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Chapter 1
Perspectives on Agent-Based Models
and Geographical Systems

Michael Batty, Andrew T. Crooks, Linda M. See,
and Alison J. Heppenstall

Abstract This chapter guides the reader to the material in this book. It begins by
outlining the meaning and rationale for agent-based models/modelling (ABM),
focusing on their history, how they evolved and how they sit within the broader
context of modelling and simulation for geographical systems. Three themes which
we see essential to ABM are then outlined, namely the question of detail versus
model and data parsimony of which ABM represents the former, questions of model
validation that flow from this, and lastly issues about the extent to which ABM is a
generic or specific style in terms of applications. We examine the essence of such
models in terms of the way behaviour is modelled using various rules, and then we
discuss technical issues such as computation, visualization, error, and schemes
for model design. All this sets the context for the various chapters that follow. We
conclude by explaining briefly what is contained in each chapter and by guiding
the reader in how best to use this book.
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1.1 A Little Bit of History

It has been over 50 years since the first attempts were made to explain geographical
systems using formal tools from mathematics. In the 1950s spurred on by rapid
developments in digital computation that were immediately grasped as a new
media in which to conduct virtual ‘experiments’ on human and physical systems,
geographical theory underwent a radical shift in emphasis. Systems were articulated
using ideas from physics and biology which found expression in a wide array of
mathematical formalisms widely exploiting the role of analogy and metaphors
involving representations and processes in the physical and natural sciences. Yet
from the beginning, there was an assumption, usually implicit, that for geographical
theory to be meaningful, it must deal with aggregates, ironing out the noise and
much of the variation that was associated with spatial systems. Particularly in human
geography, there was a tacit assumption that populations needed to be represented
as aggregates whose attributes were averaged over different variational characteris-
tics in such a way that homogeneity might be ascribed to their behaviour in space
and time. This was not pursued in the mistaken belief that populations were actually
homogeneous but in the interests of simplicity and parsimony, the search for such
regularity appeared to be the correct way forward.

The experience 50 years on has been salutary. It has been exceptionally hard to
find theories and models that are robust enough to withstand the sort of testing and
validation that is associated with the harder sciences, particularly with classical
physics. In the effort to simplify and distil the essence of geographical systems and
their processes into the same kinds of simple but powerful laws that characterize the
physical world, formal theory has tended to reduce geography to the point where
much of the richness and variety that we associate with the world is defined away,
often leaving simplistic notions that are both obvious and banal. Those developing
such models are well aware of these limits through the tortuous process that has
beset the field during these years. Yet in all of this, slowly but surely the idea that
we need to represent geographical systems at a much more elemental level has taken
hold. There has always been resistance to the idea that we should search for some
atomic element or unit of representation that characterizes the geography of a place,
and the social sciences in particular have been reluctant to consider the notion that
models of their systems should be postulated and tested at the individual level. But
as progress with aggregate models of homogenous populations has faltered, there
has been a perceptible shift from aggregate to disaggregate, from populations to
individuals, from macro to micro. In this, the notion of an ‘agent’ has become the
focus of this new quest.

If you define a social system as a collection of agents, then immediately you tend
to consider agents as individuals in a wider population, individuals that act purpo-
sively, that learn and innovate, thus introducing ideas that are hard to consider using
more aggregate styles of representation. Agents generate actions that occur in time as
well as space, that influence their wider environments and that cooperate as well as
conflict with one another over the use of space. Defining many agents in a population
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immediately gives some sense of their diversity, and in this way, any heterogeneity
in the system is directly picked up. It is easy to see why the idea of agent-based
modelling (ABM)' has become so popular in the last two decades for it begets a
style of modelling that has the capability of reflecting the richness of the world in
a way that appears essential to any good explanation of how spatial structures such
as cities, regions, the global system itself as well as all its physical components
evolve and change. The power of the agent paradigm is consistent too with the fact
that as our world has become more complex, largely due to increasing wealth and
innovation in technology; data about ourselves is becoming more available, particu-
larly through online sources. Ways of handling such data using ever powerful methods
of computation are going hand in hand with these developments, all leading to
the notion that simulating worlds composed of agents rather than their aggregates
might now represent a feasible and productive way forward.

We consider that a book which synthesizes our collective wisdom on agent-based
models in geographical systems is both opportune and timely; opportune because
there is much to say about how we are beginning to build agent-based models and
how geography imposes its own requirements on such developments, timely because
so far there are few, if any, reviews of the state-of-the-art in this area, and those
wishing to enter and contribute to the field require as much source material as we
can muster. Here we have collected together a series of contributions that cover a
very wide range of issues and approaches to agent-based modelling, beginning with
a review of modelling styles and types that inform the field, moving then to more
conceptual approaches, and then to methods and techniques that are involved in
designing and constructing such models. These form the first three parts of the book
and thence prepare the reader for a multitude of applications which we organize in
terms of the scale of the agent — micro or macro. These form the last two parts which
to an extent also correspond to spatial scale. They constitute about half the contribu-
tions contained herein, thus balancing theory, method and technique evenly with
applications.

1.2 Essential Themes

There are many themes that we will identify in this opening chapter to which we will
alert readers. In no sense do we consider these to be exhaustive but there are three
we consider essential to an appreciation of all that follows: these involve the dra-
matic differences between the style of modelling which has dominated geographical
theory and applications in the past from those which we consider now form the cut-
ting edge. It is quite clear that ABMs represent geographical systems at a level of
richness and variety that is an order of magnitude greater than their aggregate
precursors. ABMs usually have many more components — where we think of these

'ABM is also taken to mean Agent-Based Model (s) as well as Modelling.
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as agents themselves — than their aggregates, and this means that their attributes are
specified at a level of detail that is associated with each individual agent. Interactions
between agents are usually involved and thus the level of representation grows
exponentially as the number of agents increases. Even if the number of agents is
quite limited, often in cases where ABMs are used for pedagogic experiments, then
the level of detail for each agent and their interaction is still substantial in comparison
with their aggregates. In short, ABMs break the basic rule of science that theory
must be parsimonious — as simple as possible — and that a theory or model is better
than any other if it performs equally well but is simpler; this is Occam’s razor. In
fact, the argument for ABMs is quite the opposite. For many systems, we have
plausible but non-testable hypotheses about how we think the system works, and if
we exclude these simply because we cannot test them against data, then we are guilty
of distorting our theory simply due to the expediency of not being able to test it using
classical means: against independent data. This issue is of enormous significance
for it throws into doubt the whole process of developing and testing models of
geographical systems, indeed of testing and validating or falsifying any theory.

The conventional process of theory development in science begins with observa-
tion, proceeds to an induction of some theory from that data, and then proposes
some hypothesis that is testable against some other independent set of observations,
usually in a different time and a different place. This is the classic process of experi-
mentation where the experiment is repeated and validated (or not), the theory then
being refined (or rejected) in entirely different situations by independent scientists.
In this book, most authors who are applying ABM to real situations do assume that
their models must be validated against real data. Most however are also uncomfort-
able with this process for usually their models are only testable to a degree and
much of what is specified in the model associated with the behaviours of agents is
simply non testable in that data on processes, decisions and actions is not available
and/or observable. Outcomes of agent behaviours may be testable but the processes
involving such behaviour are not.

Accordingly ABM has seen the process of model testing being elaborated in much
more detail than traditionally associated with aggregate modelling. In particular, tests
for plausibility, experiments with running models under many different sets of initial
conditions, sensitivity testing of model parameters as well as traditional algorithms
used to maximize the goodness of fit have come to dominate the process. Added to
this, the idea that models which are richer by an order of magnitude than their coun-
terparts should be verified as well as validated against data has become significant.
This means that models should be run to test whether they are behaving as their
originators intended and this has little or nothing to do with how well they might
reproduce observable data. Surrounding this discussion is the notion too that models
are no longer built for prediction per se but as much to inform general scientific inquiry
as well as any debate between stakeholders over what the future might hold (Epstein
2008). In short, these kinds of model are as much to structure debate and dialogue as
to provide measures of how the future might turn out. This is a controversial issue that
is increasingly important to social science as well as science itself as the classical
canons of scientific inquiry melt away into the vestiges of history.
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There is a third theme that relates to ABM and marks a major difference from the
past. Just as the term model has come to embrace theory, the term computation has
come to embrace model. Since digital computers became the environment in which
this type of modelling is possible, methods of computation have come to influence
the construction of models as much as theory has done. In this sense, modelling has
become more generic rather than specific with generalized approaches to modelling
for many different types of system being developed during the last 30 years. Initially
models of geographical systems were tied very closely to theory and each individual
model contained a sufficient amount of its originator’s personal knowledge of the
problem to be quite distinct in terms of its computation. Of course as soon as
computer programs of any scope and size became available for specific classes of
model, there was a demand to generalize the program to any application. In fact, the
very act of model development presupposes that simulations would emerge which
would be generalizable to different situations. Indeed a true test of any model has
always been predicated on the basis of taking the model elsewhere and evaluating
its performance on independent data (Lowry 1965). In this sense, computation
itself needs to be generic.

The experience however has been somewhat different from this notion that good
models are entirely generalizable for it would appear that only the simplest of
models meet this criterion, and when they do, they tend to be of pedagogic value
only. Most spatial models tend to be developed for very specific situations whose
data and context is sufficiently different from any other for the model to be only
usable in any immediate sense for the problem at hand. Moreover in the past, models
have tended to be closer to theory than to generic computation but as more experi-
ence has been gained with modelling, generic approaches have been fashioned. In
geographical modelling, the spatial dimension has been so strong as to inhibit the
development of generic modelling until quite recently but there are now sufficiently
different frameworks of a generic nature available for model-builders to consider
adopting a framework first and then adapting this to the particular theory and problem
that define the simulation that is required, rather than the other way around.

Agent-based modelling is one of the most important generic modelling frame-
works to have been developed to date. It has emerged largely due to the convergence
of object-oriented programming ideas in computer science with the need to represent
the heterogeneity involved in many kinds of physical and human system at much
greater levels of detail, issues that we have already noted in some detail above.
Although geographical models were best represented by specific land use transporta-
tion interaction (LUTI) models tailored very specifically to urban theories based on
urban economics and social physics, as soon as formal modelling began, generic
approaches appeared, as for example in systems dynamics which was based on
general ideas about formulating models as partial difference equations subject to
capacity constraints. These, as Batty (2012) shows in the next chapter, did not find
much favour in geographical analysis largely because they were hard to adapt to
spatial systems but other approaches based on econometrics for example, have
formed the basis of some spatial models, although this style of modelling is specific
to economic analysis, notwithstanding its generalization to mainstream statistical
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modelling. As we recount in the chapters that follow, cellular automata (CA) modelling
developed before ABM but the software used to implement these styles of models
is quite elementary. Although some generic modelling packages such as SLEUTH
and METRONAMICA have been developed (see Iltanen 2012), generic CA pack-
ages for geographical systems are not widely available. Microsimulation models
are even more specific, notwithstanding their almost tool-like focus, and generic
software has not appeared, again perhaps due to their focus in our field on space
which is hard to embrace.

It may even be worth making a distinction between generic or specific models
with respect to the way they are formulated and the software and tools which tend
to be used in different model types. The problem is that in some senses tools such
as those that exist in econometrics and statistics can be elevated to entire model
systems while model approaches like microsimulation often feature as tools in
generating data. In short, microsimulation can be used in spatial interaction models
as can agent-based approaches. In such cases, the model in its traditional format is
augmented by the addition of agents or a decomposition using synthetic data
analysis techniques which are core to microsimulation. For example, in some of the
social physics models that are examined towards the end of the book such as those
involving rank size (Gulden and Hammond 2012), spatial interaction (Dearden and
Wilson 2012) and population change (Pumain 2012), agent-based approaches are
used in their implementation but their structure is one dictated by the original model
framework not by ABM itself. Even more confusing is the fact that model systems
merge into one another and this is very clear in the case of CA and ABM, but as we
will see, microsimulation models can transition into ABM as shown in Wu and
Birkin (2012). In fact Torrens (2012) augments CA and ABM with GIS and calls
these geographical automata systems (GAS).

Only ABM has developed very general packages which can be applied to a wide
array of systems and problems. For example, the packages that are popular range
from sophisticated programming systems such as SWARM, plug-in Java-based
environments like Repast and MASON, and simpler scripting languages like
NetLogo (and its originator StarL.ogo). A good review of these tools is given by
Crooks and Castle (2012) where they show that to an extent these packages encap-
sulate CA models. In several of the contributions that follow, CA represent the envi-
ronment in which agents behave in spatial terms. The other feature that is important
when generic modelling packages are used is that their generalizability is always
limited in some way. This can also force the modelling effort to embrace tools and
techniques that are not suited to the system in hand and if certain functions are
absent, it can lead to models that lack certain key components that more specialized
software will enable. In fact, it is now so easy to customize many of these packages
and to add other software as plug-ins using standard methods of linkage that most
generic software is capable of being easily extended to deal with system specifics.
However the downside of all this effort is that models which are the most effective
tend to be those that involve considerable programming effort. We have not yet
reached and may never do so the point where model users can specify a model for a
problem type and simply assume that it is computable from generic software.
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1.3 Structural Rules, Behaviour, and Dynamics in ABM

Agents almost by definition are purposive. They are endowed with behaviours that
are usually proscribed in a series of rules that are activated under different conditions.
This is in the manner of stimulus and response (or push and pull, or some such
reactive logic), and in this sense, agents always engender change. Dynamics which
may not be explicit but is almost invariably implicitly temporal, thus comes onto the
agenda and in this sense, ABM deals with dynamic modelling. This is in stark
contrast to LUTI models for example which are comparatively static for the most
part or microsimulation models which as Birkin and Wu (2012) note, can be either
static or dynamic. A particularly simple kind of ABM is in fact a CA where the
transition from one state of a cell to another state— in each geographic area — is based
on a set of rules that might be seen as representing how the state of the cell behaves
as all the cells around it change. This somewhat anthropomorphic interpretation of
CA might be appropriate if the cell contains an individual who is fixed in location but
whose attributes define their state which is continually changing. A good example of
this is the simplest model of segregation due to Schelling (1978) where the cell state
is an individual with one view or another, who may then change their view dependent
on the number of surrounding cells with individuals holding similar or different views.
Here the cell is the agent; the agent does not move in space but does move in terms of
their opinion. Indeed CA models are excellent examples of structures where many
rules of a relatively simple nature in and of themselves combine to generate extremely
complex behaviours when operated on a large lattice of cells (Batty 2005).

Agent behaviours may be reactive (sometimes called passive) or proactive
(anticipatory). Invariably such behaviours are engendered by the agents in question
scanning their environment in which other agents exist. More complicated forms
of ABM involve different classes of agent, with agents being a mixture of types
along the spectrum from reactive to proactive. Agents may be any distinct object in
the system that is involved in changes of state, ranging from actual individuals in
human systems to elements of the built environment. Moreover unlike agent types
can interact with one another. In fact, in object-orientated programming, any element
in the computation can be an object which is endowed with properties. In particular
in visual programming, all the various elements of the graphical user interface are
agents or objects. This ability to define different types of objects gives ABM its
power but it also defines its limits in that it is hard to see a completely general
system where any kind of agent might be defined in terms of generic properties and
attributes of any other.

Yet despite these constraints, it is possible to see very wide ranges of problem
being simulated using ABM. The more specific involve literal interpretations of
agents as individuals in the human population such as those used in pedestrian and
crowd modelling, the best examples here being those discussed by Patel and Hudson-
Smith (2012) and Johansson and Kretz (2012). At the other extreme, ABM can be
used to simulate interactions between groups of humans or even groups of policies
that do not have a direct association with specific individuals as, for example, in a
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whole range of land cover models such as those used in developing countries where
land and aid are key to development. In all these cases, at the heart of ABM lie
processes of change which in our context have an impact on the geography of the
system in question. These rules embody the key elements of the processes involved
reflecting the way agents operate which lie at the core of the model. Agents interact
with one another and with their environment, changing each other and their environ-
ment and in this sense, ABM is able to deal with open systems in a way that more
specific modelling approaches cannot. These processes cannot be prescribed outside
the modelling context except to say that they reflect a wide range of techniques.
Simple rules of logic as in CA models are rather standard but many criteria are also
built on algebraic functions that in geographical systems often relate time and space,
action at a distance and across time. In fact the many contributions in this book
show this variety in the way model processes are articulated, ranging from the stan-
dard algebraic formulations of micro economic theory (see Magliocca 2012) all the
way to the rule-based logics used by Liu and Feng (2012) in their extension of CA
modelling for urban development.

There are three elements related to dynamics and behaviour that are worth
flagging as these appear many times in the various contributions that follow. First
there is the question of cognition that relates to how agents perceive change in their
wider environment and how they learn. Learning is often simulated through simple
exposure to events over time and by watching what the majority do. In ABM,
navigation and way finding in geographical space tend to be the most obvious
elements in which the cognitive apparatus of the agent is utilized. There is little
formal theory about how agents might best learn as the rule-based structure of many
ABMs mean that such behaviours are defined in ad hoc empirical ways that are
often tested using trial and error experiments. Second there is the question of scale.
Behaviours occur across many scales but in their most elemental, these lie at the
finest scales where the individual is located. Various ABMs and certainly CA models
assume some principles of self similarity which operate across spatial scales and
lead to the emergence of patterns at higher levels consistent with fractal structure.
This is central to complexity theory. As ABMs are applied to coarser spatial scales,
models change in focus and often even in type as the agent paradigm weakens
although it is more likely that the way the model operates and the processes that are
defined change rather than the framework itself. ABMs become less predictive and
more speculative as scale changes from finer to coarser, from small scale to large.

The last point worth noting is that ABMs deal almost by definition with interac-
tions, with their environment but also with inter-agent links. This introduces directly
the concept of networks which appear implicitly in many of the contributions pre-
sented in this book. In fact, we do not emphasize networks very strongly in this
book and there are no specific contributions apart from those dealing with move-
ment of pedestrians and more aggregate populations. In a sense, this mirrors the fact
that only quite recently have researchers in the geographical sciences begun to grap-
ple with networks (although these have been implicit in spatial interaction and LUTI
models for many years). One of the main developments in network science is their
linkage with epidemiological models where propagations of rumour, innovation,
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disease, indeed any process that spreads through space and time can be cast in an
ABM framework, as illustrated in Simoes (2012). We will pick such issues up in our
conclusions when we anticipate the future of this field where we see agents moving
across networks as being central to new applications.

1.4 Computation, Calibration, Error and Uncertainty

Before we launch into a brief guide to the contributions that follow, we will address a
series of more technical questions that pervade any and every approach to modelling.
In principle, ABMs can generate enormous data requirements in that the assumption
is that every agent in a population that in the past was treated in aggregate (or not
at all), must be represented explicitly in some computable form. This can give rise
to massively parallel computation where agents are farmed out for individual
processing on multiple processors but it also leads to simplifications which involve
aggregation into super-individuals in the manner suggested by Parry and Bithell
(2012). Moreover computation is massively increased because each agent has to be
tracked and in situations where there are thousands of such agents, it is usually
necessary to visualize their behaviours so some sense of the order and pattern gener-
ated in their simulation can be evaluated. We have not yet mentioned visualization but
in these new generations of model, both CA and ABM, visualization has become
essential based on links to GIS, CAD and other multimedia systems as noted by Patel
and Hudson-Smith (2012).

Data requirements notwithstanding, most ABM so far, with the exception of
large transport models such as TRANSIMS (Casti 1997) and MATSIMS (Rieser
et al. 2007), do not appear to use intensive computational facilities or generate mas-
sive demands for parallel or related high performance computing. This is partly
because many of the processes that characterise ABM cannot be matched with real
world data and thus are never testable, despite the fact that most ABM have multiple
parameter sets that make a complete enumeration of their possible solutions impos-
sible. There are proposals to build extensive global models of entire populations
such as that suggested by Epstein (PACER 201 1) where some 6.5 billion individuals
are being simulated with respect to their abilities and exposures to generate global
pandemics. Visualization is essential for such models and this can set up severe
computational demands. However most ABMs run in desktop environments and
tend to be more pedagogic in focus due to the fact that once the number of assump-
tions which are non-testable yet plausible begins to dominate model structure, the
models themselves become more like devices on which to develop thought experi-
ments, to inform debate rather than to predict actual futures.

We have already noted the problem of calibration which has been extended
dramatically during the last two decades to embrace not only validation and fine
tuning through calibration but extensive sensitivity testing, checks for plausibility,
verifiability of the model’s implementation, and various aggregation checks against
different layers of data. Error and uncertainty are key to models that have many
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processes and multiple assumptions for a good model might minimize error and
reduce uncertainty as much as it might optimize its goodness of fit against actual
data. In this sense, ABMs cover a wider range of issues in terms of their validation
than other more parsimonious models for there are many issues that need to be
judged qualitatively and have no equivalent in quantitative evaluation. Evans (2012)
outlines the key issues involved in exploring ABM in terms of error and uncertainty
defining a cornucopia of possible sources of error, noting contrasts between accuracy
and precision and defining issues involving risk and uncertainty as these come to
characterize actual models and their outputs. In one sense, all the models introduced
here address these issues but few do so explicitly, as much because the line needs to
be drawn between what is possible, what is worthwhile and what is feasible in terms
of the level of resources related to the modelling effort.

One last issue involves the actual process of model design. Many chapters that
follow deal with different approaches to model construction but it is Grimm and
Railsback (2012) who address the issue directly in outlining a procedural approach
to evaluating models and this is immediately applicable to the design of a good
ABM. They review ABM using a structure which provides Overview (O), Design
(D), and Details (D) which they term ODD. From this structure, they are able to
derive design patterns that enable model-builders to produce a scheme for Pattern
Oriented Modeling (POM). This guides the designer in developing good ABMs
based on a considered view of how entities, states, and processes need to be incor-
porated into the best model possible. This scheme is gaining ground in this field and
others writing in this book are beginning to use it.

1.5 The Structure and Rationale for What Follows

We have divided the book into two main sections which in turn are divided in parts.
In the first half of the book which is organized in three parts, we review ABM in Part
1 with respect to other related but different approaches, then in Part 2 in terms of
their conceptual structure, and lastly in Part 3 in terms of the tools and techniques
used to operationalize such models. In the second half of the book, we deal with
model applications and divide these into two. Part 4 deals with micro models which
are the true preserve of ABM while Part 5 deals with macro models, largely how
macro patterns of spatial development and interaction often structured around other
model frameworks, are implemented using ABM. As we noted above, the division
into micro and macro applications tends to be one of sectoral or topical aggregation
rather than spatial scale although there is some correlation between them.

In Part 1, Batty (2012) begins with an overview of models in general attempting
to compare ABM and CA with other approaches such as LUTI, microsimulation,
and systems dynamics models. This is followed by Birkin and Wu’s (2012) more
detailed review of microsimulation models which are close in spirit if not in
structure to ABM, while Iltanen (2012) attempts the same review for CA models.
In this sense, we establish that the wider class of ABM dealt with in this book
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includes microsimulation and CA which in one sense are extreme variants of this
general domain. This part is concluded with a survey of ABM itself by Crooks
and Heppenstall (2012) who examine the history, scope and focus of the field so
far, noting the correspondence between all three model types: CA, microsimulation,
and ABM.

Part 2 deals with more conceptual issues. O’Sullivan et al. (2012) provide a
somewhat oblique perspective on ABM, explaining a little about how ABMs actually
work but also cautioning the reader to identify conditions under which this style of
modelling is most appropriate. Manson et al. (2012) take this further when they
relate ABM to the wider domain of the complexity sciences, arguing that this is one
of the main tools to simulate systems which operate from the bottom up and generate
emergent patterns at coarser spatial and more aggregate scales. Abdou et al. (2012)
then provide a blow by blow account of how to design and build an ABM. They set
this context by exploring two well known models — Sugarscape which is the spatial
ABM developed by Epstein and Axtell (1996) and Schelling’s (1978) model of resi-
dential segregation both of which illustrate how emergence occurs in such systems.
But they reserve their key example to the construction of car-following models that
generate traffic jams of the classic kind that are pictured using what traffic engineers
have for many years referred to as the ‘fundamental diagram’ — the relationships
between speed and flow, which in turn shows how as flow increases so does speed
only to level off after a flow threshold has been reached and then decline when
the traffic jams: another example of an emergent phenomenon. Kennedy (2012)
provides a useful exploration of cognition in ABM introducing some key issues
involving the simulation of behaviour and this is followed by Ngo and See’s (2012)
discussion of methods of calibrating and validating an ABM which are far more
detailed and inquisitive than methods used for traditionally more macro, aggregative
and parsimonious models. This part is concluded by Alam et al. (2012) who broach
the question of networks in ABM, reviewing issues of interaction, which involve
specifying neighbourhood sizes, segregation rules and the way ideas and diseases
propagate.

In Part 3, Crooks and Castle (2012) begin with a detailed review of ABM in
terms of its software and the generic packages that have been developed to imple-
ment a range of model types. They conclude that space is not that well represented
by such models, although GIS can now be linked to most of these packages. Stanilov
(2012) then presents a more reflective essay on how space is incorporated in CA and
ABM and this is followed by Parry and Bithell’s (2012) chapter on computational
issues that they discuss through the medium of model scaling which is akin to aggre-
gation which preserves the role of the agent. Evans (2012) then deals with error and
uncertainty and Wu and Birkin (2012) show how microsimulation can be augmented
by ABM, showing exactly how these two frameworks are consistent and of course
complementary to one another. The last two chapters which conclude this part and
the first half of the book are those by Grimm and Railsback (2012) who introduce
their ODD framework noted above and by Patel and Hudson-Smith (2012) who deal
with models of crowding which use both macro and microscopic simulation but
which illustrate quite clearly the need for good visualization in this field.
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The second half of the book deals with applications which demonstrate the
concepts, principles, and techniques that are dealt with in Parts 1-3. Part 4 deals with
micro ABMs which cover crime, pedestrian movement, educational demand and
supply, health, housing choice and land. These are all sectors that can be described in
fine spatial detail and where populations are disaggregated to the level where indi-
viduals are explicitly represented in terms of their spatial behaviours. Malleson (2012)
begins with his model of burglary that involves modelling how burglars select resi-
dential homes to rob and learn from the experience. Mobile crime is a key feature of
these models. Torrens (2012) then shows how GIS can be added to ABM in his
models of pedestrian movement while Johansson and Kretz (2012) provide a detailed
review of the various models involved. Rand (2012) explores how micro and macro
ABMs fuse into one another while Harland and Heppenstall (2012) and Smith (2012)
outline how the education and health sectors can be simulated using the notion of
agents being matched and allocated to school and health facilities. Jordan et al.
(2012) examine diversity in housing markets using ABMs while Parker et al. (2012)
explore how land markets can be modelled in the context of residential land use
changes, specifically urban sprawl. Magliocca (2012) concludes this section with a
foray into how a housing market model can be developed using ABM, an example
of where urban economic theory provides the overarching structure which can be
implemented by defining individuals engaged in demand and supply as agents.

In Part 5, the focus shifts to macro models, which are both spatially and sectorally
orientated to aggregates but with these aggregates being applicable to space and
sectors not the individual agents that populate them. Barros (2012) develops various
ABMs of the peripherization growth process in Latin American cities using CA
representations where the focus is on developing analogues of real growth patterns
which manifest the sort of inequalities that characterize such cities. Simoes (2012)
develops a robust model of the spread of mumps in Portugal that is implemented using
standard epidemiological models in a spatial and network context. Ngo et al. (2012)
show how land use and farming interests and policies in a Vietnamese village can be
simulated using ABM and then Banos and Genre-Grandpierre (2012) explore a
CA-ABM like model of idealized network systems with traffic flow which, like
Abdou, Hamill and Gilbert’s paper earlier in the book, mirrors how jams build up in
spatial networks. Liu and Feng (2012) then develop an extended CA model of urban
growth which is illustrative of how error and uncertainty can be incorporated into such
models while Cabrera et al. (2012) examine how ABM lies at the basis of land cover
models of agriculture in a developing countries context. The book is concluded with
three papers that deal with traditional social physics models which can be implemented
using ABM. First Gulden and Hammond (2012) show how a variant of a network
model of cities linking to one another can be used to generate city size distributions that
mirror familiar power laws. Dearden and Wilson (2012) implement their Boltzmann-
Lotka-Volterra models that link spatial interaction to constrained logistic growth by
running the model through agents rather than aggregates. Finally Pumain (2012)
explores her SimPop model framework, which she and her colleagues have been devel-
oping for over a decade, showing how agent interactions and actions generate the
distributions and sizes of cities that have existed in Europe from the thirtieth century.
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1.6 A Guide for the Reader

Many readers will be familiar with agent-based modelling to some degree and will
wish to dip into the contributions that follow in an order that they will be able to
determine from the titles and abstracts of the various chapters. But for those who are
new to this field, we have organized the contributions beginning with more general
overviews of the field, and then filling in more technical detail as we proceed. The
first three parts provide a reasonable primer on ABM for those who have not
explored the field before and the last two parts provide examples of applications to
geographical systems. For those who wish to learn quickly about the field, then the
contributions in Part 1 provide overviews, in Chap. 2 of six related modelling styles
and types of which ABM is one, in Chap. 3 of microsimulation and in Chap. 4 of
CA that are those styles of model that are closest to ABM, and lastly in Chap. 5 of
ABM itself. If readers then wish to concentrate on filling in more detail about ABM,
we advise them to look at Chaps. 6, 7, 8, 12 and 17 which focus exclusively on
ABM and how such models can be defined, constructed and implemented. The rest
of the contributions in the first three parts expand this overview to include related
models and more technical details while Parts 4 and 5 deal with applications which
are self explanatory. In no sense, do we as editors consider this set of contributions
to be any kind of finished product. ABM is a work in progress and this represents as
good a snapshot that we can currently assemble (in 2012) of this world as it is
developing.
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Chapter 2
A Generic Framework for Computational
Spatial Modelling

Michael Batty

Abstract We develop a generic framework for comparing spatial models whose
dynamics range from comparative static equilibrium structures to fully dynamic
models. In the last 40 years, a variety of spatial models have been suggested. Until
the mid 1980s, most models were static in structure and tended to embrace detailed
mechanisms involving spatial economics and social physics. Typical examples were
Land Use Transportation Interaction (LUTI) models that embraced theories of
spatial interaction and discrete choice modelling. During this earlier period, the
problems of making these models dynamic and more disaggregate was broached
but progress was slow largely because of problems in collecting requisite data and
problems of increasing the complexity of such models to the point where they could
be properly validated in traditional ways. 20 years or more ago, new modelling
approaches from very different sources came onto the horizon: in particular, dynamic
models based in Cellular Automata (CA) which were largely physical in nature and
Agent-Based Models (ABM) providing explicit behavioural processes that often
rested alongside these automata. Systems Dynamics Models (SDM), Spatial
Econometric Models (SEM) and Microsimulation Models (MM) all informed the
debate. It is tempting to see these models as all being of different genera but here we
attempt to see them as part of an integrated whole, introducing a framework for their
elaboration and comparison. After the framework is introduced, we review these six
model types and choose three — CA, ABM and LUTI models — that we then work
up in more detail to illustrate these comparisons. We conclude with the conundrums
and paradoxes that beset this field.
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2.1 Antecedents: The Origins of Spatial Models

Digital computers appeared in the late 1940s largely as a result of developments in
the logic of computing and the notion that large-scale numerical processing could
be massively speeded up by reducing routine tasks to binary equivalents operating
on equivalent electrical devices. Right from the beginning, scientific applications
involved spatial as well as temporal problems and by the mid-1950s, rapid advances
in digital computation led to computable problems in the human applications
domain involving spatial systems such as cities and transportation. Mathematical
theories of such spatial systems were slowly developing prior to the invention of
the digital computer but there had been little focus on how such theories might be
operationalised, tested through validation, and then used in forecasting. Digital
computers were to provide the spark for such applications and in 1955, the first
models of traffic flow were implemented in a digital environment in the Chicago
Area Transportation Study (Plummer 2007).

These first models, unlike many if not most that have followed them, were
specifically tailored to the problems in question and the way those problems were
perceived. Transport flows were critical as the problems in question involved
providing for new transport capacity, while land use location too was essential in
a period of relatively rapid economic growth which involved the search for new
locations for urban development. These early models were equilibrium-seeking
rather than dynamic, aggregate at the level of populations involving spatial inter-
actions, and built on conceptions of the city articulated using ideas from urban
economics and social physics. They are usually now referred to as Land Use
Transportation Interaction (LUTI) models. From these early attempts, as computers
and their software developed, new generations of computable spatial models have
become more generic in that the software developed for general classes of model
has become ever more significant, thus elevating generic ideas about modelling
through their software to a point where specific model types now tend to defer to
generic modelling styles. In this chapter, indeed in this book, this notion of generic
models and generic software is very much to the fore because agent-based models
(ABM) and their close relatives cellular automata (CA) models represent classes
and styles that are much wider in scope and applicability than the sorts of spatial
systems to which they are applied.

Here we will outline as wide an array of spatial models as is possible in an
integrated fashion, setting the scene for many of the more specific applications
and developments in the chapters that follow. As it is rare in this field to see highly
standardised applications which barely differ from case to case, each model
application tends to be tailored in some specific way to the problem and its context
such that model styles and structures become mixed. However what we will do is
identify six distinct styles of spatial model that cover most of this array beginning
with the original social physics and urban economic models that kick-started the
field half a century ago. But before we introduce specific model types and show how
these relate and evolve from one another, we will begin this review by examining
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model structures, identifying the key characteristics and themes that dominate
model development. We will first focus on questions of abstraction and representa-
tion, noting the difference between the substantive components of any spatial model
which we define as its population in contrast to the environment with which it
interacts. In one sense, all models can be so defined and this serves as a basis on which
to characterise the way populations which provide the objects or components of the
spatial system under question, interact with one another and with their environ-
ment through a series of key processes. We will examine issues of representing
spatial and temporal scale, aggregation, and constraints, and then we will look at
processes of change, feedback, and dynamics. Many of these features and themes
merge into one another and to an extent, any such categorisation of the key charac-
teristics of spatial models is arbitrary. But these categories do enable us to sketch
out the array of ideas that dominate the field which appear time and again in this
book. Once we have introduced these ideas to set the context, we will examine six
model types beginning with the simplest cellular automata, defining agent-based
models, noting econometric, systems dynamics and microsimulation all of which
involve generic approaches, concluding with notions about specific models that
contain their own styles and features such as those that were the first to be developed
in the land use transportation domain. To give focus to this review, we will then
outline examples of CA, ABM and LUTI models in more detail, providing the
reader with ideas about how such models are designed and used in practice.

2.2 Modelling as Computation: Abstraction
and Representation

Half a century ago, the idea of a model was in its infancy. Scientific theory essentially
was based on formal and systematic theories, often represented mathematically,
whose testing was confined either to controlled experiments in the laboratory or to
various categories of thought experiment. Computation changed all that. The idea
that a scientific theory could then be translated into an intermediate form — called a
‘model’ — represented a way of enabling controlled experiments to be carried out not
on the actual system of interest but on a computable abstraction of that system. The
term model quickly entered the lexicon and it is now widely used to describe any
kind of experimental context in which the computer is used as the medium for its
exploration and testing. In fact, the term is now used even more generally to refer to
any kind of abstraction that represents an obvious ‘simplification of the real thing’
and in this sense its meaning is no longer exclusively associated with computation
(Lowry 1965; Batty 2007).

When computer models were first developed, the general assumption was that
these were simply representations of the system on which testing would take place
so that the theory on which the model was based could be tested against data. In
general, it was assumed that the traditional canons of the scientific method in which
theory was successively refined to withstand its falsification and to engender greater
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parsimony of explanation, would apply. Most spatial models from the 1950s onwards
were predicated on the basis that their predictions would be tested against data taken
from the system of interest and that the model would be tuned in such a way as to
reproduce the system of interest within the computational environment in a way that
was closest to the real thing. Goodness of fit was the main means of validation while
calibration of the parameter values ensured that the model might be tuned most
effectively to the system in question. The quest originally was thus to find some
minimalist explanation for the system of interest in the belief that models should be
as simple as possible while also generating predictions closest to our observations
of the ‘true’ system. In fact, as in all science, this involves a trade-off.

Yet the complexity of human systems has meant that right from the first applica-
tions, there was continued pressure to develop greater and greater detail — to disag-
gregate the model’s variables to the point where sufficient heterogeneity of the system
might be represented in a manner useful to those who sought to use the model to
make predictions. There were limits on what computation could offer and data
concerning social systems has always been a problem but as computers got more
powerful and as the world moved to a point where computation became all pervasive,
our ability to model in detail changed by an order of magnitude. As the world moved
online, new and richer data sources are becoming ever more available and this
computational power combined with access to new and different data, meant that
what we could model and represent began to change. Moreover, the key challenge
in social systems is to know how much detail to represent and it would appear that
the sorts of average behaviour that are characteristic of physical systems are rather
different in the social world. Heterogeneity and hence greater detail is what seems
to be required so that ever more plausible models can be constructed.

At the same time, as bigger and richer models have been built, their software has
become more generic with general purpose simulation processes being articulated
in software that can be adapted to many different types of problem. All this is fast
leading to significant doubt that the scientific method taken from the classical
traditions of physics has the same relevance to the social world as it does in the
physical. Indeed even in science itself there is substantial questioning of the traditional
canons of scientific inquiry as the quest for parsimony, simplicity, and homogeneity
is increasingly being confronted by the need for plausibility, richness, and hetero-
geneity. The question turns on whether or not a simple, parsimonious model that
can completely explain a limited set of system characteristics is as useful as one
which contains many characteristics which are plausible in terms of the functioning
of the system but cannot be proven as being of definitive explanatory value. In fact
the problem is complicated by the predictability of many parsimonious models that
are able to explain spatial behaviour as it can be observed but are unable to predict
future behaviours which do not admit the same stability as those that are observed
in the past. This is a deep problem that suggests that what we observe is considerably
more ordered and structured at any point in time than that same set of observations
at a future time. This is not just a problem in dynamics or equilibrium but one
which is intrinsic to our ability to disentangle true explanation from the way we
observe the world. Currently the received wisdom is that different models apply to
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different kinds of problem and problem context and that in the last analysis, models
are useful to inform the debate through crystallising ideas.

In designing any model, the builder must decide what constitutes the structure
of the system as distinct from the environment in which the system functions. In
fact, this boundary problem is highly significant for it defines how the system
relates to other systems and to the rest of the world in general. Very often the same
model can be applied to different conceptions of the same system which is defined
differently with respect to its environment. Here we will define the term environ-
ment rather more narrowly than its general use in systems theory where it refers to
the rest of the world or the problem context. We will make a distinction between
the wider environment within which the system sits relative to the rest of the world,
and the local environment of the system which is the space-time nexus that pertains
to the functions in question. In short, the system’s environment here is the spatial
tessellation of its cells or its locational referents which change through time. In
contrast, we define the system in terms of its population, meaning its components
and their functions that operate within this local environment. In essence, it is the
population that constitutes the structure of the system and its functioning which
operates in its space-time environment. The functioning takes place between the
population and its environment and there are feedbacks in both directions, that is
the population can influence the environment just as the environment can influence
the system but these two aspects of the model are qualitatively quite different as we
will see. In terms of how this population-environment system relates to the outside
world often called the environment too, then the usual assumption is that although
the environment of the outside world can influence the system, the system does not
influence the outside world in terms of the operation of its model. This is the usual
convention in systems theory.

In this review, we will attempt to represent all our models no matter how different
using the same notational structure and to this end, we define an index of space as i
or j and any interaction or relation between them as ij while we use k to define
some attribute or feature of the population which pertains to different sectors. Time
is indexed as f. Where we need to refer to more than two locations or two attributes
or two time periods, we will define appropriate additional symbols as we proceed.
We first define a spatial unit i at time ¢ within the environment as A,, and then an
attribute or segment of the population at the same coordinates as N,. The two matri-
ces A and N contain the key elements of the system which interact with one
another in ways that we make specific when we detail models of how populations
function, interact and change and how these relate to the spatial system. We can
write these feedback loops as A < N to give some sense of the symmetry of these
relations but at the same noting that A and N are generically different.

We can easily aggregate these discrete quantities into larger spatial units that we
call Z, where I is a spatial index to the number of cells i that are within Z , or
into larger temporal units Q, where T is the aggregate temporal index. Note that
there are continuity and contiguity constraints that we need to be aware of when we
aggregate over space and/or time. We thus define the appropriate units at larger
scales as
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where there are likely to be conservation constraints in terms of size such as
A= ZiAint and N = Zith”, the particular form of which are usually speci-
fied when the model is implemented. Functions defined on the population and the
environment and the relations between them constitute the structure of the system
and usually specify the dynamics of change through time. However to provide some
sense of closure to this rather abstract form of representation, at any cross section in
time, it is possible to define interactions between these components over space. For
example, the populations might interact which we can specify in the following way
without detailing the mechanisms. Then the interaction between spaces i and j
can be written as A; = A, ® A, where the concatenation is specified according to
some behavioural or physical principle embodied in the model.

It is worth noting that functions like this tend to be specified in systems theory
independently of time so that the structure of the system is laid bare. There may be
many such functions and before anything further can be said about a model structure,
the mechanisms must be specified. What is important is that this framework is seen
as being generic in that it can apply to a variety of different problems and problem
contexts, to different systems be they physical or human, material or conceptual but
with a slight bias towards the subject matter of this book which is agent-based
models in the social sciences, particularly the geographical social sciences. Whether
or not this is the best representation is not particularly relevant. Each model is
developed in its own formal style and the purpose of this framework is to provide a
template for assessing how different the array of models that we define here are
from one another, not in terms of their substantive or behavioural similarities or
differences. In this sense, the population and the environment can be very different.
The only common point of reference is the fact that we make this distinction between
these two sides of the model and specify space and time in the formal notation of
cells and time instants, rather than in the continuous fashion that is often used to
couch more theoretical statements of spatial models.

2.3 Feedback, Dynamics and Processes of Change

During the sweep of history over which spatial models have evolved, there has been
a shift from simple, parsimonious models that simulate systems at a cross section in
time and represent populations in aggregate form to more complex, richer models
that deal directly with the time dimension and specify model functionality in terms
of processes of change at a much more disaggregate level than their earlier counter-
parts. The switch has been occasioned by many forces. Already we have noted the
growth in computation and the emergence of online data sources which have made
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much richer models possible but there has also been a sea change in the way we
think about human systems. Complexity theory has raised the notion that systems
are never in equilibrium, in fact their predominant condition is far-from-equilibrium
and disequilibrium is their normal state. Moreover human systems have become
ever more complex due to technological change, the demographic transition and
increasing wealth, at least in the west and many newly developed countries. This
has made spatial behaviours more complex, certainly in terms of movement and
communication as well as locational preferences. All in all, dynamics has come
firmly onto the agenda while the notion of explanation has shifted from aggregates
to much more heterogeneous populations composed of individuals and groups that
need to be understood at a much finer level of detail.

In generating behaviours, feedback is an important mechanism where we might
specify this in functional terms as a dependence of population on itself or on the
environment, that is A,,, = f(N,), N, =f(N,), or N,,, =f(A,) and so on.
Negative feedback tends to damp activity so that departures from some norm are
restored, the classic example being a thermostat which controls the heat from a boiler
to some environment. Positive feedback on the other hand accelerates the degree of
change, sometimes with catastrophic consequences, but usually with beneficial
impacts if some quantity such as income or even population is increasing. The best
way to illustrate the effect of feedback is in terms of population growth and the
basic equation which can be used to simulate positive feedback is
N, =anN,, (2.2)
where o is the rate of change defined as N,,,, / N, . If the growth rate ¢r is greater
than 1, then this leads to exponential growth as we show in Fig. 2.1. If less than 1
then this leads to a decline to zero population but in both cases, the change is due to
the compounding effect which can be easily seen if we generate a recursion on
Eq.22uptotime r+7T as

N

it+T

=o'N,. (2.3)

Negative feedback can be shown when change is damped according to some
threshold but it is more appropriate to show this as a moderation of exponential
growth as encapsulated in the logistic equation. Then if we define a limit to popula-
tion as say N ., then we write the logistic as

Nit+1 :ﬁNit(ﬁi_Nit)’ (24)

where the rate § is moderated with respect to the scale of the growth. We also show
this form in Fig. 2.1 where it is clear that the population grows exponentially at first
and is then damped by the effect of the constraint N, . In fact if the damping effect is
lagged leading to an oscillation around the limit value of N, , then the growth of popu-
lation mirrors the sort of behaviour characteristic of systems dynamics models that
were developed by Forrester (1969) in cases where resource limits dominate.
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Another form of dynamics relates to variations across space in the manner we
illustrated for spatial interaction in the previous section. If we add time to this kind
of dynamics which involves spatial relations, associations, correlations or move-
ments, then we can represent these as flows from i to j between times ¢ and
1+T . In fact the interaction N, which we associate with cross-sectional static
models in the previous section does take place through time although the time is
much shorter than the usual periods that are associated with spatial modelling. Only
quite recently has our concern in understanding cities shifted to thinking of cities in
real time for such a real time focus has previously been captured as a static snapshot
of movements in the city as, for example, in transport and traffic modelling. However
longer time periods are associated with flows such as migration where the variable
N, ;.7 s now associated directly with time. Mechanisms for such models are only
specified when the precise form of model is defined and these are often based on
activity patterns, distance, travel time and related cost structures that determine spa-
tial associations. In fact, flows of this kind are also associated with networks which
scale from topological relations down to physical infrastructures. Currently there is
substantial activity in embedding such flow structures in their networks and this is
beginning to be reflected in spatial models as is implicit in some of the contributions
in this book. In the three examples we use to illustrate the computational model
types below, flows and networks are significant. It is worth noting too at this point,
that in spatial modelling, most focus has been on measurable physical and hence
observable quantities that change through time but increasingly there are hidden
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flows and relations associated with the electronic world that are influencing how
spatial systems change and develop. This too is a major challenge for spatial
modelling.

Before we move the discussion on to classify different kinds of dynamics, it is
worth noting that all the variables that we have introduced so far can be disaggre-
gated down from their aggregate populations to more disaggregate components.
Ultimately the disaggregation is down to individuals where we denote such atomic
elements by the subscript & on populations, that is Ni'j is the k’th individual or
group in the appropriate space and at the relevant time in the system. In fact this
notation can also be extended to any group which is a subset of the aggregate
population such that the sum of the groups and/or individuals adds to the relevant
aggregate variables, that is Zkle = N,. In the models, particularly the agent-
based models that follow, individuals will form the focus of the simulation where
processes are specified for a class of individuals but are operated at the level of
each individual in the simulation, usually specific to the space and time within
which the individual is located as well as individuals ‘proximal in some way’ to
the object in question.

As the concept of equilibrium has fallen into disrepute and as the spatial models
have become more explicitly dynamic, different kinds of time scale and change
have been identified which characterise spatial systems. In particular the notion of
smooth change has given way to systems that clearly have discontinuities in their
behaviour through time (as well as space) where such discontinuities represent
thresholds that are crossed, for example, the step function also shown in Fig. 2.1.
Here once the growing population reaches the limit, it precipitously declines to its
initial value. This classification of dynamics extends all the way to behaviours that
generate endogenous discontinuities as is characteristic of catastrophe and bifurca-
tion theories. This portfolio of dynamic behaviours has also been enriched by
smooth changes that lead to chaos, systems that behave in entirely unpredictable
ways in terms of their initial conditions but are nonetheless deterministic and por-
tray smooth and continuous change. Into this nexus has come the notion that change
can generate surprising and novel behaviours. For example, edge cities that sud-
denly appear around well established metropolitan areas, segregation patterns that
do not appear to be embedded in the logic of change but suddenly manifest them-
selves, and repercussions from changes in one element of the system that cascade
and grow as they diffuse to other sectors are all examples of the sort of changes that
many models of spatial systems now take as routine.

Dynamics in all these senses has added to the burden of modelling. Like disag-
gregation, dynamics enriches the model in that data demands become severe and
often much of the change that needs to be simulated is hard to observe and match to
data. In fact, the notion that dynamics leads to surprising changes is part and parcel
of the insights that are coming from complexity theory where the routine operation
of space-time processes from the bottom up leads to emergent patterns that only in
hindsight can be explained. Such unanticipated behaviour is quite counter to the
traditions of well-behaved dynamic systems that tend to converge to an equilibrium
or steady state, that is where N, — N, in the limit of ¢.
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The last feature of dynamics that we need to note before we begin to classify
spatial models in these terms involves relationships to the external environment,
either to the rest of the world or indeed exogenous changes to the population and/or
environment that comprise the system in question, for it is by these means through
which unusual dynamics can be stimulated. For example the population equation
might be subject to external shocks, that is from Eq. 2.1 we might add a shock such
as X, leading to

N

it+1

=aN, +X, (2.5)

which basically removes a degree of predictability from this particular model,
dependent on the size and frequency of the external input. If the external input is
once-for-all, its effects may die away but sometimes these kinds of shocks feed on
one another and are enough to push the system into uncharted waters with quite
unpredictable consequences. Moreover changes in the environment of the system,
such as the addition of new capacity a, in terms of land available, say, which we
might mirror as

A, =4, +a,
(2.6)

N, =f(A,)

can lead to equivalent unpredictability. Even in these simple cases, we can easily
complicate the dynamics through additional functions that immediately show that
any movement to a steady state is likely to be the exception rather than the rule.

2.4 Six Styles of Spatial Model

It is exceptionally hard to provide a completely comprehensive overview of spatial
models in the human domain even with as narrow a focus as we adopt here which
is mainly on cities. This is largely because model types shade into one another and
many of the features that we have identified in the previous sections appear in
more than one model. Different modelling styles merge into one another.
Nevertheless various researchers have attempted to classify such models and it is
worth noting some of these attempts before we outline our own focus on this field.
In general as noted earlier, there has been a sea change from aggregate cross-sec-
tional comparative static models of spatial systems to models that are disaggre-
gate and dynamic. This has marked the transition from land use transportation
interaction models (LUTI) to cellular automata (CA) and agent-based models
(ABM). This has also represented a change in scale and focus and in the case of
CA models, these shift the focus from social and economic processes to physical
land development. ABM models are more generic still but in terms of urban mod-
elling, most applications are at the fine spatial scale at the level of pedestrians, for
example, and local movement, with only a handful of such models being developed
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for metropolitan areas. In fact as LUTI models have been disaggregated, then
some of these such as ILUTE and UrbanSim have features that can be described
as agent-based (Hunt et al. 2005).

The other four types of model that we will classify and define here are those
based on less well entrenched applications and methodologies. Spatial economet-
ric models (SEM) have been widely applied but often at a larger scale involving
regions while systems dynamics models (SDM) have been proposed and imple-
mented in some contexts but these have not found widespread application largely
because they have not been generalised to spatial systems in any consistent man-
ner. Last but not least there are microsimulation models (MM) of which there are
several spatial variants and these also tend to merge into ABM at one level of
specification. There are no general reviews of all six modelling styles but the author
(Batty 2008) provides a discursive discussion of how LUTI models made the tran-
sition to CA and ABM during the last 30 years. The short review of LUTI, ABM
and CA models also by Batty (2009) focuses on their structure, dynamics and
aggregation properties. There are comprehensive reviews of ABM, CA, SDM, MM
and some LUTI models by Haase and Schwartz (2009) and there are a series of
reviews of operational land use models mainly in the US agencies such as the EPA
(see Southworth 1995 for example). However apart from the review of CA models
by Liu (2008), most of the reviews tend to be of LUTI models. In particular the
chapters by Wegener (2005), Iacono et al. (2008) and Hunt et al. (2005) are good
summaries of the state of the art to which the reader is referred. The essence of the
models which are the subject of this book — mainly ABM, CA and MM - are con-
tained in the relevant chapters in this section by Birkin and Wu (2011) (MM),
Dearden and Wilson (2011) (LUTI-spatial interaction), Iltanen (2011) (CA) and
Crooks and Heppenstall (2011) (ABM). In fact the focus is much more strongly on
ABM than any other model type in this book although CA models, as we will see,
provide an implicit form of ABM. This chapter and more generally this section, do
however provide a useful overview of the field with the focus very much on situat-
ing ABM in the wider context of spatial modelling.

We will begin with generic models and only when we have reviewed most of
these will we look at specific models with methodologies that are precisely config-
ured to the systems and problems at hand. We will treat each model in terms of the
eight characteristics which we identified in the previous two sections, namely,
environment and population, scale and aggregation, conservation and constraint,
disaggregation, feedback in space-time, dynamic type, emergence and conver-
gence, and external inputs, and we will begin with CA models which are by far the
simplest. In fact CA models are explicit and simple spatial dynamic models with
little or no presumption about the form of the dynamics and rather simple notions
about the effect of space. In their strictest form they simulate the spatial diffusion
around a point where the diffusion is to immediate neighbours and time and space
are treated as one. In this sense, the environment is treated as being synonymous
with the population with each state of the system — i.e. the population — being
directly associated with a spatial location at a point in time, in short A, =N, .

Scale and level of temporal and spatial aggregation tend to be quite flexible in these
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models although for urban and land cover systems, both scales are large — often land
parcels and census tracts and above, while temporal intervals are at least for one
yearly periods. This however is not a major constraint. Such models do not strictly
conserve quantities of population in that there is nothing intrinsic to such models
that limits their growth or decline although often such models are subject to more
macro-constraints provided by other models in their wider environment. The models
can be fairly disaggregate but most applications divide the cell states into land use
types limited to no more than a dozen. Feedback in space is extremely simplistic
and often unrealistic in that the CA nearest neighbour influence principle which is
essential for physical diffusion processes is often not a good analogue for spatial
effects where there is action-at-a-distance. Such models do not tend to fall into any
particular dynamic class, for if they produce unusual and discontinuous dynamic
behaviours, this is likely to be due to external inputs rather than anything built into
the model dynamics. Emergence is possible with such models, indeed essential to
their original formulation although in urban applications this is generally not a
specific focus. All in all, such models tend to simulate land development processes
from the supply side or at best models of the balance between demand for and
supply of land. They are not strongly socio-economic in that they do not embrace
detailed demographics, and in this sense are essentially physicalist in tone.

ABM models have many of the characteristics of CA models except that the
environment and population sides of the system are kept apart. The population
sector is essentially that which contains these agents whose behaviour is specified
in considerable detail. Agents tend to be mobile in a spatial sense and even if they
do not physically move in space, they can be associated with different spaces and
their change over time can reflect an implicit process of movement. In this sense, the
environment is treated more passively than the population with the population
driving any change in the environment, although in principle there is no priority for
one or the other. A detailed specification of ABM in these terms is contained in
Batty’s (2005) book where the idea of an agent having a specific behavioural profile
and acting on this purposively is central to their definition. In terms of aggregation
and scale, ABMs tend to be at smaller scales than the region or the metropolis
although some land cover models based on ABM are predicated at these larger
scales. They tend not to be constrained in terms of conserving any key quantity
although they may be structured to generate or conserve a certain level of popula-
tion, especially if the focus is on movement in a fixed space as in pedestrian models.
Their dynamics and relationships to the wider environment are similar to CA and
they tend to be highly disaggregate down to the point where individuals constitute
their basic units. Problems emerge when individuals are aggregated to groups or when
the agents become agencies for then such models tend to be of more conceptual
interest than of predictive practical use.

Like CA and ABM models, microsimulation models (MM) tend to be loosely
structured in terms of their dynamics. Such models may even be cross-sectional
rather than dynamic but the fact that the populations tend to be represented in terms
of their basic units means that such models are usually temporally dynamic, i.e.
individuals are represented in terms of their behaviour which is intrinsically
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dynamic. These kinds of models work on the premise that a population is described
in terms of a distribution of characteristics — for example, an income distribution,
and individuals are then selected from that distribution so such models are essentially
random samples from a much larger universe or population. In this sense, the
models can be at any scale but the distributions are usually composed of individuals
in that any point sample from a distribution is associated with an individual. Point
samples can of course be aggregated into large groups in space and time. There is
not much more that can be said about such models for all their other characteristics
will depend on the specific model characterisation once it has been worked up to the
system in question. Quantities do tend to be conserved and sampling can be subject
to some constraints while feedbacks depend on how different sectors in the model
are configured in relation to one another. The model dynamics again tends to be
straightforward and most models to date (see Birkin and Wu 2012) do not tend to
reflect discontinuities of the kind associated with emergence of new structures.
External inputs into such models are usually extensive as many of the drivers of
such behaviour are reflected in the wider environment. Microsimulation models
are essential tools for sampling large-scale populations where it is impossible to
represent all the individuals explicitly and where some sense of the heterogeneity of
the population needs to be represented in the model. The MoSeS model designed by
Birkin and Wu (see this volume) is a good example of how MM is applied to human
spatial systems where the focus is on demographics and its relationships to the
provision of health and related social facilities at a fine spatial scale.

Spatial econometric models (SEMs) have been widely developed in the tradi-
tion of aggregate modelling (Anselin 1988). To an extent such models do not
really distinguish between population and environment although the focus in such
models is more on subsuming the environment into the population than the other
way around in contrast to CA models. Such models are usually developed at a
scale where statistical averages are stable and this means that the spatial and tem-
poral units must be such that the data are appropriate for standard statistical infer-
ence. Quantities in such models tend to be conserved but within statistical limits
although increasingly constraints are put on statistical models where it is essential
to keep predictions within bounds. SEMs tend to be structured along rather formal
lines where the standard model is linear, often simultaneous in that feedbacks
between different model sectors are associated with different model equations,
and the dynamics is often well-defined with the equilibrium properties of such
models being well-known in terms of their stationarity. Emergent behaviours are
not usually a feature of such models but the distinction between exogenous and
endogenous variables as in much economic modelling is strong. In this book,
these kinds of models are not reported although occasionally, econometric tech-
niques are used in ABM, SDM, and MM.

Systems dynamics models (SDM) are very much in the tradition of the discrete
population models that we illustrated earlier in Egs. 2.1-2.4. In fact these models
are based largely on coupled difference equations whose structure is such that
they lead to exponential growth followed by damped oscillations around fixed
resource limits. In this sense such models are heavily constrained. They can be
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quite disaggregate dealing with different sectors but the environment is entirely
absorbed in the population as there is usually no spatial variation although some
models have simply applied what happens in one space to many others. In terms
of feedbacks, the entire behaviour of these models is structured around damped
logistic growth reflecting repercussions through the model structure which leads
to oscillations around the resource limits. In this sense, the dynamic behaviour of
these models is well-defined. Links to the wider environment are structured in
terms of control over resource limits. Progress with these models has been quite
slow with only a limited number of applications largely due to the difficulty of
articulating space within their structure. In fact as soon as space is introduced,
these models begin to look rather different from traditional SDM and in this
sense, they change in focus. Many of these model structures are more like model
methodologies that can be merged together in the construction of more elaborate
models, as for example, in models such as UrbanSim.

Our last class of models — land use transportation interaction or LUTI models —
are quite different in structure. These models are essentially fashioned around ideas
in spatial interaction and discrete choice theory, merged with notions about eco-
nomic input-output analysis, multipliers and demographic modelling that all come
together in what are largely aggregate cross-sectional model structures simulating
the location of activities and their interactions at a single point in time. These mod-
els, like SEM, tend to merge environment into population and since their inception,
they have become more disaggregate. Spatial constraints and the concatenation of
activities are central to such structures. Various feedbacks between the sectors are
incorporated but these usually reflect spatial not temporal effects. In terms of dynam-
ics, such models struggle to embrace the wider portfolio of possibilities being, at
best, incremental which essentially involve static models being applied to incre-
ments of time. That is, static model structures are used to model incremental change
and such models do not attempt to explore longer term dynamics. In fact there are
extensions of such models into dynamic frameworks such as those developed by
Wilson (2008) but in general, the practicalities of limited temporal data have con-
strained such models in terms of dynamic simulation. This is an important issue as
most of the other models we have described in this section simply assume that the
lack of temporal data is not a constraint on their specification and application. In
short, LUTT models build on social physics and urban economics which are essen-
tially atemporal.

These model types and styles provide a wide range of possible structures from
which to select appropriate forms for specific problems. Our summary shows at a
glance the array of model types that we might draw upon in simulating spatial systems
in the human domain. In the rest of this review, we will not detail all of these but
we will focus on CA, ABM and LUTI models to give some flavour of how they
might be developed and the way they are calibrated, validated, and verified in practice.
This will set the scene for the rest of the review chapters in this section which take
these models types further and develop specific issues with respect to their design
and construction.
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2.5 Cellular Automata: Physical Simulation Models
of Urban Morphologies

CA models are by far the simplest of any urban model in that they merge entirely their
populations with their environment. In essence, the components of the environment
are identical to the objects comprising the population in the sense that the locational
spaces that define the environment at any point in time, are equivalent to each
elements of the population. In the simplest case, one cell in the environment is equiv-
alent to one object in the population which in formal terms means that A, = N,.
Now each cell in a CA model can take on more than one state which means that the
population object can vary in its attributes. Again, the simplest form is that a cell
can take on one of two states — it can be switched on or off which in urban terms
might be compared to the cell being developed or not developed. This is often
represented as

1if i is developed
" {0, otherwise @7

In slightly more complicated CA models, there may be more than one population
object in one cell but this probably is the interface between CA and ABM. If a cell
has one population object only but that object can take on different attributes or
changes in state, then this is still a CA model. In short, when a cell can take on more
than two states, then this is usually used to reflect different changes in land cover
such as land use types but it could also be associated with different changes in the
population object such as its level of income, its age and so on. The formulation is
entirely generic.

CA models in their strict sense have no action-at-a-distance except in the most
restrictive sense. A cell is deemed to influence or be influenced by its nearest neigh-
bours where near is defined as physically adjacent if the application is to some
spatial system. This is the only way in which emergence can be charted in such
models in that if the field of influence is wider than nearest neighbours in a regular
sense, then it is impossible to trace any emergent effects on the ultimate spatial
structure. Essentially CA in this manner is used to implement procedures that lead
to fractal structures where patterns repeat themselves at different scales which only
emerge when the system in question grows and evolves. We can illustrate strict CA
in the following way. Assume that the set Z, is the set of immediate neighbours
on a regular square lattice. The usual neighbourhood is defined as the Moore
neighbourhood — all cells at the eight compass points around the cell in question or
the von Neumann neighbourhood which are the cells N, S, E and W of the central
cell. Then we define a function F, as the concatenation of effects in the Z, neigh-
bourhood, and if this function takes a certain value, this generates a change in state
of the cell in question, cell i . Imagine that the rule — and there can be many, many
different rules — is that if this function is greater than a certain threshold ¥ which
is a count of the developed cells in the neighbourhood, then the cell changes state.
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In the simplest case, it is developed if it is not already developed or its stays
developed if already developed. Using the definition in Eq. 2.7, then

F,=) A, and (2.8)

JjeZ;

if F,>Y then A

it+1

=1. 2.9)

It is very easy to show that this process leads to a regular diffusion starting
from a single cell. If we assume that the threshold ¥ =1, all the cells in original
Moore neighbourhood around the seed cell get developed first, then all cells
around those that have just been developed, and so on with the recursion simply
leading to the growth of a square cellular region around the starting cell. In fact in
this instance, space and time are collapsed into one which is the key criteria of
regular physical diffusion. These ideas are developed in more detail in Batty
(2005) to which the reader is referred for many illustrations of such basic strict
CA models.

If the CA models are slightly more complicated in terms of their neighbourhood
rules then various geometric fractals result while there can be key spatial orienta-
tions and biases introduced into the structures that are generated. However it is
usual in CA modelling for the neighbourhoods, the rules and the process of genera-
tion to be entirely uniform. As soon as the notion of varying neighbourhoods over
space and varying rules over time is introduced, the models are no longer CA. In
fact many urban applications are not strictly CA models at all but cell-space models,
motivated by physical land development problems and raster based GIS map
algebras in that they do not generate emergent patterns in any recognisable form and
they usually relax the constraints placed on both size of neighbourhood and unifor-
mity of cell transition rules. In Fig. 2.2, we show three typical CA models generated
using the Moore neighbourhood. The first is the simple diffusion from a source
where any development in any adjacent cell spurs development of the cell in question,
the second is simple diffusion from a source using a fractal generating rule where
the pattern of cells developed determines the rule, and the third is based on a
more complicated pattern of cells in the neighbourhood that steers the growth which
in this instance is stochastic in a given direction. These are the kinds of structures
that form the basis of such automata and all applications to real systems contain
mechanisms of recursion built along the same lines as those used to generate the
patterns in Fig. 2.2.

There are several ways in which the strict CA model has been relaxed in devel-
oping spatial applications. First it is easy to control the growth of developed cells
by imposing some sort of growth rates with respect to different cells. If growth is
one unit cell, then various external constraints can be used to control the growth
but as in all cases where the homogeneity rules are relaxed, then the CA no longer
can generate emergent patterns in quite the simple way in which those in Fig. 2.2
are generated. Moreover to introduce variety and heterogeneity into the simplest
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Fig. 2.2 Classic CA models (a) Nearest neighbour physical diffusion on a grid (b) Koch-like
fractal diffusion (c) Oriented diffusion limited aggregation

models directly, sometimes the cellular count or concatenation of cells performed
in the neighbourhoods is converted to a probability function which is then used
to condition the development using a random number generator. For example the
structure in Eqgs. 2.8 and 2.9 now becomes
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P,=YA,/8 0<P <1 and (2.10)
i€z,

if rand (¥) < P, then A,

it+1

=1 @2.11)

where P, is a probability of development and rand(¥') is arandom number between
0 and 100, say which if less than the probability, implies the land should be devel-
oped. There are many adaptations that can be made in this manner but the most
significant is related to relaxing the strict neighbourhood rule replacing this with
some sort of action-at-a-distance. For example replacing F; in Eq. 2.8 with the
gravitational expression for accessibility leads to

F,=3A,[d; (2.12)
J

and this provides a model which can predict development in proportion to acces-
sibility, that is

A (2.13)

i1 < Fy

This almost converts this cellular automata model to an accessibility potential
models which lies at the core of spatial interaction theory and was first developed
for these purposes at the very inception of land use transportation modelling (Hansen
1959). The question of course is how such a model might related to the extensive
tradition of LUTI models that are in general far superior in their explanatory and
predictive power than these kinds of CA model.

One of the major developments of these cellular models is to specify different
cell states in terms of different land uses which we will disaggregate and notate as
k, A,-f being the appropriate land use k in cell i at time . In several models,
these land uses relate to one another as linkages which determine, to an extent, the
locational potential for a site to be developed. Then we might write the change in
state of the cell in question as a function of several land uses in adjacent cells
where we use a functional notation to simply indicate that the change in question
has to be specified in more detail once the model application is implemented. Then
the new state of cell i at time ¢ would be

AL, = (A dy) v (2.14)

where jeZ; is a neighbourhood defined entirely generically and the field over
which distance is defined is again specific to the zone in question. In fact this
relaxes the strict CA quite dramatically and is characteristic of many applications
(for reviews see Batty 2005, and Liu 2008). It is worth noting that the rules to
define land use transitions generally vary the definition of the neighbourhood from
the strict no action-at-a-distance principle to the gravitational one. This links different
land use states and their densities and types to each land use in question, and also
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relates these links to different action-at-a-distances effects. These rules also pertain
to constraints which are hard and fast on whether a cell can be developed or not.
Above a given level, they define how land uses cannot relate to one another. Rules
extend to the development of transport links in cells that ensure land use is
connected, and structure the regeneration of cells according to various life cycle
effects. All of these rule sets are featured in CA models and they are central for
example to the SLEUTH, DUEM, METRONAMICA and related model packages
that have been developed (Batty, and Xie 2005). They will feature in our brief
reference to the DUEM model below.

A more generic CA like structure which is a lot closer to the differential model
that dominates the dynamics of physical phenomena at much finer scales is based
on a reaction-diffusion structure which might be written in the following way:

A =0A,+BY A +(1-a-Pp)X, (2.15)

Jj€Z;

where o0 and B are normalising parameters between 0 and 1 and X, is an exog-
enous variable that reflects changes from the wider rest of the world environment
that might be treated as error or noise in the system but more usually is treated as an
exogenous shock or as an input that is not predictable by the model. To operationa-
lise this structure, it may be necessary to impose various other constraints to ensure
that variables remain within bounds but the essence of the structure is one where the
first term on the right hand side is the reaction, the second the diffusion and the third
the external input or noise. If we assume that X, =0, the evolution or growth is
purely a function of the trade-off between how the system reacts and how activity
within it diffuses. In fact, this is rather an artificial structure as change in absolute
terms always needs to be controlled and in this sense, external inputs are always
likely to be the case. Many CA models do not explicitly adopt this more general
structure and a lot of applications have tended to simply scale the outputs of the
developed cells to meet exogenous forecasts rather than introducing such exogeneity
in more consistent and subtle ways as in the reaction diffusion model in Eq. 2.15.
There are many variants of CA models, examples of which are contained in the
last section of this book but as we will see these do tend to merge into ABM. To
conclude this section it is worth outlining a model that the author has worked with
(see Batty et al. 1999, and Batty 2005). This is the Dynamic Urban Evolution Model
(DUEM) which is a fine scale cellular model with several cells states reflecting land
use as well as transport and a series of decision rules for changing states that relate
one land use to another through its density and accessibility as well as their position
in the life cycle of development. The model is largely a pedagogic tool rather than
one which can be finely tuned to real situations although a number of applications
have been made to the Ann Arbor region and the wider region of South East
Michigan which is largely metro Detroit. The model is based on several land
uses — residential, commercial, industrial, open space, vacant land and transport/road
space — which are functions of the different density and accessibility rules as well as
plot sizes which determine how land is developed. We have developed the model for
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Fig. 2.3 Application of a typical CA model to simulating land use change 1985-1990 and 1990—
1995 in Ann Arbor MI

the changes between 1985 and 1990, calibrating the model in a rather crude way.
The rule set is large and thus we have not engaged in any kind of exhaustive calibra-
tion to find the best fit, although the fit to 1990-1995 from the calibration between
1985 and 1990 is reasonable. We show a segment of the typical interface to the
models, showing developed land use in Ann Arbor in 1990, and changes predicted
by the model from 1990 to 1995 in Fig. 2.3.

The real critique of CA models relates to their highly physicalist approach to
urban structure and dynamics. Essentially these are supply side models, simulating
the supply of land based on physical constraints. The notion of demand is foreign to
these models as is the notion of interaction as reflected in transport. By abandoning
the principles of uniformity, restricted neighbourhoods and homogeneity of states
which it is often necessary to do once one applies these ideas, then the models often
become poor equivalents to LUTI and other models. However in their favour is the
fact that they are explicitly dynamic although dynamic processes other than physical
land development do not feature very much in their formulations. Their dynamics is
also rather straightforward and if surprising and novel forecasts do emerge, this is
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more by accident than design in the sense that these models tend to simulate a rela-
tively smooth dynamics. There are not many points at which the kinds of disequilib-
rium crises and discontinuities which plague the modern world can enter into such
models. They also owe a lot to GIS and remote sensing and it is no accident that they
have been almost entirely developed by a very different set of researchers from those
still working with traditional urban models in the LUTI tradition.

2.6 Agent-Based Models: Purposive Behaviour, Physical
Movement and Temporal Change

As we have argued, at one level CA models can be seen as simplified varieties of
ABM where the cells form the agents and the states their attributes. Unlike ABM,
however, cells do not move and if they change their state, this change might be
attributed to some movement but this movement remains implicit and is not for-
mally simulated. ABM implies some form of movement or at least change between
agents. Agents as objects in the population are defined individually as k but are
made specific in terms of the locations where they exist i at time z. In fact agents
may not physically move or indeed in non-spatial models, they may not even be
defined in terms of location. If the model is simply one of examining relations
between agents at a cross section in time, then such relations might solely be defined
in terms of say N*and N', the relation between them defining a link in a social
network N* = f(N*,N"). In fact throughout this book, the agents that are defined
by various authors, exist in terms of location and time but very different kinds of
relations exist across space. These imply movement or interaction from i to J,
from time ¢ to 41 or a later time period #+ T, from individual object k to ¢ as
we have just defined in terms of social network links and any higher order combina-
tions such as: links across space and time, space and different individuals, time and
different individuals and across all three — space, time and individuals.

The key difference between CA and ABM is that the system is driven by the
ABM where each individual object is endowed with purposive behaviour which
conditions their specific and individual behaviour in contrast to aggregate models
where this behaviour is part of an aggregate or collective. In this sense, the environ-
ment of the system is the space-time frame A, which is relatively passive in com-
parison to the behaviour of the agents N! . Nowhere in such models does A, = N,
or vice versa but as we have already implied earlier there are certainly feedback
loops A, & N, as well as the core loops between agents themselves which we
define generically as N} < Njf,+l . We assume in ABM models for spatial systems
that the environment is not purposive, that is, no loops such as 4, < A, exist. If
such loops are required then the model would need to be reformulated and part of
the environment may then enter the population. The movement of an agent is par-
ticularly important in spatial models because whereas in CA, these models tend to
be bereft of spatial interaction, ABM models have found extensive application as
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models of fine scale movement at the pedestrian level for example (Batty 2003).
We can formulate such a model in functional terms as

Nja =f(N,.NLALA L 2€ Z) (2.16)

where the superscript a relates to some characteristic attribute of the cell. The func-
tional Eq. 2.16 suggests that agents move through space across time but are influ-
enced by other agents and other locations during such a move. The object Nj'ft isin
a different location from the moving object k and when the move takes place, a
whole series of relations might exist between these two objects such as the visibility
of one from another, avoidance of physical contact between one and the other, the
clustering of the two or more objects through some social network, or the attributes
of the other object being of importance to the locational move, and so on. In terms
of the cells themselves, then an object moving from one cell to another would also
take account of related cells in the system, usually in the neighbourhood of the
move itself.

A good example might be shopping behaviour. An agent enters a shopping centre
with a specific purpose to buy goods, encounters other agents along the way, avoids
them, or follows them in terms of the crowd. The agent would be influenced by the
provision of goods in different cells of the system and in this sense would move in
relation to the existence of materials and products that were located in different cells
of the system. This kind of characterisation can provide a baseline for movement
with visibility, obstacle avoidance, the search for a location which matches the
purpose for which the object or agent is moving, and so on. The agent may have a
budget and when visiting different cells would exhaust this budget and end the trip
once the movement had achieved its purpose. In terms of other moves, then if the
agent were migrating over a longer time span in search of a job or house, then the
characteristics of the job or house location would be encoded into the environment,
in A; but the job itself and maybe the actual house would also be part of the set of
agents. In this sense, an agent need not be a human individual but an object in the
built environment that in and of itself might be subject to change in type and
location.

It is worth sketching a simple model of the development process to show how
generic this kind of thinking can be. First we make a distinction between consumers
k and producers ¢ with N the individual demanding to be housed and N; the
developer producing or supplying the housing. The characteristics of the site or cell
under consideration for the production of housing is defined as A;, where z is a
different location but all the locations i, j,z define the cells in the system where
consumers and producers carry out their activities. The sequence of actions in any
one time period can be orchestrated as follows: first a producer examines all the
sites in question which in terms of each site can be represented by N; < A7 . The
decision to produce a house in cell J is then made with respect to the attributes of
J but also the potential demand for site J which might be based on previous
demand at that site NfH . The decision is made and the house produced which alters
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the characteristics of the site A;, . The production of the house at this site can be

defined as a unit of development or level of development D, ,, which a potential
house buyer — consumer — will now react to. When the house has been developed,
potential residents will examine its location and then decide to occupy it or not, that
is N;.‘,H — D,,,, and if an evaluation threshold is crossed then the individual will
occupy the house, that is the house will be occupied O,,, . Formally the consumer
might evaluate a function which works out a new level of the attribute of the site

Afm which can be formalised as

Al =0> 0,40 AL+ D, +€,,, (2.17)

JjeZ; JeZ; JeZ;

where the parameters ¢, 8,7 determine the relative weighting and normalisation
while the error term ¢, is a way of introducing some noise or uncertainty into the
locational choice. If the cell attribute value is now above a certain threshold I', then
the house is occupied; if not it remains unoccupied and the systems move into the
next time phase where the process begins once again. Then

L if A,=0 and Y A, 2T
0,1 = = (2.18)

0 otherwise

In this way demand adjusts to supply and vice versa if the system is well speci-
fied. Of course this simple model could not be programmed from this formulation
for there are other decisions that need to be made to make the process computable
but this sketch suffices to show how demand and supply agents interact with their
cell space environment to produce and then consume housing. Immediately it is
clear that in such a model, although the rules are quite plausible, it is extremely
difficult to collect data on such a decision-making process. Moreover at this level of
disaggregation, there are many features of the development process that cry out
for specification; for example, issues about housing finance and finance for land
development, issues about distance from home to work and to other facilities,
provision of budgets, life style issues, all crowd into such a model. In a sense, this
is why ABMs are so hard to build and test because once this level of detail is
broached, it is hard to control the aggregation in such a way as to produce testable
propositions. It is worth noting that spatial interaction effects fall out of this model
quite easily, thus connecting ABM directly to the LUTI models that we will deal
with in the next and final section of this review. The gravitational model of trips can
be specified in agent form as

k 14
w _ Nl
2

- (2.19)

ijt d
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Fig. 2.4 Simulations from Ward’s ABM pedestrian model of Covent Garden. From top left to
bottom right: model control panel, visual lines of sight from a single pedestrian, flow intensity of
all pedestrians, navigation panel, interactions of walkers, part of the map of the stalls in the shop-
ping area

where we define k in terms of residence and o in terms of workplace. T,-;” is the
flow from i to J at the cross section and this can be lagged across time if so speci-
fied. We can also sum trips over i and J in terms of spatial interaction accounting
and this serves to link these models to their aggregate equivalents. In fact, a sequence
of locational decisions involving work and residence location in terms of an ABM
might actually generate trips of these kinds through individual decisions rather than
through this aggregate distance model. This does show that it is possible to begin to
introduce social physics ideas into ABM with such connections to discrete choice
modelling and microsimulation appearing extremely promising. Similar ideas of
movement and spatial interaction are briefly introduced in Batty (2005) to which
interested readers are referred.

The last thing we will do in this section is illustrate a typical example of ABM
at the pedestrian movement level. In Fig. 2.4, we show a model built for the Covent
Garden Market complex in central London by Ward (2007). This model is based on
a simple social forces model in which agents have certain tasks to perform such as
shopping and entertainment. They have two specific functions: to navigate in
search of their goals which involves either purchasing entertainment or goods as
efficiently as possible; and to move around the complex in more casual fashion.
Most behaviour in this market is a combination of the casual and the formal but a
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key feature is the learning behaviour that must be built into navigating the space.
This set of agents — walkers — is divided into different types dependent on purpose
and how much exposure they have already had to the area. A substantial proportion
of walkers are tourists. We do not have time to detail the model but it is clear that
the nature of the problem imposes quite substantial differences between this appli-
cation and others in terms of the composition of the agent population and the nature
of the facilities in the complex. Again ABM is appropriate because of the rule-based
behaviours in this kind of context and because navigation, obstacle avoidance and
visibility calculations are important in simulating this type of mobility.

2.7 Land Use Transportation (LUTI) Models: Aggregate
Behaviour in Spatial Equilibrium

Our last examples which are not part of the mainstream applications in this book
except in the contribution below from Dearden and Wilson (2012), revert back to
the origins of computational modelling in spatial systems which are in a rather
different tradition from the new paradigms explored in the various contributions
that follow. In fact, LUTI models have continued to be developed and strengthened
and as we noted earlier, there has been a long quest to retain the advantages of
simple aggregate models that can be calibrated against available data in contrast to
the need for ever greater detail through disaggregation with the specification of
temporal dynamics which move these models outside the equilibrium paradigm. In
essence, when the time dimension is suppressed, the representation of environment
and system is greatly simplified. The environment is simply indexed by space as
A, while the population is indexed as P! where different activities k now refer to
aggregates of populations covering employment, residential population, retail
activity and so on. Just as CA models collapse population into the environment,
LUTTI models tend to collapse the environment into population: all the action in
such models is, like ABM, focused on the aggregate with the environment in terms
of cells, or zones as they are commonly called, being only relevant when various
constraints on land availability and physical features of the space influence the
simulation. In short, we can represent such models purely in terms of populations
although distance and the attributes of space do occasionally enter the model
framework from the environment.

We already have a simple form of LUTI model where spatial interactions are
implicit in our development of CA in an earlier section. Equation (2.12) determines
the function that converts a cell from one state into another, from undeveloped to
developed for example, in terms of gravitational potential and we can write this
more generally for any sector k as

NE=EY Ad* (2.20)
J
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where & is the relevant scaling constant, and A* is the friction of distance param-
eter for the gravitational potential. Equation (2.20) might apply to any sector
although it is strongly physicalist in form being a function of only land (cell or zone)
area A; and geometric distance (or travel time/cost) d,; . Without any obvious
coupling, any LUTI model composed of several different population sectors such
as types of residential housing, employment and so on would simply be a series
of disconnected models. The most obvious way to connect sectors is to make each
sector a function of all others in terms of composite accessibilities that might be
written as

Nf =&Y Y Nid* .21
toj

where we note that the scaling constant is suitably adjusted and that the summation
over sectors ¢ may or may not include the self-sector k, a decision that would
depend on the precise model specification. In this sense then, the sectors are coupled
through their relative spatial distributions.

In fact most LUTI models developed in the last 40 years have specified popula-
tion as a function of explicit spatial interactions although the first models such as
Lowry’s (1964) were based on accessibility potentials as in Egs. 2.20 and 2.21.
Using an explicit spatial interaction model, then one of the simplest forms can be
written as

M:Zﬁ:@@Qﬁ%‘%ZZMM%ﬂ (2.22)
J J J

We should note again that the summation is over sectors, that the scaling
constant must be suitably adjusted and that there is immediate circularity in the
model as the predicted variable appears on both sides of the equation. We do not
have time here to dwell on this circularity but it can be resolved in many ways
through model specification, balancing and iteration but in essence it reflects the
reality of breaking into the spatial system at a cross section in time. In fact, in
real applications, the use of appropriate balancing constraints resolves the issue
(Batty 1976, 2008).

However the usual way of coupling such models is by assuming that the self-
sector is not a function of the model or using another variable such as land area of
the zone or cell A’ . Then substituting this for N} in Eq. 2.22 and noting now that
we will specify a two sector model where k=1 is the first sector and /=2, the
second sector, then we can write equations for these two sectors as

1 _ 1 _ glgyl 2 5-27 1
N; —ZT,.j.—iA,-Zde,j +X;
J J (223)

i

2 _ 2 g242 1 -2 2
Ny =T =EA Y Nd" +X,
J J
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Here we have extended the coupled model even further adding an exogenous
input to each sector in the same manner that we did for the reaction-diffusion
model earlier in Eq. 2.15 for the CA model. This structure is generic. It can be
extended to many other sectors and it is at the basis of a whole class of LUTI
models. For example the extended MEPLAN models developed by Echenique
(2004) are based on this structure where there are explicit links to input-output
models. The original extensions to the Lowry (1964) model were couched in these
terms. The first equation in (2.23) was defined for total employment N; where
X! was basic employment and the second equation was defined for total population
N,-2 where there was no exogenous population, that is Xf =0,Vi. In short, this is
the model structure suggested by Garin (1966) and Batty (1976).

This structure has been exploited in many ways. First it has been disaggregated
to embrace many different classes of population with respect to residential popula-
tion, housing and house types, industrial employment, retailing, commercial and
related sectors such as education and health care. Second, relationships between the
environment and population have been made in terms of land and density con-
straints, while third, the spatial interaction models have been extended in terms of
utility maximising and route choice building on much more disaggregate individ-
ual-based models. In this sense, versions of LUTI models such as UrbanSim
(Waddell 2002), ILUTE (Miller 2004) and DELTA (Simmonds 1999) begin to
approach ABM illustrating that the line between modelling types and styles can
become very blurred. Fourth, the models have been disaggregated to treat ever more
zones and spatial units but of course, once these approach ABM, then locations are
collapsed directly into individuals within the population and the notion of agents
defined by zones has less relevance. Fifthly in many of these models, rule-based
algorithms to sort out allocation as in CA models appear alongside more formal
equation systems that determine locational distributions. Particularly where demand
and supply are explicitly represented, then market clearing and the determination of
prices that indicate how the model is balancing are often structured through rule-
based mechanisms. As these models have extended their scope, then their formal
parsimonious structures have been compromised. Their operation has become more
ad hoc and pragmatic which appears to be a consequence of adding more and more
detail and more and more sectors.

Dynamics has also been added to such models. At first, such static models were
applied to forecast increments of change; that is the static model structure is used to
assume that increments or decrements of change observed between two points in
time such as AN, =N, —N, become the focus of the prediction. In fact this is
often simply a matter of scaling the equations to deal with net change. Many vari-
ants of this structure have been developed but there has not been much attention to
breaking up the static structure into activities with different propensities to move.
There are no models (to the authors knowledge, that is) where populations are
divided into movers and stayers and these components dealt with in comparative
static terms as different specifications of the equilibrium. Most extensions to dynamics
have thus been ad hoc and in fact, there have been few developments of nonlinear
dynamics of the kind described earlier involving catastrophes and bifurcations
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embedded directly into the structure of these models. There are examples where
static models are embedded into dynamic frameworks but these are largely for
pedagogic use and have never been fitted to real systems (see Dearden and Wilson
2012, this volume). The same might be said of Allen’s (1997) work where embedding
spatial interaction models into dynamics that lead to bifurcating behaviours in terms
of locations are largely illustrative.

In terms of applications, the dominant model in urban and transport planning is
still the LUTI model variant, largely because it deals explicitly with transport and
housing in terms of their markets and the way they clear. Urban sprawl, for example,
which CA models have attempted to simulate is highly dependent on transport and
thus LUTI models are preferable as they deal directly with the drivers of sprawl. In
North America, the dominant model was DRAM-EMPAL until quite recently
when UrbanSim appears to have been more widely applied. Elsewhere MEPLAN
and TRANUS have been developed, particularly in South America (Echenique
2004) while in Europe, there has been a mix of models. The focus is less on growth
there and thus engagement with these kinds of formal model has been less intense
although recently new waves of such models are being applied particularly in
the London region. We will conclude our review with a brief summary of some of
these models.

The MEPLAN structure developed as the LASER model has been used for
20 years for examining major transport proposals in the South East of England
and this is now being supplemented with the LonLUTI model built on the back of
the Delta model by Simmonds (1999). We have been developing residential location
models as part of the integrated assessment of climate change, specifically flooding
and pollution issues, in the Greater London region. This model is a standard
structure of the kind presented here with a focus on heavy visualisation. A screen
shot of typical output is shown at the top left of Fig. 2.5 where the focus on trip
movements and their modal split is clear. It has now been extended using the
structure in Eq. 2.23 where there are now three sectors being handled: population,
retail and internal population-orientated employment with exogenous employ-
ment handled as a separate sector. This model is applied to the outer metropolitan
area based on nearly 2,000 zones making the model quite large in spatial scale.
The focus is still on fast and immediate visualisation and the current plan is for
the model to be disaggregated and different modes to be added. The model is
subject to capacity constraints in all sectors including trips and in this sense
is quite comprehensive. We show a screen shot of the region in Fig. 2.5 at the top
right and below, where it is clear that we are dealing with a complex polynucleated
urban system based on a world city with some 14 million population. In contrast
to the sort of pictures that we showed earlier for CA models in Ann Arbor
(Fig. 2.3), it is clear that these models operate at a higher spatial scale although in
the climate change applications, a CA-like model at 50 m grid square scale has
been added to the integrated assessment to deal with populations at a much finer
spatial scale than the LUTI configuration which is based on zones with an average
of 10,000 persons. There is much more we could say about these models but inter-
ested readers are referred to this detail in Batty (2011), and Batty et al. (2011).
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Fig. 2.5 LUTI models for the London region. Top left: Work trips from Heathrow in the Greater
London residential location model: Top right: The nested model applications: Bottom: The inter-
face to the 1767 zone London region model showing population histograms

2.8 Conclusions: Modelling Using Generic or Purpose-Built

The model framework developed in this chapter is designed so that readers might
see the connections between a variety of model types at different levels of sectoral
and temporal disaggregation. It is almost a non-sequitur that static cross-sectional
models tend to be simpler to notate than dynamic models but what dynamic mod-
els add in terms of temporal richness, static models tend to compensate for in
terms of sectoral feedback and strongly coupled activities. The framework we
have introduced is certainly generic for the distinction between environment
which is the space-time nexus and population which tends to be the driving force of
all these models, is common to all spatial models of the kind developed in this book.
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The level of aggregation although exceptionally important in terms of applications,
is less important in terms of model structure. What we have not done here is dwell
on methods of fitting different models within this framework to data and it is
worth concluding with some remarks for this serves to polarise differences
between the various models.

As the level of detail in terms of sectors, spatial-locational resolution, and tem-
poral resolution increases, data demands generally increase and models become
increasingly difficulty to validate in terms of being able to match all the model
hypotheses — functions — to observed data. As temporal processes are added, this
can become exceptionally difficult but even with cross-sectional static models,
when we add mechanisms for coupling and for market clearing as is the case in
many LUTI models, we face a severe problem of validation. Many processes in
these models cannot be observed and in principle some of these may simply be
unobservable. Thus the model-builder faces problems of convincing client and
stakeholder groups, which may comprise other scientists, of the veracity of their
simulations. This tends to force modelling back to the traditional canons of scientific
inquiry where parsimonious and simple models are the main goal of scientific expla-
nation. Occam’s razor may still be the ultimate quest but in many social systems,
evident complexity is so great that plausibility rather than validity may be the real
quest. This tension is felt very heavily throughout this book although it is broached
only gently by many of the authors who are clearly conscious of the weight of
scientific credibility that these new approaches to social systems impose.

In fact cutting across this dilemma is the notion that as we improve our under-
standing of spatial systems, we might be able to generalise models to the point
where generic software becomes dominant. In fact, quite the opposite is happening.
As we learn more we consider each problem context to be more individualistic
where the model has to be specifically tailored to the task in hand. Software engi-
neers have in fact sought to develop ever more generic packages but these are often
frameworks which guide the modeller rather than establish complete frameworks
for the development of a specific model. Most general frameworks for ABM for
example such as RePast and Netlogo, even MATLAB and Mathematica, do not
extend to the point where very detailed spatial models can be built within their
structures. LUTT models are a case in point. 30 years ago when spreadsheets were
first developed it was perfectly possible to develop pedagogic versions of such
models using that software but no real application would ever fit into such
structures. To date, there is no standard software for such models. In fact herein is
the dilemma. Most serious applications rather than proofs of concept or pedagogic
demonstrations require specific software applications. Insofar as generic software
can be used, this provides many of the basic routines but these still have to be
assembled in situ by skilled programmers, notwithstanding the fact that downstream
applications may emerge which are generic. But then such applications tend to be
pedagogic, showing what has been done and any new application requires purpose-
built software development. It is hard to see this situation changing in that the
problems that we need to engage with always seem to outstrip previous applications
and software already developed for these. The various contributions on this book
clearly demonstrate this point.
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Chapter 3
A Review of Microsimulation and Hybrid
Agent-Based Approaches

Mark Birkin and Belinda Wu

Abstract In this chapter we introduce an approach to individual based modelling
of social and economic systems. Microsimulation models (MSM) appear similar to
ABM through the representation of individual decision-making units, but there is a
significant variation of emphasis between the two approaches. MSM are typically
stochastic or rule-based, and with a strong applied policy focus. These characteris-
tics are explored and elaborated through a number of examples. While MSM are
often very rich in their representation of ‘structures’, ABM are usually better tuned
to the analysis of ‘behaviours’. We therefore argue that there is a strong logic to
considering the MSM and ABM approaches as complementary and to begin a search
for hybrids which might combine the best features of both approaches.

3.1 Introduction

Microsimulation models (MSMs) were introduced in the late 1950s by Guy Orcutt
as a reaction to the failure of aggregate models to effectively represent the diversity
of economic systems. Later developments have shown that the ambition of Orcutt’s
initial vision — the creation of a ‘new type of economic system’ (Orcutt 1957) — to
be far from overstated. According to Gilbert and Troitzsch (2005), the distinguish-
ing feature of MSMs is the desire to model interactions between the design and
implementation of policies and individual decision making units (e.g. what is the
effect of a changing tax regime on individual workers and their households). In
contrast, cellular automata (CA) and agent-based models (ABMs) attempt to model
the complexity of social systems with similar individual level representations, but
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with a somewhat different emphasis. CA model social dynamics with a focus on the
emergence of properties from local interactions while ABMs simulate more com-
plex situations than the CA where the ‘agents’ control their own actions based on
their perceptions of the environment. The relationship between these approaches is
illustrated schematically in Fig. 3.1. An important feature here is the distinction
between individual-based models and ‘differential equation models’, which focus
on system level dynamics at the macro-scale. Figure 3.1 also seems to suggest a
significant level of distinction between ‘stochastic processes’ (MSM), ‘cellular
automata’ (CA), and ‘artificial intelligence’ (ABM).

The chapter is set out as follows. We first introduce microsimulation modelling as
an approach to public policy analysis with a discussion of the most important char-
acteristics and features of these models. The second half of the chapter deals with
hybrid approaches through which we will explore the notion that some further fusion
of these approaches could be desirable. Conclusions are drawn in the final section.

3.2 Microsimulation Models of Public Policy

Modern social science studies often require detailed information on the interactions
between policy and the social-economic behaviours of people. MSMs capture such
interactions through the simulation of distinctive behaviours and characteristics at
the level of individual decision making units (Orcutt 1957). Advances in computing
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power and analytical techniques now allow great sophistication in the range of
questions that MSMs can address.

A MSM works on the principle of creating small area microdata at a certain point
in time and then generating future microdata from that basis (Ballas et al. 2005a). We
start with a population of entities, set P, made up of individuals [P/, P?, ..., P"] where
n is the number of individuals in the population sample. Each individual has a set of
attributes, [a,, a,, ... a,, ], which describe the individual at time ¢. We therefore have
an nxmarray of person attributes. This array needs to be populated with reliable
data or estimates (in the light of directly surveyed information, etc.). Then we update

the population so that the baseline population [Pul;a;...a" P.. .. ..P;, .]changes

to new sets with attributes/states at a point in time 7+ /, t+]22, . and so on.

One of the most important advantages of MSM is that it enables us to examine the
impact of policy changes on individual decision units, as it is based on unit records.
This distinguishes MSM from the traditional mathematical models. Such models are
often based on aggregated or averaged values and individual characteristics can often
become blurred and even disappear in such models. MSM deals directly with social
processes at the individual level, therefore it has been extensively used for various
purposes in studies for which individual characteristics are important.

Although microsimulation modelling can be traced back to the pioneering work
of Guy Orcutt (1957), the work of the Swedish geographer Torsten Hagerstrand was
leading in a very similar direction at a similar time in the domain of migration and
later innovation diffusion and location theory. Orcutt’s research resulted in DYNASIM
(Dynamic Simulation of Income Model) (Orcutt 1957; Orcutt et al. 1976), which has
been used for a range of studies and inspired the development of many other MSMs.
Among them is Steven Caldwell’s (1998) CORSIM (Cornell Microsimulation
Model), which models large scale government programs and is particularly strong in
modelling the Social Security Programme. CORSIM constructs a database on the
basis of a sample of 180,000 persons (70,000 families) from the 1960 US Census
with demographic and economic attributes. CORSIM simulates changes of each
individual unit (persons and families) on a yearly step. The resulting data are validated
and aligned using the available external data before projections into the future.

CORSIM has a wide range of modules and therefore can be used extensively in
different policy application domains. In 1995, CORSIM was selected by the
Canadian government as a template for its own model development and the
‘Canadianised’ sister model was soon released as DYNACAN (Morrison 2003). In
1997, partly inspired by the Canadian strategy, the Swedish also selected CORSIM
as the starting point of a new Swedish dynamic microsimulation model (SVERIGE),
focused on exploring person-environment interactions (Rephann 1999).

3.3 Application Areas of Public Policy MSMs

In this section we aim to provide an introduction and overview to MSMs using
examples from four domains in which the deployment of these models has been espe-
cially productive. The domains are tax and benefits, pensions, health and transport.
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Of course, this range of domains is not entirely complete: for example, other exam-
ples can readily be found in anthropological systems, urban housing and local labour
markets. It does however encompass the majority of work in microsimulation and
can be used as a basis for understanding the nature of this research and its signifi-
cance for individual-based modeling more generally. A synopsis of some important
models is provided in Table 3.1.

Taxation and benefits is a core area building directly from Orcutt’s original interest
in economic systems. Tax-benefits models such as those shown in Table 3.1 aim to
combine detailed representations of individual and household structures with well-
defined rules about their financial entitlements. For example, if the annual (earned)
income of an individual is £50 K, then the marginal rate of tax is 40%. Such models
can then be used in a natural and conceptually straightforward way to examine the
‘what if?” ramifications of changes in the rules (e.g. what happens if the marginal
rate of taxation in the £50 K band is increased from 40% to 50%?). Because the
representation of individual and household characteristics is so detailed in the MSM,
this method is suitable for highly refined analysis which is often required here. Thus
if housing benefits are assessed against, say, the income, occupation, and age of
household heads, the composition of the family, and the tenure and physical size of
the residence, then these characteristics and the associated benefit rates can all be
represented relatively easily in the MSM.

Pension Microsimulations such as PRISM (Pension and Retirement Income
Simulation Model) and PENSIM are typically used with a view to the future. In this
way the National Insurance or other contributions of the existing workforce can be
balanced against the specific entitlements of the retired population. Various policy
responses to the impact of ageing populations in developed economies may be
tested and evaluated. Similarly Health Microsimulations provide a powerful means
to explore changes in the age and social composition of populations on the
requirements for medical treatment and care. In addition to the national models
outlined in Table 3.1, recent examples have begun to explore the implications of
micro-demographic structure on morbidity and the spatial deployment of health
care services such as diabetes (Smith et al. 2006, see also Smith, 2012), obesity
(Edwards etal. 2011) and smoking-related illnesses (Tomintz et al. 2008). Transport
microsimulations can be used for both transport policy assessment and simulation
of a transport system or its components. The sheer breadth of these models is
impressive, spanning all the way from microscopic simulation of individual vehicles
to the representation of aggregate network conditions in a region or urban area.
The previous commentary, and the detail of Table 3.1, allows us to propose some
useful conclusions about the technique of MSM. Firstly, flexible aggregation is a
major strength of this approach. In the financial examples, we are primarily interested
in the net effects of a rule e.g. how much benefit will the UK Exchequer derive from
an increase in taxes, and what will be the distributional consequences of this change
across social groups? The multiple application of rules across individual units is
essentially a means to this end. Similarly in transport applications, the rules for
individual vehicles may be quite detailed, but the ultimate objective is to say some-
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Table 3.1 Comparison of static and dynamic MSM
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Model name &
domain

Origin

Description and example applications

Indicative
reference(s)

(a) Tax-benefits
TRIM (Transfer

Income
Model)

POLIMOD

STINMOD

ITEP

EUROMOD

(b) Pensions
PRISM

SfB3

PENSIM

DYNACAN

[N

UK

Australia

Us

Europe

UK

Germany

UK

Canada

Simulates the major governmental tax,
transfer, and health programs that
affect the population; understand the
potential outcomes of public policy
changes such as welfare reform, tax
reform, and national health care reform

Demonstrate how VAT, National Insurance
Contributions and Local Taxes are
calculated under different assumptions;
entitlement to retirement pension and
other non-means-tested social security
benefits

Static micro-simulation model of the
tax and transfer systems. The rules
of government programs are applied to
individuals and aggregated to calculate
outcomes for income units, families,
or households

Calculates revenue yield and incidence of
federal, state and local taxes by income
group. It calculates revenue yield and
proposed amendments to current law.
To forecast future revenue and incidence
the model relies on government or other
widely respected economic projections

Tax-benefit model that covers 15 countries.
It provides estimates of the
distributional impact of changes to
personal tax and transfer policy at either
the national or the European Level

Dynamic microsimulation of income from
social security, earnings, assets, public
and private occupational pensions and
retirement savings plans

Analyse pension reforms, the effect
of shortening worker hours,
distributional effects of education
transfers, inter-personal redistribution
in the state pension system

Simulate UK pensioners’ incomes up to
the year 2030 and to facilitate pension
reform

Projects the incidence, average levels
and variation in private pensions
into the future as a function of
birth-year, age, and gender

Beebout and
Bonina (1973)

Redmond et al.
(1998)

Lambert et al.
(1994)

Ettlinger and
O’Hare (1996)

Sutherland (2001)

Kennell and
Sheils (1990)

Galler and
Wagner (1986)

Curry (1996)

Morrison (2003)

(continued)
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Model name &

domain Origin

Description and example applications

Indicative
reference(s)

(c) Health care
PBS Australia

Expenditure on pharmaceuticals by

LIFEMOD

LIFEPATHS

(d) Transport
DRACULA

PARAMICS

VISSIM

AIMSUN

UK

Canada

UK

[N

Germany

Spain

different types of households;
resultant government outlays under the
Pharmaceutical Benefits Scheme; and
the remaining patient co-payment
contributions

Model the lifetime impact of the welfare

state through examination of health
status over the life-course and
implications for health care financing
in the UK

A dynamic longitudinal microsimulation

model of individuals and families
which simulates the discrete events that
together constitute an individual’s life
history

Simulate response of traffic to different

network layouts and control strategies;
measure network performance from
outputs of the average travel time,
speed, queue length, fuel consumption
and pollutant emission

Microscopic simulation of a range of

real world traffic and transportation
problems handling scenarios ranging
from a single intersection, to a
congested freeway or the modelling of
an entire city’s traffic system

Models traffic flow in urban areas as a

discrete, stochastic, time step based
microscopic model, with
driver-vehicle-units as single entities.
The model contains a psycho-physical
car following model for longitudinal
vehicle movement and a rule-based
algorithm for lateral movements

(lane changing)

An evolutionary model of the

transportation system which combines
individual vehicle movements with
network data such as traffic lights and
detectors as well as road segments.
Individual components are simulated in
both continuous and discrete time-steps

Walker et al.
(1998)

Falkingham and
Hills (1995),
Propper
(1995)

‘Wolfson and
Rowe (1998)

Liu et al. (1995)

Laird et al. (1999)

PTV AG (2000)

Barcel6 et al.
(1999)

(continued)
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Table 3.1 (continued)

Model name & Indicative

domain Origin Description and example applications reference(s)

TRANSIMS Us Predicts trips for individual households, TRANSIMS
residents and vehicles rather than for (1996)

zonal aggregations of households.

A regional microsimulation executes the
generated trips on the

transportation network, modelling the
individual vehicle interactions and
predicting the transportation system
performance e.g. road speeds and motor
vehicle emissions

thing about the underlying transport network and its configuration. This looks like a
significant variation in emphasis from other approaches such as ABM where the
interest in micro-level behaviours ‘for their own sake’ is much more fundamental.

It is clear that the range of applications for MSM is hugely varied in relation to
both geography and substantive problem contexts. One outstanding feature which is
common to all of the models in Table 3.1 is their policy-relevance. A recurring
theme is the idea of ‘what if?” simulations in which the impact of new policy rules
on the whole system, or individual components and sub-groups can be assessed.
Alternatively, the rules may stay relatively constant but the underlying conditions
are changing fast, for example in the case of demographic changes which can have
profound implications for taxation, pensions, health care and transport systems.

Finally, while many of the applications are described as ‘dynamic’ it is necessary
to retain a healthy degree of skepticism as to the precision of this term. Often dynam-
ics in these models will be little more than a cross-sectional or comparative static
assessment of some globally assumed shift in the composition of the population. The
incorporation of pure dynamics in which the individuals in the population actually
evolve through time, whether through stochastic rules or more complex behavioural
model processes is much more demanding and unusual. This feature is sufficiently
important to demand further expansion in the next section.

3.4 Dynamic Microsimulation

Generally speaking, static MSMs do not have direct interaction of microanalytic
units within the context of the model during the time period simulated. Static models
normally are either deterministic or stochastic. In a static microsimulation, change of
the demographic structure in the model is performed by static ageing techniques.
Typically such techniques take a large representative sample with detailed infor-
mation and apply modified laws to it to generate the synthetic demographic and
economic characteristics expected in the future year. Simulations can estimate the
impact of a change in the future year As the change of the demographic structure of
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the modelled population is performed by reweighting the age class according to
external information, it is focused on what consequences of external information
brings to the population and therefore it does not model the changes in population
itself. A typical “What-if” Static MSM scenario would be: if there had been no poll
tax in 1991, which communities would have benefited most and which would have
had to have paid more tax in other forms? (Ballas et al. 2005b; Gilbert and Troitzsch
2005; Citro and Hanushek 1991)

Most tax-benefit MSMs are static. Examples of static microsimulations include
models such as TRIM (Beebout and Bonina 1973), POLIMOD (Redmond et al.
1998), STINMOD (Lambert et al. 1994) and EUROMOD (Sutherland 2001).
Descriptions of such models can be found in the previous section.

Dynamic MSM can be considered as a technique where entities change their
characteristics as a result of endogenous factors within the model. Various degrees
of direct interaction between micro population units can be found in dynamic MSMs.
Such interaction typically includes processes such as birth and marriage etc. Dynamic
microanalytic models rely on an accurate knowledge of the individuals and the
dynamics of such interactions. In a dynamic MSM, the updating of the demographic
structure is performed by ageing the modelled population individually (by asking
“yes or no” questions on birth, death, marriage etc.) with transition probabilities
according to life tables and/or exogenous time series. Thus the changes in the popu-
lation itself are modelled and the simulation in 1 year may affect an individual unit’s
characteristics in the subsequent year. A typical future-oriented “what if” Dynamic
MSM Scenario would be: if the current government had raised income taxes in
1997, what would the redistributive effects have been between different socio-
economic groups and between central cities and their suburbs by 2011? (Birkin et al.
1996; Ballas et al. 2005b; Gilbert and Troitzsch 2005; O’Donoghue 2001).

A variety of models have been developed to explore the distributional conse-
quences of demographic change, such as ageing, social mobility and labour market
transitions. Thus the DYNASIM model ages individual and family characteristics by
year, simulating demographic events as births, deaths, marriages and divorces and
economic events as labour force participation, earnings, hours of work, disability
onset, and retirement. It models a wide range of topics, including Social Security
coverage and benefits, pension coverage and participation, benefit payments and pen-
sion assets, as well as home and financial assets, health status and living arrangements
etc. (Favreault and Smith 2004).

In a similar way DYNAMOD (Harding 2002) uses discrete event simulation to age
a 1% sample from the Australian census (about 160,000 individuals) on a monthly basis
for up to about 60 years. Assets and superannuation have been adding to DYNAMOD
to facilitate the research of the likely future retirement incomes of Australians.

SAGEMOD (Zaidi 2004) is a dynamic demographic/tax model which not only
estimates incomes but also estimates a random-effects cross-sectional wage equation
which included some individual wage history data with the error components. The
impact of other labour market states (unemployed, inactive, student) in previous
years has been investigated on the earnings of currently employed individuals.
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Static and dynamic MSM each have their own strengths. Static models are regarded
as more effective at times for specific short run projection purposes because of their
greater simplicity and the often lower costs associated with building such models and
obtaining computer generated model solutions. Another advantage of static models
is that they have very detailed programme simulations. From the computational
viewpoint, static MSMs demand less computing resource.

However, dynamic models feature more detailed and realistic population ageing.
There is general acceptance that dynamic models provide a more realistic represen-
tation of micro population unit behaviour. Dynamic models are also viewed as better
at producing realistic long-term estimates, which account for interim changes in
economic and demographic trends (O’Donoghue 2001). Due to the interactions/
interdependencies of the updating, one limitation is that dynamic MSMs are compu-
tationally demanding, even for high-speed modern machines (Ballas et al. 2005b;
Gilbert and Troitzsch 2005; Citro and Hanushek 1991; McDonald, et al. 2006).

3.5 Spatial MSM

Spatial MSM is a special type of MSM that simulates virtual populations in given
geographical areas (Ballas et al. 2005b). In a spatial MSM, local contexts can be
taken into account when studying the characteristics of these populations. Such
MSMs are concerned with the creation of large-scale datasets estimating the attri-
butes of individuals within the study area and are used to analyse policy impacts on
these microunits (Birkin and Clarke 1995; Clarke 1996). Spatial microsimulation
models therefore have advantages over other microsimulation models in exploration
of spatial relationships and analysis of the spatial implications of policy scenarios.
A spatial MSM can be either static or dynamic.

Spatial MSM was first studied by Hégerstrand (1985) since the 1950s by first intro-
ducing the spatial and temporal dimensions into social studies. Wilson (1967), Clarke
(1996) and Birkin and Clarke (1995) extended the theoretical framework over the
years. Various spatial microsimulations have been developed, including both static
and dynamic microsimulations. They allow data from various sources to be linked and
patterns to be explored at different spatial scales with re-aggregation or disaggregation
of the data. Furthermore they allow updating and projecting, which is of particular
importance in forecasting future patterns (Clarke 1996; Ballas and Clarke 2001).

Examples of such models include: SVERIGE in Sweden (Rephann 1999). This
dynamic population model is designed to study human eco-dynamics (the impact of
human cultural and economic systems on the environment). Its main distinguishing
characteristic is that it simulates spatial location and mobility of every individual in
the data. The model took the CORSIM model framework as a starting point, adapt-
ing behavioural modules to be Swedish specific. The migration module attempts to
model locational transitions to an accuracy of 100 m.

SimBritain (Ballas et al. 2005c¢) is a dynamic simulation attempting to model the
British population at different geographical scales up to the year 2021. Datasets
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used in this model are the 1991 UK Census Small Area Statistics (SAS) data and the
British Household Panel Survey (BHPS). Microdata for all wards in Britain have
been generated through re-weighting the original BHPS data. Previous census data
from 1971, 1981 and 1991 (SAS) have been used for projections of a set of small
area statistics. Using these three time points, a trend curve was produced allowing
tables to be predicted up to 2021.

SMILE in Ireland (Ballas et al. 2005a) is a dynamic spatial microsimulation model
designed to analyse the impact of policy change and economic development on
rural areas in Ireland. The core model of SMILE is a demographic model. It simu-
lates the basic components of population change, fertility, mortality and internal
migration and projects population change at the sub-county level.

HYDRA in the UK (Birkin et al. 2005) is a GRID enabled decision making support
system for health service provision. Microsimulation can be run using different
parameter sets by the user to find out the optimised location of services for specific
queries (further details can be found in Wu and Birkin, 2012).

3.6 Towards a Hybrid Modelling Approach

Over the years, MSMs have been proved to be successful in modelling social sys-
tems, especially in facilitating public policy making and development. Large scale
MSMs enable us to explore the interaction between policy changes and narrowly
defined ranges of individuals or demographic groups, yet retain the heterogeneity in
the population as revealed in the large household surveys. The capability of MSMs
to replicate complex policy structures also allows us to forecast the outcomes of
policy changes and ‘what if” scenarios. However, there are also criticisms levelled
at MSMs which include:

*  MSMs require large datasets with high quality;

*  Microsimulation model developments are normally computing intensive;

» Large scale microsimulations can take a long time and considerable effort to
accomplish;

* Microsimulation only models one-direction interactions: the impact of the policy
on the individuals, but not the impact of individuals on the policy;

* Microsimulation models are less strong in behavioural modelling; and

e It is difficult to validate MSMs (Krupp 1986; Williamson 1999; Citro and
Hanushek 1991; O’Donoghue 2001; Gilbert and Troitzsch 2005).

Some of these limitations are better handed by individual-based models such as
cellular automata (CA) and agent-based models (ABMs). More details about both
modelling types can be found in Iltanen (2012) and Crooks and Heppenstall (2012).
Although MSMs, CA and ABMs each have a different focus, they all model the
studied system at individual levels, and there is some common ground among the
three approaches. Firstly, all three approaches are simulations based on the global
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consequences of local interactions of members of a population. Unlike the aggregated
models that often overlook the details at a more refined level, they provide a more
effective and natural way to handle individual behaviours. Secondly these three
approaches all track the characteristics of each individual through time, in contrast to
traditional modelling techniques where the characteristics of the population are aver-
aged together. Finally the emergence of global phenomena through local interactions
in all IBMs (individual-based models) offers more than changes that are simulated
on the basis of average data for the whole population as in traditional models.

With the advance in computing, the first three limitations have been improved
greatly and new technologies such as ABM can provide the capability for behaviour
modelling and allow us to study the interaction at both macro and micro levels, as
well as interactions in both directions. However, despite the usefulness of ABM as
described in the previous discussion, being a relatively new technology, it sometimes
lacks more refined and well-established theories and concepts (Gilbert and Troitzsch
2005; Conte et al. 1998). ABM is also known as hard to validate. Many applications
of agent systems to public or social policy domains involve the development of
alternative scenarios to facilitate decision-making. However, there is no formal
theory of scenarios and scenario analysis that tell us how to construct scenarios,
how many scenarios to construct and how to reason between and across their
outcomes. Developing formal theories of scenarios and rigorous methods of perfor-
mance assessment for ABM will require collaboration between computer scientists,
philosophers and decision theorists, as well as the domain experts to which these
systems are applied.

Despite the work that remains to be done, agent-based social simulation can
provide insight into the structure and effects of policies and norms and can assist in
understanding and modifying interaction patterns where appropriate and possible
(Luck et al. 2003).

To address the limitations of ABMs and MSMs as individual approaches, we
suggest further development of a hybrid modelling approach that integrates the
strengths of both approaches together. The main reasons for the proposal of such a
hybrid approach include:

* MSM and ABM complement each other;

* Geography provides a bridge to link MSMs and ABMs;

* Previous attempts of hybrid approaches have resulted in fruitful outcomes;
* A hybrid approach may provide a new angle to view classical problems.

The following sections review various relevant hybrid modelling approaches.

3.6.1 ABM and MSM

It is generally agreed that MSMs provide important and effective tools for model-
ling in social science. Recent advances have helped to mitigate some of the major
weaknesses of MSM as outlined above at the start of Sect. 3.6 (Holm et al. 1996).
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In particular, high quality data is now much more widely available, and large scale
process intensive simulations are better supported by the computational abilities of
contemporary hardware. However the robustness of the behavioural basis to MSMs
can still be questioned. According to Davidsson (2001) even dynamic MSMs fail to
match up to ABM to the extent that such models do not justify the behaviours of
each individual in terms of individual preferences, decisions, plans, etc. Furthermore,
the interactions between individuals are not modelled in the simulation. Thus ABM
is “well suited for the simulation of situations where there are a large number of
heterogeneous individuals who may behave somewhat differently and is therefore
an ideal simulation method for the social sciences” (Davidsson, 2001, p. 145). This
view is endorsed by Jennings (2000) who highlights the advantage of ABM in
modelling the intelligent behaviour of individuals by itself or in society. Interestingly,
in relation to debates about processing capacity, Jennings also notes the potential of
ABM for improving efficiency by distributing the control of the computation to
multiple simpler units evolving through their interactions.

In addition to their capabilities for representing social behavior, the capacity of
ABM to bring together diverse perspectives has been highlighted by Axelrod (2005).
Social science is multi-disciplinary and social models often need to involve different
disciplines. For instance a sustainability model would involve environmental, social,
economic, and other disciplinary considerations. Such multidisciplinary tools are
particularly valuable when the underlying mathematics are intractable. Taking the
evolution of genes as an example, Axelrod pointed out that agent-based modeling
could easily simulate the evolutionary effects of genes where application of mathe-
matical equations is difficult. In this way, ABM can begin to reveal elements of the
harmony between disciplines. For instance, Axelrod found that an agent-based
model about military alignments could successfully predict strategic alignments of
computer companies.

From an interdisciplinary perspective, David et al. (2004) also point out that
ABM based social simulation originates in the intersection of the social and the
computer sciences and this interdisciplinary character has encouraged collabora-
tions from scientific fields. They also suggest that the wide interpretative scope of
the theory of agents and the advances in computer capability have enlarged the com-
municative and interpretative room for ABM to interchange between different sci-
entific fields and model interdisciplinary complex systems.

Nevertheless it is more constructive to view the relationship of ABM to MSM as
one of complementarity rather than supremacy. One reason for this is the relative
recency of the ABM paradigm, which can therefore profit from the more refined and
well-established theories, concepts and models of social organizations and institu-
tions developed within the social sciences (Conte et al. 1998). This rationale stresses
that computational modeling is not just an applied tool, but a means for the produc-
tion, testing and refinement of social theories. Such an eclectic view also allows for
the development of more refined theories about social agents. For example, moving
away from static and unsophisticated views of individual actors which overempha-
sise either rationality or simple social learning as a basis of behaviour. Hence we
suggest that the fusion of microsimulation and agent perspectives is potentially an
ideal combination in the study of both social structures and social behaviours.
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3.6.2 GI Science and ABM

Torrens and Benenson (2005) proposed a new paradigm for integrating GIS and
agent based simulation called Geographic Automata Systems (GAS). This system
takes advantage of the formalism of automata theory and GIS to unite cellular
automata and multi-agent systems techniques and provides a spatial approach to
bottom-up modelling of complex geographic systems that are comprised of infra-
structure and human objects. In this framework, geographic phenomena as a whole
are considered as the outcomes of the collective dynamics of multiple animate and
inanimate geographic automata. Geography serves as the binding force in merging
CA and ABM (which are popularly confused in the geographic literature). Therefore
automata become uniquely geographical, fusing CA and ABM but extending the
concept to incorporate notions from GIS and Spatial Analysis.

Murphy (1995) believes that the evolution of GIS as a decision support sys-
tem relies on improvements in technology, the creation of new analysis tools,
and increased understanding of the interaction between decision support tools
and the decision maker. He also points out that particularly fruitful areas may
come from the use of artificial intelligence approaches for alternate representation
of decision domains and knowledge. He thinks cooperation between the disci-
plines will be particularly beneficial in areas such as data quality, uncertainty
representation and issues related to the management and sharing of large time-
reliant and source-dependent data. Thus, a rewarding exchange may be possible
between GI Science and decision support system research streams relating to
the management, representation, and interpretation of complex multi-dimensional
knowledge.

Gongalves et al. (2004) suggest that GIS and ABM address space in different
perspectives: GIS models geographic space and ABM models the behaviour of
intelligent agents within geographic space. Gongalves et al. propose a conceptual
framework for integrating these different perspectives in the context of modelling
and simulation of complex dynamic systems. They suggest that GIS enables the
definition of a geographic region to be related with the phenomena in that region,
but GIS do not seem to be appropriate to study dynamic phenomena in an area.
Most ABM tools that use geographic information are not coupled with GIS.
However, the simulation of the human behaviour with mobility in geographic
space and intelligent behaviour has increased in the recent decades, which has
led to a special interest in the integration of agent based models (mainly ABM)
and GIS.

The authors proposed that in the hybrid model, ABM can be used to model the
intelligent behaviour of entities, e.g. behaviour of people, animals, enterprises, etc.,
while GIS can be used to model geographic space. Intelligent agents move and
reason within this environment. The authors also point out that GIS are already
extensively used by people from the natural sciences, civil engineering, territory
management authorities, urban planning, etc. Therefore there is no point not to give
them what they already know plus the agents.
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3.6.3 Unification of MSM, ABM and GI Science

As discussed in the previous section, attempts to bring MSM and ABM together
(Caldwell et al. 1998; Rephann 1999) or ABM and GI Science together (Torrens
and Benenson 2005) or MSM and GI Science together (Ballas et al. 2005b; Holm
et al. 1996) have succeeded.

Given the characteristics of the agent based technology and geographical impor-
tance in social policies, researchers including Boman and Holm (2004) have promoted
the study of social systems using a combination of different paradigms of MSM,
ABM and ‘time geography’. Boman and Holm argue that time geography provides a
perspective to help unify the two paradigms of ABM as developed within computer
science and MSM as developed within the social sciences. Time and space have
important impacts on human activities in any social system. The authors suggest that
time geography provides an alternative perspective on agents and collectives since it
emphasises the importance of concurrent micro-level representation of agents and
their relations to other agents. Time geography can also introduce a conceptual frame-
work for analysing social micro-level interaction in time-space in MSM and ABM.

Boman and Holm (2004) attempt to unite the two paradigms through defining
them and reasoning about the central concepts of each of them. They found that all
three methodologies emphasise individual representation and computational solu-
tion. However many MSMs only apply a fairly aggregated and disconnected repre-
sentation of individual behaviour, while ABM can provide the capacity to model
individual adaptive behaviours and emergence of such behaviours. Their argument for
a MSM-time geographic approach is that aggregation prior to analysis and model-
ling of trajectories over the state space of individuals with several attributes distorts
not only individual but also aggregate results. Individual trajectory interactions and
constraints need to be modelled individually to reflect the whole picture. On the
other hand, MSM are developed with high estimation and validation ambitions,
close to observables that facilitate empirical tests.

Therefore, developments based on a synthesis of the three paradigms can offer
great potential in the advance of systems analysis methodology. Boman and Holm
(2004) believe it gives a new angle to classical problems where we need to:

1. achieve consistency with the world outside a defined core system boundary;

2. simultaneously represent processes on different spatial and temporal scales;

3. enable agents to concurrently obey internal and external rules, and

4. integrate observable and postulated behaviour while preserving achievability of
endogenous emergence (Boman and Holm, 2004: p. 108).

The potential benefits to the integration of MSM and ABM can be seen in rela-
tion to each of the application domains which were considered earlier. Whereas
financial MSMs look at the stochastic consequences of changing rules, an agent
perspective will perhaps provide some insight about new behaviours in response to
a change in the background conditions. For example, changing the rules on housing
benefits to unmarried partners might not just result in a change in payments, but



3 A Review of Microsimulation and Hybrid Agent-Based Approaches 65

could lead to fundamental shifts in patterns of marriage, cohabitation and family
formation. A similar point could be made in relation to pension microsimulations.
So if the retirement age is raised from 65 to 70, then the adjustment is probably
much more complex than everyone simply agreeing to work 5 years longer. While
demographic ageing is a major driver of changing health needs, the ability to pro-
vide care will be equally important. As the pressure on formal care increases then
the value of informal care will also rise disproportionately, but this balance will
presumably change as dependency rates become higher. Some study of the behavior
of agents within social networks through which (informal) care is provided could be
a fundamental component of a more effective model. Lastly, in relation to transport
some of the boundaries here are already quite blurred to the extent that many sys-
tems already bridge all the way from the driving patterns of individual vehicles to
strategic decisions about road networks and infrastructure provision (see the exam-
ples in Table 3.1). To the extent that individual behaviour is richly accommodated
within these models then they start to look like ABM anyway, especially if indi-
vidual interactions are accommodated. On the other hand, if individuals are charac-
terized as ‘agents’ but their activity patterns are very predictable and well-defined
then maybe they are not so different to MSM after all.

3.7 Conclusions

This review has suggested that MSM provides a powerful approach in modelling
social systems and has a particular importance in public policy modelling studies. It
has been widely used in a range of application domains, and major developments of
MSMs have been experienced all over the world in the past few decades.

Although MSM has limitations such as requirements for both data and computa-
tional capacity, recent advances have rendered these issues as less significant. More
importantly, new technologies such as ABM are naturally complementary for tradi-
tional MSMs. One advantage of using ABM is that it allows us to model these
systems not only using traditional maths and statistics, but also using behavioural
information, for which MSM has been criticised. The flexibility of ABM can also
help us to achieve consistency outside a defined core system boundary. The usage of
ABM enables us to generate the emergence of global complexity from relatively
simple local actions and hence may also further reduce the computing requirements
imposed by long-range interactions in a social system.

Geography has an important impact on human activities and therefore it is impor-
tant to model the social system with its local context. The geography also provides
a bridge to link MSM and ABM together, and the hybrid approach may provide an
alternative way to study social problems.

As previously discussed, the success of hybrid approaches in modelling and
simulating social systems provides the basis for the unification of MSM and ABM.
A hybrid approach may offer a great potential for substantial advances in modelling
social systems.
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Chapter 4
Cellular Automata in Urban Spatial Modelling

Sanna Iltanen

Abstract Cities and urban dynamics are today understood as self-organized
complex systems. While the understanding of cities has changed, also the paradigm
in modeling their dynamics has changed from a top-down to a bottom-up
approach. Cellular automata models provide an excellent framework for urban
spatial modeling of complex dynamics and the accumulation of local actions.
The first part of this chapter describes the basic concepts of cellular automata.
The second part discusses the definition of complexity and the complex features
of cellular automata. The history and principles of urban cellular automata models
are introduced in the third part.

4.1 Preliminaries

The contemporary city, consisting of numerous strongly interconnected structures,
multiple centers and continuous flows, although spatially scattered, has developed
into a complex structure that cannot be understood with traditional methods. The
interpretations about this new urbanity of the third modernisation (metapolisation)
emphasizes continuous mutual competition between cities. Fast communication
technologies, on one hand, connect cities and their districts together stronger than
ever, and on the other hand, it enables scattering of their physical structure so that
global centers do not by definition determine their development. Thus local
dynamics has increasing meaning for competitiveness of cities (Ascher 2004).
Cities of third modernity are considered as entities pursuing dynamic change in a
state of continuous disequilibrium (Batty 2005) rather than entities pursuing some
equilibrium state. For example, economic activity driven by comparative advantage
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searches continuously for new locations and modes, and thus produces a polycentric
recentralized structure that disperses the traditional monocentric city.

Accompanying these new concepts and city structure, the paradigm has also
changed in urban modeling: from aggregates to individuals and from equilibrium to
far-from equilibrium. Complex models and concepts of Cellular Automata (CA)
offer tools for understanding these dynamics.

The history of computing and CA are intertwined with each other and this affinity
makes the foundations of CA-based modeling particularly firm. Attractiveness of CA
is largely based on the simplicity of its basic concepts that are accessible to a wider
audience but are still also intellectually fascinating. Due to the digital revolution
through the 1990s when competent computing capacity and graphics became
accessible for almost anyone, there was a rise in computational modeling of urban
development. Numerous CA-based simulation methodologies for urban dynamics
have been created during the past few decades. The process begun in the geographi-
cal sciences in the 1960s with so called raster models and continued as development
of truly cellular models that were based on the idea of complexity. Understanding of
urban entities as self-organizing systems, and the demand for tools to discern, control
and predict these emergent phenomena, ensures interest towards computational
modeling of urban development.

4.2 Basic Concepts of CA

4.2.1 Origins of CA

The history of CA leads back to John von Neumann’s (1966) theory of self-
reproducing automata and his co-operation with Stanislaw Ulam at the time when
they were working with concepts of artificial life and idealizations of biological
systems. The theory of self-replicating automata describes conceptual principles
of a machine that was able to self-replicate. Alan Turing was also already working
with automata in the 1930s and defined in his paper “On computable numbers,
with an application to the Entscheidungsproblem”, a simple abstract computer later
known as the Turing machine (Turing 1936) where the idea of the automaton comes
close to what we today consider as CA.

A cellular automaton is a dynamic discrete system and can be defined as a lattice
(or array) of discrete variables or “cells” that can exist in different states. Usually
the lattice is considered as infinite and the number of different states is finite. Cells
change their states in discrete time steps according to local rules which define the
cell’s state on the basis of states of the cell itself and the neighboring cells in previous
time steps. These transition rules are deterministic. Graphically, simpler forms of
the cellular automaton lattices are represented as grid format but also other tessella-
tions have been used. Due to the conditions described above, three fundamental
features of CA have been defined: uniformity, synchronicity and locality. Uniformity
means that all cell states are transformed by the same set of rules. Synchronicity
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Fig. 4.1 Wolfram classes of 1-D CA dynamics

means that all the cell states are transformed simultaneously. Locality means that all
the transformation rules are local in nature (Schiff 2008). In the next section, the
characteristics of CA are discussed using one-dimensional CA as an example.

4.2.2 One-Dimensional CA

The simplest form of CA, i.e. elementary CA as Stephen Wolfram defines it, is
usually considered as a one-dimensional CA consisting of an array of cells that can
exist in two states 1/0 (or black/white or alive/dead) in which local rules are applied
in the neighborhood of the cell itself and its immediate adjacent cells (r=1). Thus
the neighborhood of one cell consists of three cells, and since they are varying in
two values, there are 23=8 different neighborhood states. For each neighborhood
state, a transition rule is defined. These rules can also be presented as eight-digit
binary numbers, and thus 28=256 possible transformation rules exist in a one-
dimensional two state ‘r=1’-neighborhood cellular automaton.

Wolfram was one of the first who really systematically generated and examined
the behavior of one-dimensional CA. In this work, which started in the early 1980s,
he classified CA in four universality classes mostly according to the qualitative
complexity in their behavior (Wolfram 1984). An analysis of the qualitative features
of CA rules was mainly based on visually observable properties of CA evolution
patterns (Wolfram 2002). The four Wolfram classes (Fig. 4.1) are as follows:

The class I —fixed — CA evolve to the homogenous state after a finite number of time
steps independently from the initial state. Hence this class of automata is irrevers-
ible, which means that after a certain convergence point where all the cells have the
same value, it loses all the information from the initial state. However, some excep-
tional configurations can be found that do not converge to a homogenous state, but
the number of these exceptions approaches zero as the size of the automaton
approaches infinity. Class 1 CA are comparable with dynamical systems that tend to
a fixed-point attractor.

The class II — periodic — CA evolve to periodic structures that repeat after a fixed
number of time steps. The size of the possible periods increases while the number
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of possible states increases. This class is naturally analogous with periodic behavior
in dynamical systems.

The class III — chaotic — CA evolve to aperiodic patterns almost regardless of the
initial states. In these chaotic automata, the number of initial cells that affect the
value of a particular cell increases as new generations evolve. The class III CA are
analogous with chaotic dynamical systems that are converging to strange attrac-
tors (Wolfram 1984).

The class IV — complex — CA evolve to complex localized structures. This class, with
a mixture of chaos and randomness, is the most interesting one of the Wolfram
classes. However, the definition for this class is not as rigorous as for the other classes.
Localized structures that arise as the automaton progresses can move and interact,
but the exact prediction of this behavior is impossible. For this class, no equivalent
can be found in dynamical systems. The class IV CA behavior can also be defined as
emergent, which is typical for complex systems in general (Wolfram 1984).

In his book “A New Kind of Science”, Wolfram (2002) discusses the possibility that
all CA can be divided into these four classes, which have been discovered by exploring
one-dimensional CA. He also states that results obtained from idealized mathematical
models can tell us some more general results about complex systems in nature.

4.2.3 Two-Dimensional CA

After discussing one-dimensional CA, one can ask: what happens if more dimen-
sions are added? Wolfram discusses this question in his papers and his book “A New
Kind of Science” and concludes that there is no remarkable difference in occurrence
of complex phenomena as dimensions are added (Wolfram 2002). At least from a
spatial modeler’s point of view, two dimensions naturally look more interesting
because of its similarity with maps. If the complexity of two dimensional CA are
perceived by taking one dimensional slices, then the behavior of the automaton
resembles pretty much pure one-dimensional CA. But what is maybe more interest-
ing and a new feature after increasing the number of dimensions, is the overall
shape of the pattern that emerges. There are many two-dimensional CA whose
overall shape approximates a circle, but also rules that lead to more complicated
overall shapes and it seems that usually these differences in overall shape are very
sensitive to the initial configurations. Even more fascinating is when these shapes
start to move in two dimensional space as in the most famous CA, John Conway’s
“Game of Life”, which is discussed later.

Another thing that changes with the dimension of the automaton is the space of
possible rule sets, and also the form of the neighborhood can vary in more than
one dimension. The most typical form of two-dimensional CA is an orthogonal
square lattice of cells. In this space, the locality is typically defined as two alternative
neighborhoods: von Neumann and Moore neighborhoods (Fig. 4.2).
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1 2 3

Fig. 4.2 Typical neighborhoods in 2D CA: (/) von Neumann 1-neigborhood; (2) Moore
1-neighborhood; and (3) von Neumann 2-neighborhood

Also, a few typical rule categories have been defined: general, symmetric and
totalistic rules. General rule type means all the possible combinations in a given
neighborhood, e.g. in a five-cell von Neumann neighborhood with two possible cell
states, there are 2¥?~4 x 10° possible transition rules. The number of possible rules
can be reduced if different symmetries — like rotational, reflectional or complete —
are adopted. Sometimes only sums of cell values in the neighborhood are considered
as in the Game of Life. This group of rules is called totalistic rules. If the value of
the cell itself is taken into account, then the rule set belongs to the category of outer
totalistic rules.

4.2.4 Game of Life

Developed by British mathematician John Horton Conway, the popular CA applica-
tion the Game of Life was first published in Martin Gardner’s (1970) column in the
October 1970 issue of Scientific American. Operating in a two-dimensional lattice,
the rules of the game are defined by two cell states and the eight-cell Moore neigh-
borhood. The Game of Life belongs to the Class IV category of CA, and its rule set
is an example of outer totalistic rules. There are three rules in the Game of Life:

e Rule 1 — Survival: a live cell with exactly two or three neighbors stays alive

e Rule 2 — Birth: a dead cell with exactly three live neighbors becomes a live cell

e Rule 3 — Death: owing to overcrowding or loneliness, in all other cases a cell dies
or remains dead.

The popularity of the Game of Life rests on the outstanding variation of the
behavior and in the patterns it can produce with these simple rules. It is also easily
accessible to the general public through the internet. Several applications of the
Game of Life in other tessellations, e.g. triangular, hexagonal, have been developed
but they have not surpassed the original one in richness of behavior.
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Fig. 4.3 Different life forms: (/) invariants, (2) oscillator (5 steps), (3) glider (5 steps) and
(4) glider gun

4.2.5 Life Forms

Since the invention of the Game of Life, a significant amount of work and creativity
has been devoted to the development of different “life forms” (Fig. 4.3). The very
simple patterns, like one or two cell configurations, disappear after one generation
in the Game of Life but there are a huge amount of patterns that continue their lives.
Life forms that reach an unchangeable state are called invariant forms. Patterns
showing periodic behavior between a fixed number of configurations are defined as
oscillators. Oscillators with two periods are the most common but oscillators with
more periods have also been developed. Configurations that not only repeat
themselves but also move in the lattice are called gliders. One step more complex in
the structure and behavior in the Game of life is represented by glider guns that are
configurations constantly producing new gliders. Some of the glider like behavior is
called puffer trains which are objects moving vertically and leaving stable configu-
rations behind them. Methuselah configurations are initial patterns that achieve
stable states after a remarkably long evolution, say after several hundreds of
generations (Schiff 2008). There are still more mathematically interesting features
of the Game of Life, which are not discussed here.

The life forms have proven that the Game of life is capable of self-reproduction.
The self-reproducing system exploits the information that has been stored in it, in
the form of instructions and the data to be copied (Casti 1997). In urban spatial
modeling, this means that the occurrence of certain initial states is copied to other
locations as the system evolves.

What makes CA a special case within other automata and agent based models
is the stationary structure of the agents (cells). The automata offer a framework
for abstraction of “behaving systems” in which agents, behaviors, relationships
and time can be represented formally (Benenson and Torrens 2004). A number of
definitions and characteristics of CA have been represented in the previous sec-
tions. However, it is not necessary to fulfill all of these conditions to achieve cer-
tain system dynamics. In spatial modeling, many conditions have been relaxed to
achieve a better correlation with the system. CA have been tested in varying
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spatial tessellations, like triangular and hexagonal, as well as a graph form CA.
The usage of different spatial tessellations has not shown any remarkable differ-
ence in automata behavior except some cellular automata classes (or types). In
these (exceptional) classes, the neighborhood relations (i.e. tessellation) can
change (or vary) as the system evolves (i.e. CA proceeds) (Benenson and Torrens
2004). The L-systems (Lindenmayer 1968) are an example of this kind of CA.

4.3 CA as Complex Systems

CA have become a standard example of complex systems, although there are no
rigorous definitions of complex systems. However, among different disciplines
under the umbrella of complexity science, the principle of emergence as an indi-
cation of a complex phenomenon is widely agreed (Holland 1998; Casti 2002).
The emergence arises when simple interaction rules of objects at lower level
create unforeseeable phenomena that cannot be derived straight from the objects’
qualities at a higher level. As we have seen earlier, the CA obey this kind of self-
organizing behavior. Despite fluctuating initial states, the class IV CA systems
organize themselves through dynamical evolution, spontaneously generating
complicated structures (Wolfram 1988). Irreducibility is another distinguishing
characteristic of complex systems. They must be studied as a whole, as there are
no means to explore the system or predict the behavior of the system by looking
separately at the parts.

Casti (2002) describes three kinds of complex systems. The first one has a
complex structure but the behavior of the system is simple; as an example he
gives a mechanical clock. The second system has a simple structure but complex
behavior, where the toy rotator is provided as an example. In the third type, both
the structure and the behavior are complex, as in a human brain. Obviously it is
the second type that is interesting and CA belong to this category. Casti (2002)
also presents four “fingerprints of complexity”: instability; irreducibility; adapt-
ability; and emergence.

Instability refers to the modes of behavior of the system. For the complex system
it is typical to have different modes of behavior depending upon small changes in
the initial conditions or the interactions of the system. The four classes of CA
can be interpreted as well as modes of behavior, and thus CA fulfill this criterion
of complexity.

Irreducibility means that the system is infrangible, i.e. if the system is dismantled,
it loses some of its essential characteristics. This is against the classical view of
science where typically properties of the higher level system can be explained by
properties of the parts and laws governing the behavior of the parts. In CA systems,
irreducibility is engaged with the capability of universal computing. If some algo-
rithm is used to effectively predict the behavior of the system, it should perform
more sophisticated computation than the system itself, which is impossible for
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universal computers. Thus, because the class IV CA — the complex class — is
considered to be a universal computer, they are computationally irreducible.

Adaptability becomes apparent in systems that consist of several intelligent agents.
Typically these agents change their interaction rules on the basis of information rules.
For example, in traffic models, one agent such as a driver can change one’s decision
rules according to the information about the environment. With CA, it is also
possible to create adaptive agents by considering a cell as an agent and by creating
for them an internal mechanism that controls the behavior of the cell.

Emergence is often considered to be the most fundamental property of complex
systems. The organized behavior or structure that is generated at a global level as
the system evolves according to simple local rules is an emergent phenomenon.
This self organization cannot be predicted or derived from the properties of the
isolated parts of the system. In CA this is a feature of the class IV systems, and self-
organization is intrinsic (Casti 2002; Wolfram 1988).

Efforts have also been made to measure complexity. [lachinski (2001) discusses
a list of different measures of complexity that fall into static and dynamic classes.
The four static measures are graph complexity, hierarchical complexity, Shannon’s
information and simplicial complexity, while the four dynamic measures are algo-
rithmic complexity, computational complexity, logical depth and thermodynamic
depth. The static measures refer to structural properties of an assembly of the sys-
tem and the dynamic measures refer to the dynamic or computational effort that is
required to describe the information content of an object or a state of the system
(Ilachinski 2001). However none of these measures alone, or even together, delin-
eate complexity unambiguously. Defining and observing is largely based on the
human ability of visual perception regardless of all the mathematical and technical
analysis that has been developed. If our standard methods of perception and analysis
cannot find a short description of the phenomenon, it is considered complex
(Wolfram 2002). Wolfram also discusses human pattern and texture recognition and
goes even further by comparing this process to simple computer programs. The
strong visual nature of the representations of CA models is clearly a strength and
also one of the reasons for the success of CA in spatial and urban modeling.

From a wider perspective, complexity has influenced the predominant scientific
world view. Kauffmann (2007) challenges the reductionist way of doing science
and offers emergence instead. He discusses the power of creativity in nature, in the
“biosphere” and in the “econosphere”. Moreover, ontological phenomena, which
exist in the universe, cannot be deduced from physics. He also states that “our inabil-
ity to state how novel functionalities come to exist in nature is an essential limitation
to the way Newton taught us to do science” (Kauffmann 2007). This comes close to
the world of urban planners and architects, who under the functionalist tendency
have dismantled the intermeshed traditional city structure to monofunctional enclaves.
What was lost was the rich spectrum of connections in neighborhoods with mixed
use and diverse functions that, for example, Jane Jacobs has written about in her book
“The Death and Life of Great American Cities” (Jacobs 1961).
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44 Urban CA

CA include intrinsic spatiality and therefore offer an excellent instrument for simulations
of urban spatial dynamics. The huge number and popularity of urban simulation mod-
els based on CA is evidence of this usefulness. With a relatively simple structure and
model construction, CA also provide support for large parameter spaces (Torrens
2009). A self-evident advantage is also the natural affinity with raster data in GIS and
alternatively different urban morphological or functional tessellations, e.g. plots of land
can be quite easily represented as cells in simulation models.

In urban modeling, the concept of CA is mainly understood in quite a broad
sense, and the majority of the applications do not follow all of the conditions of
strict CA. Some of the rigorously defined components of CA can be relinquished
according to the requirements of the phenomenon that is being examined. Benenson
and Torrens (2004) have defined these extensions as follows:

* Neighborhoods can vary in size and shape.

e The cell states can be defined in different ways: nominal, ordinal, continuous,
fuzzy or multi-parameterized.

e Transition rules can be deterministic, stochastic, fuzzy, given by equations or
other predicatives.

» Factors above-neighborhood level urban hierarchy can be used to control develop-
ment in the model.

4.4.1 History of Urban CA

The history of urban and geographical CA models dates back to the 1950s and
1960s. Already in 1952, Hégerstrand (1952) had developed a high-resolution model
of spatial diffusion, in which the dynamics were already based on local interaction.
But the crucial step towards CA was not yet realized while geographical modeling
concentrated on regional models. However, during the 1960s, some cell space
models and raster models were introduced (Lathrop and Hamburg 1965; Chapin
and Weiss 1968). Most of the models applied cellular presentation of urban space,
and their principles were close to the idea of CA models. In cellular space, there
was a certain state defined for each cell, which was updated at every time step.
However, the raster models did not follow the bottom-up approach, at least not in
the sense of how we understand this today. The transition rules in those models
were mainly based on higher level functions and only some of them were based on
neighborhood relationships.

The first true CA model was introduced by Tobler in his article “Cellular
Geography” (1979), where he classified five types of models using a geographical
array. The first four models were representations of earlier models, but the fifth
model — the geographical model — had a new feature: the transition of a cell state
was based on the von Neumann neighborhood. He also mentions the complex
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properties of Conway’s Game of Life as an example of CA dynamics. Nevertheless
the boom of CA based modeling did not begin until the late 1980s when the formal
background of CA was established within mathematics, computing and natural
sciences. Also, the development of computer graphics was crucial for CA to become
common in spatial and urban modeling. One of the central papers was written by
Helen Couclelis (1985) where she stated that CA combined with progress in system
theories can be utilized in studying urban systems. She realized the possibilities of
emergent characteristics of the global structure that arises from the dynamism of
local events and presented a framework for cellular modeling of land use. By the
end of the 1980s, several other papers concerning CA as simulation methods in
urban dynamics were published (Itami 1988; Phipps 1989 among others).

The next level in the development of CA models took place when White and
Engelen (1993) published the first constrained CA model. The idea of the con-
strained CA model was to combine micro and macro scale mechanisms in cell
state transition rules. The constrained model enabled merging of traditional top-
down and emerging bottom-up methodology. After this development stage, the
interest towards the paradigm exploded rapidly. Numerous models based on CA
have now been developed. There is no rigorous classification of models although
Santé et al. (2010) have made a recent attempt at classifying over 30 urban CA
models. In this chapter, some areas for distinguishing different models are outlined.
More theoretical models, which focus on the fundamentals of the modeling
mechanisms, can be distinguished from the more realistic simulation models
whose intention is to generate plausible scenarios for real environments. The
modeling methodologies used and the examined phenomena define their own
reference groups.

4.4.2 Theoretical Urban CA Models

The development of theoretical urban CA models concentrates on revealing the
properties and effects of the modeling techniques, where the interest is in the theory
of CA in an urban context. Michael Batty writes in his book Cities and Complexity
(2005) about hypothetical models. He has developed an extensive variety of models
in this category with his collaborators. These models are simple idealized city mod-
els in which the growth starts from reduced initial conditions, typically from a single
seed. The idea of the simple models is to reveal special features of growth mecha-
nisms in their purest form in laboratory-like conditions.

One of the interesting and salient features of these theoretical models is how
the concept of geographical potential appears in them. Lots of dynamics in urban
development is based on “action at a distance” and Batty discusses “action at a
distance” as an emergent phenomenon that arises as the influence of cell transi-
tions propagates in the lattice as the system evolves (Batty 2005). This is a key
issue in the theory of urban dynamics and in differences between strict CA models
and more general urban models. The demand for simple strict CA models arises
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from the “action at a distance” question that can be enlightened by examining
single cells in those models.

4.4.3 Real City CA Models

Several urban CA models have been developed with the intent to create future sce-
narios for real urban environments. Therefore, many of their features have a prag-
matic explanation. For instance, they can be configured according to the availability
of data. The division between models into a theoretical or real category is not that
rigorous. Rather there is a spectrum of models between these extremes. The differ-
ences between urban CA models can be differentiated by how they are configured to
the five basic elements of CA: spatial tessellation, cell states, neighborhoods, transi-
tion rules and time (Liu 2009). The most significant differences between urban CA
models seems to be based on differences in the transition rules, as they actually
define the logic of how the modeled phenomena are handled. All these features have
been stressed differently depending upon the purpose for which the simulation model
was created. In the following sections we will discuss some examples of models
developed for the simulation of urban growth, land use, sprawl, gentrification, etc.

4.4.3.1 Land Use Change in Constrained CA

The constrained CA model developed by White and Engelen (1993, 2000) has been
used to simulate land use change. The operational principle of the model is based on
the transition potential of the cell, which is derived from the properties of the cell
and its neighboring cells. The potential is based on the intrinsic properties of the cell
and the influence of the neighbors weighted by distance from the central cell. All
cells are then ranked by their potential and the macro scale mechanisms are applied
by determining the overall amount of cells to be transformed according to demand
for certain land use at an aggregate level. The aggregate level transition operations,
which utilize population data, were developed separately from the CA model.

The land use change is represented as a transition of 16 different cell states that
are classified as active, passive or fixed state categories. The transition potential of
the cells is defined as the vector sum of the components of attraction or repulsion
of other land uses, accessibility to transportation networks, and the intrinsic suitability
for the particular land use and zoning regulations. In the model, the size of the
neighborhood is relaxed to a circular template of 113 cells. The cell size in the
model is 500 m x 500 m (White and Engelen 2000).

The principle of combining the above neighborhood structures into transition
functions has also been introduced by others (Xie 1996; Batty and Xie 1997; Phipps
and Langlois 1997). How the constraints are formulated varies between the different
models. The challenge in constrained modeling is how to implement the constraints
so that the local dynamics are not destroyed.
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Fig. 4.4 Sleuth-model simulations of Helsinki city region. Three predictions for the hypothetical
year 2040 with different input data. Taken from Iltanen (2008)

4.4.3.2 Diffusion-Based Urban Growth

The Sleuth model represents a diffusion-based view of urban development
(Benenson and Torrens 2004). The model was developed to simulate urban growth
for the San Francisco Bay area by Keith Clarke and colleagues during the 1990s
(Clarke et al. 1997; Clarke and Gaydos 1998). The model is based on a self-modifying
cellular automaton and can be calibrated according to predominant trends of
urban development. The growth dynamics consist of four growth rules executed in
the following order in every growth cycle: (1) spontaneous; (2) new spreading
centre; (3) edge; and (4) road influenced growth. The spontaneous growth defines
the random urbanization of a cell by giving a certain probability to every cell
regarding urbanization. The new spreading centre growth determines with certain
probability the newly urbanized cells to become a spreading center. The edge
growth defines the growth on the edge of the existing urban structure by giving a
certain probability to a cell to be urbanized if it has at least three neighbors. The
road influenced growth is based on the urbanization in earlier steps, on the input
data of the transportation infrastructure and a random walk component.

The model also includes an optional Deltatron-module, which simulates land use
change. The core model can be used without this module. The number of newly urban-
ized cells, generated in the core model, is the driver for land use transitions. However,
the Deltatron-module generates only nonurban land use transitions (Clarke 1997).

The calibration is carried out by using historical cross-sectional data as input to
the model, and the Monte-Carlo method is used in iteration. The calibration phase
produces five growth coefficients as a result. These growth coefficients control the
growth rules that are typical for each simulation area and the input data used in the
simulation. The input data needed for the model consist of five (or six if the
Deltatron-module is implemented) layers: slope, land use (Deltatron), excluded,
urban, transportation and auxiliary hill shade. The name Sleuth is comprised from
the first letters of the layer names. After the calibration phase, the predictions
(Fig. 4.4) can be executed using growth coefficients (Clarke et al. 1997).

The Sleuth-model combines a CA approach with different statistical methods to
achieve higher realism in simulations. The features of the excluded layer enable the
top-down control of growth to be combined with the bottom-up growth dynamics in
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a way that the level of top-down regulation can be defined by the user. The definition
of urban and non-urban areas can be utilized in terms of density to catch sprawl like
development (Iltanen 2008, 2011).

4.4.3.3 Urban Sprawl in CA

One interesting exploration concerning urban growth and polycentricity was intro-
duced by Batty and Xie (1997). Their model was based on the idea of development
potential, which is a driving force of urban growth. The positive feedback in land
use transformations creates growing clusters that break the monocentric structure.
This model was implemented in cellular space where the potential of the cell evolves
on the basis of itself.

Different grades of urbanization and growth were modeled by Batty and Xie
(1997). They also used an epidemic model and generalized it to a spatial context
(Batty 2005).The model exploits aggregate models as a part of the simulation pro-
cess, embedding them in the CA model Duem (Batty et al. 1999). The Duem model
is a CA model that simulates urban growth and the land use change of five different
categories. The five land uses of the model are housing, industry, commerce, services
and vacant land. The transport network is also represented in cellular form. The
model utilizes different decision methods and life-cycle processes of land use.

4.43.4 Fuzzy Urbanization

Fuzzy logic and fuzzy set theory have also been utilized in modeling urban growth.
It has been argued that fuzzy methodologies are suitable for urban modeling since
both physical factors and human decision making are characterized by uncertainty
and fuzziness (Wu 1996; Liu 2009). Many urban conditions are continuous rather
than discrete by their nature, which points to the appropriateness of using fuzzy
logic in modeling urban dynamics. Fuzzy set theory has been developed to extend
crisp set theory by defining membership of a set gradually instead of through a
binary definition; O (=non member) or 1 (full member). Wu (1996) developed a
methodology that utilized fuzzy logic in CA transition rules. He applied linguistic
modeling with the idea to couple behavioral considerations of decision making to
the simulation process. Liu (2009) developed an urban fuzzy constrained CA model
in which fuzzy set theory has been used in the definition of cell states and their
grade of urbanity. Liu (2009) found that more realistic simulation results were pro-
duced in terms of the human decision-making process. Moreover, fuzzy logic has
been used in the representation of drivers and in the transition rules for an urban
growth model in the city of Riyadh, Saudi Arabia (Al-Ahmadi et al. 2009a; 2009b;
2009c). One of the main advantages of using fuzzy logic was the ability to interpret
the resulting model and the rulebase, and to understand which drivers are important
and which rules fire most frequently during different periods of urban growth.
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4.5 Conclusions

The increasing connectedness of urban structure, both locally and globally, makes it
more and more difficult to understand and control the development of cities. CA
models, as part of the modeling toolkit, can enlighten the complex interactions and
relations in networked urban structure. The better we know the theoretical behavior
of our models, the better we can adjust them to real world situations. Thus, there is
still space for both theoretical and applied explorations of the models of urban
dynamics. The knowledge concerning theoretical aspects of the model also enhances
their transparency. This transparency is required for keeping the basis of the model
simple enough to catch the complex features in the system.

The strength of CA models is fast processing of information and the illustrative
nature of the results, which can be effectively interpreted by human visual percep-
tion. Many possibilities also lie in the exploitation of the urban morphological
elements in CA modeling. New dimensions could be added to the modeling scheme
by using suitable urban morphological elements to add more coherence between
the model and reality. The quantitative analysis of urban morphological objects
and configurations could be incorporated within the automata models and also the
utilization of suitable morphological tessellations could be developed to achieve
more sensitive representation of the environment.

Simulations do not necessarily represent the behavior of real urban systems, yet
they reveal to us some essential mechanisms that are part of the overall dynamics.
The models can be used as tools within urban planning to produce unforeseeable
development paths and to help generate scenarios for the basis of decision making.
By exploiting simulation models, suitable boundary conditions can be outlined to
achieve eligible development, although the modeling always leaves the final state
open. The challenge in the wider utilization of simulation models is a tradeoff
between the ease of accessibility and understanding the inner logic of these models.
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Chapter 5
Introduction to Agent-Based Modelling

Andrew T. Crooks and Alison J. Heppenstall

Abstract The application of agent-based modelling (ABM) to simulating dynamics
within geographical systems has seen a considerable increase over the last decade.
ABM allows the disaggregation of systems into individual components that can
potentially have their own characteristics and rule sets. This is a powerful paradigm
that can be exploited through simulation to further our knowledge of the workings
of geographical systems. We present in this chapter an overview of ABM; the
main features of an agent-based model are given, along with a discussion of what
constitutes an agent-based model. The distinction between cellular automata (CA),
microsimulation (MSM) and agent-based models are discussed along with the
advantages and limitations of ABM for modelling geographical systems. We conclude
with a brief discussion of important areas for further research.

5.1 Introduction

Many geographical systems are characterised by continual change and evolution
through time and space. The impacts of interactions between individual agents
(humans, cities or more abstract representations), or an individual agent and the
environment (physical, social, information etc) can be felt at multiple scales as well
as over differing timescales. Previous approaches to modelling the complexity of
geographical systems have focused on representing these systems as static aggrega-
tions of populations, rational aggregate behaviour and flows of information. Examples
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of these “traditional approaches” include multiple regression, location-allocation
and spatial interaction models; Batty (2012) provides a detailed discussion of the
different approaches applied within geographical modelling.

While the utility of these approaches are exemplified within the academic litera-
ture, one of the central criticisms that can be levelled at them is treatment of all
geographical components as largely homogeneous entities, for example, populations
modelled with the same characteristics. Over the course of the twentieth century
geography has incorporated ideas and theories from other disciplines including
economics, mathematics and computer science. These ideas have strengthened the
significance of both modelling and understanding the impact of individual agents and
the heterogeneity of geographical systems at different spatial and temporal scales.
Simulating these processes and their impacts ‘realistically’ presents a significant
challenge for the twenty-first century geographer.

To understand geographical problems such as sprawl, congestion and segregation,
researchers have begun to focus on bottom-up approaches to simulating human
systems, specifically researching the reasoning on which individual decisions are
made. One such approach is agent-based modelling (ABM) which allows one to
simulate the individual actions of diverse agents, and to measure the resulting system
behaviour and outcomes over time. The distinction between these new approaches
and the more aggregate, static conceptions and representations that they seek to
complement, if not replace, is that they facilitate the exploration of system processes
at the level of their constituent elements.

Essential to the progression of ABM has been the development of automata
approaches more generally. An automaton is a processing mechanism with character-
istics that change over time based on its internal characteristics, rules and external
input. Automata process information input to them from their surroundings and their
characteristics are altered according to rules that govern their reaction to these inputs.
Two classes of automata tools — cellular automata (CA) and agent-based models — have
been particularly popular, and their use has dominated the research literature.

The purpose of this chapter is to provide an overview to ABM. The key features
of an agent-based model will be presented along with a discussion of what consti-
tutes an agent-based model and brief overviews of the main areas of consideration
when undertaking modelling. The distinction between CA, microsimulation (MSM)
and ABM approaches are briefly outlined. The advantages and disadvantages of
ABM for simulating geographical systems are then discussed before an overview of
geographical applications are given. We conclude the chapter with a summary and
discussion of areas that require further consideration.

5.2 What Is an Agent?

There is no universal agreement amongst researchers on the precise definition of the
term ‘agent’ with researchers continually debating whether definition should be by
an agent’s application or environment; however definitions do tend to agree on more
points than they disagree (Macal and North 2005). Diversity in their application
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makes agent characteristics difficult to extract from the literature in a consistent and
concise manner as often an agent-based model is described from the perspective of
its constituent parts (Bonabeau 2002).

From a pragmatic modelling standpoint, there are several features that are common

to most agents (Wooldridge and Jennings 1995 — extended and explained further by
Franklin and Graesser 1996; Epstein 1999; Macal and North 2005). These are briefly
presented below:

Autonomy: agents are autonomous units (i.e. governed without the influence of
centralised control), capable of processing information and exchanging this
information with other agents in order to make independent decisions. They are
free to interact with other agents, at least over a limited range of situations, and
this does not (necessarily) affect their autonomy.

Heterogeneity: agents permit the development of autonomous individuals e.g.
an agent representing a human could have attributes such as age, sex, job etc.
Groups of agents can exist, but they are spawned from the bottom-up, and are
thus amalgamations of similar autonomous individuals.

Active: agents are active because they exert independent influence in a simulation.
The following active features can be identified:

— Pro-active/goal-directed: agents are often deemed goal-directed, having
goals to achieve (not necessarily objectives to maximise) with respect to their
behaviours.

— Reactive/Perceptive: agents can be designed to have an awareness or sense of
their surroundings. Agents can also be supplied with prior knowledge, in effect
a ‘mental map’ of their environment, thus providing them with an awareness of
other entities, obstacles, or required destinations within their environment.

— Bounded Rationality: throughout the social sciences, the dominant form of
modelling is based upon the rational-choice paradigm (Axelrod 2007). Rational-
choice models generally assume that agents are perfectly rational optimisers
with unfettered access to information, foresight, and infinite analytical ability
(Parker et al. 2003). However, agents can be configured with ‘bounded’
rationality (through their heterogeneity). This allows agents to make inductive,
discrete, and adaptive choices that move them towards achieving goals.

— Interactive/Communicative: agents have the ability to communicate exten-
sively. For example, agents can query other agents and/or the environment
within a neighbourhood.

— Mobility: agents can ‘roam’ the space within a model. Juxtaposed with an
agent’s ability to interact and their intelligence, this permits a vast range of
potential uses. However, agents can also be fixed.

— Adaptation/Learning: agents can also be designed to be adaptive, producing
Complex Adaptive Systems (CAS; Holland 1995). Agents can be designed
to alter their state depending on previous states, permitting agents to adapt
with a form of memory or learning. Agents can adapt at the individual level
(e.g. learning alters the probability distribution of rules that compete for
attention), or the population level (e.g. learning alters the frequency distribution
of agents competing for reproduction).
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a Social Model
Internal States

Internal Processes
' Interactions with other
people or the

. . environment
Object-oriented

programming

Person Internal Data
name
age Private Functions
sex
getFriends Public Functions

b Retail Model

Internal States

Internal Processes
Interactions with other
retailers or the
environment

Object-oriented
programming

PetrolRetailler Internal Data
name

location - Private Functions
petrol price

setPrice Public Functions

Fig. 5.1 Representation of (a) human agent and (b) petrol retailer agent alongside that of represen-
tation within an object-orientated environment

This list is not exhaustive or exclusive; within an application agents can possess
other characteristics and for some applications, some features will be more important
than others (Wooldridge and Jennings 1995). Often, there are many different types of
agents within one simulation.

5.2.1 What Does an Agent Look Like?

Agents can be representations of any type of autonomous entity. These could be, for
example, people, buildings, cars, land parcels, water droplets or insects. Figure 5.1
shows the similarities between the concept of (i) a “social” human and (ii) a grocery
retailer and of a representation of an agent within an object-orientated program (see
Abdou et al. 2012; Crooks and Castle 2012; Grimm and Railsback 2012 who explore
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If <cond> then
<action1> else
<action2>

9
©

Animate agents

Artificial World

Fig. 5.2 ABM: the creation of artificial worlds populated by agents (Adapted from Cederman 2004)

constructions of agent-based models in more detail). It should be noted that ABM is
not the same as object-oriented simulation, although the object-oriented paradigm
provides a suitable medium for the development of agent-based models. For this
reason, ABM systems are invariably object-oriented (Gilbert and Terna 2000).

A collection of multiple, interacting agents, situated within a model or simulation
environment such as represented by the artificial world as shown in Fig. 5.2 is termed
an agent-based model. Here, agents can be representations of animate entities such
as humans that can roam freely around an environment or be inanimate, such as a
petrol retailer, that has a fixed location but can change state.

5.2.2 Rules, Behaviour and Relationships

Each of the inanimate and animate agents outlined above can possess rules that
will affect their behaviour and relationships with other agents and/or their surround-
ing environment. Rules are typically derived from published literature, expert
knowledge, data analysis or numerical work and are the foundation of an agent’s
behaviour. One rule-set can be applied to all agents or each agent (or categories of
agents) can have its own unique rule set. For example, the retail petrol agents in
Heppenstall et al. (2006) all operated on the same basic rule set based on a desire to
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maximise profits. Further work saw different types of retailer agents, for example
supermarkets, international, national and independent stations, given their own
“realistic” rule-sets based on published behaviour, data analysis and numerical
analysis (Heppenstall et al. 2006).

Rules are typically based around ‘if-else’ statements with agents carrying out an
action once a specified condition has been satisfied. However, rules can also be put
into action in ignorance of the actions of other agents. Agents can also be imbedded
with a notion of learning and thus ‘intelligence’ through evolutionary computation
(see Heppenstall et al. 2007 for further details). More recently there has been a
move towards incorporating behavioural frameworks within agent-based models to
better represent human behaviour. For example, Malleson et al. (2010) used the
PECS (Physical conditions, Emotional states, Cognitive capabilities and Social
status) framework to represent the motivations and desires of criminals. This type of
work marks a move towards a more sophisticated handling of agent behaviour.
Kennedy (2012) provides an overview of different frameworks for handling human
behaviour in agent-based models.

Agents can interact with each other and amongst themselves and with the
environment. Relationships may be specified in a variety of ways, from simply
reactive (i.e. agents only perform actions when triggered to do so by some external
stimulus e.g. actions of another agent) to goal-directed (i.e. seeking a particular
goal). The behaviour of agents can be scheduled to take place synchronously
(i.e. every agent performs actions at each discrete time step, all change occurs
simultaneously), or asynchronously (i.e. agent actions are scheduled by the
actions of other agents, and/or with reference to a clock).

5.2.3 Agent Environments

Environments define the space in which agents operate, serving to support their
interaction with the environment and other agents. For example, depending on the
space defined for agent interactions, proximity may be defined by spatial distance
for continuous space, adjacency for grid cells, or by connectivity in social networks.
Agents within an environment may be spatially explicit, meaning agents have a
location in geometrical space, although the agent itself may be static. For example,
within a route navigation model, agents would be required to have a specific loca-
tion for them to assess their route strategy. Conversely, agents within an environ-
ment may be spatially implicit; this means that their location within the environment
is irrelevant.

In a modelling context, agent-based models can be used as experimental media
for running and observing agent-based simulations. To this extent, they can be
thought of as a miniature laboratory where the attributes and behaviour of agents,
and the environment in which they are housed, can be altered and the repercussions
observed over the course of multiple simulation runs, thus providing a tool to ‘think
with.” The ability to simulate individual actions of many diverse agents and measure
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the resulting system behaviour and outcomes over time (e.g. changes in patterns of
traffic flow), means agent-based models can be useful tools for studying the effects
on processes that operate at multiple scales and organisational levels (Brown 2006).
In particular, the roots of ABM are within the simulation of human social behaviour
and individual decision-making (Bonabeau 2002). In this sense ABM has trans-
formed social science research by allowing researchers to replicate or generate the
emergence of empirically complex social phenomena from a set of relatively simple
agent-based rules at the micro-level (Balan et al. 2003).

5.3 Individual-Based Models

Agent-based models fall into the broad category of individual based models. Within
this category are also the closely related techniques of CA and MSM. This section
clarifies the scope of these other techniques and emphasises the distinction from
agent-based models. CAs and MSM are more fully explained in Iltanen (2012) and
Birkin and Wu (2012).

5.3.1 Cellular Automata

The basic features of CA are well-known from the research literature. A CA is a
discrete dynamic system, the behaviour of which is specified in terms of local rela-
tions. The space in a CA system is divided into a lattice or grid of regularly-space
cells of the same size and shape, usually square. Each cell has a value either O or 1
or on a scale from 0 to 1. The state of a cell and its behaviour is determined by the
state of other cells in close proximity at a previous time step, by a set of local rules
and by the cell itself (Benenson and Torrens 2004; Torrens 2003; Wolfram 2002).

An important feature of a CA is that the automata’s location does not move; they
can only change their state. The position of the cells and their neighbourhood rela-
tions remain fixed over time. In contrast, agents can be either fixed in location or
free to ‘roam’ around their environment. Unlike agents, CAs cannot have more than
one attribute; for example, a cell could be occupied or unoccupied, but the cell could
not contain multiple attributes such as building type, date built etc.

Both CA and agent-based models, model the complexity of social systems with
similar individual level representations. However, they differ in their emphasis; CA
model social dynamics with a focus on the emergence of properties from local inter-
actions while agent-based models simulate more complex situations where agents
control their own actions based on their knowledge of the environment (Birkin and
Wu 2012).

In practice, CA and ABM have often been applied separately to explore a wide
variety of geographical phenomena. This is particularly evident in urban modelling.
For example, CA models are commonly applied to represent possible land-use
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changes (for example, White et al. 1997; Landis and Zhang 1998) while ABM are
often applied to crowd dynamics and traffic simulation (see Benenson and Torrens
2004 for further reviews). However, models are increasingly being developed using
a combination of CA and ABM techniques to produce flexible and powerful models,
and the distinction between them is increasingly becoming blurred.

5.3.2 Microsimulation

MSM is a well established methodology that works on the principle of creating small
area microdata at a point in time, and then generating future microdata from that
basis (Ballas et al. 2005). MSM has been extensively applied to modelling the effects
of different policy scenarios on individual ‘units’, for example understanding the
implications of a factory closure on individual households.

As with CA and ABM, MSM operates at the level of the individual, is able to
simulate the global consequences of local interactions whilst allowing the character-
istics of each individual to be tracked over time. However, crucially in contrast to
ABM, MSM only models one-direction interactions: the impact of the policy on the
individuals, but not the impact of individuals on the policy and interactions between
individuals are not simulated. Furthermore MSM models do not have the behavioural
modelling capability of ABM.

Birkin and Wu (2012) see the relationship between ABM and MSM as compli-
mentary; linking the two approaches can help overcomes inherent limitations in
both approaches, for example problematic validation in ABM and the absence of
real behavioural modelling in MSM. Examples of the hybridisation of these
approaches can be found in the work of Boman and Holm (2004) and more recently
Wau et al. (2008).

5.4 Constructing an Agent-Based Model

Creation of an agent-based model can be facilitated through the use of an object-
orientated language, modelling toolkits and platforms. Here we briefly discuss
these approaches describing their advantages and disadvantages. For a more
detailed discussion, the reader is directed to Crooks and Castle (2012).

Frequently used programming languages are Java and C++. While programming
from the ground up allows complete control over every aspect of the agent-based
model, this can be a time-consuming option unless the researcher is an experienced
programmer. Model implementation can be cumbersome and considerable time can
be spent on non content-specific aspects such as graphical user interfaces (GUT’s),
visualisation and data importing.

Toolkits do not require substantial coding experience and provide conceptual
frameworks and templates that allow the user to design a customised model.
Prominently used toolkits include the highly popular Repast, SWARM and MASON,
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although Crooks and Castle (2012) note that there are over 100 toolkits currently
available. These toolkits are often supported by libraries of pre-defined methods and
functions that can be easily incorporated into an agent-based model and linked into
other software libraries, for example geographical information systems (GIS) such
as OpenMap or GeoTools. Using a toolkit can greatly reduce the model construction
time allowing more time to be dedicated to research. However, drawbacks include a
substantial time investment on behalf of the researcher to learn the how to design
and implement a model in the toolkit and the programming language the software
uses. After this investment of time, it is possible that the desired functionality is not
available.

In addition to toolkits, there is a steady increase of available software for con-
structing agent-based models. Notable examples include NetLogo and AgentSheets.
Utilisation of such software is particularly useful for rapid development of basic or
prototype models. The major drawback using software is that researchers are
restricted to the design framework supported by the software and maybe unable to
extend or integrate additional tools.

5.5 Working with Agent-Based Models

Once a model has been designed at the level of abstraction deemed necessary for the
purpose of the model and an appropriate toolkit or software chosen for implementation
(see Grimm and Railsback 2012; Crooks and Castle 2012 for more of a discussion),
several other important issues need to be considered. These revolve around gaining
an understanding and communicating the inner workings of the model but also
considerations with respect to verification, calibration and validation of the model
itself. It is to these issues that we now turn.

5.5.1 Verification, Calibration and Validation

One of the greatest challenges of utilising ABM concerns the issues of verification,
calibration and validation (Crooks et al. 2008). “Verification is the process of
making sure that an implemented model matches its design. Validation is the
process of making sure that an implemented model matches the real-world.” (North
and Macal 2007, pages 30-31). Verification is thus as a much a matter of testing the
logic of the model through its computer programme as testing its formal logic. It
involves checking that the model behaves as expected which is something that is
often taken for granted. Validation relates to the extent that the model adequately
represents the system being modelled (Casti 1997) and in this sense, it involves the
goodness-of-fit of the model to data. However, the validity of a model should not be
thought of as binary event (i.e. a model cannot simply be classified as valid or
invalid); a model can have a certain degree of validity (Law and Kelton 1991),
which of course is encapsulated by various measures of fit.
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In contrast, calibration involves fine-tuning the model to a particular context and
this means establishing a unique set of parameters that dimension the model to its
data. This is not validation per se but calibration can often involve validation because
the parameters are often chosen so that performance of the model related to data is
optimal in some way, in terms of some criterion of goodness-of-fit, for example.
This is a large subject area and suffice it to say, many if not most agent-based
models suffer from a lack of uniqueness in parameter estimation due to the fact that
their assumptions and processes tend to outweigh the data available for a complete
assessment of their goodness-of-fit.

Concerns have been raised pertaining to verification and validation by numerous
researchers (e.g. Batty and Torrens 2005; Crooks et al. 2008) and can be considered
limitations to ABM (see Sect. 5.7). Ngo and See (2012) present a more detailed discus-
sion of how verification, calibration and validation issues can be addressed while Evans
(2012) raises awareness of error and uncertainty with respect to input data, parameteri-
sation, and model form and offers guidance to minimising and understanding such
errors. These issues are only mentioned here to stress to the reader that these are
important and need to be considered when working with agent-based models.

5.5.2 Communication and Visualisation

Agent-based models tend to be overtly visual and this is extremely helpful as visuali-
sation is one of the most effective ways to communicate key model information with
regard to ABM (North and Macal 2007). Some argue that by making models more
visual they become more transparent (Batty 2007) but also by visualising key model
processes, helps to convey the model clearly and quickly (Kornhauser et al. 2009) and
thus aiding with the verification and validation of model outputs. For example, via the
GUI of the model we are able to track the simulation history as advocated by Axelrod
(2007). Through this we can observe and explain how aggregate outcomes emerge
from the local interactions of many individuals. Moreover, there are also qualitative
evaluations of model validity that might be made from visualising outcomes of such
models. For example, Mandelbrot (1983) argues that models which generate spatial or
physical predictions that can be mapped or visualised must ‘look right’.

Patel and Smith (2012) provide a review of tools, techniques and methods for
such visualizations in the second and third dimensions. Such tools as game engines
and virtual worlds (see Crooks et al. 2009) provide a highly visual and immersive
medium for ABM and has the potential to greatly aid in the communication and
understanding of agent-based models. The dynamic and real-time visualisation and
communication options (especially those in virtual worlds) provided by agent-based
models allows us to address the challenge modellers face on how we might com-
municate and share agent-based models with all those we seek to influence. In the
past, model results were mainly presented through the discussion of the model
outcomes via static charts or screen shoots. However, as one of the key aspects of
ABM lies in their dynamics, real-time visualisation of models and their outcomes
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can capture this and in a sense, show how micro interaction of individuals leads to
more aggregate outcomes.

However, visualisation alone does not address all the issues relating to the
communication of agent-based models. We also need methods to convey the model
structure and key model parameters that allow for replication of such models.
Replication of models allows others to gain confidence about the model and its under-
lying assumptions (see Crooks et al. 2008). Replication can be aided through the
releasing of the source code of the model, along with the data and parameters presented
in a paper or by providing a detailed description of the model such as the “ODD”
(Overview, Design concepts, Details) protocol (Grimm and Railsback 2012).

5.6 Advantages of Agent-Based Modelling

The way we currently conceptualise and model human geographical systems, in
particular the evolution of cities, has changed, from the aggregate to disaggregate,
and from the static to the dynamic as highlighted in Table 5.1. ABM provides us
with tools to explore this change in approach. There are three main claimed advan-
tages of the agent-based approach over traditional modelling techniques, such as
top-down techniques of non-linear dynamical systems in which related state vari-
ables are aggregated (e.g. through differential equations). The agent-based approach:
(i) captures emergent phenomena; (ii) provides a natural environment for the study
of certain systems; and (iii) is flexible, particularly in relation to the development of
geospatial models.

Traditional urban models focused on modelling the system of interest top-down
in contrast to model developers who divided the city into a few 100 units, while
assuming average behaviour of individuals. Through their ability to describe behaviour
and interactions of a system’s constituent parts from the bottom-up,' ABM provides

Table 5'1 The changes i'n Traditional modelling Agent-based modelling
Xgﬁlgsfrtzzz?:gi?l using Determ.inistic (one future) Stochastif: (multiple futures)
modelling of the 1960s and Allocative (top-down) Aggregative (bottom-up)
1970s (Source: Bernard 1999) Equation based formulas Adaptive agents

Do not give explanations Explanatory power

Few parameters Many parameters

Spatially coarse Spatially explicit

Environment given Environment created

You react to them You learn from them

'"'While ABM deals with individual and not aggregate behaviour, often it is neither feasible nor
desirable to model complete agent heterogeneity. Instead agents are often given a representative
behaviour; thus we move from average aggregate behaviour to average individual behaviour.
However, greater heterogeneity can be introduced by adding ‘noise’ to such agents.
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an alternative approach. Bonabeau (2002) has identified a non-exhaustive list of
conditions where ABMs can be useful for capturing emergent behaviour:

1. Interaction between agents is complicated, non-linear, discontinuous, or discrete
(i.e. the behaviour of an agent can be altered dramatically, even discontinuously,
by other agents). This can be particularly useful if describing discontinuity of
individual behaviour, for example, using differential equations;

2. The ability to design a heterogeneous population of agents with an agent-based
model is significant. Agents can represent any type of unit. Unlike agent-based
models, aggregate differential equations tend to smooth out fluctuations. This is
important because under certain conditions, fluctuations can be amplified: a
system can be linearly stable but susceptible to large perturbations. Heterogeneity
also allows for the specification of agents with varying degrees of rationality. This
offers advantages over approaches that assume perfectly rational individuals, if
they consider individuals at all;

3. The topology of agent interactions is heterogeneous and complex. Aggregate flow
equations usually assume global homogeneous mixing, but the topology of an
interaction network can lead to significant deviations from predicted aggregate
behavior and,

4. Agents exhibit complex behaviour, including learning and adaptation.

Furthermore, the ability of agent-based models to describe the behaviour and
interactions of a system allows for system dynamics to be directly incorporated
into the model. This represents a movement away from the static nature of earlier
styles of urban and regional modelling (see Batty 1976). However, while time in
ABMs is still discrete, i.e. it still moves in ‘snapshots’, the time steps may be
small enough to approximate real time dynamics. Additionally different processes
occur over different time periods, for example, long term economic cycles, daily
commuting and hour by hour social interaction. Agent-based models can incor-
porate these different scale time processes into a single simulation by using a
variety of automata clocks designed to mimic the temporal attributes of the specific
urban process under study (Torrens 2003), thus allowing the modeller to realis-
tically simulate urban development or a particular geographical phenomenon
(O’Sullivan 2001).

In many cases, ABM is a natural method for describing and simulating a system
composed of real-world entities especially when using object-orientated principles
(Gilbert and Terna 2000). The agent-based approach is more akin to ‘reality’ than
other modelling approaches. Agent-based simulations provide an opportunity to
represent and test social theory which cannot easily be described using mathematical
formulae (Axelrod 1997). The models often map more naturally to the structure
of the problem than equation-based models (Parunak et al. 1998) by specifying
simple behavioural and transition rules attached to well defined entities, therefore
providing a medium for the infusion of any geographic theory or methodology into
the model. In particular, the agent-based approach can be useful when it is more
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natural to describe the constituent units of a system under some of the following
conditions (Bonabeau 2002):

1. The behaviour of individuals cannot clearly be defined through aggregate
transition rates (e.g. the decision to move);

2. Individual behaviour is complex. Although hypothetically any process can be
explained by an equation, the complexity of differential equations increases
exponentially as the complexity of behaviour increases. Describing complex
individual behaviour with equations can therefore become intractable;

3. Activities are arguably a more natural way of describing a system than pro-
cesses; and,

4. Agent behaviour is stochastic. Points of randomness can be applied strategically
within agent-based models, rather than arbitrarily within aggregate equations.

Finally, the agent-based approach to modelling is flexible, particularly in relation
to geospatial modelling. Notably, spatial simulations benefit from the mobility that
agent-based models offer. An agent-based model can be defined within any given
system environment (e.g. a building, a city, a road network, a computer network,
etc). Therefore agent-based models are essentially without scale. It is the phenom-
ena of interest which drives the scale to be used, for example, from the micro
movement of pedestrians within a building during an evacuation (e.g. Gwynne
et al. 2001), to the movement of cars on a street network (e.g. Nagel 2003) to the
study of urban growth (e.g. Brown et al. 2005). Additionally as ABM allows for
the representation of individual objects, it is therefore possible to combine these
objects to represent phenomena at different scales within the same model.
Furthermore, agents have the ability to physically move within their environment,
in different directions and at different velocities. Agent mobility makes ABM very
flexible in terms of potential variables and parameters that can be specified.
Neighbourhoods can also be specified using a variety of mechanisms such as well
understood geographical relations such as market catchments areas, travel to work
zones, walking distance buffers etc.

The implementation of agent interactions can easily be governed by space,
networks, or a combination of structures (as highlighted in Alam et al. 2012) This
would be far more complex to explain by mathematics, for example (Axtell 2000).
Significantly, agent-based models can regulate behaviours based on interactions
at a specific distance and direction (thus allowing for action-at-a-distance). In
addition, agent-based models also provide a robust and flexible framework for
tuning the complexity of agents (i.e. their behaviour, degree of rationality, ability
to learn and evolve, and rules of interaction). Another dimension of flexibility is
the ability to adjust levels of description and aggregation. It is easy to experiment
with aggregate agents, sub groups of agents, and single agents, with different
levels of description coexisting within a model. Thus, the agent-based approach
can be used when the appropriate level of description or complexity is unknown,
and finding a suitable level requires exploration.
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5.7 Limitations of Agent-Based Modelling

The enthusiasm of adopting the ABM approach for modelling geographical systems
is curtailed by some limitations. Although common to all modelling techniques,
one issue relates to the purpose of the model; a model is only as useful as the
purpose for which it is constructed. A model has to be built at the right level of
abstraction for every phenomenon, judiciously using the right amount of detail for
the model to serve its purpose (Couclelis 2002). If the level of abstraction is too
simple, one may miss the key variables. Too much detail, and the model will have
too many constraints and become overly complicated. Abdou et al. (2012) provide
useful advice for designing and building an agent-based model. This remains an art
more than a science (Axelrod 2007). Axtell and Epstein (1994) provide practical
guidelines for the evaluation of model performance depending on the level of
model abstraction.

The nature of the system being modelled is another consideration. For example,
a system based on human beings will involve agents with potentially irrational
behaviour, subjective choices, and complex psychology (see Kennedy 2012, for an
overview of how behavioural frameworks can be implemented in agent-based
models). These factors are difficult to quantify, calibrate, and sometimes justify,
which complicates the implementation and development of a model, as well as the
interpretation of its simulation outputs. However, the fundamental motivation for
modelling arises from a lack of full access to data relating to a phenomenon of
interest. Often, the target itself is neither well-understood nor easy to access.
The development of agent-based models offers a means to increase the utility of
simulation models, by closely tailoring the model and subsequent analysis to the
needs of end users (Parker et al. 2003). In particular, the visual communication
often provided by spatially explicit models, especially those coupled with GIS, can
be effective at depicting formal model results to a wide range of users (Axtell
2000). Nevertheless, a model’s output must be interpreted appropriately. Varying
degrees of accuracy and completeness in the model inputs determine whether the
output should be used purely for qualitative insight, or accurate quantitative fore-
casting. Crooks and Castle (2012) review the purpose of different ABM approaches
in more detail especially relating to explanatory and predictive (descriptive)
modelling approaches.

By their very definition, agent-based models consider systems at a disaggregated
level. This level of detail involves the description of potentially many agent attributes
and behaviours, and their interaction with an environment. The only way to treat this
type of problem in agent computing is through multiple runs, systematically varying
initial conditions or parameters in order to assess the robustness of results (Axtell
2000). There is a practical upper limit to the size of the parameter space that can be
checked for robustness, and this process can be computationally intensive, thus time
consuming. Although computing power is increasing rapidly, the high computational
requirement of ABM remains a limitation when modelling large systems (see Parry
and Bithnell 2012).
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In this sense, agent-based models have the potential to suffer from similar limita-
tions of the first generation of urban models such as Lee’s (1973) criticism of data
hungriness. However, this can be overcome by considering what level of abstraction
is needed to examine the phenomena of interest (for example, is ‘all the detail
needed?’). Or a series of smaller models could be created examining specific aspects
of the system. There is also a lack of personal data both for the present and the past.
For example in the UK, the smallest measure of individual data from the census is
the Output Area which contains around 125 households (notwithstanding access to
personal data, see Benenson et al. 2002) which can be obtained through MSM tech-
niques as demonstrated in Birkin and Wu (2012).

Critics of complexity theory point out that the wide variety of surprising behaviour
exhibited by mathematical and computational models are rarely found in the real-
world. In particular, ABMs are very sensitive to initial conditions and to small
variations in interaction rules (Couclelis 2002). This path dependence means that
using ABM for prediction can be challenging (see Batty and Torrens 2005).
Consequently, modellers of complex systems are never likely to enjoy the intellectual
comfort of ‘laws’ as seen in the physical or chemical worlds (Wilson 2000). Despite
this, and the other limitations that have been highlighted, ABM is a useful tool for
exploring systems that exhibit complex behaviour. They highlight uncertainty behind
modelling geographical systems and provide a technique to explore such uncertainty
through their ability to generate possible futures rather than generating definitive
models with strong predictive assumptions (Epstein 1999). Complexity theory has
brought awareness of the subtle, diverse, and interconnected facets common to
many phenomena, and continues to contribute many powerful concepts, modelling
approaches and techniques (see Manson et al. 2012 for further information). In this
vein, Section 5.8 explores general ABM applications before focussing on agent-based
models of geographical systems.

5.8 Applications of Agent-Based Models

Itis impractical to comprehensively review the full range of ABM applications within
this chapter, and even examination of a representative sample presents a challenging
exercise. ABMs have been developed for a diverse range of subject areas, such as:
archaeological reconstruction of ancient civilisations (Axtell et al. 2002; Kohler et al.
2000); understanding theories of political identity and stability (Lustick 2002);
understanding processes involving national identity and state formation (Cederman
2001); biological models of infectious diseases (Yang and Atkinson 2005); growth of
bacterial colonies (Kreft et al. 1998); single- (Emonet et al. 2005) and multi-cellular
level interaction and behaviour (Athale and Deisboeck 2006); alliance formation
of nations during the Second World War (Axelrod and Bennett 1993); modelling
economic processes as dynamic systems of interacting agents (Tesfatsion 2006);
company size and growth rate distributions (Axtell 1999); geographical retail
markets (Heppenstall et al. 20006), size-frequency distributions for traffic jams
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(Nagel and Rasmussen 1994); price variations within stock-market trading (Bak et al.
1999); voting behaviours in elections (Kollman et al. 1992); identifying and explor-
ing behaviour in battlefields (Ilachinski 1997); spatial patterns of unemployment
(Topa 2001); trade networks (Epstein and Axtell 1996); business coalitions over
industry standards (Axelrod 2006); social networks of terrorist groups (North et al.
2004), to name but a few. These examples can be constructed as lying on a continuum,
from minimalist academic models based upon ideal assumptions, to large scale
commercial decision support systems based upon real-world data. In relation to the
focus of this chapter, the remainder of this section concentrates on the origin of ABM
applied to urban phenomena, particularly in a geographical context.

Despite the advantages of ABM as a tool for simulation, ABM has only
recently been adopted for geospatial research. Thomas Schelling is credited with
developing the first social agent-based model in which agents represent people,
and agent interactions represent a socially relevant process. Schelling’s (1971)
model demonstrated that stark segregation patterns can emerge from migratory
movements among two culturally distinct, but relatively tolerant, types of house-
hold. Yet ABM did not begin to feature prominently in the geographical litera-
ture until the mid-1990s when Epstein and Axtell (1996) extended the notion of
modelling people to growing entire artificial societies. Epstein and Axtell’s
Sugarscape model demonstrated that agents could emerge with a variety of char-
acteristics and behaviours suggestive of a rudimentary society (e.g. in terms of
patterns of death, disease, trade, health, culture, conflict, war, etc).

The above two models have inspired a number of modelling efforts with respect
to urban simulation and it is to this that we now turn briefly. Further information and
summaries of ABM applications are presented in Parts 3 and 4 of this book. As
stated previously, ABMs can be applied to any scale, from the atomic to the global.
How one defines an agent depends on what phenomena one is interested in.

Numerous efforts have been made to apply ABM to environmental modelling
especially land-use and land-cover change models (see Parker 2005; Parker et al.
2012; Magliocco 2012; for further details). ABM specifically pertaining to urban
phenomena including dynamics in Latin American cities (Barros 2012) urban
housing dynamics (Benenson et al. 2002), urban growth and residential location
(Torrens 2006; Brown et al. 2005; Liu and Feng 2012), and gentrification (Jackson
et al. 2008). The impact of policy on geographical areas has also been investigated
through ABM, for example education planning (Harland and Heppenstall 2012)
and crime simulation (Malleson 2012). Due to the ability of agents within ABMs to
move, they are also commonly used to simulate traffic movement (e.g. Beuck et al.
2008). Additionally, numerous applications have been developed specifically to
study micro-scale phenomena such as pedestrian models (Johnasson and Kretz
2012), which explore how agents move around their environment. Other useful
examples of spatially explicit agent-based models include: the simulation of
pedestrians in the urban centres (Haklay et al. 2001), the examination of crowd
congestion at London’s Notting Hill carnival (Batty et al. 2003), and emergency
evacuation of buildings (e.g. Gwynne et al. 2001).



5 Introduction to Agent-Based Modelling 101
5.9 Conclusion

Successfully replicating the processes and dynamics that occur within geographical
systems is highly challenging. There are a potentially infinite number of individual
components linked together by often unknown interconnected processes that play out
at different spatial and temporal scales. The notion of bottom-up modelling advocated
by ABM allows the results of local phenomena to be understood and measured at a
global level. While established methods, such as SI (Spatial Interaction) modelling,
treat populations as aggregate homogeneous components, ABMs potentially
allow every individual to be assigned their own characteristics. This is a powerful
paradigm that holds great promise for facilitating greater understanding of geo-
graphical systems.

This chapter has provided a general introduction to ABM. Along with a presenta-
tion of the main characteristics of ABM, the distinction between ABM, CA and
MSM have been discussed. Important considerations when working with ABM, for
example validation, verification and visualisation, were presented along with the
advantages and limitations of this approach for geographical systems. The chapter
concluded by exploring a diverse range of geographical applications of ABM.
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Chapter 6
Agent-Based Models — Because They’re
Worth It?

David O’Sullivan, James Millington, George Perry,
and John Wainwright

Abstract We address the question of when the relative complicatedness of spatial
agent-based models (ABMs) compared to alternative modelling approaches can be
justified. The spectrum of ABM types from simple, abstract models to complicated
models aspiring to realism makes a single answer impossible. Therefore we focus
on identifying circumstances where the advantages of ABMs outweigh the
additional effort involved. We first recall the reasons for building any model: to
simplify the phenomena at hand to improve understanding. Thus, the representa-
tional detail of ABMs may not always be desirable. We suggest that critical aspects
of the phenomena of interest that help us to assess the likely usefulness of ABMs
are the nature of the decisions which actors make, and how their decisions relate
to the spatio-temporal grain and extent of the system. More specifically, the hetero-
geneity of the decision-making context of actors, the importance of interaction
effects, and the overall size and organization of the system must be considered. We
conclude by suggesting that there are good grounds based on our discussion for
ABMs to become a widely used approach in understanding many spatial systems.
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6.1 Introduction

In this chapter we critically examine the usefulness of agent-based models (ABMs)
in geography. Such an examination is important because although ABMs offer some
advantages when considered purely as faithful representations of their subject matter,
agent-based approaches place much greater demands on computational resources,
and on the model-builder in their requirements for explicit and well-grounded
theories of the drivers of social, economic and cultural activity. Rather than assume
that these features ensure that ABMs are self-evidently a good thing — an obviously
superior representation in all cases — we take the contrary view, and attempt to
identify the circumstances in which the additional effort that taking an agent-based
approach requires can be justified. This justification is important as such models are
also typically demanding of detailed data both for input parameters and evaluation
and so raise other questions about their position within a broader research agenda.

One inspiration for our approach is found in a brief but challenging commentary
by Helen Couclelis (2002). Noting that ABMs add to “the well-known problems of
modeling a highly complex, dynamic spatial environment” (pp. 4-5), the additional
difficulties of “modeling highly complex, dynamic decision-making units interacting
with that environment and among themselves in highly complex, dynamic ways”.
She continues:

The question is whether the benefits of that approach to spatial modeling exceed the consid-
erable costs of the added dimensions of complexity introduced into the modeling effort.
(Couclelis 2002, pp. 4-5)

Couclelis offers her own answer, when she goes on to say: “The answer is far
from clear and, in my mind, it is in the negative” (p. 5). However, Couclelis does
leave the door open to further discussion. Others such as Gross and Strand (2000)
have argued that capturing micro-scale complexity requires models with the complex
micro-structures that the agent-based approach incorporates; in short, a complex
world requires structurally complex models. These contrasting perspectives make it
clear that an open question remains: under what circumstances is the extra effort of
these data- and theory-intensive models rewarded, and why? The aim of this chapter
is therefore to establish under which circumstances ABMs really are worth it!

6.2 Horses for Courses: Different Agent Models
for Different Purposes

There are many possible ways of classifying ABMs (see Crooks and Heppenstall
2012 for a brief overview). In geographical applications, at the most abstract level, an
ABM consists of agents interacting with and in an environment. Various typologies
can be constructed on the basis of the nature of the agents and of the environmental
representation. Couclelis (2002, p. 4) offers one such classification based on whether
the agents and the environment are ‘designed’ or ‘analyzed’. This terminology is
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somewhat confusing (it derives from an engineering perspective), but may be clearer
if we replace ‘designed’ with theoretically derived and ‘analyzed’ with empirically
derived. Couclelis goes on to consider the purpose of these different possible
combinations of agent and environment type.

An alternative approach to classifying ABMs is to consider three broad styles of
model (see O’Sullivan 2008). Arguably, the bulk of academically orientated work to
date using ABMs continues to be in the realm of simple abstract models where the
focus is on exploring the collective implications of individual-level decision making.
Schelling’s book title Micromotives and Macrobehaviour (Schelling 1978) captures
the intention of this approach well (and is discussed by Birkin and Wu 2012). The
‘Schelling model’ of residential segregation is the most familiar example of this style
(Schelling 1969), and has spawned a cottage industry of variants and explorations of
how various minor changes to the assumptions underlying the model affect the
outcomes (see Fossett 20006, for a detailed exploration of some aspects of the model).
In the same vein are Epstein and Axtell’s (1996) Sugarscape models, Axelrod’s work
on iterated game theoretic models (Axelrod 1997) and many ABMs of economic
behaviour (see Tesfatsion and Judd 2006). Examples of this abstract approach in an
urban context include Batty’s work on how simple movement and resource exploita-
tion actions on heterogeneous landscapes produce characteristic settlement size dis-
tributions (Batty 2005, Chap. 8), and a preliminary model of sprawl presented by
Brown and Robinson (2006). The abstract approach is also common in other fields
such as biology (see, for example, Ehrlich and Levin (2005)). It is this style of work
which is largely responsible for excitement in some quarters around the potential of
‘complexity science’ to answer general questions about the nature of systems in a
wide range of specialist fields (e.g. Bar-Yam 1997).

A second type of ABM is more detailed and locates virtual model agents in a
representation of the real world setting of interest. Typically, such models operate at
a regional or landscape scale, although this is dependent on the issue(s) that a par-
ticular model is addressing. A common application for this flavour of ABM is land-
use and cover change (LUCC), often in the context of climate-change scenarios.
A recent special issue of Landscape Ecology (Milne et al. 2009) gives a sense of the
diversity of models in this context, and also of the importance of integrating ABMs
with those other approaches. Examples of the type we have in mind are the work of
Millington et al. (2008) and Matthews (2006). Here, the goal of developing a model
is to understand how expected or possible changes in the behaviour of individual
entities arising from the changing policy environment affect landscape-level vari-
ables that feedback to both agent behaviour and resulting system-level outcomes
(such as, for example, climate change). A different context for models of this kind
is the attempt to understand how an urban streetscape or a complicated building
design affects the behaviour and paths followed by pedestrians interacting in that
environment (Haklay et al. 2001; Helbing et al. 2001; Kerridge et al. 2001). The
common thread linking these settings is that the interactions among agents may
have more or less dramatic effects on the overall outcomes of the model. In both
cases, agent actions change the decision-making environment of other agents, albeit
at different spatio-temporal scales, and in different ways. In a LUCC model, more
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or less permanent changes in the environment are made by agent actors, and these
collectively affect future decision-making for all agents at the scale of the whole
model. In a pedestrian model, the urban or built environment is fixed, and the agents
themselves are a salient and rapidly changing feature of the environment, which
affects agents, often only locally.

Thirdly, some of the most ambitious models aim at detailed (i.e. “realistic”,
although see Dietrich et al. 2003, pp. 7-8, for a more extended consideration of real-
ism in models) representations of both the geographical setting and the processes
unfolding in that setting. Such models tend to be driven by the concerns of policy-
and decision-makers and revolve around urban, economic, and demographic man-
agement applications. The most obvious example of this style of model is the
TRANSIMS ABM of urban traffic where every individual vehicle in a large urban
system is represented second-by-second (Cetin et al. 2002). Closely related to
TRANSIMS is EpiSims, which takes the same approach to epidemic processes in
detailed representations of social networks (Toroczkai and Guclu 2007). When
models become this large, it becomes difficult to get to grips with their overall struc-
ture, or even to consider them as truly single models. The ‘model’ becomes a frame-
work in which subsystem models are integrated. An example of this approach which
has evolved over many years is the SIMPOP family of urban growth models (Sanders
et al. 1997; Bretagnolle et al. 2009). The modular and extensible structure of such
models is an attempt to cope with the difficulties inherent in extending the scope of
individual-based models as they grow to encompass large scale continental or global
systems, a problem which is also encountered in using and interpreting general
circulation models of global climate.

This last category makes it clear that any typology of ABMs is necessarily highly
schematic. The three types of ABM we have discussed are more like points along a
continuum of increasing size and complexity than discrete categories. The value of
developing such a typology at all is to realize that ABMs are built for a wide variety
of reasons across a wide range of disciplines. ABMs, like all models, may be used to
explore theories and their possible implications, to understand how particular theories
may play out in particular contexts, and to assist in risk-assessment, or policy- and
decision-making. This complicates answering the question of whether or not ABMs
are useful in any particular application, although it suggests that the answer is “it
depends!” (on context, on purpose, on application, and so on). Even so, it is possible
to be more specific about the situations where agent approaches are likely to justify
the additional effort and cost that their development, analysis and use entail.

6.3 Are Modellers Agent-Based Because
They Should Be or Because They Can Be?

While there has been a lot of excitement in recent years about the potential of
agent-based methods, it is important to remember that none of the cases cited above
is one where agent models are the only possible approach. In most cases, ABMs
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are a relatively late arrival in a field where there is considerable previous experience
with styles of model that adopt a more aggregated approach, and these aggregated
models continue to be widely used. Thus, for example, land-use transport models,
which are calibrated and run based on transport analysis zones, are much more
widely deployed by city governments worldwide than ABMs at the individual
vehicle level simulating morning and evening rush hours; see Wegener (2004).
What, if anything do ABMs add, and by extension, when should we prefer ABMs
over more traditional methods?

At times, it appears that the main motivation for adopting an agent-based
approach is simply because it can (now) be done. While the tools available for
ABMs (Railsback et al. 2006) are not yet as accessible or as well developed as those
for more established approaches such as systems dynamics (Muetzelfeldt and
Massheder 2003; Deaton and Winebrake 2000; Eberlein and Peterson 1994), ABMs
have surprisingly quickly become a viable approach for the spatial model builder.
The increasing ease with which ABMs can be developed, coupled with their
intuitively satisfying representational approach, in which each software agent
represents an ‘actor’ whether an individual person (or animal or plant) or an institu-
tion (often the barely more aggregated household) has led to widespread enthusiasm
for the approach. The appeal is undeniable: it appears obvious that individual-level
decision making is the fundamental driver of social systems, or more broadly that
the individual-level behaviours of plants and animals drive environmental change.
Setting to one side the thorny question of whether or not social phenomena are dis-
tinctive in kind from the merely aggregate actions of individuals (see O’Sullivan
and Haklay 2000), and hence also the question of whether it is the case that social
and environmental systems really are driven entirely by individual-level decision-
making, if we can represent systems at the ‘atomic’ level on which they operate,
then surely we should?

In our view this stance ignores the motives for developing models in the first
place. Put simply, the need for a model arises when understanding the world itself is
too hard! The danger of wholesale adoption of ABMs is that we simply replace one
difficult to understand phenomenon — the world itself — with an equally hard to
understand model. This is the difficulty that Couclelis identifies in her commentary.
A model that advances our understanding is one that represents what are considered
in a particular context the key features of a system and thus enables us to improve our
understanding of how that system works. Any gain in understanding of the system
resulting from the modelling process derives from our ability to analyze the model
and experiment with it. If the model is too complicated to analyze, all we have done
is to replace one poorly understood object of study with another, which we know to
be incomplete! There are good reasons to believe that using disposable ‘fast-and-
frugal” models will result in more rapid learning than highly detailed ones (Carpenter
2003), and in most, if not all cases, ABMs are not a ‘fast-and-frugal” option.

Considering such issues is at the heart of all model building. However, ABMs are
one aspect of a recent trend towards more complicated and detailed models. This
trend flies in the face of longstanding conventions in modelling and simulation,
which hold that simpler, more parsimonious models are preferable to complicated
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ones, all other things being equal. The search for parsimony in models is often
presented as a logical consequence of Ockham’s razor (see Perry 2009). That is not
a position we wish to defend. First, it is clear that Ockham’s admonishment to avoid
the ‘unnecessary multiplication of entities’ was never intended to guide the development
of simulation models! Second, there is no a priori reason for assuming that the
world is a simple place, when it is patently not!

Careless application of the principle of Ockham’s razor might lead us to conclude
that a less complicated model is more convincing, just because it is less complicated,
although this is not a logically defensible point of view. Ockham’s razor is an
argument about the capacity of different descriptions of reality to explain observed
phenomena, not grounds for always preferring simpler explanations to more
complicated ones. Even so, there are good pragmatic reasons for preferring parsimo-
nious models. Such models are much easier to learn from than models with many
parameters and sub-models. They are easier and more cost-effective to parameterize,
and they are also much less vulnerable to the propagation of errors due to the uncer-
tainties in estimating multiple interrelated parameters (again, see Carpenter 2003).

Based on this observation, the important question is to determine what features
agents bring to a model which make a difference that matters. This concern is
similar to the argument made by Andrew Sayer in his consideration of “the differ-
ence that space makes” in explaining social systems (Sayer 1985). Although he is
discussing the role of space in social theory, Sayer’s arguments seem to us to
apply with equal force to the evaluation of models. The basis of the argument is
the distinction to be made between necessary and contingent features of a theory.
Some aspects of any phenomena we wish to explain are absolutely central — that
is, necessary — to the nature of that phenomena, while others are peculiar to occur-
rences of those phenomena in particular contexts — that is, contingent on those
particular occurrences. A less philosophical way to express the same idea is simply
to ask, which features of the phenomena we are interested in are essential? Asking
this question is really what building a model is all about. Answering this question
in the context of ABMs should focus our thinking on the issue of what the agents
in a model are, what they do, and following from this, when they are necessary to
any representation of the phenomena of interest. In the remainder of this chapter,
we sketch out the circumstances in which agents are more likely to be necessary
to an adequate model. In our conclusions, we briefly revisit the idea of contin-
gency and its relevance to this issue.

6.4 What Are Agents? And What Do They Do?

These considerations bring us to the basic question of what adopting an agent-based
representation in a model achieves in terms of a simulation. There is general agreement
(amidst much debate about finer points!) on the basic characteristics of agents in spatial
models. More detailed consideration of the meaning of the defining characteristics of
such agents can be found in Crooks and Heppenstall (2012). We consider the most
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fundamental characteristics of agents in spatial models to be goal-direction and
autonomy (Jennings et al. 1998). However, more specific definitions of the concept
may add any of flexibility, ‘intelligence’, communication, learning, adaptation or a
host of other features to these two. In practice, whatever way we describe their
characteristics, agent actions in models revolve around exercising choice among
available options in order to achieve defined goals.

The outcome of an agent making a particular choice is some difference in
either the location of the agent (i.e. the agent moves) or in the environment. In
the latter case, the agent alters the attributes of its current location in some way.
Depending on the model context, this may involve the agent exploiting resources
at its current location (and hence depleting the supply of those resources at that
location); altering the state of the location (e.g. changing the land use); acquiring
the land at its present location; or, perhaps simply updating its current ‘map’ of
the environment. In each case, there may be an accompanying change in the state
of the agent itself, such as when resource exploitation increases the agent’s
wealth or energy resources.

This account of spatial ABMs (and it is important to note that there are many
examples in the literature of aspatial ABMs) has several implications:

e Agents may be mobile, but this is not a necessary feature (models of trees in
forests are among the most common types of ABM). However, it is important that
each agent has a different relationship with the spatial environment, most simply
in terms of a location in the environment. If all agents have the same spatial
relationship with the environment (if, for example, every agent has an equal
capability to alter every location in the model regardless of the agent’s specific
location or every agent sees and responds to an aggregate ‘average’ of the envi-
ronment), then it makes little sense to formulate the model as an agent model;

e Agents may change their spatial relationship with the environment over time,
which may be by moving, or it may be by alteration, acquisition or disposal of
locations; and

e Agents are able to evaluate spatial configurations. This ability may be as simple
as determining that the availability of some resource at the current location is
sufficient for some purpose, or is greater than at neighbouring locations.
Alternatively, it may involve a complicated evaluation of the spatial distribution
of resources (including other agents) with respect to the current location, relative
to a number of alternative locations.

This framework for thinking about agents in a spatial ABM may be illuminated
by considering some examples (see also Fig. 6.1):

1. Pedestrian or other mobile agents in a model of an urban streetscape or complex
building. The primary choice made by such agents is to determine, with respect
to their intended destinations, which among the possible next locations they
should move to. In most models of this kind, the location of other agents is an
important element in the choice, but the decision will also be affected by the
agents’ local physical environments (e.g. building geometries).
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Fig. 6.1 Schematic illustration of the choices facing agents in five different types of model. See
text for details

2. Residential agents in a ‘Schelling-style’ model are also primarily concerned with
movement, although it is movement of a rather different kind. They evaluate
their current and potential new locations, and if one of the new locations consid-
ered is preferable in some way to their current location, then they may move
there. Again, the locations of other agents in this model influence the choices
made by each agent, but the nature of the environment itself does not.

3. Hunter-gatherer agents in a model of resource exploitation in which establish-
ment of permanent settlements is an outcome will probably combine aspects of
the two previous types of agent, in that they evaluate competing locations, and
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will choose to stay or go depending on the resources at those locations. Rather
differently to the previous two cases, however, the actions of these agents will
alter the environment directly, not just in terms of the location of the agents
themselves.

4. Farmer/land-use change agents, like the previous type, alter the environment
itself, but unlike them are unlikely to move in the process. They may alter their
relationship with the spatial environment by acquiring or disposing of land as
one aspect of the management of their resources.

5. Property developer agents in an urban growth or development model are unlikely
to be explicitly spatially located in the way that agents in the previous examples
are. Like farmer agents, they will have some attachment to a ‘territory’, which
they are able to grow, change, or reduce by acquisitions, development actions, or
sales into a property market. Such agents are likely to have a relatively sophisti-
cated ability to evaluate spatial configurations of currently owned locations rela-
tive to the various land uses and land values in the model.

Aspects not explicitly considered in these examples, but highly relevant in
practice, are the spatial and temporal grain of the model representation, and the
relationship between the two. By grain we mean the extent of the smallest units of
space and time which are explicitly represented in a model. A fine-grained model
might represent second-by-second developments at spatial resolutions of a metre
or less; traditionally, such models have been seen as unable to consider extended
spatio-temporal domains. A coarse-grained model might operate on large units of
space (say several square kilometres) over time periods of a year or more. Grains
much coarser than this seem unlikely in practice because ABMs are about the
choice-making behaviour of individual living actors. While contemporary societ-
ies occasionally aspire to decision-making that takes into account time horizons
longer than a year or so (and simulation models are seen as central to this decision-
making; see Clark et al. 2001), it is rare for choices to be ‘locked in” over much
longer time frames than this. Similarly, it is difficult to imagine an ABM model
that would be recognizable as such where spatial agents act on ‘local’ spatial
knowledge more wide-ranging than a few kilometres.

Note that we adopt the concept of grain here in preference to spatio-temporal scale
because the latter often also implies the overall extent or scope of a model. While the
grain of the representation in a model and its overall scope are not independent, it is
increasingly common to see unexpected combinations particularly of fine grains with
wide extents (for example, Epstein 2009, refers to an epidemic model that explicitly
represents the whole population of the Earth as individual agents).

Although as geographers we might wish to grant representation of the spatial
aspects priority over temporal aspects, temporal considerations are of at least equal
importance, not least because the two are interlinked (both conceptually and compu-
tationally). Decisions are usually made by agents over some timeframe of interest,
which may in turn imply a relevant spatial grain.

In a pedestrian model this timeframe might be second-by-second, as pedestrians
adjust their course to avoid obstacles (including other agents). More generally,
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mobile agents (whether human or some other animal) will be making decisions at
time scales dictated by their mobility on the one hand and their perception of the
nature of the spatial distribution of resources on the other. The decision-making
timeframe combined with the speed of movement of the agents then effectively
dictates a sensible spatial grain for a model of this type — with plausible models
capturing spatial detail down to or below the metre range for human agents. In
resource exploitation models the timeframe of interest is dictated by context. In a
model of hunter-gatherer behaviour with only limited storage of resources, daily or
weekly activity patterns and decisions will predominate, and this, combined with
rates of movement, will govern how we represent spatial aspects of both the agents
and their environment. In cases where the mobility of agents is less dominant, as in
the farmer or property developer examples above, the linkage between the temporal
and spatial grain is less direct, but nevertheless remains important. The key issue in
these cases is how rapidly agents change the environment, and how quickly those
changes affect the later decisions of other agents. A monthly, seasonal or annual
timeframe is likely to be the most appropriate in these cases, since the outcomes of
planting or development decisions that take appreciable times to unfold will affect
further decision making. In these cases the spatial grain is a product of the amount
of change which can be effected by individual agents over the chosen time frames.
This in turn will be dependent on organizational features of the agents themselves
in particular if they are institutional actors. For example, where property developers
are small businesses, we may be interested in development at the level of individual
land parcels. Where we are interested in larger corporate actors, the spatial extent of
agent actions may be much larger.

In the one highly abstract case we consider above, that of ‘Schelling-style’ resi-
dential relocation models, these considerations are a lot less clear-cut. In such cases,
questioning the spatial and temporal grain can contribute to conclusions that may be
considered very unflattering to the model under examination; see, for example,
Goering (2006). The essentially theoretical, abstract nature of the model comes to
the fore and the spatio-temporal grain of the representation is of less relevance than
its structure and the overall system tendencies it points to.

6.5 So When Do Agents Make a Difference?

The emphasis we have placed on decision making by agents and the related choice of
the spatial and temporal grain in a model helps to address our original question
about when it is appropriate to adopt an agent-based representation in a model. If the
decisions at the heart of a model are made in local contexts, which depend in turn on
the spatio-temporal grain of the model in such a way that every agent decision reduces
to the same decision, then an aggregated statistical or mathematical representation
may be sufficient. The classic examples from game theory, such as Prisoner’s Dilemma
and the Tragedy of the Commons fit this template well, and continue to shed light on
the overall structure of many social systems and coordination problems.
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Where agents’ preferences and (spatial) situations differ widely, and where
agents’ decisions substantially alter the decision-making contexts for other agents,
there is likely to be a good case for exploring the usefulness of an agent-based
approach. This argument focuses attention on three model features: heterogeneity
of the decision-making context of agents, the importance of interaction effects, and
the overall size and organization of the system.

If agents are the same throughout the system, then, other things being equal, an
aggregate approach is likely to capture the same significant features of the system
as an agent-based approach. However, it is important to extend our concern with
heterogeneity to encompass not just agents but to agents in their (spatial) decision-
making contexts. A population of identical agents in diverse contexts can produce
somewhat unexpected outcomes as a result of different choices being made in those
different contexts, which then alter the options available to all agents at subsequent
times. ‘Schelling-style’ models exemplify this. The opposite case, where every
agent makes its choices in the same context but heterogeneity in the agents may
produce dramatically different results depending on the degree of heterogeneity, is
less familiar. An example is provided by Rand et al. (2002), whose abstract model
of urban growth shows that the existence of even small numbers of households
with a preference for aesthetic over urban amenity can dramatically accelerate
exurban sprawl.

In both of these cases, agent actions result in changes to the decision making
context for other agents, an indirect and weak form of agent-to-agent interaction.
Some form of agent interaction is necessary at a minimum if an agent-based
approach is to be justified. If each agent’s decisions make no difference to the
subsequent decision-making contexts of other agents, then the generalized pay-off
matrices of classical game theory are again likely to provide a sufficient representa-
tion of social systems. The stronger any interaction effects are, then the more
important it will be to consider agent-based or other disaggregated approaches. In a
pedestrian model, interaction is direct. Each pedestrian agent is a significant element
in the local environment of many other agents, and decisions made by one agent
immediately alter the local decision-making environment of nearby agents. Where
the contexts for decision-making are more general, based on aggregate system
measures, so that each individual’s decisions make only minor differences to the
choices of others, then the case for an agent-based approach is less clear.

By the system size, we mean the total number of agents in the system. This aspect
relates to the previous point. In large systems, other things being equal, unless inter-
action effects are strong and direct, it may not be necessary to adopt ABM approaches.
In such cases, mean-field approaches provide appropriate representations of system
dynamics (Berec 2002). This consideration is closely related to one of the earliest
characterizations of the idea of system complexity by Warren Weaver (1948), who
distinguishes middle-sized systems of “organized complexity” from small systems
of only a few elements on the one hand, and large systems of disorganized complex-
ity explicable in statistical terms (gases are the obvious example) on the other.
Systems of organized complexity are those where interaction among elements — more
than that, iterative or hierarchical organization of the elements — renders statistical
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explanation inadequate. He wryly notes that the size range of such systems is very
broad: “large compared to two, but small compared to the number of atoms in a pinch
of salt” (Weaver 1948, p. 539). Taking only system size into account, this aspect may
appear redundant in determining the viability of agent-based approaches since all
social systems (that we know of?!) fall into this broad ‘middle’ range.

To resolve this issue, we must delve more deeply into the idea of system organi-
zation. Where systems are sufficiently ‘organized’, it may be that intermediate
levels of organization are durable enough to form the atomic units on which we
should focus in a model, rather than individuals. This fact is already implicit in
cases where households rather than individuals are the agents in a model. Similarly,
in economic models, firms are often recognized as the appropriate units for repre-
sentation. In models of large collections of individual actors, perhaps the most
important question for the would-be agent-based modeller to ask is not “is an ABM
appropriate?” (where the presumption often is that agents should represent indi-
vidual actors). A more important question may be, “what should the agents in an
ABM of this system represent?” If the interactions among individual actors in the
real world are substantially channelled via institutions or other social or spatial
structures, perhaps it is those institutions or social or spatial structures that should
be represented as agents in an ABM rather than the individuals of which they are
formed. One way to think about this is to see that in choosing to represent not
individual actors as agents but instead some other intermediate level aggregate
entity, we are effectively reducing the system size to a point where actions of
individual agents make a difference, thus justifying the approach.

All three of our system criteria favouring the adoption of ABM — heterogeneity,
interaction, and the combined effects of system size and organization (‘middle-
numbered-ness’) — call for considerable prior knowledge and insight about system
characteristics on the part of those developing models. Thus, it would be wrong to
draw any universal conclusions from our account to a statement about the useful-
ness of agent-based approaches in general. Instead, we strongly recommend careful
consideration of the system features we have discussed before simply assuming that
an agent-based representation is inherently superior. Where consideration of these
aspects suggests that an agent-based representation is indeed necessary, then it is
worth noting that the resulting model is often one where a full explanation of the
model behaviour calls for a historical account of the events in the model. If agents
are necessary in the model because they are differentiated from one another, because
they interact meaningfully with one another, and because they are able to make a
difference to system level outcomes, then in describing and understanding the
model, it is likely that Sayer’s (1985) contingent effects will be significant. Thus
particular agent-agent interactions will matter, and a detailed account of the model
‘history’ may be necessary for a complete understanding of any particular model
run. The difference from the real world target system we seek to understand, is that
a model allows repeated runs and enables a probabilistic or general account of the
system behaviours and tendencies to be developed.

Our discussion relies on a priori understanding or analysis of the system struc-
ture, or post hoc assessment of whether the resulting model demonstrates the
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historical-contingent features that would suggest it was the right choice of
approach. Neither is a particularly satisfactory or systematic way to decide
whether or not to embark on the demanding and potentially costly development of
an ABM approach in a particular case. Given the complex nature of the systems
and problems involved, it is difficult to see how at least piloting ABM and alterna-
tive approaches can be completely avoided (another reason for preferring simple
models to complicated ones?), but recent approaches do suggest ways in which
the usefulness of ABMs can be assessed, such as pattern-oriented modeling
(Grimm et al. 2005; Grimm and Railsback 2012) and the comparison of mean-field
and individual-based models (Iwasa 2000).

While we cannot make sweeping general claims from our discussion, it seems
clear that human settlement systems are often strong candidates for agent-based
representations. This claim is based on the criteria for the usefulness of ABMs that
we have identified: heterogeneity, interaction, and system size and organization.
Similar arguments can be made about human-environment systems more generally,
even in prehistoric settings where the degree of organization of the social systems
may be rather more limited. While other approaches remain useful, arguments
against building ABMs based on the extra effort involved can be countered because
the potential for insight and understanding from building and using such models
makes those efforts worth it.
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Chapter 7
Agent-Based Modeling and Complexity

Steven M. Manson, Shipeng Sun, and Dudley Bonsal

Abstract Complexity theory provides a common language and rubric for applying
agent-based processes to a range of complex systems. Agent-based modeling in turn
advances complexity science by actuating many complex system characteristics,
such as self-organization, nonlinearity, sensitivity, and resilience. There are many
points of contact between complexity and agent-based modeling, and we examine
several of particular importance: the range of complexity approaches; tensions
between theoretical and empirical research; calibration, verification, and validation;
scale; equilibrium and change; and decision making. These issues, together and
separately, comprise some of the key issues found at the interface of complexity
research and agent-based modeling.

7.1 Introduction

Complexity theory and the accompanying trappings of complex systems provide the
theoretical basis for agent-based models (ABMs). While modelers are usually inter-
ested in addressing specific theoretical questions and working in particular substantive
areas, they almost invariably draw on complexity concepts when using an agent-based
approach. The relationship between ABM and complexity is mutually beneficial.
While complexity has much to offer ABM in terms of underlying concepts, modeling
advances complexity by making real many of the often fuzzy concepts on which com-
plexity science relies. Advances in ABM are allowing modelers to move beyond
studying complex systems in just metaphorical or rhetorical terms by giving them the
tools to represent complex phenomena. Many disciplines are using ABM to enhance
understanding of the interplay of complexity concepts, ranging from policy fields
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(Carrillo-Hermosilla 2006; Gatti et al. 2005; McKelvey 1999) to the natural sciences
(Brose et al. 2004; Phillips 2006; Rind 1999) through to the social sciences (Batten
2000; Manson and O’ Sullivan 2006; Sampson et al. 2002) and into the humanities and
arts (Nowotny 2005; Portugali 20006).

When the theoretical questions regarding complexity are combined with the
broadly applicable research allowed using ABM, a number of issues stand out,
including:

* Reconciling a range of complexity approaches

* Navigating the tension between theoretical and empirical research
* Implementing calibration, verification, and validation of models

* Dealing with scale

* Balancing the corollaries of equilibrium and change

» Representing features of decision making.

These issues, together and separately, comprise some of the key points of contact
and contention among the various components of complexity research and ABM.
Ongoing examination of these issues is spurring further ABM research that illumi-
nates phenomena studied in the physical environment, social systems, and their
combination via human-environment research.

7.2 Complexity Approaches

Complexity theory is less a singularly defined, discrete conceptual entity than an
interdisciplinary focus for which individual fields and researchers use a common set
of queries, concepts, and approaches. Given this lack of a single, identifiable core,
the terms ‘complexity theory’ and ‘complexity sciences’ can therefore fittingly refer
to an array of research methods. In order to provide an organizational schema to
this diverse field, we identify three streams of complexity research: algorithmic
complexity, deterministic complexity, and aggregate complexity (cf. Byrne 1998;
Cilliers 1998; Lissack 2001; Manson 2001). At its simplest, algorithmic complexity
conceives of any system in terms of the computational or heuristic processes needed
to replicate system behavior. Deterministic complexity envisions a system through
the lens of nonlinear dynamics and chaos theory, in order to try to capture system
dynamics via a small set of mathematical equations. Aggregate complexity focuses
on how complex systems arise from interactions among individual entities. It is this
final kind of complexity, aggregate complexity, that most ABM researchers tend to
invoke when modeling, although algorithmic and deterministic complexity make
their own contributions to ABM.

Complexity in any of its above-mentioned forms typically applies to a system, a
set of entities connected to each other and the external environment in a way that
gives it an overall identity and behavior. An ABM in its most basic form repre-
sents a system of such discrete entities. Systems can be of almost any scale, from
atoms bound together in a molecule to households in an economy to planets in the
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solar system. The key to modeling any of these systems, and therefore the key to
complexity research and ABM, is the capture of core characteristics among system
entities and, critically, their interrelationships. An ecosystem, for example, is self-
contained in terms of much of its structure and function but also has many connec-
tions to the larger climatic, geophysical, and biotic environment. The model must
also have system boundaries that set it apart from its larger context. An urban area,
for example, can be defined in a number of ways, but most models focus on ele-
ments of the built environment such as buildings and populations (e.g., workers,
homeowners) that have relationships via migration, capital flows, and environmental
relationships with the larger world.

Algorithmic complexity focuses on representing systems in computational and
mathematical terms. The component fields of computational complexity theory and
information theory examine the difficulties of computing the solution to problems
and representing a system or reproducing its behavior (Chaitin 1974; Gell-Mann
1994). At its most useful, algorithmic complexity provides a number of different
measures of how a system is composed and represented. One helpful side effect is
that some measures will identify problems that cannot be solved mathematically or
computationally with our current state of knowledge, but that may yield to simula-
tion or heuristic approximations. Beyond these instances, the use of algorithmic
complexity in complexity research and ABM has been limited given the greater
interest in deterministic and aggregate complexity (O’Sullivan 2004).

Deterministic complexity is defined by approaches that use sets of mathematical
equations to describe the state and trajectory of system dynamics. Deterministic
complexity is so called because it finds for complex systems a few key variables and
equations to describe system state and evolution; in this sense, system behavior is
‘determined’ by these equations and variables. Positive and negative feedback are
important components of deterministic complexity, spurring changes that self-
reinforce or diminish over time, respectively. Given the potential for such feedback,
deterministically complex systems exhibit both sensitivity and nonlinearity. The
former refers to how systemic changes can result from small perturbations while the
latter refers to how these small changes can give rise to disproportionately large
changes in system structure or behavior (Phillips 2003). The combination of sensi-
tivity and nonlinearity is exemplified by the ‘butterfly effect,” where slight varia-
tions in initial model parameters, due to the displacement of air by butterfly wings,
can lead to large meteorological changes in a modeled weather system (Lorenz
1973). The elements of sensitivity and nonlinearity are further adopted and extended
by aggregate complexity for the modeling of agent-based systems.

Aggregate complexity focuses on how complex systems arise from the local inter-
actions of system entities. With this perspective, the structure and dynamics of a
system such as a city must be understood as driven by individual components and
their relationships. In a city, these entities are people, households, firms, and orga-
nizations whose relationships are defined by exchanges of matter, energy, and infor-
mation. These entities have relationships with other entities and play multiple roles
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within the city. Some of the stronger relationships give rise to larger aggregations
(e.g., families, neighborhoods) that may act as entities in and of themselves. This
potential for larger entities and behaviors to arise out of local interactions is seen as
a form of self-organization, whereby entities and their relationships are sufficiently
strong yet flexible enough to allow the overall system to adapt to a changing envi-
ronment (Easterling and Kok 2002). In some settings, self-organization leads to
self-organized criticality, where the system rapidly reconfigures entities and internal
relationships, in response to internal perturbation or external shocks (Bak 1996).
Self-organization is related to the concept of emergence, whereby system character-
istics or behavior result less from additive effects of system entities and their behav-
ior and more from synergistic relationships among entities (Funtowitcz and Ravetz
1994; Holland 1998). One important kind of emergence is supervenience, where
changes in system structure or behavior at one level of aggregation are driven by
changes at a lower one (Sawyer 2002). In sum, aggregate complexity demonstrates
how system entities and their relationships define the behavior of sub-systems and
the system as a whole through self-organization and its offshoots, self-organized
criticality, emergence, and supervenience.

While it is useful to denote various types of complexity — algorithmic, determinis-
tic, aggregate — it is also important to note that complexity draws on many conceptual
antecedents. Since much of current complexity research, particularly aggregate com-
plexity, relies on notions of synergy and holism, it reflects philosophies tracing back
to Aristotle’s definitions of unity being more than the sum of parts and Whitehead’s
philosophy of organism, which contends that understanding nature requires more than
recourse to fixed laws, and instead identifies it as a system that is continually evolving
(Whitehead 1925). More recent antecedents include cybernetics and feedback (Wiener
1961), neural networks and other biological analogs (McCulloch and Pitts 1943),
work in computing including cellular automata (von Neumann 1966), and impor-
tantly, general systems theory, which holds that many systems have underlying simi-
larities (von Bertalanffy 1968). Complexity departs from earlier related work by
focusing on how systems emerge from the simple and local interactions among sys-
tem entities. While complexity shares with much previous work the assumption that
systems can exist in equilibrium, it also actively explores the possibility of perpetual
or repeated disequilibrium or near-chaotic behavior. In many respects, then, complex-
ity draws on key features of holism and synergy while also focusing on evolution and
the balance between equilibrium and disequilibrium.

7.3 Issues of Complexity and ABM

7.3.1 Tensions Between Theoretical and Empirical Modeling

ABMs are valuable for both theoretical exploration and empirical investigation of
complex systems. For theoretical inquiry, modeling serves as a means to better under-
stand how elements of interest and the relationships among them contribute to overall



7 Agent-Based Modeling and Complexity 129

system behavior over time. For empirical investigation, modeling is a vehicle for
presenting all known and necessary initial conditions — defined in large part by system
entities and their relationships — in order to determine how they have brought about an
observed state and how they could bear on future possible states. ABMs also offer
many opportunities to combine theoretical and empirical approaches, although not
without raising issues regarding the model’s simplicity and complexity.

Theoretical inquiry with ABMs usually entails running “controlled experiments”
that may spur the discovery of laws about complex processes (O’Sullivan 2004:
288). Purely theoretical ABMs are based on hypotheses that specify certain rules for
the behavior of actor agents and their interaction with the environment. When using
ABMs to model urban transportation, for example, actor behavior may be defined
by utility maximization, as measured by housing quality or work proximity, and
transportation cost minimization determined by distance to housing and work and
modal choice. While many theoretical models are built for illustrative purposes,
such as confirming what their underlying theories predict, some models generate
convincing, and sometimes surprising, theoretical implications. Work on racial seg-
regation simulation based on Schelling models, for example, continues to spur
debate (Fossett 2006). ABMs contribute to the longstanding use of computer simu-
lation to allow examination of many possible futures or pasts for a given system
(Manson and O’ Sullivan 2006).

Empirical models focus more than theoretical ones on using actual data to sim-
ulate real-world phenomena, although the two foci can be complementary. The
increasing number of theoretical models, the growing volume of empirical data, and
the use of lab experiments to create rules of agent behavior have all contributed to
recent expansion in the development of empirical models (Janssen and Ostrom
2006). These models usually extend aspects of theoretical models using empirical
data and have the ability to make predictions and prescriptions under different
demographic, economic, and policy scenarios. Since one of the aims of creating
empirical ABM is to accurately describe real-world processes, a tension exists
between the descriptive power granted by specificity and the desire to generalize to
other settings. A model must therefore maintain a balance between fitting the empir-
ical data and highlighting the processes of interest (Manson 2007).

The relationship between theoretical and empirical foci in ABMs highlights how
the modeling of empirically complex phenomena with relatively simple or founda-
tional rules is a difficult task. For example, because it is impossible to completely
simulate all aspects of natural or human organization without reduction and simpli-
fication, all urban complexity models will have a theoretical component (Irwin et al.
2009). Similarly, although complexity theory seeks to capture underlying dynamics,
we still face a world where it is difficult to divine many characteristics of the eco-
nomic state of a city beyond a few years. Any model that attempts to capture the
necessary specificity of the myriad system entities may be regarded less for its com-
plexity than for its complication (Torrens and O’Sullivan 2001). When adding a
large number of features to a model, the modeler strays from the notion that a small
number of rules describing the behavior of agents will lead to complex systems.
This challenge arises when modeling urbanization and land change, for example, as
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ABMs become more common and sophisticated. Modelers can represent many
entities and relationships at the risk of moving away from the ethos of generating
complex outcomes based on simple conditions and rules (Parker et al. 2003).

7.3.2 Calibration, Verification, and Validation

Agent-based complexity models require careful and thorough evaluation, which is
comprised of calibration, verification, and validation (Manson 2003). Calibration is
the adjustment of model parameters and specifications to fit certain theories or
actual data. Verification determines whether the model runs in accordance with
design and intention, as ABMs rely on computer code susceptible to programming
errors. Model verification is usually carried out by running the model with simu-
lated data and with sensitivity testing to determine if output data are in line with
expectations. Validation involves comparing model outputs with real-world situa-
tions or the results of other models, often via statistical and geovisualization analy-
sis. Model evaluation has more recently included the challenge of handling enormous
data sets, both for the incorporation of empirical data and the production of simula-
tion data. Modelers must also deal with questions concerning the relationship
between pattern and process at all stages of calibration, verification, and validation.
Ngo and See (2012) discuss these stages in ABM development in more detail.
Empirical ABM modelers struggle to obtain the data necessary for proper cali-
bration. From a practical standpoint, simulating a complex system such as an urban
housing market requires initializing a range of key components including agents,
organizations, and the environment. Modelers rarely have the necessary individual-
level data, however, to populate agents such as households, and may similarly be
missing information on organizational dynamics or features of the environment.
They typically have either a limited set of random samples (e.g., household surveys,
phone interviews) or more often, spatially aggregated data at various scales that are
collected for other purposes by different government agencies (e.g., census data,
regional economic information). Exogenous parameters (e.g. for urbanization, driv-
ers such as population growth rates, interest rates, and federal taxes) can often be
derived from actual data, but sometimes are the results of educated guesses, simple
linear interpolation, or extrapolation (Brown and Robinson 2006; Torrens 2007).
Proper calibration and validation also entails the integration and reconciliation
of data across multiple scales and formats. In ABMs involving both human and
environmental elements, for instance, integrating vector and raster data that
describe human and natural phenomena respectively at different scales can create
problems like ecological fallacies (drawing incorrect inference on individuals from
aggregated data) or inappropriate classification when assigning attributes and
aggregating features. There are also broader conceptual issues that arise when rec-
onciling data from different scales (e.g., household data vs. census information vs.
regional socioeconomic statistics) and linking these observed data to the agents of
interest (e.g., households versus parcels versus neighbourhoods). In response to
these issues, modelers may need to generate individual data from random samples
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or from aggregate data, such as census data. Promising approaches include iterative
proportional fitting procedures, where tabular data are modified to new levels of
aggregation, or Monte Carlo simulation, where multiple probabilistic draws are
taken on a sample data set (Wheaton et al. 2009).

While complexity modelers often lack sufficient data for ABM calibration and vali-
dation, they also face challenges when generating simulation data. Understanding the
dynamics of the attributes of different kinds of agents of even a moderately sophisti-
cated simulation demands great effort to visualize, analyze, and replicate the modeled
phenomenon or process (Janssen 2009). The nature of intermediate attribute and
behavioral data of actor agents, for example, is rarely discussed in the literature,
although such data are potentially useful for the validation of agent behavior and the
social processes that produce such behavior. Here, complexity theory can allow the
researcher to triangulate among different approaches and viewpoints, because it focuses
on identifying generic features of complex systems without getting the inquiry mired
in a need to address ontological or epistemological questions (O’Sullivan 2004).

In terms of broader validation challenges, distinctions between theoretical and
empirical approaches lead to questions concerning pattern and process. Patterns that
are often generated in complexity models, including fractals and information-theory
measures, may not reveal much about the processes that generate them, much less
whether the processes are complex in the sense meant by deterministic or aggregate
complexity. The potential disconnect between pattern and process may influence
how the modeler chooses between empirically-driven explanation and description
(which usually tilts toward pattern) versus theoretically driven discovery and hypoth-
esis generation (which is often biased towards process). A number of authors, for
example, incorporate variables and rules into a model that bring about a community
pattern for the Anasazi civilization in the southwest United States previously deter-
mined by archeologists and historians (Axtell et al. 2002; Dean et al. 2000). The
ABM identifies how discrete entities and their relationships give rise to higher-level
systemic processes, but this focus on scale raises the specter of equifinality, where
different variables and processes may lead to the same outcome, or similarly, where
only a few key variables determine model outcomes (Janssen 2009). For theoretical
models, the modeler has more leeway to set initial conditions and formulate iterative
rules that can illuminate a theoretical question, although validation becomes difficult
in the absence of empirical data. Axelrod’s (1997) culture dissemination model, for
example, demonstrates how regions adopt or reject the cultural practices of neighbor-
ing regions. The model results, while not reflecting the real world in detail, elicit
interesting questions about interactions between actors across space and over time.

7.3.3 Scale

ABM researchers pay close attention to the spatial, temporal, and organizational
scale of the simulation process. As noted above, one of the hallmarks of scalar
properties in ABMs is emergence, the phenomenon of processes occurring at one
level that are not evident based on a summing up of lower-level processes.
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Emergent properties are implicitly scalar, as seen in how humans function based
on the workings and interactions of the component organs, the flight patterns of a
flock of birds arising from the actions of individual birds, and the traffic gridlock
that occurs based on the decisions of individual drivers (Mainzer 1996). Importantly,
emergence is often unintentional. Drivers and their vehicles do not generally seek
to create gridlock, for example, but their actions and subsequent interactions read-
ily create traffic jams. ABM modelers can draw on several bodies of work to help
define and understand scale and emergence as well as adding context to notions of
non-linearity and sensitivity. In addition, scale offers an entry point to the model-
ing of networks using ABM.

One approach to defining scale levels and emergence is provided by hierarchy
theory, wherein actors and systems, through their functions and interactions, form
larger systems. A regional housing market, for example, can have several sub-
regions as housing market areas; each housing market area also has housing sub-
markets; a housing sub-market might then include several cities or several school
districts with similar socioeconomic characteristics; within such a sub-market exist
smaller neighborhoods defined by residents’ activity and interaction patterns. Under
this formulation, scale levels should be considered as defined by interactions and
relationships among entities, but importantly, it is up to the analyst to define these
levels instead of taking them as pre-defined (O’Neill 1988). Similar frameworks
exist for the emergence of scale from interactions among entities, such as when
institutions arise from the interrelationships of individuals (Ostrom 2005) or, more
broadly, when human-environment systems such as agriculture or forestry exist at
multiple scales of analysis (Easterling and Polsky 2004).

When drawing upon hierarchy theory, the modeler can identify the system’s con-
stitutive hierarchies, wherein the components of a subsystem have emergent proper-
ties only when they are brought together to form a higher-level system (Gibson et al.
2000). When considering emergent properties in collective behavior, an implicit
assumption is made by the modeler that the lower-level processes are individually
not as complex as the collective outcome, yet simultaneously each individual entity
may be constitutive of emergent properties based on processes one level further
down. The modeler can therefore create a series of models that nest these processes
within one another, thereby modeling a hierarchically ordered system.

Notions of scale levels defined by constitutive hierarchies provide a useful coun-
terweight to non-linearity and sensitivity as conceived by deterministic complexity
and aggregate complexity. When determining both the spatial and temporal scales
of inquiry, one may discern linear associations or limits that coincide with scale
levels. Identifying the flapping of a butterfly’s wings as a cause of super-regional
weather phenomena like hurricanes is a powerful idea, but may not account for a
large set of temporal conditions that, in concert with the wings, led to the hurricane.
Hence, a claim that the butterfly was necessary does not mean that it was sufficient.
In regard to social processes that may seem non-linear, such as the ways that a mas-
sively distributed photograph or website video of an individual event may influence
national or international policy, one must still consider the communication infra-
structure and the social networks that represent a series of steps from one hierarchical
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scale level to the next, with each step imposing filters and meaning. In contrast to
the conception of emergence being merely a bottom-up process, co-evolutionary
processes play out when entities understand they are constitutive of the system and
can modify it. In addition to understanding how social norms emerge from personal
interrelationships, for example, it is necessary to determine how emergent norms
feed back onto individuals (Ostrom 2005).

One rapidly emerging form of scale in ABM research, mirroring trends in scale
and complexity research more broadly, is the notion of networks defining scales
(Manson 2008). Networks have interesting scalar properties that are increasingly
important to ABM as researchers combine modeling with the rubrics of graphing
and topology. The study of small world networks reveals that when just a few addi-
tional links between distant nodes are added to a network where most links are
otherwise based on proximity, the connectedness of the entire network greatly
increases (Watts 2003). Barabasi and Albert (1999) find that many real networks are
self-organizing and scale-free, as they follow a power-law distribution due to inher-
ent processes of growth and preferential attraction of new nodes to well-connected
ones. They cite examples of scale-free networks that include the World Wide Web,
the electrical power grid of the western United States, and citations that link scien-
tific journal papers. Advances in our understanding of networks arise from a con-
fluence of pertinent data and ABMs, as seen with the joining of a variety of social
science databases and decision-making agents in the context of economics and
politics (Skvoretz 2002).

7.3.4 Equilibrium and Change

Researchers of all stripes have long modeled many systems under the assumption of
equilibrium. Agent-based modeling, by focusing on complex dynamics, provides an
opportunity to understand the degree of explanatory power that the assumption of
equilibrium has for a given system. Deterministic complexity often does not regard
equilibrium as a necessary feature, even if a model of system dynamics can capture
whether equilibrium is attainable given the initial conditions and process interac-
tions. For example, ABMs are increasingly used to investigate processes such as the
spread of smallpox or cultural memes, where the spatiotemporal dynamics rather
than system equilibrium are the phenomenon of interest (Epstein 2006). Issues of
equilibrium and change lend further context to concepts of sensitivity and nonlin-
earity in complex systems by offering commentary on system resilience and the
potential for dynamic movement among basins of attraction.

Dramatic changes wrought in a system because of its inherent sensitivity and
nonlinearity of interactions are countered by the system’s resilience, the ability to
adjust to disturbance and reorganize without significantly changing its functions or
structure, and its transformability, the ability to create a new system configuration
when adjustment is not possible (Walker et al. 2004). A system can be highly resil-
ient despite a high degree of instability when it is self-organizing (Holling 1996).
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Also, resilience is a scale-dependent characteristic, both temporally and spatially.
A system resilient in one span of time may be compromised in a longer span, while
a resilient community may endure at great cost to its larger, encompassing region
(Levin and Lubchenco 2008).

Deterministic and aggregate complexity research addresses the dynamics of non-
equilibrium states found in complex systems. The lower-level, bottom-up forces
create processes that are constantly adapting to environmental changes and under-
going organizational transformation. The interactions that give rise to these changes
are non-linear and subject to novelty (Holland 1995), resulting in a system sensitive
to the introduction of new components and fluctuations of component states. Despite
the ever-changing nature of system behavior and structure, it may gravitate toward
one of multiple basins of attraction (Holling 1973). Coupled human-environment
systems have multiple attractors, as seen when a coupled population-phosphorus
system has one attractor situated at a high population state with a balance of eco-
nomic and ecological drivers, and a low population state representing a restored
ecological system (Chen et al. 2009).

Just as scale levels can attenuate non-linearity and sensitivity, complex systems
embody a tension between sensitivity to initial conditions and a dynamic movement
between basins of attraction. Certain states may experience positive feedback, grav-
itating to an attraction basin that will not accommodate robust sub-systems and
diverse inputs. Decreases in biological diversity and threats to the viability of eco-
system services, for example, represent a state where resilience is low and more
vulnerable to disturbance (Folke 2006). Human institution research recognizes the
sensitivity of changes to rules in organizational structure, wherein small changes via
policy can bring about “a nontrivial probability of error” (Ostrom 2005: 243).
Complex systems are susceptible to ‘imaginable surprise’ where seemingly unex-
pected system configurations are in fact understandable when we allow for complex
features such as nonlinearity and sensitivity (Schneider et al. 1998). Sensitivity, as
with resilience, is either scale-dependent, such that the system may be regarded as
sensitive as it moves from one attraction basin to another, or independent as these
attractors, over longer time periods, characterize the typical system states regardless
of initial conditions. The ability of ABM to represent these complex systems offers
great potential for exploring emergence and surprise in human systems, such as the
recent financial crisis in the global economy (Farmer and Foley 2009).

7.3.5 Decision Making

Decision making is the engine of many ABMs, particularly those involving human
actors, and in turn it has many ties to complexity. It has long been a core concern of
many fields, including geography, economics, management, and psychology. ABMs
have helped draw out the similarities and differences among different decision-making
theories by emphasizing the importance of developing basic rules for agents to fol-
low, leading to research focused on how such rules embody their decision-making
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strategies. Agents in an ABM usually pursue certain goals set by the modeler with
given resources and constraints. Commuters want to minimize their commuting
time, for example, while homebuyers want to purchase the best house within their
budget, and parents want to move into neighborhoods with quality public schools.
Standard decision-making theory is a logical starting point for modeling these deci-
sions, as seen in the wide use of multi-criteria evaluation and Cobb-Douglas utility
functions to enable simulated agents to make decisions regarding parcel develop-
ment and household migration (Brown et al. 2005; Parker and Filatova 2008). While
recognizing the value of assumptions such as utility maximization in classical eco-
nomics, ABMs have also opened the door to other forms of decision-making theory.
Behavioral economics, for example, emphasizes the importance of concepts like
incomplete information, bounded rationality, reinforcement over time, expected
utility, and market anomalies (Arthur 1991; Simon 1997b).

ABMs illustrate how actor agents make decisions to achieve predefined goals in
an environment shaped by all agents, and more importantly, how these individual
decisions lead to macro patterns that are not predicted by perfect rationality. The
concept of bounded rationality, introduced by Herbert Simon, depicts the actor
whose decision making is bounded three ways (1997b). The first represents the
“skill, habits, and reflexes” (Simon 1997a: 46) that exist beyond our conscious
grasp, and presumably, beyond rational decision making. The second is the actor’s
set of purposes and values, which may differ from those of someone else in an oth-
erwise similar decision making scenario. The third bound is limited information,
wherein the actor lacks certain facts or skills that would contribute to a fully informed
decision. Representing these three bounds is nascent in ABM but arguably it is this
form of modeling that is well suited to advance our understanding of bounded ratio-
nality because agents can represent various features of boundedness such as limited
computational capacity or rules of thumb (Chen 2005; Dawid 1999; Edmonds and
Moss 1997; Manson 2006). In particular, ABMs allow various decision-making
strategies, including from rules-of-thumb or heuristics for adapting to a changing
environment (Gigerenzer and Selton 2001). Axelrod (1997), for example, sees
actors in his cultural dissemination model as not making rational decisions as such,
but simply adapting to their environment. More broadly, decision-makers use heu-
ristics to make ‘non-rational’ decisions, based on the manner in which possible
choices are framed (Tversky and Kahneman 1974).

The distinction between an individual decision and a collective one allows for a
more sophisticated mechanism to model the choices of actors. Simon notes that
decisions “are not made by ‘organizations’ but by human beings behaving as mem-
bers of organizations” (Simon 1997a: 281). Social network conceptions of social
contagion, for example, address the process of collective decision-making wherein
actors receive ideas the way that they may be exposed to the carrier of a disease.
Thresholds may be established in which the actor accepts the idea after being
exposed to it a given number of times (Granovetter 1978; Watts 2003). When people
make migration decisions, for example, they not only want to physically move
closer to the friends and relatives in their network, but their criteria for quality hous-
ing, their perception of specific neighborhoods, and their knowledge of vacancies
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are all influenced by the available information in their network (Clark 2008). Social
influences on decision making are also evident in the role of reflexivity, such that the
past and future are incorporated into present thinking. ABMs address a core ques-
tion: how does one account for actors that are aware of how their actions may feed
into collective outcomes? A person may stay away from social events that are
expected to be too crowded or too sparsely attended, for example, as a function of
past experience (Arthur 1991). In short, actors often play an expectations game
when they act in order to avoid being part of an undesired collective outcome or in
order to prevent that outcome from happening (Gilbert 1995).

7.4 Conclusion: Complex Agents, Complex World

Complexity and ABMs offer much to each other. ABM research draws on a range of
concepts and approaches from algorithmic, deterministic, and aggregate complexity.
In turn, modeling brings to complexity a large number of actual complex systems
and attendant theories to advance complexity science. ABMs offer a virtual labora-
tory that helps researchers navigate between theoretical and empirical research. And
while ABM faces many challenges in calibration, verification, and validation, it
offers new ways to think about relationships between data and theory, pattern and
process. Complexity and ABMs, separately and jointly, are also advancing our con-
ceptualization of scale in a range of complex systems, alongside issues of sensitivity,
nonlinearity, resilience, equilibrium, and change. Finally, ABMs are a very promis-
ing technique, alongside other approaches, for modeling and understanding decision
making. In sum, one may take heart from the many challenges facing researchers
working at the intersection of agent-based modeling and complexity science because
they arise from the vast potential and promise of these two worlds meeting.
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Chapter 8
Designing and Building an Agent-Based Model

Mohamed Abdou, Lynne Hamill, and Nigel Gilbert

Abstract This chapter discusses the process of designing and building an
agent-based model, and suggests a set of steps to follow when using agent-based
modelling as a research method. It starts with defining agent-based modelling and
discusses its main concepts, and then it discusses how to design agents using
different architectures. The chapter also suggests a standardized process consisting
of a sequence of steps to develop agent-based models for social science research,
and provides examples to illustrate this process.

8.1 What Is Agent-Based Modelling?

Agent-based modelling is a computational method that enables a researcher to create,
analyze, and experiment with models composed of agents that interact within an
environment. Let us shed some light on the core terms italicized in this definition.
A model is a simplified representation of a “target” system that expresses
as clearly as possible the way in which (one believes) that system operates.
This representation can take several forms. For example, in mathematical and
statistical modelling, the model is a set of equations (e.g., a regression equation).
A graphical network of nodes and edges can model a set of friendships.
Computational methods, such as agent-based modelling, involve building
models that are computer programs. The program (i.e., the model) represents
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the processes that are thought to exist in the social world (Macy and Willer 2002).
For example, we might build a model to study how friends (“agents”) influence
each other’s purchasing choices. Such processes are not easy to represent using
mathematical equations because what one agent buys will influence the purchasing
of a friend, and what a friend buys will influence the first agent. This kind of
mutual reinforcement is relatively easy to model using agent-based modelling.

Another advantage of agent-based modelling when doing social research is
that it enables a researcher to use the model to do experiments. Unlike natural
sciences, such as physics and chemistry, conducting experiments on the real
system (people for example) is impossible or undesirable. Using a computer
model, an experiment can be set up many times using a range of parameters.
The idea of experimenting on models rather than on the real system is not novel.
For example, it is a better idea to use a model of an aeroplane to test flying under
various conditions than to use a real aircraft (where the cost of experimentation
is very high).

Agent-based models (ABMs) consist of agents that interact within an environ-
ment. Agents themselves are distinct parts of a program that represent social actors
(e.g., persons, organizations such as political parties, or even nation-states). They
are programmed to react to the computational environment in which they are
located, where this environment is a model of the real environment in which the
social actors operate.

In the following, we present two simple examples of ABMs, Sugarscape and
Schelling’s model of residential segregation, to illustrate the main concepts of agent-
based modelling used in the remaining sections of this chapter. A general introduction
to agent-based modelling is presented in Crooks and Heppenstall (2012).

8.1.1 Sugarscape

Sugarscape (Epstein and Axtell 1996) is a simple example of an ABM that yields a
range of interesting results about the distribution of wealth in a society. The model
represents an artificial society in which agents move over a 50x 50 cell grid. Each
cell has a gradually renewable quantity of ‘sugar’, which the agent located at that
cell can eat. However, the amount of sugar at each location varies. Agents have to
consume sugar in order to survive. If they harvest more sugar than they need imme-
diately, they can save it and eat it later (or, in more complex variants of the model,
can trade it with other agents). Agents can look to the north, south, east and west of
their current locations and can see a distance which varies randomly, so that some
agents can see many cells away while others can only see adjacent cells.

Agents move in search of sugar according to the rule: look for the unoccupied
cell that has the highest available sugar level within the limits of one’s vision, and
move there. Agents not only differ in the distance they can see, but also in their
‘metabolic rate’, the rate at which they use sugar. If their sugar level ever drops to
zero, they die. New agents replace the dead ones with a random initial allocation
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of sugar. Thus there is an element of the ‘survival of the fittest” in the model, since
those agents that are relatively unsuited to the environment because they have
high metabolic rates, poor vision, or are in places where there is little sugar for
harvesting, die relatively quickly of starvation. However, even successful agents
die after they have achieved their maximum lifespan, set according to a uniform
random distribution.

Epstein and Axtell (1996) present a series of elaborations of this basic model in
order to illustrate a variety of features of societies. The basic model shows that even
if agents start with an approximately symmetrical distribution of wealth (the amount
of sugar each agent has stored), a strongly skewed wealth distribution soon develops.
This is because a few relatively well-endowed agents are able to accumulate more
and more sugar, while the majority only barely survive or die.

8.1.2 Schelling’s Model of Residential Segregation

Another simple example is Schelling’s model of residential segregation (1971).
Schelling was interested in the phenomenon of racial residential segregation in
American cities, and he aimed to explain how segregation could happen, and how
these segregationist residential structures, such as ghettos, may occur spontane-
ously, even if people are relatively tolerant towards other ethnic groups, and even
when they are happy with being a minority in their neighbourhoods.

A city in Schelling’s model is represented by a square grid of cells each repre-
senting a dwelling. A cell can be in any of three colours: white, black, or grey
according to whether it is occupied by a white agent, a black agent, or is empty.
The simulation starts by randomly distributing the agents over the grid. Schelling
supposed that people have a ‘threshold of tolerance’ of other ethnic groups. That
means that agents are ‘content’ to stay in their neighbourhood as long as the
proportion of their neighbours (which are the eight cells to the north, north-east,
east, south-east, south, south-west, west and north-west) of the same colour as
themselves is not less than this threshold. For example, with 50% threshold of
tolerance, agents would be happy to stay in place as long as at least four of their
eight neighbours are of the same colour; otherwise, they try to move to another
neighbourhood satisfying this proportion.

Figure 8.1 shows the result of the simulation with 2,000 agents. The upper-
left panel shows the starting random allocation of black and white agents over
the grid, and the other three panels show the final configurations after running the
simulation with tolerance thresholds of 37.5% (at least three of an agent’s eight
neighbours must be of the same colour for the agent to be content), 50%
(four of eight), and 75% (six of eight). Clustering emerges even when agents
are happy to be a minority in their neighbourhood (with 37.5% threshold), and
the sizes of these emergent clusters increase with increasing levels of tolerance
threshold.

In the following, we discuss the core concepts of “agents” and their “environment”
in more detail.
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Fig. 8.1 The result of the simulation of the Schelling model

8.2 Agents

Applied to social science research, the concept of agency is usually used to indicate
the purposive nature of human activity. It is thus related to concepts such as inten-
tionality, free will, and the power to achieve one’s goals. In agent-based modelling,
agents are conventionally described as having four important characteristics:

* Perception. Agents can perceive their environment, including other agents in
their vicinity. In the Sugarscape model, for example, agents can perceive the
amount of sugar the current cell has.

» Performance: They have a set of behaviours that they are capable of performing
such as moving, communicating with other agents, and interacting with the
environment. In the Sugarscape model, they move and consume sugar.



8 Designing and Building an Agent-Based Model 145

*  Memory. Agents have a memory in which they record their previous states and
actions.

* Policy. They have a set of rules, heuristics or strategies that determine, given
their present situation and their history, what they should do next, e.g. looking for
cells with the highest level of sugar.

Agents with these features can be implemented in many different ways. Different
architectures (i.e. designs) have merits depending on the purpose of the simulation.
Nevertheless, every agent design has to include mechanisms for receiving input
from the environment, for storing a history of previous inputs and actions, for
devising what to do next, for carrying out actions and for distributing outputs. In the
following, we describe three common approaches to agent architecture: using an
object-oriented programming language directly, using a production rule system, and
using learning approaches.

8.2.1 Object-Oriented Programming

The idea of object-oriented programming (OOP) is crucial to agent-based model-
ling, which is why almost all ABMs are built using an OOP language, such as
Java, C++, or Visual Basic. A program developed in an OOP language typically
consists of a collection of objects. An object is able to store data in its own
attributes, and has methods that determine how it processes these data and interacts
with other objects. As you might have noticed, there is an affinity between the idea
of an agent and an object; it is natural to program each agent as an object.

The concept of ‘class’ is basic to OOP. A class is an abstract specification of an
object. For example, a program might include a class called “Customer” to
represent a customer of a firm in a model of business. A Customer might have
a set of attributes such as name, address, and types of product (s)he likes. In the
Sugarscape model, we can create a class named “Agent” with attributes such as
age, wealth (the amount of sugar), life-expectancy (the maximum age that can be
reached), metabolism (how much sugar an agent eats each time period), and vision
(how many cells ahead an agent can see). A class also usually has some methods to
describe its activities (e.g., move, eat sugar, save and die).

As the program runs, classes are instantiated to form objects. For example, the
Customer class might be instantiated to yield two objects representing two
customers: the first with name John Smith and the other with name Sara Jones
(along with their other attributes). Although the two customers have the same
methods and the same set of attributes, the values of their attributes (e.g., their
names and addresses) differ.

When using OOP to design an ABM, one creates a class for each type of agent,
provides attributes that retain the agents’ past current state (memory), and adds
suitable methods that observe the agents’ environment (perception) and carry out
agent actions (performance) according to some rules (policy). In addition, one needs
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to program a scheduler that instantiates the required number of agents at the
beginning of the simulation and gives each of them a turn to act.

8.2.2 Production Systems

One of the simplest, yet effective, designs for an agent is to use a production system.
A production system has three components:

1. A Set of Rules of Behaviour. These rules determine what an agent will do.
Usually, a rule consists of two parts: a condition, which specifies when the rule
is to be executed (‘fire’), and an action part, which determines what is to be the
consequence of the rule firing. Example of rules in Sugarscape include:

e [F there is any sugar at the current cell, THEN eat it;

e IF sugar level of the current cell exceeds metabolism, THEN add the extra
sugar to wealth, and

* IF age exceeds life-expectancy, THEN die.

2. A Working Memory. An agent’s memory is represented by variables that store its
current or previous states. For example, an agent’s memory might store its current
location and wealth (the amount of sugar). Rules can include actions that insert
facts into the working memory (e.g. I am holding some sugar) or conditions that
test the state of the working memory (e.g. IF I am holding sugar, THEN eat it).

3. A Rule Interpreter. The rule interpreter considers each rule in turn, fires those for
which the condition is true, performs the indicated actions for the rules that have
fired, and repeats this cycle indefinitely. Different rules may fire on each cycle
either because the immediate environment has changed or because one rule has
modified the working memory in such a way that a new rule begins to fire.

Using a production system, it is relatively easy to build reactive agents that
respond to each stimulus from the environment with some action. A simple pro-
duction system can be constructed from a toolkit such as JESS (the Java Expert
System Shell, http://www.jessrules.com/) (Friedman-Hill 2003). There are also
some much more elaborate systems that are based on psychologically plausible
models of human cognition, such as Soar (Laird et al. 1987; Wray and Jones 2006;
Ye and Carley 1995), CLARION (Sun 2006), and ACT-R (Taatgen et al. 2006).

8.2.3 Learning

Production-system-based agents have the potential to learn about their environment
and about other agents through adding to the knowledge held in their working
memories. The agents’ rules themselves, however, always remain unchanged. For
some models, it is desirable to create agents that are capable of more fundamental



8 Designing and Building an Agent-Based Model 147

learning: where the internal structure and processing of the agents adapt to
changing circumstances. There are two techniques commonly used for this:
artificial neural networks (ANNs) and evolutionary algorithms such as the genetic
algorithm (GA).

ANNSs are inspired by analogy to nerve connections in the brain. An ANN
consists of three or more layers of neurons, with each neuron connected to all other
neurons in the adjacent layers. The first layer accepts input from the environment,
processes it and passes it on to the next layer. The signal is transmitted through
the layers until it emerges at the output layer. Each neuron accepts inputs from the
preceding layer, adjusts the inputs by positive or negative weights, sums them and
transmits the signal onward. Using an algorithm called the back propagation of
error, the network can be tuned so that each pattern of inputs gives rise to a different
pattern of outputs. This is done by training the network against known examples
and adjusting the weights until it generates the desired outputs (Garson 1998). Using
ANN, it is possible to design agents and train them to identify objects such as
letters or words, or recognize voices and pictures.

In contrast to a production system, an ANN can modify its responses to stimuli
in the light of its experience. A number of network topologies have been used to
model agents so that they are able to learn from their actions and the responses of
other agents (e.g. Hutchins and Hazlehurst 1995; Terna 1997).

Another way of enabling an agent to learn is to use an evolutionary algorithm.
These are also based on a biological analogy, drawing on the theory of evolution by
natural selection. The most common is the genetic algorithm (GA). This works with
a population of individuals (agents), each of which has some measurable degree of
‘fitness’, using a metric defined by the model builder. The fittest individuals are
‘reproduced’ by breeding them with other fit individuals to produce new offspring
that share some features taken from each parent. Breeding continues through many
generations, with the result that the average fitness of the population increases as the
population adapts to its environment.

Sometimes, it is desirable to use both techniques of learning, GAs and ANNs,
in the same ABM. For example, one may need to create a large population of
ANNS (each corresponding to one agent). The agents are initialized with a random
set of connection weights and are set a task such as gathering “food” from a
landscape. An agent’s perception of whether there is food in front of it is fed into
the ANN inputs, and the outputs are linked to the agent’s action, such as move and
eat. The agent is given an initial quantity of energy, some of which is used on every
time step. If the energy declines to zero, the agent “dies” and it is removed from the
simulation. An agent can boost its energy by eating food, which is scattered around
the landscape.

Because of the random connection weights with which an agent’s ANN is
initialized, most agents will not succeed in finding and eating food and will quickly
die, although some will succeed. Those more successful agents reproduce, giving
their offspring similar connection weights as their own (but with slight mutation).
Gradually, the population of agents will learn food harvesting behaviour (Acerbi
and Parisi 2006; Gilbert et al. 2006).
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8.2.4 The Environment

The environment is the virtual world in which agents operate. In many models, the
environment includes passive objects, such as landscape barriers, “roads” down
which agents may travel, resources to provide agents with energy or food (as in the
Sugarscape model), and so on. These can be programmed in much the same way as
agents, but more simply, because they do not need any capacity to react to their
surroundings. For example, the environment in the Sugarscape model can be imple-
mented by creating a class, called “Cell”, which has two attributes: location, which
is the xy position of a cell, and sugar level, which indicates the amount of sugar the
cell has. Then 2,500 (50x50) objects of this class are instantiated at the start of
the simulation with their proper locations and random values for their sugar levels.

Environments may represent geographical spaces, for example, in models
concerned with residential segregation where the environment simulates some of
the physical features of a city, and in models of international relations, where the
environment maps states and nations. Models in which the environment represents
a geographical space are called spatially explicit. In other models, the environment
could represent other types of space. For example, scientists can be modelled
in “knowledge space” (Gilbert et al. 2001). In spatial models, the agents have
coordinates to indicate their location. Another option is to have no spatial represen-
tation at all but to link agents together into a network in which the only indication of
an agent’s relationship to other agents is the list of agents to which it is connected by
network links (Scott 2000). It is also possible to combine both. Think, for example,
of a railway network.

8.3 Developing ABMs in Social Science Research

Research in agent-based modelling has developed a more or less standardized
research process, consisting of a sequence of steps. In practice, several of these
steps occur in parallel and the whole process is often performed iteratively as ideas
are refined and developed.

8.3.1 Identifying the Research Question

It is essential to define precisely the research question (or questions) that the model
is going to address at an early stage. The typical research questions that ABMs are
used to study are those that explain how regularities observed at the societal or macro
level can emerge from the interactions of individuals (agents) at the micro level.
For example, the Schelling model described earlier starts with the observation that
neighbourhoods are ethnically segregated and seeks to explain this through
modelling individual household decisions.
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8.3.2 Review of Relevant Literature

The model should be embedded in existing theories and make use of whatever
data are available. Reviewing existing theories relating to the model’s research
question is important to illuminate the factors that are likely to be significant in
the model. It is also useful to review comparable phenomena. For example, when
studying segregation, theories about prejudice and ethnic relations are likely to be
relevant.

All ABMs are built based on assumptions (usually about the micro-level). These
assumptions need to be clearly articulated, supported by the existing theories and
justified by whatever information is available.

8.3.3 Model Design

After the research question, the theoretical approach and the assumptions have been
clearly specified, the next step is to specify the agents that are to be involved in the
model and the environment in which they will act.

For each type of agent in the model, the attributes and behavioural rules need to be
specified. As explained in Sect. 8.2, an attribute is a characteristic or feature of the
agent, and it is either something that helps to distinguish the agent from others
in the model and does not change, or something that changes as the simulation runs.
For example, in Sugarscape, an agent’s life-expectancy (the maximum age that an
agent can reach), metabolism (how much sugar an agent eats each time), and vision
(how many cells ahead an agent can see) are examples of attributes that do not
change, while age and wealth (the amount of sugar an agent has) are changeable
attributes.

The agent’s behaviour in different circumstances also needs to be specified, often
as a set of condition-action rules (as explained in Sect. 8.2). This specification can
be done in the form of two lists: one which shows all the different ways in which
the environment (including other agents) can affect the agent, and one showing all the
ways in which the agent can affect the environment (again, including other agents).
Then the conditions under which the agent has to react to environmental changes
can be written down, as can the conditions when the agent will need to act on the
environment. These lists can then be refined to create agent rules that show how
agents should act and react to environmental stimuli.

It will also be necessary to consider what form the environment should take
(for instance, does it need to be spatial, with agents having a definite location, or
should the agents be linked in a network) and what outputs of the model need to be
displayed in order to show that it is reproducing the macro-level regularities as
hoped (for example, the wealth distribution in the Sugarscape model, and the size of
clusters of dwellings of the same colour in Schelling’s model).

Once all this has been thought through, one can start to develop the program code
that will form the simulation.
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8.3.4 Model Implementation

After the model has been designed, and when the agents and environment are fully
specified, the next step is to convert the design into a computer program. Most
ABMs involve two main parts or procedures:

e Setup Procedure. The Setup procedure initializes the simulation (and is therefore
sometimes called the initialization procedure). It specifies the model’s state at
the start of the simulation, and it is executed once at the beginning. This part of
the program might, for example, lay out the environment and specify the initial
attributes of the agents (e.g., their position, wealth and life expectancy in the
Sugarscape model).

* Dynamics Procedure. This procedure is repeatedly executed in order to run the
simulation. It asks agents in turn to interact with the environment and other agents
according to their behavioural rules. This will make changes in the environment
and invoke a series of action-reaction effects. For example, in Schelling’s model of
segregation, the dynamics procedure may ask all ‘unhappy’ agents to move from
their neighbourhood. When an unhappy agent moves to a new place (where it feels
happy), this may make some other agents (that were happy in the previous step)
unhappy and want to move, and so on. The dynamics procedure may contain a
condition to stop the program (e.g., if all agents are happy in Schelling’s model).

An important decision is whether to write a special computer program (using
a programming language such as Java, C++, C#, or Visual Basic) or use one
of the packages or toolkits that have been created to help in the development of
simulations. It is usually easier to use a package than to write a program from
scratch. This is because many of the issues which take time when writing a pro-
gram have already been dealt with in developing the package. For example, writing
code to show plots and charts is a skilled and very time-consuming task, but most
packages provide some kind of graphics facility for the display of output variables.
On the other hand, packages are, inevitably, limited in what they can offer, and they
are usually run more slowly than specially written code.

Many simulation models are constructed from similar building blocks. These
commonly used elements have been assembled into libraries or frameworks that can
be linked into an agent-based program. The first of these to be widely used was Swarm
(http://www.swarm.org/), and although this is now generally superseded, its design
has influenced more modern libraries, such as RePast (http://repast.sourceforge.
net/) and Mason (http://cs.gmu.edu/~eclab/projects/mason/).

Both RePast and Mason provide a similar range of features, including:

e A variety of helpful example models

* A sophisticated scheduler for event-driven simulations

* A number of tools for visualizing on screen the models and the spaces in which
the agents move

» Tools for collecting results in a file for later statistical analysis

e Ways to specify the parameters of the model and to change them while the model
is running
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e Support for network models (managing the links between agents)

e Links between the model and a Geographic Information System (GIS) so that the
environment can be modeled on real landscapes (see Crooks and Castle 2012).

* A range of debugged algorithms for evolutionary computation (Sect. 8.2.3), the
generation of random numbers and the implementation of ANNS.

Modelling environments provide complete systems in which models can be
created, executed, and the results visualized without leaving the system. Such envi-
ronments tend to be much easier to learn, and the time taken to produce a working
model can be much shorter than using the library approach, and so they are more
suited to beginners. However, the simplicity comes at the price of less flexibility and
slower speed of execution. It is worth investing time to learn how to use a library
based framework if you need the greater power and flexibility they provide, but
often simulation environments are all that is needed.

NetLogo (Wilensky 1999) is currently the best of the agent-based simulation
environments. (NetLogo will be briefly introduced in Sect. 8.4). This is available
free of charge for educational and research use and can be downloaded from
http://ccl.northwestern.edu/netlogo/. It will run on all common operating systems:
Windows, Mac OS X and Linux. Other simulation environments include StarLogo
(http://education.mit.edu/starlogo/) and AgentSheets (http://agentsheets.com),
which are more suited to creating very simple models for teaching than for building
simulations for research.

Table 8.1 provides a comparison between Swarm, RePast, Mason, and NetLogo
on a number of criteria. The choice of the implementation tool depends on several
factors, especially one’s own expertise in programming and the complexity and the
scale of the model. NetLogo is the quickest to learn and the easiest to use, but may
not be the most suitable for large and complex models. Mason is faster than RePast,
but has a significantly smaller user base, meaning that there is less of a community
that can provide advice and support. A full discussion of the environments is pre-
sented in Crooks and Castle (2012).

8.3.5 Verification and Validation

Once we have a ‘working’ simulation model, it has to be verified and validated
before using it to answer the research questions or to build theories about the
real social world (model verification and validation are discussed in detail by Ngo
and See (2012)). As Balci (1994) explains, “model validation deals with building
the right model ... [while] model verification deals with building the model right”
(pp. 121-123).

It is very common to make errors when writing computer programs, especially
complicated ones. The process of checking that a program does what it was planned
to do is known as ‘verification’. In the case of simulation, the difficulties of
verification are compounded by the fact that many simulations include random
number generators, which means that every run is different and that it is only the
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Table 8.1 A Comparison of Swarm, RePast, Mason and NetLogo

Swarm RePast Mason NetLogo
License? GPL GPL GPL Free, but not open
source
Documentation Patchy Limited Improving, but ~ Good
limited
User base Diminishing  Large Increasing Large
Modelling language(s) Objective-C,  Java, Python  Java NetLogo
Java
Speed of execution Moderate Fast Fastest Moderate
Support for graphical Limited Good Good Very easy to create
user interface using “point
development and click”
Built-in ability to create  No Yes Yes Yes
movies and
animations
Support for systematic Some Yes Yes Yes
experimentations
Ease of Learning and Poor Moderate Moderate Good
Programming
Ease of Installation Poor Moderate Moderate Good
Link to geographical No Yes Yes Yes

Information System

Source: Gilbert (2008)
AGPL General Public License, http://www.gnu.org/copyleft/gpl.html

distribution of results which can be anticipated by the theory. It is therefore essential
to ‘debug’ the simulation carefully, preferably using a set of test cases, perhaps of
extreme situations where the outcomes are easily predictable.

While verification concerns whether the program is working as the researcher
expects, validation concerns whether the simulation is a good model of the real
system, the ‘target’. A model which can be relied on to reflect the behaviour of the
target is ‘valid’. A common way of validating a model is to compare the output of
the simulation with real data collected about the target. However, there are several
caveats which must be borne in mind when making this comparison. For example,
exact correspondence between the real and simulated data should not be expected.
So, the researcher has to decide what difference between the two kinds of data is
acceptable for the model to be considered valid. This is usually done using some
statistical measures to test the significance of the difference. While goodness-of-fit
can always be improved by adding more explanatory factors, there is a trade-off
between goodness-of-fit and simplicity. Too much fine-tuning can result in reduction
of explanatory power because the model becomes difficult to interpret. At the
extreme, if a model becomes as complicated as the real world, it will be just as
difficult to interpret and offer no explanatory power. There is, therefore, a paradox
here to which there is no obvious solution. Despite its apparently scientific nature,
modelling is a matter of judgement.
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8.3.6 Some Practicalities

Two important practical issues to consider are how big the model should be and how
many runs should be done.

8.3.6.1 How Big?

How many agents should be used? Over how big a space? There is little guidance
on this question, because it depends on the model. The model must be sufficiently
large to permit enough heterogeneity and opportunities for interaction. But more
agents mean longer run times.

Itis often best to start programming with just a few agents in a small environment.
Then, when the program is working satisfactorily, increase the scale until one feels
there is a satisfactory balance between the size and the stability of the output.
Some ABMs use millions of agents (see Parry and Bithnell 2012), but for most
purposes, this is unnecessary and impractical. One should probably aim for at least
1,000 agents unless there is good reason to use fewer.

8.3.6.2 How Many Runs?

Because of the stochastic nature of agent-based modelling, each run produces a
different output. It is therefore essential to undertake more than one run. The question
is, how many runs? The more runs, the more confidence one can have in the results,
but undertaking too many runs wastes time and there is more data to analyze. Basic
statistical theory suggests 30 is sufficient and frequently, 30 or 50 runs are under-
taken, e.g. Epstein (2006). Again, there is no clear guidance on this topic. However
many runs are done, it is worth quoting the standard deviation to provide some
indication of the variability.

8.4 Examples

This section presents two simple models based on models in NetLogo’s library:
Traffic Basic and Segregation (Wilensky 1997a, b). The models are taken from
NetLogo version 4.0.2.

8.4.1 A Basic Traffic Model

This is a very simple model developed from Wilensky’s basic NetLogo traffic
model (1997a). It is not possible to give a full introduction to NetLogo here: there are
tutorials on the NetLogo website and books such as Gilbert (2008). However, for
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those unfamiliar with NetLogo, an explanation of what the program is doing is
provided alongside the code (see Box A).

Sect. 8.3 identified five stages to developing a model: identifying the research
question, reviewing the literature, designing and implementing the model and finally
verifying and validating it.

Stage 1: Identifying the research question
The research question to be addressed is the relationship between the level of
congestion and the speed and smoothness of traffic flow.

Stage 2: Reviewing the literature

Because the main purpose of this model is to demonstrate agent-based modelling, it
is sufficient to note here that it is a well recognised fact that traffic jams can arise
without any obvious cause. In general, a good literature review is essential to
support the model.

Stage 3: Model design

The environment is a road and the agents are drivers represented by cars. The drivers
change their speed according to whether there are other cars in front so as to remain
within set speed limits. The program records the speed of the vehicles and the number
of vehicles queuing at any one time.

Stage 4: Model implementation

The set-up procedure involves setting the parameters and creating the agents and
their environment. The environment — the road — is built and the cars are created,
distributed randomly along the road and randomly allocated a speed, determined by
three parameters, set by sliders on the interface:

¢ the number of cars (nOfCars): minimum 2, maximum, 30
e the minimum speed (minSpeedLimit): 0-0.5
e the maximum speed (maxSpeedLimit): 0.5-1.

The details are shown in Box A, and a sample of the result is illustrated in Fig. 8.2.

Box A: Setting up the model

Explanation Code

Agents are cars to setup

Agents’ attributes breed [cars car ]
cars-own [speed queuing]

Set everything to zero to setup

Make the road. clear-all

ask patches
[ if ( pycor < 1)
and ( pycor > -1)
[ set pcolor white ] ]

(continued)
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Box A: (continued)

Explanation

Code

Generate required number of cars
Set the cars’ shape.

Distribute them randomly along
road. Set direction of movement.

Set speed randomly within the

ask cars

speed limits. Call up procedure.

Procedure to ensure only one car
occupies the same patch of road.

[ set shape “car”
setxy random-xcor 0

set heading 90
set speed

minSpeedLimit +

random-float

( maxSpeedLimit )

separate-cars

]

end

to

separate-cars

[ fd 1
separate-cars

create-cars nOfCars

if any? other cars-here

]

155
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Fig. 8.2 Road with cars distributed randomly along it
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Next the dynamic processes must be defined. All the cars move forward in the
same direction. If the drivers see another car not far in front, they decelerate, at a rate
set by the slider on the interface (decelerate), and if they catch up with the vehicle in
front, slow to its speed, which may require rather abrupt deceleration! If they see no
car within a specified distance, they accelerate again, set by a slider on the interface
(accelerate). The rate of acceleration is small but sufficient to allow the cars to speed
up to the maximum speed limit if the road is clear. Both deceleration and acceleration
are allowed to vary between 0 and 0.001 in increments of 0.0001. The simulation is
halted after 250 steps. The details are shown in Box B.

Box B: Running the model

Explanation Code
Stop the program after to go
250 steps. if ticks > 250 [ stop ]
Reset queuing ask cars [ set queuing “No” ]
indicator at start ask cars
of each step [ 1f any? cars-at 1 0
[ set speed
If a car catches ( [speed] of one-of cars-at 1 0 )
up with the one set queuing “Yes” ]
in front it slows to ]
match its speed. ask cars with [queuing="“No” ]
[ ifelse
If there is no car any? cars-at 5 0
immediately in [ set speed speed - deceleration ]
front but there is [ set speed speed + acceleration ]
one a little further ]
ahead, the car ]
decelerates.
Otherwise, it ask cars
accelerates. [ 1f speed < minSpeedLimit
To keep the cars [ set speed minSpeedLimit ]
within speed limits. if speed > maxSpeedLimit
Cars move forward [ set speed maxSpeedLimit ]
at the speed fd speed
determined. ]
tick

Time moves forward.
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Stage S: Verifying and validating
To verify and validate the model requires outputs to be produced. Here three graphs
are drawn:

* to show the minimum, average and maximum speeds
* to show the number of queuing cars, and
* to plot the number queuing against the average speed.

The details are in Box C.

Verification and validation are discussed in Sect. 8.3.5 above and in detail in
Ngo and See (2012). In this example, one simple method of verification is setting
the minimum and maximum speeds to the same value and checking that all the

Box C: Generating the output (continuing the ‘go’ procedure)

Explanation Code
Name the plots plot-speed
plot-jams
plot-both
End the “to go” end
Plots minimum, to plot-speed
mean and maximum set-current-plot “Speed”
speeds. set-current-plot-pen “Min”

plot min [speed] of cars
set-current-plot-pen “Mean”
plot mean [speed] of cars
set-current-plot-pen “Max”
plot max [speed] of cars
end

Plots the number queuing. to plot-jams
set-current-plot “No. in jams”
plot count cars with
[ queuing = “Yes” ]

end
Plots the mean speed to plot-both
against the number set-current-plot “Both”
queuing. plotxy

count cars with

[ queuing = “Yes” ]

mean [speed] of cars
end
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Fig. 8.3 Sample of results

drivers do adopt the same speed. By watching the movement of the cars on
the screen, it can be seen that, for example, there is no overtaking, as there should
not be. Also the queuing status of individual cars can be checked: if there is no car
immediately in front, it should not be “queuing”.

Even a simple model like this can produce a wide range of scenarios and
reproduce observed characteristics of traffic flows. For example, Fig. 8.3 shows
what can happen if the road is near full-capacity with 30 cars, speeds are allowed to
vary from O to 1, and drivers accelerate and decelerate at the maximum rates. The top
right plot shows that the maximum speed drops quickly, but maximum, average and
minimum speeds fluctuate. As a result, the number queuing constantly changes,
albeit within a small range, as shown in the bottom left hand panel. However, a
reduction in the number queuing does not necessarily increase the average speed of
the traffic: the bottom right hand panel shows that there is no clear relationship
between the average speed and the number queuing.

8.4.2 Segregation Model

The segregation model can be found in the Social Science section of NetLogo’s
library (Wilensky 1997b).

Stage 1: Identifying the research question
As explained in Sect. 8.1.2, Schelling tried to explain the emergence of racial resi-
dential segregation in American cities. The main research question of Schelling’s
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models can be formulated as: can segregation be eliminated (or reduced) if people
become more tolerant towards others from different ethnic/racial groups?

Stage 2: Reviewing the literature

Theories of intergroup relations (Sherif 1966) are relevant when discussing the
emergence of residential segregation. Some of these theories are Social Identity and
Social Categorization Theories (Tajfel 1981), Social Dominance Theory (Sidanius
et al. 2004), and System Justification Theory SJT (Jost et al. 2004). The Contact
Hypothesis (Allport 1954), which implies that inter-group relations decrease stereo-
typing, prejudice and discrimination, is also relevant. Reviewing literature on how
to measure segregation is clearly essential (Massey and Denton 1988).

Stage 3: Model design

As explained in Sect. 1.2.2, the environment is a city that is modelled by a square grid
of cells each representing a dwelling. A household (agent) would be ‘happy’ to stay
at its place as long as the proportion of its neighbours of the same colour as itself is
not less than its threshold of tolerance. Agents keep changing their places as long as
they are not happy. Box D presents the complete code of the segregation model.!

Stage 4: Model implementation

Lines 1-30 of Box D initialize the model. The first line creates an agent type (breed
in NetLogo’s language) called ‘household’ to represent the main agent of the model.
The attributes of agents (households) include the following (lines 2—7):

* happy?: indicates whether an agent is happy or not

* similar-nearby: how many neighbours with the same colour as the agent
* other-nearby: how many neighbours with a different colour

* total-nearby: total number of neighbours.

There are two global® variables (lines 8—12): the first is percent-similar, which is
the average percent of an agent’s neighbours of its own colour. This variable gives a
measure of clustering or segregation. The second variable, percent-unhappy, reports
the number of unhappy agents in the model. There are another two variables deter-
mined by sliders (so that the model user can change their values on each run as
desired): the number of agents, number; and agent’s threshold, %-similar-wanted
(which is the same for all agents).

The setup procedure (lines 14-30) (which is triggered when the user presses
the setup button, see Fig. 8.4) creates a number of agents (households), half black
and half white, at random positions. The sefup procedure also calls another two
procedures: update-variables that updates the agents’ variables, and do-plots that
updates the model’s graphs (both procedures will be explained later).

'"There are minor differences between the code of the original model in NetLogo’s library and the
code presented here.

2Global variables are defined (or declared) outside any procedure, and they can be accessed or refer
red to from any place in the program. In contrast, local variables are defined inside a procedure, and
can be accessed only within this procedure. The variables similar-neighbors and total-neighbors
(lines 75-76) are local variables.
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Box D: Code of Segregation Model

1
2
3

O 0 3 N

11

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34

Breed [households household]
households-own [

]

happy? ;indicates whether the house-
hold is happy or not

similar-nearby ;how many neighbours with
the same colour as mine?

other-nearby ;how many neighbours with
different colour?

total-nearby ;sum of previous two variables

globals|

percent-similar ;average percent of a
household’s neighbours

;of the same colour as that household?
percent-unhappy ;percent of the households
are ‘unhappy’

to setup

clear-all ;clear any variables or plots from
previous runs
if number>count patches

[ user-message (word “This pond only has

room for “ count patches “ households.”)
stop |

;7 create households on random patches.

ask patches [set pcolor 7] ;; patches are

initialized in grey

set-default-shape households “square”

ask n-of number patches
[sprout-households 1
[ set color black ] ]
ask n-of (number / 2) households
[ set color white ]
update-variables
do-plots

end

to go

if all? households [happy?] [ stop ] ;keep
running as long as

there ;are unhappy
agents

(continued)
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Box D: (continued)

35
36
37
38
39
40
41
42

43
44

45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64

65
66

67
68

69

70
71

move-unhappy-households
update-variables
tick
do-plots
end

to move-unhappy-households
ask households with [ not happy? ];; only
moves unhappy agents
[ find—-new-spot ] ; find new patch to move to
end

to find-new-spot

rt random-float 360

fd random-float 10

if any? other households-here

[ find—-new-spot ] ;; keep going until we

find an unoccupied patch

move-to patch-here ;; move to center of patch
end

to update-variables
update-households
update-globals
end

to update-households

ask households [

;; 1n next two lines, we use “neighbors”
to test the eight patches

;; surrounding the current patch

set similar-nearby count (households-on
neighbors)

with [color=[color] of myself]

set other-nearby count (households-on
neighbors)

with [color !=[color] of myself]

set total-nearby similar-nearby-+other-
nearby

set happy? similar-nearby>= ( %$-similar-
wanted * total-nearby / 100 )
]

end

(continued)
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Box D: (continued)

72 to update-globals

73 let similar-neighbors sum [similar-nearby]
of households

74 let total-neighbors sum [total-nearby] of

households

75 set percent-similar (similar-neighbors /
total-neighbors) * 100

76 set percent-unhappy (count households with
[not happy?]) / (count households) * 100

77 end

78

79 to do-plots

80 set-current-plot “Percent Similar”

81 plot percent-similar

82 set-current-plot “Percent Unhappy”

83 plot percent-unhappy

84 end

85

86

87

The dynamic process (which starts when the user presses the go button, see
Fig. 8.4) is implemented using a simple behavioural rule for an agent in this model:
IF I'm not happy THEN I move to another place. As the go procedure (lines 32-38)
shows, the simulation will continue to run until all agents became happy with their
neighbourhood (or the user forces it to stop).

The model provides two plots to present the two global variables percent-similar
and percent-unhappy visually. Figure 8.4 shows the user interface and plots of the
segregation model.

Stage 5: Verifying and validating

Like the previous traffic example, a simple verification method is to use extreme
values for the model’s parameters. For example, when setting the agents’ threshold,
%-similar-wanted, to zero and running the model, no agents move as they are all
happy regardless of the percentage of neighbours of the same colour. On the other
hand, setting this parameter to 100 makes most of the agents unhappy and they keep
moving from their places.

Regarding validation, the main objective of the basic Schelling model is to
explain an existing phenomenon rather than to replicate an existing segregation pat-
tern in a specific city, and the model was successful in this regard. It provides a
plausible answer to a puzzling question: why these segregation patterns are so
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Fig. 8.4 User interface and plots of the segregation model

persistent regardless of the observed decline in ethnic prejudice. However, some
attempts have been successful in extending the basic segregation model to replicate
existing city segregation structures.

8.5 Conclusions

In this chapter, we discussed the process of designing and building an ABM.
We recommended a set of standard steps to be used when building ABMs for social
science research. The first, and the most important, step in the modelling process is
to identify the purpose of the model and the question(s) to be addressed. The impor-
tance of using existing theories to justify a model’s assumptions and to validate its
results was stressed.
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Chapter 9
Modelling Human Behaviour
in Agent-Based Models

William G. Kennedy

Abstract The modelling of human behaviour is not at all obvious. First, humans
are not random. Second, humans are diverse in their knowledge and abilities. Third,
besides being controlled by rational decision-making, human behaviour is also
emotional. This chapter attempts to present principles driving human behaviour and
reviews current approaches to modelling human behaviour.

9.1 Introduction

The behaviour of humans as individuals, in small groups, and in societies is the
subject of several fields of research because it has such an important role in many
aspects of daily life. However, incorporating human behaviour into Agent-Based
Models (ABMs) is a real challenge, primarily because of the short history of our
scientific observation of human behaviour, but there is hope. This chapter discusses
the challenges of modelling human behaviour, presents and critiques the major
approaches available along with some basic principles of human behaviour before
providing information on how to integrate human behaviour into ABMs. The chapter
starts with how not to model human behaviour.

9.2 How Not to Model Human Behaviour

To start, humans are not random. They (we) are strange and wonderful. Their behav-
iour may be unexpected or inconsistent (i.e., noisy), but it is not random. As an
example, here is a simple demonstration. An easy question will be presented below
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and you may take hundreds of milliseconds to answer, but do answer. The question
is: “Pick a number between one and four.” Have an answer?

The most common response is “three” and there is a secondary effect of this task:
people feel a need to explain why they chose whatever answer they did. The second
most common answer is “two”. Very few people decide to respond with either “one”
or “four”. Sadly, there is not a serious study of this behaviour but undocumented
sources suggest that the response statistics are close to 50% for “three”, 30% for
“two” and about 10% for the other two answers.

The common explanation for the selection of “three” is that it was the most
“interesting” number in the range. There is also a small number of people who are
compelled to answer outside of the range, with fractions, or irrational numbers.
These are rare occurrences. Similar results are obtained when the task is to pick a
number between 1 and 20. The similarity is that people pick their most interesting
number. For this range, the most common response is 17, occurring about 40% of
the time, well above a “rationally”, “logically” expected 5%. Other primes are also
favored as answers because they too are interesting.

This behaviour is interesting. The decision-making process should be simple,
but it certainly does not appear to be a simple random selection among equally
likely options. What this shows us is that people cannot even be random when
they want to be. Further, if this task had been modeled as a uniform random dis-
tribution among equally likely choices, it would have been very different from
actual behaviour.

Modeling human choices as uniform random distributions is making a very seri-
ous claim about human behaviour. It is saying that all choices are equally likely
even when we know nothing about how people actually decide. It also assumes
people have no preferences, do not consider the consequences of their actions, have
no memory of previous choices, and can be more consistent than the data shows.
Modeling human behaviour requires some data or some experience. Luckily, mod-
elers are human and should know better.

9.3 Levels of Modelling Human Behaviour

The first question in an effort to model human behaviour is at what level the behav-
iour is to be modelled. The choices are basically at the individual level, at some
small grouping of individuals, such as a household, and as a society. Modelling of
a society can be done statistically, i.e., without dealing with individuals within the
society. They could be inanimate particles because there is no effort to represent
their decision-making process, only to describe what they have done. Small groups
are typically modelled as if they were individuals and the science behind modelling
individuals applies to small groups as well. This chapter addresses the modelling
of individuals.
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9.4 The Science Behind Modelling Human Behaviour

There appears to be at least two levels of sophistication in social organisms,
“sociobiology” as E.O. Wilson termed it (Wilson 1975/2000). Social organisms
such as slime moulds and social insects seem to be totally driven by inherited
instincts that fully define their reactions to environmental stimuli. Social mammals,
on the other hand, appear to have some degree of general problem-solving capabili-
ties, such as a Theory of Mind, or in other words, their own model of other agents.
This general capability results in the social behaviour of at least mammals being far
more complicated than seems possible from a fixed set of inherited instincts.
Humans and a majority of the great apes have many traits and resulting behaviours
in common — see Wilson (1978/2004).

The study of human behaviour is as old as social primates themselves. A large
part of social behaviour is the internal modelling of others for the purpose of know-
ing how to get along with them successfully. Prehistoric oral traditions have taught
us how people supposedly behaved and the consequences of that behaviour (Stone
2011). The scientific study of how humans behave began less than 150 years ago
with the advent of psychology as a modern scientific field — see James (1892/2001).
The work is progressing, but due to the nature and complexity of the human mind,
progress could be said to be slow.

In the mid-1950s, a cognitive revolution resulted in the research in behaviour
changing from explaining all behaviour as simple stimulus-response associations to
applying a new theory. The new theory was that behaviour could be explained in
computational terms, but not simply via a “computer metaphor”, i.e., literally like a
computer, but a “computational theory of mind”. This meant that the mind could be
explained “using some of the same principles” as computers (Pinker 2002, p. 32).

One of the early concepts that has been both useful and distracting, is the meta-
phor of the brain as a computer (Newell and Simon 1972). It has been useful in
providing a framework to understand the mind in terms of inputs, processes, and
outputs. This reductionist approach has led to advances in understanding the modu-
lar organization of the mind and the brain (Anderson 2007). However, our focus on
the von Neumann computer architecture, i.e., a separate memory and processor,
which operate serially, has resulted in a symbol vs. connections debate (Anderson
2007). Neural network approaches to modelling cognition is an ongoing research
area, but such systems are difficult to build and it has been difficult to make steady,
incremental progress.

The pursuit of modelling or replicating human behaviour has developed two
camps: Atrtificial Intelligence and Cognitive Science. The work in Al is aimed at
replicating the intelligent behaviour of humans and surpassing human intelligence
when possible, as in mathematics from arithmetic to calculus. However, most Al
researchers have little interest in replicating the all too human errors or unintelligent
behaviour observed in nature. On the more psychological side, researchers in
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Cognitive Science seek to understand human cognition in all of its forms, rational
as well as emotional, intuitive, and erroneous. Both approaches have developed
methods and techniques that can be useful in modelling human behaviour.

Focusing on the rational and analytic side of human cognition has generated
the largest amount of research in this area and significant progress had been made,
e.g. see Kahneman (2003). There has been far less research on other behavioural
drivers such as intuition or emotions, but research is growing in this area — see
Damasio (1994).

9.5 Basic Principles

In this section, a set of basic principles of human behaviour is provided. These prin-
ciples are focused on the causes of human social behaviour, not the behaviour of
individuals alone or over very short periods.

9.5.1 Humans as Information Processors

Humans process sensory information about the environment, their own current
status, and their remembered history to decide what actions to take. However, their
environmental sensors are limited in type to the traditional five senses (touch, sight,
hearing, taste, and smell). Humans can also sense temperature, internals (kinesthetic
or proprioception), pain, balance, and acceleration. Each has a range and a mini-
mum sensitivity and duration threshold.

Humans also have diverse personality traits. These are characteristics that effect
the thoughts, behaviour and emotions that they are born with, which seem to be rela-
tively constant over a life span, and that are a large part of individual differences.
Traits are intended to be relatively independent and seem to have normal distribu-
tions with large populations. There are two taxonomies of personality traits known
as a three-factor model (Eysenck 1967/2006) and a five-factor model (McCrae and
Costa 1987). Both share two traits: extraversion (sociability) and neuroticism
(tendency toward emotional behaviour). Other potentially important traits associ-
ated with social behaviour include agreeableness, risk avoidance, and impulsivity.

Taken together, humans as information processing systems have a limited infor-
mational input bandwidth, limited memory, and limited processing capability.
However, because humans have language, their information sources can be very
wide, and with written language, they can have memories spanning centuries.

9.5.2 Human Motivations

A very highly cited 1943 paper on human motivation provided an organization of
human motivations into a “Hierarchy of Needs” (Maslow 1943). This ordering is not
rigid but has survived intact over the years. Maslow proposed that humans’ first need
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is to meet their basic physiological requirements. After these are adequately met, the
next priority is for safety and security. When these are adequately addressed, the next
priority is the social needs of friendship, family, and sexual intimacy. The last two
layers deal with external esteem and self-actualization. This hierarchy is useful in
ordering potentially competing priorities of agents representing humans in ABMs.

9.5.3 Humans Behaving Rationally

Human behaviour is commonly thought of as being rational. Rational Choice Theory
(Coleman 1990) is based on the presumption that humans behave in ways to maxi-
mize their benefits or minimize their costs, and in either case, follow logical pro-
cesses. This approach typically assumes all possible actions are known, all agents
have perfect knowledge of the environment, and that the preferences of agents are
well behaved, i.e., have necessary ordering and transitivity properties. Tempering
this approach is the idea that agents have “bounded rationality”, i.e., have limited
information, limited cognitive abilities, and limited time to make decisions (Simon
1996). In addition, there may be limitations as to how many variables humans can
process and how mathematically sophisticated the evaluation of those variables are
in order to determine their rational behaviour. Although many forms of knowledge
representation are possible, the representation of human knowledge is generally
accepted to be in two basic forms: declarative knowledge of facts and procedural
knowledge typically represented in IF-THEN rules (Newell 1990; Anderson 2007).
Rational behaviour also includes learning of declarative knowledge, and new proce-
dural knowledge in some cases. How long knowledge is retained varies from
systems that never forget knowledge to systems that have very little memory for
either form of knowledge. Clearly, systems of human behaviour need to have some
memory, but how much and how formally it is modelled depends on the purpose of
the system. Therefore, a rationally behaving model needs to be able to represent
knowledge, learn, remember new knowledge, and apply that knowledge to deter-
mining the behaviour of the agent.

9.5.4 Humans Behaving Emotionally/Intuitively/Unconsciously

In addition to being rational beings, humans have other factors that affect their
behaviour. These include emotional, intuitive, or unconscious decision making pro-
cesses. The representation of human behaviour in ABMs may need to include these
other decision-making processes. Research in emotions and the effect of emotions
on decision-making is taken in this discussion as the leading representative of the
non-traditionally rational decision-making processes.

There is evidence of a common set of basic emotions: interest, joy, happiness,
sadness, anger, disgust, and fear (Izard 2007). These emotions are considered evo-
lutionarily very old and have neurobiological bases. They are generally infrequent,
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short lived, and do not directly affect cognition. However, emotions can lead to
longer-term moods and result in complex behaviour.

There have been many studies of emotions but the relation of emotion to cognition,
and therefore to behaviour is a highly debated topic in psychology (e.g., LeDoux
1995). Whether emotions are modifiers of the rational decision-making process or a
separate mental process is not yet settled. Kahnemann (2003) discusses a System 1
and System 2 approach to dual cognitive processes. The predominant theory of
emotion is Appraisal Theory (Scherer 1999).

The appraisal theory poses that there are a fixed set of dimensions of factors
needed to determine the emotional status of an individual. However, there is wide
variance of thought on what the dimensions are. Progress is being made and repeat-
able results are starting to produce interesting results (Scherer 1999).

Although it may seem natural to presume humans behave to maximize their
expected emotions, the effect of emotions on decision-making can be more richly
discussed (Loewenstein and Lerner 2003). Emotions can alter rational decision-
making by distorting the agent’s perceptions of the environment and the likelihood
of future evaluations. Loewenstein and Lerner (2003) offer two limitations concern-
ing the impact of emotions on decision-making. First, some behaviour is not the
result of decision-making and can be the result of emotional drivers directly. Second,
the impact of emotions on decision-making cannot be easily classified as improving
or degrading the rational decision-making process.

9.5.5 Humans Behaving Socially

As social beings, the behaviour of individuals is shaped by input from others in two
basic ways. First, humans have a Theory of Mind by which they imagine what oth-
ers have as their goals and what they are thinking and feeling (Dunbar 2004).
Second, human behaviour is influenced by and combines with the behaviour of oth-
ers (Latané 1981; Friedkin and Johnsen 1999; Surowiecki 2005; Kennedy and
Eberhart 2001).

A Theory of Mind supports the transference of information based on establishing
and sharing common concepts among agents, i.e., language. The exchange of infor-
mation and goods and services among groups of agents then provides for the devel-
opment of culture and economies within and among societies.

Latané proposed a formulation of social influence based on experiments where a
group attempts to influence a human subject (Latané 1981). The relationship he
found was of the form:

I=sN' 9.1

where I is the influence in terms of the percentage conforming or imitating
behaviour in the subject, s is a constant associated with the circumstances, N is
the number of others involved, and t is a factor less than one and often near one
half. However, this influence also inhibits action by, in a sense, distributing the
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social responsibility to act such that a social inhabitation to act by bystanders has
been found (Latané 1981). Extending the study of influence, Friedkin and Johnsen
(1999) reported on the influence of a group’s members on each other and the
result can be that the group settles on the group’s mean, a compromise different
from the mean, on the position of an influential member of the group, or may not
form a consensus.

Groups can also develop results greater than those of any of the individuals.
Groups of diverse people independently making evaluations with an appropriate
method of bringing their results together can have this kind of result (Surowiecki
2005). He explored conditions that resulted in good collective results and found that
they result from the differences in the evaluations among group members, not com-
promises or achieving consensus. This appears to be another outgrowth of social
influences, which can lead to conformity, a lack of independence, and then poor
results. For example, he reports that in a crowd, due to diversity, there will be some
willing to riot, some who would never riot, and many that will decide based on
social influences.

This section has attempted to identify the basic principles of human behaviour.
They are intended to be the causes of human social behaviour, not the behaviour of
individuals. Of course, this is incomplete, possibly wrong, and the subject of much
research. The next section addresses current approaches in applying this knowledge
to modelling human behaviour.

9.6 Current Approaches

Although this book is about ABMs, within an ABM, the representation of the cogni-
tion driving a modelled human’s behaviour can have its own internal architecture.
A cognitive architecture (Newell 1990) is the structure and functionality that is
unchanging throughout the simulation and supports the cognitive model that drives
behaviour. There are several cognitive approaches to consider. For presentation here
they are grouped as: (1) ad hoc direct and custom coding of behaviours mathemati-
cally in the simulation’s programming language; (2) conceptual frameworks to be
implemented within the target system; and (3) research-quality tools for modelling
the cognitive functioning of an individual at the millisecond scale.

9.6.1 Mathematical Approaches

Mathematical approaches to modelling human behaviour are methods that produce
agent behaviour through the use of mathematical simplifications. First among these,
and the most severe simplification, is the use of random number generators to select
between predefined possible choices. The fallacies of this approach were addressed
at the beginning of this chapter, and includes that people are not random, that random
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number generation is not a replacement for unknown quantities, and that using a
random number generator is making very strong and very wrong claims about
human behaviour.

Better than relying on random number generators would be to directly code
threshold-based rules. These are of the form that when an environmental parameter
passes a threshold, a specific human behaviour would result. This would provide
simple behaviour, but they would be explainable and could approximate human
behaviour. The parameter could be transformed so that the action is taken when the
transformation of the parameter is above, below, or between thresholds.

Using a threshold is equivalent to comparing two values in that the difference in
the two values can be compared to a threshold. For example, if the intent is to com-
pare function1 with function2, this is the same as comparing (functionl — function2)
and a threshold value of 0. For instructional purposes, all sample rules presented
here are in the form of a function compared to a threshold. Variables and functions
are descriptively named between “<>" and actions are in italics.

As an example:

IF <hunger >is below <hungerThreshold1 > THEN agent-dies.

IF <hunger >is above <hungerThreshold2 >THEN address-another-goal.
IF <hunger >is between <hungerThreshold1 >and <hungerThreshold2>
THEN search-for-food.

Another mathematical approach is the use of multi-dimensional functions of
parameters rather than comparing a single environmental parameter to a threshold.
Here, several parameters are combined to define a modelled human’s behaviour.
The major weakness in this approach is that available data does not validate humans
as pure optimizing agents.

IF <evaluation of <hunger> & < thirst>>is above thresholdHT
THEN focus-on-safety-issues.

Finally, Dynamic Modeling (Hannon and Ruth 1994) represents human
decision-making as “stocks and flows” or, in a sense, as a hydraulic system with
pipes, tanks, valves, and pumps. The representational sophistication of this model-
ling approach is that the rate of change of a variable can be a function of its own
magnitude. Such a model uses differential equations to describe relationships in the
model. The hydraulic theory of emotion can be traced back to René Decartes (1596—
1650) (Evans 2001). An example is:

IF <anger>is above < ventThreshold > THEN act-to-vent-anger.

These mathematical approaches to modelling human behaviour rely on a simpli-
fication of the perception, reasoning, and actions important to the purpose of the
model. For many models, the vast majority of the human behaviour is not of interest
to the model and the behaviour of interest can be reasonably well specified. If more
general behaviour is important to the modelling effort, a more general approach
may be appropriate.
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9.6.2 Conceptual Frameworks

Conceptual frameworks are approaches to modelling human decision-making using
more abstract concepts than mathematical transformations of environmental param-
eters. They involve concepts such as beliefs, desires, and intentions (BDI), emo-
tional state and social status (PECS), and “fast and frugal” decision hierarchies.
Three conceptual frameworks will be addressed.

The first approach is based on beliefs, desires, and intentions (BDI) (Rao and
Georgeff 1995). The BDI approach is a theoretical framework based on the idea that
human behaviour can be modelled by representing an individual’s beliefs, desires,
and intentions. Beliefs are the individual’s knowledge about the world, i.e., the
world as they perceive it to be. Desires are the individual’s motivation, i.e., its goals.
Intentions are the agent’s deliberative states. A BDI implementation develops a
decision tree and this complete decision tree is transformed into a possible worlds
model from which a deliberation process decides the best course of action. The BDI
framework is very general and can be realized in many ways. Its weakness is that it
is so general that it provides little more than a conceptual framework for thinking
about how to model the human cognition behind behaviour. The next framework is
more specific and provides more guidance for implementing a model of human
behaviour within an agent-based system.

The second framework involves physical, emotional, cognitive, and social fac-
tors (PECS) affecting behavioural decisions (Schmidt 2002). This framework
includes a representation of the human mind, specifically perception and behav-
iours, and mathematical representations of physiology, emotion, cognition, and
social status. Within cognition are mathematical transformations for a self-model,
an environmental model, memory for behaviour protocols, planning, and reflection.
The declared purpose of the PECS framework is to replace the BDI framework, and
it is more specific and implemented. The PECS framework can represent simple
stimulus-response behaviours and more complex behaviours that involve the deter-
mination of drives, needs, and desires and their transformation into motives. Motives,
depending on their intensity, are state variables that indirectly determine behaviour.
Advantages of this framework are that behaviours can be explained in terms of their
causes in a reasonably plausible manner. Two challenges for this framework are the
internal parameters for the mathematical transformations of environmental param-
eters into the internal state variables and the combination, prioritization, and inte-
gration of the various motives into the selected behaviour.

The third framework is called “fast and frugal” and was developed by analyzing
data on human decisions. Gigerenzer (2007) reported on the analysis of how inten-
sive care units make decisions about whether a patient is having a heart attack and
how two judges evaluate court cases and make decisions on whether to grant bail for
defendants. The analysis in both cases identified three sequential questions that
could be answered by environmental variables, and the use of these “fast and frugal”
trees performed very well compared to human decision-making. In the medical
case, the decision tree developed for a U.S. hospital performed better than the heart
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disease predictive instrument or physicians, and the decision trees explained 92% of
the two UK magistrates’ decisions (Gigerenzer 2007). The design of these rules in
these trees is not aimed at identifying all the variables to justify implementation of
a particular behaviour, but an attractive characteristic of this framework important
to ABMs is that these decision trees are inexpensive computationally and should
scale up well to large numbers of agents.

These three frameworks are different approaches to modelling human behav-
iour at a level of rigor between the pure mathematical representations and full,
research quality models of human cognition. The third level, research-quality mod-
els are tools intended for use usually in representing the cognitive decision-making
of individuals.

9.6.3 Cognitive Architectures

A third approach is to use research tools developed for a purpose different from
agent-based modelling for social simulation. Their purpose is research into abstract
or theoretical cognition on the one hand and understanding human cognition on the
other. This section discusses Soar, ACT-R, and other architectures. These are archi-
tectures in the sense that the basic system is unchanging throughout the use of the
system. Cognitive models of specific tasks are implemented within these cognitive
architectures. Such a cognitive model can be used to drive the human behaviour of
an ABM.

Soar (Lehman et al. 2006) is an Artificial Intelligence system originally based on
matching human performance in problem-solving tasks at a symbolic level of gran-
ularity and is the basis of Newell’s proposal for Unified Theories of Cognition
(Newell 1990). As an Al system, its purpose is to meet or exceed human perfor-
mance on a wide variety of tasks. The Soar system could be considered to be an
implementation of a BDI architecture in that it maintains an internal representation
of the world, is always working to solve a goal, and has available internal state vari-
ables. Soar has a long history of modelling human behaviour framed as problem
solving in research settings and for commercial customers. Although a stand-alone
system, Soar has been connected to several other environments including games.
A Soar model consists of a collection of rules written as text that uses environmental
or internal variables and either changed internal variables or takes an action that
changes the environment. The system, which includes demonstration models, is
available at no cost from the Soar website, http://sitemaker.umich.edu/soar/home.
There is also a Java based version being developed at http://code.google.com/p/
jsoar/. There is an active Soar community, it offers training on using Soar, and 40—-60
members meet annually.

ACT-R (Anderson and Lebiere 1998; Anderson et al. 2004), which most recently
stands for Atomic Components of Thought-Rational, has been used in basic research
in cognition for many years. ACT-R provides architecture assumptions based on
both symbolic and sub-symbolic representations of knowledge. Over the years,
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ACT-R has evolved into a comprehensive cognitive architecture demonstrating
successful models of many cognitive phenomena and it has been linked to the func-
tional regions of the brain (Anderson 2007). Successful here means closely matching
human performance data. However, ACT-R is focused on relatively low-level cogni-
tive phenomena operating over very short time periods. It does not support higher-
level concepts such as beliefs, desires, or intentions explicitly. An ACT-R model
consists of a collection of declarative facts and rules written as text that uses envi-
ronmental or internal variables and either changed internal variables or initiates
actions in the environment. ACT-R is also available at no cost and has an active
community supporting it. Courses on using ACT-R are offered in Europe and the
United States annually and the community meetings of 40-60 people also occur
approximately annually. Their home page is: http://act-r.psy.cmu.edu/. There is also
a Java version of ACT-R in development and use: http://jactr.org/, which has been
connected to and operates a mobile robot — see http://www.nrl.navy.mil/aic/iss/.

There are other cognitive architectures used in research. Several are reviewed in
the National Research Council report (Zacharias et al. 2008). However, none of
these other symbolic architectures have the wide acceptance and active community
that Soar and ACT-R have.

9.7 Challenges in Modelling Human Behaviour

There are at least three challenges in the efforts to model human behaviour in agent-
based systems: understanding humans, data, and validation & verification. As
should be obvious, although human behaviour has been noticed for thousands of
years and scientifically studied for a couple of hundreds of years, there is still much
unknown. The genetic, historical, and current environmental factors affecting the
behaviour of such diverse agents as humans may appear incomprehensible, but
progress is being made and will continue. Research continues to develop data on
how people behave under certain circumstances and this is replacing the poor default
of assuming that human behaviour is random and unknowable. However, data for
many or most behaviours of interest to the ABM community may not yet exist. The
lack of data makes validation and verification of models of human behaviour diffi-
cult, at best. However, as humans are the ones constructing ABMs of human behav-
iour, hopefully, some knowledge, some generally accepted practices, and a good
dose of common sense will result in good models of human behaviour.

Additional Resources

While research and the practice of modelling human behaviour continues, there are
sources supporting this effort. The U.S. Air Force asked the U.S. National Research
Council to provide “advice on planning for future organizational modelling research”
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(Zacharias et al. 2008, p. 1). The resulting report provides an excellent review of the
state of the art, although a criticism is that it does not adequately address work out-
side the U.S.

Current research and results in agent-based modelling is presented in scientific
conferences held regularly. In the United States, the Behaviour Representation in
Modeling and Simulation Society meets annually to present and discuss current
work. Their website is: http://brimsconference.org/. In Europe, the European
Council for Modelling and Simulation meets annually and their web site is: http://
WWW.Scs-europe.net/.
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Chapter 10
Calibration and Validation of Agent-Based
Models of Land Cover Change

The An Ngo and Linda See

Abstract This chapter considers two important issues in the development of
agent-based models, i.e. calibration and validation. These terms are defined and
framed into a step-by-step process. Each step is then explained in further detail
and illustrated using an agent-based model of shifting cultivation developed by
Ngo (2009) as part of his PhD research project. Although the process of model
validation presented here is applicable to agent-based models in general, some of
the finer details are more relevant to agent-based models of land use and land
cover change.

10.1 Introduction

Model validation is a process for determining if a model is able to produce valid and
robust results such that they can serve as the basis for decision makers (Berger et al.
2001). The validation process provides the information needed to assess how well
the model approximates the real world system and meets the original objectives of
the model development. Before the outputs of a model are validated, there is a cali-
bration process whereby the model parameters are determined using real world
data. Together both calibration and validation represent one of the seven challenges
of agent-based modeling (Crooks et al. 2007). One of the main reason for this
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challenge is that the concepts related to validation are still being debated, and
conflicts remain in the way that validation terminologies are used (Carley 1996;
Crooks et al. 2007; Troitzsch 2004). Moreover, the different techniques for validation
are quite varied, which has led to a confusing situation for modellers. Therefore, it
is important to have a systematic approach to the overall validation process, and one
that is integrated throughout the development phase of an agent-based model
(ABM). This chapter attempts to provide such an approach to ABM validation.

Numerous publications have been devoted to reviewing different validation
methods for ABMs (Berger et al. 2001; Carley 1996; Kliigl 2008; Parker et al. 2002;
Troitzsch 2004; Windrum et al. 2007). Among these, several types of validation are
mentioned, e.g. empirical validation, statistical validation, conceptual validation,
internal validation, operational validation, external validation, structural validation
and process validation. However, Zeigler (1976) provides a good characterization of
these methods into three main types:

e Replicative validation: where model outputs are compared to data acquired
from the real world;

e Predictive validation: where the model is able to predict behaviour that it has
not seen before, e.g. that which might come from theories or which might occur
in the future; and

e Structural validation: where the model not only reproduces the observed sys-
tem behaviour, but truly reflects the way in which the real system operates to
produce this behaviour.

In this chapter, the focus is on structural validation, which in broad terms con-
sists of the following four processes as defined below (Carley 1996; Kliigl 2008):

e Face Validation: is often applied at the early phase of a simulation study under
the umbrella of conceptual validation. This technique consists of at least three
methodological elements:

* Animation assessment: involves observations of the animation of the overall
simulated system or individual agents and follows their particular behaviours.

¢ Immersive assessment: monitors the dynamics of a particular agent during
the model run.

e Output assessment: establishes that the outputs fall within an acceptable
range of real values and that the trends are consistent across the different
simulations.

* Sensitivity Analysis: assesses the effect of the different parameters and their
values on particular behaviours or overall model outputs.

* Calibration: is the process of identifying the range of values for the parameters
and tuning the model to fit real data. This is conducted by treating the overall
model as a black box and using efficient optimisation methods for finding the
optimal parameter settings.

e Output Validation: involves graphically and statistically matching the model’s
predictions against a set of real data.
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Fig. 10.1 General validation process of an ABM

Face validation and sensitivity analysis are sometimes collectively referred to as
verification (Parker et al. 2002). The different processes above are often carried out
iteratively in a step-by-step process as illustrated in Fig. 10.1.

A model is able to generate reliable and valid results within its experimental
frame only if these validation processes are wholly implemented. However, there
are very few examples of where comprehensive system validation has been
applied to ABMs. For land use and land cover change modeling in particular,
many studies have only concentrated on output validation (e.g. Castella and
Verburg 2007; Jepsen et al. 2006; Le 2005; Wada et al. 2007) whereas the other
steps mentioned above have not been treated explicitly. Therefore, the results
may not truly reflect the way the system operates as per the definition of struc-
tural validation provided earlier.
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The rest of the chapter discusses each of the stages in the validation process
(Fig. 10.1) in more detail, providing examples from an ABM of shifting cultivation
(SCM) as described in Ngo (2009) and Ngo et al. (2012).

10.2 Verification of ABMs

Verification is the process whereby the logic of the model is tested for acceptability
and validity. Basically the model is checked to see if it behaves as it should. Crooks
etal. (2007, p. 10) refer to this as testing the “inner validity” of the model. Verification
often involves examining processes within the model and then comparing the model
outputs graphically or statistically against the real data. However, the level of detail
needed for verification is less than that required for calibration (Carley 1996).

As defined previously in Fig. 10.1, model verification consists of face validation
together with the sensitivity analysis. Face validation is conducted to ensure that the
processes and initial outcomes of the model are reasonable and plausible within the
basic theoretical framework of the real system. Sensitivity analysis, on the other
hand, is applied to examine the effect of the model parameters on the outcome of the
model. Parameters with no significant effect are then removed from the model to
make it more coherent and easier to operate. The sensitivity analysis is, therefore,
necessary in the pilot phase of complicated simulation studies as the parameters that
are identified as being important are those that will require calibration or identifica-
tion using optimisation or some other means.

10.2.1 Face Validation

Face validation should be applied to several aspects of the model in its early devel-
opment phase. The dynamic attributes of the agents can be analysed visually across
many iterations of the model. All behaviours such as those used for identifying the
relationships between agents, and the automatic updating of related parameters are
checked for consistency and accuracy. These processes are essentially the anima-
tion and immersive assessments referred to in Sect. 10.1, which can be undertaken
in a visual and qualitative way.

A simple example of visual validation is demonstrated in Fig. 10.2, which has
been conducted for the SCM of Ngo (2009). Figure 10.2 shows the results of the
dynamic monitoring of a random household agent with their relatives over time. As
time increases (on an annual time step), the household characteristics of the agent
are updated gradually from a state when the household was young to when the first
partitioning occurs and the first son marries, forming a new household. Replacement
by the second son then takes place when the head of household agent dies to form a
new household. Visual analyses like these were used to determine whether the SCM
(Ngo 2009) was able to produce acceptable results when simulating real human
relationships in a shifting cultivation system.
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Fig. 10.2 Dynamic monitoring of selected household agents over time in the shifting cultivation
model (Ngo 2009)

The second part of the face validation process relates to output assessment in
order to ensure that the simulated results fall within an acceptable range of real
values across the simulations. The simulated results might include the important
parameter values which were used to describe an agent’s characteristics. The analyses
can be conducted as follows. Firstly, the model is run several times (where all inputs
are held constant) in order to generate the initial outputs related to the characteristics
of the agents. The number of runs should be sufficiently large as to be statistically
significant (e.g. 30). These data were then analysed visually to ensure that they fell
within the range that corresponds to the real world (based on a comparison with
survey data obtained from fieldwork).

A statistical comparison between the data from the simulated runs and the real
data is shown in Table 10.1. In terms of the statistical distribution, it is important to
check for Standard Errors (SE) and compare the mean values of the simulated results
with real world values to ensure that the model can provide consistent results. Once
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Table 10.1 Household data from the model simulation and the survey data collected in 2007
(Ngo 2009)

Model outputs in 2007 Survey data in 2007
Mean SE SE (%) Lowerbound  Upper bound Mean
Age of household 40 0.149  0.37 39 45 42
heads (year)
Household size 6.27 0.054  0.89 6.17 7.54 6.86
(# of people)
Household labour 3.70 0.047 1.27 3.31 4.34 3.83
(# of labourers)
Land per capita (ha) 0.18 0.000 0.00 0.18 0.21 0.19

the simulated results appear to be consistent (e.g. SE<5%), their mean values can
be then compared with the ranges of the real data, which is often indicated by the
lower and upper bounds in statistical terms.

The simulated data in Table 10.1 shows that the model output results have SEs of less
than 5% compared to the mean values, indicating that the results are consistent and can
therefore be compared with the findings from the survey. The mean values of the model
outputs fall within the upper and lower bounds of the survey data, which confirms that
the SCM can produce household characteristics that are similar to the survey data.

Another assessment of the output within the face validation framework is to
check how consistently the model can produce the same or similar outcomes
between the different model runs. There are several ways to do this but the Test for
Homogeneity of Variances (Winer 1971) is one possible approach. In practice,
we might measure the variances of the simulated results for several time steps
(i.e.t,t+1,t+2, t+3, t+n) with several replications. If the hypothesis is accepted, i.e.
the variations between model runs are similar, then the model would pass this test.

Regarding ABMs related to land use and land cover change analysis, it is also
important to compare output values from model runs produced at different scales.
Since the level of detail is reduced at lower resolutions, there will most likely be
some difference between the model outputs run at varying scales. However, if this
difference is not statistically significant, then the model could be run at the coarser
scale to reduce the running time of the model. This reduction in computational time
could be very significant if the model is applied to a large area.

10.2.2 Sensitivity Analysis

In an ABM context, sensitivity analysis is often carried out to examine the effect of
input parameters and their values on model behaviours and model outputs. This
analysis is essential for selecting significant parameters for the simulation before
the model is calibrated or used in scenario analysis. A common approach is to
modify only one parameter at a time, leaving the other parameter values constant
(Happe 2005). However, this approach is not as easily applicable to agent-based
systems (Manson 2002) and sensitivity analysis has often been undertaken in an
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unstructured way (Kleijnen et al. 2003). In order to avoid oversimplification of the
underlying model due to leaving out possible interactions between input parameters,
Kleijnen et al. (2003) and Happe (2005) have suggested that the sensitivity analysis
should be conducted systematically by applying the statistical techniques of Design
of Experiments (DOE) and metamodelling (Box et al. 1978; Kleijnen and Van
Groenendaal 1992).

The suitability of DOE techniques in the context of ABMs has been recognised
previously as it can help to determine the importance of the input parameters and
also provide information about model behaviour and the logic employed in the pro-
gramme (Happe 2005; Kleijnen et al. 2003). In DOE terminology, model input
parameters are called factors, and model output measures are referred as to responses.
A full factorial design consists of i factors, with an assumption that each factor takes
Jj levels and therefore involves n =i/ factor setting combinations. This means that n
simulations are required to determine the effect of i factors. However, this procedure
can only be applied to a small number of factors because the computation time
increases exponentially with each additional factor and each additional factor level
(or categories in which each factor is divided). It is obvious that alternative methods
are therefore necessary to undertake a sensitivity analysis of the model if the num-
ber of factors is large.

To deal with the computational problem due to the large number of factors,
Bettonvil and Kleijnen (1997) proposed the Sequential Bifurcation (SB) technique
which is essentially a method to determine the most important factors among those
that affect the performance of the system.

SB operates with three assumptions: (i) the importance of factors to the model
performance can be approximated as a first-order polynomial; (i) the sign of each
factor effect is known; and (iif) errors in the simulation model are assumed to be zero.
The overall procedure can be described as follows. Firstly, the analysed parameters
are converted to binary variables with values of 0 or 1, which correspond to low and
high simulation outputs, respectively. The simplest approximation of the simulation
model output y is a first-order polynomial of the standardised variables (x ,....x,....x,),
which has main effects ﬁj and overall mean ,Bo, and can be expressed as:

y= ﬁo +:le1 +'"+ﬂjxj +'"+ﬁ1<x1< (10.1)

The manner of the variable standardisation mentioned above implies that all the
main effects in (10.1) are non-negative: ﬂjZO. In terms of DOE, the standardised
variables also indicate that the combination of experimental factors relates to the
switch-on (1) and switch-off (0) of the equation’s elements. To deal with the interac-
tion between factors, i.e. the dependence of a specific factor on the levels of other
factors, (10.1) can be approximated as:

y="5 +2/3jx_f +2 Z B;ix;x; (10.2)
=

J=1 j=j+l

where [3N is the two factor interaction effect between factor j and j'.
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Secondly, SB is operated in an iterative procedure where the next factor is
selected based on the outputs of previous factor combinations that have already
been simulated. The procedure might contain several stages, depending on the lower
limit of the effect level defined by the users. The first stage always estimates the
simulated results from the two extreme factor combinations, namely y, (all factors
low) and y, (all factors high). If y <y,, then the sum of all the individual main
effects is important and the second stage of SB is entered. SB then splits the factors
into two subsets of equal size and continues the estimation process for each sub-
group, which is the same as that described in the first stage, and the procedure con-
tinues in an iterative manner. SB terminates when the effect level (i.e. V- y,) reaches
the lower effect limit defined by the user.

More detailed instructions on how to apply the SB technique can be found in
Bettonvil and Kleijnen (1997) and Ngo (2009). In general, the effective level of the
factor found by the SB indicates its sensitivity. The factors that are identified by the
SB as having little importance or were less effective should be eliminated from the
model. The remaining factors or model parameters will then need to be calibrated if
unknown a priori. In the SCM of Ngo (2009), sensitivity analysis was used to elimi-
nate a number of variables from the model, leaving a subset for calibration.

10.3 Model Calibration

Once the sensitivity analysis is completed, the next stage in validation (Fig. 10.1) is
calibration of the model. The calibration process is conducted to identify suitable
values for the model parameters in order to obtain the best fit with the real world.
This process, therefore, involves the optimisation of the parameters. There are many
different optimisation methods available (Fletcher 2000) but a genetic algorithm
(GA) is particularly well suited for implementing this task. A GA has novel proper-
ties such as being able to undertake a parallel search through a large solution space
(Holland 1992). GAs have also been used to calibrate other ABMs in the past
(Heppenstall et al. 2007; Rogers and Tessin 2004).

10.3.1 The Principle of Parameter Optimisation Using GAs

A GA applies the principle of “survival of the fittest” from the field of genetics to a
population of competing individuals or solutions within a given environment called
the search space (Soman et al. 2008). The procedures involved in a GA are similar
to the process that occurs in genetics where the parameters in the GA play the role
of chromosomes; the range of data is the genotype; while the results of the model
runs are the phenotype. The general steps in a GA are illustrated in Fig. 10.3.

The GA starts with a randomly generated number of solution samples which
is collectively called the population, which is the first generation of the species.
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Fig. 10.3 The general steps in a genetic algorithm

A single solution or individual in the population is the combination of parameters
with particular values. The solution is therefore equivalent to a natural chromosome
with a specific genotype. The next step is the evaluation of fitness using the objec-
tive function specified by the user. If there is any individual with a fitness value that
satisfies the threshold condition, the programme is terminated and the best individual
will be the best solution. Otherwise the GA will operate in a loop creating new gen-
erations or populations. Within the loop, individuals (i.e. chromosomes) with higher
fitness values are given a higher probability of mating with each other, so as to
produce offspring that may better fit the environment.

Several selection methods for selecting the best fit individuals are available such
as roulette wheel, tournament, rank and elitism (Mitchell 1996). The most popular
method is tournament selection, which is not only suitable for a medium and small
population size but also provides marginally better accuracy compared to the rou-
lette wheel selection (Al-Ahmadi et al. 2009). The tournament selection chooses the
best fit individuals from several random groups iteratively. For example, if a total of
35 best fit individuals must be selected out of a population of 50 members, the tour-
nament will firstly select a random group (e.g. a group of three random members);
within this group, a best fit individual will be the first selected member. These selec-
tion processes continue with the next random group to choose the second member
until the 35th member is reached. All selected individuals are then entered into the
recombination or crossover step which replaces the old chromosomes with the new
ones. In the crossover phase, two selected individuals from two random tournament
groups perform crossover with a certain number of gene exchanges.

The process of selection and recombination do not inject new genes, so the solution
can converge to a local optimum (Soman et al. 2008). The process of mutation, which
prevents GAs from premature convergence to a local optimum, is performed to
achieve local perturbation by randomly replacing the parameter values with new ones.
The frequency of the replacement and the level of perturbation (i.e. the number
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of parameter values that are replaced) is defined by the mutation rate. Selection,
recombination and mutation are then applied to each generation iteratively until an
optimal solution is reached. The condition to be satisfied could be reached after a
maximum number of generations or if there is observed stability in statistics such as
the mean and/or variance of the population fitness values from a generation (Soman
et al. 2008). The optimisation programme ends when the terminated conditions are
matched and the optimal solution is reported.

10.3.2 Measurement of the Fitness of a GA

There are several techniques for measuring fitness and errors in the simulation
model such as the Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE), Median Absolute Percentage Error
(MdAPE), the Relative Operating Characteristic (ROC), a Confusion Matrix (CM),
the Kappa Index of Agreement (KIA), Fractal Analysis (Mandelbrot 1983) and
Multiple Resolution Goodness-of-fit (MRG). These techniques and goodness-of-fit
statistics measure different aspects of the model performance, and may therefore be
suited to different objectives. The selection of which evaluation measures to use
depends upon the purpose of the validation and the characteristics of the measures,
i.e. what the different measures are intended to show.

With respect to the GA, the RMSE is the most commonly used fitness or error
measure (Chatfield 1992) because it indicates the magnitude of error rather than
relative error percentages (Armstrong and Collopy 1992). This statistic measures
the squared differences between the simulated or predicted values and the observed
or reference values:

(10.3)
RMSE =

where x,, —x, . is the difference between variable i from data source 1 (i.e. the simu-
lated result) and data source 2 (i.e. the reference or observed data); and 7 is the total
number of variables. The RMSE provides a global measure of performance that
aggregates all individual differences into a single measure of predictive power.

Other measures of evaluation such as the ROC and the MRG are more suited to
evaluation of the model outputs once the model is calibrated so are described in
more detail in Sect. 10.4.

10.3.3 Interpreting Calibration Results from the GA

In practice, a GA does not produce a single unique set of parameters but a range of
solutions that sit on a Pareto front (Madsen et al. 2002; Yapo et al. 1998). This means
that the GA operations will produce a range of different parameter combinations
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that can give acceptable solutions, rather than generating a single solution. An
example of the optimised parameter set from the SCM of Ngo (2009) is shown in
Fig. 10.4.

Each line in Fig. 10.4 represents a solution that consists of values for eight
calibrated parameters. For each parameter there is a range of possible solutions,
indicating the error in the values found by the GAs produced in several runs.
Therefore, the additional step that needs to be done is to check for the standard
errors for each parameter from all runs. If the errors are not high and the relation-
ships between the values of the parameters and real conditions are reasonable, the
solution will be potentially accepted.

As explained above, all parameter combination sets provided by the GA are
potentially acceptable solutions. In addition, each parameter clusters around a cen-
tral value, suggesting that there is a global optimum for the multiple objectives.
However, later analyses using the ABM such as validation of model outputs and
scenario analyses will require a consistent set of parameters. The way of selecting
a set of parameters for further analysis depends strongly on the purpose of the
modeller. An acceptable way could be to run the model several times with differ-
ent parameter sets provided by the GA and then compare the output(s) that is
considered as important or significant by the modeller. The parameter set that
yielded the highest average fitness value compared to the real data is one method
for selection. For example, the bold line in Fig. 10.4 is a parameter set that pro-
vided highest fitness values for land cover and was therefore selected as the best
solution for the SCM (Ngo 2009).
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10.4 Validation of Model Outputs

The final stage in the validation process (Fig. 10.1) is validation of the ABM
outputs. This is the most important process in model development because it ensures
that the model has the right behaviour for the right reasons (Kliigl 2008; Qudrat-
Ullah 2005; Troitzsch 2004). Validation of the model outputs is concerned with how
well they represent real world behaviour and they are, therefore, compared with
actual observations (Parker et al. 2002).

The measurement techniques that determine how the model outputs match
the real data are varied. However, the Relative Operating Characteristic (ROC)
and the Multiple Resolution Goodness-of-fit (MRG) are two good measures for
validating ABM model outputs. These two measures are explained in more
detail below.

10.4.1 Relative Operating Characteristic (ROC)

The ROC is used to evaluate the performance of a classification or prediction scheme
by identifying where instances fall in a certain class or group (Beck and Shultz
1986). The classification is based on the value of a particular variable in which the
boundary between classes must be determined by a threshold or cut-off value.
An example would be the prediction of illegal cultivation measured by the SCM
(Ngo 2009), where the threshold value used to predict whether or not a household
would cultivate illegally in the protected forest is a value between 0 and 1. The
result is therefore a two-class prediction, labelled either as positive (illegal) (p) or
negative (not illegal) (n). There are four possible outcomes from a binary predictor:
true positive, false positive, true negative and false negative. A true positive occurs
when both the prediction and the actual value are p; false positive when the predic-
tion is p but the actual value is n; true negative when the predicted value is n and the
actual value is also n; and false negative when the predicted value is n while the
actual value is p. The four outcomes can be formulated in a two by two confusion
matrix or contingency table as shown in Fig. 10.5 (Fawcett 2003). Definitions of
precision, accuracy and specificity are also provided.

The ROC evaluation is based on the ROC curve, which is a graphical representation
of the relationship between the sensitivity or tp-rate and the specificity or 1 — fp-rate
of a test over all possible thresholds (Beck and Shultz 1986). A ROC curve involves
plotting the sensitivity on the y-axis and 1-specificity on the x-axis as shown in
Fig. 10.6.

This graphical ROC approach makes it relatively easy to grasp the inter-
relationships between the sensitivity and the specificity of a particular measurement.
In addition, the area under the ROC curve provides a measure of the ability to
correctly classify or predict those households with and without illegal cultivation. The
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P True Positives False Positives | precision = TP/(TP + FP);
Predicted (TP) (FP) accuracy = TP+TN/(P+N);
outcome | | False Negatives | True Negatives specificity = TN/(FP+TN)
(FN) (TN) = [ —fp- rate
Total P N

Fig. 10.5 The confusion matrix to calculate the ROC (Adapted from Fawcett 2003)
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ROC area under the curve (AUC) would reach a value of 1.0 for a perfect test, while
the AUC would reduce to 0.5 if a test is no better than random (Fawcett 2003).

The ROC has been proposed as a method for land cover change validation
(Pontius and Schneider 2001). However, it is less useful in terms of capturing the
spatial arrangement of the model outputs in relation to the real world results (Pontius
and Schneider 2001). Thus, in the case of the SCM (Ngo 2009), the ROC is more
useful for validating the number of illegal cultivators than the area of illegal cultiva-
tion predicted by the SCM (Ngo 2009).

10.4.2 Multiple Resolution Goodness-of-Fit (MRG)

Multiple resolution goodness-of-fit (MRG) has been proposed for measuring the
spatial patterns of the model output at several resolutions. This measurement is
especially relevant when validating the spatial outputs of ABMs that model land
cover and land use change (Turner et al. 1989).
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The MRG procedure is expressed in (10.4), which measures the fit at a particular
sampling window size (F ), which is then aggregated for all samples (Costanza
1989):

p

2 z|ali _a2i|
1_ i=1
2.‘ 2w’ (10.4)

F, = :

where F, is the fit for the sampling window size w, a, is the number of cells of cat-
egory i in the image k within the sampling window, p is the number of different
categories in the sampling window, s is the sampling window of dimension w by w
which moves across the image one cell at a time, and t, is the total number of sam-
pling windows in the image of window size w.

The fit for each sampling window is calculated as 1 minus the number of cells
that would need to change in order that each category has the same number of cells
in the sampling window irrespective of where they appear in the image.

The weighted average of all the fits, F,, over all window sizes is then calculated
to determine the overall degree of fit between the two maps as follows:
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where Fis defined above in (10.4) and k is a constant. When k=0, all window
sizes have the same weight while for k=1, only the smaller windows sizes are
important. For the purpose of matching the spatial pattern of land use, a value of
k of 0.1 gives an ‘adequate’ amount of weight to the larger window sizes
(Costanza 1989).

The MRG is a much more suitable way of assessing the fitness of the spatial
outputs compared to the more conventional methods used in ABM model output
validation such as a confusion matrix or kappa statistic calculated at a single resolu-
tion only. The Kappa test, for example, can be used to measure the fit between two
land cover maps based on a pixel-by-pixel comparison, but it ignores the relation-
ships between one measured pixel and its neighbours. Hence, it will only tell us
whether the total number of pixels in each land cover category is significantly dif-
ferent between the two maps, and not say anything about the accuracy of their spa-
tial arrangement (Costanza 1989). The MRG, however, captures the details of the
spatial and temporal patterns in the data. More details on the application of MRG
can be found in Costanza (1989). The use of the MRG in validating the model out-
puts of the SCM can be found in Ngo (2009).

F (10.5)

t
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10.5 Summary

Calibration and validation are crucial stages in the development of ABMs yet remain
a key challenge (Crooks et al. 2007). This chapter has defined these terms and pre-
sented the process as a series of steps that should be followed when building a
model. Although the process is generic to ABMs in general, particular attention was
given to ABMs of land use and land cover change, especially in terms of the mea-
sures for evaluating the output of the model. More specifically, examples from the
calibration and validation of the SCM of Ngo (2009) were provided to illustrate the
process. It should be noted that this represents only one view of the calibration and
validation process based on experience gained through building an ABM of shifting
cultivation. There are clearly a range of methods available that could be used in or
adapted to any part of the calibration and validation process, e.g. different methods
of parameter optimization, different measures of evaluating performance, etc. Until
more guidance is provided in the literature, calibration and validation will remain a
key challenge.
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Chapter 11
Networks in Agent-Based Social Simulation

Shah Jamal Alam and Armando Geller

Abstract Computational social science and in particular agent-based social
simulation continue to gain momentum in the academic community. Social network
analysis enjoys even more popularity. They both have much in common. In agent-
based models, individual interactions are simulated to generate social patterns of all
kinds, including relationships that can then be analyzed by social network analysis.
This chapter describes and discusses the role of agent-based modeling in the gener-
ative-analytical part of this symbiosis. More precisely, we look at what concepts are
used, how they are used (implemented), and what kind of validation procedures can
be applied.

11.1 Introduction

Agent-based modeling and network analysis enjoy a symbiotic relationship in the
field of computational social science. The former is a method of computationally
representing individual interactions from which social patterns emerge; the latter is
a method that affords (dynamic) structural analysis of (socio-) structural patterns.
The renowned anthropologist Clyde Mitchell stated that the starting point of any
analysis should be the actual relationships in which people are involved (Mitchell
1989, pp. 77-79). What he did not think of, interestingly, is to analyze, other than
by observational and descriptive means, how these relationships form.
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Today, agent-based models (ABMs) are mostly implemented as object-oriented
computer programs. They consist of autonomous agents that can be perceived as
computer programs themselves. In principal, agents have three features: they behave
and interact according to a given set of rules, possess cognitive capabilities to pro-
cess information, and constitute their own environment (cf. Cederman 2001; Ferber
1999). Empirically seen, the key question is how the design of agent behavior and
cognition is informed. Standard research practices suggest that the agent design
process can rely on qualitative data (Alam et al. 2010; Hoffer 2006), experimental
data (Barreteau et al. 2001), and empirically validated theoretical knowledge (Cioffi-
Revilla and Osman 2009).

At this point it should be evident that we favor an empirical approach over a pure
Popperian procedure. The importance of this statement lies in the fact that agent
interactions as defined by agent behavior are tantamount to what is called in social
network analysis ‘re-wiring’, i.e., according to which rules (algorithms) do the
different nodes in a network get connected with each other. ABMs claiming to have
relevance for the social sciences should assume plausible behavior at the individual
level. ABMs are considered non-black-box models (Boudon 1998). Should ABMs
serve as social network generators, then one requirement is that they can explain
how the network came about. Hence, from an epistemological perspective, the
model needs to exhibit construct-valid mechanisms and processes.

The kinds of networks that can be generated and represented by agent-based social
simulations are manifold. They can range from networks with only a few vertices
and edges to complicated networks in which agents are embedded in several different
layers, so called multiplex networks (Granovetter 1985). Networks generated by
ABMs can represent social, geographical, and even cognitive (semantic network)
spaces. In their capacity as thematic maps, networks can be used to elucidate such
concepts as exchange, power, or identity. Paired with social simulation, these ques-
tions can be further explored insofar as agent-based modeling enables the study of
the underlying agent behavior, and social mechanisms and processes (Hedstrom
2005). This is a powerful combination.

Agent-based social simulations are usually analyzed based on hypotheses.
One way of testing the hypotheses is observing time-series charts for a number
of measures. In analyzing agent-based social networks, an important issue is
to understand the role of social processes in constraining the dynamics of the
generated networks. The purpose of agent-based social networks is to explore
the simulated data trajectories and to understand the modeled phenomena. This
is different compared to stochastic models for dynamic social networks (Snijders
et al. 2010), where existing longitudinal data are used for model fitting and
parameter estimation.

When generating social networks by means of agent-based modeling, two con-
cepts are in the foreground: the processes that bring about the network and the
structure this network has. Process and structure are interdependent processes. How
agents behave is, of course, influenced by how they are connected to others; that is
how they are embedded in society. To this a third dimension is added in agent-based
modeling. Agents are usually placed on some kind of surface.



11 Networks in Agent-Based Social Simulation 201

The focus of this chapter is to describe and discuss the symbiosis of agent-based
social modeling and social network analysis. We shall look at how model topologies
affect network topologies and provide an overview of different social network gen-
eration processes. How networks are implemented in ABMs and how agent-based
social networks may be analyzed are also discussed.

11.2  Social and Physical Space in ABMs

In this section, we discuss physical and social neighborhoods in agent-based social
simulation models. Agent-based simulation models of social phenomena date back
to the mid 1980s. As Axelrod (1997) argues, the goal of this modeling approach has
been to break simplistic assumptions required for mathematical tractability, e.g.
homogeneity, ignoring interaction. With the advent of multiagent models, social
simulation benefited from it most as these models provided the provisions of simu-
lating the social behavior of autonomous individuals and the interactions between
them. ABMs have been accredited, in most cases, as suitable for decentralized sce-
narios, especially when individual interactions lead to the emergence of collective
patterns, like in the case of complex social networks.

11.2.1 Representing Physical Neighborhoods

Agent-based modeling affords taking geographical space into account in a straight-
forward manner. This is true for abstract spaces as well as for detailed Geographic
Information Systems (GIS) referenced spaces. Perhaps the most commonly used
topologies in agent-based modeling are the von Neumann or Moore neighborhoods
on a plain or a toroid surface. Other possible topologies are, for example, irregular,
hexagonal grids or vector-based (Crooks et al. 2008). Differences in topologies lead
to differences in network generation processes and resulting network structures
(c.f. Flache and Hegselmann 2001). The reason for this is that model topologies
limit agents not only in their movement, but also in the manner by which they perceive
information and interact with other agents. The underlying assumption is that space
is important and matters in everyday (artificial) life, affecting both the individual’s
behavior and society as a whole. Choice of a topology depends very much on the
modeler’s needs. The focus of the discussion here is on the effect that different
model topologies have on network evolution processes and network structures.
In other words, how are dynamic social networks coupled to model space? Note that
this question is distinct from questions of how space is represented in networks,
which we discuss below.

As Bailey and Gatrell (1995, p. 4) explain, “spatial data analysis is involved
when data are spatially located and explicit consideration is given to the possible
importance of their spatial arrangement in the analysis or interpretation of results.”
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Spatial analysis, for example, that is based on GIS techniques, highlights the
importance, provided it exists, of neighborhood influences, if any, in the actors’
behavior caused by the spatial-context. Schensul et al. (1999) have thoroughly covered
the issues involving spatial mapping of data; we report a few of the most relevant
points. For any social networks, the atomic units are usually the individuals. In gath-
ering data about individuals, it is quite useful to identify the general spatio-temporal
constraints that limit most individuals’ movements and interaction in the region.
Typically, in spatially explicit models, agents may include stakeholders, land owners,
farmers, public institutions, and policy or decision-making agencies. As Brown
(2006) explains, the behavior of such agents may vary from being triggered by some
external stimulus or coping with certain stresses to being goal-oriented.

11.2.2 Networks from Embedded Social Mechanisms
and Processes

Earlier in this section we discussed the importance of signifying boundaries and
neighborhoods. Modeling a social network requires identifying the spaces in which
the agents exist and are related. All relations among real entities exist and are
constrained through physical spaces. More importantly, case-studies involving land
use change, distribution and utilization of physical resources are modeled spatially
explicitly per se.

Social networks are generated through social mechanisms and processes,
i.e., agents that are embedded in society and that interact with each other produce
them. It has become more and more accepted in the social sciences that the agents’
(e.g., humans, primates, ants) behavior does not follow a linear pattern, but is
non-linear in its own right. Social complexity, according to Moss (2008, p. 2), is a
“condition whereby social behavior cannot be understood simply as a scaled-up
replication of the behavior of the individuals comprising the society”. The interplay
of social processes as an outcome of socially embedded individuals gives rise to
the social behavior, which, as Moss (2008, p. 3) explains, “cannot be forecast on the
basis of individuals’ characteristics and predictions alone”. The macro-phenomena
resulting from such micro-level interactions are often complex in nature. We under-
stand complexity as a “type of condition in which agent behavior and social interac-
tion combine to generate macro-level outcomes that could not be predicted from
knowledge of the behavior and nature of interactions alone, and result in sporadic
volatile episodes, the timing, magnitude, duration and outcomes of which are them-
selves unpredictable” (Geller and Moss 2008, p. 322). By contrast, in the study of so
called complex networks, the notion of complexity is related to network structures
(both local and global) and characteristics that are not statistically significant in a
random network (Newman 2004; Wasserman and Faust 1994). We are aware of
other definitions of both complexity and complex networks (see Edmonds (1999)
for a review), but those given should suffice for the purpose of this chapter.
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Self-organized criticality (SOC) addresses the local mechanisms and processes
that drive the emergence of complex systems. It can be interpreted as the
response of a slowly driven system such that the outcome of the system’s behavior
is limited by the order of the magnitude of its size, thus, leading to the scale-free
property (see below). Following Jensen (1998), one may explain SOC as the
development of emergent patterns due to interactions among meta-stable agents,
so that at some critical state, the result of interactions affects the entire system
such that all members of the system influence each other. For the rest of the
period, any local distortions resulting from agents’ interactions in their neigh-
borhoods remain confined locally. Systems governed by SOC leave characteris-
tic traces in the data they produce. The data conforms not to the assumption
underlying standard statistical methods, namely that the mean and standard
deviation of the distribution of the data are known and stable. Consequentially,
the conditions for standard statistical hypothesis testing and regression tech-
niques are not satisfied anymore, and there are cases where variance is infinite
(Barthélémy 2006). However, of more importance to us in the present context
is the fact that investigating such signatures provides useful guidance for the
analysis of social simulations (Moss 2002). Leptokurtosis in a distribution of
relative changes can be a reflection of episodes of volatility that are themselves
unpredictable (Moss 2002). That is, unpredictable clustering of volatility and the
corresponding extreme events are identifiably complex features of time series.
Conversely, finding leptokurtosis in time series data would naturally incline us
to look for extreme events. A vital implication of such approaches is that it is
practically impossible to predict the outcomes to the system from simple stimuli
(Jensen 1998).

ABMs — not only of social systems — can represent such properties. This is an
important assumption that needs to be taken into account when modeling networks
with an agent-based approach, for agent behavior and interaction — as understood
in SOC — will affect the kind of networks that emerge. With this in mind, we now
present an overview of characteristic complex network topologies associated with
complexity concepts that an agent-based modeler has to expect when running a
simulation. Presented will be also measures appropriate for the analysis of agent-
based social simulation generated networks.

Modeling dynamic social networks where agents communicate with each
other and build relations over time requires the introduction of “social” spaces
that go beyond the physically situated agents. Such agents can be called “socially
embedded” (Edmonds 2006; Granovetter 1973), i.e., an agent’s behavior is fairly
influenced by the network of social relations that it is part of. Physical resources
and interaction with the environment do not fulfill the demand for capturing
the social interactions that may influence, for example, a farmer’s decision to
plant a certain type of crop, or use of their land. Social spaces and the agents’
interactions may either be constrained by a local neighborhood, or could be
global (i.e., each agent may be directly related to any other agent in the space).
In the former case, the sociability of agents depends on the spatial neighborhoods,
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and thus, according to Edmonds (2006), the physical space is used as a proxy for
social space.

Not many social network models exploit combining the social and physical
spaces, which is pivotal for analyzing the underlying complexity and for which
ABMs are well suited as they support modeling the spatial neighborhood as well
as agents’ cognition in building relations. Hence, symbiosis of the two “spaces”
remains an active area of research.

11.2.3 Types of Complex Networks

The term complex networks is used as an umbrella term for the size, similarity of
structure, and dynamics in real and simulated networks (for two comprehensive
articles on the issue see Newman (2004) and Fortunato (2009)). Cross-disciplinary
research, especially in the last decade, has resulted in identifying characteristic
network types and their statistical properties. Network structures are either
modeled phenomenologically or they emerge from agents’ local interaction (for an
older, but relevant review concerning networks for ABMs see Amblard (2002)).
We briefly look at three commonly occurring network structures in agent-based
social simulation: random graphs, small world and scale-free networks. Regular
lattice networks are used in cellular automata models — a lattice is a graph where
vertices are placed on a grid and are connected to the neighboring vertices only.

An early attempt to study the behavior of complex networks dates back to
Erdds and Rényi’s (1959) seminal work on random graph theory. The basic
Erdds-Rényi (ER) model requires connecting N nodes through n edges chosen
randomly such that the resulting network is from a space of equally likely graphs,
where N is the size of the network. Several nodes can have the same degree in a
random graph. Given a high wiring probability p, the diameter of random graphs
increases logarithmically with the growth of the graph. The ER graph also predicts
the appearance of subgraph structures and the emergence of a unique giant
component.

Random networks are to social network data what the Gaussian distribution
is to statistical data; it is neither very likely to find random network structures in
real world data nor very realistic to assume that real world networks are of a random
nature. Firstly, people do not behave randomly. Secondly, societies are complex
systems. Randomness is diametrically opposed to this idea. It is, however, worthwhile
to consider random networks as a useful concept in agent-based social network
modeling since they constitute a test case. The networks generated by the simulation,
and which are meant to represent an identified (real world) target system, should be
significantly different with regard to certain key metrics from the corresponding
ER network.

In 1998 Watts and Strogatz (1998) presented the Watts-Strogatz (WS) model,
which interpolated a small world graph as an intermediate of a purely random and a
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regular graph. They showed that as the length of the shortest path between two nodes
tends towards O(In(N)), which is small, a random graph exhibits the so-called
small-world effect. That is, a WS network is characterized by short average path
length (L) and a high clustering coefficient (C) compared to an Erdés-Rényi graph of
the same size and density. This property displayed by small-world networks has been
observed in a number of social systems, including friendship, co-worker, and conflict
networks.

Informally, a high C supports the ideas that the “friend of my friend is my
friend” and that the neighbors of a node are more likely to be linked to each other
than in a random network. More generally, small-world type networks should be
of interest to us because they exhibit properties which are “sufficiently well
connected to admit rich structure, yet each element is confined to operate within
a local environment that encompasses only a tiny fraction of the entire system”
(Watts 1999, p. 499). This specification of the micro-level processes leading
to the emergence of small-world networks is closely related to the idea of SOC and
complex systems.

Albert and Barabasi (2002) argued that simply using ER or WS models does not
capture the important aspects of real-world networks. The Barabasi-Albert (BA)
model is a special case of the stochastic model proposed by Herbert Simon (Simon
1955) for generating a class of highly skewed distributions, including the power-law
distribution. The number of starting vertices is fixed and the chances of a vertex
being linked to another are equally likely. Instead, real-world networks evolve
over time and exhibit a feature that is called preferential attachment. Albert and
Barabadsi address these issues by introducing network growth. The network starts off
with a small number of connected vertices. New vertices are added to the network
one at a time and are linked to existing vertices. Then they introduce the idea of
preferential attachment, meaning the probability that a new vertex is connected to
an existing vertex depends upon the connectivity of the vertex, where k is the degree
of the i-th vertex in the existing network. The network evolves into a scale-variant
such that the degree distribution follows a power law.

11.3 Incorporating Networks into Agent-Based
Simulation Models

Unlike physical systems, social processes are modeled descriptively and validated
qualitatively. The evidence is gathered through fieldwork. An individual’s relations
and actions are driven by their position and other factors affecting the system.
Where the actions are constrained by both the endogenous and exogenous factors,
one may find episodic volatility in the observed time series (Moss and Edmonds
2005). Next, we discuss some of the issues concerning social network data collec-
tion and incorporating them into ABMs. We then give some examples of ABMs of
social networks.
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11.3.1 Data for Networks in Agent-Based Social Simulation

Acquiring data on social networks is a challenging task for fieldwork researchers
depending upon socio-cultural and socio-political aspects of their research and
resource constraints. Schensul et al. (1999) identify features for data that are of use
for the description of social networks:

¢ Identification of network actor;

* Definitions of and rules to define group members by the people;
 Inclusion and exclusion rules defining social network boundaries;
e Familial and sexual relationships, (if any), within groups.

Network boundaries constitute the edges of networks and are defined by rules for
entry and exit from groups as well as by other cultural patterns of participation
that differentiate one group from another. An important facet of a community is
the existence of so-called community organizations, which operate within the
perimeters of the community. Such organizations can be characterized as being
informal or institutionalized. Physical neighbors can be described in terms of land
use and segregation of sub-regions. The social aspect of neighborhood is based, for
example, on the “local social interactions, social class, ethnic and radical origins,
life cycle characteristics of the population, length of residence, and place of work™
(Schensul et al. 1999). The concept of locality is embedded in its definition; hence
a community can be identified as sharing social characteristics or a community
space, where social interactions are likely to take place.

Social network data can be derived from census data, third-party surveys and
various forms of quantitative data (e.g., Eubank et al. 2004; Bearman et al. 2004;
Geller and Moss 2008).

Social network data may also be extracted from existing databases such as e-mail
correspondence within an organization or social interactions among individuals in
online communities. On the other hand, it is very difficult to conduct fully-fledged
surveys for acquiring social network data in distant, stressed or conflict-torn regions
such as Yemen or Afghanistan. Knowledge elicitation techniques based on partici-
patory approaches (Barreteau et al. 2001; Pahl-Wostl and Hare 2004) may be used
to model the behavior and social interaction of relevant actors through an iterative
process involving data collection, validation and scenario exploration.

11.3.2 Implementing Networks in Agent-Based Models

A social network is a graph where actors (e.g., individuals, households, firms) are
represented as vertices and an existing relation between any two nodes represented
as an edge between them. Multiple relations among agents embedded in space are
represented as a two-mode sociomatrix, a hypergraph or a bipartite graph, where one
representation can equivalently be mapped to another (Wasserman and Faust 1994).
Bipartite graphs are useful for simultaneous analysis of both actors and the affiliations
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(Degenne and Forsé 1999). Typically, a graph, i.e. a social network, is implemented
as an adjacency matrix or a doubly-linked list besides others. Choice of a suitable
data structure for manipulating social networks may depend upon the structure of
the underlying social network, e.g., single or multiple relations; directed/undirected;
weighted edges, etc. Two of the most widely adopted data formats used for social
networks are GraphML (Brandes et al. 2004) and DyNetML (Tsvetovat 2005), both
based on XML. Both support directed, undirected, and mixed graphs; hypergraphs;
hierarchical graphs; and store nodes and edges attributes, for example agents’
characteristics or type or strength of edges (see Tsvetovat (2005) for a comparison
of commonly used social network data formats). Another well known data format
is Pajek’s .net format for rich social network data (de Nooy et al. 2005).

Several simulation toolkits and software exist with built-in data structures and
operations for analyzing and visualizing social networks. Widely-used software
includes Pajek (de Nooy et al. 2005), ORA (Carley et al. 2007), StOCNET (Boer
et al. 2006) and UCINet (Borgatti et al. 2004) (for a list of social network analysis
software, see for example Wikipedia’s entry under “Social network analysis
software”). Several agent-based modeling platforms provide functionality for imple-
menting and analyzing networks at runtime. These include RePast 3.1/Simphony
(North and Macal 2007), MASON (Luke et al. 2005), NetLogo (Wilensky and Rand
in press) and Swarm (Minar et al. 1996). Most of them intentionally provide only
limited support for network analysis measures such as the basic centrality measures
and community detection algorithms (Nikolai and Madey 2009). Dedicated net-
work modeling and analysis libraries such as the Java Universal Network/Graph
library (JUNG) (O’Madadhain et al. 2005); the R Project packages statnet, sna, and
igraph are to be used for more computationally-extensive handling of network data
generated by ABMs. Social network analysis software and APIs provide an inter-
face to read/write social network data in data formats such as GraphML or DyNetML.
For a detailed discussion on the integration of GIS and agent-based modeling, see
Crooks and Castle (2012).

11.3.3 Some Examples of Spatially-Explicit Agent-Based
Social Simulation Models

In this section, we present a selection of relevant work dealing with implementations
of social networks in ABMs.

11.3.3.1 Land Use Models

Central to landscape modeling, such as land use, land cover, habitat conservation
and farming, is the identification of community space and distinct regions (Brown
2006; Parker 2005). For instance, Krebs et al. (2007) developed a spatially explicit
ABM of a water irrigation system in the Odra River Valley in Poland. In their model,
farmers’ decisions to maintain the irrigation water canal depend on the relative
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location of their land (up- or downstream), how they perceive their physical neigh-
bors, and the underlying social network. For a recent review on land-use from an
agent-based modeling perspective, see Matthews et al. (2007) and Crooks (2010).
Becu et al. (2003) modeled the impact of upstream management in Thailand and
explored several scenarios concerning land managers’ collective action given their
characteristic and social interaction (Ziervogel et al. 2006).

FEARLUS is an established modeling framework designed for the assessment of
land use change scenarios (Polhill et al. 2008). Built upon the Swarm modeling
platform (Minar et al. 1996), it supports a variety of agent-based modeling tech-
niques and extensions such as a biophysical component, land trade and the effects
of climatic variability on land parcels. The FEARLUS simulation begins with the
land parcels assigned to land managers. At each annual cycle, managers select the
land use of their land parcels based on the available selection strategies. They decide
to harvest based on the expected yield for a particular year, select land parcels for
sale or to clear off deficits, or decide to retire, allowing new land managers to enter the
system. FEARLUS incorporates social and physical neighborhoods. Social neigh-
borhood and spatial distribution are both used by agents, representing farmers or
land owners, to observe each other and decide what action to take. Further informa-
tion on FEARLUS and how the physical and the embedded social neighborhoods
are implemented can be found online at http://www.macaulay.ac.uk/fearlus.

11.3.3.2 Neighborhood and Segregation Models

Edmonds (2006) extended the Schelling (1971) segregation model by adding an
explicit social structure in the form of a friendship network to the agent neighbor-
hoods which are defined by their spatial location on a regular grid. The friendship
network is assigned randomly at the start based on the preference parameters:
number of friends, neighborhood bias, and bias for racial similarity. Edmonds thus
changes the motivation for switching the neighborhood. Instead of intolerance based
on race, as implemented by Schelling, fear as a result of personal insecurity makes
people leave for another neighborhood. Fear is a function of security related inci-
dences and spreads through the friendship network. Communication of fear depends
on the density of the social network on the other hand. At the same time friend-
ship networks are not necessarily in the geographical vicinity of an agent. An agent
can thus be attracted away to where its friends live. As a result, social and physical
space becomes disjointed.

In their model of neighborhood change, Bruch and Mare (2006) used a variety of
choice functions to introduce heterogeneity in individuals’ preferences, thereby
relaxing several of Schelling’s (1971) assumptions. They utilized real data from
several US cities where the population was divided into multiple racial and ethnic
types. They demonstrate that the choice of the utility function can significantly
affect the observed patterns of segregation and neighborhood change. Crooks (2010)
studied residential segregation using a spatially-explicit ABM using vector GIS.
The model takes into account socioeconomic and geographical data where agents
represent households with preferences for a neighborhood depending upon their
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properties. Crook’s model is initialized with available aggregate census data of the
wards in London (UK). Werth and Moss (2007) modeled migration under socio-
economic stress in the Sahel region in North Africa. They used an abstract spatial
representation of the region, where household decisions to migrate to another location
depend upon their existing social and kinship ties with other households in the
neighborhood, in addition to their available food status. Rakowski et al. (2010) studied
contact patterns among individuals in a transportation model in Poland.

11.3.3.3 Propagation Models

Spatial and social propinquity can be key determinants in the spread of infectious
diseases depending upon their infectiousness and the required level of intimacy for
transmission. For instance, sexual transmission of HIV or transmission by sharing
injection needles may be driven by the social and physical proximity among poten-
tial sex or needle-sharing partners. Diseases like smallpox may be transmitted when
individuals happen to be in the same location where an infected person is present.
Spread of airborne infections with high infectivity such as influenza, depends upon
the migratory or activity patterns in a given population.

EpiSims is a large-scale disease propagation ABM capable of simulating millions
of agents based on real data (Eubank et al. 2004). Locations in EpiSims represent a
physical place, for example an office or a school building, where individuals get into
contact with each other provided that they are in the same location at the same time
given their preferences and shared activities. During the simulation, a dynamic con-
tact network is developed by recording the amount of time each individual shares
with each other person. The duration of contact between infected and susceptible
persons determines the spatially-distributed spread of the infectious disease (Stroud
et al. 2007). Yang and Atkinson (2008) developed an ABM of the transmission of
airborne infectious diseases using activity bundles, where individual contacts are
driven by social activities or physical proximity or both. Huang et al. (2004) modeled
the spread of the SARS epidemic by using a small-world social network whereas the
individuals’ activity spaces were modeled upon a two-dimensional cellular automata.
Dunham (2005) demonstrated an implementation of the spread of three viruses
using a spatially-explicit agent-based epidemiological model developed in MASON.
Huang et al. (2010) propose a four-layer architecture for network-based epidemic
simulation comprised of individuals’ social interaction, passive connections between
individuals and locations, use of abstract geographical mapping to reflect the neigh-
borhood, and the use of demographic or geographic data.

11.3.3.4 Miscellaneous Models

In addition to the models presented above, there are many other examples of ABMs
of social networks. In many of these models, the mechanisms generating the social
networks have been empirically derived. This stands in stark contrast to modeling
exercises where the authenticity of social network generating mechanisms is less of
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a concern, such as in statistical mechanics. The purpose of many of these models is
an explanatory one. Companion (sometimes also called participatory) modeling and
role-playing games are certainly at the forefront of an explanatory modeling agenda.
The primary objective of companion modeling is to understand complex environ-
ments through stakeholder participation, affording to validate model assumptions
and to make informed policy recommendations (Barreteau et al. 2001, 2003).
Companion modeling stresses that no a priori hypotheses are made about the target
system. Priority is thus assigned to evidence gathering during fieldwork. Similarly,
role-playing games incorporate a special function in the understanding and valida-
tion of ABMs. The idea is to consider role-playing games as “living” multi-agent
systems in which players are the agents and the set of roles is the rule base. Through
rule design in collaboration with the players an understanding of the complexity of
the system to be modeled is developed.

It should become clear at this point, that integrating social networks in ABMs
goes beyond mere measurement of social network metrics at the aggregate level, but
includes a thorough study of the processes underlying network generation, i.e., the
structural-dynamic consequences of the actual relationships in which people are
involved as mentioned by Mitchell (1989). Geller and Moss (2008) developed a
model of power structures in Afghanistan. Barthélémy (2006) modeled water con-
sumption, where a household was represented as the smallest unit in the modeled
community space. Alam and Meyer (2010) studied dynamic sexual networks based
on a village in the Limpopo Valley case where neighborhood and kinship networks
serve as safety-nets at times of socioeconomic stress for the households.

Pujol et al. (2005) have modeled the evolution of complex networks from local
social exchange, simulating networks with similar characteristics as scale-free
and small-world networks. They show that properties characterizing complex
networks emerge from the local interactions of the agents, imperfect knowledge
and sociologically plausible behavior. Jin et al. (2001) demonstrated how a small-
world friendship network may be evolved from simple probabilistic rules. The forest
fire model by Leskovec et al. (2005) is another example of a generative process
that represents networks phenomenologically with heavy-tailed distributions and
shrinking diameters.

So far we have only talked about extra-individual networks. But networks do not
only exist between agents; they exist also as mappings of organization beyond social
structure. “Structure exists not only as sets of ties between actors but as networks
among cognitive and cultural entities and study of these entities by means of network
analysis is just as important as study of interpersonal relations” (Tsvetovat 2005,
p. 111). The utilization of networks in agent-design and in particular in the agent
reasoning processes hence becomes obvious. In this respect the concept of semantic
networks offers particular usefulness, for it expresses, in the most general way,
relations of meanings between concepts in terms of nodes and links. Semantic
networks are thus often used for the representation of knowledge; knowledge that
bears — represented as a semantic network — some form of content-related domain
specificity (DiMaggio 1997). It is beyond the scope of this chapter to pursue this
route any further. We would nevertheless like to make clear that we see great
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potential in the use of semantic networks in the modeling of socio-culturally
grounded cognitive and action selection processes.

11.4 Analyzing Social Networks in Agent-Based
Social Simulation

The choice of suitable measures for agent-based social networks depends upon our
understanding of the phenomenon under study. Analyzing social networks in and
generated by agent-based social simulation does not impose new requirements for
social network analysis. Metrics such as: geodesic distance; average path length;
network density; reachability; clustering; centrality and centralization and their
meaning, continue to be useful in that they characterize network topologies and
process-based complexity. However, most of the analysis will have to deal with
dynamic social networks. Considering only a priori and ex post snapshots of networks
is not helpful in identifying network measures for agent-based simulations. Applying
graph-theoretic measures over a network snapshot may increase the risk of losing
the context of a particular agent’s position in the network (Borgatti et al. 20006;
Carley 2003; Edmonds and Chattoe 2005). In complex systems, it is hard to anticipate
how emerging patterns result from interactions at the micro-level. It could be thus
misleading to apply measures on a single snapshot of the network. Carley’s dynamic
network analysis introduces the meta-matrix, a scheme for coping with the problem
of multiple relations and co-evolution of both agents (entities, vertices) and their
dynamically changing edges (Carley 2003). This approach is further supplemented
by combining social network analysis with cognitive science and multiagent
systems, the idea being that change in one network may affect change in another.
Edmonds and Chattoe (2005) suggest a scheme that makes use of agent-based social
simulation in order to find better means for abstraction.

Again, networks in ABMs are dynamic in nature and ties may be added or
removed between agents during a simulation run. The network evolves with
changes in the agent population, i.e., the agents that participate in a given (social)
network. Consequently, the time-series measures of the simulated social network
changes as the network evolves. Therein the focus can lie on standard statistical
metrics, such as skewness and kurtosis of the absolute relative differences of network
measures, such as changes in the clustering coefficient over time. Since we deal
with a complex system, we would expect these measures to be indicators for vola-
tile episodes in the time series (Moss and Edmonds 2005). Of course, we would not
expect the time-series to be normally distributed and exhibit heteroskedasticity.
But in general, for dynamic networks, where the population of participating agents
in a network changes over time, we should also look for the stability (or change)
of network measures over one or multiple simulation runs. The choice of measures
is therefore important when comparing networks of varying sizes within and/or
across simulation runs. See McCulloch (2009) and Alam et al. (2009) for methods
of detecting patterns in dynamic social networks.
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Networks sharing similar global characteristics can nevertheless differ in terms
of their local structures. Identifying subgraph structures and their properties have
been studied extensively in social network analysis, particularly with regard to
triads as building blocks of a network (c.f. Wasserman and Faust 1994). Milo et al.
(2002) introduced the concept of local structures as “motifs” that are statistically
significant in comparison to local structures in a random network. Hales and
Arteconi (2008) provide a good example of applying motif analysis in an ABM of
a peer-to-peer network.

Closely related to motif analysis are endeavors to identify communities in
networks. Fortunato (2009) and Mucha et al. (2010) provide a good overview of
community detection algorithms for static and longitudinal networks. Without going
into the details, the problem is twofold: Firstly, from a socio-scientific point of view,
the non-trivial issue of solving the boundary specification problem needs to be
solved for a given network. Second, the algorithm for dealing with boundary speci-
fication issues needs to be fast, since iterating over the whole network at each time
step is computationally expensive.

Agent-based social simulations should be cross-validated (Moss and Edmonds
2005). That is, the model output should be compared against the model’s target
system data. This comparison can happen at the aggregated level (e.g., statistical
signatures of time-series data) or it can happen at a qualitative level, informing on
social mechanisms that are assumed to drive the social network. For example, as
Watts (1999) reports, small-world structures are likely to be present in many real
social networks. Geller and Moss (2008) report a small-world-like structure for
Afghan power structures.

11.5 Conclusions

Social and physical networks are important with respect to modeling systems that
require both socio-cultural as well as geographical information. However, spatial
ABMs incorporating social networks are few. On the other hand, social spaces in the
form of friendship, kinship and other socio-cultural networks are often modeled in
ABMs without any explicit reference to physical spatial representation or constraints.
Some of the examples cited in this chapter show how physical and social space can
be coupled together for the purpose of understanding complex social systems. Social
networks in ABMs may emerge as a result of agent interaction, which can be contex-
tualized or abstract. On the other hand, incorporating physical networks such as a
neighborhood, road networks, etc. is important when understanding the dynamics of
urban planning and growth, irrigation systems and road transport. We also discussed
in this chapter issues related to data collection for social networks as well as the
technical aspects of incorporating networks in ABMs.



11 Networks in Agent-Based Social Simulation 213

References

Alam, S. J., & Meyer, R. (2010). Comparing two sexual mixing schemes for modelling the spread
of HIV/AIDS. In K. Takadama, G. Deffuant, & C. Cioffi-Rivella (Eds.), Proceedings of the
second world congress on social simulation (pp. 33—45). Berlin: Springer.

Alam, S. J., Edmonds, B., & Meyer, R. (2009). Identifying structural changes in networks gener-
ated from agent-based social simulation models’. In A. Ghose, G. Governatori, & R. Sadananda
(Eds.), Agent computing and multi-agent systems (pp. 298-307). Berlin: Springer.

Alam, S. J., Geller, A., Meyer, R., & Werth, B. (2010). Modelling contextualized reasoning in
complex societies with endorsements. Journal of Artificial Societies and Social Simulation
13(4), 6. http://jasss.soc.surrey.ac.uk/13/4/6.html

Albert, R., & Barabasi, A. (2002). Statistical mechanics of complex networks. Review of Modern
Physics, 74(1), 47-97.

Amblard, F. (2002). Which ties to choose? A survey of social networks models for agent-based
social simulations. In Proceedings of the 2002 SCS International Conference on Artificial
Intelligence, Simulation and Planning in High Autonomy Systems (pp. 253-258), Lisbon,
Portugal, April 2002.

Axelrod, R. (1997). Advancing the art of simulation in the social science. In R. Conte,
R. Hegselmann, & P. Terna (Eds.), Simulating social phenomena (pp. 21-40). Berlin: Springer.

Bailey, T. C., & Gatrell, A. C. (1995). Interactive spatial data analysis. Burnt Mill, Essex: Longman
Scientific & Technical.

Barreteau, O., Bousquet F., & Attonaty J. M. (2001). Role-playing games for opening the black
box of multi-agent systems: Method and lessons of its application to Senegal River Valley
irrigated systems. Journal of Artificial Societies and Social Simulation, 4(2). http://jasss.soc.
surrey.ac.uk/4/2/5.html

Barreteau, O. et al. (2003). Our companion modelling approach. Journal of Artificial Societies and
Social Simulation, 6(2). http://jasss.soc.surrey.ac.uk/6/2/1.html

Barthélémy, O. T. (2006). Untangling scenario components with agent based modelling: An example
of social simulations of water demand forecasts. Unpublished PhD thesis, Centre for Policy
Modelling, Manchester Metropolitan University, Manchester.

Bearman, P. S., Moody, J., & Stovel, K. (2004). Chains of affection: The structure of adolescent
romantic and sexual networks. The American Journal of Sociology, 110(1), 44-91.

Becu, N., Perez, P., Walker, A., Barreteau, O., & Le Page, C. (2003). Agent based simulation of a
small catchment water management in northern Thailand: Description of the CATCHSCAPE
model. Ecological Modelling, 170(2-3), 319-331.

Boer, P.,, Huisman, M., Snijders, T. A. B., Steglich, C. H., Wichers, L. H. Y., & Zeggelink, E. P. H.
(2006). StOCNET: An open software system for the advanced statistical analysis of social
networks, version 1.7. Groningen: ICS SciencePlus.

Borgatti, S., Everett, M., & Freeman, L. (2004). UCINET: Software for social network analysis.
analytictech.com/ucinet

Borgatti, S. P, Carley, K., & Krackhardt, D. (2006). On the robustness of centrality measures under
conditions of imperfect data. Social Networks, 28(2), 124—136.

Boudon, R. (1998). Social mechanisms without black boxes. In P. Hedstrom & R. Swedberg (Eds.),
Social mechanisms: An analytical approach to social theory. Cambridge: Cambridge University
Press.

Brandes, U., Eiglsperger, M., Kaufmann, M., & Lerner, J. (2004). The GraphML file format.
graphml.graphdrawing.org

Brown, D. G. (2006). Agent-based models. In H. Geist (Ed.), The earth’s changing land: An
encyclopedia of land-use and land-cover change (pp. 7-13). Westport: Greenwood Publishing
Group.

Bruch, E. E., & Mare, R. D. (2006). Neighborhood choice and neighborhood change. The American
Journal of Sociology, 112(4), 667-709.



214 S.J. Alam and A. Geller

Carley, K. (2003). Dynamic network analysis. In R. Breiger, K. Carley, & P. Pattison (Eds.),
Dynamic social network modeling and analysis: Workshop summary and papers. Washington,
DC: The National Academies Press.

Carley, K. M., Columbus, D., Reno, M., Reminga, J., & Moon, I.-C. (2007). ORA user‘s guide
2007 (Technical Report, CMU-ISRI-07-115). Carnegie Mellon University, School of Computer
Science, Institute for Software Research.

Cederman, L.-E. (2001). Agent-based modeling in political science. The Political Methodologist,
10(1), 16-22.

Cioffi-Revilla, C., & Osman, H. (2009). A theoretical model of individual radicalization:
Understanding complexity in terrorism and insurgency’. Poster prepared for the 2009 annual
European Social Simulation Association conference, University of Surry, Guildford.

Crooks, A. T. (2010). Constructing and implementing an agent-based model of residential seg-
regation through vector GIS. International Journal of Geographical Information Science,
24(5), 661-675.

Crooks, A. T., & Castle, C. (2012). The integration of agent-based modelling and geographical
information for geospatial simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty
(Eds.), Agent-based models of geographical systems (pp. 219-252). Dordrecht: Springer.

Crooks, A. T., Castle, C. J. E., & Batty, M. (2008). Key challenges in agent-based modelling for
geo-spatial simulation. Computers, Environment and Urban Systems, 32(6), 417-430.

De Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek.
Cambridge: Cambridge University Press.

Degenne, A., & Forsé, M. (1999). Introducing social networks (A. Borgess, Trans.). London: Sage.

DiMaggio, P. (1997). Culture and cognition. Annual Review of Sociology, 23, 263-287.

Dunham, J. B. (2005). An agent-based spatially explicit epidemiological model in MASON’.
Journal of Artificial Societies and Social Simulation, 9(1). http://jasss.soc.surrey.ac.
uk/9/1/3.html

Edmonds, B. (1999). Capturing social embeddedness: A constructivist approach, adaptive
behavior (Vol. 7, pp. 323-348). London: Sage.

Edmonds, B. (2006). How are physical and social spaces related? — Cognitive agents as the
necessary “glue”. In F. C. Billari, T. Fent, A. Prskawetz, & J. Scheffran (Eds.), Agent-based
computational modelling: Applications in demography, social, economic and environmental
sciences (pp. 195-214). Berlin: Springer.

Edmonds, B., & Chattoe, E. (2005). When simple measures fail: Characterising social networks
using simulation. In Social Network Analysis: Advances and Empirical Applications Forum,
Oxford. <http://cfpm.org/cpmrep158.htmI>

Erdos, P, & Rényi, A. (1959). On random graphs 1. Publicationes Mathematicae, 6, 290-297.

Eubank, S., Guclu, H., Kumar, A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., & Wang, N.
(2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429, 180—184.

Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence.
London: Addison-Wesley.

Flache, A., & Hegselmann, R. (2001). Do irregular grids make a difference? Relaxing the spatial
regularity assumption in cellular models of social dynamics. Journal of Artificial Societies and
Social Simulation, 4(4). http://jasss.soc.surrey.ac.uk/4/4/6/html

Fortunato, S. (2009). Community detection in graphs, Physics Reports. http://dx.doi.org/10.1016/].
physrep.2009.11.002

Geller, A., & Moss, S. (2008). Growing gawm: An evidence-driven declarative model of Afghan
power structures. Advances in Complex Systems, 11(2), 321-335.

Granovetter, M. S. (1973). The strength of weak ties. The American Journal of Sociology, 78(6),
1360-1380.

Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness. The
American Journal of Sociology, 91(3), 481-510.

Hales, D., & Arteconi, S. (2008). Motifs in evolving cooperative networks look like protein struc-
ture networks. Networks and Heterogeneous Media, 3(2), 239-249.

Hedstrom, P. (2005). Dissecting the social: On the principles of analytical sociology. Cambridge:
University of Cambridge Press.



11 Networks in Agent-Based Social Simulation 215

Hoffer, L. (2006). Junkie business: The evolution and operation of a heroin dealing network.
Belmont: Thomson Wadsworth Publishing.

Huang, C.-Y., Sun, C.-T., Hsiehm J.-L., & Lin, H. (2004). Simulating SARS: Small-world epi-
demiological modeling and public health policy assessments. Journal of Artificial Societies
and Social Simulation, 7(4). http://jasss.soc.surrey.ac.uk/7/4/2.html

Huang, C.-Y.,, Tsai, Y.-S., & Wen, T.-H. (2010). Network-based simulation architecture for
studying epidemic dynamics. Simulation, 86(5-6), 351-368. (May 2010) doi=10.1177/
0037549709340733 http://dx.doi.org/10.1177/0037549709340733.

Jensen, H. (1998). Self-organized criticality: Emergent complex behavior in physical and biological
systems. Cambridge: University of Cambridge Press.

Jin, E. M., Girvan, M., & Newman, M. E. J. (2001). Structure of growing social networks. Physical
Review E, 64(4).

Krebs, F., Elbers, M., & Ernst, A. (2007). Modelling social and economic influences on the decision
making of farmers in the Odra Region. In F. Amblard (Ed.), Proceeding of the 2007 Annual
European Social Simulation Association, Toulouse.

Leskovec, J., Kleinberg, J., & Faloutsos, C. (2005). Graphs over time: Densification laws, shrinking
diameters and possible explanations. In Proceedings of the 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, Chicago.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005). MASON: A multi-agent
simulation environment. Simulation, 81(7), 517-527.

Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based
land-use models: A review of applications. Landscape Ecology, 22, 1447-1459.

McCulloh, I. (2009). Detecting changes in a dynamic social network. Unpublished PhD thesis,
Carnegie Mellon University, Pittsburgh.

Milo, R., Shen-Orr, S., Itzkovitz, S., et al. (2002). Network motifs: Simple building blocks of
complex networks. Science, 298, 824-827.

Minar N., Burkhart R., Langton C., & Askenazi M. (1996). The Swarm simulation system: a
toolkit for building multiagent simulations (Working paper 96-06-042). Santa Fe: Santa Fe
Institute.

Mitchell, C. (1989). Ethnography and network analysis. In T. Schweizer (Ed.), Netzwerkanalyse:
Ethnologische Perspektiven. Berlin: Reimer.

Moss, S. (2002). Policy analysis from first principles. Proceedings of the National Academy of
Sciences, 99(suppl. 3), 7267-7274.

Moss, S. (2008). Simplicity, generality and truth in social modelling part 1: Epistemology. In
T. Takama, G. Deffuant, & C. Cioffi-Rivella (Eds.), Proceedings of the second world congress
on social simulation. Berlin: Springer.

Moss, S., & Edmonds, B. (2005). Sociology and simulation: Statistical and qualitative cross-
validation. The American Journal of Sociology, 110(4), 1095-1131.

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure

in time-dependent, multiscale, and multiplex networks, 328(5980), 876-878. doi=10.1126/

science. 1184819 hitp://arxiv.org/abs/0911.1824

Newman, M. E. J. (2004). The structure and function of complex networks. SIAM Review, 45,
167-256.

Nikolai, C., & Madey, G. (2009). Tools of the trade: A survey of various agent-based modeling
platforms. Journal of Artificial Societies and Social Simulation, 12(2). http://www.sciencemag.
org/content/328/5980/876; http://www.sciencemag.org/content/328/5980/876

North, M. J., & Macal, C. M. (2007). Managing business complexity: Discovering strategic solu-
tions with agent-based modelling and simulation. New York: Oxford University Press.

O’Madadbhain, J., Fisher, D., Smyth, P, White, S., & Boey, Y.-B. (2005). Analysis and visualization
of network data using JUNG. Journal of Statistical Software, VV(II), 1-35.

Pahl-Wostl, C., & Hare, M. (2004). Processes of social learning in integrated resources management.
Journal of Community & Applied Social Psychology, 14(3), 193-206.

Parker, D. C. (2005). Integration of geographic information systems and agent-based models of
land use: Challenges and prospects. In D. J. Maguire, M. F. Goodchild, & M. Batty (Eds.), GIS,
Spatial analysis and modeling (pp. 403—422). Redlands: ESRI Press.



216 S.J. Alam and A. Geller

Polhill, J. G., Parker, D. C., & Gotts, N. M. (2008). Effects of land markets on competition between
imitators and innovators: Results from FEARLUS-ELMM. In B. Edmonds, C. Hernandez, &
K. Troitzsch (Eds.), Social simulation: Technologies, advances and new discoveries
(pp. 81-97). Hershey: GI Global.

Pujol, J. M., Flache, A., Delgado, J., & Sangiiesa, R. (2005). How can social networks ever become
complex? Modelling the emergence of complex networks from local social exchanges’. Journal
of Artificial Societies and Social Simulation, 8(4). http://jasss.soc.surrey.ac.uk/8/4/12.html

Rakowski, F., Gruziel, M., Krych, M., & Radomski, J. P. (2010). Large scale daily contacts and
mobility model — An individual-based countrywide simulation study for Poland. Journal of
Artificial Societies and Social Simulation, 13(1), 13. http://jasss.soc.surrey.ac.uk/13/1/13.html

Schelling, T. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2),
143-186.

Schensul, J. J., LeCompte, M., Trotter, P., & Singer, M. (1999). Mapping social networks, spatial
data & hidden populations. Thousand Oaks: Sage.

Simon, H. (1955). On a class of skew distribution functions. Biometrika, 42(3—4), 425-440.

Snijders, T. A. B., van de Bunt, G. G., & Steglich, C. (2010). Introduction to stochastic actor-based
models for network dynamics. Social Networks, 32(1), 44—60.

Stroud, P., Del Valle, S., Sydoriak, S., Riese, J., & Mniszewski, S. (2007). Spatial dynamics of
pandemic influenza in a massive artificial society. Journal of Artificial Societies and Social
Simulation, 10(4). http://jasss.soc.surrey.ac.uk/10/4/9.html

Tsvetovat, M. (2005). Social structure simulation and inference using artificial intelligence tech-
niques. Unpublished PhD thesis, Carnegie Mellon University, Pittsburgh.

Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge:
Cambridge University Press.

Watts, D. J. (1999). Networks, dynamics, and the small-world phenomenon. The American Journal
of Sociology, 13(2), 493-527.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature,
393, 440-442.

Werth, B., & Moss, S. (2007). Modelling migration in the Sahel: An alternative to cost-benefit
analysis. In S. Takahashi, D. Sallach, & J. Rouchier (Eds.), Advancing social simulation:
The first world congress (pp. 331-342). Berlin: Springer.

Wilensky, U., & Rand, W. (in press). An introduction to agent-based modeling: Modeling natural,
social and engineered complex systems with NetLogo. Cambridge, MA: MIT Press.

Yang, Y., & Atkinson, P. M. (2008). Individual space — Time activity-based model: A model for the
simulation of airborne infectious-disease transmission by activity-bundle simulation.
Environment and Planning B, 35(1), 80-99.

Ziervogel, G., Bharwani, S., & Downing, T. E. (2006). Adapting to climate variability: Pumpkins,
people and policy. Natural Resource Forum, 30(4), 294-305.



Part 111
Methods, Techniques and Tools

for the Design and Construction
of Agent-Based Models



Chapter 12

The Integration of Agent-Based Modelling
and Geographical Information

for Geospatial Simulation

Andrew T. Crooks and Christian J.E. Castle

Abstract Within this chapter we focus on the integration of Geographical Information
System (GIS) and Agent-based modelling (ABM) and review a selection of toolkits
which allow for such integration. Moreover, we identify current capabilities of mod-
elling within a GIS and methods of coupling and integrating GIS with agent-based
models. We then introduce suggested guidelines for developing geospatial simula-
tions with ABM toolkits and offer practical guidelines for choosing a simulation/
modelling system before providing a review of a number of simulation/modelling
systems that allow for the creation of geospatial agent based models along with the
identification of a number references for further information.

12.1 Introduction

The Agent-Based modelling (ABM) paradigm is developing into a powerful tool in
many disciplines as seen in Crooks and Heppenstall (2012), Johansson and Kretz
(2012) and Harland and Heppenstall (2012), but also in a other disciplines such as
archaeology (Axtell et al. 2002), economics (Tesfatsion and Judd 2006), health
(Epstein 2009), geography (Batty 2005) and computational social science more
generally (see Cioffi-Revilla 2010 for a discussion). Such models allow researchers
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to explore how through the interaction of many individuals more emergent phenomena
arise. Moreover, it allows for practitioners to build models of complex social
phenomenon by simulating the interactions of the many actors in such systems.
Thus gaining insights that will lead to greater understanding and, in some cases,
better management of the behaviour of complex social systems. The intention of
this chapter is to the outline how one can develop geospatial agent-based models
(i.e. that model spatially explicit geographic phenomena — where the nature of the
features and movement that is represented varies over the Earth’s surface).
Essentially, geospatial models depend on the location of the features or phenomena
being modelled, such that if one or more of those locations change, the results of the
model change (Wegener 2000). Geographical Information Systems (GIS) are a
particularly useful medium for representing model input and output of a geospatial
nature. However, GIS are not well suited to dynamic modelling (Goodchild 2005;
Maguire 2005) as will be discussed in Sect. 12.2. Consequently, Sect. 12.2.2 explores
the opportunity of linking (through coupling or integration/embedding) a GIS with
a simulation/modelling system purposely built for the task at hand (Sect. 12.3), and
therefore better suited to supporting the requirements of ABM.

12.2 Modelling Within GIS: Current Capabilities

It can be difficult to comprehend how GIS technology, built essentially for handling
maps and “map-related ideas”, can be adapted to the needs of dynamic simulation
modelling; especially when it is not even perceived as an optimal platform for mod-
elling (Goodchild 2005). Particular criticisms of GIS with respect to modelling is
their ability to handle time (Langran 1992; Peuquet 2005— see Sect. 12.2.1), the
representation of continuous variation (Longley et al. 2005), and most have only
rudimentary modelling capabilities (Maguire 2005). Nevertheless, there are several
good reasons to justify why the use, or linkage of GIS with simulation/modelling
systems (see Sect. 12.2.2), is an effective means of modelling when spatial and
temporal analysis is necessary.

Current commercial and public domain GIS software systems all contain numerous
tools for acquiring, pre-processing, and transforming data. Their use in modelling
includes data management, format conversion, projection change, re-sampling,
raster-vector conversion, etc. GIS also include excellent tools for visualisation/map-
ping, rendering, querying, and analysing model results, as well as assessing the
accuracies and uncertainties associated with inputs and outputs.

Typically, all of the capabilities described above are accessible via end-user
graphical and command line interfaces. However, these capabilities have recently
become accessible through application programming interfaces (APIs), via soft-
ware libraries. The exposure of APIs was a significant recent improvement in terms
of GIS and spatial modelling, as external programmers now have access to the
underlying software components upon which GIS software vendors base their end-
user versions of systems. This is perhaps the most pertinent enhancement, as many
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of the techniques used in GIS analysis are potentially far more robust if they can be
linked with an extensive toolkit of methods for simulation; an issue which is
addressed at greater length later in Sect. 12.2.2. GIS vendors have invited this situ-
ation as it allows GIS to be extended and customised for use in new application
areas, thus expanding the market potential of their systems.

Alternatively, a model can be expressed as a sequence of GIS commands
executed by a script (Maguire 2005). Recently in GIS there has been a move to
use industry-standard low-level programming languages (e.g. Java, C++, and
Visual Basic), and scripting languages (e.g. Python, VBScript, and Jscript),
rather than proprietary, home grown scripting languages (e.g. ESRI’s Arc Macro
Language, AML, or Avenue). Interoperability standards such as the Microsoft.
Net framework facilitate this process by allowing compliant packages to be
called from the same script.

In addition to scripts, graphical flowcharts can be used to express sequences of
operations that define a model. Longley et al. (2005) note that one of the first graphic
platforms for conceptualising and implementing spatial models was probably the
ERDAS IMAGINE software, which allows the user to build complex modelling
sequences from primitive operations. ESRI is another GIS vendor that provides an
environment that allows models to be authored and executed in a graphical environ-
ment: ModelBuilder within ArcGIS 9.x, which superseded Spatial Modeller within
ArcView 3.

In principle, graphic-model building can be used for dynamic modelling via an
iterative process, where the output of one time step becomes the input for the next.
However, this method posses two dilemmas: (1) the GIS will not have been designed
for an iterative process, requiring the user to re-enter the data at the beginning of each
time step, and; (2) the time required to run a model could be considerable. The former
of these problems can be overcome with scripting languages (e.g. Python in ArcGIS);
both can potentially be overcome by integrating the GIS with a simulation/modelling
system better equipped for the task at hand. Before exploring the possibilities of
linking GIS and simulation/modelling systems (Sect. 12.2.2), the following section of
this chapter evaluates the capability of GIS to handle space-time information, which
computer simulations generate in volume, and has always been a limitation.

12.2.1 Representing Time and Change Within GIS

The subject of time within GIS has received a considerable amount of attention.
Heywood et al. (2006) comments that ideally, GIS would be able to represent tem-
poral change using methods that explicitly represent spatial change, as well as dif-
ferent states through time. Furthermore, methods allowing direct manipulation and
comparison of simulated or observational data in a temporal and spatial dimensions
should be catered for. In reality, two main challenges for the integration of time
within GIS exist: (1) continuous data over a period of time are rarely available for
an entity or system of interests; (2) data models and structures able to record, store,
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and visualise information about an object in different temporal states are still in
their infancy (Heywood et al. 20006). In the context of this chapter, the former chal-
lenge is less of a constraint since an agent-based computer simulation is capable of
generating an abundance of data over a continuous period of time, while much prog-
ress has been made on the later issue. The following discussion outlines issues
related to the representation of time and change, as well as approaches for incorpo-
rating space-time information within GIS.

The basic objective of any temporal database is to record change over time,
where change can be thought of as an event or collection of events. An event might
be a change in state of one or more locations, entities, or both. Changes that might
affect an event can be distinguished in terms of their temporal pattern; Peuquet
(2005) has suggested four types: (1) continuous — events occurring throughout some
period of time; (2) majorative — events occurring most of the time; (3) sporadic —
events occurring some of the time, and; (4) unique — events that only occur once.
The distribution of events within these temporal patterns can also be very complex
(e.g. chaotic, cyclic, or steady state), complicated further as change, to some extent,
is always occurring at various rates as well (e.g. from sudden to gradual). Hence,
duration and frequency are important descriptive characteristics within this taxonomy
of temporal patterns.

There are three approaches for capturing space-time information within a GIS:
(1) location-based; (2) time-based, and; (3) entity-based. The only method of viewing
a data model within existing GIS, as a space-time representation, is as a temporal
series of spatially-registered ‘snapshots’ (Peuquet 2005). Invariably this approach
employs a raster data model, although vector has also been used, with only a single
information type stored (e.g. elevation, density, precipitation, etc.) for each cell at
any one point in time. Information for the entire layer is stored for each time step,
regardless of whether change has occurred since the previous step. There are several
criticisms of this approach. Firstly, the data volume increases enormously, because
redundant data is stored in consecutive snapshots. The state of a spatial entity can
only be retrieved by querying cells of adjacent snapshots, because information is
stored implicitly between each time step. Finally, the exact point when change has
occurred cannot be determined. Langran (1992) has proposed a modification of this
approach. The temporal-raster (or grid) approach allows multiple values to be stored
for each pixel. A new value, and the time at which change occurred for each pixel is
stored, which can result in a variable number of records for each cell. Recording the
time at which change has occurred allows for values to be sorted by time. The most
recent value for each cell can therefore be retrieved, which represents the present
state of the system. The obvious advantage to this approach is the reduction of
redundant data stored for each cell.

Peuquet and Duan (1995) have proposed a time-based approach to storing
space-time information within a GIS, where change is stored as a sequence of
events through time. Time is stored in increasing order from an initial point, with
the temporal interval correlating to successive events. An event is recorded at the
time when the amount of accumulated change is considered significant, or by
another domain-specific rule. This type of representation has the advantage of
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facilitating time-based queries, and the addition of a new event is straight forward
as it can simply be added to the end of the timeline. Furthermore, in terms of mod-
elling an important capacity of any model is the ability to represent alternative
versions of the same reality. The concept of representing multiple realities over
time is called branching. Branching allows various model simulation runs to be
compared, or simulation results to be compared to observed data. The time-based
approach facilitates the branching of time in order to represent alternative or paral-
lel sequences of events resulting from specific scenarios, because it is strictly an
ordinal timeline.

Finally, several entity-based space-time models have been proposed.
Conceptually these models extend the topological vector approach (e.g. coverage
model); tracking changes in the geometry of entities incrementally through time.
The amendment vector model was the first of this type, and extended frameworks
have been proposed subsequently. Besides maintaining the integrity of entities
and their changing topology, these approaches are able to represent asynchro-
nous changes to entity geometries. However, the space-time topology of these
vectors becomes increasingly complex as amendments accumulate through time.
In addition, aspatial entity attributes can change over time. To record aspatial
changes, a separate relational database is often used. However, if change occurs
at a different rate between the spatial and aspatial aspects of an entity, maintain-
ing the identity of individual entities becomes difficult, especially when entities
split or merge.

Object-oriented data models have transformed the entity-based storage of space-
time information within GIS (Zeiler 1999), and have become mainstream within
commercial GIS (e.g. the geodatabase structure with ArcGIS). They have grown
increasingly more sophisticated, catering for a powerful modelling environment.
The object-oriented data model approach provides a cohesive representation that
allows the identity of objects, as well as complex interrelationships to be maintained
through time. Specifically, temporal and location behaviour can be assigned as an
attribute of features rather than the space itself, which has the distinct advantage of
allowing objects to be updated asynchronously. Despite the advantages of the
object-oriented data model, Reitsma and Albrecht (2006) observe that, to date, no
data model or data structure allows the representation of processes (i.e. recording a
process that has changed the state of an object within a model).! Consequently,
queries about where a process is occurring at an instant of time cannot be expressed
with these current approaches. Notwithstanding, object-oriented data models are
the canonical approach to the storage of space-time data generated by agent-based
models, and their visualisation within GIS, given their complementarities.
Nevertheless, the visualisation of agent-based models within GIS is still limited to
a temporal series of snapshots.

"However this is an active research topic and holds much promise with respect to creating geospa-
tial agent-based models (see Torrens 2009 for a more detailed discussion).
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12.2.2 Linkage — Coupling Versus Integration/Embedding

Models implemented as direct extensions of an underlying GIS, through either
graphic model-building or scripts, generally make two assumptions: (1) all opera-
tions required by the model are available in the GIS (or in another system called
by the model); and, (2) the GIS provides sufficient performance to handle the
execution of the model (Longley et al. 2005). In reality, a GIS will often fail to
provide adequate performance, especially with very large datasets and a large
number of iterations, because it has not been designed as a simulation/modelling
engine. This one-size-fits-all approach inherent in GIS provides limited applica-
bility, and attention has subsequently been devoted to linking, either through cou-
pling or integration/embedding, GIS with simulation/modelling systems more
directly suited to users needs. General classifications have been produced by
numerous authors (e.g. Maguire 1995; Bernard and Kriiger 2000; Westervelt
2002; Goodchild 2005; Longley et al. 2005; Maguire 2005). Several of their defi-
nitions now overlap as technological advance has blurred the boundaries of their
classifications, whist some definitions are convoluted because terminology has
been used interchangeably or sometimes inappropriately (e.g. coupling, linkage
or integration). Nevertheless, categorisation of these techniques is possible, and a
brief description of each is developed below, in an attempt to clarify the situation.
This is followed by a critique of these different approaches, with a view to identi-
fying an appropriate method for developing geospatial agent-based models.

In situations where GIS and simulation/modelling systems already exist (e.g. as
commercial products), or the cost of rebuilding the functionality of one system into
another is too great, the systems can be coupled together (Maguire 2005). Coupling
can therefore be broadly defined as the linkage of two stand-alone systems by data
transfer. Three types of coupling are distinguishable, although these are only a sub-
set of the much larger fields of enterprise application integration (Linthicum 2000)
and software interoperability (Sondheim et al. 2005). The attributes of each approach
cascaded along the coupling continuum, from loose to tight/close (Table 12.1 sum-
maries the competing objectives of the different coupling approaches; greyed boxes
are considered more desirable characteristics — adapted from Westervelt 2002):

1. Loose Coupling. A loose connection usually involves the asynchronous opera-
tion of functions within each system, with data exchanged between systems in
the form of files. For example, the GIS might be used to prepare inputs, which
are then passed to the simulation/modelling system, where after execution the
results of the model are returned to the GIS for display and analysis. This
approach requires the GIS and simulation/modelling system to understand the
same data format; if no common format is available an additional piece of soft-
ware will be required to convert formats in both directions. Occasionally, specific
new programmes must be developed to perform format modifications;

2. Moderate Coupling. Essentially this category encapsulates techniques between
loose and tight/close coupling. For example, Westervelt (2002) advocates
remote procedure calls and shared database access links between the GIS and
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Table 12.1 Comparison of coupling approaches (Adapted from Westervelt 2002)

Objective and explanation Loose Moderate Close/tight

Integration Speed: The programmer time involved in Fast Medium Slow
linking the programmes

Programmer Expertise: Required level of software Low High Medium
development expertise

Multiple Authorship Avoidance: In some instances High Medium Low

it might be necessary for the programmer to
modify the original software product. Any
alteration reduces the ownership responsibility.
Major alterations could totally sever this link,
resulting in limited or no support by the original
author(s)

Execution Speed: How rapidly does the integrated Slow Medium Fast
software execute?

Simultaneous Execution: Can components of the Low Low High
system run simultaneously and communicate with
one another? Can the components operate on
separate platforms?

Debugging: How difficult is it to locate execution Easy Moderate Hard
errors in the linked system?

simulation/modelling system, allowing indirect communication between the
systems. Inevitably, this reduces the execution speed of the integrated system,
and decreases the ability to simultaneously execute components belonging to
the different software; and,

3. Tight or Close Coupling. This type of linkage is characterised by the simulta-
neous operation of systems allowing direct inter-system communication during
the programme execution. For example, standards such as Microsoft’s COM
and .NET allow a single script to invoke commands from both systems (Ungerer
and Goodchild 2002). A variant of this approach allows inter-system communication
by different processes that may be run on one of more networked computers
(i.e. distributed processing).

Coupling has often been the preferred approach for linking GIS and simulation/
modelling systems. However, this has tended to result in very specialised and isolated
solutions, which have prevented the standardisation of general and generic linkage.
An alternative to coupling is to embed or to integrate the required functionality of
either the GIS or simulation/modelling system within the dominant system using its
underlying programming language (Maguire 2005). The final system is either referred
to as GIS-centric or modelling-centric depending on which system is dominant. In
both instances, the GIS tools or modelling capabilities can be executed by calling
functions from the dominant system, usually through a graphical user interface (GUI).
Compared to coupling, an embedded or integrated system will appear seamless to a
user (Maguire 1995). However, in the past integration has been based on existing
closed and monolithic GIS and simulation systems, which poses a risk of designing
systems that are also closed, monolithic, and therefore costly (Fedra 1996).
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Interest in modelling-centric systems has increased considerably over recent
years, predominately due to the development of simulation/modelling toolkits with
scripting capabilities that do not require advanced computer programming skills
(Gilbert and Bankes 2002). Often the simulation/modelling toolkit can access GIS
functions, such as data management and visualisation capabilities, from a GIS soft-
ware library. For example, the RepastJ (see Sect. 12.3.3.3) toolkit exploits functions
from GeoTools (a Java GIS software library) for importing and exporting data, Java
Topology Suite (JTS) for data manipulation, and OpenMap for visualisation. The
toolkit itself maintains the agents and environment (i.e. their attributes), using iden-
tity relationships for communication between the different systems. Functions avail-
able from GIS software libraries reduce the development time of a model, and are
likely to be more efficient because they have been developed over many years with
attention to efficiency. Additionally, the use of standard GIS tools for spatial analy-
sis improves functional transparency of a model, as it makes use of well known and
understood algorithms. Alternatively, spatial data management and analysis func-
tions can be developed within the modelling toolkit, although this strategy imposes
huge costs, in terms of time to programme the model, and time required to fre-
quently update spatial data or use spatial analysis functions within the model.

Conversely, the GIS-centric approach is an attractive alternative; not least because
the large user-base of some GIS expands the potential user-base for the final model.
Analogous to the modelling-centric approach, GIS-centric integration can be car-
ried out using software libraries of simulation/modelling functions accessed through
the GIS interface. There are many examples of simulation/modelling systems inte-
grated within commercial GIS, including: the Consequences Assessment Tool Set
(2011, CATS) system, designed for emergency response planning; the Hazard
Prediction and Assessment Capability (2004, HPAC) system, for predicting the
effect of hazardous material releases into the atmosphere; the NatureServe Vista
(2011) system, for land use and conservation planners.

Brown et al. (2005) propose an alternative approach which straddles both the
GIS-centric and modelling-centric frameworks. Rather than providing functionality
within one system, the middleware-based approach manages connections between
systems, allowing a model to make use of the functionality available within the GIS
or the simulation/modelling toolkit most appropriate for a given task. Thus, the
middleware approach allows the simulation/modelling toolkit to handle the identity
and relationship of, and between agents and their environment. Conversely, the GIS
would manage spatial features, as well as temporal and topological relationships of
the model. Essentially, the simulation/modelling toolkit handles what it is designed
for (i.e. implementing the model), while the GIS can be used to run the model, and
visualise the output. An example of this approach is the ABM extension within
ArcGIS (referred to as Agent Analyst), which allows users to create, edit, and run
RepastPy models from within ArcGIS (Redlands Institute 2010). However, it is the
opinion of the authors that only a dichotomy of integration classifications exists. A
GIS is either integrated into a simulation/modelling toolkit, or vice versa. The defi-
nition of the middleware approach is essentially tight coupling (see above).
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12.3 Developing Geospatial Simulations with Agent-Based
Modelling Toolkits

The process of building an agent-based model begins with a conceptual model,
where basic questions or goals, elements of the system (e.g. agent attributes, rules
of agent interaction and behaviour, the model environment, etc.), and the measur-
able outcomes of interest are identified (Brown 2006). It is important to ‘ground’ a
model during the conceptualisation process (i.e. establish whether simplifications
made during the design process do not seriously detract from the credibility and
likelihood that the model will provide important insights; Carley 1996). It is usual
for a modeller to set forth a claim as to why the proposed model is reasonable. This
claim will be enhanced if the applicability of the model is not over stated, and by
defining the models limitations and scope. Grounding can be reinforced by demon-
strating that other researchers have made similar or identical assumptions in their
models, and by justifying how a proposed model will be of benefit in relation to
pre-existing models.

Conceptualising the fundamental aspects of an agent-based model (i.e. one or
more agents interacting within an environment), juxtaposed with the distinction
between explanatory vs. predictive purposes of a model suggests a fourfold typol-
ogy of agent and environment types (Table 12.2). Couclelis (2001) classifies agents
and their environment as either being designed (i.e. explanatory) or analysed (i.e.
predictive — empirically grounded). If designed, agents are endowed with attributes
and behaviours that represent (often simplified) conditions for testing specific
hypotheses about general cases. Analysed agents are intended to accurately mimic
real-world entities, based on empirical data or ad hoc values that are realistic substi-
tutes for observed processes. Similarly, the environment that agents are situated
within can be designed (i.e. provided with characteristics that are simplified to focus
on specific agent attributes), or analysed (i.e. represent a real-world location).

The boundary between designed and analyzed is not always distinct, especially
when ad hoc data are employed. Subtle but profound differences, both practical and
conceptual, exist between the design or analysis approach of developing agents and
their environment. A major difference in practical terms is that designing something
provides direct (partial or total) control over the outcome, whereas there can only be
hope that something has been analyzed correctly (Couclelis 2001). Table 12.2 pro-
vides further details to consider when developing agents and their environment;
including a brief description of the model, the purpose and intent of the model (see
Parker et al. 2001), verification and validation strategies used to assess the model
outputs (see Parker et al. 2001; Crooks et al. 2008), and appropriate software for the
development of a model (see Sect. 12.3.2).

Once a model has been conceptualised, it must be formalised into a specification
which can be developed into a computer programme (Grimm and Railsback 2012
and Abdou et al. 2012 offer constructive advice on this); if the model is required to
be run as a computer simulation. The process of formalisation involves being pre-
cise about what an identified theory relating to a phenomena of interest means,
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Table 12.2 Description, purpose/intent, verification and validation strategies, and appropriate
development tools for agent-based models incorporating designed or analysed agents/environ-
ments (Adapted from Berger and Parker 2001)

Agent
Designed Analysed
Model description Model description
— Abstract — Experimental
Purpose/intent Purpose/intent
— Discovery of new relationships — Role-playing games among
stakeholders
<3| - Exist.ence proof o - 'Labo'ratory expe.rim.ents
g,| Verification and validation strategy Verification and validation strategy
‘% | — Theoretical comparison — Repetitions
Al - Replication — Adequacy of design
Appropriate development tools Appropriate development tools
— Easy to implement simulation/ — Flexible simulation/modelling systems
- modelling system with well developed user interfaces
g Example model Example model
§ — Filatova et al. (2009) — Mooij et al. (2002)
g Model description Model description
- — Historical — Empirical
Purpose/intent Purpose/intent
— Explanation — Explanation
- — Projection
2 — Scenario analysis
E] Verification and validation strategy Verification and validation strategy
<| — Qualitative: goodness of fit — Quantitative: goodness of fit
Appropriate development tools Appropriate development tools
— Advanced simulation/modelling — Low-level programming languages
systems linked with GIS
Example model Example model
— Mathevet et al. (2003) — Jackson et al. (2008)

making sure that it is complete and coherent. There are several reasons why computer
simulation is more appropriate for formalising social science theories than mathe-
matics, which has often been used in the social sciences (Gilbert and Troitzsch
2005). First, programming languages are more expressive and less abstract than
most mathematical techniques. Second, a computer simulation can deal more easily
with parallel process and processes without well defined order or actions than systems
of mathematical equations. Third, a computer model can include heterogeneous
agents (e.g. pedestrians with varying degrees of knowledge about a building layout),
while this is usually relatively difficult using mathematics. Finally, computer pro-
grammes are (or can easily be made to be) modular, so that major changes can be
made to one part of the model without requiring large changes in other parts of the
programme, an ability which mathematical systems often lack.
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The object-oriented paradigm provides a very suitable medium for the development
of agent-based models. In particular, it provides the aforementioned modularity useful
for developing a computer simulation. It is not the intention of this chapter to out-
line the fundamental object-oriented concepts, this has been achieved by numerous
others (refer to Booch (1994) for a seminal discussion and Armstrong (2006) for a
useful evaluation and clarification of key object-oriented notions).

At the time of writing, there are many simulation/modelling systems available
to assist the development stage of ABM. The majority of these simulation/model-
ling systems are programmed, and/or require the user to develop their model in an
object-oriented language. The subsequent section of this chapter identifies some
of the simulation/modelling systems available for ABM, highlighting key ques-
tions that should be considered for a user to determine an appropriate system for
their needs.

12.3.1 Types of Simulation/Modelling Systems
Jor Agent-Based Modelling

In general, two types of simulation/modelling systems are available to develop
agent-based models: toolkits or software.” Based on this dichotomy, toolkits are
simulation/modelling systems that provide a conceptual framework for organising
and designing agent-based models. They provide appropriate libraries® of software
functionality that include pre-defined routines/functions specifically designed for
ABM. However, the object-oriented paradigm allows the integration of additional
functionality from libraries not provided by the simulation/modelling toolkit,
extending the capabilities of these toolkits. Of particular interest to this chapter is
the integration of functionality from GIS software libraries (e.g. OpenMap,
GeoTools, ESRI’s ArcGIS, etc.), which provide ABM toolkits with greater data
management and spatial analytical capabilities required for geospatial modelling
(see Sect. 12.2).

The development of agent-based models can be greatly facilitated by the utilisation
of simulation/modelling toolkits. They provide reliable templates for the design,
implementation and visualisation of agent-based models, allowing modellers to focus
on research (i.e. building models), rather than building fundamental tools necessary to
run a computer simulation (see Tobias and Hofmann 2004; Railsback et al. 2006). In
particular, the use of toolkits can reduce the burden modellers face programming parts

2 An agent-based model could be programmed completely from scratch using a low-level program-
ming language if a modeller has sufficient programming knowledge and experience; see below for
disadvantages of this approach.

3 A collection of programming classes grouped together, termed packages (i.e. classes with similar
purpose).
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of a simulation that are not content-specific (e.g. GUI, data import-export, visualisation/
display of the model). It also increases the reliability and efficiency of the model,
because complex parts have been created and optimised by professional developers,
as standardised simulation/modelling functions. Unsurprisingly, there are limitations
of using simulation/modelling systems to develop agent-based models, for example:
a substantial amount of effort is required to understand how to design and implement
a model in some toolkits; the programming code of demonstration models or models
produced by other researchers can be difficult to understand or apply to another purpose;
a modeller will have to learn or already have an understanding of the programming
language required to use the toolkit; and finally the desired/required functionality may
not be present, although additional tools might be available from the user community
or from other software libraries. Benenson et al. (2005) also note that toolkit users
are accompanied by the fear of discovering that a particular function cannot be
used, will conflict, or is incompatible with another part of the model late in the devel-
opment process.

Probably the earliest and most prominent toolkit was SWARM, although many
other toolkits now exist. At the time of writing there are more than 100 toolkits
available for ABM (see AgentLink 2007; SwarmWiki 2010; Nikolai and Madey
2009; Tesfatsion 2010; Wikipedia 2010 for comprehensive listings). However, vari-
ation between toolkits can be considerable. For example, their purpose (some tool-
kits have different design objectives e.g. Artificial Intelligence (AI) rather than
social science focus, or network opposed to raster or vector model environments),
level of development (e.g. some models are no longer supported or have ceased
development), and modelling capabilities (e.g. the number of agents that can be
modelled, degree of interaction between agents) can vary. A review of all toolkits
currently available is beyond the scope of this chapter. However, we identify a selec-
tion of noteworthy simulation/modelling toolkits (e.g. Swarm, MASON, Repast,
AnyLogic), highlighting their purpose and capabilities, as well as resources providing
further information.

In addition to toolkits, software is available for developing agent-based models,
which can simplify the implementation process. For example, simulation/modelling
software often negates the need to develop an agent-based model via a low-level a
programming language (e.g. Java, C++, Visual Basic, etc.). In particular, software
for ABM is useful for the rapid development of basic or prototype models. However,
modellers using software are restricted to the design framework advocated by the
software. For instance, some ABM software will only have limited environments
(e.g. raster only) in which to model, or agent neighbourhoods might be restricted in
size (e.g. von Neumann or Moore). Furthermore, a modeller will be constrained to
the functionality provided by the software (unlike ABM toolkits modellers will be
unable to extend or integrate additional tools), especially if the toolkit is written in
its own programming language (e.g. NetLogo). Section 12.3.3 identifies a selection
of noteworthy software for the development of agent-based models; StarLogo, its
derivative NetLogo, and AgentSheets.
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12.3.2 Guidelines for Choosing a Simulation/Modelling System

Ideally, a modeller would have comprehensive practical experience in a range of
modelling/simulation systems before choosing which system to use for a modelling
endeavour. Unfortunately, this is not usually feasible. For this reason several authors
(Najlis et al. 2001; Gilbert and Bankes 2002; Serenko and Detlor 2002; Tobias and
Hofmann 2004; Dugdale 2004; Rixon et al. 2005; Robertson 2005; Andrade et al.
2008; Berryman 2008; Liebert et al. 2008; Nikolai and Madey 2009) have gained
practical experience and/or have surveyed several systems, identifying key criteria
that should be considered before making a decision. General criteria include, but are
not limited to: ease of developing the model/using the system; size of the commu-
nity using the system; availability of help or support (most probably from the user
community); size of the community familiar with the programming language in
which the system is implemented (if a programming language is necessary to imple-
ment the model); is the system still maintained and/or updated; availability of dem-
onstration or template models; technical and how-to documentation, etc. Criteria
relating specifically to a systems modelling functionality include: number of agents
that can be modelled; degree of interaction between agents; ability to represent
multiple organisational/hierarchical levels of agents; variety of model environments
available (network, raster, and vector); possible topological relationship between
agents; management of spatial relationships between agents, and agents with their
environment; mechanisms for scheduling and sequencing events, etc. These criteria
will be weighted differently depending on a modeller’s personal preferences and
abilities (e.g. the specification of the model to be developed, programming experience/
knowledge, etc.).

Another important distinction separating simulation/modelling systems is there
licensing policy; open source, shareware/freeware, or proprietary. Open source
simulation/modelling systems constitute toolkits or software whose source code is
published and made available to the public, enabling anyone to copy, modify and
redistribute the system without paying royalties or fees. A key advantage of open
source simulation/modelling systems relates to the transparency of their inner work-
ings. The user can explore the source code, permitting the modification, extension
and correction of the system if necessary. This is particularly useful for verifying a
model (see Crooks et al. 2008). The predominant open source simulation/modelling
systems are toolkits (e.g. MASON, Repast, Swarm, etc.). The distinction between
an open source simulation/modelling system and a shareware/freeware system is
subtle. There is no one accepted definition of the term shareware/freeware, but the
expression is commonly used to describe a system that can be redistributed but not
modified, primarily because the source code is unavailable. Consequently, share-
ware/freeware systems (e.g. StarLogo, NetLogo, etc.) do not have the same flexibility,
extendibility or potential for verification (in relation to access to their source code),
as open source systems. Similarly, shareware/freeware systems tend to be toolkits,
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HIGH

Power of Simulation / Modelling System

Low

Easy Hard
Difficulty of Model Development

Fig. 12.1 Balance between power versus difficulty of developing a model with a simulation/
modelling system

rather than software.® Finally, proprietary simulation/modelling systems are
available for developing agent-based models. Proprietary systems are mainly soft-
ware, developed by an organisation who exercises control over its distribution and
use; most require a licence at a financial cost to the user. These systems have the
advantage of being professionally designed and built for a specific use, and are often
relatively simple to use. However, they often lack the community support found
with open source or shareware/freeware systems. Moreover, since access to their
source code is prohibited, a model developed with proprietary software is essen-
tially black box. A modeller will therefore, to some extent, be left unsure about the
inner validity of a model constructed with a proprietary system. This situation is
compounded when the output of a model is emergent or unexpected.

Striking a balance between the aforementioned criteria is difficult. Unfortunately,
while identifying a suitable system for the development of an agent-based model,
too much time can often be expended trying to find this balance. This balance can
be perceived as a trade off between the difficulty of developing a model (e.g. in
terms of time required to programme the model, understand how to develop a model
with a specific system, or acquiring experience and knowledge of a programming
language if required, etc.), versus the modelling power provided by the simulation/
modelling system (e.g. modelling capabilities and functionality, Fig. 12.1). The key

*Other shareware/freeware systems used for the creation of spatial agent-based models include
OBEUS (Benenson et al. 2006) and CORMAS (Bousquet et al. 1998). These systems are not
reviewed in this chapter for space requirements.
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is striking a ‘personal’ balance between these criteria. For example, those more
accustomed to programming may prefer the functionality and flexibility of a simulation/
modelling toolkit. However, modellers that only wish to develop a basic or proto-
type model quickly and easily, possibly with little or no programming skills may
prefer to use simulation/modelling software (see Railsback et al. 2006).

12.3.3 Simulation/Modelling Systems for Agent-Based Modelling

This section provides key criteria pertaining to a selection of simulation/modelling
systems available for the development of agent-based models (the rationale for each
criterion was described in Sect. 12.3.2). Although there are many systems available for
developing agent-based models, this chapter reviews seven, separated into three catego-
ries of licensing policy (1) open source (Swarm, MASON and Repast); (2) shareware/
freeware (StarLogo and NetLogo); and (3) proprietary systems (AgentSheets and
AnyLogic). These systems were chosen because they fulfilled the (majority of the)
following criteria, they are: maintained and still being developed; widely used and sup-
ported by a strong user community; accompanied by a variety of demonstration models
and in some instances the model’s programming script or source code is available; and
finally they are capable of developing spatially explicit models, possibly via the inte-
gration of GIS functionality. Tables 12.3—12.5 tabularise information of each system
for comparison purposes; categorised by their licensing policy (adapted from Najlis
et al. 2001 and Parker 2001). The reminder of this section provides further information
about each system, identifying examples of geospatial models that have been devel-
oped with the system. A caveat must be noted at this point, the information provided
within this section is accurate at the time of publication. However, the systems reviewed
are constantly being updated, thus modellers are advised to check each systems website
to obtain up to date information.

12.3.3.1 Swarm

Swarm (Table 12.3) is an open source simulation/modelling system designed spe-
cifically for the development of multi-agent simulations of complex adaptive sys-
tems (Swarm 2010); although agent-based models can easily be develop using
Swarm as well. Inspired by artificial life, Swarm was designed to study biological
systems; attempting to infer mechanisms observable in biological phenomena
(Minar et al. 1996). In addition to modelling biological systems (e.g. Railsback and
Harvey 2002), Swarm has been used to develop models for anthropological, com-
puter science, ecological, economic, geographical, and political science purposes.
Useful examples of spatially explicit models include: the simulation of pedestrians
in the urban centres (Schelhorn et al. 1999 and Haklay et al. 2001); and the exami-
nation of crowd congestion at London’s Notting Hill carnival (Batty et al. 2003).
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Table 12.4 Comparison of shareware/freeware simulation/modelling systems (Adapted from
Najlis et al. 2001 and Parker 2001)

Shareware/freeware simulation/modelling systems

System name

StarLogo

NetLogo

Developers

Date of inception
Website
E-mail list

Implementation language
Operating system

Required programming
experience

Integrated GIS functionality

Integrated charting/graphing/
statistics

Availability of demonstration
models

Source code of demonstration
models

Tutorials/how-to
Documentation

Additional information

Media Laboratory,
Massachusetts Institute of
Technology, USA

Early 1990s, Java based
version 2000

http://education.mit.edu/
starlogo/

http://education.mit.edu/
pipermail/starlogo-users

Proprietary scripting

Windows, UNIX, Linux, Mac
OSX

Basic

None
Yes

Yes
Yes
Yes
OpenStarLogo website:

http://education.mit.edu/
openstarlogo/

Centre for Connected Learning
and Computer-Based
Modelling, Northwestern
University, USA

1999

http://ccl.northwestern.edu/
netlogo
None

Proprietary scripting

Windows, UNIX, Linux, Mac
0SX

Basic

Yes
Yes

Yes
Yes
Yes

http://groups.yahoo.com/
group/netlogo-users

http://ccl.northwestern.edu/
netlogo/docs/gis.html

http://backspaces.net/wiki/
NetLogo_Bag_of_Tricks

Najlis et al. (2001) identify the steep learning curve of Swarm as a significant factor
to consider before choosing this system to develop an agent-based model; although
this should be less of a problem for a modeller with strong programming skills.

12.3.3.2 MASON

MASON (Multi Agent Simulation Of Neighbourhood — Table 12.3) is developed by
the Evolutionary Computation Laboratory (ECLab) and the Centre for Social
Complexity at George Mason University (see Luke et al. 2005). Currently MASON
provides much of the same functionality as Repast, for example, dynamically charting
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Table 12.5 Comparison of proprietary simulation/modelling systems (Adapted from Najlis et al.

2001 and Parker 2001)

Proprietary simulation/modelling systems

AgentSheets

AnyLogic

Developers
Date of inception
Website

E-mail list
Implementation language
Operating system

Required programming experience

Integrated GIS functionality

Integrated charting/graphing/
statistics

Availability of demonstration
models

Source code of demonstration
models

Tutorials/how-to documentation

Additional information

AgentSheets Inc., USA

1991

http://www.agentsheets.
com

None

Proprietary scripting

Windows, UNIX, Linux,
Mac OSX

None — Basic

None

Yes

Yes http://repast.
sourceforge.net/
examples/index.html

N/A

Yes
Carvalho 2000 and

Repenning et al. 2000

XJ Technologies, Russia
Unknown
http://www.xjtek.com

None

Proprietary scripting

Windows, UNIX, Linux,
Mac OSX

Moderate

None

Yes

Yes http://repast.sourceforge.
net/examples/index.html

N/A
Yes

http://www.xjtek.com/
support/forums/general

(e.g. histograms, line graphs, etc.) and model output during a simulation. A recent
addition to MASON is GeoMASON (2010) which allows GIS vector data to be
imported/exported. In addition MASON also supports the use of raster data in the
creation of geospatial agent-based models (e.g. Kennedy et al. 2010) as shown in
Fig. 12.2.

MASON has a growing set of technical documents and well commented Javadocs
and a user group which is actively supports its e-mail list. MASONs how-to docu-
mentation, demonstration models (e.g. the seminal heat bugs example, network
models, etc.), and several publications detailing the implementation and/or applica-
tion of MASON are available for a prospective modeller to evaluate the system
further (MASON 2010). Examples of spatially explicit models utilizing MASONs
GIS functionally include exploring conflict between herdsmen and farmers in East
Africa (Kennedy et al. 2010), pastoralists in Inner Asia (Cioffi-Revilla et al. 2010),
residential dynamics in Arlington County, Virginia (Hailegiorgis 2010) and under-
standing the Afghan drug industry (Latek et al. 2010).

12.3.3.3 Repast

Repast (Recursive Porous Agent Simulation Toolkit — Table 12.3) was originally
developed at the University of Chicago, and is currently maintained by Argonne
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Fig. 12.2 Examples of raster and vector agent-based models in MASON. (a) Agents are red points
which move around the footpaths (Blue Lines). (b) A rainfall model where agents are blue and flow
down the Terrain (Built from a Digital Elevation Model)

National Laboratory and managed by the Repast Organisation for Architecture and
Development (ROAD). Earlier incarnations of Repast catered for the implementa-
tion of models in three programming languages: Python (RepastPy); Java (RepastJ
and Repast Simphony); and Microsoft.Net (Repast.Net). RepastPy allows basic
models to be developed by modellers with limited programming experience via a
‘point-and-click” GUI (Collier and North 2005). RepastPy models can subsequently
be exported/converted into Java for further development in Repast]. Repast.Net and
Repast] allow for more advanced models to be developed (Vos 2005), because more
complex functionality can be programmed into a model. Agent Analyst is an ABM
extension that allows users to create, edit, and run Repast models from within
ArcGIS (Redlands Institute 2010). For further information of earlier versions of
Repast, readers are referred to Crooks (2007). Repast has a relatively large user
group and an actively supported e-mail list, as well as extensive how-to documenta-
tion and demonstration models available from the system website.

Whilst still being maintained Repast], Repast.Net and RepastPy have now
reached maturity and are no longer being developed. They have been superseded by
Repast Simphony (RepastS), which provides all the core functionality of Repast]J or
Repast.Net, although limited to implementation in Java. For a comparison of
RepastS and previous versions readers are referred to North and Macal (2009).
RepastS was initially released in late 2006 and now provides the same GIS function-
ality of previous versions. The main improvements with RepastS over Repast 3.0 is
a new optional GUI point-and-click environment for model development that gener-
ates Java classes, however models can still be coded manually. Secondly a improved
runtime GUI, the GUI can now be used to build displays (both in 2 and 3D) or
charts, output data, interrogate agents, and interface with other programs (like R for
statistics) via a point-and-click interface at run time. This means that these tasks are
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Fig. 12.3 Examples of vector agent-based models in RepastS. (a) Agents (Red Dots) moving
about on footpaths (Grey Lines). (b) An agent-based model overlaid on NASA world wind (Source:
Repast 2011)

done more quickly after the model has been built and compiled, and do not feature
in the underlying code at all, unlike previous Repast implementations.

The Repast development team have provided a series of articles regarding
RepastS. The architecture and core functionality are introduced by North et al.
(2005a), and the development environment is discussed by Howe et al. (2006). The
storage, display and behaviour/interaction of agents, as well as features for data
analysis (i.e. via the integration of the R statistics package) and presentation of
models within Repast S are outlined by North et al. (2005b). Tatara et al. (20006)
provide a detailed discussion outlining how-to develop a “simple wolf-sheep preda-
tion” model; illustrating RepastS modelling capabilities. In relation to the integra-
tion of GIS functionality the reader is referred to the tutorials by Malleson, (2008)
which demonstrates how to create a virtual city via the importation of shapefiles,
create agents and then move the agents around a road network (this tutorial was
used for the creation of Fig. 12.3a). Furthermore, within RepastS it is possible to
embed spatially explicit agent-based models directly into a 3D GIS display. For this
RepastS provides methods to directly visualise agent-based models to NASA’s
(2010) virtual globe — World Wind. This new interactive 3D GIS display allows one
to visualise agents with satellite imagery, elevated terrain and other scientific data-
sets as shown in Fig. 12.3b. RepastS also supports the importation of NetLogo (see
Sect. 12.3.3.5) models into the Repast framework via ReLogo (Ozik 2010). Such
functionality aims to allow for rapid prototyping of agent-based models by first
building simple agent-based models in NetL.ogo and once satisfied allowing one to
migrate and extend them in RepastS. Not only does RepastS provide tools for the
conversion of simple models from NetLogo, it also supports high performance dis-
tributed computing, via Repast for High Performance Computing (Repast HPC, see
Collier 2010).

Useful examples of spatially explicit models created using Repast include the
studying of segregation, and residential and firm location (Crooks 2006, 2010),
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residential dynamics (Jackson et al. 2008) crime (Malleson et al. 2010) and the
evacuation of pedestrians from within an underground station (Castle 2007).

12.3.3.4 StarLogo

StarLogo (Table 12.4) is an shareware/freeware modelling system developed at
the Media Laboratory, Massachusetts Institute of Technology (MIT) It has
undergone some change, the original StarLogo modelling system has been
released as an open source project (see OpenStarLogo 2010) however, it is still
included in this section as the new version, StarLogo TNG (The New Generation)
is still shareware/freeware. StarLogo TNG moves StarLogo from the 2D to the
3D realm through the use OpenGL graphics API and aims to lower the barrier
for programming agent-based models through the use of a drag and drop pro-
gramming graphical interface. Modellers can drag commands from a set of
model building blocks (a block based graphical language) rather than creating
models using the StarLogo syntax thus allowing for rapid model development.
StarLogo TNG uses OpenGL for displaying the models at run time therefore
providing a 3D display termed ‘SpacelLand’. The terrain within such models is
editable and can be manually shaped. Agents can also be programmed to move
in X, y and z directions.

StarLogo lacks the same flexibility offered by open source systems, since mod-
ellers are constrained to functionality provided by the system. Despite this limita-
tion, StarLogo is very easy to use, notably for people with very little programming
experience. Dynamic charting functionality of model output during a simulation is
provided. In addition, a number of demonstration models and detailed how-to docu-
mentation relating to these models is supplied with StarLogo, and many more are
available to download from the World Wide Web (WWW). While StarLogo does
not support GIS per se, it does allow one to import GIFs, therefore allow pixels to
be converted into patches. Batty et al. (1998) used this approach to examine visitor
movement within London’s British Tate Gallery, specifically how changes in room
configuration can affect movement between exhibits.

12.3.3.5 NetLogo

NetLogo (originally named StarLogoT — Table 12.4) is a variant of StarLogo, origi-
nally developed at the Centre for Connected Learning and Computer-Based
Modelling at Northwestern University, to allow StarLogo models to be developed
on computers using the Macintosh operating system. It is now possible to create
StarLogo models on a computer using a Macintosh operating system, thus the criti-
cally distinction between the two simulation/modelling systems is that NetLogo is
specifically designed for the deployment of models over the internet (NetLogo
2010). Initially both NetLogo and StarLLogo only provided functionality to import
image files, which can be used to define the environments within which agents are
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Fig. 12.4 Example of GIS integration in NetLogo. (a) Demonstration model of using point, line
and polygon shapefiles for creating a landscape. (b) NetLogo’s gradient example and (c) the cruis-
ing model where cars move along the roads (Red lines) (Source: NetLogo 2010)

located, thus facilitating the development of spatial models (Fig. 12.4). However,
within NetLogo it is now possible to import both raster (in the form of .asc files) and
vector data (shapefiles). This new ability opens up a range of possibilities for the
easy creation of spatial agent based models. For example, for the studying of surface
erosion (Wilensky 2006) as shown in Fig. 12.4b.

The NetLogo installation comes with two demonstration models highlighting
this functionality. For vector data, four different GIS datasets: a point file of world
cities, a polyline file of world rivers, a polygon file of countries (however there is
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no way to distinguish if the polygon has holes in it) are imported into a NetLogo
model and converted into patches as shown in Fig. 12.4a. For the raster example,
araster file of surface elevation is loaded into a NetLogo model to demonstrate the
possibilities of working with spatial data as shown in Fig. 12.4b. In this example,
Agents follow the surface to lower elevations. Such functionality potentially
lowers the barrier between coupling agent-based models and GIS to none expert
programmers. For example, the gradient example presented above could be used
to model process that relies on cost surfaces such as emergency evacuation of
buildings (see Crooks et al. 2008, for an example). As with StarLogo TNG
(Sect. 12.3.3.4), models within NetLogo can be viewed in a 3D environment how-
ever unlike StarLLogo TNG it is only the agents that appear in 3D while the surface
remains a 2D plane.

NetLogo has been used to develop applications in disciplines varying from biol-
ogy and physics to the social sciences. Extensive how-to documentation/tutorials
and demonstration models are available from the system website, and functionality
can be extended through APIs, although the source code for the system is currently
unavailable. Useful examples of spatially explicit models created using NetLogo
include the study of gentrification (Torrens and Nara 2007), residential housing
demand (Fontaine and Rounsevell 2009) and the emergence of settlement patterns
(Graham and Steiner 2006) and the reimplementation of Axtell et al. (2002) artifi-
cial Anasazi model by Janssen (2009).

12.3.3.6 AgentSheets

AgentSheets (Table 12.5) is a proprietary simulation/modelling system that allows
modellers with limited programming experience to develop an agent-based model,
because models are developed through a GUI (Repenning et al. 2000). A number of
demonstration models are available from the system website. For example,
Sustainopolis is a simulation analogous to the computer game SimCity; exploring
pollution dispersal within a city (Fig. 12.5). Furthermore, AgentSheets can be linked
to real time information over the internet (Repenning and Ioannidou 2004). For
example, AgentSheets has been used in conjunction with real time weather feeds
and used to make mountain biking recommendations in Boulder County. Within the
model, agents represent locations that are possible candidates for biking featuring
real time, web accessible weather sensors. This information is then used by the
biker to reach a decision on where to go biking. Carvalho (2000) has used
AgentSheets extensively to teach undergraduate students. He comments that it is
easy to use the system to develop models quickly and provides students with hands-
on experience of ABM without the need to learn a programming language. However,
he also found that models created with AgentSheets were limited in their sophistica-
tion (notably in terms of the complexity of representation of agent behaviour and
interaction). Furthermore, agents are limited to movement within a two-dimensional
cell-based environment.
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Fig. 12.5 The Sustainopolis model developed in AgentSheets (2010)

12.3.3.7 AnyLogic

AnyLogic (Table 12.5) incorporates a range of functionality for the development of
agent-based models. For example, models can dynamically read and write data to
spreadsheets or databases during a simulation run, as well as dynamically chart
model output. Furthermore, external programmes can be initiated from within an
AnyLogic model for dynamic communication of information, and vice versa.
However, AnyLogic models can only be created on Microsoft operating systems,
although a simulation can be run on any Java-enabled operating system once com-
piled (e.g. a Macintosh operating system). The AnyLogic website notes that models
have been developed for a diverse range of applications including: the study of
social, urban (Fig. 12.6) and ecosystem dynamics (e.g. a predator-prey system);
planning of healthcare schemes (e.g. the impact of safe syringe usage on HIV diffusion);
computer and telecommunication networks (e.g. the placement of cellular phone
base stations); and the location of emergency services and call centres. Further
information pertaining AnyLogic modelling applications can be found in Parinov
(2007), these include imitating the functioning of a emergency department in a large
hospital. However, the source code of these examples and/or documentation of these
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Fig. 12.6 An urban and transport dynamics model developed in AnyLogic (2010)

models is unavailable. Example applications utilizing AnyLogic for spatial agent-
based modelling include: Makarov et al. (2008) who studied traffic jams in Moscow
and explored different scenarios for reducing such events either by road pricing or
new road building. Johnson and Sieber (2009) used AnyLogic to explore tourism in
Nova Scotia, while Pint et al. (2010) used AnyLogic to explore organised crime in
Rio’s favelas.

124 Summary

This chapter has reviewed the current capabilities of modelling within a GIS and
suggests that agent-based modellers interested in developing geospatial models
involving many (possibly tens of thousands) interacting agents with complex behav-
iours and interactions between themselves, and their environment should consider
either GIS-centric or modelling-centric integration. Moreover, we have discussed
considerations one should take when thinking about utilizing an agent-based simu-
lation/modelling system. Furthermore, we have outlined a selection of simulation/
modelling systems which can be used for the creation of geospatial agent-based
models along with providing examples of applications.
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Each of simulation/modelling systems discussed within this chapter can be
positioned within the continuum illustrated in Fig. 12.1 (power versus difficulty of
developing a model with a simulation/modelling system). However, the exact loca-
tion of each system is very subjective (i.e. dependant upon a modeller’s knowledge
and experience of ABM in general, and each simulation/modelling system in
particular). The information presented within this chapter is aimed at providing the
reader with a selection of useful criteria to assess the seven simulation/modelling
systems presented, allowing each system to be (approximately) located within this
continuum based on the readers own knowledge and experience. That is not to say
that the selection criteria cannot be utilized for other simulation/modelling systems
and once a candidate system(s) has been identified the reader will need to investi-
gate the potential suitable of the system(s) further.

However, it needs to be noted that while such tools exist, integrating GIS data for
ABM is still a difficult process (Gilbert 2007) and many considerations are needed
such as what data is needed, how should the data be utilised, how should agents
interact with the data, etc. Nevertheless, such systems lower the entry level needed
to create geospatial agent-based models and thus allowing a greater number of
social scientists to create geospatial agent-based models. One note of caution how-
ever is needed, that is there is still a computational challenge when it comes to the
creation of geospatial agent-based models with thousands of agents operating and
interacting with raster or vector features (see Kennedy et al. 2009 for a discussion)
but over time this should be reduced with increased computational power.
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Chapter 13
Space in Agent-Based Models

Kiril Stanilov

Abstract The chapter offers an overview of the issues related to the integration and
representation of space in agent-based models (ABMs), with a focus on those
models that can be considered spatially explicit. Key aspects of space in ABM are
highlighted, related to: the role of space as an attribute of agents and the environment;
as an interaction component; as a determinant of issues of scale; and as a tool for
communicating and validating model outcomes. The chapter reviews the issues and
challenges arising from the difficulties of integrating space in agent-based modeling.
It outlines the emerging trend towards improving the level of realism in representing
space, which can lead not only to an enhanced comprehension of model design and
outcomes, but to an enhanced theoretical and empirical grounding of the entire field
of agent-based modelling.

13.1 Introduction

One of the main characteristics of agent-based systems is that the interactions of the
modeled agents do not take place in a vacuum, but are situated within structures that
both condition agents’ behavior and are in turn influenced by it (Epstein and Axtell
1996). These interaction structures can be physical or social environments, or
networks that encode geographic or other feature-based differences (Riolo et al.
2001). Consequently, a key advantage of ABMs is their ability to integrate these two
components — agents and their environment — through systematic specification of
interdependencies and feedbacks (Parker et al. 2003).
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It should be noted, however, that traditionally the emphasis in agent-based
modeling has been clearly placed on the development of agents and their behavior
at the expense of less sophisticated representations of space and spatial relation-
ships (Brown et al. 2005). Many ABMs, in fact, consider spatial relationships as a
marginal issue, or at least treat space as a feature of the model that becomes relevant
only at the macro scale. Examples of such models include investigations of social
and cultural phenomena such as investment management, dynamics of labor mar-
kets, shifts in consumer behavior, or spread of technological innovations. In con-
trast, another string of ABMs, more tightly related to investigations of geographic
phenomena, considers space as an integral component of their system. These mod-
els, referred in the literature as spatially explicit ABMs, include a diverse group of
studies ranging from explorations of urban growth and natural resource manage-
ment to agricultural economics and archaeology. Commonly, these models try to
establish explicit links between environmental characteristics and agent behavior
(Benenson and Torrens 2004).

The discussion offered in this chapter on issues related to space and its rep-
resentation in ABMs is centered on those models that can be considered spa-
tially explicit. The review of the literature on which this paper is based is far
from balanced as it relies heavily on examples from the field of urban modeling.
This is due partially to the author’s background, but more importantly to the fact
that in urban modeling the consideration of space is inevitably explicit (Berger
et al. 2002). The proliferation of spatially explicit ABMs in the last 10 years is
particularly impressive in the area of land use analysis where such models have
become popular tools for understanding land-use systems (Polhill et al. 2001;
Deadman et al. 2004). Here ABMs are considered particularly well suited for
representing complex spatial interactions under heterogeneous conditions
(Parker et al. 2003).

The discussion of space offered on the following pages is structured into two
parts. The first one provides an overview of the general concepts of space and
its integration within agent-based modeling. The key aspects of space in ABM
are highlighted related to: the role of space as an attribute of agents and the
environment; as an interaction component; as a determinant of issues of scale;
and as a tool for communicating and validating model outcomes. A further dis-
cussion in this section addresses the various ways in which space is represented
in the ABM world. The second part of the chapter reviews the issues and chal-
lenges arising from the difficulties of integrating space in agent-based modeling.
The most promising venues towards a better representation of space are out-
lined, reviewing the shift from cell-based to object-based applications. The
chapter concludes by sketching the contours of an emerging trend aimed to
move the theory and practice of ABM beyond the grid-vs-vector debate, offering
some new prospects for the integration of space within agent-based modeling
frameworks.
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13.2 The Concept of Space in ABM

13.2.1 The Integration of Space in Modeling Frameworks

This section outlines several aspects of space critical for its integration within spa-
tially explicit agent-based modeling systems.

13.2.1.1 Space as an Attribute

An apparent role of space in ABMs that try to incorporate the significance of spatial
phenomena in the simulation of social processes is the function of space as an attri-
bute of a model’s components — both of the environment and of the agents that oper-
ate within it.

The spatial characteristics of the environment could be represented with various
levels of detail (this topic is discussed in more detail later in this section), but at a
minimum, the model environment could be described as a non-differentiated plane
with geographic or relative coordinates on which the actions of the agents take
place. In such models the environment influences the agents’ interactions simply by
measures of distance and direction (Castle and Crooks 2006). In models that repre-
sent the physical characteristics of the environment with a greater level of sophisti-
cation, the agents respond to attributes of the landscape such as physical barriers,
soil types, infrastructure, or aesthetic qualities by adopting their behavior to the
features of the modeled environment.

Space as a characteristic of agents in ABMs is a more flexible concept. The
agents could be spatially explicit or they could be implicit (meaning that their
precise spatial location is not essential for the operation of the model). In addition,
spatially explicit agents could be static (tied to a specific location in the environ-
ment) or dynamically situated (free to move within the environment either with or
without predefined constraints).

13.2.1.2 Types of Space-Agent Interactions

Due to the wide variety of details with which both the environment and the agents
within an ABM could be specified, the nature of the interactions between them could
be rather complex. First, it is possible for an agent to be associated with only one
spatial feature in a one-to-one relationship. A typical example of such a relationship
is a household and its place of habitation in a simple residential location model or a
local government and its jurisdiction in an urban growth management simulation. An
agent, however, could be associated with more than one spatial feature in a one-to-many
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relationship. Examples of such cases are models in which households are linked with
their places of residence, work, shopping, entertainment, etc.

In addition to the level of connectivity, there are two ways in which environment-
agent interactions could be constructed: as a simple unidirectional relationship in
which the environment is affected by the behavior of the agents (or vice versa), or
as a multidirectional cycle of interactions and feedbacks between the two. Examples
of models integrating space in a simple one-way causal environment-agent relation-
ship are relatively few. In such models the environment is the only factor governing
agent behavior. The agents adopt strategies that allow them to react to a heteroge-
neous environment given their goals and actions (Parker et al. 2003). Alternatively,
the causal relationship could be pointed the other way by modeling changes in the
environment as a result of the agents’ behavior. Examples here include studies of
deforestation due to agricultural practices, fragmentation of the natural habitat due
to urban sprawl, etc.

In reality, the interactions between humans and their environment are always
more complex, never confined to a single unidirectional link — a fact which is
recognized by the majority of agent based modelers. A good example of the com-
plexity of environment-agent interaction is urban gentrification, where a chain of
events dynamically transforms both the actors and the environment. In this pro-
cess, agents are drawn to urban areas due to specific locational or environmental
characteristics; they engage in interactions with other actors in the local property
market thus changing its dynamics; as a result the environment is changing; this
in turn draws new actors to the scene affecting further the dynamics of the pro-
cess. Another good example of modeling the complexity of environment-agent
interactions is the SLUCE model of residential location at the urban fringe (Rand
et al. 2002; Brown et al. 2005). Here residents make decisions about where to
locate based on a combination of environmental factors including density, dis-
tance to service centers, and the aesthetic quality of the landscape. New service
centers locate near recent residential development, influencing, in turn, the
behavior of future homebuyers. A main challenge for the models exploring the
complexity of environment-agent linkages is to separate the effects of endogenous
interactions from spatially correlated exogenous landscape features (Irwin and
Bockstael 2002).

13.2.1.3 Space and Scale

Scale is another important aspect of the task of integrating space in ABM frame-
works. The issues of scale become relevant in the construction of the model in
two distinct ways linked to the determination of the spatial extent and the spatial
resolution of the data used (Goodchild 2001). First, in terms of the spatial extent
of the modeled area, studies have demonstrated that changes in spatial extent
have a significant impact on the outcomes of spatial analysis (Saura and Millan
2001). This fact highlights the need to capture processes at the scale at which
they operate. This principle of scale-dependency is also particularly important
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in determining the level of spatial resolution, or the level of detail captured in
the model (Lam and Quattrochi 1992). A coarse granularity of the data tends to
iron out both spatial heterogeneity and spatial dynamics (Batty 2005). The
issues of spatial aggregation are particularly relevant for ABMs that try to cap-
ture emergent behavior (Goodchild 2001). The “modifiable areal unit problem”
(MAUP) and associated issues of ecological fallacy (Openshaw 1983) loom
large in all models based on assumptions that larger units are representative of
smaller units. While this does not seem to be an issue with the specification of
agents, which is commonly done at the level of individuals and households,
finding the proper level of representation of environmental characteristics and
processes presents significant methodological difficulties. The use of a very fine
data resolution, on the other hand, has been found to produce patterns that are
overly fragmented (Menard and Marceau 2005; Chen and Mynett 2003). Finally,
making the integration of space in ABM an even more challenging task, is the
recognition of the fact that an individual agent is likely influenced by, and in
turn influences, processes occurring at multiple spatial scales (Batty 2005;
Parker et al. 2003).

The consideration of scale also becomes pertinent in ABM through the defini-
tion of neighborhoods of interaction. In the classic cellular automata (CA) concep-
tualizations on which the majority of ABM environments are based, neighborhoods
are defined on the principle of spatial proximity. Here the magnitude of interaction
is described as a distance decay function following Tobler’s law, which postulates
that near things are more related than distant things (Tobler 1970). While the
size of the neighborhoods in many CA and ABMs is predetermined by a fixed
(and in many cases somewhat arbitrary) radius, a relatively small number of studies
have carried out systematic