance of that outcome occurring. The probability of heads is
one-half; the probability of drawing the ace of spades from a pack of cards is
one in 52, etc.

There are restrictions upon the probabilities we can associate with the out-
comes in the sample space. These are needed to ensure that we do not come up
with self-contradictory results; for example, it would be odd to arrive at the
conclusion that we could expect heads more than half the time and tails more
than half the time. To ensure our results are always consistent, the following
rules apply to probabilities:

n The probability of an event must lie between 0 and 1, i.e.

(2.1) 0 ≤ Pr(A) ≤ 1, for any event A

The explanation is straightforward. If A is certain to occur it occurs in 100%
of all trials and so its probability is 1. If A is certain not to occur then its
probability is 0, since it never happens however many trials there are. Since
one cannot be more certain than certain, probabilities of less than 0 or more
than 1 can never occur, and (2.1) follows.

n The sum of the probabilities associated with all the outcomes in the sample
space is 1. Formally

(2.2) ∑Pi = 1

where Pi is the probability of event i occurring. This follows from the fact
that one, and only one, of the outcomes must occur, since they are mutually
exclusive and also exhaustive, i.e. they define all the possibilities.

n Following on from (2.2) we may define the complement of an event as
everything in the sample space apart from that event. The complement of
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Figure 2.2
The sample space for
drawing from a pack
of cards
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80 Chapter 2 • Probability

heads is tails, for example. If we write the complement of A as not-A then it
follows that Pr(A) + Pr(not-A) = 1 and hence

(2.3) Pr(not-A) = 1 − Pr(A)

Most practical problems require the calculation of the probability of a set of
outcomes rather than just a single one, or the probability of a series of out-
comes in separate trials. For example, the probability of drawing a spade at ran-
dom from a pack of cards encompasses 13 points in the sample space (one for
each spade). This probability is 13 out of 52, or one-quarter, which is fairly
obvious; but for more complex problems the answer is not immediately evid-
ent. We refer to such sets of outcomes as compound events. Some examples
are getting a five or a six on a throw of a die or drawing an ace and a queen to
complete a ‘straight’ in a game of poker.

It is sometimes possible to calculate the probability of a compound event by
examining the sample space, as in the case of drawing a spade above. However,
in many cases this is not so, for the sample space is too complex or even im-
possible to write down. For example, the sample space for three draws of a card
from a pack consists of over 140 000 points! (A typical point might be, for ex-
ample, the ten of spades, eight of hearts and three of diamonds.) An alternative
method is needed. Fortunately there are a few simple rules for manipulating
probabilities which help us to calculate the probabilities of compound events.

If the previous examples are examined closely it can be seen that outcomes
are being compounded using the words ‘or’ and ‘and’: ‘. . . five or six on a 
single throw . . .’; ‘. . . an ace and a queen . . .’. ‘And’ and ‘or’ act as operators, and
compound events are made up of simple events compounded by these two oper-
ators. The following rules for manipulating probabilities show how to handle
these operators and thus how to calculate the probability of a compound event.

This rule is associated with ‘or’. When we want the probability of one outcome
or another occurring, we add the probabilities of each. More formally, the prob-
ability of A or B occurring is given by

(2.4) Pr(A or B) = Pr(A) + Pr(B)

So, for example, the probability of a five or a six on a roll of a die is

(2.5) Pr(5 or 6) = 1/6 + 1/6 = 1/3

This answer can be verified from the sample space, as shown in Figure 2.3. Each
dot represents a simple event (one to six). The compound event is made up of
two of the six points, shaded in Figure 2.3, so the probability is 2/6 or 1/3.

However, (2.4) is not a general solution to this type of problem, i.e. it does
not always work, as can be seen from the following example. What is the prob-
ability of a queen or a spade in a single draw from a pack of cards? Pr(Q) = 4/52
(four queens in the pack) and Pr(S) = 13/52 (13 spades), so applying (2.4) gives

(2.6) Pr(Q or S) = Pr(Q) + Pr(S) = 4/52 + 13/52 = 17/52

Compound events

The addition rule

Figure 2.3
The sample space for
rolling a die
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However, if the sample space is examined the correct answer is found to be
16/52, as in Figure 2.4. The problem is that one point in the sample space (the
one representing the queen of spades) is double-counted, once as a queen and
again as a spade. The event ‘drawing a queen and a spade’ is possible, and gets
double-counted. Equation (2.4) has to be modified by subtracting the probabil-
ity of getting a queen and a spade, to eliminate the double counting. The cor-
rect answer is obtained from

(2.7) Pr(Q or S) = Pr(Q) + Pr(S) − Pr(Q and S)
= 4/52 + 13/52 − 1/52
= 16/52

The general rule is therefore

(2.8) Pr(A or B) = Pr(A) + Pr(B) − Pr(A and B)

Rule (2.4) worked for the die example because Pr(5 and 6) = 0 since a five and a
six cannot simultaneously occur. The double counting did not affect the calcu-
lation of the probability.

In general, therefore, one should use (2.8), but when two events are mutu-
ally exclusive the rule simplifies to (2.4).

The multiplication rule is associated with use of the word ‘and’ to combine
events. Consider a mother with two children. What is the probability that they
are both boys? This is really a compound event: a boy on the first birth and a
boy on the second. Assume that in a single birth a boy or girl is equally likely,
so Pr(boy) = Pr(girl) = 0.5. Denote by Pr(B1) the probability of a boy on the first
birth and by Pr(B2) the probability of a boy on the second. Thus the question
asks for Pr(B1 and B2) and this is given by:

(2.9) Pr(B1 and B2) = Pr(B1) × Pr(B2) = 0.5 × 0.5
= 0.25

Intuitively, the multiplication rule can be understood as follows. One-half of
mothers have a boy on their first birth and of these, one-half will again have a
boy on the second. Therefore a quarter of mothers have two boys.

Like the addition rule, the multiplication rule requires slight modification
before it can be applied generally and give the right answer in all circum-
stances. The example assumes first and second births to be independent
events, i.e. that having a boy on the first birth does not affect the probability
of a boy on the second. This assumption is not always valid.

Write Pr(B2|B1) to indicate the probability of the event B2 given that the
event B1 has occurred. (This is known as the conditional probability, more
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Figure 2.4
The sample space for
drawing a queen or a
spade

The multiplication
rule
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precisely the probability of B2 conditional upon B1.) Let us drop the indepen-
dence assumption and suppose the following:

(2.10) Pr(B1) = Pr(G1) = 0.5

i.e. boys and girls are equally likely on the first birth, and

(2.11) Pr(B2|B1) = Pr(G2|G1) = 0.6

i.e. a boy is more likely to be followed by another boy, and a girl by another
girl. (It is easy to work out Pr(B2|G1) and Pr(G2|B1). What are they?)

Now what is the probability of two boys? Half of all mothers have a boy first,
and of these, 60% have another boy. Thus 30% (60% of 50%) of mothers have
two boys. This is obtained from the rule:

(2.12) Pr(B1 and B2) = Pr(B1) × Pr(B2|B1)
= 0.5 × 0.6
= 0.3

Thus in general we have:

(2.13) Pr(A and B) = Pr(A) × Pr(B | A)

which simplifies to

(2.14) Pr(A and B) = Pr(A) × Pr(B)

if A and B are independent.
Independence may therefore be defined as follows: two events, A and B, are

independent if the probability of one occurring is not influenced by the fact of
the other having occurred. Formally, if A and B are independent then

(2.15) Pr(B | A) = Pr(B | not A) = Pr(B)

and

(2.16) Pr(A | B) = Pr(A | not B) = Pr(A)

The concept of independence is an important one in statistics, as it usually
simplifies problems considerably. If two variables are known to be independent
then we can analyse the behaviour of one without worrying about what is hap-
pening to the other variable. For example, sales of computers are independent
of temperature, so if one is trying to predict sales next month one does not
need to worry about the weather. In contrast, ice cream sales do depend on the
weather, so predicting sales accurately requires one to forecast the weather first.

Intuition does not always work with probabilities!

Counter-intuitive results frequently arise in probability, which is why it is wise to use
the rules to calculate probabilities in tricky situations, rather than rely on intuition.
Take the following questions:

n What is the probability of obtaining two heads (HH) in two tosses of a coin?
n What is the probability of obtaining tails followed by heads (TH)?
n If a coin is tossed until either HH or TH occurs, what are the probabilities of each

sequence occurring first?
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The answers to the first two are easy: 1/2 × 1/2 = 1/4 in each case. You might there-
fore conclude that each sequence is equally likely to be the first observed, but you
would be wrong!

Unless HH occurs on the first two tosses, then TH must occur first. HH is there-
fore the first sequence only if it occurs on the first two tosses, which has a prob-
ability of 1/4. The probability that TH is first is therefore 3/4. The probabilities are
unequal, a strange result. Now try the same thing with HHH and THH and three
tosses of a coin.

More complex problems can be solved by suitable combinations of the addi-
tion and multiplication formulae. For example, what is the probability of a
mother having one child of each sex? This could occur in one of two ways: a
girl followed by a boy or a boy followed by a girl. It is important to note that
these are two different routes to the same outcome. Therefore we have (assum-
ing non-independence according to (2.11))

Pr(1 girl, 1 boy) = Pr((G1 and B2) or (B1 and G2))
= Pr(G1) × Pr(B2 | G1) + Pr(B1) × Pr(G2 | B1)
= (0.5 × 0.4) + (0.5 × 0.4)
= 0.4

The answer can be checked if we remember (2.2) stating that probabilities must
sum to 1. We have calculated the probability of two boys (0.3) and of a child of
each sex (0.4). The only other possibility is of two girls. This probability must
be 0.3, the same as two boys, since boys and girls are treated symmetrically in
this problem (even with the non-independence assumption). The sum of the
three possibilities (two boys, one of each or two girls) is therefore 0.3 + 0.4 + 0.3
= 1, as it should be.

Note that the problem would have been different if we had asked for the
probability of the mother having one girl with a younger brother.

The preceding problem can be illustrated using a tree diagram, which often
helps to clarify a problem. A tree diagram is an alternative way of enumerating
all possible outcomes in the sample space, with the associated probabilities.
The diagram for two children is shown in Figure 2.5.

The diagram begins at the left and the first node shows the possible altern-
atives (boy, girl) at that point and the associated probabilities (0.5, 0.5). The
next two nodes show the alternatives and probabilities for the second birth,
given the sex of the first child. The final four nodes show the possible results:
boy, boy; boy, girl; girl, boy; and girl, girl.

To find the probability of two girls, using the tree diagram, follow the lowest
path, multiplying the probabilities along it to give 0.5 × 0.6 = 0.3. To find the
probability of one child of each sex it is necessary to follow all the routes which
lead to such an outcome. There are two in this case: leading to boy, girl and to
girl, boy. Each of these has a probability of 0.2, obtained by multiplying the
probabilities along that branch of the tree. Adding these together (since either
one or the other leads to the desired outcome) yields the answer, giving 0.2 +
0.2 = 0.4. This provides a graphical alternative to the formulae used above and
may help comprehension.
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The tree diagram can obviously be extended to cover third and subsequent
children although the number of branches rapidly increases (in geometric pro-
gression). The difficulty then becomes not just the calculation of the probabil-
ity attached to each outcome, but sorting out which branches should be taken
into account in the calculation. Suppose we consider a family of five children
of whom three are girls. To simplify matters we again assume independence of
probabilities. The appropriate tree diagram has 25 = 32 end-points, each with
probability 1/32. How many of these relate to families with three girls and two
boys, for example? One can draw the diagram and count them, yielding the
answer 10, but it takes considerable time and is prone to error. Far better would
be to use a formula. To develop this, we use the ideas of combinations and
permutations.

How can we establish the number of ways of having three girls and two boys in
a family of five children? One way would be to write down all the possible
orderings:

GGGBB GGBGB GGBBG GBGGB GBGBG
GBBGG BGGGB BGGBG BGBGG BBGGG

This shows that there are ten such orderings, so the probability of three girls and
two boys in a family of five children is 10/32. In more complex problems this
soon becomes difficult or impossible. The record number of children born to a
British mother is 39 (!) of whom 32 were girls. The appropriate tree diagram has
over five thousand billion ‘routes’ through it, and drawing one line (i.e. for one
child) per second would imply 17 433 years to complete the task! Rather than
do this, we use the combinatorial formula. Suppose there are n children, r of
them girls, then the number of orderings, denoted nCr, is obtained from1

(2.17) nCr
n

r n r
n n

r r n r n r
=

−
=

× − × ×
× − × × × − × − − × ×

!
!(   )!

  (   )  . . .  
{   (   )  . . .  }  {(   )  (     )  . . .   }

1 1
1 1 1 1

Figure 2.5
Tree diagram for a
family with two
children

Combinations and
permutations

1 n! is read ‘n factorial’ and is defined as the product of all the integers up to and includ-
ing n. Thus, for example, 3! = 3 × 2 × 1 = 6.
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In the above example n = 5, r = 3 so the number of orderings is

(2.18)

If there were four girls out of five children then the number of orderings or
combinations would be

(2.19)

This gives five possible orderings, i.e. the single boy could be the first, second,
third, fourth or fifth born.

Why does this formula work? Consider five empty places to fill, correspond-
ing to the five births in chronological order. Take the case of three girls (call
them Amanda, Bridget and Caroline for convenience) who have to fill three 
of the five places. For Amanda there is a choice of five empty places. Having
‘chosen’ one, there remain four for Bridget, so there are 5 × 4 = 20 possibilities
(i.e. ways in which these two could choose their places). Three remain for
Caroline, so there are 60 (= 5 × 4 × 3) possible orderings in all (the two boys
take the two remaining places). Sixty is the number of permutations of three
named girls in five births. This is written 5P3 or in general nPr. Hence

5P3 = 5 × 4 × 3

or in general

(2.20) nPr = n × (n − 1) × . . . × (n − r + 1)

A simpler formula is obtained by multiplying and dividing by (n − r)!

(2.21)

What is the difference between nPr and nCr? The latter does not distinguish
between the girls; the two cases Amanda, Bridget, Caroline, boy, boy and
Bridget, Amanda, Caroline, boy, boy are effectively the same (three girls fol-
lowed by two boys). So nPr is larger by a factor representing the number of
ways of ordering the three girls. This factor is given by r! = 3 × 2 × 1 = 6 (any of
the three girls could be first, either of the other two second, and then the final
one). Thus to obtain nCr one must divide nPr by r!, giving (2.17).

(a) A dart is thrown at a dartboard. What is the sample space for this experiment?

(b) An archer has a 30% chance of hitting the bull’s eye on the target. What is the
complement to this event and what is its probability?

(c) What is the probability of two mutually exclusive events both occurring?

(d) A spectator reckons there is a 70% probability of Lance Armstrong winning the
Tour de France and a 40% probability of Jan Ullrich winning. Comment.

  
=

−
 

!
(   )!

n
n r

  
nPr

n n r n r n r
n r

  
  (   )  . . .  (     )  (   )!

(   )!
=

× − × × − + × −
−

1

  
5 4

5 4 3 2 1
4 3 2 1 1

5C   
        

{       }  
  =

× × × ×
× × × ×

=

  
5 3

5 4 3 2 1
3 2 1 2 1

10C   
        

{     }  {   }
  =

× × × ×
× × × ×

=
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(a) For the archer in Exercise 2.3(b) what is the probability that she hits the target with
one (and only one) of two arrows?

(b) What is the probability that she hits the target with both arrows?

(c) Explain the importance of the assumption of independence for the answers to both
parts (a) and (b) of this exercise.

(d) If the archer becomes more confident after a successful shot (i.e. her probability of
a shot on target rises to 50%) and less confident (probability falls to 20%) after a
miss, how would this affect the answers to parts (a) and (b)?

(a) Draw the tree diagrams associated with Exercise 2.4. You will need one for the
case of independence of events, one for non-independence.

(b) Extend the diagram (assuming independence) to a third arrow. Use this to mark out
the paths with two successful shots out of three. Calculate the probability of two
hits out of three shots.

(c) Repeat part (b) for the case of non-independence. For this you may assume that a hit
raises the problem of success with the next arrow to 50%. A miss lowers it to 20%.

(a) Show how the answer to Exercise 2.5(b) may be arrived at using algebra, including
the use of the combinatorial formula.

(b) Repeat part (a) for the non-independence case.

Bayes’ theorem

Bayes’ theorem is a factual statement about probabilities which in itself is
uncontroversial. However, the use and interpretation of the result is at the
heart of the difference between classical and Bayesian statistics. The theorem
itself is easily derived from first principles. Equation (2.22) is similar to equa-
tion (2.13) covered earlier when discussing the multiplication rule:

(2.22) Pr(A and B) = Pr(A | B) × Pr(B)

hence,

(2.23)

Expanding both top and bottom of the right-hand side,

(2.24)

Equation (2.24) is known as Bayes’ theorem and is a statement about the
probability of the event A, conditional upon B having occurred. The following
example demonstrates its use.

Two bags contain red and yellow balls. Bag A contains six red and four yel-
low balls, bag B has three red and seven yellow balls. A ball is drawn at random
from one bag and turns out to be red. What is the probability that it came from
bag A? Since bag A has relatively more red balls to yellow balls than does bag B,
it seems bag A ought to be favoured. The probability should be more than 0.5.
We can check if this is correct.

Pr( | )  
Pr( | )  Pr( )

Pr( | )  Pr( )  Pr( |  )  Pr(  )
A B

B A A
B A A B A A

=
×

× + ×not not

  
Pr( | )  

Pr(   )
Pr( )

A B
A B

B
=

and

Exercise 2.5

Exercise 2.6

Exercise 2.4
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Denoting:

Pr(A) = 0.5 (the probability of choosing bag A at random) = Pr(B)
Pr(R | A) = 0.6 (the probability of selecting a red ball from bag A), etc.

we have

(2.25)

using Bayes’ theorem. Evaluating this gives

(2.26)

= 2/3

(You can check that Pr(B | R) = 1/3 so that the sum of the probabilities is 1.) As
expected, this result is greater than 0.5.

Bayes’ theorem can be extended to cover more than two bags: if there are
five bags, for example, labelled A to E, then

(2.27)

In Bayesian language, Pr(A), Pr(B), etc. are known as the prior (to the drawing
of the ball) probabilities, Pr(R | A), Pr(R | B), etc. are the likelihoods and Pr(A | R),
Pr(B | R), etc. are the posterior probabilities. Bayes’ theorem can alternatively be
expressed as

(2.28) posterior probability

This is illustrated below, by reworking the above example.

Prior probabilities Likelihoods Prior ×× likelihood Posterior probabilities

A 0.5 0.6 0.30 0.30/0.45 = 2/3
B 0.5 0.3 0.15 0.15/0.45 = 1/3
Total 0.45

The general version of Bayes’ theorem may be stated as follows. If there are n
events labelled El, . . . , En then the probability of the event Ei occurring, given
the sample evidence S, is

(2.29)

As stated earlier, dispute arises over the interpretation of Bayes’ theorem. In
the above example there is no difficulty because the probability statements can
be interpreted as relative frequencies. If the experiment of selecting a bag at
random and choosing a ball from it were repeated many times, then of those
occasions when a red ball is selected, in two-thirds of them bag A will have
been chosen. However, consider an alternative interpretation of the symbols:

A: a coin is fair
B: a coin is unfair
R: the result of a toss is a head

  
Pr( | )  

Pr( | )  Pr( )
(Pr( | )  Pr( ))

E S
S E E
S E Ei

i i

i i

=
×

∑ ×

=
×

∑ ×
 

 
 

likelihood prior probability
(likelihoods prior probabilities)

  
Pr( | )  

Pr( | )  Pr( )
Pr( | )  Pr( )  Pr( | )  Pr( )  . . .  Pr( | )  Pr( )

A R
R A A

R A A R B B R E E
=

×
× + × + + ×

  
Pr( | )  

.   .
.   .   .   .

A R =
×

× + ×
0 6 0 5

0 6 0 5 0 3 0 5

  
Pr( | )  

Pr( | )  Pr( )
Pr( | )  Pr( )  Pr( | )  Pr( )
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88 Chapter 2 • Probability

Then, given a toss (or series of tosses) of a coin, this evidence can be used to
calculate the probability of the coin being fair. But this makes no sense accord-
ing to the frequentist school: either the coin is fair or not; it is not a question
of probability. The calculated value must be interpreted as a degree of belief
and be given a subjective interpretation.

(a) Repeat the ‘balls in the bag’ exercise from the text, but with bag A containing five
red and three yellow balls, bag B containing one red and two yellow ball. The single
ball drawn is red. Before doing the calculation, predict which bag is more likely to
be the source of the drawn ball. Explain why.

(b) Bag A now contains 10 red and six yellow balls (i.e. twice as many as before, but in
the same proportion). Does this alter the answer you obtained in part (a)?

(c) Set out your answer to part (b) in the form of prior probabilities and likelihoods, in
order to obtain the posterior probability.

Decision analysis

The study of probability naturally leads on to the analysis of decision making
where risk is involved. This is the realistic situation facing most firms and the
use of probability can help to illuminate the problem. To illustrate the topic,
we use the example of a firm facing a choice of three different investment pro-
jects. The uncertainty which the firm faces concerns the interest rate at which
to discount the future flows of income. If the interest/discount rate is high then
projects which have income far in the future become less attractive relative to
projects with more immediate returns. A low rate reverses this conclusion. The
question is: which project should the firm select? As we shall see, there is no
unique, right answer to the question but, using probability theory we can see
why the answer might vary.

Table 2.1 provides the data required for the problem. The three projects are
imaginatively labelled A, B and C. There are four possible states of the world,
i.e. future scenarios, each with a different interest rate, as shown across the top
of the table. This is the only source of uncertainty, otherwise the states of the
world are identical. The figures in the body of the table show the present value
of each income stream at the given discount rate.

Exercise 2.7

Table 2.1 Data for decision analysis: present values of three investment
projects at different interest rates (£000)

Project Future interest rate
4% 5% 6% 7%

A 1475 1363 1200 1115
B 1500 1380 1148 1048
C 1650 1440 1200 810
Probability 0.1 0.4 0.4 0.1
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Present value

The present value of future income is its value today and is obtained using the
interest rate. For example, if the interest rate is 10%, the present value (i.e. today)
of £110 received in one year’s time is £100. In other words, one could invest £100
today at 10% and have £110 in one year’s time. £100 today and £110 next year are
equivalent.

The present value of £110 received in two years’ time is smaller since one has to
wait longer to receive it. It is calculated as £110/1.12 = 90.91. Again, £90.91
invested at 10% per annum will yield £110 in two years’ time. After one year it is
worth £90.91 × 1.1 = 100 and after a second year that £100 becomes £110. Notice
that, if the interest rate rises, the present value falls. For example, if the interest rate
is 20%, £110 next year is worth only £110/1.2 = 91.67 today.

The present value of £110 in one year’s time and another £110 in two years’
time is £110/1.1 + £110/1.12 = £190.91. The present value of more complicated
streams of income can be calculated by extension of this principle. In the example
used in the text you do not need to worry about how the present value is arrived 
at. Before reading on you may wish to do Exercise 2.8 to practise calculation of
present value.

Thus, for example, if the interest rate turns out to be 4% then project A has 
a present value of £1 475 000 while B’s is £1 500 000. If the discount rate 
turns out to be 5% the PV for A is £1 363 000 while for B it has changed to 
£1 380 000. Obviously, as the discount rate rises, the present value of the
return falls. (Alternatively, we could assume that a higher interest rate increases
the cost of borrowing to finance the project, which reduces its profitability.)
We assume that each project requires a (certain) initial outlay of £1 100 000
with which the PV should be compared.

The final row of the table shows the probabilities which the firm attaches to
each interest rate. These are obviously someone’s subjective probabilities and
are symmetric around a central value of 5.5%.

(a) At an interest or discount rate of 10%, what is the present value of £1200 received
in one year’s time?

(b) If the interest rate rises to 15%, how is the present value altered? The interest rate
has risen by 50% (from 10% to 15%): how has the present value changed?

(c) At an interest rate of 10% what is the present value of £1200 received in (i) two
years’ time and (ii) five years’ time?

(d) An income of £500 is received at the end of years one, two and three (i.e. £1500 in
total). What is its present value?

(e) Project A provides an income of £300 after one year and another £600 after two
years. Project B provides £400 and £488 at the same times. At a discount rate of
10% which project has the higher present value? What happens if the discount rate
rises to 20%?

We need to decide how a decision is to be made on the basis of these data. The
first criterion involves the expected value of each project. Because of the
uncertainty about the interest rate there is no single present value for each pro-
ject. We therefore calculate the expected value, using the E operator which was

Decision analysis 89

Exercise 2.8

Decision criteria:
maximising the
expected value
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90 Chapter 2 • Probability

introduced in Chapter 1. In other words, we find the expected present value of
each project, by taking a weighted average of the PV figures, the weights being
the probabilities. The project with the highest expected return is chosen.

The expected values are calculated in Table 2.2. The highest expected pre-
sent value is £1 302 000, associated with project C. On this criterion therefore,
C is chosen. Is this a wise choice? You may notice that if the interest rate turns
out to be 7% then C would be the worst project to choose and the firm would
make a substantial loss in such circumstances. Project C is the most sensitive to
the discount rate (it has the greatest variance of PV values of the three projects)
and therefore the firm faces more risk by opting for C. Perhaps some alternative
criteria should be looked at. These we look at next, in particular the maximin,
maximax and minimax regret strategies.

The maximin criterion looks at the worst-case scenario for each project and
then selects the project which does best in these circumstances. It is inevitably
a pessimistic or cautious view therefore. Table 2.3 illustrates the calculation.
This time we observe that project A is preferred. In the worst case (which occurs
when r = 7% for all projects) then A does best, with a PV of £1 115 000 and
therefore a slight profit. The maximin criterion may be a good one in business
where managers tend to over-optimism. Calculating the maximin may be a
salutary exercise, even if it is not the ultimate deciding factor.

The opposite criterion is the optimistic one where the maximax criterion is
used. In this case one looks at the best circumstances for each project and
chooses the best-performing project. Each project does best when the interest
rate is at its lowest level, 3%. Examining the first column of Table 2.1 shows
that project C (PV = 1650) performs best and is therefore chosen. Given the ear-
lier warning about over-optimism, this may not be suitable as the sole criterion
for making investment decisions.

A final criterion is that of minimax regret. If project B were chosen but the
interest rate turns out to be 7% then we would regret not having chosen A, the

Table 2.2 Expected values of the three projects

Project Expected value

A 1284.2
B 1266.0
C 1302.0

Note: 1284.2 is calculated as 1475 × 0.1 + 1363 × 0.4 + 1200 × 0.4 + 1115 × 0.1. This is 
the weighted average of the four PV values. A similar calculation is performed for the other
projects.

Maximin, maximax
and minimax
regret

Table 2.3 The maximin criterion

Project Minimum

A 1115
B 1048
C 810
Maximum 1115
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best project under these circumstances. Our regret would be the extent of the
difference between the two, a matter of 1115 − 1048 = 67. Similarly, the regret
if we had chosen C would be 1115 − 810 = 305. We can calculate these regrets
at the other interest rates too, always comparing the PV of a project with the
best PV given that interest rate. This gives us Table 2.4.

The final column of the table shows the maximum regret for each project.
The minimax regret criterion is to choose the minimum of these figures. This is
given at the bottom of the final column; it is 150 which is associated with pro-
ject B. A justification for using this criterion might be that you don’t want to
fall too far behind your competitors. If other firms are facing similar invest-
ment decisions, then the regret table shows the difference in PV (and hence
profits) if they choose the best project while you do not. Choosing the mini-
max regret solution ensures that you won’t fall too far behind. During the
internet bubble of the 1990s it was important to gain market share and keep up
with, or surpass, your competitors. The minimax regret strategy might be a use-
ful tool during such times.

You will probably have noticed that we have managed to find a justification
for choosing all three projects! No one project comes out best on all criteria.
Nevertheless, the analysis might be of some help: if the investment project is
one of many small, independent investments the firm is making, then this
would justify use of the expected value criterion. On the other hand, if this is a
big, one-off project which could possibly bankrupt the firm if it goes wrong,
then the maximin criterion would be appropriate.

Often a firm can improve its knowledge about future possibilities via research,
which costs money. This effectively means buying information about the
future state of the world. The question arises: how much should a firm pay for
such information? Perfect information would reveal the future state of the
world with certainty – in this case, the future interest rate. In that case you could
be sure of choosing the right project given each state of the world. If interest
rates turn out to be 4%, the firm would invest in C, if 7% in A, and so on.

In such circumstances, the firm would expect to earn:

(0.1 × 1650) + (0.4 × 1440) + (0.4 × 1200) + (0.1 × 1115) = 1332.5

i.e. the probability of each state of the world is multiplied by the PV of the best
project for that state. This gives a figure which is greater than the expected
value calculated earlier, without perfect information, 1302. The expected value
of perfect information is therefore the difference between these two, 30.5.
This sets a maximum to the value of information, for it is unlikely in the real
world that any information about the future is going to be perfect.

Decision analysis 91

Table 2.4 The costs of taking the wrong decision

Project 4% 5% 6% 7% Maximum

A 175 77 0 0 175
B 150 60 52 67 150
C 0 0 0 305 305
Minimum 150

The expected
value of perfect
information
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(a) Evaluate the three projects detailed in the table below, using the criteria of
expected value, maximin, maximax and minimax regret. The probability of a 4%
interest rate is 0.3, of 6% 0.4 and of 8% 0.3.

Project 4% 6% 8%

A 100 80 70
B 90 85 75
C 120 60 40

(b) What would be the value of perfect information about the interest rate?

Summary

n The theory of probability forms the basis of statistical inference, the drawing
of inferences on the basis of a random sample of data. It is the probability
basis of random sampling that is the reason for this.

n A convenient definition of the probability of an event is the number of
times the event occurs divided by the number of trials (occasions when the
event could occur).

n For more complex events, their probabilities can be calculated by combining
probabilities, using the addition and multiplication rules.

n The probability of events A or B occurring is calculated according to the
addition rule.

n The probability of A and B occurring is given by the multiplication rule.

n If A and B are not independent, then Pr(A and B) = Pr(A) × Pr(B | A), where
Pr(B | A) is the probability of B occurring given that A has occurred (the con-
ditional probability).

n Tree diagrams are a useful technique for enumerating all the possible paths
in series of probability trials, but for large numbers of trials the huge number
of possibilities makes the technique impractical.

n For experiments with a large number of trials (e.g. obtaining 20 heads in 50
tosses of a coin) the formulae for combinations and permutations can be used.

n The combinatorial formula nCr gives the number of ways of combining r
similar objects among n objects, e.g. the number of orderings of three girls
(and hence implicitly two boys also) in five children.

n The permutation formula nPr gives the number of orderings of r distinct
objects among n, e.g. three named girls among five children.

n Bayes’ theorem provides a formula for calculating a conditional probabil-
ity, e.g. the probability of someone being a smoker, given they have been
diagnosed with cancer. It forms the basis of Bayesian statistics, allowing us
to calculate the probability of a hypothesis being true, based on the sample
evidence and prior beliefs. Classical statistics disputes this approach.

n Probabilities can also be used as the basis for decision making in conditions
of uncertainty, using as decision criteria expected value maximisation, max-
imin, maximax or minimax regret.

Exercise 2.9
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Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 2.1 Given a standard pack of cards, calculate the following probabilities:

(a) drawing an ace;

(b) drawing a court card (i.e. jack, queen or king);

(c) drawing a red card;

(d) drawing three aces without replacement;

(e) drawing three aces with replacement.

Problem 2.2 The following data give duration of unemployment by age, in July 1986.

Age Duration of unemployment (weeks) Total Economically active

≤≤8 8–26 26–52 >>52 (000s) (000s)
(Percentage figures)

16–19 27.2 29.8 24.0 19.0 273.4 1270
20–24 24.2 20.7 18.3 36.8 442.5 2000
25–34 14.8 18.8 17.2 49.2 531.4 3600
35–49 12.2 16.6 15.1 56.2 521.2 4900
50–59 8.9 14.4 15.6 61.2 388.1 2560
≥60 18.5 29.7 30.7 21.4 74.8 1110

The ‘economically active’ column gives the total of employed (not shown) plus un-
employed in each age category.

(a) In what sense may these figures be regarded as probabilities? What does the figure
27.2 (top-left cell) mean following this interpretation?

(b) Assuming the validity of the probability interpretation, which of the following state-
ments are true?
(i) The probability of an economically active adult aged 25–34, drawn at random,

being unemployed is 531.4/3600.
(ii) If someone who has been unemployed for over one year is drawn at random,

the probability that they are aged 16–19 is 19%.
(iii) For those aged 35–49 who became unemployed before July 1985, the prob-

ability of their still being unemployed is 56.2%.

Problems 93
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(iv) If someone aged 50–59 is drawn at random from the economically active popu-
lation, the probability of their being unemployed for eight weeks or less is 8.9%.

(v) The probability of someone aged 35–49 drawn at random from the econom-
ically active population being unemployed for between 8 and 26 weeks is
0.166 × 521.2/4900.

(c) A person is drawn at random from the population and found to have been unem-
ployed for over one year. What is the probability that they are aged between 16 and 19?

Problem 2.3 ‘Odds’ in horserace betting are defined as follows: 3/1 (three-to-one against) means a
horse is expected to win once for every three times it loses; 3/2 means two wins out of
five races; 4/5 (five to four on) means five wins for every four defeats, etc.

(a) Translate the above odds into ‘probabilities’ of victory.

(b) In a three-horse race, the odds quoted are 2/1, 6/4, and 1/1. What makes the odds
different from probabilities? Why are they different?

(c) Discuss how much the bookmaker would expect to win in the long run at such
odds, assuming each horse is backed equally.

Problem 2.4 (a) Translate the following odds to ‘probabilities’: 13/8, 2/1 on, 100/30.

(b) In the 2.45 race at Plumpton on 18/10/94 the odds for the five runners were:

Philips Woody 1/1
Gallant Effort 5/2
Satin Noir 11/2
Victory Anthem 9/1
Common Rambler 16/1

Calculate the ‘probabilities’ and their sum.

(c) Should the bookmaker base his odds on the true probabilities of each horse win-
ning, or on the amount bet on each horse?

Problem 2.5 How might you estimate the probability of Peru defaulting on its debt repayments next
year?

Problem 2.6 How might you estimate the probability of a corporation reneging on its bond payments?

Problem 2.7 Judy is 33, unmarried and assertive. She is a graduate in political science, and involved
in union activities and anti-discrimination movements. Which of the following state-
ments do you think is more probable?

(a) Judy is a bank clerk.

(b) Judy is a bank clerk, active in the feminist movement.

Problem 2.8 In March 1994 a news item revealed that a London ‘gender’ clinic (which reportedly
enables you to choose the sex of your child) had just set up in business. Of its first six
births, two were of the ‘wrong’ sex. Assess this from a probability point of view.

Problem 2.9 A newspaper advertisement reads ‘The sex of your child predicted, or your money back!’
Discuss this advertisement from the point of view of (a) the advertiser and (b) the client.
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Problem 2.10 ‘Roll six sixes to win a Mercedes!’ is the announcement at a fair. You have to roll six
dice. If you get six sixes you win the car, valued at £20 000. The entry ticket costs £1.
What is your expected gain or loss on this game? The organisers of the fair have to take
out insurance against the car being won. This costs £250 for the day. Does this seem a
fair premium? If not, why not?

Problem 2.11 At another stall, you have to toss a coin numerous times. If a head does not appear in
20 tosses you win £1 billion. The entry fee for the game is £100.

(a) What are your expected winnings?

(b) Would you play?

Problem 2.12 A four-engine plane can fly as long as at least two of its engines work. A two-engine
plane flies as long as at least one engine works. The probability of an individual engine
failure is 1 in 1000.

(a) Would you feel safer in a four- or two-engine plane, and why? Calculate the prob-
abilities of an accident for each type.

(b) How much safer is one type than the other?

(c) What crucial assumption are you making in your calculation? Do you think it is valid?

Problem 2.13 Which of the following events are independent?

(a) Two flips of a fair coin.

(b) Two flips of a biased coin.

(c) Rainfall on two successive days.

(d) Rainfall on St Swithin’s day and rain one month later.

Problem 2.14 Which of the following events are independent?

(a) A student getting the first two questions correct in a multiple-choice exam.

(b) A driver having an accident in successive years.

(c) IBM and Dell earning positive profits next year.

(d) Arsenal Football Club winning on successive weekends.

How is the answer to (b) reflected in car insurance premiums?

Problem 2.15 Manchester United beat Liverpool 4–2 at soccer, but you do not know the order in
which the goals were scored. Draw a tree diagram to display all the possibilities and use
it to find (a) the probability that the goals were scored in the order L, MU, MU, MU, L,
MU, and (b) the probability that the score was 2–2 at some stage.

Problem 2.16 An important numerical calculation on a spacecraft is carried out independently by three
computers. If all arrive at the same answer it is deemed correct. If one disagrees it is
overruled. If there is no agreement then a fourth computer does the calculation and, if
its answer agrees with any of the others, it is deemed correct. The probability of an indi-
vidual computer getting the answer right is 99%. Use a tree diagram to find:

(a) the probability that the first three computers get the right answer;

(b) the probability of getting the right answer;

(c) the probability of getting no answer;

(d) the probability of getting the wrong answer.

Problems 95
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Problem 2.17 The French national lottery works as follows. Six numbers from the range 0 to 49 are
chosen at random. If you have correctly guessed all six you win the first prize. What are
your chances of winning if you are only allowed to choose six numbers? A single entry
like this costs one euro. For 210 euros you can choose ten numbers and you win if the
six selected numbers are among them. Is this better value than the single entry?

Problem 2.18 The UK national lottery works as follows. You choose six (different) numbers in the
range 1 to 49. If all six come up in the draw (in any order) you win the first prize,
expected to be around £2m (which could be shared if someone else chooses the six
winning numbers).

(a) What is your chance of winning with a single ticket?

(b) You win a second prize if you get five out of six right, and your final chosen number
matches the ‘bonus’ number in the draw (also in the range 1 to 49). What is the
probability of winning a second prize?

(c) Calculate the probabilities of winning a third, fourth or fifth prize, where a third prize
is won by matching five out of the six numbers, a fourth prize by matching four out
of six and a fifth prize by matching three out of six.

(d) What is the probability of winning a prize?

(e) The prizes are as follows:

Prize Value

First £2 million (expected, possibly shared)
Second £100 000 (expected, for each winner)
Third £1500 (expected, for each winner)
Fourth £65 (expected, for each winner)
Fifth £10 (guaranteed, for each winner)

Comment upon the distribution of the fund between first, second, etc. prizes.

(f ) Why is the fifth prize guaranteed whereas the others are not?

(g) In the first week of the lottery, 49 million tickets were sold. There were 1 150 000
winners, of which 7 won (a share of ) the jackpot, 39 won a second prize, 2139 won
a third prize and 76 731 a fourth prize. Are you surprised by these results or are
they as you would expect?

Problem 2.19 A coin is either fair or has two heads. You initially assign probabilities of 0.5 to each
possibility. The coin is then tossed twice, with two heads appearing. Use Bayes’ theorem
to work out the posterior probabilities of each possible outcome.

Problem 2.20 A test for AIDS is 99% successful, i.e. if you are HIV+ it will detect it in 99% of all tests,
and if you are not, it will again be right 99% of the time. Assume that about 1% of the
population are HIV+. You take part in a random testing procedure, which gives a posi-
tive result. What is the probability that you are HIV+? What implications does your result
have for AIDS testing?
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Problem 2.21 (a) Your initial belief is that a defendant in a court case is guilty with probability 0.5. A
witness comes forward claiming he saw the defendant commit the crime. You
know the witness is not totally reliable and tells the truth with probability p. Use
Bayes’ theorem to calculate the posterior probability that the defendant is guilty,
based on the witness’s evidence.

(b) A second witness, equally unreliable, comes forward and claims she saw the
defendant commit the crime. Assuming the witnesses are not colluding, what is
your posterior probability of guilt?

(c) If p < 0.5, compare the answers to (a) and (b). How do you account for this curious
result?

Problem 2.22 A man is mugged and claims that the mugger had red hair. In police investigations of
such cases, the victim was able correctly to identify the assailant’s hair colour 80% of
the time. Assuming that 10% of the population have red hair, what is the probability that
the assailant in this case did, in fact, have red hair? Guess the answer first, then find the
right answer using Bayes’ theorem. What are the implications of your results for juries’
interpretation of evidence in court, particularly in relation to racial minorities?

Problem 2.23 A firm has a choice of three projects, with profits as indicated below, dependent upon
the state of demand.

Project Demand

Low Middle High

A 100 140 180
B 130 145 170
C 110 130 200
Probability 0.25 0.45 0.3

(a) Which project should be chosen on the expected value criterion?

(b) Which project should be chosen on the maximin and maximax criteria?

(c) Which project should be chosen on the minimax regret criterion?

(d) What is the expected value of perfect information to the firm?

Problem 2.24 A firm can build a small, medium or large factory, with anticipated profits from each
dependent upon the state of demand, as in the table below.

Factory Demand

Low Middle High

Small 300 320 330
Medium 270 400 420
Large 50 250 600
Probability 0.3 0.5 0.2

(a) Which project should be chosen on the expected value criterion?

(b) Which project should be chosen on the maximin and maximax criteria?

(c) Which project should be chosen on the minimax regret criterion?

(d) What is the expected value of perfect information to the firm?

Problems 97
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Problem 2.25 There are 25 people at a party. What is the probability that there are at least two with a
birthday in common? (Hint: the complement is (much) easier to calculate.)

Problem 2.26 This problem is tricky, but amusing. Three gunmen, A, B and C, are shooting at each
other. The probabilities that each will hit what they aim at are respectively 1, 0.75, 0.5.
They take it in turns to shoot (in alphabetical order) and continue until only one is left
alive. Calculate the probabilities of each winning the contest. (Assume they draw lots for
the right to shoot first.)

Hint 1: Start with one-on-one gunfights, e.g. the probability of A beating B, or of B
beating C.

Hint 2: You’ll need the formula for the sum of an infinite series, given in Chapter 1.

Answers to exercises

Exercise 2.1 Answer in text.

Exercise 2.2 (a) A subjective view would have to be taken, informed by such things as opinion polls.

(b) 1/49, a frequentist view. Some people do add their own subjective evaluations
(e.g. that 5 must come up as it has not been drawn for several weeks) but these
are often unwarranted according to the frequentist approach.

(c) A mixture of objective and subjective criteria might be used here. Historical
data on the occurrence of tsunamis might give a (frequentist) baseline figure, to
which might be added subjective considerations such as the amount of recent
seismic activity.

(d) A mixture again. Historical data gives a benchmark (possibly of little relevance)
while immediate factors such as the weather might alter one’s subjective judge-
ment. (As I write it is snowing outside, which seems to have a huge impact on
British trains!)

Exercise 2.3 (a) 1, 2, 3, . . . , 20, 21 (a triple seven), 22 (double eleven), 24, 25 (outer bull), 26, 
27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50. Or it could miss 
altogether!

(b) The complement is missing the target, with probability 1 − 0.3 = 70%.

(c) Zero, it is impossible.

(d) Impossible, the probabilities sum to more than one.

Exercise 2.4 (a) 0.3 × 0.7 + 0.7 × 0.3 = 0.42. This is a hit followed by a miss or a miss followed by
a hit.

(b) 0.3 × 0.3 = 0.09.

(c) It is assumed that the probability of the second arrow hitting the target is the
same as the first. Altering this assumption would affect both answers.

(d) Part (a) becomes 0.3 × (1 − 0.5) + 0.7 × 0.2 = 0.29. Part (b) becomes 0.3 × 0.5 = 0.15.
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Exercise 2.5 (a)

(b)

(c)
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Exercise 2.6 (a) Pr(2 hits) = Pr(H and H and M) × 3C2 = 0.3 × 0.3 × 0.7 × 3 = 0.189.

(b) This cannot be done using the combinatorial formula, because of the non-
independence of probabilities. Instead one has to calculate Pr(H and H and M)
+ Pr(H and M and H) + Pr(M and H and H), yielding the answer 0.175.

Exercise 2.7 (a) Bag A has proportionately more red balls than bag B, hence should be 
the favoured bag from which the single red ball was drawn. Performing the 
calculation:

(b) The result is the same as Pr(R | A) = 0.625 as before. The number of balls does not
enter the calculation.

(c) Prior probabilities Likelihoods Prior ×× likelihood Posterior probabilities

A 0.5 0.625 0.3125 0.3125/0.5625 = 0.556
B 0.5 0.5 0.25 0.25/0.5625 = 0.444
Total 0.5625

Exercise 2.8 (a) 1200/1.1 = 1090.91.

(b) 1200/1.15 = 1043.48. The PV has only changed by 4.3%. This is calculated as
1.1/1.15 − 1 = −0.043.

(c) 1200/1.12 = 991.74; 1200/1.15 = 745.11.

(d) PV = 500/1.1 + 500/1.12 + 500/1.13 = 1243.43.

(e) At 10%: project A yields a PV of 300/1.1 + 600/1.12 = 768.6. Project B yields
400/1.1 + 488/1.12 = 766.9. At 20% the PVs are 666.7 and 672.2, reversing the
rankings. A’s large benefits in year 2 are penalised by the higher discount rate.

Exercise 2.9 (a) Project Expected value Minimum Maximum

A 0.3 × 100 + 0.4 × 80 + 0.3 × 70 = 83 70 100
B 0.3 × 90 + 0.4 × 85 + 0.3 × 75 = 83.5 75 90
C 0.3 × 120 + 0.4 × 60 + 0.3 × 40 = 72 40 120

The maximin is 75, associated with project B and the maximax is 120, associ-
ated with project C. The regret values are given by

4% 6% 8% Max

A 20 5 5 20
B 30 0 0 30
C 0 25 35 35

Min 20

The minimax regret is 20, associated with project A.

(b) With perfect information the firm could eam 0.3 × 120 + 0.4 × 85 + 0.3 × 75 =
92.5. The highest expected value is 83.5, so the value of perfect information is 
92.5 − 83.5 = 9.
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By the end of this chapter you should be able to:

n recognise that the result of most probability experiments (e.g. the score on a
die) can be described as a random variable

n appreciate how the behaviour of a random variable can often be summarised
by a probability distribution (a mathematical formula)

n recognise the most common probability distributions and be aware of their
uses

n solve a range of probability problems using the appropriate probability
distribution

Introduction

In this chapter the probability concepts introduced in the last chapter are gen-
eralised by using the idea of a probability distribution. A probability distribu-
tion lists, in some form, all the possible outcomes of a probability experiment
and the probability associated with each one. For example, the simplest experi-
ment is tossing a coin, for which the possible outcomes are heads or tails, each
with probability one-half. The probability distribution can be expressed in a

3
Contents
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102 Chapter 3 • Probability distributions

variety of ways: in words, or in a graphical or mathematical form. For tossing a
coin, the graphical form is shown in Figure 3.1, and the mathematical form is:

Pr(H) =

Pr(T) =

The different forms of presentation are equivalent but one might be more
suited to a particular purpose.

Some probability distributions occur often and so are well known. Because
of this they have names so we can refer to them easily; for example, the
Binomial distribution or the Normal distribution. In fact, these are families
of distributions. A single toss of a coin gives rise to one member of the
Binomial distribution; two tosses would give rise to another member of that
family. These two distributions differ only in the number of tosses. If a biased coin
were tossed, this would lead to another Binomial distribution, but it would 
differ from the previous two because of the different probability of heads.

In order to understand fully the idea of a probability distribution a new 
concept is first introduced, that of a random variable. As will be seen later in
the chapter, an important random variable is the sample mean, and to under-
stand how to draw inferences from the sample mean it is important to recognise
it as a random variable.

Random variables

Examples of random variables have already been encountered in the previous
chapter, for example, the result of the toss of a coin, or the number of boys in a
family of five children. A random variable is one whose outcome or value is the
result of chance and is therefore unpredictable, although the range of possible
outcomes and the probability of each outcome may be known. It is impossible
to know in advance the outcome of a toss of a coin for example, but it must be
either heads or tails, each with probability one-half. The number of heads in
250 tosses is another random variable, which can take any value between zero
and 250, although values near 125 are the most likely. You are very unlikely to
get 250 heads from tossing a fair coin!

The time of departure of a train is a random variable. It may be timetabled to
depart at 11.15, but it probably (almost certainly!) won’t leave at exactly that

1
2

1
2

Figure 3.1
The probability
distribution for the
toss of a coin
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time. If a sample of ten basketball players were taken, and their average height
calculated, this would be a random variable. In this latter case, it is the process
of taking a sample that introduces the variability which makes the resulting
average a random variable. If the experiment were repeated, a different sample
and a different value of the random variable would be obtained.

The above examples can be contrasted with some things which are not 
random variables. If one were to take all basketball players and calculate their
average height, the result would not be a random variable. This time there is no
sampling procedure to introduce variability into the result. If the experiment
were repeated the same result would be obtained, since the same people would
be measured the second time (this assumes that the population does not
change, of course). Just because the value of something is unknown does not
mean it qualifies as a random variable. This is an important distinction to bear
in mind, since it is legitimate to make probability statements about random
variables (‘the probability that the average height of a sample of basketball
players is over 195 cm is 60%’) but not about parameters (‘the probability that
the Pope is over six feet is 60%’). Here again there is a difference of opinion
between frequentist and subjective schools of thought. The latter group would
argue that it is possible to make probability statements about the Pope’s height.
It is a way of expressing lack of knowledge about the true value. The frequen-
tists would say the Pope’s height is a fact that we do not happen to know; that
does not make it a random variable.

The Binomial distribution

One of the simplest distributions which a random variable can have is the
Binomial. The Binomial distribution arises whenever the underlying probabil-
ity experiment has just two possible outcomes, e.g. heads or tails from the toss
of a coin. Even if the coin is tossed many times (so one could end up with one,
two, three . . . etc. heads in total) the underlying experiment has only two out-
comes, so the Binomial distribution should be used. A counter-example would
be the rolling of die, which has six possible outcomes (in this case the
Multinomial distribution, not covered in this book, would be used). Note, 
however, that if we were interested only in rolling a six or not, we could use the
Binomial by defining the two possible outcomes as ‘six’ and ‘not-six’. It is often
the case in statistics that by suitable transformation of the data we can use dif-
ferent distributions to tackle the same problem. We will see more of this later
in the chapter.

The Binomial distribution can therefore be applied to the type of problem
encountered in the previous chapter, concerning the sex of children. It pro-
vides a general formula for calculating the probability of r boys in n births or,
in more general terms, the probability of r ‘successes’ in n trials.1 We shall use it
to calculate the probabilities of 0, 1, . . . , 5 boys in five births.

The Binomial distribution 103

1 The identification of a boy with ‘success’ is a purely formal one and is not meant to be
pejorative!
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104 Chapter 3 • Probability distributions

For the Binomial distribution to apply we first need to assume independence
of successive events and we shall assume that, for any birth:

Pr(boy) = P =

It follows that

Pr(girl) = 1 − Pr(boy) = 1 − P =

Although we have P = in this example, the Binomial distribution can be
applied for any value of P between 0 and 1.

First we consider the case of r = 5, n = 5, i.e. five boys in five births. This
probability is found using the multiplication rule:

Pr(r = 5) = P × P × P × P × P = P5 = ( )5 = 1/32

The probability of four boys (and then implicitly one girl) is

Pr(r = 4) = P × P × P × P × (1 − P) = 1/32

But this gives only one possible ordering of the four boys and one girl. Our
original statement of the problem did not specify a particular ordering of the
children. There are five possible orderings (the single girl could be in any of five
positions in rank order). Recall that we can use the combinatorial formula nCr
to calculate the number of orderings, giving 5C4 = 5. Hence the probability of
four boys and one girl in any order is 5/32. Summarising, the formula for four
boys and one girl is

Pr(r = 4) = 5C4 × P4 × (1 − P)

For three boys (and two girls) we obtain

Pr(r = 3) = 5C3 × P3 × (1 − P)2 = 10 × 1/8 × 1/4 = 10/32

In a similar manner

Pr(r = 2) = 5C2 × P2 × (1 − P)3 = 10/32

Pr(r = l) = 5C1 × P1 × (1 − P)4 = 5/32

Pr(r = 0) = 5C0 × P0 × (1 − P)5 = 1/32

As a check on our calculations we may note that the sum of the probabilities
equals 1, as they should do, since we have enumerated all possibilities.

A fairly clear pattern emerges. The probability of r boys in n births is given by

Pr(r) = nCr × Pr × (1 − P)n−r

and this is known as the Binomial formula or distribution. The Binomial distri-
bution is appropriate for analysing problems with the following characteristics:

n There is a number (n) of trials.
n Each trial has only two possible outcomes, ‘success’ (with probability P) and

‘failure’ (probability 1 − P) and the outcomes are independent between trials.
n The probability P does not change between trials.

The probabilities calculated by the Binomial formula may be illustrated in a
diagram, as shown in Figure 3.2. This is very similar to the relative frequency
distribution which was introduced in Chapter 1. That distribution was based

1
2

1
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1
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on empirical data (to do with wealth) while the Binomial probability distribution
is a theoretical construction, built up from the basic principles of probability
theory.

As stated earlier, the Binomial is, in fact, a family of distributions and each
member of this family is distinguished by two parameters, n and P. The
Binomial is thus a distribution with two parameters, and once their values are
known the distribution is completely determined (i.e. Pr(r) can be calculated
for all values of r). To illustrate the difference between members of the family
of the Binomial distribution, Figure 3.3 presents three other Binomial distributions,
for different values of P and n. It can be seen that for the value of P = the dis-
tribution is symmetric, while for all other values it is skewed to either the left
or the right. Part (b) of the figure illustrates the distribution relating to the
worked example of rolling a die, described below.

Since the Binomial distribution depends only upon the two values n and P, a
shorthand notation can be used, rather than using the formula itself. A random
variable r, which has a Binomial distribution with the parameters n and P, can
be written in general terms as

(3.1) r ~ B(n, P)

Thus for the previous example of children, where r represents the number of
boys,

r ~ B(5, )

This is simply a brief and convenient way of writing down the information
available; it involves no new problems of a conceptual nature. Writing

r ~ B(n, P)

is just a shorthand for

Pr(r) = nCr × Pr × (1 − P)n−r

In Chapter 1 we calculated the mean and variance of a set of data, of the dis-
tribution of wealth. The picture of that distribution (Figure 1.9) looks not too
dissimilar to one of the Binomial distributions shown in Figure 3.3 above. This
suggests that we can calculate the mean and variance of a Binomial distribution,

1
2

1
2
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Figure 3.2
Probability
distribution of the
number of boys in five
children

The mean and
variance of the
Binomial
distribution

SFE_C03.qxd  3/23/07  12:11 PM  Page 105



106 Chapter 3 • Probability distributions

just as we did for the empirical distribution of wealth. Calculating the mean
would provide the answer to a question such as ‘If we have a family with five
children, how many do we expect to be boys?’. Intuitively the answer seems
clear, 2.5 (even though such a family could not exist!). The Binomial formula
allows us to confirm this intuition.

The mean and variance are most easily calculated by drawing up a relative
frequency table based on the Binomial frequencies. This is shown in Table 3.1

Figure 3.3
Binomial distributions
with different
parameter values
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Worked example 3.1

for the values n = 5 and P = . Note that r is equivalent to x in our usual notation
and Pr(r), the relative frequency, to f(x)/∑f(x). The mean of this distribution is
given by

(3.2)

and the variance is given by

(3.3)

The mean value tells us that in a family of five children we would expect, on
average, two and a half boys. Obviously no single family can be like this; it is
the average over all such families. The variance is more difficult to interpret
intuitively, but it tells us something about how the number of boys will be
spread around the average of 2.5.

There is a quicker way to calculate the mean and variance of the Binomial
distribution. It can be shown that the mean can be calculated as nP, i.e. the
number of trials times the probability of success. For example, in a family with
five children and an equal probability that each child is a boy or a girl, then we
expect nP = 5 × 1/2 = 2.5 to be boys.

The variance can be calculated as nP(1 − P). This gives 5 × 1/2 × 1/2 = 1.25, as
found above by extensive calculation.

Rolling a die

If a die is thrown four times, what is the probability of getting two or more
sixes? This is a problem involving repeated experiments (rolling the die)
with but two types of outcome for each roll: success (a six) or failure (any-
thing but a six). Note that we combine several possibilities (scores of 1, 2,
3, 4, or 5) together and represent them all as failure. The probability of suc-
cess (one-sixth) does not vary from one experiment to another, and so use
of the Binomial distribution is appropriate. The values of the parameters
are n = 4 and P = 1/6. Denoting by r the random variable ‘the number of
sixes in four rolls of the die’ then

(3.4) r ~ B(4, )1
6

V r
r r
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Table 3.1 Calculating the mean and variance of the Binomial distribution

r Pr(r) r ×× Pr(r) r2 ×× Pr(r)

0 1/32 0 0
1 5/32 5/32 5/32
2 10/32 20/32 40/32
3 10/32 30/32 90/32
4 5/32 20/32 80/32
5 1/32 5/32 25/32

Totals 32/32 80/32 240/32
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108 Chapter 3 • Probability distributions

Hence

Pr(r) = nCr × Pr(1 − P)(n−r)

where P = and n = 4. The probabilities of two, three and four sixes are
then given by

Pr(r = 2) = 4C2( )2( )2 = 0.116

Pr(r = 3) = 4C3( )3( )1 = 0.015

Pr(r = 4) = 4C4( )4( )0 = 0.00077

Since these events are mutually exclusive, the probabilities can simply be
added together to get the desired result, which is 0.132, or 13.2%. This is
the probability of two or more sixes in four rolls of a die.

This result can be illustrated diagrammatically as part of the area under
the appropriate Binomial distribution, shown in Figure 3.4.

The shaded areas represent the probabilities of two or more sixes and
together their area represents 13.2% of the whole distribution. This illustrates
an important principle: that probabilities can be represented by areas under
an appropriate probability distribution. We shall see more of this later.

(a) The probability of a randomly drawn individual having blue eyes is 0.6. What is the
probability that four people drawn at random all have blue eyes?

(b) What is the probability that two of the sample of four have blue eyes?

(c) For this particular example, write down the Binomial formula for the probability of r
blue eyed individuals, for r = 0 . . . 4. Confirm that the probabilities sum to one.

(a) Calculate the mean and variance of the number of blue eyed individuals in the 
previous exercise.

(b) Draw a graph of this Binomial distribution and on it mark the mean value and the
mean value +/− one standard deviation.

5
6

1
6

5
6

1
6

5
6

1
6

1
6

Figure 3.4
Probability of two or
more sixes in four
rolls of a die

Exercise 3.1

Exercise 3.2
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Having introduced the concept of probability distributions using the
Binomial, we now move on to the most important of all probability distribu-
tions, the Normal.

The Normal distribution

The Binomial distribution applies when there are two possible outcomes to an
experiment, but not all problems fall into this category. For instance, the (ran-
dom) arrival time of a train is a continuous variable and cannot be analysed
using the Binomial. There are many probability distributions in statistics,
developed to analyse different types of problem. Several of them are covered in
this book and the most important of them is the Normal distribution, which
we now turn to. It was discovered by the German mathematician Gauss in the
nineteenth century (hence it is also known as the Gaussian distribution), in the
course of his work on regression (see Chapter 7).

Many random variables turn out to be Normally distributed. Men’s (or 
women’s) heights are Normally distributed. IQ (the measure of intelligence) is also
Normally distributed. Another example is of a machine producing (say) bolts
with a nominal length of 5 cm which will actually produce bolts of slightly
varying length (these differences would probably be extremely small) due to
factors such as wear in the machinery, slight variations in the pressure of the
lubricant, etc. These would result in bolts whose length varies, in accordance
with the Normal distribution. This sort of process is extremely common, with
the result that the Normal distribution often occurs in everyday situations.

The Normal distribution tends to arise when a random variable is the result
of many independent, random influences added together, none of which 
dominates the others. A man’s height is the result of many genetic influences,
plus environmental factors such as diet, etc. As a result, height is Normally 
distributed. If one takes the height of men and women together, the result is
not a Normal distribution, however. This is because there is one influence
which dominates the others: gender. Many variables familiar in economics are
not Normal – incomes, for example (though the logarithm of income is
approximately Normal). We shall learn techniques to deal with such circum-
stances in due course.

Having introduced the idea of the Normal distribution, what does it look
like? It is presented below in graphical and then mathematical forms. Unlike
the Binomial, the Normal distribution applies to continuous random variables
such as height and a typical Normal distribution is illustrated in Figure 3.5.
Since the Normal distribution is a continuous one it can be evaluated for all
values of x, not just for integers. The figure illustrates the main features of the
distribution:

n It is unimodal, having a central peak. If this were men’s heights it would
illustrate the fact that most men are clustered around the average height,
with a few very tall and a few very short people.

n It is symmetric, the left and right halves being mirror images of each other.
n It is bell-shaped.

The Normal distribution 109
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110 Chapter 3 • Probability distributions

n It extends continuously over all the values of x from minus infinity to plus
infinity, though the value of Pr(x) becomes extremely small as these values
are approached (the pages of this book being of only finite width, this last
characteristic is not faithfully reproduced!). This also demonstrates that most
empirical distributions (such as men’s heights) can only be an approxima-
tion to the theoretical ideal, though the approximation is close and good
enough for practical purposes.

In mathematical terms the formula for the Normal distribution is (x is the
random variable)

(3.5)

The mathematical formulation is not so formidable as it appears. μ and σ are
the parameters of the distribution, like n and P for the Binomial (though they
have different meanings); π is 3.1416 and e is 2.7183. If the formula is evalu-
ated using different values of x the values of Pr(x) obtained will map out a
Normal distribution. Fortunately, as we shall see, we do not need to use the
mathematical formula in most practical problems.

Like the Binomial, the Normal is a family of distributions differing from one
another only in the values of the parameters μ and σ. Several Normal distribu-
tions are drawn in Figure 3.6 for different values of the parameters.

Whatever value of μ is chosen turns out to be the centre of the distribution.
Since the distribution is symmetric, μ is its mean. The effect of varying σ is to
narrow (small σ) or widen (large σ) the distribution. σ turns out to be the standard
deviation of the distribution. The Normal is another two-parameter family of
distributions like the Binomial, and once the mean μ and the standard deviation
σ (or equivalently the variance, σ2) are known the whole of the distribution can
be drawn. The shorthand notation for a Normal distribution is

(3.6) x ~ N(μ, σ2)

meaning ‘the variable x is Normally distributed with mean μ and variance σ2’.
This is similar in form to the expression for the Binomial distribution, though
the meanings of the parameters are different.

Use of the Normal distribution can be illustrated using a simple example.
The height of adult males is Normally distributed with mean height μ = 174 cm
and standard deviation σ = 9.6 cm. Let x represent the height of adult males;
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Figure 3.5
The Normal
distribution
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then

(3.7) x ~ N(174, 92.16)

and this is illustrated in Figure 3.7. Note that (3.7) contains the variance rather
than the standard deviation.

What is the probability that a randomly selected man is taller than 180 cm?
If all men are equally likely to be selected, this is equivalent to asking what pro-
portion of men are over 180 cm in height. This is given by the area under the
Normal distribution, to the right of x = 180, i.e. the shaded area in Figure 3.7.
The further from the mean of 174, the smaller the area in the tail of the distri-
bution. One way to find this area would be to make use of equation (3.5), but
this requires the use of sophisticated mathematics.

The Normal distribution 111

Figure 3.6(a)
The Normal
distribution, 
μμ == 20, σσ == 5

Figure 3.6(b)
The Normal
distribution, 
μμ == 15, σσ == 2

Figure 3.6(c)
The Normal
distribution, 
μμ == 0, σσ == 4
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112 Chapter 3 • Probability distributions

Since this is a frequently encountered problem, the answers have been set
out in the tables of the standard Normal distribution. We can simply look up
the solution. However, since there is an infinite number of Normal distri-
butions (for every combination of μ and σ2) it would be an impossible task to
tabulate them all. The standard Normal distribution, which has a mean of zero
and variance of one, is therefore used to represent all Normal distributions.
Before the table can be consulted, therefore, the data have to be transformed so
that they accord with the standard Normal distribution.

The required transformation is the z score, which was introduced in Chapter
1. This measures the distance between the value of interest (180) and the mean,
measured in terms of standard deviations. Therefore we calculate

(3.8)

and z is a Normally distributed random variable with mean 0 and variance 1,
i.e. z ~ N(0, 1). This transformation shifts the original distribution μ units to
the left and then adjusts the dispersion by dividing through by σ, resulting in a
mean of 0 and variance 1. z is Normally distributed because x is Normally dis-
tributed. The transformation in (3.8) retains the Normal distribution shape,
despite the changes to mean and variance. If x had some other distribution
then z would not be Normal either.

It is easy to verify the mean and variance of z using the rules for E and V
operators encountered in Chapter 1:

Evaluating the z score from our data we obtain

(3.9)
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Figure 3.7
Illustration of men’s
height distribution
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This shows that 180 is 0.63 standard deviations above the mean, 174, of the
distribution. This is a measure of how far 180 is from 174 and allows us to look
up the answer in tables. The task now is to find the area under the standard
Normal distribution to the right of 0.63 standard deviations above the mean.
This answer can be read off directly from the table of the standard Normal dis-
tribution, included as Table A2 in the appendix to this book. An excerpt from
Table A2 (see page 366) is presented in Table 3.2.

The left-hand column gives the z score to one place of decimals. The appro-
priate row of the table to consult is the one for z = 0.6, which is shaded. For the
second place of decimals (0.03) we consult the appropriate column, also
shaded. At their intersection we find the value 0.2643, which is the desired area
and therefore probability. In other words, 26.43% of the distribution lies to the
right of 0.63 standard deviations above the mean. Therefore 26.43% of men are
over 180 cm in height.

Use of the standard Normal table is possible because, although there is an
infinite number of Normal distributions, they are all fundamentally the same,
so that the area to the right of 0.63 standard deviations above the mean is the
same for all of them. As long as we measure the distance in terms of standard
deviations then we can use the standard Normal table. The process of standard-
isation turns all Normal distributions into a standard Normal distribution with
a mean of zero and a variance of one. This process is illustrated in Figure 3.8.

The area in the right-hand tail is the same for both distributions. It is the
standard Normal distribution in Figure 3.8(b) which is tabulated in Table A2.
To demonstrate how standardisation turns all Normal distributions into the
standard Normal, the earlier problem is repeated but taking all measurements
in inches. The answer should obviously be the same. Taking 1 inch = 2.54 cm
the figures are

x = 70.87 σ = 3.78 μ = 68.50

What proportion of men are over 70.87 inches in height? The appropriate
Normal distribution is now

(3.10) x ~ N(68.50, 3.782)

The z score is

(3.11)

which is the same z score as before and therefore gives the same probability.
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Table 3.2 Areas of the standard Normal distribution (excerpt from Table A2)

z 0.00 0.01 0.02 0.03 . . . 0.09

0.0 .5000 .4960 .4920 .4880 . . . .4641
0.1 .4602 .4562 .4522 .4483 . . . .4247
� � � � � . . . �
0.5 .3085 .3050 .3015 .2981 . . . .2776
0.6 .2743 .2709 .2676 .2643 . . . .2451
0.7 .2420 .2389 .2358 .2327 . . . .2148
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114 Chapter 3 • Probability distributions

Packets of cereal have a nominal weight of 750 grams, but there is some
variation around this as the machines filling the packets are imperfect. Let
us assume that the weights follow a Normal distribution. Suppose that the
standard deviation around the mean of 750 is 5 grams. What proportion of
packets weigh more than 760 grams?

Summarising our information, we have x ~ N(750, 25), where x rep-
resents the weight. We wish to find Pr(x > 760). To be able to look up the
answer, we need to measure the distance between 760 and 750 in terms of
standard deviations. This is

Looking up z = 2.0 in Table A2 reveals an area of 0.0228 in the tail of the
distribution. Thus 2.28% of packets weigh more than 760 grams.

Since a great deal of use is made of the standard Normal tables, it is worth
working through a couple more examples to reinforce the method. We have so
far calculated that Pr(z > 0.63) = 0.2643. Since the total area under the graph
equals one (i.e. the sum of probabilities must be one), the area to the left of z =
0.63 must equal 0.7357, i.e. 73.57% of men are under 180 cm. It is fairly easy
to manipulate areas under the graph to arrive at any required area. For example,
what proportion of men are between 174 and 180 cm in height? It is helpful to
refer to Figure 3.9 at this point.

z  
  

  .=
−

=
760 750

5
2 0

Figure 3.8(a)
The Normal
distribution

Figure 3.8(b)
The standard Normal
distribution
corresponding to
Figure 3.8(a)

Worked example 3.2
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The size of area A is required. Area B has already been calculated as 0.2643.
Since the distribution is symmetric the area A + B must equal 0.5, since 174 is
at the centre (mean) of the distribution. Area A is therefore 0.5 − 0.2643 =
0.2357. 23.57% is the desired result.

Using software to find areas under the standard Normal
distribution

If you use a spreadsheet program you can look up the z-distribution directly and
hence dispense with tables. In Excel, for example, the function ‘=NORMS-
DIST(0.63)’ gives the answer 0.7357, i.e. the area to the left of the z score. The area
in the right-hand tail is then obtained by subtracting this value from 1, i.e. 1 −
0.7357 = 0.2643. Entering the formula ‘=1 − NORMSDIST(0.63)’ in a cell will give the
area in the right-hand tail directly.

As a final exercise consider the question of what proportion of men are
between 166 and 178 cm tall. As shown in Figure 3.10 area C + D is wanted.
The only way to find this is to calculate the two areas separately and then add
them together. For area D the z score associated with 178 is:

(3.12)
  
zD =

−
= 

  
.

  .
178 174

9 6
0 42
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Figure 3.9
The proportion of men
between 174 cm and
180 cm in height

Figure 3.10
The proportion of men
between 166 cm and
178 cm in height
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116 Chapter 3 • Probability distributions

Table A2 (see page 366) indicates that the area in the right-hand tail, beyond z
= 0.42, is 0.3372, so area D = 0.5 − 0.3372 = 0.1628. For C, the z score is

(3.13)

The minus sign indicates that it is the left-hand tail of the distribution, below
the mean, which is being considered. Since the distribution is symmetric, it is
the same as if it were the right-hand tail, so the minus sign may be ignored
when consulting the table. Looking up z = 0.83 in Table A2 gives an area of
0.2033 in the tail, so area C is therefore 0.5 − 0.2033 = 0.2967. Adding areas C
and D gives 0.1628 + 0.2967 = 0.4595. So nearly half of all men are between
166 and 178 cm in height.

An alternative interpretation of the results obtained above is that if a man is
drawn at random from the adult population, the probability that he is over 180
cm tall is 26.43%. This is in line with the frequentist school of thought. Since
26.43% of the population is over 180 cm in height, that is the probability of a
man over 180 cm being drawn at random.

(a) The random variable x is distributed Normally, with x ~ N(40, 36). Find the probability
that x > 50.

(b) Find Pr(x < 45).

(c) Find Pr(36 < x < 44).

The mean +/− 0.67 standard deviations cuts off 25% in each tail of the Normal distribu-
tion. Hence the middle 50% of the distribution lies within +/− 0.67 standard deviations
of the mean. Use this fact to calculate the inter-quartile range for the distribution x ~
N(200, 256).

As suggested in the text, the logarithm of income is approximately Normally distributed.
Suppose the log (to the base 10) of income has the distribution x ~ N(4.18, 2.56).
Calculate the inter-quartile range for x and then take anti-logs to find the inter-quartile
range of income.

The sample mean as a Normally distributed variable

One of the most important concepts in statistical inference is the probability
distribution of the mean of a random sample, since we often use the sample
mean to tell us something about an associated population. Suppose that, from the
population of adult males, a random sample of size n = 36 is taken, their heights
measured, and the mean height of the sample calculated. What can we infer from
this about the true average height of the population? To do this, we need to know
about the statistical properties of the sample mean. The sample mean is a random
variable because of the chance element of random sampling (different samples
would yield different values of the sample mean). Since the sample mean is a
random variable it must have associated with it a probability distribution.

We therefore need to know, first, what is the appropriate distribution and, sec-
ond, what are its parameters. From the definition of the sample mean we have

  
zC =

−
= − 

  
.

  .
166 174

9 6
0 83

Exercise 3.3

Exercise 3.4

Exercise 3.5
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(3.14)

where each observation, xi, is itself a Normally distributed random variable,
with xi ~ N(μ, σ2), because each comes from the parent distribution with such
characteristics. (We stated earlier that men’s heights are Normally distributed.)
We now make use of the following theorem to demonstrate that x is Normally
distributed:

Theorem Any linear combination of independent, Normally distributed random
variables is itself Normally distributed.

A linear combination of two variables x1 and x2 is of the form w1x1 + w2x2

where w1 and w2 are constants. This can be generalised to any number of x values.
As long as the observations are independently drawn, therefore, the sample
mean is Normally distributed. In this case, the weight w on each observation is
1/n.

We now need the parameters (mean and variance) of the distribution. For
this we use the E and V operators once again:

(3.15)

(3.16)

Putting all this together, we have2

(3.17)

This we may summarise in the following theorem:

Theorem The sample mean, e, drawn from a population which has a Normal
distribution with mean μ and variance σ 2, has a sampling distribution which is
Normal, with mean μ and variance σ 2/n, where n is the sample size.

The meaning of this theorem is as follows. First of all it is assumed that the
population from which the samples are to be drawn is itself Normally dis-
tributed (this assumption will be relaxed in a moment), with mean μ and vari-
ance σ2. From this population many samples are drawn, each of sample size n,

   
X ~ , N
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μ σ 2⎛
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2 Don’t worry if you didn’t follow the derivation of this formula, just accept that it is correct.
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118 Chapter 3 • Probability distributions

and the mean of each sample is calculated. The samples are independent,
meaning that the observations selected for one sample do not influence the
selection of observations in the other samples. This gives many sample means,
X1, X2, etc. If these sample means are treated as a new set of observations, then
the probability distribution of these observations can be derived. The theorem
states that this distribution is Normal, with the sample means centred around
μ, the population mean, and with variance σ2/n. The argument is set out dia-
grammatically in Figure 3.11.

Intuitively this theorem can be understood as follows. If the height of adult
males is a Normally distributed random variable with mean μ = 174 cm and
variance σ2 = 92.16, then it would be expected that a random sample of (say)
nine males would yield a sample mean height of around 174 cm, perhaps a lit-
tle more, perhaps a little less. In other words, the sample mean is centred
around 174 cm, or the mean of the distribution of sample means is 174 cm.

The larger is the size of the individual samples (i.e. the larger n), the closer
the sample mean would tend to be to 174 cm. For example, if the sample size is
only two, a sample of two very tall people is quite possible, with a high sample
mean as a result, well over 174 cm, e.g. 182 cm. But if the sample size were 20,
it is very unlikely the 20 very tall males would be selected and the sample mean
is likely to be much closer to 174. This is why the sample size n appears in the
formula for the variance of the distribution of the sample mean, σ2/n.

Note that, once again, we have transformed one (or more) random variables,
the xi’s, with a particular probability distribution into another random variable,
X, with a (slightly) different distribution. This is common practice in statistics:
transforming a variable will often put it into a more useful form, e.g. one
whose probability distribution is well known.

The above theorem can be used to solve a range of statistical problems. For
example, what is the probability that a random sample of nine adult males will
have a mean height greater than 180 cm? The height of all adult males is
known to be Normally distributed with mean μ = 174 cm and variance σ2 =
92.16. The theorem can be used to derive the probability distribution of the
sample mean. For the population we have:

x ~ N(μ, σ2), i.e. x ~ N(174, 92.16)

Figure 3.11
The parent
distribution and the
distribution of sample
means

Note: The distribution of e is drawn for a sample size of n = 9. A larger sample size would nar-
row the e distribution; a smaller sample size would widen it.
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Hence for the sample mean:

X ~ N(μ, σ2/n), i.e. X ~ N(174, 92.16/9)

This is shown diagrammatically in Figure 3.12.
To answer the question posed, the area to the right of 180, shaded in Figure

3.12, has to be found. This should by now be a familiar procedure. First the z
score is calculated:

(3.18)

Note that the z score formula is subtly different because we are dealing with the
sample mean X rather than x itself. In the numerator we use X rather than x and
in the denominator we use σ2/n, not σ2. This is because X has a variance σ2/n,
not σ2, which is the population variance. is known as the standard
error, to distinguish it from σ, the standard deviation of the population. The
principle behind the z score is the same however: it measures how far is a sample
mean of 180 from the population mean of 174, measured in terms of standard
deviations.

Looking up the value of z = 1.88 in Table A2 (see page 366) gives an area of
0.0311 in the right-hand tail of the Normal distribution. Thus 3.11% of sample
means will be greater than or equal to 180 cm when the sample size is nine.
The desired probability is therefore 3.11%.

Since this probability is quite small, we might consider the reasons for this.
There are two possibilities:

1 through bad luck, the sample collected is not very representative of the 
population as a whole, or

2 the sample is representative of the population, but the population mean is
not 174 cm after all.

Only one of these two possibilities can be correct. How to decide between them
will be taken up later on, in Chapter 5 on hypothesis testing.

It is interesting to examine the difference between the answer for a sample
size of nine (3.11%) and the one obtained earlier for a single individual
(26.43%). The latter may be considered as a sample of size one from the popu-
lation. The examples illustrate the fact that the larger the sample size, the

σ 2/n

z
n

  
  

/
  

  

. /
  .=

−
=

−
=

X μ
σ 2

180 174

92 16 9
1 88
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Figure 3.12
The proportion of
sample means greater
than s == 180
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120 Chapter 3 • Probability distributions

closer the sample mean is likely to be to the population mean. Thus larger 
samples tend to give better estimates of the population mean.

The previous theorem and examples relied upon the fact that the population
followed a Normal distribution. But what happens if it is not Normal? After all,
it is not known for certain that the heights of all adult males are exactly
Normally distributed, and there are many populations which are not Normal
(e.g. wealth, as shown in Chapter 1). What can be done in these circumstances?
The answer is to use another theorem about the distribution of sample means
(presented without proof). This is known as the Central Limit Theorem:

Central Limit Theorem The sample mean e, drawn from a population with
mean μ and variance σ 2, has a sampling distribution which approaches a
Normal distribution with mean μ and variance σ 2/n, as the sample size
approaches infinity.

This is very useful, since it drops the assumption that the population is
Normally distributed. Note that the distribution of sample means is only
Normal as long as the sample size is infinite; for any finite sample size the dis-
tribution is only approximately Normal. However, the approximation is close
enough for practical purposes if the sample size is larger than 25 or so observa-
tions. If the population distribution is itself nearly Normal then a smaller sam-
ple size would suffice. If the population distribution is particularly skewed then
more than 25 observations would be desirable. Twenty-five observations consti-
tutes a rule of thumb that is adequate in most circumstances. This is another
illustration of statistics as an inexact science. It does not provide absolutely
clear-cut answers to questions but, used carefully, helps us to arrive at sensible
conclusions.

As an example of the use of the Central Limit Theorem, we return to the
wealth data of Chapter 1. Recall that the mean level of wealth was 133.443
(measured in £000) and the variance 52 880. Suppose that a sample of n = 50
people were drawn from this population. What is the probability that the sam-
ple mean is greater than 150 (i.e. £150 000)?

On this occasion we know that the parent distribution is highly skewed so it
is fortunate that we have 50 observations. This should be ample for us to justify
applying the Central Limit Theorem. The distribution of X is therefore

(3.19) X ~ N(μ, σ2/n)

and, inserting the parameter values, this gives3

(3.20) X ~ N(133.443, 52 880/50)

To find the area beyond a sample mean of 150, the z score is first calculated:

(3.21) z  
  .

 /
  .=

−
=

150 133 433

52 880 50
0 51

Sampling from 
a non-Normal
population

3 Note that if we used 133 443 for the mean we would have 52 880 000 000 as the variance.
Using £000 keeps the numbers more manageable. The z score is the same in both cases.
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Referring to the standard Normal tables, the area in the tail is then found to
be 30.5%. This is the desired probability. So there is a probability of 30.5% of
finding a mean of £150 000 or greater with a sample of size 50. This demon-
strates that there is quite a high probability of getting a sample mean which is
a relatively long way from £133 443. This is a consequence of the high degree
of dispersion in the distribution of wealth.

Extending this example, we can ask what is the probability of the sample
mean lying within, say, £64 000 either side of the mean value of £133 443 (i.e.
between 69 443 and 197 443)? Figure 3.13 illustrates the situation, with the
desired area shaded. By symmetry, areas A and B must be equal, so we only
need find one of them. For B, we calculate the z score:

(3.22)

From the standard Normal table, this cuts off approximately 2.5% in the upper
tail, so area B = 0.475. Areas A and B together make up 95% of the distribution,
therefore. There is thus a 95% probability of the sample mean falling within
the range [69 443, 197 443] and we call this the 95% probability interval for
the sample mean. We write this:

(3.23) Pr(69 443 ≤ X ≤ 197 443) = 0.95

or, in terms of the formulae we have used:4

(3.24)

The 95% probability interval and the related concept of the 95% confidence
interval (introduced in Chapter 4) play important roles in statistical inference.
We deliberately designed the example above to arrive at an answer of 95% for
this reason.

(a) If x is distributed as x ~ N (50, 64) and samples of size n = 25 are drawn, what is the
distribution of the sample mean e?

(b) If the sample size doubles to 50, how is the standard error of e altered?

(c) Using the sample size of 25, (i) what is the probability of e > 51? (ii) What is Pr(e < 48)?
(iii) What is Pr(49 < e < 50.5)?

   Pr(   . /       . / )  .μ σ μ σ− ≤ ≤ + =1 96 1 96 0 952 2n nX
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Figure 3.13
The probability of s
lying within £64 000
either side of 
£133 443

Exercise 3.6

4 1.96 is the precise value cutting off 2.5% in each tail.
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122 Chapter 3 • Probability distributions

The relationship between the Binomial and Normal distributions

Many statistical distributions are related to one another in some way. This
means that many problems can be solved by a variety of different methods
(using different distributions), though usually one is more convenient than the
others. This point may be illustrated by looking at the relationship between the
Binomial and Normal distributions.

Recall the experiment of tossing a coin repeatedly and noting the number of
heads. We said earlier that this can be analysed via the Binomial distribution.
But note that the number of heads, a random variable, is influenced by many
independent random events (the individual tosses) added together. Further-
more, each toss counts equally, none dominates. These are just the conditions
under which a Normal distribution arises, so it looks like there is a connection
between the two distributions.

This idea is correct. Recall that if a random variable r follows a Binomial dis-
tribution then

(3.1) r ~ B(n, P)

and the mean of the distribution is nP and the variance nP(1 − P). It turns out
that as n gets larger, the Binomial distribution becomes approximately the
same as a Normal distribution with mean nP and variance nP(1 − P). This
approximation is sufficiently accurate as long as nP > 5 and n(1 − P) > 5, so the
approximation may not be very good (even for large values of n) if P is very
close to zero or one. For the coin tossing experiment, where P = 0.5, 10 tosses
should be sufficient. Note that this approximation is good enough with only 10
observations even though the underlying probability distribution is nothing
like a Normal distribution.

To demonstrate, the following problem is solved using both the Binomial
and Normal distributions. Forty students take an exam in statistics which is
simply graded pass/fail. If the probability, P, of any individual student passing
is 60%, what is the probability of at least 30 students passing the exam?

The sample data are:

P = 0.6
1 − P = 0.4

n = 40

To solve the problem using the Binomial distribution it is necessary to find the
probability of exactly 30 students passing, plus the probability of 31 passing, plus
the probability of 32 passing, etc., up to the probability of 40 passing (the fact that
the events are mutually exclusive allows this). The probability of 30 passing is

Pr(r = 30) = nCr × Pr(1 − P)n−r

= 40C30 × 0.630 × 0.410

= 0.020

(N.B. This calculation assumes that the probabilities are independent, i.e. no
copying!) This by itself is quite a tedious calculation, but Pr(31), Pr(32), etc. still
have to be calculated. Calculating these and summing them gives the result of
3.52% as the probability of at least 30 passing. (It would be a useful exercise for
you to do, if only to appreciate how long it takes.)

Binomial
distribution
method
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As stated above, the Binomial distribution can be approximated by a Normal dis-
tribution with mean nP and variance nP(1 − P). nP in this case is 24 (40 × 0.6) and
n(1 − P) is 16, both greater than 5, so the approximation can be safely used. Thus

r ~ N(nP, nP(1 − P))

and inserting the parameter values gives

r ~ N(24, 9.6)

The usual methods are then used to find the appropriate area under the distri-
bution. However, before doing so, there is one adjustment to be made (this
only applies when approximating the Binomial distribution by the Normal).
The Normal distribution is a continuous one while the Binomial is discrete.
Thus 30 in the Binomial distribution is represented by the area under the
Normal distribution between 29.5 and 30.5. 31 is represented by 30.5 to 31.5,
etc. Thus it is the area under the Normal distribution to the right of 29.5, not
30, which must be calculated. This is known as the continuity correction.
Calculating the z score gives

(3.25)

This gives an area of 3.75%, not far off the correct answer as calculated by the
Binomial distribution. The time saved and ease of calculation would seem to be
worth the slight loss in accuracy.

Other examples can be constructed to test this method, using different values
of P and n. Small values of n, or values of nP or n(l − P) less than 5, will give poor
results, i.e. the Normal approximation to the Binomial will not be very good.

(a) A coin is tossed 20 times. What is the probability of more than 14 heads? Perform the
calculation using both the Binomial and Normal distributions, and compare results.

(b) A biased coin, for which Pr(H) = 0.7 is tossed 6 times. What is the probability of
more than 4 heads? Compare Binomial and Normal methods in this case. How
accurate is the Normal approximation?

(c) Repeat part (b) but for more than 5 heads.

The Poisson distribution

The section above showed how the Binomial distribution could be approxi-
mated by a Normal distribution under certain circumstances. The approxima-
tion does not work particularly well for very small values of P, when nP is less
than 5. In these circumstances the Binomial may be approximated instead by
the Poisson distribution, which is given by the formula

(3.26)

where μ is the mean of the distribution (like μ for the Normal distribution and
nP for the Binomial). Like the Binomial, but unlike the Normal, the Poisson is a
discrete probability distribution, so that equation (3.26) is only defined for
integer values of x. Furthermore, it is applicable to a series of trials which are
independent, as in the Binomial case.
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Normal
distribution
method

Exercise 3.7
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124 Chapter 3 • Probability distributions

The use of the Poisson distribution is appropriate when the probability of 
‘success’ is very small and the number of trials large. Its use is illustrated by the
following example. A manufacturer gives a two-year guarantee on the TV screens
it makes. From past experience it knows that 0.5% of its tubes will be faulty
and fail within the guarantee period. What is the probability that of a consign-
ment of 500 tubes (a) none will be faulty, (b) more than three are faulty?

The mean of the Poisson distribution in this case is μ = 2.5 (0.5% of 500).
Therefore

(3.27)

giving a probability of 8.2% of no failures. The answer to this problem via the
Binomial method is

Pr(r = 0) = 0.995500 = 0.0816

Thus the Poisson method gives a reasonably accurate answer. The Poisson
approximation to the Binomial is satisfactory if nP is less than about 7.

The probability of more than three tubes expiring is calculated as

Pr(x > 3) = 1 − Pr(x = 0) − Pr(x = 1) − Pr(x = 2) − Pr(x = 3)

So Pr(x > 3) = 1 − 0.082 − 0.205 − 0.256 − 0.214
= 0.242

Thus there is a probability of about 24% of more than three failures. The
Binomial calculation is much more tedious, but gives an answer of 24.2% also.

The Poisson distribution is also used in problems where events occur over time,
such as goals scored in a football match (see Problem 3.25) or queuing-type
problems (e.g. arrivals at a bank cash machine). In these problems, there is no
natural ‘number’ of trials but it is clear that, if we take a short interval of time,
the probability of an event occurring is small. We can then consider the number
of trials to be the number of time intervals. This is illustrated by the following
example. A football team scores, on average, two goals every game (you can vary
the example by using your own favourite team plus their scoring record!).
What is the probability of the team scoring zero or one goal during a game?

The mean of the distribution is 2, so we have, using the Poisson distribution:

You should continue to calculate the probabilities of 2 or more goals and verify
that the probabilities sum to 1.
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A queuing-type problem is the following. If a shop receives, on average, 20
customers per hour, what is the probability of no customers within a five-
minute period while the owner takes a coffee break?

The average number of customers per five-minute period is 20 × 5/60 = 1.67.
The probability of a free five-minute spell is therefore

a probability of about 19%. Note that this problem cannot be solved by the
Binomial method since n and P are not known separately, only their product.

(a) The probability of winning a prize in a lottery is 1 in 50. If you buy 50 tickets, what 
is the probability that (i) 0 tickets win, (ii) 1 ticket wins, (iii) 2 tickets win. (iv) What is
the probability of winning at least one prize?

(b) On average, a person buys a lottery ticket in a supermarket every 5 minutes. What
is the probability that 10 minutes will pass with no buyers?

Railway accidents

Andrew Evans of University College, London, used the Poisson distribution to
examine the numbers of fatal railway accidents in Britain between 1967 and 1997.
Since railway accidents are, fortunately, rare, the probability of an accident in any time
period is very small and so use of the Poisson distribution is appropriate. He found
that the average number of accidents has been falling over time and by 1997 had
reached 1.25 per annum. This figure is therefore used as the mean μ of the Poisson
distribution, and we can calculate the probabilities of 0, 1, 2, etc. accidents each
year. Using μ = 1.25 and inserting this into equation 3.26 we obtain the following table:

Number of accidents 0 1 2 3 4 5 6
Probability 0.287 0.358 0.224 0.093 0.029 0.007 0.002

and this distribution can be graphed:

Thus the most likely outcome is one fatal accident per year and anything over
four is extremely unlikely. In fact, Evans found that the Poisson was not a perfect fit
to the data: the actual variation was less than that predicted by the model.

Source: A. W. Evans, Fatal train accidents on Britain’s mainline railways, J. Royal Statistical Society,
Series A, vol. 163 (1), 2000.
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126 Chapter 3 • Probability distributions

Summary

n The behaviour of many random variables (e.g. the result of the toss of a
coin) can be described by a probability distribution (in this case, the
Binomial distribution).

n The Binomial distribution is appropriate for problems where there are only
two possible outcomes of a chance event (e.g. heads/tails, success/failure)
and the probability of success is the same each time the experiment is 
conducted.

n The Normal distribution is appropriate for problems where the random 
variable has the familiar bell-shaped distribution. This often occurs when the
variable is influenced by many, independent factors, none of which dominates
the others. An example is men’s heights, which are Normally distributed.

n The Poisson distribution is used in circumstances where there is a very low
probability of ‘success’ and a high number of trials.

n Each of these distributions is actually a family of distributions, differing in
the parameters of the distribution. Both the Binomial and Normal distribu-
tions have two parameters: n and P in the former case, μ and σ2 in the latter.
The Poisson distribution has one parameter, its mean μ.

n The mean of a random sample follows a Normal distribution, because it is
influenced by many independent factors (the sample observations), none 
of which dominates in the calculation of the mean. This statement is always
true if the population from which the sample is drawn follows a Normal 
distribution.

n If the population is not Normally distributed then the Central Limit
Theorem states that the sample mean is Normally distributed in large 
samples. In this case ‘large’ means a sample of about 25 or more.

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 3.1 Two dice are thrown and the sum of the two scores is recorded. Draw a graph of the
resulting probability distribution of the sum and calculate its mean and variance. What is
the probability that the sum is 9 or greater?

probability
distribution

parameters of a
distribution

standard error

random variable
Normal distribution
Central Limit

Theorem
Binomial distribution

standard Normal
distribution

Poisson distribution

Key terms and
concepts
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Problem 3.2 Two dice are thrown and the absolute difference of the two scores recorded. Graph the
resulting probability distribution and calculate its mean and variance. What is the prob-
ability that the absolute difference is 4 or more?

Problem 3.3 Sketch the probability distribution for the likely time of departure of a train. Locate the
timetabled departure time on your chart.

Problem 3.4 A train departs every half hour. You arrive at the station at a completely random
moment. Sketch the probability distribution of your waiting time. What is your expected
waiting time?

Problem 3.5 Sketch the probability distribution for the number of accidents on a stretch of road in
one day.

Problem 3.6 Sketch the probability distribution for the number of accidents on the same stretch of
road in one year. How and why does this differ from your previous answer?

Problem 3.7 Six dice are rolled and the number of sixes is noted. Calculate the probabilities of 0, 1, 
. . . , 6 sixes and graph the probability distribution.

Problem 3.8 If the probability of a boy in a single birth is and is independent of the sex of previous
babies then the number of boys in a family of 10 children follows a Binomial distribution
with mean 5 and variance 2.5. In each of the following instances, describe how the dis-
tribution of the number of boys differs from the Binomial described above.

(a) The probability of a boy is 6/10.

(b) The probability of a boy is but births are not independent. The birth of a boy
makes it more than an even chance that the next child is a boy.

(c) As (b) above, except that the birth of a boy makes it less than an even chance that
the next child will be a boy.

(d) The probability of a boy is 6/10 on the first birth. The birth of a boy makes it a more
than even chance that the next baby will be a boy.

Problem 3.9 A firm receives components from a supplier in large batches, for use in its production
process. Production is uneconomic if a batch containing 10% or more defective com-
ponents is used. The firm checks the quality of each incoming batch by taking a sample
of 15 and rejecting the whole batch if more than one defective component is found.

(a) If a batch containing 10% defectives is delivered, what is the probability of its being
accepted?

(b) How could the firm reduce this probability of erroneously accepting bad batches?

(c) If the supplier produces a batch with 3% defective, what is the probability of the
firm sending back the batch?

(d) What role does the assumption of a ‘large’ batch play in the calculation?

1
2

1
2

Problems 127
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128 Chapter 3 • Probability distributions

Problem 3.10 The UK record for the number of children born to a mother is 39, 32 of them girls.
Assuming the probability of a girl in a single birth is 0.5 and that this probability is inde-
pendent of previous births:

(a) Find the probability of 32 girls in 39 births (you’ll need a scientific calculator or a
computer to help with this!).

(b) Does this result cast doubt on the assumptions?

Problem 3.11 Using equation (3.5) describing the Normal distribution and setting μ = 0 and σ2 = 1,
graph the distribution for the values x = −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2.

Problem 3.12 Repeat the previous Problem for the values μ = 2 and σ2 = 3. Use values of x from −2 to
+6 in increments of 1.

Problem 3.13 For the standard Normal variable z, find

(a) Pr(z > 1.64)

(b) Pr(z > 0.5)

(c) Pr(z > −1.5)

(d) Pr(−2 < z < 1.5)

(e) Pr(z = −0.75).

For (a) and (d), shade in the relevant areas on the graph you drew for Problem 3.11.

Problem 3.14 Find the values of z which cut off

(a) the top 10%

(b) the bottom 15%

(c) the middle 50%

of the standard Normal distribution.

Problem 3.15 If x ~ N(10, 9) find

(a) Pr(x > 12)

(b) Pr(x < 7)

(c) Pr(8 < x < 15)

(d) Pr(x = 10).

Problem 3.16 IQ (the intelligence quotient) is Normally distributed with mean 100 and standard devi-
ation 16.

(a) What proportion of the population has an IQ above 120?

(b) What proportion of the population has IQ between 90 and 110?

(c) In the past, about 10% of the population went to university. Now the proportion is
about 30%. What was the IQ of the ‘marginal’ student in the past? What is it now?

Problem 3.17 Ten adults are selected at random from the population and their IQ measured.

(a) What is the probability distribution of the sample average IQ?

(b) What is the probability that the average IQ of the sample is over 110?

(c) If many such samples were taken, in what proportion would you expect the average
IQ to be over 110?
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(d) What is the probability that the average IQ lies within the range 90 to 110? How
does this answer compare to the answer to part (b) of Problem 16? Account for the
difference.

(e) What is the probability that a random sample of ten university students has an
average IQ greater than 110?

(f) The first adult sampled has an IQ of 150. What do you expect the average IQ of the
sample to be?

Problem 3.18 The average income of a country is known to be £10 000 with standard deviation
£2500. A sample of 40 individuals is taken and their average income calculated.

(a) What is the probability distribution of this sample mean?

(b) What is the probability of the sample mean being over £10 500?

(c) What is the probability of the sample mean being below £8000?

(d) If the sample size were 10, why could you not use the same methods to find the
answers to (a)–(c)?

Problem 3.19 A coin is tossed ten times. Write down the distribution of the number of heads,

(a) exactly, using the Binomial distribution,

(b) approximately, using the Normal distribution.

(c) Find the probability of four or more heads, using both methods. How accurate is
the Normal method, with and without the continuity correction?

Problem 3.20 A machine producing electronic circuits has an average failure rate of 15% (they’re dif-
ficult to make). The cost of making a batch of 500 circuits is £8400 and the good ones
sell for £20 each. What is the probability of the firm making a loss on any one batch?

Problem 3.21 An experienced invoice clerk makes an error once in every 100 invoices, on average.

(a) What is the probability of finding a batch of 100 invoices without error?

(b) What is the probability of finding such a batch with more than two errors?

Calculate the answers using both the Binomial and Poisson distributions. If you try to
solve the problem using the Normal method, how accurate is your answer?

Problem 3.22 A firm employing 100 workers has an average absenteeism rate of 4%. On a given day,
what is the probability of (a) no workers, (b) one worker, (c) more than six workers being
absent?

This problem demonstrates the Central Limit Theorem at work. In your spreadsheet, 
use the =RAND() function to generate a random sample of 25 observations (I suggest
entering this function in cells A4:A28, for example). Copy these cells across 100
columns, to generate 100 samples. In row 29, calculate the mean of each sample. Now
examine the distribution of these sample means. (Hint: you will find the RAND() function
recalculates automatically every time you perform an operation in the spreadsheet. This
makes it difficult to complete the analysis. The solution is to copy and then use ‘Edit,
Paste Special, Values’ to create a copy of the values of the sample means. These will
remain stable.)

Problems 129

Problem 3.23
(Computer project)

SFE_C03.qxd  3/23/07  12:11 PM  Page 129



130 Chapter 3 • Probability distributions

(a) What distribution would you expect them to have?

(b) What is the parent distribution from which the samples are drawn?

(c) What are the parameters of the parent distribution and of the sample means?

(d) Do your results accord with what you would expect?

(e) Draw up a frequency table of the sample means and graph it. Does it look as you
expected?

(f) Experiment with different sample sizes and with different parent distributions to see
the effect that these have.

An extremely numerate newsagent (with a spreadsheet program, as you will need) is try-
ing to work out how many copies of a newspaper he should order. The cost to him per
copy is 15 pence, which he then sells at 45 pence. Sales are distributed Normally with
an average daily sale of 250 and variance 625. Unsold copies cannot be returned for
credit or refund; he has to throw them away, losing 15p per copy.

(a) What do you think the seller’s objective should be?

(b) How many copies should he order?

(c) What happens to the variance of profit as he orders more copies?

(d) Calculate the probability of selling more than X copies. (Create an extra column in
the spreadsheet for this.) What is the value of this probability at the optimum num-
ber of copies ordered?

(e) What would the price–cost ratio have to be to justify the seller ordering X copies?

(f) The wholesaler offers a sale or return deal, but the cost per copy is 16p. Should the
seller take up this new offer?

(g) Are there other considerations which might influence the seller’s decision?

Hints:
Set up your spreadsheet as follows:

col. A: (cells A10:A160) 175, 176, . . . up to 325 in unit increments (to represent
sales levels).

col. B: (cells B10:B160) the probability of sales falling between 175 and 176,
between 176 and 177, etc. up to 325–326. (Excel has the ‘=NOR-
MDIST()’ function to do this – see the help facility.)

col. C: (cells C10:C160) total cost (= 0.15 × number ordered. Put the latter in
cell F3 so you can reference it and change its value).

col. D: (cells D10:D160) total revenue (‘=MIN(sales, number ordered) × 0.45’).
col. E: profit (revenue – cost).
col. F: profit × probability (i.e. col. E × col. B).
cell F161: the sum of F10:F160 (this is the expected profit).

Now vary the number ordered (cell F3) to find the maximum value in F161. You can also
calculate the variance of profit fairly simply, using an extra column.

Using a weekend’s football results from the Premier (or other) league, see if the number
of goals per game can be adequately modelled by a Poisson process. First calculate the
average number of goals per game for the whole league, then derive the distribution of
goals per game using the Poisson distribution. Do the actual numbers of goals per
game follow this distribution? You might want to take several weeks’ results to obtain
more reliable results.

Problem 3.25
(Project)

Problem 3.24
(Project)
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Answers to exercises

Exercise 3.1 (a) 0.64 = 0.1296 or 12.96%.

(b) 0.62 × 0.42 × 4C2 = 0.3456.

(c) Pr(r) = 0.6r × 0.44−r 4Cr. The probabilities of r = 0 . . . 4 are respectively 0.0256,
0.1536, 0.3456, 0.3456, 0.1296, which sum to one.

Exercise 3.2 (a) r P(r) r ×× P(r) r2 ×× P(r)

0 0.0256 0 0
1 0.1536 0.1536 0.1536
2 0.3456 0.6912 1.3824
3 0.3456 1.0368 3.1104
4 0.1296 0.5184 2.0736

Totals 1 2.4 6.72

The mean = 2.4/1 = 2.4 and the variance = 6.72/1 − 2.42 = 0.96. Note that these
are equal to nP and nP(1 − P).

(b)

Exercise 3.3 (a) and the area beyond z = 1.67 is 4.75%.

(b) z = −0.83 so area is 20.33%.

(c) This is symmetric around the mean, z = ±0.67 and the area within these two
bounds is 49.72%.

Exercise 3.4 To obtain the IQR we need to go 0.67 s.d.s above and below the mean, giving 200 ±
0.67 × 16 = [189.28, 210.72].

Exercise 3.5 The IQR (in logs) is within 4.18 ± 0.67 × √2.56 = [3.11, 5.25]. Translated out of logs
(using 10x) yields [1288.2, 177 827.9].

Exercise 3.6 (a) X ~ N(50, 64/25).

(b) The s.e. gets smaller. It is 1/√2 times its previous value.

(c) (i) . Hence area in tail = 26.5%. (ii) z = −1.25, hence
area = 10.56%. (iii) z values are −0.625 and +0.3125, giving tail areas of 26.5%
and 37.8%, totalling 64.3%. The area between the limits is therefore 35.7%.

z  (   )/ ( / )  .= − =51 50 64 25 0 625

z  (   )/   .= − =50 40 36 1 67

Answers to exercises 131
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132 Chapter 3 • Probability distributions

Exercise 3.7 (a) Binomial method: Pr(r) = 0.5r × 0.5(20−r) × 20Cr. This gives probabilities of 15, 16,
etc. heads of 0.0148, 0.0046, etc., which total 0.0207 or 2.1%. By the Normal
approximation, r ~ N(10,5) and z = (14.5 − 10)/√5 = 2.01. The area in the tail 
is then 2.22%, not far off the correct value (a 10% error). Note that nP = 10 =
n(1 − P).

(b) Binomial method: Pr(5 or 6 heads) = 0.302 + 0.118 = 0.420 or 42%. By the
Normal, r ~ N(4.2, 1.26), z = 0.267 and the area is 39.36%, still reasonably close
to the correct answer despite the fact that n(1 − P) = 1.8.

(c) By similar methods the answers are 11.8% (Binomial) and 12.3% (Normal).

Exercise 3.8 (a) (i) μ = 1 in this case (1/50 × 50) so Pr(x = 0) = 10e−1/0! = 0.368. (ii) Pr(x = 1) =
11e−1/1! = 0.368. (iii) 12e−1/2! = 0.184. (iv) 1 − 0.368 = 0.632.

(b) The average number of customer per 10 minutes is 2 (= 10/5). Hence Pr(x = 0) =
20e−2/0! = 0.135.
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By the end of this chapter you should be able to:

n recognise the importance of probability theory in drawing valid inferences 
(or deriving estimates) from a sample of data

n understand the criteria for constructing a good estimate

n construct estimates of parameters of interest from sample data, in a variety
of different circumstances

n appreciate that there is uncertainty about the accuracy of any such estimate

n provide measures of the uncertainty associated with an estimate

n recognise the relationship between the size of a sample and the precision of
an estimate derived from it

4
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134 Chapter 4 • Estimation and confidence intervals

Introduction

We now come to the heart of the subject of statistical inference. Up until now
the following type of question has been examined: given the population
parameters μ and σ2, what is the probability of the sample mean X, from a sam-
ple of size n, being greater than some specified value or within some range of
values? The parameters μ and σ2 are assumed to be known and the objective is
to try to form some conclusions about possible values of X. However, in prac-
tice it is usually the sample values X and s2 that are known, while the popula-
tion parameters μ and σ2 are not. Thus a more interesting question to ask is:
given the values of X and s2, what can be said about μ and σ2? Sometimes the
population variance is known, and inferences have to be made about μ alone.
For example, if a sample of 50 British families finds an average weekly expendi-
ture on food (X) of £37.50 with a standard deviation (s) of £6.00, what can be
said about the average expenditure (μ) of all British families?

Schematically this type of problem is shown as follows:

Sample information Population parameters

e, s2 inferences about μ, σ2

––––––→

This chapter covers the estimation of population parameters such as μ and
σ2 while Chapter 5 describes testing hypotheses about these parameters. The
two procedures are very closely related.

Point and interval estimation

There are basically two ways in which an estimate of a parameter can be pre-
sented. The first of these is a point estimate, i.e. a single value which is the best
estimate of the parameter of interest. The point estimate is the one which is most
prevalent in everyday usage; for example, the average Briton surfs the internet
for 30 minutes per day. Although this is presented as a fact, it is actually an
estimate, obtained from a survey of people’s use of personal computers. Since it
is obtained from a sample there must be some doubt about its accuracy – the
sample will probably not exactly represent the whole population. For this reason
interval estimates are also used, which give some idea of the likely accuracy of
the estimate. If the sample size is small, for example, then it is quite possible that
the estimate is not very close to the true value and this would be reflected in a
wide interval estimate, for example, that the average Briton spends between 5
and 55 minutes surfing the net per day. A larger sample, or a better method of
estimation, would allow a narrower interval to be derived and thus a more pre-
cise estimate of the parameter to be obtained, such as an average surfing time
of between 20 and 40 minutes. Interval estimates are better for the consumer of
the statistics, since they not only show the estimate of the parameter but also
give an idea of the confidence which the researcher has in that estimate. The
following sections describe how to construct both types of estimate.
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Rules and criteria for finding estimates

In order to estimate a parameter such as the population mean, a rule (or set of
rules) is required which describes how to derive the estimate of the parameter
from the sample data. Such a rule is known as an estimator. An example of an
estimator for the population mean is ‘use the sample mean’. It is important to
distinguish between an estimator, a rule, and an estimate, which is the value
derived as a result of applying the rule to the data.

There are many possible estimators for any parameter, so it is important to
be able to distinguish between good and bad estimators. The following exam-
ples provide some possible estimators of the population mean:

1 the sample mean;
2 the smallest sample observation;
3 the first sample observation.

A set of criteria is needed for discriminating between good and bad estimators.
Which of the above three estimators is ‘best’? Two important criteria by which
to judge estimators are bias and precision.

It is impossible to know if a single estimate of a parameter, derived by applying
a particular estimator to the sample data, gives a correct estimate of the param-
eter or not. The estimate might be too low or too high and, since the parameter
is unknown, it is impossible to check this. What is possible, however, is to say
whether an estimator gives the correct answer on average. An estimator which
gives the correct answer on average is said to be unbiased. Another way of
expressing this is to say that an unbiased estimator does not systematically mis-
lead the researcher away from the correct value of the parameter. It is impor-
tant to remember, though, that even using an unbiased estimator does not
guarantee that a single use of the estimator will yield a correct estimate of the
parameter. Bias (or the lack of it) is a theoretical property.

Formally, an estimator is unbiased if its expected value is equal to the
parameter being estimated. Consider trying to estimate the population mean
using the three estimators suggested above. Taking the sample mean first, we
have already learned (see equation (3.15) ) that its expected value is μ, i.e.

E(X) = μ

which immediately shows that the sample mean is an unbiased estimator.
The second estimator (the smallest observation in the sample) can easily be

shown to be biased, using the result derived above. Since the smallest sample
observation must be less than the sample mean, its expected value must be less
than μ. Denote the smallest observation by xs, then

E(xs) < μ

so this estimator is biased downwards. It underestimates the population mean.
The size of the bias is simply the difference between the expected value of the
estimator and the value of the parameter, so the bias in this case is

(4.1) Bias = E(xs) − μ

For the sample mean X the bias is obviously zero.

Rules and criteria for finding estimates 135
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136 Chapter 4 • Estimation and confidence intervals

Turning to the third rule (the first sample observation) this can be shown to
be another unbiased estimator. Choosing the first observation from the sample
is equivalent to taking a random sample of size one from the population in the
first place. Thus the single observation may be considered as the sample mean
from a random sample of size one. Since it is a sample mean it is unbiased, as
demonstrated earlier.

Two of the estimators above were found to be unbiased, and, in fact, there are
many unbiased estimators (the sample median is another). Some way of choos-
ing between the set of all unbiased estimators is therefore required, which is
where the criterion of precision helps. Unlike bias, precision is a relative con-
cept, comparing one estimator to another. Given two estimators A and B, A is
more precise than B if the estimates it yields (from all possible samples) are less
spread out than those of estimator B. A precise estimator will tend to give simi-
lar estimates for all possible samples.

Consider the two unbiased estimators found above: how do they compare
on the criteria of precision? It turns out that the sample mean is the more pre-
cise of the two, and it is not difficult to understand why. Taking just a single
sample observation means that it is quite likely to be unrepresentative of the
population as a whole, and thus leads to a poor estimate of the population
mean. The sample mean on the other hand is based on all the sample observa-
tions and it is unlikely that all of them are unrepresentative of the population.
The sample mean is therefore a good estimator of the population mean, being
more precise than the single observation estimator.

Just as bias was related to the expected value of the estimator, so precision
can be defined in terms of the variance. One estimator is more precise than
another if it has a smaller variance. Recall that the probability distribution of
the sample mean is

(4.2) X ~ N(μ, σ2/n)

in large samples, so the variance of the sample mean is

V(X) = σ2/n

As the sample size n gets larger the variance of the sample mean becomes
smaller, so the estimator becomes more precise. For this reason large samples
give better estimates than small samples, and so the sample mean is a better
estimator than taking just one observation from the sample. The two estima-
tors can be compared in a diagram (see Figure 4.1) which draws the probability
distributions of the two estimators.

It is easily seen that the sample mean yields estimates which are on average
closer to the population mean.

A related concept is that of efficiency. The efficiency of one unbiased esti-
mator, relative to another, is given by the ratio of their sampling variances.
Thus the efficiency of the first observation estimator, relative to the sample
mean, is given by

(4.3)

Thus the efficiency is determined by the relative sample sizes in this case.

   
Efficiency  

var( )
var( )

  
/
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It should be noted that just because an estimator is biased does not necessarily
mean that it is imprecise. Sometimes there is a trade-off between an unbiased,
but imprecise, estimator and a biased, but precise, one. Figure 4.2 illustrates
this.

Although estimator A is biased it will nearly always yield an estimate which
is fairly close to the true value; even though the estimate is expected to be
wrong, it is not likely to be far wrong. Estimator B, though unbiased, can give
estimates which are far away from the true value, so that A might be the pre-
ferred estimator.

As an example of this, suppose we are trying to estimate the average wealth
of the US population. Consider the following two estimators:

1 Use the mean wealth of a random sample of Americans.
2 Use the mean wealth of a random sample of Americans but, if Bill Gates is in

the sample, omit him from the calculation.

Bill Gates is the Chairman of Microsoft and the world’s richest man. Because
of this, he is a dollar billionaire (about $50bn according to recent reports). His
presence in a sample of, say, 30 observations would swamp the sample and give
a highly misleading result. Assuming Bill Gates has $50bn and the others each
have $200 000 of wealth, the average wealth would be estimated at about
$1.6bn, which is surely wrong.

Rules and criteria for finding estimates 137

Figure 4.1
The sampling
distribution of two
estimators

Note: Curve A shows the distribution of sample means, which is the more precise estimator.
B shows the distribution of estimates using a single observation.

Figure 4.2
The trade-off between
bias and precision

The trade-off
between bias and
precision: the Bill
Gates effect
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The first rule could therefore give us a wildly incorrect answer, although the
rule is unbiased. The second rule is clearly biased but does rule out the possibil-
ity of such an unlucky sample. We can work out the approximate bias. It is the
difference between the average wealth of all Americans and the average wealth
of all Americans except Bill Gates. If the true average of all 250 million
Americans is $200 000, then total wealth is $50 000bn. Subtracting Bill’s $50bn
leaves $49 950bn shared amongst the rest, giving $199 800 each, a difference of
0.1%. This is what we would expect the bias to be.

It might seem worthwhile therefore to accept this degree of bias in order to
improve the precision of the estimate. Furthermore, if we did use the biased
rule, we could always adjust the sample mean upwards by 0.1% to get an
approximately unbiased estimate.

Of course, this point applies to any exceptionally rich person, not just Bill
Gates. It points to the need to ensure that the rich are not over- (nor under-)
represented in the sample. Chapter 9 on sampling methods investigates this
point in more detail. In the rest of this book only unbiased estimators are con-
sidered, the most important being the sample mean.

Estimation with large samples

For the type of problem encountered in this chapter the method of estima-
tion differs according to the size of the sample. ‘Large’ samples, by which is
meant sample sizes of 25 or more, are dealt with first, using the Normal distri-
bution. Small samples are considered in a later section, where the t distribution
is used instead of the Normal. The differences are relatively minor in practical
terms and there is a close theoretical relationship between the t and Normal
distributions.

With large samples there are several types of estimation problem to consider.
First, we look at the estimation of a mean from a sample of data. Second, we
look at the estimation of a proportion on the basis of sample evidence. This
would consider a problem such as estimating the proportion of the population
intending to vote for the Conservative Party in an election, based upon evid-
ence from a sample of voters. Each voter in the sample would simply indicate 
a preference for one or other parties. The principles of estimation are the same
in both cases but the formulae used for calculation are slightly different. The
final case is where we deal with estimating the difference of two means (or pro-
portions), for example a problem such as estimating the difference between
men and women’s expenditure on clothes. Once again, the principles are the
same, the formulae different.

To demonstrate the principles and practice of estimating the population mean,
we shall take the example of estimating the average wealth of the UK popula-
tion, the full data for which were given in Chapter 1. Suppose that we did not
have this information but were required to estimate the average wealth from a
sample of data. In particular, let us suppose that the sample size is n = 100, the
sample mean is X = 130 (in £000) and the sample variance is s2 = 50 000.
Obviously, this sample has got fairly close to the true values (see Chapter 1) but

Estimating a mean
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we could not know that from the sample alone. What can we infer about the
population mean μ from the sample data alone?

For the point estimate of μ the sample mean is a good candidate since it is
unbiased, and it is more precise than other sample statistics such as the
median. The point estimate of μ is simply £130 000, therefore.

The point estimate does not give an idea of the uncertainty associated with
the estimate. We are not absolutely sure that the mean is £130 000 (in fact, it
isn’t – it is £133 443). The interval estimate gives some idea of the uncertainty.
It is centred on the sample mean, but gives a range of values to express the
uncertainty.

To obtain the interval estimate we first require the probability distribution of
X, first established in Chapter 3 (equation 3.17):

(4.4) X ~ N(μ, σ2/n)

From this, it was calculated that there is a 95% probability of the sample mean
lying within 1.96 standard errors of μ1, i.e.

We can manipulate each of the inequalities within the brackets to make μ the
subject of the expression:

Similarly

Combining these two new expressions we obtain

(4.5)

We have transformed the probability interval. Instead of saying X lies within
1.96 standard errors of μ, we now say μ lies within 1.96 standard errors of X.
Figure 4.3 illustrates this manipulation. Figure 4.3(a) shows μ at the centre of a
probability interval for X. Figure 4.3(b) shows a sample mean X at the centre of
an interval relating to the possible positions of μ.

The interval shown in equation (4.5) is called the 95% confidence interval
and this is the interval estimate for μ. In this example the value of σ 2 is
unknown, but in large (n ≥ 25) samples it can be replaced by s2 from the sample.
s2 is here used as an estimate of σ2 which is unbiased and sufficiently precise in
large (n ≥ 25 or so) samples. The 95% confidence interval is therefore

(4.6)

= [86.2, 173.8]

 = − + [   .  / ,   .  / ]130 1 96 50 000 100 130 1 96 50 000 100

   [   . /       . / ]X X− ≤ ≤ +1 96 1 962 2s n s nμ

   [   . /       . / ]X X− ≤ ≤ +1 96 1 962 2σ μ σn n

   X X    . /     . /   ≤ + − ≤μ σ σ μ1 96 1 962 2n n  implies   

   μ σ μ σ  . /           . /− ≤ ≤ +1 96 1 962 2n nX Ximplies   

   Pr(   . /       . / )  .μ σ μ σ− ≤ ≤ + =1 96 1 96 0 952 2n nX

Estimation with large samples 139

1 See equation (3.24) in Chapter 3 to remind yourself of this. Remember that ±1.96 is the
z score which cuts off 2.5% in each tail of the Normal distribution.
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140 Chapter 4 • Estimation and confidence intervals

Thus we are 95% confident that the true average level of wealth lies between
£86 200 and £173 800. It should be noted that £130 000 lies exactly at the cen-
tre of the interval2 (because of the symmetry of the Normal distribution).

By examining equation (4.6) one can see that the confidence interval is
wider

1 the smaller the sample size,
2 the greater the standard deviation of the sample.

The greater uncertainty which is associated with smaller sample sizes is man-
ifested in a wider confidence interval estimate of the population mean. This
occurs because a smaller sample has more chance of being unrepresentative
(just because of an unlucky sample).

Greater variation in the sample data also leads to greater uncertainty about
the population mean and a wider confidence interval. Greater sample variation
suggests greater variation in the population so, again, a given sample could
include observations which are a long way off the mean.

Figure 4.3(a)
The 95% probability
interval for s around
the population mean μμ

Figure 4.3(b)
The 95% confidence
interval for μμ around
the sample mean s

2 The two values are the lower and upper limits of the interval, separated by a comma.
This is the standard way of writing a confidence interval.
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Worked example 4.1

Note that the width of the confidence interval does not depend upon the
population size – a sample of 100 observations reveals as much about a popula-
tion of 10 000 as it does about a population of 10 000 000. This point will be
discussed in more detail in Chapter 9 on sampling methods. This is a result
that often surprises people, who generally believe that a larger sample is
required if the population is larger.

A sample of 50 school students found that they spent 45 minutes doing
homework each evening, with a standard deviation of 15 minutes. Estimate
the average time spent on homework by all students.

The sample data are X = 45, s = 15 and n = 50. If we can assume the 
sample is representative we may use X as an unbiased estimate of μ, the
population mean. The point estimate is therefore 45 minutes.

The 95% confidence interval is given by equation (4.6):

= [40.8, 49.2]

We are 95% confident the true answer lies between 40.8 and 49.2.

(a) A sample of 100 is drawn from a population. The sample mean is 25 and the 
sample standard deviation is 50. Calculate the point and 95% confidence interval
estimates for the population mean.

(b) If the sample size were 64, how would this alter the point and interval estimates?

A sample of size 40 is drawn with sample mean 50 and standard deviation 30. Is it likely
that the true population mean is 60?

Precisely what is a confidence interval?

There is often confusion over what a confidence interval actually means. This is
not really surprising since the obvious interpretation turns out to be wrong. It
does not mean that there is a 95% chance that the true mean lies within the
interval. We cannot make such a probability statement, because of our
definition of probability (based on the frequentist view of a probability). That
view states that one can make a probability statement about a random variable
(such as X) but not about a parameter (such as μ). μ either lies within the inter-
val or it does not – it cannot lie 95% within it. Unfortunately, we just do not
know what the truth is.

It is for this reason that we use the term ‘confidence interval’ rather than
‘probability interval’. Unfortunately, words are not as precise as numbers or
algebra, and so most people fail to recognise the distinction. A precise explana-
tion of the 95% confidence interval runs as follows. If we took many samples
(all the same size) from a population with mean μ and calculated a confidence

= − ≤ ≤ + [   . /       . / ]45 1 96 15 50 45 1 96 15 502 2μ

[   . /       . / ]X X− ≤ ≤ +1 96 1 962 2s n s nμ

Precisely what is a confidence interval? 141

Exercise 4.1

Exercise 4.2
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142 Chapter 4 • Estimation and confidence intervals

interval from each, we would find that μ lies within 95% of the calculated
intervals. Of course, in practice we do not take many samples, usually just one.
We do not know (and cannot know) if our one sample is one of the 95% or one
of the 5% that miss the mean.

Figure 4.4 illustrates the point. It shows 95% confidence intervals calculated
from 20 samples drawn from a population with a mean of 5. As expected, we
see that 19 of these intervals contain the true mean, while the interval calcu-
lated from the second sample does not contain the true value. This is the
expected result, but is not guaranteed. You might obtain all 20 intervals con-
taining the true mean, or fewer than 19. In the long run (with lots of estimates)
we would expect 95% of the calculated intervals to contain the true mean.

A second question is why use a probability (and hence a confidence level) of
95%? In fact, one can choose any confidence level, and thus confidence inter-
val. The 90% confidence interval can be obtained by finding the z score which
cuts off 10% of the Normal distribution (5% in each tail). From Table A2 (see
page 366) this is z = 1.64, so the 90% confidence interval is

(4.7)

= [93.3, 166.7]

Notice that this is narrower than the 95% confidence level. The greater the
degree of confidence required, the wider the interval has to be. Any confidence
level may be chosen, and by careful choice of this level the confidence interval
can be made as wide or as narrow as wished. This would seem to undermine
the purpose of calculating the confidence interval, which is to obtain some idea
of the uncertainty attached to the estimate. This is not the case, however,
because the reader of the results can interpret them appropriately, as long as the
confidence level is made clear. To simplify matters, the 95% and 99% con-
fidence levels are the most commonly used and serve as conventions. Beware of

 = − + [   .  / ,   .  / ]130 1 64 50 000 100 130 1 64 50 000 100
   [   . / ,   . / ]X X− +1 64 1 642 2s n s n

Figure 4.4
Confidence intervals
calculated from 20
samples
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the researcher who calculates the 76% confidence interval – this may have
been chosen in order to obtain the desired answer rather than in the spirit of
scientific enquiry! The general formula for the (100 − α)% confidence interval is

(4.8)

where zα is the z score which cuts off the extreme α% of the Normal distribution.

It is often the case that we wish to estimate the proportion of the population
that has a particular characteristic (e.g. is unemployed), rather than wanting an
average. Given what we have already learned this is fairly straightforward and
is based on similar principles. Suppose that, following Chapter 1, we wish to
estimate the proportion of educated men who are unemployed. We have a ran-
dom sample of 200 men, of whom 15 are unemployed. What can we infer?

The sample data are:

n = 200, and
p = 0.075 (= 15/200)

where p is the (sample) proportion unemployed. We denote the population
proportion by the Greek letter π and it is this that we are trying to estimate
using data from the sample.

The key to solving this problem is recognising p as a random variable just
like the sample mean. This is because its value depends upon the sample drawn
and will vary from sample to sample. Once the probability distribution of this
random variable is established the problem is quite easy to solve, using the
same methods as were used for the mean. The sampling distribution of p is3

(4.9)

This tells us that the sample proportion is centred around the true value but will
vary around it, varying from sample to sample. This variation is expressed by
the variance of p, whose formula is π(1 − π)/n. Having derived the probability
distribution of p the same methods of estimation can be used as for the sample
mean. Since the expected value of p is π, the sample proportion is an unbiased
estimate of the population parameter. The point estimate of π is simply p,
therefore. Thus it is estimated that 7.5% of all educated men are unemployed.

Given the sampling distribution for p in equation (4.9) above, the formula
for the 95% confidence interval4 for π can immediately be written down as:

(4.10)

Since the value of π is unknown the confidence interval cannot yet be calcu-
lated, so the sample value of 0.075 has to be used instead of the unknown π.
Like the substitution of s2 for σ2 in the case of the sample mean above, this is
acceptable in large samples. Thus the 95% confidence interval becomes

  
p

n
p

n
  .
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(   )
−
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+
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⎣
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Estimating a
proportion

3 See the Appendix to this chapter (page 158) for the derivation of this formula.
4 As usual, the 95% confidence interval limits are given by the point estimate plus and
minus 1.96 standard errors.
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Worked example 4.2

144 Chapter 4 • Estimation and confidence intervals

(4.11)

= [0.075 − 0.037, 0.075 + 0.037]

= [0.038, 0.112]

We say that we are 95% confident that the true proportion of unemployed,
educated men lies between 3.8% and 11.2%.

It can be seen that these two cases apply a common method. The 95%
confidence interval is given by the point estimate plus or minus 1.96 standard
errors. For a different confidence level, 1.96 would be replaced by the appropri-
ate value from the standard Normal distribution.

With this knowledge two further cases can be swiftly dealt with.

Music down the phone

Do you get angry when you try to phone an organisation and you get an
automated reply followed by music while you hang on? Well, you are not
alone. Mintel (a consumer survey company) asked 1946 adults what they
thought of music played to them while they were trying to get through on
the phone. 36% reported feeling angered by the music played to them and
more than one in four were annoyed by the automated voice response.

With these data we can calculate a confidence interval for the true pro-
portion of people who dislike the music. First, we assume that the sample is
a truly random one. This is probably not strictly true, so our calculated
confidence interval will only be an approximate one. With p = 0.36 and n =
1946 we obtain the following 95% interval:

= 0.36 ± 0.021 = [0.339, 0.381]

Mintel further estimated that 2800 million calls were made by customers
to call centres per year, so we can be (approximately) 95% confident that
between 949 million and 1067 million of those calls have an unhappy cus-
tomer on the line!

Source: The Times, 10 July 2000.

We now move on to estimating differences. In this case we have two samples and
want to know whether there is a difference between their respective populations.
One sample might be of men, the other of women, or we could be comparing
two different countries, etc. A point estimate of the difference is easy to obtain
but once again there is some uncertainty around this figure, because it is based
on samples. Hence we measure that uncertainty via a confidence interval. All
we require are the appropriate formulae. Consider the following example.

Sixty pupils from school 1 scored an average mark of 62% in an exam, with
a standard deviation of 18%; 35 pupils from school 2 scored an average of 70%
with standard deviation 12%. Estimate the true difference between the two
schools in the average mark obtained.

p
p p

n
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This is a more complicated problem than those previously treated since it
involves two samples rather than one. An estimate has to be found for μ1 − μ2

(the true difference in the mean marks of the schools), in the form of both
point and interval estimates. The pupils taking the exams may be thought of as
samples of all pupils in the schools who could potentially take the exams.

Notice that this is a problem about sample means, not proportions, even
though the question deals in percentages. The point is that each observation in
the sample (i.e. each student’s mark) can take a value between 0 and 100, and
one can calculate the standard deviation of the marks. For this to be a problem
of sample proportions the mark for each pupil would each have to be of the
pass/fail type, so that one could only calculate the proportion who passed.

It might be thought that the way to approach this problem is to derive one
confidence interval for each sample (along the lines set out above), and then to
somehow combine them; for example, the degree of overlap of the two
confidence intervals could be assessed. This is not the best approach, however.
It is sometimes a good strategy, when faced with an unfamiliar problem to
solve, to translate it into a more familiar problem and then solve it using
known methods. This is the procedure which will be followed here. The essential
point is to keep in mind the concept of a random variable and its probability
distribution.

Problems involving a single random variable have already been dealt with
above. The current problem deals with two samples and therefore there are two
random variables to consider, i.e. the two sample means X1 and X2. Since the
aim is to estimate μ1 − μ2, an obvious candidate for an estimator is the differ-
ence between the two sample means, X1 − X2. We can think of this as a single
random variable (even though two means are involved) and use the methods
we have already learned. We therefore need to establish the sampling distribu-
tion of X1 − X2. This is derived in the Appendix to this chapter (see page 158)
and results in equation (4.12):

(4.12)

This equation states that the difference in sample means will be centred on the
difference in the two population means, with some variation around this as
measured by the variance. One assumption behind the derivation of (4.12) is
that the two samples are independently drawn. This is likely in this example; it
is difficult to see how the samples from the two schools could be connected.
However, one must always bear this possibility in mind when comparing sam-
ples. For example, if one were comparing men’s and women’s heights, it would
be dangerous to take samples of men and their wives as they are unlikely to be
independent. People tend to marry partners of a similar height to themselves,
so this might bias the results.

The distribution of X1 − X2 is illustrated in Figure 4.5. Equation (4.12) shows
that X1− X2 is an unbiased estimator of μ1 − μ2. The difference between the sam-
ple means will therefore be used as the point estimate of μ1 − μ2. Thus the point
estimate of the true difference between the schools is

X1 − X2 = 62 − 70 = −8%

X X1 2 1 2
1
2
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2
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2

− − +
⎛

⎝
⎜

⎞

⎠
⎟ ~  ,   N

n n
μ μ σ σ
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146 Chapter 4 • Estimation and confidence intervals

Figure 4.5
The distribution of 
s1 −− s2

The 95% confidence interval estimate is derived in the same manner as before,
making use of the standard error of the random variable. The formula is5

(4.13)

Since the values of σ2 are unknown they have been replaced in equation (4.13)
by their sample values. As in the single sample case, this is acceptable in large
samples. The 95% confidence interval for μ1 − μ2 is therefore

= [−14.05, −1.95]

The estimate is that school 2’s average mark is between 1.95 and 14.05 percent-
age points above that of school 1. Notice that the confidence interval does not
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5 The term under the square root sign is the standard error for X1 − X2.
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Worked example 4.3

include the value zero, which would imply equality of the two schools’ marks.
Equality of the two schools can thus be ruled out with 95% confidence.

A survey of holidaymakers found that on average women spent 3 hours per
day sunbathing, men spent 2 hours. The sample sizes were 36 in each case
and the standard deviations were 1.1 hours and 1.2 hours respectively.
Estimate the true difference between men and women in sunbathing
habits. Use the 99% confidence level.

The point estimate is simply one hour, the difference of sample means.
For the confidence interval we have:

= [0.30,1.70]

This evidence suggests women do spend more time sunbathing than men
(zero is not in the confidence interval). Note that we might worry the sam-
ples might not be independent here – it could represent 36 couples. If so,
the evidence is likely to underestimate the true difference, if anything, as
couples are likely to spend time sunbathing together.

We move again from means to proportions. We use a simple example to illus-
trate the analysis of this type of problem. Suppose that a survey of 80 Britons
showed that 60 owned personal computers. A similar survey of 50 Swedes
showed 30 with computers. Are personal computers more widespread in Britain
than Sweden?

Here the aim is to estimate π1 − π2, the difference between the two population
proportions, so the probability distribution of p1 − p2 is needed, the difference
of the sample proportions. The derivation of this follows similar lines to those
set out above for the difference of two sample means, so is not repeated. The
probability distribution is

(4.14)

Again, the two samples must be independently drawn for this to be correct (it
is difficult to see how they could not be in this case).

Since the difference between the sample proportions is an unbiased estimate
of the true difference, this will be used for the point estimate. The point esti-
mate is therefore

p1 − p2 = 60/80 − 30/50
= 0.15

or 15%. The 95% confidence interval is given by
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148 Chapter 4 • Estimation and confidence intervals

(4.15)

π1 and π2 are unknown so have to be replaced by p1 and p2 for purposes of cal-
culation, so the interval becomes

(4.16)

= [0.016, 0.316]

The result is a fairly wide confidence interval due to the relatively small sample
sizes. The interval does not include zero however, so we can be 95% confident
there is a difference between the two countries.

(a) Seven people out of a sample of 50 are left-handed. Estimate the true proportion of
left-handed people in the population, finding both point and interval estimates.

(b) Repeat part (a) but find the 90% confidence interval. How does the 90% interval
compare with the 95% interval?

(c) Calculate the 99% interval and compare to the others.

Given the following data from two samples, calculate the true difference between the
means. Use the 95% confidence level.

e1 = 25 e2 = 30
s1 = 18 s2 = 25
n1 = 36 n2 = 49

A survey of 50 16-year old girls revealed that 40% had a boyfriend. A survey of 100 16-
year old boys revealed 20% with a girlfriend. Estimate the true difference in proportions
between the sexes.

Estimation with small samples: the t distribution

So far only large samples (defined as sample sizes in excess of 25) have been
dealt with, which means that (by the Central Limit Theorem) the sampling dis-
tribution of X follows a Normal distribution, whatever the distribution of the
parent population. Remember, from the two theorems of Chapter 3, that

n if the population follows a Normal distribution, X is also Normally dis-
tributed, and
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n if the population is not Normally distributed, X is approximately Normally
distributed in large samples (n ≥ 25).

In both cases, confidence intervals can be constructed based on the fact that

(4.17)

and so the standard Normal distribution is used to find the values which cut off
the extreme 5% of the distribution (z = ± 1.96). In practical examples, we had
to replace σ by its estimate, s. Thus the confidence interval was based on the
fact that

(4.18)

in large samples. For small sample sizes, equation (4.18) is no longer true.
Instead, the relevant distribution is the t distribution and we have6

(4.19)

The random variable defined in equation (4.19) has a t distribution with n −
1 degrees of freedom. As the sample size gets larger, the t distribution
approaches the standard Normal, so the latter can be used for large samples.

The t distribution was derived by W.S. Gossett in 1908 while conducting tests
on the average strength of Guinness beer (who says statistics has no impact on
the real world?). He published his work under the pseudonym ‘Student’, since
the company did not allow its employees to publish under their own names, so
the distribution is sometimes also known as the Student distribution.

The t distribution is in many ways similar to the standard Normal, insofar as
it is

n unimodal;
n symmetric;
n centred on zero;
n bell-shaped;
n extends from minus infinity to plus infinity.

The differences are that it is more spread out (has a larger variance) than the
standard Normal distribution, and has only one parameter rather than two: the
degrees of freedom, denoted by the Greek letter ν (pronounced ‘nu’7). In prob-
lems involving the estimation of a sample mean the degrees of freedom are
given by the sample size minus one, i.e. ν = n − 1.

The t distribution is drawn in Figure 4.6 for various values of the parameter
ν. Note that the fewer the degrees of freedom (smaller sample size) the more
dispersed is the distribution.
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6 We also require the assumption that the parent population is Normally distributed for
(4.19) to be true.
7 Actually, the Greeks pronounce this ‘ni’. They also pronounce π ‘pee’ rather than ‘pie’
as in English. This makes statistics lectures in English hard for Greeks to understand!

SFE_C04.qxd  3/23/07  12:09 PM  Page 149



150 Chapter 4 • Estimation and confidence intervals

To summarise the argument so far, when

n the sample size is small, and
n the sample variance is used to estimate the population variance,

then the t distribution should be used for constructing confidence intervals,
not the standard Normal. This results in a slightly wider interval than would be
obtained using the standard Normal distribution, which reflects the slightly
greater uncertainty involved when s2 is used as an estimate of σ2 if the sample
size is small.

Apart from this, the methods are exactly as before and are illustrated by the
examples below. We look first at estimating a single mean, then at estimating
the difference of two means. The t distribution cannot be used for small sample
proportions (explained below) so these cases are not considered.

The following would seem to be an appropriate example. A sample of 15 bottles
of beer showed an average specific gravity of 1035.6, with standard deviation
2.7. Estimate the true specific gravity of the brew.

The sample information may be summarised as

X = 1035.6
s = 2.7
n = 15

The sample mean is still an unbiased estimator of μ (this is true regardless of
the distribution of the population) and serves as point estimate of μ. The point
estimate of μ is therefore 1035.6.

Since σ is unknown, the sample size is small and it can be assumed that the
specific gravity of all bottles of beer is Normally distributed (numerous small
random factors affect the specific gravity) we should use the t distribution.
Thus:

(4.20)

The 95% confidence interval estimate is given by

(4.21)    [   /    / ]X X− +− −t s n t s nn n1
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Figure 4.6
The t distribution
drawn for different
degrees of freedom

Estimating a mean
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where tn−1 is the value of the t distribution which cuts off the extreme 5% 
(2.5% in each tail) of the t distribution with ν degrees of freedom. Table A3 
(see page 367) gives percentage points of the t distribution and part of it is
reproduced in Table 4.1.

The structure of the t distribution table is different from that of the standard
Normal table. The first column of the table gives the degrees of freedom. In this
example we want the row corresponding to ν = n − 1 = 14. The appropriate col-
umn of the table is the one headed ‘0.025’ which indicates the area cut off in
each tail. At the intersection of this row and column we find the appropriate
value, t14 = 2.145. Therefore the confidence interval is given by

which when evaluated gives

[1034.10, 1037.10]

We can be 95% confident that the true specific gravity lies within this range. If
the Normal distribution had (incorrectly) been used for this problem then the t
value of 2.145 would have been replaced by a z score of 1.96, giving a
confidence interval of

[1034.23, 1036.97]

This underestimates the true confidence interval and gives the impression of a
more precise estimate than is actually the case. Use of the Normal distribution
leads to a confidence interval which is 8.7% too narrow in this case.

As in the case of a single mean the t-distribution needs to be used in small sam-
ples when the population variances are unknown. Again, both parent popula-
tions must be Normally distributed and in addition it must be assumed that the
population variances are equal, i.e. σ2

1 = σ2
2 (this is required in the mathematical

derivation of the t distribution). This latter assumption was not required in 
the large-sample case using the Normal distribution. Consider the following
example as an illustration of the method.

A sample of 20 Labour-controlled local authorities shows that they spend an
average of £175 per taxpayer on administration with a standard deviation of
£25. A similar survey of 15 Conservative-controlled authorities finds an average

 [ .   . . / , .   . . / ]1035 6 2 145 2 7 15 1035 6 2 145 2 7 152 2− +
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Table 4.1 Percentage points of the t distribution (excerpt from Table A3)

Area (αα) in each tail

νν 0.4 0.25 0.10 0.05 0.025 0.01 0.005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.656
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925
� � � � � � � �
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947

Note: The appropriate t value for constructing the confidence interval is found at the intersec-
tion of the shaded row and column.

Estimating the
difference
between two
means
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152 Chapter 4 • Estimation and confidence intervals

figure of £158 with standard deviation of £30. Estimate the true difference in
expenditure between Labour and Conservative authorities.

The sample information available is

X1 = 175 X2 = 158
s1 = 25 s2 = 30
n1 = 20 n2 = 15

We wish to estimate μ1 − μ2. The point estimate of this is X1 − X2 which is an
unbiased estimate. This gives 175 − 158 = 17 as the expected difference between
the two sets of authorities.

For the confidence interval, the t distribution has to be used since the sample
sizes are small and the population variances unknown. It is assumed that the
populations are Normally distributed and that the samples have been indepen-
dently drawn. We also assume that the population variances are equal, which
seems justified since s1 and s2 do not differ by much (this kind of assumption is
tested in Chapter 6). The confidence interval is given by the formula:

(4.22)

where

(4.23)

is known as the pooled variance and

v = n1 + n2 − 2

gives the degrees of freedom associated with the t distribution.
S2 is an estimate of the (common value of ) the population variances. It

would be inappropriate to have the differing values s1
2 and s2

2 in the formula for
the t distribution, for this would be contrary to the assumption that σ2

1 = σ2
2,

which is essential for the use of the t distribution. The estimate of the common
population variance is just the weighted average of the sample variances, using
degrees of freedom as weights. Each sample has n − 1 degrees of freedom, and
the total number of degrees of freedom for the problem is the sum of the
degrees of freedom in each sample. The degrees of freedom is thus 20 + 15 − 2 =
33 and hence the value t = 2.042 cuts off the extreme 5% of the distribution.
The t table in the appendix does not give the value for ν = 33 so we have used ν
= 30 instead, which will give a close approximation.

To evaluate the 95% confidence interval we first calculate S2:

Inserting this into equation (4.22) gives
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Thus the true difference is quite uncertain and the evidence is even consistent
with Conservative authorities spending more than Labour authorities. The
large degree of uncertainty arises because of the small sample sizes and the
quite wide variation within each sample.

One should be careful about the conclusions drawn from this test. The
greater expenditure on administration could be either because of inefficiency or
because of a higher level of services provided. To find out which is the case
would require further investigation. The statistical test carried out here exam-
ines the levels of expenditure, but not whether they are productive or not.

Estimating proportions when the sample size is small cannot be done with the
t distribution. Recall that the distribution of the sample proportion p was
derived from the distribution of r (the number of successes in n trials), which
followed a Binomial distribution (see the Appendix to this chapter (page 158)).
In large samples the distribution of r is approximately Normal, thus giving a
Normally distributed sample proportion. In small samples it is inappropriate to
approximate the Binomial distribution with the t distribution, and indeed is
unnecessary, since the Binomial itself can be used. Small-sample methods for the
sample proportion should be based on the Binomial distribution, therefore, as
set out in Chapter 3. These methods are not discussed further here, therefore.

A sample of size n = 16 is drawn from a population which is known to be Normally dis-
tributed. The sample mean and variance are calculated as 74 and 121. Find the 99%
confidence interval estimate for the true mean.

Samples are drawn from two populations to see if they share a common mean. The
sample data are:

e1 = 45 e2 = 55
s1 = 18 s2 = 21
n1 = 15 n2 = 20

Find the 95% confidence interval estimate of the difference between the two population
means.

Summary

n Estimation is the process of using sample information to make good esti-
mates of the value of population parameters, e.g. using the sample mean to
estimate the mean of a population.

n There are several criteria for finding a good estimate. Two important ones are
the (lack of) bias and precision of the estimator. Sometimes there is a trade-
off between these two criteria – one estimator might have a smaller bias but
be less precise than another.

n An estimator is unbiased if it gives a correct estimate of the true value on
average. Its expected value is equal to the true value.

n The precision of an estimator can be measured by its sampling variance (e.g.
s2/n for the mean of a sample).

Summary 153

Estimating
proportions

Exercise 4.6

Exercise 4.7
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154 Chapter 4 • Estimation and confidence intervals

n Estimates can be in the form of a single value (point estimate) or a range of
values (confidence interval estimate). A confidence interval estimate gives
some idea of how reliable the estimate is likely to be.

n For unbiased estimators, the value of the sample statistic (e.g. X) is used as
the point estimate.

n In large samples the 95% confidence interval is given by the point estimate 

plus or minus 1.96 standard errors (e.g. for the mean).

n For small samples the t distribution should be used instead of the Normal
(i.e. replace 1.96 by the critical value of the t distribution) to construct
confidence intervals of the mean.

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 4.1 (a) Why is an interval estimate better than a point estimate?

(b) What factors determine the width of a confidence interval?

Problem 4.2 Is the 95% confidence interval (a) twice as wide, (b) more than twice as wide, (c) less
than twice as wide, as the 47.5% interval? Explain your reasoning.

Problem 4.3 Explain the difference between an estimate and an estimator. Is it true that a good esti-
mator always leads to a good estimate?

Problem 4.4 Explain why an unbiased estimator is not always to be preferred to a biased one.

Problem 4.5 A random sample of two observations, x1 and x2, is drawn from a population. Prove that
w1x1 + w2x2 gives an unbiased estimate of the population mean as long as w1 + w2 = 1.
(Hint: Prove that E(w1x1 + w2x2) = μ.)

Problem 4.6 Following the previous question, prove that the most precise unbiased estimate is
obtained by setting w1 = w2 = . (Hint: Minimise V(w1x1 + w2x2) with respect to w1 after
substituting w2 = 1 − w1. You will need a knowledge of calculus to solve this.)

Problem 4.7 Given the sample data

e = 40 s = 10 n = 36

calculate the 99% confidence interval estimate of the true mean. If the sample size were
20, how would the method of calculation and width of the interval be altered?

1
2

X ± . /1 96 2s n

inference
estimator
efficiency
point estimate

bias
maximum likelihood
interval estimate
precision

confidence level and
interval

Key terms and
concepts
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Problem 4.8 A random sample of 100 record shops found that the average weekly sale of a particu-
lar record was 260 copies, with standard deviation of 96. Find the 95% confidence
interval to estimate the true average sale for all shops. To compile the record chart it is
necessary to know the correct average weekly sale to within 5% of its true value. How
large a sample size is required?

Problem 4.9 Given the sample data p = 0.4, n = 50, calculate the 99% confidence interval estimate of
the true proportion.

Problem 4.10 A political opinion poll questions 1000 people. Some 464 declare they will vote
Conservative. Find the 95% confidence interval estimate for the Conservative share of
the vote.

Problem 4.11 Given the sample data

e1 = 25 e2 = 22
s1 = 12 s2 = 18
n1 = 80 n2 = 100

estimate the true difference between the means with 95% confidence.

Problem 4.12 (a) A sample of 200 women from the labour force found an average wage of £6000
p.a. with standard deviation £2500. A sample of 100 men found an average wage
of £8000 with standard deviation £1500. Estimate the true difference in wages
between men and women.

(b) A different survey, of men and women doing similar jobs, obtained the following
results:

eW = £7200 eM = £7600
sW = £1225 sM = £750
nW = 75 nM = 50

Estimate the difference between male and female wages using these new data. What
can be concluded from the results of the two surveys?

Problem 4.13 67% out of 150 pupils from school A passed an exam; 62% of 120 pupils at school B
passed. Estimate the 99% confidence interval for the true difference between the pro-
portions passing the exam.

Problem 4.14 (a) A sample of 954 adults in early 1987 found that 23% of them held shares. Given a
UK adult population of 41 million and assuming a proper random sample was
taken, find the 95% confidence interval estimate for the number of shareholders in
the UK.

(b) A ‘similar’ survey the previous year had found a total of 7 million shareholders.
Assuming ‘similar’ means the same sample size, find the 95% confidence interval
estimate of the increase in shareholders between the two years.

Problem 4.15 A sample of 16 observations from a Normally distributed population yields a sample
mean of 30 with standard deviation 5. Find the 95% confidence interval estimate of the
population mean.

Problems 155
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156 Chapter 4 • Estimation and confidence intervals

Problem 4.16 A sample of 12 families in a town reveals an average income of £15 000 with standard
deviation £6000. Why might you be hesitant about constructing a 95% confidence inter-
val for the average income in the town?

Problem 4.17 Two samples were drawn, each from a Normally distributed population, with the follow-
ing results:

e1 = 45 s1 = 8 n1 = 12
e2 = 52 s2 = 5 n2 = 18

Estimate the difference between the population means, using the 95% confidence level.

Problem 4.18 The heights of 10 men and 15 women were recorded, with the following results:

Mean Variance

Men 173.5 80
Women 162 65

Estimate the true difference between men’s and women’s heights. Use the 95%
confidence level.

Estimate the average weekly expenditure upon alcohol by students. Ask a (reason-
ably) random sample of your fellow students for their weekly expenditure on alcohol.
From this, calculate the 95% confidence interval estimate of such spending by all 
students.

Answers to exercises

Exercise 4.1 (a) The point estimate is 25 and the 95% confidence interval is 25 ± 1.96 × 50/√100
= 25 ± 9.8 = [15.2, 34.8].

(b) The CI becomes larger as the sample size reduces. In this case we would have 25
± 1.96 × 50/√64 = 25 ± 12.25 = [12.75, 37.25]. Note that the width of the CI is
inversely proportional to the square root of the sample size.

Exercise 4.2 The 95% CI is 50 ± 1.96 × 30/√40 = 50 ± 9.30 = [40.70, 59.30]. The value of 60 lies
(just) outside this CI so is unlikely to be the true mean.

Exercise 4.3 (a) The point estimate is 14% (7/50). The 95% CI is given by

(b) Use 1.64 instead of 1.96, giving 0.14 ± 0.080.

(c) 0.14 ± 0.126.

 
0 14 1 96

0 14 1 0 14
50

0 14 0 096.   .   
.   (   . )

  .   . .± ×
× −

= ±

Problem 4.19
(Project)
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Exercise 4.4 X1 − X2 = 25 − 30 = −5 is the point estimate. The interval estimate is given by

Exercise 4.5 The point estimate is 20%. The interval estimate is

Exercise 4.6 The 99% CI is given by 74 ± t* × = 74 ± 2.947 × 2.75 = 74 ± 8.10 =
[65.90, 82.10].

Exercise 4.7 The pooled variance is given by

The 95% CI is therefore
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158 Chapter 4 • Estimation and confidence intervals

Appendix Derivations of sampling distributions

The sampling distribution of p is fairly straightforward to derive, given what we
have already learned. The sampling distribution of p can be easily derived from
the distribution of r, the number of successes in n trials of an experiment, since
p = r/n. The distribution of r for large n is approximately Normal (from Chapter 3):

(4.24) r ~ N(nP, nP(1 − P) )

Knowing the distribution of r, is it possible to find that of p? Since p is simply r
multiplied by a constant, 1/n, it is also Normally distributed. The mean and
variance of the distribution can be derived using the E and V operators. The
expected value of p is

(4.25)

The expected value of the sample proportion is equal to the population pro-
portion (note that the probability P and the population proportion π are the
same thing and may be used interchangeably). The sample proportion there-
fore gives an unbiased estimate of the population proportion.

For the variance:

(4.26)

Hence the distribution of p is given by

(4.27)

This is the difference between two random variables so is itself a random vari-
able. Since any linear combination of Normally distributed, independent ran-
dom variables is itself Normally distributed, the difference of sample means
follows a Normal distribution. The mean and variance of the distribution can
be found using the E and V operators. Letting

E(X1) = μ1, V(X1) = σ2
1/n1 and

E(X2) = μ2, V(X2) = σ2
2/n2

then

(4.28) E(X1 − X2) = E(X1) − E(X2) = μ1 − μ2

and

(4.29) V(X1 − X2) = V(X1) + V(X2) =

Equation (4.29) assumes X1 and X2 are independent random variables. The prob-
ability distribution of X1 − X2 can therefore be summarised as:

(4.30)

This is equation (4.12) in the text.
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By the end of this chapter you should be able to:

n understand the philosophy and scientific principles underlying hypothesis
testing

n appreciate that hypothesis testing is about deciding whether a hypothesis is
true or false on the basis of a sample of data

n recognise the type of evidence which leads to a decision that the hypothesis
is false

n carry out hypothesis tests for a variety of statistical problems

n recognise the relationship between hypothesis testing and a confidence
interval

n recognise the shortcomings of hypothesis testing

5
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160 Chapter 5 • Hypothesis testing

Introduction

This chapter deals with issues very similar to those of the previous chapter on
estimation, but examines them in a different way. The estimation of popula-
tion parameters and the testing of hypotheses about those parameters are simi-
lar techniques (indeed they are formally equivalent in a number of respects),
but there are important differences in the interpretation of the results arising
from each method. The process of estimation is appropriate when measure-
ment is involved, such as measuring the true average expenditure on food;
hypothesis testing is better when decision making is involved, such as whether
to accept that a supplier’s products are up to a specified standard. Hypothesis
testing is also used to make decisions about the truth or otherwise of different
theories, such as whether rising prices are caused by rising wages; and it is here
that the issues become contentious. It is sometimes difficult to interpret cor-
rectly the results of hypothesis tests in these circumstances. This is discussed
further later in this chapter.

The concepts of hypothesis testing

In many ways hypothesis testing is analogous to a criminal trial. In a trial there
is a defendant who is initially presumed innocent. The evidence against the defen-
dant is then presented and, if the jury finds this convincing beyond all reason-
able doubt, he is found guilty; the presumption of innocence is overturned. Of
course, mistakes are sometimes made: an innocent person is convicted or a
guilty person set free. Both of these errors involve costs (not only in the mone-
tary sense), either to the defendant or to society in general, and the errors
should be avoided if at all possible. The laws under which the trial is held may
help avoid such errors. The rule that the jury must be convinced ‘beyond all
reasonable doubt’ helps to avoid convicting the innocent, for instance.

The situation in hypothesis testing is similar. First there is a maintained or
null hypothesis which is initially presumed to be true. The empirical evidence,
usually data from a random sample, is then gathered and assessed. If the evid-
ence seems inconsistent with the null hypothesis, i.e. it has a low probability 
of occurring if the hypothesis were true, then the null hypothesis is rejected in
favour of an alternative. Once again there are two types of error one can make,
either rejecting the null hypothesis when it is really true, or not rejecting it
when in fact it is false. Ideally one would like to avoid both types of error.

An example helps to clarify the issues and the analogy. Suppose that you are
thinking of taking over a small business franchise. The current owner claims
the weekly turnover of each existing franchise is £5000 and at this level you are
willing to take on a franchise. You would be more cautious if the turnover is
less than this figure. You examine the books of 26 franchises chosen at random
and find that the average turnover was £4900 with standard deviation £280.
What do you do?

The null hypothesis in this case is that average weekly turnover is £5000 (or
more; that would be even more to your advantage). The alternative hypothesis
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is that turnover is strictly less than £5000 per week. We may write these more
succinctly as follows:

H0: μ = 5000
H1: μ < 5000

H0 is conventionally used to denote the null hypothesis, H1 the alternative.
Initially, H0 is presumed to be true and this presumption will be tested using
the sample evidence. Note that the sample evidence is not used as part of the
hypothesis.

You have to decide whether the owner is telling the truth (H0) or not (H1).
The two types of error you could make are as follows:

n Type I error – reject H0 when it is in fact true. This would mean missing a
good business opportunity.

n Type II error – not rejecting H0 when it is in fact false. You would go ahead
and buy the business and then find out that it is not as attractive as claimed.
You would have overpaid for the business.

The situation is set out in Figure 5.1.
Obviously a good decision rule would give a good chance of making a 

correct decision and rule out errors as far as possible. Unfortunately it is impos-
sible to completely eliminate the possibility of errors. As the decision rule is
changed to reduce the probability of a Type I error, the probability of making a
Type II error inevitably increases. The skill comes in balancing these two types
of error.

Again a diagram is useful in illustrating this. Assuming that the null hypo-
thesis is true, then the sample observations are drawn from a population with
mean 5000 and some variance, which we shall assume is accurately measured
by the sample variance. The distribution of X is then given by

(5.1) X ~ N(μ, σ2/n) or
X ~ N(5000, 2802/26)

Under the alternative hypothesis the distribution of X would be the same
except that it would be centred on a value less than 5000. These two situations
are illustrated in Figure 5.2. The distribution of X under H1 is shown by a
dashed curve to signify that its exact position is unknown, only that it lies to
the left of the distribution under H0.

A decision rule amounts to choosing a point or dividing line on the hori-
zontal axis in Figure 5.2. If the sample mean lies to the left of this point then
H0 is rejected (the sample mean is too far away from H0 for it to be credible) in
favour of H1 and you do not buy the firm. If X lies above this decision point
then H0 is not rejected and you go ahead with the purchase. Such a decision

The concepts of hypothesis testing 161

Figure 5.1
The two different
types of error
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162 Chapter 5 • Hypothesis testing

point is shown in Figure 5.2, denoted by XD. To the left of XD lies the rejection
(of H0) region; to the right lies the non-rejection region.

Based on this point, we can see the probabilities of Type I and Type II errors.
The area under the H0 distribution to the left of XD, labelled I, shows the prob-
ability of rejecting H0 given that it is in fact true: a Type I error. The area under
the H1 distribution to the right of XD, labelled II, shows the probability of a
Type II error: not rejecting H0 when it is in fact false (and H1 is true).

Shifting the decision line to the right or left alters the balance of these prob-
abilities. Moving the line to the right increases the probability of a Type I error
but reduces the probability of a Type II error. Moving the line to the left has
the opposite effect.

The Type I error probability can be calculated for any value of XD. Suppose
we set XD to a value of 4950. Using the distribution of X given in equation (5.1)
above, the area under the distribution to the left of 4950 is obtained using the 
z score:

(5.2)

From the tables of the standard Normal distribution we find that the probabil-
ity of a Type I error is 18.1%. Unfortunately, the Type II error probability can-
not be established because the exact position of the distribution under H1 is
unknown. Therefore we cannot decide on the appropriate position of XD by
some balance of the two error probabilities.

The convention therefore is to set the position of XD by using a Type I error
probability of 5%, known as the significance level1 of the test. In other words,
we are prepared to accept a 5% probability of rejecting H0 when it is, in fact,
true. This allows us to establish the position of XD. From Table A2 (see page
366) we find that z = −1.64 cuts off the bottom 5% of the distribution, so the
decision line should be 1.64 standard errors below 5000. The value −1.64 is
known as the critical value of the test. We therefore obtain
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Figure 5.2
The sampling
distributions of s
under H0 and H1

1 The term size of the test is also used, not to be confused with the sample size. We use
the term ‘significance’ level in this text.
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Worked example 5.1

Since the sample mean of 4900 lies below 4910 we reject H0 at the 5%
significance level or equivalently we reject with 95% confidence. The significance
level is generally denoted by the symbol α and the complement of this, given
by 1 − α, is known as the confidence level (as used in the confidence interval).

An equivalent procedure would be to calculate the z score associated with
the sample mean, known as the test statistic, and then compare this to the
critical value of the test. This allows the hypothesis testing procedure to be bro-
ken down into five neat steps:

1 Write down the null and alternative hypotheses:

H0: μ = 5000
H1: μ < 5000

2 Choose the significance level of the test, conventionally α = 0.05 or 5%.
3 Look up the critical value of the test from statistical tables, based on the 

chosen significance level. z* = 1.64 is the critical value in this case.
4 Calculate the test statistic:

(5.4)

5 Decision rule. Compare the test statistic with the critical value: if z < −z*
reject H0 in favour of H1. Since −1.82 < −1.64 H0 is rejected with 95%
confidence. Note that we use −z* here because we are dealing with the left-
hand tail of the distribution.

A sample of 100 workers found the average overtime hours worked in the
previous week was 7.8, with standard deviation 4.1 hours. Test the hypo-
thesis that the average for all workers is 5 hours or less.
We can set out the five steps of the answer as follows:

1 H0: μ = 5
H1: μ > 5

2 Significance level, α = 5%.
3 Critical value z* = 1.64.
4 Test statistic:

5 Decision rule: 6.8 > 1.64 so we reject H0 in favour of H1. Note that in this
case we are dealing with the right-hand tail of the distribution. Only
high values of X reject H0.

In the above example the rejection region for the test consisted of one tail of
the distribution of X, since the buyer was only concerned about turnover being
less than claimed. For this reason it is known as a one-tail test. Suppose now
that an accountant is engaged to sell the franchise and wants to check the
claim about turnover before advertising the business for sale. In this case she
would be concerned about turnover being either below or above 5000.
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164 Chapter 5 • Hypothesis testing

This would now become a two-tail test with the null and alternative
hypotheses being

H0: μ = 5000
H1: μ ≠ 5000

Now there are two rejection regions for the test. Either a very low sample mean
or a very high one will serve to reject the null hypothesis. The situation is pre-
sented graphically in Figure 5.3.

The distribution of X under H0 is the same as before, but under the alter-
native hypothesis the distribution could be shifted either to the left or to the
right, as depicted. If the significance level is still chosen to be 5%, then the
complete rejection region consist of the two extremes of the distribution under
H0, containing 2.5% in each tail (hence 5% in total). This gives a Type I error
probability of 5% as before.

The critical value of the test therefore becomes z* = 1.96, the value which
cuts off 2.5% in each tail of the standard Normal distribution. Only if the test
statistic falls into one of the rejection regions beyond 1.96 standard errors from
the mean is H0 rejected.

Using data from the previous example, the test statistic remains z = −1.82 so
that the null hypothesis cannot be rejected in this case, as −1.82 does not fall
beyond −1.96. To recap, the five steps of the test are:

1 H0: μ = 5000
H1: μ ≠ 5000

2 Choose the significance level: α = 0.05.
3 Look up the critical value: z* = 1.96.
4 Evaluate the test statistic:

5 Compare test statistic and critical values: if z < −z* or z > z* reject H0 in
favour of H1. In this case −1.82 > −1.96 so H0 cannot be rejected with 95%
confidence.

One- and two-tail tests therefore differ only at steps 1 and 3. Note that we
have come to different conclusions according to whether a one- or two-tail test
was used, with the same sample evidence. There is nothing wrong with this,
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however, for there are different interpretations of the two results. If the
investor always uses his rule, he will miss out on 5% of good investment oppor-
tunities, when sales are (by chance) low. He will never miss out on a good
opportunity because the investment appears too good (i.e. sales by chance are
very high). For the accountant, 5% of the firms with sales averaging £5000 will
not be advertised as such, either because sales appear too low or because they
appear too high.

It is tempting on occasion to use a one-tail test because of the sample evidence.
For example, the accountant might look at the sample evidence above and
decide that the franchise operation can only have true sales less than or equal
to 5000. Therefore she uses a one-tail test. This is a dangerous practice, since
the sample evidence is being used to help formulate the hypothesis, which is
then tested on that same evidence. This is going round in circles; the hypothesis
should be chosen independently of the evidence which is then used to test it.
Presumably the accountant would also use a one-tail test (with H1: μ > 5000 as
the alternative hypothesis) if she noticed that the sample mean were above the
hypothesised value. In effect therefore she would be using the 10% significance
level, not the 5% level, since there would be 5% in each tail of the distribution.
She would make a Type I error on 10% of all occasions rather than 5%.

It is acceptable to use a one-tail test when you have independent information
about what the alternative hypothesis should be, or you are not concerned
about one side of the distribution (like the investor) and can effectively add
that in to the null hypothesis. Otherwise, it is safer to use a two-tail test.

(a) Two political parties are debating crime figures. One party says that crime has
increased compared to the previous year. The other party says it has not. Write
down the null and alternative hypotheses.

(b) Explain the two types of error that could be made in this example and the possible
costs of each type of error.

(a) We test the hypothesis H0: μ = 100 against H1: μ >100 by rejecting H0 if our sample
mean is greater than 108. If in fact e ~ N(100, 900/25), what is the probability of
making a Type I error?

(b) If we wanted a 5% Type I error probability, what decision rule should we adopt?

(c) If we knew that μ could only take on the values 100 (under H0) or 112 (under H1)
what would be the Type II error probability using the decision rule in part (a)?

Test the hypothesis H0: μ = 500 versus H1: μ ≠ 500 using the evidence e = 530, s = 90
from a sample of size n = 30.

We justified the choice of the 5% significance level by reference to convention.
This is usually a poor argument for anything, but it does have some justi-
fication. In an ideal world we would have precisely specified null and alternative
hypotheses (e.g. we would test H0: μ = 5000 against H1: μ = 4500, these being
the only possibilities). Then we could calculate the probabilities of both Type I
and Type II errors, for any given decision rule. We could then choose the optimal
decision rule, which gives the best compromise between the two types of error.
This is reflected in a court of law. In criminal cases, the jury must be convinced
of the prosecution’s case beyond reasonable doubt, because of the cost of 
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166 Chapter 5 • Hypothesis testing

committing a Type I error. In a civil case (libel, for example) the jury need only be
convinced on the balance of probabilities. In a civil case, the costs of Type I and
Type II error are more evenly balanced and so the burden of proof is lessened.

However, in practice we usually do not have the luxury of two well-specified
hypotheses. As in the example, the null hypothesis is precisely specified (it has
to be or the test could not be carried out) but the alternative hypothesis is
imprecise (sometimes called a composite hypothesis because it encompasses a
range of values). Statistical inference is often used not so much as an aid to
decision making but to provide evidence for or against a particular theory, to
alter one’s degree of belief in the truth of the theory. For example, an economic
theory might assert that rising prices are caused by rising wages (the cost–push
theory of inflation). The null and alternative hypotheses would be:

H0: there is no connection between rising wages and rising prices
H1: there is some connection between rising wages and rising prices

(Note that the null has ‘no connection’, since this is a precise statement.
‘Some connection’ is too vague to be the null hypothesis.) Data could be gath-
ered to test this hypothesis (the appropriate methods will be discussed in the
chapters on correlation and regression). But what decision rests upon the result
of this test? It could be thought that government might make a decision to
impose a prices and incomes policy, but if every academic study of inflation led
to the imposition or abandonment of a prices and incomes policy there would
have been an awful lot of policies! (In fact, there were a lot of such policies, but
not as many as the number of studies of inflation.) No single study is decisive
(‘more research is needed’ is a very common phrase) but each does influence
the climate of opinion which may eventually lead to a policy decision. But if a
hypothesis test is designed to influence opinion, how is the significance level to
be chosen?

It is difficult to trade-off the costs of Type I and Type II errors and the prob-
ability of making those errors. A Type I error in this case means concluding that
rising wages do cause rising prices when, in fact, they do not. So what would be
the cost of this error, i.e. imposing a prices and incomes policy when, in fact, it
is not needed? It is extremely difficult, if not impossible, to put a figure on it. It
would depend on what type of prices and incomes policy were imposed –
would wages be frozen or allowed to rise with productivity, how fast would
prices be allowed to rise, would company dividends be frozen? The costs of the
Type II error would also be problematic (not imposing a needed prices and
incomes policy), for they would depend, amongst other things, on what alter-
native policies might be adopted.

The 5% significance level really does depend upon convention therefore, it
cannot be justified by reference to the relative costs of Type I and Type II errors
(it is too much to believe that everyone does consider these costs and independ-
ently arrives at the conclusion that 5% is the appropriate significance level!).
However, the 5% convention does impose some sort of discipline upon
research; it sets some kind of standard which all theories (hypotheses) should
be measured against. Beware the researcher who reports that a particular
hypothesis is rejected at the 8% significance level; it is likely that the
significance level was chosen so that the hypothesis could be rejected, which is
what the researcher was hoping for in the first place!

SFE_C05.qxd  3/23/07  12:07 PM  Page 166



The Prob-value approach

Suppose a result is significant at the 4.95% level (i.e. it just meets the 5% con-
vention and the null hypothesis is rejected). A very slight change in the sample
data could have meant the result being significant at only the 5.05% level, and
the null hypothesis not being rejected. Would we really be happy to alter our
belief completely on such fragile results? Most researchers (but not all!) would
be cautious if their results were only just significant (or fell just short of
significance).

This suggests an alternative approach: the significance level of the test statis-
tic could be reported and the reader could make his own judgements about it.
This is known as the Prob-value approach, the Prob-value being the
significance level of the calculated test statistic. For example, the calculated test
statistic for the investor problem was z = −1.82 and the associated Prob-value is
obtained from Table A2 (see page 366) as 3.44%, i.e. −1.82 cuts off 3.44% in
one tail of the standard Normal distribution. This means that the null hypo-
thesis can be rejected at the 3.44% significance level or, alternatively expressed,
with 96.56% confidence.

Notice that Table A2 gives the Prob-value for a one-tail test; for a two-tail
test the Prob-value should be doubled. Thus for the accountant, using the 
two-tail test, the significance level is 6.88% and this is the level at which the
null hypothesis can be rejected. Alternatively we could say we reject the 
null with 93.12% confidence. This does not meet the standard 5% criterion 
(for the significance level) which is most often used, so would result in non-
rejection of the null.

An advantage of using the Prob-value approach is that many statistical soft-
ware programs routinely provide the Prob-value of a calculated test statistic. If
one understands the use of Prob-values then one does not have to look up
tables (this applies to any distribution, not just the Normal), which can save a
lot of time.

To summarise, one rejects the null hypothesis if either:

n (Method 1) – the test statistic is greater than the critical value, i.e. z > z*, or
n (Method 2) – the Prob-value associated with the test statistic is less than the

significance level, i.e. P < 0.05 (if the 5% significance level is used).

I have found that many students initially find this confusing, because of the
opposing inequality in the two versions (greater than and less than). For example,
a program might calculate a hypothesis test and report the result as ‘z = 1.4 
(P value = 0.162)’. The first point to note is that most software programmes
report the Prob-value for a two-tail test by default. Hence, assuming a 5% signi-
ficance level, in this case we cannot reject H0 because z = 1.4 < 1.96 or equi-
valently because 0.162 > 0.05, against a two-tailed alternative (i.e. H1 contains ≠).

If you wish to conduct a one-tailed test you have to halve the reported Prob-
value, becoming 0.081 in this example. This is again greater than 5%, so the
hypothesis is still accepted, even against a one-sided alternative (H1 contains >
or <). Equivalently, one could compare 1.4 with the one-tail critical value, 1.64,
showing non-rejection of the null, but one has to look up the standard Normal
table with this method. Computers cannot guess whether a one- or two-sided
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168 Chapter 5 • Hypothesis testing

test is wanted, so take the conservative option and report the two-sided value.
The correction for a one-sided test has to be done manually.

Significance, effect size and power

Researchers usually look for ‘significant’ results. Academic papers report that
‘the results are significant’ or that ‘the coefficient is significantly different from
zero at the 5% significance level’. It is vital to realise that the word ‘significant’
is used here in the statistical sense and not in its everyday sense of being impor-
tant. Something can be statistically significant yet still unimportant.

Suppose that we have some more data about the business examined earlier.
Data for 100 franchises have been uncovered, revealing an average weekly
turnover of £4975 with standard deviation £143. Can we reject the hypothesis
that the average weekly turnover is £5000? The test statistic is

Since this is less than −z* = −1.64 the null is rejected with 95% confidence. True
average weekly turnover is less than £5000. However, the difference is only £25
per week, which is 0.5% of £5000. Common sense would suggest that the dif-
ference may be unimportant, even if it is significant in the statistical sense.
One should not interpret statistical results in terms of significance alone, there-
fore; one should also look at the size of the difference (sometimes known as the
effect size) and ask whether it is important or not. This is a mistake made by
even experienced researchers; a review of articles in the prestigious American
Economic Review reported that 82% of them confused statistical significance for
economics significance in some way (McCloskey and Ziliak, 2004).

This problem with hypothesis testing paradoxically gets worse as the sample
size increases. For example, if 250 observations reveal average sales of 4985
with standard deviation 143, the null would (just) be rejected at 5%
significance. In fact, given a large enough sample size we can virtually guaran-
tee to reject the null hypothesis even before we have gathered the data. This
can be seen from equation (5.4) for the z score test statistic: as n gets larger, the
test statistic also inevitably gets larger.

A related way of considering the effect of increasing sample size is via the
concept of the power of a test. This is defined as

(5.5) Power of a test = 1 − Pr(Type II error) = 1 − β

where β is the symbol conventionally used to indicate the probability of a Type
II error. Since a Type II error is defined as not rejecting H0 when false (equi-
valent to rejecting H1 when true), power is the probability of rejecting H0 when
false (if H0 is false, it must be either accepted or rejected; hence these probabilities
sum to one). This is one of the correct decisions identified earlier, associated
with the lower right-hand box in Figure 5.1, that of correctly rejecting a false
null hypothesis. The power of a test is therefore given by the area under the H1

distribution, to the left of the decision line, as illustrated (shaded) in Figure 5.4
(for a one-tail test).
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It is generally desirable to maximise the power of a test, as long as the prob-
ability of a Type I error is not raised in the process. There are essentially three
ways of doing this:

n Avoid situations where the null and alternative hypotheses are very similar,
i.e. the hypothesised means are not far apart (a small effect size).

n Use a large sample size. This reduces the sampling variance of X (under both
H0 and H1) so the two distributions become more distinct.

n Use good sampling methods which have small sampling variances. This has
a similar effect to increasing the sample size.

Unfortunately, in economics and business the data are very often given in
advance and there is little or no control possible over the sampling procedures.
This leads to a neglect of consideration of power, unlike in psychology, for
example, where the experiment can often be designed by the researcher. The
gathering of sample data will be covered in detail in Chapter 9.

If a researcher believes the cost of making a Type I error is much greater than the cost
of a Type II error, should they choose a 5% or 1% significance level? Explain why.

(a) A researcher uses Excel to analyse data and test a hypothesis. The program
reports a test statistic of z = 1.77 (P value = 0.077). Would you reject the null
hypothesis if carrying out (i) a one-tailed test (ii) a two-tailed test? Use the 5%
significance level.

(b) Repeat part (a) using a 1% significance level.

Further hypothesis tests

We now proceed to consider a number of different types of hypothesis test, all
involving the same principles but differing in detail. This is similar to the exposi-
tion in the last chapter covering, in turn, tests of a proportion, tests of the dif-
ference of two means and proportions, and finally problems involving small
sample sizes.

A car manufacturer claims that no more than 10% of its cars should need
repairs in the first three years of their life, the warranty period. A random 
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170 Chapter 5 • Hypothesis testing

sample of 50 three-year-old cars found that 8 had required attention. Does this
contradict the maker’s claim?

This problem can be handled in a very similar way to the methods used for a
mean. The key, once again, is to recognise the sample proportion as a random
variable with an associated probability distribution. From Chapter 4 (equa-
tion (4.9)), the sampling distribution of the sample proportion in large samples
is given by

(5.6)

In this case π = 0.10 (under the null hypothesis, the maker’s claim). The sample
data are

p = 8/50 = 0.16
n = 50

Thus 16% of the sample required attention within the warranty period. This
is substantially higher than the claimed 10%, but is this just because of a bad
sample or does it reflect the reality that the cars are badly built? The hypothesis
test is set out along the same lines as for a sample mean:

1 H0: π = 0.10
H1: π > 0.10
(The only concern is the manufacturer not matching its claim.)

2 Significance level: α = 0.05.
3 The critical value of the one-tail test at the 5% significance level is z* = 1.64,

obtained from the standard Normal table.
4 The test statistic is

5 Since the test statistic is less than the critical value, it falls into the non-
rejection region. The null hypothesis is not rejected by the data. The manu-
facturer’s claim is not unreasonable.

Note that for this problem, the rejection region lies in the upper tail of the
distribution because of the ‘greater than’ inequality in the alternative hypo-
thesis. The null hypothesis is therefore rejected in this case if z > z*.

Suppose a car company wishes to compare the performance of its two factories
producing an identical model of car. The factories are equipped with the same
machinery but their outputs might differ due to managerial ability, labour rela-
tions, etc. Senior management wishes to know if there is any difference
between the two factories. Output is monitored for 30 days, chosen at random,
with the following results:

Factory 1 Factory 2

Average daily output 420 408
Standard deviation of daily output 25 20
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Does this produce sufficient evidence of a real difference between the factories,
or does the difference between the samples simply reflect random differences
such as minor breakdowns of machinery? The information at our disposal may
be summarised as

X1 = 420 X2 = 408
s1 = 25 s2 = 20
n1 = 30 n2 = 30

The hypothesis test to be conducted concerns the difference between the
factories’ outputs, so the appropriate random variable to examine is X1 − X2. From
Chapter 4 (equation (4.12)), this has the following distribution, in large samples:

(5.7)

The population variances, σ2
1 and σ2

2, may be replaced by their sample esti-
mates, s2

1 and s2
2, if the former are unknown, as here. The hypothesis test is

therefore as follows.

1 H0: μ1 − μ2 = 0
H1: μ1 − μ2 ≠ 0
The null hypothesis posits no real difference between the factories. This is a
two-tail test since there is no a priori reason to believe one factory is better
than the other, apart from the sample evidence.

2 Significance level: α = 1%. This is chosen since the management does not
want to interfere unless it is really confident of some difference between the
factories. In order to favour the null hypothesis, a lower significance level
than the conventional 5% is set.

3 The critical value of the test is z* = 2.57. This cuts off 0.5% in each tail of the
standard Normal distribution.

4 The test statistic is

Note that this is of the same form as in the single-sample cases. The hypo-
thesised value of the difference (zero in this case) is subtracted from the sample
difference and this is divided by the standard error of the random variable.

5 Decision rule: z < z* so the test statistic falls into the non-rejection region.
There does not appear to be a significant difference between the two factories.

A number of remarks about this example should be made. First, it should be
noted that it is not necessary for the two sample sizes to be equal (although
they are in the example). 45 days’ output from factory 1 and 35 days’ from fac-
tory 2, for example, could have been sampled. Second, the values of s2

1 and s2
2

do not have to be equal. They are respectively estimates of σ 2
1 and σ 2

2 and
although the null hypothesis asserts that μ1 = μ2 it does not assert that the vari-
ances are equal. Management wants to know if the average levels of output are
the same; it is not concerned about daily fluctuations in output. A test of the
hypothesis of equal variances is set out in Chapter 6.
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172 Chapter 5 • Hypothesis testing

The final point to consider is whether all the necessary conditions for the
correct application of this test have been met. The example noted that the 30
days were chosen at random. If the 30 days sampled were consecutive we
might doubt whether the observations were truly independent. Low output on
one day (due to a mechanical breakdown, for example) might influence the fol-
lowing day’s output (if a special effort were made to catch up on lost produc-
tion, for example).

The general method should by now be familiar, so we will proceed by example
for this case. Suppose that, in a comparison of two holiday companies’ cus-
tomers, of the 75 who went with Happy Days Tours, 45 said they were satisfied,
while 48 of the 90 who went with Fly by Night Holidays were satisfied. Is there
a significant difference between the companies?

This problem can be handled by a hypothesis test on the difference of two
sample proportions. The procedure is as follows. The sample evidence is

p1 = 45/75 = 0.6 n1 = 75
p2 = 48/90 = 0.533 n2 = 90

The hypothesis test is carried out as follows

1 H0: π1 − π2 = 0
H1: π1 − π2 ≠ 0

2 Significance level: α = 5%.
3 Critical value: z* = 1.96.
4 Test statistic: The distribution of p1 − p2 is

so the test statistic is

(5.8)

However, π1 and π2 in the denominator of equation (5.8) have to be replaced
by estimates from the samples. They cannot simply be replaced by p1 and p2

because these are unequal; to do so would contradict the null hypothesis
that they are equal. Since the null hypothesis is assumed to be true (for the
moment), it doesn’t make sense to use a test statistic which explicitly sup-
poses the null hypothesis to be false. Therefore π1 and π2 are replaced by an
estimate of their common value which is denoted & and whose formula is

(5.9)

i.e. a weighted average of the two sample proportions. This yields

This, in fact, is just the proportion of all customers who were satisfied, 93
out of 165. The test statistic therefore becomes
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5 The test statistic is less than the critical value so the null hypothesis cannot
be rejected with 95% confidence. There is not sufficient evidence to demon-
strate a difference between the two companies’ performance.

Do boys or girls do better at school?

At an infant school (for pupils of 5–7 years of age) where I was a governor, girls
appeared to be doing better than boys. In maths, 78% achieved level 2 or better,
compared to 75% of boys. In reading, the scores were 82% and 72%, a bigger dif-
ference. (Level 2 is the grade that the government expects 7-year-old children to
achieve.) 55 girls and 61 boys took the tests.

Are these results significant, however? We can compare the two sample propor-
tions to test the hypothesis H0: πB − πG = 0, i.e. that girls and boys are really equally
able and that what we observe here is just sampling error. The Excel worksheet
provides details of the calculations.

The calculations should be self-explanatory by now. The ‘Variance of difference’
line gives the variance of pB − pG, as in the denominator of equation (5.8). You can
see how it is calculated in Excel near the top of the screenshot. The z scores in
both maths and reading are fairly low – certainly less than the critical value 1.96.
We cannot, on the basis of this evidence, conclude that girls do better than boys in
this school.
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A survey of 80 voters finds that 65% are in favour of a particular policy. Test the hypo-
thesis that the true proportion is 50%, against the alternative that a majority is in favour.

A survey of 50 teenage girls found that on average they spent 3.6 hours per week chatting
with friends over the internet. The standard deviation was 1.2 hours. A similar survey of
90 teenage boys found an average of 3.9 hours, with standard deviation 2.1 hours. Test
if there is any difference between boys’ and girls’ behaviour.

One gambler on horse racing won on 23 of his 75 bets. Another won on 34 out of 95. Is
the second person a better judge of horses, or just luckier?

Hypothesis tests with small samples

As with estimation, slightly different methods have to be employed when the
sample size is small (n < 25) and the population variance is unknown. When
both of these conditions are satisfied the t distribution must be used rather
than the Normal, so a t test is conducted rather than a z test. This means con-
sulting tables of the t distribution to obtain the critical value of a test, but other-
wise the methods are similar. These methods will be applied to hypotheses
about sample means only, since they are inappropriate for tests of a sample
proportion, as was the case in estimation.

A large chain of supermarkets sells 5000 packets of cereal in each of its stores
each month. It decides to test-market a different brand of cereal in 15 of its
stores. After a month the 15 stores have sold an average of 5200 packets each,
with a standard deviation of 500 packets. Should all supermarkets switch to
selling the new brand?

The sample information is

X = 5200, s = 500, n = 15

From Chapter 4 the distribution of the sample mean from a small sample when
the population variance is unknown is based upon

(5.10)

with v = n − 1 degrees of freedom. The hypothesis test is based on this formula
and is conducted as follows:

1 H0: μ = 5000
H1: μ > 5000
(Only an improvement in sales is relevant.)

2 Significance level: α = 1% (chosen because the cost of changing brands is
high).

3 The critical value of the t distribution for a one-tail test at the 1%
significance level with v = n − 1 = 14 degrees of freedom is t* = 2.62.

4 The test statistic is
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5 The null hypothesis is not rejected since the test statistic, 1.55, is less than
the critical value, 2.62. It would probably be unwise to switch over to the
new brand of cereals.

A survey of 20 British companies found an average annual expenditure on
research and development of £3.7m with a standard deviation of £0.6m. A sur-
vey of 15 similar German companies found an average expenditure on research
and development of £4.2m with standard deviation £0.9m. Does this evidence
lend support to the view often expressed that Britain does not invest enough in
research and development?

This is a hypothesis about the difference of two means, based on small sam-
ple sizes. The test statistic is again based on the t distribution, i.e.

(5.11)

where S2 is the pooled variance (as given in equation (4.23)) and the degrees of
freedom are given by v = n1 + n2 − 2.

The hypothesis test procedure is as follows:

1 H0: μ1 − μ2 = 0
H1: μ1 − μ2 < 0

2 Significance level: α = 5%.
3 The critical value of the t distribution at the 5% significance level for a one-tail

test with v = n1 + n2 − 2 = 33 degrees of freedom is approximately t* = 1.70.
4 The test statistic is based on equation (5.11):

where S2 is the pooled variance, calculated by

5 The test statistic falls in the rejection region, t < −t*, so the null hypothesis is
rejected. The data do support the view that Britain spends less on R&D than
Germany.

It is asserted that parents spend, on average, £540 per annum, on toys for each child. A
survey of 24 parents finds expenditure of £490, with standard deviation £150. Does this
evidence contradict the assertion?

A sample of 15 final-year students were found to spend on average 15 hours per week
in the university library, with standard deviation 3 hours. A sample of 20 freshers found
they spend on average 9 hours per week in the library, standard deviation 5 hours. Is
this sufficient evidence to conclude that finalists spend more time in the library?
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176 Chapter 5 • Hypothesis testing

Are the test procedures valid?

A variety of assumptions underlie each of the tests which we have applied
above and it is worth considering in a little more detail whether these assump-
tions are justified. This will demonstrate that one should not rely upon the 
statistical tests alone; it is important to retain one’s sense of judgement.

The first test concerned the weekly turnover of a series of franchise operations.
To justify the use of the Normal distribution underlying the test, the sample obser-
vations must be independently drawn. The random errors around the true mean
turnover figure should be independent of each other. This might not be the case
if, for example, similar events could affect the turnover figures of all franchises.

If one were using time-series data, as in the car factory comparison, similar
issues arise. Do the 30 days represent independent observations or might there
be an autocorrelation problem (e.g. if the sample days were close together in
time)? Suppose that factory 2 suffered a breakdown of some kind which took
three days to fix. Output would be reduced on three successive days and factory
2 would almost inevitably appear less efficient than factory 1. The fact that the
standard deviation for factory 2 is higher than that for factory 1 suggests this
could have occurred. A look at the individual sample observations might be
worthwhile, therefore. It would have been altogether better if the samples had
been collected on randomly chosen days over a longer time period to reduce
the danger of this type of problem.

If the two factories both obtain their supplies from a common, but limited,
source then the output of one factory might not be independent of the output
of the other. A high output of one factory would tend to be associated with a
low output from the other, which has little to do with their relative efficiencies.
This might leave the average difference in output unchanged but might
increase the variance substantially (either a very high positive value of X1 − X2 or
a very high negative value is obtained). This would lead to a low value of the
test statistic and the conclusion of no difference in output. Any real difference
in efficiency is masked by the common supplier problem. If the two samples
are not independent then the distribution of X1 − X2 may not be Normal.

Hypothesis tests and confidence intervals

Formally, two-tail hypothesis tests and confidence intervals are equivalent. Any
value which lies within the 95% confidence interval around the sample mean
cannot be rejected as the ‘true’ value using the 5% significance level in a
hypothesis test using the same sample data. For example, our by now familiar
accountant could construct a confidence interval for the firm’s sales. This yields
the 95% confidence interval

(5.12) [4792, 5008]

Notice that the hypothesised value of 5000 is within this interval and that it
was not rejected by the hypothesis test carried out earlier. As long as the same
confidence level is used for both procedures, they are equivalent.
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Having said this, their interpretation is different. The hypothesis test forces
us into the reject/do not reject dichotomy, which is rather a stark choice. We
have seen how it becomes more likely that the null hypothesis is rejected as the
sample size increases. This problem does not occur with estimation. As the
sample size increases the confidence interval gets narrower (around the un-
biased point estimate) which is entirely beneficial. The estimation approach also
tends to emphasise importance over significance in most people’s minds. With
a hypothesis test one might know that turnover is significantly different from
5000 without knowing how far from 5000 it actually is.

On some occasions a confidence interval is inferior to a hypothesis test,
however. Consider the following case. In the UK only 17 out of 465 judges are
women (3.7%).2 The Equal Opportunities Commission commented that since
the appointment system is so secretive it is impossible to tell if there is discrim-
ination or not. What can the statistician say about this? No discrimination (in
its broadest sense) would mean half of all judges would be women. Thus the
hypotheses are

H0: π = 0.5 (no discrimination)
H1: π < 0.5 (discrimination against women)

The sample data are p = 0.037, n = 465. The z score is

This is clearly significant (and 3.7% is a long way from 50%!) so the null
hypothesis is rejected. There is some form of discrimination somewhere against
women (unless women choose not to be judges). But a confidence interval esti-
mate of the ‘true’ proportion of female judges would be meaningless. To what
population is this ‘true’ proportion related?

The lesson from all this is that there exist differences between confidence
intervals and hypothesis tests, despite their formal similarity. Which technique
is more appropriate is a matter of judgement for the researcher. With hypothe-
sis testing, the rejection of the null hypothesis at some significance level might
actually mean a small (and unimportant) deviation from the hypothesised
value. It should be remembered that the rejection of the null hypothesis based
on a large sample of data is also consistent with the true value and hypothesised
value possibly being quite close together.

Independent and dependent samples

The following example illustrates the differences between independent 
samples (as encountered so far) and dependent samples where slightly different
methods of analysis are required. The example also illustrates how a particular
problem can often be analysed by a variety of statistical methods.
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2 This figure is somewhat out of date now, but it is still a useful example.
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178 Chapter 5 • Hypothesis testing

A company introduces a training programme to raise the productivity of its
clerical workers, which is measured by the number of invoices processed per
day. The company wants to know if the training programme is effective. How
should it evaluate the programme? There is a variety of ways of going about the
task, as follows:

n Take two (random) samples of workers, one trained and one not trained, and
compare their productivity.

n Take a sample of workers and compare their productivity before and after
training.

n Take two samples of workers, one to be trained and the other not. Compare
the improvement of the trained workers with any change in the other
group’s performance over the same time period.

We shall go through each method in turn, pointing out any possible difficulties.

Suppose a group of ten workers is trained and compared to a group of ten non-
trained workers, with the following data being relevant:

XT = 25.5 XN = 21.00
sT = 2.55 sN = 2.91
nT = 10 nN = 10

Thus, trained workers process 25.5 invoices per day compared to only 21 by
non-trained workers. The question is whether this is significant, given that the
sample sizes are quite small.

The appropriate test here is a t test of the difference of two sample means, as
follows:

H0: μT − μN = 0
H1: μT − μN > 0

(7.49 is S2, the pooled variance). The t statistic leads to rejection of the null
hypothesis; the training programme does seem to be effective.

One problem with this test is that the two samples might not be truly ran-
dom and thus not properly reflect the effect of the training programme. Poor
workers might have been reluctant (and thus refused) to take part in training,
departmental managers might have selected better workers for training as some
kind of reward, or simply better workers may have volunteered. In a well-
designed experiment this should not be allowed to happen, of course, but we
do not rule out the possibility. There is also the 5% (significance level) chance
of unrepresentative samples being selected and a Type I error occurring.

This is the situation where a sample of workers is tested before and after train-
ing. The sample data are as follows:

Worker 1 2 3 4 5 6 7 8 9 10

Before 21 24 23 25 28 17 24 22 24 27
After 23 27 24 28 29 21 24 25 26 28

  

t   
.   .

.
  

.
  .=

−

+
=

25 5 21 0

7 49
10

7 49
10

3 68

Two independent
samples

Paired samples

SFE_C05.qxd  3/23/07  12:08 PM  Page 178



In this case, the observations in the two samples are paired and this has
implications for the method of analysis. One could proceed by assuming these
are two independent samples and conduct a t test. The summary data and
results are:

XB = 23.50 XA = 25.5
sB = 3.10 sA = 2.55
nB = 10 nA = 10

The resulting test statistic is t18 = 1.58 which is not significant at the 5% level.
There are two problems with this test and its result. First, the two samples

are not truly independent, since the before and after measurements refer to the
same group of workers. Second, nine out of ten workers in the sample have
shown an improvement, which is odd in view of the result found above, of no
significant improvement. If the training programme really has no effect, then
the probability of a single worker showing an improvement is . The probabil-
ity of nine or more workers showing an improvement is, by the Binomial
method, ( )10 × 10C9 + ( )10, which is about one in a hundred. A very unlikely
event seems to have occurred.

The t test used above is inappropriate because it does not make full use of
the information in the sample. It does not reflect the fact, for example, that the
before and after scores, 21 and 23, relate to the same worker. The Binomial cal-
culation above does reflect this fact. A re-ordering of the data would not affect
the t test result, but would affect the Binomial, since a different number of
workers would now show an improvement. Of course, the Binomial does not
use all the sample information either – it dispenses with the actual productivity
data for each worker and replaces it with ‘improvement’ or ‘no improvement’.
It disregards the amount of improvement for each worker.

The best use of the sample data comes by measuring the improvement for
each worker, as follows (if a worker had deteriorated, this would be reflected by
a negative number):

Worker 1 2 3 4 5 6 7 8 9 10

Improvement 2 3 1 3 1 4 0 3 2 1

These new data can be treated by single sample methods, and account is taken
both of the actual data values and of the fact that the original samples were
dependent (re-ordering of the data would produce different improvement
figures). The summary statistics of the new data are as follows:

X = 2.00, s = 1.247, n = 10

The null hypothesis of no improvement can now be tested as follows:

H0: μ = 0
H1: μ > 0
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180 Chapter 5 • Hypothesis testing

This is significant at the 5% level so the null hypothesis of no improvement is
rejected. The correct analysis of the sample data has thus reversed the previous
conclusion.

Matters do not end here, however. Although we have discovered an
improvement, this might be due to other factors apart from the training pro-
gramme. For example, if the before and after measurements were taken on dif-
ferent days of the week (that Monday morning feeling . . . ), or if one of the
days were sunnier, making people feel happier and therefore be more produc-
tive, this would bias the results. These may seem trivial examples but these
effects do exist, for example the ‘Friday afternoon car’, which has more faults
than the average.

The way to solve this problem is to use a control group, so called because
extraneous factors are controlled for, in order to isolate the effects of the factor
under investigation. In this case, the productivity of the control group would
be measured (twice) at the same times as that of the training group, though no
training would be given to them. Suppose that the average improvement of the
control group were 0.5 invoices per day with standard deviation 1.0 (again for a
group of ten). This can be compared with the improvement of the training
group via the two-sample t test, giving

(1.132 is the pooled variance). This confirms the finding that the training pro-
gramme is of value.

A group of students’ marks on two tests, before and after instruction, were as follows:

Student 1 2 3 4 5 6 7 8 9 10 11 12

Before 14 16 11 8 20 19 6 11 13 16 9 13
After 15 18 15 11 19 18 9 12 16 16 12 13

Test the hypothesis that the instruction had no effect, using both the independent sam-
ple and paired sample methods. Compare the two results.

Discussion of hypothesis testing

The above exposition has served to illustrate how to carry out a hypothesis test
and the rationale behind it. However, the methodology has been subject to
criticism and it is important to understand this since it gives a greater insight
into the meaning of the results of a hypothesis test.

In the previous examples the problem has often been posed as a decision-
making one, yet we noted that in many instances no decision is actually taken
and therefore it is difficult to justify a particular significance level. Bayesian
statisticians would argue that their methods do not suffer from this problem,
since the result of their analysis (termed a posterior probability) gives the
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degree of belief which the researcher has in the truth of the null hypothesis.
However, this posterior probability does in part depend upon the prior prob-
ability (i.e. before the statistical analysis) that the researcher attaches to the
null hypothesis. As noted in Chapter 2, the derivation of the prior probabilities
can be difficult.

In practice, most people do not regard the results of a hypothesis test as 
all-or-nothing proof, but interpret the result on the basis of the quality of the
data, the care the researcher has taken in analysing the data, personal experi-
ence, and a multitude of other factors. Both schools of thought, classical and
Bayesian, introduce subjectivity into the analysis and interpretation of data:
classical statisticians in the choice of the significance level (and choice of one-
or two-tail test), Bayesians in their choice of prior probabilities. It is not clear
which method is superior, but classical methods have the advantage of being
simpler.

Another criticism of hypothesis testing is that it is based on weak method-
ological foundations. The philosopher Karl Popper argued that theories should
be rigorously tested against the evidence, and that strenuous efforts should be
made to try to falsify the theory or hypothesis. This methodology is not strictly
followed in hypothesis testing, where the researcher’s favoured hypothesis is
usually the alternative. A conclusion in favour of the alternative hypothesis is
arrived at by default, because of the failure of the null hypothesis to survive the
evidence.

Consider the researcher who believes that health standards have changed in
the last decade. This may be tested by gathering data on health and testing the
null hypothesis of no change in health standards against the alternative
hypothesis of some change. The researcher’s theory thus becomes the alter-
native hypothesis and is never actually tested against the data. No attempt is
made to falsify the (alternative) hypothesis; it gets accepted by default if the
null hypothesis falls. Only the null hypothesis ever gets tested.

A further problem is the asymmetry between the null and alternative
hypotheses. The null hypothesis is that there is exactly no change in health
standards whereas the alternative hypothesis contains all other possibilities,
from a large deterioration to a large improvement. The dice seem loaded
against the null hypothesis. Indeed, as noted earlier, if a large enough sample is
taken the null hypothesis is almost certain to be rejected, because there is
bound to have been some change, however small. The large sample size leads to
a small standard error (σ 2/n) and thus a large z score. This suggests that the
significance level of a test should decrease as the sample size increases.

These particular problems are avoided by the technique of estimation, which
measures the size of the change and focuses attention upon that, rather than
upon some accept/reject decision. As the sample size gets larger, the confidence
interval narrows and an improved measure of the true change in health 
standards is obtained. Zero (i.e. no change in health standards) might be in the
confidence interval or it might not; it is not the central issue. We might say
that an estimate tells us what the value of a population parameter is, while a
hypothesis test tells us what it is not. Thus the techniques of estimation and
hypothesis testing put different emphasis upon interpretation of the results,
even though they are formally identical.

Discussion of hypothesis testing 181
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182 Chapter 5 • Hypothesis testing

Summary

n Hypothesis testing is the set of procedures for deciding whether a hypothesis
is true or false. When conducting the test we presume the hypothesis,
termed the null hypothesis, is true until it is proved false on the basis of
some sample evidence.

n If the null is proved false, it is rejected in favour of the alternative hypo-
thesis. The procedure is conceptually similar to a court case, where the
defendant is presumed innocent until the evidence proves otherwise.

n Not all decisions turn out to be correct and there are two types of error that
can be made. A Type I error is to reject the null hypothesis when it is in fact
true. A Type II error is not to reject the null when it is false.

n Choosing the appropriate decision rule (for rejecting the null hypothesis) is
a question of trading off Type I and Type II errors. Because the alternative
hypothesis is imprecisely specified, the probability of a Type II error usually
cannot be specified.

n The rejection region for a test is therefore chosen to give a 5% probability of
making a Type I error (sometimes a 1% probability is chosen). The critical
value of the test statistic (sometimes referred to as the critical value of the
test) is the value which separates the acceptance and rejection regions.

n The decision is based upon the value of a test statistic, which is calculated
from the sample evidence and from information in the null hypothesis

n The null hypothesis is rejected if the test statistic falls into the rejection
region for the test (i.e. it exceeds the critical value).

n For a two-tail test there are two rejection regions, corresponding to very high
and very low values of the test statistic.

n Instead of comparing the test statistic to the critical value, an equivalent
procedure is to compare the Prob-value of the test statistic with the
significance level. The null is rejected if the Prob-value is less than the
significance level.

n The power of a test is the probability of a test correctly rejecting the null
hypothesis. Some tests have low power (e.g. when the sample size is small)
and therefore are not very useful.
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Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 5.1 Answer true or false, with reasons if necessary.

(a) There is no way of reducing the probability of a Type I error without simultaneously
increasing the probability of a Type II error.

(b) The probability of a Type I error is associated with an area under the distribution of
e assuming the null hypothesis to be true.

(c) It is always desirable to minimise the probability of a Type I error.

(d) A larger sample, ceteris paribus, will increase the power of a test.

(e) The significance level is the probability of a Type II error.

(f ) The confidence level is the probability of a Type II error.

Problem 5.2 Consider the investor in the text, seeking out companies with weekly turnover of at least
£5000. He applies a one-tail hypothesis test to each firm, using the 5% significance
level. State whether each of the following statements is true or false (or not known) and
explain why.

(a) 5% of his investments are in companies with less than £5000 turnover.

(b) 5% of the companies he fails to invest in have turnover greater than £5000 per
week.

(c) He invests in 95% of all companies with turnover of £5000 or over.

Problem 5.3 A coin which is either fair or has two heads is to be tossed twice. You decide on the 
following decision rule: if two heads occur you will conclude it is a two-headed coin,
otherwise you will presume it is fair. Write down the null and alternative hypotheses and
calculate the probabilities of Type I and Type II errors.

Problem 5.4 In comparing two medical treatments for a disease, the null hypothesis is that the two
treatments are equally effective. Why does making a Type I error not matter? What
significance level for the test should be set as a result?

Problem 5.5 A firm receives components from a supplier, which it uses in its own production. The
components are delivered in batches of 2000. The supplier claims that there are only
1% defective components on average from its production. However, production occa-
sionally gets out of control and a batch is produced with 10% defective components.
The firm wishes to intercept these low-quality batches, so a sample of size 50 is taken
from each batch and tested. If two or more defectives are found in the sample then the
batch is rejected.

(a) Describe the two types of error the firm might make in assessing batches of 
components.

(b) Calculate the probability of each type of error given the data above.

(c) If instead, samples of size 30 were taken and the batch rejected if one or more
rejects were found, how would the error probabilities be altered?

(d) The firm can alter the two error probabilities by choice of sample size and rejection
criteria. How should it set the relative sizes of the error probabilities

Problems 183
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184 Chapter 5 • Hypothesis testing

(i) if the product might affect consumer safety?
(ii) if there are many competitive suppliers of components?
(iii) if the costs of replacement under guarantee are high?

Problem 5.6 Computer diskettes which do not meet the quality required for high-density (1.44 Mb)
diskettes are sold as double-density diskettes (720 kb) for 80 pence each. High-
density diskettes are sold for £1.20 each. A firm samples 30 diskettes from each batch
of 1000 and if any fail the quality test the whole batch is sold as double-density
diskettes. What are the types of error possible and what is the cost to the firm of a 
Type I error?

Problem 5.7 Testing the null hypothesis that μ = 10 against μ > 10, a researcher obtains a sample
mean of 12 with standard deviation 6 from a sample of 30 observations. Calculate the z
score and the associated Prob-value for this test.

Problem 5.8 Given the sample data e = 45, s = 16, n = 50, at what level of confidence can you reject
H0: μ = 40 against a two-sided alternative?

Problem 5.9 What is the power of the test carried out in Problem 3?

Problem 5.10 Given the two hypotheses

H0: μ = 400
H1: μ = 415
and σ2 = 1000 (for both hypotheses):

(a) Draw the distribution of e under both hypotheses.

(b) If the decision rule is chosen to be: reject H0 if e ≥ 410 from a sample of size 40,
find the probability of a Type II error and the power of the test.

(c) What happens to these answers as the sample size is increased? Draw a diagram
to illustrate.

Problem 5.11 Given the following sample data:

e = 15 s2 = 270 n = 30

test the null hypothesis that the true mean is equal to 12, against a two-sided alternative
hypothesis. Draw the distribution of e under the null hypothesis and indicate the rejec-
tion regions for this test.

Problem 5.12 From experience it is known that a certain brand of tyre lasts, on average, 15 000 miles
with standard deviation 1250. A new compound is tried and a sample of 120 tyres
yields an average life of 15 150 miles. Are the new tyres an improvement? Use the 5%
significance level.

Problem 5.13 Test H0: π = 0.5 against H0: π ≠ 0.5 using p = 0.45 from a sample of size n = 35.

Problem 5.14 Test the hypothesis that 10% of your class or lecture group are left-handed.
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Problem 5.15 Given the following data from two independent samples:

e1 = 115 e2 = 105
s1 = 21 s2 = 23
n1 = 49 n2 = 63

test the hypothesis of no difference between the population means against the alterna-
tive that the mean of population 1 is greater than the mean of population 2.

Problem 5.16 A transport company wants to compare the fuel efficiencies of the two types of lorry it
operates. It obtains data from samples of the two types of lorry, with the following
results:

Type Average mpg Std devn Sample size

A 31.0 7.6 33
B 32.2 5.8 40

Test the hypothesis that there is no difference in fuel efficiency, using the 99%
confidence level.

Problem 5.17 A random sample of 180 men who took the driving test found that 103 passed. A similar
sample of 225 women found that 105 passed. Test whether pass rates are the same for
men and women.

Problem 5.18 (a) A pharmaceutical company testing a new type of pain reliever administered the
drug to 30 volunteers experiencing pain. Sixteen of them said that it eased their pain.
Does this evidence support the claim that the drug is effective in combating pain?

(b) A second group of 40 volunteers were given a placebo instead of the drug. Thirteen
of them reported a reduction in pain. Does this new evidence cast doubt upon your
previous conclusion?

Problem 5.19 (a) A random sample of 20 observations yielded a mean of 40 and standard deviation
10. Test the hypothesis that μ = 45 against the alternative that it is not. Use the 5%
significance level.

(b) What assumption are you implicitly making in carrying out this test?

Problem 5.20 A photo processing company sets a quality standard of no more than 10 complaints per
week on average. A random sample of 8 weeks showed an average of 13.6 complaints,
with standard deviation 5.3. Is the firm achieving its quality objective?

Problem 5.21 Two samples are drawn. The first has a mean of 150, variance 50 and sample size 12.
The second has mean 130, variance 30 and sample size 15. Test the hypothesis that
they are drawn from populations with the same mean.

Problem 5.22 (a) A consumer organisation is testing two different brands of battery. A sample of 15 of
brand A shows an average useful life of 410 hours with a standard deviation of 20 hours.
For brand B, a sample of 20 gave an average useful life of 391 hours with standard
deviation 26 hours. Test whether there is any significant difference in battery life.

(b) What assumptions are being made about the populations in carrying out this test?

Problems 185
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186 Chapter 5 • Hypothesis testing

Problem 5.23 The output of a group of 11 workers before and after an improvement in the lighting in
their factory is as follows:

Before 52 60 58 58 53 51 52 59 60 53 55

After 56 62 63 50 55 56 55 59 61 58 56

Test whether there is a significant improvement in performance

(a) assuming these are independent samples,

(b) assuming they are dependent.

Problem 5.24 Another group of workers were tested at the same times as those in Problem 5.23,
although their department also introduced rest breaks into the working day.

Before 51 59 51 53 58 58 52 55 61 54 55

After 54 63 55 57 63 63 58 60 66 57 59

Does the introduction of rest days alone appear to improve performance?

Problem 5.25 Discuss in general terms how you might ‘test’ the following:

(a) astrology,

(b) extra-sensory perception,

(c) the proposition that company takeovers increase profits.

Can your class tell the difference between tap water and bottled water? Set up an
experiment as follows: fill r glasses with tap water and n − r glasses with bottled water.
The subject has to guess which is which. If she gets more than p correct, you conclude
she can tell the difference. Write up a report of the experiment including:

(a) a description of the experimental procedure,

(b) your choice of n, r and p, with reasons,

(c) the power of your test,

(d) your conclusions.

Use the = RAND( ) function in your spreadsheet to create 100 samples of size 25 (which
are effectively all from the same population). Compute the mean and standard deviation
of each sample. Calculate the z score for each sample, using a hypothesised mean of
0.5 (since the = RAND( ) function chooses a random number in the range 0 to 1).

(a) How many of the z scores would you expect to exceed 1.96 in absolute value?
Explain why.

(b) How many do exceed this? Is this in line with your prediction?

(c) Graph the sample means and comment upon the shape of the distribution. Shade
in the area of the graph beyond z = ±1.96.

McCloskey, D. and S. Ziliak (2004) Size Matters: the Standard Error of Regressions in
the American Economic Review, Journal of Socio-Economics, 33, 527–546.

Problem 5.26
(Project)

Problem 5.27
(Computer project)

Reference
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Answers to exercises

Exercise 5.1 (a) H0: crime is the same as last year, H1: crime has increased.

(b) Type I error – concluding crime has risen, when in fact it has not. Type II – con-
cluding it has not risen, when, in fact, it has. The cost of the former might be
employing more police officers which are not in fact warranted; of the latter,
not employing more police to counter the rising crime level. (The Economist
magazine (19 July 2003) reported that 33% of respondents to a survey in the UK
felt that crime had risen in the previous two years, only 4% thought that it had
fallen. In fact, crime had fallen slightly, by about 2%. A lot of people were mak-
ing a Type I error, therefore.)

Exercise 5.2 (a) z = (108 − 100)/√36 = 1.33. The area in the tail beyond 1.33 is 9.18%, which is
the probability of a Type I error.

(b) z = 1.64 cuts off 5% in the upper tail of the distribution, hence we need the
decision rule to be at X + 1.64 × s/√n = 100 + 1.64 × √36 = 109.84.

(c) Under H1: μ = 112, we can write X ~ N(112, 900/25). (We assume the same vari-
ance under both H0 and H1 in this case.) Hence z = (108 − 112)/√36 = −0.67.
This gives an area in the tail of 25.14%, which is the Type II error probability.
Usually, however, we do not have a precise statement of the value of μ under H1

so cannot do this kind of calculation.

Exercise 5.3 α = 0.05 (significance level chosen), hence the critical value is z* = 1.96. The test
statistic is z = (530 − 500)/(90/√30) = 1.83 < 1.96 so H0 is not rejected at the 5%
significance level.

Exercise 5.4 One wants to avoid making a Type I error if possible, i.e. rejecting H0 when true.
Hence set a low significance level (1%) so that H0 is only rejected by very strong 
evidence.

Exercise 5.5 (a) (i) Reject. The Prob-value should be halved, to 0.0385, which is less than 5%.
Alternatively, 1.77 > 1.64. (ii) Do not reject, the Prob-value is greater than 5%;
equivalently 1.77 < 1.96.

(b) In this case, the null is not rejected in both cases. In the one-tailed case, 0.0385
> 1%, so the null is not rejected.

Exercise 5.6 hence the null is decisively rejected.

Exercise 5.7 We have the data: X1 = 3.6, s1 = 1.2, n1 = 50; X2 = 3.9, s2 = 2.1, n2 = 90. The null
hypothesis is H0: μ1 = μ2 versus H1: μ1 ≠ μ2. The test statistic is

(absolute value) so the null is not rejected at the 5% significance level.
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188 Chapter 5 • Hypothesis testing

Exercise 5.8 The evidence is p1 = 23/75, n1 = 75, p2 = 34/95, n2 = 95. The hypothesis to be tested is
H0: π1 − π 2 = 0 vs H1: π 1 − π 2 < 0. Before calculating the test statistic we must calcu-
late the pooled variance as

The test statistic is then

This is less in absolute magnitude than 1.64, the critical value of a one tailed test, so
the null is not rejected. The second gambler is just luckier than the first, we con-
clude. We have to be careful about our interpretation however: one of the gamblers
might prefer longer-odds bets, so wins less often but gets more money each time.
Hence this may not be a fair comparison.

Exercise 5.9 We shall treat this as a two-tailed test, though a one-tailed test might be justified if
there were other evidence that spending had fallen. The hypothesis is H0: μ = 540 vs
H1: μ ≠ 540. Given the sample evidence, the test statistic is

The critical value of the t distribution for 23 degrees of freedom is 2.069, so the null
is not rejected.

Exercise 5.10 The hypothesis to test is H0: μF − μN = 0 vs H1: μF − μN > 0 (F indexes finalists, N the
new students). The pooled variance is calculated as

The test statistic is

The critical value of the t distribution with 15 + 20 − 2 = 33 degrees of freedom is
approximately 1.69 (5% significance level, for a one-tailed test). Thus the null is
decisively rejected and we conclude finalists do spend more time in the library.

Exercise 5.11 By the method of independent samples we obtain X1 = 13, X2 = 14.5, s1 = 4.29, s2 =
3.12, with n = 12 in both cases. The test statistic is therefore

with pooled variance
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The null of no effect is therefore accepted. By the method of paired samples, we
have a set of improvements as follows:

Student 1 2 3 4 5 6 7 8 9 10 11 12
Improvement 1 2 4 3 −1 −1 3 1 3 0 3 0

The mean of these is 1.5 and the variance is 3. The t statistic is therefore

This now conclusively rejects the null hypothesis (critical value 1.8), in stark con-
trast to the former method. The difference arises because 10 out of 12 students have
improved or done as well as before, only two have fallen back (slightly). The gain in
marks is modest but applies consistently to nearly all candidates.

t   
.   

/
  =

−
=

1 5 0

3 12
3
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By the end of this chapter you should be able to:

n understand the uses of two new probability distributions: χ2 and F

n construct confidence interval estimates for a variance

n perform hypothesis tests concerning variances

n analyse and draw inferences from data contained in contingency tables

n construct a simple analysis of variance table and interpret the results

Introduction

The final two distributions to be studied are the χ2 (pronounced ‘kye-squared’)
and F distributions. Both of these distributions have a variety of uses, the most
common of which are illustrated in this chapter. These distributions allow us to
extend some of the estimation and testing procedures covered in Chapters 4
and 5. The χ2 distribution allows us to establish confidence interval estimates
for a variance, just as the Normal and t distributions were used in the case of a
mean. Further, just as the Binomial distribution was used to examine situations
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where the result of an experiment could be either ‘success’ or ‘failure’, the χ2

distribution allows us to analyse situations where there are more than two cate-
gories of outcome. The F distribution enables us to conduct hypotheses tests
regarding the equality of two variances and also to make comparisons between
the means of multiple samples, not just two. The F distribution is also used in
Chapters 7 and 8 on regression analysis.

The χ2 distribution

The χ2 distribution has a number of uses. In this chapter we make use of it in
three ways:

n To calculate a confidence interval estimate of the population variance.
n To compare actual observations on a variable with the (theoretically)

expected values.
n To test for association between two variables in a contingency table.

The use of the distribution is in many ways similar to the Normal and t distri-
butions already encountered. Once again, it is actually a family of distributions
depending upon one parameter, the degrees of freedom, similar to the t distri-
bution. The number of degrees of freedom can have slightly different interpre-
tations, depending upon the particular problem, but is often related to sample
size. Some typical χ2 distributions are drawn in Figure 6.1 for different values of
the parameter. Note the distribution has the following characteristics:

n It is always non-negative.
n It is skewed to the right.
n It becomes more symmetric as the number of degrees of freedom increases.

Confidence intervals are constructed in the usual way, by using the critical
values of the distribution (given in Table A4 (see page 368) ) which cut off an
area α/2 in each tail of the distribution. For hypothesis tests, a rejection region
is defined which cuts off an area α in either one or both tails of the distribution,
whichever is appropriate. These principles should be familiar from previous
chapters, so are not repeated in detail. The following examples show how this
works for the χ2 distribution.

The χ2 distribution 191

Figure 6.1
The χχ2 distribution
with different degrees
of freedom
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192 Chapter 6 • The χ2 and F distributions

The sample variance is also a random variable like the mean; it takes on differ-
ent values from sample to sample. We can therefore ask the usual question:
given a sample variance, what can we infer about the true value?

To give an example, we use the data on spending by Labour boroughs in the
example in Chapter 4 (see page 151). In that sample of 20 boroughs, the average
spending on administration was £175 (per taxpayer), with standard deviation
25 (and hence variance of 625). What can we say about the true variance and
standard deviation?

We work in terms of variances (this is more convenient when using the χ2

distribution), taking the square root when we need to refer to the standard
deviation. First of all, the sample variance is an unbiased estimator of the popu-
lation variance,1 E(s2) = σ2, so we may use this as our point estimate, which is
therefore 625. To construct the confidence interval around this we need to
know about the distribution of s2. Unfortunately, this does not have a con-
venient probability distribution, so we transform it to

(6.1)

which does have a χ2 distribution, with ν = n − 1 degrees of freedom.
To construct the 95% confidence interval around the point estimate we pro-

ceed in a similar fashion to the Normal or t distribution. First, we find the critical
values of the χ2 distribution which cut off 2.5% in each tail. These are no
longer symmetric around zero as was the case with the standard Normal and t
distributions. Table 6.1 shows an excerpt from the χ2 table which is given in
full in Table A4 in the Appendix at the end of the book (see page 368).

Like the t distribution, the first column gives the degrees of freedom, so we
require the row corresponding to ν = n − 1 = 19.

n For the left-hand critical value (cutting off 2.5% in the left-hand tail) we look
at the column headed ‘0.975’, representing 97.5% in the right-hand tail.
This critical value is 8.91.

n For the right-hand critical value we look up the column headed ‘0.025’ (2.5%
in the right-hand tail), giving 32.85.

  

(   )n s− 1 2

2σ

Estimating 
a variance

1 This was stated, without proof, in Chapter 1, see page 35.

Table 6.1 Excerpt from Table A4 – the χχ2 distribution

νν 0.99 0.975 . . . 0.10 0.05 0.025 0.01

1 0.0002 0.0010 . . . 2.7055 3.8415 5.0239 6.6349
2 0.0201 0.0506 . . . 4.6052 5.9915 7.3778 9.2104
� � � . . . � � �
18 7.0149 8.2307 . . . 25.9894 28.8693 31.5264 34.8052
19 7.6327 8.9065 . . . 27.2036 30.1435 32.8523 36.1908
20 8.2604 9.5908 . . . 28.4120 31.4104 34.1696 37.5663

Note: The two critical values are found at the intersections of the shaded row and columns.
Alternatively you can use Excel. The formula =CHIINV (0.975, 19) gives the left-hand critical
value, 8.91; similarly, =CHIINV (0.025, 19) gives the answer 32.85, the right-hand critical value.
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The χ2 distribution 193

Worked example 6.1

We can therefore be 95% confident that (n − 1)s2/σ 2 lies between these two 
values, i.e.

(6.2)

We actually want an interval estimate for σ2 so we need to rearrange equation
(6.2) so that σ2 lies between the two inequality signs. Rearranging yields

(6.3)

and evaluating this expression leads to the 95% confidence interval for σ 2

which is

Note that the point estimate, 625, is no longer at the centre of the interval 
but is closer to the lower limit. This is a consequence of the skewness of the χ2

distribution.

Given a sample of size n = 51 yielding a sample variance s2 = 81, we may
calculate the 95% confidence interval for the population variance as follows.

Since we are using the 95% confidence level the critical values cutting
off the extreme 5% of the distribution are 32.36 and 71.42, from Table A4
(see page 368). We can therefore use equation (6.3) to find the interval:

Substituting in the values gives

yielding a confidence interval of [56.71, 125.15].
Note that if we wished to find a 95% confidence interval for the 

standard deviation we can simply take the square root of the result to
obtain [7.53, 11.19].

The 99% CI for the variance can be obtained by altering the critical 
values. The values cutting off 0.5% in each tail of the distribution are
(again from Table A4) 27.99 and 79.49. Using these critical values results in
an interval [50.95, 144.69]. Note that, as expected, the 99% CI is wider
than the 95% interval.

(a) Given a sample variance of 65 from a sample of size n = 30, calculate the 95% con-
fidence interval for the variance of the population from which the sample was
drawn.

(b) Calculate the 95% CI for the standard deviation.

(c) Calculate the 99% interval estimate of the variance.
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194 Chapter 6 • The χ2 and F distributions

A second use of the χ2 distribution provides a hypothesis test, allowing us to
compare a set of observed values to expected values, the latter calculated on the
basis of some null hypothesis to be tested. If the observed and expected values
differ significantly, as judged by the χ2 test (the test statistic falls into the rejection
region of the χ2 distribution), then the null hypothesis is rejected. Again, this is
similar in principle to hypothesis testing using the Normal or t distributions,
but allows a slightly different type of problem to be handled.

This can be illustrated with a very simple example. Suppose that throwing a
die 72 times yields the following data:

Score on die 1 2 3 4 5 6

Frequency 6 15 15 7 15 14

Are these data consistent with the die being unbiased? A crude examination 
of the data suggests a slight bias against 1 and 4, but is this truly bias or just a
random fluctuation quite common in this type of experiment? First the null
and alternative hypotheses are set up:

H0: the die is unbiased
H1: the die is biased

Note that the null hypothesis should be constructed in such a way as to permit
the calculation of the expected outcomes of the experiment. Thus the null and
alternative hypotheses could not be reversed in this case, since ‘the die is
biased’ is a vague statement (exactly how biased, for example?) and would not
permit the calculation of the expected outcomes of the experiment.

On the basis of the null hypothesis, the expected values are based on the
uniform distribution, i.e. each number should come up an equal number of
times. The expected values are therefore 12 (= 72/6) for each number on the die.

This gives the data shown in Table 6.2 with observed and expected frequen-
cies in columns two and three respectively (ignore columns 4–6 for the
moment). The χ2 test statistic is now constructed using the formula

(6.4)

which has a χ2 distribution with ν = k − 1 degrees of freedom (k is the number
of different outcomes, here 6).2 O represents the observed frequencies and E the

  
χ2

2

=
−∑ (   )O E
E

Comparing actual
and expected
values of a
variable

Table 6.2 Calculation of the χχ2 statistic for the die problem

Score Observed Expected O −− E (O −− E)2

frequency (O) frequency (E)

1 6 12 −6 36 3.00
2 15 12 3 9 0.75
3 15 12 3 9 0.75
4 7 12 −5 25 2.08
5 15 12 3 9 0.75
6 14 12 2 4 0.33
Totals 72 72 0 7.66

2 Note that, on this occasion, the degrees of freedom are not based on the sample size.

(   )O E
E
−− 2
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expected. If the value of this test statistic falls into the rejection region, i.e. the
tail of the χ2 distribution, then we conclude the die is biased, rejecting the null.
The calculation of the test statistic is shown in columns 4–6 of Table 6.2, and is
straightforward, yielding a value of the test statistic of χ2 = 7.66, to be com-
pared to the critical value of the distribution, for 6 − 1 = 5 degrees of freedom.

Trap!

In my experience many students misinterpret formula (6.4) and use

instead. This is not the same as the correct formula and gives the wrong answer!
Check that you recognise the difference between the two and that you always use
the correct version.

Looking up the critical value for this test takes a little care as one needs first
to consider if it is a one- or two-tailed test. Looking at the alternative hypo-
thesis suggests a two-sided test, since the error could be in either direction.
However, this intuition is wrong, for the following reason. Looking closely at
equation (6.4) reveals that large discrepancies between observed and expected
values (however occurring) can only lead to large values of the test statistic.
Conversely, small values of the test statistic must mean that differences
between O and E are small, so the die must be unbiased. Thus the null is only
rejected by large values of the χ2 statistic or, in other words, the rejection
region is in the right-hand tail only of the χ2 distribution. It is a one-tailed test.
This is illustrated in Figure 6.2.

The critical value of the χ2 distribution in this case (ν = 5, 5% significance
level) is 11.1, found from Table A4 (see page 368). Note that we require 5% of
the distribution in the right-hand tail to establish the rejection region. Since
the test statistic is less than the critical value (7.66 < 11.1) the null hypothesis is
not rejected. The differences between scores are due to sampling error rather
than to bias in the die.

An important point to note is that the value of the test statistic is sensitive
to the total frequency (72 in this case). Therefore the test should not be carried
out on the proportion of occasions on which each number comes up (the

χ 2
2

=
∑ −

∑
 

(   )O E
E
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Figure 6.2
The rejection region
for the χχ2 test
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196 Chapter 6 • The χ2 and F distributions

expected values would all be 12/72 = 0.167, and the observed values 8/72,
13/72, etc.), since information about the ‘sample size’ (number of rolls of the
die) would be lost. As with all sampling experiments, the inferences that can be
drawn depend upon the sample size, with larger sample sizes giving more reli-
able results, so care must be taken to retain information about sample size in
the calculations. If the test had been incorrectly conducted in terms of propor-
tions, all O and E values would have been divided by 72, and this would have
reduced the test statistic by a factor of 72 (check the formula to confirm this),
reducing it to 0.14, nowhere near significance. It would be surprising if any
data would yield significance given this degree of mistreatment!

A second, more realistic, example will now be examined to reinforce the
message about the use of the χ 2 distribution and to show how the expected 
values might be generated in different ways. This example looks at road accident
figures to see if there is any variation through the year. One might reasonably
expect more accidents in the winter months due to weather conditions, poorer
light, etc. Quarterly data on the number of people killed on British roads are
used, and the null hypothesis is that the number does not vary seasonally.

H0: there is no difference in fatal accidents between quarters
H1: there is some difference in fatal accidents between quarters

Such a study might be carried out by government, for example, to try to find
the best means of reducing road accidents.

Table 6.3 shows data on road fatalities in 2002 by quarter in Great Britain,
adapted from data taken from the UK government’s StatBase website. There
does appear some evidence of more accidents in the final two quarters of the
year but is this convincing evidence or just random variation? Under the null
hypothesis the total number of deaths (3431) would be evenly split between
the four quarters, yielding Table 6.4 and the χ2 calculation that follows.

The calculated value of the test statistic is 31.24, given at the foot of the final
column. The number of degrees of freedom is ν = k − 1 = 3, so the critical value at
the 5% significance level is 7.82. Since the test statistic exceeds this the null hypo-
thesis is rejected; there is a difference between seasons in the accident rate.

The reason for this difference might be the increased hours of darkness dur-
ing winter months, leading to more accidents. This particular hypothesis can

Table 6.3 Road casualties in Great Britain, 2002

Quarter I II III IV Total
Casualties 770 784 921 956 3431

Table 6.4 Calculation of the χχ2 statistic for road deaths

Quarter Observed Expected O −− E (O −− E )2

deaths deaths

I 770 857.75 −87.75 7700.063 8.98
II 784 857.75 −73.75 5439.063 6.34
III 921 857.75 63.25 4000.563 4.66
IV 956 857.75 98.25 9653.063 11.25
Totals 3431 3431 31.24

(   )O E
E
−− 2
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Table 6.5 Seasonal variation in road deaths

Season Observed Expected O −− E (O −− E )2

deaths deaths

Summer 1705 1715.5 −10.5 110.25 0.064
Winter 1726 1715.5 10.5 110.25 0.064
Totals 3431 3431 0 0.129

3 The previous edition of this book, using data from 1993, did find a significant differ-
ence between summer and winter, so either things have changed or there are still some
puzzles to resolve.

be tested using the same data, but combining quarters I and IV (to represent
winter) and quarters II and III (summer). The null hypothesis is of no difference
between summer and winter, and the calculation is set out in Table 6.5. The χ2

test statistic is much reduced, and now falls below the new critical value (ν = 1,
5% significance level) of 3.84, so the null hypothesis is not rejected. Thus the
variation between quarters does not appear to be a straightforward summer/
winter effect (providing, of course, that combining quarters I and IV to repres-
ent winter and II and III to represent summer is a valid way of combining the
quarters).3

Another point which the example brings out is that the data can be exam-
ined in a number of ways using the χ2 technique. Some of the classes were
combined to test a slightly different hypothesis from the original one. This is a
quite acceptable technique but should be used with caution. In any set of data
(even totally random data) there is bound to be some way of dividing it up such
that there are significant differences between the divisions. The point, how-
ever, is whether there is any meaning to the division. In the above example the
amalgamation of the quarters into summer and winter has some intuitive
meaning and we have good reason to believe that there might be differences
between them. Driving during the hours of darkness might be more dangerous
and might have had some relevance to accident prevention policy (e.g. an
advertising campaign to persuade people to check that their lights work cor-
rectly). The hypothesis is led by some prior theorising and is worth testing.

Road accidents and darkness

The question of the effect of darkness on road accidents has been extensively
studied, particularly in relation to putting the clocks forward and back in spring and
autumn. A study by H. Green in 1980 reported the following numbers of accidents
(involving death or serious injury) on the five weekday evenings before and after the
clocks changed:

Spring Autumn

Year Before After Before After

1975 19 11 20 31
1976 14 9 23 36
1977 22 8 12 29

(   )O E
E
−− 2
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It is noticeable that accidents fell in spring after the hour change (when it becomes
lighter) but increased in autumn (when it becomes darker). This is a better test than
simply combining quarterly figures as in our example, so casts doubt upon our
result. Evidence from other countries also supports the view that the light level has
an important influence on accidents.

Source: H. Green, Some effects on accidents of changes in light conditions at the beginning and end
of British Summer Time, Supplementary Report 587, Transport and Road Research Laboratory, 1980.
For an update on research, see J. Boughton et al., Influence of light level on the incidence of road
casualties, J. Royal Statistical Society, Series A, 162 (2), 1999.

It is dangerous, however, to look at the data and then formulate a hypo-
thesis. From Table 6.4 there appears to be a large difference between the first and
second halves of the year. If quarters I and II were combined, and III and IV
combined, the χ2 test statistic might be significant (in fact it is, χ2 = 30.4) but
does this signify anything? It is extremely easy to look for a big difference some-
where in any set of data and then pronounce it ‘significant’ according to some
test. The probability of making a Type I error (rejecting a correct null) is much
greater than 5% in such a case. The point, as usual, is that it is no good looking
at data in a vacuum and simply hoping that they will ‘tell you something’.

A related warning is that we should be wary of testing one hypothesis and,
on the basis of that result, formulating another hypothesis and testing it (as we
have done by going on to compare summer and winter). Once again we are
(indirectly) using the data to help formulate the hypothesis and the true
significance level of the test is likely to be different from 5% (even though we
use the 5% critical value). We have therefore sinned, but is difficult to do
research without sometimes resorting to this kind of behaviour. There are for-
mal methods for dealing with such situations but they are beyond the scope of
this book.

There is one further point to make about carrying out a χ 2 test, and this
involves circumstances where classes must be combined. The theoretical χ2 dis-
tribution from which the critical value is obtained is a continuous distribution,
yet the calculation of the test statistic comes from data which are divided up
into a discrete number of classes. The calculated test statistic is therefore only
an approximation to a true χ2 variable, but this approximation is good enough
as long as each expected (not observed) value is greater than or equal to five. It
does not matter what the observed values are. In other circumstances, the class
(or classes) with expected values less than five must be combined with other
classes until all expected values are at least five. An example of this will be
given below.

In all cases of χ2 testing the most important part of the analysis is the calcu-
lation of the expected values (the rest of the analysis is mechanical). Therefore
it is always worth devoting most of the time to this part of the problem. The
expected values are, of course, calculated on the basis of the null hypothesis
being true, so different null hypotheses will give different expected values.
Consider again the case of road fatalities. Although the null hypothesis (‘no
differences in fatal accidents between quarters’) seems clear enough, it could
mean different things. Here it was taken to mean an equal number of deaths 
in each quarter; but another interpretation is an equal number of deaths per
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Table 6.6 Index of road traffic, 1998–2002

Q1 Q2 Q3 Q4 Total
Index 93 101 105 100 399

Table 6.7

Quarter Observed Expected O −− E (O −− E )2

deaths deaths

I 770 799.7 −29.7 882.49 1.1
II 784 868.5 −84.5 7140.04 8.2
III 921 902.9 18.1 327.80 0.4
IV 956 859.9 96.1 9235.26 10.7
Totals 3431 3431 20.4

Note: The first expected value is calculated as 3431 × 93 ÷ 399 = 799.7, the second as 3431
× 101 ÷ 399 = 868.5 and so on.

Worked example 6.2

car-kilometre travelled in each quarter; in other words accidents might be
higher in a given quarter simply because there are more journeys in that quar-
ter (during holiday periods, for example). Table 6.6 gives an index of average
daily traffic flows on British roads in each quarter of the year.

The pattern of fatalities might follow the pattern of road usage – the first
quarter of the year has the fewest fatalities and also the least travel. This may
be tested by basing the expected values on the average traffic flow: the 3431
total casualties are allocated to the four quarters in the ratios 93:101:105:100.
This is shown in Table 6.7, along with the calculation of the χ2 statistic.

The χ2 test statistic is 20.4, well in excess of the critical value, 7.82. This indi-
cates that there are significant differences between the quarters, even after
accounting for different amounts of traffic. In fact, the statistic is little changed
from before, suggesting either that traffic flows do not affect accident probabilities
or that the flows do not actually vary very much. It is evident that the variation
in traffic flows is much less than the variation in casualties.

One hundred volunteers each toss a coin twice and note the numbers of
heads. The results of the experiment are as follows:

Heads 0 1 2 Total
Frequency 15 55 30 100

Can we reject the hypothesis that a fair coin (or strictly, coins) was used for
the experiment?

On the basis of the Binomial distribution the probability of no heads is
0.25 (= 1/2 × 1/2), of one head is 0.5 and of two heads is again 0.25, as
explained in Chapter 2. The expected frequencies are therefore 25, 50 and
25. The calculation of the test statistic is set out below:

(   )O E
E
−− 2
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Number O E O −− E (O −− E)2

of heads

0 15 25 −10 100 4
1 55 50 5 25 0.5
2 30 25 5 25 1
Totals 100 100 5.5

The test statistic of 5.5 compares to a critical value of 5.99 (ν = 2) so we
cannot reject the null hypothesis of a fair coin being used.

Note that we could test the hypothesis using a z test using the methods
of Chapter 5. There have been a total of 200 tosses, of which 115 (= 55 + 2
× 30) were heads, i.e. a ratio of 0.575 against the expected 0.5. We can
therefore test H0: π = 0.5 against H1: π ≠ 0.5 using the evidence n = 200 and
p = 0.575. This yields the test statistic

Interestingly (!) we now reject the null as the test statistic is greater than
the critical value of 1.96. How can we reconcile these conflicting results?

Note that both results are close to the critical values, so narrowly reject
or accept the null. The χ2 and t distributions are both continuous ones and
in this case are approximations to the underlying Binomial experiment.
This is the cause of the problem. If we alter the data very slightly, to 16, 55,
29 observed frequencies of no heads, one head and two heads, then both
methods accept the null hypothesis. Similarly, for frequencies 14, 55, 31
both methods reject the null.

The lesson of this example is to be cautious when the test statistic is
close to the critical value. We cannot say decisively that the null has been
accepted or rejected.

The following data show the observed and expected frequencies of an experiment with
four possible outcomes, A–D.

Outcome A B C D

Observed 40 60 75 90
Expected 35 55 75 100

Test the hypothesis that the results are in line with expectations using the 5%
significance level.

(a) Verify the claim in the worked example above, that both χ2 and z statistic methods
give the same qualitative (accept or reject) result when the observed frequencies
are 16, 55, 29 and when they are 14, 55, 31.

(b) In each case, look up or calculate (using Excel) the Prob-values for the χ2 and z test
statistics and compare.

Data are often presented in the form of a two-way classification as shown in
Table 6.8, known as a contingency table and this is another situation where

z  
.   .

.   .
  .=

−
×

=
0 575 0 5

0 5 0 5
200

2 12

Contingency
tables

Exercise 6.3

Exercise 6.2

(   )O E
E
−− 2
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the χ2 distribution is useful. It provides a test of whether or not there is an asso-
ciation between the two variables represented in the table.

The table shows the voting intentions of a sample of 200 voters, cross-
classified by social class. The interesting question that arises from these data is
whether there is any association between people’s voting behaviour and their
social class. Are manual workers (social class C in the table) more likely to vote
for the Labour party than for the Conservative party? The table would appear
to indicate support for this view, but is this truly the case for the whole popula-
tion or is the evidence insufficient to draw this conclusion?

This sort of problem is amenable to analysis by a χ2 test. The data presented
in the table represent the observed values, so expected values need to be calcu-
lated and then compared to them using a χ2 test statistic. The first task is to for-
mulate a null hypothesis, on which to base the calculation of the expected
values, and an alternative hypothesis. These are

H0: there is no association between social class and voting behaviour
H1: there is some association between social class and voting behaviour

As always, the null hypothesis has to be precise, so that expected values can be
calculated. In this case it is the precise statement that there is no association
between the two variables, they are independent.

If H0 is true and there is no association, we would expect the proportions vot-
ing Labour, Conservative and Liberal Democrat to be the same in each social
class. Further, the parties would be identical in the proportions of their support
coming from social classes A, B and C. This means that, since the whole sample
of 200 splits 80:70:50 for the Labour, Conservative and Liberal Democrat par-
ties (see the bottom row of the table), each social class should split the same
way. Thus of the 40 people of class A, 80/200 of them should vote Labour,
70/200 Conservative and 50/200 Liberal Democrat. This yields:

Split of social class A:
Labour 40 × 80/200 = 16
Conservative 40 × 70/200 = 14
Liberal Democrat 40 × 50/200 = 10

For class B:
Labour 100 × 80/200 = 40
Conservative 100 × 70/200 = 35
Liberal Democrat 100 × 50/200 = 25

And for C the 60 votes are split Labour 24, Conservative 21 and Liberal
Democrat 15.

Both observed and expected values are presented in Table 6.9 (expected 
values are in brackets). Notice that both the observed and expected values sum

The χ2 distribution 201

Table 6.8 Data on voting intentions by social class

Social class Labour Conservative Liberal Democrat Total

A 10 15 15 40
B 40 35 25 100
C 30 20 10 60
Totals 80 70 50 200

Constructing the
expected values
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to the appropriate row and column totals. It can be seen that, compared with
the ‘no association’ position, Labour gets too few votes from Class A and the
Liberal Democrats too many. However, Labour gets disproportionately many
class C votes, the Liberal Democrats too few. The Conservatives’ observed and
expected values are identical, indicating that the propensities to vote
Conservative are the same in all social classes.

A quick way to calculate the expected value in any cell is to multiply the
appropriate row total by column total and divide through by the grand total
(200). For example, to get the expected value for the class A/Labour cell:

In carrying out the analysis care should again be taken to ensure that informa-
tion is retained about the sample size, i.e. the numbers in the table should be
actual numbers and not percentages or proportions. This can be checked by
ensuring that the grand total is always the same as the sample size.

As was the case before, the χ2 test is only valid if the expected value in each
cell is not less than five. In the event of one of the expected values being less
than five, some of the rows or columns have to be combined. How to do this is
a matter of choice and depends upon the aims of the research. Suppose for
example that the expected number of class C voting Liberal Democrat were less
than five. There are four options open:

1 Combine the Liberal Democrat column with the Labour column.
2 Combine the Liberal Democrat column with the Conservative column.
3 Combine the class C row with the class A row.
4 Combine the class C row with the class B row.

Whether rows or columns are combined depends upon whether interest 
centres more upon differences between parties or differences between classes. If
the main interest is the difference between class A and the others, option 4
should be chosen. If it is felt that the Liberal Democrat and Conservative par-
ties are similar, option 2 would be preferred, and so on. If there are several
expected values less than five, rows and columns must be combined until all
are eliminated.

The χ2 test on a contingency table is similar to the one carried out before,
the formula being the same:

(6.5)

with the number of degrees of freedom given by ν = (r − 1) × (c − 1) where r is
the number of rows in the table and c is the number of columns. In this case 
r = 3 and c = 3, so

  
χ2

2

=
−∑ (   )O E
E

  
expected value

row total column total
grand total

   
    

  
  

  =
×

=
×

=
40 80

200
16

Table 6.9 Observed and expected values (latter in brackets)

Social class Labour Conservative Liberal Democrat Total

A 10 (16) 15 (14) 15 (10) 40
B 40 (40) 35 (35) 25 (25) 100
C 30 (24) 20 (21) 10 (15) 60
Totals 80 70 50 200
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Calculation of 
the test statistic

ν = (3 − 1) × (3 − 1) = 4

The reason why there are only four degrees of freedom is that once any four
cells of the contingency table have been filled, the other five are constrained by
the row and column totals. The number of ‘free’ cells can always be calculated
as the number of rows less one, times the number of columns less one, as given
above.

The evaluation of the test statistic then proceeds as follows, cell by cell:

= 2.25 + 0.07 + 2.50
+ 0 + 0 + 0
+ 1.5 + 0.05 + 1.67

= 8.04

This must be compared with the critical value from the χ 2 distribution with
four degrees of freedom. At the 5% significance level this is 9.50 (from Table A4,
see page 368).

Since 8.04 < 9.50 the test statistic is smaller than the critical value, so the null
hypothesis cannot be rejected. The evidence is not strong enough to support
an association between social class and voting intention. We cannot reject the
null of the lack of any association with 95% confidence. Note, however, that the
test statistic is fairly close to the critical value, so there is some weak evidence
of an association, but not enough to satisfy conventional statistical criteria.

Oops!

A leading firm of chartered accountants produced a report for the UK government on
education funding. One question it asked of schools was: Is the school budget suffi-
cient to provide help to pupils with special needs? This produced the following table:

Primary schools Secondary schools

Yes 34% 45%
No 63% 50%
No response 3% 5%
Totals 100% 100%
n = 137 159
χ2 = 3.50 n.s.

Their analysis produces the conclusion that there is no significant difference be-
tween primary and secondary schools. But the χ2 statistic is based on the percentage
figures! Using frequencies (which can be calculated from the sample size figures) gives
a correct χ2 figure of 5.05. Fortunately for the accountants, this is still not significant.
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Exercise 6.4

Cohabitation
J. Ermisch and M. Francesconi examined the rise in cohabitation in the UK and
asked whether it led on to marriage or not. One of their tables shows the relation
between employment status and the outcome of living together. Their results,
including the calculation of the χ2 statistic for association between the variables,
are shown in the figure.

There were 694 cohabiting women in the sample. Of the 531 who were em-
ployed, 105 of them went on to marry their partner, 46 split up and 380 continued
living together. Similar figures are shown for unemployed women and for students.
The expected values for the contingency table then appear (based on the null hypo-
thesis of no association), followed by the calculation of the χ2 test statistic. You can
see the formula for one of the elements of the calculation in the formula bar.

The test statistic is significant at the 5% level (critical value 9.49 for four degrees
of freedom), so there is an association. The biggest contribution to the test statistic
comes from the bottom right hand cell, where the actual value is much higher than
the expected. It appears that, unfortunately, those student romances often do not
turn out to be permanent.

Source: J. Ermisch and M. Francesconi, Cohabitation: not for long but here to stay, J. Royal
Statistical Society, Series A, 163 (2), 2000.

Suppose that the data on educational achievement and employment status in Chapter 1
were obtained from a sample of 1002 people, as follows:

Higher education A-levels Other qualification No qualification Total

In work 222 153 302 70 747
Unemployed 6 6 19 8 39
Inactive 26 37 84 69 216
Total 254 196 405 147 1002

Test whether there is an association between education and employment status, using
the 5% significance level for the test.
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The F distribution

The second distribution we encounter in this chapter is the F distribution. It
has a variety of uses in statistics; in this section we look at two of these: testing
for the equality of two variances and conducting an analysis of variance
(ANOVA) test. Both of these are variants on the hypothesis test procedures
which should by now be familiar. The F distribution will also be encountered
in later chapters on regression analysis.

The F family of distributions resembles the χ 2 distribution in shape: it is
always non-negative and is skewed to the right. It has two sets of degrees of
freedom (these are its parameters, labelled ν1 and ν2) and these determine its
precise shape. Typical F distributions are shown in Figure 6.3. As usual, for a
hypothesis test we define an area in one or both tails of the distribution to be
the rejection region. If a test statistic falls into the rejection region then the
null hypothesis upon which the test statistic was based is rejected. Once again,
examples will clarify the principles.

Just as one can conduct a hypothesis test on a mean, so it is possible to test the
variance. It is unusual to want to conduct a test of a specific value of a variance,
since we usually have little intuitive idea what the variance should be in most
circumstances. A more likely circumstance is a test of the equality of two vari-
ances (across two samples). In Chapter 5 two car factories were tested for the
equality of average daily output levels. One can also test whether the variance of
output differs or not. A more consistent output (lower variance) from a factory
might be beneficial to the firm, e.g. dealers can be reassured that they are more
likely to be able to obtain models when they require them. In the example in
Chapter 5, one factory had a standard deviation of daily output of 25, the second
of 20, both from samples of size 30 (i.e. 30 days’ output was sampled at each
factory). We can now test whether the difference between these figures is
significant or not.

Such a test is set up as follows. It is known as a variance ratio test for reasons
which will become apparent.

The null and alternative hypotheses are

H0: σ2
1 = σ2

2

H1: σ2
1 ≠ σ2

2

The F distribution 205

Figure 6.3
The F distribution, for
different νν1(νν2 == 25)

Testing the
equality of two
variances
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or, equivalently

(6.6) H0: σ2
1/σ2

2 = 1
H1: σ2

1/σ2
2 ≠ 1

It is appropriate to write the hypotheses in the form shown in (6.6) since the
random variable we shall use is in the form of the ratio of sample variances,
s2

1/s
2
2. This is a random variable which follows an F distribution with ν1 = n1 − 1,

ν2 = n2 − 1 degrees of freedom. We require the assumption that the two samples
are independent for the variance ratio to follow an F distribution. Thus we
write:

(6.7)

The F distribution thus has two parameters, the two sets of degrees of freedom,
one (ν1) associated with the numerator, the other (ν2) associated with the
denominator of the formula. In each case, the degrees of freedom are given by
the sample size minus one.

Note that s2
2/s

2
1 is also an F distribution (i.e. it doesn’t matter which variance

goes into the numerator) but with the degrees of freedom reversed, ν1 = n2 − 1,
ν2 = n1 − 1.

The sample data are:

s1 = 25, s2 = 20
n1 = 30, n2 = 30

The test statistic is simply the ratio of sample variances. In testing it is less 
confusing if the larger of the two variances is made the numerator of the 
test statistic (you will see why soon). Therefore we have the following test
statistic:

(6.8)

This must be compared to the critical value of the F distribution with ν1 = 29, ν2

= 29 degrees of freedom.
The rejection regions for the test are the two tails of the distribution, cutting

off 2.5% in each tail. Since we have placed the larger variance in the denominator,
only large values of F reject the null hypothesis so we need only consult the
upper critical value of the F distribution, i.e. that value which cuts off the top
2.5% of the distribution. (This is the advantage of putting the larger variance in
the numerator of the test statistic.)

Table 6.10 shows an excerpt from the F distribution. The degrees of freedom
for the test are given along the top row (ν1) and down the first column (ν2). The
numbers in the table give the critical values cutting off the top 2.5% of the 
distribution. The critical value in this case is 2.09, at the intersection of the 
row corresponding to ν2 = 29 and the column corresponding to ν1 = 30 (ν1 = 29
is not given so 30 is used instead; this gives a very close approximation to 
the correct critical value). Since the test statistic does not exceed the critical
value, the null hypothesis of equal variances cannot be rejected with 95%
confidence.
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Samples of 3-volt batteries from two manufacturers yielded the following outputs, meas-
ured in volts:

Brand A 3.1 3.2 2.9 3.3 2.8 3.1 3.2
Brand B 3.0 3.0 3.2 3.4 2.7 2.8

Test whether there is any difference in the variance of output voltage of batteries from
the two companies. Why might the variance be an important consideration for the
manufacturer or for customers?

Analysis of variance

In Chapter 5 we learned how to test the hypothesis that the means of two sam-
ples are the same, using a z or t test, depending upon the sample size. This type
of hypothesis test can be generalised to more than two samples using a tech-
nique called analysis of variance (ANOVA), based on the F distribution.
Although it is called analysis of variance, it actually tests differences in means.
The reason for this will be given below. Using this technique we can test the
hypothesis that the means of all the samples are equal, versus the alternative
hypothesis that at least one of them is different from the others. To illustrate
the technique we shall extend the example in Chapter 5 where two different
car factories’ outputs were compared.

The assumptions underlying the analysis of variance technique are essen-
tially the same as those used in the t test when comparing two different means.
We assume that the samples are randomly and independently drawn from
Normally distributed populations which have equal variances.

Suppose there are three factories, whose outputs have been sampled, with
the results shown in Table 6.11. We wish to answer the question whether this
is evidence of different outputs from the three factories, or simply random vari-
ations around a (common) average output level. The null and alternative
hypotheses are therefore:

Analysis of variance 207

Exercise 6.5

Table 6.10 Excerpt from the F distribution: upper 2.5% points

νν1 1 2 3 . . . 20 24 30 40
νν2

1 647.7931 799.4822 864.1509 . . . 993.0809 997.2719 1001.4046 1005.5955
2 38.5062 39.0000 39.1656 . . . 39.4475 39.4566 39.4648 39.4730
3 17.4434 16.0442 15.4391 . . . 14.1674 14.1242 14.0806 14.0365
� � � � . . . � � � �
28 5.6096 4.2205 3.6264 . . . 2.2324 2.1735 2.1121 2.0477
29 5.5878 4.2006 3.6072 . . . 2.2131 2.1540 2.0923 2.0276
30 5.5675 4.1821 3.5893 . . . 2.1952 2.1359 2.0739 2.0089
40 5.4239 4.0510 3.4633 . . . 2.0677 2.0069 1.9429 1.8752

Note: The critical value lies at the intersection of the shaded row and column. Alternatively, use Excel or another computer
package to give the answer. In Excel, the formula =FINV(0.025, 29, 29) will give the answer 2.09, the upper 2.5% critical
value of the F distribution with ν1 = 29, ν2 = 29 degrees of freedom.
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H0: μ1 = μ2 = μ3

H1: at least one mean is different from the others

This is the simplest type of ANOVA, known as one-way analysis of variance.
In this case there is only one factor which affects output – the factory. The fac-
tor which may affect output is also known as the independent variable. In
more complex designs, there can be two or more factors which influence out-
put. The output from the factories is the dependent or response variable in
this case.

Figure 6.4 presents a chart of the output from the three factories, which
shows the greatest apparent difference between factories 2 and 3. Their ranges
scarcely overlap, which does suggest some genuine difference between them
but as yet we cannot be sure that this is not just due to sampling variation.
Factory 1 appears to be mid-way between the other two and this must also be
included in the analysis.

To decide whether or not to reject H0 we compare the variance of output
within factories to the variance of output between (the means of) the factories.
Both methods provide estimates of the overall true variance of output and,
under the null hypothesis that factories make no difference, should provide
similar estimates. The ratio of the variances should be approximately unity. If
the null is false however, the between-samples estimate will tend to be larger
than the within-samples estimate and their ratio will exceed unity. This ratio

Table 6.11 Samples of output from three factories

Observation Factory 1 Factory 2 Factory 3

1 415 385 408
2 430 410 415
3 395 409 418
4 399 403 440
5 408 405 425
6 418 400
7 399

Figure 6.4
Chart of factory
output on sample
days
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has an F distribution and so if it is sufficiently large that it falls into the upper
tail of the distribution then H0 is rejected.

To summarise: if there appears little variation between different days’ out-
puts, but they differed substantially between factories, then we would reject H0;
at the other extreme, if each factory’s output varied substantially from one day
to another, but the average levels of output were similar, it would be clear that
there is no difference between them. In this case we would conclude that the
variations were due to other random factors, not the factories.

To formalise this we break down the total variance of all the observations into

1 the variance due to differences between factories, and
2 the variance due to differences within factories (also known as the error

variance).

Initially we work with sums of squares rather than variances. Recall from
Chapter 1 that the sample variance is given by

(6.9)

The numerator of the right-hand side of this expression gives the sum of
squares, i.e. the sum of squared deviations from the mean.

Accordingly we have to work with three sums of squares:

n The total sum of squares measures (squared) deviations from the overall or
grand average using all the observations. It ignores the existence of the dif-
ferent factors.

n The between sum of squares is based upon the averages for each factor and
measures how they deviate from the grand average.

n The within sum of squares is based on squared deviations of observations
from their own factor mean.

It can be shown that there is a relationship between these sums of squares, i.e.

(6.10)

which is often helpful for calculation. The larger is the between sum of squares
relative to the within sum of squares, the more likely it is that the null is false.

Because we have to sum over factors and over observations within those 
factors, the formulae look somewhat complicated, involving double summation
signs. It is therefore important to follow the example showing how the calcula-
tions are actually done.

The total sum of squares is given by the formula:

(6.11)

where xij is the output from factory i on day j and X is the grand average. The
index i runs from 1 to 3 in this case (there are three classes or groups for this
factor) and the index j (indexing the observations) goes from 1 to 6, 7, or 5 (for
factories 1, 2 and 3 respectively).

Although this looks complex, it simply means that you calculate the sum of
squared deviations from the overall mean. The overall mean of the 18 values is

   
Total sum of squares  (  )= −

==
∑∑ xij
i

k

j

ni

X 2
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Total sum
of squares
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210 Chapter 6 • The χ2 and F distributions

410.11 and the total sum of squares may be calculated as:

Total sum of squares = (415 − 410.11)2 + (430 − 410.11)2 + . . . + (440 − 410.11)2

+ (425 − 410.11)2 = 2977.778

An alternative formula for the total sum of squares is

(6.12)

where n is the total number of observations. The sum of the squares of all the
observations (∑x2) is 4152 + 4302 + . . . + 4252 = 3 030 418 and the total sum of
squares is given by

(6.13)

as before.
The between sum of squares is calculated using the formula

(6.14)

where Xi denotes the mean output of factor i. This part of the calculation effec-
tively ignores the differences that exist within factors and compares the differ-
ences between them. It does this by replacing the observations within each
factor by the mean for that factor. Hence all the factor 1 observations are
replaced by 410.83, for factor 2 they are replaced by the mean 401.57 and for
factor 3 by 421.2. We then calculate the sum of squared deviations of these 
values from the grand mean. Hence we get

Between sum of squares = 6 × (410.83 − 410.11)2 + 7 × (401.57 − 410.11)2

+ 5 × (421.2 − 410.11)2 = 1128.43

Note that we take account of the number of observations within each factor in
this calculation.

Once again there is an alternative formula which may be simpler for calcula-
tion purposes:

(6.15)

Evaluating this results in the same answer as above:

(6.16)

= 1128.43

We have arrived at the result that 37% (= 1128.43/2977.78) of the total vari-
ation (sum of squared deviations) is due to differences between factories and
the remaining 63% is therefore due to variation (day to day) within factories.
We can therefore immediately calculate the within sum of squares as:

Within sum of squares = 2977.778 − 1128.430 = 1849.348

For completeness, the formula for the within sum of squares is

(6.17)
   
Within sum of squares  (  )= −∑∑ xij i

ij

X 2

   
n ni i

i
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Between sum of squares  (  )= −∑∑ X Xi

ij

2

   
x nij

i

k

j

ni

2 2

11

23 030 418 18 410 11 2977 778− = − × =
==
∑∑         .  .X

Total sum of squares   = −
==
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The term xij − Xi measures the deviations of the observations from the factor
mean and so the within sum of squares gives a measure of dispersion within
the classes. Hence it can be calculated as:

Within sum of squares = (415 − 410.83)2 + . . . + (418 − 410.83)2

+ (385 − 401.57)2 + . . . + (399 − 401.57)2

+ (408 − 421.2)2 + . . . + (425 − 421.2)2

= 1849.348

The result of the hypothesis test

The F statistic is based upon comparison between and within sums of squares
(BSS and WSS) but we must also take account of the degrees of freedom for the
test. The degrees of freedom adjust for the number of observations and for the
number of factors. Formally, the test statistic is

which has k − 1 and n − k degrees of freedom. k is the number of factors, 3 in
this case, and n the overall number of observations, 18. We thus have

The critical value of F for 2 and 15 degrees of freedom at the 5% significance
level is 3.682. As the test statistic exceeds the critical value we reject the null
hypothesis of no difference between factories.

ANOVA calculations are conventionally summarised in an analysis of variance
table. Figure 6.5 shows such a table, as produced by Excel. Excel can produce

  
F  

. /(   )
. /(   )

  .=
−

−
=

1128 43 3 1
1849 348 18 3

4 576

  
F

BSS k
WSS n k

  
/(   )
/(   )

=
−
−

1
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The analysis of
variance table

Figure 6.5
One-way analysis of
variance: Excel output

Note: Excel, like many other statistical packages, performs all the ANOVA calculations auto-
matically, based on the data in the spreadsheet. There is no need to evaluate any formulae,
so you can concentrate on the interpretation of the results.
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212 Chapter 6 • The χ2 and F distributions

Worked example 6.3

the table automatically from data presented in the form shown in Table 6.11
and there is no need to do any of the calculations by hand. (In Excel you need
to install the Analysis ToolPak in order to perform ANOVA. Other software
packages, such as SPSS, also have routines to perform ANOVA.)

The first part of the table summarises the information for each factory, in
the form of means and variances. Note that the means were used in the calcu-
lation of the between sum of squares. The ANOVA section of the output then 
follows, giving sums of squares and other information.

The column of the ANOVA table headed ‘SS’ gives the sums of squares,
which we calculated above. It can be seen that the between-group sum of
squares makes up about 37% of the total, suggesting that the differences
between factories (referred to as ‘groups’ by Excel) do make a substantial contri-
bution to the total variation in output.

The ‘df ’ column gives the degrees of freedom associated with each sum of
squares. These degrees of freedom are given by

Between sum of squares k − 1
Within sum of squares n − k
Total sum of squares n − 1

The ‘MS’ (‘mean square’) column divides the sums of squares by their
degrees of freedom and the F column gives the F statistic, which is the ratio of
the two values in the MS column, i.e. 4.576 = 564.215/123.290. This is the test
statistic for the hypothesis test, which we calculated above. Excel helpfully
gives the critical value of the test (at the 5% significance level) in the final col-
umn, 3.68. The Prob-value (labelled ‘P value’) is given in the penultimate col-
umn and reveals that only 2.8% of the F distribution lies beyond the test
statistic value of 4.576.

The test has found that the between sum of squares is ‘large’ relative to the
within sum of squares, too large to be due simply to random variation, and this
is why the null hypothesis of equal outputs is rejected. The rejection region for
the test consists of the upper tail only of the F distribution; small values of the
test statistic would indicate small differences between factories and hence non-
rejection of H0.

This simple example involves only three groups, but the extension to four or
more follows the same principles, with different values of k in the formulae,
and is fairly straightforward. Also, we have covered only the simplest type of
ANOVA, with a one-way classification. More complex experimental designs are
possible, with a two-way classification, for example, where there are two inde-
pendent factors affecting the dependent variable. This is not covered in this
book, although Chapter 8 on the subject of multiple regression does examine a
method of modelling situations where two or more explanatory variables
influence a dependent variable.

ANOVA calculations are quite complex and are easiest handled by software
which calculates all the results directly from the initial data. However, this
is a kind of ‘black box’ approach to learning, so this example shows all the
calculations mechanically.
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Exercise 6.6

Suppose we have six observations on each of three factors, as follows:

A B C

44 41 48
35 36 37
60 58 61
28 32 37
43 40 44
55 59 61

(These might be, for example, scores of different groups of pupils in a test.)
We wish to examine whether there is a significant difference between the
different groups. We need to see how the differences between the groups
compare to those within groups.

First we calculate the total sum of squares by ignoring the groupings and
treating all 18 observations together. The overall mean is 45.5 so the
squared deviations are (44 − 45.5)2, (41 − 45.5)2, etc. Summing these gives
2020.5 as the TSS.

For the between sum of squares we first calculate the means of each 
factor. These are 44.17, 44.33 and 48. We compare these to the grand average.
The squared deviations are therefore (44.17 − 45.5)2, (44.33 − 45.5)2 and 
(48 − 45.5)2. Rather than sum these, we must take account of the number
of observations in each group which in this case is 6. Hence we obtain

Between sum of squares = 6 × (44.17 − 45.5)2 + 6 × (44.33 − 45.5)2 + 6 ×
(48 − 45.5)2 = 56.33

The within sum of squares can be explicitly calculated as follows. For
group A, the squared deviations from the group mean are (44 − 44.17)2, (35
− 44.17)2, etc. Summing these for group A gives 714.8. Similar calculations
give 653.3 and 596 for groups B and C. These sum to 1964.2, which is the
within sum of squares. As a check, we note:

2020.5 = 56.3 + 1964.2

The degrees of freedom are k − 1 = 3 − 1 = 2 for the between sum of
squares, n − k = 18 − 3 = 15 for the within sum of squares and n − 1 = 18 − 1
= 17. The test statistic is therefore

The critical value at the 5% significance level is 3.68, so we cannot reject
the null of no difference between the factors.

The reaction times of three groups of sportsmen were measured on a particular task,
with the following results (time in milliseconds):

Racing drivers 31 28 39 42 36 30
Tennis players 41 35 41 48 44 39 38
Boxers 44 47 35 38 51

Test whether there is a difference in reaction times between the three groups.

F  
. /
. /

  .= =
56 33 2

1964 2 15
0 22
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214 Chapter 6 • The χ2 and F distributions

Summary

n The χ2 and F distributions play important roles in statistics, particularly in
problems relating to the goodness of fit of the data to that predicted by a
null hypothesis.

n A random variable based on the sample variance, (n − 1)s2/σ2, has a χ2 distri-
bution with n − 1 degrees of freedom. Based on this fact, the χ2 distribution
may be used to construct confidence interval estimates for the variance σ2.
Since the χ2 is not a symmetric distribution, the confidence interval is not
symmetric around the (unbiased) point estimate s2.

n The χ2 distribution may also be used to compare actual and expected values
of a variable and hence to test the hypothesis upon which the expected 
values were constructed.

n A two-way classification of observations is known as a contingency table.
The independence or otherwise of the two variables may be tested using the
χ2 distribution, by comparing observed values with those expected under the
null hypothesis of independence.

n The F distribution is used to test a hypothesis of the equality of two vari-
ances. The test statistic is the ratio of two sample variances which, under the
null hypothesis, has an F distribution with n1 − 1, n2 − 1 degrees of freedom.

n The F distribution may also be used in an analysis of variance, which tests
for the equality of means across several samples. The results are set out in an
analysis of variance table, which compares the variation of the observations
within each sample to the variation between samples.

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 6.1 A sample of 40 observations has a standard deviation of 20. Estimate the 95%
confidence interval for the standard deviation of the population.

Problem 6.2 Using the data n = 70, s = 15, construct a 99% confidence interval for the true standard
deviation.

Problem 6.3 Use the data in Table 6.3 to see if there is a significant difference between road casual-
ties in quarters I and III on the one hand and quarters II and IV on the other.

actual and expected
values

variance ratio test
total sum of squares
classes or groups

contingency table
independent variable
between sum of

squares
grand average

analysis of variance
dependent or

response variable
within sum of squares
ANOVA table

Key terms and
concepts
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Problem 6.4 A survey of 64 families with five children found the following gender distribution:

Number of boys 0 1 2 3 4 5
Number of families 1 8 28 19 4 4

Test whether the distribution can be adequately modelled by the Binomial distribution.

Problem 6.5 Four different holiday firms which all carried equal numbers of holidaymakers reported
the following numbers who expressed satisfaction with their holiday:

Firm A B C D

Number satisfied 576 558 580 546

Is there any significant difference between the firms? If told that the four firms carried
600 holidaymakers each, would you modify your conclusion? What do you conclude
about your first answer?

Problem 6.6 A company wishes to see whether there are any differences between its departments in
staff turnover. Looking at their records for the past year the company finds the following
data:

Department Personnel Marketing Admin. Accounts

Number in post at start of year 23 16 108 57
Number leaving 3 4 20 13

Do the data provide evidence of a difference in staff turnover between the various
departments?

Problem 6.7 A survey of 100 firms found the following evidence regarding profitability and market
share:

Profitability Market share

<<15% 15–30% >>30%

Low 18 7 8
Medium 13 11 8
High 8 12 15

Is there evidence that market share and profitability are associated?

Problem 6.8 The following data show the percentages of firms using computers in different aspects
of their business:

Firm size Computers used in Total numbers

Admin. Design Manufacture of firms

Small 60% 24% 20% 450
Medium 65% 30% 28% 140
Large 90% 44% 50% 45

Is there an association between the size of firm and its use of computers?

Problems 215
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216 Chapter 6 • The χ2 and F distributions

Problem 6.9 (a) Do the accountants’ job properly for them (see the Oops! box in the text (page 203) ).

(b) It might be justifiable to omit the ‘no responses’ entirely from the calculation. What
happens if you do this?

Problem 6.10 A roadside survey of the roadworthiness of vehicles obtained the following results:

Roadworthy Not roadworthy

Private cars 114 30
Company cars 84 24
Vans 36 12
Lorries 44 20
Buses 36 12

Is there any association between the type of vehicle and the likelihood of it being unfit
for the road?

Problem 6.11 Given the following data on two sample variances, test whether there is any significant
difference. Use the 1% significance level.

s2
1 = 55 s2

2 = 48
n1 = 25 n2 = 30

Problem 6.12 An example in Chapter 4 compared R&D expenditure in Britain and Germany. The 
sample data were:

e1 = 3.7 e2 = 4.2
s1 = 0.6 s2 = 0.9
n1 = 20 n2 = 15

Is there evidence, at the 5% significance level, of difference in the variances of R&D
expenditure between the two countries? What are the implications, if any, for the test
carried out on the difference of the two means, in Chapter 4?

Problem 6.13 Groups of children from four different classes in a school were randomly selected and
sat a test, with the following test scores:

Class Pupil

1 2 3 4 5 6 7

A 42 63 73 55 66 48 59
B 39 47 47 61 44 50 52
C 71 65 33 49 61
D 49 51 62 48 63 54

(a) Test whether there is any difference between the classes, using the 95%
confidence level for the test.

(b) How would you interpret a ‘significant’ result from such a test?
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Problem 6.14 Lottery tickets are sold in different outlets: supermarkets, smaller shops and out-
door kiosks. Sales were sampled from several of each of these, with the following
results:

Supermarkets 355 251 408 302
Small shops 288 257 225 299
Kiosks 155 352 240

Does the evidence indicate a significant difference in sales? Use the 5% significance
level.

Conduct a survey among fellow students to examine whether there is any association
between:

(a) gender and political preference, or

(b) subject studied and political preference, or

(c) star sign and personality (introvert/extrovert – self-assessed: I am told that Aries,
Cancer, Capricorn, Gemini, Leo and Scorpio are associated with an extrovert per-
sonality), or

(d) any other two categories of interest.

Use your spreadsheet or other computer program to generate 100 random integers in
the range 0 to 9. Draw up a frequency table and use a χ2 test to examine whether there
is any bias towards any particular integer. Compare your results with those of others in
your class.

Answers to exercises

Exercise 6.1

yields the interval [41.2, 117.4] (b) [6.4, 10.8] (c) [36.0, 143.7].

Exercise 6.2 The calculation of the test statistic is

Outcome Observed Expected O −− E (O −− E)2 (O −− E)2/E

A 40 35 5 25 0.714286
B 60 55 5 25 0.454545
C 75 75 0 0 0
D 90 100 −10 100 1
Total 2.168831

This is smaller than the critical value of 7.81 so the null is not rejected.

Exercise 6.3 The test statistics are for (16, 55, 29) χ2 = 4.38 (Prob-value = 0.112) and z = 1.84
(Prob-value = 0.066) and for (14, 55, 31) χ2 = 6.78 (Prob-value = 0.038) and z = 2.40
(Prob-value = 0.016). The two methods agree on the results, though the Prob-values
are quite different.

(   )  
.

    
(   )  

.
30 1 65

45 72
30 1 65

16 05
2− ×

≤ ≤
− ×⎡

⎣
⎢

⎤
⎦
⎥σ
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Problem 6.15
(Project)

Problem 6.16
(Computer project)
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218 Chapter 6 • The χ2 and F distributions

Exercise 6.4 The expected values are:

Higher A levels Other No
education qualifications qualifications Total

In work 189 146 302 110 747
Unemployed 10 8 16 6 39
Inactive 55 42 87 32 216
Totals 254 196 405 147 1002

(These are calculated by multiplying row and column totals and dividing by the
grand total, e.g. 189 = 747 × 254/1002.)

The test statistic is

5.6 + 0.3 + 0.0 +14.3 + 1.5 + 0.3 + 0.7 + 0.9 + 15.1 + 0.7 + 0.1 + 43.9 = 83.5

This should be compared to a critical value of 12.59 (ν = (3 − 1) × (4 − 1) = 6) so the
null is rejected.

Exercise 6.5 The two variances are s2
A = 0.031 and s2

B = 0.066. We therefore form the ratio F =
0.066/0.031 = 2.09, which has an F distribution with 6 and 7 degrees of freedom.
The 5% critical value is therefore 3.87 and the null is not rejected. There appears no
differences between manufacturers. The variance is important because consumers
want a reliable product – they would not be happy if one battery lasted a long time
but the next only a few days, even if the average were quite respectable.

Exercise 6.6 The answer is summarised in this Excel table:

SUMMARY

Groups Count Sum Average Variance

Racing drivers 6 206 34.333 30.667
Tennis players 7 286 40.857 17.810
Boxers 5 215 43 42.5

ANOVA

Source of variation SS df MS F P-value F crit

Between groups 233.421 2 116.710 4.069 0.039 3.682
Within groups 430.190 15 28.679
Totals 663.611 17

The result shows that there is a difference between the three groups, with an F
statistic of 4.069 (P value 3.9%). The difference appears to be largely between racing
drivers and the other two types.
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Appendix Use of χ2 and F distribution tables

Table A4 (see page 368) presents critical values of the χ2 distribution for a selec-
tion of significance levels and for different degrees of freedom. As an example,
to find the critical value of the χ2 distribution at the 5% significance level, for ν
= 20 degrees of freedom, the cell entry in the column labelled ‘0.05’ and the
row labelled ‘20’ are consulted. The critical value is 31.4. A test statistic greater
than this value implies rejection of the null hypothesis at the 5% significance
level.

Table A5 (see page 370) presents critical values of the F distribution. Since there
are two sets of degrees of freedom to be taken into account, a separate table is
required for each significance level. Four sets of tables are provided, giving critical
values cutting off the top 5%, 2.5%, 1% and 0.5% of the distribution (Tables
A5(a), A5(b), A5(c) and A5(d) respectively). These allow both one- and two-tail
tests at the 5% and 1% significance levels to be conducted. Its use is illustrated
by example.

Two-tail test

To find the critical values of the F distribution at the 5% significance level 
for degrees of freedom ν1 (numerator) = 10, ν2 = 20. The critical values in this
case cut off the extreme 2.5% of the distribution in each tail, and are found in
Table A5(b):

n Right-hand critical value: this is found from the cell of the table correspond-
ing to the column ν1 = 10 and row ν2 = 20. Its value is 2.77.

n Left-hand critical value: this cannot be obtained directly from the tables,
which only give right-hand values. However, it is obtained indirectly as follows:
(a) Find the right-hand critical value for ν1 = 20, ν2 = 10 (note reversal of

degrees of freedom). This gives 3.42.
(b) Take the reciprocal to obtain the desired left-hand critical value. This

gives 1/3.42 = 0.29.

The rejection region thus consists of values of the test statistic less than 0.29
and greater than 2.77.

One-tail test

To find the critical value at the 5% significance level for ν1 = 15, ν2 = 25. As long
as the test statistic has been calculated with the larger variance in the numer-
ator, the critical value is in the right-hand tail of the distribution and can be
obtained directly from Table A5(a). For ν1 = 15, ν2 = 25 the value is 2.09. The
null hypothesis is rejected, therefore, if the test statistic is greater than 2.09.

Appendix: Use of χ2 and F distribution tables 219

Tables of the χχ2

distribution

Tables of the F
distribution
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By the end of this chapter you should be able to:

n understand the principles underlying correlation and regression

n calculate and interpret a correlation coefficient and relate it to an XY graph of
the two variables

n calculate the line of best fit (regression line) and interpret the result

n recognise the statistical significance of the results, using confidence intervals
and hypothesis tests

n recognise the importance of the units in which the variables are measured
and of transformations to the data

n use computer software (Excel ) to derive the regression line and interpret the
computer output
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Introduction

Correlation and regression are techniques for investigating the statistical relation-
ship between two, or more, variables. In Chapter 1 we examined the relationship
between investment and GDP using graphical methods (the XY chart).
Although visually helpful, this did not provide any precise measurement of 
the strength of the relationship. In Chapter 6 the χ2 test did provide a test of
the significance of the association between two category-based variables, but
this test cannot be applied to variables measured on a ratio scale. Correlation
and regression fill in these gaps: the strength of the relationship between two
(or more) ratio scale variables can be measured and the significance tested.

Correlation and regression are the techniques most often used by eco-
nomists and forecasters. They can be used to answer such questions as

n Is there a link between the money supply and the price level?
n Do bigger firms produce at lower cost than smaller firms?
n Does instability in a country’s export performance hinder its growth?

Each of these questions is about economics or business as much as about
statistics. The statistical analysis is part of a wider investigation into the prob-
lem; it cannot provide a complete answer to the problem but, used sensibly, is
a vital input. Correlation and regression techniques may be applied to time-
series or cross-section data. The methods of analysis are similar in each case,
though there are differences of approach and interpretation which are high-
lighted in this chapter and the next.

This chapter begins with the topic of correlation and simple (i.e. two variable)
regression, using as an example the determinants of the birth rate in develop-
ing countries. In Chapter 8, multiple regression is examined, where a single
dependent variable is explained by more than one explanatory variable. This is
illustrated using time-series data pertaining to imports into the UK. This shows
how a small research project can be undertaken, avoiding the many possible
pitfalls along the way. Finally, a variety of useful additional techniques, tips
and traps is set out, to help you understand and overcome a number of prob-
lems that can arise in regression analysis.

What determines the birth rate in developing countries?

This example follows the analysis in Michael Todaro’s book, Economic
Development in the Third World (3rd edn, pp. 197–200) where he tries to estab-
lish which of three variables (GNP per capita, the growth rate per capita, or
income inequality) is most important in determining a country’s birth rate.
(This analysis has been dropped from later editions of Todaro’s book.) The
analysis is instructive as an example of correlation and regression techniques 
in a number of ways. First, the question is an important one; it was discussed 
at the UN International Conference on Population and Development in Cairo
in 1995. It is felt by many that reducing the birth rate is a vital factor in eco-
nomic development (birth rates in developed countries average around 12 per
1000 population, in developing countries around 30). Second, Todaro uses the

What determines the birth rate in developing countries? 221
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222 Chapter 7 • Correlation and regression

statistical analysis to arrive at an unjustified conclusion (it’s always best to
learn from other’s mistakes).

The data used by Todaro are shown in Table 7.1 for a sample of 12 develop-
ing countries. Two points need to be made initially. First, the sample only
includes developing countries, so the results will not give an all-embracing
explanation of the birth rate. Different factors might be relevant to developed
countries, for example. Second, there is the important question of why these
particular countries were chosen as the sample and others ignored. The choice
of country was, in fact, limited by data availability, and one should ask
whether countries with data available are likely to be representative of all coun-
tries. Data were, in fact, available for more than 12 countries, so Todaro was
selective. You are asked to explore the implications of this in some of the prob-
lems at the end of the chapter.

The variables are defined as follows:

Birth rate: the number of births per 1000 population in 1981.
GNP per capita: 1981 gross national product p.c., in US dollars.
Growth rate: the growth rate of GNP p.c. per annum, 1961–81.
Income ratio: the ratio of the income share of the richest 20% to that of the poorest

40%. A higher value of this ratio indicates greater inequality.

We leave aside the concerns about the sample until later and concentrate now
on analysing the figures. The first thing it is useful to do is to graph the vari-
ables to see if anything useful is revealed. XY graphs are the most suitable in
this case and they are shown in Figure 7.1. From these we see a reasonably tidy
relationship between the birth rate and the growth rate, with a negative slope;
there is a looser relationship with the income ratio, with a positive slope; and
there is little discernible pattern (apart from a flat line) in the graph of birth
rate against GNP. Todaro asserts that the best relationship is between the birth
rate and income inequality. He rejects the growth rate as an important deter-
minant of the birth rate because of the four countries at the top of the chart,
which have very different growth rates, yet similar birth rates. In the following
sections we shall see whether Todaro’s conclusions are justified.

Table 7.1 Todaro’s data on birth rate, GNP, growth and inequality

Country Birth rate 1981 GNP p.c. GNP growth Income ratio

Brazil 30 2200 5.1 9.5
Colombia 29 1380 3.2 6.8
Costa Rica 30 1430 3.0 4.6
India 35 260 1.4 3.1
Mexico 36 2250 3.8 5.0
Peru 36 1170 1.0 8.7
Philippines 34 790 2.8 3.8
Senegal 48 430 −0.3 6.4
South Korea 24 1700 6.9 2.7
Sri Lanka 27 300 2.5 2.3
Taiwan 21 1170 6.2 3.8
Thailand 30 770 4.6 3.3
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Figure 7.1
Graphs of the birth
rate against (a) GNP,
(b) growth, and 
(c) income ratio

Correlation

The relationships graphed in Figure 7.1 can first be summarised numerically by
measuring the correlation coefficient between any pair of variables. We illus-
trate this by calculating the correlation coefficient between the birth rate (B)
and growth (G), though we also present the results for the other cases. Just as
the mean is a number that summarises information about a single variable, so
the correlation coefficient is a number which summarises the relationship
between two variables.
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224 Chapter 7 • Correlation and regression

The different types of possible relationship between any two variables, X and
Y, may be summarised as follows:

n High values of X tend to be associated with low values of Y and vice versa.
This is termed negative correlation, and appears to be the case for B and G.

n High (low) values of X tend to be associated with high (low) values of Y. This
is positive correlation and reflects (rather weakly) the relationship between
B and the income ratio (IR).

n No relationship between X and Y exists. High (low) values of X are associ-
ated about equally with high and low values of Y. This is zero, or the
absence of, correlation. There appears to be little correlation between the
birth rate and per capita GNP.

It should be noted that positive correlation does not mean that high values
of X are always associated with high values of Y, but usually they are. It is also
the case that correlation only represents a linear relationship between the two
variables. As a counter-example, consider the backward-bending labour supply
curve, as suggested by economic theory (higher wages initially encourage extra
work effort, but above a certain point the benefit of higher wage rates is taken
in the form of more leisure). The relationship is non-linear and the measured
degree of correlation between wages and hours of work is likely to be low, even
though the former obviously influences the latter.

The sample correlation coefficient, r, is a numerical statistic which distin-
guishes between the types of cases shown in Figure 7.1. It has the following
properties:

n It always lies between −1 and +1.
n A positive value of r indicates positive correlation, a higher value indicating

a stronger correlation between X and Y (i.e. the observations lie closer to 
a straight line). r = 1 indicates perfect positive correlation and means that 
all the observations lie precisely on a straight line with positive slope, as
Figure 7.2 illustrates.

n A negative value of r indicates negative correlation. Similar to the above, 
a larger negative value indicates stronger negative correlation and r = −1
signifies perfect negative correlation.

n A value of r = 0 (or close to it) indicates a lack of correlation between X 
and Y.

n The relationship is symmetric, i.e. the correlation between X and Y is the
same as between Y and X. It does not matter which variable is labelled Y and
which is labelled X.

Figure 7.2
Perfect positive
correlation
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The formula1 for calculating the correlation coefficient is given in equation (7.1):

(7.1)

The calculation of r for the relationship between birth rate (Y) and growth (X) is
shown in Table 7.2 and equation (7.2). From the totals in Table 7.2 we calculate:

(7.2)

This result indicates a fairly strong negative correlation between the birth rate
and growth. Countries which have higher economic growth rates also tend to
have lower birth rates. The result of calculating the correlation coefficient for
the case of the birth rate and the income ratio is r = 0.35, which is positive as
expected. Greater inequality (higher IR) is associated with a higher birth rate,
though the degree of correlation is not particularly strong and less than the
correlation with the growth rate. Between the birth rate and GNP per capita the
value of r is only −0.26 indicating only a modest degree of correlation. All of
this begins to cast doubt upon Todaro’s interpretation of the data.

(a) Perform the required calculations to confirm that the correlation between the birth
rate and the income ratio is 0.35.

(b) In Excel, use the = CORREL() function to confirm your calculations in the previous
two exercises. (For example, the function = CORREL(A1:A12,B1:B12) would calcu-
late the correlation between a variable X in cells A1:A12 and Y in cells B1:B12.)

(c) Calculate the correlation coefficient between the birth rate and the growth rate again,
but expressing the birth rate per 100 population and the growth rate as a decimal.
(In other words, divide Y by 10 and X by 100.) Your calculation should confirm that
changing the units of measurement leaves the correlation coefficient unchanged.
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Table 7.2 Calculation of the correlation coefficient, r

Country Birth rate GNP growth Y2 X2 XY
Y X

Brazil 30 5.1 900 26.01 153.0
Colombia 29 3.2 841 10.24 92.8
Costa Rica 30 3.0 900 9.00 90.0
India 35 1.4 1 225 1.96 49.0
Mexico 36 3.8 1 296 14.44 136.8
Peru 36 1.0 1 296 1.00 36.0
Philippines 34 2.8 1,156 7.84 95.2
Senegal 48 −0.3 2 304 0.09 −14.4
South Korea 24 6.9 576 47.61 165.6
Sri Lanka 27 2.5 729 6.25 67.5
Taiwan 21 6.2 441 38.44 130.2
Thailand 30 4.6 900 21.16 138.0
Totals 380 40.2 12 564 184.04 1139.7

Note: In addition to the X and Y variables in the first two columns, three other columns are
needed, for X2, Y2 and XY values.

1 The formula for r can be written in a variety of different ways. The one given here is the
most convenient for calculation.

Exercise 7.1
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226 Chapter 7 • Correlation and regression

Are the results significant?

These results come from a (small) sample, one of many that could have been
collected. Once again we can ask the question, what can we infer about the
population (of all developing countries) from the sample? Assuming the sample
was drawn at random (which may not be justified) we can use the principles of
hypothesis testing introduced in Chapter 5. As usual, there are two possibilities:

1 The truth is that there is no correlation (in the population) and that our
sample exhibits such a large (absolute) value by chance.

2 There really is a correlation between the birth rate and the growth rate and
the sample correctly reflects this.

Denoting the true but unknown population correlation coefficient by ρ (the Greek
letter ‘rho’) the possibilities can be expressed in terms of a hypothesis test:

H0: ρ = 0
H1: ρ ≠ 0

The test statistic in this case is not r itself but a transformation of it:

(7.3)

which has a t distribution with n − 2 degrees of freedom. The five steps of the
test procedure are therefore:

1 Write down the null and alternative hypotheses (shown above).
2 Choose the significance level of the test: 5% by convention.
3 Look up the critical value of the test for n − 2 = 10 degrees of freedom: t*10 =

2.228 for a two-tail test.
4 Calculate the test statistic using equation (7.3):

5 Compare the test statistic with the critical value. In this case t < − t*10 so H0 is
rejected. There is a less than 5% chance of the sample evidence occurring if
the null hypothesis were true, so the latter is rejected. There does appear to
be a genuine association between the birth rate and the growth rate.

Performing similar calculations (see Exercise 7.2 below) for the income ratio
and for GNP reveals that in both cases the null hypothesis cannot be rejected at
the 5% significance level. These observed associations could well have arisen by
chance.

Are significant results important?

Following the discussion in Chapter 5, we might ask if a certain value of the
correlation coefficient is economically important as well as being significant.
We saw earlier that ‘significant’ results need not be important. The difficulty in
this case is that we have little intuitive understanding of the correlation
coefficient. Is ρ = 0.5 important, for example? Would it make much difference
if it were only 0.4?

Our understanding may be helped if we look at some graphs of variables
with different correlation coefficients. Three are shown in Figure 7.3. Panel (a)
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Figure 7.3
Variables with
different correlations
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228 Chapter 7 • Correlation and regression

of the figure graphs two variables with a correlation coefficient of 0.2. Visually
there seems little relationship between the variables, yet the correlation
coefficient is (just) significant: t = 2.06 (n = 100 and the Prob-value is 0.042).
This is a significant result which does not impress.

In panel (b) the correlation coefficient is 0.5 and there is a clear positive
slope, though there is a substantial scatter of the observations around a straight
line. The relationship between X and Y does not appear particularly strong. Yet
the t statistic in this case is a massive 65.3, hugely significant.

Finally, panel (c) shows an example where n = 1000. To the eye this looks
like a random scatter, with no discernable pattern. Yet the correlation coeffici-
ent is 0.1 and the t statistic is 100.8, again hugely significant.

The lesson is obvious. One should not always be impressed by large t statis-
tics, especially if the sample size is large. Looking at a graph of the data is a use-
ful, even vital, supplement.

(a) Test the hypothesis that there is no association between the birth rate and the
income ratio.

(b) Look up the Prob-value associated with the test statistic and confirm that it does
not reject the null hypothesis.

It is important to test the significance of any result because almost every pair of
variables will have a non-zero correlation coefficient, even if they are totally
unconnected (the chance of the sample correlation coefficient being exactly
zero is very, very small). Therefore it is important to distinguish between corre-
lation coefficients which are significant and those which are not, using the t
test just outlined. But even when the result is significant one should beware of
the danger of ‘spurious’ correlation. Many variables which clearly cannot be
related turn out to be ‘significantly’ correlated with each other. One now
famous example is between the price level and cumulative rainfall. Since they
both rise year after year it is easy to see why they are correlated, yet it is hard to
think of a plausible reason why they should be causally related to each other.

Apart from spurious correlation there are four possible reasons for a non-zero
value of r:

1 X influences Y.
2 Y influences X.
3 X and Y jointly influence each other.
4 Another variable, Z, influences both X and Y.

Correlation alone does not allow us to distinguish between these alternatives.
For example, wages (X) and prices (Y) are highly correlated. Some people believe
this is due to cost–push inflation, i.e. that wage rises lead to price rises. This is
case (1) above. Others believe that wages rise to keep up with the cost of living
(i.e. rising prices), which is (2). Perhaps a more convincing explanation is (3), a
wage–price spiral where each feeds upon the other. Others would suggest that
it is the growth of the money supply, Z, which allows both wages and prices to
rise. To distinguish between these alternatives is important for the control of
inflation, but correlation alone does not allow that distinction to be made.

Correlation is best used therefore as a suggestive and descriptive piece of
analysis, rather than a technique which gives definitive answers. It is often a

Correlation and
causality

Exercise 7.2
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preparatory piece of analysis, which gives some clues to what the data might
yield, to be followed by more sophisticated techniques such as regression.

Sometimes the original data are unavailable but the ranks are. For example,
schools may be ranked in terms of their exam results, but the actual pass rates
are not available. Similarly, they may be ranked in terms of spending per pupil,
with actual spending levels unavailable. Although the original data are missing,
one can still test for an association between spending and exam success by cal-
culating the correlation between the ranks. If extra spending improves exam
performance, schools ranked higher on spending should also be ranked higher
on exam success, leading to a positive correlation. In this case, Spearman’s
coefficient of rank correlation is calculated.

In some circumstances it may be preferable to use the ranks rather than the
original data, even though one is effectively throwing away information (e.g.
by how much do countries’ growth rates differ). If there are extreme values to
one or both variables, this may distort the results and using the ranks will
avoid this danger. This is similar to the situation where the median can prove
superior to the mean as a measure of central tendency.

We will calculate the rank correlation coefficient for the data on birth and
growth rates, to provide a comparison with the ordinary correlation coefficient
calculated earlier. Table 7.3 presents the data for birth and growth rates in the
form of ranks. Calculating the ranks is straightforward, though there are a cou-
ple of points to note.

The country with the highest birth rate has the rank of 1, the next highest 2,
and so on. Similarly, the country with the highest growth rate ranks 1, etc. One
could reverse a ranking, so the lowest birth rate ranks 1, for example; the direc-
tion of ranking is somewhat arbitrary. This would leave the rank correlation

Correlation 229

The coefficient of
rank correlation

Table 7.3 Calculation of Spearman’s rank correlation coefficient

Country Birth rate Growth rate Rank Rank Difference d2

Y X Y X d

Brazil 30 5.1 7 3 4 16
Colombia 29 3.2 9 6 3 9
Costa Rica 30 3.0 7 7 0 0
India 35 1.4 4 10 −6 36
Mexico 36 3.8 2.5 5 −2.5 6.25
Peru 36 1.0 2.5 11 −8.5 72.25
Philippines 34 2.8 5 8 −3 9
Senegal 48 −0.3 1 12 −11 121
South Korea 24 6.9 11 1 10 100
Sri Lanka 27 2.5 10 9 1 1
Taiwan 21 6.2 12 2 10 100
Thailand 30 4.6 7 4 3 9
Totals 380 40.2 479.5

Note: The country with the highest growth rate (South Korea) is ranked 1 for variable X;
Taiwan, the next fastest growth nation, is ranked 2, etc. For the birth rate, Senegal is ranked
1, having the highest birth rate, 48. Taiwan has the lowest birth rate and so is ranked 12 for
variable Y. The difference between ranks d is calculated as 4 for Brazil, which is 7 − 3, its rank
values for the birth rate and growth rate respectively.
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230 Chapter 7 • Correlation and regression

coefficient unchanged in value, but the sign would change, e.g. 0.5 would
become −0.5. This could be confusing as we would now have a ‘negative’ correla-
tion rather than a positive one (though the birth rate variable would now have to
be redefined). It is better to use the ‘natural’ order of ranking for each variable.

Where two or more observations are the same, as are the birth rates of
Mexico and Peru, then they are given the same rank, which is the average of
the relevant ranking values. For example, both countries are given the rank of
2.5, which is the average of 2 and 3. Similarly, Brazil, Costa Rica and Thailand
are all given the rank of 7, which is the average of 6, 7 and 8. The next country,
Colombia, is then given the rank of 9.

Spearman’s rank correlation coefficient, rs, is calculated using formula (7.4):2

(7.4)

where d is the difference in the ranks. The differences and their squared values
are shown in the final columns of Table 7.3 and from these we obtain

(7.5)

This indicates a negative rank correlation between the two variables, as with
the standard correlation coefficient (r = −0.824), but with a slightly smaller
absolute value.

To test the significance of the result a hypothesis test can be performed on
the value of ρs, the corresponding population parameter.

H0: ρs = 0
H1: ρs ≠ 0

This time the t distribution cannot be used, but prepared tables of the critical
values for ρs itself may be consulted; these are given in Table A6 (see page 378),
and an excerpt is given in Table 7.4.

The critical value at the 5% significance level, for n = 12, is 0.591. Hence the
null hypothesis is rejected if the test statistic falls outside the range [−0.591,
0.591], which it does in this case. Thus the null can be rejected with 95%
confidence; the data do support the hypothesis of a relationship between the
birth rate and growth. This critical value shown in the table is for a two-tail
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2 You can also use formula (7.1) on the ranks, but (7.4) is easier.

Table 7.4 Excerpt from Table A6: Critical values of the rank correlation
coefficient

n 10% 5% 2% 1%

5 0.900
6 0.829 0.886 0.943
� � � � �
11 0.523 0.623 0.763 0.794
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.746

Note: The critical value is given at the intersection of the shaded row and column.
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Exercise 7.3

Worked example 7.1

test. For a one-tail test, the significance level given in the top row of the table
should be halved.

(a) Rank the observations for the income ratio across countries (highest = 1) and cal-
culate the coefficient of rank correlation with the birth rate.

(b) Test the hypothesis that ρs = 0.

(c) Reverse the rankings for both variables and confirm that this does not affect the
calculated test statistic.

To illustrate all the calculations and bring them together without distract-
ing explanation, we work through a simple example with the following
data on X and Y:

Y 17 18 19 20 27 18
X 3 4 7 6 8 5

An XY graph of the data reveals the following picture, which suggests posi-
tive correlation:

Note that one point appears to be something of an outlier. All the calcula-
tions for correlation may be based on the following table:

Y X Y2 X2 XY rank Y rank X d d2

17 3 289 9 51 6 6 0 0
18 4 324 16 72 4.5 5 −0.5 0.25
19 7 361 49 133 3 2 1 1
20 6 400 36 120 2 3 −1 1
27 8 729 64 216 1 1 0 0
18 5 324 25 90 4.5 4 0.5 0.25

Totals 119 33 2427 199 682 2.5

The correlation coefficient r is therefore:

= 0.804

The hypothesis H0: ρ = 0 vs H1: ρ ≠ 0 can be tested using the t test statistic:
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232 Chapter 7 • Correlation and regression

which is compared to a critical value of 2.776, so the null hypothesis is not
rejected, narrowly. This is largely due to the small number of observations.
The rank correlation coefficient is calculated as

The critical value at the 5% significance level is 0.886, so the rank correla-
tion coefficient is significant, in contrast to the previous result. Not too
much should be read into this, however; with few observations the ranking
process can easily alter the result substantially.

Regression analysis

Regression analysis is a more sophisticated way of examining the relationship
between two (or more) variables than is correlation. The major differences
between correlation and regression are the following:

n Regression can investigate the relationships between two or more variables.
n A direction of causality is asserted, from the explanatory variable (or vari-

ables) to the dependent variable.
n The influence of each explanatory variable upon the dependent variable is

measured.
n The significance of each explanatory variable can be ascertained.

Thus regression permits answers to such questions as:

n Does the growth rate influence a country’s birth rate?
n If the growth rate increases, by how much might a country’s birth rate be

expected to fall?
n Are other variables important in determining the birth rate?

In this example we assert that the direction of causality is from the growth rate
(X) to the birth rate (Y) and not vice versa. The growth rate is therefore the
explanatory variable (also referred to as the independent or exogenous vari-
able) and the birth rate is the dependent variable (also called the explained or
endogenous variable).

Regression analysis describes this causal relationship by fitting a straight line
drawn through the data, which best summarises them. It is sometimes called
‘the line of best fit’ for this reason. This is illustrated in Figure 7.4 for the birth
rate and growth rate data. Note that (by convention) the explanatory variable
is placed on the horizontal axis, the explained on the vertical. This regression
line is downward sloping (its derivation will be explained shortly) for the same
reason that the correlation coefficient is negative, i.e. high values of Y are gen-
erally associated with low values of X and vice versa.

Since the regression line summarises knowledge of the relationship between
X and Y, it can be used to predict the value of Y given any particular value of X.
In Figure 7.4 the value of X = 3 (the observation for Costa Rica) is related via
the regression line to a value of Y (denoted by Z) of 32.6. This predicted value
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is close (but not identical) to the actual birth rate of 30. The difference reflects
the absence of perfect correlation between the two variables.

The difference between the actual value, Y, and the predicted value, Z, is
called the error or residual. It is labelled e in Figure 7.4. Why should such
errors occur? The relationship is never going to be an exact one for a variety of
reasons. There are bound to be other factors besides growth which affect the
birth rate (e.g. the education of women) and these effects are all subsumed into
the error term. There might additionally be simple measurement error (of Y)
and, of course, people do act in a somewhat random fashion rather than follow
rigid rules of behaviour.

All of these factors fall into the error term and this means that the observations
lie around the regression line rather than on it. If there are many of these factors,
none of which is predominant, and they are independent of each other, then
these errors may be assumed to be Normally distributed about the regression line.

Why not include these factors explicitly? On the face of it this would seem
to be an improvement, making the model more realistic. However, the costs of
doing this are that the model becomes more complex, calculation becomes
more difficult (not so important now with computers) and it is generally more
difficult for the reader (or researcher) to interpret what is going on. If the main
interest is the relationship between the birth rate and growth, why complicate
the model unduly? There is a virtue in simplicity, as long as the simplified
model still gives an undistorted view of the relationship. In Chapter 10 on mul-
tiple regression the trade-off between simplicity and realism will be further dis-
cussed, particularly with reference to the problems which can arise if relevant
explanatory variables are omitted from the analysis.

The equation of the sample regression line may be written

(7.6) Zi = a + bXi

where

Zi is the predicted value of Y for observation (country) i
Xi is the value of the explanatory variable for observation i, and
a, b are fixed coefficients to be estimated; a measures the intercept of the
regression line on the Y axis, b measures its slope.

This is illustrated in Figure 7.5.

Regression analysis 233

Figure 7.4
The line of best fit

Calculation of the
regression line

SFE_C07.qxd  3/23/07  12:04 PM  Page 233



234 Chapter 7 • Correlation and regression

The first task of regression analysis is to find the values of a and b so that the
regression line may be drawn. To do this we proceed as follows. The difference
between the actual value, Yi, and its predicted value, Zi, is ei, the error. (Note:
The italic e denoting the error term should not be confused with the roman 
letter e, used as the base for natural logarithms (see the Appendix to Chapter 1,
page 74). Thus

(7.7) Yi = Zi + ei

Substituting equation (7.6) into equation (7.7) the regression equation can be
written

(7.8) Yi = a + bXi + ei

Equation (7.8) shows that observed birth rates are made up of two components:

1 that part explained by the growth rate, a + bXi, and
2 an error component, ei.

In a good model, part (1) should be large relative to part (2) and the regression
line is based upon this principle. The line of best fit is therefore found by
finding the values of a and b which minimise the sum of squared errors (∑e2

i ) from
the regression line. For this reason, this method is known as ‘the method of
least squares’ or simply ‘ordinary least squares’ (OLS). The use of this criterion
will be justified later on, but it can be said in passing that the sum of the errors
is not minimised because that would not lead to a unique answer for the values
a and b. In fact, there is an infinite number of possible regression lines which
all yield a sum of errors equal to zero. Minimising the sum of squared errors
does yield a unique answer.

The task is therefore to

(7.9) minimise ∑e2
i

by choice of a and b.
Rearranging equation (7.8) the error is given by

(7.10) ei = Yi − a − bXi

so equation (7.9) becomes

(7.11) minimise ∑(Yi − a − bXi)
2

by choice of a and b.

Figure 7.5
Intercept and slope of
the regression line
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Finding the solution to (7.11) requires the use of differential calculus, and is
not presented here. The resulting formulae for a and b are

(7.12)

and

(7.13) a = Y − bW

where W and Y are the mean values of X and Y respectively. The values neces-
sary to evaluate equations (7.12) and (7.13) can be obtained from Table 7.2
which was used to calculate the correlation coefficient. These values are
repeated for convenience:

∑Y = 380 ∑Y2 = 12 564
∑X = 40.2 ∑X2 = 184.04

∑XY = 1139.70 n = 12

Using these values we obtain

and

Thus the regression equation can be written, to two decimal places for clarity, as

Yi = 40.71 − 2.70Xi + ei

The most important part of the result is the slope coefficient b = −2.7 since it
measures the effect of X upon Y. This result implies that a unit increase in the
growth rate (e.g. from 2% to 3% p.a.) would lower the birth rate by 2.7, e.g.
from 30 births per 1000 population to 27.3. Given that the growth data refer 
to a 20-year period (1961 to 1981), this increase in the growth rate would have
to be sustained over such a time, not an easy task. How big is the effect upon
the birth rate? The average birth rate in the sample is 31.67, so a reduction of
2.7 for an average country would be a fall of 8.5% (2.7/31.67 × 100). This is rea-
sonably substantial (though not enough to bring the birth rate down to devel-
oped country levels) but would need a considerable, sustained increase in the
growth rate to bring it about.

The value of a, the intercept, may be interpreted as the predicted birth rate
of a country with zero growth (since Zi = a at X = 0). This value of 40.71 is fairly
close to that of Senegal, which actually had negative growth over the period
and whose birth rate was 48, a little higher than the intercept value. Although
a has a sensible interpretation in this case, this is not always so. For example, in
a regression of the demand for a good on its price, a would represent demand
at zero price, which is unlikely ever to be observed.

(a) Calculate the regression line relating the birth rate to the growth rate.

(b) Interpret the coefficients of this equation.

  
a    ( . )  

.
  .= − − × =

380
12

2 700
40 2
12

40 711

  
b  

  .   .   
  .   .

  .=
× − ×

× −
= −

12 1139 70 40 2 380
12 184 04 40 2

2 700
2

  
b

n XY X Y
n X X

  
  

 ( )
=

∑ − ∑ ∑
∑ − ∑2 2
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236 Chapter 7 • Correlation and regression

Having calculated the regression line we now ask whether it provides a good fit
for the data, i.e. do the observations tend to lie close to, or far away from, the
line? If the fit is poor, perhaps the effect of X upon Y is not so strong after all.
Note that even if X has no effect upon Y we can still calculate a regression line
and its slope coefficient b. Although b is likely to be small, it is unlikely to be
exactly zero. Measuring the goodness of fit of the data to the line helps us to
distinguish between good and bad regressions.

We proceed by comparing the competing models explaining the birth rate.
Which of them fits the data best? Using the income ratio and the GNP variable
gives the following regressions (calculations not shown) to compare with our
original model:

for the income ratio (IR): B = 26.44 + 1.045IR + e
for GNP: B = 34.72 − 0.003GNP + e
for growth: B = 40.71 − 2.70GROWTH + e

How can we decide which of these three is ‘best’ on the basis of the regression
equations alone? From Figure 7.1 it is evident that some relationships appear
stronger than others, yet this is not revealed by examining the regression equa-
tion alone. More information is needed. (You cannot choose the best equation
simply by looking at the size of the coefficients. Try to think why.)

The goodness of fit is calculated by comparing two lines: the regression line
and the ‘mean line’ (i.e. a horizontal line drawn at the mean value of Y). The
regression line must fit the data better (if the mean line were the best fit, that is
also where the regression line would be) but the question is how much better.
This is illustrated in Figure 7.6, which demonstrates the principle behind the
calculation of the coefficient of determination, denoted by R2 and usually
more simply referred to as ‘R squared’.

The figure shows the mean value of Y, the calculated sample regression line
and an arbitrarily chosen sample observation (Xi, Yi). The difference between Yi

and Y (length Yi − Y ) can be divided up into:

1 That part ‘explained’ by the regression line, Zi − Y (i.e. explained by the
value of Xi).

2 The error term ei = Yi − Zi .

Measuring the
goodness of fit of
the regression line

Figure 7.6
The calculation of R2 
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In algebraic terms,

(7.14) Yi − Y = (Yi − Zi) + (Zi − Y)

A good regression model should ‘explain’ a large part of the differences
between the Yi values and Y, i.e. the length Zi − Y should be large relative to Yi

− Y. A measure of fit would therefore be (Zi − Y)/(Yi − Y). We need to apply this
to all observations, not just a single one. Hence we need to sum this expression
over all the sample observations. A problem is that some of the terms would
take a negative value and offset the positive terms. To get round this problem
we square each of the terms in equation (7.14) to make them all positive, and
then sum over the observations. This gives

∑(Yi − Y)2, known as the total sum of squares (TSS)
∑(Zi − Y)2, the regression sum of squares (RSS), and
∑(Yi − Zi)

2, the error sum of squares (ESS)

The measure of goodness of fit, R2, is then defined as the ratio of the regres-
sion sum of squares to the total sum of squares, i.e.

(7.15)

The better the divergences between Yi and Y are explained by the regression
line, the better the goodness of fit, and the higher the calculated value of R2.
Further, it is true that

(7.16) TSS = RSS + ESS

From equations (7.15) and (7.16) we can see that R2 must lie between 0 and 1
(note that since each term in equation (7.16) is a sum of squares, none of them
can be negative). Thus

0 ≤ R2 ≤ 1

A value of R2 = 1 indicates that all the sample observations lie exactly on the
regression line (equivalent to perfect correlation). If R2 = 0 then the regression
line is of no use at all – X does not influence Y (linearly) at all, and to try to
predict a value of Yi one might as well use the mean Y rather than the value Xi

inserted into the sample regression equation.
To calculate R2, alternative formulae to those above make the task easier.

Instead we use:

TSS = ∑(Yi − Y)2 = ∑Y2
i − nY2 = 12 564 − 12 × 31.672 = 530.667

ESS = ∑(Yi − Z)2 = ∑Y2
i − a∑Yi − b∑XiYi

= 12 564 − 40.711 × 380 − (−2.7) × 1139.70 = 170.754

RSS = TSS − ESS = 530.667 − 170.754 = 359.913

This gives the result

This is interpreted as follows. Countries’ birth rates vary around the overall
mean value of 31.67. 67.8% of this variation is explained by variation in coun-

  
R

RSS
TSS

2 359 913
530 667

0 678= = =   
.
.

  .

  
R2 = 

RSS
TSS
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238 Chapter 7 • Correlation and regression

tries’ growth rates. This is quite a respectable figure to obtain, leaving only
32.8% of the variation in Y left to be explained by other factors (or pure ran-
dom variation). The regression seems to make a worthwhile contribution to
explaining why birth rates differ.

It turns out that in simple regression (i.e. where there is only one explana-
tory variable), R2 is simply the square of the correlation coefficient between X
and Y. Thus for the income ratio and for GNP we have:

for IR: R2 = 0.352 = 0.13
for GNP: R2 = −0.262 = 0.07

This shows, once again, that these other variables are not terribly useful in
explaining why birth rates differ. Each of them only explains a small propor-
tion of the variation in Y.

It should be emphasised at this point that R2 is not the only criterion (or
even an adequate one in all cases) for judging the quality of a regression equa-
tion and that other statistical measures, set out below, are also required.

(a) Calculate the R2 value for the regression of the birth rate on the income ratio, calcu-
lated in Exercise 7.4.

(b) Confirm that this result is the same as the square of the correlation coefficient
between these two variables, calculated in Exercise 7.1.

Inference in the regression model

So far, regression has been used as a descriptive technique, to measure the rela-
tionship between the two variables. We now go on to draw inferences from the
analysis about what the true regression line might look like. As with correlation,
the estimated relationship is in fact a sample regression line, based upon data
for 12 countries. The estimated coefficients a and b are random variables, since
they would differ from sample to sample. What can be inferred about the true
(but unknown) regression equation?

The question is best approached by first writing down a true or population
regression equation, in a form similar to the sample regression equation:

(7.17) Yi = α + βXi + εi

As usual, Greek letters denote true, or population, values. α and β are thus the
population parameters, of which a and b are (point) estimates, using the
method of least squares. ε is the population error term. If we could observe the
individual error terms εi then we would be able to get exact values of α and β
(even from a sample), rather than just estimates.

Given that a and b are estimates, we can ask about their properties: whe-
ther they are unbiased and how precise they are, compared to alternative 
estimators. Under reasonable assumptions (see Thomas (1993), Chapter 1;
Maddala (1992), Chapter 3) it can be shown that the OLS estimates of the
coefficients are unbiased. Thus OLS provides useful point estimates of the
parameters (the true values α and β). This is one reason for using the least
squares method. It can also be shown that, among the class of linear unbiased

Exercise 7.5
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estimators, OLS has the minimum variance, i.e. the method provides the most
precise estimates. This is another, powerful justification for the use of OLS. So,
just as the sample mean provides a more precise estimate of the population
mean than does a single observation, the least squares estimates of α and β are
the most precise.

To find confidence intervals for α and β we need to know which statistical dis-
tribution we should be using, i.e. the distributions of a and b. These can be
derived, based on the assumptions that the error term ε in equation (7.17)
above is Normally distributed and that the errors are statistically independent
of each other. Since we are using cross-section data from countries which are
different geographically, politically and socially it seems reasonable to assume
the errors are independent.

To check the Normality assumption we can graph the residuals calculated
from the sample regression line. If the true errors are Normal it seems likely
that these residuals should be approximately Normal also. The residuals are calcu-
lated according to equation (7.10) above. For example, to calculate the residual
for Brazil we subtract the fitted value from the actual value. The fitted value is
calculated by substituting the growth rate into the estimated regression equa-
tion, yielding Z = 40.712 − 2.7 × 5.1 = 26.9. Subtracting this from the actual
value gives Yi − Z = 30 − 26.9 = 3.1. Other countries’ residuals are calculated in
similar manner, yielding the results shown in Table 7.5.

These residuals may then be gathered together in a frequency table (as in
Chapter 1) and graphed. This is shown in Figure 7.7.

Although the number of observations is small (and therefore the graph is
not a smooth curve) the chart does have the greater weight of frequencies in
the centre as one would expect, with less weight as one moves into the tails of
the distribution. The assumption that the true error term is Normally dis-
tributed does not seem unreasonable.

If the residuals from the sample regression equation appeared distinctly non-
Normal (heavily skewed, for example) then one should be wary of constructing
confidence intervals using the formulae below. Instead, one might consider
transforming the data (see below) before continuing. There are more formal
tests for Normality of the residuals but they are beyond the scope of this book.
Drawing a graph is an informal alternative which can be useful, but remember
that graphical methods can be misinterpreted.

If one were using time-series data one should also check the residuals for
autocorrelation at this point. This occurs when the error in period t is dependent

Inference in the regression model 239

Analysis of the
errors

Table 7.5 Calculation of residuals

Actual birth rate Fitted values Residuals

Brazil 30 26.9 3.1
Colombia 29 32.1 −3.1
Costa Rica 30 32.6 −2.6

� � � �
Sri Lanka 27 34.0 −7.0
Taiwan 21 24.0 −3.0
Thailand 30 28.3 1.7
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240 Chapter 7 • Correlation and regression

in some way on the error in the previous period(s) and implies that the method
of least squares may not be the best way of estimating the relationship. In this
example we have cross-section data, so it is not appropriate to check for auto-
correlation, since the ordering of the data does not matter. The next chapter,
on multiple regression, covers this topic.

Having checked that the residuals appear reasonably Normal we can proceed
with inference. This means finding interval estimates of the parameters α and β
and, later on, conducting hypothesis tests. As usual, the 95% confidence inter-
val is obtained by adding and subtracting approximately two standard errors
from the point estimate. We therefore need to calculate the standard error of a
and of b and we also need to look up tables to find the precise number of stan-
dard errors to add and subtract. The principle is just the same as for the
confidence interval estimate of the sample mean, covered in Chapter 4.

The estimated sampling variance of b, the slope coefficient, is given by

(7.18)

where

(7.19)

is the estimated variance of the error term, ε.
The sampling variance of b measures the uncertainty associated with the

estimate. Note that the uncertainty is greater (a) the larger the error variance s e
2

(i.e. the more scattered the points around the regression line) and (b) the lower
the dispersion of the X observations. When X does not vary much it is then
more difficult to measure the effect of changes in X upon Y, and this is
reflected in the formula.

First we need to calculate s e
2. The value of this is

(7.20)
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equation
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and so the estimated variance of b is

(7.21)

(Use ∑(Xi − W)2 = ∑X2 − nW2 in calculating (7.21) – it makes the calculation eas-
ier.) The estimated standard error of b is the square root of (7.21),

(7.22)

To construct the confidence interval around the point estimate, b = −2.7, the t
distribution is used (in regression this applies to all sample sizes, not just small
ones). The 95% confidence interval is thus given by

(7.23) [b − tvsb, b + tvsb]

where tv is the (two-tail) critical value of the t distribution at the appropriate
significance level (5% in this case), with v = n − 2 degrees of freedom. The critical
value is 2.228. Thus the confidence interval evaluates to:

[−2.7 − 2.228 × 0.588, −2.7 + 2.228 × 0.588] = [−4.01, −1.39]

Thus we can be 95% confident that the true value of β lies within this range.
Note that the interval only includes negative values: we can rule out an
upward-sloping regression line.

For the intercept a, the estimate of the variance is given by

(7.24)

and the estimated standard error of a is the square root of this, 2.303. The 95%
confidence interval for α, again using the t distribution, is

[40.71 − 2.228 × 2.303, 40.71 + 2.228 × 2.303] = [35.57, 45.84]

The results so far can be summarised as follows:

Yi = 40.711 − 2.70Xi + ei

s.e. (2.30) (0.59)

R2 = 0.678 n = 12

This conveys, at a glance, all the necessary information to the reader, who can
then draw the inferences deemed appropriate. Any desired confidence interval
(not just the 95% one) can be quickly calculated with the aid of a set of t tables.

As well as calculating confidence intervals, one can use hypothesis tests as the
basis for statistical inference in the regression model. These tests are quickly
and easily explained given the information already assembled. Consider the
following hypothesis:

H0: β = 0
H1: β ≠ 0

This null hypothesis is interesting because it implies no influence of X upon 
Y at all (i.e. the slope of the true regression line is flat and Yi can be equally 
well predicted by Y ). The alternative hypothesis asserts that X does in fact
influence Y.

   
s s

n Xa e
i

2 2
2

2

21
17 0754

1
12

3 35
49 37

5 304= × +
∑ −

⎛
⎝⎜

⎞
⎠⎟

= × +
⎛
⎝⎜

⎞
⎠⎟

=    
(  )

  .     
.
.

  .
W

W

sb = = .   .0 346 0 588

  
sb

2 17 0754
49 37

0 346= = 
.

.
  .

Inference in the regression model 241

Testing
hypotheses about
the coefficients

SFE_C07.qxd  3/23/07  12:04 PM  Page 241



242 Chapter 7 • Correlation and regression

The procedure is in principle the same as in Chapter 5 on hypothesis testing.
We measure how many standard deviations separate the observed value of b
from the hypothesised value. If this is greater than an appropriate critical value
we reject the hypothesis. The test statistic is calculated using the formula:

(7.25)

Thus the sample coefficient b differs by 4.59 standard errors from its hypothe-
sised value β = 0. This is compared to the critical value of the t distribution,
using n − 2 degrees of freedom. Since t < −t*10 (= −2.228), in this case the null
hypothesis is rejected with 95% confidence. X does have some influence on Y.
Similar tests using the income ratio and GDP to attempt to explain the birth
rate show that in neither case is the slope coefficient significantly different
from zero, i.e. neither of these variables appears to influence the birth rate.

Rule of thumb for hypothesis tests

A quick and reasonably accurate method for establishing whether a coefficient is
significantly different from zero is to see if it is at least twice its standard error. If so,
it is significant. This works because the critical value (at 95%) of the t distribution
for reasonable sample sizes is about 2.

Sometimes regression results are presented with the t statistic (as calculated
above), rather than the standard error, below each coefficient. This implicitly
assumes that the hypothesis of interest is that the coefficient is zero. This is not
always appropriate: in the consumption function a test for the marginal
propensity to consume being equal to 1 might be of greater relevance, for
example. In a demand equation, one might want to test for unit elasticity. For
this reason, it is better to present the standard errors rather than the t statistics.

Note that the test statistic t = −4.59 is exactly the same result as in the case of
testing the correlation coefficient. This is no accident, for the two tests are
equivalent. A non-zero slope coefficient means there is a relationship between
X and Y which also means the correlation coefficient is non-zero. Both null
hypotheses are rejected.

Another check of the quality of the regression equation is to test whether the R2

value, calculated earlier, is significantly greater than zero. This is a test using the
F distribution and turns out once again to be equivalent to the two previous tests
H0: β = 0 and H0: ρ = 0, conducted in previous sections, using the t distribution.

The null hypothesis for the test is H0: R2 = 0, implying once again that X
does not influence Y (hence equivalent to β = 0). The test statistic is

(7.26)

or equivalently

(7.27)
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The F statistic is therefore the ratio of the regression sum of squares to the error
sum of squares, each divided by their degrees of freedom (for the RSS there is
one degree of freedom because of the one explanatory variable, for the ESS
there are n − 2 degrees of freedom). A high value of the F statistic rejects H0 in
favour of the alternative hypothesis, H1: R

2 > 0. Evaluating (7.26) gives

(7.28)

The critical value of the F distribution at the 5% significance level, with v1 = 1
and v2 = 10, is F*1,10 = 4.96. The test statistic exceeds this, so the regression as a
whole is significant. It is better to use the regression model to explain the birth
rate than to use the simpler model which assumes all countries have the same
birth rate (the sample average).

As stated before, this test is equivalent to those carried out before using the t
distribution. The F statistic is, in fact, the square of the t statistic calculated ear-
lier (−4.592 = 21.078) and reflects the fact that, in general,

F1,n−2 = t2
n−2

The Prob-value associated with both statistics is the same (approximately 0.001
in this case) so both tests reject the null at the same level of significance.
However, in multiple regression with more than one explanatory variable, the
relationship no longer holds and the tests do fulfil different roles, as we shall
see in the next chapter.

(a) For the regression of the birth rate on the income ratio, calculate the standard
errors of the coefficients and hence construct 95% confidence intervals for both.

(b) Test the hypothesis that the slope coefficient is zero against the alternative that it is
not zero.

(c) Test the hypothesis H0: R
2 = 0.

Having shown how to use the appropriate formulae to derive estimates of the
parameters, their standard errors and test hypotheses, we now present all these
results as they would be generated by a computer software package, in this case
Excel. This removes all the effort of calculation and allows us to concentrate on
more important issues such as the interpretation of the results. Table 7.6 shows
the computer output.

The table presents all the results we have already derived, plus a few more.

n The regression coefficients, standard errors and t ratios are given at the bot-
tom of the table, suitably labelled. The column headed ‘P value’ (this is how
Excel refers to the Prob-value, discussed in Chapter 5) gives some additional
information – it shows the significance level of the t statistic. For example, the
slope coefficient is significant at the level of 0.1%,3 i.e. there is this probability
of getting such a sample estimate by chance. This is much less than our usual
5% criterion, so we conclude that the sample evidence did not arise by chance.

n The program helpfully calculates the 95% confidence interval for the
coefficients also, which were derived above in equation (7.23).

  
F  

. /
(  – . )/

  .= =
0 678 1

1 0 678 10
21 078
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3 This is the area in both tails, so it is for a two-tail test.

SFE_C07.qxd  3/23/07  12:04 PM  Page 243



244 Chapter 7 • Correlation and regression

n Moving up the table, there is a section headed ‘Analysis of Variance’. This is
similar to the ANOVA covered in Chapter 6. This table provides the sums of
squares values (RSS, ESS and TSS, in that order) and their associated degrees
of freedom in the ‘df ’ column. The ‘MS’ (‘mean square’) column calculates
the sums of squares each divided by their degrees of freedom, whose ratio
gives the F statistic in the next column. This is the value calculated in equation
(7.28). The ‘Significance F’ value is similar to the P value discussed previously:
it shows the level at which the F statistic is significant (0.1% in this case)
and saves us looking up the F tables.

n At the top of the table is given the R2 value and the standard error of the
error term, se, labelled ‘Standard Error’, which we have already come across.
‘Multiple R’ is simply the square root of R2; ‘Adjusted R2’ (sometimes called
‘R-bar squared’ and written R2) adjusts the R2 value for the degrees of free-
dom. This is an alternative measure of fit, which is not affected by the num-
ber of explanatory variables, unlike R2. See Thomas (1993) Chapter 2 for a
more detailed explanation.

Earlier we showed that the regression line could be used for prediction, using
the figures for Costa Rica. The point estimate of Costa Rica’s birth rate is cal-
culated simply by putting its growth rate into the regression equation and
assuming a zero value for the error, i.e.

Z = 40.711 − 2.7 × 3 + 0 = 32.6

This is a point estimate, which is unbiased, around which we can build 
a confidence interval. There are, in fact, two confidence intervals we can 
construct, the first for the position of the regression line at X = 3, the second for
an individual observation (on Y) at X = 3. Using the 95% confidence level, the
first interval is given by the formula

Prediction

Table 7.6 Regression analysis output using Excel

SFE_C07.qxd  3/23/07  12:04 PM  Page 244



(7.29)

where XP is the value of X for which the prediction is made. tn−2 denotes the
critical value of the t distribution at the 5% significance level (for a two-tail
test) with n − 2 degrees of freedom. This evaluates to

= [29.90, 35.30]

This means that we predict with 95% confidence that the average birth rate
of all countries growing at 3% p.a. is between 29.9 and 35.3.

The second type of interval, for the value of Y itself at XP = 3, is somewhat
wider, because there is an additional element of uncertainty: individual coun-
tries do not lie on the regression line, but around it. This is referred to as the
95% prediction interval. The formula for this interval is

(7.30)

Note the extra ‘1’ inside the square root sign. When evaluated, this gives a 95%
prediction interval of [23.01, 42.19]. Thus we are 95% confident that an indi-
vidual country growing at 3% p.a. will have a birth rate within this range.

The two intervals are illustrated in Figure 7.8. Note that the prediction is
more precise (the interval is smaller):

n the closer the sample observations lie to the regression line (smaller se),
n the greater the spread of sample X values (larger ∑(X − W)2),
n the closer to the mean of X the prediction is made (smaller XP − W),
n the larger the sample size.
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Figure 7.8
Confidence and
prediction intervals: a
== confidence interval,
b == prediction interval
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Figure 7.9
The danger of
prediction outside the
range of sample data

Exercise 7.7

Exercise 7.8

Worked example 7.2

There is an additional danger of predicting far outside the range of sample X
values, if the true regression line is not linear as we have assumed. The linear
sample regression line might be close to the true line within the range of sam-
ple X values but diverge substantially outside. Figure 7.9 illustrates this point.

In the birth rate sample, we have a fairly wide range of X values; few coun-
tries grow more slowly than Senegal or faster than Korea.

Use Excel’s regression tool to confirm your answers to exercises 7.4 to 7.6.

(a) Predict (point estimate) the birth rate for a country with an income ratio of 10.

(b) Find the 95% confidence interval prediction for a typical country with IR = 10.

(c) Find the 95% confidence interval prediction for an individual country with IR = 10.

We continue the previous worked example, completing the calculations
needed for regression. The previous table contains most of the preliminary
calculations. To find the regression line we use:

and

a = 19.83 − 1.57 × 5.5 = 11.19

Hence we obtain the equation:

Yi = 11.19 + 1.57 Xi + ei

For inference, we start with the sums of squares:

TSS = ∑(Y − Y)2 = ∑Y2 − nY2 = 2427 − 6 × 19.832 = 66.83

ESS = ∑(Y −Z)2 = ∑Y2 − a∑Y − b∑XY
= 2427 − 11.19 × 119 − 1.57 × 682 = 23.62

RSS = TSS − ESS = 66.83 − 23.62 = 43.21

b
n XY X Y
n X X

  
  
  ( )

  
      

    
  .=

∑ − ∑ ∑
∑ − ∑

=
× − ×

× −
=

2 2 2

6 682 33 119
6 199 33

1 57
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Inference in the regression model 247

We then get R2 = RSS/TSS = 43.21/66.83 = 0.647 or 64.7% of the variation in
Y explained by variation in X.

To obtain the standard errors of the coefficients, we first calculate the
error variance as s e

2 = ESS/(n − 2) = 23.62/4 = 5.905 and the estimated vari-
ance of the slope coefficient is:

and the standard error of b is therefore √0.338 = 0.581.
Similarly for a we obtain:

and the standard error of a is therefore 3.34.
Confidence intervals for a and b can be constructed using the critical

value of the t distribution, 2.776 (5%, ν = 4), yielding 1.57 ± 2.776 × 0.581 =
[−0.04, 3.16] for b and [1.90, 20.47] for a. Note that zero is inside the con-
fidence interval for b. This is also reflected in the test of H0: β = 0 which is

which falls short of the two-tailed critical value, 2.776. Hence H0 cannot be
rejected.

The F statistic, to test H0: R
2 = 0 is:

which compares to a critical value of F(1,4) of 7.71 so, again, the null can-
not be rejected (remember that this and the t test on the slope coefficient
are equivalent in simple regression).

We shall predict the value of Y for a value of X = 10, yielding Z = 11.19 +
1.57 × 10 = 26.90. The 95% confidence interval for this prediction is calcu-
lated using (7.29), which gives

The 95% prediction interval for an actual observation at X = 10 is given by
(7.30), resulting in
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248 Chapter 7 • Correlation and regression

The measurement and interpretation of the regression coefficients depends
upon the units in which the variables are measured. For example, suppose we
had measured the birth rate in births per hundred (not thousand) of population;
what would be the implications? Obviously nothing fundamental is changed;
we ought to get the same qualitative result, with the same interpretation.
However, the regression coefficients cannot remain the same: if the slope
coefficient remained b = −2.7, this would mean that an increase in the growth
rate of one percentage point reduces the birth rate by 2.7 births per hundred,
which is clearly wrong. The right answer should be 0.27 births per hundred
(equivalent to 2.7 per thousand) so the coefficient should change to b = −0.27.
Thus, in general, the sizes of the coefficients depend upon the units in which
the variables are measured. This is why one cannot judge the importance of a
regression equation from the size of the coefficients alone.

It is easiest to understand this in graphical terms. A graph of the data will
look exactly the same, except that the scale on the Y-axis will change; it will be
divided by 10. The intercept of the regression line will therefore change to a =
4.0711 and the slope to b = −0.27. Thus the regression equation becomes

Yi = 4.0711 − 0.27Xi + e′i
(e′i = ei/10)

Since nothing fundamental has altered, any hypothesis test must yield the
same test statistic. Thus t and F statistics are unaltered by changes in the units
of measurement; nor is R2 altered. However, standard errors will be divided by
10 (they have to be to preserve the t statistics; see equation (7.25) for example).
Table 7.7 sets out the effects of changes in the units of measurement upon the
coefficients and standard errors. In the table it is assumed that the variables
have been multiplied by a constant k; in the above case k = 1/10 was used.

It is important to be aware of the units in which the variables are measured.
If not, it is impossible to know how large is the effect of X upon Y. It may be
statistically significant but you have no idea of how important it is. This may
occur if, for instance, one of the variables is presented as an index number (see
Chapter 10) rather than in the original units.

A neat way of avoiding the problems of measurement is to calculate the elastic-
ity, i.e. the proportionate change in Y divided by the proportionate change in X.
The proportionate changes are the same whatever units the variables are mea-
sured in. The proportionate change in X is given by ΔX/X, where ΔX indicates
the change in X. Thus if X changes from 100 to 110, the proportionate change
is ΔX/X = 10/100 = 0.1 or 10%. The elasticity, η, is therefore given by

Units of
measurement

Table 7.7 The effects of data transformations

Factor (k) multiplying . . . Effect upon

Y X a sa b sb

k 1 – all multiplied by k –
1 k unchanged divided by k
k k multiplied by k unchanged

How to avoid
measurement
problems:
calculating the
elasticity
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(7.31)

The second form of the equation is more useful, since ΔY/ΔX is simply the
slope coefficient b. We simply need to multiply this by the ratio X/Y, therefore.
But what values should be used for X and Y? The convention is to use the
means, so we obtain the following formula for the elasticity, from a linear
regression equation:

(7.32)

This evaluates to −2.7 × 3.35/31.67 = −0.29. This is interpreted as follows: a 1%
increase in the growth rate would lead to a 0.29% decrease in the birth rate.
Equivalently, and perhaps a little more usefully, a 10% rise in growth (from 
say 3% to 3.3% p.a.) would lead to a 2.9% decline in the birth rate (e.g. from 
30 to 29.13). This result is the same whatever units the variables X and Y are
measured in.

Note that this elasticity is measured at the means; it would have a different
value at different points along the regression line. Later on we show an alter-
native method for estimating the elasticity, in this case the elasticity of
demand which is familiar in economics.

So far only linear regression has been dealt with, that is fitting a straight line to
the data. This can sometimes be restrictive, especially when there is good rea-
son to believe that the true relationship is non-linear (e.g. the labour supply
curve). Poor results would be obtained by fitting a straight line through the
data in Figure 7.10, yet the shape of the relationship seems clear at a glance.

Fortunately this problem can be solved by transforming the data, so that
when graphed a linear relationship between the two variables appears. Then a
straight line can be fitted to these transformed data. This is equivalent to fitting
a curved line to the original data. All that is needed is to find a suitable trans-
formation to ‘straighten out’ the data. Given the data represented in Figure
7.10, if Y were graphed against 1/X the relationship shown in Figure 7.11
would appear.

Thus, if the regression line

(7.33)
  
Y a b

X
ei

i
i= + +     

1

   
η = ×   b

W
Y

η  
/
/

    = = ×
Δ
Δ

Δ
Δ

Y Y
X X

Y
X

X
Y

Inference in the regression model 249

Non-linear
transformations

Figure 7.10
Graph of Y against X
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250 Chapter 7 • Correlation and regression

were fitted, this would provide a good representation of the data in Figure 7.10.
The procedure is straightforward. First, calculate the reciprocal of each of the X
values and then use these (together with the original data for Y), using exactly
the same methods as before. This transformation appears inappropriate for the
birth rate data (see Figure 7.1) but serves as an illustration. The transformed X
values are 0.196 (= 1/5.1) for Brazil, 0.3125 (= 1/3.2) for Colombia, etc. The
resulting regression equation is

(7.34)

s.e. (1.64) (1.56)

R2 = 0.39, F = 6.44, n = 12

This appears worse than the original specification (the R2 is low and the slope
coefficient is not significantly different from zero) so the transformation does
not appear to be a good one. Note also that it is difficult to calculate the effect
of X upon Y in this equation. We can see that a unit increase in 1/X reduces
the birth rate by 3.96, but we do not have an intuitive feel for the inverse of
the growth rate. This latest result also implies that a fall in the growth rate
(hence 1/X rises) lowers the birth rate – the converse of our previous result. In
the next chapter, we deal with a different example where a non-linear trans-
formation does improve matters.

Table 7.8 presents a number of possible shapes for data, with suggested data
transformations which will allow the relationship to be estimated using linear
regression. In each case, once the data have been transformed, the methods
and formulae used above can be applied.

It is sometimes difficult to know which transformation (if any) to apply. A
graph of the data is unlikely to be as tidy as the diagrams in Table 7.8.
Economic theory rarely suggests the form which a relationship should follow,
and there are no simple statistical tests for choosing alternative formulations.
The choice can sometimes be made after visual inspection of the data, or on
the basis of convenience. The double log transformation is often used in eco-
nomics as it has some very convenient properties. Unfortunately it cannot be
used with the growth rate data here because Senegal’s growth rate was negative.
It is impossible to take the logarithm of a negative number. We therefore post-
pone the use of the log transformation in regression until the next chapter.

  
Y

X
ei

i
i= − + .   .   31 92 3 96

1

Figure 7.11
Figure 7.10
transformed: Y
against 1/X
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(a) Calculate the elasticity of the birth rate with respect to the income ratio, using the
results of previous exercises.

(b) Give a brief interpretation of the meaning of this figure.

Calculate a regression relating the birth rate to the inverse of the income ratio 1/IR.

Summary

n Correlation refers to the extent of association between two variables. The
(sample) correlation coefficient is a measure of this association, extending
from r = −1 to r = +1.

n Positive correlation (r > 0) exists when high values of X tend to be associated
with high values of Y and low X values with low Y values.

n Negative correlation (r < 0) exists when high values of X tend to be associ-
ated with low values of Y and vice versa.

n Values of r around 0 indicate an absence of correlation.

n As the sample correlation coefficient is a random variable we can test for its
significance, i.e. test whether the true value is zero or not. This test is based
upon the t distribution.

Summary 251

Table 7.8 Data transformations

Graph of Original Transformed Regression
Name relationship relationship relationship

Double log Y = aXbe ln Y = ln a + ln Y on ln X
b ln X + ln e

Reciprocal Y = a + b/X + e Y = a + b + e Y on

Semi-log eY = aXbe Y = ln a + Y on ln X
b ln X + ln e

Exponential Y = ea+bX+e ln Y = a + bX + e ln Y on X

1
X

1
X

Exercise 7.9

Exercise 7.10
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252 Chapter 7 • Correlation and regression

n The existence of correlation (even if ‘significant’) does not necessarily imply
causality. There can be other reasons for the observed association.

n Regression analysis extends correlation by asserting a causality from X to Y
and then measuring the relationship between the variables via the regression
line, the ‘line of best fit’.

n The regression line Y = a + bX is defined by the intercept a and slope
coefficient b. Their values are found by minimising the sum of squared errors
around the regression line.

n The slope coefficient b measures the responsiveness of Y to changes in X.

n A measure of how well the regression line fits the data is given by the
coefficient of determination, R2, varying between 0 (very poor fit) and 1 (per-
fect fit).

n The coefficients a and b are unbiased point estimates of the true values of
the parameters. Confidence interval estimates can be obtained, based on the
t distribution. Hypothesis tests on the parameters can also be carried out
using the t distribution.

n A test of the hypothesis R2 = 0 (implying the regression is no better at pre-
dicting Y than simply using the mean of Y) can be carried out using the F
distribution.

n The regression line may be used to predict Y for any value of X by assuming
the residual to be zero for that observation.

n The measured response of Y to X (given by b) depends upon the units of
measurement of X and Y. A better measure is often the elasticity, which is
the proportionate response of Y to a proportionate change in X.

n Data are often transformed prior to regression (e.g. by taking logs) for a vari-
ety of reasons (e.g. to fit a curve to the original data).

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

correlation 
coefficient

independent
(exogenous)
variable

intercept
total sum of squares
autocorrelation
prediction

coefficient of rank
correlation

dependent
(endogenous)
variable

coefficient of
determination (R2)

regression sum of
squares

standard error
elasticity
regression line or

equation
error term (or

residual)
slope
error sum of squares
t ratio

Key terms and
concepts
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Problems 253

Problem 7.1 The other data which Todaro might have used to analyse the birth rate were:

Country Birth rate GNP Growth Income ratio

Bangladesh 47 140 0.3 2.3
Tanzania 47 280 1.9 3.2
Sierra Leone 46 320 0.4 3.3
Sudan 47 380 −0.3 3.9
Kenya 55 420 2.9 6.8
Indonesia 35 530 4.1 3.4
Panama 30 1910 3.1 8.6
Chile 25 2560 0.7 3.8
Venezuela 35 4220 2.4 5.2
Turkey 33 1540 3.5 4.9
Malaysia 31 1840 4.3 5.0
Nepal 44 150 0.0 4.7
Malawi 56 200 2.7 2.4
Argentina 20 2560 1.9 3.6

For one of the three possible explanatory variables (in class, different groups could
examine each of the variables):

(a) Draw an XY chart of the data and comment upon the result.

(b) Would you expect a line of best fit to have a positive or negative slope? Roughly,
what would you expect the slope to be?

(c) What would you expect the correlation coefficient to be?

(d) Calculate the correlation coefficient, and comment.

(e) Test to see if the correlation coefficient is different from zero. Use the 95%
confidence level.

(Analysis of this problem continues in Problem 7.5.)

Problem 7.2 The data below show consumption of margarine (in ounces per person per week) and
its real price, for the UK.

Year Consumption Price Year Consumption Price

1970 2.86 125.6 1980 3.83 104.2
1971 3.15 132.9 1981 4.11 95.5
1972 3.52 126.0 1982 4.33 88.1
1973 3.03 119.6 1983 4.08 88.9
1974 2.60 138.8 1984 4.08 97.3
1975 2.60 141.0 1985 3.76 100.0
1976 3.06 122.3 1986 4.10 86.7
1977 3.48 132.7 1987 3.98 79.8
1978 3.54 126.7 1988 3.78 79.9
1979 3.63 115.7

(a) Draw an XY plot of the data and comment.

(b) From the chart, would you expect the line of best fit to slope up or down? In theory,
which way should it slope?

(c) What would you expect the correlation coefficient to be, approximately?

(d) Calculate the correlation coefficient between margarine consumption and its price.

(e) Is the coefficient significantly different from zero? What is the implication of the
result?
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254 Chapter 7 • Correlation and regression

(The following totals will reduce the burden of calculation: ∑Y = 67.52; ∑X = 2101.70;
∑Y 2 = 245.055; ∑X 2 = 240 149.27; ∑XY = 7299.638; Y is consumption, X is price. If you
wish, you could calculate a logarithmic correlation. The relevant totals are: ∑y = 23.88;
∑x = 89.09; ∑y 2 = 30.45; ∑x 2 = 418.40; ∑xy = 111.50, where y = lnY and x = lnX.)

(Analysis of this problem continues in Problem 7.6.)

Problem 7.3 What would you expect to be the correlation coefficient between the following vari-
ables? Should the variables be measured contemporaneously or might there be a lag in
the effect of one upon the other?

(a) Nominal consumption and nominal income.

(b) GDP and the imports/GDP ratio.

(c) Investment and the interest rate.

Problem 7.4 As Problem 7.3, for

(a) real consumption and real income;

(b) individuals’ alcohol and cigarette consumption;

(c) UK and US interest rates.

Problem 7.5 Using the data from Problem 7.1, calculate the rank correlation coefficient between the
variables and test its significance. How does it compare with the ordinary correlation
coefficient?

Problem 7.6 Calculate the rank correlation coefficient between price and quantity for the data in
Problem 7.2. How does it compare with the ordinary correlation coefficient?

Problem 7.7 (a) For the data in Problem 7.1, find the estimated regression line and calculate the R2

statistic. Comment upon the result. How does it compare with Todaro’s findings?

(b) Calculate the standard error of the estimate and the standard errors of the
coefficients. Is the slope coefficient significantly different from zero? Comment
upon the result.

(c) Test the overall significance of the regression equation and comment.

(d) Taking your own results and Todaro’s, how confident do you feel that you under-
stand the determinants of the birth rate?

(e) What do you think will be the result of estimating your equation using all 26 coun-
tries’ data? Try it! What do you conclude?

Problem 7.8 (a) For the data given in Problem 7.2, estimate the sample regression line and calcu-
late the R2 statistic. Comment upon the results.

(b) Calculate the standard error of the estimate and the standard errors of the coeffi-
cients. Is the slope coefficient significantly different from zero? Is demand inelastic?

(c) Test the overall significance of the regression and comment upon your result.

Problem 7.9 From your results for the birth rate model, predict the birth rate for a country with either
(a) GNP equal to $3000, (b) a growth rate of 3% p.a., or (c) an income ratio of 7. How
does your prediction compare with one using Todaro’s results? Comment.
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Problem 7.10 Predict margarine consumption given a price of 70. Use the 99% confidence level.

Update Todaro’s study using more recent data.

Problem 7.12 Try to build a model of the determinants of infant mortality. You should use cross-sec-
tion data for 20 countries or more and should include both developing and developed
countries in the sample.

Write up your findings in a report which includes the following sections: discussion of
the problem; data gathering and transformations; estimation of the model; interpretation
of results. Useful data may be found in the Human Development Report (use Google to
find it online).

Maddala, G.S. (1992) Introduction to Econometrics, 2nd edition, Macmillan.

Thomas, R.L. (1993) Introductory Econometrics, 2nd edition, Longman.

Todaro, M.P. (1985) Economic Development in the Third World, 3rd edition, Longman.

Answers to exercises

Exercise 7.1 (a) The calculation is:

Birth rate Income ratio Y2 X2 XY
Y X

Brazil 30 9.5 900 90.25 285
Colombia 29 6.8 841 46.24 197.2
Costa Rica 30 4.6 900 21.16 138
India 35 3.1 1 225 9.61 108.5
Mexico 36 5 1 296 25 180
Peru 36 8.7 1 296 75.69 313.2
Philippines 34 3.8 1 156 14.44 129.2
Senegal 48 6.4 2 304 40.96 307.2
South Korea 24 2.7 576 7.29 64.8
Sri Lanka 27 2.3 729 5.29 62.1
Taiwan 21 3.8 441 14.44 79.8
Thailand 30 3.3 900 10.89 99
Totals 380 60 12 564 361.26 1964

(c) As for (a) except ∑X = 0.6, ∑Y = 38, ∑X2 = 0.036126, ∑Y2 = 125.64, ∑XY = 1.964.
Hence

  

r   
  .   .   

(   .   . )(   .   )
  .=

× − ×

× − × −
=

12 1 964 0 6 38

12 0 036126 0 6 12 125 64 38
0 355

2 2

  

r   
      

(   .   )(      )
  .=

× − ×

× − × −
=

12 1964 60 380

12 361 26 60 12 12 564 380
0 355

2 2
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Problem 7.11
(Project)
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256 Chapter 7 • Correlation and regression

Exercise 7.2 (a)

(b) The Prob-value, for a two-tailed test is 0.257 or 25%, so we do not reject the
null of no correlation.

Exercise 7.3 (a) The calculation is:

BR IR Rank of Rank of d d2

BR IR

Brazil 30 9.5 7 1 6 36
Colombia 29 6.8 9 3 6 36
Costa Rica 30 4.6 7 6 1 1
India 35 3.1 4 10 −6 36
Mexico 36 5 2.5 5 −2.5 6.25
Peru 36 8.7 2.5 2 0.5 0.25
Philippines 34 3.8 5 7.5 −2.5 6.25
Senegal 48 6.4 1 4 −3 9
South Korea 24 2.7 11 11 0 0
Sri Lanka 27 2.3 10 12 −2 4
Taiwan 21 3.8 12 7.5 4.5 20.25
Thailand 30 3.3 7 9 −2 4
Totals 78 78 159

(b) This is less than the critical value of 0.591 so the null of no rank correlation
cannot be rejected.

(c) The differences d should change in sign, but this is eliminated when d2 is calcu-
lated, so the result is the same with the rankings reversed.

Exercise 7.4 (a) Using the data and calculations in the answer to Exercise 7.1 we obtain:

(b) A unit increase in the measure of inequality leads to approximately one addi-
tional birth per 1000 mothers. The constant has no useful interpretation. The
income ratio cannot be zero (in fact, it cannot be less than 0.5).

Exercise 7.5 (a) TSS = ∑(Yi − Y)2 = ∑Y2
i − nY 2 = 12 564 − 12 × 31.662 = 530.667

ESS = ∑(Yi − Y)2 = ∑Y2
i − a∑Yi − b∑XiYi

= 12 564 − 26.443 × 380 − 1.045 × 1139.70 = 463.804

RSS = TSS − ESS = 530.667 − 463.804 = 66.863

R2 = 0.126.

(b) This is the square of the correlation coefficient, calculated earlier as 0.355.

  
a    ( . )    .= − × =
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b  
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Exercise 7.6 (a)

and so

and

For a the estimated variance is

and hence sa = 4.774. The 95% CIs are therefore 1.045 ± 2.228 × 0.87 = [−0.894,
2.983 ] for b and 26.443 ± 2.228 × 4.774 = [15.806, 37.081].

(b)

Not significant.

(c)

Exercise 7.7 Excel should give the same answers.

Exercise 7.8 (a) BR = 26.44 + 1.045 × 10 = 36.9.

(b)

= [26.3, 47.5]

(c)

= [18.4, 55.4]

Exercise 7.9 (a)

(b) A 10% rise in the inequality measure (e.g. from 4 to 4.4) raises the birth rate by
1.65% (e.g. from 30 to 30.49).

Exercise 7.10 BR = 38.82 − 29.61 × + e

s.e. (19.0)
R2 = 0.19, F(1,10) = 2.43.

The regression is rather poor and the F statistic is not significant.

1
IR
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By the end of this chapter you should be able to:

n understand the extension of simple regression to multiple regression, with
more than one explanatory variable

n use computer software to calculate a multiple regression equation and
interpret its output

n recognise the role of (economic) theory in deriving an appropriate regression
equation

n interpret the effect of each explanatory variable on the dependent variable

n understand the statistical significance of the results

n judge the adequacy of the model and know how to improve it
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Introduction

Simple regression is rather restrictive, as it assumes that there is only one
explanatory factor affecting the dependent variable, which is unlikely to be
true in most situations. Price and income affect demand, for example. Multiple
regression, the subject of this chapter, overcomes this problem by allowing
there to be several explanatory variables (though still only one dependent vari-
able) in a model. The techniques are an extension of those used in simple, or
bivariate, regression. Multivariate regression allows more general and more
helpful models to be estimated, although this does involve new problems as
well as advantages.

The regression relationship now becomes

(8.1) Y = b0 + b1X1 + b2X2 + . . . + bkXk + e

where there are now k explanatory variables. The principles used in multiple
regression are basically the same as in the two-variable case: the coefficients b0,
. . . , bk are found by minimising the sum of squared errors; a standard error can
be calculated for each coefficient; R2, t ratios, etc. can be calculated and hypo-
thesis tests performed. However, there are a number of additional issues which
arise and these are dealt with in this chapter.

The formulae for calculating coefficients, standard errors, etc. become very
complicated in multiple regression and are time-consuming (and error-prone)
when done by hand. For this reason, these calculations are invariably done by
computer nowadays. Therefore the formulae are not given in this book: instead
we present the results of computer calculations (which you can replicate) and
concentrate on understanding and interpretting the results. This is as it should
be; the calculations themselves are the means to an end, not the end in itself.

Using spreadsheet packages

Standard spreadsheet packages such as Excel can perform multiple regression
analysis and are sufficient for most routine tasks. A regression equation can be cal-
culated via menus and dialogue boxes and no knowledge of the formulae is
required. However, when problems such as autocorrelation (see below) are present,
specialised packages such as TSP, Microfit or Stata are much easier to use and
provide more comprehensive results.

We also introduce a new example in this section, estimating a demand equa-
tion for imports into the UK over the period 1973–2003. There are a number of
reasons for this switch, for we could have continued with the birth rate exam-
ple (you are asked to do this in the exercises). First, it allows us to work through
a small ‘research project’ from beginning to end, including the gathering of
data, data transformations, interpretation of results, etc. Second, the example
uses time-series data and this allows us to bring out some of the particular
issues that arise in such cases. Time-series data do not generally constitute a
random sample of observations such as we have dealt with in the rest of this
book. This is because the observations are constrained to follow one another in
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260 Chapter 8 • Multiple regression

time rather than being randomly chosen. The proper analysis of time-series
data goes far beyond the scope of this book; however, students often want or
need to analyse such data using elementary techniques. This chapter therefore
also emphasises the checking of the adequacy of the regression equation for
such data. For a fuller treatment of the issues, the reader should consult a more
advanced text such as Maddala (1992) or Thomas (1993).

Principles of multiple regression

We illustrate some of the principles involved in multiple regression using two
explanatory variables, X1 and X2. Since we are using time-series data we replace
the subscript i with a subscript t to denote the individual observations.

The sample regression equation now becomes

(8.2) Yt = b0 + b1X1t + b2X2t + et t = 1, . . . , T

with three coefficients, b0, b1 and b2, to be estimated. Note that b0 now signifies
the constant. Rather than fitting a line through the data, the task is now to fit a
plane to the data, in three dimensions, as shown in Figure 8.1.

The plane is drawn sloping down in the direction of X1 and up in the direc-
tion of X2. The observations are now points dotted about in three-dimensional
space (with coordinates X1t, X2t and Yt) and the task of regression analysis is to
find the equation of the plane so as to minimise the sum of squares of vertical
distances from each point to the plane. The principle is the same as in simple
regression and the regression plane is the one that best summarises the data.

The coefficient b0 gives the intercept on the Y axis, b1 is the slope of the
plane in the direction of the X1 axis and b2 is the slope in the direction of the
X2 axis. Thus b1 gives the effect upon Y of a unit change in X1 assuming X2

Figure 8.1
The regression plane
in three dimensions
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remains constant. Similarly, b2 gives the response of Y to a unit change in X2,
given no change in X1. If X1 and X2 both change by 1, then the effect on Y is b1

+ b2. b1 and b2 are both estimates of the true parameters β1 and β2 and so stan-
dard errors and confidence intervals can be calculated, implying that we are
not absolutely certain about the true position of the plane. In general, the
smaller these standard errors, the better, since it implies less uncertainty about
the true relationship between Y and the X variables.

When there are more than two explanatory variables, more than three
dimensions are needed to draw a picture of the data. The reader will under-
stand that this is a difficult (if not impossible) task; however, it is possible to
estimate such a model and interpret the results in a similar manner to the more
simple model.

What determines imports into the UK?

To illustrate multiple regression we suppose that we have the job of finding out
what determines the volume of imports into the United Kingdom and whether
there are any policy implications of the result. We are given this very open-
ended task, which we have to carry through from start to finish. We end up by
estimating a demand equation, so the analysis serves as a model for any
demand estimation, for example, a firm trying to find out about the demand
for its product.

How should we set about this task? The project can be broken down into the
following steps:

1 Theoretical considerations: what can economic theory tell us about the
problem and how will this affect our estimation procedures?

2 Data gathering: what data do we need? Are there any definitional problems,
for example?

3 Data transformation: are the data suitable for the task? We might want to
transform one or more variables before estimation.

4 Estimation: this is mainly done automatically, by the computer.
5 Interpretation of the results: what do the results tell us? Do they appear satis-

factory? Do we need to improve the model? Are there any policy conclusions?

Although this appears reasonably clear-cut, in practice these steps are often
mixed up. A researcher might gather the data, estimate a model and then not
be happy with the results. He therefore goes back and gets some different data,
perhaps some new variables, or maybe tries a different method of investigation
until ‘satisfactory’ results are obtained. There is usually some element of data
‘mining’ or ‘fishing’ involved. These methodological issues are examined in
more detail later on.

What does economic theory tell us about imports? Like any market, the quan-
tity transacted depends upon supply and demand. Strictly, therefore, we should
estimate a simultaneous equation model of both the demand and supply
equations. Since this is beyond the scope of this book (see Thomas, Chapter 8
or Maddala, Chapter 9 for analyses of such models) we simplify by assuming
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262 Chapter 8 • Multiple regression

that, as the UK is a small economy in the world market, we can buy any quan-
tity of imports that we demand (at the prevailing price). In other words, supply
is never a constraint, and the UK’s demand never influences the world price.
This assumption, which seems reasonable, means that we can concentrate on
estimating the demand equation alone.

Second, economic theory suggests that demand depends upon income and
relative prices, particularly the prices of close substitutes and complements.
Furthermore, rational consumers do not suffer from money illusion, so real
variables should be used throughout.

Economic theory does not tell us some things, however. It does not tell us
whether the relationship is linear or not. Nor does it tell us whether demand
responds immediately to price or income changes, or whether there is a lag. For
these questions, the data are more likely to give us the answer.

The raw data are presented in Table 8.1, obtained from official UK statistics.
Note that there is some slight rounding of the figures: imports are measured to

Data

Table 8.1 Original data for study of imports

Year Imports GDP GDP deflator Price of imports RPI all items

1973 18.8 74.0 24.8 21.5 25.1
1974 27.0 83.7 28.9 31.3 29.1
1975 28.7 105.8 35.8 35.6 36.1
1976 36.5 125.1 41.5 43.7 42.1
1977 42.3 145.5 47.1 50.5 48.8
1978 45.2 167.8 52.6 52.5 52.8
1979 54.2 197.4 60.8 55.8 59.9
1980 57.4 230.7 76.9 65.5 70.7
1981 60.2 253.0 81.6 71.2 79.1
1982 67.6 277.1 85.9 77.3 85.9
1983 77.4 302.8 90.3 84.2 89.8
1984 92.6 324.4 94.9 91.9 94.3
1985 98.7 355.0 100.0 96.3 100.0
1986 100.9 381.3 103.7 91.9 103.4
1987 111.4 419.6 108.9 94.7 107.7
1988 124.7 468.4 116.1 93.8 113.0
1989 142.7 514.2 124.3 97.7 121.8
1990 148.3 557.3 133.9 100.0 133.3
1991 142.1 586.1 142.6 101.2 141.1
1992 151.7 610.9 148.2 102.1 146.4
1993 170.1 642.3 152.4 112.3 148.7
1994 185.3 681.3 155.1 116.1 152.4
1995 207.1 719.2 159.1 123.6 157.6
1996 227.4 763.3 164.4 123.4 161.4
1997 232.0 810.9 168.9 115.1 166.5
1998 238.8 859.4 173.7 108.2 172.2
1999 254.7 903.9 177.8 107.7 174.8
2000 286.6 951.3 180.5 111.2 180.0
2001 299.3 994.0 184.6 110.2 183.2
2002 304.7 1043.3 190.5 107.2 186.3
2003 308.4 1099.4 196.1 106.6 191.7
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the nearest £0.1bn (£100m) so there is a possible (rounding) error of up to
about 0.1%. This is unlikely to substantially affect our estimates.

The variables are defined as follows:

n Imports (variable M): imports of goods and services into the UK, at current
prices, in £bn.

n Income (GDP): UK gross domestic product at factor cost, at current prices, in
£bn.

n The GDP deflator (PGDP): an index of the ratio of nominal to real GDP. 1985 =
100. This is an index of general price increases and may be used to transform
nominal GDP to real GDP.

n The price of imports (PM): the unit value index of imports, 1990 = 100.
n The price of competing products (P): the retail price index (RPI), 1985 = 100.

These variables were chosen from a wide range of possibilities. To take
income as an example, we could use personal disposable income or GDP. Since
firms as well as consumers import goods, the wider measure is used. Then there
is the question of whether to use GDP or GNP, and whether to measure them
at factor cost or market prices. Because there is little difference between these
different magnitudes, this is not an important decision in this case. However,
in a research project one might have to consider such issues in more detail.

Before calculating the regression equation we must transform the data in 
Table 8.1. This is because they measure expenditures on imports and GDP
which have not been adjusted for price changes (inflation). Part of the observed
increase in the imports series is due to prices increasing over time, not
increased consumption of imported goods. It is the latter we are trying to
explain.

Since expenditure on any good (including imports) can be expressed as the
quantity purchased multiplied by the price, to obtain the quantity of imports
(‘real’ imports) we must divide the expenditure by the price of imports. In alge-
braic terms:

expenditure = price × quantity, hence

We therefore adjust both imports and GDP for the effect of price changes in
this way. This process is covered in more detail in Chapter 10 on index num-
bers (you may wish to read that before proceeding with this chapter, though it
is not essential).

We also need to adjust the import price series, which influences the demand
for imports. People make their spending decisions by looking at the price of an
imported good relative to prices generally. Hence we divide the price of imports
by the retail price index to give the relative, or real, price of imports.

In summary, the transformed variables are derived as follows:

n Real imports (M/PM): this series is obtained by dividing the nominal series for
imports by the unit value index (i.e. the import price index). The series gives
imports at 1990 prices (in £bn). (Note that the nominal and real series are
identical in 1990.)

quantity
expenditure

price
  =
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264 Chapter 8 • Multiple regression

n Real income (GDP/PGDP): this is the nominal GDP series divided by the GDP
deflator to give GDP at 1990 prices (in £bn).

n Real import prices (PM/P): the unit value index is divided by the RPI to give
this series. It is an index number series. It shows the price of imports relative
to the price of all goods. The higher this price ratio the less attractive
imports would be relative to domestically produced goods.

The transformed variables are shown in Table 8.2. Do not worry if you have
not fully understood the process of transforming to real terms. You can simply
begin with the data in Table 8.2, recognising them as the quantity of imports
demanded, the level of real income or output and the price of imports relative
to all goods.

We should now ‘eyeball’ the data using appropriate graphical techniques.
This will give a broad overview of the characteristics of the data and any
unusual or erroneous observations may be spotted. This is an important step in
the analysis.

Figure 8.2 shows a time-series plot of the three variables. The graph shows
that both imports and GDP increase smoothly over the period, and that there

Table 8.2 Transformed data

Year Real imports Real GDP Real import prices

1973 87.4 399.5 114.2
1974 86.3 387.8 143.4
1975 80.6 395.7 131.5
1976 83.5 403.6 138.4
1977 83.8 413.6 137.9
1978 86.1 427.2 132.5
1979 97.1 434.7 124.2
1980 87.6 401.7 123.5
1981 84.6 415.2 120.0
1982 87.5 431.9 120.0
1983 91.9 449.0 125.0
1984 100.8 457.7 129.9
1985 102.5 475.3 128.4
1986 109.8 492.3 118.5
1987 117.6 515.9 117.2
1988 132.9 540.2 110.7
1989 146.1 553.9 106.9
1990 148.3 557.3 100.0
1991 140.4 550.3 95.6
1992 148.6 552.0 93.0
1993 151.5 564.3 100.7
1994 159.6 588.2 101.5
1995 167.6 605.3 104.5
1996 184.3 621.7 101.9
1997 201.6 642.9 92.1
1998 220.7 662.5 83.8
1999 236.5 680.7 82.1
2000 257.7 705.7 82.3
2001 271.6 721.0 80.2
2002 284.2 733.3 76.7
2003 289.3 750.7 74.1
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appears to be a fairly close relationship between them. This is confirmed by the
XY plot of imports and GDP in Figure 8.3, which shows an approximately lin-
ear relationship. Care should be taken in interpreting this however, since it
shows only the partial relationship between two of the three variables.
However, it does appear to be fairly strong.

The price of imports has declined by about 35% over the period (this is rela-
tive to all goods generally) so this might also have contributed to the rise in
imports. Figure 8.4 provides an XY chart of these two variables. There appears
to be a clear negative relationship between imports and their price. On the
basis of the graphs we might expect a positive relation between imports and
GDP, and a negative one between imports and their price. Both of these expec-
tations are in line with what economic theory would predict.

What determines imports into the UK? 265

Figure 8.2
A time-series plot 
of imports, GDP 
and import prices 
(real terms)

Note: This is a multiple time-series graph as described in Chapter 1.

Figure 8.3 
XY graph of imports
against GDP
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266 Chapter 8 • Multiple regression

For the exercises in this chapter we will be looking at the determinants of travel by car
in the UK, which has obviously been increasing steadily and causes concern because of
issues such as pollution and congestion. Data for these exercises are as follows:

Year Car travel Real price of Real price of Real price of Real personal 
(billions of car travel rail travel bus travel disposable income
passenger-
kilometres)

1980 388 107.0 76.2 78.9 54.2
1981 394 107.1 77.8 79.3 54.0
1982 406 104.2 82.3 84.6 53.8
1983 411 106.4 83.4 85.5 54.9
1984 432 103.8 79.8 83.3 57.0
1985 441 101.7 80.4 81.6 58.9
1986 465 97.4 82.7 87.1 61.3
1987 500 99.5 84.1 88.4 63.6
1988 536 98.4 85.4 88.4 67.0
1989 581 95.9 85.7 88.6 70.2
1990 588 93.3 86.3 88.9 72.6
1991 582 96.4 89.9 92.4 74.1
1992 583 98.3 93.5 94.7 76.2
1993 584 101.6 97.6 97.3 78.3
1994 591 101.3 99.2 99.2 79.4
1995 596 99.7 100.4 100.5 81.3
1996 606 101.4 101.1 103.1 83.3
1997 614 102.7 100.6 105.1 86.6
1998 618 102.1 101.5 106.6 86.9
1999 613 103.9 103.2 109.3 89.8
2000 618 103.7 102.2 110.0 95.3
2001 624 101.2 102.9 112.0 100.0

(a) Draw time-series graphs of car travel and its price and comment on the main features.

(b) Draw XY plots of car travel against (i) price and (ii) income. Comment upon the
major features of the graphs.

(c) In a multiple regression of car travel on its price and on income, what would you
expect the signs of the two slope coefficients to be? Explain your answer.

(d) If the prices of bus and rail travel are added, what would expect the signs on their
coefficients to be? Justify your answer.

Figure 8.4
XY graph of imports
against import prices

Exercise 8.1
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The model to be estimated is therefore

(8.3)

To simplify notation we rewrite this as

(8.4) mt = b0 + b1gdpt + b2pmt + et

The results of estimating this equation are shown in Table 8.3, which shows
the output using Excel. We have used the data in years 1973–2001 for estima-
tion purposes, ignoring the observations for 2002 and 2003. Later on we will
use the results to predict imports in 2002 and 2003.

The print-out gives all the results we need, which may be summarised as

(8.5) mt = −103.2 + 0.50gdpt − 0.19pmt + et

(0.06) (0.34)

R2 = 0.95, F2,26 = 264.6, n = 29

How do we judge and interpret these results? As expected, we obtain a positive
coefficient on income and a negative one on price. Note that it is difficult to
give a sensible interpretation to the constant. The coefficients should be judged
in two ways: in terms of their size and their significance.

Size

As noted earlier, the size of a coefficient depends upon the units of measure-
ment. How ‘big’ is the coefficient 0.50, for income? This tells us that a rise in
GDP, measured in 1990 prices, of £1bn would raise imports, also measured in
1990 prices, by £0.50bn. This is a bit cumbersome. It is better to interpret
everything in proportionate terms, and calculate the elasticity of imports with
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Table 8.3 Regression results using Excel

SUMMARY OUTPUT

Regression statistics

Multiple R 0.98
R Square 0.95
Adjusted R Square 0.95
Standard Error 12.69
Observations 29

ANOVA

df SS MS F Significance F

Regression 2 85 209.41 42 604.70 264.64 5.2E-18
Residual 26 4 185.82 160.99
Totals 28 89 395.23

Coefficients Standard t Stat P value Lower 95% Upper 95%
error

Intercept −103.22 67.96 −1.52 0.14 −242.92 36.48
Real GDP 0.50 0.06 8.30 0.00 0.38 0.63
Real import prices −0.19 0.34 −0.57 0.58 −0.89 0.50
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268 Chapter 8 • Multiple regression

respect to income. This is the proportionate change in imports divided by the
proportionate change in price:

(8.6)

which can be evaluated (see equation (7.32)) as:

(8.7)

which shows that imports are highly responsive to income. A 3% rise in real
GDP (a fairly typical annual figure) leads to an approximate 6% rise in imports,
as long as prices do not change at the same time. Thus as income rises, imports
rise substantially faster. More generally we would interpret the result as show-
ing that a 1% rise in GDP leads to a 1.9% rise in imports.

A similar calculation for the price variable yields

(8.8)

which suggests that imports are inelastic with respect to price. A 10% price rise
(relative to domestic prices) would lower import demand by only 1.6%.

Significance

We can test whether each coefficient is significantly different from zero, i.e.
whether the variable truly affects imports or not, using a conventional hypo-
thesis test. For income we have the test statistic

which has a t distribution with n − k − 1 = 29 − 2 − 1 = 26 degrees of freedom 
(k is the number of explanatory variables excluding the constant, 2). The cri-
tical value for a one-tail test at the 95% confidence level is 1.706. Since the test
statistic comfortably exceeds this we reject H0: β1 = 0 in favour of H1: β1 > 0.
Hence income does indeed affect imports; the sample data are unlikely to have
arisen purely by chance. Note that this t ratio is given on the Excel print-out.

For price, the test statistic is

which is greater (nearer to zero) than −1.706, so does not fall into the rejection
region. H0: β2 = 0 cannot be rejected, therefore. So not only is the coefficient on
price quantitatively small, it is insignificantly different from zero, i.e. there is a
reasonable probability of this result arising simply by chance. This result arises
despite the fact that the graph of imports against price seemed to show a strong
negative relationship. That graph was in fact somewhat misleading. The regres-
sion tells us that the more important relationship is with income and, once
that is accounted for, price provides little additional explanation of imports.

We can test the overall significance via an F test as we did for simple regression.
This is a test of the hypothesis that all the slope coefficients are simultaneously
zero (equivalent to the hypothesis that R2 = 0):
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H0: β1 = β2 = 0
H1: β1 ≠ β2 ≠ 0

This tests whether either income or price affects demand. Since we have already
found that income is a significant explanatory variable, via the t test, it would
be surprising if this null hypothesis were not rejected. The test statistic is simi-
lar to equation (7.27):

(8.9)

which has an F distribution with k and n − k − 1 degrees of freedom.
Substituting in the appropriate values gives

which is in excess of the critical value for the F distribution of 3.37 (at 5%
significance), so the null hypothesis is rejected, as expected. The actual
significance level is given by Excel as ‘5.2E−18’, i.e. 5.2 × 10−18, effectively zero
and certainly less than 5%.

Does corruption harm investment?

The World Bank examined this question in its 1997 World Development Report,
using regression methods. There is a concern that levels of corruption in many
countries harm investment and hence also economic growth.

The study looked at the relationship between investment (measured as a per-
centage of GDP) and the following variables: the level of corruption, the predictabil-
ity of corruption, the level of secondary school enrolment, GDP per capita and a
measure of ‘policy distortion’. Both the level and predictability of corruption were
based upon replies to surveys of businesses in the 39 countries studied, which
asked questions such as ‘Do you have to make additional payments to get things
done?’ The policy distortion variable measures how badly economic policy is run,
based on openness to trade, the exchange rate, etc. Higher values of the index
indicate poorer economic management.

The regression obtained was

= 19.5 − 5.8 CORR + 6.3 PRED_CORR + 2.0 SCHOOL 

(s.e.) (13.5) (2.2) (2.6) (2.2)

− 1.1 GDP − 2.0 DISTORT
(1.9) (1.5)

c2 = 0.24

Thus only the corruption variables prove significant at the 5% level. A rise in the
level of corruption lowers investment (note the negative coefficient, −5.8) as
expected, but a rise in the predictability of corruption raises it. This is presumably
because people learn how to live with corruption. Unfortunately, units of measure-
ment are not given, so it is impossible to tell just how important are the sizes of 
the coefficients and, in particular, to find the trade-off between corruption and its
predictability.

Adapted from: World Development Report, 1997.
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270 Chapter 8 • Multiple regression

Are the results
satisfactory?

Improving the
model – using
logarithms

Table 8.4 Actual, forecast and error values

Year Actual Forecast Error

2002 284.2 250.9 33.3
2003 289.3 260.2 29.1 

1 Remember that data from 2002 and 2003 were not used to estimate the regression
equation.

(a) Using the data from Exercise 8.1, calculate a regression explaining the level of car
travel, using price and income as explanatory variables. Use only the observations
from 1980 to 1999. As well as calculating the coefficients you should calculate
standard errors and t ratios, R2 and the F statistic.

(b) Interpret the results. You should evaluate the size of the effect of the explanatory
variables as well as their significance and evaluate the goodness of fit of the model.

The results so far appear satisfactory: we have found one significant coefficient,
the R2 value is quite high at 95% (although R2 values tend to be high in time-series
regressions) and the result of the F test proves the regression is worthwhile.
Nevertheless, it is perhaps surprising to find no effect from the price variable;
we might as well drop it from the equation and just regress imports on GDP.

A more stringent test is to use the equation for forecasting, since this uses
out-of-sample information for the test. So far, the diagnostic tests such as the F
test are based on the same data that were used for estimation. A more suitable
test might be to see if the equation can forecast imports to within (say) 3% of
the correct value. Since real imports increased by about 4.1% p.a. on average
between 1973 and 2001, a simple forecasting rule would be to increase the cur-
rent year’s figure by 4.1%. The regression model might be compared to this
standard.

Forecasts for 2002 and 20031 are obtained by inserting the values of the
explanatory variables for these years into the regression equation, giving

2002: N = −103.2 + 0.50 × 733.3 − 0.19 × 76.7 = 250.9
2003: N = −103.2 + 0.50 × 750.7 − 0.19 × 74.1 = 260.2

Table 8.4 summarises the actual and forecast values, with the error between
them. The percentage error is about 12% in each year. This is not very good!
Both years are under-predicted by a large amount. The simple growth rule
would have given predictions of 271.6 × 1.041 = 282.8 and 271.6 × 1.0412 =
294.5 which are much closer. More work needs to be done.

There are various ways in which we might improve our model. We might try to
find additional variables to improve the fit (though since we already have R2 =
0.95 this might be difficult), or we might try lagged variables (e.g. the previous
year’s price) as explanatory variables, on the grounds that the effects do not
work through instantaneously. Alternatively, we might try a different func-
tional form for the equation. We have presumed that the regression should be
a straight line, although we made no justification for this. Indeed, the graph of

Exercise 8.2
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imports against income showed some degree of curvature (see Figure 8.3
above). Hence we might try a non-linear transformation of the data, as briefly
discussed at the end of Chapter 7.

We shall re-estimate the regression equation, having transformed all 
the data using (natural) logarithms. Not only does this method fit a curve to
the data but has the additional advantage of giving more direct estimates of the
elasticities, as we shall see. Because of such advantages, estimating a regression
equation in logs is extremely common in economics and analysts often start
with the logarithmic form in preference to the linear form.

We will therefore estimate the equation

ln mt = b0 + b1 ln gdpt + b2 ln pmt + et

where ln mt indicates the logarithm of imports in period t, etc. We therefore
need to transform our three variables into logarithms, as shown in Table 8.6
(selected years only).

We now use the new data for the regression, with ln m as the dependent
variable, ln gdp and ln pm as the explanatory variables. We also use exactly 
the same formulae as before, applied to this new data. This gives the following
results:
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SUMMARY OUTPUT

Regression statistics

Multiple R 0.99
R Square 0.98
Adjusted R Square 0.98
Standard Error 0.06
Observations 29

ANOVA

df SS MS F Significance F

Regression 2 4.02 2.01 638.10 8.01E-23
Residual 26 0.08 0.00

Totals 28 4.10

Coefficients Standard t Stat P value Lower 95% Upper 95%
error

Intercept −2.52 1.61 −1.57 0.13 −5.83 0.79
ln GDP 1.54 0.14 10.92 0.00 1.25 1.83
ln import prices −0.48 0.16 −2.95 0.01 −0.81 −0.15

The regression equation we have is therefore

lm mt = −2.52 + 1.54 ln gdpt − 0.48 ln pmt

Because we have transformed the variables the slope coefficients are very differ-
ent from the values we had before, from the linear equation. However, the
interpretation of the log regression equation is different. A big advantage of
this formulation is that the coefficients give direct estimates of the elasticities;
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272 Chapter 8 • Multiple regression

there is no need to multiply by the ratio of the means, as with the linear form
(see equation 8.7).

Hence the income elasticity of demand is estimated as 1.54 and the price
elasticity is −0.48. These contrast with the values calculated from the linear
equation, of 1.90 and −0.16 respectively. It is difficult to say which is the ‘right’
answer, both are estimates of the unknown, true values. One advantage of the
log model is that the elasticity does not vary along the demand curve, as it does
with the linear model. With the latter we had to calculate the elasticity at the
means of the variables, but the value inevitably varies along the curve. For
example, taking 2001 values for imports and income we obtain an elasticity of

This is quite different from the value at the mean, 1.90. A convenient math-
ematical property of the log formulation is that the elasticity does not change
along the curve.

We can compare the linear and log models further to judge which is prefer-
able. The log model has a higher price elasticity and is ‘significant’ (t = −2.95)
so we can now reject the hypothesis that price has no effect upon import
demand. The R2 value is also higher (0.98 versus 0.95) but this is a misleading
comparison. R2 tells us how much of the variation in the dependent variable is
explained by the explanatory variables. However, we have a different depen-
dent variable now: the log of imports rather than imports. Although they are
both measuring imports, they are different variables, making direct comparison
of R2 invalid.

We can also compare the predictive abilities of the two models. For the log
model we have the following predictions:

2002: ln N = −2.52 + 1.54 × 6.60 − 0.48 × 4.34 = 5.58
2003: ln N = −2.52 + 1.54 × 6.62 − 0.48 × 4.31 = 5.63

These are log values, so we need to take anti-logs to get back to the original units:

e5.58 = 264.1 and e5.63 = 278.4

  
ηgdp = × = .   

.

.
  .0 50

721 0
271 6

1 33

Table 8.6 Data in natural logarithm form

Year Real imports ln m Real GDP ln gdp Real import prices ln pm

1973 87.4 4.47 399.5 5.99 114.2 4.74
1974 86.3 4.46 387.8 5.96 143.4 4.97
1975 80.6 4.39 395.7 5.98 131.5 4.88
1976 83.5 4.42 403.6 6.00 138.4 4.93
1977 83.8 4.43 413.6 6.02 137.9 4.93

� � � � � � �
2000 257.7 5.55 705.7 6.56 82.3 4.41
2001 271.6 5.60 721 6.58 80.2 4.38
2002 284.2 5.65 733.3 6.60 76.7 4.34
2003 289.3 5.67 750.7 6.62 74.1 4.31

Note: You can obtain the natural logarithm by using the ‘ln’ key on your calculator or the ‘ln’
function in Excel (or other software). Thus we have ln (87.4) = 4.47, etc.
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These predictions are substantially better than from the linear equation, as we
see below:

Year Actual Fitted Error % error

2002 284.2 264.1 20.1 7.6
2003 289.3 278.4 10.9 3.9

The errors are less than half the size they were in the linear formulation and,
overall, the log regression is beginning to look much better.

We have so far succeeded in estimating a reasonably good model explaining the
levels of imports. The fit of the model, measured by R2, is good, the coefficients
have the anticipated signs and are both significant. The forecasting perform-
ance is adequate but could be improved. The rest of this chapter goes on to look
at more advanced topics relating to the regression model. These are not essen-
tial as far as estimation of the regression model goes but are useful ‘diagnostic
tools’ which allow us to check the quality of the estimates in more depth.

There is a formal test for the accuracy of the forecasts (which can be applied to
both linear and log forms of the equation), based on the F distribution. This is
the Chow test (named after its inventor). The null hypothesis is that the true
prediction errors are all equal to zero, so the errors we do observe are just ran-
dom variation from the regression line. Alternatively, we can interpret the
hypothesis as asserting that the same regression line applies to both estimation
and prediction periods. If the predictions lie too far from the estimated regres-
sion line then the null is rejected. The alternative hypothesis is that the model
has changed in some way and that a different regression line should be applied
to the prediction period.

The test procedure is as follows:

1 Use the first n1 observations for estimation, the last n2 observations for the
forecast. In this case we have n1 = 29, n2 = 2.

2 Estimate the regression equation using the first n1 observations, as above,
and obtain the error sum of squares, ESS1.

3 Re-estimate the equation using all n1 + n2 observations, and obtain the
pooled error sum of squares, ESSP.

4 Calculate the F statistic:

We then compare this test statistic with the critical value of the F distribu-
tion with n2, n1 − k − 1 degrees of freedom. If the test statistic exceeds the
critical value, the model fails the prediction test. A large value of the test
statistic indicates a large divergence between ESSP and ESS1 (adjusted for the
different sample sizes), suggesting that the model does not fit the two periods
equally well. The bigger the prediction errors, the more ESSP will exceed ESS1,
leading to a large F statistic.

Evaluating the test (for the log regression), we have ESS1 = 0.08193 (which can
be obtained directly from the results above). Estimating over the whole sample,
1973–2003, gives:

  
F

n

n k
  

  )/

/(     )
=

−
− −
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1

2

1 1
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Testing the
accuracy of the
forecasts: the
Chow test
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274 Chapter 8 • Multiple regression

ln mt = −2.22 + 1.53 ln gdpt − 0.53 ln pmt−1

R2 = 0.98, F2,26 = 848.02, ESSP = 0.08696

so the test statistic is

The critical value of the F distribution for 2, 26 degrees of freedom is 3.37, so
the equation passes the test for parameter stability, i.e. the same regression line
may be considered valid for both sub-periods.

It is noticeable that the predictions are always too low (for all the models);
the errors in both years are positive. This suggests a slight ‘boom’ in imports
relative to what one might expect (despite the result of the Chow test). Perhaps
we have omitted an explanatory variable which has changed markedly in
2002–03 or perhaps the errors are not truly random. Alternatively, we still
could have the wrong functional form for the model. Since we already have an
R2 value of 0.98 we are unlikely to find another variable which adds
significantly to the explanatory power of the model. We have already tried two
functional forms. Therefore we shall examine the errors in the model.

(a) Use the regression equation from Exercise 8.2 to forecast the level of car travel in
2000 and 2001. How accurate are your forecasts? Is this a satisfactory result?

(b) Convert the variables to (natural) logarithms and repeat the regression calculation.
Interpret your result and compare to the linear equation.

(c) Calculate price and income elasticities from the linear model and compare to those
obtained from the log model.

(d) Forecast car travel in 2000 and 2001 using the log model and compare the results
to those from the linear model. (Use the function ex to convert the forecasts in logs
back to the original units.)

(e) Use a Chow test to test whether the forecasts are accurate. Is there any difference
between linear and log models?

This is another important part of the checking procedure, to see if the model is
adequate or whether it is mis-specified (e.g. has the wrong functional form, or a
missing explanatory variable). If the model is a good one then the error term
should be random and ideally should be unpredictable. If there are any pre-
dictable elements to it, then we could use this information to improve our
model and forecasts. Unlike forecasting, this is a within-sample procedure.
Second, we expect the observed errors to be approximately Normally dis-
tributed, since this assumption underlies the t and F distributions used for
inference. If the errors are not Normal, this would cast doubt on our use of t
and F statistics for inference purposes.

A complete, formal, treatment of these issues is beyond the scope of this
book (see, for example, Thomas, Chapter 5, or Maddala, Chapters 5, 6 and 12).
Instead, we give an outline of how to detect the problems and some simple
procedures which might overcome them. At least, if you are aware of the prob-
lem you will know that you should consult a more advanced text.

  
F  

( .   . )/
. /

  .=
−

=
0 08696 0 08193 2

0 08193 26
0 80

Analysis of the
errors

Exercise 8.3
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First, we can check the errors for Normality by constructing their frequency
distribution, as was done in the previous chapter. This is left as an exercise for
the reader. (The histogram of residuals does not look much like a Normal distri-
bution, but formal tests (beyond the scope of this book) do not reject
Normality.) Second, we can examine the error term for evidence of autocorre-
lation. This was introduced briefly in Chapter 1. To recapitulate: autocorrela-
tion occurs when one error observation is correlated with an earlier (often the
previous) one. It only occurs with time-series data (in cross-section, the order-
ing of the observations does not matter, so there is not a natural ‘preceding’
observation). Autocorrelation could occur in the import equation because of
the ‘stickiness’ of imports, i.e. if imports are higher than predicted in period t,
then they are likely to be high in t + 1 also. This could explain the two negative
forecasting errors. Alternatively, it could be a sign of the wrong functional form
of the equation having been estimated.

Checking for autocorrelation

The errors are obtained by subtracting the fitted values from the actual observa-
tions. Using time-series data we have:

(8.10) et = Yt − Zt = Yt − b0 − b1X1t − b2X2t

The errors obtained from the import demand equation (for the logarithmic
model of import demand) are shown in Table 8.7 and are graphed in Fig-
ure 8.5. The graph suggests a definite pattern, that of positive errors initially,
followed by a series of negative errors, followed in turn by more positive 
errors. This is definitely not a random pattern: a positive error is likely to be 
followed by a positive error, a negative error by another negative error. From
this graph we might confidently predict that the two errors for 2002–03 are
positive (as in fact they are). This means our regression equation is inadequate
in some way – we are expecting it to under-predict. If so, we ought to be able to
improve it.

The phenomenon we have uncovered (positive errors following positive,
negative following negative) is known as positive autocorrelation. In other
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Table 8.7 Calculation of residuals

Year Actual Predicted Residuals

1973 4.47 4.45 0.02
1974 4.46 4.30 0.16
1975 4.39 4.37 0.02
1976 4.42 4.37 0.05

� � � �
1997 5.31 5.29 0.02
1998 5.40 5.38 0.02
1999 5.47 5.43 0.04
2000 5.55 5.48 0.07
2001 5.60 5.53 0.08

Note: in logs, the residual is approximately the percentage error. So, for example, the first
residual 0.02 indicates the error is of the order of 2%.
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words, there appears to be a positive correlation between successive errors et

and et−1. A truly random series would have a low or zero correlation. Less com-
mon in economic models is negative autocorrelation, where positive errors
tend to follow negative ones, negative follow positive. We will concentrate on
positive autocorrelation.

This non-randomness can be summarised and tested numerically by the
Durbin–Watson (DW) statistic (named after its two inventors). This is rou-
tinely printed out by specialist software packages but, unfortunately, not by
spreadsheet programs. The statistic is a one-tail test of the null hypothesis of no
autocorrelation against the alternative of positive, or of negative, autocorrela-
tion. The test statistic always lies in the range 0–4 and is compared to critical
values dL and dU (given in Appendix Table A7, see page 379). The decision rule
is best presented graphically, as in Figure 8.6.

Figure 8.5 
Time-series graph of
the errors from the
import demand
equation

Figure 8.6 
The Durbin–Watson
test statistic

2 The DW statistic can also be approximated using the correlation coefficient r between et

and et−1, and then DW ≈ 2 × (1 − r). The approximation gets closer, the larger the sample
size. It should be reasonably accurate if you have 20 observations or more.

Low values of DW (below dL) suggest positive autocorrelation, high values
(above 4 − dL) suggest negative autocorrelation, and a value near 2 (between dU

and 4 − dU) suggests the problem is absent. There are also two regions where the
test is, unfortunately, inconclusive, between the dL and dU values).

The test statistic can be calculated by the formula2

(8.11) DW  
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This is relatively straightforward to calculate using a spreadsheet program.
Table 8.8 shows part of the calculation. Hence:

The result suggests positive autocorrelation3 of the errors. For n = 30 (close
enough to n = 29) the critical values are dL = 1.284 and dU = 1.567 (using the
95% confidence level, see Table A7, page 379) so we clearly reject the null of no
autocorrelation.

Consequences of autocorrelation

The presence of autocorrelation in this example causes our forecasts to be too
low. If we took account of the pattern of errors over time we could improve the
forecasting performance of the model. A second general consequence of auto-
correlation is that the standard errors are often under-estimated, resulting in
excessive t and F statistics. This leads us to think the estimates are ‘significant’
when they might not, in fact, be so. We may have what is sometimes known as
a ‘spurious’ regression – it looks good but is misleading. The bias in the stan-
dard errors and t statistics can be large and this is potentially a serious problem.

This danger occurs particularly when the variables used in the analysis are
trended (as many economic variables are) over time. Variables trending over
time appear to be correlated with each other but there may be no true under-
lying relationship. One now-famous study4 noted a strong correlation between
cumulative rainfall and the price level (both increase over time but are unlikely
to be related). It has been suggested that a low value of the DW statistic (typic-
ally, less than the R2 value) can be a symptom of such a problem. The fact that
economic theory supports the idea of a causal relationship between demand,
prices and income should make us a little more confident that we have found a
valid economic relationship rather than a spurious one in this case.

 
DW  

.

.
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Table 8.8 Calculation of the DW statistic

Year et et−−1 et −− et−−1 (et −− et−−1)
2 et

2

1973 0.0208
1974 0.1628 0.0208 0.1420 0.02016 0.02650
1975 0.0220 0.1628 −0.1408 0.01983 0.00048
1976 0.0513 0.0220 0.0293 0.00086 0.00263

� � � � � �
1998 0.0193 0.0202 −0.0009 0.00000 0.00037
1999 0.0369 0.0193 0.0176 0.00031 0.00136
2000 0.0683 0.0369 0.0314 0.00099 0.00466
2001 0.0754 0.0683 0.0071 0.00005 0.00568

Totals 0.07994 0.08150

3 The correlation between et and et−1 is, in fact, 0.494.
4 Hendry, D.F. (1980), Econometrics – Alchemy or Science? Economica, vol 47, 387–406.
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278 Chapter 8 • Multiple regression

This topic goes well beyond the scope of this book but it is raised because it
is important to be aware of the potential shortcomings of simple models. If you
estimate a time-series regression equation, check the DW statistic to test for
autocorrelation. If present, you may want to seek further advice rather than
accept the results as they are, even if they appear to be good. The cause of the
autocorrelation is often (though not always) the omission of lagged variables in
the model, i.e. a failure to recognise that it may take time for the effect of the
independent variables to work through to the dependent variable.

(a) Using the log model, calculate the residuals from the regression equation and draw
a line graph of them. Do they appear to be random or is some time-dependence
apparent?

(b) Calculate the Durbin–Watson statistic and interpret the result.

(c) If autocorrelation is present, what are the implications for your estimates?

Finding the right model

How do you know that you have found the ‘right’ model for the data? Can you
be confident that another researcher, using the same data, would arrive at the
same results? How can you be sure there isn’t a relevant explanatory variable
out there that you have omitted from your model? Without trying them all it is
difficult to be sure. Good modelling is based on theoretical considerations (e.g.
models that are consistent with economic or business principles) and statistical
ones (e.g. significant t ratios). One can identify two different approaches to
modelling:

n General to specific: this starts off with a comprehensive model, including all
the likely explanatory variables, then simplifies it.

n Specific to general: this begins with a simple model that is easy to understand,
then explanatory variables are added to improve the model’s explanatory
power.

There is something to be said for both approaches, but it is not guaranteed
that the two will end up with the same model. The former approach is usually
favoured nowadays; it suffers less from the problem of omitted variable bias
(discussed below) and the simplifying procedure is usually less ad hoc than that
of generalising a simple model. A very general model will almost certainly ini-
tially contain a number of irrelevant explanatory variables. However, this is not
much of a problem (and less serious than omitted variable bias): standard errors
on the coefficients tend to be higher than otherwise, but this is remedied once
the irrelevant variables are excluded.

It is rare for either of these approaches to be adopted in its pure, ideal form.
For example, in the import demand equation we should have started out with
several lags on the price variable, since we cannot be sure how long imports
take to adjust to price changes. Therefore we might have started with (assum-
ing a maximum lag of one year is ‘reasonable’):

(8.12) mt = b0 + b1gdpt + b2gdpt-1 + b3pmt + b4pmt−1 + b5mt−1 + et

Exercise 8.4
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Testing compound
hypotheses

If b4 proved to be insignificantly different from zero we would then re-estimate
the equation without pmt−1 and obtain new coefficient estimates. If the new b2

proved insignificant we would omit gdpt−1 and re-estimate. This process would
continue until all the remaining coefficients had significant t ratios. We would
then have the final, simplified model. At each stage we would omit the variable
with the least significant coefficient. Having found the right model we could
then test it on new data, to see if it can explain the new observations.

Uncertainty regarding the correct model

The remarks about finding the right model apply to many of the other techniques
used in this book. For example, we might employ the Poisson distribution to model
manufacturing faults in televisions but we are assuming this is the correct distribu-
tion to use. In the example of railway accidents recounted in Chapter 4, it was
found that the Poisson distribution did not fit the data precisely – the real world
betrayed less variation than predicted by the model.

Our estimates of parameters, and the associated confidence intervals, are based
on the assumption that we are using the correct model. To our uncertainty about
the estimates we should ideally add the uncertainty about the correct model, but
unfortunately this is difficult to measure. It may be that if we used a different model
we would obtain a different conclusion. If possible therefore, it is a good idea to try
out different models to see if the results are robust, and also to inform the reader
about alternative methods that have been tried but not reported.

In practice the procedure is not as mechanical (nor as pure) as this, and more
judgement should be exercised. You may not want to exclude all the price vari-
ables from a demand equation even though the t ratios are small. A coefficient
may be large in size even though it is not significant. ‘Not significant’ does not
mean the same as ‘insignificant’, rather that there is a lot of uncertainty about
its true value. In modelling imports, we used the 2002 and 2003 observations
to test the model’s forecasts. When it failed, we revised the model and applied
the forecast test again. But this is no longer a strictly independent test, since we
used the 2002–03 observations to decide upon revision to the model.

To briefly sum up a complex and contentious debate, a good model should be:

n consistent with theory: an estimated demand curve should not slope upwards,
for example;

n statistically satisfactory: there should be good explanatory power (e.g. R2, F
statistics), the coefficients should be statistically significant (t ratios) and the
errors should be random. It should also predict well, using new data (i.e.
data not used in the estimation procedure);

n simple: although a very complicated model predicts better, it might be
difficult for the reader to understand and interpret.

Sometimes these criteria conflict and then the researcher must use her judge-
ment and experience to decide between them.

Simplifying a general model is largely based on hypothesis testing. Usually this
means a hypothesis of the form H0: β = 0 using a t test. Sometimes, however,
the hypothesis is more complex, as in the following examples:
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n You want to test the equality of two coefficients, H0: β1 = β2.
n You want to test if a group of coefficients are all zero, H0: β1 = β2 = 0.

A general method for testing these compound hypotheses is to use an F test.
We illustrate this by examining whether consumers suffer from money illusion
in the import demand equation. We assumed, in line with economic theory,
that only relative prices matter and used PM/P as an explanatory variable. But
suppose consumers actually respond differently to changes in PM and in P? In
that case we should enter PM and P as separate explanatory variables and they
would have different coefficients. In other words, we should estimate (using
the log form5):

(8.13) ln mt = c0 + c1 ln gdpt + c2 ln PMt + c3 ln Pt + et

rather than

(8.14) ln mt = b0 + b1 ln gdpt + b2 ln pmt + et

where PM is the nominal price of imports and P is the nominal price level. We
would expect c2 < 0 and c3 > 0. Note that (8.14) is a restricted form of (8.13),
with the restriction c2 = −c3 imposed. A lack of money illusion implies that this
restriction should be valid and that (8.14) is the correct form of model. The
hypothesis to test is therefore H0: c2 = −c3 (or alternatively H0: c2 + c3 = 0).

How can we test this? If the restriction is valid, (8.13) and (8.14) should fit
equally well and thus have similar error sums of squares. Conversely, if they
have very different ESS values, then we would reject the validity of the restric-
tion. To carry out the test, we therefore do the following:

n Estimate the unrestricted model (8.13) and obtain the unrestricted ESS from it
(ESSU).

n Estimate the restricted model (8.14) and obtain the restricted ESS (ESSR).
n Form the test statistic

(8.15)

where q is the number of restrictions (1 in this case) and k is the number of
explanatory variables in the unrestricted model.

n Compare the test statistic with the critical value of the F distribution with q
and n − k − 1 degrees of freedom. If the test statistic exceeds the critical
value, reject the restricted model in favour of the unrestricted one.

We have already estimated the restricted model (equation (8.14)) and from
that we obtain ESSR = 0.08193 (see Table 8.6). Estimating the unrestricted
model gives

(8.16) ln mt = −7.05 + 2.00 ln gdpt − 0.39 ln PMt−1 + 0.24 ln Pt−1+et
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5 Note that it is much easier to test the restriction in log form, since pm and p are entered
additively. It would be much harder to do this in levels form.
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with ESSU = 0.04546. The test statistic is therefore

(8.17)

The critical value at the 95% confidence level is 4.24, so the restriction is
rejected. Consumers do not use relative prices alone in making decisions, but
are somehow influenced by the general rate of inflation as well. This is contrary
to what one would expect from economic theory. Interestingly, the equation
using nominal prices does not suffer from autocorrelation, so imposing the
restriction (estimating with the real price of imports) induces autocorrelation,
another indication that the restriction is inappropriate.

To our earlier finding we might therefore add that consumers appear to take
account of nominal prices. We do not have space to investigate this issue in
more detail but further analysis of these nominal effects would be worthwhile.
There may be a theoretical reason for nominal prices to have an influence.
Alternatively, there could be measurement problems with the data or inadequa-
cies in the model which mask the truth that it is, after all, relative prices that
matter.

Whatever the results, this method of hypothesis testing is quite general: it is
possible to test any number of (linear) restrictions by estimating the restricted
and unrestricted forms of the equation and comparing how well they fit the
data. If the restricted model fits almost as well as the unrestricted model, it is
preferred on the grounds of simplicity. The F test is the criterion by which we
compare the fit of the two models, using error sums of squares.

Omitting a relevant explanatory variable from a regression equation can lead to
serious problems. Not only is the model inadequate because there is no infor-
mation about the effect of the omitted variable but, in addition, the
coefficients on the variables which are included are usually biased. This is called
omitted variable bias (OVB).

We encountered an example of this in the model of import demand. Notice
how the coefficient on income changed from 1.54 to 2.00 when nominal prices
were included. This is a substantial change and shows that the original equa-
tion with only the real price of imports included may be misleading with
respect to the effect of income upon imports. The coefficient on income was
biased downwards.

The direction of OVB depends upon two things: the correlation between the
omitted and included explanatory variables and the sign of the coefficient on
the omitted variable. Thus, if you have to omit what you believe is a relevant
explanatory variable (because the observations are unavailable, for example)
you might be able to infer the direction of bias on the included variable(s).
Table 8.9 summarises the possibilities, where the true model is Y = b0 + b1X1 +
b2X2 + e but the estimated model omits the X2 variable. Table 8.9 only applies
to a single omitted variable; when there are several, matters are more compli-
cated (see Maddala, Chapter 4).

In addition to coefficients being biased, their standard errors are biased
upwards as well, so that inferences and confidence intervals will be incorrect.
The best advice therefore is to ensure you don’t omit a relevant variable!
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282 Chapter 8 • Multiple regression

(a) Calculate the simple correlation coefficients between price, income, the price of rail
travel and the price of bus travel.

(b) The prices of rail and bus travel may well influence the demand for car travel. If so,
the models calculated in previous exercises are mis-specified. What are the pos-
sible consequences of this? How might the correlations calculated in part (a) help?

(c) Extend the regression equation to include these two extra prices. (Estimate in logs,
using 1980–1999. For simplicity, do not include lags.) Does this change any of your
conclusions?

(d) One might expect the bus and rail price variables to have similar coefficients, as they
are both substitutes for car travel. Test the hypothesis H0: β rail − β bus = 0 by compar-
ing error sums of squares from restricted and unrestricted regressions.

A dummy variable is one that takes on a restricted range of values, usually just 0
and 1. Despite this simplicity, it can be useful in a number of situations. For
example, suppose we suspect that the UK’s import demand function shifted
after the rise in the oil price in 1979. Ideally, we might include oil prices in our
model, but suppose these data are unavailable. How could we then explore this
possibility empirically?

One answer is to construct a variable, Dt, which takes the value 0 for the
years 1973–79, and 1 thereafter (i.e. 0, 0, . . . , 0, 1, 1, . . . , 1, the switch occur-
ring after 1979). We then estimate:

(8.18) ln mt = b0 + b1 ln gdpt + b2 ln pmt + b3Dt + et

The coefficient b3 gives the size of the shift in 1979. The constant for the equa-
tion is equal to b0 for 1973–79, when Dt = 0, and equal to b0 + b3 thereafter,
when Dt = 1. The sign of b3 shows the direction of any shift, and one can also
test its significance, via the t ratio. If it turns out not to be significant, then
there was probably no shift in the relationship.

Note that we do not use the log of D – this would be impossible as ln 0 is not
defined. In any case, a dummy variable only needs to have two different values,
it does not matter what they are (though 0, 1 is convenient for interpretation).
Note also that b3 will give the change in ln m, which is approximately the per-
centage change in m.

Estimating equation (8.21) yields the following result:

Table 8.9 The effects of omitted variable bias

Sign of omitted Correlation Direction of Example values of b1

coefficient, b2 between X1 and X2 bias of b1 True Estimated

> 0 > 0 upwards 0.5 0.9
−0.5 −0.1

> 0 < 0 downwards 0.5 0.1
−0.5 −0.9

< 0 > 0 downwards 0.5 0.1
−0.5 −0.9

< 0 < 0 upwards 0.5 0.9
−0.5 −0.1

Dummy variables,
trends and
seasonals

Exercise 8.5
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Figure 8.7
The dummy variable
effect

(8.19) ln mt = −3.34 + 1.68 ln gdpt − 0.47 ln pmt − 0.09 Dt + et

s.e. (0.13) (0.14) (0.03)

R2 = 0.99 F(3, 25) = 598.6 n = 29

We note that the dummy variable has a significant coefficient and that after
1979 imports were 9% lower than before, after taking account of any price and
income effects. We presume it is the oil shock that has caused this, but in fact
it could be due to anything that changed in 1979. Figure 8.7 shows the effect of
introducing such a dummy variable and from the figure we can see that the
effect of the dummy variable is to shift the regression line downwards for the
years from 1979 onwards.

Trap!

There were, in fact, two oil shocks – in 1973 and 1979. With a longer series of data
you might therefore be tempted to use a dummy variable {0, 0, . . . , 0, 1, . . . , 1, 
2, . . . , 2}, with the first switch in 1973, the second in 1979 (this assumes you have
some pre-1973 observations). This is wrong! It implicitly assumes that the two
shocks had the same effect upon the dependent variable. The correct technique is
to use two dummies, both using only zeros and ones. The first dummy would
switch from 0 to 1 in 1973, the second would switch in 1979. Their individual
coefficients would then measure the size of each shock.

A time trend is another useful type of dummy variable used with time-series
data. It takes the values {1, 2, 3, 4, . . . , T} where there are T observations. It is
used as a proxy for a variable which we cannot measure and which we believe
increases in a linear fashion. For example, suppose we are trying to model
petrol consumption of cars. Price and income would obviously be relevant
explanatory variables; but in addition, technical progress has made cars more
fuel-efficient over time. It is impossible to measure this accurately, so we use a
time trend as an additional regressor. In this case it should have a negative
coefficient which would measure the annual reduction in consumption due to
more fuel-efficient cars. Remember also, that if the dependent variable is in
logs, the coefficient on the time trend shows the percentage change per annum
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(or per time period), e.g. a coefficient of −0.05 would indicate a 5% per annum
fall in the dependent variable, independent of movements in other explanatory
variables.

(a) The graph of car travel suggests a break in 1990 – the rise is slower after this point
than before. Test whether this break is significant or not using a dummy variable
with a value of 0 up to (and including) 1990, 1 thereafter. (Estimate in logs using all
three prices and income, 1980–1999.)

(b) The quality of cars has improved steadily over time, perhaps leading to increased
travel by car. Add a time trend to the regression equation in part (a) and re-estimate.
Is there evidence to support this idea?

Sometimes some or all of the explanatory variables are highly correlated (in the
sample data) which means that it is difficult to tell which of them is influencing
the dependent variable. This is known as multicollinearity. Since all variables
are correlated to some degree, multicollinearity is a problem of degree also. For
example, if GDP and import prices both rise over time, it may be difficult to tell
which of them influences imports. There has to be some independent move-
ment of the explanatory variables for us to be able to disentangle their separate
influences.

The symptoms of multicollinearity are:

n high correlation between two or more of the explanatory variables
n high standard errors of the coefficients leading to low t ratios
n a high value of R2 (and significant F statistic) in spite of the insignificance of

the individual coefficients.

In this situation, one might make the mistake of concluding that a variable
is insignificant because of a large standard error, when, in fact, multicollinear-
ity is to blame. It may be useful therefore, to examine the correlations between
all the explanatory variables to see if such a problem is apparent. For example,
the correlation between nominal import prices and the retail price index is
0.95. Hence it may be difficult to disentangle their individual effects.

The best cure is to obtain more data which might exhibit more independent
variation of the explanatory variables. This is not always possible, however, for
example if a sample survey has already been completed. An alternative is to
drop one of the correlated variables from the regression equation, though the
choice of which to exclude is somewhat arbitrary. Another procedure is to
obtain extraneous estimates of the effects of one of the collinear variables (for
example from another study). These effects can then be allowed for when esti-
mates of the remaining coefficients are made.

It is not always possible to measure the variables in a regression equation pre-
cisely, so the problem of measurement error arises. Either or both the endo-
genous or exogenous variables could be affected. This is more of a problem for
estimation when the measurement error is systematic rather than random (in
which case it may disappear into the error term) and can result in biased esti-
mates. If transport costs are left out of the measured price of imported goods,
and these costs have declined over time, then there is systematic measurement
error in the price variable and possible bias in the coefficient.

Multicollinearity

Measurement
error

Exercise 8.6
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We noted in Exercise 8.5 that rail and bus prices were highly correlated. This may be
why they both appear to be ‘insignificant’ in the regression equation. It could be the
case that either of them could be influencing demand, but we cannot tell which. We can
examine this by testing the hypothesis H0: β RAIL = β BUS = 0. The restricted regression
therefore excludes these two variables, the unrestricted regression includes them. One
can then use equation (8.15) with q = 2 restrictions to test the hypothesis. What is the
result? (Do not include dummy or trend in the equation.)

n As always, large samples are better than small. Reasonable results were
obtained above with only 29 observations, but this is rather a small sample
size on which to base solid conclusions.

n Check the data carefully before calculation. This is especially true if a com-
puter is used to analyse the data. If the data are typed in incorrectly, every
subsequent result will be wrong. A substantial part of any research project
should be devoted to verifying the data, checking the definitions of vari-
ables, etc. The work is tedious, but important.

n Don’t go fishing. Otherwise known as data-mining, this is searching through
the data hoping something will turn up. Some idea of what the data is
expected to reveal, and why, allows the search to be conducted more effec-
tively. It is easy to see imaginary patterns in data if an aimless search is being
conducted. Try looking at the table of random numbers (Table A1, see page
364), which will probably soon reveal something ‘significant’, like your tele-
phone number or your credit card number.

n Don’t be afraid to start with fairly simple techniques. Draw a graph 
of demand against price to see what it looks like, if it looks linear or log 
linear, if there are any outliers (a data error?), etc. This will give an overview
of the problem which can be kept in mind when more refined techniques
are used.

Summary

n Multiple regression extends the principles of simple regression to models
using several explanatory variables to explain variation in Y.

n The multiple regression equation is derived by minimising the sum of
squared residuals, as in simple regression. This principle leads to the formulae
for slope coefficients, standard errors, etc.

n The significance of the individual slope coefficients can be tested using the 
t distribution and the overall significance of the model is based on the F
distribution.

n It is important to check the adequacy of the model. This can be done in vari-
ous ways, including examining the accuracy of predictions and checking
that the residuals appear random.

n One important form of non-randomness is termed autocorrelation, where
the error in one period is correlated with earlier errors (this can occur in
time-series data). This can lead to incorrect inferences being drawn.

Summary 285

Some final advice
on regression

Exercise 8.7
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286 Chapter 8 • Multiple regression

n The Durbin–Watson statistic is one diagnostic test for autocorrelation. If
there is a problem of autocorrelation it can often be eliminated by including
lagged regressors.

n A good model should be (i) consistent with economic (or some other) theory,
(ii) statistically satisfactory and (iii) simple. Sometimes there is a trade-off
between these different criteria.

n Complex hypothesis tests can often be performed by comparing restricted
and unrestricted forms of the model. If the former fits the data almost as
well as the latter then the (simplifying) restrictions specified in the null
hypothesis are accepted.

n Omitting relevant explanatory variables from the model is likely to cause
bias to the estimated coefficients. This suggests it is often best to start off
with a fairly general model and simplify it.

n Regression analysis can become very complicated (well beyond the scope of
this book), involving issues such as multicollinearity and simultaneous equa-
tions. However, the methods given in this chapter can provide helpful
insights into a range of problems, especially if the potential shortcomings of
the model are appreciated.

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 8.1 (a) Using the data in Problem 7.1 (page 253), estimate a multiple regression model of the
birth rate explained by GNP, the growth rate and the income ratio. Comment upon:
(i) the sizes and signs of the coefficients,
(ii) the significance of the coefficients,
(iii) the overall significance of the regression.

(b) How would you simplify the model?

(c) Test for the joint significance of the coefficients on growth and the income ratio.

(d) Repeat the above steps for all 26 observations. Comment.

(e) Do you feel your understanding of the birth rate is improved after estimating the
multiple regression equation?

(f) What other possible explanatory variables do you think it might be worth 
investigating?

regression coefficients
omitted variable bias
simultaneity

autocorrelation
dummy variables
measurement error

spurious regression
multicollinearity

Key terms and
concepts
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Problem 8.2 The following data show the real price of butter and real incomes, to supplement the
data in Problem 7.2 (see page 253).

Year Price of butter Real income Year Price of butter Real income

1970 105.5 70.3 1980 119.2 92.1
1971 130.9 71.1 1981 114.2 91.4
1972 131.9 77.1 1982 114.5 90.9
1973 99.5 82.1 1983 110.0 93.3
1974 89.6 81.5 1984 107.9 96.8
1975 92.1 81.9 1985 100.0 100.0
1976 109.1 81.7 1986 104.2 104.5
1977 118.2 79.9 1987 99.8 108.1
1978 123.4 85.8 1988 100.2 114.6
1979 130.6 90.7

(a) Estimate a multiple regression model of the demand for margarine. Do the
coefficients have the expected signs?

(b) Test the significance of the individual coefficients and of the regression as a 
whole.

(c) Should the model be simplified?

(d) Calculate the elasticity of demand. How does it differ from your earlier answer?

(e) Estimate the cross-price demand elasticity.

(f ) Should other variables be added to improve the model, in your view?

Problem 8.3 Using the results from Problem 8.1 forecast the birth rate of a country with the charac-
teristics given in Problem 7.9 (see page 254) (point estimate only).

Problem 8.4 Given the following data for 1989 and 1990:

Year Price of margarine Price of butter Real income

1989 79.3 104.3 120.2
1990 79.3 97.0 122.7

(a) Predict the levels of margarine consumption in the two years.

(b) The actual values of consumption for the two years were 3.47 and 3.19. How accu-
rate are your forecasts?

(c) Test for the stability of the coefficients between sample and forecast periods.

Problem 8.5 How would you most appropriately measure the following variables:

(a) social class in a model of alcohol consumption,

(b) crime,

(c) central bank independence from political interference.

Problem 8.6 As Problem 8.5, for

(a) the output of a car firm, in a production function equation,

(b) potential trade union influence in wage bargaining,

(c) the performance of a school.

Problems 287
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288 Chapter 8 • Multiple regression

Problem 8.7 Would it be better to use time-series or cross-section data in the following models?

(a) the relationship between the exchange rate and the money supply,

(b) the determinants of divorce,

(c) the determinants of hospital costs.

Explain your reasoning.

Problem 8.8 As Problem 8.7, for

(a) measurement of economies of scale in the production of books,

(b) the determinants of cinema attendances,

(c) the determinants of the consumption of perfume.

Problem 8.9 How would you estimate a model explaining the following variables?

(a) airline efficiency,

(b) infant mortality,

(c) bank profits.

You should consider such issues as whether to use time-series or cross-section data;
the explanatory variables to use and any measurement problems; any relevant data
transformations; the expected results.

Problem 8.10 As Problem 8.9, for

(a) investment,

(b) the pattern of UK exports (i.e. which countries they go to),

(c) attendance at football matches.

Problem 8.11 R. Dornbusch and S. Fischer (in R.E. Caves and L.B. Krause, Britain’s Economic
Performance, Brookings, 1980) report the following equation for predicting the UK bal-
ance of payments:

B = 0.29 + 0.24U + 0.17 ln Y − 0.004t − 0.10 ln P − 0.24 ln C
t (.56) (5.9) (2.5) (3.8) (3.2) (3.9)

R2 = 0.76, se = 0.01, n = 36 (quarterly data 1970:1–1978:1)

where

B: the current account of the balance of payments as a percentage of gross domestic
product (a balance of payments deficit of 3% of GDP would be recorded as −3.0,
for example)

U: the rate of unemployment
Y: the OECD index of industrial production
t: a time trend
P: the price of materials relative to the GDP deflator (price index)
C: an index of UK competitiveness (a lower value of the index implies greater

competitiveness)

(ln indicates the natural logarithm of a variable)

(a) Explain why each variable is included in the regression. Do they all have the
expected sign for the coefficient?

(b) Which of the following lead to a higher BOP deficit (relative to GDP): (i) higher
unemployment; (ii) higher OECD industrial production; (iii) higher material prices; 
(iv) greater competitiveness?
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(c) What is the implied shape of the relationship between B and (i) U, (ii) Y?

(d) Why cannot a double log equation be estimated for this data? What implications
does this have for obtaining elasticity estimates? Why are elasticity estimates not
very useful in this context?

(e) Given the following values of the explanatory variables, estimate the state of the
current account (point estimate): unemployment rate = 10%, OECD index = 110,
time trend = 37, materials price index = 100, competitiveness index = 90.

Problem 8.12 In a cross-section study of the determinants of economic growth (National Bureau of
Economic Research, Macroeconomic Annual, 1991), Stanley Fischer obtained the fol-
lowing regression equation:

GY = 1.38 − 0.52RGDP70 + 2.51PRIM70 + 11.16INV − 4.75INF + 0.17SUR
(−5.9) (2.69) (3.91) (2.7) (4.34)

− 0.33DEBT80 − 2.02SSA − 1.98LAC
(−0.79) (−3.71) (−3.76)

R2 = 0.60, n = 73

where 

GY: growth per capita, 1970–85
RGDP: real GDP per capita, 1970
PRIM70: primary school enrolment rate, 1970
INV: investment/GNP ratio
INF: inflation rate
SUR: budget surplus/GNP ratio
DEBT80: foreign debt/GNP ratio
SSA: dummy for sub-Saharan Africa
LAC: dummy for Latin America and the Caribbean

(a) Explain why each variable is included. Does each have the expected sign on its
coefficient? Are there any variables which are left out, in your view?

(b) If a country were to increase its investment ratio by 0.05, by how much would its
estimated growth rate increase?

(c) Interpret the coefficient on the inflation variable.

(d) Calculate the F statistic for the overall significance of the regression equation. Is it
significant?

(e) What do the SSA and LAC dummy variables tell us?

Build a suitable model to predict car sales in the UK. You should use time-series data
(at least 20 annual observations). You should write a report in a similar manner to
Problem 7.12 (see page 255).

Maddala, G.S. (1992) Introduction to Econometrics, 2nd edition, Macmillan.

Thomas, R.L. (1993) Introductory Econometrics, 2nd edition, Longman.
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290 Chapter 8 • Multiple regression

Answers to exercises

Exercise 8.1 (a) Demand rises rapidly until around 1990, then rises more slowly

Price falls quite quickly until 1990, then rises. This may relate to the pattern of
travel demand, above

(b) The cross-plot of travel (vertical axis) against price is not clear-cut. There may
be a slight negative relationship

Again, there is not an obvious bivariate relationship between travel and income

(c) Economic theory would suggest a negative price coefficient and a positive
income coefficient.

(d) If bus and rail are substitutes for car travel, one would expect positive
coefficients on their prices. However, they might be complements – commuters
may drive to the station to catch the train.
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Exercise 8.2 (a) The regression is:6

Source | SS df MS Number of obs = 20

----------+------------------------------ F( 2, 17) = 483.10

Model | 138 136.463 2 69 068.2316 Prob > F = 0.0000

Residual | 2430.48675 17 142.969809 R-squared = 0.9827

----------+------------------------------ Adj R-squared = 0.9807

Total | 140 566.95 19 7 398.26053 Root MSE = 11.957

-----------------------------------------------------------------------

car | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+-----------------------------------------------------------

rpcar | -6.390429 .7639393 -8.37 0.000 -8.0022 -4.778658

rpdi | 6.048783 .2340236 25.85 0.000 5.555037 6.54253

_cons | 748.1112 83.857 8.92 0.000 571.1884 925.034

------------------------------------------------------------------

(b) The signs of the coefficients are as expected. A unit increase in price lowers
demand by 6.4 units; a unit rise in income raises demand by about 6 units.
Without knowledge of the units of measurement it is hard to give a more pre-
cise interpretation. Both coefficients are highly significant, as is the F statistic.
98% of the variation of car travel demand is explained by these two variables, a
high figure.

Exercise 8.3 (a) The forecast values are 661.9 and 706.3 in 2000 and 2001. These compare with
actual values of 618 and 624, so the errors are −6.6% and −11.7%. Assuming
2000 and 2001 would be the same as 1999 would actually give better results.

(b) In logs the results are:

Source | SS df MS Number of obs = 20

----------+------------------------------ F( 2, 17) = 599.39

Model | .557417045 2 .278708523 Prob > F = 0.0000

Residual | .007904751 17 .000464985 R-squared = 0.9860

----------+------------------------------ Adj R-squared = 0.9844

Total | .565321796 19 .029753779 Root MSE = .02156

-----------------------------------------------------------------------

lcar | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+-----------------------------------------------------------

lrpcar | -1.192195 .1410668 -8.45 0.000 -1.48982 -.8945699

lrpdi | .8408944 .0296594 28.35 0.000 .7783184 .9034704

_cons | 8.193106 .7057587 11.61 0.000 6.704085 9.682127

-----------------------------------------------------------------------

Demand is elastic with respect to price (e = −1.19) and slightly less than elastic
for income (e = 0.84). The coefficients are again highly significant.

(c) Price and income elasticities from the linear model are −6.4 × 101.1/526.5 =
−1.23 and 6.0 × 70.2/526.5 = 0.8. These are very similar to the log coefficients.

(d) The forecasts in logs are 6.492 and 6.561 which translate into 659.8 and 706.8.
The predictions (and errors) are similar to the linear model.

6 These results were produced using Stata. The layout is similar to that of Excel. Prob-
values are indicated by ‘Prob > F’ and ‘P > | t |’. ‘rpcar’ indicates the real price of car travel,
‘rpdi’ indicates real personal disposable income. Later on, an ‘l’ in front of a variable
name indicates it is in log form.

Answers to exercises 291
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292 Chapter 8 • Multiple regression

(e) For the linear model the Chow test is 

The critical value is F(2, 17) = 3.59, so there appears to be a change between
estimation and forecast periods. A similar calculation for the log model yields
an F statistic of 13.9 (ESSP = 0.0208), also significant.

Exercise 8.4 (a) The residuals from the log regression are as follows:

There is some evidence of positive autocorrelation and, in particular, the last
two residuals (from the forecast period) are substantially larger than the rest

(b) The Durbin–Watson statistic is DW = 1.52, against an upper critical value of dU

= 1.54. The test statistic (just) falls into the uncertainty region, but the evidence
for autocorrelation is very mild.

(c) Autocorrelation would imply biased standard errors so inference would be dubi-
ous, but the coefficients themselves are still unbiased.

Exercise 8.5 (a) The correlations are:

| rpcar rpdi rprail rpbus

--------+---------------------------------

rpcar | 1.0000

rpdi | –0.3112 1.0000

rprail | –0.1468 0.9593 1.0000

rpbus | –0.1421 0.9632 0.9827 1.0000

The price of car travel has a low correlation with the other variables, which are
all highly correlated with each other (r > 0.95).

(b) There may be omitted variable bias. Since the omitted variables are correlated
with income, the income coefficient we have observed may be misleading. The
car price variable is unlikely to be affected much, as it has a low correlation
with the omitted variables.
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(c) The results are:

Source | SS df MS Number of obs = 20

----------+------------------------------ F( 4, 15) = 285.36

Model | .557989155 4 .139497289 Prob > F = 0.0000

Residual | .007332641 15 .000488843 R-squared = 0.9870

----------+------------------------------ Adj R-squared = 0.9836

Total | .565321796 19 .029753779 Root MSE = .02211

----------------------------------------------------------------------

lcar | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+-----------------------------------------------------------

lrpcar | -1.195793 .1918915 -6.23 0.000 -1.6048 -.786786

lrpdi | .8379483 .1372577 6.10 0.000 .5453904 1.130506

lrprail | .3104458 .3019337 1.03 0.320 -.3331106 .9540023

lrpbus | -.3085937 .3166891 -0.97 0.345 -.9836004 .3664131

_cons | 8.22269 .7318088 11.24 0.000 6.662877 9.782503

----------------------------------------------------------------------

The new price variables are not significant so there is unlikely to have been a
serious OVB problem. Neither car price nor income coefficients have changed.
The simpler model seems to be preferred.

(d) The restricted equation is y = β1 + β2PCAR + β3RPDI + β4(PRAIL + PBUS) + u (in logs)
and estimating this yields ESSR = 0.007901. The test statistic is therefore 

This is not significant so the hypothesis of equal coefficients is accepted.

Exercise 8.6 (a) The result is:

Source | SS df MS Number of obs = 20

----------+------------------------------ F( 5, 14) = 232.28

Model | .558588344 5 .111717669 Prob > F = 0.0000

Residual | .006733452 14 .000480961 R-squared = 0.9881

----------+------------------------------ Adj R-squared = 0.9838

Total | .565321796 19 .029753779 Root MSE = .02193

----------------------------------------------------------------------

lcar | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+-----------------------------------------------------------

lrpcar | -1.107049 .2062769 -5.37 0.000 -1.549469 -.6646293

lrpdi | .8898566 .1438706 6.19 0.000 .581285 1.198428

lrprail | .5466294 .3667016 1.49 0.158 -.2398673 1.333126

lrpbus | -.4867887 .3523676 -1.38 0.189 -1.242542 .2689648

d1990 | -.0314327 .0281614 -1.12 0.283 -.091833 .0289676

_cons | 7.352081 1.065511 6.90 0.000 5.066787 9.637375

----------------------------------------------------------------------

The new coefficient, −0.03, suggests car travel is 3% lower after 1990 than
before, ceteris paribus. However, the coefficient is not significantly different from
zero, so there is little evidence of structural break. The change in car usage
appears due to changes in prices and income.

F  
( .   . )/

. /(     )
  .=

−
− −

=
0 007901 0 007333 1
0 007333 20 4 1

1 16
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294 Chapter 8 • Multiple regression

(b) The result is:

Source | SS df MS Number of obs = 20

----------+------------------------------ F( 6, 13) = 191.34

Model | .558991816 6 .093165303 Prob > F = 0.0000

Residual | .00632998 13 .000486922 R-squared = 0.9888

----------+------------------------------ Adj R-squared = 0.9836

Total | .565321796 19 .029753779 Root MSE = .02207

----------------------------------------------------------------------

lcar | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------+-----------------------------------------------------------

lrpcar | -1.116536 .2078126 -5.37 0.000 -1.565488 -.6675841

lrpdi | 1.107112 .2791366 3.97 0.002 .5040736 1.71015

lrprail | .558322 .3691905 1.51 0.154 -.2392655 1.355909

lrpbus | -.2707759 .4266312 -0.63 0.537 -1.192457 .6509048

d1990 | -.036812 .0289451 -1.27 0.226 -.099344 .02572

trend | -.0099434 .0109234 -0.91 0.379 -.033542 .0136552

_cons | 5.553859 2.247619 2.47 0.028 .6981737 10.40954

----------------------------------------------------------------------

The trend is not significant. Note that the income coefficient has changed sub-
stantially. This is due to the high correlation between income and the trend (r =
0.99). It seems preferable to keep income and exclude the trend.

Exercise 8.7 The F statistic is 

This is less than the critical value of F(2, 15) = 3.68 so the hypothesis that both
coefficients are zero is accepted.
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By the end of this chapter you should be able to:

n recognise the distinction between primary and secondary data sources

n avoid a variety of common pitfalls when using secondary data

n make use of electronic sources to gather data

n recognise the main types of random sample and understand their relative merits

n appreciate how such data are collected

n conduct a small sample survey yourself
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Introduction

It may seem a little odd to look at data collection now, after several chapters
covering the analysis of data. Collection of data logically comes first, but the
fact is that most people’s experience is as a user of data, which determines their
priorities. Also, it is difficult to have the motivation for learning about data col-
lection when one does not know what it is subsequently used for. Having spent
considerable time learning how to analyse data, it is now time to look at its col-
lection and preparation.

There are two reasons why you might find this chapter useful. First, it will
help if you have to carry out some kind of survey yourself. Second, it will help
you in your data analysis, even if you are using someone else’s data. Knowing
the issues involved in data collection can help your judgement about the qual-
ity of the data you are using.

When conducting statistical research, there are two ways of obtaining data:

1 use secondary data sources, such as the UN Yearbook, or
2 collect sample data personally, a primary data source.

The first category should nowadays be divided into two sub-sections: printed
and electronic sources. The latter is obviously becoming more important as
time progresses, but printed documentation still has its uses. Using secondary
data sources sounds simple, but it is easy to waste valuable time by making ele-
mentary errors. The first part of this chapter provides some simple advice to
help you avoid such mistakes.

Much of this text has been concerned with the analysis of sample evidence
and the inferences that can be drawn from it. It has been stressed that this evid-
ence must come from randomly drawn samples and, although the notion of
randomness was discussed in Chapter 2, the precise details of random sampling
have not been set out.

The second part of this chapter is therefore concerned with the problems 
of collecting sample survey data prior to its analysis. The decision to collect 
the data personally depends upon the type of problem faced, the current avail-
ability of data relating to the problem and the time and cost needed to con-
duct a survey. It should not be forgotten that the first question that needs
answering is whether the answer obtained is worth the cost of finding it. It 
is probably not worthwhile for the government to spend £50 000 to find out
how many biscuits people eat, on average (though it may be worth biscuit
manufacturers doing this). The sampling procedure is always subject to some
limit on cost, therefore, and the researcher is trying to obtain the best value 
for money.

Using secondary data sources

Much of the research in economics is based on secondary data sources, i.e. data
which the researcher did not collect herself. The data may be in the form of
official statistics such as those published in Economic Trends or they may come
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from unofficial surveys. In either case one has to use the data as presented;
there is no control over sampling procedures.

It may seem easy enough to look up some figures in a publication, but there
are a number of pitfalls for the unwary. The following advice comes from experi-
ence, some of it painful, and it may help you to avoid wasting time and effort.
I have also learned much from the experiences of my students, whom I have
also watched suffer.

A lot of data is now available online, so the advice given here covers both
printed and electronic sources, with a separate section for the latter.

This may seem obvious, but most variables can be measured in a variety of dif-
ferent ways. Suppose you want to measure the cost of labour (over time) to
firms. Should you use the wage rate or earnings? The latter includes payment
for extra hours such as overtime payments and reflects general changes in the
length of the working week. Is the wage measured per hour or per week? Does
it include part-time workers? If so, a trend in the proportion of part-timers will
bias the wage series. Does the series cover all workers, men only, or women
only? Again, changes in the composition will influence the wage series. What
about tax and social security costs? Are they included? There are many ques-
tions one could ask.

One needs to have a clear idea therefore of the precise variable one needs 
to collect. This will presumably depend upon the issue in question. Economic
theory might provide some guidance: for instance, theory suggests that firms
care about real wage rates (i.e. after taking account of inflation, so related to the
price of the goods the firm sells) so this is what one should measure. Check the
definition of any series you collect (this is often at the back of the printed pub-
lication, or in a separate supplement giving explanatory notes and definitions).
Make sure that the definition has not changed over the time period you
require: the definition of unemployment used in the UK changed about twenty
times in the 1980s, generally with the effect of reducing measured unemploy-
ment, even if actual unemployment was unaffected. In the UK the geographical
coverage of data may vary: one series may relate to the UK, another to Great
Britain and yet another to England and Wales. Care should obviously be taken
if one is trying to compare such series.

Many macroeconomic series are revised as more information becomes avail-
able. The balance of payments serves as a good example. The first edition of
this book showed the balance of payments (current balance, in £m for the UK)
for 1970, as published in successive years, as follows:

1971 1972 1973 1974 1975 1976 1977 1978 . . . 1986

579 681 692 707 735 733 695 731 . . . 795

The difference between the largest and smallest figures is of the order of 37%, a
wide range. In the third edition of this book the figure was (from the 1999 edi-
tion of Economic Trends Annual Supplement) £911m which is 57% higher than
the initial estimate. The latest figure at the time of writing is £819m. Most
series are better than this. The balance of payments is hard to measure because
it is the small difference between two large numbers, exports and imports. A

Using secondary data sources 297
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298 Chapter 9 • Data collection and sampling methods

Keep a record of
your data sources

Check your data

5% increase in measured exports and a 5% decrease in measured imports could
thus change the measured balance by 100% or more.

One should always try to get the most up-to-date figures, therefore, which
often means working backwards through data publications, i.e. use the current
issue first and get data back as far as is available, then get the previous issue to
go back a little further, etc. This can be tedious but it will also give some idea of
the reliability of the data from the size of data revisions.

You should always keep precise details of where you obtained each item of data.
If you need to go back to the original publication (to check on the definition of
a series, for example) you will then be able to find it easily. It is easy to spend
hours (if not days) trying to find the source of some interesting numbers that
you wish to update. ‘Precise details’ means the name of the publication, issue
number or date, and table or page number. It also helps to keep the library 
reference number of the publication if it is obscure. It is best to take a photo-
copy of the data (but check copyright restrictions) rather than just copy it
down, if possible.

Keeping data in Excel or another spreadsheet

Spreadsheets are ideal for keeping your data. It is often a good idea to keep the
data all together in one worksheet and extract portions of them as necessary and
analyse them in another worksheet. Alternatively, it is usually quite easy to transfer
data from the spreadsheet to another program (e.g. Minitab or SPSS) for more
sophisticated analysis. In most spreadsheets you can attach a comment to any
cell, so you can use this to keep a record of the source of each observation,
changes of definition, etc. Thus you can retain all the information about your data
together in one place.

Once you have collected your data you must check it. Once you have done
this, it is probably worth checking it again. Better, get someone else to do the
second check. Note that if your data are wrong then all your subsequent calcu-
lations could be incorrect and you will have wasted much time.

A useful way to check the data is first to graph it (e.g. a time-series plot).
Obvious outliers will show up and you can investigate them for possible errors.
Do not just rely on the graphs, however, look through your data and check it
against the original source. Don’t forget that the original source could be
wrong too, so be wary of ‘unusual’ observations.

Using electronic sources of data

A vast amount of data is now available electronically, usually online, and this is
becoming increasingly the norm. Sometimes the data are available free but
sometimes they have to be paid for, especially if they have a commercial value.
My experience suggests that many students nowadays only consider online
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resources, which I feel is a mistake. Not everything is online and sometimes,
even if it is, it is extremely hard to find. It can sometimes take less time to go to
the library, find the appropriate journal and type in the numbers. As an esti-
mate, one hundred observations should take no longer than about ten minutes
to type into a computer, which is probably quicker than finding them electron-
ically, converting to the right format, etc. Hence the advantage of online data
lies principally with large datasets.

Obtaining data electronically should avoid input errors and provide consis-
tent, up-to-date figures. However, this is not always guaranteed. For example,
the UK Office for National Statistics (ONS) online databank provides plenty 
of information, but some of the series clearly have breaks in them and there is
little warning of this in the on-screen documentation. The series for revenue
per admission to cinemas (roughly the price of admission) goes:

1963 1964 1965 1966 1967

37.00 40.30 45.30 20.60 21.80

which strongly suggests a break in the series in 1966 (especially as admissions
fell by 12% between 1965 and 1966!). Later in the series, the observations
appear to be divided by 100. The lesson is that even with electronic data you
should check the numbers to ensure they are correct.

You need to follow the same advice with electronic sources as with printed
ones: make sure you collect the right variables and keep a note of your source.
Online sources seem to be less good than many printed sources about provid-
ing definitions of the variables. It is often unclear if the data are in real terms,
seasonally adjusted, etc. Sometimes you may need to go to the printed docu-
ment to find the definitions, even if the data themselves come from the inter-
net. Keeping a note of your source means taking down the URL of the site you
visit. Remember that some sites generate the page ‘on demand’ so the web
address is not a permanent one and typing it in later on will not take you back
to the same source. In these circumstances is may be better to note the ‘root’
part of the address (e.g. www.imf.org/data/) rather than the complete detail.
You should also take a note of the date you accessed the site, this may be
needed if you put the source into a bibliography.

Tips on downloading data

n If you are downloading a spreadsheet, save it to your hard disk then include the
URL of the source within the spreadsheet itself. You will always know where it
came from. You can do the same with Word documents.

n You cannot do this with PDF files, which are read-only. You could save the file to
your disk, including the URL within the file name (but avoid putting extra full stops
in the file name, that confuses the operating system. Replace them with hyphens.)

n You can use the ‘Text select tool’ within Acrobat to copy items of data from a
PDF file and then paste them into a spreadsheet.

n Often, when pasting several columns of data into Excel, all the numbers go into
a single column. You can fix this using the Data, Text to Columns menu.
Experimentation is required, but it works well.
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300 Chapter 9 • Data collection and sampling methods

Since there are now so many online sources (and they are constantly changing)
a list of useful data sites rapidly becomes out of date. The following sites seem
to have withstood the test of time so far and have a good chance of surviving
throughout the life of this edition.

n The UK Office for National Statistics is at http://www.statistics.gov.uk/ and
their Statbase service supplies over 1000 datasets online for free. This is tied
to information on 13 ‘themes’, such as education, agriculture, etc.

n The Data and Story Library at http://lib.stat.cmu.edu/DASL/ is just that:
datasets with accompanying statistical analyses which are useful for learning.

n The IMF’s World Economic Database is at http://www.imf.org/ (follow the
links to publications, World Economic Outlook, then the database). It has
macroeconomic series for most countries for several years. It is easy to down-
load in csv (text) format, for use in spreadsheets.

n The Biz/Ed site at http://www.bized.ac.uk/ contains useful material on busi-
ness (including financial case studies of companies) as well as economic
data. There is a link from here to the Penn World Tables, which contain
national accounts data for many countries (on a useful, comparable basis)
from 1960 onwards. Alternatively, visit the Penn home page at http://
pwt.econ.upenn.edu/.

n The World Bank provides a lot of information, particularly relating to devel-
oping countries, at http://www.worldbank.org/data/. Much of the data
appears to be in .pdf format so, although it is easy to view on-screen, it can-
not be easily transferred into a spreadsheet or similar software.

n Bill Goffe’s Resources for Economists site (www.rfe.wustl.edu/EconFAQ) con-
tains a data section which is a good starting-off point for data sources.

n Google. Possibly the most useful website of all. Intelligent use of this search
tool is often the best way to find what you want.

n http://davidmlane.com/hyperstat/index.html has an online textbook and
glossary. This is useful if you have a computer handy but not a textbook.

Collecting primary data

Primary data are data that you have collected yourself from original sources,
often by means of a sample survey. This has the advantage that you can design
the questionnaire to include the questions of interest to you and you have total
control over all aspects of data collection. You can also choose the size of the
sample (as long as you have sufficient funds available) so as to achieve the
desired width of any confidence intervals.

Almost all surveys rely upon some method of sampling, whether random or
not. The probability distributions which have been used in previous chapters as
the basis of the techniques of estimation and hypothesis testing rely upon the
samples having been drawn at random from the population. If this is not the
case, then the formulae for confidence intervals, hypothesis tests, etc. are incor-
rect and not strictly applicable (they may be reasonable approximations but it
is difficult to know how reasonable). In addition, the results about the bias and
precision of estimators will be incorrect. For example, suppose an estimate of
the average expenditure on repairs and maintenance by car owners is obtained
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from a sample survey. A poor estimate would arise if only Rolls-Royce owners
were sampled, since they are not representative of the population as a whole.
The precision of the estimator (the sample mean, X) is likely to be poor because
the mean of the sample could either be very low (Rolls-Royce cars are very reli-
able so rarely need repairs) or very high (if they do break down the high quality
of the car necessitates a costly repair). This means the confidence interval esti-
mate will be very wide and thus imprecise. It is not immediately obvious if the
estimator would be biased upwards or downwards.

Thus some form of random sampling method is needed to be able to use the
theory of the probability distributions of random variables. Nor should it be
believed that the theory of random sampling can be ignored if a very large
sample is taken, as the following cautionary tale shows. In 1936 the Literary
Digest tried to predict the result of the forthcoming US election by sending out
10 million mail questionnaires. Two million were returned, but even with this
enormous sample size Roosevelt’s vote was incorrectly estimated by a margin of
19 percentage points. The problem is that those who respond to questionnaires
are not a random sample of those who receive them.

The meaning of random sampling

The definition of random sampling is that every element of the population
should have a known, non-zero probability of being included in the sample.
The problem with the sample of cars used above was that Ford cars (for example)
had a zero probability of being included. Many sampling procedures give an equal
probability of being selected to each member of the population but this is not an
essential requirement. It is possible to adjust the sample data to take account of
unequal probabilities of selection. If, for example, Rolls-Royce had a much
greater chance of being included than Ford, then the estimate of the population
mean would be calculated as a weighted average of the sample observations,
with greater weight being given to the few ‘Ford’ observations than to relatively
abundant ‘Rolls-Royce’ observations. A very simple illustration of this is given
below. Suppose that for the population we have the following data:

Rolls-Royce Ford

Number in population 20 000 2 000 000
Annual repair bill £1000 £200

Then the average repair bill is

Suppose the sample data are as follows:

Rolls-Royce Ford

Number in sample 20 40
Probability of selection 1/1000 1/50 000
Repair bill £990 £205

 
μ  

         
  

  .=
× + ×

=
20 000 1000 2 000 000 200

2 020 000
207 92
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To calculate the average repair bill from the sample data we use a weighted
average, using the relative population sizes as weights, not the sample sizes:

If the sample sizes were used as weights the average would come out at
£466.67, which is substantially incorrect.

As long as the probability of being in the sample is known (and hence the
relative population sizes known), the weight can be derived; but if the probabil-
ity is zero this procedure breaks down.

Other theoretical assumptions necessary for deriving the probability distri-
bution of the sample mean or proportion are that the population is of infinite
size and that each observation is independently drawn. In practice the former
condition is never satisfied since no population is of infinite size, but most
populations are large enough that it does not matter. For each observation to
be independently drawn (i.e. the fact of one observation being drawn does not
alter the probability of others in the sample being drawn) strictly requires that
sampling be done with replacement, i.e. each observation drawn is returned to
the population before the next observation is drawn. Again in practice this is
often not the case, sampling being done without replacement, but again this is
of negligible practical importance.

On occasion the population is quite small and the sample constitutes a 
substantial fraction of it. In these circumstances the finite population correc-
tion (fpc) should be applied to the formula for the variance of X, the fpc being
given by

(9.1) fpc = (1 − n/N)

where N is the population size and n the sample size. The table below illustrates
its usage:

Variance of E Variance of E Example values of fpc
from infinite from finite n = 20 25 50 100
population population

N = 50 100 1000 10 000

σ2/n σ2/n × (1 − n/N ) 0.60 0.75 0.95 0.99

The finite population correction serves to narrow the confidence interval
because a sample size of (say) 25 reveals more about a population of 100 than
about a population of 100 000, so there is less uncertainty about population
parameters. When the sample size constitutes only a small fraction of the popu-
lation (e.g. 5% or less) the finite population correction can be ignored in prac-
tice. If the whole population is sampled (n = N) then the variance becomes zero
and there is no uncertainty about the population mean.

A further important aspect of random sampling occurs when there are two
samples to be analysed, when it is important that the two samples are inde-
pendently drawn. This means that the drawing of the first sample does not
influence the drawing of the second sample. This is a necessary condition for
the derivation of the probability distribution of the difference between the
sample means (or proportions).

  
X  

         
  

  .=
× + ×

=
20 000 990 2 000 000 205

2 020 000
212 77
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The meaning and importance of randomness in the context of sampling has
been explained. However, there are various different types of sampling, all of
them random, but which have different statistical properties. Some methods
lead to greater precision of the estimates, while others can lead to considerable
cost savings in the collection of the sample data, but at the cost of lower pre-
cision. The aim of sampling is usually to obtain the most precise estimates of
the parameter in question, but the best method of sampling will depend on the
circumstances of each case. If it is costly to sample individuals, a sampling
method which lowers cost may allow a much larger sample size to be drawn
and thus good (precise) estimates to be obtained, even if the method is inher-
ently not very precise. These issues are investigated in more detail below, as a
number of different sampling methods are examined.

This type of sampling has the property that every possible sample that could be
obtained from the population has an equal chance of being selected. This
implies that each element of the population has an equal probability of being
included in the sample, but this is not the defining characteristic of simple 
random sampling. As will be shown below, there are sampling methods where
every member of the population has an equal chance of being selected, but
some samples (i.e. certain combinations of population members) can never be
selected.

The statistical methods in this book are based upon the assumption of sim-
ple random sampling from the population. It leads to the most straightforward
formulae for estimation of the population parameters. Although many statisti-
cal surveys are not based upon simple random sampling, the use of statistical
tests based on simple random sampling is justified since the sampling process is
often hypothetical. For example, if one were to compare annual growth rates of
two countries over a 30-year period, a z test on the difference of two sample
means (i.e. the average annual growth rate in each country) would be con-
ducted. In a sense the data are not a sample since they are the only possible
data for those two countries over that time period. Why not just regard the
data as constituting the whole population, therefore? Then it would just be a
case of finding which country had the higher growth rate; there would be no
uncertainty about it.

The alternative way of looking at the data would be to suppose that there
exists some hypothetical population of annual growth rates and that the data
for the two countries were drawn by (simple) random sampling from this popu-
lation. Is this story consistent with the data available? In other words, could
the data we have simply arise by chance? If the answer to this is no (i.e. the z
score exceeds the critical value) then there is something causing a difference
between the two countries (it may not be clear what that something is). In this
case it is reasonable to assume that all possible samples have an equal chance of
selection, i.e. that simple random sampling takes place. Since the population is
hypothetical one might as well suppose it to have an infinite number of mem-
bers, again required by sampling theory.

Returning to the practical business of sampling, one problem with simple 
random sampling is that it is possible to collect ‘bad’ samples, i.e. those which are
unrepresentative of the population. An example of this is the ‘basketball player’
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problem, i.e. in trying to estimate the average height of the population, the
sample (by sheer bad luck) contains a lot of basketball players. One way round
this problem is to ensure that the proportion of basketball players in the sample
accurately reflects the proportion of basketball players in the population (i.e.
very small!). The way to do this is to divide up the population into ‘strata’ and
then to ensure that each stratum is properly represented in the sample. This is
best illustrated by means of an example.

A survey of newspaper readership, which is thought to be associated with
social class, is to be carried out. People higher up the social scale are more likely
to read a newspaper and to read different newspapers from those at the bottom
of the social scale. Suppose the population is made up of three social classes, A
(highest), B and C as follows:

Percentage of population in social class

A B C
20% 50% 30%

Suppose a sample of size 100 is taken. With luck it would contain 20 people
from class A, 50 from B and 30 from C and thus would be representative of the
population as a whole. But if, by bad luck (or bad sample design), all 100 people
in the sample were from class A, poor results would be obtained since newspaper
readership differs between social classes.

To avoid this type of problem a stratified sample is taken, which ensures that
all social classes are represented in the sample. This means that the survey
would have to ask people about their social class as well as their reading habits.
The simplest form of stratified sampling is equiproportionate sampling,
whereby a stratum which constitutes (say) 20% of the population also makes
up 20% of the sample. For the example above the sample would be made up as
follows:

Class A B C Total

Number in sample 20 50 30 100

It should be clear why stratified sampling constitutes an improvement over
simple random sampling, since it rules out ‘bad’ samples, i.e. those not repres-
entative of the population. It is simply impossible to get a sample consisting
completely of social class A, or B, or C. In fact, it is impossible to get a sample
in anything but the proportions 20:50:30, as in the population; this is ensured
by the method of collecting the sample.

It is easy to see when stratification leads to large improvements over simple
random sampling. If there were no difference between strata (social classes) in
reading habits then there would be no gain from stratification. If reading habits
were the same regardless of social class there would be no point in dividing up
the population by social class. On the other hand, if there were large differ-
ences between strata, but within strata reading habits were similar, then the
gains from stratification would be large.
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1 The formulae for calculating confidence intervals with stratified sampling are not given
here, since they merit a whole book to themselves. The interested reader should consult
C.A. Moser and G. Kalton, Survey Methods in Social Investigation, Heinemann, 1971.

Stratification is beneficial therefore when

n the between-strata differences are large and
n the within-strata differences are small.

These benefits take the form of greater precision of the estimates, i.e. narrower
confidence intervals.1 The greater precision arises because stratified sampling
makes use of supplementary information – i.e. the proportion of the popula-
tion in each social class. Simple random sampling does not make use of this.
Obviously, therefore, if those proportions of the population are unknown,
stratified sampling cannot be carried out. However, even if the proportions are
only known approximately there could be a gain in precision.

In this example social class is a stratification factor, i.e. a variable which is
used to divide the population into strata. Other factors could, of course, be
used, such as income or even height. A good stratification factor is one which is
related to the subject of investigation. Income would probably be a good
stratification factor, therefore, since it is related to reading habits, but height is
not since there is probably little difference between tall and short people in the
newspaper they read. What is a good stratification factor obviously depends
upon the subject of study. A bed manufacturer might well find height to be a
good stratification factor if conducting an enquiry into preferences about the
size of beds. Although good stratification factors improve the precision of esti-
mates, bad factors do not make them worse; there will simply be no gain over
simple random sampling. It would be as if there were no differences between
the social classes in reading habits, so that ensuring the right proportions in
the sample is irrelevant, but it has no detrimental effects.

Proportional allocation of sample observations to the different strata (as
done above) is the simplest method but is not necessarily the best. For the opti-
mal allocation there should generally be a divergence from proportional alloca-
tion, and the sample should have more observations in a particular stratum
(relative to proportional allocation):

n the more diverse the stratum, and
n the cheaper it is to sample the stratum.

Starting from the 20:50:30 proportional allocation derived earlier, suppose
that members of class A all read the same newspaper, but those of class C read a
variety of titles. Then the representation of class C in the sample should be
increased, and that of A reduced. If it really were true that everyone in class A
read the same paper then one observation from that class would be sufficient to
yield all there is to know about it. Furthermore, if it is cheaper to sample class
C, perhaps because they are geographically more concentrated than class A,
then again the representation of class C in the sample should be increased. This
is because, for a given budget, it will allow a larger total sample size.

SFE_C09.qxd  3/23/07  12:01 PM  Page 305



306 Chapter 9 • Data collection and sampling methods

Cluster sampling

Surveying concert-goers

A colleague and I carried out a survey of people attending a concert in Brighton (by
Jamiroquai – hope they’re still popular by the time you read this) to find out who
they were, how much they spent in the town and how they got to the concert. The
spreadsheet gives some of the results.

Note that the data are kept on one sheet and results on another, which are
named appropriately.

The data were collected by face-to-face interviews before the concert. We did
not have a sampling frame, so the (student) interviewers simply had to choose the
sample themselves on the night. The one important instruction about sampling we
gave them was that they should not interview more than one person in any group.
People in the same group are likely to be influenced by each other (e.g. travel
together) so we would not get independent observations, reducing the effective
sample size.

From the results you can see that 41.1% either worked or studied in Brighton
and that only one person in the sample was neither working nor studying. The sec-
ond half of the table shows that 64.4% travelled to the show in a car (obviously
adding to congestion in the town), about half of whom shared a car ride. Perhaps
surprisingly, Brighton residents were just as likely to use their car to travel as were
those from out of town.

The average level of spending was £24.20, predominantly on food (£7.38), drink
(£5.97) and shopping (£5.37). The last category had a high variance associated with
it – many people spent nothing, one person spent £200 in the local shops.

A third form of sampling is cluster sampling which, although intrinsically
inefficient, can be much cheaper than other forms of sampling, allowing a
larger sample size to be collected. Drawing a simple, or stratified, random 

SFE_C09.qxd  3/23/07  12:01 PM  Page 306



sample of size 100 from the whole of Britain would be very expensive to collect
since the sample observations would be geographically very spread out.
Interviewers would have to make many long and expensive journeys simply to
collect one or two observations. To avoid this, the population can be divided
into ‘clusters’ (for example, regions or local authorities) and one or more of
these clusters are then randomly chosen. Sampling takes place only within the
selected clusters, and is therefore geographically concentrated, and the cost of
sampling falls, allowing a larger sample to be collected.

Within each cluster one can have either a 100% sample or a lower sampling
fraction, which is called multi-stage sampling (this is explained further below).
Cluster sampling gives unbiased estimates of population parameters but, for a
given sample size, these are less precise than the results from simple or
stratified sampling. This arises in particular when the clusters are very different
from each other, but fairly homogeneous within themselves. In this case, once
a cluster is chosen, if it is unrepresentative of the population, a poor (inaccurate)
estimate of the population parameter is inevitable. The ideal circumstances for
cluster sampling are when all clusters are identical, since in that case examin-
ing one cluster is as good as examining the whole population.

Dividing up the population into clusters and dividing it into strata are sim-
ilar procedures, but the difference is that sampling is from one or at most a few
clusters, but from all strata. This is reflected in the characteristics which make for
good sampling. In the case of stratified sampling, it is beneficial if the between-
strata differences are large and the within-strata differences small. For cluster
sampling this is reversed: it is desirable to have small between-cluster differences
but heterogeneity within clusters. Cluster sampling is less efficient (precise) for
a given sample size, but is cheaper and so can offset this disadvantage with a
larger sample size. In general, cluster sampling needs a much larger sample to
be effective, so is only worthwhile where there are significant gains in cost.

Multi-stage sampling was briefly referred to in the previous section and is com-
monly found in practice. It may consist of a mixture of simple, stratified and
cluster sampling at the various stages of sampling. Consider the problem of
selecting a random sample of 1000 people from a population of 25 million to
find out about voting intentions. A simple random sample would be extremely
expensive to collect, for the reasons given above, so an alternative method
must be found. Suppose further that it is suspected that voting intentions differ
according to whether one lives in the north or south of the country and
whether one is a home owner or renter. How is the sample to be selected? The
following would be one appropriate method.

First the country is divided up into clusters of counties or regions, and a random
sample of these taken, say one in five. This would be the first way of reducing
the cost of selection, since only one-fifth of all counties now need to be visited.
This one-in-five sample would be stratified to ensure that north and south were
both appropriately represented. To ensure that each voter has an equal chance
of being in the sample, the probability of a county being drawn should be pro-
portional to its adult population. Thus a county with twice the population of
another should have twice the probability of being in the sample.

Having selected the counties, the second stage would be to select a ran-
dom sample of local authorities within each selected county. This might be a
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one-in-ten sample from each county and would be a simple random sample
within each cluster. Finally a selection of voters from within each local author-
ity would be taken, stratified according to tenure. This might be a one in 500 
sample. The sampling fractions would therefore be

So from the population of 25 million voters a sample of 1000 would be col-
lected. For different population sizes the sampling fractions could be adjusted
so as to achieve the goal of a sample size of 1000.

The sampling procedure is a mixture of simple, stratified and cluster sam-
pling. The two stages of cluster sampling allow the selection of 50 local author-
ities for study and so costs are reduced. The north and south of the country are
both adequately represented and housing tenures are also correctly represented
in the sample by the stratification at the final stage. The resulting confidence
intervals will be difficult to calculate but should give an improvement over the
method of simple random sampling.

Quota sampling is a non-random method of sampling and therefore it is
impossible to use sampling theory to calculate confidence intervals from the
sample data, or to find whether or not the sample will give biased results.
Quota sampling simply means obtaining the sample information as best one
can, for example, by asking people in the street. However, it is by far the cheap-
est method of sampling and so allows much larger sample sizes. As shown
above, large sample sizes can still give biased results if sampling is non-random;
but in some cases the budget is too small to afford even the smallest properly
conducted random sample, so a quota sample is the only alternative.

Even with quota sampling, where the interviewer is simply told to go out and
obtain (say) 1000 observations, it is worth making some crude attempt at strati-
fication. The problem with human interviewers is that they are notoriously non-
random, so that when they are instructed to interview every tenth person they
see (a reasonably random method), if that person turns out to be a shabbily
dressed tramp slightly the worse for drink, they are quite likely to select the
eleventh person instead. Shabbily dressed tramps, slightly the worse for drink,
are therefore under-represented in the sample. To combat this sort of problem
the interviewers are given quotas to fulfil, for example, 20 men and 20 women,
ten old-age pensioners, one shabbily dressed tramp, etc., so that the sample will
at least broadly reflect the population under study and give reasonable results.

It is difficult to know how accurate quota samples are, since it is rare for
their results to be checked against proper random samples or against the popu-
lation itself. Probably the most common quota samples relate to voting inten-
tions and so can be checked against actual election results. The 1992 UK
general election provides an interesting illustration. The opinion polls pre-
dicted a fairly substantial Labour victory but the outcome was a narrow
Conservative majority. An enquiry concluded that the erroneous forecast
occurred because a substantial number of voters changed their minds at the last
moment and that there was ‘differential turn-out’, i.e. Conservative supporters
were more likely to vote than Labour ones. Presumably, future opinion polls
will try to take this into account.
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Calculating the required sample size

Before collecting sample data it is obviously necessary to know how large the
sample size has to be. The required sample size will depend upon two factors:

n the desired level of precision of the estimate, and
n the funds available to carry out the survey.

The greater the precision required the larger the sample size needs to be,
other things being equal. But a larger sample will obviously cost more to collect
and this might conflict with a limited amount of funds being available. There is
a trade-off therefore between the two desirable objectives of high precision and
low cost. The following example shows how these two objectives conflict.

A firm producing sweets wishes to find out the average amount of pocket
money children receive per week. It wants to be 99% confident that the esti-
mate is within 20 pence of the correct value. How large a sample is needed?

The problem is one of estimating a confidence interval, turned on its head.
Instead of having the sample information X, s and n, and calculating the
confidence interval for μ, the desired width of the confidence interval is given
and it is necessary to find the sample size n which will ensure this. The formula
for the 99% confidence interval, assuming a Normal rather than t distribution
(i.e. it is assumed that the required sample size will be large), is

(9.2)

Diagrammatically this can be represented as in Figure 9.1.
The firm wants the distance between X and μ to be no more than 20 pence

in either direction, which means that the confidence interval must be 40 pence
wide. The value of n which makes the confidence interval 40 pence wide has to
be found. This can be done by solving the equation

and hence by rearranging:

(9.3)
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All that is now required to solve the problem is the value of s2, the sample
variance; but since the sample hasn’t yet been taken this is not available. There
are a number of ways of trying to get round this problem:

n using the results of existing surveys if available,
n conducting a small, preliminary, survey,
n guessing.

These may not seem very satisfactory (particularly the last), but something
has to be done and some intelligent guesswork should give a reasonable esti-
mate of s2. Suppose, for example, that a survey of children’s spending taken five
years previously showed a standard deviation of 30p. It might be reasonable 
to expect that the standard deviation of spending would be similar to the 
standard deviation of income, so 30p (updated for inflation) can be used as an
estimate of the standard deviation. Suppose that five years’ inflation turns the
30p into 50p. Using s = 50 we obtain

giving a required sample size of 42 (the sample size has to be an integer). This is
a large (n ≥ 25) sample size so the use of the Normal distribution was justified.

Is the firm willing to pay for such a large sample? Suppose it was willing to
pay out £1000 in total for the survey, which costs £600 to set up and then £6
per person sampled. The total cost would be £600 + 42 × 6 = £852 which is
within the firm’s budget. If the firm wished to spend less than this, it would
have to accept a smaller sample size and thus a lower precision or a lower level
of confidence. For example, if only a 95% confidence level were required, the
appropriate z score would be 1.96, yielding

A sample size of 24 would only cost £600 + 6 × 24 = £804. (At this sample
size the assumption that X follows a Normal distribution becomes less tenable,
so the results should be treated with caution. Use of the t distribution is tricky,
because the appropriate t value depends upon the number of degrees of free-
dom which in turn depends on sample size, which is what is being looked for!)

The general formula for finding the required sample size is

(9.4)

where zα is the z score appropriate for the (100 − α)% confidence level and p is
the desired accuracy (20 pence in this case).

Collecting the sample

We now move on to the fine detail of how to select the individual observations
which make up the sample. In order to do this it is necessary to have some sort
of sampling frame, i.e. a list of all the members of the population from which
the sample is to be drawn. This can be a problem if the population is extremely
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large, for example the population of a country, since it is difficult to manipu-
late so much information (cutting up 50 million pieces of paper to put into a
hat for a random draw is a tedious business). Alternatively the list might not
even exist or, if it does, not be in one place convenient for consultation and
use. In this case there is often an advantage to multi-stage sampling, for the
selection of regions or even local authorities is fairly straightforward and not
too time-consuming. Once at this lower level the sampling frame is more manage-
able (each local authority has an electoral register, for example) and individual
observations can be relatively easily chosen. Thus it is not always necessary to
have a complete sampling frame for the entire population in one place.

There is a variety of methods available for selecting a sample of (say) 1000
observations from a sampling frame of (say) 25 000 names, varying from the
manual to the electronic. The oldest method is to cut up 25 000 pieces of
paper, put them in a (large) hat, shake it (to randomise) and pick out 1000.
This is fairly time-consuming, however, and has some pitfalls – if the pieces are
not all cut to the same size is the probability of selection the same? It is much
better if the population in the sampling frame is numbered in some way, for
then one only has to select random numbers. This can be done by using a table
of random numbers (see Table A1 on page 364, for example), or a computer.
The use of random number tables for such purposes is an important feature of
statistics and in 1955 the Rand Corporation produced a book entitled A Million
Random Digits with 100 000 Normal Deviates. This book, as the title suggests,
contained nothing but pages of random numbers which allowed researchers to
collect random samples. Interestingly, the authors did not bother to fully
proofread the text, since a few (random) errors here and there wouldn’t matter!
These numbers were calculated electronically and nowadays every computer
has a facility for rapidly choosing a set of random numbers. (It is an interesting
question how a computer, which follows rigid rules of behaviour, can select
random numbers which, by definition, are unpredictable by any rule.)

A further alternative, if a 1 in 25 sample is required, is to select a random
starting point between 1 and 25 and then select every subsequent 25th obser-
vation (e.g. the 3rd, 28th, 53rd, etc.). This is a satisfactory procedure if the sam-
pling frame is randomly sorted to start with, but otherwise there can be
problems. For example, if the list is sorted by income (poorest first), a low start-
ing value will almost certainly give an underestimate of the population mean.
If all the numbers were randomly selected, this ‘error’ in the starting value will
not be important.

Good training of interviewers is vitally important to the results of a survey. It is
very easy to lead an interviewee into a particular answer to a question.
Consider the following two sets of questions:

A
1 Do you know how many people were killed by the atomic bomb at Hiroshima?
2 Do you think nuclear weapons should be banned?

B
1 Do you believe in nuclear deterrence?
2 Do you think nuclear weapons should be banned?

Collecting the sample 311
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A2 is almost certain to get a higher ‘yes’ response than B2. Even a different
ordering of the questions can have an effect upon the answers (consider asking
A2 before A1). The construction of the questionnaire has to be done with care,
therefore. The manner in which the questions are asked is also important, since
it can often suggest the answer. Good interviewers are trained to avoid these
problems by sticking precisely to the wording of the question and not to sug-
gest an expected answer.

Telephone surveys

An article by M. Collins in the Journal of the Royal Statistical Society reveals some
of the difficulties in conducting surveys by telephone. First, the sampling frame is
incomplete since, although most people have a telephone, some are not listed in
the directory. In the late 1980s this was believed to be around 12% of all numbers,
but it has been growing since, to around 40%. (Part of this trend, of course, may be
due to people getting fed up with being pestered by salespersons and ‘market
researchers’.) Researchers have responded with ‘random digit dialling’ which is
presumably made easier by modern computerised equipment.

Matters are unlikely to improve for researchers in the future. The answering
machine is often used as a barrier to unwanted calls and many residential lines
connect to fax machines. Increasing deregulation and mobile phone use mean it
will probably become more and more difficult to obtain a decent sampling frame for
a proper survey.

Source: M. Collins, Sampling for UK telephone surveys, J. Royal Statistical Society, Series A, 162 (1),
1999.

Even when these procedures are adhered to there can be various types of
response bias. The first problem is of non-response, due to the subject not
being at home when the interviewer calls. There might be a temptation to
remove that person from the sample and call on someone else, but this should
be resisted. There could well be important differences between those who are at
home all day and those who are not, especially if the survey concerns employ-
ment or spending patterns, for example. Continued efforts should be made to
contact the subject. One should be wary of surveys which have low response
rates, particularly where it is suspected that the non-response is in some way
systematic and related to the goal of the survey.

A second problem is that subjects may not answer the question truthfully for
one reason or another, sometimes inadvertently. An interesting example of this
occurred in the survey into sexual behaviour carried out in Britain in 1992 (see
Nature, 3 December 1992). Amongst other things, this found the following:

n The average number of heterosexual partners during a woman’s lifetime is 3.4.
n The average number of heterosexual partners during a man’s lifetime is 9.9.

This may be in line with one’s beliefs about behaviour, but, in fact, the figures
must be wrong. The total number of partners of all women must by definition
equal the total number for all men. Since there are approximately equal num-
bers of males and females in the UK the averages must therefore be about the
same. So how do the above figures come about?
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It is too much to believe that international trade holds the answer. It seems
unlikely that British men are so much more attractive to foreign women than
British women are to foreign men. Nor is an unrepresentative sample likely. It
was carefully chosen and quite large (around 20 000). The answer would appear
to be that some people are lying. Either women are being excessively modest or
(more likely?) men are boasting. Perhaps the answer is to divide by three when-
ever a man talks about his sexual exploits!

For an update on this story, see the article by J. Wadsworth et al., What is a
mean? An examination of the inconsistency between men and women in
reporting sexual partnerships, J. Royal Statistical Society, 1996, Series A. 159 (1).

Case study: the UK Expenditure and Food Survey

The Expenditure and Food Survey (EFS) is an example of a large government
survey which examines households’ expenditure patterns (with a particular
focus on food expenditures) and income receipts. It is worth having a brief look
at it, therefore, to see how the principles of sampling techniques outlined in
this chapter are put into practice. The EFS succeeded the Family Expenditure in
2001 and uses a similar design. The EFS is used for many different purposes,
including the calculation of weights to be used in the UK Retail Price Index,
and the assessment of the effects of changes in taxes and state benefits upon
different households.

The sample design is known as a three-stage, rotating, stratified, random
sample. This is obviously quite complex so will be examined stage by stage.

Stage 1

The country is first divided into 168 strata, each stratum made up of a number
of local authorities sharing similar characteristics. The characteristics used as
stratification factors are

n geographic area,
n urban or rural character (based on a measure of population density),
n prosperity (based on a measure of property values).

A stratum might therefore be made up of local authorities in the South West
region, of medium population density and high prosperity.

In each quarter of the year, one local authority from each stratum is chosen at
random, the probability of selection being proportional to population. Once an
authority has been chosen, it remains in the sample for one year (four quarters)
before being replaced. Only a quarter of the authorities in the sample are replaced
in any quarter, which gives the sample its ‘rotating’ characteristic. Each quarter
some authorities are discarded, some kept and some new ones brought in.

Stage 2

From each local authority selected, four wards (smaller administrative units) are
selected, one to be used in each of the four quarters for which the local author-
ity appears in the sample.

Introduction
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314 Chapter 9 • Data collection and sampling methods

Stage 3

Finally, within each ward, 16 addresses are chosen at random, and these consti-
tute the sample.

Altogether this means that 10 752 (168 × 4 × 16) households are chosen each
year to make up the sample.

The Postcode Address File, a list of all postal delivery addresses, is used as the
sampling frame. Previously the register of electors in each ward was used but
had some drawbacks: it was under-representative of those who have no perma-
nent home or who move frequently (e.g. tramps, students, etc.). The fact that
many people took themselves off the register in the early 1990s in order to
avoid paying the Community Charge could also have affected the sample. The
addresses are chosen from the register by interval sampling from a random
starting point.

About 12 000 addresses are targeted each year, but around 11% prove to be
business addresses, leaving approximately the 10 752 households mentioned
above. The response rate is about 63% (from the 12 000), meaning that the
actual sample consists of about 7500 households each year. Given the complex-
ity of the information gathered, this is a remarkably good figure.

The data are collected by interview, and by asking participants to keep a diary
in which they record everything they purchase over a two-week period. Highly
skilled interviewers are required to ensure accuracy and compliance with the
survey, and each participating family is visited serveral times. As a small
inducement to cooperate, each member of the family is paid a small sum of
money (it is to be hoped that the anticipation of this does not distort their
expenditure patterns!).

Given the complicated survey design it is difficult to calculate sampling errors
exactly. The multi-stage design of the sample actually tends to increase the
sampling error relative to a simple random sample, but, of course, this is offset
by cost savings which allow a greatly increased sample size. Overall, the results
of the survey are of good quality, and can be verified by comparison with other
statistics, such as retail sales, for example.

Summary

n A primary data source is one where you obtain the data yourself or have
access to all the original observations.

n A secondary data source contains a summary of the original data, usually in
the form of tables.

n When collecting data always keep detailed notes of the sources of all infor-
mation, how it was collected, precise definitions of the variables, etc.

n Some data can be obtained electronically, which saves having to type it into
a computer, but the data still need to be checked for errors.

The sampling
frame

Collection of
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Sampling errors
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n There are various types of random sample, including simple, stratified and
clustered random samples. The methods are sometimes combined in multi-
stage samples.

n The type of sampling affects the size of the standard errors of the sample
statistics. The most precise sampling method is not necessarily the best if it
costs more to collect (since the overall sample size that can be afforded will
be smaller).

n Quota sampling is a non-random method of sampling which has the advant-
age of being extremely cheap. It is often used for opinion polls and surveys.

n The sampling frame is the list (or lists) from which the sample is drawn. If it
omits important elements of the population its use could lead to biased
results.

n Careful interviewing techniques are needed to ensure reliable answers are
obtained from participants in a survey.

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 9.1 What issues of definition arise in trying to measure ‘output’?

Problem 9.2 What issues of definition arise in trying to measure ‘unemployment’?

Problem 9.3 Find the gross domestic product for both the UK and the US for the period 1995–2003. 
Obtain both series in constant prices.

Problem 9.4 Find figures for the monetary aggregate M0 for the years 1995–2003 in the UK, in nomi-
nal terms.

Problem 9.5 A firm wishes to know the average weekly expenditure on food by households to within
£2, with 95% confidence. If the variance of food expenditure is thought to be about
400, what sample size does the firm need to achieve its aim?

Problem 9.6 A firm has £10 000 to spend on a survey. It wishes to know the average expenditure on
gas by businesses to within £30 with 99% confidence. The variance of expenditure is
believed to be about 40 000. The survey costs £7000 to set up and then £15 to survey
each firm. Can the firm achieve its aim with the budget available?
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316 Chapter 9 • Data collection and sampling methods

Visit your college library to collect data to answer the following question. Has females’
remuneration risen relative to men’s over the past ten years? You should write a short
report on your findings. This should include a section describing the data collection pro-
cess, including any problems encountered and decisions you had to make. Compare
your results with those of other students.

Do a survey to find the average age of cars parked on your college campus. (A letter or
digit denoting the registration year can be found on the number plate – precise details
can be obtained in various guides to used-car prices.) You might need stratified sam-
pling (e.g. if administrators have newer cars than faculty and students, for example).
You could extend the analysis by comparing the results with a public car park. You
should write a brief report outlining your survey methods and the results you obtain. If
several students do such a survey you could compare results.

C.A. Moset and G. Kalton, Survey Methods in Social Investigations, Heinemann, 1971.

Rand Corporation, A Million Random Digits with 100 000 Normal Deviates, The
Glencoe Press, 1955.
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318 Chapter 10 • Index numbers

Learning outcomes By the end of this chapter you should be able to:

n represent a set of data in index number form

n understand the role of index numbers in summarising or presenting data

n recognise the relationship between price, quantity and expenditure index
numbers

n turn a series measured at current prices into one at constant prices (or in
volume terms)

n splice separate index number series together

n measure inequality using index numbers

Introduction

‘The Retail Price Index in June 2004 was 197.5, up 3.1% on its value a year earlier.’
The retail price index (RPI) referred to above is an example of an index

number, which summarises a whole mass of information about the prices of
different goods and services. Index numbers can also summarise information
about quantities as well as prices. An index number is similar in purpose to other
summary statistics such as the mean, and shares their advantages and disadvant-
ages: it provides a useful overview of the data but misses out the finer detail.

We have used index numbers earlier in the book (for example, in the chap-
ters on regression), without fully explaining their derivation or use. This will
now be remedied.

Index numbers are most commonly used for following trends in data over
time, such as the RPI measuring the price level or the index of industrial pro-
duction (IIP) measuring the output of industry. The RPI also allows calculation
of the rate of inflation, which is simply the rate of change of the price index;
and from the IIP it is easy to measure the rate of growth of output. Index num-
bers are also used with cross-section data, for example, an index of regional
house prices would summarise information about the different levels of house
prices in different regions of the country at a particular point in time. There are
many other examples of index numbers in use, common ones being the
Financial Times All Share index, the trade weighted exchange rate index, and
the index of the value of retail sales.

This chapter will explain how index numbers are constructed from original
data and the problems which arise in doing this. There is also a brief discussion
of the RPI to illustrate some of these problems and to show how they are
resolved in practice. Finally, a different set of index numbers is examined,
which are used to measure inequality, such as inequality in the distribution of
income, or in the market shares held by different firms competing in a market.

A simple index number

We begin with the simplest case, where we wish to construct an index num-
ber series for a single commodity. In this case, we shall construct an index number
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series representing the price of coal to industrial users, for the years 1999–2003.
The raw data are given in Table 10.1 (adapted from the Digest of UK Energy
Statistics, 2003, available on the internet). The index will show how the price
of coal changes over the period. We assume that the product itself has not
changed from year to year, so that the index provides a fair representation of
costs. This means, for example, that the quality of coal has not changed during
the period.

To construct a price index from these data we choose one year as the refer-
ence year (1999 in this case) and set the price index in that year equal to 100.
The prices in the other years are then measured relative to the reference year
figure of 100. The index, and its construction, are presented in Table 10.2.

The price index in Table 10.2 presents the same information as Table 10.1
but in a slightly different form. We have (perhaps) gained some degree of clarity,
but we have lost the original information about the actual level of prices. Since
it is usually relative prices that are of interest, this loss of information about the
actual price level is not too serious, and information about relative prices is
retained by the price index. For example, using either the index or actual
prices, we can see that the price of coal was 0.8% lower in 2003 than in 1999.

The choice of reference year is arbitrary and we can easily change it for a dif-
ferent year. If we choose 2001 to be the reference year, then we set the price in
that year equal to 100 and again measure all other prices relative to it. This is
shown in Table 10.3 which can be derived from Table 10.2 or directly from the
original data on prices. You should choose whichever reference year is most
convenient for your purposes. Whichever year is chosen, the informational
content is the same.

A simple index number 319

Table 10.1 The price of coal, 1999–2003

Price (£/tonne) 1999 2000 2001 2002 2003

34.77 35.12 38.07 34.56 34.50

Table 10.2 The price index for coal, 1999 == 100

Year Price Index

1999 34.77 100.0 (= 34.77/34.77 × 100)
2000 35.12 101.0 (= 35.12/34.77 × 100)
2001 38.07 109.5 (= 38.07/34.77 × 100)
2002 34.56 99.4 etc.
2003 34.50 99.2

Table 10.3 The price index for coal, 2001 == 100

Year Price Index

1999 34.77 91.3 (= 34.77/38.07 × 100)
2000 35.12 92.3 (= 35.12/38.07 × 100)
2001 38.07 100.0 (= 38.07/38.07 × 100)
2002 34.56 90.8 etc.
2003 34.50 90.6
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320 Chapter 10 • Index numbers

(a) Average house prices in the UK for the past five years have been as follows:

Year 2000 2001 2002 2003 2004

Price (£) 86 095 96 337 121 137 140 687 161 940

Turn this into an index with a reference year of 2000.

(b) Recalculate the index with reference year 2003.

(c) Check that the ratio of house prices in 2004 relative to 2000 is the same for both
indexes.

A price index with more than one commodity

In practice, of course, industry uses other sources of energy as well as coal, such
as gas, petroleum and electricity. Suppose that an index of the cost of all fuels
used by industry is wanted, rather than just for coal (in the late 1980s, for
example, industrialists were complaining about the high cost of energy in the
UK). This is a more common requirement in reality, rather than the simple
index number series calculated above. If the price of each fuel were rising at the
same rate, say at 5% per year, then it is straightforward to say that the price of
energy to industry is also rising at 5% per year. But supposing, as is likely, that
the prices are all rising at different rates, as shown in Table 10.4. Is it now pos-
sible to say how fast the price of energy is increasing? Several different prices
now have to be combined in order to construct an index number, a more com-
plex process than the simple index number calculated above.

From the data presented in Table 10.4 we can calculate that the price of coal
has fallen by 0.8% over the four-year period, petrol has risen by 33%, electricity
has fallen by 22% and gas has risen by 48%. It is difficult to decide whether the
overall price of energy is rising or falling, given these figures.

We tackle the problem by taking a weighted average of the price changes of
the individual fuels, the weights being derived from the quantities of each fuel
used by the industry. Thus, if industry uses relatively more coal than petrol,
more weight is given to the rise in the price of coal in the calculation.

We put this principle into effect by constructing a hypothetical ‘shopping
basket’ of the fuels used by industry, and measure how the cost of this basket
has risen (or fallen) over time. Table 10.5 gives the quantities of each fuel con-
sumed by industry in 1999 (again from the Digest of UK Energy Statistics,

Using base-year
weights: the
Laspeyres index

Table 10.4 Fuel prices to industry, 1999–2003

Year Coal (£/tonne) Petroleum (£/tonne) Electricity (£/MWh) Gas (£/therm)

1999 34.77 104.93 36.23 0.546
2000 35.12 137.90 34.69 0.606
2001 38.07 148.10 31.35 0.816
2002 34.56 150.16 29.83 0.780
2003 34.50 140.00 28.44 0.807

Exercise 10.1
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2003) and it is this which forms the shopping basket. 1999 is referred to as the
base year since it is the quantities consumed in this year which are used to
make up the shopping basket.

The cost of the basket in 1999 prices therefore works out as shown in Table 10.6
(using information from Tables 10.4 and 10.5). The final column of the table
shows the expenditure on each of the four energy inputs and the total cost of
the basket is 7948.3 (this is in £m, so altogether about £7.96bn was spent on
energy by industry). This sum may be written as:

where the summation is calculated over all the four fuels. Here, p refers to
prices, q to quantities. The first subscript (0) refers to the year, the second (i) to
each energy source in turn. We refer to 1999 as year 0, 2000 as year 1, etc., for
brevity of notation. Thus, for example, p01 means the price of coal in 1999, q12

the consumption of petroleum by industry in 2000.
We now need to find what the 1999 basket of energy would cost in each of the

subsequent years, using the prices pertaining to those years. For example, for 2000
we value the 1999 basket using the 2000 prices. This is shown in Table 10.7.

Firms would therefore have to spend an extra £368m (8316–7948) in 2000 to
buy the same quantities of energy as in 1999. The sum of £8316m may be
expressed as ∑p1iq0i, since it is obtained by multiplying the prices in year 1
(2000) by quantities in year 0 (1999).

  
∑ =
i

i ip q0 0 7948 307 .
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Table 10.5 Quantities of fuel used by industry, 1999

Coal (m tonnes) 2.04
Petroleum (m tonnes) 5.33
Electricity (m MWh) 110.98
Gas (m therms) 6039

Table 10.6 Cost of the energy basket, 1999

Price Quantity Price ×× quantity

Coal (£/tonne) 34.77 2.04 70.931
Petroleum (£/tonne) 104.93 5.33 559.277
Electricity (£/MWh) 36.23 110.98 4020.805
Gas (£/m therms) 0.546 6039 3297.294

Total 7948.307

Table 10.7 The cost of the 1999 energy basket at 2000 prices

2000 price 1999 quantity Price ×× quantity

Coal (£/tonne) 35.12 2.04 71.645
Petroleum (£/tonne) 137.90 5.33 735.007
Electricity (£/MWh) 34.69 110.98 3849.896
Gas (£/m therms) 0.606 6039 3659.634

Total 8316.182
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322 Chapter 10 • Index numbers

Similar calculations for subsequent years produce the costs of the basket as
shown in Table 10.8.

It can be seen that if firms had purchased the same quantities of each energy
source in the following years, they would have had to pay more in each sub-
sequent year up to 2001, after which there was a decrease in the cost.

To obtain the energy price index from these numbers we measure the cost of
the basket in each year relative to its 1999 cost, i.e. we divide the cost of the
basket in each successive year by ∑p0iq0i and multiply by 100.

This index is given in Table 10.9 and is called the Laspeyres price index
after its inventor. We say that it uses base-year weights (i.e. quantities in the
base year 1999 form the weights in the basket).

We have set the value of the index to 100 in 1999, i.e. the reference year and
the base year coincide, though this is not essential.

The Laspeyres index for year n with the base year as year 0 is given by the
following formula:

(10.1)

(Henceforth we shall omit the i subscript on prices and quantities in the formu-
lae for index numbers, for brevity.) The index shows that energy prices
increased by 11.3% over the period – obviously the rise in the prices of
petroleum and gas outweighed the fall in the electricity price. The rise amounts
to an average increase of 2.7% p.a. in the cost of energy. During the same
period, prices in general rose by 9.7% so in relative terms energy became rela-
tively more expensive, by a small margin.

P
p q
p qL

n ni i

i i

=
∑
∑

×   0

0 0

100

Table 10.8 The cost of the energy basket, 1999–2003

Formula Cost

1999 ∑p0q0 7948.31
2000 ∑p1q0 8316.18
2001 ∑p2q0 9274.08
2002 ∑p3q0 8891.81
2003 ∑p4q0 8846.32

Note: For brevity, we have dropped the i subscript in the formula.

Table 10.9 The Laspeyres price index

Year Formula Index

1999 100 (= 7948.31/7948.31 × 100)

2000 104.63 (= 8316.18/7948.31 × 100)

2001 116.68 etc.

2002 111.87

2003 111.30

∑
∑

×
p q
p q

3 0

0 0

100  

∑
∑

×
p q
p q

2 0

0 0

100  

∑
∑

×
p q
p q

1 0

0 0

100  

∑
∑

×
p q
p q

0 0

0 0

100  

∑
∑

×
p q
p q

4 0

0 0

100  
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The choice of 1999 as the base year for the index was an arbitrary one; any
year will do. If we choose 2000 as the base year then the cost of the 2000 basket
is evaluated in each year (including 1999), and this will result in a slightly dif-
ferent Laspeyres index. The calculations are in Table 10.10. The final two
columns of the table compare the Laspeyres index constructed using the 2000
and 1999 baskets respectively (the former adjusted to 1999 = 100). A slight dif-
ference can be seen, due to the different consumption patterns (electricity and
gas are more important in the 2000 basket). The difference is numerically quite
small, however, amounting to about 0.1% of the value of the index.

The Laspeyres price index shows the increase in the price of energy for the
‘average’ firm, i.e. one which consumes energy in the same proportions as the 1999
basket overall. There are probably very few such firms: most would use perhaps
only one or two energy sources. Individual firms may therefore experience price
rises quite different from those shown here. For example, a firm depending upon
electricity alone would face a 22% decline over the four years, significantly dif-
ferent from the figure of +11% suggested by the Laspeyres index.

(a) The prices of fuels used by industry 1995–1999 were:

Coal (£/tonne) Petroleum (£/tonne) Electricity (£/MWh) Gas (£/therm)

1995 37.27 92.93 40.07 0.677
1996 35.41 98.33 39.16 0.464
1997 34.42 90.86 36.87 0.509
1998 35.16 87.23 36.67 0.560
1999 34.77 104.93 36.23 0.546

and quantities consumed by industry were:

Coal (m tonnes) Petroleum (m tonnes) Electricity (m MWh) Gas (m therms)

1995 2.91 6.37 102.88 4938

Calculate the Laspeyres price index of energy based on these data. Use 1995 as
the reference year.

(b) Recalculate the index making 1997 the reference year.

(c) The quantities consumed in 1996 were:

Coal (m tonnes) Petroleum (m tonnes) Electricity (m MWh) Gas (m therms)

1996 2.22 6.21 105.45 5406

Calculate the Laspeyres index using this basket and compare to the answer to part (a).

A price index with more than one commodity 323

Table 10.10 The Laspeyres price index using the 2000 basket

Cost of basket Laspeyres index Laspeyres index Laspeyres index
2000 == 100 1999 == 100 using 1999 basket

1999 8159.14 95.52 100 100
2000 8541.56 100 104.69 104.63
2001 9534.51 111.62 116.86 116.68
2002 9144.37 107.06 112.08 111.87
2003 9098.78 106.52 111.52 111.30

Exercise 10.2
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324 Chapter 10 • Index numbers

Firms do not of course consume the same basket of energy every year. One
would expect them to respond to changes in the relative prices of fuels and to
other factors. Technological progress means that the efficiency with which the
fuels can be used changes, causing fluctuations in demand. Table 10.11 shows
the quantities consumed in the years after 1999 and indicates that firms did
indeed alter their pattern of consumption.

Each of these patterns of consumption could be used as the ‘shopping basket’
for the purpose of constructing the Laspeyres index and each would give a
slightly different price index, as we saw with the usage of the 1999 and 2000
baskets. One cannot say that one of these is more correct than the others. One fur-
ther problem is that whichever basket is chosen remains the same over time and
eventually becomes unrepresentative of the current pattern of consumption.

The Paasche index (denoted Pn
P to distinguish it from the Laspeyres index)

overcomes these problems by using current-year weights to construct the
index, in other words the basket is continually changing. Suppose 1999 is to be
the reference year, so P0

P = 100. To construct the Paasche index for 2000 we use
the 2000 weights (or basket), for the 2001 value of the index we use the 2001
weights, and so on. An example will clarify matters.

The Paasche index for 2000 will be the cost of the 2000 basket at 2000 prices
relative to its cost at 1999 prices, i.e.

This gives:

The general formula for the Paasche index in year n is given in equation (10.2).

(10.2)

Table 10.12 shows the calculation of this index for the later years.
The Paasche formula gives a slightly different result than does the Laspeyres,

as is usually the case. The Paasche should generally give a slower rate of
increase than does the Laspeyres index. This is because one would expect
profit-maximising firms to respond to changing relative prices by switching
their consumption in the direction of the inputs which are becoming relatively
cheaper. The Paasche index, by using the current weights, captures this change,
but the Laspeyres, assuming fixed weights, does not. This may happen slowly,

  
P

p q
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∑
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    .
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∑
∑
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Using current-
year weights: the
Paasche index

Table 10.11 Quantities of energy used, 2000–2003

Coal (m tonnes) Petroleum (m tonnes) Electricity (m MWh) Gas (m therms)

2000 0.72 5.52 114.11 6265
2001 1.69 6.60 111.34 6142
2002 1.10 5.81 112.37 5650
2003 0.69 6.69 113.93 5880
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Table 10.12 The Paasche price index

Cost of basket at current prices Cost at 1999 prices Index

1999 7948.31 7948.31 100
2000 8541.56 8159.14 104.69
2001 9544.18 8138.68 117.27
2002 8669.44 7803.96 111.09
2003 8945.73 8064.14 110.93

Units of
measurement

as it takes time for firms to switch to different fuels, even if technically pos-
sible. This is why the Paasche can increase faster than the Laspeyres in some
years (e.g. 2001) though in the long run it should increase more slowly.

Is one of the indices more ‘correct’ than the other? The answer is that 
neither is definitively correct. It can be shown that the ‘true’ value lies 
somewhere between the two, but it is difficult to say exactly where. If all the
items which make up the index increase in price at the same rate then the
Laspeyres and Paasche indices would give the same answer, so it is the change
in relative prices and the resultant change in consumption patterns which
causes problems.

It is important that the units of measurement in the price and quantity tables
be consistent. Note that in the example, the price of coal was measured in
£/tonne and the consumption was measured in millions of tonnes. The other
fuels were similarly treated (in the case of electricity, one MWh equals one mil-
lion watt-hours). But suppose we had measured electricity consumption in
kWh instead of MWh (1 MWh = 1000 kWh), but still measured its price in 
£ per MWh? We would then have 1999 data of 36.23 for price as before, but 
110 980 for quantity. It is as if electricity consumption has been boosted 1000-
fold, and this would seriously distort the results. The (Laspeyres) energy price
index would be (by a similar calculation to the one above):

1999 2000 2001 2002 2003

100 95.8 86.6 82.4 78.6

The Human Development Index

One of the more interesting indices to appear in recent years is the Human
Development Index (HDI), produced by the United Nations Development
Programme (UNDP). The HDI aims to provide a more comprehensive socio-
economic measure of a country’s progress than GDP (national output). Output is a
measure of how well-off we are in material terms, but makes no allowance for the
quality of life and other factors.

The HDI combines a measure of well-being (GDP per capita) with longevity (life
expectancy) and knowledge (based on literacy and years of schooling). As a result,
each country obtains a score, from 0 (poor) to 1 (good). Some selected values are
given in the table.
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Country HDI 1970 HDI 1980 HDI 2003 Rank (HDI 92) Rank (GDP)

Canada 0.887 0.911 0.932 1 11
UK 0.873 0.892 0.919 10 19
Hong Kong 0.737 0.830 0.875 24 22
Gabon 0.378 0.468 0.525 114 42
Senegal 0.176 0.233 0.322 143 114

One can see that there is an association between the HDI and GDP, but not a per-
fect one. Canada has the world’s 11th highest GDP per capita but comes top of the
HDI rankings. In contrast, Gabon, some way up the GDP rankings, is much lower
when the HDI is calculated.

So how is the HDI calculated from the initial data? How can we combine life
expectancy (which can stretch from 0 to 80 years or more) with literacy (the propor-
tion of the population who can read and write)? The answer is to score all of the
variables on a scale from 0 to 100.

The HDI sets a range for (national average) life expectancy between 25 and 85
years. A country with a life expectancy of 52.9 (the case of Gabon) therefore scores
0.465, i.e. 52.9 is 46.5% of the way between 25 and 85.

Adult literacy can vary between 0% and 100% of the population, so needs no
adjustment. Gabon’s figure is 0.625. The scale used for years of schooling is 0 to
15, so Gabon’s very low average of 2.6 yields a score of 0.173. Literacy and
schooling are then combined in a weighted average (with a 2/3 weight on literacy) to
give a score for knowledge of 2/3 × 0.625 + 1/3 × 0.173 = 0.473.

For income, Gabon’s average of $3498 is compared to the global average of
$5185 to give a score of 0.636. (Incomes above $5185 are manipulated to avoid
scores above 1.)

A simple average of 0.465, 0.473 and 0.636 then gives Gabon’s final figure of
0.525. One can see that its average income is brought down by the poorer scores
in the two other categories, resulting in a poorer HDI ranking.

The construction of this index number shows how disparate information can be
brought together into a single index number for comparative purposes. Further
work by UNDP adjusts the HDI on the basis of gender and reveals the stark result
that no country treats its women as well as it does its men.

Adapted from: Human Development Report, 1994 and other years. More on the HDI can be found at
http://www.undp.org/

This is incorrect, and shows a much lower value than the correct Laspeyres
index (because electricity is now given too much weight in the calculation, and
electricity prices were falling both in absolute and relative terms).

It is possible to make some manipulations of the units of measurement (usu-
ally to make calculation easier) as long as all items are treated alike. If, for
example, all prices were measured in pence rather than pounds (so all prices in
Table 10.4 were multiplied by 100) then this would have no effect on the resul-
tant index, as you would expect. Similarly, if all quantity figures were measured
in thousands of tonnes, thousands of therms and thousands of MWh there
would be no effects on the index, even if prices remained in £/tonne, etc. But if
electricity were measured in pence per MWh, while all other fuels were in
£/tonne, a wrong answer would again be obtained. Quantities consumed
should also be measured over the same time period, e.g. millions of therms per
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annum. It does not matter what the time period is (days, weeks, months or
years) as long as all the items are treated similarly.

The quantities of energy used in subsequent years were:

Coal (m tonnes) Petroleum (m tonnes) Electricity (m MWh) Gas (m therms)

1997 2.14 5.64 107.31 5565
1998 1.81 5.37 107.97 5639
1999 2.04 5.33 110.98 6039

Calculate the Paasche index for 1995–1999 with 1995 as reference year. Compare this
to the Laspeyres index result.

Using expenditures as weights

On occasion the quantities of each commodity consumed are not available, but
expenditures are, and a price index can still be constructed using slightly
modified formulae. It is often easier to find the expenditure on a good than to
know the actual quantity consumed (think of housing as an example). We shall
illustrate the method with a simplified example, using the data on energy
prices and consumption for the years 1999 and 2000 only. The data are
repeated in Table 10.13.

The data for consumption are assumed to be no longer available, but only
the expenditure on each energy source as a percentage of total expenditure.
Expenditure is derived as the product of price and quantity consumed.

The formula for the Laspeyres index can be easily manipulated to accord
with the data as presented in Table 10.13.

The Laspeyres index formula based on expenditure shares is given in equa-
tion (10.3):1

(10.3)

Equation (10.3) is made up of two component parts. The first, pn/p0, is simply
the price in year n relative to the base-year price for each energy source. The

P
p
p

sL
n n= × ×∑     

0
0 100
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Exercise 10.3

Table 10.13 Expenditure shares, 1999

Price Quantity Expenditure Share

Coal (£/tonne) 34.77 2.04 70.93 0.9%
Petroleum (£/tonne) 104.93 5.33 559.28 7.0%
Electricity (£/MWh) 36.23 110.98 4020.81 50.6%
Gas (£/m therms) 0.546 6039.00 3297.29 41.5%

Totals 7948.31 100.0%

Note: The 0.9% share of coal is calculated as (70.93/7948.31) × 100. Other shares are calcu-
lated similarly.

1 See the appendix to this chapter (page 357) for the derivation of this formula.
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second component, s0 = p0q0/∑p0q0, is the share or proportion of total expendi-
ture spent on each energy source in the base year, the data for which are in
Table 10.13. It should be easy to see that the sum of the s0 values is 1, so that
equation (10.3) calculates a weighted average of the individual price increases,
the weights being the expenditure shares.

The calculation of the Laspeyres index for 2000 using 1999 as the base year
is therefore:

giving the value of the index as 104.63, the same value as derived earlier using
the more usual methods. Values of the index for subsequent years are calcu-
lated by appropriate application of equation (10.3) above. This is left as an
exercise for the reader, who may use Table 10.9 to verify the answers.

The Paasche index may similarly be calculated from data on prices and
expenditure shares, as long as these are available for each year for which the
index is required. The formula for the Paasche index is

(10.4)

The calculation of the Paasche index is also left as an exercise.

The advantages of the Laspeyres index are that it is easy to calculate and that it
has a fairly clear intuitive meaning, i.e. the cost each year of a particular basket
of goods. The Paasche index involves more computation, and it is less easy to
envisage what it refers to. As an example of this point, consider the following
simple case. The Laspeyres index values for 2001 and 2002 are 116.68 and
111.87. The ratio of these two numbers, 0.959, would suggest that prices fell by
4.1% between these years. What does this figure actually represent? The 2002
Laspeyres index has been divided by the same index for 2001, i.e.

which is the ratio of the cost of the 1999 basket at 2002 prices to its cost at
2001 prices. This makes some intuitive sense. Note that it is not the same as the
Laspeyres index for 2002 with 2001 as base year, which would require using q2

in the calculation.
If the same is done with the Paasche index numbers a fall of 5.3% is

obtained between 2001 and 2002. But the meaning of this is not so clear, for

which does not simplify further. This is a curious mixture of 2001 and 2002
quantities, and 1999, 2001 and 2002 prices!

The major advantage of the Paasche index is that the weights are continu-
ously updated, so that the basket of goods never becomes out of date. In the
case of the Laspeyres index the basket remains unchanged over a period,
becoming less and less representative of what is being bought by consumers.
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When revision is finally made there may therefore be a large change in the
weighting scheme. The extra complexity of calculation involved in the Paasche
index is less important now that computers do most of the work.

(a) Calculate the share of expenditure going to each of the four fuel types in the previ-
ous exercises and use this result to re-calculate the Laspeyres and Paasche
indexes using equations (10.3) and (10.4).

(b) Check that the results are the same as calculated in previous exercises.

Quantity and expenditure indices

Just as one can calculate price indices, it is also possible to calculate quantity
and value indices. We first concentrate on quantity indices, which provide a
measure of the total quantity of energy consumed by industry each year. The
problem again is that we cannot easily aggregate the different sources of
energy. It makes no sense to add together tonnes of coal and petroleum,
therms of gas and megawatts of electricity. Some means has to be found to put
these different fuels on a comparable basis. To do this, we now reverse the roles
of prices and quantities: the quantities of the different fuels are weighted by
their different prices (prices represent the value to the firm, at the margin, of
each different fuel). As with price indices, one can construct both Laspeyres
and Paasche quantity indices.

The Laspeyres quantity index for year n is given by

(10.5)

i.e. it is the ratio of the cost of the year n basket to the cost of the year 0 basket,
both valued at year 0 prices. Note that it is the same as equation (10.1) but
with prices and quantities reversed.

Using 1999 as the base year, the cost of the 2000 basket at 1999 prices is:

∑q1p0 = 0.72 × 34.77 + 5.52 × 104.93 + 114.11 × 36.23 + 6265 × 0.546 = 8159.14

and the cost of the 1999 basket at 1999 prices is 7948.31 (calculated earlier).
The value of the quantity index for 2000 is therefore

In other words, if prices had remained constant between 1999 and 2000, in-
dustry would have consumed 2.65% more energy (and spent 2.65% more also).

The value of the index for subsequent years is shown in Table 10.14, using
the formula given in equation (10.5).

Just as there are Laspeyres and Paasche versions of the price index, the same is
true for the quantity index. The Paasche quantity index is given by

(10.6)
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SFE_C10.qxd  3/23/07  12:00 PM  Page 329



330 Chapter 10 • Index numbers

and is the analogue of equation (10.2) with prices and quantities reversed. The
calculation of this index is shown in Table 10.15, which shows a similar trend
to the Laspeyres index in Table 10.14. Normally one would expect the Paasche
to show a slower increase than the Laspeyres quantity index: firms should
switch to inputs whose relative prices fall; the Paasche gives lesser weight (cur-
rent prices) to these quantities than does the Laspeyres (base-year prices) and
thus shows a slower rate of increase.

The expenditure or value index is simply an index of the cost of the year n
basket at year n prices and so it measures how expenditure changes over time.
The formula for the index in year n is

(10.7)

There is obviously only one value index and one does not distinguish between
Laspeyres and Paasche formulations. The index can be easily derived from
Table 10.16. The expenditure index shows how industry’s expenditure on
energy is changing over time. Thus expenditure in 2003 was 12.55% higher
than in 1999. What the value index does not show is how that increased
expenditure may be divided up into price and quantity changes. This decom-
position is shown in the next section.
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Table 10.14 Calculation of the Laspeyres quantity index

∑∑p0qn Index

1999 7948.31 100
2000 8159.14 102.65 (= 8159.14/7948.31 × 100)
2001 8138.68 102.40 (= 8138.68/7948.31 × 100)
2002 7803.96 98.18 etc.
2003 8064.14 101.46

Table 10.15 Calculation of the Paasche quantity index

∑∑pnqn ∑∑pnq0 Index

1999 7948.31 7948.31 100
2000 8541.56 8316.18 102.71
2001 9544.18 9274.08 102.91
2002 8669.44 8891.81 97.50
2003 8945.73 8846.32 101.12

Note: The final column is calculated as the ratio of the previous two columns.

Expenditure
indices

Table 10.16 The expenditure index

∑∑pnqn Index

1999 7948.31 100
2000 8541.56 107.46
2001 9544.18 120.08
2002 8669.44 109.07
2003 8945.73 112.55

Note: The expenditure index is a simple index of the expenditures in the previous column.
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Just as multiplying a price by a quantity gives total value, or expenditure, the
same is true of index numbers. The value index can be decomposed as the
product of a price index and a quantity index. In particular, it is the product of
a Paasche quantity index and a Laspeyres price index, or the product of a
Paasche price index and a Laspeyres quantity index. This can be very simply
demonstrated using ∑ notation:

(10.8)

or

(10.9)

Thus increases in value or expenditure can be decomposed into price and quantity
effects. Two decompositions are possible and give slightly different answers.

It is also evident that a quantity index can be constructed by dividing a
value index by a price index, since by simple manipulation of (10.8) and (10.9)
we obtain

(10.10) Qn
p = En/Pn

L

and

(10.11) Qn
L = En/Pn

P

Note that dividing the expenditure index by a Laspeyres price index gives a
Paasche quantity index, and dividing by a Paasche price index gives a Laspeyres
quantity index. This is known as deflating a series and is a widely used and
very useful technique. We shall reconsider our earlier data in the light of this.
Table 10.17 provides the detail. Column 2 of the table shows the expenditure
on fuel at current prices or in cash terms. Column 3 contains the Laspeyres
price index repeated from Table 10.9 above. Deflating (dividing) column 2 by
column 3 and multiplying by 100 yields column 4 which shows expenditure
on fuel in quantity or volume terms. The final column gives an index of
energy expenditure in volume terms.

This final index is equivalent to a Paasche quantity index, as illustrated by
equation (10.7) and in Table 10.15 above.

Trap!

A common mistake is to believe that once a series has been turned into an index, it is
inevitably in real terms. This is not the case. One can have an index of a nominal
series (e.g. in Table 10.16 above) or of a real series (the final column of Table 10.17).
An index number is really just a change of the units of measurement to something
more useful for presentation purposes; it is not the same as deflating the series.

In the example above we used the price index for energy to deflate the
expenditure series. However, it is also possible to use a general price index (such
as the retail price index or the GDP deflator) to deflate. This gives a slightly dif-
ferent result, both in numerical terms and in its interpretation. Deflating by a
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332 Chapter 10 • Index numbers

Exercise 10.5

general price index yields a series of expenditures in constant prices or in real
terms. Deflating by a specific price index (e.g. of energy) results in a quantity
or volume series.

An example should clarify this (see Problem 10.11 for data). The government
spends billions of pounds each year on the health service. If this cash expendi-
ture series is deflated by a general price index (e.g. the GDP deflator) then we
obtain expenditure on health services at constant prices, or real expenditure on
the health service. If the NHS pay and prices index is used as a deflator, then
the result is an index of the quantity or volume of health services provided.
Since the NHS index tends to rise more rapidly than the GDP deflator, the volume
series rises more slowly than the series of expenditure at constant prices. This can
lead to an interesting, if pointless, political debate. The government claims it is
spending more on the health service, in real terms, while the opposition claims that
the health service is getting fewer resources. As we have seen, both can be right.

(a) Use the data from earlier exercises to calculate the Laspeyres quantity index.

(b) Calculate the Paasche quantity index.

(c) Calculate the expenditure index.

(d) Check that dividing the expenditure index by the price index gives the quantity
index (remember that there are two ways of doing this).

The real rate of interest

Another example of ‘deflating’ is the real rate of interest. This adjusts the actual rate
of interest for changes in the value of money, i.e. inflation. If you earn a 7% rate of
interest on your money over a year, but the price level rises by 5% at the same
time, you are clearly not 7% better off. The real rate of interest in this case would
be given by

(10.12) real interest rate

In general, if r is the interest rate and i is the inflation rate, the real rate of interest is
given by

(10.13) real interest rate 

A simpler method is often used in practice, which gives virtually identical results for
small values of r and i. This is to subtract the inflation rate from the interest rate,
giving 7% − 5% = 2% in this case.
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Table 10.17 Deflating the expenditure series

Expenditure at Laspeyres Expenditure in Index
current prices price index volume terms

1999 7948.31 100 7948.31 100
2000 8541.56 104.63 8163.72 102.71
2001 9544.18 116.68 8179.79 102.91
2002 8669.44 111.87 7749.54 97.50
2003 8945.73 111.30 8037.63 101.12
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Chain indices

Table 10.18 A chain index of energy prices, 1995–2003

‘Old’ index ‘New’ index Chain index

1995 100 100
1996 96.3 96.3
1997 95.6 95.6
1998 92.1 92.1
1999 88.1 100 88.1
2000 104.63 92.2
2001 116.68 102.8
2002 111.87 98.6
2003 111.30 98.1

Note: After 1999, the chain index values are calculated by multiplying the ‘new’ index by
0.881; e.g. 92.2 = 104.63 × 0.881 for 2000.

Whenever an index number series over a long period of time is wanted, it is
usually necessary to link together a number of separate, shorter indices, result-
ing in a chain index. Without access to the original raw data it is impossible 
to construct a proper Laspeyres or Paasche index, so the result will be a mixture
of different types of index number but it is the best that can be done in the 
circumstances.

Suppose that the following two index number series are available. Access to
the original data is assumed to be impossible.

Laspeyres price index for energy, 1999–2003 (from Table 10.9)

1999 2000 2001 2002 2003
100 104.63 116.68 111.87 111.30

Laspeyres price index for energy, 1995–99

1995 1996 1997 1998 1999
100 96.3 95.6 92.1 88.1

The two series have different reference years and use different shopping baskets
of consumption. The first index measures the cost of the 1999 basket in each of
the subsequent years. The second measures the price of the 1995 basket in sub-
sequent years. There is an ‘overlap’ year which is 1999. How do we combine
these into one continuous index covering the whole period?

The obvious method is to use the ratio of the costs of the two baskets in
1999, 88.1/100 = 0.881, to alter one of the series. To base the continuous series
on 1995 = 100 requires multiplying each of the post-1999 figures by 0.881, as is
demonstrated in Table 10.18. The continuous series could just as easily be
based on 1999 = 100 by a simple rescaling, which would be equivalent to dividing
the ‘old’ series by 0.881 and leaving the ‘new’ series unchanged.

The continuous series is not a proper Laspeyres index number as can be seen
if we examine the formulae used. We shall examine the 2003 figure, 98.1, by
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334 Chapter 10 • Index numbers

way of example. This figure is calculated as 98.1 = 111.30 × 88.1/100 which in
terms of our formulae is

(10.14)

The proper Laspeyres index for 2003 using 1995 weights is

(10.15)

There is no way that this latter equation can be derived from equation
(10.14), proving that the former is not a properly constructed Laspeyres index
number. Although it is not a proper index number series it does have the
advantage of the weights being revised and therefore more up-to-date.

Similar problems arise when deriving a chain index from two Paasche index
number series. Investigation of this is left to the reader; the method follows
that outlined above for the Laspeyres case.

The Retail Price Index

The UK Retail Price Index is one of the more sophisticated of index numbers,
involving the recording of the prices of 650 items each month, and weighting
them on the basis of households’ expenditure patterns as revealed by the
Expenditure and Food Survey (the EFS was explained in more detail in Chapter
9 on sampling methods). The principles involved in the calculation are similar
to those set out above, with slight differences due to a variety of reasons.

The RPI is something of a compromise between a Laspeyres and a Paasche
index. It is calculated monthly, and within each calendar year the weights used
remain constant, so that it takes the form of a Laspeyres index. Each January,
however, the weights are updated on the basis of evidence from the EFS, so
that the index is in fact a set of chain-linked Laspeyres indices, the chaining
taking place in January each year. Despite the formal appearance as a Laspeyres
index, the RPI measured over a period of years has the characteristics of a
Paasche index, due to the annual change in the weights.

Another departure from principle is the fact that about 14% of households
are left out when expenditure weights are calculated. These consist of most
pensioner households (10%) and the very rich (4%), because they tend to have
significantly different spending patterns from the rest of the population and
their inclusion would make the index too unrepresentative. A separate RPI is
calculated for pensioners, while the very rich have to do without one.

A change in the quality of goods purchased can also be problematic, as alluded
to earlier. If a manufacturer improves the quality of a product and charges more,
is it fair to say that the price has gone up? Sometimes it is possible to measure
improvement (if the power of a vacuum cleaner is increased, for example), but
other cases are more difficult, such as if the punctuality of a train service is
improved. By how much has quality improved? In many circumstances the
statistician has to make a judgement about the best procedure to adopt.
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Discounting and
present values

Exercise 10.6

Prices in the long run

Table 10.19 shows how prices have changed over the longer term. The ‘inflation-
adjusted’ column shows what the item would have cost if it had risen in line with
the overall retail price index. It is clear that some relative prices have changed sub-
stantially and you can try to work out the reasons.

Table 10.19 80 years of prices: 1914–1994

Item 1914 price Inflation-adjusted 1994 price
price

Car £730 £36 971 £6995
London–Manchester 1st class rail fare £2.45 £124.08 £130
Pint of beer 1p 53p £1.38
Milk (quart) 1.5p 74p 70p
Bread 2.5p £1.21 51p
Butter 6p £3.06 68p
Double room at Savoy Hotel, London £1.25 £63.31 £195

The index of energy prices for the years 1992–1995 was:

1991 1992 1993 1994 1995

100 103.5 107.8 112.2 119.8

Use these data to calculate a chain index from 1991 to 2003, setting 1991 = 100.

Deflating makes expenditures in different years comparable by correcting for
the effect of inflation. The future sum is deflated (reduced) because of the
increase in the general price level. Discounting is a similar procedure for com-
paring amounts across different years, correcting for time preference. For
example, suppose that by investing £1000 today a firm can receive £1100 in a
year’s time. To decide if the investment is worthwhile, the two amounts need
to be compared.

If the prevailing interest rate is 12%, then the firm could simply place its
£1000 in the bank and earn £120 interest, giving it £1120 at the end of the
year. Hence the firm should not invest in this particular project; it does better
keeping money in the bank. The investment is not undertaken because

£1000 × (1 + r) > £1100

where r is the interest rate, 12%. Alternatively, this inequality may be expressed
as

The expression on the right-hand side of the inequality sign is the present
value (PV) of £1100 received in one year’s time. Here, r is the rate of discount
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£
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1000
1100
1

>
+ r
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336 Chapter 10 • Index numbers

and is equal to the rate of interest in this example because this is the rate at
which the firm can transform present into future income, and vice versa. In
what follows, we use the terms interest rate and discount rate interchangeably.
The term 1/(1 + r) is known as the discount factor. Multiplying an amount by
the discount factor results in the present value of the sum.

We can also express the inequality as follows (by subtracting £1000 from
each side):

The right-hand side of this expression is known as the net present value (NPV)
of the project. It represents the difference between the initial outlay and the
present value of the return generated by the investment. Since this is negative
the investment is not worthwhile (the money would be better placed on
deposit in a bank). The general rule is to invest if the NPV is positive.

Similarly, the present value of £1100 to be received in two years’ time is

when r = 12%. In general, the PV of a sum S to be received in t years is

The PV may be interpreted as the amount a firm would be prepared to pay
today to receive an amount S in t years’ time. Thus a firm would not be pre-
pared to make an outlay of more than £876.91 in order to receive £1100 in two
years’ time. It would gain more by putting the money on deposit and earning
12% interest per annum.

Most investment projects involve an initial outlay followed by a series of
receipts over the following years, as illustrated by the figures in Table 10.20. In
order to decide if the investment is worthwhile, the present value of the in-
come stream needs to be compared to the initial outlay. The PV of the income
stream is obtained by adding together the present value of each year’s income.
Thus we calculate2
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2 This present value example has only four terms but in principle there can be any num-
ber of terms stretching into the future.

Table 10.20 The cash flows from an investment project

Year Outlay or income Discount factor Discounted income

2001 Outlay −1000
2002 Income 300 0.893 267.86
2003 400 0.797 318.88
2004 450 0.712 320.30
2005 200 0.636 127.10

Total 1034.14
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(10.16)

or more concisely, using ∑ notation:

(10.17)

Columns 3 and 4 of the table show the calculation of the present value. The
discount factors, 1/(1 + r)t, are given in column 3. Multiplying column 2 by col-
umn 3 gives the individual elements of the PV calculation (as in equation
(10.16) above) and their sum is 1034.14, which is the present value of the
returns. Since the PV is greater than the initial outlay of 1000 the investment
generates a return of at least 12% and so is worthwhile.

The investment rule can be expressed in a different manner, using the internal
rate of return (IRR). This is the rate of discount which makes the NPV equal to
zero, i.e. the present value of the income stream is equal to the initial outlay.
An IRR of 10% equates £1100 received next year to an outlay of £1000 today.
Since the IRR is less than the market interest rate (12%) this indicates that the
investment is not worthwhile: it only yields a rate of return of 10%. The rule
‘invest if the IRR is greater than the market rate of interest’ is equivalent to the
rule ‘invest if the net present value is positive, using the interest rate to dis-
count future revenues’.

In general it is mathematically difficult to find the IRR of a project with a
stream of future income, except by trial and error methods. The IRR is the value
of r which sets the NPV equal to zero, i.e. it is the solution to

(10.18)

where S0 is the initial outlay. Fortunately, most spreadsheet programs have an
internal routine for its calculation. This is illustrated in Figure 10.1 which
shows the calculation of the IRR for the data in Table 10.20 above.

Cell C11 contains the formula ‘= IRR(C4:C8)’ – this can be seen just above
the column headings – which is the function used in Excel to calculate the
internal rate of return. The IRR for this project is therefore 13.7% which is
indeed above the market interest rate of 12%. The final two columns show that
the PV of the income stream, when discounted using the internal rate of
return, is equal to the initial outlay. The discount factors in the penultimate
column are calculated using r = 13.7%.

The IRR is easy to calculate if the income stream is a constant monetary sum.
If the initial outlay is S0 and a sum S is received each year in perpetuity (like a
bond), then the IRR is simply

For example, if an outlay of £1000 yields a permanent income stream of
£120 p.a. then the IRR is 12%. This should be intuitively obvious, since invest-
ing £1000 at an interest rate of 12% would give you an annual income of 
£120.
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If an income stream has already been deflated to real terms then the present
value should be obtained by discounting by the real interest rate, not the
nominal (market) rate. Table 10.21 illustrates the principle. Column 1 repeats
the income flows in cash terms from Table 10.20. Assuming an inflation rate of
i = 7% per annum gives the price index shown in column 2, based on 2001 =
100. This is used to deflate the cash series to real terms, shown in column 3.
This is in constant (2001) prices. If we were presented only with the real
income series and could not obtain the original cash flows we would have to
discount the real series by the real interest rate rr, defined by

(10.19)

With a (nominal) interest rate of 12% and an inflation rate of 7% this gives

(10.20)
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Figure 10.1
Calculation of IRR

Note: Note that the first term in the series is the initial outlay (cell C4) and that it is entered as
a negative number. If a positive value is entered, the IRR function will not work.

Nominal and real
interest rates

Table 10.21 Discounting a real income stream

Year Price index Real income Real discount Discounted
factor sums

2001 Outlay −1000 100
2002 Income 300 107.0 280.37 0.955 267.86
2003 400 114.5 349.38 0.913 318.88
2004 450 122.5 367.33 0.872 320.30
2005 200 131.1 152.58 0.833 127.10

Total 1034.14
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so that the real interest rate is 4.67% and in this example is the same every
year. The discount factors used to discount the real income flows are shown in
column 4 of the table, based on the real interest rate, the discounted sums are
in column 5 and the present value of the series is £1034.14. This is the same as
was found earlier, by discounting the cash figures by the nominal interest rate.
Thus one can discount either the nominal (cash) values using the nominal dis-
count rate, or the real flows by the real interest rate. Make sure you do not con-
fuse the nominal and real interest rates.

The real interest rate can be approximated by subtracting the inflation rate
from the nominal interest rate, i.e. 12% − 7% = 5%. This gives a reasonably
accurate approximation for low values of the interest and inflation rates (below
about 10% p.a.). Because of the simplicity of the calculation, this method is
often preferred.

(a) An investment of £100 000 yields returns of £25 000, £35 000, £30 000 and 
£15 000 in each of the subsequent four years. Calculate the present value of the income
stream and compare to the initial outlay, using an interest rate of 10% per annum.

(b) Calculate the internal rate of return on this investment.

(a) An investment of £50 000 yields cash returns of £20 000, £25 000, £30 000 and
£10 000 in each subsequent year. The rate of inflation is a constant 5% and the
rate of interest is constant at 9%. Use the rate of inflation to construct a price index
and discount the cash flows to real terms.

(b) Calculate the real discount rate.

(c) Use the real discount rate to calculate the present value of the real income flows.

(d) Compare the result where the nominal cash flows and nominal interest rate are
used.

Inequality indices

A separate set of index numbers is used specifically in the measurement of in-
equality, such as inequality in the distribution of income. We have already seen
how we can measure the dispersion of a distribution via the variance and standard
deviation. This is based upon the deviations of the observations about the mean.
An alternative idea is to measure the difference between every pair of observa-
tions, and this forms the basis of a statistic known as the Gini coefficient. This
would probably have remained an obscure measure, due to the complexity of
calculation, were it not for Konrad Lorenz, who showed that there is an attrac-
tive visual interpretation of it, now known as the Lorenz curve, and a rela-
tively simple calculation of the Gini coefficient, based on this curve.

We start off by constructing the Lorenz curve, based on data for the UK
income distribution in 2003, and proceed then to calculate the Gini coefficient.
We then use these measures to look at inequality both over time (in the UK)
and across different countries.

We then examine another manifestation of inequality, in terms of market
shares of firms. For this analysis we look at the calculation of concentration
ratios and at their interpretation.

Inequality indices 339

Exercise 10.7

Exercise 10.8
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The Lorenz curve

Table 10.22 shows the data for the distribution of income in the UK based on
data from the Family Resources Survey 2002–03, published by the ONS. The data
report the total weekly income of each household, which means that income is
recorded after any cash benefits from the state (e.g. a pension) have been
received but before any taxes have been paid.

The table indicates a substantial degree of inequality. For example, the poor-
est 22% of households earn £200 per week, or less, while the richest 10% earn
more than five times as much. Although these figures give some idea of the
extent of inequality, they relate only to relatively few households at the
extremes of the distribution. A Lorenz curve is a way of graphically presenting
the whole distribution. A typical Lorenz curve is shown in Figure 10.2.

Households are ranked along the horizontal axis, from poorest to richest, 
so that the median household, for example, is halfway along the axis. On the

Table 10.22 The distribution of gross income in the UK, 2002–03

Range of weekly Mid-point of interval Numbers of
household income households

0– 50 1 000
100– 150 5 213
200– 250 5 037
300– 350 3 548
400– 450 2 850
500– 550 2 458
600– 650 1 996
700– 750 1 583
800– 850 1 198
900– 950 838

1000– 1250 2 989

Total 28 710

Figure 10.2
Typical Lorenz curve
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vertical axis is measured the cumulative share of income, which goes from 0%
to 100%. A point such as A on the diagram indicates that the poorest 30% of
households earn 5% of total income. Point B shows that the poorest half of the
population earn only 12% of income (and hence the other half earn 88%).
Joining up all such points maps out the Lorenz curve.

A few things are immediately obvious about the Lorenz curve:

n Since 0% of households earn 0% of income, and 100% of households earn
100% of income, the curve must run from the origin up to the opposite corner.

n Since households are ranked from poorest to richest, the Lorenz curve must
lie below the 45° line, which is the line representing complete equality. The
further away from the 45° line is the Lorenz curve, the greater is the degree
of inequality.

n The Lorenz curve must be concave from above: as we move to the right we en-
counter successively richer individuals, so the cumulative income grows faster.

Table 10.23 shows how to generate a Lorenz curve for the data given in
Table 10.22. The task is to calculate the {x, y} coordinates for the Lorenz curve.
These are given in columns 6 and 8 respectively of the table. Column 5 of the
table calculates the proportion of households in each income category (i.e. the
relative frequencies, as in Chapter 1), and these are then cumulated in column
6. These are the figures which are used along the horizontal axis. Column 4 cal-
culates the total income going to each income class (by multiplying the class
frequency by the mid-point). The proportion of total income going to each
class is then calculated in column 7 (class income divided by total income).
Column 8 cumulates the values in column 7.

The Lorenz curve 341

Table 10.23 Calculation of the Lorenz curve coordinates

Range of Mid- Households Total % % % %
income point income Households Cumulative Income Cumulative

households income
x y

(1) (2) (3) (4) (5) (6) (7) (8)

0– 50 1 000 50 000 3.5% 3.5% 0.4% 0.4%
100– 150 5 213 781 950 18.2% 21.6% 5.6% 5.9%
200– 250 5 037 1 259 250 17.5% 39.2% 9.0% 14.9%
300– 350 3 548 1 241 800 12.4% 51.5% 8.9% 23.8%
400– 450 2 850 1 282 500 9.9% 61.5% 9.2% 33.0%
500– 550 2 458 1 351 900 8.6% 70.0% 9.7% 42.6%
600– 650 1 996 1 297 400 7.0% 77.0% 9.3% 51.9%
700– 750 1 583 1 187 250 5.5% 82.5% 8.5% 60.4%
800– 850 1 198 1 018 300 4.2% 86.7% 7.3% 67.6%
900– 950 838 796 100 2.9% 89.6% 5.7% 73.3%

1000– 1250 2 989 3 736 250 10.4% 100.0% 26.7% 100.0%

Totals 28 710 14 002 700 100.0% 100.0%

Notes:
Column 4 = column 2 × column 3
Column 5 = column 3 ÷ 28 710
Column 6 = column 5 cumulated
Column 7 = column 4 ÷ 14 002 700
Column 8 = column 7 cumulated
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Figure 10.3
Lorenz curve for
income data

Figure 10.4
Calculation of the Gini
coefficient from the
Lorenz curve

Using columns 6 and 8 of the table we can see, for instance, that the poorest
3.5% of the population have about 0.4% of total income; the poorer half have
about 23% of income; and the top 10% have about 26% of total income.

Figure 10.3 shows the Lorenz curve plotted, using the data in columns 6 and
8 of the table above. This shows a fairly smooth Lorenz curve, with perhaps a
greater degree of inequality at the bottom of the distribution than at the top.

The Gini coefficient

The Gini coefficient is a numerical representation of the degree of inequality in
a distribution and can be derived directly from the Lorenz curve. The Lorenz
curve is illustrated once again in Figure 10.4 and the Gini coefficient is simply
the ratio of area A to the sum of areas A and B.
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Denoting the Gini coefficient by G, we have

(10.21)

and it should be obvious that G must lie between 0 and 1. When there is total
equality the Lorenz curve coincides with the 45° line, area A then disappears,
and G = 0. With total inequality (one household having all the income), area B
disappears, and G = 1. Neither of these extremes is likely to occur in real life;
instead one will get intermediate values, but the lower the value of G, the less
inequality there is (though see the caveats listed below). One could compare
two countries, for example, simply by examining the values of their Gini
coefficients.

The Gini coefficient may be calculated from the following formulae for areas
A and B:

(10.22) B = {(x1 − x0) × (y1 + y0)
+ (x2 − x1) × (y2 + y1)

�
+ (xk − xk−1) × (yk + yk−1)}

where x0 = y0 = 0 and xk = yk = 100 (i.e. the coordinates of the two end-points of
the Lorenz curve) and the other x and y values are the coordinates of the inter-
mediate points. k is the number of classes for income in the frequency table.
Area A is then given by:3

(10.23) A = 5000 − B

and the Gini coefficient is then calculated as:

(10.24)

Thus for the data in Table 10.23 we have:

(10.25) B = × {(3.5 − 0) × (0.4 + 0)
+ (21.6 − 3.5) × (5.9 + 0.4)
+ (39.2 − 21.6) × (14.9 + 5.9)
+ (51.5 − 39.2) × (23.8 + 14.9)
+ (61.5 − 51.5) × (33.0 + 23.8)
+ (70.0 − 61.5) × (42.6 + 33.0)
+ (77.0 − 70.0) × (51.9 + 42.6)
+ (82.5 − 77.0) × (60.4 + 51.9)
+ (86.7 − 82.5) × (67.6 + 60.4)
+ (89.6 − 86.7) × (73.3 + 67.6)
+ (100 − 89.6) × (100 + 73.3)}

= 3098.43

1
2

  
G  

  
  =

+
A

A B
or

A
5000

1
2

  
G  

  
=

+
A

A B
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3 The value 5000 is correct if one uses percentages, as here (it is 100 × 100 × , the area of
the triangle). If one uses percentages expressed as decimals, then A = 0.5 − B.

1
2
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Therefore area A = 5000 − 3098.43 = 1901.57 and we obtain

(10.26)

or approximately 38%.
This method implicitly assumes that the Lorenz curve is made up of straight

line segments connecting the observed points, which is in fact not true – it
should be a smooth curve. Since the straight lines will lie inside the true Lorenz
curve, area B is over-estimated and so the calculated Gini coefficient is biased
downwards. The true value of the Gini coefficient is slightly greater than 38%
therefore. The bias will be greater (a) the fewer the number of observations and
(b) the more concave is the Lorenz curve (i.e. the greater is inequality). The bias
is unlikely to be substantial however, so is best left untreated.

An alternative method of calculating G is simply to draw the Lorenz curve
on gridded paper and count squares. This has the advantage that you can draw
a smooth line joining the observations and avoid the bias problem mentioned
above. This alternative method can prove reasonably quick and accurate, but
has the disadvantage that you can’t use a computer to do it!

The Gini coefficient is only useful as a comparative measure, for looking at
trends in inequality over time, or for comparing different countries or regions.
Table 10.24, taken from the Statbase website, shows the value of the Gini
coefficient for the UK over the past eight years and shows how it was affected
by the tax system. The results are based on equivalised income, i.e. after making
a correction for differences in family size.4 For this reason there is a slight dif-
ference from the Gini coefficient calculated above, which uses unadjusted data.
Using equivalised income appears to make little difference in this case (com-
pare the ‘gross income’ column with the earlier calculation).

The table shows essentially two things:

1 There appears to have been some increase in inequality in the late 1990s
which begins to reverse itself in the early 2000s. This is true whatever
definition of income one uses.

  
G  

.
  .= =

1901 57
5000

0 3803

Is inequality
increasing?

Table 10.24 Gini coefficients for the UK, 1995/6–2002/03

Original income Gross income Disposable income Post-tax income

1995/96 52 36 33 37
1996/97 53 37 34 38
1997/98 53 37 34 38
1998/99 53 38 35 39
1999/00 53 38 35 40
2000/01 51 38 35 39
2001/02 53 39 36 40
2002/03 51 37 33 37

Note: Gross income is original income plus certain state benefits, such as pensions. Taking
off direct taxes gives disposable income and subtracting other taxes gives post-tax income.

4 This is because a larger family needs more income to have the same living standard as a
smaller one.
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2 The biggest reduction in inequality comes through cash benefits paid out by
the state, rather than through taxes. In fact, the tax system appears to
increase inequality rather than to reduce it, primarily because of the effects of
indirect taxes.

The recent increase in inequality is a reversal of the historical trend. The
figures presented in Table 10.25, from L. Soltow,5 provide estimates of the Gini
coefficient in earlier times. These figures suggest that a substantial decline in
the Gini coefficient has occurred in the last century or so, perhaps related to
the process of economic development. It is difficult to compare Soltow’s figures
directly with the modern ones because of such factors as the quality of data
and different definitions of income.

Kravis, Heston and Summers6 provide estimates of ‘world’ GDP by decile and
these figures, presented in Table 10.26, will be used to illustrate another
method of calculating the Gini coefficient.

These figures show that the poorer half of the world population earns only
about 10% of world income and that a third of world income goes to the rich-
est 10% of the population. This suggests a higher degree of inequality than for
a single country such as the UK, as one might expect.

When the class intervals contain equal numbers of households (for example,
when the data are given for deciles of the income distribution, as here) formula
(10.22) for area B simplifies to:

(10.27)

where k is the number of intervals (e.g. 10 in the case of deciles, 5 for quin-
tiles). Thus you simply sum the y values, subtract 50,7 and divide by the 

B  (    . . .   )    = + + + + + = −
⎛

⎝
⎜

⎞

⎠
⎟−

=

=

∑100
2

2 2 2
100

500 1 2 1
0k

y y y y y
k

yk k i
i

i k
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A simpler formula
for the Gini
coefficient

5 Long run changes in British income inequality, Economic History Review, vol 21, 17–29,
1968.
6 Real GDP per capita for more than one hundred countries, Economic Journal, vol 88,
215–42, 1978.
7 If using decimal percentages, subtract 0.5.

Table 10.25 Gini coefficients in past times

Year Gini

1688 0.55
1801–03 0.56
1867 0.52
1913 0.43–0.63

Table 10.26 The world distribution of income by decile

Decile 1 2 3 4 5 6 7 8 9 10

% GDP 1.5 2.1 2.4 2.4 3.3 5.2 8.4 17.1 24.1 33.5
Cumulative % 1.5 3.6 6.0 8.4 11.7 16.9 25.3 42.4 66.5 100.0
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number of classes k. The y values for the Kravis et al. data appear in the final
row of Table 10.26, and their sum is 282.3. We therefore obtain

(10.28)

Hence

(10.29) A = 5000 − 2323 = 2677

and

(10.30)

or about 53%. This is surprisingly similar to the figure for original income in
the UK, but, of course, differences in definition, measurement, etc. may make
direct comparison invalid. While the Gini coefficient may provide some guid-
ance when comparing inequality over time or across countries, one needs to
take care in its interpretation.

(a) The same data as used in the text are presented below, but with fewer class intervals:

Range of income Mid-point of interval Numbers of households

0– 100 6 213
200– 300 8 585
400– 500 5 308
600– 700 3 579
800– 900 2 036
1000– 1250 2 989

Total 28 710

Draw the Lorenz curve for these data.

(b) Calculate the Gini coefficient for these data and compare to that calculated earlier.

Given shares of total income of 8%, 15%, 22%, 25% and 30% by each quintile of a
country’s population, calculate the Gini coefficient.

Concentration ratios

Another type of inequality is the distribution of market shares of the firms in
an industry. We all know that Microsoft currently dominates the software mar-
ket with a large market share. In contrast, an industry such as bakery has many
different suppliers and there is little tendency to dominance. The concentra-
tion ratio is a commonly used measure to examine the distribution of market
shares among firms competing in a market. Of course, it would be possible to
measure this using the Lorenz curve and Gini coefficient, but the concentration
ratio has the advantage that it can be calculated on the basis of less informa-
tion and also tends to focus attention on the largest firms in the industry. The
concentration ratio is often used as a measure of the competitiveness of a par-
ticular market but, as with all statistics, it requires careful interpretation.

  
G    .= =

2677
5000

0 5354

 
B  ( .   )  = − =

100
10

282 3 50 2323

Exercise 10.9

Exercise 10.10
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Table 10.28 Sales figures for an industry (millions of units)

Firm A B C D E F G H I J

Sales 180 115 90 62 35 25 19 18 15 10

Inequality and development

Table 10.27 presents figures for the income distribution in selected countries
around the world. They are in approximately ascending order of national income.
The table shows that countries have very different experiences of inequality, even
for similar levels of income (compare Bangladesh and Kenya, for example).
Hungary, the only (former) communist country, shows the greatest equality,
although whether income accurately measures people’s access to resources in
such a regime is perhaps debatable. Note that countries with fast growth (such as
Korea and Hong Kong) do not have to have a high degree of inequality. Developed
countries seem to have uniformly low Gini coefficients.

Table 10.27 Income distribution figures in selected countries

Year Quintiles Top 10% Gini

1 2 3 4 5

Bangladesh 1981–82 6.6 10.7 15.3 22.1 45.3 29.5 0.36
Kenya 1976 2.6 6.3 11.5 19.2 60.4 45.8 0.51
Côte d’Ivoire 1985–86 2.4 6.2 10.9 19.1 61.4 43.7 0.52
El Salvador 1976–77 5.5 10.0 14.8 22.4 47.3 29.5 0.38
Brazil 1972 2.0 5.0 9.4 17.0 66.6 50.6 0.56
Hungary 1982 6.9 13.6 19.2 24.5 35.8 20.5 0.27
Korea, Rep. 1976 5.7 11.2 15.4 22.4 45.3 27.5 0.36
Hong Kong 1980 5.4 10.8 15.2 21.6 47.0 31.3 0.38
New Zealand 1981–82 5.1 10.8 16.2 23.2 44.7 28.7 0.37
UK 1979 7.0 11.5 17.0 24.8 39.7 23.4 0.31
Netherlands 1981 8.3 14.1 18.2 23.2 36.2 21.5 0.26
Japan 1979 8.7 13.2 17.5 23.1 37.5 22.4 0.27

Source: World Development Report 1999.

A market is said to be concentrated if most of the demand is met by a small
number of suppliers. The limiting case is monopoly where the whole of the
market is supplied by a single firm. We shall measure the degree of concentra-
tion by the five-firm concentration ratio, which is the proportion of the mar-
ket held by the largest five firms, and it is denoted C5. The larger is this
proportion, the greater the degree of concentration and potentially the less
competitive is that market. Table 10.28 gives the (imaginary) sales figures of the
ten firms in a particular industry.

For convenience the firms have already been ranked by size from A (the
largest) to J (smallest). The output of the five largest firms is 482, out of a total
of 569, so the five-firm concentration ratio is C5 = 84.7%, i.e. 84.7% of the mar-
ket is supplied by the five largest firms.
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Without supporting evidence it is hard to interpret this figure. Does it mean
that the market is not competitive and the consumer being exploited? Some
industries, such as the computer industry, have a very high concentration ratio
yet it is hard to deny that they are very competitive. On the other hand, some
industries with no large firms have restrictive practices, entry barriers, etc.
which mean that they are not very competitive (lawyers might be one example).
A further point is that there may be a threat of competition from outside the
industry which keeps the few firms acting competitively.

Concentration ratios can be calculated for different numbers of largest firms,
e.g. the three-firm or four-firm concentration ratio. Straightforward calculation
reveals them to be 67.7% and 78.6% respectively for the data given in Table
10.28. There is little reason in general to prefer one measure to the others, and
they may give different pictures of the degree of concentration in an industry.

The concentration ratio calculated above relates to the quantity of output
produced by each firm, but it is possible to do the same with sales revenue,
employment, investment or any other variable for which data are available.
The interpretation of the results will be different in each case. For example, the
largest firms in an industry, while producing the majority of output, might not
provide the greater part of employment if they use more capital-intensive
methods of production. Concentration ratios obviously have to be treated with
caution, therefore, and are probably best combined with case studies of the par-
ticular industry before conclusions are reached about the degree of competition.

Total sales in an industry are $400m. The largest five firms have sales of $180m, $70m,
$40m, $25m and $15m. Calculate the three- and five-firm concentration ratios.

Summary

n An index number summarises the variation of a variable over time or across
space in a convenient way.

n Several variables can be combined into one index, providing an average
measure of their individual movements. The retail price index is an example.

n The Laspeyres price index combines the prices of many individual goods
using base-year quantities as weights. The Paasche index is similar but uses
current-year weights to construct the index.

n Laspeyres and Paasche quantity indices can also be constructed, combining a
number of individual quantity series using prices as weights. Base-year prices
are used in the Laspeyres index, current-year prices in the Paasche.

n A price index series multiplied by a quantity index series results in an index
of expenditures. Rearranging this demonstrates that deflating (dividing) an
expenditure series by a price series results in a volume (quantity) index. This
is the basis of deflating a series in cash (or nominal) terms to one measured
in real terms (i.e. adjusted for price changes).

n Two series covering different time periods can be spliced together (as long as
there is an overlapping year) to give one continuous chain index.

Exercise 10.11
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n Discounting the future is similar to deflating but corrects for the rate of time
preference rather than inflation. A stream of future income can thus be dis-
counted and summarised in terms of its present value.

n An investment can be evaluated by comparing the discounted present value
of the future income stream to the initial outlay. The internal rate of return
of an investment is a similar but alternative way of evaluating an investment
project.

n The Gini coefficient is a form of index number that is used to measure
inequality (e.g. of incomes). It can be given a visual representation using a
Lorenz curve diagram.

n For measuring the inequality of market shares in an industry, the concentra-
tion ratio is commonly used.

Problems 349

weighted average
base year
chain index
present value
Gini coefficient

Laspeyres index
reference year
retail price index
internal rate of return
concentration ratio

Paasche index
deflating a data series
discounting
Lorenz curve

Key terms and
concepts

Problems

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Problem 10.1 The data below show exports and imports for the UK, 1987–92, in £bn at current prices.

1987 1988 1989 1990 1991 1992

Exports 120.6 121.2 126.8 133.3 132.1 135.5
Imports 122.1 137.4 147.6 148.3 140.2 148.3

(a) Construct index number series for exports and imports, setting the index equal to
100 in 1987 in each case.

(b) Is it possible, using only the two indices, to construct an index number series for
the balance of trade? If so, do so; if not, why not?

Problem 10.2 The following data show the gross trading profits of companies, 1987–92, in the UK, in £m.

1987 1988 1989 1990 1991 1992
61 750 69 180 73 892 74 405 78 063 77 959

(a) Turn the data into an index number series with 1987 as the reference year.

(b) Transform the series so that 1990 is the reference year.

(c) What increase has there been in profits between 1987 and 1992? Between 1990
and 1992?
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Problem 10.3 The following data show energy prices and consumption in 1984–88 (analogous to the
data in the chapter for the years 1999–2003).

Prices Coal (£/tonne) Petroleum (£/tonne) Electricity (£/MWh) Gas (£/therm)

1984 49.60 149.70 28.89 0.2634
1985 51.00 151.75 30.02 0.2841
1986 49.64 72.98 30.07 0.2378
1987 47.50 78.10 28.92 0.2196
1988 43.10 55.04 30.02 0.2175

Quantities Coal (m tonnes) Petroleum (m tonnes) Electricity (m MWh) Gas (m therms)

1984 12.72 10.26 78.64 6044
1985 14.62 9.12 79.53 6185
1986 14.58 9.67 80.09 5647
1987 15.12 8.61 83.89 6182
1988 15.77 9.61 88.13 5636

(a) Construct a Laspeyres price index using 1984 as the base year.

(b) Construct a Paasche price index. Compare this result with the Laspeyres index. Do
they differ significantly?

(c) Construct Laspeyres and Paasche quantity indices. Check that they satisfy the
conditions that En = PL × QP etc.

Problem 10.4 The prices of different house types in south-east England are given in the table below:

Year Terraced houses Semi-detached Detached Bungalows Flats

1991 59 844 77 791 142 630 89 100 47 676
1992 55 769 73 839 137 053 82 109 43 695
1993 55 571 71 208 129 414 82 734 42 746
1994 57 296 71 850 130 159 83 471 44 092

(a) If the numbers of each type of house in 1991 were 1898, 1600, 1601, 499 and 1702
respectively, calculate the Laspeyres price index for 1991–94, based on 1991 =
100.

(b) Calculate the Paasche price index, based on the following numbers of dwellings:

Year Terraced houses Semi-detached Detached Bungalows Flats

1992 1903 1615 1615 505 1710
1993 1906 1638 1633 511 1714
1994 1911 1655 1640 525 1717

(c) Compare Paasche and Laspeyres price series.

Problem 10.5 (a) Using the data in Problem 10.3, calculate the expenditure shares on each fuel in
1984 and the individual price index number series for each fuel, with 1984 = 100.

(b) Use these data to construct the Laspeyres price index using the expenditures
shares approach. Check that it gives the same answer as in Problem 10.3(a).
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Problem 10.6 The following table shows the weights in the retail price index and the values of the
index itself, for 1990 and 1994.

Food Alcohol Housing Fuel Household Clothing Personal Travel Leisure
and and items goods

tobacco light

Weights
1990 205 111 185 50 111 69 39 152 78
1994 187 111 158 45 123 58 37 162 119

Prices
1990 121.0 120.7 163.7 115.9 116.9 115.0 122.7 121.2 117.1
1994 139.5 162.1 156.8 133.9 132.4 116.0 152.4 150.7 145.7

(a) Calculate the Laspeyres price index for 1994, based on 1990 = 100.

(b) Draw a bar chart of the expenditure weights in 1990 and 1994 to show how spend-
ing patterns have changed. What major changes have occurred? Do individuals
seem to be responding to changes in relative prices?

(c) The pensioner price index is similar to the general index calculated above, except
that it excludes housing. What effect does this have on the index? What do you
think is the justification for this omission?

(d) If consumers spent, on average, £188 per week in 1990 and £240 per week in
1994, calculate the real change in expenditure on food.

(e) Do consumers appear rational, i.e. do they respond as one would expect to relative
price changes? If not, why not?

Problem 10.7 Construct a chain index from the following data series:

1998 1999 2000 2001 2002 2003 2004

Series 1 100 110 115 122 125
Series 2 100 107 111 119 121

What problems arise in devising such an index and how do you deal with them?

Problem 10.8 Construct a chain index for 1995–2004 using the following data, setting 1998 = 100.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

87 95 100 105
98 93 100 104 110

100 106 112

Problem 10.9 Industry is complaining about the rising price of energy. It demands to be compensated
for any rise over 2% in energy prices between 1999 and 2000. How much would this
compensation cost? Which price index should be used to calculate the compensation
and what difference would it make?

Problem 10.10 Using the data in Problem 10.6 above, calculate how much the average consumer
would need to be compensated for the rise in prices between 1990 and 1994.

Problems 351
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Problem 10.11 The following data show expenditure on the National Health Service (in cash terms), the
GDP deflator, the NHS pay and prices index, population, and population of working
age:

Year NHS GDP  NHS pay and Population Population of
expenditure deflator price index (000) working age

(£m) 1973 = 100 1973 = 100 (000)
(1) (2) (3) (4) (5)

1987 21 495 442 573 56 930 34 987
1988 23 601 473 633 57 065 35 116
1989 25 906 504 678 57 236 35 222
1990 28 534 546 728 57 411 35 300
1991 32 321 585 792 57 801 35 467

(In all the following answers, set your index to 1987 = 100.)

(a) Turn the expenditure cash figures into an index number series.

(b) Calculate an index of ‘real’ NHS expenditure using the GDP deflator. How does this
alter the expenditure series?

(c) Calculate an index of the volume of NHS expenditure using the NHS pay and prices
index. How and why does this differ from the answer arrived at in (b)?

(d) Calculate indices of real and volume expenditure per capita. What difference does
this make?

(e) Suppose that those not of working age cost twice as much to treat, on average, as
those of working age. Construct an index of the need for health care and examine
how health care expenditures have changed relative to need.

(f ) How do you think the needs index calculated in (e) could be improved?

Problem 10.12 (a) If w represents the wage rate and p the price level, what is w/p?

(b) If Δw represents the annual growth in wages and i is the inflation rate, what is Δw − i?

(c) What does ln(w) − ln(p) represent? (ln = natural logarithm.)

Problem 10.13 A firm is investing in a project and wishes to receive a rate of return of at least 15% on
it. The stream of net income is:

Year 1 2 3 4
Income 600 650 700 400

(a) What is the present value of this income stream?

(b) If the investment costs £1600 should the firm invest? What is the net present value
of the project?

Problem 10.14 A firm uses a discount rate of 12% for all its investment projects. Faced with the follow-
ing choice of projects, which yields the higher NPV?

Project Outlay Income stream

1 2 3 4 5 6
A 5600 1000 1400 1500 2100 1450 700
B 6000 800 1400 1750 2500 1925 1200
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Problem 10.15 Calculate the internal rate of return for the project in Problem 10.13. Use either trial and
error methods or a computer to solve.

Problem 10.16 Calculate the internal rates of return for the projects in Problem 10.14.

Problem 10.17 (a) Draw a Lorenz curve and calculate the Gini coefficient for the wealth data in
Chapter 1 (Table 1.3).

(b) Why is the Gini coefficient typically larger for wealth distributions than for income
distributions?

Problem 10.18 (a) Draw a Lorenz curve and calculate the Gini coefficient for the 1979 wealth data
contained in Problem 1.5 (Chapter 1). Draw the Lorenz curve on the same diagram
as you used in Problem 10.17.

(b) How does the answer compare to 2001?

Problem 10.19 The following table shows the income distribution by quintile for the UK in 1991, for vari-
ous definitions of income:

Quintile Income measure

Original Gross Disposable Post-tax

1 (bottom) 2.0% 6.7% 7.2% 6.6%
2 7.0% 10.0% 11.0% 11.0%
3 16.0% 16.0% 16.0% 16.0%
4 26.0% 23.0% 23.0% 23.0%
5 50.0% 44.0% 42.0% 44.0%

(a) Use equation (10.27) to calculate the Gini coefficient for each of the four categories
of income.

(b) For the ‘original income’ category, draw a smooth Lorenz curve on a piece of grid-
ded paper and calculate the Gini coefficient using the method of counting squares.
How does your answer compare to that for part (a)?

Problem 10.20 For the Kravis, Heston and Summers data (Table 10.26), combine the deciles into quin-
tiles and calculate the Gini coefficient from the quintile data. How does your answer
compare with the answer given in the text, based on deciles? What do you conclude
about the degree of bias?

Problem 10.21 Calculate the three-firm concentration ratio for employment in the following industry:

Firm A B C D E F G H
Employees 3350 290 440 1345 821 112 244 352

Problem 10.22 Compare the degrees of concentration in the following two industries. Can you say
which is likely to be more competitive?

Firm A B C D E F G H I J
Sales 337 384 696 321 769 265 358 521 880 334
Sales 556 899 104 565 782 463 477 846 911 227

Problems 353
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354 Chapter 10 • Index numbers

The World Development Report contains data on the income distributions of many
countries around the world (by quintile). Use these data to compare income distribu-
tions across countries, focusing particularly on the differences between poor countries,
middle-income and rich countries. Can you see any pattern emerging? Are there coun-
tries which do not fit into this pattern? Write a brief report summarising your findings.

L. Soltow, Long run changes in British income inequality, Economic History Review,
vol. 21(1), pp. 17–29, 1968.

Answers to exercises

Exercise 10.1 (a) 100, 111.9, 140.7, 163.4, 188.1.

(b) 61.2, 68.5, 86.1, 100, 115.1.

(c) 115.1/61.2 = 1.881.

Exercise 10.2 1995 1996 1997 1998 1999

(a) 1995 = 100 100 86.3 85.5 88.1 88.1
(b) 1997 = 100 116.9 100.9 100 103.0 103.0
(c) Using ’96 basket 100 85.8 85.2 87.9 87.8

Exercise 10.3 The Paasche index is:

1995 1996 1997 1998 1999

100 85.7 85.1 87.8 87.3

Exercise 10.4 (a) Expenditure shares in 1995 are:

Expenditure Share

Coal 108.5 1.3%
Petroleum 592.3 7.3%
Electricity 4122.5 50.5%
Gas 3342.9 40.9%

giving the Laspeyres index for 1996 as

= 0.8633 or 86.33.

The expenditure shares in 1996 are 1.0%, 7.5%, 50.6%, 30.7% which allows the
1996 Paasche index to be calculated as

= 0.8575 or 85.75.

Later years can be calculated in similar fashion.

  
Pn

1

35 41
37 27

0 011
98 33
92 93

0 083
39 16
40 07

0 564
0 464
0 677

0 342= × + × + × + × 
.
.

  .   
.
.

  .   
.
.

  .   
.
.

  .

  
Pn

1

35 41
37 27

0 013
98 33
92 33

0 073
39 16
40 07

0 505
0 464
0 677

0 409= × + × + × + × 
.
.

  .   
.
.

  .   
.
.

  .   
.
.

  .

Reference

Problem 10.23
(Project)
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Exercise 10.5 (a/b) The Laspeyres and Paasche quantity indexes are:

Laspeyres Paasche

1995 100 100
1996 104.27 103.93
1997 105.55 105.57
1998 105.88 106.29
1999 110.49 110.49

(c) The expenditure index is 100, 89.72, 90.31, 93.67, 97.33.

(d) The Paasche quantity index times Laspeyres price index (or vice versa) gives
the expenditure index.

Exercise 10.6 The full index is (using Laspeyres indexes):

Chain index

1991 100 100
1992 103.5 103.5
1993 107.8 107.8
1994 112.2 112.2
1995 119.8 100 119.8
1996 86.3 103.4
1997 85.5 102.5
1998 88.1 105.6
1999 88.1 100 105.5
2000 104.6 110.4
2001 116.7 128.8
2002 111.9 144.1
2003 111.3 160.4

Exercise 10.7 (a) The discounted figures are:

Year Investment/yield Discount factor Discounted yield

0 −100 000
1 25 000 0.9091 22 727.3
2 35 000 0.8264 28 925.6
3 30 000 0.7513 22 539.4
4 15 000 0.6830 10 245.2

Total 84 437.5

The present value is less than the initial outlay.

(b) The internal rate of return is 2.12%.

Exercise 10.8 (a) Deflating to real income gives:

Year Investment/yield Price index Real income

0 −50 000 100 −50 000.0
1 20 000 105 19 047.6
2 25 000 110.250 22 675.7
3 30 000 115.763 25 915.1
4 10 000 121.551 8 227.0

Answers to exercises 355
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356 Chapter 10 • Index numbers

(b) The real discount rate is 1.09/1.05 = 1.038 or 3.8% p.a.

(c/d) Nominal Discount Discounted Real Discount Discounted
values factor value values factor value

−50 000 −50 000.0
20 000 0.917 18 348.6 19 047.6 0.963 18 348.6
25 000 0.842 21 042.0 22 675.7 0.928 21 042.0
30 000 0.772 23 165.5 25 915.1 0.894 23 165.5
10 000 0.708 7 084.3 8 227.0 0.861 7 084.3

Totals 69 640.4 69 640.38

The present value is the same in both cases and exceeds the initial outlay.

Exercise 10.9 (b) Range of Mid- Number of Total % % % %
income point households income Households Cumulative Income Cumulative

households income 

x y

0 100 6 213 621 300 21.6% 21.6% 4.5% 4.5%
200 300 8 585 2 575 500 29.9% 51.5% 18.5% 23.0%
400 500 5 308 2 654 000 18.5% 70.0% 19.1% 42.0%
600 700 3 579 2 505 300 12.5% 82.5% 18.0% 60.0%
800 900 2 036 1 832 400 7.1% 89.6% 13.2% 73.2%

1000 1250 2 989 3 736 250 10.4% 100.0% 26.8% 100.0%

Totals 28 710 13 924 750 100.0% 100.0%

The Gini coefficient is then calculated as follows: B = 0.5 × {21.6 × (4.5 + 0) +
29.9 × (23.0 + 4.5) + 18.5 × (42.0 + 23.0) + 12.5 × (60.0 + 42.0) + 7.1 × (73.2 +
60.0) + 10.4 × (100 + 73.2)} = 3068.5. Area A = 5000 − 3068.5 = 1931.5. Hence
Gini = 1931.5/5000 = 0.386, very similar to the value in the text using more 
categories of income.

Exercise 10.10 B = 100/5 × (246 − 50) = 3920. Hence A = 1080 and Gini = 0.216.

Exercise 10.11 C3 = 290/400 = 72.5% and C5 = 82.5%.
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Appendix Deriving the expenditure share form of 
the Laspeyres price index

We can obtain the expenditure share version of the formula from the standard
formula given in equation (10.1):

which is equation (10.3) in the text.
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Important formulae used in this book 359

Important formulae used in this book

Formula
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∑ x
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∑
∑
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μ  =

∑ x
N

Description

Mean of a population

Mean of a population

Mean of a sample

Mean of a sample

Median (where data are
grouped)

Variance of a population

Population variance 
(grouped data)

Sample variance

Sample variance 
(grouped data)

Coefficient of variation

z score

Coefficient of skewness

Notes

Use when all individual
observations are available

Use with grouped data. f
represents the class
frequencies

n is the number of
observations in the sample

Use with grouped data

xL and xU represent the 
lower and upper limits of 
the interval containing the
median. F represents the
cumulative frequency up to
(but excluding) the interval

Measures the distance from
observation x to the mean 
μ measured in standard
deviations
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360 Important formulae used in this book

Pr(r) = nCr × Pr × (1 − P)n−r
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 ∏xn

  
g

x
x

TT     = −−

1

1 1
Rate of growth

Geometric mean (of n
observations on x)

Laspeyres price index for year
n with base year 0

Laspeyres price index using
expenditure weights s

Paasche price index for 
year n

Paasche price index using
expenditure weights s

Laspeyres quantity index

Paasche quantity index

Expenditure index

Present value

Net present value

Combinatorial formula

Binomial distribution

Normal distribution

95% confidence interval for
the mean

Measures the average rate of
growth between years 1 
and T

The value now of a sum S to
be received in t years’ time,
using discount rate r

The value of an investment
S0 now, yielding St per
annum, discounted at a
constant rate r

n! = n × (n − 1) × . . . × 1

In shorthand notation,
r ~ B(n, P)

In shorthand notation,
x ~ N(μ, σ2)

Large samples, using Normal
distribution

Formula Description Notes
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the mean

95% confidence interval for a
proportion
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the difference of two means
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the difference of two means

Test statistic for H0: 
mean = μ

Test statistic for H0: 
true proportion = π

Test statistic for H0:
μ1 − μ2 = 0

Test statistic for H0:
μ1 − μ2 = 0

Test statistic for H0: 
π1 − π2 = 0

Finite population correction
for the variance of X

Test statistic for
independence in a
contingency table

Small samples, using t
distribution. tv is the critical
value of the t distribution 
for v = n − 1 degrees of
freedom

Large samples only

Large samples

Small samples. The pooled
variance is given by 

v = n1 + n2 − 2

Large samples. For small
samples, distributed as t
with v = n − 1 degrees of
freedom
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Small samples. S2 as defined
above. Degrees of freedom
v = n1 + n2 − 2
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the number of rows, c the
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Formula Description Notes
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a = Y − bW

TSS = ∑Y2 − nY2

ESS = ∑Y2 − a∑Y − b∑XY

RSS = TSS − ESS
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    = 1
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Test statistic for H0: σ 2
1 = σ 2

2

Correlation coefficient

Test statistic for H0: ρ = 0

Spearman’s rank correlation
coefficient

Slope of the regression line
(simple regression)

Intercept (simple regression)

Total sum of squares

Error sum of squares

Regression sum of squares

Coefficient of determination

Variance of the error term in
regression

Variance of the slope
coefficient in simple
regression

Variance of the intercept in
simple regression

Confidence interval estimate
for b in simple regression

Test statistic for H0: β = 0

v = n1 − 1, n2 − 1. Place larger
sample variance in 
the numerator to ensure
rejection region is in 
right-hand tail of the 
F distribution

−1 ≤ r ≤ 1

v = n − 2

−1 ≤ rs ≤ 1. d is the difference
in ranks between the two
variables

Replace n − 2 by n − k − 1 in
multiple regression

tv is the critical value of the 
t distribution with v = n − 2
degrees of freedom

v = n − 2 in simple
regression, n − k − 1 in
multiple regression

Formula Description Notes
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Test statistic for H0: R

2 = 0

Confidence interval for 
a prediction (simple
regression) at X = XP

Confidence interval for an
observation on Y at X = XP

Chow test for a prediction

Durbin–Watson statistic for
testing autocorrelation

Test statistic for testing q
restrictions in the regression
model

v = k, n − k − 1 in multiple
regression

v = n − 2

v = n − 2

First n1 observations used for
estimation, last n2 for
prediction

v = q, n − k − 1

Formula Description Notes

SFE_D01.qxd  3/23/07  11:55 AM  Page 363



Appendix: Tables

Table A1 Random number table

This table contains 1000 random numbers within the range 0–99. Each number within the
range has an equal probability of occurrence. The range may be extended by combining suc-
cessive entries in the table. Thus 7399 (or 7323) becomes the first of 500 random numbers in
the range 0–9999. To obtain a sample of random numbers, choose an arbitrary starting point
in the table and go down the columns collecting successive values until the required sample
is obtained. If the population has been numbered, this method can be used to select a ran-
dom sample from the population. Alternatively, the method can simulate sampling experi-
ments such as the tossing of a coin (an even number representing a head and an odd
number a tail).

73 23 41 53 38 87 71 79 3 55 24 7 7 17 19 70
99 13 91 13 90 72 84 15 64 90 56 68 38 40 73 78
97 16 58 2 67 3 92 83 50 53 59 60 33 75 44 95
73 10 29 14 9 92 35 47 21 47 82 25 71 68 87 53
99 79 29 68 44 90 65 33 55 85 7 57 77 84 83 5
71 97 98 60 62 18 49 80 4 51 8 74 81 64 29 45
41 26 41 30 82 38 52 81 89 64 17 10 49 28 72 99
60 87 77 81 91 57 6 1 30 47 93 82 81 67 4 3
95 84 74 92 15 10 37 52 8 10 96 38 69 9 65 41
59 19 2 61 40 67 80 25 31 18 1 36 54 31 56 27

35 3 54 83 62 28 21 23 91 46 73 85 11 63 63 49
66 18 31 17 72 15 8 46 10 3 64 22 64 62 85 16
3 4 42 8 4 6 40 73 97 0 37 34 91 56 48 98

28 20 23 98 86 41 41 13 53 61 16 92 95 31 79 36
74 49 86 5 74 82 12 58 80 14 94 4 88 95 9 32
80 80 2 47 91 14 76 84 0 57 17 69 87 29 52 39
65 67 0 39 11 10 54 80 74 56 55 91 94 52 32 18
67 44 89 50 7 73 70 52 18 28 89 43 54 60 20 10
48 33 61 66 2 71 74 91 31 45 63 2 97 62 30 90
3 18 54 19 17 87 3 91 41 64 78 10 99 24 1 20

69 35 12 53 97 30 96 69 59 55 65 64 30 3 11 17
15 0 33 86 93 73 52 57 77 77 83 10 64 54 85 18
87 79 51 68 5 23 50 15 68 67 14 59 42 61 83 2
69 52 34 86 34 34 78 51 48 65 57 91 8 74 72 36
11 1 11 43 51 85 6 47 72 43 34 54 20 56 31 81
59 14 78 32 94 24 19 44 16 49 65 16 30 86 0 65
18 86 62 47 96 46 73 67 79 40 45 82 96 61 34 60
99 63 2 81 58 93 81 37 53 20 64 87 3 27 19 55
34 55 14 29 10 59 7 69 13 8 54 97 56 7 57 16
88 90 6 98 32 55 37 17 35 93 31 66 67 84 15 14
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Table A1 Random number table 365

Table A1 Continued

78 30 30 78 41 59 79 77 21 89 76 59 30 9 64 9
67 10 37 14 62 3 85 2 16 74 40 85 30 83 29 5
93 50 83 76 42 86 92 41 27 73 31 70 25 40 11 88
35 68 98 18 67 22 95 34 19 27 21 90 66 20 32 48
32 52 29 78 68 96 94 44 38 95 27 85 53 76 63 78
92 68 75 77 26 39 61 33 88 66 77 76 25 67 90 1
40 73 28 5 50 73 92 32 82 23 78 30 26 52 28 94
57 41 64 50 78 35 12 60 25 4 5 82 82 57 68 43
82 41 67 79 30 43 15 72 98 48 6 22 46 92 43 41
60 11 21 44 43 51 76 89 4 90 48 31 19 89 97 45

94 8 20 67 32 42 39 6 38 25 97 10 18 85 9 60
21 59 27 39 13 81 2 47 83 12 17 54 84 68 56 29
63 62 36 6 57 96 6 36 24 13 70 32 90 92 81 86
91 42 57 99 55 31 58 21 21 65 70 4 37 28 59 9
91 27 61 86 36 57 11 35 92 15 79 30 19 85 39 49
97 39 12 28 35 37 90 93 88 20 99 76 81 61 95 70
64 89 32 80 9 66 73 71 84 69 70 12 10 56 59 56
45 34 1 32 80 99 39 52 25 87 76 91 22 26 46 67
21 65 14 1 78 35 35 63 21 66 34 3 47 51 24 37
85 64 69 93 47 82 55 87 22 56 53 85 43 66 23 66

21 37 62 29 44 39 4 4 99 3 6 82 67 53 14 0
23 8 62 9 19 31 81 92 63 10 65 78 79 96 65 33
84 14 92 85 9 16 51 70 26 60 7 7 55 66 5 51
70 37 11 7 93 63 48 12 35 95 32 5 64 5 63 28
80 27 32 92 81 27 55 98 71 22 66 64 78 79 34 73
66 13 16 48 74 51 78 83 42 31 97 72 25 75 34 40
1 51 47 84 82 27 77 40 99 13 66 52 56 27 2 19

84 26 0 38 55 30 45 80 50 20 17 78 87 4 88 86
95 28 57 33 51 39 18 12 37 6 89 63 22 50 10 22
45 76 48 43 18 24 19 1 65 93 16 48 8 60 32 76
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Table A2 The standard Normal distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010
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Table A3 Percentage points of the t distribution

The table gives critical values of the t distribution
cutting off an area α in each tail, shown by the
top row of the table.

Area (αα) in each tail

v 0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.320 318.310 636.620
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.214 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

SFE_D02.qxd  3/23/07  11:56 AM  Page 367



368 Appendix: Tables

Table A4 Critical values of the χχ2 distribution

The values in the table give the critical values of χ2 which cut off the area in the
right-hand tail given at the top of the column.

Area in right-hand tail

v 0.995 0.990 0.975 0.950 0.900 0.750 0.500

1 392704.10−10 157088.10−9 982069.10−9 393214.10−8 0.0157908 0.1015308 0.454936
2 0.0100251 0.0201007 0.0506356 0.102587 0.210721 0.575364 1.38629
3 0.0717218 0.114832 0.215795 0.351846 0.584374 1.212534 2.36597
4 0.206989 0.297109 0.484419 0.710723 1.063623 1.92256 3.35669
5 0.411742 0.554298 0.831212 1.145476 1.61031 2.67460 4.35146

6 0.675727 0.872090 1.23734 1.63538 2.20413 3.45460 5.34812
7 0.989256 1.239043 1.68987 2.16735 2.83311 4.25485 6.34581
8 1.34441 1.64650 2.17973 2.73264 3.48954 5.07064 7.34412
9 1.73493 2.08790 2.70039 3.32511 4.16816 5.89883 8.34283

10 2.15586 2.55821 3.24697 3.94030 4.86518 6.73720 9.34182

11 2.60322 3.05348 3.81575 4.57481 5.57778 7.58414 10.3410
12 3.07382 3.57057 4.40379 5.22603 6.30380 8.43842 11.3403
13 3.56503 4.10692 5.00875 5.89186 7.04150 9.29907 12.3398
14 4.07467 4.66043 5.62873 6.57063 7.78953 10.1653 13.3393
15 4.60092 5.22935 6.26214 7.26094 8.54676 11.0365 14.3389

16 5.14221 5.81221 6.90766 7.96165 9.31224 11.9122 15.3385
17 5.69722 6.40776 7.56419 8.67176 10.0852 12.7919 16.3382
18 6.26480 7.01491 8.23075 9.39046 10.8649 13.6753 17.3379
19 6.84397 7.63273 8.90652 10.1170 11.6509 14.5620 18.3377
20 7.43384 8.26040 9.59078 10.8508 12.4426 15.4518 19.3374

21 8.03365 8.89720 10.28293 11.5913 13.2396 16.3444 20.3372
22 8.64272 9.54249 10.9823 12.3380 14.0415 17.2396 21.3370
23 9.26043 10.19567 11.6886 13.0905 14.8480 18.1373 22.3369
24 9.88623 10.8564 12.4012 13.8484 15.6587 19.0373 23.3367
25 10.5197 11.5240 13.1197 14.6114 16.4734 19.9393 24.3266

26 11.1602 12.1981 13.8439 15.3792 17.2919 20.8434 25.3365
27 11.8076 12.8785 14.5734 16.1514 18.1139 21.7494 26.3363
28 12.4613 13.5647 15.3079 16.9279 18.9392 22.6572 27.3362
29 13.1211 14.2565 16.0471 17.7084 19.7677 23.5666 28.3361
30 13.7867 14.9535 16.7908 18.4927 20.5992 24.4776 29.3360

40 20.7065 22.1643 24.4330 26.5093 29.0505 33.6603 39.3353
50 27.9907 29.7067 32.3574 34.7643 37.6886 42.9421 49.3349
60 35.5345 37.4849 40.4817 43.1880 46.4589 52.2938 59.3347
70 43.2752 45.4417 48.7576 51.7393 55.3289 61.6983 69.3345
80 51.1719 53.5401 57.1532 60.3915 64.2778 71.1445 79.3343
90 59.1963 61.7541 65.6466 69.1260 73.2911 80.6247 89.3342

100 67.3276 70.0649 74.2219 77.9295 82.3581 90.1332 99.3341
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v 0.250 0.100 0.050 0.025 0.010 0.005 0.001

1 1.32330 2.70554 3.84146 5.02389 6.63490 7.87944 10.828
2 2.77259 4.60517 5.99146 7.37776 9.21034 10.5966 13.816
3 4.10834 6.25139 7.81473 9.34840 11.3449 12.8382 16.266
4 5.38527 7.77944 9.48773 11.1433 13.2767 14.8603 18.467
5 6.62568 9.23636 11.0705 12.8325 15.0863 16.7496 20.515

6 7.84080 10.6446 12.5916 14.4494 16.8119 18.5476 22.458
7 9.03715 12.0170 14.0671 16.0128 18.4753 20.2777 24.322
8 10.2189 13.3616 15.5073 17.5345 20.0902 21.9550 26.125
9 11.3888 14.6837 16.9190 19.0228 21.6660 23.5894 27.877

10 12.5489 15.9872 18.3070 20.4832 23.2093 25.1882 29.588

11 13.7007 17.2750 19.6751 21.9200 24.7250 26.7568 31.264
12 14.8454 18.5493 21.0261 23.3367 26.2170 28.2995 32.909
13 15.9839 19.8119 22.3620 24.7356 27.6882 29.8195 34.528
14 17.1169 21.0641 23.6848 26.1189 29.1412 31.3194 36.123
15 18.2451 22.3071 24.9958 27.4884 30.5779 32.8013 37.697

16 19.3689 23.5418 26.2962 28.8454 31.9999 34.2672 29.252
17 20.4887 24.7690 27.5871 30.1910 33.4087 35.7185 40.790
18 21.6049 25.9894 28.8693 31.5264 34.8053 37.1565 42.312
19 22.7178 27.2036 30.1435 32.8523 36.1909 38.5823 43.820
20 23.8277 28.4120 31.4104 34.1696 37.5662 39.9968 45.315

21 24.9348 29.6151 32.6706 35.4789 38.9322 41.4011 46.797
22 26.40393 30.8133 33.9244 36.7807 40.2894 42.7957 48.268
23 27.1413 32.0069 35.1725 38.0756 41.6384 44.1813 49.728
24 28.2412 33.1962 36.4150 39.3641 42.9798 45.5585 51.179
25 29.3389 34.3816 37.6525 40.6465 44.3141 46.9279 52.618

26 30.4346 35.5632 38.8851 41.9232 45.6417 48.2899 54.052
27 31.5284 36.7412 40.1133 43.1945 46.9629 49.6449 55.476
28 32.6205 37.9150 41.3371 44.4608 48.2782 50.9934 56.892
29 33.7109 39.0875 42.5570 45.7223 49.5879 52.3356 58.301
30 34.7997 40.2560 43.7730 46.9792 50.8922 53.6720 59.703

40 45.6160 51.8051 55.7585 59.3417 63.6907 66.7660 73.402
50 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900 86.661
60 66.9815 74.3970 79.0819 83.2977 88.3794 91.9517 99.607
70 77.5767 85.5270 90.5312 95.0232 100.425 104.215 112.317
80 88.1303 96.5782 101.879 106.629 112.329 116.321 124.839
90 98.6499 107.565 113.145 118.136 124.116 128.299 137.208

100 109.141 118.498 124.342 129.561 135.807 140.169 149.449

Table A4 Critical values of the χ2 distribution 369

SFE_D02.qxd  3/23/07  11:56 AM  Page 369



370 Appendix: Tables

Table A5(a) Critical values of the F distribution (upper 5% points)

The entries in the table give the critical values of F cutting off 5% in the right-
hand tail of the distribution. v1 gives the degrees of freedom in the numerator, v2

those in the denominator.

v1

1 2 3 4 5 6 7 8 9
v2

1 161.45 199.50 215.71 224.58 230.16 230.99 236.77 238.88 240.54
2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385
3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8867 8.8452 8.8123
4 7.7086 6.9443 6.5914 6.3882 6.2561 6.1631 6.0942 6.0410 5.9988
5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725

6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2839 4.2067 4.1468 4.0990
7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767
8 5.3177 4.4590 4.0662 3.8379 3.6875 3.5806 3.5005 3.4381 3.3881
9 5.1174 4.2565 3.8625 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789

10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204

11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480 2.8962
12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964
13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144
14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458
15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876

16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377
17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480 2.4943
18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563
19 4.3807 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768 2.4227
20 4.3512 3.4928 2.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928

21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3660
22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419
23 4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748 2.3201
24 4.2597 3.4028 3.0088 2.7763 2.6307 2.5082 2.4226 2.3551 2.3002
25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821

26 4.2252 3.3690 2.9752 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655
27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501
28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.2360
29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2783 2.2229
30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107

40 4.0847 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 2.1240
60 4.0012 3.1504 2.7581 2.5252 2.3683 2.2541 2.1665 2.0970 2.0401

120 3.9201 3.0718 2.6802 2.4472 2.2899 2.1750 2.0868 2.0164 1.9588
∞ 3.8415 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799
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v1

10 12 15 20 24 30 40 60 120 ∞
v2

1 241.88 243.91 245.95 248.01 249.05 250.10 251.14 252.20 253.25 254.31
2 19.396 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496
3 8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.5720 8.5494 8.5264
4 5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.7170 5.6877 5.6581 5.6281
5 4.7351 4.6777 4.6188 4.5581 4.5272 4.4957 4.4638 4.4314 4.3985 4.3650

6 4.0600 3.9999 3.9381 3.8742 3.8415 3.8082 3.7743 3.7398 3.7047 3.6689
7 3.6365 3.5747 3.5107 3.4445 3.4105 3.3758 3.3404 3.3043 3.2674 3.2298
8 3.3472 3.2839 3.2184 3.1503 3.1152 3.0794 3.0428 3.0053 2.9669 2.9276
9 3.1373 3.0729 3.0061 2.9365 2.9005 2.8637 2.8259 2.7872 2.7475 2.7067

10 2.9782 2.9130 2.8450 2.7740 2.7372 2.6996 2.6609 2.6211 2.5801 2.5379

11 2.8536 2.7876 2.7186 2.6464 2.6090 2.5705 2.5309 2.4901 2.4480 2.4045
12 2.7534 2.6866 2.6169 2.5436 2.5055 2.4663 2.4259 2.3842 2.3410 2.2962
13 2.6710 2.6037 2.5331 2.4589 2.4202 2.3803 2.3392 2.2966 2.2524 2.2064
14 2.6022 2.5342 2.4630 2.3879 2.3487 2.3082 2.2664 2.2229 2.1778 2.1307
15 2.5437 2.4753 2.4034 2.3275 2.2878 2.2468 2.2043 2.1601 2.1141 2.0658

16 2.4935 2.4247 2.3522 2.2756 2.2354 2.1938 2.1507 2.1058 2.0589 2.0096
17 2.4499 2.3807 2.3077 2.2304 2.1898 2.1477 2.1040 2.0584 2.0107 1.9604
18 2.4117 2.3421 2.2686 2.1906 2.1497 2.1071 2.0629 2.0166 1.9681 1.9168
19 2.3779 2.3080 2.2341 2.1555 2.1141 2.0712 2.0264 1.9795 1.9302 1.8780
20 2.3479 2.2776 2.2033 2.1242 2.0825 2.0391 1.9938 1.9464 1.8963 1.8432

21 2.3210 2.2504 2.1757 2.0960 2.0540 2.0102 1.9645 1.9165 1.8657 1.8117
22 2.2967 2.2258 2.1508 2.0707 2.0283 1.9842 1.9380 1.8894 1.8380 1.7831
23 2.2747 2.2036 2.1282 2.0476 2.0050 1.9605 1.9139 1.8648 1.8128 1.7570
24 2.2547 2.1834 2.1077 2.0267 1.9838 1.9390 1.8920 1.8424 1.7896 1.7330
25 2.2365 2.1649 2.0889 2.0075 1.9643 1.9192 1.8718 1.8217 1.7684 1.7110

26 2.2197 2.1479 2.0716 1.9898 1.9464 1.9010 1.8533 1.8027 1.7488 1.6906
27 2.2043 2.1323 2.0558 1.9736 1.9299 1.8842 1.8361 1.7851 1.7306 1.6717
28 2.1900 2.1179 2.0411 1.9586 1.9147 1.8687 1.8203 1.7689 1.7138 1.6541
29 2.1768 2.1045 2.0275 1.9446 1.9005 1.8543 1.8055 1.7537 1.6981 1.6376
30 2.1646 2.0921 2.0148 1.9317 1.8874 1.8409 1.7918 1.7396 1.6835 1.6223

40 2.0772 2.0035 1.9245 1.8389 1.7929 1.7444 1.6928 1.6373 1.5766 1.5089
60 1.9926 1.9174 1.8364 1.7480 1.7001 1.6491 1.5943 1.5343 1.4673 1.3893

120 1.9105 1.8337 1.7505 1.6587 1.6084 1.5543 1.4952 1.4290 1.3519 1.2539
∞ 1.8307 1.7522 1.6664 1.5705 1.5173 1.4591 1.3940 1.3180 1.2214 1.0000
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Table A5(b) Critical values of the F distribution (upper 2.5% points)

The entries in the table give the critical values of F cutting off 2.5% in the right-
hand tail of the distribution. v1 gives the degrees of freedom in the numerator, v2

in the denominator.

v1

1 2 3 4 5 6 7 8 9
v2

1 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28
2 38.506 39.000 39.165 39.248 39.298 39.331 39.355 39.373 39.387
3 17.443 16.044 15.439 15.101 14.885 14.735 14.624 14.540 14.473
4 12.218 10.649 9.9792 9.6045 9.3645 9.1973 9.0741 8.9796 8.9047
5 10.007 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6811

6 8.8131 7.2599 6.5988 6.2272 5.9876 5.8198 5.6955 5.5996 5.5234
7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8993 4.8232
8 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4333 4.3572
9 7.2093 5.7147 5.0781 4.7181 4.4844 4.3197 4.1970 4.1020 4.0260

10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.7790

11 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 3.7586 3.6638 3.5879
12 6.5538 5.0959 4.4742 4.1212 3.8911 3.7283 3.6065 3.5118 3.4358
13 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.3880 3.3120
14 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853 3.2093
15 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987 3.1227

16 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248 3.0488
17 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.0610 2.9849
18 5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 3.0999 3.0053 2.9219
19 5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563 2.8801
20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365

21 5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.8740 2.7977
22 5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392 2.7628
23 5.7498 4.3492 3.7505 3.4083 3.1835 3.0232 2.9023 2.8077 2.7313
24 5.7166 4.3187 3.7211 3.3794 3.1548 2.9946 2.8738 2.7791 2.7027
25 5.6864 4.2909 3.6943 3.3530 3.1287 2.9685 2.8478 2.7531 2.6766

26 5.6586 4.2655 3.6697 3.3289 3.1048 2.9447 2.8240 2.7293 2.6528
27 5.6331 4.2421 3.6472 3.3067 3.0828 2.9228 2.8021 2.7074 2.6309
28 5.6096 4.2205 3.6264 3.2863 3.0626 2.9027 2.7820 2.6872 2.6106
29 5.5878 4.2006 3.6072 3.2674 3.0438 2.8840 2.7633 2.6686 2.5919
30 5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.7460 2.6513 2.5746

40 5.4239 4.0510 3.4633 3.1261 2.9037 2.7444 2.6238 2.5289 2.4519
60 5.2856 3.9253 3.3425 3.0077 2.7863 2.6274 2.5068 2.4117 2.3344

120 5.1523 3.8046 3.2269 2.8943 2.6740 2.5154 2.3948 2.2994 2.2217
∞ 5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136
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v1

10 12 15 20 24 30 40 60 120 ∞
v2

1 968.63 976.71 984.87 993.10 997.25 1001.4 1005.6 1009.8 1014.0 1018.3
2 39.398 39.415 39.431 39.448 39.456 39.465 39.473 39.481 39.400 39.498
3 14.419 14.337 14.253 14.167 14.124 14.081 14.037 13.992 13.947 13.902
4 8.8439 8.7512 8.6565 8.5599 8.5109 8.4613 8.4111 8.3604 8.3092 8.2573
5 6.6192 6.5245 6.4277 6.3286 6.2780 6.2269 6.1750 6.1225 6.069? 6.0153

6 5.4613 5.3662 5.2687 5.1684 5.1172 5.0652 5.0125 4.9589 4.9044 4.8491
7 4.7611 4.6658 4.5678 4.4667 4.4150 4.3624 4.3089 4.2544 4.1989 4.1423
8 4.2951 4.1997 4.1012 3.9995 3.9472 3.8940 3.8398 3.7844 3.7279 3.6702
9 3.9639 3.8682 3.7694 3.6669 3.6142 3.5604 3.5055 3.4493 3.3918 3.3329

10 3.7168 3.6209 3.5217 3.4185 3.3654 3.3110 3.2554 3.1984 3.1399 3.0798

11 3.5257 3.4296 3.3299 3.2261 3.1725 3.1176 3.0613 3.0035 2.9441 2.8828
12 3.3736 3.2773 3.1772 3.0728 3.0187 2.9633 2.9063 2.8478 2.7874 2.7249
13 3.2497 3.1532 3.0527 2.9477 2.8932 2.8372 2.7797 2.7204 2.6590 2.5955
14 3.1469 3.0502 2.9493 2.8437 2.7888 2.7324 2.6742 2.6142 2.5519 2.4872
15 3.0602 2.9633 2.8621 2.7559 2.7006 2.6437 2.5850 2.5242 2.4611 2.3953

16 2.9862 2.8890 2.7875 2.6808 2.6252 2.5678 2.5085 2.4471 2.3831 2.3163
17 2.9222 2.8249 2.7230 2.6158 2.5598 2.5020 2.4422 2.3801 2.3153 2.2474
18 2.8664 2.7689 2.6667 2.5590 2.5027 2.4445 2.3842 2.3214 2.2558 2.1869
19 2.8172 2.7196 2.6171 2.5089 2.4523 2.3937 2.3329 2.2696 2.2032 2.1333
20 2.7737 2.6758 2.5731 2.4645 2.4076 2.3486 2.2873 2.2234 2.1562 2.0853

21 2.7348 2.6368 2.5338 2.4247 2.3675 2.3082 2.2465 2.1819 2.1141 2.0422
22 2.6998 2.6017 2.4984 2.3890 2.3315 2.2718 2.2097 2.1446 2.0760 2.0032
23 2.6682 2.5699 2.4665 2.3567 2.2989 2.2389 2.1763 2.1107 2.0415 1.9677
24 2.6396 2.5411 2.4374 2.3273 2.2693 2.2090 2.1460 2.0799 2.0099 1.9353
25 2.6135 2.5149 2.4110 2.3005 2.2422 2.1816 2.1183 2.0516 1.9811 1.9055

26 2.5896 2.4908 2.3867 2.2759 2.2174 2.1565 2.0928 2.0257 1.9545 1.8781
27 2.5676 2.4688 2.3644 2.2533 2.1946 2.1334 2.0693 2.0018 1.9299 1.8527
28 2.5473 2.4484 2.3438 2.2324 2.1735 2.1121 2.0477 1.9797 1.9072 1.8291
29 2.5286 2.4295 2.3248 2.2131 2.1540 2.0923 2.0276 1.9591 1.8861 1.8072
30 2.5112 2.4120 2.3072 2.1952 2.1359 2.0739 2.0089 1.9400 1.8664 1.7867

40 2.3882 2.2882 2.1819 2.0677 2.0069 1.9429 1.8752 1.8028 1.7242 1.6371
60 2.2702 2.1692 2.0613 1.9445 1.8817 1.8152 1.7440 1.6668 1.5810 1.4821

120 2.1570 2.0548 1.9450 1.8249 1.7597 1.6899 1.6141 1.5299 1.4327 1.3104
∞ 2.0483 1.9447 1.8326 1.7085 1.6402 1.5660 1.4835 1.3883 1.2684 1.0000

Table A5(b) Critical values of the F distribution (upper 2.5% points) 373
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Table A5(c) Critical values of the F distribution (upper 1% points)

The entries in the table give the critical values of F cutting off 1% in the right-
hand tail of the distribution. v1 gives the degrees of freedom in the numerator, v2

in the denominator.

v1

1 2 3 4 5 6 7 8 9
v2

1 4052.2 4999.5 5403.4 5624.6 5763.6 5859.0 5928.4 5981.1 6022.5
2 98.503 99.000 99.166 99.249 99.299 99.333 99.356 99.374 99.388
3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345
4 21.198 18.000 16.694 15.977 15.522 15.207 14.976 14.799 14.659
5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158

6 13.745 10.925 9.7795 9.1483 8.7459 8.4661 8.2600 8.1017 7.9761
7 12.246 9.5466 8.4513 7.8466 7.4604 7.1914 6.9928 6.8400 6.7188
8 11.259 8.6491 7.5910 7.0061 6.6318 6.3707 6.1776 6.0289 5.9106
9 10.561 8.0215 6.9919 6.4221 6.0569 5.8018 5.6129 5.4671 5.3511

10 10.044 7.5594 6.5523 5.9943 5.6363 5.3858 5.2001 5.0567 4.9424

11 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 4.8861 4.7445 4.6315
12 9.3302 6.9266 5.9525 5.4120 5.0643 4.8206 4.6395 4.4994 4.3875
13 9.0738 6.7010 5.7394 5.2053 4.8616 4.6204 4.4410 4.3021 4.1911
14 8.8618 6.5149 5.5639 5.0354 4.6950 4.4558 4.2779 4.1399 4.0297
15 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 4.1415 4.0045 3.8948

16 8.5310 6.2262 5.2922 4.7726 4.4374 4.2016 4.0259 3.8896 3.7804
17 8.3997 6.1121 5.1850 4.6690 4.3359 4.1015 3.9267 3.7910 3.6822
18 8.2854 6.0129 5.0919 4.5790 4.2479 4.0146 3.8406 3.7054 3.5971
19 8.1849 5.9259 5.0103 4.5003 4.1708 3.9386 3.7653 3.6305 3.5225
20 8.0960 5.8489 4.9382 4.4307 4.1027 3.8714 3.6987 3.5644 3.4567

21 8.0166 5.7804 4.8740 4.3688 4.0421 3.8117 3.6396 3.5056 3.3981
22 7.9454 5.7190 4.8166 4.3134 3.9880 3.7583 3.5867 3.4530 3.3458
23 7.8811 5.6637 4.7649 4.2636 3.9392 3.7102 3.5390 3.4057 3.2986
24 7.8229 5.6136 4.7181 4.2184 3.8951 3.6667 3.4959 3.3629 3.2560
25 7.7698 5.5680 4.6755 4.1774 3.8550 3.6272 3.4568 3.3439 3.2172

26 7.7213 5.5263 4.6366 4.1400 3.8183 3.5911 3.4210 3.2884 3.1818
27 7.6767 5.4881 4.6009 4.1056 3.7848 3.5580 3.3882 3.2558 3.1494
28 7.6356 5.4529 4.5681 4.0740 3.7539 3.5276 3.3581 3.2259 3.1195
29 7.5977 5.4204 4.5378 4.0449 3.7254 3.4995 3.3303 3.1982 3.0920
30 7.5625 5.3903 4.5097 4.0179 3.6990 3.4735 3.3045 3.1726 3.0665

40 7.3141 5.1785 4.3126 3.8283 3.5138 3.2910 3.1238 2.9930 2.8876
60 7.0771 4.9774 4.1259 3.6490 3.3389 3.1187 2.9530 2.8233 2.7185

120 6.8509 4.7865 3.9491 3.4795 3.1735 2.9559 2.7918 2.6629 2.5586
∞ 6.6349 4.6052 3.7816 3.3192 3.0173 2.8020 2.6393 2.5113 2.4073
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v1

10 12 15 20 24 30 40 60 120 ∞
v2

1 6055.8 6106.3 6157.3 6208.7 6234.6 6260.6 6286.8 6313.0 6339.4 6365.9
2 99.399 99.416 99.433 99.449 99.458 99.466 99.474 99.482 99.491 99.499
3 27.229 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125
4 14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463
5 10.051 9.8883 9.7222 9.5526 9.4665 9.3793 9.2912 9.2020 9.1118 9.0204

6 7.8741 7.7183 7.5590 7.3958 7.3127 7.2285 7.1432 7.0567 6.9690 6.8800
7 6.6201 6.4691 6.3143 6.1554 6.0743 5.9920 5.9084 5.8236 5.7373 5.6495
8 5.8143 5.6667 5.5151 5.3591 5.2793 5.1981 5.1156 5.0316 4.9461 4.8588
9 5.2565 5.1114 4.9621 4.8080 4.7290 4.6486 4.5666 4.4831 4.3978 4.3105

10 4.8491 4.7059 4.5581 4.4054 4.3269 4.2469 4.1653 4.0819 3.9965 3.9090

11 4.5393 4.3974 4.2509 4.0990 4.0209 3.9411 3.8596 3.7761 3.6904 3.6024
12 4.2961 4.1553 4.0096 3.8584 3.7805 3.7008 3.6192 3.5355 3.4494 3.3608
13 4.1003 3.9603 3.8154 3.6646 3.5868 3.5070 3.4253 3.3413 3.2548 3.1654
14 3.9394 3.8001 3.6557 3.5052 3.4274 3.3476 3.2656 3.1813 3.0942 3.0040
15 3.8049 3.6662 3.5222 3.3719 3.2940 3.2141 3.1319 3.0471 2.9595 2.8684

16 3.6909 3.5527 3.4089 3.2587 3.1808 3.1007 3.0182 2.9330 2.8447 2.7528
17 3.5931 3.4552 3.3117 3.1615 3.0835 2.0032 2.9205 2.8348 2.7459 2.6530
18 3.5082 3.3706 3.2273 3.0771 2.9990 2.9185 2.8354 2.7493 2.6597 2.5660
19 3.4338 3.2965 3.1533 3.0031 2.9249 2.8442 2.7608 2.6742 2.5839 2.4893
20 3.3682 3.2311 3.0880 2.9377 2.8594 2.7785 2.6947 2.6077 2.5168 2.4212

21 3.3098 3.1730 3.0300 2.8796 2.8010 2.7200 2.6359 2.5484 2.4568 2.3603
22 3.2576 3.1209 2.9779 2.8274 2.7488 2.6675 2.5831 2.4951 2.4029 2.3055
23 3.2106 3.0740 2.9311 2.7805 2.7017 2.6202 2.5355 2.4471 2.3542 2.2558
24 3.1681 3.0316 2.8887 2.7380 2.6591 2.5773 2.4923 2.4035 2.3100 2.2107
25 3.1294 2.9931 2.8502 2.6993 2.6203 2.5383 2.4530 2.3637 2.2696 2.1694

26 3.0941 2.9578 2.8150 2.6640 2.5848 2.5026 2.4170 2.3273 2.2325 2.1315
27 3.0618 2.9256 2.7827 2.6316 2.5522 2.4699 2.3840 2.2938 2.1985 2.0965
28 3.0320 2.8959 2.7530 2.6017 2.5223 2.4397 2.3535 2.2629 2.1670 2.0642
29 3.0045 2.8685 2.7256 2.5742 2.4946 2.4118 2.3253 2.2344 2.1379 2.0342
30 2.9791 2.8431 2.7002 2.5487 2.4689 2.3860 2.2992 2.2079 2.1108 2.0062

40 2.8005 2.6648 2.5216 2.3689 2.2880 2.2034 2.1142 2.0194 1.9172 1.8047
60 2.6318 2.4961 2.3523 2.1978 2.1154 2.0285 1.9360 1.8363 1.7263 1.6006

120 2.4721 2.3363 2.1915 2.0346 1.9500 1.8600 1.7628 1.6557 1.5330 1.3805
∞ 2.3209 2.1847 2.0385 1.8783 1.7908 1.6964 1.5923 1.4730 1.3246 1.0000

Table A5(c) Critical values of the F distribution (upper 1% points) 375
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Table A5(d) Critical values of the F distribution (upper 0.5% points)

The entries in the table give the critical values of F cutting off 0.5% in the right-
hand tail of the distribution. v1 gives the degrees of freedom in the numerator, v2

in the denominator.

v1

1 2 3 4 5 6 7 8 9
v2

1 16211 20000 21615 22500 23056 23437 23715 23925 24091
2 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39
3 55.552 49.799 47.467 46.195 45.392 44.838 44.434 44.126 43.882
4 31.333 26.284 24.259 23.155 22.456 21.975 21.622 21.352 21.139
5 22.785 18.314 16.530 15.556 14.940 14.513 14.200 13.961 13.772

6 18.635 14.544 12.917 12.028 11.464 11.073 10.786 10.566 10.391
7 16.236 12.404 10.882 10.050 9.5221 9.1553 8.8854 8.6781 8.5138
8 14.688 11.042 9.5965 8.8051 9.3018 7.9520 7.6941 7.4959 7.3386
9 13.614 10.107 8.7171 7.9559 7.4712 7.1339 6.8849 6.6933 6.5411

10 12.826 9.4270 8.0807 7.3428 6.8724 6.5446 6.3025 6.1159 5.9676

11 12.226 8.9122 7.6004 6.8809 6.4217 6.1016 5.8648 5.6821 5.5368
12 11.754 8.5096 7.2258 6.5211 6.0711 5.7570 5.5245 5.3451 5.2021
13 11.374 8.1865 6.9258 6.2335 5.7910 5.4819 5.2529 5.0761 4.9351
14 11.060 7.9216 6.6804 5.9984 5.5623 5.2574 5.0313 4.8566 4.7173
15 10.798 7.7008 6.4760 5.8029 5.3721 5.0708 4.8473 4.6744 3.5364

16 10.575 7.5138 6.3034 5.6378 5.2117 4.9134 4.6920 4.5207 4.3838
17 10.384 7.3536 6.1556 5.4967 5.0746 4.7789 4.5594 4.3894 4.2535
18 10.218 7.2148 6.0278 5.3746 3.9560 4.6627 4.4448 3.2759 4.1410
19 10.073 7.0935 5.9161 5.2681 4.8526 4.5614 4.3448 4.1770 4.0428
20 9.9439 6.9865 5.8177 5.1743 4.7616 4.4721 4.2569 4.0900 3.9564

21 9.8295 6.8914 5.7304 5.0911 4.6809 4.3931 4.1789 4.0128 3.8799
22 9.7271 6.8064 5.6524 5.0168 4.6088 4.3225 4.1094 3.9440 3.8116
23 9.6348 6.7300 5.5823 4.9500 3.5441 4.2591 4.0469 3.8822 3.7502
24 9.5513 6.6609 5.5190 4.8898 4.4857 4.2019 3.9905 3.8264 3.6949
25 9.4753 6.5982 5.4615 4.8351 4.4327 4.1500 3.9394 3.7758 3.6447

26 9.4059 6.5409 5.4091 4.7852 4.3844 4.1027 3.8928 3.7297 3.5989
27 9.3423 6.4885 5.3611 4.7396 4.3402 4.0594 3.8501 3.6875 3.5571
28 9.2838 6.4403 5.3170 4.6977 4.2996 4.0197 3.8110 3.6487 3.5186
29 9.2297 6.3958 5.2764 4.6591 4.2622 3.9831 3.7749 3.6131 3.4832
30 9.1797 6.3547 5.2388 4.6234 4.2276 3.9492 3.7416 3.5801 3.4504

40 8.8279 6.0664 4.9758 4.3738 3.9860 3.7129 3.5088 3.3498 3.2220
60 8.4946 5.7950 4.7290 4.1399 3.7599 3.4918 3.2911 3.1344 3.0083

120 8.1788 5.5393 4.4972 3.9207 3.5482 3.2849 3.0874 2.9330 2.8083
∞ 7.894 5.2983 4.2794 3.7151 3.3499 3.0913 2.8968 2.7444 2.6210
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v1

10 12 15 20 24 30 40 60 120 ∞
v2

1 24224 24426 24630 24836 24940 25044 25148 25253 25359 25464
2 199.40 199.42 199.43 199.45 199.46 199.47 199.47 199.48 199.49 199.50
3 43.686 43.387 43.085 42.778 42.622 42.466 42.308 42.149 41.989 41.828
4 20.967 20.705 20.438 20.167 20.030 19.892 19.752 19.611 19.468 19.325
5 13.618 13.384 13.146 12.903 12.780 12.656 12.530 12.402 12.274 12.144

6 10.250 10.034 9.8140 9.5888 9.4742 9.3582 9.2408 9.1219 9.0015 8.8793
7 8.3803 8.1764 7.9678 7.7540 7.6450 7.5345 7.4224 7.3088 7.1933 7.0760
8 7.2106 7.0149 6.8143 6.6082 6.5029 6.3961 6.2875 6.1772 6.0649 5.9506
9 6.4172 6.2274 6.0325 5.8318 5.7292 5.6248 5.5186 5.4104 5.3001 5.1875

10 5.8467 5.6613 5.4707 5.2740 5.1732 5.0706 4.9659 4.8592 4.7501 4.6385

11 5.4183 5.2363 5.0489 4.8552 4.7557 4.6543 4.5508 4.4450 4.3367 4.2255
12 5.0855 4.9062 4.7213 4.5299 4.4314 4.3309 4.2282 5.1229 4.0149 3.9039
13 4.8199 4.6429 4.4600 4.2703 4.1726 4.0727 3.9704 3.8655 3.7577 3.6465
14 4.6034 4.4281 4.2468 4.0585 3.9614 3.8619 3.7600 3.6552 3.5473 3.4359
15 4.4235 4.2497 4.0698 3.8826 3.7859 3.6867 3.5850 3.4803 3.3722 3.2602

16 4.2719 4.0994 3.9205 3.7342 3.6378 3.5389 3.4372 3.3324 3.2240 3.1115
17 4.1424 3.9709 3.7929 3.6073 3.5112 3.4124 3.3108 3.2058 3.0971 2.9839
18 4.0305 3.8599 3.6827 3.4977 3.4017 3.3030 3.2014 3.0962 2.9871 2.8732
19 3.9329 3.7631 4.5866 3.4020 3.3062 3.2075 3.1058 3.0004 2.8908 2.7762
20 3.8470 3.6779 3.5020 3.3178 3.2220 3.1234 3.0215 2.9159 2.8058 2.6904

21 3.7709 3.6024 3.4270 3.2431 3.1474 3.0488 2.9467 2.7408 2.7302 2.6140
22 3.7030 3.5350 3.3600 3.1764 3.0807 2.9821 2.8799 2.7736 2.6625 2.5455
23 3.6420 3.4745 3.2999 3.1165 3.0208 2.9221 2.8197 2.7132 2.6015 2.4837
24 3.5870 3.4199 3.2456 3.0624 2.9667 2.8679 2.7654 2.6585 2.5463 2.4276
25 3.5370 3.3704 3.1963 3.0133 2.9176 2.8187 2.7160 2.6088 2.4961 2.3765

26 3.4916 3.3252 3.1515 2.9685 2.8728 2.7738 2.6709 2.5633 2.4501 2.3297
27 3.4499 3.2839 3.1104 2.9275 2.8318 2.7327 2.6296 2.5217 2.4079 2.2867
28 3.4117 3.2460 3.0727 2.8899 2.7941 2.6949 2.5916 2.4834 2.3690 2.2470
29 3.3765 3.2110 3.0379 2.8551 2.7594 2.6600 2.5565 2.4479 2.3331 2.2102
30 3.3440 3.1787 3.0057 2.8230 2.7272 2.6278 2.5241 2.4151 2.2998 2.1760

40 3.1167 2.9531 2.7811 2.5984 2.5020 2.4015 2.2958 2.1838 2.0636 1.9318
60 2.9042 2.7419 2.5705 2.3872 2.2898 2.1874 2.0789 1.9622 1.8341 1.6885

120 2.7052 2.5439 2.3727 2.1881 2.0890 1.9840 1.8709 1.7469 1.6055 1.4311
∞ 2.5188 2.3583 2.1868 1.9998 1.8983 1.7891 1.6691 1.5325 1.3637 1.0000

Table A5(d) Critical values of the F distribution (upper 0.5% points) 377
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Table A6 Critical values of Spearman’s rank correlation coefficient

Entries in the table show critical values of
Spearman’s rank correlation coefficient. The value at
the top of each column shows the significance level
for a two-tail test. For a one-tail test, the significance
level is half that shown.

N 10% 5% 2% 1%

5 0.900 – – –
6 0.829 0.886 0.943 –
7 0.714 0.786 0.893 –
8 0.643 0.738 0.833 0.881
9 0.600 0.683 0.783 0.833

10 0.564 0.648 0.745 0.818

11 0.523 0.623 0.763 0.794
12 0.497 0.591 0.703 0.780
13 0.475 0.566 0.673 0.746
14 0.457 0.545 0.646 0.716
15 0.441 0.525 0.623 0.689

16 0.425 0.507 0.601 0.666
17 0.412 0.490 0.582 0.645
18 0.399 0.476 0.564 0.625
19 0.388 0.462 0.549 0.608
20 0.377 0.450 0.534 0.591

21 0.368 0.438 0.521 0.576
22 0.359 0.428 0.508 0.562
23 0.351 0.418 0.496 0.549
24 0.343 0.409 0.485 0.537
25 0.336 0.400 0.475 0.526

26 0.329 0.392 0.465 0.515
27 0.323 0.385 0.456 0.505
28 0.317 0.377 0.448 0.496
29 0.311 0.370 0.440 0.487
30 0.305 0.364 0.432 0.478

Source: Annals of Statistics, 1936 and 1949
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Table A7 Critical values for the Durbin–Watson test at 5% significance level

Sample Number of explanatory variables
size 1 2 3 4 5

n dL dU dL dU dL dU dL dU dL dU

10 0.879 1.320 0.697 1.641 0.525 2.016 0.376 2.414 0.243 2.822
11 0.927 1.324 0.758 1.604 0.595 1.928 0.444 2.283 0.316 2.645
12 0.971 1.331 0.812 1.579 0.658 1.864 0.512 2.177 0.379 2.506
13 1.010 1.340 0.861 1.562 0.715 1.816 0.574 2.094 0.445 2.390
14 1.045 1.350 0.905 1.551 0.767 1.779 0.632 2.030 0.505 2.296
15 1.077 1.361 0.946 1.543 0.814 1.750 0.685 1.977 0.562 2.220
20 1.201 1.411 1.100 1.537 0.998 1.676 0.894 1.828 0.792 1.991
25 1.288 1.454 1.206 1.550 1.123 1.654 1.038 1.767 0.953 1.886
30 1.352 1.489 1.284 1.567 1.214 1.650 1.143 1.739 1.071 1.833
35 1.402 1.519 1.343 1.584 1.283 1.653 1.222 1.726 1.160 1.803
40 1.442 1.544 1.391 1.600 1.338 1.659 1.285 1.721 1.230 1.786
50 1.503 1.585 1.462 1.628 1.421 1.674 1.378 1.721 1.335 1.771

100 1.654 1.694 1.634 1.715 1.613 1.736 1.592 1.758 1.571 1.780
200 1.758 1.778 1.748 1.789 1.738 1.799 1.728 1.810 1.718 1.820

Table A7 Critical values for the Durbin–Watson test at 5% significance level 379
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Answers to problems

Chapter 1

Problem 1.1 (a) Comparison is complicated by different numbers, but there are relatively 
more women in the ‘Other’ education category, relatively less in the ‘higher’
category.

(b) A higher proportion of women are ‘inactive’ or unemployed.

(c) The bar chart shows slightly more ‘inactive’ women.

(d) Relatively fewer women have no qualifications, A levels and higher education,
but relatively more have other qualifications.

Problem 1.3 (a) Higher education, 88%.

(b) Those in work, 20%.

Problem 1.5 The difference between bar chart and histogram should be similar to those for the
200 distribution. Overall shape similar (heavily skewed to right). Comparison
difficult because of different wealth levels (due to inflation) and because grouping
into classes can affect precise shape of graph.

Problem 1.7 (a) Mean 16.399 (£000); median 8.92; mode 0–1 (£000) group has the greatest fre-
quency density. They differ because of skewness in the distribution.

(b) Q1 = 3.295, Q3 = 18.339, IQR = 15.044; variance = 652.88; s.d. = 25.552; cv = 1.56.

(c) 95,469.32/25.553 = 5.72 > 0 as expected.

(d) Comparison in text.

(e) This would increase the mean substantially (to 31.12), but the median and
mode would be unaffected.

Problem 1.9 57.62 pence/litre.

Problem 1.11 (a) z = 1.5 and −1.5 respectively.

(b) Using Chebyshev’s theorem with k = 1.5, we have that at least (1 − 1/1.52) =
0.56 (56%) lies within 1.5 standard deviations of the mean, so at most 0.44 (44
students) lies outside the range.

(c) Chebyshev’s theorem applies to both tails, so we cannot answer this part. You
cannot halve the figure of 0.44 because the distribution may be skewed.

Problem 1.13 (a) Strong upward trend for 1974–89, but substantial falls in 1972–74 and 1989–91.
The market appears quite volatile, therefore. Note that this shows the volume of
car registrations. If the 1972–76 pattern is repeated, one might expect car regis-
trations to turn up again in 1992–93.
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(b) This figure shows the substantial volatility of the series, around an average 
not much above zero. 1989–91 looks less like 1971–73 on this graph. The log
graphs are very similar to the levels graphs. There is not always an advantage to
drawing these. Here, the time period is relatively short and the growth rate
rather small.

Problem 1.15 (a) 1.81% p.a. (but 4.88% p.a. between 1975 and 1989).

(b) 0.187 (around the arithmetic mean).

(c) Registrations appear more volatile, as measured by the cv (10.33 for car regis-
trations, 0.815 for investment). Possible reasons: investment covers several cat-
egories and fluctuations in one may offset those in another; the registrations
series is shorter, so a big random fluctuation has a larger effect; investment is
nominal and the price influence may help to smooth out the series.

Problem 1.17 (a) Non-linear, upward trend. Likely to be positively autocorrelated. Variation
around the trend is likely to grow over time (heteroscedasticity).

(b) Similar to (a), except trend would be shallower after deflating. Probably less 
heteroscedasticity because price variability has been removed, which may also
increase the autocorrelation of the series.

(c) Unlikely to show a trend in the very long run, but there might be one over, say,
five years, if inflation is increasing. Likely to be homoscedastic, with some
degree of autocorrelation.

Problem 1.19 (a) Using St = S0(1 − r)t, hence S0 = St/(1 + r)t. Setting St = 1000, r = 0.07 gives S0 =
712.99. Price after two years: £816.30. If r rose to 10% the bond would fall to
1000/1.13 = 751.31.

(b) The income stream should be discounted to the present using

so the bond should sell for £820.04. It is worth more than the previous bond
because the return is obtained earlier.

Problem 1.21 (a) 17.9% p.a. for BMW, 14% p.a. for Mercedes.

(b) Depreciated values are

BMW 525i 22 275 18 284 15 008 12 319 10 112 8 300
Merc 200E 21 900 18 833 16 196 13 928 11 977 10 300

which are close to actual values. Depreciation is initially slower than the aver-
age, then speeds up, for both cars.

Problem 1.23

Problem 1.25 The mistake is comparing non-comparable averages. A first-time buyer would have
an above average mortgage and purchase a below average priced house, hence the
amount of buyer’s equity would be small.
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Answers to problems on Σ notation

Problem 1A.1 20, 90, 400, 5, 17, 11.

Problem 1A.3 88, 372, 16, 85.

Problem 1A.5 113, 14, 110.

Problem 1A.7

Answers to problems on logarithms

Problem 1C.1 −0.8239, 0.17609, 1.17609, 2.17609, 3.17609, 1.92284, 0.96142, impossible!

Problem 1C.3 −1.89712, 0.40547, 2.70705, 5.41610, impossible!

Problem 1C.5 0.15, 12.58925, 125.8925, 1,258.925, 1012.

Problem 1C.7 15, 40.77422, 2.71828, 22 026.4658.

Problem 1C.9 3.16228, 1.38692, 1.41421, 0.0005787, 0.008.

Chapter 2

Problem 2.1 (a) 4/52 or 1/13.

(b) 12/52 or 3/13.

(c) 1/2.

(d) 4/52 × 3/52 × 2/52 = 3/17 576 (0.017%).

(e) (4/52)3 = 0.000455.

Problem 2.3 (a) 0.25, 0.4, 5/9.

(b) ‘Probabilities’ are 0.33, 0.4, 0.5, which sum to 1.23. These cannot be real proba-
bilities, therefore. The difference leads to an (expected) gain to the bookmaker.

(c) Suppose the true probabilities of winning are proportional to the odds, i.e.
0.33/1.23, 0.4/1.23, 0.5/1.23, or 0.268, 0.325, 0.407. If £1 were bet on each
horse, then the bookie would expect to pay out 0.268 × 3 + 0.325 × 1.5 + 0.407
× 0.8 = 1.6171, plus one of the £1 stakes, £2.62 in total. He would thus gain 38
pence on every £3 bet, or about 12.7%.
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Problem 2.5 A number of factors might help: statistical ones such as the ratio of exports to debt
interest, the ratio of GDP to external debt, the public sector deficit, etc., and political
factors such as the policy stance of the government.

Problem 2.7 (a) is the more probable, since it encompasses her being active or not active in the
feminist movement. Many people get this wrong, which shows how one’s pre-
conceptions can mislead.

Problem 2.9 The advertiser is a trickster and guesses at random. Every correct guess (P = 0.5) nets
a fee, every wrong one costs nothing except reimbursing the fee. The trickster would
thus keep half the money sent in. You should be wary of such advertisements!

Problem 2.11 (a) E(winnings) = 0.520 × £1bn + (1 − 0.520) × −£100 = £853.67.

(b) Despite the positive expected value, most would not play because of their aver-
sion to risk. Would you?

Problem 2.13 (a), (b) and (d) are independent, though legend says that rain on St Swithins day
means rain for the next forty!

Problem 2.15 (a) There are 15 ways in which a 4–2 score could be arrived at, of which this is one.
Hence the probability is 1/15.

(b) Six of the routes through the tree diagram involve a 2–2 score at some stage, so
the probability is 6/15.

Problem 2.17 Pr(guessing all six) = 6/50 × 5/49 × . . . × 1/45 = 1/15 890 700. Pr(six from ten
guesses) = 10/50 × 9/49 × . . . × 5/45 = 151 200/11 441 304 000. This is exactly 210
times the first answer, so there is no discount for bulk gambling!

Problem 2.19 Prior Likelihood Prior ×× likelihood Posterior

Fair coin 0.5 0.25 0.125 0.2
Two heads 0.5 1.00 0.500 0.8

Total 0.625

Problem 2.21 (a) Using Bayes’ theorem the probability is p/(p + (1 − p)) = p.

(b) Again using Bayes’ theorem we obtain p2/(p2 + (1 − p)2).

(c) If p < 0.5 then (b) < (a). The agreement of the second witness reduces the prob-
ability that the defendant is guilty. Intuitively this seems unlikely. The fallacy 
is that they can lie in many different ways, so Bayes’ theorem is not applicable
here.

Problem 2.23 (a) EVs are 142, 148.75 and 146 respectively. Hence B is chosen.

(b) The minima are 100, 130, 110, so B has the greatest minimum. The maxima are
180, 170, 200 so C is chosen.
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(c) The regret table is

Low Middle High Max.

A 30 5 20 30
B 0 0 30 30
C 20 15 0 20

so C has the minimax regret figure.

(d) The EV assuming perfect information is 157.75, against an EV of 148.75 for pro-
ject B, so the value of information is 9.

Problem 2.25 The probability of no common birthday is 365/365 × 364/365 × 363/365 × . . . ×
341/365 = 0.43. Hence the probability of at least one birthday in common is 0.57,
or greater than one-half. Most people underestimate this probability by a large
amount. (This result could form the basis of a useful source of income at parties . . . )

Chapter 3

Problem 3.1 The graph looks like a pyramid, centred on the value of 7, which is the mean of the
distribution. The probabilities of scores of 2, 3, . . . , 12 are (out of 36): 1, 2, 3, 4, 5,
6, 5, 4, 3, 2, 1 respectively. The probability that the sum is nine or greater is there-
fore 10/36. The variance is 5.83.

Problem 3.3 The distribution should be sharply peaked (at or just after the timetabled departure
time) and should be skewed to the right.

Problem 3.5 Similar to the train departure time, except that it is a discrete distribution. The
mode would be 0 accidents, and the probability above 1 accident per day very low
indeed.

Problem 3.7 The probabilities are 0.33, 0.40, 0.20, 0.05, 0.008, 0.000, 0.000 of 0–6 sixes 
respectively.

Problem 3.9 (a) Pr(0) = 0.915 = 0.21, Pr(1) = 15 × 0.914 × 0.1 = 0.34, hence Pr(0 or 1) = 0.55.

(b) By taking a larger sample or tightening the acceptance criteria, e.g. only accept-
ing if the sample is defect free.

(c) 7%.

(d) The assumption of a large batch means that the probability of a defective com-
ponent being selected does not alter significantly as the sample is drawn.

Problem 3.11 The y-axis coordinates are:

0.05 0.13 0.24 0.35 0.40 0.35 0.24 0.13 0.05

This gives the outline of the central part of the Normal distribution.
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Problem 3.13 (a) 5%.

(b) 30.85%.

(c) 93.32%.

(d) 91.04%.

(e) Zero! (You must have an area for a probability.)

Problem 3.15 (a) z = 0.67, area = 25%.

(b) z = −1, area = 15.87%.

(c) zL = −0.67, zU = 1.67, area = 70.11%.

(d) Zero again!

Problem 3.17 (a) I ~ N(100, 162/10).

(b) z = 1.98, Pr = 2.39%.

(c) 2.39% (same as (b)).

(d) 95.22%. This is much greater than the previous answer. This question refers to
the distribution of sample means, which is less dispersed than the population.

(e) Since the marginal student has an IQ of 108 (see previous question) nearly all
university students will have an IQ above 110 and so, to an even greater extent,
the sample mean will be above 110. Note that the distribution of students’ IQ is
not Normal but skewed to the right, since it is taken from the upper tail of a
Normal distribution. The small sample size means we cannot safely use the
Central Limit Theorem here.

(f) 105, not 100. The expected value of the last 9 is 100, so the average is 105.

Problem 3.19 (a) r ~ B(10, ).

(b) r ~ N(5, 2.5).

(c) Binomial: Pr = 82.8%; Normal: 73.57% (82.9% using the continuity correction).

Problem 3.21 (a) By the Binomial, Pr(no errors) = 0.99100 = 36.6%. By the Poisson, nP = 1, so Pr(x
= 0) = (10 × e−1)/0! = 36.8%.

(b) Pr(r = 1) = 100 × 0.9999 × 0.01 = 0.370; Pr(r = 2) = 100C2 × 0.9998 × 0.012 = 0.185.
Hence Pr(r ≤ 2) = 0.921. Poisson method: Pr(x = 1) = 11 × e−1/1! = 0.368; Pr(x = 2)
= 12 × e−1/2! = 0.184. Hence Pr(x ≤ 2) = 0.920. Hence the probability of more
than two errors is about 8% using either method. Using the Normal method we
would have x ~ N(1, 0.99). So the probability of x > 2.5 (taking account of the
continuity correction) is given by z = (2.5 − 1)/√0.99 = 1.51, giving an answer of
6.55%, a significant underestimate of the true value.

Problem 3.23 (a) Normal.

(b) Uniform distribution between 0 and 1 (look up the =RAND() function in your
software documentation).

(c) Mean = 0.5, variance = 5/12 = 0.42 for parent, mean = 0.5, variance = 0.42/5 for
sample means (Normal distribution).

1
2

Answers to problems 385
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Chapter 4

Problem 4.1 (a) It gives the reader some idea of the reliability of an estimate.

(b) The population variance (or its sample estimate) and the sample size.

Problem 4.3 An estimator is the rule used to find the estimate or a parameter. A good estimator
does not guarantee a good estimate, only that it is correct on average (if the estimator
is unbiased) and close to the true value (if precise).

Problem 4.5 E(w1x1 + w2x2) = w1E(x1) + w2E(x2) = w1μ + w2μ = μ if w1 + w2 = 1.

Problem 4.7 40 ± 2.57 × = [35.71, 44.28]. If n = 20, the t distribution should be used,

giving 40 ± 2.861 × = [33.60, 46.40].

Problem 4.9 40 ± 2.57 × = [0.22, 0.58].

Problem 4.11 (25 − 22) ± 1.96 × = [−1.40, 7.40].

Problem 4.13 (0.67 − 0.62) ± = [−0.10, 0.20].

Problem 4.15 30 ± 2.131 × = [27.34, 32.66].

Problem 4.17 (45 − 52) ± = [−2.15, −11.85]. 40.32 is the pooled variance.

Chapter 5

Problem 5.1 (a) False, you can alter the sample size.

(b) True.

(c) False, you need to consider the Type II error probability also.

(d) True.

(e) False, it’s the probability of a Type I error.

(f) False, the confidence level is 1 − Pr(Type I error) or the probability of accepting
H0 when true.

Problem 5.3 H0: fair coin, (Pr(H) = ), H1: two heads (Pr(H) = 1). Pr(Type I error) = ( )2 = ;
Pr(Type II error) = 0.

Problem 5.5 (a) Rejecting a good batch or accepting a bad batch.

(b) H0: μ = 0.01 and H1: μ = 0.10 are the hypotheses. Under H0, Pr(0 or 1 defective
in sample) = 0.911, hence 8.9% chance of rejecting a good batch. Under H1,
Pr(0 or 1) = 0.034, hence 3.4% chance of accepting a bad batch. One could also
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use the Normal approximation to the Binomial, giving probabilities of 7.78%
and 4.95%.

(c) Pr(Type I error) = 26%; Pr(Type II error) = 4.2%.

(d) (i) Try to avoid faulty batches, hence increase the risk of rejecting good
batches, the significance level of the test.

(ii) Since there are alternative suppliers it can increase the risk of rejecting good
batches (which upsets its supplier).

(iii) Avoid accepting bad batches.

Problem 5.7 z = 1.83, hence Prob-value is 3.36%.

Problem 5.9 100%. You will always reject H0 when false.

Problem 5.11 z = 1 < 1.96, the critical value at the 95% confidence level.

Problem 5.13 z = 0.59, not significant, do not reject.

Problem 5.15 z = (115 − 105)/ = 2.4 > 1.64, the critical value, hence reject with
95% confidence.

Problem 5.17

This is significant using either a one- or a two-tail test. Whether you used a one- or a
two-tail test reveals something about your prejudices! The proportions passing are the
actual outcomes for 1992 in the UK, based on 1.85 million tests altogether. You might
have an interesting class discussion about what these statistics prove! To redress the
balance you might investigate the relationship between gender and road accidents.

Problem 5.19 (a) t = = −2.24 < −2.093, the critical value, hence reject H0.

(b) The parent distribution is Normal.

Problem 5.21 S2 = 38.8, and t = 8.29, so H0 is rejected.

Problem 5.23 (a) t20 = 1.18.

(b) t10 = 1.63. Neither is significant at the 5% level, though the latter is closer. Note
that only one worker performs worse, but this one does substantially worse,
perhaps due to other factors.

Problem 5.25 (a) It would be important to check all the predictions of the astrologer. Too often,
correct predictions are highlighted ex-post and incorrect ones ignored.

(b) Like astrology, a fair test is important, where it is possible to pass or fail, with
known probabilities. Then performance can be judged.

(c) Samples of both taken-over companies and independent companies should be
compared, with as little difference between samples as possible.
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Chapter 6

Problem 6.1 The 95% c.i. for the variance is

where 24.43 and 59.34 are the limits cutting off 2.5% in each tail of the χ2 distribu-
tion, so the c.i. for σ is [16.21, 25.29].

Problem 6.3 χ 2 = 0.70 < 3.84, the 95% critical value, hence no apparent difference between 
quarters I/III and II/IV.

Problem 6.5 Using the data as presented, with expected values of 565, yields χ2(3) = 1.33, not
significant. However, adding the dissatisfied customers (24, 42, 20, 54) and con-
structing a contingency table yields χ2(3) = 22.94, highly significant. The differences
between the small numbers of dissatisfied customers add most to the test statistic.
The former result should be treated with suspicion since it is fairly obvious that
there would be small numbers of dissatisfied customers.

Problem 6.7 χ2(4) = 8.12 which is not significant at the 5% significance level. There appears to be
no relationship between size and profitability.

Problem 6.9 (a) The correct observed and expected values are

47.0 (54.9) 72.0 (64.1)
86.0 (76.6) 80.0 (89.4)
4.0 (5.5) 8.0 (6.5)

and this yields a χ2 value of 5.05 against a critical value of 5.99 (5% significance
level, 2 degrees of freedom).

(b) Omitting the non-responses leads to a 2 × 2 contingency table with a test statis-
tic of 4.22, against a critical value of 3.84, yielding a significant result.

Problem 6.11 F = 55/48 = 1.15 < 2.76, the 1% critical value for 24 and 29 degrees of freedom.
There is no significant difference, therefore.

Problem 6.13 (a) Between sum of squares = 335.8; within sum of squares = 2088; total sum of
squares = 2424. F = (335.8/3)/(2088/21) = 1.126 < 3.07, the critical value for 3,
21 degrees of freedom.

(b) A significant result would indicate some difference between the classes, but this
could be due to any number of factors which have not been controlled for, e.g.
different teachers, different innate ability, different gender ratios, etc.
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Chapter 7

Problem 7.1 (b) We would expect similar slopes to those using Todaro’s data, but the graphs for
growth and the income ratio don’t look promising.

(c) There seems to exist a psychological propensity to overestimate the degree of
correlation. See (d) to see if you did.

(d) r = −0.73, −0.25, −0.22 for GNP, growth, the income ratio respectively. Note
that r < 0 for the income ratio, in contrast to the result in the text.

(e) t = −3.7, −0.89, −0.78, so only the first is significant. The critical value is 1.78
(for a one-tail test).

Problem 7.3 (a) Very high and positive.

(b) A medium degree of negative correlation (bigger countries can provide more for
themselves).

(c) Theoretically negative, but empirically the association tends to be weak, espe-
cially using the real interest rate. There might be lags in (a) and (c). (b) would
best be estimated in cross-section.

Problem 7.5 Rank correlations are:

Birth rate

GNP −0.77
Growth −0.27
Inc. ratio −0.37

These are similar to the ordinary r values. Only the first is significant at 5%.

Problem 7.7 (a) GNP Growth Income ratio

a 47.18 42.88 45.46
b −0.006 −1.77 −1.40
R2 0.53 0.061 0.047

These results are quite different from what was found before! GNP appears
the best, not worst, explanatory variable.

(b)–(c) GNP Growth Income ratio

se 7.83 11.11 11.20
sb 0.0017 1.99 1.82
t −3.71 −0.89 −0.77
F 13.74 0.78 0.59

Only in the case of GNP is the t ratio significant. The same is true for the F
statistic.

(d) You should be starting to have serious doubts! Two samples produce quite
different results. We should think more carefully about how to model the
birth rate and what data to apply it to.

SFE_D03.qxd  3/23/07  11:57 AM  Page 389



390 Answers to problems

(e) Using all 26 observations gives:

GNP Growth IR

a 42.40 43.06 36.76
b −0.01 −2.77 −0.20
R 0.31 0.28 0.002
F 11.02 9.52 0.04
Sb 0.00 0.90 1.01
t −3.32 −3.08 −0.20

The results seem quite sensitive to the data employed. We should try to
ensure that we get a representative sample for estimation.

Problem 7.9 (a) 27.91 (34.71).

(b) 37.58 (32.61).

(c) 35.67 (33.76).

(Predictions in brackets are obtained from Todaro’s data.) Again, different samples,
different results, which doesn’t inspire confidence.

Chapter 8

Problem 8.1 (a) B = 46.77 − 0.0064GNP − 0.55growth + 0.34IR
s.e. (0.002) (1.66) (1.54)

R2 = 0.54, F = 3.91

(i) Calculating elasticities: GNP: −0.0064 × 17 050/551 = −0.19; growth: −0.55 ×
27.9/551 = −0.03; IR: 0.34 × 61.1/551 = 0.04. All seem quite small, although
the first suggests a 10% rise in GNP should lower the birth rate by 2%.

(ii) Only GNP appears significant. Note that the R2 value is only just greater
than in the simple regression on GNP.

(iii) The F statistic is just significant at the 5% level (3.71 is the critical value).

(b) It looks like the growth and income ratio variables should be dropped.

(c) We need restricted and unrestricted ESS values for this test. ESSR = 736.17 (from
Problem 9.7 (Chapter 9): ESS = s e

2(n − 2) ). ESSU = 726.96 (from above regression). 

Hence , less than the critical value so the vari-

ables can be omitted.

(d) B = 43.61 − 0.005GNP − 2.026growth + 0.69IR
(0.0017) (0.845) (0.81)

R2 = 0.48, F = 6.64, n = 26

The GNP and IR coefficients are of similar orders of magnitude and significance
levels. The growth coefficient changes markedly and is now significant. The F
statistic for exclusion is 3.365, against a critical value of 3.44 at 5%, suggesting
both could be excluded, in spite of the significant t ratio on the growth variable.

(e) Not much progress has been made. More planning of the research is needed.

(f) Women’s education, religion and health expenditures are possibilities.

Problem 8.3 28.29 from 14 countries; 27.93 from all 26 countries.

F  
( .   . )/

. /
  .=

−
=

736 17 726 96 2
726 96 3

0 019
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Problem 8.5 (a) A set of dummy variables, one for each class.

(b) Difficult, because crime is so heterogeneous. One could use the number of
recorded offences, but this would equate murder with bicycle theft. It would be
better to model the different types of crime separately.

(c) A proxy variable could be constructed, using such factors as the length of time
for which the bank governor is appointed, whether appointed by the govern-
ment, etc. This would be somewhat arbitrary, but possibly better than nothing.

Problem 8.7 (a) Time-series data, since the main interest is in movements of the exchange rate in
response to changes in the money supply.

(b) Cross-section (cross-country) data would be affected by enormous cultural and
social differences, which would be hard to measure. Regional (within-country)
data might not yield many observations and might simply vary randomly.
Time-series data might be better, but it would still be difficult to measure the
gradual change in cultural and social influences. Best would be cross-section
data on couples (both divorced and still married).

(c) Cross-section data would be of more interest. There would be many observa-
tions, with substantial variation across hospitals. This rich detail would not be
so easily observable in time-series data.

Problem 8.9 Suitable models would be:

(a) C = b0 + b1P + b2F + b3L + b4W where C: total costs; P: passenger miles flown; F:
freight miles flown; L: % of long-haul flights; W: wage rates faced by the firm.
This would be estimated using cross-section data, each airline constituting an
observation. P2 and F2 terms could be added, to allow the cost function to be
non-linear. Alternatively, it could be estimated in logs to get elasticity esti-
mates. One would expect b1, b2, b4 > 0, b3 < 0.

(b) IM = b0 + b1GNP + b2FEMED + b3HLTHEXP where IM: infant mortality (deaths
per thousand births); FEMED: a measure of female education (e.g. the literacy rate);
HLTHEXP: health expenditure (ideally on women, as % of GNP). One would expect
b1, b2, b3 < 0. This would be a cross-country study. There is likely to be a ‘thresh-
old’ effect of GNP, so a non-linear (e.g. log) form should be estimated.

(c) BP = b0 + b1ΔGNP + b2R where BP: profits; ΔGNP: growth; R: the interest rate.
This would be estimated on time-series data. BP and growth should be mea-
sured in real terms, but the nominal interest rate might be appropriate. Bank
profits depend upon the spread of interest rates, which tends to be greater when
the rate is higher.

Problem 8.11 (a) Higher U reduces the demand for imports; higher OECD income raises the
demand for UK exports; higher materials prices (the UK imports materials) low-
ers demand, but the effect on expenditure (and hence the BoP) depends upon
the elasticity. Here, higher P leads to a greater BoP deficit, implying inelastic
demand; higher C (lower competitiveness) worsens the BoP.

(b) (iii).

(c) U: linear; Y: non-linear.

(d) Since B is sometimes negative, a log transformation cannot be performed. This
means elasticity estimates cannot be obtained directly. Since B is sometimes
positive, sometimes negative, an elasticity estimate would be hard to interpret.

(e) 1.80, a surplus.
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Chapter 9

Problem 9.1 GNP versus GDP; gross or net national product; factor cost or market prices; cover-
age (UK, GB, England and Wales); current or constant prices are some of the issues.

Problem 9.3 The following are measures of UK and US GDP, both at year 2000 prices. The UK
figures are £bn, the US figures are $bn. Your own figures may be slightly different,
but should be highly correlated with these numbers.

1995 1996 1997 1998 1999 2000 2001 2002 2003

UK 821.4 843.6 875.0 897.7 929.7 961.9 979.2 997.5 1 023.2
US 8031.7 8328.9 8703.5 9066.9 9470.3 9817.0 9890.7 10 074.8 10 381.3

Problem 9.5 n = 1.962 × 400/22 = 385.

Chapter 10

Problem 10.1 (a) 1987 1988 1989 1990 1991 1992

Exports 100 100.5 105.1 110.5 109.5 112.4
Imports 100 112.5 120.9 121.5 114.8 121.5

(b) No. Using the indices, information about the levels of imports and exports is lost.

Problem 10.3 (a)–(c) Year E PL PP QL QP

1984 100 100 100 100 100
1985 104.0 104.2 104.3 99.8 99.9
1986 85.9 85.9 86.7 99.0 100.0
1987 85.8 83.0 85.0 101.0 103.3

Problem 10.5 (a) Year Coal Petroleum Electricity Gas

1984 100 100 100 100
1985 102.8 101.4 103.9 107.9
1986 100.1 48.8 104.1 90.3
1987 95.8 52.2 100.1 83.4
1988 86.9 36.8 103.9 82.6
Shares 0.105 0.255 0.377 0.264

(b) Answer as in Problem 3(a).

Problem 10.7 The chain index is 100, 110, 115, 123.1, 127.7, 136.9, 139.2, using 2000 as the com-
mon year. Using one of the other years to chain yields a slightly different index.
There is no definitive right answer.
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Problem 10.9 Expenditure on energy in 1999 was £7948.31m. The Laspeyres index increased 
from 100 to 104.63 between 1999 and 2000, an increase of 4.63%. Hence industry
should be compensated 2.63% of 7948.31 = £209.0m. A similar calculation using
the Paasche index yields compensation of £213.8m.

Problem 10.11 The index number series are as follows:

Year Cash Real Volume of Real Volume of Needs Spending
expenditure expenditure expenditure expenditure expenditure index deflated

per capita per capita by need
(a) (b) (c) (d) (d) (e) (e)

1987 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1988 109.8 102.6 99.4 102.4 99.2 100.2 99.2
1989 120.5 105.7 101.9 105.1 101.3 100.5 101.4
1990 132.7 107.5 104.5 106.6 103.6 100.8 103.6
1991 150.4 113.6 108.8 111.9 107.1 101.6 107.1

(a) 109.8 = 23 601/21 495 × 100; 120.5 = 25 906/21 495 × 100; etc.

(b) This series is obtained by dividing column 1 by column 2 (and setting 1987 as the
reference year). Clearly, much of the increase in column 1 is due to inflation.

(c) This series is column 1 divided by column 3. Since the NHS price index rose
faster than the GDP deflator, the volume of expenditure rises more slowly than
the real figure.

(d) Per capita figures are obtained by dividing by the population, column 4.

(f) Needs index could be improved by finding the true cost of treating people of
different ages.

Problem 10.13 (a) 1702.20.

(b) Yes, 102.20.

Problem 10.15 18.3%.

Problem 10.17 (a) Area A = 0.303, B = 0.197, Gini = 0.607.

(b) The old have had a lifetime to accumulate wealth whereas the young haven’t.
This does not apply to income.

Problem 10.19 (a) The Gini coefficients are 44.8%, 35.4%, 33.6% and 34.0% respectively.

(b) These differ from the values given in Table 2.24 (from Economic Trends), substan-
tially so in the case of original and post-tax income. The figures based on quintiles
are all lower than the figures in Economic Trends, as expected, although the bias is
large in some cases. Drawing a smooth, freehand Lorenz curve based on the quin-
tiles data for original income results in a Gini coefficient of around 46%, closer to
the calculated figure than the Economic Trends figure. The results seem puzzling.

Problem 10.21 79.3%.
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Index

absolute dispersion 37
actual values/expected values

comparison 194–200
addition rule 80–1

combined addition and
multiplication rules 83

adjusted R2 244
AIDS 20
alternative hypothesis 160–1, 163,

165–6
asymmetry between null

hypothesis and 181
analysis of variance (ANOVA)

207–13
analysis of variance table 211–12
area graph 49
arithmetic mean (average) 24–6, 31,

40–1, 52
autocorrelation 239–40, 275–8

checking for 275–7
consequences of 277–8

average (arithmetic mean) 24–6, 31,
40–1, 52

average growth rate 50–2, 360

bar charts 10–13
base year 321
base-year weights 320–3
Bayes’ theorem 86–8
Bayesian statistics 86, 180–1
between sum of squares 209, 210
bias 135–6

trade-off between bias and
precision 137–8

Bill Goffe’s Resources for Economists
site 300

Binomial distribution 102, 103–9,
360

mean and variance 105–7
relationship to Normal

distribution 122–3
birth rate in developing countries

221–51
correlation 221–32
inference in regression model

238–51
regression analysis 232–8

bivariate data, graphing 55–7

Biz/Ed site 300
box and whiskers diagram 41–2

causality 228–9
Central Limit Theorem 120–1
chain indices 333–4
‘chart junk’ 50
Chebyshev’s inequality 39
checking data 298
chi-squared (χ2) distribution 190–1,

191–204, 361
calculation of the test statistic 203
comparing actual and expected

values of a variable 194–200
constructing the expected values

201–3
contingency tables 200–3
estimating a variance 192–3
tables 219, 368–9

Chow test 273–4, 363
class intervals 16
class widths 17–19
cluster sampling 306–7
coefficient of determination (R2)

236–8, 362
adjusted R2 244
testing significance of 242–3, 363

coefficient of rank correlation
229–31, 232, 362, 378

coefficient of skewness 40, 359
coefficient of variation 37, 41, 359
cohabitation 204
column percentages 11–13
combinations 84–5
combinatorial formula 84–5, 360
common logarithms 74
complement of an event 79–80
compound events 80
compound growth 51
compound hypotheses 279–81, 

363
compound interest 53
composite hypothesis 166
concentration ratios 339, 346–8
conditional probability 81–2
confidence interval 4, 121, 139–48

calculating required sample size
309–10

for difference of two means
144–7, 151–3, 361

for difference of two proportions
147–8

estimate for b in simple regression
241, 362

estimates and inference in
regression model 240–1

hypothesis tests and 176–7
for a prediction 244–5, 363
for sample mean 139–41, 150–1,

360–1
for sample proportion 143–4, 361

confidence level 163
constant prices 331–2
contingency tables 200–3
continuity correction 123
control group 180
correlation 221, 223–32

and causality 228–9
coefficient of rank correlation

229–31, 232, 362, 378
correlation coefficient 223–8, 231,

362
corruption 269
cost-push inflation 228
critical value 162, 163
cross-section data 9, 15–23

frequency tables 15–17
histograms 17–19
relative and cumulative frequency

distributions 19–23
cross-tabulation 10
cumulative frequency distribution

19–23
current prices 331, 332
current-year weights 324–5

data collection 296, 296–301
electronic data sources 298–300
primary data 296, 300–1
secondary data sources 296,

296–300
data-mining 285
Data and Story Library 300
data transformations 11, 57–9

multiple regression 263–6
non-linear 249–51
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davidmlane.com 300
deciles 30
decision analysis 88–91
decision criteria 90–1
decision rules 161–2, 163
deflating a data series 59, 331–2
degree of belief 78
degrees of freedom 149, 150, 191
demand estimation 261–78
dependent samples 177–80
dependent variables 208, 232
depreciation rate 53
descriptive statistics 1–2, 7–74

box and whiskers diagram 41–2
cross-section data 9, 15–23
data transformations 11, 57–9
E and V operators 72
graphical techniques 1–2, 10–23
graphing bivariate data 55–7
logarithms 45–7, 58, 73–4
numerical techniques 1–2, 23–41
Σ notation 70–2
time-series data 9, 42–55

development, inequality and 347
differences

of two means 144–7, 151–3,
170–2, 175

of two proportions 147–8, 172–3
differencing 58
discount factor 336
discounting 335–9
dispersion, measures of 24, 31–9
division

by a constant 58
using logarithms 73

double log transformation 251
dummy variables 282–4
Durbin-Watson (DW) statistic

276–8, 363, 379

E operator 26, 72, 112
education, and employment 9,

10–14
effect size 168–9
efficiency 136
elasticities 58, 248–9, 267–8
electronic data sources 298–300
employment, education and 9,

10–14
endogenous variable 232
equiproportionate sampling 304
error sum of squares 237, 362
error term (residual)

estimated variance of 240, 362
multiple regression 274–8
regression 233, 239–40

estimation 133–58, 181
confidence intervals 139–48
derivations of sampling

distributions 158
large samples 138–48
multiple regression 267–8
point and interval estimation 134
rules and criteria 135–8
small samples 148–53

estimators 135–8
events 78–9
Excel

analysis of variance table 211–12
descriptive statistics 36, 37
producing charts using 14
regression analysis using 243–4
standard Normal distribution 115

exhaustive events/outomes 79
exogenous variable 232
expected value

comparing expected values with
actual values 194–200

constructing expected values
201–3

maximising 89–90
mean as 26
of perfect information 91

Expenditure and Food Survey (EFS)
313–14, 334

expenditure index 330, 360
relationships between price,

quantity and expenditure
indices 331–2

expenditure weights 327–9
experiment, probability 78–9
explained variable 232
explanatory variable 232
exponential transformation 251

F distribution 191, 205–13, 362
ANOVA 207–13
multiple regression 268–9
tables 219, 370–7
testing compound hypotheses

280–1, 363
testing the equality of two

variances 205–7
testing the significance of R2

242–3, 363
falsification of hypotheses 181
finite population correction (fpc)

302, 361
five-firm concentration ratio 347–8
forecasting see prediction
frequency 10
frequency density 17–18

frequency polygon 19
frequency tables 15–17
frequentist school 76–8

Gaussian distribution see Normal
distribution

general price index 331–2
general to specific approach 278
geometric mean 51–2, 360
Gini coefficient 339, 342–6

increase in inequality 344–5
simpler formula 345–6

Goffe’s Resources for Economists site
300

goodness of fit see coefficient of
determination

Google 300
grand average 209
graphical methods 1–2, 10–23

bar charts 10–13
box and whiskers diagram 41–2
histograms 17–19
pie charts 13–14
scatter diagrams 2–3, 55–7, 

265–6
grouping 58
growth factors 51, 52
growth rate 50–2, 360

heteroscedasticity 44
histograms 17–19
homoscedasticity 44
Human Development Index (HDI)

325–6
hypothesis testing 159–89

chi-squared (χ2) distribution
190–1, 191–204, 219, 361,
368–9

compound hypotheses 279–81,
363

concepts 160–6
correlation 226, 362
criticism of 180–1
hypothesis tests and confidence

intervals 176–7
independent and dependent

samples 177–80
inference in the regression model

241–2
multiple regression 268
Prob-value 167–8, 243, 244
significance, effect size and power

168–9
small samples 174–5
testing the difference of two

means 170–2, 175, 361
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testing the difference of two
proportions 172–3, 361

testing a proportion 169–70, 361
validity of test procedures 176

IMF World Economic Database 300
imports into UK 261–78

analysis of the errors 274–8
data 262–3
data transformations 263–6
estimation 267–8
improving the model 270–3
satisfactoriness of the results 270
significance of the regression as a

whole 268–9
testing the accuracy of the

forecasts 273–4
theoretical issues 261–2

income distribution 347
independent events 81–2
independent samples 177–80
independent variables 208, 232
index numbers 317–57

discounting 335–9
expenditure index 330, 360
expenditure weights 327–9
inequality indices 339–48
price indices 41, 320–9, 360
quantity indices 329–30, 360
relationships between price,

quantity and expenditure
indices 331–2

retail price index 41, 318, 334–5
simple index number 318–20

inequality indices 339–48
concentration ratios 339, 346–8
Gini coefficient 339, 342–6
Lorenz curve 339, 340–2

inference 1, 2
probability theory and 76
in the regression model 238–51

inflation 40–1, 228, 263
intercept 233–4, 362

interpretation 235
interest rates 338–9

real interest rate 332, 338–9
internal rate of return (IRR) 337–8
inter-quartile range 32–3
interval estimates 134
interviewing techniques 311–13,

314
investment, corruption and 269
investment appraisal 88–91, 

335–9
investment expenditures 9, 

42–55

large samples, estimation with
138–48

Laspeyres price index 320–3, 360
based on expenditure shares

327–8, 357, 360
chain indices 333–4
comparison with Paasche index

328–9
Laspeyres quantity index 329, 330,

360
least squares, method of 234, 238–9
likelihoods 87
location, measures of 24, 24–31
logarithms 58, 73–4

investment expenditures 45–7
multiple regression 270–3
standard deviation 37–8

Lorenz curve 339, 340–2

maintained hypothesis see null
hypothesis

market shares, distribution of 346–8
maximax criterion 90–1
maximin criterion 90–1
mean

arithmetic 24–6, 31, 40–1, 52
Binomial distribution 105–7
estimating difference between two

means 144–7, 151–3, 170–2,
175, 361

geometric 51–2, 360
of a time series 50–1

measurement error 284
measurement problems 248–9
median 28–9, 30, 31, 359
Microsoft Excel see Excel
minimax regret criterion 90–1
mode 29–31
model selection 278–85
money illusion 280–1
multicollinearity 284
multiple bar chart 11
multiple regression 258–94

determinants of imports into the
UK 261–78

finding the right model 278–85
principles of 260–1

multiple time-series graph 47–50
multiplication

by a constant 58
using logarithms 73

multiplication rule 81–3
combining addition and

multiplication rules 83
multi-stage sampling 307, 307–8
mutually exclusive outcomes 79

natural logarithms 74
negative autocorrelation 276
negative correlation 224
net present value (NPV) 336, 360
nominal interest rate 338–9
nominal scale 9
nominal variables 59
non-linear transformations 249–51
non-linearity 44
non-rejection region 162
Normal distribution 109–16, 360

relationship to Binomial
distribution 122–3

sample mean as a Normally
distributed variable 116–21

null hypothesis 160, 163, 165–6
asymmetry between alternative

hypothesis and 181
numerical techniques 1–2, 23–41

measures of dispersion 24, 31–9
measures of location 24, 24–31
measures of skewness 24, 40, 41

Office for National Statistics (ONS)
299, 300

omitted variable bias (OVB) 278,
281–2

one-tail tests 163–5, 167–8, 219
one-way analysis of variance 207–12
online data sources 298–300
ordinal scale 9
ordinary least squares (OLS) 234,

238–9
outcomes (of an experiment) 78–9
outliers 41–2, 45

Paasche price index 324–5, 360
based on expenditure shares 328,

360
comparison with Laspeyres index

328–9
Paasche quantity index 329–30, 360
paired samples 178–80
parameters of a distribution

Binomial distribution 105, 106
Normal distribution 110, 111

Penn World Tables 300
percentages 11–13
percentiles 30
perfect information 91

expected value of 91
permutations 84–5
pie charts 13–14
point estimates 134
Poisson distribution 123–5
pooled variance 152, 361
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population mean 26–7, 359
positive autocorrelation 275–6
positive correlation 224
Postcode Address File 314
posterior beliefs 78
posterior probability 87, 180–1
power of a test 168–9
powers 73–4
precision 136

trade-off between bias and 137–8
prediction 244–7

multiple regression 270, 271–3
prediction interval 245–6, 247, 363
present value 89, 335–7, 360
price indices 41, 320–9

comparison of Laspeyres and
Paasche indices 328–9

expenditure weights 327–9
Laspeyres index 320–3, 327–8,

357, 360
Paasche index 324–5, 328, 360
relationships between price,

quantity and expenditure
indices 331–2

RPI 4, 318, 334–5
units of measurement 325–7

primary data 296, 300–1
prior beliefs 78
prior probability 87, 181
Prob-value 167– 8, 243, 244
probability 75–100

Bayes’ theorem 86–8
building blocks of probability

theory 78–86
decision analysis 88–91
definition 76–8
frequentist view 76–8
probability theory and statistical

inference 76
subjective view 78

probability distributions 101–32
Binomial distribution 102, 103–9,

360
Normal distribution 109–16, 360
Poisson distribution 123–5
random variables 102–3
relationship between Binomial

and Normal distributions 122–3
sample mean as a Normally

distributed variable 116–21
probability interval 121, 139, 140
proportion 11–13

estimating difference between two
proportions 147–8, 172–3

estimating proportions 143–4, 153
testing a proportion 169–70, 361

quantiles 30
quantity indices 329–30, 360

relationships between price,
quantity and expenditure
indices 331–2

quartiles 30
quintiles 30
quota sampling 308

R2 see coefficient of determination
railway accidents 125
random number tables 285, 311,

364–5
random sampling 300–8

types of 303–8
random variables 102–3
range 31–3
rank correlation coefficient 229–31,

232, 362, 378
ratio scale 9, 15
real interest rate 332, 338–9
real terms 56–7, 59

index numbers 331–2
transforming to 263–4

reciprocal transformation 58, 251
record of data sources 298, 299
reference year 319
regression analysis 221, 232–8

analysis of errors 239–40
avoiding measurement problems

248–9
confidence interval estimates

240–1
F test 242–3
hypothesis testing for coefficients

241–2
inference in the regression model

238–51
interpreting computer output

243–4
multiple see multiple regression
non-linear transformations

249–51
prediction 244–7
units of measurement 248

regression line 232–8, 362
calculation 233–5
interpretation of the slope and

intercept 235
measuring goodness of fit 236–8

regression plane 260–1
regression sum of squares 237, 362
rejection region 162, 191, 195
relative dispersion 37
relative frequency distribution

19–23

residual see error term
response bias 312–13
response variable 208
retail price index (RPI) 41, 318,

334–5
road accidents 196–9
roots 73–4
rounding 57–8

sample mean 26–7, 359
estimating difference between two

means 144–7, 151–3, 170 –2,
175, 361

estimation for a large sample
138–41

estimation for a small sample
150–1

hypothesis testing 160–9, 174–5
as a Normally distributed variable

116–21
unbiased estimator 135, 138

sample space 79
sampling 296, 300–14

calculating required sample size
309–10

collecting the sample 310–13
Expenditure and Food Survey case

study 313–14
meaning of random sampling

300–8
methods 303–8
from a non-Normal population

120–1
sampling distributions 143, 145

derivation of 154
sampling errors 314
sampling frame 310–11, 314

choosing from 311
scatter diagrams 2–3, 55–7, 265–6
seasonal dummy variables 282–4
seasonal variation 196–8
secondary data sources 296,

296–300
checking data 298
collecting the right data 297, 299
electronic data sources 298–300
record of data sources 298, 299
up-to-date figures 297–8

semi-log transformation 251
serial correlation 44
sigma (Σ) notation 70–2
significance level 162–3

choice of 165–6
simple random sampling 303
simultaneous equation models 261
skewness 19, 24
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coefficient of 40, 359
measures of 40, 41

slope of regression line 233–4, 362
interpretation 235

small samples
estimation with 148–53
hypothesis testing with 174–5

Spearman’s rank correlation
coefficient 229–31, 232, 362,
378

specific to general approach 278
spreadsheet packages 259, 298

see also Excel
spurious regression 277
stacked bar chart 11, 12
standard deviation 41

of the logarithm 37–8
of a population 34–5, 36
of a sample 35–6

standard error 119, 243, 244
standard Normal distribution

112–16, 366
standard width 16
stationary series 47
statistical inference see inference
statistical significance 168–9
stratification factor 305
stratified sampling 303–5, 313–14
student distribution see t

distribution
subjective school 78
sums of squares 209–11
surveys 300–1

EFS 313–14, 334
interviewing techniques 311–12
see also sampling

t distribution 367
estimation with small samples

148–53

regression 242, 243, 244, 268
test for paired samples 179–80
testing difference of two means

175
telephone surveys 312
test statistic

correlation 226, 362
difference of two means 171, 175,

361
difference of two proportions 172,

361
inference in regression model 242,

362
sample mean 163, 175, 361
testing a proportion 170, 361

time preference 335
time-series data 9, 42–55, 259–60

geometric mean 51–2
mean 50–1
variance 52–4

time-series graph 43–4, 264–5
multiple time-series graph 

47–50
time trends 44, 283–4
Todaro, M. 221–2
total sum of squares

ANOVA 209–10
regression 237, 362

tree diagrams 83–4
trend 44, 283–4
trials 78
two-tail tests 163–5, 167–8, 

219
type I and type II errors 160–2

uniform distribution 194
units of measurement

price indices 325–7
regression coefficients 248

univariate methods 55

V operator 72, 112
validity of test procedures 176
value index see expenditure index
variance 4, 37, 72

Binomial distribution 105–7
of the error term 240, 362
estimating with χ2 distribution

192–3
of the intercept 241, 362
of a population 33–4, 36, 359
of a sample 35–6, 359
of the slope coefficient 240–1, 

362
testing the equality of two

variances 205–7
of a time series 52–4

variance ratio test 205–7

wage-price spiral 228
wealth distribution 9, 15–42

comparison of 2001 and 1979
distributions 40–1

frequency tables and histograms
15–19

measures of dispersion 24, 31–9
measures of location 24, 24–31
measures of skewness 24, 40, 41
relative and cumulative frequency

distributions 19–23
weighted average 27–8, 301–2,

320–2
within sum of squares 209, 210–11
World Bank 300
World Economic Database 300

XY charts (scatter diagrams) 2–3,
55–7, 265–6

z scores 38–9, 112–13
zero correlation 224
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