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  Abstract   This chapter guides the reader to the material in this book. It begins by 
outlining the meaning and rationale for agent-based models/modelling (ABM), 
focusing on their history, how they evolved and how they sit within the broader 
context of modelling and simulation for geographical systems. Three themes which 
we see essential to ABM are then outlined, namely the question of detail versus 
model and data parsimony of which ABM represents the former, questions of model 
validation that fl ow from this, and lastly issues about the extent to which ABM is a 
generic or specifi c style in terms of applications. We examine the essence of such 
models in terms of the way behaviour is modelled using various rules, and then we 
discuss technical issues such as computation, visualization, error, and schemes 
for model design. All this sets the context for the various chapters that follow. We 
conclude by explaining briefl y what is contained in each chapter and by guiding 
the reader in how best to use this book.      
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    Chapter 1   
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    1.1   A Little Bit of History 

 It has been over 50 years since the fi rst attempts were made to explain geographical 
systems using formal tools from mathematics. In the 1950s spurred on by rapid 
developments in digital computation that were immediately grasped as a new 
media in which to conduct virtual ‘experiments’ on human and physical systems, 
geographical theory underwent a radical shift in emphasis. Systems were articulated 
using ideas from physics and biology which found expression in a wide array of 
mathematical formalisms widely exploiting the role of analogy and metaphors 
involving representations and processes in the physical and natural sciences. Yet 
from the beginning, there was an assumption, usually implicit, that for geographical 
theory to be meaningful, it must deal with aggregates, ironing out the noise and 
much of the variation that was associated with spatial systems. Particularly in human 
geography, there was a tacit assumption that populations needed to be represented 
as aggregates whose attributes were averaged over different variational characteris-
tics in such a way that homogeneity might be ascribed to their behaviour in space 
and time. This was not pursued in the mistaken belief that populations were actually 
homogeneous but in the interests of simplicity and parsimony, the search for such 
regularity appeared to be the correct way forward. 

 The experience 50 years on has been salutary. It has been exceptionally hard to 
fi nd theories and models that are robust enough to withstand the sort of testing and 
validation that is associated with the harder sciences, particularly with classical 
physics. In the effort to simplify and distil the essence of geographical systems and 
their processes into the same kinds of simple but powerful laws that characterize the 
physical world, formal theory has tended to reduce geography to the point where 
much of the richness and variety that we associate with the world is defi ned away, 
often leaving simplistic notions that are both obvious and banal. Those developing 
such models are well aware of these limits through the tortuous process that has 
beset the fi eld during these years. Yet in all of this, slowly but surely the idea that 
we need to represent geographical systems at a much more elemental level has taken 
hold. There has always been resistance to the idea that we should search for some 
atomic element or unit of representation that characterizes the geography of a place, 
and the social sciences in particular have been reluctant to consider the notion that 
models of their systems should be postulated and tested at the individual level. But 
as progress with aggregate models of homogenous populations has faltered, there 
has been a perceptible shift from aggregate to disaggregate, from populations to 
individuals, from macro to micro. In this, the notion of an ‘agent’ has become the 
focus of this new quest. 

 If you defi ne a social system as a collection of agents, then immediately you tend 
to consider agents as individuals in a wider population, individuals that act purpo-
sively, that learn and innovate, thus introducing ideas that are hard to consider using 
more aggregate styles of representation. Agents generate actions that occur in time as 
well as space, that infl uence their wider environments and that cooperate as well as 
confl ict with one another over the use of space. Defi ning many agents in a population 
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immediately gives some sense of their diversity, and in this way, any heterogeneity 
in the system is directly picked up. It is easy to see why the idea of agent-based 
modelling (ABM) 1  has become so popular in the last two decades for it begets a 
style of modelling that has the capability of refl ecting the richness of the world in 
a way that appears essential to any good explanation of how spatial structures such 
as cities, regions, the global system itself as well as all its physical components 
evolve and change. The power of the agent paradigm is consistent too with the fact 
that as our world has become more complex, largely due to increasing wealth and 
innovation in technology; data about ourselves is becoming more available, particu-
larly through online sources. Ways of handling such data using ever powerful methods 
of computation are going hand in hand with these developments, all leading to 
the notion that simulating worlds composed of agents rather than their aggregates 
might now represent a feasible and productive way forward. 

 We consider that a book which synthesizes our collective wisdom on agent-based 
models in geographical systems is both opportune and timely; opportune because 
there is much to say about how we are beginning to build agent-based models and 
how geography imposes its own requirements on such developments, timely because 
so far there are few, if any, reviews of the state-of-the-art in this area, and those 
wishing to enter and contribute to the fi eld require as much source material as we 
can muster. Here we have collected together a series of contributions that cover a 
very wide range of issues and approaches to agent-based modelling, beginning with 
a review of modelling styles and types that inform the fi eld, moving then to more 
conceptual approaches, and then to methods and techniques that are involved in 
designing and constructing such models. These form the fi rst three parts of the book 
and thence prepare the reader for a multitude of applications which we organize in 
terms of the scale of the agent – micro or macro. These form the last two parts which 
to an extent also correspond to spatial scale. They constitute about half the contribu-
tions contained herein, thus balancing theory, method and technique evenly with 
applications.  

    1.2   Essential Themes 

 There are many themes that we will identify in this opening chapter to which we will 
alert readers. In no sense do we consider these to be exhaustive but there are three 
we consider essential to an appreciation of all that follows: these involve the dra-
matic differences between the style of modelling which has dominated geographical 
theory and applications in the past from those which we consider now form the cut-
ting edge. It is quite clear that ABMs represent geographical systems at a level of 
richness and variety that is an order of magnitude greater than their aggregate 
precursors. ABMs usually have many more components – where we think of these 

   1   ABM is also taken to mean Agent-Based Model (s) as well as Modelling.  
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as agents themselves – than their aggregates, and this means that their attributes are 
specifi ed at a level of detail that is associated with each individual agent. Interactions 
between agents are usually involved and thus the level of representation grows 
exponentially as the number of agents increases. Even if the number of agents is 
quite limited, often in cases where ABMs are used for pedagogic experiments, then 
the level of detail for each agent and their interaction is still substantial in comparison 
with their aggregates. In short, ABMs break the basic rule of science that theory 
must be parsimonious – as simple as possible – and that a theory or model is better 
than any other if it performs equally well but is simpler; this is Occam’s razor. In 
fact, the argument for ABMs is quite the opposite. For many systems, we have 
plausible but non-testable hypotheses about how we think the system works, and if 
we exclude these simply because we cannot test them against data, then we are guilty 
of distorting our theory simply due to the expediency of not being able to test it using 
classical means: against independent data. This issue is of enormous signifi cance 
for it throws into doubt the whole process of developing and testing models of 
geographical systems, indeed of testing and validating or falsifying any theory. 

 The conventional process of theory development in science begins with observa-
tion, proceeds to an induction of some theory from that data, and then proposes 
some hypothesis that is testable against some other independent set of observations, 
usually in a different time and a different place. This is the classic process of experi-
mentation where the experiment is repeated and validated (or not), the theory then 
being refi ned (or rejected) in entirely different situations by independent scientists. 
In this book, most authors who are applying ABM to real situations do assume that 
their models must be validated against real data. Most however are also uncomfort-
able with this process for usually their models are only testable to a degree and 
much of what is specifi ed in the model associated with the behaviours of agents is 
simply non testable in that data on processes, decisions and actions is not available 
and/or observable. Outcomes of agent behaviours may be testable but the processes 
involving such behaviour are not. 

 Accordingly ABM has seen the process of model testing being elaborated in much 
more detail than traditionally associated with aggregate modelling. In particular, tests 
for plausibility, experiments with running models under many different sets of initial 
conditions, sensitivity testing of model parameters as well as traditional algorithms 
used to maximize the goodness of fi t have come to dominate the process. Added to 
this, the idea that models which are richer by an order of magnitude than their coun-
terparts should be verifi ed as well as validated against data has become signifi cant. 
This means that models should be run to test whether they are behaving as their 
originators intended and this has little or nothing to do with how well they might 
reproduce observable data. Surrounding this discussion is the notion too that models 
are no longer built for prediction per se but as much to inform general scientifi c inquiry 
as well as any debate between stakeholders over what the future might hold (Epstein 
 2008  ) . In short, these kinds of model are as much to structure debate and dialogue as 
to provide measures of how the future might turn out. This is a controversial issue that 
is increasingly important to social science as well as science itself as the classical 
canons of scientifi c inquiry melt away into the vestiges of history. 
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 There is a third theme that relates to ABM and marks a major difference from the 
past. Just as the term model has come to embrace theory, the term computation has 
come to embrace model. Since digital computers became the environment in which 
this type of modelling is possible, methods of computation have come to infl uence 
the construction of models as much as theory has done. In this sense, modelling has 
become more generic rather than specifi c with generalized approaches to modelling 
for many different types of system being developed during the last 30 years. Initially 
models of geographical systems were tied very closely to theory and each individual 
model contained a suffi cient amount of its originator’s personal knowledge of the 
problem to be quite distinct in terms of its computation. Of course as soon as 
computer programs of any scope and size became available for specifi c classes of 
model, there was a demand to generalize the program to any application. In fact, the 
very act of model development presupposes that simulations would emerge which 
would be generalizable to different situations. Indeed a true test of any model has 
always been predicated on the basis of taking the model elsewhere and evaluating 
its performance on independent data (Lowry  1965  ) . In this sense, computation 
itself needs to be generic. 

 The experience however has been somewhat different from this notion that good 
models are entirely generalizable for it would appear that only the simplest of 
models meet this criterion, and when they do, they tend to be of pedagogic value 
only. Most spatial models tend to be developed for very specifi c situations whose 
data and context is suffi ciently different from any other for the model to be only 
usable in any immediate sense for the problem at hand. Moreover in the past, models 
have tended to be closer to theory than to generic computation but as more experi-
ence has been gained with modelling, generic approaches have been fashioned. In 
geographical modelling, the spatial dimension has been so strong as to inhibit the 
development of generic modelling until quite recently but there are now suffi ciently 
different frameworks of a generic nature available for model-builders to consider 
adopting a framework fi rst and then adapting this to the particular theory and problem 
that defi ne the simulation that is required, rather than the other way around. 

 Agent-based modelling is one of the most important generic modelling frame-
works to have been developed to date. It has emerged largely due to the convergence 
of object-oriented programming ideas in computer science with the need to represent 
the heterogeneity involved in many kinds of physical and human system at much 
greater levels of detail, issues that we have already noted in some detail above. 
Although geographical models were best represented by specifi c land use transporta-
tion interaction (LUTI) models tailored very specifi cally to urban theories based on 
urban economics and social physics, as soon as formal modelling began, generic 
approaches appeared, as for example in systems dynamics which was based on 
general ideas about formulating models as partial difference equations subject to 
capacity constraints. These, as Batty  (  2012  )  shows in the next chapter, did not fi nd 
much favour in geographical analysis largely because they were hard to adapt to 
spatial systems but other approaches based on econometrics for example, have 
formed the basis of some spatial models, although this style of modelling is specifi c 
to economic analysis, notwithstanding its generalization to mainstream statistical 
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modelling. As we recount in the chapters that follow, cellular automata (CA) modelling 
developed before ABM but the software used to implement these styles of models 
is quite elementary. Although some generic modelling packages such as SLEUTH 
and METRONAMICA have been developed (see Iltanen  2012  ) , generic CA pack-
ages for geographical systems are not widely available. Microsimulation models 
are even more specifi c, notwithstanding their almost tool-like focus, and generic 
software has not appeared, again perhaps due to their focus in our fi eld on space 
which is hard to embrace. 

 It may even be worth making a distinction between generic or specifi c models 
with respect to the way they are formulated and the software and tools which tend 
to be used in different model types. The problem is that in some senses tools such 
as those that exist in econometrics and statistics can be elevated to entire model 
systems while model approaches like microsimulation often feature as tools in 
generating data. In short, microsimulation can be used in spatial interaction models 
as can agent-based approaches. In such cases, the model in its traditional format is 
augmented by the addition of agents or a decomposition using synthetic data 
analysis techniques which are core to microsimulation. For example, in some of the 
social physics models that are examined towards the end of the book such as those 
involving rank size (Gulden and Hammond  2012  ) , spatial interaction (Dearden and 
Wilson  2012  )  and population change (Pumain  2012  ) , agent-based approaches are 
used in their implementation but their structure is one dictated by the original model 
framework not by ABM itself. Even more confusing is the fact that model systems 
merge into one another and this is very clear in the case of CA and ABM, but as we 
will see, microsimulation models can transition into ABM as shown in Wu and 
Birkin  (  2012  ) . In fact Torrens  (  2012  )  augments CA and ABM with GIS and calls 
these geographical automata systems (GAS). 

 Only ABM has developed very general packages which can be applied to a wide 
array of systems and problems. For example, the packages that are popular range 
from sophisticated programming systems such as SWARM, plug-in Java-based 
environments like Repast and MASON, and simpler scripting languages like 
NetLogo (and its originator StarLogo). A good review of these tools is given by 
Crooks and Castle  (  2012  )  where they show that to an extent these packages encap-
sulate CA models. In several of the contributions that follow, CA represent the envi-
ronment in which agents behave in spatial terms. The other feature that is important 
when generic modelling packages are used is that their generalizability is always 
limited in some way. This can also force the modelling effort to embrace tools and 
techniques that are not suited to the system in hand and if certain functions are 
absent, it can lead to models that lack certain key components that more specialized 
software will enable. In fact, it is now so easy to customize many of these packages 
and to add other software as plug-ins using standard methods of linkage that most 
generic software is capable of being easily extended to deal with system specifi cs. 
However the downside of all this effort is that models which are the most effective 
tend to be those that involve considerable programming effort. We have not yet 
reached and may never do so the point where model users can specify a model for a 
problem type and simply assume that it is computable from generic software.  
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    1.3   Structural Rules, Behaviour, and Dynamics in ABM 

 Agents almost by defi nition are purposive. They are endowed with behaviours that 
are usually proscribed in a series of rules that are activated under different conditions. 
This is in the manner of stimulus and response (or push and pull, or some such 
reactive logic), and in this sense, agents always engender change. Dynamics which 
may not be explicit but is almost invariably implicitly temporal, thus comes onto the 
agenda and in this sense, ABM deals with dynamic modelling. This is in stark 
contrast to LUTI models for example which are comparatively static for the most 
part or microsimulation models which as Birkin and Wu  (  2012  )  note, can be either 
static or dynamic. A particularly simple kind of ABM is in fact a CA where the 
transition from one state of a cell to another state– in each geographic area – is based 
on a set of rules that might be seen as representing how the state of the cell behaves 
as all the cells around it change. This somewhat anthropomorphic interpretation of 
CA might be appropriate if the cell contains an individual who is fi xed in location but 
whose attributes defi ne their state which is continually changing. A good example of 
this is the simplest model of segregation due to Schelling  (  1978  )  where the cell state 
is an individual with one view or another, who may then change their view dependent 
on the number of surrounding cells with individuals holding similar or different views. 
Here the cell is the agent; the agent does not move in space but does move in terms of 
their opinion. Indeed CA models are excellent examples of structures where many 
rules of a relatively simple nature in and of themselves combine to generate extremely 
complex behaviours when operated on a large lattice of cells (Batty  2005  ) . 

 Agent behaviours may be reactive (sometimes called passive) or proactive 
(anticipatory). Invariably such behaviours are engendered by the agents in question 
scanning their environment in which other agents exist. More complicated forms 
of ABM involve different classes of agent, with agents being a mixture of types 
along the spectrum from reactive to proactive. Agents may be any distinct object in 
the system that is involved in changes of state, ranging from actual individuals in 
human systems to elements of the built environment. Moreover unlike agent types 
can interact with one another. In fact, in object-orientated programming, any element 
in the computation can be an object which is endowed with properties. In particular 
in visual programming, all the various elements of the graphical user interface are 
agents or objects. This ability to defi ne different types of objects gives ABM its 
power but it also defi nes its limits in that it is hard to see a completely general 
system where any kind of agent might be defi ned in terms of generic properties and 
attributes of any other. 

 Yet despite these constraints, it is possible to see very wide ranges of problem 
being simulated using ABM. The more specifi c involve literal interpretations of 
agents as individuals in the human population such as those used in pedestrian and 
crowd modelling, the best examples here being those discussed by Patel and Hudson-
Smith  (  2012  )  and Johansson and Kretz  (  2012  ) . At the other extreme, ABM can be 
used to simulate interactions between groups of humans or even groups of policies 
that do not have a direct association with specifi c individuals as, for example, in a 
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whole range of land cover models such as those used in developing countries where 
land and aid are key to development. In all these cases, at the heart of ABM lie 
processes of change which in our context have an impact on the geography of the 
system in question. These rules embody the key elements of the processes involved 
refl ecting the way agents operate which lie at the core of the model. Agents interact 
with one another and with their environment, changing each other and their environ-
ment and in this sense, ABM is able to deal with open systems in a way that more 
specifi c modelling approaches cannot. These processes cannot be prescribed outside 
the modelling context except to say that they refl ect a wide range of techniques. 
Simple rules of logic as in CA models are rather standard but many criteria are also 
built on algebraic functions that in geographical systems often relate time and space, 
action at a distance and across time. In fact the many contributions in this book 
show this variety in the way model processes are articulated, ranging from the stan-
dard algebraic formulations of micro economic theory (see Magliocca  2012  )  all the 
way to the rule-based logics used by Liu and Feng  (  2012  )  in their extension of CA 
modelling for urban development. 

 There are three elements related to dynamics and behaviour that are worth 
fl agging as these appear many times in the various contributions that follow. First 
there is the question of cognition that relates to how agents perceive change in their 
wider environment and how they learn. Learning is often simulated through simple 
exposure to events over time and by watching what the majority do. In ABM, 
navigation and way fi nding in geographical space tend to be the most obvious 
elements in which the cognitive apparatus of the agent is utilized. There is little 
formal theory about how agents might best learn as the rule-based structure of many 
ABMs mean that such behaviours are defi ned in ad hoc empirical ways that are 
often tested using trial and error experiments. Second there is the question of scale. 
Behaviours occur across many scales but in their most elemental, these lie at the 
fi nest scales where the individual is located. Various ABMs and certainly CA models 
assume some principles of self similarity which operate across spatial scales and 
lead to the emergence of patterns at higher levels consistent with fractal structure. 
This is central to complexity theory. As ABMs are applied to coarser spatial scales, 
models change in focus and often even in type as the agent paradigm weakens 
although it is more likely that the way the model operates and the processes that are 
defi ned change rather than the framework itself. ABMs become less predictive and 
more speculative as scale changes from fi ner to coarser, from small scale to large. 

 The last point worth noting is that ABMs deal almost by defi nition with interac-
tions, with their environment but also with inter-agent links. This introduces directly 
the concept of networks which appear implicitly in many of the contributions pre-
sented in this book. In fact, we do not emphasize networks very strongly in this 
book and there are no specifi c contributions apart from those dealing with move-
ment of pedestrians and more aggregate populations. In a sense, this mirrors the fact 
that only quite recently have researchers in the geographical sciences begun to grap-
ple with networks (although these have been implicit in spatial interaction and LUTI 
models for many years). One of the main developments in network science is their 
linkage with epidemiological models where propagations of rumour, innovation, 
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disease, indeed any process that spreads through space and time can be cast in an 
ABM framework, as illustrated in Simoes  (  2012  ) . We will pick such issues up in our 
conclusions when we anticipate the future of this fi eld where we see agents moving 
across networks as being central to new applications.  

    1.4   Computation, Calibration, Error and Uncertainty 

 Before we launch into a brief guide to the contributions that follow, we will address a 
series of more technical questions that pervade any and every approach to modelling. 
In principle, ABMs can generate enormous data requirements in that the assumption 
is that every agent in a population that in the past was treated in aggregate (or not 
at all), must be represented explicitly in some computable form. This can give rise 
to massively parallel computation where agents are farmed out for individual 
processing on multiple processors but it also leads to simplifi cations which involve 
aggregation into super-individuals in the manner suggested by Parry and Bithell 
 (  2012  ) . Moreover computation is massively increased because each agent has to be 
tracked and in situations where there are thousands of such agents, it is usually 
necessary to visualize their behaviours so some sense of the order and pattern gener-
ated in their simulation can be evaluated. We have not yet mentioned visualization but 
in these new generations of model, both CA and ABM, visualization has become 
essential based on links to GIS, CAD and other multimedia systems as noted by Patel 
and Hudson-Smith  (  2012  ) . 

 Data requirements notwithstanding, most ABM so far, with the exception of 
large transport models such as TRANSIMS (Casti  1997  )  and MATSIMS (Rieser 
et al.  2007  ) , do not appear to use intensive computational facilities or generate mas-
sive demands for parallel or related high performance computing. This is partly 
because many of the processes that characterise ABM cannot be matched with real 
world data and thus are never testable, despite the fact that most ABM have multiple 
parameter sets that make a complete enumeration of their possible solutions impos-
sible. There are proposals to build extensive global models of entire populations 
such as that suggested by Epstein (PACER  2011  )  where some 6.5 billion individuals 
are being simulated with respect to their abilities and exposures to generate global 
pandemics. Visualization is essential for such models and this can set up severe 
computational demands. However most ABMs run in desktop environments and 
tend to be more pedagogic in focus due to the fact that once the number of assump-
tions which are non-testable yet plausible begins to dominate model structure, the 
models themselves become more like devices on which to develop thought experi-
ments, to inform debate rather than to predict actual futures. 

 We have already noted the problem of calibration which has been extended 
dramatically during the last two decades to embrace not only validation and fi ne 
tuning through calibration but extensive sensitivity testing, checks for plausibility, 
verifi ability of the model’s implementation, and various aggregation checks against 
different layers of data. Error and uncertainty are key to models that have many 
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processes and multiple assumptions for a good model might minimize error and 
reduce uncertainty as much as it might optimize its goodness of fi t against actual 
data. In this sense, ABMs cover a wider range of issues in terms of their validation 
than other more parsimonious models for there are many issues that need to be 
judged qualitatively and have no equivalent in quantitative evaluation. Evans  (  2012  )  
outlines the key issues involved in exploring ABM in terms of error and uncertainty 
defi ning a cornucopia of possible sources of error, noting contrasts between accuracy 
and precision and defi ning issues involving risk and uncertainty as these come to 
characterize actual models and their outputs. In one sense, all the models introduced 
here address these issues but few do so explicitly, as much because the line needs to 
be drawn between what is possible, what is worthwhile and what is feasible in terms 
of the level of resources related to the modelling effort. 

 One last issue involves the actual process of model design. Many chapters that 
follow deal with different approaches to model construction but it is Grimm and 
Railsback  (  2012  )  who address the issue directly in outlining a procedural approach 
to evaluating models and this is immediately applicable to the design of a good 
ABM. They review ABM using a structure which provides Overview (O), Design 
(D), and Details (D) which they term ODD. From this structure, they are able to 
derive design patterns that enable model-builders to produce a scheme for Pattern 
Oriented Modeling (POM). This guides the designer in developing good ABMs 
based on a considered view of how entities, states, and processes need to be incor-
porated into the best model possible. This scheme is gaining ground in this fi eld and 
others writing in this book are beginning to use it.  

    1.5   The Structure and Rationale for What Follows 

 We have divided the book into two main sections which in turn are divided in parts. 
In the fi rst half of the book which is organized in three parts, we review ABM in Part 
1 with respect to other related but different approaches, then in Part 2 in terms of 
their conceptual structure, and lastly in Part 3 in terms of the tools and techniques 
used to operationalize such models. In the second half of the book, we deal with 
model applications and divide these into two. Part 4 deals with micro models which 
are the true preserve of ABM while Part 5 deals with macro models, largely how 
macro patterns of spatial development and interaction often structured around other 
model frameworks, are implemented using ABM. As we noted above, the division 
into micro and macro applications tends to be one of sectoral or topical aggregation 
rather than spatial scale although there is some correlation between them. 

 In Part 1, Batty  (  2012  )  begins with an overview of models in general attempting 
to compare ABM and CA with other approaches such as LUTI, microsimulation, 
and systems dynamics models. This is followed by Birkin and Wu’s  (  2012  )  more 
detailed review of microsimulation models which are close in spirit if not in 
structure to ABM, while Iltanen  (  2012  )  attempts the same review for CA models. 
In this sense, we establish that the wider class of ABM dealt with in this book 
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includes microsimulation and CA which in one sense are extreme variants of this 
general domain. This part is concluded with a survey of ABM itself by Crooks 
and Heppenstall  (  2012  )  who examine the history, scope and focus of the fi eld so 
far, noting the correspondence between all three model types: CA, microsimulation, 
and ABM. 

 Part 2 deals with more conceptual issues. O’Sullivan et al.  (  2012  )  provide a 
somewhat oblique perspective on ABM, explaining a little about how ABMs actually 
work but also cautioning the reader to identify conditions under which this style of 
modelling is most appropriate. Manson et al.  (  2012  )  take this further when they 
relate ABM to the wider domain of the complexity sciences, arguing that this is one 
of the main tools to simulate systems which operate from the bottom up and generate 
emergent patterns at coarser spatial and more aggregate scales. Abdou et al.  (  2012  )  
then provide a blow by blow account of how to design and build an ABM. They set 
this context by exploring two well known models – Sugarscape which is the spatial 
ABM developed by Epstein and Axtell  (  1996  )  and Schelling’s  (  1978  )  model of resi-
dential segregation both of which illustrate how emergence occurs in such systems. 
But they reserve their key example to the construction of car-following models that 
generate traffi c jams of the classic kind that are pictured using what traffi c engineers 
have for many years referred to as the ‘fundamental diagram’ – the relationships 
between speed and fl ow, which in turn shows how as fl ow increases so does speed 
only to level off after a fl ow threshold has been reached and then decline when 
the traffi c jams: another example of an emergent phenomenon. Kennedy  (  2012  )  
provides a useful exploration of cognition in ABM introducing some key issues 
involving the simulation of behaviour and this is followed by Ngo and See’s  (  2012  )  
discussion of methods of calibrating and validating an ABM which are far more 
detailed and inquisitive than methods used for traditionally more macro, aggregative 
and parsimonious models. This part is concluded by Alam et al.  (  2012  )  who broach 
the question of networks in ABM, reviewing issues of interaction, which involve 
specifying neighbourhood sizes, segregation rules and the way ideas and diseases 
propagate. 

 In Part 3, Crooks and Castle  (  2012  )  begin with a detailed review of ABM in 
terms of its software and the generic packages that have been developed to imple-
ment a range of model types. They conclude that space is not that well represented 
by such models, although GIS can now be linked to most of these packages. Stanilov 
 (  2012  )  then presents a more refl ective essay on how space is incorporated in CA and 
ABM and this is followed by Parry and Bithell’s  (  2012  )  chapter on computational 
issues that they discuss through the medium of model scaling which is akin to aggre-
gation which preserves the role of the agent. Evans  (  2012  )  then deals with error and 
uncertainty and Wu and Birkin  (  2012  )  show how microsimulation can be augmented 
by ABM, showing exactly how these two frameworks are consistent and of course 
complementary to one another. The last two chapters which conclude this part and 
the fi rst half of the book are those by Grimm and Railsback  (  2012  )  who introduce 
their ODD framework noted above and by Patel and Hudson-Smith  (  2012  )  who deal 
with models of crowding which use both macro and microscopic simulation but 
which illustrate quite clearly the need for good visualization in this fi eld. 
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 The second half of the book deals with applications which demonstrate the 
concepts, principles, and techniques that are dealt with in Parts 1–3. Part 4 deals with 
micro ABMs which cover crime, pedestrian movement, educational demand and 
supply, health, housing choice and land. These are all sectors that can be described in 
fi ne spatial detail and where populations are disaggregated to the level where indi-
viduals are explicitly represented in terms of their spatial behaviours. Malleson  (  2012  )  
begins with his model of burglary that involves modelling how burglars select resi-
dential homes to rob and learn from the experience. Mobile crime is a key feature of 
these models. Torrens  (  2012  )  then shows how GIS can be added to ABM in his 
models of pedestrian movement while Johansson and Kretz  (  2012  )  provide a detailed 
review of the various models involved. Rand  (  2012  )  explores how micro and macro 
ABMs fuse into one another while Harland and Heppenstall  (  2012  )  and Smith  (  2012  )  
outline how the education and health sectors can be simulated using the notion of 
agents being matched and allocated to school and health facilities. Jordan et al. 
 (  2012  )  examine diversity in housing markets using ABMs while Parker et al.  (  2012  )  
explore how land markets can be modelled in the context of residential land use 
changes, specifi cally urban sprawl. Magliocca  (  2012  )  concludes this section with a 
foray into how a housing market model can be developed using ABM, an example 
of where urban economic theory provides the overarching structure which can be 
implemented by defi ning individuals engaged in demand and supply as agents. 

 In Part 5, the focus shifts to macro models, which are both spatially and sectorally 
orientated to aggregates but with these aggregates being applicable to space and 
sectors not the individual agents that populate them. Barros  (  2012  )  develops various 
ABMs of the peripherization growth process in Latin American cities using CA 
representations where the focus is on developing analogues of real growth patterns 
which manifest the sort of inequalities that characterize such cities. Simoes  (  2012  )  
develops a robust model of the spread of mumps in Portugal that is implemented using 
standard epidemiological models in a spatial and network context. Ngo et al.  (  2012  )  
show how land use and farming interests and policies in a Vietnamese village can be 
simulated using ABM and then Banos and Genre-Grandpierre  (  2012  )  explore a 
CA-ABM like model of idealized network systems with traffi c fl ow which, like 
Abdou, Hamill and Gilbert’s paper earlier in the book, mirrors how jams build up in 
spatial networks. Liu and Feng  (  2012  )  then develop an extended CA model of urban 
growth which is illustrative of how error and uncertainty can be incorporated into such 
models while Cabrera et al.  (  2012  )  examine how ABM lies at the basis of land cover 
models of agriculture in a developing countries context. The book is concluded with 
three papers that deal with traditional social physics models which can be implemented 
using ABM. First Gulden and Hammond  (  2012  )  show how a variant of a network 
model of cities linking to one another can be used to generate city size distributions that 
mirror familiar power laws. Dearden and Wilson  (  2012  )  implement their Boltzmann-
Lotka-Volterra models that link spatial interaction to constrained logistic growth by 
running the model through agents rather than aggregates. Finally Pumain  (  2012  )  
explores her SimPop model framework, which she and her colleagues have been devel-
oping for over a decade, showing how agent interactions and actions generate the 
distributions and sizes of cities that have existed in Europe from the thirtieth century.  
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    1.6   A Guide for the Reader 

 Many readers will be familiar with agent-based modelling to some degree and will 
wish to dip into the contributions that follow in an order that they will be able to 
determine from the titles and abstracts of the various chapters. But for those who are 
new to this fi eld, we have organized the contributions beginning with more general 
overviews of the fi eld, and then fi lling in more technical detail as we proceed. The 
fi rst three parts provide a reasonable primer on ABM for those who have not 
explored the fi eld before and the last two parts provide examples of applications to 
geographical systems. For those who wish to learn quickly about the fi eld, then the 
contributions in Part 1 provide overviews, in Chap.   2     of six related modelling styles 
and types of which ABM is one, in Chap.   3     of microsimulation and in Chap.   4     of 
CA that are those styles of model that are closest to ABM, and lastly in Chap.   5     of 
ABM itself. If readers then wish to concentrate on fi lling in more detail about ABM, 
we advise them to look at Chaps.   6    ,   7    ,   8    ,   12     and   17     which focus exclusively on 
ABM and how such models can be defi ned, constructed and implemented. The rest 
of the contributions in the fi rst three parts expand this overview to include related 
models and more technical details while Parts 4 and 5 deal with applications which 
are self explanatory. In no sense, do we as editors consider this set of contributions 
to be any kind of fi nished product. ABM is a work in progress and this represents as 
good a snapshot that we can currently assemble (in 2012) of this world as it is 
developing.      
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  Abstract   We develop a generic framework for comparing spatial models whose 
dynamics range from comparative static equilibrium structures to fully dynamic 
models. In the last 40 years, a variety of spatial models have been suggested. Until 
the mid 1980s, most models were static in structure and tended to embrace detailed 
mechanisms involving spatial economics and social physics. Typical examples were 
Land Use Transportation Interaction (LUTI) models that embraced theories of 
spatial interaction and discrete choice modelling. During this earlier period, the 
problems of making these models dynamic and more disaggregate was broached 
but progress was slow largely because of problems in collecting requisite data and 
problems of increasing the complexity of such models to the point where they could 
be properly validated in traditional ways. 20 years or more ago, new modelling 
approaches from very different sources came onto the horizon: in particular, dynamic 
models based in Cellular Automata (CA) which were largely physical in nature and 
Agent-Based Models (ABM) providing explicit behavioural processes that often 
rested alongside these automata. Systems Dynamics Models (SDM), Spatial 
Econometric Models (SEM) and Microsimulation Models (MM) all informed the 
debate. It is tempting to see these models as all being of different genera but here we 
attempt to see them as part of an integrated whole, introducing a framework for their 
elaboration and comparison. After the framework is introduced, we review these six 
model types and choose three – CA, ABM and LUTI models – that we then work 
up in more detail to illustrate these comparisons. We conclude with the conundrums 
and paradoxes that beset this fi eld.      
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    2.1   Antecedents: The Origins of Spatial Models 

 Digital computers appeared in the late 1940s largely as a result of developments in 
the logic of computing and the notion that large-scale numerical processing could 
be massively speeded up by reducing routine tasks to binary equivalents operating 
on equivalent electrical devices. Right from the beginning, scientifi c applications 
involved spatial as well as temporal problems and by the mid-1950s, rapid advances 
in digital computation led to computable problems in the human applications 
domain involving spatial systems such as cities and transportation. Mathematical 
theories of such spatial systems were slowly developing prior to the invention of 
the digital computer but there had been little focus on how such theories might be 
operationalised, tested through validation, and then used in forecasting. Digital 
computers were to provide the spark for such applications and in 1955, the fi rst 
models of traffi c fl ow were implemented in a digital environment in the Chicago 
Area Transportation Study (Plummer  2007  ) . 

 These fi rst models, unlike many if not most that have followed them, were 
specifi cally tailored to the problems in question and the way those problems were 
perceived. Transport fl ows were critical as the problems in question involved 
providing for new transport capacity, while land use location too was essential in 
a period of relatively rapid economic growth which involved the search for new 
locations for urban development. These early models were equilibrium-seeking 
rather than dynamic, aggregate at the level of populations involving spatial inter-
actions, and built on conceptions of the city articulated using ideas from urban 
economics and social physics. They are usually now referred to as Land Use 
Transportation Interaction (LUTI) models. From these early attempts, as computers 
and their software developed, new generations of computable spatial models have 
become more generic in that the software developed for general classes of model 
has become ever more signifi cant, thus elevating generic ideas about modelling 
through their software to a point where specifi c model types now tend to defer to 
generic modelling styles. In this chapter, indeed in this book, this notion of generic 
models and generic software is very much to the fore because agent-based models 
(ABM) and their close relatives cellular automata (CA) models represent classes 
and styles that are much wider in scope and applicability than the sorts of spatial 
systems to which they are applied. 

 Here we will outline as wide an array of spatial models as is possible in an 
integrated fashion, setting the scene for many of the more specifi c applications 
and developments in the chapters that follow. As it is rare in this fi eld to see highly 
standardised applications which barely differ from case to case, each model 
application tends to be tailored in some specifi c way to the problem and its context 
such that model styles and structures become mixed. However what we will do is 
identify six distinct styles of spatial model that cover most of this array beginning 
with the original social physics and urban economic models that kick-started the 
fi eld half a century ago. But before we introduce specifi c model types and show how 
these relate and evolve from one another, we will begin this review by examining 
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model structures, identifying the key characteristics and themes that dominate 
model development. We will fi rst focus on questions of abstraction and representa-
tion, noting the difference between the substantive components of any spatial model 
which we defi ne as its population in contrast to the environment with which it 
interacts. In one sense, all models can be so defi ned and this serves as a basis on which 
to characterise the way populations which provide the objects or components of the 
spatial system under question, interact with one another and with their environ-
ment through a series of key processes. We will examine issues of representing 
spatial and temporal scale, aggregation, and constraints, and then we will look at 
processes of change, feedback, and dynamics. Many of these features and themes 
merge into one another and to an extent, any such categorisation of the key charac-
teristics of spatial models is arbitrary. But these categories do enable us to sketch 
out the array of ideas that dominate the fi eld which appear time and again in this 
book. Once we have introduced these ideas to set the context, we will examine six 
model types beginning with the simplest cellular automata, defi ning agent-based 
models, noting econometric, systems dynamics and microsimulation all of which 
involve generic approaches, concluding with notions about specifi c models that 
contain their own styles and features such as those that were the fi rst to be developed 
in the land use transportation domain. To give focus to this review, we will then 
outline examples of CA, ABM and LUTI models in more detail, providing the 
reader with ideas about how such models are designed and used in practice.  

    2.2   Modelling as Computation: Abstraction 
and Representation 

 Half a century ago, the idea of a model was in its infancy. Scientifi c theory essentially 
was based on formal and systematic theories, often represented mathematically, 
whose testing was confi ned either to controlled experiments in the laboratory or to 
various categories of thought experiment. Computation changed all that. The idea 
that a scientifi c theory could then be translated into an intermediate form – called a 
‘model’ – represented a way of enabling controlled experiments to be carried out not 
on the actual system of interest but on a computable abstraction of that system. The 
term model quickly entered the lexicon and it is now widely used to describe any 
kind of experimental context in which the computer is used as the medium for its 
exploration and testing. In fact, the term is now used even more generally to refer to 
any kind of abstraction that represents an obvious ‘simplifi cation of the real thing’ 
and in this sense its meaning is no longer exclusively associated with computation 
(Lowry  1965 ; Batty  2007  ) . 

 When computer models were fi rst developed, the general assumption was that 
these were simply representations of the system on which testing would take place 
so that the theory on which the model was based could be tested against data. In 
general, it was assumed that the traditional canons of the scientifi c method in which 
theory was successively refi ned to withstand its falsifi cation and to engender greater 
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parsimony of explanation, would apply. Most spatial models from the 1950s onwards 
were predicated on the basis that their predictions would be tested against data taken 
from the system of interest and that the model would be tuned in such a way as to 
reproduce the system of interest within the computational environment in a way that 
was closest to the real thing. Goodness of fi t was the main means of validation while 
calibration of the parameter values ensured that the model might be tuned most 
effectively to the system in question. The quest originally was thus to fi nd some 
minimalist explanation for the system of interest in the belief that models should be 
as simple as possible while also generating predictions closest to our observations 
of the ‘true’ system. In fact, as in all science, this involves a trade-off. 

 Yet the complexity of human systems has meant that right from the fi rst applica-
tions, there was continued pressure to develop greater and greater detail – to disag-
gregate the model’s variables to the point where suffi cient heterogeneity of the system 
might be represented in a manner useful to those who sought to use the model to 
make predictions. There were limits on what computation could offer and data 
concerning social systems has always been a problem but as computers got more 
powerful and as the world moved to a point where computation became all pervasive, 
our ability to model in detail changed by an order of magnitude. As the world moved 
online, new and richer data sources are becoming ever more available and this 
computational power combined with access to new and different data, meant that 
what we could model and represent began to change. Moreover, the key challenge 
in social systems is to know how much detail to represent and it would appear that 
the sorts of average behaviour that are characteristic of physical systems are rather 
different in the social world. Heterogeneity and hence greater detail is what seems 
to be required so that ever more plausible models can be constructed. 

 At the same time, as bigger and richer models have been built, their software has 
become more generic with general purpose simulation processes being articulated 
in software that can be adapted to many different types of problem. All this is fast 
leading to signifi cant doubt that the scientifi c method taken from the classical 
traditions of physics has the same relevance to the social world as it does in the 
physical. Indeed even in science itself there is substantial questioning of the traditional 
canons of scientifi c inquiry as the quest for parsimony, simplicity, and homogeneity 
is increasingly being confronted by the need for plausibility, richness, and hetero-
geneity. The question turns on whether or not a simple, parsimonious model that 
can completely explain a limited set of system characteristics is as useful as one 
which contains many characteristics which are plausible in terms of the functioning 
of the system but cannot be proven as being of defi nitive explanatory value. In fact 
the problem is complicated by the predictability of many parsimonious models that 
are able to explain spatial behaviour as it can be observed but are unable to predict 
future behaviours which do not admit the same stability as those that are observed 
in the past. This is a deep problem that suggests that what we observe is considerably 
more ordered and structured at any point in time than that same set of observations 
at a future time. This is not just a problem in dynamics or equilibrium but one 
which is intrinsic to our ability to disentangle true explanation from the way we 
observe the world. Currently the received wisdom is that different models apply to 
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different kinds of problem and problem context and that in the last analysis, models 
are useful to inform the debate through crystallising ideas. 

 In designing any model, the builder must decide what constitutes the structure 
of the system as distinct from the environment in which the system functions. In 
fact, this boundary problem is highly signifi cant for it defi nes how the system 
relates to other systems and to the rest of the world in general. Very often the same 
model can be applied to different conceptions of the same system which is defi ned 
differently with respect to its environment. Here we will defi ne the term environ-
ment rather more narrowly than its general use in systems theory where it refers to 
the rest of the world or the problem context. We will make a distinction between 
the wider environment within which the system sits relative to the rest of the world, 
and the local environment of the system which is the space-time nexus that pertains 
to the functions in question. In short, the system’s environment here is the spatial 
tessellation of its cells or its locational referents which change through time. In 
contrast, we defi ne the system in terms of its population, meaning its components 
and their functions that operate within this local environment. In essence, it is the 
population that constitutes the structure of the system and its functioning which 
operates in its space-time environment. The functioning takes place between the 
population and its environment and there are feedbacks in both directions, that is 
the population can infl uence the environment just as the environment can infl uence 
the system but these two aspects of the model are qualitatively quite different as we 
will see. In terms of how this  population-environment system  relates to the outside 
world often called the environment too, then the usual assumption is that although 
the environment of the outside world can infl uence the system, the system does not 
infl uence the outside world in terms of the operation of its model. This is the usual 
convention in systems theory. 

 In this review, we will attempt to represent all our models no matter how different 
using the same notational structure and to this end, we defi ne an index of space as     i    
or     j    and any interaction or relation between them as     ij    while we use     k    to defi ne 
some attribute or feature of the population which pertains to different sectors. Time 
is indexed as     t   . Where we need to refer to more than two locations or two attributes 
or two time periods, we will defi ne appropriate additional symbols as we proceed. 
We fi rst defi ne a spatial unit     i    at time     t    within the environment as     itA   , and then an 
attribute or segment of the population at the same coordinates as     itN   . The two matri-
ces     A    and     N    contain the key elements of the system which interact with one 
another in ways that we make specifi c when we detail models of how populations 
function, interact and change and how these relate to the spatial system. We can 
write these feedback loops as     ⇔A N    to give some sense of the symmetry of these 
relations but at the same noting that     A    and     N    are generically different. 

 We can easily aggregate these discrete quantities into larger spatial units that we 
call     IZ    where     I    is a spatial index to the number of cells     i    that are within      Z   , or 
into larger temporal units     TQ    where     T    is the aggregate temporal index. Note that 
there are continuity and contiguity constraints that we need to be aware of when we 
aggregate over space and/or time. We thus defi ne the appropriate units at larger 
scales as
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where there are likely to be conservation constraints in terms of size such as 
    ,iti
A A t= ∀∑    and      iti t

N N= ∑ ∑   , the particular form of which are usually speci-
fi ed when the model is implemented. Functions defi ned on the population and the 
environment and the relations between them constitute the structure of the system 
and usually specify the dynamics of change through time. However to provide some 
sense of closure to this rather abstract form of representation, at any cross section in 
time, it is possible to defi ne interactions between these components over space. For 
example, the populations might interact which we can specify in the following way 
without detailing the mechanisms. Then the interaction between spaces     i    and     j    
can be written as     ij it jtA A A= ⊗    where the concatenation is specifi ed according to 
some behavioural or physical principle embodied in the model. 

 It is worth noting that functions like this tend to be specifi ed in systems theory 
independently of time so that the structure of the system is laid bare. There may be 
many such functions and before anything further can be said about a model structure, 
the mechanisms must be specifi ed. What is important is that this framework is seen 
as being generic in that it can apply to a variety of different problems and problem 
contexts, to different systems be they physical or human, material or conceptual but 
with a slight bias towards the subject matter of this book which is agent-based 
models in the social sciences, particularly the geographical social sciences. Whether 
or not this is the best representation is not particularly relevant. Each model is 
developed in its own formal style and the purpose of this framework is to provide a 
template for assessing how different the array of models that we defi ne here are 
from one another, not in terms of their substantive or behavioural similarities or 
differences. In this sense, the population and the environment can be very different. 
The only common point of reference is the fact that we make this distinction between 
these two sides of the model and specify space and time in the formal notation of 
cells and time instants, rather than in the continuous fashion that is often used to 
couch more theoretical statements of spatial models.  

    2.3   Feedback, Dynamics and Processes of Change 

 During the sweep of history over which spatial models have evolved, there has been 
a shift from simple, parsimonious models that simulate systems at a cross section in 
time and represent populations in aggregate form to more complex, richer models 
that deal directly with the time dimension and specify model functionality in terms 
of processes of change at a much more disaggregate level than their earlier counter-
parts. The switch has been occasioned by many forces. Already we have noted the 
growth in computation and the emergence of online data sources which have made 
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much richer models possible but there has also been a sea change in the way we 
think about human systems. Complexity theory has raised the notion that systems 
are never in equilibrium, in fact their predominant condition is far-from-equilibrium 
and disequilibrium is their normal state. Moreover human systems have become 
ever more complex due to technological change, the demographic transition and 
increasing wealth, at least in the west and many newly developed countries. This 
has made spatial behaviours more complex, certainly in terms of movement and 
communication as well as locational preferences. All in all, dynamics has come 
fi rmly onto the agenda while the notion of explanation has shifted from aggregates 
to much more heterogeneous populations composed of individuals and groups that 
need to be understood at a much fi ner level of detail. 

 In generating behaviours, feedback is an important mechanism where we might 
specify this in functional terms as a dependence of population on itself or on the 
environment, that is     + =1 ( )it itA f N   ,     + =1 ( )it jtN f N   , or     + =1 ( )it itN f A    and so on. 
Negative feedback tends to damp activity so that departures from some norm are 
restored, the classic example being a thermostat which controls the heat from a boiler 
to some environment. Positive feedback on the other hand accelerates the degree of 
change, sometimes with catastrophic consequences, but usually with benefi cial 
impacts if some quantity such as income or even population is increasing. The best 
way to illustrate the effect of feedback is in terms of population growth and the 
basic equation which can be used to simulate positive feedback is

     1 ,it itN N+ = a    (2.2)  

where     a    is the rate of change defi ned as     +1 /it itN N   . If the growth rate     a    is greater 
than 1, then this leads to exponential growth as we show in Fig.  2.1 . If less than 1 
then this leads to a decline to zero population but in both cases, the change is due to 
the compounding effect which can be easily seen if we generate a recursion on 
Eq.  2.2  up to time     +t T    as 

     .T
it T itN Na+ =    (2.3)   

 Negative feedback can be shown when change is damped according to some 
threshold but it is more appropriate to show this as a moderation of exponential 
growth as encapsulated in the logistic equation. Then if we defi ne a limit to popula-
tion as say     iN   , then we write the logistic as

     1 ( ),it it i itN N N N+ = −b    (2.4)  

where the rate     b    is moderated with respect to the scale of the growth. We also show 
this form in Fig.  2.1  where it is clear that the population grows exponentially at fi rst 
and is then damped by the effect of the constraint     iN   . In fact if the damping effect is 
lagged leading to an oscillation around the limit value of     iN   , then the growth of popu-
lation mirrors the sort of behaviour characteristic of systems dynamics models that 
were developed by Forrester  (  1969  )  in cases where resource limits dominate. 
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 Another form of dynamics relates to variations across space in the manner we 
illustrated for spatial interaction in the previous section. If we add time to this kind 
of dynamics which involves spatial relations, associations, correlations or move-
ments, then we can represent these as fl ows from     i    to     j    between times     t    and  
    +t T   . In fact the interaction     ijN    which we associate with cross-sectional static 
models in the previous section does take place through time although the time is 
much shorter than the usual periods that are associated with spatial modelling. Only 
quite recently has our concern in understanding cities shifted to thinking of cities in 
real time for such a real time focus has previously been captured as a static snapshot 
of movements in the city as, for example, in transport and traffi c modelling. However 
longer time periods are associated with fl ows such as migration where the variable 
    +, , ,i j t t TN    is now associated directly with time. Mechanisms for such models are only 
specifi ed when the precise form of model is defi ned and these are often based on 
activity patterns, distance, travel time and related cost structures that determine spa-
tial associations. In fact, fl ows of this kind are also associated with networks which 
scale from topological relations down to physical infrastructures. Currently there is 
substantial activity in embedding such fl ow structures in their networks and this is 
beginning to be refl ected in spatial models as is implicit in some of the contributions 
in this book. In the three examples we use to illustrate the computational model 
types below, fl ows and networks are signifi cant. It is worth noting too at this point, 
that in spatial modelling, most focus has been on measurable physical and hence 
observable quantities that change through time but increasingly there are hidden 

  Fig. 2.1    Simple dynamics 
based on positive feedback       
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fl ows and relations associated with the electronic world that are infl uencing how 
spatial systems change and develop. This too is a major challenge for spatial 
modelling. 

 Before we move the discussion on to classify different kinds of dynamics, it is 
worth noting that all the variables that we have introduced so far can be disaggre-
gated down from their aggregate populations to more disaggregate components. 
Ultimately the disaggregation is down to individuals where we denote such atomic 
elements by the subscript     k    on populations, that is     k

itN    is the     ′k th    individual or 
group in the appropriate space and at the relevant time in the system. In fact this 
notation can also be extended to any group which is a subset of the aggregate 
population such that the sum of the groups and/or individuals adds to the relevant 
aggregate variables, that is     =∑ k

it itk
N N   . In the models, particularly the agent-

based models that follow, individuals will form the focus of the simulation where 
processes are specifi ed for a class of individuals but are operated at the level of 
each individual in the simulation, usually specifi c to the space and time within 
which the individual is located as well as individuals ‘proximal in some way’ to 
the object in question. 

 As the concept of equilibrium has fallen into disrepute and as the spatial models 
have become more explicitly dynamic, different kinds of time scale and change 
have been identifi ed which characterise spatial systems. In particular the notion of 
smooth change has given way to systems that clearly have discontinuities in their 
behaviour through time (as well as space) where such discontinuities represent 
thresholds that are crossed, for example, the step function also shown in Fig.  2.1 . 
Here once the growing population reaches the limit, it precipitously declines to its 
initial value. This classifi cation of dynamics extends all the way to behaviours that 
generate endogenous discontinuities as is characteristic of catastrophe and bifurca-
tion theories. This portfolio of dynamic behaviours has also been enriched by 
smooth changes that lead to chaos, systems that behave in entirely unpredictable 
ways in terms of their initial conditions but are nonetheless deterministic and por-
tray smooth and continuous change. Into this nexus has come the notion that change 
can generate surprising and novel behaviours. For example, edge cities that sud-
denly appear around well established metropolitan areas, segregation patterns that 
do not appear to be embedded in the logic of change but suddenly manifest them-
selves, and repercussions from changes in one element of the system that cascade 
and grow as they diffuse to other sectors are all examples of the sort of changes that 
many models of spatial systems now take as routine. 

 Dynamics in all these senses has added to the burden of modelling. Like disag-
gregation, dynamics enriches the model in that data demands become severe and 
often much of the change that needs to be simulated is hard to observe and match to 
data. In fact, the notion that dynamics leads to surprising changes is part and parcel 
of the insights that are coming from complexity theory where the routine operation 
of space-time processes from the bottom up leads to emergent patterns that only in 
hindsight can be explained. Such unanticipated behaviour is quite counter to the 
traditions of well-behaved dynamic systems that tend to converge to an equilibrium 
or steady state, that is where     →it iN N    in the limit of     t   . 
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 The last feature of dynamics that we need to note before we begin to classify 
spatial models in these terms involves relationships to the external environment, 
either to the rest of the world or indeed exogenous changes to the population and/or 
environment that comprise the system in question, for it is by these means through 
which unusual dynamics can be stimulated. For example the population equation 
might be subject to external shocks, that is from Eq.  2.1  we might add a shock such 
as     itX    leading to

     1it it itN N X+ = +a    (2.5)  

which basically removes a degree of predictability from this particular model, 
dependent on the size and frequency of the external input. If the external input is 
once-for-all, its effects may die away but sometimes these kinds of shocks feed on 
one another and are enough to push the system into uncharted waters with quite 
unpredictable consequences. Moreover changes in the environment of the system, 
such as the addition of new capacity     ita    in terms of land available, say, which we 
might mirror as
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can lead to equivalent unpredictability. Even in these simple cases, we can easily 
complicate the dynamics through additional functions that immediately show that 
any movement to a steady state is likely to be the exception rather than the rule.  

    2.4   Six Styles of Spatial Model 

 It is exceptionally hard to provide a completely comprehensive overview of spatial 
models in the human domain even with as narrow a focus as we adopt here which 
is mainly on cities. This is largely because model types shade into one another and 
many of the features that we have identifi ed in the previous sections appear in 
more than one model. Different modelling styles merge into one another. 
Nevertheless various researchers have attempted to classify such models and it is 
worth noting some of these attempts before we outline our own focus on this fi eld. 
In general as noted earlier, there has been a sea change from aggregate cross-sec-
tional comparative static models of spatial systems to models that are disaggre-
gate and dynamic. This has marked the transition from  land use transportation 
interaction  models (LUTI) to  cellular automata  (CA) and  agent-based models  
(ABM). This has also represented a change in scale and focus and in the case of 
CA models, these shift the focus from social and economic processes to physical 
land development. ABM models are more generic still but in terms of urban mod-
elling, most applications are at the fi ne spatial scale at the level of pedestrians, for 
example, and local movement, with only a handful of such models being developed 
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for metropolitan areas. In fact as LUTI models have been disaggregated, then 
some of these such as ILUTE and UrbanSim have features that can be described 
as agent-based (Hunt et al.  2005  ) . 

 The other four types of model that we will classify and defi ne here are those 
based on less well entrenched applications and methodologies.  Spatial economet-
ric models  (SEM) have been widely applied but often at a larger scale involving 
regions while  systems dynamics models  (SDM) have been proposed and imple-
mented in some contexts but these have not found widespread application largely 
because they have not been generalised to spatial systems in any consistent man-
ner. Last but not least there are  microsimulation models  (MM) of which there are 
several spatial variants and these also tend to merge into ABM at one level of 
specifi cation. There are no general reviews of all six modelling styles but the author 
(Batty  2008  )  provides a discursive discussion of how LUTI models made the tran-
sition to CA and ABM during the last 30 years. The short review of LUTI, ABM 
and CA models also by Batty  (  2009  )  focuses on their structure, dynamics and 
aggregation properties. There are comprehensive reviews of ABM, CA, SDM, MM 
and some LUTI models by Haase and Schwartz  (  2009  )  and there are a series of 
reviews of operational land use models mainly in the US agencies such as the EPA 
(see Southworth  1995  for example). However apart from the review of CA models 
by Liu  (  2008  ) , most of the reviews tend to be of LUTI models. In particular the 
chapters by Wegener  (  2005  ) , Iacono et al.  (  2008  )  and Hunt et al.  (  2005  )  are good 
summaries of the state of the art to which the reader is referred. The essence of the 
models which are the subject of this book – mainly ABM, CA and MM – are con-
tained in the relevant chapters in this section by Birkin and Wu (2011) (MM), 
Dearden and Wilson (2011) (LUTI-spatial interaction), Iltanen (2011) (CA) and 
Crooks and Heppenstall (2011) (ABM). In fact the focus is much more strongly on 
ABM than any other model type in this book although CA models, as we will see, 
provide an implicit form of ABM. This chapter and more generally this section, do 
however provide a useful overview of the fi eld with the focus very much on situat-
ing ABM in the wider context of spatial modelling. 

 We will begin with generic models and only when we have reviewed most of 
these will we look at specifi c models with methodologies that are precisely confi g-
ured to the systems and problems at hand. We will treat each model in terms of the 
eight characteristics which we identifi ed in the previous two sections, namely, 
environment and population, scale and aggregation, conservation and constraint, 
disaggregation, feedback in space-time, dynamic type, emergence and conver-
gence, and external inputs, and we will begin with CA models which are by far the 
simplest. In fact CA models are explicit and simple spatial dynamic models with 
little or no presumption about the form of the dynamics and rather simple notions 
about the effect of space. In their strictest form they simulate the spatial diffusion 
around a point where the diffusion is to immediate neighbours and time and space 
are treated as one. In this sense, the environment is treated as being synonymous 
with the population with each state of the system – i.e. the population – being 
directly associated with a spatial location at a point in time, in short     =it itA N   . 
Scale and level of temporal and spatial aggregation tend to be quite fl exible in these 
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models although for urban and land cover systems, both scales are large – often land 
parcels and census tracts and above, while temporal intervals are at least for one 
yearly periods. This however is not a major constraint. Such models do not strictly 
conserve quantities of population in that there is nothing intrinsic to such models 
that limits their growth or decline although often such models are subject to more 
macro-constraints provided by other models in their wider environment. The models 
can be fairly disaggregate but most applications divide the cell states into land use 
types limited to no more than a dozen. Feedback in space is extremely simplistic 
and often unrealistic in that the CA nearest neighbour infl uence principle which is 
essential for physical diffusion processes is often not a good analogue for spatial 
effects where there is action-at-a-distance. Such models do not tend to fall into any 
particular dynamic class, for if they produce unusual and discontinuous dynamic 
behaviours, this is likely to be due to external inputs rather than anything built into 
the model dynamics. Emergence is possible with such models, indeed essential to 
their original formulation although in urban applications this is generally not a 
specifi c focus. All in all, such models tend to simulate land development processes 
from the supply side or at best models of the balance between demand for and 
supply of land. They are not strongly socio-economic in that they do not embrace 
detailed demographics, and in this sense are essentially physicalist in tone. 

 ABM models have many of the characteristics of CA models except that the 
environment and population sides of the system are kept apart. The population 
sector is essentially that which contains these agents whose behaviour is specifi ed 
in considerable detail. Agents tend to be mobile in a spatial sense and even if they 
do not physically move in space, they can be associated with different spaces and 
their change over time can refl ect an implicit process of movement. In this sense, the 
environment is treated more passively than the population with the population 
driving any change in the environment, although in principle there is no priority for 
one or the other. A detailed specifi cation of ABM in these terms is contained in 
Batty’s  (  2005  )  book where the idea of an agent having a specifi c behavioural profi le 
and acting on this purposively is central to their defi nition. In terms of aggregation 
and scale, ABMs tend to be at smaller scales than the region or the metropolis 
although some land cover models based on ABM are predicated at these larger 
scales. They tend not to be constrained in terms of conserving any key quantity 
although they may be structured to generate or conserve a certain level of popula-
tion, especially if the focus is on movement in a fi xed space as in pedestrian models. 
Their dynamics and relationships to the wider environment are similar to CA and 
they tend to be highly disaggregate down to the point where individuals constitute 
their basic units. Problems emerge when individuals are aggregated to groups or when 
the agents become agencies for then such models tend to be of more conceptual 
interest than of predictive practical use. 

 Like CA and ABM models, microsimulation models (MM) tend to be loosely 
structured in terms of their dynamics. Such models may even be cross-sectional 
rather than dynamic but the fact that the populations tend to be represented in terms 
of their basic units means that such models are usually temporally dynamic, i.e. 
individuals are represented in terms of their behaviour which is intrinsically 
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dynamic. These kinds of models work on the premise that a population is described 
in terms of a distribution of characteristics – for example, an income distribution, 
and individuals are then selected from that distribution so such models are essentially 
random samples from a much larger universe or population. In this sense, the 
models can be at any scale but the distributions are usually composed of individuals 
in that any point sample from a distribution is associated with an individual. Point 
samples can of course be aggregated into large groups in space and time. There is 
not much more that can be said about such models for all their other characteristics 
will depend on the specifi c model characterisation once it has been worked up to the 
system in question. Quantities do tend to be conserved and sampling can be subject 
to some constraints while feedbacks depend on how different sectors in the model 
are confi gured in relation to one another. The model dynamics again tends to be 
straightforward and most models to date (see Birkin and Wu  2012  )  do not tend to 
refl ect discontinuities of the kind associated with emergence of new structures. 
External inputs into such models are usually extensive as many of the drivers of 
such behaviour are refl ected in the wider environment. Microsimulation models 
are essential tools for sampling large-scale populations where it is impossible to 
represent all the individuals explicitly and where some sense of the heterogeneity of 
the population needs to be represented in the model. The MoSeS model designed by 
Birkin and Wu (see this volume) is a good example of how MM is applied to human 
spatial systems where the focus is on demographics and its relationships to the 
provision of health and related social facilities at a fi ne spatial scale. 

 Spatial econometric models (SEMs) have been widely developed in the tradi-
tion of aggregate modelling (Anselin  1988  ) . To an extent such models do not 
really distinguish between population and environment although the focus in such 
models is more on subsuming the environment into the population than the other 
way around in contrast to CA models. Such models are usually developed at a 
scale where statistical averages are stable and this means that the spatial and tem-
poral units must be such that the data are appropriate for standard statistical infer-
ence. Quantities in such models tend to be conserved but within statistical limits 
although increasingly constraints are put on statistical models where it is essential 
to keep predictions within bounds. SEMs tend to be structured along rather formal 
lines where the standard model is linear, often simultaneous in that feedbacks 
between different model sectors are associated with different model equations, 
and the dynamics is often well-defi ned with the equilibrium properties of such 
models being well-known in terms of their stationarity. Emergent behaviours are 
not usually a feature of such models but the distinction between exogenous and 
endogenous variables as in much economic modelling is strong. In this book, 
these kinds of models are not reported although occasionally, econometric tech-
niques are used in ABM, SDM, and MM. 

 Systems dynamics models (SDM) are very much in the tradition of the discrete 
population models that we illustrated earlier in Eqs.  2.1 – 2.4 . In fact these models 
are based largely on coupled difference equations whose structure is such that 
they lead to exponential growth followed by damped oscillations around fi xed 
resource limits. In this sense such models are heavily constrained. They can be 
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quite disaggregate dealing with different sectors but the environment is entirely 
absorbed in the population as there is usually no spatial variation although some 
models have simply applied what happens in one space to many others. In terms 
of feedbacks, the entire behaviour of these models is structured around damped 
logistic growth refl ecting repercussions through the model structure which leads 
to oscillations around the resource limits. In this sense, the dynamic behaviour of 
these models is well-defi ned. Links to the wider environment are structured in 
terms of control over resource limits. Progress with these models has been quite 
slow with only a limited number of applications largely due to the diffi culty of 
articulating space within their structure. In fact as soon as space is introduced, 
these models begin to look rather different from traditional SDM and in this 
sense, they change in focus. Many of these model structures are more like model 
methodologies that can be merged together in the construction of more elaborate 
models, as for example, in models such as UrbanSim. 

 Our last class of models – land use transportation interaction or LUTI models – 
are quite different in structure. These models are essentially fashioned around ideas 
in spatial interaction and discrete choice theory, merged with notions about eco-
nomic input-output analysis, multipliers and demographic modelling that all come 
together in what are largely aggregate cross-sectional model structures simulating 
the location of activities and their interactions at a single point in time. These mod-
els, like SEM, tend to merge environment into population and since their inception, 
they have become more disaggregate. Spatial constraints and the concatenation of 
activities are central to such structures. Various feedbacks between the sectors are 
incorporated but these usually refl ect spatial not temporal effects. In terms of dynam-
ics, such models struggle to embrace the wider portfolio of possibilities being, at 
best, incremental which essentially involve static models being applied to incre-
ments of time. That is, static model structures are used to model incremental change 
and such models do not attempt to explore longer term dynamics. In fact there are 
extensions of such models into dynamic frameworks such as those developed by 
Wilson  (  2008  )  but in general, the practicalities of limited temporal data have con-
strained such models in terms of dynamic simulation. This is an important issue as 
most of the other models we have described in this section simply assume that the 
lack of temporal data is not a constraint on their specifi cation and application. In 
short, LUTI models build on social physics and urban economics which are essen-
tially atemporal. 

 These model types and styles provide a wide range of possible structures from 
which to select appropriate forms for specifi c problems. Our summary shows at a 
glance the array of model types that we might draw upon in simulating spatial systems 
in the human domain. In the rest of this review, we will not detail all of these but 
we will focus on CA, ABM and LUTI models to give some fl avour of how they 
might be developed and the way they are calibrated, validated, and verifi ed in practice. 
This will set the scene for the rest of the review chapters in this section which take 
these models types further and develop specifi c issues with respect to their design 
and construction.  
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    2.5   Cellular Automata: Physical Simulation Models 
of Urban Morphologies 

 CA models are by far the simplest of any urban model in that they merge entirely their 
populations with their environment. In essence, the components of the environment 
are identical to the objects comprising the population in the sense that the locational 
spaces that defi ne the environment at any point in time, are equivalent to each 
elements of the population. In the simplest case, one cell in the environment is equiv-
alent to one object in the population which in formal terms means that     =it itA N   . 
Now each cell in a CA model can take on more than one state which means that the 
population object can vary in its attributes. Again, the simplest form is that a cell 
can take on one of two states – it can be switched on or off which in urban terms 
might be compared to the cell being developed or not developed. This is often 
represented as

     

1 is developed

0, otherwiseit

if i
A

⎧
= ⎨

⎩    
(2.7)

   

 In slightly more complicated CA models, there may be more than one population 
object in one cell but this probably is the interface between CA and ABM. If a cell 
has one population object only but that object can take on different attributes or 
changes in state, then this is still a CA model. In short, when a cell can take on more 
than two states, then this is usually used to refl ect different changes in land cover 
such as land use types but it could also be associated with different changes in the 
population object such as its level of income, its age and so on. The formulation is 
entirely generic. 

 CA models in their strict sense have no action-at-a-distance except in the most 
restrictive sense. A cell is deemed to infl uence or be infl uenced by its nearest neigh-
bours where near is defi ned as physically adjacent if the application is to some 
spatial system. This is the only way in which emergence can be charted in such 
models in that if the fi eld of infl uence is wider than nearest neighbours in a regular 
sense, then it is impossible to trace any emergent effects on the ultimate spatial 
structure. Essentially CA in this manner is used to implement procedures that lead 
to fractal structures where patterns repeat themselves at different scales which only 
emerge when the system in question grows and evolves. We can illustrate strict CA 
in the following way. Assume that the set     IZ    is the set of immediate neighbours 
on a regular square lattice. The usual neighbourhood is defi ned as the Moore 
neighbourhood – all cells at the eight compass points around the cell in question or 
the von Neumann neighbourhood which are the cells N, S, E and W of the central 
cell. Then we defi ne a function     itF    as the concatenation of effects in the     IZ    neigh-
bourhood, and if this function takes a certain value, this generates a change in state 
of the cell in question, cell     i   . Imagine that the rule – and there can be many, many 
different rules – is that if this function is greater than a certain threshold     Ψ    which 
is a count of the developed cells in the neighbourhood, then the cell changes state. 



34 M. Batty

In the simplest case, it is developed if it is not already developed or its stays 
developed if already developed. Using the defi nition in Eq.  2.7 , then

     ∈

= ∑
I

it jt
j Z

F A

    and 
(2.8)

  

     +> Ψ =1 1.it itif F then A    (2.9)   

 It is very easy to show that this process leads to a regular diffusion starting 
from a single cell. If we assume that the threshold     Ψ = 1   , all the cells in original 
Moore neighbourhood around the seed cell get developed fi rst, then all cells 
around those that have just been developed, and so on with the recursion simply 
leading to the growth of a square cellular region around the starting cell. In fact in 
this instance, space and time are collapsed into one which is the key criteria of 
regular physical diffusion. These ideas are developed in more detail in Batty 
 (  2005  )  to which the reader is referred for many illustrations of such basic strict 
CA models. 

 If the CA models are slightly more complicated in terms of their neighbourhood 
rules then various geometric fractals result while there can be key spatial orienta-
tions and biases introduced into the structures that are generated. However it is 
usual in CA modelling for the neighbourhoods, the rules and the process of genera-
tion to be entirely uniform. As soon as the notion of varying neighbourhoods over 
space and varying rules over time is introduced, the models are no longer CA. In 
fact many urban applications are not strictly CA models at all but cell-space models, 
motivated by physical land development problems and raster based GIS map 
algebras in that they do not generate emergent patterns in any recognisable form and 
they usually relax the constraints placed on both size of neighbourhood and unifor-
mity of cell transition rules. In Fig.  2.2 , we show three typical CA models generated 
using the Moore neighbourhood. The fi rst is the simple diffusion from a source 
where any development in any adjacent cell spurs development of the cell in question, 
the second is simple diffusion from a source using a fractal generating rule where 
the pattern of cells developed determines the rule, and the third is based on a 
more complicated pattern of cells in the neighbourhood that steers the growth which 
in this instance is stochastic in a given direction. These are the kinds of structures 
that form the basis of such automata and all applications to real systems contain 
mechanisms of recursion built along the same lines as those used to generate the 
patterns in Fig.  2.2 .  

 There are several ways in which the strict CA model has been relaxed in devel-
oping spatial applications. First it is easy to control the growth of developed cells 
by imposing some sort of growth rates with respect to different cells. If growth is 
one unit cell, then various external constraints can be used to control the growth 
but as in all cases where the homogeneity rules are relaxed, then the CA no longer 
can generate emergent patterns in quite the simple way in which those in Fig.  2.2  
are generated. Moreover to introduce variety and heterogeneity into the simplest 
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  Fig. 2.2    Classic CA models ( a ) Nearest neighbour physical diffusion on a grid ( b ) Koch-like 
fractal diffusion ( c ) Oriented diffusion limited aggregation       

models directly, sometimes the cellular count or concatenation of cells performed 
in the neighbourhoods is converted to a probability function which is then used 
to condition the development using a random number generator. For example the 
structure in Eqs.  2.8  and  2.9  now becomes
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     1( ) 1it itif rand P then A +Ψ < =    (2.11)  

where     itP    is a probability of development and     Ψ( )rand    is a random number between 
0 and 100, say which if less than the probability, implies the land should be devel-
oped. There are many adaptations that can be made in this manner but the most 
signifi cant is related to relaxing the strict neighbourhood rule replacing this with 
some sort of action-at-a-distance. For example replacing     

ijF    in Eq.  2.8  with the 
gravitational expression for accessibility leads to

     

2
it jt ij

j

F A dÁ= ∑
   

(2.12)
  

and this provides a model which can predict development in proportion to acces-
sibility, that is

     + ∝1it itA F    (2.13)   

 This almost converts this cellular automata model to an accessibility potential 
models which lies at the core of spatial interaction theory and was fi rst developed 
for these purposes at the very inception of land use transportation modelling (Hansen 
 1959  ) . The question of course is how such a model might related to the extensive 
tradition of LUTI models that are in general far superior in their explanatory and 
predictive power than these kinds of CA model. 

 One of the major developments of these cellular models is to specify different 
cell states in terms of different land uses which we will disaggregate and notate as 
    k  ,     k

itA    being the appropriate land use     k    in cell     i    at time     t   . In several models, 
these land uses relate to one another as linkages which determine, to an extent, the 
locational potential for a site to be developed. Then we might write the change in 
state of the cell in question as a function of several land uses in adjacent cells 
where we use a functional notation to simply indicate that the change in question 
has to be specifi ed in more detail once the model application is implemented. Then 
the new state of cell     i    at time     t    would be

     ( )1 ,k
it jt ijA f A d+ = ∀� �

   (2.14)  

where     k
Ij Z∈    is a neighbourhood defi ned entirely generically and the fi eld over 

which distance is defi ned is again specifi c to the zone in question. In fact this 
relaxes the strict CA quite dramatically and is characteristic of many applications 
(for reviews see Batty  2005 , and Liu  2008  ) . It is worth noting that the rules to 
defi ne land use transitions generally vary the defi nition of the neighbourhood from 
the strict no action-at-a-distance principle to the gravitational one. This links different 
land use states and their densities and types to each land use in question, and also 
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relates these links to different action-at-a-distances effects. These rules also pertain 
to constraints which are hard and fast on whether a cell can be developed or not. 
Above a given level, they defi ne how land uses cannot relate to one another. Rules 
extend to the development of transport links in cells that ensure land use is 
connected, and structure the regeneration of cells according to various life cycle 
effects. All of these rule sets are featured in CA models and they are central for 
example to the SLEUTH, DUEM, METRONAMICA and related model packages 
that have been developed (Batty, and Xie  2005  ) . They will feature in our brief 
reference to the DUEM model below. 

 A more generic CA like structure which is a lot closer to the differential model 
that dominates the dynamics of physical phenomena at much fi ner scales is based 
on a reaction-diffusion structure which might be written in the following way:

     
1 (1 )

I

it it it it
j Z

A A A X+
∈

= + + − −∑a b a b
   

(2.15)
  

    where α    and     β    are normalising parameters between 0 and 1 and     itX    is an exog-
enous variable that refl ects changes from the wider rest of the world environment 
that might be treated as error or noise in the system but more usually is treated as an 
exogenous shock or as an input that is not predictable by the model. To operationa-
lise this structure, it may be necessary to impose various other constraints to ensure 
that variables remain within bounds but the essence of the structure is one where the 
fi rst term on the right hand side is the reaction, the second the diffusion and the third 
the external input or noise. If we assume that     = 0itX   , the evolution or growth is 
purely a function of the trade-off between how the system reacts and how activity 
within it diffuses. In fact, this is rather an artifi cial structure as change in absolute 
terms always needs to be controlled and in this sense, external inputs are always 
likely to be the case. Many CA models do not explicitly adopt this more general 
structure and a lot of applications have tended to simply scale the outputs of the 
developed cells to meet exogenous forecasts rather than introducing such exogeneity 
in more consistent and subtle ways as in the reaction diffusion model in Eq.  2.15 . 

 There are many variants of CA models, examples of which are contained in the 
last section of this book but as we will see these do tend to merge into ABM. To 
conclude this section it is worth outlining a model that the author has worked with 
(see Batty et al.  1999 , and Batty  2005  ) . This is the Dynamic Urban Evolution Model 
(DUEM) which is a fi ne scale cellular model with several cells states refl ecting land 
use as well as transport and a series of decision rules for changing states that relate 
one land use to another through its density and accessibility as well as their position 
in the life cycle of development. The model is largely a pedagogic tool rather than 
one which can be fi nely tuned to real situations although a number of applications 
have been made to the Ann Arbor region and the wider region of South East 
Michigan which is largely metro Detroit. The model is based on several land 
uses – residential, commercial, industrial, open space, vacant land and transport/road 
space – which are functions of the different density and accessibility rules as well as 
plot sizes which determine how land is developed. We have developed the model for 
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the changes between 1985 and 1990, calibrating the model in a rather crude way. 
The rule set is large and thus we have not engaged in any kind of exhaustive calibra-
tion to fi nd the best fi t, although the fi t to 1990–1995 from the calibration between 
1985 and 1990 is reasonable. We show a segment of the typical interface to the 
models, showing developed land use in Ann Arbor in 1990, and changes predicted 
by the model from 1990 to 1995 in Fig.  2.3 .  

 The real critique of CA models relates to their highly physicalist approach to 
urban structure and dynamics. Essentially these are supply side models, simulating 
the supply of land based on physical constraints. The notion of demand is foreign to 
these models as is the notion of interaction as refl ected in transport. By abandoning 
the principles of uniformity, restricted neighbourhoods and homogeneity of states 
which it is often necessary to do once one applies these ideas, then the models often 
become poor equivalents to LUTI and other models. However in their favour is the 
fact that they are explicitly dynamic although dynamic processes other than physical 
land development do not feature very much in their formulations. Their dynamics is 
also rather straightforward and if surprising and novel forecasts do emerge, this is 

  Fig. 2.3    Application of a typical CA model to simulating land use change 1985–1990 and 1990–
1995 in Ann Arbor MI       
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more by accident than design in the sense that these models tend to simulate a rela-
tively smooth dynamics. There are not many points at which the kinds of disequilib-
rium crises and discontinuities which plague the modern world can enter into such 
models. They also owe a lot to GIS and remote sensing and it is no accident that they 
have been almost entirely developed by a very different set of researchers from those 
still working with traditional urban models in the LUTI tradition.  

    2.6   Agent-Based Models: Purposive Behaviour, Physical 
Movement and Temporal Change 

 As we have argued, at one level CA models can be seen as simplifi ed varieties of 
ABM where the cells form the agents and the states their attributes. Unlike ABM, 
however, cells do not move and if they change their state, this change might be 
attributed to some movement but this movement remains implicit and is not for-
mally simulated. ABM implies some form of movement or at least change between 
agents. Agents as objects in the population are defi ned individually as     k    but are 
made specifi c in terms of the locations where they exist     i    at time     t   . In fact agents 
may not physically move or indeed in non-spatial models, they may not even be 
defi ned in terms of location. If the model is simply one of examining relations 
between agents at a cross section in time, then such relations might solely be defi ned 
in terms of say     kN   and     lN   , the relation between them defi ning a link in a social 
network     =� �( , )k kN f N N   . In fact throughout this book, the agents that are defi ned 
by various authors, exist in terms of location and time but very different kinds of 
relations exist across space. These imply movement or interaction from     i    to     j   , 
from time     t    to     +1t    or a later time period     +t T  , from individual object     k    to     �    as 
we have just defi ned in terms of social network links and any higher order combina-
tions such as: links across space and time, space and different individuals, time and 
different individuals and across all three – space, time and individuals. 

 The key difference between CA and ABM is that the system is driven by the 
ABM where each individual object is endowed with purposive behaviour which 
conditions their specifi c and individual behaviour in contrast to aggregate models 
where this behaviour is part of an aggregate or collective. In this sense, the environ-
ment of the system is the space-time frame     itA    which is relatively passive in com-
parison to the behaviour of the agents     k

itN   . Nowhere in such models does     =it itA N    
or vice versa but as we have already implied earlier there are certainly feedback 
loops     ⇔it itA N    as well as the core loops between agents themselves which we 
defi ne generically as     +⇔ �

1
k
it jtN N   . We assume in ABM models for spatial systems 

that the environment is not purposive, that is, no loops such as     +⇔ 1it jtA A    exist. If 
such loops are required then the model would need to be reformulated and part of 
the environment may then enter the population. The movement of an agent is par-
ticularly important in spatial models because whereas in CA, these models tend to 
be bereft of spatial interaction, ABM models have found extensive application as 
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models of fi ne scale movement at the pedestrian level for example (Batty  2003  ) . 
We can formulate such a model in functional terms as

     + += ∈�
1 1( , , , , )k k a a

jt it jt it jt IN f N N A A z Z
   (2.16)  

where the superscript     a    relates to some characteristic attribute of the cell. The func-
tional Eq.  2.16  suggests that agents move through space across time but are infl u-
enced by other agents and other locations during such a move. The object     �

jtN    is in 
a different location from the moving object     k    and when the move takes place, a 
whole series of relations might exist between these two objects such as the visibility 
of one from another, avoidance of physical contact between one and the other, the 
clustering of the two or more objects through some social network, or the attributes 
of the other object being of importance to the locational move, and so on. In terms 
of the cells themselves, then an object moving from one cell to another would also 
take account of related cells in the system, usually in the neighbourhood of the 
move itself. 

 A good example might be shopping behaviour. An agent enters a shopping centre 
with a specifi c purpose to buy goods, encounters other agents along the way, avoids 
them, or follows them in terms of the crowd. The agent would be infl uenced by the 
provision of goods in different cells of the system and in this sense would move in 
relation to the existence of materials and products that were located in different cells 
of the system. This kind of characterisation can provide a baseline for movement 
with visibility, obstacle avoidance, the search for a location which matches the 
purpose for which the object or agent is moving, and so on. The agent may have a 
budget and when visiting different cells would exhaust this budget and end the trip 
once the movement had achieved its purpose. In terms of other moves, then if the 
agent were migrating over a longer time span in search of a job or house, then the 
characteristics of the job or house location would be encoded into the environment, 
in     a

itA    but the job itself and maybe the actual house would also be part of the set of 
agents. In this sense, an agent need not be a human individual but an object in the 
built environment that in and of itself might be subject to change in type and 
location. 

 It is worth sketching a simple model of the development process to show how 
generic this kind of thinking can be. First we make a distinction between consumers 
    k    and producers     �    with     k

itN    the individual demanding to be housed and     �
jtN    the 

developer producing or supplying the housing. The characteristics of the site or cell 
under consideration for the production of housing is defi ned as     a

ztA    where     z    is a 
different location but all the locations     i, j,z   defi ne the cells in the system where 
consumers and producers carry out their activities. The sequence of actions in any 
one time period can be orchestrated as follows: fi rst a producer examines all the 
sites in question which in terms of each site can be represented by     ↔� a

jt jtN A   . The 
decision to produce a house in cell     j    is then made with respect to the attributes of 
    j    but also the potential demand for site     j    which might be based on previous 
demand at that site     −1

k
jtN   . The decision is made and the house produced which alters 
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the characteristics of the site     +1
a
jtA   . The production of the house at this site can be 

defi ned as a unit of development or level of development     +1jtD    which a potential 
house buyer – consumer – will now react to. When the house has been developed, 
potential residents will examine its location and then decide to occupy it or not, that 
is     1 1

k
jt jtN D+ +→    and if an evaluation threshold is crossed then the individual will 

occupy the house, that is the house will be occupied     1jtO +   . Formally the consumer 
might evaluate a function which works out a new level of the attribute of the site 
    +1

a
jtA    which can be formalised as
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where the parameters     , ,f q J    determine the relative weighting and normalisation 
while the error term     1jt +e    is a way of introducing some noise or uncertainty into the 
locational choice. If the cell attribute value is now above a certain threshold     Γ  , then 
the house is occupied; if not it remains unoccupied and the systems move into the 
next time phase where the process begins once again. Then
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 In this way demand adjusts to supply and vice versa if the system is well speci-
fi ed. Of course this simple model could not be programmed from this formulation 
for there are other decisions that need to be made to make the process computable 
but this sketch suffi ces to show how demand and supply agents interact with their 
cell space environment to produce and then consume housing. Immediately it is 
clear that in such a model, although the rules are quite plausible, it is extremely 
diffi cult to collect data on such a decision-making process. Moreover at this level of 
disaggregation, there are many features of the development process that cry out 
for specifi cation; for example, issues about housing fi nance and fi nance for land 
development, issues about distance from home to work and to other facilities, 
provision of budgets, life style issues, all crowd into such a model. In a sense, this 
is why ABMs are so hard to build and test because once this level of detail is 
broached, it is hard to control the aggregation in such a way as to produce testable 
propositions. It is worth noting that spatial interaction effects fall out of this model 
quite easily, thus connecting ABM directly to the LUTI models that we will deal 
with in the next and fi nal section of this review. The gravitational model of trips can 
be specifi ed in agent form as

     2

k
it jtk

ijt
ij

N N
T

d
=

�
�

   (2.19)  
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where we defi ne     k    in terms of residence and     o    in terms of workplace.     ko
ijtT    is the 

fl ow from     i    to     j    at the cross section and this can be lagged across time if so speci-
fi ed. We can also sum trips over     i    and     j    in terms of spatial interaction accounting 
and this serves to link these models to their aggregate equivalents. In fact, a sequence 
of locational decisions involving work and residence location in terms of an ABM 
might actually generate trips of these kinds through individual decisions rather than 
through this aggregate distance model. This does show that it is possible to begin to 
introduce social physics ideas into ABM with such connections to discrete choice 
modelling and microsimulation appearing extremely promising. Similar ideas of 
movement and spatial interaction are briefl y introduced in Batty  (  2005  )  to which 
interested readers are referred. 

 The last thing we will do in this section is illustrate a typical example of ABM 
at the pedestrian movement level. In Fig.  2.4 , we show a model built for the Covent 
Garden Market complex in central London by Ward  (  2007  ) . This model is based on 
a simple social forces model in which agents have certain tasks to perform such as 
shopping and entertainment. They have two specifi c functions: to navigate in 
search of their goals which involves either purchasing entertainment or goods as 
effi ciently as possible; and to move around the complex in more casual fashion. 
Most behaviour in this market is a combination of the casual and the formal but a 

  Fig. 2.4    Simulations from Ward’s ABM pedestrian model of Covent Garden.  From top left to 
 bottom right : model control panel, visual lines of sight from a single pedestrian, fl ow intensity of 
all pedestrians, navigation panel, interactions of walkers, part of the map of the stalls in the shop-
ping area       
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key feature is the learning behaviour that must be built into navigating the space. 
This set of agents – walkers – is divided into different types dependent on purpose 
and how much exposure they have already had to the area. A substantial proportion 
of walkers are tourists. We do not have time to detail the model but it is clear that 
the nature of the problem imposes quite substantial differences between this appli-
cation and others in terms of the composition of the agent population and the nature 
of the facilities in the complex. Again ABM is appropriate because of the rule-based 
behaviours in this kind of context and because navigation, obstacle avoidance and 
visibility calculations are important in simulating this type of mobility.   

    2.7   Land Use Transportation (LUTI) Models: Aggregate 
Behaviour in Spatial Equilibrium    

 Our last examples which are not part of the mainstream applications in this book 
except in the contribution below from Dearden and Wilson  (  2012  ) , revert back to 
the origins of computational modelling in spatial systems which are in a rather 
different tradition from the new paradigms explored in the various contributions 
that follow. In fact, LUTI models have continued to be developed and strengthened 
and as we noted earlier, there has been a long quest to retain the advantages of 
simple aggregate models that can be calibrated against available data in contrast to 
the need for ever greater detail through disaggregation with the specifi cation of 
temporal dynamics which move these models outside the equilibrium paradigm. In 
essence, when the time dimension is suppressed, the representation of environment 
and system is greatly simplifi ed. The environment is simply indexed by space as 
    iA    while the population is indexed as     k

iP    where different activities     k    now refer to 
aggregates of populations covering employment, residential population, retail 
activity and so on. Just as CA models collapse population into the environment, 
LUTI models tend to collapse the environment into population: all the action in 
such models is, like ABM, focused on the aggregate with the environment in terms 
of cells, or zones as they are commonly called, being only relevant when various 
constraints on land availability and physical features of the space infl uence the 
simulation. In short, we can represent such models purely in terms of populations 
although distance and the attributes of space do occasionally enter the model 
framework from the environment. 

 We already have a simple form of LUTI model where spatial interactions are 
implicit in our development of CA in an earlier section. Equation ( 2.12 ) determines 
the function that converts a cell from one state into another, from undeveloped to 
developed for example, in terms of gravitational potential and we can write this 
more generally for any sector     k    as

     
kk

i j ij
j

N A d−= ∑ lx    (2.20)  
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where     x    is the relevant scaling constant, and     kl    is the friction of distance param-
eter for the gravitational potential. Equation ( 2.20 ) might apply to any sector 
although it is strongly physicalist in form being a function of only land (cell or zone) 
area     jA    and geometric distance (or travel time/cost)     ijd   . Without any obvious 
coupling, any LUTI model composed of several different population sectors such 
as types of residential housing, employment and so on would simply be a series 
of disconnected models. The most obvious way to connect sectors is to make each 
sector a function of all others in terms of composite accessibilities that might be 
written as

     

k
i j ij

j

N N d−= ∑∑ ��

�

lx
   

(2.21)
  

where we note that the scaling constant is suitably adjusted and that the summation 
over sectors     �    may or may not include the self-sector     k  , a decision that would 
depend on the precise model specifi cation. In this sense then, the sectors are coupled 
through their relative spatial distributions. 

 In fact most LUTI models developed in the last 40 years have specifi ed popula-
tion as a function of explicit spatial interactions although the fi rst models such as 
Lowry’s  (  1964  )  were based on accessibility potentials as in Eqs.  2.20  and  2.21 . 
Using an explicit spatial interaction model, then one of the simplest forms can be 
written as

     
k k k k
i ij i j ij i j ij

j j j

N T N N d N N dl lx x− −= = =∑ ∑∑ ∑∑� �� �

� �
   (2.22)   

 We should note again that the summation is over sectors, that the scaling 
constant must be suitably adjusted and that there is immediate circularity in the 
model as the predicted variable appears on both sides of the equation. We do not 
have time here to dwell on this circularity but it can be resolved in many ways 
through model specifi cation, balancing and iteration but in essence it refl ects the 
reality of breaking into the spatial system at a cross section in time. In fact, in 
real applications, the use of appropriate balancing constraints resolves the issue 
(Batty  1976,   2008  ) . 

 However the usual way of coupling such models is by assuming that the self-
sector is not a function of the model or using another variable such as land area of 
the zone or cell     k

iA   . Then substituting this for     k
iN    in Eq.  2.22  and noting now that 

we will specify a two sector model where     = 1k    is the fi rst sector and     =� 2   , the 
second sector, then we can write equations for these two sectors as
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1 1 1 1 2 1

2 2 2 2 1 2
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 Here we have extended the coupled model even further adding an exogenous 
input to each sector in the same manner that we did for the reaction-diffusion 
model earlier in Eq.  2.15  for the CA model. This structure is generic. It can be 
extended to many other sectors and it is at the basis of a whole class of LUTI 
models. For example the extended MEPLAN models developed by Echenique 
 (  2004  )  are based on this structure where there are explicit links to input-output 
models. The original extensions to the Lowry  (  1964  )  model were couched in these 
terms. The fi rst equation in ( 2.23 ) was defi ned for total employment     1

iN    where 
    1

iX    was basic employment and the second equation was defi ned for total population 
    2

iN    where there was no exogenous population, that is      = ∀2 0,iX i   . In short, this is 
the model structure suggested by Garin  (  1966  )  and Batty  (  1976  ) . 

 This structure has been exploited in many ways. First it has been disaggregated 
to embrace many different classes of population with respect to residential popula-
tion, housing and house types, industrial employment, retailing, commercial and 
related sectors such as education and health care. Second, relationships between the 
environment and population have been made in terms of land and density con-
straints, while third, the spatial interaction models have been extended in terms of 
utility maximising and route choice building on much more disaggregate individ-
ual-based models. In this sense, versions of LUTI models such as UrbanSim 
(Waddell  2002  ) , ILUTE (Miller  2004  )  and DELTA (Simmonds  1999  )  begin to 
approach ABM illustrating that the line between modelling types and styles can 
become very blurred. Fourth, the models have been disaggregated to treat ever more 
zones and spatial units but of course, once these approach ABM, then locations are 
collapsed directly into individuals within the population and the notion of agents 
defi ned by zones has less relevance. Fifthly in many of these models, rule-based 
algorithms to sort out allocation as in CA models appear alongside more formal 
equation systems that determine locational distributions. Particularly where demand 
and supply are explicitly represented, then market clearing and the determination of 
prices that indicate how the model is balancing are often structured through rule-
based mechanisms. As these models have extended their scope, then their formal 
parsimonious structures have been compromised. Their operation has become more 
ad hoc and pragmatic which appears to be a consequence of adding more and more 
detail and more and more sectors. 

 Dynamics has also been added to such models. At fi rst, such static models were 
applied to forecast increments of change; that is the static model structure is used to 
assume that increments or decrements of change observed between two points in 
time such as     +Δ = −1i it itN N N    become the focus of the prediction. In fact this is 
often simply a matter of scaling the equations to deal with net change. Many vari-
ants of this structure have been developed but there has not been much attention to 
breaking up the static structure into activities with different propensities to move. 
There are no models (to the authors knowledge, that is) where populations are 
divided into movers and stayers and these components dealt with in comparative 
static terms as different specifi cations of the equilibrium. Most extensions to dynamics 
have thus been ad hoc and in fact, there have been few developments of nonlinear 
dynamics of the kind described earlier involving catastrophes and bifurcations 
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embedded directly into the structure of these models. There are examples where 
static models are embedded into dynamic frameworks but these are largely for 
pedagogic use and have never been fi tted to real systems (see Dearden and Wilson 
 2012 , this volume). The same might be said of Allen’s  (  1997  )  work where embedding 
spatial interaction models into dynamics that lead to bifurcating behaviours in terms 
of locations are largely illustrative. 

 In terms of applications, the dominant model in urban and transport planning is 
still the LUTI model variant, largely because it deals explicitly with transport and 
housing in terms of their markets and the way they clear. Urban sprawl, for example, 
which CA models have attempted to simulate is highly dependent on transport and 
thus LUTI models are preferable as they deal directly with the drivers of sprawl. In 
North America, the dominant model was DRAM-EMPAL until quite recently 
when UrbanSim appears to have been more widely applied. Elsewhere MEPLAN 
and TRANUS have been developed, particularly in South America (Echenique 
 2004  )  while in Europe, there has been a mix of models. The focus is less on growth 
there and thus engagement with these kinds of formal model has been less intense 
although recently new waves of such models are being applied particularly in 
the London region. We will conclude our review with a brief summary of some of 
these models. 

 The MEPLAN structure developed as the LASER model has been used for 
20 years for examining major transport proposals in the South East of England 
and this is now being supplemented with the LonLUTI model built on the back of 
the Delta model by Simmonds  (  1999  ) . We have been developing residential location 
models as part of the integrated assessment of climate change, specifi cally fl ooding 
and pollution issues, in the Greater London region. This model is a standard 
structure of the kind presented here with a focus on heavy visualisation. A screen 
shot of typical output is shown at the top left of Fig.  2.5  where the focus on trip 
movements and their modal split is clear. It has now been extended using the 
structure in Eq.  2.23  where there are now three sectors being handled: population, 
retail and internal population-orientated employment with exogenous employ-
ment handled as a separate sector. This model is applied to the outer metropolitan 
area based on nearly 2,000 zones making the model quite large in spatial scale. 
The focus is still on fast and immediate visualisation and the current plan is for 
the model to be disaggregated and different modes to be added. The model is 
subject to capacity constraints in all sectors including trips and in this sense 
is quite comprehensive. We show a screen shot of the region in Fig.  2.5  at the top 
right and below, where it is clear that we are dealing with a complex polynucleated 
urban system based on a world city with some 14 million population. In contrast 
to the sort of pictures that we showed earlier for CA models in Ann Arbor 
(Fig.  2.3 ), it is clear that these models operate at a higher spatial scale although in 
the climate change applications, a CA-like model at 50 m grid square scale has 
been added to the integrated assessment to deal with populations at a much fi ner 
spatial scale than the LUTI confi guration which is based on zones with an average 
of 10,000 persons. There is much more we could say about these models but inter-
ested readers are referred to this detail in Batty  (  2011  ) , and Batty et al.  (  2011  ) .   
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    2.8   Conclusions: Modelling Using Generic or Purpose-Built 

 The model framework developed in this chapter is designed so that readers might 
see the connections between a variety of model types at different levels of sectoral 
and temporal disaggregation. It is almost a non-sequitur that static cross-sectional 
models tend to be simpler to notate than dynamic models but what dynamic mod-
els add in terms of temporal richness, static models tend to compensate for in 
terms of sectoral feedback and strongly coupled activities. The framework we 
have introduced is certainly generic for the distinction between environment 
which is the space-time nexus and population which tends to be the driving force of 
all these models, is common to all spatial models of the kind developed in this book. 

  Fig. 2.5    LUTI models for the London region.  Top left : Work trips from Heathrow in the Greater 
London residential location model:  Top right : The nested model applications:  Bottom : The inter-
face to the 1767 zone London region model showing population histograms       
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The level of aggregation although exceptionally important in terms of applications, 
is less important in terms of model structure. What we have not done here is dwell 
on methods of fi tting different models within this framework to data and it is 
worth concluding with some remarks for this serves to polarise differences 
between the various models. 

 As the level of detail in terms of sectors, spatial-locational resolution, and tem-
poral resolution increases, data demands generally increase and models become 
increasingly diffi culty to validate in terms of being able to match all the model 
hypotheses – functions – to observed data. As temporal processes are added, this 
can become exceptionally diffi cult but even with cross-sectional static models, 
when we add mechanisms for coupling and for market clearing as is the case in 
many LUTI models, we face a severe problem of validation. Many processes in 
these models cannot be observed and in principle some of these may simply be 
unobservable. Thus the model-builder faces problems of convincing client and 
stakeholder groups, which may comprise other scientists, of the veracity of their 
simulations. This tends to force modelling back to the traditional canons of scientifi c 
inquiry where parsimonious and simple models are the main goal of scientifi c expla-
nation. Occam’s razor may still be the ultimate quest but in many social systems, 
evident complexity is so great that plausibility rather than validity may be the real 
quest. This tension is felt very heavily throughout this book although it is broached 
only gently by many of the authors who are clearly conscious of the weight of 
scientifi c credibility that these new approaches to social systems impose. 

 In fact cutting across this dilemma is the notion that as we improve our under-
standing of spatial systems, we might be able to generalise models to the point 
where generic software becomes dominant. In fact, quite the opposite is happening. 
As we learn more we consider each problem context to be more individualistic 
where the model has to be specifi cally tailored to the task in hand. Software engi-
neers have in fact sought to develop ever more generic packages but these are often 
frameworks which guide the modeller rather than establish complete frameworks 
for the development of a specifi c model. Most general frameworks for ABM for 
example such as RePast and Netlogo, even MATLAB and Mathematica, do not 
extend to the point where very detailed spatial models can be built within their 
structures. LUTI models are a case in point. 30 years ago when spreadsheets were 
fi rst developed it was perfectly possible to develop pedagogic versions of such 
models using that software but no real application would ever fit into such 
structures. To date, there is no standard software for such models. In fact herein is 
the dilemma. Most serious applications rather than proofs of concept or pedagogic 
demonstrations require specifi c software applications. Insofar as generic software 
can be used, this provides many of the basic routines but these still have to be 
assembled in situ by skilled programmers, notwithstanding the fact that downstream 
applications may emerge which are generic. But then such applications tend to be 
pedagogic, showing what has been done and any new application requires purpose-
built software development. It is hard to see this situation changing in that the 
problems that we need to engage with always seem to outstrip previous applications 
and software already developed for these. The various contributions on this book 
clearly demonstrate this point.      
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  Abstract   In this chapter we introduce an approach to individual based modelling 
of social and economic systems. Microsimulation models (MSM) appear similar to 
ABM through the representation of individual decision-making units, but there is a 
signifi cant variation of emphasis between the two approaches. MSM are typically 
stochastic or rule-based, and with a strong applied policy focus. These characteris-
tics are explored and elaborated through a number of examples. While MSM are 
often very rich in their representation of ‘structures’, ABM are usually better tuned 
to the analysis of ‘behaviours’. We therefore argue that there is a strong logic to 
considering the MSM and ABM approaches as complementary and to begin a search 
for hybrids which might combine the best features of both approaches.      

    3.1   Introduction 

 Microsimulation models (MSMs) were introduced in the late 1950s by Guy Orcutt 
as a reaction to the failure of aggregate models to effectively represent the diversity 
of economic systems. Later developments have shown that the ambition of Orcutt’s 
initial vision – the creation of a ‘new type of economic system’ (Orcutt  1957  )  – to 
be far from overstated. According to Gilbert and Troitzsch  (  2005  ) , the distinguish-
ing feature of MSMs is the desire to model interactions between the design and 
implementation of policies and individual decision making units (e.g. what is the 
effect of a changing tax regime on individual workers and their households). In 
contrast, cellular automata (CA) and agent-based models (ABMs) attempt to model 
the complexity of social systems with similar individual level representations, but 
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with a somewhat different emphasis. CA model social dynamics with a focus on the 
emergence of properties from local interactions while ABMs simulate more com-
plex situations than the CA where the ‘agents’ control their own actions based on 
their perceptions of the environment. The relationship between these approaches is 
illustrated schematically in Fig.  3.1 . An important feature here is the distinction 
between individual-based models and ‘differential equation models’, which focus 
on system level dynamics at the macro-scale. Figure  3.1  also seems to suggest a 
signifi cant level of distinction between ‘stochastic processes’ (MSM), ‘cellular 
automata’ (CA), and ‘artifi cial intelligence’ (ABM).  

 The chapter is set out as follows. We fi rst introduce microsimulation modelling as 
an approach to public policy analysis with a discussion of the most important char-
acteristics and features of these models. The second half of the chapter deals with 
hybrid approaches through which we will explore the notion that some further fusion 
of these approaches could be desirable. Conclusions are drawn in the fi nal section.  

    3.2   Microsimulation Models of Public Policy 

 Modern social science studies often require detailed information on the interactions 
between policy and the social-economic behaviours of people. MSMs capture such 
interactions through the simulation of distinctive behaviours and characteristics at 
the level of individual decision making units (Orcutt  1957  ) . Advances in computing 
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  Fig. 3.1    Historical development of contemporary approaches (Source: Gilbert and Troitzsch  2005  )        
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power and analytical techniques now allow great sophistication in the range of 
questions that MSMs can address. 

 A MSM works on the principle of creating small area microdata at a certain point 
in time and then generating future microdata from that basis (Ballas et al.  2005a  ) . We 
start with a population of entities, set  P , made up of individuals [ P   1  ,  P   2  , …,  P   n  ] where 
 n  is the number of individuals in the population sample. Each individual has a set of 
attributes, [    1

ta   ,     2
ta   , …    t

ma   ], which describe the individual at time  t . We therefore have 
an     ×n m   array of person attributes. This array needs to be populated with reliable 
data or estimates (in the light of directly surveyed information, etc.). Then we update 
the population so that the baseline population [    

1 2

1

...t t t
ma a a

P   ,     
1 2
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n
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P   ] changes 

to new sets with attributes/states at a point in time  t + 1, t + 2, …  and so on .  
 One of the most important advantages of MSM is that it enables us to examine the 

impact of policy changes on individual decision units, as it is based on unit records. 
This distinguishes MSM from the traditional mathematical models. Such models are 
often based on aggregated or averaged values and individual characteristics can often 
become blurred and even disappear in such models. MSM deals directly with social 
processes at the individual level, therefore it has been extensively used for various 
purposes in studies for which individual characteristics are important. 

 Although microsimulation modelling can be traced back to the pioneering work 
of Guy Orcutt  (  1957  ) , the work of the Swedish geographer Torsten Hagerstrand was 
leading in a very similar direction at a similar time in the domain of migration and 
later innovation diffusion and location theory. Orcutt’s research resulted in DYNASIM 
(Dynamic Simulation of Income Model) (Orcutt  1957 ; Orcutt et al .   1976  ) , which has 
been used for a range of studies and inspired the development of many other MSMs. 
Among them is Steven Caldwell’s (1998) CORSIM (Cornell Microsimulation 
Model), which models large scale government programs and is particularly strong in 
modelling the Social Security Programme. CORSIM constructs a database on the 
basis of a sample of 180,000 persons (70,000 families) from the 1960 US Census 
with demographic and economic attributes. CORSIM simulates changes of each 
individual unit (persons and families) on a yearly step. The resulting data are validated 
and aligned using the available external data before projections into the future. 

 CORSIM has a wide range of modules and therefore can be used extensively in 
different policy application domains. In 1995, CORSIM was selected by the 
Canadian government as a template for its own model development and the 
‘Canadianised’ sister model was soon released as DYNACAN (Morrison  2003  ) . In 
1997, partly inspired by the Canadian strategy, the Swedish also selected CORSIM 
as the starting point of a new Swedish dynamic microsimulation model (SVERIGE), 
focused on exploring person-environment interactions (Rephann  1999  ) .  

    3.3   Application Areas of Public Policy MSMs 

 In this section we aim to provide an introduction and overview to MSMs using 
examples from four domains in which the deployment of these models has been espe-
cially productive. The domains are tax and benefi ts, pensions, health and  transport. 
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Of course, this range of domains is not entirely complete: for example, other exam-
ples can readily be found in anthropological systems, urban housing and local labour 
markets. It does however encompass the majority of work in microsimulation and 
can be used as a basis for understanding the nature of this research and its signifi -
cance for individual-based modeling more generally. A synopsis of some important 
models is provided in Table  3.1 .  

  Taxation and benefi ts  is a core area building directly from Orcutt’s original interest 
in economic systems. Tax-benefi ts models such as those shown in Table  3.1  aim to 
combine detailed representations of individual and household structures with well-
defi ned rules about their fi nancial entitlements. For example, if the annual (earned) 
income of an individual is £50 K, then the marginal rate of tax is 40%. Such models 
can then be used in a natural and conceptually straightforward way to examine the 
‘what if?’ ramifi cations of changes in the rules (e.g. what happens if the marginal 
rate of taxation in the £50 K band is increased from 40% to 50%?). Because the 
representation of individual and household characteristics is so detailed in the MSM, 
this method is suitable for highly refi ned analysis which is often required here. Thus 
if housing benefi ts are assessed against, say, the income, occupation, and age of 
household heads, the composition of the family, and the tenure and physical size of 
the residence, then these characteristics and the associated benefi t rates can all be 
represented relatively easily in the MSM. 

  Pension Microsimulations  such as PRISM (Pension and Retirement Income 
Simulation Model) and PENSIM are typically used with a view to the future. In this 
way the National Insurance or other contributions of the existing workforce can be 
balanced against the specifi c entitlements of the retired population. Various policy 
responses to the impact of ageing populations in developed economies may be 
tested and evaluated. Similarly Health Microsimulations provide a powerful means 
to explore changes in the age and social composition of populations on the 
 requirements for medical treatment and care. In addition to the national models 
outlined in Table  3.1 , recent examples have begun to explore the implications of 
micro-demographic structure on morbidity and the spatial deployment of health 
care services such as diabetes (Smith et al.  2006 , see also Smith,  2012    ), obesity 
(Edwards et al.  2011  )  and smoking-related illnesses (Tomintz et al.  2008  ) .  Transport 
microsimulations  can be used for both transport policy assessment and simulation 
of a transport system or its components. The sheer breadth of these models is 
impressive, spanning all the way from microscopic simulation of individual vehicles 
to the representation of aggregate network conditions in a region or urban area. 

 The previous commentary, and the detail of Table  3.1 , allows us to propose some 
useful conclusions about the technique of MSM. Firstly, fl exible aggregation is a 
major strength of this approach. In the fi nancial examples, we are primarily interested 
in the net effects of a rule e.g. how much benefi t will the UK Exchequer derive from 
an increase in taxes, and what will be the distributional consequences of this change 
across social groups? The multiple application of rules across individual units is 
essentially a means to this end. Similarly in transport applications, the rules for 
 individual vehicles may be quite detailed, but the ultimate objective is to say some-
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   Table 3.1       Comparison of static and dynamic MSM   

 Model name & 
domain  Origin  Description and example applications 

 Indicative 
reference(s) 

  (a) Tax-benefi ts  
 TRIM (Transfer 

Income 
Model) 

 US  Simulates the major governmental tax, 
transfer, and health programs that 
affect the population; understand the 
potential outcomes of public policy 
changes such as welfare reform, tax 
reform, and national health care reform 

 Beebout and 
Bonina  (  1973  )  

 POLIMOD  UK  Demonstrate how VAT, National Insurance 
Contributions and Local Taxes are 
calculated under different assumptions; 
entitlement to retirement pension and 
other non-means-tested social security 
benefi ts 

 Redmond et al. 
 (  1998  )  

 STINMOD  Australia  Static micro-simulation model of the 
tax and transfer systems. The rules 
of government programs are applied to 
individuals and aggregated to calculate 
outcomes for income units, families, 
or households 

 Lambert et al. 
 (  1994  )  

 ITEP  US  Calculates revenue yield and incidence of 
federal, state and local taxes by income 
group. It calculates revenue yield and 
proposed amendments to current law. 
To forecast future revenue and incidence 
the model relies on government or other 
widely respected economic projections 

 Ettlinger and 
O’Hare  (  1996  )  

 EUROMOD  Europe  Tax-benefi t model that covers 15 countries. 
It provides estimates of the 
distributional impact of changes to 
personal tax and transfer policy at either 
the national or the European Level 

 Sutherland  (  2001  )  

  (b) Pensions  

 PRISM  UK  Dynamic microsimulation of income from 
social security, earnings, assets, public 
and private  occupational pensions and 
retirement savings plans 

 Kennell and 
Sheils  (  1990  )  

 SfB3  Germany  Analyse pension reforms, the effect 
of shortening worker hours, 
distributional effects of education 
transfers, inter-personal redistribution 
in the state pension system 

 Galler and 
Wagner  (  1986  )  

 PENSIM  UK  Simulate UK pensioners’ incomes up to 
the year 2030 and to facilitate pension 
reform 

 Curry  (  1996  )  

 DYNACAN  Canada  Projects the incidence, average levels 
and variation in private pensions 
into the future as a function of 
birth-year, age, and gender 

 Morrison  (  2003  )  

(continued)
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Table 3.1 (continued)

 Model name & 
domain  Origin  Description and example applications 

 Indicative 
reference(s) 

  (c) Health care  
 PBS  Australia  Expenditure on pharmaceuticals by 

different types of households; 
resultant government outlays under the 
Pharmaceutical Benefi ts Scheme; and 
the remaining patient co-payment 
contributions 

 Walker et al. 
 (  1998  )  

 LIFEMOD  UK  Model the lifetime impact of the welfare 
state through examination of health 
status over the life-course and 
implications for health care fi nancing 
in the UK 

 Falkingham and 
Hills  (  1995  ) , 
Propper 
 (  1995  )  

 LIFEPATHS  Canada  A dynamic longitudinal microsimulation 
model of individuals and families 
which simulates the discrete events that 
together constitute an individual’s life 
history 

 Wolfson and 
Rowe  (  1998  )  

  (d) Transport  
 DRACULA  UK  Simulate response of traffi c to different 

network layouts and control strategies; 
measure network performance from 
outputs of the average travel time, 
speed, queue length, fuel consumption 
and pollutant emission 

 Liu et al.  (  1995  )  

 PARAMICS  US  Microscopic simulation of a range of 
real world traffi c and transportation 
problems handling scenarios ranging 
from a single intersection, to a 
congested freeway or the modelling of 
an entire city’s traffi c system 

 Laird et al.  (  1999  )  

 VISSIM  Germany  Models traffi c fl ow in urban areas as a 
discrete, stochastic, time step based 
microscopic model, with 
driver-vehicle-units as single entities. 
The model contains a psycho-physical 
car following model for longitudinal 
vehicle movement and a rule-based 
algorithm for lateral movements 
(lane changing) 

 PTV AG  (  2000  )  

 AIMSUN  Spain  An evolutionary model of the 
transportation system which combines 
individual vehicle movements with 
network data such as traffi c lights and 
detectors as well as road segments. 
Individual components are simulated in 
both continuous and discrete time-steps 

 Barceló et al. 
 (  1999  )  

(continued)
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thing about the underlying transport network and its confi guration. This looks like a 
signifi cant variation in emphasis from other approaches such as ABM where the 
interest in micro-level behaviours ‘for their own sake’ is much more fundamental. 

 It is clear that the range of applications for MSM is hugely varied in relation to 
both geography and substantive problem contexts. One outstanding feature which is 
common to all of the models in Table  3.1  is their policy-relevance. A recurring 
theme is the idea of ‘what if?’ simulations in which the impact of new policy rules 
on the whole system, or individual components and sub-groups can be assessed. 
Alternatively, the rules may stay relatively constant but the underlying conditions 
are changing fast, for example in the case of demographic changes which can have 
profound implications for taxation, pensions, health care and transport systems. 

 Finally, while many of the applications are described as ‘dynamic’ it is necessary 
to retain a healthy degree of skepticism as to the precision of this term. Often dynam-
ics in these models will be little more than a cross-sectional or comparative static 
assessment of some globally assumed shift in the composition of the population. The 
incorporation of pure dynamics in which the individuals in the population actually 
evolve through time, whether through stochastic rules or more complex behavioural 
model processes is much more demanding and unusual. This feature is suffi ciently 
important to demand further expansion in the next section.  

    3.4   Dynamic Microsimulation 

 Generally speaking, static MSMs do not have direct interaction of microanalytic 
units within the context of the model during the time period simulated. Static models 
normally are either deterministic or stochastic. In a static microsimulation, change of 
the demographic structure in the model is performed by static ageing techniques. 
Typically such techniques take a large representative sample with detailed infor-
mation and apply modifi ed laws to it to generate the synthetic demographic and 
economic characteristics expected in the future year. Simulations can estimate the 
impact of a change in the future year As the change of the demographic structure of 

Table 3.1 (continued)

 Model name & 
domain  Origin  Description and example applications 

 Indicative 
reference(s) 

 TRANSIMS  US  Predicts trips for individual households, 
residents and vehicles rather than for 
zonal aggregations of households. 
A regional microsimulation executes the 
generated trips on the 
transportation network, modelling the 
individual vehicle interactions and 
predicting the transportation system 
performance e.g. road speeds and motor 
vehicle emissions 

 TRANSIMS 
 (  1996  )  
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the modelled population is performed by reweighting the age class according to 
external information, it is focused on what consequences of external information 
brings to the population and therefore it does not model the changes in population 
itself. A typical “What-if” Static MSM scenario would be: if there had been no poll 
tax in 1991, which communities would have benefi ted most and which would have 
had to have paid more tax in other forms? (Ballas et al.  2005b ; Gilbert and Troitzsch 
 2005 ; Citro and Hanushek  1991  )  

 Most tax-benefi t MSMs are static. Examples of static microsimulations include 
models such as TRIM (Beebout and Bonina  1973  ) , POLIMOD (Redmond et al .  
 1998  ) , STINMOD (Lambert et al .   1994  )  and EUROMOD (Sutherland  2001  ) . 
Descriptions of such models can be found in the previous section. 

 Dynamic MSM can be considered as a technique where entities change their 
characteristics as a result of endogenous factors within the model. Various degrees 
of direct interaction between micro population units can be found in dynamic MSMs. 
Such interaction typically includes processes such as birth and marriage etc. Dynamic 
microanalytic models rely on an accurate knowledge of the individuals and the 
dynamics of such interactions. In a dynamic MSM, the updating of the demographic 
structure is performed by ageing the modelled population individually (by asking 
“yes or no” questions on birth, death, marriage etc.) with transition probabilities 
according to life tables and/or exogenous time series. Thus the changes in the popu-
lation itself are modelled and the simulation in 1 year may affect an individual unit’s 
characteristics in the subsequent year. A typical future-oriented “what if” Dynamic 
MSM Scenario would be: if the current government had raised income taxes in 
1997, what would the redistributive effects have been between different socio- 
economic groups and between central cities and their suburbs by 2011? (Birkin et al .  
 1996 ; Ballas et al .   2005b ; Gilbert and Troitzsch  2005 ; O’Donoghue  2001  ) . 

 A variety of models have been developed to explore the distributional conse-
quences of demographic change, such as ageing, social mobility and labour market 
transitions. Thus the  DYNASIM  model ages individual and family characteristics by 
year, simulating demographic events as births, deaths, marriages and divorces and 
economic events as labour force participation, earnings, hours of work, disability 
onset, and retirement. It models a wide range of topics, including Social Security 
coverage and benefi ts, pension coverage and participation, benefi t payments and pen-
sion assets, as well as home and fi nancial assets, health status and living arrangements 
etc. (Favreault and Smith  2004  ) . 

 In a similar way  DYNAMOD  (Harding  2002  )  uses discrete event simulation to age 
a 1% sample from the Australian census (about 160,000 individuals) on a monthly basis 
for up to about 60 years. Assets and superannuation have been adding to DYNAMOD 
to facilitate the research of the likely future retirement incomes of Australians. 

  SAGEMOD  (Zaidi  2004  )  is a dynamic demographic/tax model which not only 
estimates incomes but also estimates a random-effects cross-sectional wage  equation 
which included some individual wage history data with the error components. The 
impact of other labour market states (unemployed, inactive, student) in previous 
years has been investigated on the earnings of currently employed individuals. 
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 Static and dynamic MSM each have their own strengths. Static models are regarded 
as more effective at times for specifi c short run projection purposes because of their 
greater simplicity and the often lower costs associated with building such models and 
obtaining computer generated model solutions. Another advantage of static models 
is that they have very detailed programme simulations. From the computational 
viewpoint, static MSMs demand less computing resource. 

 However, dynamic models feature more detailed and realistic population ageing. 
There is general acceptance that dynamic models provide a more realistic represen-
tation of micro population unit behaviour. Dynamic models are also viewed as better 
at producing realistic long-term estimates, which account for interim changes in 
economic and demographic trends (O’Donoghue  2001  ) . Due to the interactions/
interdependencies of the updating, one limitation is that dynamic MSMs are compu-
tationally demanding, even for high-speed modern machines (Ballas et al.  2005b ; 
Gilbert and Troitzsch  2005 ; Citro and Hanushek  1991 ; McDonald, et al.  2006  ) .  

    3.5   Spatial MSM 

 Spatial MSM is a special type of MSM that simulates virtual populations in given 
geographical areas (Ballas et al.  2005b  ) . In a spatial MSM, local contexts can be 
taken into account when studying the characteristics of these populations. Such 
MSMs are concerned with the creation of large-scale datasets estimating the attri-
butes of individuals within the study area and are used to analyse policy impacts on 
these microunits (Birkin and Clarke  1995 ; Clarke  1996  ) . Spatial microsimulation 
models therefore have advantages over other microsimulation models in exploration 
of spatial relationships and analysis of the spatial implications of policy scenarios. 
A spatial MSM can be either static or dynamic. 

 Spatial MSM was fi rst studied by Hägerstrand  (  1985  )  since the 1950s by fi rst intro-
ducing the spatial and temporal dimensions into social studies. Wilson  (  1967  ) , Clarke 
 (  1996  )  and Birkin and Clarke  (  1995  )  extended the theoretical framework over the 
years. Various spatial microsimulations have been developed, including both static 
and dynamic microsimulations. They allow data from various sources to be linked and 
patterns to be explored at different spatial scales with re-aggregation or disaggregation 
of the data. Furthermore they allow updating and projecting, which is of particular 
importance in forecasting future patterns (Clarke  1996 ; Ballas and Clarke  2001  ) . 

 Examples of such models include:  SVERIGE  in Sweden (Rephann  1999  ) . This 
dynamic population model is designed to study human eco-dynamics (the impact of 
human cultural and economic systems on the environment). Its main distinguishing 
characteristic is that it simulates spatial location and mobility of every individual in 
the data. The model took the CORSIM model framework as a starting point, adapt-
ing behavioural modules to be Swedish specifi c. The migration module attempts to 
model locational transitions to an accuracy of 100 m. 

  SimBritain  (Ballas et al .   2005c  )  is a dynamic simulation attempting to model the 
British population at different geographical scales up to the year 2021. Datasets 
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used in this model are the 1991 UK Census Small Area Statistics (SAS) data and the 
British Household Panel Survey (BHPS). Microdata for all wards in Britain have 
been generated through re-weighting the original BHPS data. Previous census data 
from 1971, 1981 and 1991 (SAS) have been used for projections of a set of small 
area statistics. Using these three time points, a trend curve was produced allowing 
tables to be predicted up to 2021. 

  SMILE  in Ireland (Ballas et al .   2005a  )  is a dynamic spatial microsimulation model 
designed to analyse the impact of policy change and economic development on 
rural areas in Ireland. The core model of SMILE is a demographic model. It simu-
lates the basic components of population change, fertility, mortality and internal 
migration and projects population change at the sub-county level. 

  HYDRA  in the UK (Birkin et al .   2005  )  is a GRID enabled decision making support 
system for health service provision. Microsimulation can be run using different 
parameter sets by the user to fi nd out the optimised location of services for specifi c 
queries (further details can be found in Wu and Birkin,  2012 ).  

    3.6   Towards a Hybrid Modelling Approach 

 Over the years, MSMs have been proved to be successful in modelling social sys-
tems, especially in facilitating public policy making and development. Large scale 
MSMs enable us to explore the interaction between policy changes and narrowly 
defi ned ranges of individuals or demographic groups, yet retain the heterogeneity in 
the population as revealed in the large household surveys. The capability of MSMs 
to replicate complex policy structures also allows us to forecast the outcomes of 
policy changes and ‘what if’ scenarios. However, there are also criticisms levelled 
at MSMs which include:

   MSMs require large datasets with high quality;  • 
  Microsimulation model developments are normally computing intensive;  • 
  Large scale microsimulations can take a long time and considerable effort to • 
accomplish;  
  Microsimulation only models one-direction interactions: the impact of the policy • 
on the individuals, but not the impact of individuals on the policy;  
  Microsimulation models are less strong in behavioural modelling; and  • 
  It is diffi cult to validate MSMs (Krupp  • 1986 ; Williamson  1999 ; Citro and 
Hanushek  1991 ; O’Donoghue  2001 ; Gilbert and Troitzsch  2005  ) .    

 Some of these limitations are better handed by individual-based models such as 
cellular automata (CA) and agent-based models (ABMs). More details about both 
modelling types can be found in Iltanen ( 2012 ) and Crooks and Heppenstall ( 2012 ). 
Although MSMs, CA and ABMs each have a different focus, they all model the 
studied system at individual levels, and there is some common ground among the 
three approaches. Firstly, all three approaches are simulations based on the global 
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consequences of local interactions of members of a population. Unlike the  aggregated 
models that often overlook the details at a more refi ned level, they provide a more 
effective and natural way to handle individual behaviours. Secondly these three 
approaches all track the characteristics of each individual through time, in contrast to 
traditional modelling techniques where the characteristics of the population are aver-
aged together. Finally the emergence of global phenomena through local interactions 
in all IBMs (individual-based models) offers more than changes that are simulated 
on the basis of average data for the whole population as in traditional models. 

 With the advance in computing, the fi rst three limitations have been improved 
greatly and new technologies such as ABM can provide the capability for behaviour 
modelling and allow us to study the interaction at both macro and micro levels, as 
well as interactions in both directions. However, despite the usefulness of ABM as 
described in the previous discussion, being a relatively new technology, it sometimes 
lacks more refi ned and well-established theories and concepts (Gilbert and Troitzsch 
 2005 ; Conte et al .   1998  ) . ABM is also known as hard to validate. Many applications 
of agent systems to public or social policy domains involve the development of 
alternative scenarios to facilitate decision-making. However, there is no formal 
theory of scenarios and scenario analysis that tell us how to construct scenarios, 
how many scenarios to construct and how to reason between and across their 
outcomes. Developing formal theories of scenarios and rigorous methods of perfor-
mance assessment for ABM will require collaboration between computer scientists, 
philosophers and decision theorists, as well as the domain experts to which these 
systems are applied. 

 Despite the work that remains to be done, agent-based social simulation can 
provide insight into the structure and effects of policies and norms and can assist in 
understanding and modifying interaction patterns where appropriate and possible 
(Luck et al.  2003  ) . 

 To address the limitations of ABMs and MSMs as individual approaches, we 
suggest further development of a hybrid modelling approach that integrates the 
strengths of both approaches together. The main reasons for the proposal of such a 
hybrid approach include:

   MSM and ABM complement each other;  • 
  Geography provides a bridge to link MSMs and ABMs;  • 
  Previous attempts of hybrid approaches have resulted in fruitful outcomes;  • 
  A hybrid approach may provide a new angle to view classical problems.    • 

 The following sections review various relevant hybrid modelling approaches. 

    3.6.1   ABM and MSM 

 It is generally agreed that MSMs provide important and effective tools for model-
ling in social science. Recent advances have helped to mitigate some of the major 
weaknesses of MSM as outlined above at the start of Sect.  3.6  (Holm et al .   1996  ) . 
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In particular, high quality data is now much more widely available, and large scale 
process intensive simulations are better supported by the computational abilities of 
contemporary hardware. However the robustness of the behavioural basis to MSMs 
can still be questioned. According to Davidsson  (  2001  )  even dynamic MSMs fail to 
match up to ABM to the extent that such models do not justify the behaviours of 
each individual in terms of individual preferences, decisions, plans, etc. Furthermore, 
the interactions between individuals are not modelled in the simulation. Thus ABM 
is “well suited for the simulation of situations where there are a large number of 
heterogeneous individuals who may behave somewhat differently and is therefore 
an ideal simulation method for the social sciences” (Davidsson,  2001 , p. 145). This 
view is endorsed by Jennings  (  2000  )  who highlights the advantage of ABM in 
modelling the intelligent behaviour of individuals by itself or in society. Interestingly, 
in relation to debates about processing capacity, Jennings also notes the potential of 
ABM for improving effi ciency by distributing the control of the computation to 
multiple simpler units evolving through their interactions. 

 In addition to their capabilities for representing social behavior, the capacity of 
ABM to bring together diverse perspectives has been highlighted by Axelrod  (  2005  ) . 
Social science is multi-disciplinary and social models often need to involve different 
disciplines. For instance a sustainability model would involve environmental, social, 
economic, and other disciplinary considerations. Such multidisciplinary tools are 
particularly valuable when the underlying mathematics are intractable. Taking the 
evolu tion of genes as an example, Axelrod pointed out that agent-based modeling 
could easily simulate the evolutionary effects of genes where application of mathe-
matical equations is diffi cult. In this way, ABM can begin to reveal elements of the 
harmony between disciplines. For instance, Axelrod found that an agent-based 
model about military alignments could successfully predict strategic alignments of 
computer companies. 

 From an interdisciplinary perspective, David et al .   (  2004  )  also point out that 
ABM based social simulation originates in the intersection of the social and the 
computer sciences and this interdisciplinary character has encouraged collabora-
tions from scientifi c fi elds. They also suggest that the wide interpretative scope of 
the theory of agents and the advances in computer capability have enlarged the com-
municative and interpretative room for ABM to interchange between different sci-
entifi c fi elds and model interdisciplinary complex systems. 

 Nevertheless it is more constructive to view the relationship of ABM to MSM as 
one of complementarity rather than supremacy. One reason for this is the relative 
recency of the ABM paradigm, which can therefore profi t from the more refi ned and 
well-established theories, concepts and models of social organizations and institu-
tions developed within the social sciences (Conte et al.  1998  ) . This rationale stresses 
that computational modeling is not just an applied tool, but a means for the produc-
tion, testing and refi nement of social theories. Such an eclectic view also allows for 
the development of more refi ned theories about social agents. For example, moving 
away from static and unsophisticated views of individual actors which overempha-
sise either rationality or simple social learning as a basis of behaviour. Hence we 
suggest that the fusion of microsimulation and agent perspectives is potentially an 
ideal combination in the study of both social structures and social behaviours.  
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    3.6.2   GI Science and ABM 

 Torrens and Benenson  (  2005  )  proposed a new paradigm for integrating GIS and 
agent based simulation called Geographic Automata Systems (GAS). This system 
takes advantage of the formalism of automata theory and GIS to unite cellular 
automata and multi-agent systems techniques and provides a spatial approach to 
bottom-up modelling of complex geographic systems that are comprised of infra-
structure and human objects. In this framework, geographic phenomena as a whole 
are considered as the outcomes of the collective dynamics of multiple animate and 
inanimate geographic automata. Geography serves as the binding force in merging 
CA and ABM (which are popularly confused in the geographic literature). Therefore 
automata become uniquely geographical, fusing CA and ABM but extending the 
concept to incorporate notions from GIS and Spatial Analysis. 

 Murphy  (  1995  )  believes that the evolution of GIS as a decision support sys-
tem relies on improvements in technology, the creation of new analysis tools, 
and increased understanding of the interaction between decision support tools 
and the decision maker. He also points out that particularly fruitful areas may 
come from the use of artifi cial intelligence approaches for alternate representation 
of decision domains and knowledge. He thinks cooperation between the disci-
plines will be particularly benefi cial in areas such as data quality, uncertainty 
representation and issues related to the management and sharing of large time-
reliant and source-dependent data. Thus, a rewarding exchange may be possible 
between GI Science and decision support system research streams relating to 
the management, representation, and interpretation of complex multi-dimensional 
knowledge. 

 Gonçalves et al .   (  2004  )  suggest that GIS and ABM address space in different 
perspectives: GIS models geographic space and ABM models the behaviour of 
intelligent agents within geographic space. Gonçalves et al .  propose a conceptual 
framework for integrating these different perspectives in the context of modelling 
and simulation of complex dynamic systems. They suggest that GIS enables the 
defi nition of a geographic region to be related with the phenomena in that region, 
but GIS do not seem to be appropriate to study dynamic phenomena in an area. 
Most ABM tools that use geographic information are not coupled with GIS. 
However, the simulation of the human behaviour with mobility in geographic 
space and intelligent behaviour has increased in the recent decades, which has 
led to a special interest in the integration of agent based models (mainly ABM) 
and GIS. 

 The authors proposed that in the hybrid model, ABM can be used to model the 
intelligent behaviour of entities, e.g. behaviour of people, animals, enterprises, etc., 
while GIS can be used to model geographic space. Intelligent agents move and 
reason within this environment. The authors also point out that GIS are already 
extensively used by people from the natural sciences, civil engineering, territory 
management authorities, urban planning, etc. Therefore there is no point not to give 
them what they already know plus the agents.  
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    3.6.3   Unifi cation of MSM, ABM and GI Science 

 As discussed in the previous section, attempts to bring MSM and ABM together 
(Caldwell et al.  1998 ; Rephann  1999  )  or ABM and GI Science together (Torrens 
and Benenson  2005  )  or MSM and GI Science together (Ballas et al.  2005b ; Holm 
et al .   1996  )  have succeeded. 

 Given the characteristics of the agent based technology and geographical impor-
tance in social policies, researchers including Boman and Holm  (  2004  )  have promoted 
the study of social systems using a combination of different paradigms of MSM, 
ABM and ‘time geography’. Boman and Holm argue that time geography provides a 
perspective to help unify the two paradigms of ABM as developed within computer 
science and MSM as developed within the social sciences. Time and space have 
important impacts on human activities in any social system. The authors suggest that 
time geography provides an alternative perspective on agents and collectives since it 
emphasises the importance of concurrent micro-level representation of agents and 
their relations to other agents. Time geography can also introduce a conceptual frame-
work for analysing social micro-level interaction in time-space in MSM and ABM. 

 Boman and Holm  (  2004  )  attempt to unite the two paradigms through defi ning 
them and reasoning about the central concepts of each of them. They found that all 
three methodologies emphasise individual representation and computational solu-
tion. However many MSMs only apply a fairly aggregated and disconnected repre-
sentation of individual behaviour, while ABM can provide the capacity to model 
individual adaptive behaviours and emergence of such behaviours. Their argument for 
a MSM-time geographic approach is that aggregation prior to analysis and model-
ling of trajectories over the state space of individuals with several attributes distorts 
not only individual but also aggregate results. Individual trajectory interactions and 
constraints need to be modelled individually to refl ect the whole picture. On the 
other hand, MSM are developed with high estimation and validation ambitions, 
close to observables that facilitate empirical tests. 

 Therefore, developments based on a synthesis of the three paradigms can offer 
great potential in the advance of systems analysis methodology. Boman and Holm 
 (  2004  )  believe it gives a new angle to classical problems where we need to:

    1.    achieve consistency with the world outside a defi ned core system boundary;  
    2.    simultaneously represent processes on different spatial and temporal scales;  
    3.    enable agents to concurrently obey internal and external rules, and  
    4.    integrate observable and postulated behaviour while preserving achievability of 

endogenous emergence (Boman and Holm, 2004: p. 108).     

 The potential benefi ts to the integration of MSM and ABM can be seen in rela-
tion to each of the application domains which were considered earlier. Whereas 
fi nancial MSMs look at the stochastic consequences of changing rules, an agent 
perspective will perhaps provide some insight about new behaviours in response to 
a change in the background conditions. For example, changing the rules on housing 
benefi ts to unmarried partners might not just result in a change in payments, but 
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could lead to fundamental shifts in patterns of marriage, cohabitation and family 
formation. A similar point could be made in relation to pension microsimulations. 
So if the retirement age is raised from 65 to 70, then the adjustment is probably 
much more complex than everyone simply agreeing to work 5 years longer. While 
demographic ageing is a major driver of changing health needs, the ability to pro-
vide care will be equally important. As the pressure on formal care increases then 
the value of informal care will also rise disproportionately, but this balance will 
presumably change as dependency rates become higher. Some study of the behavior 
of agents within social networks through which (informal) care is provided could be 
a fundamental component of a more effective model. Lastly, in relation to transport 
some of the boundaries here are already quite blurred to the extent that many sys-
tems already bridge all the way from the driving patterns of individual vehicles to 
strategic decisions about road networks and infrastructure provision (see the exam-
ples in Table  3.1 ). To the extent that individual behaviour is richly accommodated 
within these models then they start to look like ABM anyway, especially if indi-
vidual interactions are accommodated. On the other hand, if individuals are charac-
terized as ‘agents’ but their activity patterns are very predictable and well-defi ned 
then maybe they are not so different to MSM after all.   

    3.7   Conclusions 

 This review has suggested that MSM provides a powerful approach in modelling 
social systems and has a particular importance in public policy modelling studies. It 
has been widely used in a range of application domains, and major developments of 
MSMs have been experienced all over the world in the past few decades. 

 Although MSM has limitations such as requirements for both data and computa-
tional capacity, recent advances have rendered these issues as less signifi cant. More 
importantly, new technologies such as ABM are naturally complementary for tradi-
tional MSMs. One advantage of using ABM is that it allows us to model these 
 systems not only using traditional maths and statistics, but also using behavioural 
information, for which MSM has been criticised. The fl exibility of ABM can also 
help us to achieve consistency outside a defi ned core system boundary. The usage of 
ABM enables us to generate the emergence of global complexity from relatively 
simple local actions and hence may also further reduce the computing requirements 
imposed by long-range interactions in a social system. 

 Geography has an important impact on human activities and therefore it is impor-
tant to model the social system with its local context. The geography also provides 
a bridge to link MSM and ABM together, and the hybrid approach may provide an 
alternative way to study social problems. 

 As previously discussed, the success of hybrid approaches in modelling and 
simulating social systems provides the basis for the unifi cation of MSM and ABM. 
A hybrid approach may offer a great potential for substantial advances in modelling 
social systems.      
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  Abstract   Cities and urban dynamics are today understood as self-organized 
complex systems. While the understanding of cities has changed, also the paradigm 
in modeling their dynamics has changed from a top-down to a bottom-up 
approach. Cellular automata models provide an excellent framework for urban 
spatial modeling of complex dynamics and the accumulation of local actions. 
The fi rst part of this chapter describes the basic concepts of cellular automata. 
The second part discusses the defi nition of complexity and the complex features 
of cellular automata. The history and principles of urban cellular automata models 
are introduced in the third part.      

    4.1   Preliminaries 

 The contemporary city, consisting of numerous strongly interconnected structures, 
multiple centers and continuous fl ows, although spatially scattered, has developed 
into a complex structure that cannot be understood with traditional methods. The 
interpretations about this new urbanity of the third modernisation (metapolisation) 
emphasizes continuous mutual competition between cities. Fast communication 
technologies, on one hand, connect cities and their districts together stronger than 
ever, and on the other hand, it enables scattering of their physical structure so that 
global centers do not by defi nition determine their development. Thus local 
dynamics has increasing meaning for competitiveness of cities (Ascher  2004  ) . 
Cities of third modernity are considered as entities pursuing dynamic change in a 
state of continuous disequilibrium (Batty  2005  )  rather than entities pursuing some 
equilibrium state. For example, economic activity driven by comparative advantage 
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searches continuously for new locations and modes, and thus produces a polycentric 
recentralized structure that disperses the traditional monocentric city. 

 Accompanying these new concepts and city structure, the paradigm has also 
changed in urban modeling: from aggregates to individuals and from equilibrium to 
far-from equilibrium. Complex models and concepts of Cellular Automata (CA) 
offer tools for understanding these dynamics. 

 The history of computing and CA are intertwined with each other and this affi nity 
makes the foundations of CA-based modeling particularly fi rm. Attractiveness of CA 
is largely based on the simplicity of its basic concepts that are accessible to a wider 
audience but are still also intellectually fascinating. Due to the digital revolution 
through the 1990s when competent computing capacity and graphics became 
accessible for almost anyone, there was a rise in computational modeling of urban 
development. Numerous CA-based simulation methodologies for urban dynamics 
have been created during the past few decades. The process begun in the geographi-
cal sciences in the 1960s with so called raster models and continued as development 
of truly cellular models that were based on the idea of complexity. Understanding of 
urban entities as self-organizing systems, and the demand for tools to discern, control 
and predict these emergent phenomena, ensures interest towards computational 
modeling of urban development.  

    4.2   Basic Concepts of CA 

    4.2.1   Origins of CA 

 The history of CA leads back to John von Neumann’s (1966) theory of self-
reproducing automata and his co-operation with Stanislaw Ulam at the time when 
they were working with concepts of artifi cial life and idealizations of biological 
systems. The theory of self-replicating automata describes conceptual principles 
of a machine that was able to self-replicate. Alan Turing was also already working 
with automata in the 1930s and defi ned in his paper “On computable numbers, 
with an application to the Entscheidungsproblem”, a simple abstract computer later 
known as the  Turing machine  (Turing  1936  )  where the idea of the automaton comes 
close to what we today consider as CA. 

 A cellular automaton is a dynamic discrete system and can be defi ned as a lattice 
(or array) of discrete variables or “cells” that can exist in different  states . Usually 
the lattice is considered as infi nite and the number of different states is fi nite. Cells 
change their states in discrete time steps according to local rules which defi ne the 
cell’s state on the basis of states of the cell itself and the neighboring cells in previous 
time steps. These  transition rules  are deterministic. Graphically, simpler forms of 
the cellular automaton lattices are represented as grid format but also other tessella-
tions have been used. Due to the conditions described above, three fundamental 
features of CA have been defi ned: uniformity, synchronicity and locality.  Uniformity  
means that all cell states are transformed by the same set of rules.  Synchronicity  
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means that all the cell states are transformed simultaneously.  Locality  means that all 
the transformation rules are local in nature (Schiff  2008  ) . In the next section, the 
characteristics of CA are discussed using one-dimensional CA as an example.  

    4.2.2   One-Dimensional CA 

 The simplest form of CA, i.e. elementary CA as Stephen Wolfram defi nes it, is 
usually considered as a one-dimensional CA consisting of an array of cells that can 
exist in two states 1/0 (or black/white or alive/dead) in which local rules are applied 
in the neighborhood of the cell itself and its immediate adjacent cells (r = 1). Thus 
the neighborhood of one cell consists of three cells, and since they are varying in 
two values, there are 2 3  = 8 different neighborhood states. For each neighborhood 
state, a transition rule is defi ned. These rules can also be presented as eight-digit 
binary numbers, and thus 2 8  = 256 possible transformation rules exist in a one-
dimensional two state ‘r = 1’-neighborhood cellular automaton. 

 Wolfram was one of the fi rst who really systematically generated and examined 
the behavior of one-dimensional CA. In this work, which started in the early 1980s, 
he classifi ed CA in four universality classes mostly according to the qualitative 
complexity in their behavior (Wolfram  1984  ) . An analysis of the qualitative features 
of CA rules was mainly based on visually observable properties of CA evolution 
patterns (Wolfram  2002  ) . The four Wolfram classes (Fig.  4.1 ) are as follows:  

  The class I  – fi xed – CA evolve to the homogenous state after a fi nite number of time 
steps independently from the initial state. Hence this class of automata is irrevers-
ible, which means that after a certain convergence point where all the cells have the 
same value, it loses all the information from the initial state. However, some excep-
tional confi gurations can be found that do not converge to a homogenous state, but 
the number of these exceptions approaches zero as the size of the automaton 
approaches infi nity. Class 1 CA are comparable with dynamical systems that tend to 
a fi xed-point attractor. 

  The class II  – periodic – CA evolve to periodic structures that repeat after a fi xed 
number of time steps. The size of the possible periods increases while the number 

  Fig. 4.1    Wolfram classes of 1-D CA dynamics       
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of possible states increases. This class is naturally analogous with periodic behavior 
in dynamical systems. 

  The class III  – chaotic – CA evolve to aperiodic patterns almost regardless of the 
initial states. In these chaotic automata, the number of initial cells that affect the 
value of a particular cell increases as new generations evolve. The class III CA are 
analogous with chaotic dynamical systems that are converging to strange attrac-
tors (Wolfram  1984  ) . 

  The class IV  – complex – CA evolve to complex localized structures. This class, with 
a mixture of chaos and randomness, is the most interesting one of the Wolfram 
classes. However, the defi nition for this class is not as rigorous as for the other classes. 
Localized structures that arise as the automaton progresses can move and interact, 
but the exact prediction of this behavior is impossible. For this class, no equivalent 
can be found in dynamical systems. The class IV CA behavior can also be defi ned as 
emergent, which is typical for complex systems in general (Wolfram  1984  ) . 

 In his book “A New Kind of Science”, Wolfram  (  2002  )  discusses the possibility that 
all CA can be divided into these four classes, which have been discovered by exploring 
one-dimensional CA. He also states that results obtained from idealized mathematical 
models can tell us some more general results about complex systems in nature.  

    4.2.3   Two-Dimensional CA 

 After discussing one-dimensional CA, one can ask: what happens if more dimen-
sions are added? Wolfram discusses this question in his papers and his book “A New 
Kind of Science” and concludes that there is no remarkable difference in occurrence 
of complex phenomena as dimensions are added (Wolfram  2002  ) . At least from a 
spatial modeler’s point of view, two dimensions naturally look more interesting 
because of its similarity with maps. If the complexity of two dimensional CA are 
perceived by taking one dimensional slices, then the behavior of the automaton 
resembles pretty much pure one-dimensional CA. But what is maybe more interest-
ing and a new feature after increasing the number of dimensions, is the  overall 
shape  of the pattern that emerges. There are many two-dimensional CA whose 
overall shape approximates a circle, but also rules that lead to more complicated 
overall shapes and it seems that usually these differences in overall shape are very 
sensitive to the initial confi gurations. Even more fascinating is when these shapes 
start to move in two dimensional space as in the most famous CA, John Conway’s 
“Game of Life”, which is discussed later. 

 Another thing that changes with the dimension of the automaton is the space of 
possible rule sets, and also the form of the neighborhood can vary in more than 
one dimension. The most typical form of two-dimensional CA is an orthogonal 
square lattice of cells. In this space, the locality is typically defi ned as two alternative 
neighborhoods:  von Neumann  and  Moore neighborhoods  (Fig.  4.2 ).  
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 Also, a few typical rule categories have been defi ned:  general ,  symmetric  and 
 totalistic  rules. General rule type means all the possible combinations in a given 
neighborhood, e.g. in a fi ve-cell von Neumann neighborhood with two possible cell 
states, there are 2 32   »  4 × 10 9  possible transition rules. The number of possible rules 
can be reduced if different symmetries – like rotational, refl ectional or complete – 
are adopted. Sometimes only sums of cell values in the neighborhood are considered 
as in the Game of Life. This group of rules is called totalistic rules. If the value of 
the cell itself is taken into account, then the rule set belongs to the category of outer 
totalistic rules.  

    4.2.4   Game of Life 

 Developed by British mathematician John Horton Conway, the popular CA applica-
tion the Game of Life was fi rst published in Martin Gardner’s ( 1970 ) column in the 
October  1970     issue of Scientifi c American. Operating in a two-dimensional lattice, 
the rules of the game are defi ned by two cell states and the eight-cell Moore neigh-
borhood. The Game of Life belongs to the Class IV category of CA, and its rule set 
is an example of outer totalistic rules. There are three rules in the Game of Life:

   Rule 1 – Survival: a live cell with exactly two or three neighbors stays alive  • 
  Rule 2 – Birth: a dead cell with exactly three live neighbors becomes a live cell  • 
  Rule 3 – Death: owing to overcrowding or loneliness, in all other cases a cell dies • 
or remains dead.    

 The popularity of the Game of Life rests on the outstanding variation of the 
behavior and in the patterns it can produce with these simple rules. It is also easily 
accessible to the general public through the internet. Several applications of the 
Game of Life in other tessellations, e.g. triangular, hexagonal, have been developed 
but they have not surpassed the original one in richness of behavior.  

  Fig. 4.2    Typical neighborhoods in 2D CA: ( 1 ) von Neumann 1-neigborhood; ( 2 ) Moore 
1-neighborhood; and ( 3 ) von Neumann 2-neighborhood       
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    4.2.5   Life Forms 

 Since the invention of the Game of Life, a signifi cant amount of work and creativity 
has been devoted to the development of different “life forms” (Fig.  4.3 ). The very 
simple patterns, like one or two cell confi gurations, disappear after one generation 
in the Game of Life but there are a huge amount of patterns that continue their lives. 
Life forms that reach an unchangeable state are called  invariant  forms. Patterns 
showing periodic behavior between a fi xed number of confi gurations are defi ned as 
 oscillators . Oscillators with two periods are the most common but oscillators with 
more periods have also been developed. Confi gurations that not only repeat 
themselves but also move in the lattice are called  gliders . One step more complex in 
the structure and behavior in the Game of life is represented by  glider guns  that are 
confi gurations constantly producing new gliders. Some of the glider like behavior is 
called  puffer trains  which are objects moving vertically and leaving stable confi gu-
rations behind them.  Methuselah confi gurations  are initial patterns that achieve 
stable states after a remarkably long evolution, say after several hundreds of 
generations (Schiff  2008  ) . There are still more mathematically interesting features 
of the Game of Life, which are not discussed here.  

 The life forms have proven that the Game of life is capable of self-reproduction. 
The self-reproducing system exploits the information that has been stored in it, in 
the form of instructions and the data to be copied (Casti  1997  ) . In urban spatial 
modeling, this means that the occurrence of certain initial states is copied to other 
locations as the system evolves. 

 What makes CA a special case within other automata and agent based models 
is the stationary structure of the agents (cells). The automata offer a framework 
for abstraction of “behaving systems” in which agents, behaviors, relationships 
and time can be represented formally (Benenson and Torrens  2004  ) . A number of 
defi nitions and characteristics of CA have been represented in the previous sec-
tions. However, it is not necessary to fulfi ll all of these conditions to achieve cer-
tain system dynamics. In spatial modeling, many conditions have been relaxed to 
achieve a better correlation with the system. CA have been tested in varying 

  Fig. 4.3    Different life forms: ( 1 ) invariants, ( 2 ) oscillator ( 5 steps ), ( 3 ) glider ( 5 steps ) and 
( 4 ) glider gun       
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 spatial tessellations, like triangular and hexagonal, as well as a graph form CA. 
The usage of different spatial tessellations has not shown any remarkable differ-
ence in automata behavior except some cellular automata classes (or types). In 
these (exceptional) classes, the neighborhood relations (i.e. tessellation) can 
change (or vary) as the system evolves (i.e. CA proceeds) (Benenson and Torrens 
 2004  ) . The L-systems (Lindenmayer  1968  )  are an example of this kind of CA.   

    4.3   CA as Complex Systems 

 CA have become a standard example of complex systems, although there are no 
rigorous defi nitions of complex systems. However, among different disciplines 
under the umbrella of complexity science, the principle of emergence as an indi-
cation of a complex phenomenon is widely agreed (Holland  1998 ; Casti  2002  ) . 
The emergence arises when simple interaction rules of objects at lower level 
 create unforeseeable phenomena that cannot be derived straight from the objects’ 
qualities at a higher level. As we have seen earlier, the CA obey this kind of self-
organizing behavior. Despite fl uctuating initial states, the class IV CA systems 
organize themselves through dynamical evolution, spontaneously generating 
complicated structures (Wolfram  1988  ) . Irreducibility is another distinguishing 
characteristic of complex systems. They must be studied as a whole, as there are 
no means to explore the system or predict the behavior of the system by looking 
separately at the parts. 

 Casti  (  2002  )  describes three kinds of complex systems. The fi rst one has a 
complex structure but the behavior of the system is simple; as an example he 
gives a mechanical clock. The second system has a simple structure but complex 
behavior, where the toy rotator is provided as an example. In the third type, both 
the structure and the behavior are complex, as in a human brain. Obviously it is 
the second type that is interesting and CA belong to this category. Casti  (  2002  )  
also presents four “fi ngerprints of complexity”: instability; irreducibility; adapt-
ability; and emergence. 

  Instability  refers to the modes of behavior of the system. For the complex system 
it is typical to have different modes of behavior depending upon small changes in 
the initial conditions or the interactions of the system. The four classes of CA 
can be interpreted as well as modes of behavior, and thus CA fulfi ll this criterion 
of complexity. 

  Irreducibility  means that the system is infrangible, i.e. if the system is dismantled, 
it loses some of its essential characteristics. This is against the classical view of 
science where typically properties of the higher level system can be explained by 
properties of the parts and laws governing the behavior of the parts. In CA systems, 
irreducibility is engaged with the capability of universal computing. If some algo-
rithm is used to effectively predict the behavior of the system, it should perform 
more sophisticated computation than the system itself, which is impossible for 



76 S. Iltanen

universal computers. Thus, because the class IV CA – the complex class – is 
 considered to be a universal computer, they are computationally irreducible. 

  Adaptability  becomes apparent in systems that consist of several intelligent agents. 
Typically these agents change their interaction rules on the basis of information rules. 
For example, in traffi c models, one agent such as a driver can change one’s decision 
rules according to the information about the environment. With CA, it is also 
possible to create adaptive agents by considering a cell as an agent and by creating 
for them an internal mechanism that controls the behavior of the cell. 

  Emergence  is often considered to be the most fundamental property of complex 
systems. The organized behavior or structure that is generated at a global level as 
the system evolves according to simple local rules is an emergent phenomenon. 
This self organization cannot be predicted or derived from the properties of the 
isolated parts of the system. In CA this is a feature of the class IV systems, and self-
organization is intrinsic (Casti  2002 ; Wolfram  1988  ) . 

 Efforts have also been made to measure complexity. Ilachinski  (  2001  )  discusses 
a list of different measures of complexity that fall into static and dynamic classes. 
The four static measures are graph complexity, hierarchical complexity, Shannon’s 
information and simplicial complexity, while the four dynamic measures are algo-
rithmic complexity, computational complexity, logical depth and thermodynamic 
depth. The static measures refer to structural properties of an assembly of the sys-
tem and the dynamic measures refer to the dynamic or computational effort that is 
required to describe the information content of an object or a state of the system 
(Ilachinski  2001  ) . However none of these measures alone, or even together, delin-
eate complexity unambiguously. Defi ning and observing is largely based on the 
human ability of visual perception regardless of all the mathematical and technical 
analysis that has been developed. If our standard methods of perception and analysis 
cannot fi nd a short description of the phenomenon, it is considered complex 
(Wolfram  2002  ) . Wolfram also discusses human pattern and texture recognition and 
goes even further by comparing this process to simple computer programs. The 
strong visual nature of the representations of CA models is clearly a strength and 
also one of the reasons for the success of CA in spatial and urban modeling. 

 From a wider perspective, complexity has infl uenced the predominant scientifi c 
world view. Kauffmann  (  2007  )  challenges the reductionist way of doing science 
and offers emergence instead. He discusses the power of creativity in nature, in the 
“biosphere” and in the “econosphere”. Moreover, ontological phenomena, which 
exist in the universe, cannot be deduced from physics. He also states that “our inabil-
ity to state how novel functionalities come to exist in nature is an essential limitation 
to the way Newton taught us to do science” (Kauffmann  2007  ) . This comes close to 
the world of urban planners and architects, who under the functionalist tendency 
have dismantled the intermeshed traditional city structure to monofunctional enclaves. 
What was lost was the rich spectrum of connections in neighborhoods with mixed 
use and diverse functions that, for example, Jane Jacobs has written about in her book 
“The Death and Life of Great American Cities” (Jacobs  1961  ) .  
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    4.4   Urban CA 

 CA include intrinsic spatiality and therefore offer an excellent instrument for  simulations 
of urban spatial dynamics. The huge number and popularity of urban simulation mod-
els based on CA is evidence of this usefulness. With a relatively simple structure and 
model construction, CA also provide support for large parameter spaces (Torrens 
 2009  ) . A self-evident advantage is also the natural affi nity with raster data in GIS and 
alternatively different urban morphological or functional tessellations, e.g. plots of land 
can be quite easily represented as cells in simulation models. 

 In urban modeling, the concept of CA is mainly understood in quite a broad 
sense, and the majority of the applications do not follow all of the conditions of 
strict CA. Some of the rigorously defi ned components of CA can be relinquished 
according to the requirements of the phenomenon that is being examined. Benenson 
and Torrens  (  2004  )  have defi ned these extensions as follows:

   Neighborhoods can vary in size and shape.  • 
  The cell states can be defi ned in different ways: nominal, ordinal, continuous, • 
fuzzy or multi-parameterized.  
  Transition rules can be deterministic, stochastic, fuzzy, given by equations or • 
other predicatives.  
  Factors above-neighborhood level urban hierarchy can be used to control develop-• 
ment in the model.    

    4.4.1   History of Urban CA 

 The history of urban and geographical CA models dates back to the 1950s and 
1960s. Already in  1952    , Hägerstrand ( 1952 ) had developed a high-resolution model 
of spatial diffusion, in which the dynamics were already based on local interaction. 
But the crucial step towards CA was not yet realized while geographical modeling 
concentrated on regional models. However, during the 1960s, some cell space 
models and raster models were introduced (Lathrop and Hamburg  1965 ; Chapin 
and Weiss  1968  ) . Most of the models applied cellular presentation of urban space, 
and their principles were close to the idea of CA models. In cellular space, there 
was a certain state defi ned for each cell, which was updated at every time step. 
However, the raster models did not follow the bottom-up approach, at least not in 
the sense of how we understand this today. The transition rules in those models 
were mainly based on higher level functions and only some of them were based on 
neighborhood relationships. 

 The fi rst true CA model was introduced by Tobler in his article “Cellular 
Geography”  (  1979  ) , where he classifi ed fi ve types of models using a geographical 
array. The fi rst four models were representations of earlier models, but the fi fth 
model – the geographical model – had a new feature: the transition of a cell state 
was based on the von Neumann neighborhood. He also mentions the complex 
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properties of Conway’s Game of Life as an example of CA dynamics. Nevertheless 
the boom of CA based modeling did not begin until the late 1980s when the formal 
background of CA was established within mathematics, computing and natural 
sciences. Also, the development of computer graphics was crucial for CA to become 
common in spatial and urban modeling. One of the central papers was written by 
Helen Couclelis  (  1985  )  where she stated that CA combined with progress in system 
theories can be utilized in studying urban systems. She realized the possibilities of 
emergent characteristics of the global structure that arises from the dynamism of 
local events and presented a framework for cellular modeling of land use. By the 
end of the 1980s, several other papers concerning CA as simulation methods in 
urban dynamics were published (Itami  1988 ; Phipps  1989  among others). 

 The next level in the development of CA models took place when White and 
Engelen  (  1993  )  published the fi rst constrained CA model. The idea of the con-
strained CA model was to combine micro and macro scale mechanisms in cell 
state transition rules. The constrained model enabled merging of traditional top-
down and emerging bottom-up methodology. After this development stage, the 
interest towards the paradigm exploded rapidly. Numerous models based on CA 
have now been developed. There is no rigorous classifi cation of models although 
Santé et al .   (  2010  )  have made a recent attempt at classifying over 30 urban CA 
models. In this chapter, some areas for distinguishing different models are outlined. 
More theoretical models, which focus on the fundamentals of the modeling 
mechanisms, can be distinguished from the more realistic simulation models 
whose intention is to generate plausible scenarios for real environments. The 
modeling methodologies used and the examined phenomena defi ne their own 
reference groups.  

    4.4.2   Theoretical Urban CA Models 

 The development of theoretical urban CA models concentrates on revealing the 
properties and effects of the modeling techniques, where the interest is in the theory 
of CA in an urban context. Michael Batty writes in his book Cities and Complexity 
 (  2005  )  about hypothetical models. He has developed an extensive variety of models 
in this category with his collaborators. These models are simple idealized city mod-
els in which the growth starts from reduced initial conditions, typically from a single 
seed. The idea of the simple models is to reveal special features of growth mecha-
nisms in their purest form in laboratory-like conditions. 

 One of the interesting and salient features of these theoretical models is how 
the concept of geographical potential appears in them. Lots of dynamics in urban 
development is based on “action at a distance” and Batty discusses “action at a 
distance” as an emergent phenomenon that arises as the infl uence of cell transi-
tions propagates in the lattice as the system evolves (Batty  2005  ) . This is a key 
issue in the theory of urban dynamics and in differences between strict CA models 
and more general urban models. The demand for simple strict CA models arises 
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from the “action at a distance” question that can be enlightened by examining 
single cells in those models.  

    4.4.3   Real City CA Models 

 Several urban CA models have been developed with the intent to create future sce-
narios for real urban environments. Therefore, many of their features have a prag-
matic explanation. For instance, they can be confi gured according to the availability 
of data. The division between models into a theoretical or real category is not that 
rigorous. Rather there is a spectrum of models between these extremes. The differ-
ences between urban CA models can be differentiated by how they are confi gured to 
the fi ve basic elements of CA: spatial tessellation, cell states, neighborhoods, transi-
tion rules and time (Liu  2009  ) . The most signifi cant differences between urban CA 
models seems to be based on differences in the transition rules, as they actually 
defi ne the logic of how the modeled phenomena are handled. All these features have 
been stressed differently depending upon the purpose for which the simulation model 
was created. In the following sections we will discuss some examples of models 
developed for the simulation of urban growth, land use, sprawl, gentrifi cation, etc. 

    4.4.3.1   Land Use Change in Constrained CA 

 The constrained CA model developed by White and Engelen  (  1993,   2000  )  has been 
used to simulate land use change. The operational principle of the model is based on 
the transition potential of the cell, which is derived from the properties of the cell 
and its neighboring cells. The potential is based on the intrinsic properties of the cell 
and the infl uence of the neighbors weighted by distance from the central cell. All 
cells are then ranked by their potential and the macro scale mechanisms are applied 
by determining the overall amount of cells to be transformed according to demand 
for certain land use at an aggregate level. The aggregate level transition operations, 
which utilize population data, were developed separately from the CA model. 

 The land use change is represented as a transition of 16 different cell states that 
are classifi ed as active, passive or fi xed state categories. The transition potential of 
the cells is defi ned as the vector sum of the components of attraction or repulsion 
of other land uses, accessibility to transportation networks, and the intrinsic suitability 
for the particular land use and zoning regulations. In the model, the size of the 
neighborhood is relaxed to a circular template of 113 cells. The cell size in the 
model is 500 m × 500 m (White and Engelen  2000  ) . 

 The principle of combining the above neighborhood structures into transition 
functions has also been introduced by others (Xie  1996 ; Batty and Xie  1997 ; Phipps 
and Langlois  1997  ) . How the constraints are formulated varies between the different 
models. The challenge in constrained modeling is how to implement the constraints 
so that the local dynamics are not destroyed.  
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    4.4.3.2   Diffusion-Based Urban Growth 

 The  Sleuth  model represents a diffusion-based view of urban development 
(Benenson and Torrens  2004  ) . The model was developed to simulate urban growth 
for the San Francisco Bay area by Keith Clarke and colleagues during the 1990s 
(Clarke et al .   1997 ; Clarke and Gaydos  1998  ) . The model is based on a self-modifying 
cellular automaton and can be calibrated according to predominant trends of 
urban development. The growth dynamics consist of four growth rules executed in 
the following order in every growth cycle: (1) spontaneous; (2) new spreading 
centre; (3) edge; and (4) road infl uenced growth. The spontaneous growth defi nes 
the random urbanization of a cell by giving a certain probability to every cell 
regarding urbanization. The new spreading centre growth determines with certain 
probability the newly urbanized cells to become a spreading center. The edge 
growth defi nes the growth on the edge of the existing urban structure by giving a 
certain probability to a cell to be urbanized if it has at least three neighbors. The 
road infl uenced growth is based on the urbanization in earlier steps, on the input 
data of the transportation infrastructure and a random walk component. 

 The model also includes an optional  Deltatron -module, which simulates land use 
change. The core model can be used without this module. The number of newly urban-
ized cells, generated in the core model, is the driver for land use transitions. However, 
the  Deltatron -module generates only nonurban land use transitions (Clarke  1997  ) . 

 The calibration is carried out by using historical cross-sectional data as input to 
the model, and the Monte-Carlo method is used in iteration. The calibration phase 
produces fi ve growth coeffi cients as a result. These growth coeffi cients control the 
growth rules that are typical for each simulation area and the input data used in the 
simulation. The input data needed for the model consist of fi ve (or six if the 
 Deltatron -module is implemented) layers: slope, land use ( Deltatron ), excluded, 
urban, transportation and auxiliary hill shade. The name  Sleuth  is comprised from 
the fi rst letters of the layer names. After the calibration phase, the predictions 
(Fig.  4.4 ) can be executed using growth coeffi cients (Clarke et al .   1997  ) .  

 The  Sleuth -model combines a CA approach with different statistical methods to 
achieve higher realism in simulations. The features of the excluded layer enable the 
top-down control of growth to be combined with the bottom-up growth dynamics in 

  Fig. 4.4    Sleuth-model simulations of Helsinki city region. Three predictions for the hypothetical 
year 2040 with different input data. Taken from Iltanen  (  2008  )        
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a way that the level of top-down regulation can be defi ned by the user. The defi nition 
of urban and non-urban areas can be utilized in terms of density to catch sprawl like 
development (Iltanen  2008  ,  2011 ) .  

    4.4.3.3   Urban Sprawl in CA 

 One interesting exploration concerning urban growth and polycentricity was intro-
duced by Batty and Xie  (  1997  ) . Their model was based on the idea of development 
potential, which is a driving force of urban growth. The positive feedback in land 
use transformations creates growing clusters that break the monocentric structure. 
This model was implemented in cellular space where the potential of the cell evolves 
on the basis of itself. 

 Different grades of urbanization and growth were modeled by Batty and Xie 
 (  1997  ) . They also used an epidemic model and generalized it to a spatial context 
(Batty  2005  ) .The model exploits aggregate models as a part of the simulation pro-
cess, embedding them in the CA model  Duem  (Batty et al .   1999  ) . The  Duem  model 
is a CA model that simulates urban growth and the land use change of fi ve different 
categories. The fi ve land uses of the model are housing, industry, commerce, services 
and vacant land. The transport network is also represented in cellular form. The 
model utilizes different decision methods and life-cycle processes of land use.  

    4.4.3.4   Fuzzy Urbanization 

 Fuzzy logic and fuzzy set theory have also been utilized in modeling urban growth. 
It has been argued that fuzzy methodologies are suitable for urban modeling since 
both physical factors and human decision making are characterized by uncertainty 
and fuzziness (Wu  1996 ; Liu  2009  ) . Many urban conditions are continuous rather 
than discrete by their nature, which points to the appropriateness of using fuzzy 
logic in modeling urban dynamics. Fuzzy set theory has been developed to extend 
crisp set theory by defi ning membership of a set gradually instead of through a 
binary defi nition; 0 (=non member) or 1 (full member). Wu  (  1996  )  developed a 
methodology that utilized fuzzy logic in CA transition rules. He applied linguistic 
modeling with the idea to couple behavioral considerations of decision making to 
the simulation process. Liu  (  2009  )  developed an urban fuzzy constrained CA model 
in which fuzzy set theory has been used in the defi nition of cell states and their 
grade of urbanity. Liu  (  2009  )  found that more realistic simulation results were pro-
duced in terms of the human decision-making process. Moreover, fuzzy logic has 
been used in the representation of drivers and in the transition rules for an urban 
growth model in the city of Riyadh, Saudi Arabia (Al-Ahmadi et al.  2009a ;  2009b ; 
 2009c  ) . One of the main advantages of using fuzzy logic was the ability to interpret 
the resulting model and the rulebase, and to understand which drivers are important 
and which rules fi re most frequently during different periods of urban growth.    
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    4.5   Conclusions 

 The increasing connectedness of urban structure, both locally and globally, makes it 
more and more diffi cult to understand and control the development of cities. CA 
models, as part of the modeling toolkit, can enlighten the complex interactions and 
relations in networked urban structure. The better we know the theoretical behavior 
of our models, the better we can adjust them to real world situations. Thus, there is 
still space for both theoretical and applied explorations of the models of urban 
dynamics. The knowledge concerning theoretical aspects of the model also enhances 
their transparency. This transparency is required for keeping the basis of the model 
simple enough to catch the complex features in the system. 

 The strength of CA models is fast processing of information and the illustrative 
nature of the results, which can be effectively interpreted by human visual percep-
tion. Many possibilities also lie in the exploitation of the urban morphological 
elements in CA modeling. New dimensions could be added to the modeling scheme 
by using suitable urban morphological elements to add more coherence between 
the model and reality. The quantitative analysis of urban morphological objects 
and confi gurations could be incorporated within the automata models and also the 
utilization of suitable morphological tessellations could be developed to achieve 
more sensitive representation of the environment. 

 Simulations do not necessarily represent the behavior of real urban systems, yet 
they reveal to us some essential mechanisms that are part of the overall dynamics. 
The models can be used as tools within urban planning to produce unforeseeable 
development paths and to help generate scenarios for the basis of decision making. 
By exploiting simulation models, suitable boundary conditions can be outlined to 
achieve eligible development, although the modeling always leaves the fi nal state 
open. The challenge in the wider utilization of simulation models is a tradeoff 
between the ease of accessibility and understanding the inner logic of these models.      
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  Abstract   The application of agent-based modelling (ABM) to simulating dynamics 
within geographical systems has seen a considerable increase over the last decade. 
ABM allows the disaggregation of systems into individual components that can 
potentially have their own characteristics and rule sets. This is a powerful paradigm 
that can be exploited through simulation to further our knowledge of the workings 
of geographical systems. We present in this chapter an overview of ABM; the 
main features of an agent-based model are given, along with a discussion of what 
constitutes an agent-based model. The distinction between cellular automata (CA), 
microsimulation (MSM) and agent-based models are discussed along with the 
advantages and limitations of ABM for modelling geographical systems. We conclude 
with a brief discussion of important areas for further research.      

    5.1   Introduction 

 Many geographical systems are characterised by continual change and evolution 
through time and space. The impacts of interactions between individual agents 
(humans, cities or more abstract representations), or an individual agent and the 
environment (physical, social, information etc) can be felt at multiple scales as well 
as over differing timescales. Previous approaches to modelling the complexity of 
geographical systems have focused on representing these systems as static aggrega-
tions of populations, rational aggregate behaviour and fl ows of information. Examples 
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of these “traditional approaches” include multiple regression, location-allocation 
and spatial interaction models; Batty  (  2012  )  provides a detailed discussion of the 
different approaches applied within geographical modelling. 

 While the utility of these approaches are exemplifi ed within the academic litera-
ture, one of the central criticisms that can be levelled at them is treatment of all 
geographical components as largely homogeneous entities, for example, populations 
modelled with the same characteristics. Over the course of the twentieth century 
geography has incorporated ideas and theories from other disciplines including 
economics, mathematics and computer science. These ideas have strengthened the 
signifi cance of both modelling and understanding the impact of individual agents and 
the heterogeneity of geographical systems at different spatial and temporal scales. 
Simulating these processes and their impacts ‘realistically’ presents a signifi cant 
challenge for the twenty-fi rst century geographer. 

 To understand geographical problems such as sprawl, congestion and segregation, 
researchers have begun to focus on bottom-up approaches to simulating human 
systems, specifi cally researching the reasoning on which individual decisions are 
made. One such approach is agent-based modelling (ABM) which allows one to 
simulate the individual actions of diverse agents, and to measure the resulting system 
behaviour and outcomes over time. The distinction between these new approaches 
and the more aggregate, static conceptions and representations that they seek to 
complement, if not replace, is that they facilitate the exploration of system processes 
at the level of their constituent elements. 

 Essential to the progression of ABM has been the development of automata 
approaches more generally. An automaton is a processing mechanism with character-
istics that change over time based on its internal characteristics, rules and external 
input. Automata process information input to them from their surroundings and their 
characteristics are altered according to rules that govern their reaction to these inputs. 
Two classes of automata tools – cellular automata (CA) and agent-based models – have 
been particularly popular, and their use has dominated the research literature. 

 The purpose of this chapter is to provide an overview to ABM. The key features 
of an agent-based model will be presented along with a discussion of what consti-
tutes an agent-based model and brief overviews of the main areas of consideration 
when undertaking modelling. The distinction between CA, microsimulation (MSM) 
and ABM approaches are briefl y outlined. The advantages and disadvantages of 
ABM for simulating geographical systems are then discussed before an overview of 
geographical applications are given. We conclude the chapter with a summary and 
discussion of areas that require further consideration.  

    5.2   What Is an Agent? 

 There is no universal agreement amongst researchers on the precise defi nition of the 
term ‘agent’ with researchers continually debating whether defi nition should be by 
an agent’s application or environment; however defi nitions do tend to agree on more 
points than they disagree (Macal and North  2005  ) . Diversity in their application 
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makes agent characteristics diffi cult to extract from the literature in a consistent and 
concise manner as often an agent-based model is described from the perspective of 
its constituent parts (Bonabeau  2002  ) . 

 From a pragmatic modelling standpoint, there are several features that are common 
to most agents (Wooldridge and Jennings  1995  – extended and explained further by 
Franklin and Graesser  1996 ; Epstein  1999 ; Macal and North  2005  ) . These are briefl y 
presented below:

    • Autonomy : agents are autonomous units (i.e. governed without the infl uence of 
centralised control), capable of processing information and exchanging this 
information with other agents in order to make independent decisions. They are 
free to interact with other agents, at least over a limited range of situations, and 
this does not (necessarily) affect their autonomy.  
   • Heterogeneity : agents permit the development of autonomous individuals e.g. 
an agent representing a human could have attributes such as age, sex, job etc. 
Groups of agents can exist, but they are spawned from the bottom-up, and are 
thus amalgamations of similar autonomous individuals.  
   • Active : agents are active because they exert independent infl uence in a simulation. 
The following active features can be identifi ed:

     – Pro-active/goal-directed : agents are often deemed goal-directed, having 
goals to achieve (not necessarily objectives to maximise) with respect to their 
behaviours.  
    – Reactive/Perceptive : agents can be designed to have an awareness or sense of 
their surroundings. Agents can also be supplied with prior knowledge, in effect 
a ‘mental map’ of their environment, thus providing them with an awareness of 
other entities, obstacles, or required destinations within their environment.  
    – Bounded Rationality : throughout the social sciences, the dominant form of 
modelling is based upon the rational-choice paradigm (Axelrod  2007  ) . Rational-
choice models generally assume that agents are perfectly rational optimisers 
with unfettered access to information, foresight, and infi nite analytical ability 
(Parker et al.  2003  ) . However, agents can be confi gured with ‘bounded’ 
rationality (through their heterogeneity). This allows agents to make inductive, 
discrete, and adaptive choices that move them towards achieving goals.  
    – Interactive/Communicative : agents have the ability to communicate exten-
sively. For example, agents can query other agents and/or the environment 
within a neighbourhood.  
    – Mobility : agents can ‘roam’ the space within a model. Juxtaposed with an 
agent’s ability to interact and their intelligence, this permits a vast range of 
potential uses. However, agents can also be fi xed.  
    – Adaptation/Learning : agents can also be designed to be adaptive, producing 
Complex Adaptive Systems (CAS; Holland  1995  ) . Agents can be designed 
to alter their state depending on previous states, permitting agents to adapt 
with a form of memory or learning. Agents can adapt at the individual level 
(e.g. learning alters the probability distribution of rules that compete for 
attention), or the population level (e.g. learning alters the frequency distribution 
of agents competing for reproduction).       
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 This list is not exhaustive or exclusive; within an application agents can possess 
other characteristics and for some applications, some features will be more important 
than others (Wooldridge and Jennings  1995  ) . Often, there are many different types of 
agents within one simulation. 

    5.2.1   What Does an Agent Look Like? 

 Agents can be representations of any type of autonomous entity. These could be, for 
example, people, buildings, cars, land parcels, water droplets or insects. Figure  5.1  
shows the similarities between the concept of (i) a “social” human and (ii) a grocery 
retailer and of a representation of an agent within an object-orientated program (see 
Abdou et al.  2012 ; Crooks and Castle  2012 ; Grimm and Railsback  2012  who explore 
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  Fig. 5.1    Representation of ( a ) human agent and ( b ) petrol retailer agent alongside that of represen-
tation within an object-orientated environment       
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constructions of agent-based models in more detail). It should be noted that ABM is 
not the same as object-oriented simulation, although the object-oriented paradigm 
provides a suitable medium for the development of agent-based models. For this 
reason, ABM systems are invariably object-oriented (Gilbert and Terna  2000  ) .  

 A collection of multiple, interacting agents, situated within a model or simulation 
environment such as represented by the artifi cial world as shown in Fig.  5.2  is termed 
an agent-based model. Here, agents can be representations of animate entities such 
as humans that can roam freely around an environment or be inanimate, such as a 
petrol retailer, that has a fi xed location but can change state.   

    5.2.2   Rules, Behaviour and Relationships 

 Each of the inanimate and animate agents outlined above can possess rules that 
will affect their behaviour and relationships with other agents and/or their surround-
ing environment. Rules are typically derived from published literature, expert 
knowledge, data analysis or numerical work and are the foundation of an agent’s 
behaviour. One rule-set can be applied to all agents or each agent (or categories of 
agents) can have its own unique rule set. For example, the retail petrol agents in 
Heppenstall et al.  (  2006  )  all operated on the same basic rule set based on a desire to 

  Fig. 5.2    ABM: the creation of artifi cial worlds populated by agents (Adapted from Cederman  2004  )        
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maximise profi ts. Further work saw different types of retailer agents, for example 
supermarkets, international, national and independent stations, given their own 
“realistic” rule-sets based on published behaviour, data analysis and numerical 
analysis (Heppenstall et al.  2006  ) . 

 Rules are typically based around ‘if-else’ statements with agents carrying out an 
action once a specifi ed condition has been satisfi ed. However, rules can also be put 
into action in ignorance of the actions of other agents. Agents can also be imbedded 
with a notion of learning and thus ‘intelligence’ through evolutionary computation 
(see Heppenstall et al.  2007  for further details). More recently there has been a 
move towards incorporating behavioural frameworks within agent-based models to 
better represent human behaviour. For example, Malleson et al.  (  2010  )  used the 
PECS (Physical conditions, Emotional states, Cognitive capabilities and Social 
status) framework to represent the motivations and desires of criminals. This type of 
work marks a move towards a more sophisticated handling of agent behaviour. 
Kennedy  (  2012  )  provides an overview of different frameworks for handling human 
behaviour in agent-based models. 

 Agents can interact with each other and amongst themselves and with the 
environment. Relationships may be specifi ed in a variety of ways, from simply 
reactive (i.e. agents only perform actions when triggered to do so by some external 
stimulus e.g. actions of another agent) to goal-directed (i.e. seeking a particular 
goal). The behaviour of agents can be scheduled to take place synchronously 
(i.e. every agent performs actions at each discrete time step, all change occurs 
simultaneously), or asynchronously (i.e. agent actions are scheduled by the 
actions of other agents, and/or with reference to a clock).  

    5.2.3   Agent Environments 

 Environments defi ne the space in which agents operate, serving to support their 
interaction with the environment and other agents. For example, depending on the 
space defi ned for agent interactions, proximity may be defi ned by spatial distance 
for continuous space, adjacency for grid cells, or by connectivity in social networks. 
Agents within an environment may be spatially explicit, meaning agents have a 
location in geometrical space, although the agent itself may be static. For example, 
within a route navigation model, agents would be required to have a specifi c loca-
tion for them to assess their route strategy. Conversely, agents within an environ-
ment may be spatially implicit; this means that their location within the environment 
is irrelevant. 

 In a modelling context, agent-based models can be used as experimental media 
for running and observing agent-based simulations. To this extent, they can be 
thought of as a miniature laboratory where the attributes and behaviour of agents, 
and the environment in which they are housed, can be altered and the repercussions 
observed over the course of multiple simulation runs, thus providing a tool to ‘think 
with.’ The ability to simulate individual actions of many diverse agents and measure 
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the resulting system behaviour and outcomes over time (e.g. changes in patterns of 
traffi c fl ow), means agent-based models can be useful tools for studying the effects 
on processes that operate at multiple scales and organisational levels (Brown  2006  ) . 
In particular, the roots of ABM are within the simulation of human social behaviour 
and individual decision-making (Bonabeau  2002  ) . In this sense ABM has trans-
formed social science research by allowing researchers to replicate or generate the 
emergence of empirically complex social phenomena from a set of relatively simple 
agent-based rules at the micro-level (Balan et al.  2003  ) .   

    5.3   Individual-Based Models 

 Agent-based models fall into the broad category of individual based models. Within 
this category are also the closely related techniques of CA and MSM. This section 
clarifi es the scope of these other techniques and emphasises the distinction from 
agent-based models. CAs and MSM are more fully explained in Iltanen  (  2012  )  and 
Birkin and Wu  (  2012  ) . 

    5.3.1   Cellular Automata 

 The basic features of CA are well-known from the research literature. A CA is a 
discrete dynamic system, the behaviour of which is specifi ed in terms of local rela-
tions. The space in a CA system is divided into a lattice or grid of regularly-space 
cells of the same size and shape, usually square. Each cell has a value either 0 or 1 
or on a scale from 0 to 1. The state of a cell and its behaviour is determined by the 
state of other cells in close proximity at a previous time step, by a set of local rules 
and by the cell itself (Benenson and Torrens  2004 ; Torrens  2003 ; Wolfram  2002  ) . 

 An important feature of a CA is that the automata’s location does not move; they 
can only change their state. The position of the cells and their neighbourhood rela-
tions remain fi xed over time. In contrast, agents can be either fi xed in location or 
free to ‘roam’ around their environment. Unlike agents, CAs cannot have more than 
one attribute; for example, a cell could be occupied or unoccupied, but the cell could 
not contain multiple attributes such as building type, date built etc. 

 Both CA and agent-based models, model the complexity of social systems with 
similar individual level representations. However, they differ in their emphasis; CA 
model social dynamics with a focus on the emergence of properties from local inter-
actions while agent-based models simulate more complex situations where agents 
control their own actions based on their knowledge of the environment (Birkin and 
Wu  2012  ) . 

 In practice, CA and ABM have often been applied separately to explore a wide 
variety of geographical phenomena. This is particularly evident in urban modelling. 
For example, CA models are commonly applied to represent possible land-use 
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changes (for example, White et al.  1997 ; Landis and Zhang  1998  )  while ABM are 
often applied to crowd dynamics and traffi c simulation (see Benenson and Torrens 
 2004  for further reviews). However, models are increasingly being developed using 
a combination of CA and ABM techniques to produce fl exible and powerful models, 
and the distinction between them is increasingly becoming blurred.  

    5.3.2   Microsimulation 

 MSM is a well established methodology that works on the principle of creating small 
area microdata at a point in time, and then generating future microdata from that 
basis (Ballas et al.  2005  ) . MSM has been extensively applied to modelling the effects 
of different policy scenarios on individual ‘units’, for example understanding the 
implications of a factory closure on individual households. 

 As with CA and ABM, MSM operates at the level of the individual, is able to 
simulate the global consequences of local interactions whilst allowing the character-
istics of each individual to be tracked over time. However, crucially in contrast to 
ABM, MSM only models one-direction interactions: the impact of the policy on the 
individuals, but not the impact of individuals on the policy and interactions between 
individuals are not simulated. Furthermore MSM models do not have the behavioural 
modelling capability of ABM. 

 Birkin and Wu  (  2012  )  see the relationship between ABM and MSM as compli-
mentary; linking the two approaches can help overcomes inherent limitations in 
both approaches, for example problematic validation in ABM and the absence of 
real behavioural modelling in MSM. Examples of the hybridisation of these 
approaches can be found in the work of Boman and Holm  (  2004  )  and more recently 
Wu et al.  (  2008  ) .   

    5.4   Constructing an Agent-Based Model 

 Creation of an agent-based model can be facilitated through the use of an object-
orientated language, modelling toolkits and platforms. Here we briefl y discuss 
these approaches describing their advantages and disadvantages. For a more 
detailed discussion, the reader is directed to Crooks and Castle  (  2012  ) . 

 Frequently used programming languages are Java and C++. While programming 
from the ground up allows complete control over every aspect of the agent-based 
model, this can be a time-consuming option unless the researcher is an experienced 
programmer. Model implementation can be cumbersome and considerable time can 
be spent on non content-specifi c aspects such as graphical user interfaces (GUI’s), 
visualisation and data importing. 

 Toolkits do not require substantial coding experience and provide conceptual 
frameworks and templates that allow the user to design a customised model. 
Prominently used toolkits include the highly popular Repast, SWARM and MASON, 
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although Crooks and Castle  (  2012  )  note that there are over 100 toolkits currently 
available. These toolkits are often supported by libraries of pre-defi ned methods and 
functions that can be easily incorporated into an agent-based model and linked into 
other software libraries, for example geographical information systems (GIS) such 
as OpenMap or GeoTools. Using a toolkit can greatly reduce the model construction 
time allowing more time to be dedicated to research. However, drawbacks include a 
substantial time investment on behalf of the researcher to learn the how to design 
and implement a model in the toolkit and the programming language the software 
uses. After this investment of time, it is possible that the desired functionality is not 
available. 

 In addition to toolkits, there is a steady increase of available software for con-
structing agent-based models. Notable examples include NetLogo and AgentSheets. 
Utilisation of such software is particularly useful for rapid development of basic or 
prototype models. The major drawback using software is that researchers are 
restricted to the design framework supported by the software and maybe unable to 
extend or integrate additional tools.  

    5.5   Working with Agent-Based Models 

 Once a model has been designed at the level of abstraction deemed necessary for the 
purpose of the model and an appropriate toolkit or software chosen for implementation 
(see Grimm and Railsback  2012 ; Crooks and Castle  2012  for more of a discussion), 
several other important issues need to be considered. These revolve around gaining 
an understanding and communicating the inner workings of the model but also 
considerations with respect to verifi cation, calibration and validation of the model 
itself. It is to these issues that we now turn. 

    5.5.1   Verifi cation, Calibration and Validation 

 One of the greatest challenges of utilising ABM concerns the issues of verifi cation, 
calibration and validation (Crooks et al.  2008  ) . “Verifi cation is the process of 
making sure that an implemented model matches its design. Validation is the 
process of making sure that an implemented model matches the real-world.” (North 
and Macal  2007 , pages 30–31). Verifi cation is thus as a much a matter of testing the 
logic of the model through its computer programme as testing its formal logic. It 
involves checking that the model behaves as expected which is something that is 
often taken for granted. Validation relates to the extent that the model adequately 
represents the system being modelled (Casti  1997  )  and in this sense, it involves the 
goodness-of-fi t of the model to data. However, the validity of a model should not be 
thought of as binary event (i.e. a model cannot simply be classifi ed as valid or 
invalid); a model can have a certain degree of validity (Law and Kelton  1991  ) , 
which of course is encapsulated by various measures of fi t. 
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 In contrast, calibration involves fi ne-tuning the model to a particular context and 
this means establishing a unique set of parameters that dimension the model to its 
data. This is not validation  per se  but calibration can often involve validation because 
the parameters are often chosen so that performance of the model related to data is 
optimal in some way, in terms of some criterion of goodness-of-fi t, for example. 
This is a large subject area and suffi ce it to say, many if not most agent-based 
models suffer from a lack of uniqueness in parameter estimation due to the fact that 
their assumptions and processes tend to outweigh the data available for a complete 
assessment of their goodness-of-fi t. 

 Concerns have been raised pertaining to verifi cation and validation by numerous 
researchers (e.g. Batty and Torrens  2005 ; Crooks et al.  2008  )  and can be considered 
limitations to ABM (see Sect.  5.7 ). Ngo and See  (  2012  )  present a more detailed discus-
sion of how verifi cation, calibration and validation issues can be addressed while Evans 
 (  2012  )  raises awareness of error and uncertainty with respect to input data, parameteri-
sation, and model form and offers guidance to minimising and understanding such 
errors. These issues are only mentioned here to stress to the reader that these are 
important and need to be considered when working with agent-based models.  

    5.5.2   Communication and Visualisation 

 Agent-based models tend to be overtly visual and this is extremely helpful as visuali-
sation is one of the most effective ways to communicate key model information with 
regard to ABM (North and Macal  2007  ) . Some argue that by making models more 
visual they become more transparent (Batty  2007  )  but also by visualising key model 
processes, helps to convey the model clearly and quickly (Kornhauser et al.  2009  )  and 
thus aiding with the verifi cation and validation of model outputs. For example, via the 
GUI of the model we are able to track the simulation history as advocated by Axelrod 
 (  2007  ) . Through this we can observe and explain how aggregate outcomes emerge 
from the local interactions of many individuals. Moreover, there are also qualitative 
evaluations of model validity that might be made from visualising outcomes of such 
models. For example, Mandelbrot ( 1983 )    argues that models which generate spatial or 
physical predictions that can be mapped or visualised must ‘look right’. 

 Patel and Smith  (  2012  )  provide a review of tools, techniques and methods for 
such visualizations in the second and third dimensions. Such tools as game engines 
and virtual worlds (see Crooks et al.  2009  )  provide a highly visual and immersive 
medium for ABM and has the potential to greatly aid in the communication and 
understanding of agent-based models. The dynamic and real-time visualisation and 
communication options (especially those in virtual worlds) provided by agent-based 
models allows us to address the challenge modellers face on how we might com-
municate and share agent-based models with all those we seek to infl uence. In the 
past, model results were mainly presented through the discussion of the model 
outcomes via static charts or screen shoots. However, as one of the key aspects of 
ABM lies in their dynamics, real-time visualisation of models and their outcomes 
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can capture this and in a sense, show how micro interaction of individuals leads to 
more aggregate outcomes. 

 However, visualisation alone does not address all the issues relating to the 
communication of agent-based models. We also need methods to convey the model 
structure and key model parameters that allow for replication of such models. 
Replication of models allows others to gain confi dence about the model and its under-
lying assumptions (see Crooks et al.  2008  ) . Replication can be aided through the 
releasing of the source code of the model, along with the data and parameters presented 
in a paper or by providing a detailed description of the model such as the “ODD” 
(Overview, Design concepts, Details) protocol (Grimm and Railsback  2012  ) .   

    5.6   Advantages of Agent-Based Modelling 

 The way we currently conceptualise and model human geographical systems, in 
particular the evolution of cities, has changed, from the aggregate to disaggregate, 
and from the static to the dynamic as highlighted in Table  5.1 . ABM provides us 
with tools to explore this change in approach. There are three main claimed advan-
tages of the agent-based approach over traditional modelling techniques, such as 
top-down techniques of non-linear dynamical systems in which related state vari-
ables are aggregated (e.g. through differential equations). The agent-based approach: 
(i) captures emergent phenomena; (ii) provides a natural environment for the study 
of certain systems; and (iii) is fl exible, particularly in relation to the development of 
geospatial models.  

 Traditional urban models focused on modelling the system of interest top-down 
in contrast to model developers who divided the city into a few 100 units, while 
assuming average behaviour of individuals. Through their ability to describe behaviour 
and interactions of a system’s constituent parts from the bottom-up, 1  ABM provides 

   Table 5.1    The changes in 
modelling techniques using 
ABM over traditional 
modelling of the 1960s and 
1970s (Source: Bernard  1999  )    

 Traditional modelling  Agent-based modelling 

 Deterministic (one future)  Stochastic (multiple futures) 
 Allocative (top-down)  Aggregative (bottom-up) 
 Equation based formulas  Adaptive agents 
 Do not give explanations  Explanatory power 
 Few parameters  Many parameters 
 Spatially coarse  Spatially explicit 
 Environment given  Environment created 
 You react to them  You learn from them 

   1   While ABM deals with individual and not aggregate behaviour, often it is neither feasible nor 
desirable to model complete agent heterogeneity. Instead agents are often given a representative 
behaviour; thus we move from average aggregate behaviour to average individual behaviour. 
However, greater heterogeneity can be introduced by adding ‘noise’ to such agents.  



96 A.T. Crooks and A.J. Heppenstall

an alternative approach. Bonabeau  (  2002  )  has identifi ed a non-exhaustive list of 
conditions where ABMs can be useful for capturing emergent behaviour:

    1.    Interaction between agents is complicated, non-linear, discontinuous, or discrete 
(i.e. the behaviour of an agent can be altered dramatically, even discontinuously, 
by other agents). This can be particularly useful if describing discontinuity of 
individual behaviour, for example, using differential equations;  

    2.    The ability to design a heterogeneous population of agents with an agent-based 
model is signifi cant. Agents can represent any type of unit. Unlike agent-based 
models, aggregate differential equations tend to smooth out fl uctuations. This is 
important because under certain conditions, fl uctuations can be amplifi ed: a 
system can be linearly stable but susceptible to large perturbations. Heterogeneity 
also allows for the specifi cation of agents with varying degrees of rationality. This 
offers advantages over approaches that assume perfectly rational individuals, if 
they consider individuals at all;  

    3.    The topology of agent interactions is heterogeneous and complex. Aggregate fl ow 
equations usually assume global homogeneous mixing, but the topology of an 
interaction network can lead to signifi cant deviations from predicted aggregate 
behavior and,  

    4.    Agents exhibit complex behaviour, including learning and adaptation.     

 Furthermore, the ability of agent-based models to describe the behaviour and 
interactions of a system allows for system dynamics to be directly incorporated 
into the model. This represents a movement away from the static nature of earlier 
styles of urban and regional modelling (see Batty  1976  ) . However, while time in 
ABMs is still discrete, i.e. it still moves in ‘snapshots’, the time steps may be 
small enough to approximate real time dynamics. Additionally different processes 
occur over different time periods, for example, long term economic cycles, daily 
commuting and hour by hour social interaction. Agent-based models can incor-
porate these different scale time processes into a single simulation by using a 
variety of automata clocks designed to mimic the temporal attributes of the specifi c 
urban process under study (Torrens  2003  ) , thus allowing the modeller to realis-
tically simulate urban development or a particular geographical phenomenon 
(O’Sullivan  2001  ) . 

 In many cases, ABM is a natural method for describing and simulating a system 
composed of real-world entities especially when using object-orientated principles 
(Gilbert and Terna  2000  ) . The agent-based approach is more akin to ‘reality’ than 
other modelling approaches. Agent-based simulations provide an opportunity to 
represent and test social theory which cannot easily be described using mathematical 
formulae (Axelrod  1997  ) . The models often map more naturally to the structure 
of the problem than equation-based models (Parunak et al.  1998  )  by specifying 
simple behavioural and transition rules attached to well defi ned entities, therefore 
providing a medium for the infusion of any geographic theory or methodology into 
the model. In particular, the agent-based approach can be useful when it is more 
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natural to describe the constituent units of a system under some of the following 
conditions (Bonabeau  2002  ) :

    1.    The behaviour of individuals cannot clearly be defi ned through aggregate 
transition rates (e.g. the decision to move);  

    2.    Individual behaviour is complex. Although hypothetically any process can be 
explained by an equation, the complexity of differential equations increases 
exponentially as the complexity of behaviour increases. Describing complex 
individual behaviour with equations can therefore become intractable;  

    3.    Activities are arguably a more natural way of describing a system than pro-
cesses; and,  

    4.    Agent behaviour is stochastic. Points of randomness can be applied strategically 
within agent-based models, rather than arbitrarily within aggregate equations.     

 Finally, the agent-based approach to modelling is fl exible, particularly in relation 
to geospatial modelling. Notably, spatial simulations benefi t from the mobility that 
agent-based models offer. An agent-based model can be defi ned within any given 
system environment (e.g. a building, a city, a road network, a computer network, 
etc). Therefore agent-based models are essentially without scale. It is the phenom-
ena of interest which drives the scale to be used, for example, from the micro 
movement of pedestrians within a building during an evacuation (e.g. Gwynne 
et al.  2001  ) , to the movement of cars on a street network (e.g. Nagel  2003  )  to the 
study of urban growth (e.g. Brown et al.  2005  ) . Additionally as ABM allows for 
the representation of individual objects, it is therefore possible to combine these 
objects to represent phenomena at different scales within the same model. 
Furthermore, agents have the ability to physically move within their environment, 
in different directions and at different velocities. Agent mobility makes ABM very 
fl exible in terms of potential variables and parameters that can be specifi ed. 
Neighbourhoods can also be specifi ed using a variety of mechanisms such as well 
understood geographical relations such as market catchments areas, travel to work 
zones, walking distance buffers etc. 

 The implementation of agent interactions can easily be governed by space, 
networks, or a combination of structures (as highlighted in Alam et al.  2012  )  This 
would be far more complex to explain by mathematics, for example (Axtell  2000  ) . 
Signifi cantly, agent-based models can regulate behaviours based on interactions 
at a specifi c distance and direction (thus allowing for action-at-a-distance). In 
addition, agent-based models also provide a robust and fl exible framework for 
tuning the complexity of agents (i.e. their behaviour, degree of rationality, ability 
to learn and evolve, and rules of interaction). Another dimension of fl exibility is 
the ability to adjust levels of description and aggregation. It is easy to experiment 
with aggregate agents, sub groups of agents, and single agents, with different 
levels of description coexisting within a model. Thus, the agent-based approach 
can be used when the appropriate level of description or complexity is unknown, 
and fi nding a suitable level requires exploration.  
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    5.7   Limitations of Agent-Based Modelling 

 The enthusiasm of adopting the ABM approach for modelling geographical systems 
is curtailed by some limitations. Although common to all modelling techniques, 
one issue relates to the purpose of the model; a model is only as useful as the 
purpose for which it is constructed. A model has to be built at the right level of 
abstraction for every phenomenon, judiciously using the right amount of detail for 
the model to serve its purpose (Couclelis  2002  ) . If the level of abstraction is too 
simple, one may miss the key variables. Too much detail, and the model will have 
too many constraints and become overly complicated. Abdou et al.  (  2012  )  provide 
useful advice for designing and building an agent-based model. This remains an art 
more than a science (Axelrod  2007  ) . Axtell and Epstein  (  1994  )  provide practical 
guidelines for the evaluation of model performance depending on the level of 
model abstraction. 

 The nature of the system being modelled is another consideration. For example, 
a system based on human beings will involve agents with potentially irrational 
behaviour, subjective choices, and complex psychology (see Kennedy  2012 , for an 
overview of how behavioural frameworks can be implemented in agent-based 
models). These factors are diffi cult to quantify, calibrate, and sometimes justify, 
which complicates the implementation and development of a model, as well as the 
interpretation of its simulation outputs. However, the fundamental motivation for 
modelling arises from a lack of full access to data relating to a phenomenon of 
interest. Often, the target itself is neither well-understood nor easy to access. 
The development of agent-based models offers a means to increase the utility of 
simulation models, by closely tailoring the model and subsequent analysis to the 
needs of end users (Parker et al.  2003  ) . In particular, the visual communication 
often provided by spatially explicit models, especially those coupled with GIS, can 
be effective at depicting formal model results to a wide range of users (Axtell 
 2000  ) . Nevertheless, a model’s output must be interpreted appropriately. Varying 
degrees of accuracy and completeness in the model inputs determine whether the 
output should be used purely for qualitative insight, or accurate quantitative fore-
casting. Crooks and Castle  (  2012  )  review the purpose of different ABM approaches 
in more detail especially relating to explanatory and predictive (descriptive) 
modelling approaches. 

 By their very defi nition, agent-based models consider systems at a disaggregated 
level. This level of detail involves the description of potentially many agent attributes 
and behaviours, and their interaction with an environment. The only way to treat this 
type of problem in agent computing is through multiple runs, systematically varying 
initial conditions or parameters in order to assess the robustness of results (Axtell 
 2000  ) . There is a practical upper limit to the size of the parameter space that can be 
checked for robustness, and this process can be computationally intensive, thus time 
consuming. Although computing power is increasing rapidly, the high computational 
requirement of ABM remains a limitation when modelling large systems (see Parry 
and Bithnell  2012  ) . 
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 In this sense, agent-based models have the potential to suffer from similar limita-
tions of the fi rst generation of urban models such as Lee’s  (  1973  )  criticism of data 
hungriness. However, this can be overcome by considering what level of abstraction 
is needed to examine the phenomena of interest (for example, is ‘all the detail 
needed?’). Or a series of smaller models could be created examining specifi c aspects 
of the system. There is also a lack of personal data both for the present and the past. 
For example in the UK, the smallest measure of individual data from the census is 
the Output Area which contains around 125 households (notwithstanding    access to 
personal data, see Benenson et al.  2002  )  which can be obtained through MSM tech-
niques as demonstrated in Birkin and Wu  (  2012  ) . 

 Critics of complexity theory point out that the wide variety of surprising behaviour 
exhibited by mathematical and computational models are rarely found in the real-
world. In particular, ABMs are very sensitive to initial conditions and to small 
variations in interaction rules (Couclelis  2002  ) . This path dependence means that 
using ABM for prediction can be challenging (see Batty and Torrens  2005  ) . 
Consequently, modellers of complex systems are never likely to enjoy the intellectual 
comfort of ‘laws’ as seen in the physical or chemical worlds (Wilson  2000  ) . Despite 
this, and the other limitations that have been highlighted, ABM is a useful tool for 
exploring systems that exhibit complex behaviour. They highlight uncertainty behind 
modelling geographical systems and provide a technique to explore such uncertainty 
through their ability to generate possible futures rather than generating defi nitive 
models with strong predictive assumptions (Epstein  1999  ) . Complexity theory has 
brought awareness of the subtle, diverse, and interconnected facets common to 
many phenomena, and continues to contribute many powerful concepts, modelling 
approaches and techniques (see Manson et al.  2012  for further information). In this 
vein, Section 5.8 explores general ABM applications before focussing on agent-based 
models of geographical systems.  

    5.8   Applications of Agent-Based Models 

 It is impractical to comprehensively review the full range of ABM applications within 
this chapter, and even examination of a representative sample presents a challenging 
exercise. ABMs have been developed for a diverse range of subject areas, such as: 
archaeological reconstruction of ancient civilisations (Axtell et al.  2002 ; Kohler et al. 
 2000  ) ; understanding theories of political identity and stability (Lustick  2002  ) ; 
understanding processes involving national identity and state formation (Cederman 
 2001  ) ; biological models of infectious diseases (Yang and Atkinson  2005  ) ; growth of 
bacterial colonies (Kreft et al.  1998  ) ; single- (Emonet et al.  2005  )  and multi-cellular 
level interaction and behaviour (Athale and Deisboeck  2006  ) ; alliance formation 
of nations during the Second World War (Axelrod and Bennett  1993  ) ; modelling 
economic processes as dynamic systems of interacting agents (Tesfatsion  2006  ) ; 
company size and growth rate distributions (Axtell  1999  ) ; geographical retail 
markets (Heppenstall et al.  2006  ) , size-frequency distributions for traffi c jams 
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(Nagel and Rasmussen  1994  ) ; price variations within stock-market trading (Bak et al. 
 1999  ) ; voting behaviours in elections (Kollman et al.  1992  ) ; identifying and explor-
ing behaviour in battlefi elds (Ilachinski  1997  ) ; spatial patterns of unemployment 
(Topa  2001  ) ; trade networks (Epstein and Axtell  1996  ) ; business coalitions over 
industry standards (Axelrod  2006  ) ; social networks of terrorist groups (North et al. 
 2004  ) , to name but a few. These examples can be constructed as lying on a continuum, 
from minimalist academic models based upon ideal assumptions, to large scale 
commercial decision support systems based upon real-world data. In relation to the 
focus of this chapter, the remainder of this section concentrates on the origin of ABM 
applied to urban phenomena, particularly in a geographical context. 

 Despite the advantages of ABM as a tool for simulation, ABM has only 
recently been adopted for geospatial research. Thomas Schelling is credited with 
developing the fi rst social agent-based model in which agents represent people, 
and agent interactions represent a socially relevant process. Schelling’s  (  1971  )  
model demonstrated that stark segregation patterns can emerge from migratory 
movements among two culturally distinct, but relatively tolerant, types of house-
hold. Yet ABM did not begin to feature prominently in the geographical litera-
ture until the mid-1990s when Epstein and Axtell  (  1996  )  extended the notion of 
modelling people to growing entire artifi cial societies. Epstein and Axtell’s 
Sugarscape model demonstrated that agents could emerge with a variety of char-
acteristics and behaviours suggestive of a rudimentary society (e.g. in terms of 
patterns of death, disease, trade, health, culture, confl ict, war, etc). 

 The above two models have inspired a number of modelling efforts with respect 
to urban simulation and it is to this that we now turn briefl y. Further information and 
summaries of ABM applications are presented in Parts 3 and 4 of this book. As 
stated previously, ABMs can be applied to any scale, from the atomic to the global. 
How one defi nes an agent depends on what phenomena one is interested in. 

 Numerous efforts have been made to apply ABM to environmental modelling 
especially land-use and land-cover change models (see Parker  2005 ; Parker et al. 
 2012 ; Magliocco  2012 ; for further details). ABM specifi cally pertaining to urban 
phenomena including dynamics in Latin American cities (Barros  2012  )  urban 
housing dynamics (Benenson et al.  2002  ) , urban growth and residential location 
(Torrens  2006 ; Brown et al.  2005 ; Liu and Feng  2012  ) , and gentrifi cation (Jackson 
et al.  2008  ) . The impact of policy on geographical areas has also been investigated 
through ABM, for example education planning (Harland and Heppenstall  2012  )  
and crime simulation (Malleson  2012  ) . Due to the ability of agents within ABMs to 
move, they are also commonly used to simulate traffi c movement (e.g. Beuck et al. 
 2008  ) . Additionally, numerous applications have been developed specifi cally to 
study micro-scale phenomena such as pedestrian models (Johnasson and Kretz 
 2012  ) , which explore how agents move around their environment. Other useful 
examples of spatially explicit agent-based models include: the simulation of 
pedestrians in the urban centres (Haklay et al.  2001  ) , the examination of crowd 
congestion at London’s Notting Hill carnival (Batty et al.  2003  ) , and emergency 
evacuation of buildings (e.g. Gwynne et al.  2001  ) .  
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    5.9   Conclusion 

 Successfully replicating the processes and dynamics that occur within geographical 
systems is highly challenging. There are a potentially infi nite number of individual 
components linked together by often unknown interconnected processes that play out 
at different spatial and temporal scales. The notion of bottom-up modelling advocated 
by ABM allows the results of local phenomena to be understood and measured at a 
global level. While established methods, such as SI (Spatial Interaction) modelling, 
treat populations as aggregate homogeneous components, ABMs potentially 
allow every individual to be assigned their own characteristics. This is a powerful 
paradigm that holds great promise for facilitating greater understanding of geo-
graphical systems. 

 This chapter has provided a general introduction to ABM. Along with a presenta-
tion of the main characteristics of ABM, the distinction between ABM, CA and 
MSM have been discussed. Important considerations when working with ABM, for 
example validation, verifi cation and visualisation, were presented along with the 
advantages and limitations of this approach for geographical systems. The chapter 
concluded by exploring a diverse range of geographical applications of ABM.      
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  Abstract   We address the question of when the relative complicatedness of spatial 
agent-based models (ABMs) compared to alternative modelling approaches can be 
justifi ed. The spectrum of ABM types from simple, abstract models to complicated 
models aspiring to realism makes a single answer impossible. Therefore we focus 
on identifying circumstances where the advantages of ABMs outweigh the 
additional effort involved. We fi rst recall the reasons for building  any  model: to 
simplify the phenomena at hand to improve understanding. Thus, the representa-
tional detail of ABMs may not always be desirable. We suggest that critical aspects 
of the phenomena of interest that help us to assess the likely usefulness of ABMs 
are the nature of the decisions which actors make, and how their decisions relate 
to the spatio-temporal grain and extent of the system. More specifi cally, the hetero-
geneity of the decision-making context of actors, the importance of interaction 
effects, and the overall size and organization of the system must be considered. We 
conclude by suggesting that there are good grounds based on our discussion for 
ABMs to become a widely used approach in understanding many spatial systems.      
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    6.1   Introduction 

 In this chapter we critically examine the usefulness of agent-based models (ABMs) 
in geography. Such an examination is important because although ABMs offer some 
advantages when considered purely as faithful representations of their subject matter, 
agent-based approaches place much greater demands on computational resources, 
and on the model-builder in their requirements for explicit and well-grounded 
theories of the drivers of social, economic and cultural activity. Rather than assume 
that these features ensure that ABMs are self-evidently a good thing – an obviously 
superior representation in all cases – we take the contrary view, and attempt to 
identify the circumstances in which the additional effort that taking an agent-based 
approach requires can be justifi ed. This justifi cation is important as such models are 
also typically demanding of detailed data both for input parameters and evaluation 
and so raise other questions about their position within a broader research agenda. 

 One inspiration for our approach is found in a brief but challenging commentary 
by Helen Couclelis  (  2002  ) . Noting that ABMs add to “the well-known problems of 
modeling a highly complex, dynamic spatial environment” (pp. 4–5), the additional 
diffi culties of “modeling highly complex, dynamic decision-making units interacting 
with that environment and among themselves in highly complex, dynamic ways”. 
She continues:

  The question is whether the benefi ts of that approach to spatial modeling exceed the consid-
erable costs of the added dimensions of complexity introduced into the modeling effort. 
(Couclelis  2002 , pp. 4–5)   

 Couclelis offers her own answer, when she goes on to say: “The answer is far 
from clear and, in my mind, it is in the negative” (p. 5). However, Couclelis does 
leave the door open to further discussion. Others such as Gross and Strand  (  2000  )  
have argued that capturing micro-scale complexity requires models with the complex 
micro-structures that the agent-based approach incorporates; in short, a complex 
world requires structurally complex models. These contrasting perspectives make it 
clear that an open question remains: under what circumstances is the extra effort of 
these data- and theory-intensive models rewarded, and why? The aim of this chapter 
is therefore to establish under which circumstances ABMs really are worth it!  

    6.2   Horses for Courses: Different Agent Models 
for Different Purposes 

 There are many possible ways of classifying ABMs (see Crooks and Heppenstall 
 2012  for a brief overview). In geographical applications, at the most abstract level, an 
ABM consists of agents interacting with and in an environment. Various typologies 
can be constructed on the basis of the nature of the agents and of the environmental 
representation. Couclelis  (  2002 , p. 4) offers one such classifi cation based on whether 
the agents and the environment are ‘designed’ or ‘analyzed’. This terminology is 
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somewhat confusing (it derives from an engineering perspective), but may be clearer 
if we replace ‘designed’ with  theoretically derived  and ‘analyzed’ with  empirically 
derived . Couclelis goes on to consider the purpose of these different possible 
combinations of agent and environment type. 

 An alternative approach to classifying ABMs is to consider three broad styles of 
model (see O’Sullivan    2008   ). Arguably, the bulk of academically orientated work to 
date using ABMs continues to be in the realm of simple abstract models where the 
focus is on exploring the collective implications of individual-level decision making. 
Schelling’s book title  Micromotives and Macrobehaviour  (Schelling  1978  )  captures 
the intention of this approach well (and is discussed by Birkin and Wu  2012  ) . The 
‘Schelling model’ of residential segregation is the most familiar example of this style 
(Schelling  1969  ) , and has spawned a cottage industry of variants and explorations of 
how various minor changes to the assumptions underlying the model affect the 
outcomes (see Fossett    2006   , for a detailed exploration of some aspects of the model). 
In the same vein are Epstein and Axtell’s  (  1996  )   Sugarscape  models, Axelrod’s work 
on iterated game theoretic models (Axelrod  1997  )  and many ABMs of economic 
behaviour (see Tesfatsion and Judd  2006  ) . Examples of this abstract approach in an 
urban context include Batty’s work on how simple movement and resource exploita-
tion actions on heterogeneous landscapes produce characteristic settlement size dis-
tributions (Batty  2005 , Chap. 8), and a preliminary model of sprawl presented by 
Brown and Robinson  (  2006  ) . The abstract approach is also common in other fi elds 
such as biology (see, for example, Ehrlich and Levin  (  2005  ) ). It is this style of work 
which is largely responsible for excitement in some quarters around the potential of 
‘complexity science’ to answer general questions about the nature of systems in a 
wide range of specialist fi elds (e.g. Bar-Yam    1997  ) . 

 A second type of ABM is more detailed and locates virtual model agents in a 
representation of the real world setting of interest. Typically, such models operate at 
a regional or landscape scale, although this is dependent on the issue(s) that a par-
ticular model is addressing. A common application for this fl avour of ABM is land-
use and cover change (LUCC), often in the context of climate-change scenarios. 
A recent special issue of  Landscape Ecology  (Milne et al.  2009  )  gives a sense of the 
diversity of models in this context, and also of the importance of integrating ABMs 
with those other approaches. Examples of the type we have in mind are the work of 
Millington et al .   (  2008  )  and Matthews  (  2006  ) . Here, the goal of developing a model 
is to understand how expected or possible changes in the behaviour of individual 
entities arising from the changing policy environment affect landscape-level vari-
ables that feedback to both agent behaviour and resulting system-level outcomes 
(such as, for example, climate change). A different context for models of this kind 
is the attempt to understand how an urban streetscape or a complicated building 
design affects the behaviour and paths followed by pedestrians interacting in that 
environment (Haklay et al .   2001 ; Helbing et al .   2001 ; Kerridge et al .   2001  ) . The 
common thread linking these settings is that the interactions among agents may 
have more or less dramatic effects on the overall outcomes of the model. In both 
cases, agent actions change the decision-making environment of other agents, albeit 
at different spatio-temporal scales, and in different ways. In a LUCC model, more 
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or less permanent changes in the environment are made by agent actors, and these 
collectively affect future decision-making for all agents at the scale of the whole 
model. In a pedestrian model, the urban or built environment is fi xed, and the agents 
themselves are a salient and rapidly changing feature of the environment, which 
affects agents, often only locally. 

 Thirdly, some of the most ambitious models aim at detailed (i.e. “realistic”, 
although see Dietrich et al .     2003 , pp. 7–8, for a more extended consideration of real-
ism in models) representations of both the geographical setting and the processes 
unfolding in that setting. Such models tend to be driven by the concerns of policy- 
and decision-makers and revolve around urban, economic, and demographic man-
agement applications. The most obvious example of this style of model is the 
TRANSIMS ABM of urban traffi c where every individual vehicle in a large urban 
system is represented second-by-second (Cetin et al .   2002  ) . Closely related to 
TRANSIMS is EpiSims, which takes the same approach to epidemic processes in 
detailed representations of social networks (Toroczkai and Guclu  2007  ) . When 
models become this large, it becomes diffi cult to get to grips with their overall struc-
ture, or even to consider them as truly single models. The ‘model’ becomes a frame-
work in which subsystem models are integrated. An example of this approach which 
has evolved over many years is the SIMPOP family of urban growth models (Sanders 
et al .   1997 ; Bretagnolle et al .   2009  ) . The modular and extensible structure of such 
models is an attempt to cope with the diffi culties inherent in extending the scope of 
individual-based models as they grow to encompass large scale continental or global 
systems, a problem which is also encountered in using and interpreting general 
circulation models of global climate. 

 This last category makes it clear that any typology of ABMs is necessarily highly 
schematic. The three types of ABM we have discussed are more like points along a 
continuum of increasing size and complexity than discrete categories. The value of 
developing such a typology at all is to realize that ABMs are built for a wide variety 
of reasons across a wide range of disciplines. ABMs, like all models, may be used to 
explore theories and their possible implications, to understand how particular theories 
may play out in particular contexts, and to assist in risk-assessment, or policy- and 
decision-making. This complicates answering the question of whether or not ABMs 
are useful in any particular application, although it suggests that the answer is “it 
depends!” (on context, on purpose, on application, and so on). Even so, it is possible 
to be more specifi c about the situations where agent approaches are likely to justify 
the additional effort and cost that their development, analysis and use entail.  

    6.3   Are Modellers Agent-Based Because 
They Should Be or Because They Can Be? 

 While there has been a lot of excitement in recent years about the potential of 
agent-based methods, it is important to remember that none of the cases cited above 
is one where agent models are the only possible approach. In most cases, ABMs 
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are a relatively late arrival in a fi eld where there is considerable previous experience 
with styles of model that adopt a more aggregated approach, and these aggregated 
models continue to be widely used. Thus, for example, land-use transport models, 
which are calibrated and run based on transport analysis zones, are much more 
widely deployed by city governments worldwide than ABMs at the individual 
vehicle level simulating morning and evening rush hours; see Wegener  (  2004  ) . 
What, if anything do ABMs add, and by extension, when should we prefer ABMs 
over more traditional methods? 

 At times, it appears that the main motivation for adopting an agent-based 
approach is simply because it can (now) be done. While the tools available for 
ABMs (Railsback et al .   2006  )  are not yet as accessible or as well developed as those 
for more established approaches such as systems dynamics (Muetzelfeldt and 
Massheder  2003 ; Deaton and Winebrake  2000 ; Eberlein and Peterson  1994  ) , ABMs 
have surprisingly quickly become a viable approach for the spatial model builder. 
The increasing ease with which ABMs can be developed, coupled with their 
intuitively satisfying representational approach, in which each software agent 
represents an ‘actor’ whether an individual person (or animal or plant) or an institu-
tion (often the barely more aggregated household) has led to widespread enthusiasm 
for the approach. The appeal is undeniable: it appears obvious that individual-level 
decision making is the fundamental driver of social systems, or more broadly that 
the individual-level behaviours of plants and animals drive environmental change. 
Setting to one side the thorny question of whether or not social phenomena are dis-
tinctive in kind from the merely aggregate actions of individuals (see O’Sullivan 
and Haklay    2000   ), and hence also the question of whether it is the case that social 
and environmental systems really are driven entirely by individual-level decision-
making, if we  can  represent systems at the ‘atomic’ level on which they operate, 
then surely we  should ? 

 In our view this stance ignores the motives for developing models in the fi rst 
place. Put simply, the need for a model arises when understanding the world itself is 
too hard! The danger of wholesale adoption of ABMs is that we simply replace one 
diffi cult to understand phenomenon – the world itself – with an equally hard to 
understand model. This is the diffi culty that Couclelis identifi es in her commentary. 
A model that advances our understanding is one that represents what are considered 
in a particular context the key features of a system and thus enables us to improve our 
understanding of how that system works. Any gain in understanding of the system 
resulting from the modelling process derives from our ability to analyze the model 
and experiment with it. If the model is too complicated to analyze, all we have done 
is to replace one poorly understood object of study with another, which we know to 
be incomplete! There are good reasons to believe that using disposable ‘fast-and-
frugal’ models will result in more rapid learning than highly detailed ones (Carpenter 
 2003  ) , and in most, if not all cases, ABMs are not a ‘fast-and-frugal’ option. 

 Considering such issues is at the heart of all model building. However, ABMs are 
one aspect of a recent trend towards more complicated and detailed models. This 
trend fl ies in the face of longstanding conventions in modelling and simulation, 
which hold that simpler, more parsimonious models are preferable to complicated 
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ones, all other things being equal. The search for parsimony in models is often 
presented as a logical consequence of Ockham’s razor (see Perry    2009   ). That is not 
a position we wish to defend. First, it is clear that Ockham’s admonishment to avoid 
the ‘unnecessary multiplication of entities’ was never intended to guide the development 
of simulation models! Second, there is no  a priori  reason for assuming that the 
world is a simple place, when it is patently not! 

 Careless application of the principle of Ockham’s razor might lead us to conclude 
that a less complicated model is more convincing, just because it is less complicated, 
although this is not a logically defensible point of view. Ockham’s razor is an 
argument about the capacity of different descriptions of reality to explain observed 
phenomena, not grounds for always preferring simpler explanations to more 
complicated ones. Even so, there are good pragmatic reasons for preferring parsimo-
nious models. Such models are much easier to learn from than models with many 
parameters and sub-models. They are easier and more cost-effective to parameterize, 
and they are also much less vulnerable to the propagation of errors due to the uncer-
tainties in estimating multiple interrelated parameters (again, see Carpenter    2003   ). 

 Based on this observation, the important question is to determine what features 
agents bring to a model  which make a difference that matters . This concern is 
similar to the argument made by Andrew Sayer in his consideration of “the differ-
ence that space makes” in explaining social systems (Sayer  1985  ) . Although he is 
discussing the role of space in social theory, Sayer’s arguments seem to us to 
apply with equal force to the evaluation of models. The basis of the argument is 
the distinction to be made between  necessary  and  contingent  features of a theory. 
Some aspects of any phenomena we wish to explain are absolutely central – that 
is, necessary – to the nature of that phenomena, while others are peculiar to occur-
rences of those phenomena in particular contexts – that is, contingent on those 
particular occurrences. A less philosophical way to express the same idea is simply 
to ask, which features of the phenomena we are interested in are essential? Asking 
this question is really what building a model is all about. Answering this question 
in the context of ABMs should focus our thinking on the issue of what the agents 
in a model are, what they do, and following from this, when they are necessary to 
any representation of the phenomena of interest. In the remainder of this chapter, 
we sketch out the circumstances in which agents are more likely to be necessary 
to an adequate model. In our conclusions, we briefl y revisit the idea of contin-
gency and its relevance to this issue.  

    6.4   What Are Agents? And What Do They Do? 

 These considerations bring us to the basic question of what adopting an agent-based 
representation in a model achieves in terms of a simulation. There is general agreement 
(amidst much debate about fi ner points!) on the basic characteristics of agents in spatial 
models. More detailed consideration of the meaning of the defi ning characteristics of 
such agents can be found in Crooks and Heppenstall  (  2012  ) . We consider the most 
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fundamental characteristics of agents in spatial models to be goal-direction and 
autonomy (Jennings et al .   1998  ) . However, more specifi c defi nitions of the concept 
may add any of fl exibility, ‘intelligence’, communication, learning, adaptation or a 
host of other features to these two. In practice, whatever way we describe their 
characteristics, agent actions in models revolve around exercising  choice  among 
available options in order to achieve defi ned  goals . 

 The outcome of an agent making a particular choice is some difference in 
either the location of the agent (i.e. the agent moves) or in the environment. In 
the latter case, the agent alters the attributes of its current location in some way. 
Depending on the model context, this may involve the agent exploiting resources 
at its current location (and hence depleting the supply of those resources at that 
location); altering the state of the location (e.g. changing the land use); acquiring 
the land at its present location; or, perhaps simply updating its current ‘map’ of 
the environment. In each case, there may be an accompanying change in the state 
of the agent itself, such as when resource exploitation increases the agent’s 
wealth or energy resources. 

 This account of spatial ABMs (and it is important to note that there are many 
examples in the literature of aspatial ABMs) has several implications:

   Agents may be mobile, but this is not a necessary feature (models of trees in • 
forests are among the most common types of ABM). However, it is important that 
each agent has a different relationship with the spatial environment, most simply 
in terms of a location in the environment. If all agents have the same spatial 
relationship with the environment (if, for example, every agent has an equal 
capability to alter every location in the model regardless of the agent’s specifi c 
location or every agent sees and responds to an aggregate ‘average’ of the envi-
ronment), then it makes little sense to formulate the model as an agent model;  
  Agents may change their spatial relationship with the environment over time, • 
which may be by moving, or it may be by alteration, acquisition or disposal of 
locations; and  
  Agents are able to evaluate spatial confi gurations. This ability may be as simple • 
as determining that the availability of some resource at the current location is 
suffi cient for some purpose, or is greater than at neighbouring locations. 
Alternatively, it may involve a complicated evaluation of the spatial distribution 
of resources (including other agents) with respect to the current location, relative 
to a number of alternative locations.    

 This framework for thinking about agents in a spatial ABM may be illuminated 
by considering some examples (see also Fig.  6.1 ): 

    1.     Pedestrian or other mobile agents  in a model of an urban streetscape or complex 
building. The primary choice made by such agents is to determine, with respect 
to their intended destinations, which among the possible next locations they 
should move to. In most models of this kind, the location of other agents is an 
important element in the choice, but the decision will also be affected by the 
agents’ local physical environments (e.g. building geometries).  
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    2.     Residential agents  in a ‘Schelling-style’ model are also primarily concerned with 
movement, although it is movement of a rather different kind. They evaluate 
their current and potential new locations, and if one of the new locations consid-
ered is preferable in some way to their current location, then they may move 
there. Again, the locations of other agents in this model infl uence the choices 
made by each agent, but the nature of the environment itself does not.  

    3.     Hunter-gatherer agents  in a model of resource exploitation in which establish-
ment of permanent settlements is an outcome will probably combine aspects of 
the two previous types of agent, in that they evaluate competing locations, and 

  Fig. 6.1    Schematic illustration of the choices facing agents in fi ve different types of model. See 
text for details       
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will choose to stay or go depending on the resources at those locations. Rather 
differently to the previous two cases, however, the actions of these agents will 
alter the environment directly, not just in terms of the location of the agents 
themselves.  

    4.     Farmer/land-use change agents , like the previous type, alter the environment 
itself, but unlike them are unlikely to move in the process. They may alter their 
relationship with the spatial environment by acquiring or disposing of land as 
one aspect of the management of their resources.  

    5.     Property developer agents  in an urban growth or development model are unlikely 
to be explicitly spatially located in the way that agents in the previous examples 
are. Like farmer agents, they will have some attachment to a ‘territory’, which 
they are able to grow, change, or reduce by acquisitions, development actions, or 
sales into a property market. Such agents are likely to have a relatively sophisti-
cated ability to evaluate spatial confi gurations of currently owned locations rela-
tive to the various land uses and land values in the model.     

 Aspects not explicitly considered in these examples, but highly relevant in 
practice, are the spatial and temporal  grain  of the model representation, and the 
relationship between the two. By grain we mean the extent of the smallest units of 
space and time which are explicitly represented in a model. A fi ne-grained model 
might represent second-by-second developments at spatial resolutions of a metre 
or less; traditionally, such models have been seen as unable to consider extended 
spatio-temporal domains. A coarse-grained model might operate on large units of 
space (say several square kilometres) over time periods of a year or more. Grains 
much coarser than this seem unlikely in practice because ABMs are about the 
choice-making behaviour of individual living actors. While contemporary societ-
ies occasionally aspire to decision-making that takes into account time horizons 
longer than a year or so (and simulation models are seen as central to this decision-
making; see Clark et al .     2001   ), it is rare for choices to be ‘locked in’ over much 
longer time frames than this. Similarly, it is diffi cult to imagine an ABM model 
that would be recognizable as such where spatial agents act on ‘local’ spatial 
knowledge more wide-ranging than a few kilometres. 

 Note that we adopt the concept of grain here in preference to spatio-temporal scale 
because the latter often also implies the overall extent or scope of a model. While the 
grain of the representation in a model and its overall scope are not independent, it is 
increasingly common to see unexpected combinations particularly of fi ne grains with 
wide extents (for example, Epstein    2009,    refers to an epidemic model that explicitly 
represents the whole population of the Earth as individual agents). 

 Although as geographers we might wish to grant representation of the spatial 
aspects priority over temporal aspects, temporal considerations are of at least equal 
importance, not least because the two are interlinked (both conceptually and compu-
tationally). Decisions are usually made by agents over some timeframe of interest, 
which may in turn imply a relevant spatial grain. 

 In a pedestrian model this timeframe might be second-by-second, as pedestrians 
adjust their course to avoid obstacles (including other agents). More generally, 
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mobile agents (whether human or some other animal) will be making decisions at 
time scales dictated by their mobility on the one hand and their perception of the 
nature of the spatial distribution of resources on the other. The decision-making 
timeframe combined with the speed of movement of the agents then effectively 
dictates a sensible spatial grain for a model of this type – with plausible models 
capturing spatial detail down to or below the metre range for human agents. In 
resource exploitation models the timeframe of interest is dictated by context. In a 
model of hunter-gatherer behaviour with only limited storage of resources, daily or 
weekly activity patterns and decisions will predominate, and this, combined with 
rates of movement, will govern how we represent spatial aspects of both the agents 
 and  their environment. In cases where the mobility of agents is less dominant, as in 
the farmer or property developer examples above, the linkage between the temporal 
and spatial grain is less direct, but nevertheless remains important. The key issue in 
these cases is how rapidly agents change the environment, and how quickly those 
changes affect the later decisions of other agents. A monthly, seasonal or annual 
timeframe is likely to be the most appropriate in these cases, since the outcomes of 
planting or development decisions that take appreciable times to unfold will affect 
further decision making. In these cases the spatial grain is a product of the amount 
of change which can be effected by individual agents over the chosen time frames. 
This in turn will be dependent on organizational features of the agents themselves 
in particular if they are institutional actors. For example, where property developers 
are small businesses, we may be interested in development at the level of individual 
land parcels. Where we are interested in larger corporate actors, the spatial extent of 
agent actions may be much larger. 

 In the one highly abstract case we consider above, that of ‘Schelling-style’ resi-
dential relocation models, these considerations are a lot less clear-cut. In such cases, 
questioning the spatial and temporal grain can contribute to conclusions that may be 
considered very unfl attering to the model under examination; see, for example, 
Goering  (  2006  ) . The essentially theoretical, abstract nature of the model comes to 
the fore and the spatio-temporal grain of the representation is of less relevance than 
its structure and the overall system tendencies it points to.  

    6.5   So When Do Agents Make a Difference? 

 The emphasis we have placed on decision making by agents and the related choice of 
the spatial and temporal grain in a model helps to address our original question 
about when it is appropriate to adopt an agent-based representation in a model. If the 
decisions at the heart of a model are made in local contexts, which depend in turn on 
the spatio-temporal grain of the model in such a way that every agent decision reduces 
to the same decision, then an aggregated statistical or mathematical representation 
may be suffi cient. The classic examples from game theory, such as Prisoner’s Dilemma 
and the Tragedy of the Commons fi t this template well, and continue to shed light on 
the overall structure of many social systems and coordination problems. 
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 Where agents’ preferences and (spatial) situations differ widely, and where 
agents’ decisions substantially alter the decision-making contexts for other agents, 
there is likely to be a good case for exploring the usefulness of an agent-based 
approach. This argument focuses attention on three model features:  heterogeneity  
of the decision-making context of agents, the importance of  interaction effects , and 
the overall  size  and  organization  of the system. 

 If agents are the same throughout the system, then, other things being equal, an 
aggregate approach is likely to capture the same signifi cant features of the system 
as an agent-based approach. However, it is important to extend our concern with 
heterogeneity to encompass not just agents but to agents in their (spatial) decision-
making contexts. A population of identical agents in diverse contexts can produce 
somewhat unexpected outcomes as a result of different choices being made in those 
different contexts, which then alter the options available to all agents at subsequent 
times. ‘Schelling-style’ models exemplify this. The opposite case, where every 
agent makes its choices in the same context but heterogeneity in the agents may 
produce dramatically different results depending on the degree of heterogeneity, is 
less familiar. An example is provided by Rand et al .   (  2002  ) , whose abstract model 
of urban growth shows that the existence of even small numbers of households 
with a preference for aesthetic over urban amenity can dramatically accelerate 
exurban sprawl. 

 In both of these cases, agent actions result in changes to the decision making 
context for other agents, an indirect and weak form of agent-to-agent interaction. 
Some form of agent interaction is necessary at a minimum if an agent-based 
approach is to be justifi ed. If each agent’s decisions make no difference to the 
subsequent decision-making contexts of other agents, then the generalized pay-off 
matrices of classical game theory are again likely to provide a suffi cient representa-
tion of social systems. The stronger any interaction effects are, then the more 
important it will be to consider agent-based or other disaggregated approaches. In a 
pedestrian model, interaction is direct. Each pedestrian agent is a signifi cant element 
in the local environment of many other agents, and decisions made by one agent 
immediately alter the local decision-making environment of nearby agents. Where 
the contexts for decision-making are more general, based on aggregate system 
measures, so that each individual’s decisions make only minor differences to the 
choices of others, then the case for an agent-based approach is less clear. 

 By the system size, we mean the total number of agents in the system. This aspect 
relates to the previous point. In large systems, other things being equal, unless inter-
action effects are strong and direct, it may not be necessary to adopt ABM approaches. 
In such cases, mean-fi eld approaches provide appropriate representations of system 
dynamics (Berec  2002  ) . This consideration is closely related to one of the earliest 
characterizations of the idea of system complexity by Warren Weaver  (  1948  ) , who 
distinguishes middle-sized systems of “organized complexity” from small systems 
of only a few elements on the one hand, and large systems of disorganized complex-
ity explicable in statistical terms (gases are the obvious example) on the other. 
Systems of organized complexity are those where interaction among elements – more 
than that, iterative or hierarchical  organization  of the elements – renders statistical 
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explanation inadequate. He wryly notes that the size range of such systems is very 
broad: “large compared to two, but small compared to the number of atoms in a pinch 
of salt” (Weaver  1948 , p. 539). Taking only system size into account, this aspect may 
appear redundant in determining the viability of agent-based approaches since all 
social systems (that we know of!) fall into this broad ‘middle’ range. 

 To resolve this issue, we must delve more deeply into the idea of system organi-
zation. Where systems are suffi ciently ‘organized’, it may be that intermediate 
levels of organization are durable enough to form the atomic units on which we 
should focus in a model, rather than individuals. This fact is already implicit in 
cases where households rather than individuals are the agents in a model. Similarly, 
in economic models, fi rms are often recognized as the appropriate units for repre-
sentation. In models of large collections of individual actors, perhaps the most 
important question for the would-be agent-based modeller to ask is not “is an ABM 
appropriate?” (where the presumption often is that agents should represent indi-
vidual actors). A more important question may be, “what should the agents in an 
ABM of this system represent?” If the interactions among individual actors in the 
real world are substantially channelled via institutions or other social or spatial 
structures, perhaps it is those institutions or social or spatial structures that should 
be represented as agents in an ABM rather than the individuals of which they are 
formed. One way to think about this is to see that in choosing to represent not 
individual actors as agents but instead some other intermediate level aggregate 
entity, we are effectively reducing the system size to a point where actions of 
individual agents make a difference, thus justifying the approach. 

 All three of our system criteria favouring the adoption of ABM – heterogeneity, 
interaction, and the combined effects of system size and organization (‘middle-
numbered-ness’) – call for considerable prior knowledge and insight about system 
characteristics on the part of those developing models. Thus, it would be wrong to 
draw any universal conclusions from our account to a statement about the useful-
ness of agent-based approaches in general. Instead, we strongly recommend careful 
consideration of the system features we have discussed before simply assuming that 
an agent-based representation is inherently superior. Where consideration of these 
aspects suggests that an agent-based representation is indeed necessary, then it is 
worth noting that the resulting model is often one where a full explanation of the 
model behaviour calls for a historical account of the events in the model. If agents 
are necessary in the model because they are differentiated from one another, because 
they interact meaningfully with one another, and because they are able to make a 
difference to system level outcomes, then in describing and understanding the 
model, it is likely that Sayer’s  (  1985  )  contingent effects will be signifi cant. Thus 
particular agent-agent interactions will matter, and a detailed account of the model 
‘history’ may be necessary for a complete understanding of any particular model 
run. The difference from the real world target system we seek to understand, is that 
a model allows repeated runs and enables a probabilistic or general account of the 
system behaviours and tendencies to be developed. 

 Our discussion relies on  a priori  understanding or analysis of the system struc-
ture, or  post hoc  assessment of whether the resulting model demonstrates the 
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historical-contingent features that would suggest it was the right choice of 
approach. Neither is a particularly satisfactory or systematic way to decide 
whether or not to embark on the demanding and potentially costly development of 
an ABM approach in a particular case. Given the complex nature of the systems 
and problems involved, it is diffi cult to see how at least piloting ABM and alterna-
tive approaches can be completely avoided (another reason for preferring simple 
models to complicated ones?), but recent approaches do suggest ways in which 
the usefulness of ABMs can be assessed, such as pattern-oriented modeling 
(Grimm et al .   2005 ; Grimm and Railsback  2012  )  and the comparison of mean-fi eld 
and individual-based models (Iwasa  2000  ) . 

 While we cannot make sweeping general claims from our discussion, it seems 
clear that human settlement systems are often strong candidates for agent-based 
representations. This claim is based on the criteria for the usefulness of ABMs that 
we have identifi ed: heterogeneity, interaction, and system size and organization. 
Similar arguments can be made about human-environment systems more generally, 
even in prehistoric settings where the degree of organization of the social systems 
may be rather more limited. While other approaches remain useful, arguments 
against building ABMs based on the extra effort involved can be countered because 
the potential for insight and understanding from building and using such models 
makes those efforts worth it.      
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  Abstract   Complexity theory provides a common language and rubric for applying 
agent-based processes to a range of complex systems. Agent-based modeling in turn 
advances complexity science by actuating many complex system characteristics, 
such as self-organization, nonlinearity, sensitivity, and resilience. There are many 
points of contact between complexity and agent-based modeling, and we examine 
several of particular importance: the range of complexity approaches; tensions 
between theoretical and empirical research; calibration, verifi cation, and validation; 
scale; equilibrium and change; and decision making. These issues, together and 
separately, comprise some of the key issues found at the interface of complexity 
research and agent-based modeling.      

    7.1   Introduction 

 Complexity theory and the accompanying trappings of complex systems provide the 
theoretical basis for agent-based models (ABMs). While modelers are usually inter-
ested in addressing specifi c theoretical questions and working in particular substantive 
areas, they almost invariably draw on complexity concepts when using an agent-based 
approach. The relationship between ABM and complexity is mutually benefi cial. 
While complexity has much to offer ABM in terms of underlying concepts, modeling 
advances complexity by making real many of the often fuzzy concepts on which com-
plexity science relies. Advances in ABM are allowing modelers to move beyond 
studying complex systems in just metaphorical or rhetorical terms by giving them the 
tools to represent complex phenomena. Many disciplines are using ABM to enhance 
understanding of the interplay of complexity concepts, ranging from policy fi elds 
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(Carrillo-Hermosilla  2006 ; Gatti et al .   2005 ; McKelvey  1999  )  to the natural sciences 
(Brose et al .   2004 ; Phillips  2006 ; Rind  1999  )  through to the social sciences (Batten 
 2000 ; Manson and O’Sullivan  2006 ; Sampson et al .   2002  )  and into the humanities and 
arts (Nowotny  2005 ; Portugali  2006  ) . 

 When the theoretical questions regarding complexity are combined with the 
broadly applicable research allowed using ABM, a number of issues stand out, 
including:

   Reconciling a range of complexity approaches  • 
  Navigating the tension between theoretical and empirical research  • 
  Implementing calibration, verifi cation, and validation of models  • 
  Dealing with scale  • 
  Balancing the corollaries of equilibrium and change  • 
  Representing features of decision making.    • 

 These issues, together and separately, comprise some of the key points of contact 
and contention among the various components of complexity research and ABM. 
Ongoing examination of these issues is spurring further ABM research that illumi-
nates phenomena studied in the physical environment, social systems, and their 
combination via human-environment research.  

    7.2   Complexity Approaches 

 Complexity theory is less a singularly defi ned, discrete conceptual entity than an 
interdisciplinary focus for which individual fi elds and researchers use a common set 
of queries, concepts, and approaches. Given this lack of a single, identifi able core, 
the terms ‘complexity theory’ and ‘complexity sciences’ can therefore fi ttingly refer 
to an array of research methods. In order to provide an organizational schema to 
this diverse fi eld, we identify three streams of complexity research: algorithmic 
complexity, deterministic complexity, and aggregate complexity (cf. Byrne  1998 ; 
Cilliers  1998 ; Lissack  2001 ; Manson  2001  ) . At its simplest, algorithmic complexity 
conceives of any system in terms of the computational or heuristic processes needed 
to replicate system behavior. Deterministic complexity envisions a system through 
the lens of nonlinear dynamics and chaos theory, in order to try to capture system 
dynamics via a small set of mathematical equations. Aggregate complexity focuses 
on how complex systems arise from interactions among individual entities. It is this 
fi nal kind of complexity, aggregate complexity, that most ABM researchers tend to 
invoke when modeling, although algorithmic and deterministic complexity make 
their own contributions to ABM. 

 Complexity in any of its above-mentioned forms typically applies to a system, a 
set of entities connected to each other and the external environment in a way that 
gives it an overall identity and behavior. An ABM in its most basic form repre-
sents a system of such discrete entities. Systems can be of almost any scale, from 
atoms bound together in a molecule to households in an economy to planets in the 
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solar system. The key to modeling any of these systems, and therefore the key to 
complexity research and ABM, is the capture of core characteristics among system 
entities and, critically, their interrelationships. An ecosystem, for example, is self-
contained in terms of much of its structure and function but also has many connec-
tions to the larger climatic, geophysical, and biotic environment. The model must 
also have system boundaries that set it apart from its larger context. An urban area, 
for example, can be defi ned in a number of ways, but most models focus on ele-
ments of the built environment such as buildings and populations (e.g., workers, 
homeowners) that have relationships via migration, capital fl ows, and environmental 
relationships with the larger world. 

  Algorithmic complexity  focuses on representing systems in computational and 
mathematical terms. The component fi elds of computational complexity theory and 
information theory examine the diffi culties of computing the solution to problems 
and representing a system or reproducing its behavior (Chaitin  1974 ; Gell-Mann 
 1994  ) . At its most useful, algorithmic complexity provides a number of different 
measures of how a system is composed and represented. One helpful side effect is 
that some measures will identify problems that cannot be solved mathematically or 
computationally with our current state of knowledge, but that may yield to simula-
tion or heuristic approximations. Beyond these instances, the use of algorithmic 
complexity in complexity research and ABM has been limited given the greater 
interest in deterministic and aggregate complexity (O’Sullivan  2004  ) . 

  Deterministic complexity  is defi ned by approaches that use sets of mathematical 
equations to describe the state and trajectory of system dynamics. Deterministic 
complexity is so called because it fi nds for complex systems a few key variables and 
equations to describe system state and evolution; in this sense, system behavior is 
‘determined’ by these equations and variables. Positive and negative feedback are 
important components of deterministic complexity, spurring changes that self- 
reinforce or diminish over time, respectively. Given the potential for such feedback, 
deterministically complex systems exhibit both sensitivity and nonlinearity. The 
former refers to how systemic changes can result from small perturbations while the 
latter refers to how these small changes can give rise to disproportionately large 
changes in system structure or behavior (Phillips  2003  ) . The combination of sensi-
tivity and nonlinearity is exemplifi ed by the ‘butterfl y effect,’ where slight varia-
tions in initial model parameters, due to the displacement of air by butterfl y wings, 
can lead to large meteorological changes in a modeled weather system (Lorenz 
 1973  ) . The elements of sensitivity and nonlinearity are further adopted and extended 
by aggregate complexity for the modeling of agent-based systems. 

  Aggregate complexity  focuses on how complex systems arise from the local inter-
actions of system entities. With this perspective, the structure and dynamics of a 
system such as a city must be understood as driven by individual components and 
their relationships. In a city, these entities are people, households, fi rms, and orga-
nizations whose relationships are defi ned by exchanges of matter, energy, and infor-
mation. These entities have relationships with other entities and play multiple roles 
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within the city. Some of the stronger relationships give rise to larger aggregations 
(e.g., families, neighborhoods) that may act as entities in and of themselves. This 
potential for larger entities and behaviors to arise out of local interactions is seen as 
a form of self-organization, whereby entities and their relationships are suffi ciently 
strong yet fl exible enough to allow the overall system to adapt to a changing envi-
ronment (Easterling and Kok  2002  ) . In some settings, self-organization leads to 
self-organized criticality, where the system rapidly reconfi gures entities and internal 
relationships, in response to internal perturbation or external shocks (Bak  1996  ) . 
Self-organization is related to the concept of emergence, whereby system character-
istics or behavior result less from additive effects of system entities and their behav-
ior and more from synergistic relationships among entities (Funtowitcz and Ravetz 
 1994 ; Holland  1998  ) . One important kind of emergence is supervenience, where 
changes in system structure or behavior at one level of aggregation are driven by 
changes at a lower one (Sawyer  2002  ) . In sum, aggregate complexity demonstrates 
how system entities and their relationships defi ne the behavior of sub-systems and 
the system as a whole through self-organization and its offshoots, self-organized 
criticality, emergence, and supervenience. 

 While it is useful to denote various types of complexity – algorithmic, determinis-
tic, aggregate – it is also important to note that complexity draws on many conceptual 
antecedents. Since much of current complexity research, particularly aggregate com-
plexity, relies on notions of synergy and holism, it refl ects philosophies tracing back 
to Aristotle’s defi nitions of unity being more than the sum of parts and Whitehead’s 
philosophy of organism, which contends that understanding nature requires more than 
recourse to fi xed laws, and instead identifi es it as a system that is continually evolving 
(Whitehead  1925  ) . More recent antecedents include cybernetics and feedback (Wiener 
 1961  ) , neural networks and other biological analogs (McCulloch and Pitts  1943  ) , 
work in computing including cellular automata (von Neumann  1966  ) , and impor-
tantly, general systems theory, which holds that many systems have underlying simi-
larities (von Bertalanffy  1968  ) . Complexity departs from earlier related work by 
focusing on how systems emerge from the simple and local interactions among sys-
tem entities. While complexity shares with much previous work the assumption that 
systems can exist in equilibrium, it also actively explores the possibility of perpetual 
or repeated disequilibrium or near-chaotic behavior. In many respects, then, complex-
ity draws on key features of holism and synergy while also focusing on evolution and 
the balance between equilibrium and disequilibrium.  

    7.3   Issues of Complexity and ABM 

    7.3.1   Tensions Between Theoretical and Empirical Modeling 

 ABMs are valuable for both theoretical exploration and empirical investigation of 
complex systems. For theoretical inquiry, modeling serves as a means to better under-
stand how elements of interest and the relationships among them contribute to overall 
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system behavior over time. For empirical investigation, modeling is a vehicle for 
presenting all known and necessary initial conditions – defi ned in large part by system 
entities and their relationships – in order to determine how they have brought about an 
observed state and how they could bear on future possible states. ABMs also offer 
many opportunities to combine theoretical and empirical approaches, although not 
without raising issues regarding the model’s simplicity and complexity. 

 Theoretical inquiry with ABMs usually entails running “controlled experiments” 
that may spur the discovery of laws about complex processes (O’Sullivan  2004 : 
288). Purely theoretical ABMs are based on hypotheses that specify certain rules for 
the behavior of actor agents and their interaction with the environment. When using 
ABMs to model urban transportation, for example, actor behavior may be defi ned 
by utility maximization, as measured by housing quality or work proximity, and 
transportation cost minimization determined by distance to housing and work and 
modal choice. While many theoretical models are built for illustrative purposes, 
such as confi rming what their underlying theories predict, some models generate 
convincing, and sometimes surprising, theoretical implications. Work on racial seg-
regation simulation based on Schelling models, for example, continues to spur 
debate (Fossett  2006  ) . ABMs contribute to the longstanding use of computer simu-
lation to allow examination of many possible futures or pasts for a given system 
(Manson and O’Sullivan  2006  ) . 

 Empirical models focus more than theoretical ones on using actual data to sim-
ulate real-world phenomena, although the two foci can be complementary. The 
increasing number of theoretical models, the growing volume of empirical data, and 
the use of lab experiments to create rules of agent behavior have all contributed to 
recent expansion in the development of empirical models (Janssen and Ostrom 
 2006  ) . These models usually extend aspects of theoretical models using empirical 
data and have the ability to make predictions and prescriptions under different 
demographic, economic, and policy scenarios. Since one of the aims of creating 
empirical ABM is to accurately describe real-world processes, a tension exists 
between the descriptive power granted by specifi city and the desire to generalize to 
other settings. A model must therefore maintain a balance between fi tting the empir-
ical data and highlighting the processes of interest (Manson  2007  ) . 

 The relationship between theoretical and empirical foci in ABMs highlights how 
the modeling of empirically complex phenomena with relatively simple or founda-
tional rules is a diffi cult task. For example, because it is impossible to completely 
simulate all aspects of natural or human organization without reduction and simpli-
fi cation, all urban complexity models will have a theoretical component (Irwin et al .  
 2009  ) . Similarly, although complexity theory seeks to capture underlying dynamics, 
we still face a world where it is diffi cult to divine many characteristics of the eco-
nomic state of a city beyond a few years. Any model that attempts to capture the 
necessary specifi city of the myriad system entities may be regarded less for its com-
plexity than for its complication (Torrens and O’Sullivan  2001  ) . When adding a 
large number of features to a model, the modeler strays from the notion that a small 
number of rules describing the behavior of agents will lead to complex systems. 
This challenge arises when modeling urbanization and land change, for example, as 
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ABMs become more common and sophisticated. Modelers can represent many 
entities and relationships at the risk of moving away from the ethos of generating 
complex outcomes based on simple conditions and rules (Parker et al .   2003  ) .  

    7.3.2   Calibration, Verifi cation, and Validation 

 Agent-based complexity models require careful and thorough evaluation, which is 
comprised of calibration, verifi cation, and validation (Manson  2003  ) . Calibration is 
the adjustment of model parameters and specifi cations to fi t certain theories or 
actual data. Verifi cation determines whether the model runs in accordance with 
design and intention, as ABMs rely on computer code susceptible to programming 
errors. Model verifi cation is usually carried out by running the model with simu-
lated data and with sensitivity testing to determine if output data are in line with 
expectations. Validation involves comparing model outputs with real-world situa-
tions or the results of other models, often via statistical and geovisualization analy-
sis. Model evaluation has more recently included the challenge of handling enormous 
data sets, both for the incorporation of empirical data and the production of simula-
tion data. Modelers must also deal with questions concerning the relationship 
between pattern and process at all stages of calibration, verifi cation, and validation. 
Ngo and See  (  2012  )  discuss these stages in ABM development in more detail. 

 Empirical ABM modelers struggle to obtain the data necessary for proper cali-
bration. From a practical standpoint, simulating a complex system such as an urban 
housing market requires initializing a range of key components including agents, 
organizations, and the environment. Modelers rarely have the necessary individual-
level data, however, to populate agents such as households, and may similarly be 
missing information on organizational dynamics or features of the environment. 
They typically have either a limited set of random samples (e.g., household surveys, 
phone interviews) or more often, spatially aggregated data at various scales that are 
collected for other purposes by different government agencies (e.g., census data, 
regional economic information). Exogenous parameters (e.g. for urbanization, driv-
ers such as population growth rates, interest rates, and federal taxes) can often be 
derived from actual data, but sometimes are the results of educated guesses, simple 
linear interpolation, or extrapolation (Brown and Robinson  2006 ; Torrens  2007  ) . 

 Proper calibration and validation also entails the integration and reconciliation 
of data across multiple scales and formats. In ABMs involving both human and 
environmental elements, for instance, integrating vector and raster data that 
describe human and natural phenomena respectively at different scales can create 
problems like ecological fallacies (drawing incorrect inference on individuals from 
aggregated data) or inappropriate classifi cation when assigning attributes and 
aggregating features. There are also broader conceptual issues that arise when rec-
onciling data from different scales (e.g., household data vs. census information vs. 
regional socioeconomic statistics) and linking these observed data to the agents of 
interest (e.g., households versus parcels versus neighbourhoods). In response to 
these issues, modelers may need to generate individual data from random samples 
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or from aggregate data, such as census data. Promising approaches include iterative 
proportional fi tting procedures, where tabular data are modifi ed to new levels of 
aggregation, or Monte Carlo simulation, where multiple probabilistic draws are 
taken on a sample data set (Wheaton et al .   2009  ) . 

 While complexity modelers often lack suffi cient data for ABM calibration and vali-
dation, they also face challenges when generating simulation data. Understanding the 
dynamics of the attributes of different kinds of agents of even a moderately sophisti-
cated simulation demands great effort to visualize, analyze, and replicate the modeled 
phenomenon or process (Janssen  2009  ) . The nature of intermediate attribute and 
behavioral data of actor agents, for example, is rarely discussed in the literature, 
although such data are potentially useful for the validation of agent behavior and the 
social processes that produce such behavior. Here, complexity theory can allow the 
researcher to triangulate among different approaches and viewpoints, because it focuses 
on identifying generic features of complex systems without getting the inquiry mired 
in a need to address ontological or epistemological questions (O’Sullivan  2004  ) . 

 In terms of broader validation challenges, distinctions between theoretical and 
empirical approaches lead to questions concerning pattern and process. Patterns that 
are often generated in complexity models, including fractals and information-theory 
measures, may not reveal much about the processes that generate them, much less 
whether the processes are complex in the sense meant by deterministic or aggregate 
complexity. The potential disconnect between pattern and process may infl uence 
how the modeler chooses between empirically-driven explanation and description 
(which usually tilts toward pattern) versus theoretically driven discovery and hypoth-
esis generation (which is often biased towards process). A number of authors, for 
example, incorporate variables and rules into a model that bring about a community 
pattern for the Anasazi civilization in the southwest United States previously deter-
mined by archeologists and historians (Axtell et al .   2002 ; Dean et al .   2000  ) . The 
ABM identifi es how discrete entities and their relationships give rise to higher-level 
systemic processes, but this focus on scale raises the specter of equifi nality, where 
different variables and processes may lead to the same outcome, or similarly, where 
only a few key variables determine model outcomes (Janssen  2009  ) . For theoretical 
models, the modeler has more leeway to set initial conditions and formulate iterative 
rules that can illuminate a theoretical question, although validation becomes diffi cult 
in the absence of empirical data. Axelrod’s  (  1997  )  culture dissemination model, for 
example, demonstrates how regions adopt or reject the cultural practices of neighbor-
ing regions. The model results, while not refl ecting the real world in detail, elicit 
interesting questions about interactions between actors across space and over time.  

    7.3.3   Scale 

 ABM researchers pay close attention to the spatial, temporal, and organizational 
scale of the simulation process. As noted above, one of the hallmarks of scalar 
properties in ABMs is emergence, the phenomenon of processes occurring at one 
level that are not evident based on a summing up of lower-level processes. 
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Emergent properties are implicitly scalar, as seen in how humans function based 
on the workings and interactions of the component organs, the fl ight patterns of a 
fl ock of birds arising from the actions of individual birds, and the traffi c gridlock 
that occurs based on the decisions of individual drivers (Mainzer  1996  ) . Importantly, 
emergence is often unintentional. Drivers and their vehicles do not generally seek 
to create gridlock, for example, but their actions and subsequent interactions read-
ily create traffi c jams. ABM modelers can draw on several bodies of work to help 
defi ne and understand scale and emergence as well as adding context to notions of 
non-linearity and sensitivity. In addition, scale offers an entry point to the model-
ing of networks using ABM. 

 One approach to defi ning scale levels and emergence is provided by hierarchy 
theory, wherein actors and systems, through their functions and interactions, form 
larger systems. A regional housing market, for example, can have several sub-
regions as housing market areas; each housing market area also has housing sub-
markets; a housing sub-market might then include several cities or several school 
districts with similar socioeconomic characteristics; within such a sub-market exist 
smaller neighborhoods defi ned by residents’ activity and interaction patterns. Under 
this formulation, scale levels should be considered as defi ned by interactions and 
relationships among entities, but importantly, it is up to the analyst to defi ne these 
levels instead of taking them as pre-defi ned (O’Neill  1988  ) . Similar frameworks 
exist for the emergence of scale from interactions among entities, such as when 
institutions arise from the interrelationships of individuals (Ostrom  2005  )  or, more 
broadly, when human-environment systems such as agriculture or forestry exist at 
multiple scales of analysis (Easterling and Polsky  2004  ) . 

 When drawing upon hierarchy theory, the modeler can identify the system’s con-
stitutive hierarchies, wherein the components of a subsystem have emergent proper-
ties only when they are brought together to form a higher-level system (Gibson et al .  
 2000  ) . When considering emergent properties in collective behavior, an implicit 
assumption is made by the modeler that the lower-level processes are individually 
not as complex as the collective outcome, yet simultaneously each individual entity 
may be constitutive of emergent properties based on processes one level further 
down. The modeler can therefore create a series of models that nest these processes 
within one another, thereby modeling a hierarchically ordered system. 

 Notions of scale levels defi ned by constitutive hierarchies provide a useful coun-
terweight to non-linearity and sensitivity as conceived by deterministic complexity 
and aggregate complexity. When determining both the spatial and temporal scales 
of inquiry, one may discern linear associations or limits that coincide with scale 
levels. Identifying the fl apping of a butterfl y’s wings as a cause of super-regional 
weather phenomena like hurricanes is a powerful idea, but may not account for a 
large set of temporal conditions that, in concert with the wings, led to the hurricane. 
Hence, a claim that the butterfl y was necessary does not mean that it was suffi cient. 
In regard to social processes that may seem non-linear, such as the ways that a mas-
sively distributed photograph or website video of an individual event may infl uence 
national or international policy, one must still consider the communication infra-
structure and the social networks that represent a series of steps from one hierarchical 
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scale level to the next, with each step imposing fi lters and meaning. In contrast to 
the conception of emergence being merely a bottom-up process, co-evolutionary 
processes play out when entities understand they are constitutive of the system and 
can modify it. In addition to understanding how social norms emerge from personal 
interrelationships, for example, it is necessary to determine how emergent norms 
feed back onto individuals (Ostrom  2005  ) . 

 One rapidly emerging form of scale in ABM research, mirroring trends in scale 
and complexity research more broadly, is the notion of networks defi ning scales 
(Manson  2008  ) . Networks have interesting scalar properties that are increasingly 
important to ABM as researchers combine modeling with the rubrics of graphing 
and topology. The study of small world networks reveals that when just a few addi-
tional links between distant nodes are added to a network where most links are 
otherwise based on proximity, the connectedness of the entire network greatly 
increases (Watts  2003  ) . Barabasi and Albert  (  1999  )  fi nd that many real networks are 
self-organizing and scale-free, as they follow a power-law distribution due to inher-
ent processes of growth and preferential attraction of new nodes to well-connected 
ones. They cite examples of scale-free networks that include the World Wide Web, 
the electrical power grid of the western United States, and citations that link scien-
tifi c journal papers. Advances in our understanding of networks arise from a con-
fl uence of pertinent data and ABMs, as seen with the joining of a variety of social 
science databases and decision-making agents in the context of economics and 
politics (Skvoretz  2002  ) .  

    7.3.4   Equilibrium and Change 

 Researchers of all stripes have long modeled many systems under the assumption of 
equilibrium. Agent-based modeling, by focusing on complex dynamics, provides an 
opportunity to understand the degree of explanatory power that the assumption of 
equilibrium has for a given system. Deterministic complexity often does not regard 
equilibrium as a necessary feature, even if a model of system dynamics can capture 
whether equilibrium is attainable given the initial conditions and process interac-
tions. For example, ABMs are increasingly used to investigate processes such as the 
spread of smallpox or cultural memes, where the spatiotemporal dynamics rather 
than system equilibrium are the phenomenon of interest (Epstein  2006  ) . Issues of 
equilibrium and change lend further context to concepts of sensitivity and nonlin-
earity in complex systems by offering commentary on system resilience and the 
potential for dynamic movement among basins of attraction. 

 Dramatic changes wrought in a system because of its inherent sensitivity and 
nonlinearity of interactions are countered by the system’s resilience, the ability to 
adjust to disturbance and reorganize without signifi cantly changing its functions or 
structure, and its transformability, the ability to create a new system confi guration 
when adjustment is not possible (Walker et al .   2004  ) . A system can be highly resil-
ient despite a high degree of instability when it is self-organizing (Holling  1996  ) . 
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Also, resilience is a scale-dependent characteristic, both temporally and spatially. 
A system resilient in one span of time may be compromised in a longer span, while 
a resilient community may endure at great cost to its larger, encompassing region 
(Levin and Lubchenco  2008  ) . 

 Deterministic and aggregate complexity research addresses the dynamics of non-
equilibrium states found in complex systems. The lower-level, bottom-up forces 
create processes that are constantly adapting to environmental changes and under-
going organizational transformation. The interactions that give rise to these changes 
are non-linear and subject to novelty (Holland  1995  ) , resulting in a system sensitive 
to the introduction of new components and fl uctuations of component states. Despite 
the ever-changing nature of system behavior and structure, it may gravitate toward 
one of multiple basins of attraction (Holling  1973  ) . Coupled human-environment 
systems have multiple attractors, as seen when a coupled population-phosphorus 
system has one attractor situated at a high population state with a balance of eco-
nomic and ecological drivers, and a low population state representing a restored 
ecological system (Chen et al .   2009  ) . 

 Just as scale levels can attenuate non-linearity and sensitivity, complex systems 
embody a tension between sensitivity to initial conditions and a dynamic movement 
between basins of attraction. Certain states may experience positive feedback, grav-
itating to an attraction basin that will not accommodate robust sub-systems and 
diverse inputs. Decreases in biological diversity and threats to the viability of eco-
system services, for example, represent a state where resilience is low and more 
vulnerable to disturbance (Folke  2006  ) . Human institution research recognizes the 
sensitivity of changes to rules in organizational structure, wherein small changes via 
policy can bring about “a nontrivial probability of error” (Ostrom  2005 : 243). 
Complex systems are susceptible to ‘imaginable surprise’ where seemingly unex-
pected system confi gurations are in fact understandable when we allow for complex 
features such as nonlinearity and sensitivity (Schneider et al .   1998  ) . Sensitivity, as 
with resilience, is either scale-dependent, such that the system may be regarded as 
sensitive as it moves from one attraction basin to another, or independent as these 
attractors, over longer time periods, characterize the typical system states regardless 
of initial conditions. The ability of ABM to represent these complex systems offers 
great potential for exploring emergence and surprise in human systems, such as the 
recent fi nancial crisis in the global economy (Farmer and Foley  2009  ) .  

    7.3.5   Decision Making 

 Decision making is the engine of many ABMs, particularly those involving human 
actors, and in turn it has many ties to complexity. It has long been a core concern of 
many fi elds, including geography, economics, management, and psychology. ABMs 
have helped draw out the similarities and differences among different decision-making 
theories by emphasizing the importance of developing basic rules for agents to fol-
low, leading to research focused on how such rules embody their decision-making 
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strategies. Agents in an ABM usually pursue certain goals set by the modeler with 
given resources and constraints. Commuters want to minimize their commuting 
time, for example, while homebuyers want to purchase the best house within their 
budget, and parents want to move into neighborhoods with quality public schools. 
Standard decision-making theory is a logical starting point for modeling these deci-
sions, as seen in the wide use of multi-criteria evaluation and Cobb-Douglas utility 
functions to enable simulated agents to make decisions regarding parcel develop-
ment and household migration (Brown et al .   2005 ; Parker and Filatova  2008  ) . While 
recognizing the value of assumptions such as utility maximization in classical eco-
nomics, ABMs have also opened the door to other forms of decision-making theory. 
Behavioral economics, for example, emphasizes the importance of concepts like 
incomplete information, bounded rationality, reinforcement over time, expected 
utility, and market anomalies (Arthur  1991 ; Simon  1997b  ) . 

 ABMs illustrate how actor agents make decisions to achieve predefi ned goals in 
an environment shaped by all agents, and more importantly, how these individual 
decisions lead to macro patterns that are not predicted by perfect rationality. The 
concept of bounded rationality, introduced by Herbert Simon, depicts the actor 
whose decision making is bounded three ways  (  1997b  ) . The fi rst represents the 
“skill, habits, and refl exes” (Simon  1997a : 46) that exist beyond our conscious 
grasp, and presumably, beyond rational decision making. The second is the actor’s 
set of purposes and values, which may differ from those of someone else in an oth-
erwise similar decision making scenario. The third bound is limited information, 
wherein the actor lacks certain facts or skills that would contribute to a fully informed 
decision. Representing these three bounds is nascent in ABM but arguably it is this 
form of modeling that is well suited to advance our understanding of bounded ratio-
nality because agents can represent various features of boundedness such as limited 
computational capacity or rules of thumb (Chen  2005 ; Dawid  1999 ; Edmonds and 
Moss  1997 ; Manson  2006  ) . In particular, ABMs allow various decision-making 
strategies, including from rules-of-thumb or heuristics for adapting to a changing 
environment (Gigerenzer and Selton  2001  ) . Axelrod  (  1997  ) , for example, sees 
actors in his cultural dissemination model as not making rational decisions as such, 
but simply adapting to their environment. More broadly, decision-makers use heu-
ristics to make ‘non-rational’ decisions, based on the manner in which possible 
choices are framed (Tversky and Kahneman  1974  ) . 

 The distinction between an individual decision and a collective one allows for a 
more sophisticated mechanism to model the choices of actors. Simon notes that 
decisions “are not made by ‘organizations’ but by human beings behaving as mem-
bers of organizations” (Simon  1997a : 281). Social network conceptions of social 
contagion, for example, address the process of collective decision-making wherein 
actors receive ideas the way that they may be exposed to the carrier of a disease. 
Thresholds may be established in which the actor accepts the idea after being 
exposed to it a given number of times (Granovetter  1978 ; Watts  2003  ) . When people 
make migration decisions, for example, they not only want to physically move 
closer to the friends and relatives in their network, but their criteria for quality hous-
ing, their perception of specifi c neighborhoods, and their knowledge of vacancies 
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are all infl uenced by the available information in their network (Clark  2008  ) . Social 
infl uences on decision making are also evident in the role of refl exivity, such that the 
past and future are incorporated into present thinking. ABMs address a core ques-
tion: how does one account for actors that are aware of how their actions may feed 
into collective outcomes? A person may stay away from social events that are 
expected to be too crowded or too sparsely attended, for example, as a function of 
past experience (Arthur  1991  ) . In short, actors often play an expectations game 
when they act in order to avoid being part of an undesired collective outcome or in 
order to prevent that outcome from happening (Gilbert  1995  ) .   

    7.4   Conclusion: Complex Agents, Complex World 

 Complexity and ABMs offer much to each other. ABM research draws on a range of 
concepts and approaches from algorithmic, deterministic, and aggregate complexity. 
In turn, modeling brings to complexity a large number of actual complex systems 
and attendant theories to advance complexity science. ABMs offer a virtual labora-
tory that helps researchers navigate between theoretical and empirical research. And 
while ABM faces many challenges in calibration, verifi cation, and validation, it 
offers new ways to think about relationships between data and theory, pattern and 
process. Complexity and ABMs, separately and jointly, are also advancing our con-
ceptualization of scale in a range of complex systems, alongside issues of sensitivity, 
nonlinearity, resilience, equilibrium, and change. Finally, ABMs are a very promis-
ing technique, alongside other approaches, for modeling and understanding decision 
making. In sum, one may take heart from the many challenges facing researchers 
working at the intersection of agent-based modeling and complexity science because 
they arise from the vast potential and promise of these two worlds meeting.      
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  Abstract   This chapter discusses the process of designing and building an 
 agent-based model, and suggests a set of steps to follow when using agent-based 
modelling as a research method. It starts with defi ning agent-based modelling and 
discusses its main concepts, and then it discusses how to design agents using 
different architectures. The chapter also suggests a standardized process consisting 
of a sequence of steps to develop agent-based models for social science research, 
and provides examples to illustrate this process.      

    8.1   What Is Agent-Based Modelling? 

 Agent-based modelling is a  computational  method that enables a researcher to  create, 
analyze, and  experiment  with  models  composed of  agents  that interact within an 
 environment . Let us shed some light on the core terms italicized in this defi nition. 

 A  model  is a simplified representation of a “target” system that expresses 
as clearly as possible the way in which (one believes) that system operates. 
This  representation can take several forms. For example, in mathematical and 
 statistical  modelling, the model is a set of equations (e.g., a regression equation). 
A graphical network of nodes and edges can model a set of friendships. 
 Computational  methods, such as agent-based modelling, involve building 
models that are computer programs. The program (i.e., the model) represents 
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the processes that are thought to exist in the social world (Macy and Willer  2002  ) . 
For example, we might build a model to study how friends (“agents”) infl uence 
each other’s purchasing choices. Such processes are not easy to represent using 
mathematical equations because what one agent buys will infl uence the purchasing 
of a friend, and what a friend buys will infl uence the fi rst agent. This kind of 
mutual reinforcement is relatively easy to model using agent-based modelling. 

 Another advantage of agent-based modelling when doing social research is 
that it enables a researcher to use the model to do  experiments . Unlike natural 
sciences, such as physics and chemistry, conducting experiments on the real 
system (people for example) is impossible or undesirable. Using a computer 
model, an experiment can be set up many times using a range of parameters. 
The idea of experimenting on models rather than on the real system is not novel. 
For example, it is a better idea to use a model of an aeroplane to test fl ying under 
various conditions than to use a real aircraft (where the cost of experimentation 
is very high). 

 Agent-based models (ABMs) consist of  agents  that interact within an  environ-
ment . Agents themselves are distinct parts of a program that represent social actors 
(e.g., persons, organizations such as political parties, or even nation-states). They 
are programmed to react to the computational environment in which they are 
located, where this environment is a model of the real environment in which the 
social actors operate. 

 In the following, we present two simple examples of ABMs, Sugarscape and 
Schelling’s model of residential segregation, to illustrate the main concepts of agent-
based modelling used in the remaining sections of this chapter. A general introduction 
to agent-based modelling is presented in Crooks and Heppenstall  (  2012  ) . 

    8.1.1   Sugarscape 

 Sugarscape (Epstein and Axtell  1996  )  is a simple example of an ABM that yields a 
range of interesting results about the distribution of wealth in a society. The model 
represents an artifi cial society in which agents move over a 50 × 50 cell grid. Each 
cell has a gradually renewable quantity of ‘sugar’, which the agent located at that 
cell can eat. However, the amount of sugar at each location varies. Agents have to 
consume sugar in order to survive. If they harvest more sugar than they need imme-
diately, they can save it and eat it later (or, in more complex  variants of the model, 
can trade it with other agents). Agents can look to the north, south, east and west of 
their current locations and can see a distance which varies randomly, so that some 
agents can see many cells away while others can only see adjacent cells. 

 Agents move in search of sugar according to the rule: look for the unoccupied 
cell that has the highest available sugar level within the limits of one’s vision, and 
move there. Agents not only differ in the distance they can see, but also in their 
‘metabolic rate’, the rate at which they use sugar. If their sugar level ever drops to 
zero, they die. New agents replace the dead ones with a random initial allocation 
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of sugar. Thus there is an element of the ‘survival of the fi ttest’ in the model, since 
those agents that are relatively unsuited to the environment because they have 
high metabolic rates, poor vision, or are in places where there is little sugar for 
harvesting, die relatively quickly of starvation. However, even successful agents 
die after they have achieved their maximum lifespan, set according to a uniform 
random distribution. 

 Epstein and Axtell  (  1996  )  present a series of elaborations of this basic model in 
order to illustrate a variety of features of societies. The basic model shows that even 
if agents start with an approximately symmetrical distribution of wealth (the amount 
of sugar each agent has stored), a strongly skewed wealth distribution soon develops. 
This is because a few relatively well-endowed agents are able to accumulate more 
and more sugar, while the majority only barely survive or die.  

    8.1.2   Schelling’s Model of Residential Segregation 

 Another simple example is Schelling’s model of residential segregation  (  1971  ) . 
Schelling was interested in the phenomenon of racial residential segregation in 
American cities, and he aimed to explain how segregation could happen, and how 
these segregationist residential structures, such as ghettos, may occur spontane-
ously, even if people are relatively tolerant towards other ethnic groups, and even 
when they are happy with being a minority in their neighbourhoods. 

 A city in Schelling’s model is represented by a square grid of cells each repre-
senting a dwelling. A cell can be in any of three colours: white, black, or grey 
according to whether it is occupied by a white agent, a black agent, or is empty. 
The simulation starts by randomly distributing the agents over the grid. Schelling 
supposed that people have a ‘threshold of tolerance’ of other ethnic groups. That 
means that agents are ‘content’ to stay in their neighbourhood as long as the 
proportion of their neighbours (which are the eight cells to the north, north-east, 
east, south-east, south, south-west, west and north-west) of the same colour as 
themselves is not less than this threshold. For example, with 50% threshold of 
tolerance, agents would be happy to stay in place as long as at least four of their 
eight  neighbours are of the same colour; otherwise, they try to move to another 
 neighbourhood satisfying this proportion. 

 Figure  8.1  shows the result of the simulation with 2,000 agents. The upper-
left panel shows the starting random allocation of black and white agents over 
the grid, and the other three panels show the fi nal confi gurations after running the 
simulation with tolerance thresholds of 37.5% (at least three of an agent’s eight 
neighbours must be of the same colour for the agent to be content), 50% 
(four of eight), and 75% (six of eight). Clustering emerges even when agents 
are happy to be a minority in their neighbourhood (with 37.5% threshold), and 
the sizes of these emergent clusters increase with increasing levels of tolerance 
threshold.  

 In the following, we discuss the core concepts of “agents” and their “ environment” 
in more detail.   
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    8.2   Agents 

 Applied to social science research, the concept of agency is usually used to indicate 
the purposive nature of human activity. It is thus related to concepts such as inten-
tionality, free will, and the power to achieve one’s goals. In agent-based modelling, 
agents are conventionally described as having four important characteristics:

    • Perception . Agents can perceive their environment, including other agents in 
their vicinity. In the Sugarscape model, for example, agents can perceive the 
amount of sugar the current cell has.  
   • Performance : They have a set of behaviours that they are capable of performing 
such as moving, communicating with other agents, and interacting with the 
environment. In the Sugarscape model, they move and consume sugar.  

  Fig. 8.1    The result of the simulation of the Schelling model       
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   • Memory.  Agents have a memory in which they record their previous states and 
actions.  
   • Policy . They have a set of rules, heuristics or strategies that determine, given 
their present situation and their history, what they should do next, e.g. looking for 
cells with the highest level of sugar.    

 Agents with these features can be implemented in many different ways. Different 
architectures (i.e. designs) have merits depending on the purpose of the simulation. 
Nevertheless, every agent design has to include mechanisms for receiving input 
from the environment, for storing a history of previous inputs and actions, for 
devising what to do next, for carrying out actions and for distributing outputs. In the 
following, we describe three common approaches to agent architecture: using an 
object-oriented programming language directly, using a production rule system, and 
using learning approaches. 

    8.2.1   Object-Oriented Programming 

 The idea of object-oriented programming (OOP) is crucial to agent-based model-
ling, which is why almost all ABMs are built using an OOP language, such as 
Java, C++, or Visual Basic. A program developed in an OOP language typically 
consists of a collection of  objects . An object is able to store data in its own 
 attributes,  and has  methods  that determine how it processes these data and interacts 
with other objects. As you might have noticed, there is an affi nity between the idea 
of an agent and an object; it is natural to program each agent as an object. 

 The concept of ‘class’ is basic to OOP. A class is an abstract specifi cation of an 
object. For example, a program might include a class called “Customer” to 
represent a customer of a firm in a model of business. A Customer might have 
a set of attributes such as name, address, and types of product (s)he likes. In the 
Sugarscape model, we can create a class named “Agent” with attributes such as 
 age ,  wealth  (the amount of sugar),  life-expectancy  (the maximum age that can be 
reached),   metabolism  (how much sugar an agent eats each time period), and  vision  
(how many cells ahead an agent can see). A class also usually has some methods to 
describe its activities (e.g., move, eat sugar, save and die). 

 As the program runs, classes are  instantiated  to form objects. For example, the 
Customer class might be instantiated to yield two objects representing two 
customers: the fi rst with name John Smith and the other with name Sara Jones 
(along with their other attributes). Although the two customers have the same 
methods and the same set of attributes, the values of their attributes (e.g., their 
names and addresses) differ. 

 When using OOP to design an ABM, one creates a class for each type of agent, 
provides attributes that retain the agents’ past current state ( memory ), and adds 
suitable methods that observe the agents’ environment ( perception ) and carry out 
agent actions ( performance ) according to some rules ( policy ). In addition, one needs 
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to program a scheduler that instantiates the required number of agents at the 
beginning of the simulation and gives each of them a turn to act.  

    8.2.2   Production Systems    

 One of the simplest, yet effective, designs for an agent is to use a production system. 
A production system has three components:

    1.     A Set of Rules of Behaviour . These rules determine what an agent will do. 
Usually, a rule consists of two parts: a condition, which specifi es when the rule 
is to be executed (‘fi re’), and an action part, which determines what is to be the 
consequence of the rule fi ring. Example of rules in Sugarscape include:

   IF there is any sugar at the current cell, THEN eat it;  • 
  IF  • sugar level  of the current cell exceeds  metabolism,  THEN add the extra 
sugar to  wealth;  and  
  IF age exceeds  • life-expectancy,  THEN die .      

    2.     A Working Memory . An agent’s memory is represented by variables that store its 
current or previous states. For example, an agent’s memory might store its current 
location and wealth (the amount of sugar). Rules can include actions that insert 
facts into the working memory (e.g. I am holding some sugar) or conditions that 
test the state of the working memory (e.g. IF I am holding sugar, THEN eat it).  

    3.     A Rule Interpreter . The rule interpreter considers each rule in turn, fi res those for 
which the condition is true, performs the indicated actions for the rules that have 
fi red, and repeats this cycle indefi nitely. Different rules may fi re on each cycle 
either because the immediate environment has changed or because one rule has 
modifi ed the working memory in such a way that a new rule begins to fi re.     

 Using a production system, it is relatively easy to build reactive agents that 
respond to each stimulus from the environment with some action. A simple pro-
duction system can be constructed from a toolkit such as JESS (the Java Expert 
System Shell,   http://www.jessrules.com/    ) (Friedman-Hill  2003  ) . There are also 
some much more elaborate systems that are based on psychologically plausible 
models of human cognition, such as Soar (Laird et al.  1987 ; Wray and Jones  2006 ; 
Ye and Carley  1995  ) , CLARION (Sun  2006  ) , and ACT-R (Taatgen et al.  2006  ) .  

    8.2.3   Learning 

 Production-system-based agents have the potential to learn about their environment 
and about other agents through adding to the knowledge held in their working 
memories. The agents’ rules themselves, however, always remain unchanged. For 
some models, it is desirable to create agents that are capable of more fundamental 
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learning: where the internal structure and processing of the agents adapt to 
changing circumstances. There are two techniques commonly used for this: 
 artifi cial neural networks (ANNs)  and evolutionary algorithms such as the  genetic 
algorithm (GA) . 

 ANNs are inspired by analogy to nerve connections in the brain. An ANN 
consists of three or more layers of neurons, with each neuron connected to all other 
neurons in the adjacent layers. The fi rst layer accepts input from the environment, 
processes it and passes it on to the next layer. The signal is transmitted through 
the layers until it emerges at the output layer. Each neuron accepts inputs from the 
preceding layer, adjusts the inputs by positive or negative weights, sums them and 
transmits the signal onward. Using an algorithm called the  back propagation of 
error , the network can be tuned so that each pattern of inputs gives rise to a different 
pattern of outputs. This is done by training the network against known examples 
and adjusting the weights until it generates the desired outputs (Garson  1998  ) . Using 
ANNs, it is possible to design agents and train them to identify objects such as 
letters or words, or recognize voices and pictures. 

 In contrast to a production system, an ANN can modify its responses to stimuli 
in the light of its experience. A number of network topologies have been used to 
model agents so that they are able to learn from their actions and the responses of 
other agents (e.g. Hutchins and Hazlehurst  1995 ; Terna  1997  ) . 

 Another way of enabling an agent to learn is to use an evolutionary algorithm. 
These are also based on a biological analogy, drawing on the theory of evolution by 
natural selection. The most common is the genetic algorithm (GA). This works with 
a population of individuals (agents), each of which has some measurable degree of 
‘fi tness’, using a metric defi ned by the model builder. The fi ttest individuals are 
‘reproduced’ by breeding them with other fi t individuals to produce new offspring 
that share some features taken from each parent. Breeding continues through many 
generations, with the result that the average fi tness of the population increases as the 
population adapts to its environment. 

 Sometimes, it is desirable to use both techniques of learning, GAs and ANNs, 
in the same ABM. For example, one may need to create a large population of 
ANNs (each corresponding to one agent). The agents are initialized with a random 
set of connection weights and are set a task such as gathering “food” from a 
landscape. An agent’s perception of whether there is food in front of it is fed into 
the ANN inputs, and the outputs are linked to the agent’s action, such as move and 
eat. The agent is given an initial quantity of energy, some of which is used on every 
time step. If the energy declines to zero, the agent “dies” and it is removed from the 
simulation. An agent can boost its energy by eating food, which is scattered around 
the landscape. 

 Because of the random connection weights with which an agent’s ANN is 
initialized, most agents will not succeed in fi nding and eating food and will quickly 
die, although some will succeed. Those more successful agents reproduce, giving 
their offspring similar connection weights as their own (but with slight mutation). 
Gradually, the population of agents will learn food harvesting behaviour (Acerbi 
and Parisi  2006 ; Gilbert et al.  2006  ) .  
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    8.2.4   The Environment 

 The environment is the virtual world in which agents operate. In many models, the 
environment includes passive objects, such as landscape barriers, “roads” down 
which agents may travel, resources to provide agents with energy or food (as in the 
Sugarscape model), and so on. These can be programmed in much the same way as 
agents, but more simply, because they do not need any capacity to react to their 
surroundings. For example, the environment in the Sugarscape model can be imple-
mented by creating a class, called “Cell”, which has two attributes:  location , which 
is the  xy  position of a cell, and  sugar level , which indicates the amount of sugar the 
cell has. Then 2,500 (50 × 50) objects of this class are instantiated at the start of 
the simulation with their proper locations and random values for their sugar levels. 

 Environments may represent geographical spaces, for example, in models 
concerned with residential segregation where the environment simulates some of 
the physical features of a city, and in models of international relations, where the 
environment maps states and nations. Models in which the environment represents 
a geographical space are called  spatially explicit . In other models, the environment 
could represent other types of space. For example, scientists can be modelled 
in “knowledge space” (Gilbert et al.  2001  ) . In spatial models, the agents have 
coordinates to indicate their location. Another option is to have no spatial represen-
tation at all but to link agents together into a network in which the only indication of 
an agent’s relationship to other agents is the list of agents to which it is connected by 
network links (Scott  2000  ) . It is also possible to combine both. Think, for example, 
of a railway network.   

    8.3   Developing ABMs in Social Science Research 

 Research in agent-based modelling has developed a more or less standardized 
research process, consisting of a sequence of steps. In practice, several of these 
steps occur in parallel and the whole process is often performed iteratively as ideas 
are refi ned and developed. 

    8.3.1   Identifying the Research Question 

 It is essential to defi ne precisely the research question (or questions) that the model 
is going to address at an early stage. The typical research questions that ABMs are 
used to study are those that explain how regularities observed at the societal or macro 
level can emerge from the interactions of individuals (agents) at the micro level. 
For example, the Schelling model described earlier starts with the observation that 
neighbourhoods are ethnically segregated and seeks to explain this through 
modelling individual household decisions.   
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    8.3.2   Review of Relevant Literature 

 The model should be embedded in existing theories and make use of whatever 
data are available. Reviewing existing theories relating to the model’s research 
question is important to illuminate the factors that are likely to be signifi cant in 
the model. It is also useful to review comparable phenomena. For example, when 
studying segregation, theories about prejudice and ethnic relations are likely to be 
relevant. 

 All ABMs are built based on assumptions (usually about the micro-level). These 
assumptions need to be clearly articulated, supported by the existing theories and 
justifi ed by whatever information is available.  

    8.3.3   Model Design 

 After the research question, the theoretical approach and the assumptions have been 
clearly specifi ed, the next step is to specify the agents that are to be involved in the 
model and the environment in which they will act. 

 For each type of agent in the model, the attributes and behavioural rules need to be 
specifi ed. As explained in Sect.  8.2 , an attribute is a characteristic or feature of the 
agent, and it is either something that helps to distinguish the agent from others 
in the model and does not change, or something that changes as the simulation runs. 
For example, in Sugarscape, an agent’s  life-expectancy  (the maximum age that an 
agent can reach),  metabolism  (how much sugar an agent eats each time), and  vision  
(how many cells ahead an agent can see) are examples of attributes that do not 
change, while  age  and  wealth  (the amount of sugar an agent has) are changeable 
attributes. 

 The agent’s behaviour in different circumstances also needs to be specifi ed, often 
as a set of condition-action rules (as explained in Sect.  8.2 ). This specifi cation can 
be done in the form of two lists: one which shows all the different ways in which 
the environment (including other agents) can affect the agent, and one showing all the 
ways in which the agent can affect the environment (again, including other agents). 
Then the conditions under which the agent has to react to environmental changes 
can be written down, as can the conditions when the agent will need to act on the 
environment. These lists can then be refi ned to create agent rules that show how 
agents should act and react to environmental stimuli. 

 It will also be necessary to consider what form the environment should take 
(for instance, does it need to be spatial, with agents having a defi nite location, or 
should the agents be linked in a network) and what outputs of the model need to be 
displayed in order to show that it is reproducing the macro-level regularities as 
hoped (for example, the wealth distribution in the Sugarscape model, and the size of 
clusters of dwellings of the same colour in Schelling’s model). 

 Once all this has been thought through, one can start to develop the program code 
that will form the simulation.  
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    8.3.4   Model Implementation 

 After the model has been designed, and when the agents and environment are fully 
specifi ed, the next step is to convert the design into a computer program. Most 
ABMs involve two main parts or  procedures :

    • Setup Procedure . The Setup procedure initializes the simulation (and is therefore 
sometimes called the initialization procedure). It specifi es the model’s state at 
the start of the simulation, and it is executed once at the beginning. This part of 
the program might, for example, lay out the environment and specify the initial 
attributes of the agents (e.g., their position, wealth and life expectancy in the 
Sugarscape model).  
   • Dynamics Procedure . This procedure is repeatedly executed in order to run the 
simulation. It asks agents in turn to interact with the environment and other agents 
according to their behavioural rules. This will make changes in the environment 
and invoke a series of action-reaction effects. For example, in Schelling’s model of 
segregation, the dynamics procedure may ask all ‘unhappy’ agents to move from 
their neighbourhood. When an unhappy agent moves to a new place (where it feels 
happy), this may make some other agents (that were happy in the previous step) 
unhappy and want to move, and so on. The dynamics procedure may contain a 
condition to stop the program (e.g., if all agents are happy in Schelling’s model).    

 An important decision is whether to write a special computer program (using 
a programming language such as Java, C++, C#, or Visual Basic) or use one 
of the packages or toolkits that have been created to help in the development of 
simulations. It is usually easier to use a package than to write a program from 
scratch. This is because many of the issues which take time when writing a pro-
gram have already been dealt with in developing the package. For example, writing 
code to show plots and charts is a skilled and very time-consuming task, but most 
packages provide some kind of graphics facility for the display of output variables. 
On the other hand, packages are, inevitably, limited in what they can offer, and they 
are usually run more slowly than specially written code. 

 Many simulation models are constructed from similar building blocks. These 
commonly used elements have been assembled into  libraries  or  frameworks  that can 
be linked into an agent-based program. The fi rst of these to be widely used was Swarm 
(  http://www.swarm.org/    ), and although this is now generally super seded, its design 
has infl uenced more modern libraries, such as  RePast  (  http://repast.sourceforge.
net/    ) and  Mason  (  http://cs.gmu.edu/~eclab/projects/mason/    ). 

 Both RePast and Mason provide a similar range of features, including:

   A variety of helpful example models  • 
  A sophisticated scheduler for event-driven simulations  • 
  A number of tools for visualizing on screen the models and the spaces in which • 
the agents move  
  Tools for collecting results in a fi le for later statistical analysis  • 
  Ways to specify the parameters of the model and to change them while the model • 
is running  
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  Support for network models (managing the links between agents)  • 
  Links between the model and a Geographic Information System (GIS) so that the • 
environment can be modeled on real landscapes (see Crooks and Castle  2012  ) .  
  A range of debugged algorithms for evolutionary computation (Sect.  • 8.2.3 ), the 
generation of random numbers and the implementation of ANNs.    

  Modelling environments  provide complete systems in which models can be 
 created, executed, and the results visualized without leaving the system. Such envi-
ronments tend to be much easier to learn, and the time taken to produce a working 
model can be much shorter than using the library approach, and so they are more 
suited to beginners. However, the simplicity comes at the price of less fl exibility and 
slower speed of execution. It is worth investing time to learn how to use a library 
based framework if you need the greater power and fl exibility they provide, but 
often simulation environments are all that is needed. 

 NetLogo (Wilensky  1999  )  is currently the best of the agent-based simulation 
environments. (NetLogo will be briefl y introduced in Sect.  8.4 ). This is available 
free of charge for educational and research use and can be downloaded from 
  http://ccl.northwestern.edu/netlogo/    . It will run on all common operating systems: 
Windows, Mac OS X and Linux. Other simulation environments include StarLogo 
(  http://education.mit.edu/starlogo/    ) and AgentSheets (  http://agentsheets.com    ), 
which are more suited to creating very simple models for teaching than for building 
simulations for research. 

 Table  8.1  provides a comparison between Swarm, RePast, Mason, and NetLogo 
on a number of criteria. The choice of the implementation tool depends on several 
factors, especially one’s own expertise in programming and the complexity and the 
scale of the model. NetLogo is the quickest to learn and the easiest to use, but may 
not be the most suitable for large and complex models. Mason is faster than RePast, 
but has a signifi cantly smaller user base, meaning that there is less of a community 
that can provide advice and support. A full discussion of the environments is pre-
sented in Crooks and Castle  (  2012  ) .   

    8.3.5   Verifi cation and Validation 

 Once we have a ‘working’ simulation model, it has to be verifi ed and validated 
before using it to answer the research questions or to build theories about the 
real social world (model verifi cation and validation are discussed in detail by Ngo 
and See  (  2012  ) ). As Balci  (  1994  )  explains,  “model validation deals with building 
the right model … [while] model verifi cation deals with building the model right”  
(pp. 121–123). 

 It is very common to make errors when writing computer programs, especially 
complicated ones. The process of checking that a program does what it was planned 
to do is known as ‘verifi cation’. In the case of simulation, the diffi culties of 
 verifi cation are compounded by the fact that many simulations include random 
number generators, which means that every run is different and that it is only the 
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   Table 8.1    A Comparison of Swarm, RePast, Mason and NetLogo      

 Swarm  RePast  Mason  NetLogo 

 License a   GPL  GPL  GPL  Free, but not open 
source 

 Documentation  Patchy  Limited  Improving, but 
limited 

 Good 

 User base  Diminishing  Large  Increasing  Large 
 Modelling language(s)  Objective-C, 

Java 
 Java, Python  Java  NetLogo 

 Speed of execution  Moderate  Fast  Fastest  Moderate 
 Support for graphical 

user interface 
development 

 Limited  Good  Good  Very easy to create 
using “point 
and click” 

 Built-in ability to create 
movies and 
animations 

 No  Yes  Yes  Yes 

 Support for systematic 
experimentations 

 Some  Yes  Yes  Yes 

 Ease of Learning and 
Programming 

 Poor  Moderate  Moderate  Good 

 Ease of Installation  Poor  Moderate  Moderate  Good 
 Link to geographical 

Information System 
 No  Yes  Yes  Yes 

  Source: Gilbert  (  2008  )  
  a  GPL  General Public License,   http://www.gnu.org/copyleft/gpl.html      

distribution of results which can be anticipated by the theory. It is therefore essential 
to ‘debug’ the simulation carefully, preferably using a set of test cases, perhaps of 
extreme situations where the outcomes are easily predictable. 

 While verifi cation concerns whether the program is working as the researcher 
expects, validation concerns whether the simulation is a good model of the real 
system, the ‘target’. A model which can be relied on to refl ect the behaviour of the 
target is ‘valid’. A common way of validating a model is to compare the output of 
the simulation with real data collected about the target. However, there are several 
caveats which must be borne in mind when making this comparison. For example, 
exact correspondence between the real and simulated data should not be expected. 
So, the researcher has to decide what difference between the two kinds of data is 
acceptable for the model to be considered valid. This is usually done using some 
statistical measures to test the signifi cance of the difference. While goodness-of-fi t 
can always be improved by adding more explanatory factors, there is a trade-off 
between goodness-of-fi t and simplicity. Too much fi ne-tuning can result in reduction 
of explanatory power because the model becomes diffi cult to interpret. At the 
extreme, if a model becomes as complicated as the real world, it will be just as 
 diffi cult to interpret and offer no explanatory power. There is, therefore, a paradox 
here to which there is no obvious solution. Despite its apparently scientifi c nature, 
modelling is a matter of judgement.  
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    8.3.6   Some Practicalities 

 Two important practical issues to consider are how big the model should be and how 
many runs should be done. 

    8.3.6.1   How Big? 

 How many agents should be used? Over how big a space? There is little guidance 
on this question, because it depends on the model. The model must be suffi ciently 
large to permit enough heterogeneity and opportunities for interaction. But more 
agents mean longer run times. 

 It is often best to start programming with just a few agents in a small  environment. 
Then, when the program is working satisfactorily, increase the scale until one feels 
there is a satisfactory balance between the size and the stability of the output. 
Some ABMs use millions of agents (see Parry and Bithnell  2012  ) , but for most 
purposes, this is unnecessary and impractical. One should probably aim for at least 
1,000 agents unless there is good reason to use fewer.  

    8.3.6.2   How Many Runs? 

 Because of the stochastic nature of agent-based modelling, each run produces a 
 different output. It is therefore essential to undertake more than one run. The question 
is, how many runs? The more runs, the more confi dence one can have in the results, 
but undertaking too many runs wastes time and there is more data to analyze. Basic 
statistical theory suggests 30 is suffi cient and frequently, 30 or 50 runs are under-
taken, e.g.  Epstein (2006) . Again, there is no clear guidance on this topic. However 
many runs are done, it is worth quoting the standard deviation to provide some 
indication of the variability.    

    8.4   Examples 

 This section presents two simple models based on models in NetLogo’s library: 
Traffi c Basic and Segregation (Wilensky  1997a,   b  ) . The models are taken from 
NetLogo version 4.0.2. 

    8.4.1   A Basic Traffi c Model 

 This is a very simple model developed from Wilensky’s basic NetLogo traffi c 
model  (  1997a  ) . It is not possible to give a full introduction to NetLogo here: there are 
tutorials on the NetLogo website and books such as Gilbert  (  2008  ) . However, for 
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those unfamiliar with NetLogo, an explanation of what the program is doing is 
provided alongside the code (see Box A). 

 Sect.  8.3  identifi ed fi ve stages to developing a model: identifying the research 
question, reviewing the literature, designing and implementing the model and fi nally 
verifying and validating it.

    Stage 1:  Identifying the research question 
 The research question to be addressed is the relationship between the level of 
congestion and the speed and smoothness of traffi c fl ow.  

   Stage 2:  Reviewing the literature 
 Because the main purpose of this model is to demonstrate agent-based modelling, it 
is suffi cient to note here that it is a well recognised fact that traffi c jams can arise 
without any obvious cause. In general, a good literature review is  essential to 
support the model.  

   Stage 3:  Model design 
 The environment is a road and the agents are drivers represented by cars. The drivers 
change their speed according to whether there are other cars in front so as to remain 
within set speed limits. The program records the speed of the vehicles and the number 
of vehicles queuing at any one time.  

   Stage 4:  Model implementation 
 The set-up procedure involves setting the parameters and creating the agents and 
their environment. The environment – the road – is built and the cars are created, 
distributed randomly along the road and randomly allocated a speed, determined by 
three parameters, set by sliders on the interface:

   the number of cars (nOfCars): minimum 2, maximum, 30  • 
  the minimum speed (minSpeedLimit): 0–0.5  • 
  the maximum speed (maxSpeedLimit): 0.5–1.    • 

 The details are shown in Box A, and a sample of the result is illustrated in Fig.  8.2 .  

  Box A: Setting up the model       
 Explanation  Code 
 Agents are cars 
 Agents’ attributes 

 Set everything to zero 
 Make the road. 

  to setup
breed [cars car ]  
  cars-own [speed queuing]  
  to setup  
   clear-all  
   ask patches  
    [ if ( pycor  <  1 ) 
    and ( pycor  >  −1)  

     [ set pcolor white ] ]  

(continued)
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  Fig. 8.2    Road with cars distributed randomly along it       

 Explanation  Code 
 Generate required number of cars 
 Set the cars’ shape. 
 Distribute them randomly along 

road. Set direction of movement. 

 Set speed randomly within the 
speed limits. Call up procedure. 

 Procedure to ensure only one car 
occupies the same patch of road. 

   create-cars nOfCars  
   ask cars  
   [ set shape “car”  
    setxy random-xcor 0  
    set heading 90  
    set speed  
     minSpeedLimit +  
     random-fl oat
    ( maxSpeedLimit ) 
separate-cars  

   ]  
  end  

  to separate-cars  
   if any? other cars-here  
    [ fd 1  
    separate-cars ]  

Box A: (continued)
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 Next the dynamic processes must be defi ned. All the cars move forward in the 
same direction. If the drivers see another car not far in front, they decelerate, at a rate 
set by the slider on the interface (decelerate), and if they catch up with the vehicle in 
front, slow to its speed, which may require rather abrupt deceleration! If they see no 
car within a specifi ed distance, they accelerate again, set by a slider on the interface 
(accelerate). The rate of acceleration is small but suffi cient to allow the cars to speed 
up to the maximum speed limit if the road is clear. Both deceleration and acceleration 
are allowed to vary between 0 and 0.001 in increments of 0.0001. The simulation is 
halted after 250 steps. The details are shown in Box B.  

  Box B: Running the model       
 Explanation  Code 
 Stop the program after 

250 steps. 

 Reset queuing 
indicator at start 
of each step 

 If a car catches 
up with the one 
in front it slows to 
match its speed. 

 If there is no car 
immediately in 
front but there is 
one a little further 
ahead, the car 
decelerates. 
Otherwise, it 
accelerates. 

 To keep the cars 
within speed limits. 

 Cars move forward 
at the speed 
determined. 

 Time moves forward. 

  to go  
   if ticks  >  250 [ stop ]  

  ask cars [ set queuing “No” ]  
  ask cars  
    [ if any? cars-at 1 0  
     [ set speed  
      ( [speed] of one-of cars-at 1 0 )  
      set queuing “Yes” ]  
   ]  
  ask cars with [queuing  =  “No” ]  
   [ ifelse  
   any? cars-at 5 0  
    [ set speed speed - deceleration ]  
    [ set speed speed  +  acceleration ]  
   ]  
    ]  

  ask cars  
    [ if speed < minSpeedLimit
   [ set speed minSpeedLimit ]        
    if speed > maxSpeedLimit
   [ set speed maxSpeedLimit ]        
  fd speed   
   ]  

  tick  
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  Stage 5: Verifying and validating 
 To verify and validate the model requires outputs to be produced. Here three graphs 
are drawn:

   to show the minimum, average and maximum speeds  • 
  to show the number of queuing cars, and  • 
  to plot the number queuing against the average speed.    • 

 The details are in Box C. 
 Verifi cation and validation are discussed in Sect.  8.3.5  above and in detail in 

Ngo and See  (  2012  ) . In this example, one simple method of verifi cation is setting 
the minimum and maximum speeds to the same value and checking that all the 

   Box C: Generating the output (continuing the ‘go’ procedure)       
 Explanation  Code 
 Name the plots 

 End the “to go” 

   plot-speed  
   plot-jams  
   plot-both  
  end  

 Plots minimum, 
mean and maximum 
speeds. 

  to plot-speed  
   set-current-plot “Speed”  
   set-current-plot-pen “Min”  
    plot min [speed] of cars  
   set-current-plot-pen “Mean”  
    plot mean [speed] of cars  
   set-current-plot-pen “Max”  
    plot max [speed] of cars  
  end  

 Plots the number queuing.   to plot-jams  
   set-current-plot “No. in jams”  
    plot count cars with 
 [ queuing = “Yes” ]    

  end  

 Plots the mean speed 
against the number 
queuing. 

  to plot-both  
   set-current-plot “Both”  
    plotxy  
     count cars with 
    [ queuing = “Yes” ]    

     mean [speed] of cars  
  end  
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drivers do adopt the same speed. By watching the movement of the cars on 
the screen, it can be seen that, for example, there is no overtaking, as there should 
not be. Also the queuing status of individual cars can be checked: if there is no car 
immediately in front, it should not be “queuing”. 

 Even a simple model like this can produce a wide range of scenarios and 
reproduce observed characteristics of traffi c fl ows. For example, Fig.  8.3  shows 
what can happen if the road is near full-capacity with 30 cars, speeds are allowed to 
vary from 0 to 1, and drivers accelerate and decelerate at the maximum rates. The top 
right plot shows that the maximum speed drops quickly, but maximum, average and 
minimum speeds fl uctuate. As a result, the number queuing constantly changes, 
albeit within a small range, as shown in the bottom left hand panel. However, a 
reduction in the number queuing does not necessarily increase the average speed of 
the traffi c: the bottom right hand panel shows that there is no clear relationship 
between the average speed and the number queuing.           

    8.4.2   Segregation Model 

 The segregation model can be found in the Social Science section of NetLogo’s 
library (Wilensky  1997b  ) .

    Stage 1:  Identifying the research question 
 As explained in Sect.  8.1.2 , Schelling tried to explain the emergence of racial resi-
dential segregation in American cities. The main research question of Schelling’s 

  Fig. 8.3    Sample of results       
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models can be formulated as:  can segregation be eliminated (or reduced) if people 
become more tolerant towards others from different ethnic/racial groups?   

   Stage 2:  Reviewing the literature 
 Theories of intergroup relations (Sherif  1966  )  are relevant when discussing the 
emergence of residential segregation. Some of these theories are Social Identity and 
Social Categorization Theories (Tajfel  1981  ) , Social Dominance Theory (Sidanius 
et al.  2004  ) , and System Justifi cation Theory SJT (Jost et al.  2004  ) . The Contact 
Hypothesis (Allport  1954  ) , which implies that inter-group relations decrease stereo-
typing, prejudice and discrimination, is also relevant. Reviewing literature on how 
to measure segregation is clearly essential (Massey and Denton  1988  ) .  

   Stage 3:  Model design 
 As explained in Sect.   1.2.2    , the environment is a city that is modelled by a square grid 
of cells each representing a dwelling. A household (agent) would be ‘happy’ to stay 
at its place as long as the proportion of its neighbours of the same colour as itself is 
not less than its threshold of tolerance. Agents keep changing their places as long as 
they are not happy. Box D presents the complete code of the segregation model. 1   

   Stage 4:  Model implementation 
 Lines 1–30 of Box D initialize the model. The fi rst line creates an agent type (breed 
in NetLogo’s language) called ‘household’ to represent the main agent of the model. 
The attributes of agents (households) include the following (lines 2–7):

    • happy?:  indicates whether an agent is happy or not  
   • similar-nearby:  how many neighbours with the same colour as the agent  
   • other-nearby:  how many neighbours with a different colour  
   • total-nearby : total number of neighbours.    

 There are two global 2  variables (lines 8–12): the fi rst is  percent-similar,  which is 
the average percent of an agent’s neighbours of its own colour. This variable gives a 
measure of clustering or segregation. The second variable,  percent-unhappy , reports 
the number of unhappy agents in the model. There are another two variables deter-
mined by sliders (so that the model user can change their values on each run as 
desired): the number of agents,  number ; and agent’s threshold,  %-similar-wanted  
(which is the same for all agents). 

 The  setup  procedure (lines 14–30) (which is triggered when the user presses 
the  setup  button, see Fig.  8.4 ) creates a number of agents (households), half black 
and half white, at random positions. The  setup  procedure also calls another two 
procedures:  update-variables  that updates the agents’ variables, and  do-plots  that 
updates the model’s graphs (both procedures will be explained later).  

   1   There are minor differences between the code of the original model in NetLogo’s library and the 
code presented here.  
   2    Global  variables are defi ned (or declared) outside any procedure, and they can be accessed or refer 
red to from any place in the program. In contrast,  local  variables are defi ned inside a procedure, and 
can be accessed only within this procedure. The variables  similar-neighbors  and  total-neighbors  
(lines 75–76) are local variables.  
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   Box D: Code of Segregation Model    

 1 
 2 
 3 

 4 

 5 

 6 
 7 
 8 
 9 

 10 
 11 

 12 
 13 
 14 

 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 

 30 
 31 
 32 
 33 
 34 

  Breed [households household]  
  households-own[  
   happy?    ;indicates whether the house-
hold is happy or not  

   similar-nearby ;how many neighbours with 
the same colour as mine?  

   other-nearby ;how many neighbours with 
different colour?  

   total-nearby ;sum of previous two variables  
  ]  
  globals[  
   percent-similar ;average percent of a 
household’s neighbours  

     ;of the same colour as that household?  
   percent-unhappy ;percent of the households 
are ‘unhappy’  

  ]  

  to setup  
   clear-all ;clear any variables or plots from 
previous runs  

   if number > count patches  
    [ user-message (word “This pond only has 
room for “ count patches “ households.”)  

     stop ]  
   ;; create households on random patches.  
   ask patches [set pcolor 7] ;; patches are 
initialized in grey  

  set-default-shape households “square”  
   ask n-of number patches  
    [sprout-households 1  
     [ set color black ] ]  
   ask n-of (number / 2) households  
    [ set color white ]  
   update-variables  
   do-plots  
  end  

  to go  
   if all? households [happy?] [ stop ] ;keep 
running as long as 
there              ;are unhappy 
agents  

(continued)
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 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 

 43 
 44 

   move-unhappy-households  
   update-variables  
   tick  
   do-plots  
  end  

  to move-unhappy-households  
   ask households with [ not happy? ];; only 
moves unhappy agents  

    [ fi nd-new-spot ] ; fi nd new patch to move to  
  end  

 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 

 63 
 64 

 65 
 66 

 67 
 68 

 69 

 70 
 71   

  to fi nd-new-spot  
   rt random-fl oat 360  
   fd random-fl oat 10  
   if any? other households-here  
    [ fi nd-new-spot ] ;; keep going until we 
fi nd an unoccupied patch  

   move-to patch-here ;; move to center of patch  
  end  

  to update-variables  
   update-households  
   update-globals  
  end  

  to update-households  
   ask households [  
    ;; in next two lines, we use “neighbors” 
to test the eight patches  

    ;; surrounding the current patch  
    set similar-nearby count (households-on 
neighbors)  

     with [color = [color] of myself]  
    set other-nearby count (households-on 
neighbors)  

    with [color ! = [color] of myself]  
    set total-nearby similar-nearby + other-
nearby  

    set happy? similar-nearby >   = ( %-similar-
wanted * total-nearby / 100 )  

   ]  
  end        

(continued)

Box D: (continued)
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 The dynamic process (which starts when the user presses the  go  button, see 
Fig.  8.4 ) is implemented using a simple behavioural rule for an agent in this model: 
 IF I’m not happy THEN I move to another place.  As the  go  procedure (lines 32–38) 
shows, the simulation will continue to run until all agents became happy with their 
neighbourhood (or the user forces it to stop). 

 The model provides two plots to present the two global variables  percent-similar  
and  percent-unhappy  visually. Figure  8.4  shows the user interface and plots of the 
segregation model.  

  Stage 5: Verifying and validating 
 Like the previous traffi c example, a simple verifi cation method is to use extreme 
values for the model’s parameters. For example, when setting the agents’ threshold, 
 %-similar-wanted,  to zero and running the model, no agents move as they are all 
happy regardless of the percentage of neighbours of the same colour. On the other 
hand, setting this parameter to 100 makes most of the agents unhappy and they keep 
moving from their places. 

 Regarding validation, the main objective of the basic Schelling model is to 
explain an existing phenomenon rather than to replicate an existing segregation pat-
tern in a specifi c city, and the model was successful in this regard. It provides a 
plausible answer to a puzzling question:  why these segregation patterns are so 

 72 
 73 

 74 

 75 

 76 

 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 

  to update-globals  
   let similar-neighbors sum [similar-nearby] 
of households  

   let total-neighbors sum [total-nearby] of 
households  

   set percent-similar (similar-neighbors / 
total-neighbors) * 100  

   set percent-unhappy (count households with 
[not happy?]) / (count households) * 100  

  end  

  to do-plots  
   set-current-plot “Percent Similar”  
   plot percent-similar  
   set-current-plot “Percent Unhappy”  
   plot percent-unhappy  
  end  

Box D: (continued)
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persistent regardless of the observed decline in ethnic prejudice . However, some 
attempts have been successful in extending the basic segregation model to replicate 
existing city segregation structures.       

    8.5   Conclusions 

 In this chapter, we discussed the process of designing and building an ABM. 
We recommended a set of standard steps to be used when building ABMs for social 
science research. The fi rst, and the most important, step in the modelling process is 
to identify the purpose of the model and the question(s) to be addressed. The impor-
tance of using existing theories to justify a model’s assumptions and to validate its 
results was stressed.      
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  Abstract   The modelling of human behaviour is not at all obvious. First, humans 
are not random. Second, humans are diverse in their knowledge and abilities. Third, 
besides being controlled by rational decision-making, human behaviour is also 
emotional. This chapter attempts to present principles driving human behaviour and 
reviews current approaches to modelling human behaviour.      

    9.1   Introduction 

 The behaviour of humans as individuals, in small groups, and in societies is the 
subject of several fi elds of research because it has such an important role in many 
aspects of daily life. However, incorporating human behaviour into Agent-Based 
Models (ABMs) is a real challenge, primarily because of the short history of our 
scientifi c observation of human behaviour, but there is hope. This chapter discusses 
the challenges of modelling human behaviour, presents and critiques the major 
approaches available along with some basic principles of human behaviour before 
providing information on how to integrate human behaviour into ABMs. The chapter 
starts with how not to model human behaviour.  

    9.2   How Not to Model Human Behaviour 

 To start, humans are not random. They (we) are strange and wonderful. Their behav-
iour may be unexpected or inconsistent (i.e., noisy), but it is not random. As an 
example, here is a simple demonstration. An easy question will be presented below 
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and you may take hundreds of milliseconds to answer, but do answer. The question 
is: “Pick a number between one and four.” Have an answer? 

 The most common response is “three” and there is a secondary effect of this task: 
people feel a need to explain why they chose whatever answer they did. The second 
most common answer is “two”. Very few people decide to respond with either “one” 
or “four”. Sadly, there is not a serious study of this behaviour but undocumented 
sources suggest that the response statistics are close to 50% for “three”, 30% for 
“two” and about 10% for the other two answers. 

 The common explanation for the selection of “three” is that it was the most 
“interesting” number in the range. There is also a small number of people who are 
compelled to answer outside of the range, with fractions, or irrational numbers. 
These are rare occurrences. Similar results are obtained when the task is to pick a 
number between 1 and 20. The similarity is that people pick their most interesting 
number. For this range, the most common response is 17, occurring about 40% of 
the time, well above a “rationally”, “logically” expected 5%. Other primes are also 
favored as answers because they too are interesting. 

 This behaviour is interesting. The decision-making process should be simple, 
but it certainly does not appear to be a simple random selection among equally 
likely options. What this shows us is that people cannot even be random when 
they want to be. Further, if this task had been modeled as a uniform random dis-
tribution among equally likely choices, it would have been very different from 
actual behaviour. 

 Modeling human choices as uniform random distributions is making a very seri-
ous claim about human behaviour. It is saying that all choices are equally likely 
even when we know nothing about how people actually decide. It also assumes 
people have no preferences, do not consider the consequences of their actions, have 
no memory of previous choices, and can be more consistent than the data shows. 
Modeling human behaviour requires some data or some experience. Luckily, mod-
elers are human and should know better.  

    9.3   Levels of Modelling Human Behaviour 

 The fi rst question in an effort to model human behaviour is at what level the behav-
iour is to be modelled. The choices are basically at the individual level, at some 
small grouping of individuals, such as a household, and as a society. Modelling of 
a society can be done statistically, i.e., without dealing with individuals within the 
society. They could be inanimate particles because there is no effort to represent 
their decision-making process, only to describe what they have done. Small groups 
are typically modelled as if they were individuals and the science behind modelling 
individuals applies to small groups as well. This chapter addresses the modelling 
of individuals.  
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    9.4   The Science Behind Modelling Human Behaviour 

 There appears to be at least two levels of sophistication in social organisms, 
“sociobiology” as E.O. Wilson termed it (Wilson  1975 /2000). Social organisms 
such as slime moulds and social insects seem to be totally driven by inherited 
instincts that fully defi ne their reactions to environmental stimuli. Social mammals, 
on the other hand, appear to have some degree of general problem-solving capabili-
ties, such as a Theory of Mind, or in other words, their own model of other agents. 
This general capability results in the social behaviour of at least mammals being far 
more complicated than seems possible from a fi xed set of inherited instincts. 
Humans and a majority of the great apes have many traits and resulting behaviours 
in common – see Wilson  (  1978/2004  ) . 

 The study of human behaviour is as old as social primates themselves. A large 
part of social behaviour is the internal modelling of others for the purpose of know-
ing how to get along with them successfully. Prehistoric oral traditions have taught 
us how people supposedly behaved and the consequences of that behaviour (Stone 
 2011  ) . The scientifi c study of how humans behave began less than 150 years ago 
with the advent of psychology as a modern scientifi c fi eld – see James  (  1892/2001  ) . 
The work is progressing, but due to the nature and complexity of the human mind, 
progress could be said to be slow. 

 In the mid-1950s, a cognitive revolution resulted in the research in behaviour 
changing from explaining all behaviour as simple stimulus-response associations to 
applying a new theory. The new theory was that behaviour could be explained in 
computational terms, but not simply via a “computer metaphor”, i.e., literally like a 
computer, but a “computational theory of mind”. This meant that the mind could be 
explained “using some of the same principles” as computers (Pinker  2002 , p. 32). 

 One of the early concepts that has been both useful and distracting, is the meta-
phor of the brain as a computer (Newell and Simon  1972  ) . It has been useful in 
providing a framework to understand the mind in terms of inputs, processes, and 
outputs. This reductionist approach has led to advances in understanding the modu-
lar organization of the mind and the brain (Anderson  2007  ) . However, our focus on 
the von Neumann computer architecture, i.e., a separate memory and processor, 
which operate serially, has resulted in a symbol vs. connections debate (Anderson 
 2007  ) . Neural network approaches to modelling cognition is an ongoing research 
area, but such systems are diffi cult to build and it has been diffi cult to make steady, 
incremental progress. 

 The pursuit of modelling or replicating human behaviour has developed two 
camps: Artifi cial Intelligence and Cognitive Science. The work in AI is aimed at 
replicating the intelligent behaviour of humans and surpassing human intelligence 
when possible, as in mathematics from arithmetic to calculus. However, most AI 
researchers have little interest in replicating the all too human errors or unintelligent 
behaviour observed in nature. On the more psychological side, researchers in 
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Cognitive Science seek to understand human cognition in all of its forms, rational 
as well as emotional, intuitive, and erroneous. Both approaches have developed 
methods and techniques that can be useful in modelling human behaviour. 

 Focusing on the rational and analytic side of human cognition has generated 
the largest amount of research in this area and signifi cant progress had been made, 
e.g. see Kahneman  (  2003  ) . There has been far less research on other behavioural 
drivers such as intuition or emotions, but research is growing in this area – see 
Damasio  (  1994  ) .  

    9.5   Basic Principles 

 In this section, a set of basic principles of human behaviour is provided. These prin-
ciples are focused on the causes of human social behaviour, not the behaviour of 
individuals alone or over very short periods. 

    9.5.1   Humans as Information Processors 

 Humans process sensory information about the environment, their own current 
status, and their remembered history to decide what actions to take. However, their 
environmental sensors are limited in type to the traditional fi ve senses (touch, sight, 
hearing, taste, and smell). Humans can also sense temperature, internals (kinesthetic 
or proprioception), pain, balance, and acceleration. Each has a range and a mini-
mum sensitivity and duration threshold. 

 Humans also have diverse personality traits. These are characteristics that effect 
the thoughts, behaviour and emotions that they are born with, which seem to be rela-
tively constant over a life span, and that are a large part of individual differences. 
Traits are intended to be relatively independent and seem to have normal distribu-
tions with large populations. There are two taxonomies of personality traits known 
as a three-factor model (Eysenck  1967/2006  )  and a fi ve-factor model (McCrae and 
Costa  1987  ) . Both share two traits: extraversion (sociability) and neuroticism 
(tendency toward emotional behaviour). Other potentially important traits associ-
ated with social behaviour include agreeableness, risk avoidance, and impulsivity. 

 Taken together, humans as information processing systems have a limited infor-
mational input bandwidth, limited memory, and limited processing capability. 
However, because humans have language, their information sources can be very 
wide, and with written language, they can have memories spanning centuries.  

    9.5.2   Human Motivations 

 A very highly cited 1943 paper on human motivation provided an organization of 
human motivations into a “Hierarchy of Needs” (Maslow  1943  ) . This ordering is not 
rigid but has survived intact over the years. Maslow proposed that humans’ fi rst need 
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is to meet their basic physiological requirements. After these are adequately met, the 
next priority is for safety and security. When these are adequately addressed, the next 
priority is the social needs of friendship, family, and sexual intimacy. The last two 
layers deal with external esteem and self-actualization. This hierarchy is useful in 
ordering potentially competing priorities of agents representing humans in ABMs.  

    9.5.3   Humans Behaving Rationally 

 Human behaviour is commonly thought of as being rational. Rational Choice Theory 
(Coleman  1990  )  is based on the presumption that humans behave in ways to maxi-
mize their benefi ts or minimize their costs, and in either case, follow logical pro-
cesses. This approach typically assumes all possible actions are known, all agents 
have perfect knowledge of the environment, and that the preferences of agents are 
well behaved, i.e., have necessary ordering and transitivity properties. Tempering 
this approach is the idea that agents have “bounded rationality”, i.e., have limited 
information, limited cognitive abilities, and limited time to make decisions (Simon 
 1996  ) . In addition, there may be limitations as to how many variables humans can 
process and how mathematically sophisticated the evaluation of those variables are 
in order to determine their rational behaviour. Although many forms of knowledge 
representation are possible, the representation of human knowledge is generally 
accepted to be in two basic forms: declarative knowledge of facts and procedural 
knowledge typically represented in IF-THEN rules (Newell  1990 ; Anderson  2007  ) . 
Rational behaviour also includes learning of declarative knowledge, and new proce-
dural knowledge in some cases. How long knowledge is retained varies from 
systems that never forget knowledge to systems that have very little memory for 
either form of knowledge. Clearly, systems of human behaviour need to have some 
memory, but how much and how formally it is modelled depends on the purpose of 
the system. Therefore, a rationally behaving model needs to be able to represent 
knowledge, learn, remember new knowledge, and apply that knowledge to deter-
mining the behaviour of the agent.  

    9.5.4   Humans Behaving Emotionally/Intuitively/Unconsciously 

 In addition to being rational beings, humans have other factors that affect their 
behaviour. These include emotional, intuitive, or unconscious decision making pro-
cesses. The representation of human behaviour in ABMs may need to include these 
other decision-making processes. Research in emotions and the effect of emotions 
on decision-making is taken in this discussion as the leading representative of the 
non-traditionally rational decision-making processes. 

 There is evidence of a common set of basic emotions: interest, joy, happiness, 
sadness, anger, disgust, and fear (Izard  2007  ) . These emotions are considered evo-
lutionarily very old and have neurobiological bases. They are generally infrequent, 
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short lived, and do not directly affect cognition. However, emotions can lead to 
longer-term moods and result in complex behaviour. 

 There have been many studies of emotions but the relation of emotion to cognition, 
and therefore to behaviour is a highly debated topic in psychology (e.g., LeDoux 
 1995  ) . Whether emotions are modifi ers of the rational decision-making process or a 
separate mental process is not yet settled. Kahnemann  (  2003  )  discusses a System 1 
and System 2 approach to dual cognitive processes. The predominant theory of 
emotion is Appraisal Theory (Scherer  1999  ) . 

 The appraisal theory poses that there are a fi xed set of dimensions of factors 
needed to determine the emotional status of an individual. However, there is wide 
variance of thought on what the dimensions are. Progress is being made and repeat-
able results are starting to produce interesting results (Scherer  1999  ) . 

 Although it may seem natural to presume humans behave to maximize their 
expected emotions, the effect of emotions on decision-making can be more richly 
discussed (Loewenstein and Lerner  2003  ) . Emotions can alter rational decision-
making by distorting the agent’s perceptions of the environment and the likelihood 
of future evaluations. Loewenstein and Lerner  (  2003  )  offer two limitations concern-
ing the impact of emotions on decision-making. First, some behaviour is not the 
result of decision-making and can be the result of emotional drivers directly. Second, 
the impact of emotions on decision-making cannot be easily classifi ed as improving 
or degrading the rational decision-making process.  

    9.5.5   Humans Behaving Socially 

 As social beings, the behaviour of individuals is shaped by input from others in two 
basic ways. First, humans have a Theory of Mind by which they imagine what oth-
ers have as their goals and what they are thinking and feeling (Dunbar  2004  ) . 
Second, human behaviour is infl uenced by and combines with the behaviour of oth-
ers (Latané  1981 ; Friedkin and Johnsen  1999 ; Surowiecki  2005 ; Kennedy and 
Eberhart  2001  ) . 

 A Theory of Mind supports the transference of information based on establishing 
and sharing common concepts among agents, i.e., language. The exchange of infor-
mation and goods and services among groups of agents then provides for the devel-
opment of culture and economies within and among societies. 

 Latané proposed a formulation of social infl uence based on experiments where a 
group attempts to infl uence a human subject (Latané  1981  ) . The relationship he 
found was of the form:

     = tI s N    (9.1)  

where I is the infl uence in terms of the percentage conforming or imitating 
behaviour in the subject, s is a constant associated with the circumstances, N is 
the number of others involved, and t is a factor less than one and often near one 
half. However, this infl uence also inhibits action by, in a sense, distributing the 
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social responsibility to act such that a social inhabitation to act by bystanders has 
been found (Latané  1981  ) . Extending the study of infl uence, Friedkin and Johnsen 
 (  1999  )  reported on the infl uence of a group’s members on each other and the 
result can be that the group settles on the group’s mean, a compromise different 
from the mean, on the position of an infl uential member of the group, or may not 
form a consensus. 

 Groups can also develop results greater than those of any of the individuals. 
Groups of diverse people independently making evaluations with an appropriate 
method of bringing their results together can have this kind of result (Surowiecki 
 2005  ) . He explored conditions that resulted in good collective results and found that 
they result from the differences in the evaluations among group members, not com-
promises or achieving consensus. This appears to be another outgrowth of social 
infl uences, which can lead to conformity, a lack of independence, and then poor 
results. For example, he reports that in a crowd, due to diversity, there will be some 
willing to riot, some who would never riot, and many that will decide based on 
social infl uences. 

 This section has attempted to identify the basic principles of human behaviour. 
They are intended to be the causes of human social behaviour, not the behaviour of 
individuals. Of course, this is incomplete, possibly wrong, and the subject of much 
research. The next section addresses current approaches in applying this knowledge 
to modelling human behaviour.   

    9.6   Current Approaches 

 Although this book is about ABMs, within an ABM, the representation of the cogni-
tion driving a modelled human’s behaviour can have its own internal architecture. 
A cognitive architecture (Newell  1990  )  is the structure and functionality that is 
unchanging throughout the simulation and supports the cognitive model that drives 
behaviour. There are several cognitive approaches to consider. For presentation here 
they are grouped as: (1)  ad hoc  direct and custom coding of behaviours mathemati-
cally in the simulation’s programming language; (2) conceptual frameworks to be 
implemented within the target system; and (3) research-quality tools for modelling 
the cognitive functioning of an individual at the millisecond scale. 

    9.6.1   Mathematical Approaches 

 Mathematical approaches to modelling human behaviour are methods that produce 
agent behaviour through the use of mathematical simplifi cations. First among these, 
and the most severe simplifi cation, is the use of random number generators to select 
between predefi ned possible choices. The fallacies of this approach were addressed 
at the beginning of this chapter, and includes that people are not random, that random 
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number generation is not a replacement for unknown quantities, and that using a 
random number generator is making very strong and very wrong claims about 
human behaviour. 

 Better than relying on random number generators would be to directly code 
threshold-based rules. These are of the form that when an environmental parameter 
passes a threshold, a specifi c human behaviour would result. This would provide 
simple behaviour, but they would be explainable and could approximate human 
behaviour. The parameter could be transformed so that the action is taken when the 
transformation of the parameter is above, below, or between thresholds. 

 Using a threshold is equivalent to comparing two values in that the difference in 
the two values can be compared to a threshold. For example, if the intent is to com-
pare function1 with function2, this is the same as comparing (function1 – function2) 
and a threshold value of 0. For instructional purposes, all sample rules presented 
here are in the form of a function compared to a threshold. Variables and functions 
are descriptively named between “<>” and actions are in italics. 

 As an example:

   IF < hunger > is below < hungerThreshold1 > THEN  agent-dies .  
  IF < hunger > is above < hungerThreshold2 > THEN  address-another-goal .  
  IF < hunger > is between < hungerThreshold1 > and < hungerThreshold2>  
  THEN  search-for-food .    

 Another mathematical approach is the use of multi-dimensional functions of 
parameters rather than comparing a single environmental parameter to a threshold. 
Here, several parameters are combined to defi ne a modelled human’s behaviour. 
The major weakness in this approach is that available data does not validate humans 
as pure optimizing agents.

   IF < evaluation of < hunger > & < thirst >> is above thresholdHT  
  THEN  focus-on-safety-issues .    

 Finally, Dynamic Modeling (Hannon and Ruth  1994  )  represents human 
 decision-making as “stocks and fl ows” or, in a sense, as a hydraulic system with 
pipes, tanks, valves, and pumps. The representational sophistication of this model-
ling approach is that the rate of change of a variable can be a function of its own 
magnitude. Such a model uses differential equations to describe relationships in the 
model. The hydraulic theory of emotion can be traced back to René Decartes (1596–
1650) (Evans  2001  ) . An example is:

   IF < anger > is above < ventThreshold > THEN  act-to-vent-anger .    

 These mathematical approaches to modelling human behaviour rely on a simpli-
fi cation of the perception, reasoning, and actions important to the purpose of the 
model. For many models, the vast majority of the human behaviour is not of interest 
to the model and the behaviour of interest can be reasonably well specifi ed. If more 
general behaviour is important to the modelling effort, a more general approach 
may be appropriate.  
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    9.6.2   Conceptual Frameworks 

 Conceptual frameworks are approaches to modelling human decision-making using 
more abstract concepts than mathematical transformations of environmental param-
eters. They involve concepts such as beliefs, desires, and intentions (BDI), emo-
tional state and social status (PECS), and “fast and frugal” decision hierarchies. 
Three conceptual frameworks will be addressed. 

 The fi rst approach is based on beliefs, desires, and intentions (BDI) (Rao and 
Georgeff  1995  ) . The BDI approach is a theoretical framework based on the idea that 
human behaviour can be modelled by representing an individual’s beliefs, desires, 
and intentions. Beliefs are the individual’s knowledge about the world, i.e., the 
world as they perceive it to be. Desires are the individual’s motivation, i.e., its goals. 
Intentions are the agent’s deliberative states. A BDI implementation develops a 
decision tree and this complete decision tree is transformed into a possible worlds 
model from which a deliberation process decides the best course of action. The BDI 
framework is very general and can be realized in many ways. Its weakness is that it 
is so general that it provides little more than a conceptual framework for thinking 
about how to model the human cognition behind behaviour. The next framework is 
more specifi c and provides more guidance for implementing a model of human 
behaviour within an agent-based system. 

 The second framework involves physical, emotional, cognitive, and social fac-
tors (PECS) affecting behavioural decisions (Schmidt  2002  ) . This framework 
includes a representation of the human mind, specifi cally perception and behav-
iours, and mathematical representations of physiology, emotion, cognition, and 
social status. Within cognition are mathematical transformations for a self-model, 
an environmental model, memory for behaviour protocols, planning, and refl ection. 
The declared purpose of the PECS framework is to replace the BDI framework, and 
it is more specifi c and implemented. The PECS framework can represent simple 
stimulus-response behaviours and more complex behaviours that involve the deter-
mination of drives, needs, and desires and their transformation into motives. Motives, 
depending on their intensity, are state variables that indirectly determine behaviour. 
Advantages of this framework are that behaviours can be explained in terms of their 
causes in a reasonably plausible manner. Two challenges for this framework are the 
internal parameters for the mathematical transformations of environmental param-
eters into the internal state variables and the combination, prioritization, and inte-
gration of the various motives into the selected behaviour. 

 The third framework is called “fast and frugal” and was developed by analyzing 
data on human decisions. Gigerenzer  (  2007  )  reported on the analysis of how inten-
sive care units make decisions about whether a patient is having a heart attack and 
how two judges evaluate court cases and make decisions on whether to grant bail for 
defendants. The analysis in both cases identifi ed three sequential questions that 
could be answered by environmental variables, and the use of these “fast and frugal” 
trees performed very well compared to human decision-making. In the medical 
case, the decision tree developed for a U.S. hospital performed better than the heart 
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disease predictive instrument or physicians, and the decision trees explained 92% of 
the two UK magistrates’ decisions (Gigerenzer  2007  ) . The design of these rules in 
these trees is not aimed at identifying all the variables to justify implementation of 
a particular behaviour, but an attractive characteristic of this framework important 
to ABMs is that these decision trees are inexpensive computationally and should 
scale up well to large numbers of agents. 

 These three frameworks are different approaches to modelling human behav-
iour at a level of rigor between the pure mathematical representations and full, 
research quality models of human cognition. The third level, research-quality mod-
els are tools intended for use usually in representing the cognitive decision-making 
of individuals.  

    9.6.3   Cognitive Architectures 

 A third approach is to use research tools developed for a purpose different from 
agent-based modelling for social simulation. Their purpose is research into abstract 
or theoretical cognition on the one hand and understanding human cognition on the 
other. This section discusses Soar, ACT-R, and other architectures. These are archi-
tectures in the sense that the basic system is unchanging throughout the use of the 
system. Cognitive models of specifi c tasks are implemented within these cognitive 
architectures. Such a cognitive model can be used to drive the human behaviour of 
an ABM. 

 Soar (Lehman et al.  2006  )  is an Artifi cial Intelligence system originally based on 
matching human performance in problem-solving tasks at a symbolic level of gran-
ularity and is the basis of Newell’s proposal for Unifi ed Theories of Cognition 
(Newell  1990  ) . As an AI system, its purpose is to meet or exceed human perfor-
mance on a wide variety of tasks. The Soar system could be considered to be an 
implementation of a BDI architecture in that it maintains an internal representation 
of the world, is always working to solve a goal, and has available internal state vari-
ables. Soar has a long history of modelling human behaviour framed as problem 
solving in research settings and for commercial customers. Although a stand-alone 
system, Soar has been connected to several other environments including games. 
A Soar model consists of a collection of rules written as text that uses environmental 
or internal variables and either changed internal variables or takes an action that 
changes the environment. The system, which includes demonstration models, is 
available at no cost from the Soar website,   http://sitemaker.umich.edu/soar/home    . 
There is also a Java based version being developed at   http://code.google.com/p/
jsoar/    . There is an active Soar community, it offers training on using Soar, and 40–60 
members meet annually. 

 ACT-R (Anderson and Lebiere  1998 ; Anderson et al.  2004  ) , which most recently 
stands for Atomic Components of Thought-Rational, has been used in basic research 
in cognition for many years. ACT-R provides architecture assumptions based on 
both symbolic and sub-symbolic representations of knowledge. Over the years, 
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ACT-R has evolved into a comprehensive cognitive architecture demonstrating 
successful models of many cognitive phenomena and it has been linked to the func-
tional regions of the brain (Anderson  2007  ) . Successful here means closely matching 
human performance data. However, ACT-R is focused on relatively low-level cogni-
tive phenomena operating over very short time periods. It does not support higher-
level concepts such as beliefs, desires, or intentions explicitly. An ACT-R model 
consists of a collection of declarative facts and rules written as text that uses envi-
ronmental or internal variables and either changed internal variables or initiates 
actions in the environment. ACT-R is also available at no cost and has an active 
community supporting it. Courses on using ACT-R are offered in Europe and the 
United States annually and the community meetings of 40–60 people also occur 
approximately annually. Their home page is:   http://act-r.psy.cmu.edu/    . There is also 
a Java version of ACT-R in development and use:   http://jactr.org/    , which has been 
connected to and operates a mobile robot – see   http://www.nrl.navy.mil/aic/iss/    . 

 There are other cognitive architectures used in research. Several are reviewed in 
the National Research Council report (Zacharias et al.  2008  ) . However, none of 
these other symbolic architectures have the wide acceptance and active community 
that Soar and ACT-R have.   

    9.7   Challenges in Modelling Human Behaviour 

 There are at least three challenges in the efforts to model human behaviour in agent-
based systems: understanding humans, data, and validation & verifi cation. As 
should be obvious, although human behaviour has been noticed for thousands of 
years and scientifi cally studied for a couple of hundreds of years, there is still much 
unknown. The genetic, historical, and current environmental factors affecting the 
behaviour of such diverse agents as humans may appear incomprehensible, but 
progress is being made and will continue. Research continues to develop data on 
how people behave under certain circumstances and this is replacing the poor default 
of assuming that human behaviour is random and unknowable. However, data for 
many or most behaviours of interest to the ABM community may not yet exist. The 
lack of data makes validation and verifi cation of models of human behaviour diffi -
cult, at best. However, as humans are the ones constructing ABMs of human behav-
iour, hopefully, some knowledge, some generally accepted practices, and a good 
dose of common sense will result in good models of human behaviour.  

      Additional Resources    

 While research and the practice of modelling human behaviour continues, there are 
sources supporting this effort. The U.S. Air Force asked the U.S. National Research 
Council to provide “advice on planning for future organizational modelling research” 
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(Zacharias et al.  2008 , p. 1). The resulting report provides an excellent review of the 
state of the art, although a criticism is that it does not adequately address work out-
side the U.S. 

 Current research and results in agent-based modelling is presented in scientifi c 
conferences held regularly. In the United States, the Behaviour Representation in 
Modeling and Simulation Society meets annually to present and discuss current 
work. Their website is:   http://brimsconference.org/    . In Europe, the European 
Council for Modelling and Simulation meets annually and their web site is:   http://
www.scs-europe.net/    .      
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  Abstract   This chapter considers two important issues in the development of 
agent-based models, i.e. calibration and validation. These terms are defi ned and 
framed into a step-by-step process. Each step is then explained in further detail 
and illustrated using an agent-based model of shifting cultivation developed by 
Ngo (2009) as part of his PhD research project. Although the process of model 
validation presented here is applicable to agent-based models in general, some of 
the fi ner details are more relevant to agent-based models of land use and land 
cover change.      

    10.1   Introduction 

 Model validation is a process for determining if a model is able to produce valid and 
robust results such that they can serve as the basis for decision makers (Berger et al. 
 2001  ) . The validation process provides the information needed to assess how well 
the model approximates the real world system and meets the original objectives of 
the model development. Before the outputs of a model are validated, there is a cali-
bration process whereby the model parameters are determined using real world 
data. Together both calibration and validation represent one of the seven challenges 
of agent-based modeling (Crooks et al .   2007  ) . One of the main reason for this 

    The      An   Ngo   (*)
     Hanoi University of Agriculture ,   Trau Quy, Gia Lam ,  Hanoi ,  Vietnam    
e-mail:  ntan@hua.edu.vn 

      L.   See  
     IIASA ,   Laxenburg ,  A-2361   Austria    
e-mail:  see@iiasa.ac.at   

    Chapter 10   
 Calibration and Validation of Agent-Based 
Models of Land Cover Change       

       The      An   Ngo       and    Linda   See         



182 The An Ngo and L. See

 challenge is that the concepts related to validation are still being debated, and 
 confl icts remain in the way that validation terminologies are used (Carley  1996 ; 
Crooks et al.  2007 ; Troitzsch  2004  ) . Moreover, the different techniques for  validation 
are quite varied, which has led to a confusing situation for modellers. Therefore, it 
is important to have a systematic approach to the overall validation process, and one 
that is integrated throughout the development phase of an agent-based model 
(ABM). This chapter attempts to provide such an approach to ABM validation. 

 Numerous publications have been devoted to reviewing different validation 
methods for ABMs (Berger et al.  2001 ; Carley  1996 ; Klügl  2008 ; Parker et al.  2002 ; 
Troitzsch  2004 ; Windrum et al.  2007  ) . Among these, several types of validation are 
mentioned, e.g. empirical validation, statistical validation, conceptual validation, 
internal validation, operational validation, external validation, structural validation 
and process validation. However, Zeigler  (  1976  )  provides a good characterization of 
these methods into three main types:

    • Replicative validation:  where model outputs are compared to data acquired 
from the real world;  
   • Predictive validation:  where the model is able to predict behaviour that it has 
not seen before, e.g. that which might come from theories or which might occur 
in the future; and  
   • Structural validation:  where the model not only reproduces the observed sys-
tem behaviour, but truly refl ects the way in which the real system operates to 
produce this behaviour.    

 In this chapter, the focus is on structural validation, which in broad terms con-
sists of the following four processes as defi ned below (Carley  1996 ; Klügl  2008  ) :

    • Face Validation:  is often applied at the early phase of a simulation study under 
the umbrella of conceptual validation. This technique consists of at least three 
methodological elements:

    • Animation assessment:  involves observations of the animation of the overall 
simulated system or individual agents and follows their particular behaviours.  
   • Immersive assessment:  monitors the dynamics of a particular agent during 
the model run.  
   • Output assessment:  establishes that the outputs fall within an acceptable 
range of real values and that the trends are consistent across the different 
simulations.     

   • Sensitivity Analysis:  assesses the effect of the different parameters and their 
values on particular behaviours or overall model outputs.  
   • Calibration:  is the process of identifying the range of values for the parameters 
and tuning the model to fi t real data. This is conducted by treating the overall 
model as a black box and using effi cient optimisation methods for fi nding the 
optimal parameter settings.  
   • Output Validation:  involves graphically and statistically matching the model’s 
predictions against a set of real data.    
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 Face validation and sensitivity analysis are sometimes collectively referred to as 
verifi cation (Parker et al.  2002  ) . The different processes above are often carried out 
iteratively in a step-by-step process as illustrated in Fig.  10.1 .  

 A model is able to generate reliable and valid results within its experimental 
frame only if these validation processes are wholly implemented. However, there 
are very few examples of where comprehensive system validation has been 
applied to ABMs. For land use and land cover change modeling in particular, 
many studies have only concentrated on  output validation  (e.g. Castella and 
Verburg  2007 ; Jepsen et al.  2006 ; Le  2005 ; Wada et al.  2007  )  whereas the other 
steps mentioned above have not been treated explicitly. Therefore, the results 
may not truly refl ect the way the system operates as per the defi nition of struc-
tural validation provided earlier. 

Initial model 

1. Face validation 
Do animated behaviours 

and output trends match 
reality? 

3. Calibration 
Do processes,  

parameters and results 
match reality? 

2. Sensitivity analysis
Have we determined 

which parameters affect 
behaviours and outputs? 

No 

Yes

4. Output validation 

Do predicted results 
match reality? 

Fully validated model 

No

Yes

Yes

Yes

Yes

Verification 
Involves verifying 

code and algorithms, 
and identifying  

significant  
parameters 

Selecting the range 
of values for the 

model parameters 

Overall assessment of 
the model 

No

No 

  Fig. 10.1    General validation process of an ABM       
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 The rest of the chapter discusses each of the stages in the validation process 
(Fig.  10.1 ) in more detail, providing examples from an ABM of shifting cultivation 
(SCM) as described in Ngo  (  2009  )  and Ngo et al.  (  2012  ) .  

    10.2   Verifi cation of ABMs 

 Verifi cation is the process whereby the logic of the model is tested for acceptability 
and validity. Basically the model is checked to see if it behaves as it should. Crooks 
et al.  (  2007 , p. 10) refer to this as testing the “inner validity” of the model. Verifi cation 
often involves examining processes within the model and then comparing the model 
outputs graphically or statistically against the real data. However, the level of detail 
needed for verifi cation is less than that required for calibration (Carley  1996  ) . 

 As defi ned previously in Fig.  10.1 , model verifi cation consists of face validation 
together with the sensitivity analysis. Face validation is conducted to ensure that the 
processes and initial outcomes of the model are reasonable and plausible within the 
basic theoretical framework of the real system. Sensitivity analysis, on the other 
hand, is applied to examine the effect of the model parameters on the outcome of the 
model. Parameters with no signifi cant effect are then removed from the model to 
make it more coherent and easier to operate. The sensitivity analysis is, therefore, 
necessary in the pilot phase of complicated simulation studies as the parameters that 
are identifi ed as being important are those that will require calibration or identifi ca-
tion using optimisation or some other means. 

    10.2.1   Face Validation 

 Face validation should be applied to several aspects of the model in its early devel-
opment phase. The dynamic attributes of the agents can be analysed visually across 
many iterations of the model. All behaviours such as those used for identifying the 
relationships between agents, and the automatic updating of related parameters are 
checked for consistency and accuracy. These processes are essentially the  anima-
tion  and  immersive  assessments referred to in Sect.  10.1 , which can be undertaken 
in a visual and qualitative way. 

 A simple example of visual validation is demonstrated in Fig.  10.2 , which has 
been conducted for the SCM of Ngo  (  2009  ) . Figure  10.2  shows the results of the 
dynamic monitoring of a random household agent with their relatives over time. As 
time increases (on an annual time step), the household characteristics of the agent 
are updated gradually from a state when the household was young to when the fi rst 
partitioning occurs and the fi rst son marries, forming a new household. Replacement 
by the second son then takes place when the head of household agent dies to form a 
new household. Visual analyses like these were used to determine whether the SCM 
(Ngo  2009  )  was able to produce acceptable results when simulating real human 
relationships in a shifting cultivation system.  
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 The second part of the face validation process relates to output assessment in 
order to ensure that the simulated results fall within an acceptable range of real 
values across the simulations. The simulated results might include the important 
parameter values which were used to describe an agent’s characteristics. The analyses 
can be conducted as follows. Firstly, the model is run several times (where all inputs 
are held constant) in order to generate the initial outputs related to the characteristics 
of the agents. The number of runs should be suffi ciently large as to be statistically 
signifi cant (e.g. 30). These data were then analysed visually to ensure that they fell 
within the range that corresponds to the real world (based on a comparison with 
survey data obtained from fi eldwork). 

 A statistical comparison between the data from the simulated runs and the real 
data is shown in Table  10.1 . In terms of the statistical distribution, it is important to 
check for Standard Errors (SE) and compare the mean values of the simulated results 
with real world values to ensure that the model can provide consistent results. Once 

 

Agent 15
Characteristics 

- size: 6 
- labour: 4 
- land: 1.2 ha 
- sibling: n/a 
- children-HH: n/a 
- relative: n/a 

2012 Agent 15
Characteristics 

- size: 4 
- labour: 3 
- land: 0.8 ha 
- sibling: n/a 
- children-HH: 163 
- relative: 163 

Agent 163
Characteristics

- size: 2 
- labour: 2 
- land: 0.6 ha 
- sibling: n/a 
- children-HH: n/a 
- relative: 15 

2019 Agent 163
Characteristics

- size: 5 
- labour: 2 
- land: 0.7 ha 
- sibling: HH257 
- children-HH: n/a 
- relative: 257 

Agent 257
Characteristics 

- size: 5 
- labour: 2 
- land: 0.8 ha 
- sibling: HH163 
- children-HH: n/a 
- relative: 163 

2037 Agent 512 
Characteristics

- size: 3 
- labour: 2 
- land: 0.5 ha 
- sibling: n/a 
- children-HH: n/a 
- relative: 163, 257 

Agent 257
Characteristics 

- size: 7 
- labour: 4 
- land: 1.4 ha 
- sibling: HH163 
- children-HH: n/a 
- relative: 163, 512 

Agent 163
Characteristics

- size: 3 
- labour: 3 
- land: 0.5 ha 
- sibling: HH257 
- children-HH: 512 
- relative: 512, 257 

… … …

Year 

…

2000 

1st 3 noitareneg rd generation 2nd generation Partition Replacement 

  Fig. 10.2    Dynamic monitoring of selected household agents over time in the shifting cultivation 
model (Ngo  2009  )        
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   Table 10.1    Household data from the model simulation and the survey data collected in 2007 
(Ngo  2009  )    

 Model outputs in 2007  Survey data in 2007 

 Mean  SE  SE (%)  Lower bound  Upper bound  Mean 

 Age of household 
heads (year) 

 40  0.149  0.37  39  45  42 

 Household size 
(# of people) 

 6.27  0.054  0.89  6.17  7.54  6.86 

 Household labour 
(# of labourers) 

 3.70  0.047  1.27  3.31  4.34  3.83 

 Land per capita (ha)  0.18  0.000  0.00  0.18  0.21  0.19 

the simulated results appear to be consistent (e.g. SE < 5%), their mean values can 
be then compared with the ranges of the real data, which is often indicated by the 
lower and upper bounds in statistical terms.  

 The simulated data in Table  10.1  shows that the model output results have SEs of less 
than 5% compared to the mean values, indicating that the results are consistent and can 
therefore be compared with the fi ndings from the survey. The mean values of the model 
outputs fall within the upper and lower bounds of the survey data, which confi rms that 
the SCM can produce household characteristics that are similar to the survey data. 

 Another assessment of the output within the face validation framework is to 
check how consistently the model can produce the same or similar outcomes 
between the different model runs. There are several ways to do this but the  Test for 
Homogeneity of Variances  (Winer  1971  )  is one possible approach. In practice, 
we might measure the variances of the simulated results for several time steps 
(i.e. t, t + 1, t + 2, t + 3, t + n) with several replications. If the hypothesis is accepted, i.e. 
the variations between model runs are similar, then the model would pass this test. 

 Regarding ABMs related to land use and land cover change analysis, it is also 
important to compare output values from model runs produced at different scales. 
Since the level of detail is reduced at lower resolutions, there will most likely be 
some difference between the model outputs run at varying scales. However, if this 
difference is not statistically signifi cant, then the model could be run at the coarser 
scale to reduce the running time of the model. This reduction in computational time 
could be very signifi cant if the model is applied to a large area.  

    10.2.2   Sensitivity Analysis 

 In an ABM context, sensitivity analysis is often carried out to examine the effect of 
input parameters and their values on model behaviours and model outputs. This 
analysis is essential for selecting signifi cant parameters for the simulation before 
the model is calibrated or used in scenario analysis. A common approach is to 
modify only one parameter at a time, leaving the other parameter values constant 
(Happe  2005  ) . However, this approach is not as easily applicable to agent-based 
systems (Manson  2002  )  and sensitivity analysis has often been undertaken in an 
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unstructured way (Kleijnen et al.  2003  ) . In order to avoid oversimplifi cation of the 
underlying model due to leaving out possible interactions between input parameters, 
Kleijnen et al.  (  2003  )  and Happe  (  2005  )  have suggested that the sensitivity analysis 
should be conducted systematically by applying the statistical techniques of Design 
of Experiments (DOE) and metamodelling (Box et al.  1978 ; Kleijnen and Van 
Groenendaal  1992  ) . 

 The suitability of DOE techniques in the context of ABMs has been recognised 
previously as it can help to determine the importance of the input parameters and 
also provide information about model behaviour and the logic employed in the pro-
gramme (Happe  2005 ; Kleijnen et al.  2003  ) . In DOE terminology, model input 
parameters are called factors, and model output measures are referred as to responses. 
A full factorial design consists of  i  factors, with an assumption that each factor takes 
 j  levels and therefore involves  n = i    j   factor setting combinations. This means that  n  
simulations are required to determine the effect of  i  factors. However, this procedure 
can only be applied to a small number of factors because the computation time 
increases exponentially with each additional factor and each additional factor level 
(or categories in which each factor is divided). It is obvious that alternative methods 
are therefore necessary to undertake a sensitivity analysis of the model if the num-
ber of factors is large. 

 To deal with the computational problem due to the large number of factors, 
Bettonvil and Kleijnen  (  1997  )  proposed the Sequential Bifurcation (SB) technique 
which is essentially a method to determine the most important factors among those 
that affect the performance of the system. 

 SB operates with three assumptions: ( i ) the importance of factors to the model 
performance can be approximated as a fi rst-order polynomial; ( ii ) the sign of each 
factor effect is known; and ( iii ) errors in the simulation model are assumed to be zero. 
The overall procedure can be described as follows. Firstly, the analysed parameters 
are converted to binary variables with values of 0 or 1, which correspond to low and 
high simulation outputs, respectively. The simplest approximation of the simulation 
model output  y  is a fi rst-order polynomial of the standardised variables ( x  

 1 
  ,…,x  

 j 
  ,…,x  

 K 
 ), 

which has main effects   b   
 j 
  and overall mean   b   

 0 
 , and can be expressed as:

     0 1 1 ··· ···j j K Ky x x xb b b b= + + + + +
   (10.1)   

 The manner of the variable standardisation mentioned above implies that all the 
main effects in ( 10.1 ) are non-negative:   b   

 j 
   ³  0. In terms of DOE, the standardised 

variables also indicate that the combination of experimental factors relates to the 
switch-on (1) and switch-off (0) of the equation’s elements. To deal with the interac-
tion between factors, i.e. the dependence of a specifi c factor on the levels of other 
factors, ( 10.1 ) can be approximated as:

     

1

0 ,
1 1 1

K K K

j j j j j j
j j j j

y x x xb b b
−

= = = +

= + +∑ ∑ ∑
   

(10.2)
  

where   b   
 j,j’ 

  is the two factor interaction effect between factor  j  and  j’ . 
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 Secondly, SB is operated in an iterative procedure where the next factor is 
selected based on the outputs of previous factor combinations that have already 
been simulated. The procedure might contain several stages, depending on the lower 
limit of the effect level defi ned by the users. The fi rst stage always estimates the 
simulated results from the two extreme factor combinations, namely  y  

 0 
  (all factors 

low) and  y  
 K 
  (all factors high). If  y  

 0 
   < y  

 K 
 , then the sum of all the individual main 

effects is important and the second stage of SB is entered. SB then splits the factors 
into two subsets of equal size and continues the estimation process for each sub-
group, which is the same as that described in the fi rst stage, and the procedure con-
tinues in an iterative manner. SB terminates when the effect level (i.e.  y  

 j 
   – y  

 0 
 ) reaches 

the lower effect limit defi ned by the user. 
 More detailed instructions on how to apply the SB technique can be found in 

Bettonvil and Kleijnen  (  1997  )  and Ngo  (  2009  ) . In general, the effective level of the 
factor found by the SB indicates its sensitivity. The factors that are identifi ed by the 
SB as having little importance or were less effective should be eliminated from the 
model. The remaining factors or model parameters will then need to be calibrated if 
unknown  a priori . In the SCM of Ngo  (  2009  ) , sensitivity analysis was used to elimi-
nate a number of variables from the model, leaving a subset for calibration.   

    10.3   Model Calibration 

 Once the sensitivity analysis is completed, the next stage in validation (Fig.  10.1 ) is 
calibration of the model. The calibration process is conducted to identify suitable 
values for the model parameters in order to obtain the best fi t with the real world. 
This process, therefore, involves the optimisation of the parameters. There are many 
different optimisation methods available (Fletcher  2000  )  but a genetic algorithm 
(GA) is particularly well suited for implementing this task. A GA has novel proper-
ties such as being able to undertake a parallel search through a large solution space 
(Holland  1992  ) . GAs have also been used to calibrate other ABMs in the past 
(Heppenstall et al.  2007 ; Rogers and Tessin  2004  ) . 

    10.3.1   The Principle of Parameter Optimisation Using GAs 

 A GA applies the principle of “survival of the fi ttest” from the fi eld of genetics to a 
population of competing individuals or solutions within a given environment called 
the search space (Soman et al.  2008  ) . The procedures involved in a GA are similar 
to the process that occurs in genetics where the parameters in the GA play the role 
of chromosomes; the range of data is the genotype; while the results of the model 
runs are the phenotype. The general steps in a GA are illustrated in Fig.  10.3 .  

 The GA starts with a randomly generated number of solution samples which 
is collectively called the population, which is the fi rst generation of the species. 
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A single solution or individual in the population is the combination of parameters 
with particular values. The solution is therefore equivalent to a natural chromosome 
with a specifi c genotype. The next step is the evaluation of fi tness using the objec-
tive function specifi ed by the user. If there is any individual with a fi tness value that 
satisfi es the threshold condition, the programme is terminated and the best individual 
will be the best solution. Otherwise the GA will operate in a loop creating new gen-
erations or populations. Within the loop, individuals (i.e. chromosomes) with higher 
fi tness values are given a higher probability of mating with each other, so as to 
produce offspring that may better fi t the environment. 

 Several selection methods for selecting the best fi t individuals are available such 
as roulette wheel, tournament, rank and elitism (Mitchell  1996  ) . The most popular 
method is tournament selection, which is not only suitable for a medium and small 
population size but also provides marginally better accuracy compared to the rou-
lette wheel selection (Al-Ahmadi et al .   2009  ) . The tournament selection chooses the 
best fi t individuals from several random groups iteratively. For example, if a total of 
35 best fi t individuals must be selected out of a population of 50 members, the tour-
nament will fi rstly select a random group (e.g. a group of three random members); 
within this group, a best fi t individual will be the fi rst selected member. These selec-
tion processes continue with the next random group to choose the second member 
until the 35th member is reached. All selected individuals are then entered into the 
recombination or crossover step which replaces the old chromosomes with the new 
ones. In the crossover phase, two selected individuals from two random tournament 
groups perform crossover with a certain number of gene exchanges. 

 The process of selection and recombination do not inject new genes, so the solution 
can converge to a local optimum (Soman et al .   2008  ) . The process of mutation, which 
prevents GAs from premature convergence to a local optimum, is performed to 
achieve local perturbation by randomly replacing the parameter values with new ones. 
The frequency of the replacement and the level of perturbation (i.e. the number 
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  Fig. 10.3    The general steps in a genetic algorithm       
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of parameter values that are replaced) is defi ned by the mutation rate. Selection, 
recombination and mutation are then applied to each generation iteratively until an 
optimal solution is reached. The condition to be satisfi ed could be reached after a 
maximum number of generations or if there is observed stability in statistics such as 
the mean and/or variance of the population fi tness values from a generation (Soman 
et al .   2008  ) . The optimisation programme ends when the terminated conditions are 
matched and the optimal solution is reported.  

    10.3.2   Measurement of the Fitness of a GA 

 There are several techniques for measuring fi tness and errors in the simulation 
model such as the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Percentage Error (MAPE), Median Absolute Percentage Error 
(MdAPE), the Relative Operating Characteristic (ROC), a Confusion Matrix (CM), 
the Kappa Index of Agreement (KIA), Fractal Analysis (Mandelbrot  1983  )  and 
Multiple Resolution Goodness-of-fi t (MRG). These techniques and goodness-of-fi t 
statistics measure different aspects of the model performance, and may therefore be 
suited to different objectives. The selection of which evaluation measures to use 
depends upon the purpose of the validation and the characteristics of the measures, 
i.e. what the different measures are intended to show. 

 With respect to the GA, the RMSE is the most commonly used fi tness or error 
measure (Chatfi eld  1992  )  because it indicates the magnitude of error rather than 
relative error percentages (Armstrong and Collopy  1992  ) . This statistic measures 
the squared differences between the simulated or predicted values and the observed 
or reference values:
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where  x  
 1i 
   – x  

 2,i 
  is the difference between variable  i  from data source 1 (i.e. the simu-

lated result) and data source 2 (i.e. the reference or observed data); and  n  is the total 
number of variables. The RMSE provides a global measure of performance that 
aggregates all individual differences into a single measure of predictive power. 

 Other measures of evaluation such as the ROC and the MRG are more suited to 
evaluation of the model outputs once the model is calibrated so are described in 
more detail in Sect.  10.4 .  

    10.3.3   Interpreting Calibration Results from the GA 

 In practice, a GA does not produce a single unique set of parameters but a range of 
solutions that sit on a Pareto front (Madsen et al .   2002 ; Yapo et al .   1998  ) . This means 
that the GA operations will produce a range of different parameter combinations 
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that can give acceptable solutions, rather than generating a single solution. An 
example of the optimised parameter set from the SCM of Ngo  (  2009  )  is shown in 
Fig.  10.4 .  

 Each line in Fig.  10.4  represents a solution that consists of values for eight 
calibrated parameters. For each parameter there is a range of possible solutions, 
indicating the error in the values found by the GAs produced in several runs. 
Therefore, the additional step that needs to be done is to check for the standard 
errors for each parameter from all runs. If the errors are not high and the relation-
ships between the values of the parameters and real conditions are reasonable, the 
solution will be potentially accepted. 

 As explained above, all parameter combination sets provided by the GA are 
potentially acceptable solutions. In addition, each parameter clusters around a cen-
tral value, suggesting that there is a global optimum for the multiple objectives. 
However, later analyses using the ABM such as validation of model outputs and 
scenario analyses will require a consistent set of parameters. The way of selecting 
a set of parameters for further analysis depends strongly on the purpose of the 
modeller. An acceptable way could be to run the model several times with differ-
ent parameter sets provided by the GA and then compare the output(s) that is 
considered as important or signifi cant by the modeller. The parameter set that 
yielded the highest average fi tness value compared to the real data is one method 
for selection. For example, the bold line in Fig.  10.4  is a parameter set that pro-
vided highest fi tness values for land cover and was therefore selected as the best 
solution for the SCM (Ngo  2009  ) .   
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  Fig. 10.4    The calibrated parameters provided by 30 GAs (Ngo  2009  )        
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    10.4   Validation of Model Outputs 

 The fi nal stage in the validation process (Fig.  10.1 ) is validation of the ABM 
outputs. This is the most important process in model development because it ensures 
that the model has the right behaviour for the right reasons (Klügl  2008 ; Qudrat-
Ullah  2005 ; Troitzsch  2004  ) . Validation of the model outputs is concerned with how 
well they represent real world behaviour and they are, therefore, compared with 
actual observations (Parker et al .   2002  ) . 

 The measurement techniques that determine how the model outputs match 
the real data are varied. However, the Relative Operating Characteristic (ROC) 
and the Multiple Resolution Goodness-of-fi t (MRG) are two good measures for 
validating ABM model outputs. These two measures are explained in more 
detail below. 

    10.4.1   Relative Operating Characteristic (ROC) 

 The ROC is used to evaluate the performance of a classifi cation or prediction scheme 
by identifying where instances fall in a certain class or group (Beck and Shultz 
 1986  ) . The classifi cation is based on the value of a particular variable in which the 
boundary between classes must be determined by a threshold or cut-off value. 
An example would be the prediction of illegal cultivation measured by the SCM 
(Ngo  2009  ) , where the threshold value used to predict whether or not a household 
would cultivate illegally in the protected forest is a value between 0 and 1. The 
result is therefore a two-class prediction, labelled either as positive (illegal) ( p ) or 
negative (not illegal) ( n ). There are four possible outcomes from a binary predictor: 
 true positive, false positive, true negative and false negative . A  true positive  occurs 
when both the prediction and the actual value are  p ;  false positive  when the predic-
tion is  p  but the actual value is  n ;  true negative  when the predicted value is  n  and the 
actual value is also  n ; and false negative when the predicted value is  n  while the 
actual value is  p . The four outcomes can be formulated in a two by two confusion 
matrix or contingency table as shown in Fig.  10.5  (Fawcett  2003  ) . Defi nitions of 
precision, accuracy and specifi city are also provided.  

 The ROC evaluation is based on the ROC curve, which is a graphical representation 
of the relationship between the sensitivity or tp-rate and the specifi city or 1 – fp-rate 
of a test over all possible thresholds (Beck and Shultz  1986  ) . A ROC curve involves 
plotting the sensitivity on the y-axis and 1-specifi city on the x-axis as shown in 
Fig.  10.6 .  

 This graphical ROC approach makes it relatively easy to grasp the inter- 
relationships between the sensitivity and the specifi city of a particular  measurement. 
In addition, the area under the ROC curve provides a measure of the ability to 
 correctly classify or predict those households with and without illegal cultivation. The 
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ROC area under the curve (AUC) would reach a value of 1.0 for a perfect test, while 
the AUC would reduce to 0.5 if a test is no better than random (Fawcett  2003  ) . 

 The ROC has been proposed as a method for land cover change validation 
(Pontius and Schneider  2001  ) . However, it is less useful in terms of capturing the 
spatial arrangement of the model outputs in relation to the real world results (Pontius 
and Schneider  2001  ) . Thus, in the case of the SCM (Ngo  2009  ) , the ROC is more 
useful for validating the number of illegal cultivators than the area of illegal cultiva-
tion predicted by the SCM (Ngo  2009  ) .  

    10.4.2   Multiple Resolution Goodness-of-Fit (MRG) 

 Multiple resolution goodness-of-fi t (MRG) has been proposed for measuring the 
spatial patterns of the model output at several resolutions. This measurement is 
especially relevant when validating the spatial outputs of ABMs that model land 
cover and land use change (Turner et al.  1989  ) . 
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 The MRG procedure is expressed in ( 10.4 ), which measures the fi t at a particular 
sampling window size ( F  

 w 
 ), which is then aggregated for all samples (Costanza 

 1989  ) :
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where  F  
 w 
  is the fi t for the sampling window size  w ,  a  

 ki 
  is the number of cells of cat-

egory  i  in the image  k  within the sampling window,  p  is the number of different 
categories in the sampling window,  s  is the sampling window of dimension  w  by  w  
which moves across the image one cell at a time, and  t  

 w 
  is the total number of sam-

pling windows in the image of window size  w . 
 The fi t for each sampling window is calculated as 1 minus the number of cells 

that would need to change in order that each category has the same number of cells 
in the sampling window irrespective of where they appear in the image. 

 The weighted average of all the fi ts,  F  
 t 
 , over all window sizes is then calculated 

to determine the overall degree of fi t between the two maps as follows:
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where  F  
 w 
  is defi ned above in ( 10.4 ) and k is a constant. When  k  = 0, all window 

sizes have the same weight while for  k  = 1, only the smaller windows sizes are 
important. For the purpose of matching the spatial pattern of land use, a value of 
k of 0.1 gives an ‘adequate’ amount of weight to the larger window sizes 
(Costanza  1989  ) . 

 The MRG is a much more suitable way of assessing the fi tness of the spatial 
outputs compared to the more conventional methods used in ABM model output 
validation such as a confusion matrix or kappa statistic calculated at a single resolu-
tion only. The Kappa test, for example, can be used to measure the fi t between two 
land cover maps based on a pixel-by-pixel comparison, but it ignores the relation-
ships between one measured pixel and its neighbours. Hence, it will only tell us 
whether the total number of pixels in each land cover category is signifi cantly dif-
ferent between the two maps, and not say anything about the accuracy of their spa-
tial arrangement (Costanza  1989  ) . The MRG, however, captures the details of the 
spatial and temporal patterns in the data. More details on the application of MRG 
can be found in Costanza  (  1989  ) . The use of the MRG in validating the model out-
puts of the SCM can be found in Ngo  (  2009  ) .   



19510 Calibration and Validation of Agent-Based Models of Land Cover Change

    10.5   Summary 

 Calibration and validation are crucial stages in the development of ABMs yet remain 
a key challenge (Crooks et al .   2007  ) . This chapter has defi ned these terms and pre-
sented the process as a series of steps that should be followed when building a 
model. Although the process is generic to ABMs in general, particular attention was 
given to ABMs of land use and land cover change, especially in terms of the mea-
sures for evaluating the output of the model. More specifi cally, examples from the 
calibration and validation of the SCM of Ngo  (  2009  )  were provided to illustrate the 
process. It should be noted that this represents only one view of the calibration and 
validation process based on experience gained through building an ABM of shifting 
cultivation. There are clearly a range of methods available that could be used in or 
adapted to any part of the calibration and validation process, e.g. different methods 
of parameter optimization, different measures of evaluating performance, etc. Until 
more guidance is provided in the literature, calibration and validation will remain a 
key challenge.      
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  Abstract   Computational social science and in particular agent-based social 
simulation continue to gain momentum in the academic community. Social network 
analysis enjoys even more popularity. They both have much in common. In agent-
based models, individual interactions are simulated to generate social patterns of all 
kinds, including relationships that can then be analyzed by social network analysis. 
This chapter describes and discusses the role of agent-based modeling in the gener-
ative-analytical part of this symbiosis. More precisely, we look at what concepts are 
used, how they are used (implemented), and what kind of validation procedures can 
be applied.      

    11.1   Introduction 

 Agent-based modeling and network analysis enjoy a symbiotic relationship in the 
fi eld of computational social science. The former is a method of computationally 
representing individual interactions from which social patterns emerge; the latter is 
a method that affords (dynamic) structural analysis of (socio-) structural patterns. 
The renowned anthropologist Clyde Mitchell stated that the starting point of any 
analysis should be the actual relationships in which people are involved (Mitchell 
 1989 , pp. 77–79). What he did not think of, interestingly, is to analyze, other than 
by observational and descriptive means, how these relationships form. 
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 Today, agent-based models (ABMs) are mostly implemented as object-oriented 
computer programs. They consist of autonomous agents that can be perceived as 
computer programs themselves. In principal, agents have three features: they behave 
and interact according to a given set of rules, possess cognitive capabilities to pro-
cess information, and constitute their own environment (cf. Cederman  2001 ; Ferber 
 1999  ) . Empirically seen, the key question is how the design of agent behavior and 
cognition is informed. Standard research practices suggest that the agent design 
process can rely on qualitative data (Alam et al.  2010 ; Hoffer  2006  ) , experimental 
data (Barreteau et al .   2001  ) , and empirically validated theoretical knowledge (Cioffi -
Revilla and Osman  2009  ) . 

 At this point it should be evident that we favor an empirical approach over a pure 
Popperian procedure. The importance of this statement lies in the fact that agent 
interactions as defi ned by agent behavior are tantamount to what is called in social 
network analysis ‘re-wiring’, i.e., according to which rules (algorithms) do the 
different nodes in a network get connected with each other. ABMs claiming to have 
relevance for the social sciences should assume plausible behavior at the individual 
level. ABMs are considered non-black-box models (Boudon  1998  ) . Should ABMs 
serve as social network generators, then one requirement is that they can explain 
how the network came about. Hence, from an epistemological perspective, the 
model needs to exhibit construct-valid mechanisms and processes. 

 The kinds of networks that can be generated and represented by agent-based social 
simulations are manifold. They can range from networks with only a few vertices 
and edges to complicated networks in which agents are embedded in several different 
layers, so called multiplex networks (Granovetter  1985  ) . Networks generated by 
ABMs can represent social, geographical, and even cognitive (semantic network) 
spaces. In their capacity as thematic maps, networks can be used to elucidate such 
concepts as exchange, power, or identity. Paired with social simulation, these ques-
tions can be further explored insofar as agent-based modeling enables the study of 
the underlying agent behavior, and social mechanisms and processes (Hedström 
 2005  ) . This is a powerful combination. 

 Agent-based social simulations are usually analyzed based on hypotheses. 
One way of testing the hypotheses is observing time-series charts for a number 
of measures. In analyzing agent-based social networks, an important issue is 
to understand the role of social processes in constraining the dynamics of the 
generated networks. The purpose of agent-based social networks is to explore 
the simulated data trajectories and to understand the modeled phenomena. This 
is different compared to stochastic models for dynamic social networks (Snijders 
et al.  2010  ) , where existing longitudinal data are used for model fi tting and 
parameter estimation. 

 When generating social networks by means of agent-based modeling, two con-
cepts are in the foreground: the processes that bring about the network and the 
structure this network has. Process and structure are interdependent processes. How 
agents behave is, of course, infl uenced by how they are connected to others; that is 
how they are embedded in society. To this a third dimension is added in agent-based 
modeling. Agents are usually placed on some kind of surface. 
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 The focus of this chapter is to describe and discuss the symbiosis of agent-based 
social modeling and social network analysis. We shall look at how model topologies 
affect network topologies and provide an overview of different social network gen-
eration processes. How networks are implemented in ABMs and how agent-based 
social networks may be analyzed are also discussed.  

    11.2   Social and Physical Space in ABMs 

 In this section, we discuss physical and social neighborhoods in agent-based social 
simulation models. Agent-based simulation models of social phenomena date back 
to the mid 1980s. As Axelrod  (  1997  )  argues, the goal of this modeling approach has 
been to break simplistic assumptions required for mathematical tractability, e.g. 
homogeneity, ignoring interaction. With the advent of multiagent models, social 
simulation benefi ted from it most as these models provided the provisions of simu-
lating the social behavior of autonomous individuals and the interactions between 
them. ABMs have been accredited, in most cases, as suitable for decentralized sce-
narios, especially when individual interactions lead to the emergence of collective 
patterns, like in the case of complex social networks. 

    11.2.1   Representing Physical Neighborhoods 

 Agent-based modeling affords taking geographical space into account in a straight-
forward manner. This is true for abstract spaces as well as for detailed Geographic 
Information Systems (GIS) referenced spaces. Perhaps the most commonly used 
topologies in agent-based modeling are the von Neumann or Moore neighborhoods 
on a plain or a toroid surface. Other possible topologies are, for example, irregular, 
hexagonal grids or vector-based (Crooks et al.  2008  ) . Differences in topologies lead 
to differences in network generation processes and resulting network structures 
(c.f. Flache and Hegselmann  2001  ) . The reason for this is that model topologies 
limit agents not only in their movement, but also in the manner by which they perceive 
information and interact with other agents. The underlying assumption is that space 
is important and matters in everyday (artifi cial) life, affecting both the individual’s 
behavior and society as a whole. Choice of a topology depends very much on the 
modeler’s needs. The focus of the discussion here is on the effect that different 
model topologies have on network evolution processes and network structures. 
In other words, how are dynamic social networks coupled to model space? Note that 
this question is distinct from questions of how space is represented in networks, 
which we discuss below. 

 As Bailey and Gatrell  (  1995 , p. 4) explain, “spatial data analysis is involved 
when data are spatially located and explicit consideration is given to the possible 
importance of their spatial arrangement in the analysis or interpretation of results.” 
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Spatial analysis, for example, that is based on GIS techniques, highlights the 
importance, provided it exists, of neighborhood infl uences, if any, in the actors’ 
behavior caused by the spatial-context. Schensul et al.  (  1999  )  have thoroughly covered 
the issues involving spatial mapping of data; we report a few of the most relevant 
points. For any social networks, the atomic units are usually the individuals. In gath-
ering data about individuals, it is quite useful to identify the general spatio-temporal 
constraints that limit most individuals’ movements and interaction in the region. 
Typically, in spatially explicit models, agents may include stakeholders, land owners, 
farmers, public institutions, and policy or decision-making agencies. As Brown 
 (  2006  )  explains, the behavior of such agents may vary from being triggered by some 
external stimulus or coping with certain stresses to being goal-oriented.  

    11.2.2   Networks from Embedded Social Mechanisms 
and Processes 

 Earlier in this section we discussed the importance of signifying boundaries and 
neighborhoods. Modeling a social network requires identifying the spaces in which 
the agents exist and are related. All relations among real entities exist and are 
constrained through physical spaces. More importantly, case-studies involving land 
use change, distribution and utilization of physical resources are modeled spatially 
explicitly  per se.  

 Social networks are generated through social mechanisms and processes, 
i.e., agents that are embedded in society and that interact with each other produce 
them. It has become more and more accepted in the social sciences that the agents’ 
(e.g., humans, primates, ants) behavior does not follow a linear pattern, but is 
non-linear in its own right. Social complexity, according to Moss  (  2008 , p. 2), is a 
“condition whereby social behavior cannot be understood simply as a scaled-up 
replication of the behavior of the individuals comprising the society”. The interplay 
of social processes as an outcome of socially embedded individuals gives rise to 
the social behavior, which, as Moss  (  2008 , p. 3) explains, “cannot be forecast on the 
basis of individuals’ characteristics and predictions alone”. The macro-phenomena 
resulting from such micro-level interactions are often complex in nature. We under-
stand complexity as a “type of condition in which agent behavior and social interac-
tion combine to generate macro-level outcomes that could not be predicted from 
knowledge of the behavior and nature of interactions alone, and result in sporadic 
volatile episodes, the timing, magnitude, duration and outcomes of which are them-
selves unpredictable” (Geller and Moss  2008 , p. 322). By contrast, in the study of so 
called complex networks, the notion of complexity is related to network structures 
(both local and global) and characteristics that are not statistically signifi cant in a 
random network (Newman  2004 ; Wasserman and Faust  1994  ) . We are aware of 
other defi nitions of both complexity and complex networks (see Edmonds  (  1999  )  
for a review), but those given should suffi ce for the purpose of this chapter. 
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 Self-organized criticality (SOC) addresses the local mechanisms and processes 
that drive the emergence of complex systems. It can be interpreted as the 
response of a slowly driven system such that the outcome of the system’s behavior 
is limited by the order of the magnitude of its size, thus, leading to the scale-free 
property (see below). Following Jensen  (  1998  ) , one may explain SOC as the 
development of emergent patterns due to interactions among meta-stable agents, 
so that at some critical state, the result of interactions affects the entire system 
such that all members of the system infl uence each other. For the rest of the 
period, any local distortions resulting from agents’ interactions in their neigh-
borhoods remain confi ned locally. Systems governed by SOC leave characteris-
tic traces in the data they produce. The data conforms not to the assumption 
underlying standard statistical methods, namely that the mean and standard 
deviation of the distribution of the data are known and stable. Consequentially, 
the conditions for standard statistical hypothesis testing and regression tech-
niques are not satisfi ed anymore, and there are cases where variance is infi nite 
(Barthélémy  2006  ) . However, of more importance to us in the present context 
is the fact that investigating such signatures provides useful guidance for the 
analysis of social simulations (Moss  2002  ) . Leptokurtosis in a distribution of 
relative changes can be a refl ection of episodes of volatility that are themselves 
unpredictable (Moss  2002  ) . That is, unpredictable clustering of volatility and the 
corresponding extreme events are identifi ably complex features of time series. 
Conversely, fi nding leptokurtosis in time series data would naturally incline us 
to look for extreme events. A vital implication of such approaches is that it is 
practically impossible to predict the outcomes to the system from simple stimuli 
(Jensen  1998  ) . 

 ABMs – not only of social systems – can represent such properties. This is an 
important assumption that needs to be taken into account when modeling networks 
with an agent-based approach, for agent behavior and interaction – as understood 
in SOC – will affect the kind of networks that emerge. With this in mind, we now 
present an overview of characteristic complex network topologies associated with 
complexity concepts that an agent-based modeler has to expect when running a 
simulation. Presented will be also measures appropriate for the analysis of agent-
based social simulation generated networks. 

 Modeling dynamic social networks where agents communicate with each 
other and build relations over time requires the introduction of “social” spaces 
that go beyond the physically situated agents. Such agents can be called “socially 
embedded” (Edmonds  2006 ; Granovetter  1973  ) , i.e., an agent’s behavior is fairly 
infl uenced by the network of social relations that it is part of. Physical resources 
and interaction with the environment do not fulfill the demand for capturing 
the social interactions that may infl uence, for example, a farmer’s decision to 
plant a certain type of crop, or use of their land. Social spaces and the agents’ 
interactions may either be constrained by a local neighborhood, or could be 
global (i.e., each agent may be directly related to any other agent in the space). 
In the former case, the sociability of agents depends on the spatial neighborhoods, 
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and thus, according to Edmonds  (  2006  ) , the physical space is used as a proxy for 
social space. 

 Not many social network models exploit combining the social and physical 
spaces, which is pivotal for analyzing the underlying complexity and for which 
ABMs are well suited as they support modeling the spatial neighborhood as well 
as agents’ cognition in building relations. Hence, symbiosis of the two “spaces” 
remains an active area of research.  

    11.2.3   Types of Complex Networks 

 The term complex networks is used as an umbrella term for the size, similarity of 
structure, and dynamics in real and simulated networks (for two comprehensive 
articles on the issue see Newman  (  2004  )  and Fortunato  (  2009  ) ). Cross-disciplinary 
research, especially in the last decade, has resulted in identifying characteristic 
network types and their statistical properties. Network structures are either 
modeled phenomenologically or they emerge from agents’ local interaction (for an 
older, but relevant review concerning networks for ABMs see Amblard  (  2002  ) ). 
We briefl y look at three commonly occurring network structures in agent-based 
social simulation: random graphs, small world and scale-free networks. Regular 
lattice networks are used in cellular automata models – a lattice is a graph where 
vertices are placed on a grid and are connected to the neighboring vertices only. 

 An early attempt to study the behavior of complex networks dates back to 
Erdős and Rényi’s  (  1959  )  seminal work on random graph theory. The basic 
Erdős-Rényi (ER) model requires connecting  N  nodes through  n  edges chosen 
randomly such that the resulting network is from a space of equally likely graphs, 
where  N  is the size of the network. Several nodes can have the same degree in a 
random graph. Given a high wiring probability  p,  the diameter of random graphs 
increases logarithmically with the growth of the graph. The ER graph also predicts 
the appearance of subgraph structures and the emergence of a unique giant 
component. 

 Random networks are to social network data what the Gaussian distribution 
is to statistical data; it is neither very likely to fi nd random network structures in 
real world data nor very realistic to assume that real world networks are of a random 
nature. Firstly, people do not behave randomly. Secondly, societies are complex 
systems. Randomness is diametrically opposed to this idea. It is, however, worthwhile 
to consider random networks as a useful concept in agent-based social network 
modeling since they constitute a test case. The networks generated by the simulation, 
and which are meant to represent an identifi ed (real world) target system, should be 
signifi cantly different with regard to certain key metrics from the corresponding 
ER network. 

 In 1998 Watts and Strogatz  (  1998  )  presented the Watts-Strogatz (WS) model, 
which interpolated a small world graph as an intermediate of a purely random and a 
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regular graph. They showed that as the length of the shortest path between two nodes 
tends towards  O(ln(N) ), which is small, a random graph exhibits the so-called 
small-world effect. That is, a WS network is characterized by short average path 
length ( L ) and a high clustering coeffi cient ( C  ) compared to an Erdős-Rényi graph of 
the same size and density. This property displayed by small-world networks has been 
observed in a number of social systems, including friendship, co-worker, and confl ict 
networks. 

 Informally, a high  C  supports the ideas that the “friend of my friend is my 
friend” and that the neighbors of a node are more likely to be linked to each other 
than in a random network. More generally, small-world type networks should be 
of interest to us because they exhibit properties which are “suffi ciently well 
connected to admit rich structure, yet each element is confi ned to operate within 
a local environment that encompasses only a tiny fraction of the entire system” 
(Watts  1999 , p. 499). This specification of the micro-level processes leading 
to the emergence of small-world networks is closely related to the idea of SOC and 
complex systems. 

 Albert and Barabási  (  2002  )  argued that simply using ER or WS models does not 
capture the important aspects of real-world networks. The Barabàsi-Albert (BA) 
model is a special case of the stochastic model proposed by Herbert Simon (Simon 
 1955  )  for generating a class of highly skewed distributions, including the power-law 
distribution. The number of starting vertices is fi xed and the chances of a vertex 
being linked to another are equally likely. Instead, real-world networks evolve 
over time and exhibit a feature that is called preferential attachment. Albert and 
Barabási address these issues by introducing network growth. The network starts off 
with a small number of connected vertices. New vertices are added to the network 
one at a time and are linked to existing vertices. Then they introduce the idea of 
preferential attachment, meaning the probability that a new vertex is connected to 
an existing vertex depends upon the connectivity of the vertex, where  k  is the degree 
of the  i -th vertex in the existing network. The network evolves into a scale-variant 
such that the degree distribution follows a power law.   

    11.3   Incorporating Networks into Agent-Based 
Simulation Models 

 Unlike physical systems, social processes are modeled descriptively and validated 
qualitatively. The evidence is gathered through fi eldwork. An individual’s relations 
and actions are driven by their position and other factors affecting the system. 
Where the actions are constrained by both the endogenous and exogenous factors, 
one may fi nd episodic volatility in the observed time series (Moss and Edmonds 
 2005  ) . Next, we discuss some of the issues concerning social network data collec-
tion and incorporating them into ABMs. We then give some examples of ABMs of 
social networks. 
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    11.3.1   Data for Networks in Agent-Based Social Simulation 

 Acquiring data on social networks is a challenging task for fi eldwork researchers 
depending upon socio-cultural and socio-political aspects of their research and 
resource constraints. Schensul et al.  (  1999  )  identify features for data that are of use 
for the description of social networks:

   Identifi cation of network actor;  • 
  Defi nitions of and rules to defi ne group members by the people;  • 
  Inclusion and exclusion rules defi ning social network boundaries;  • 
  Familial and sexual relationships, (if any), within groups.    • 

 Network boundaries constitute the edges of networks and are defi ned by rules for 
entry and exit from groups as well as by other cultural patterns of participation 
that differentiate one group from another. An important facet of a community is 
the existence of so-called community organizations, which operate within the 
perimeters of the community. Such organizations can be characterized as being 
informal or institutionalized. Physical neighbors can be described in terms of land 
use and segregation of sub-regions. The social aspect of neighborhood is based, for 
example, on the “local social interactions, social class, ethnic and radical origins, 
life cycle characteristics of the population, length of residence, and place of work” 
(Schensul et al.  1999  ) . The concept of locality is embedded in its defi nition; hence 
a community can be identifi ed as sharing social characteristics or a community 
space, where social interactions are likely to take place. 

 Social network data can be derived from census data, third-party surveys and 
various forms of quantitative data (e.g., Eubank et al.  2004 ; Bearman et al.  2004 ; 
Geller and Moss  2008  ) . 

 Social network data may also be extracted from existing databases such as e-mail 
correspondence within an organization or social interactions among individuals in 
online communities. On the other hand, it is very diffi cult to conduct fully-fl edged 
surveys for acquiring social network data in distant, stressed or confl ict-torn regions 
such as Yemen or Afghanistan. Knowledge elicitation techniques based on partici-
patory approaches (Barreteau et al.  2001 ; Pahl-Wostl and Hare  2004  )  may be used 
to model the behavior and social interaction of relevant actors through an iterative 
process involving data collection, validation and scenario exploration.  

    11.3.2   Implementing Networks in Agent-Based Models 

 A social network is a graph where actors (e.g., individuals, households, fi rms) are 
represented as vertices and an existing relation between any two nodes represented 
as an edge between them. Multiple relations among agents embedded in space are 
represented as a two-mode sociomatrix, a hypergraph or a bipartite graph, where one 
representation can equivalently be mapped to another (Wasserman and Faust  1994  ) . 
Bipartite graphs are useful for simultaneous analysis of both actors and the affi liations 
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(Degenne and Forsé  1999  ) . Typically, a graph, i.e. a social network, is implemented 
as an adjacency matrix or a doubly-linked list besides others. Choice of a suitable 
data structure for manipulating social networks may depend upon the structure of 
the underlying social network, e.g., single or multiple relations; directed/undirected; 
weighted edges, etc. Two of the most widely adopted data formats used for social 
networks are GraphML (Brandes et al.  2004  )  and DyNetML (Tsvetovat  2005  ) , both 
based on XML. Both support directed, undirected, and mixed graphs; hypergraphs; 
hierarchical graphs; and store nodes and edges attributes, for example agents’ 
characteristics or type or strength of edges (see Tsvetovat  (  2005  )  for a comparison 
of commonly used social network data formats). Another well known data format 
is Pajek’s .net format for rich social network data (de Nooy et al.  2005  ) . 

 Several simulation toolkits and software exist with built-in data structures and 
operations for analyzing and visualizing social networks. Widely-used software 
includes Pajek (de Nooy et al.  2005  ) , ORA (Carley et al.  2007  ) , StOCNET (Boer 
et al.  2006  )  and UCINet (Borgatti et al.  2004  )  (for a list of social network analysis 
software, see for example Wikipedia’s entry under “Social network analysis 
software”). Several agent-based modeling platforms provide functionality for imple-
menting and analyzing networks at runtime. These include RePast 3.1/Simphony 
(North and Macal  2007  ) , MASON (Luke et al.  2005  ) , NetLogo (Wilensky and Rand 
 in press ) and Swarm (Minar et al.  1996  ) . Most of them intentionally provide only 
limited support for network analysis measures such as the basic centrality measures 
and community detection algorithms (Nikolai and Madey  2009  ) . Dedicated net-
work modeling and analysis libraries such as the Java Universal Network/Graph 
library (JUNG) (O’Madadhain et al.  2005  ) ; the R Project packages statnet, sna, and 
igraph are to be used for more computationally-extensive handling of network data 
generated by ABMs. Social network analysis software and APIs provide an inter-
face to read/write social network data in data formats such as GraphML or DyNetML. 
For a detailed discussion on the integration of GIS and agent-based modeling, see 
Crooks and Castle ( 2012 ).  

    11.3.3   Some Examples of Spatially-Explicit Agent-Based 
Social Simulation Models 

 In this section, we present a selection of relevant work dealing with implementations 
of social networks in ABMs. 

    11.3.3.1   Land Use Models 

 Central to landscape modeling, such as land use, land cover, habitat conservation 
and farming, is the identifi cation of community space and distinct regions (Brown 
 2006 ; Parker  2005  ) . For instance, Krebs et al.  (  2007  )  developed a spatially explicit 
ABM of a water irrigation system in the Odra River Valley in Poland. In their model, 
farmers’ decisions to maintain the irrigation water canal depend on the relative 
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location of their land (up- or downstream), how they perceive their physical neigh-
bors, and the underlying social network. For a recent review on land-use from an 
agent-based modeling perspective, see Matthews et al.  (  2007  )  and Crooks  (  2010  ) . 
Becu et al.  (  2003  )  modeled the impact of upstream management in Thailand and 
explored several scenarios concerning land managers’ collective action given their 
characteristic and social interaction (Ziervogel et al.  2006  ) . 

 FEARLUS is an established modeling framework designed for the assessment of 
land use change scenarios (Polhill et al.  2008  ) . Built upon the Swarm modeling 
platform (Minar et al.  1996  ) , it supports a variety of agent-based modeling tech-
niques and extensions such as a biophysical component, land trade and the effects 
of climatic variability on land parcels. The FEARLUS simulation begins with the 
land parcels assigned to land managers. At each annual cycle, managers select the 
land use of their land parcels based on the available selection strategies. They decide 
to harvest based on the expected yield for a particular year, select land parcels for 
sale or to clear off defi cits, or decide to retire, allowing new land managers to enter the 
system. FEARLUS incorporates social and physical neighborhoods. Social neigh-
borhood and spatial distribution are both used by agents, representing farmers or 
land owners, to observe each other and decide what action to take. Further informa-
tion on FEARLUS and how the physical and the embedded social neighborhoods 
are implemented can be found online at   http://www.macaulay.ac.uk/fearlus    .  

    11.3.3.2   Neighborhood and Segregation Models 

 Edmonds  (  2006  )  extended the Schelling  (  1971  )  segregation model by adding an 
explicit social structure in the form of a friendship network to the agent neighbor-
hoods which are defi ned by their spatial location on a regular grid. The friendship 
network is assigned randomly at the start based on the preference parameters: 
number of friends, neighborhood bias, and bias for racial similarity. Edmonds thus 
changes the motivation for switching the neighborhood. Instead of intolerance based 
on race, as implemented by Schelling, fear as a result of personal insecurity makes 
people leave for another neighborhood. Fear is a function of security related inci-
dences and spreads through the friendship network. Communication of fear depends 
on the density of the social network on the other hand. At the same time friend-
ship networks are not necessarily in the geographical vicinity of an agent. An agent 
can thus be attracted away to where its friends live. As a result, social and physical 
space becomes disjointed. 

 In their model of neighborhood change, Bruch and Mare  (  2006  )  used a variety of 
choice functions to introduce heterogeneity in individuals’ preferences, thereby 
relaxing several of Schelling’s  (  1971  )  assumptions. They utilized real data from 
several US cities where the population was divided into multiple racial and ethnic 
types. They demonstrate that the choice of the utility function can signifi cantly 
affect the observed patterns of segregation and neighborhood change. Crooks  (  2010  )  
studied residential segregation using a spatially-explicit ABM using vector GIS. 
The model takes into account socioeconomic and geographical data where agents 
represent households with preferences for a neighborhood depending upon their 
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properties. Crook’s model is initialized with available aggregate census data of the 
wards in London (UK). Werth and Moss  (  2007  )  modeled migration under socio-
economic stress in the Sahel region in North Africa. They used an abstract spatial 
representation of the region, where household decisions to migrate to another location 
depend upon their existing social and kinship ties with other households in the 
neighborhood, in addition to their available food status. Rakowski et al.  (  2010  )  studied 
contact patterns among individuals in a transportation model in Poland.  

    11.3.3.3   Propagation Models 

 Spatial and social propinquity can be key determinants in the spread of infectious 
diseases depending upon their infectiousness and the required level of intimacy for 
transmission. For instance, sexual transmission of HIV or transmission by sharing 
injection needles may be driven by the social and physical proximity among poten-
tial sex or needle-sharing partners. Diseases like smallpox may be transmitted when 
individuals happen to be in the same location where an infected person is present. 
Spread of airborne infections with high infectivity such as infl uenza, depends upon 
the migratory or activity patterns in a given population. 

 EpiSims is a large-scale disease propagation ABM capable of simulating millions 
of agents based on real data (Eubank et al.  2004  ) . Locations in EpiSims represent a 
physical place, for example an offi ce or a school building, where individuals get into 
contact with each other provided that they are in the same location at the same time 
given their preferences and shared activities. During the simulation, a dynamic con-
tact network is developed by recording the amount of time each individual shares 
with each other person. The duration of contact between infected and susceptible 
persons determines the spatially-distributed spread of the infectious disease (Stroud 
et al.  2007  ) . Yang and Atkinson  (  2008  )  developed an ABM of the transmission of 
airborne infectious diseases using activity bundles, where individual contacts are 
driven by social activities or physical proximity or both. Huang et al.  (  2004  )  modeled 
the spread of the SARS epidemic by using a small-world social network whereas the 
individuals’ activity spaces were modeled upon a two-dimensional cellular automata. 
Dunham  (  2005  )  demonstrated an implementation of the spread of three viruses 
using a spatially-explicit agent-based epidemiological model developed in MASON. 
Huang et al.  (  2010  )  propose a four-layer architecture for network-based epidemic 
simulation comprised of individuals’ social interaction, passive connections between 
individuals and locations, use of abstract geographical mapping to refl ect the neigh-
borhood, and the use of demographic or geographic data.  

    11.3.3.4   Miscellaneous Models 

 In addition to the models presented above, there are many other examples of ABMs 
of social networks. In many of these models, the mechanisms generating the social 
networks have been empirically derived. This stands in stark contrast to modeling 
exercises where the authenticity of social network generating mechanisms is less of 
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a concern, such as in statistical mechanics. The purpose of many of these models is 
an explanatory one. Companion (sometimes also called participatory) modeling and 
role-playing games are certainly at the forefront of an explanatory modeling agenda. 
The primary objective of companion modeling is to understand complex environ-
ments through stakeholder participation, affording to validate model assumptions 
and to make informed policy recommendations (Barreteau et al.  2001,   2003  ) . 
Companion modeling stresses that no  a priori  hypotheses are made about the target 
system. Priority is thus assigned to evidence gathering during fi eldwork. Similarly, 
role-playing games incorporate a special function in the understanding and valida-
tion of ABMs. The idea is to consider role-playing games as “living” multi-agent 
systems in which players are the agents and the set of roles is the rule base. Through 
rule design in collaboration with the players an understanding of the complexity of 
the system to be modeled is developed. 

 It should become clear at this point, that integrating social networks in ABMs 
goes beyond mere measurement of social network metrics at the aggregate level, but 
includes a thorough study of the processes underlying network generation, i.e., the 
structural-dynamic consequences of the actual relationships in which people are 
involved as mentioned by Mitchell  (  1989  ) . Geller and Moss  (  2008  )  developed a 
model of power structures in Afghanistan. Barthélémy  (  2006  )  modeled water con-
sumption, where a household was represented as the smallest unit in the modeled 
community space. Alam and Meyer  (  2010  )  studied dynamic sexual networks based 
on a village in the Limpopo Valley case where neighborhood and kinship networks 
serve as  safety-nets  at times of socioeconomic stress for the households. 

 Pujol et al.  (  2005  )  have modeled the evolution of complex networks from local 
social exchange, simulating networks with similar characteristics as scale-free 
and small-world networks. They show that properties characterizing complex 
networks emerge from the local interactions of the agents, imperfect knowledge 
and sociologically plausible behavior. Jin et al.  (  2001  )  demonstrated how a small-
world friendship network may be evolved from simple probabilistic rules. The forest 
fi re model by Leskovec et al.  (  2005  )  is another example of a generative process 
that represents networks phenomenologically with heavy-tailed distributions and 
shrinking diameters. 

 So far we have only talked about extra-individual networks. But networks do not 
only exist between agents; they exist also as mappings of organization beyond social 
structure. “Structure exists not only as sets of ties between actors but as networks 
among cognitive and cultural entities and study of these entities by means of network 
analysis is just as important as study of interpersonal relations” (Tsvetovat  2005 , 
p. 111). The utilization of networks in agent-design and in particular in the agent 
reasoning processes hence becomes obvious. In this respect the concept of semantic 
networks offers particular usefulness, for it expresses, in the most general way, 
relations of meanings between concepts in terms of nodes and links. Semantic 
networks are thus often used for the representation of knowledge; knowledge that 
bears – represented as a semantic network – some form of content-related domain 
specifi city (DiMaggio  1997  ) . It is beyond the scope of this chapter to pursue this 
route any further. We would nevertheless like to make clear that we see great 
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 potential in the use of semantic networks in the modeling of socio-culturally 
grounded cognitive and action selection processes.    

    11.4   Analyzing Social Networks in Agent-Based 
Social Simulation 

 The choice of suitable measures for agent-based social networks depends upon our 
understanding of the phenomenon under study. Analyzing social networks in and 
generated by agent-based social simulation does not impose new requirements for 
social network analysis. Metrics such as: geodesic distance; average path length; 
network density; reachability; clustering; centrality and centralization and their 
meaning, continue to be useful in that they characterize network topologies and 
process-based complexity. However, most of the analysis will have to deal with 
dynamic social networks. Considering only  a priori  and ex post snapshots of networks 
is not helpful in identifying network measures for agent-based simulations. Applying 
graph-theoretic measures over a network snapshot may increase the risk of losing 
the context of a particular agent’s position in the network (Borgatti et al.  2006 ; 
Carley  2003 ; Edmonds and Chattoe  2005  ) . In complex systems, it is hard to anticipate 
how emerging patterns result from interactions at the micro-level. It could be thus 
misleading to apply measures on a single snapshot of the network. Carley’s dynamic 
network analysis introduces the meta-matrix, a scheme for coping with the problem 
of multiple relations and co-evolution of both agents (entities, vertices) and their 
dynamically changing edges (Carley  2003  ) . This approach is further supplemented 
by combining social network analysis with cognitive science and multiagent 
systems, the idea being that change in one network may affect change in another. 
Edmonds and Chattoe  (  2005  )  suggest a scheme that makes use of agent-based social 
simulation in order to fi nd better means for abstraction. 

 Again, networks in ABMs are dynamic in nature and ties may be added or 
removed between agents during a simulation run. The network evolves with 
changes in the agent population, i.e., the agents that participate in a given (social) 
network. Consequently, the time-series measures of the simulated social network 
changes as the network evolves. Therein the focus can lie on standard statistical 
metrics, such as skewness and kurtosis of the absolute relative differences of network 
measures, such as changes in the clustering coeffi cient over time. Since we deal 
with a complex system, we would expect these measures to be indicators for vola-
tile episodes in the time series (Moss and Edmonds  2005  ) . Of course, we would not 
expect the time-series to be normally distributed and exhibit heteroskedasticity. 
But in general, for dynamic networks, where the population of participating agents 
in a network changes over time, we should also look for the stability (or change) 
of network measures over one or multiple simulation runs. The choice of measures 
is therefore important when comparing networks of varying sizes within and/or 
across simulation runs. See McCulloch  (  2009  )  and Alam et al.  (  2009  )  for methods 
of detecting patterns in dynamic social networks. 
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 Networks sharing similar global characteristics can nevertheless differ in terms 
of their local structures. Identifying subgraph structures and their properties have 
been studied extensively in social network analysis, particularly with regard to 
triads as building blocks of a network (c.f. Wasserman and Faust  1994 ). Milo et al. 
 (  2002  )  introduced the concept of local structures as “motifs” that are statistically 
signifi cant in comparison to local structures in a random network. Hales and 
Arteconi  (  2008  )  provide a good example of applying motif analysis in an ABM of 
a peer-to-peer network. 

 Closely related to motif analysis are endeavors to identify communities in 
networks. Fortunato  (  2009  )  and Mucha et al.  (  2010  )  provide a good overview of 
community detection algorithms for static and longitudinal networks. Without going 
into the details, the problem is twofold: Firstly, from a socio-scientifi c point of view, 
the non-trivial issue of solving the boundary specifi cation problem needs to be 
solved for a given network. Second, the algorithm for dealing with boundary speci-
fi cation issues needs to be fast, since iterating over the whole network at each time 
step is computationally expensive. 

 Agent-based social simulations should be cross-validated (Moss and Edmonds 
 2005  ) . That is, the model output should be compared against the model’s target 
system data. This comparison can happen at the aggregated level (e.g., statistical 
signatures of time-series data) or it can happen at a qualitative level, informing on 
social mechanisms that are assumed to drive the social network. For example, as 
Watts  (  1999  )  reports, small-world structures are likely to be present in many real 
social networks. Geller and Moss  (  2008  )  report a small-world-like structure for 
Afghan power structures.  

    11.5   Conclusions 

 Social and physical networks are important with respect to modeling systems that 
require both socio-cultural as well as geographical information. However, spatial 
ABMs incorporating social networks are few. On the other hand, social spaces in the 
form of friendship, kinship and other socio-cultural networks are often modeled in 
ABMs without any explicit reference to physical spatial representation or constraints. 
Some of the examples cited in this chapter show how physical and social space can 
be coupled together for the purpose of understanding complex social systems. Social 
networks in ABMs may emerge as a result of agent interaction, which can be contex-
tualized or abstract. On the other hand, incorporating physical networks such as a 
neighborhood, road networks, etc. is important when understanding the dynamics of 
urban planning and growth, irrigation systems and road transport. We also discussed 
in this chapter issues related to data collection for social networks as well as the 
technical aspects of incorporating networks in ABMs.      
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  Abstract   Within this chapter we focus on the integration of Geographical Information 
System (GIS) and Agent-based modelling (ABM) and review a selection of toolkits 
which allow for such integration. Moreover, we identify current capabilities of mod-
elling within a GIS and methods of coupling and integrating GIS with agent-based 
models. We then introduce suggested guidelines for developing geospatial simula-
tions with ABM toolkits and offer practical guidelines for choosing a simulation/
modelling system before providing a review of a number of simulation/modelling 
systems that allow for the creation of geospatial agent based models along with the 
identifi cation of a number references for further information.      

    12.1   Introduction 

 The Agent-Based modelling (ABM) paradigm is developing into a powerful tool in 
many disciplines as seen in Crooks and Heppenstall ( 2012 )   , Johansson and Kretz 
 (  2012  )  and Harland and Heppenstall  (  2012  ) , but also in a other disciplines such as 
archaeology (Axtell et al.  2002  ) , economics (Tesfatsion and Judd  2006  ) , health 
(Epstein  2009  ) , geography (Batty  2005  )  and computational social science more 
generally (see Cioffi -Revilla  2010  for a discussion). Such models allow researchers 
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to explore how through the interaction of many individuals more emergent phenomena 
arise. Moreover, it allows for practitioners to build models of complex social 
phenomenon by simulating the interactions of the many actors in such systems. 
Thus gaining insights that will lead to greater understanding and, in some cases, 
better management of the behaviour of complex social systems. The intention of 
this chapter is to the outline how one can develop geospatial agent-based models 
(i.e. that model spatially explicit geographic phenomena – where the nature of the 
features and movement that is represented varies over the Earth’s surface). 
Essentially, geospatial models depend on the location of the features or phenomena 
being modelled, such that if one or more of those locations change, the results of the 
model change (Wegener  2000  ) . Geographical Information Systems (GIS) are a 
particularly useful medium for representing model input and output of a geospatial 
nature. However, GIS are not well suited to dynamic modelling (Goodchild  2005 ; 
Maguire  2005  )  as will be discussed in Sect.  12.2 . Consequently, Sect.  12.2.2  explores 
the opportunity of linking (through coupling or integration/embedding) a GIS with 
a simulation/modelling system purposely built for the task at hand (Sect.  12.3 ), and 
therefore better suited to supporting the requirements of ABM.  

    12.2   Modelling Within GIS: Current Capabilities 

 It can be diffi cult to comprehend how GIS technology, built essentially for handling 
maps and “map-related ideas”, can be adapted to the needs of dynamic simulation 
modelling; especially when it is not even perceived as an optimal platform for mod-
elling (Goodchild  2005  ) . Particular criticisms of GIS with respect to modelling is 
their ability to handle time (Langran  1992 ; Peuquet  2005 – see Sect.  12.2.1 ), the 
representation of continuous variation (Longley et al.  2005  ) , and most have only 
rudimentary modelling capabilities (Maguire  2005  ) . Nevertheless, there are several 
good reasons to justify why the use, or linkage of GIS with simulation/modelling 
systems (see Sect.  12.2.2 ), is an effective means of modelling when spatial and 
temporal analysis is necessary. 

 Current commercial and public domain GIS software systems all contain numerous 
tools for acquiring, pre-processing, and transforming data. Their use in modelling 
includes data management, format conversion, projection change, re-sampling, 
raster-vector conversion, etc. GIS also include excellent tools for visualisation/map-
ping, rendering, querying, and analysing model results, as well as assessing the 
accuracies and uncertainties associated with inputs and outputs. 

 Typically, all of the capabilities described above are accessible via end-user 
graphical and command line interfaces. However, these capabilities have recently 
become accessible through application programming interfaces (APIs), via soft-
ware libraries. The exposure of APIs was a signifi cant recent improvement in terms 
of GIS and spatial modelling, as external programmers now have access to the 
underlying software components upon which GIS software vendors base their end-
user versions of systems. This is perhaps the most pertinent enhancement, as many 
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of the techniques used in GIS analysis are potentially far more robust if they can be 
linked with an extensive toolkit of methods for simulation; an issue which is 
addressed at greater length later in Sect.  12.2.2 . GIS vendors have invited this situ-
ation as it allows GIS to be extended and customised for use in new application 
areas, thus expanding the market potential of their systems. 

 Alternatively, a model can be expressed as a sequence of GIS commands 
executed by a script (Maguire  2005  ) . Recently in GIS there has been a move to 
use industry-standard low-level programming languages (e.g. Java, C++, and 
Visual Basic), and scripting languages (e.g. Python, VBScript, and Jscript), 
rather than proprietary, home grown scripting languages (e.g. ESRI’s Arc Macro 
Language, AML, or Avenue). Interoperability standards such as the Microsoft.
Net framework facilitate this process by allowing compliant packages to be 
called from the same script. 

 In addition to scripts, graphical fl owcharts can be used to express sequences of 
operations that defi ne a model. Longley et al.  (  2005  )  note that one of the fi rst graphic 
platforms for conceptualising and implementing spatial models was probably the 
ERDAS IMAGINE software, which allows the user to build complex modelling 
sequences from primitive operations. ESRI is another GIS vendor that provides an 
environment that allows models to be authored and executed in a graphical environ-
ment: ModelBuilder within ArcGIS 9.x, which superseded Spatial Modeller within 
ArcView 3. 

 In principle, graphic-model building can be used for dynamic modelling via an 
iterative process, where the output of one time step becomes the input for the next. 
However, this method posses two dilemmas: (1) the GIS will not have been designed 
for an iterative process, requiring the user to re-enter the data at the beginning of each 
time step, and; (2) the time required to run a model could be considerable. The former 
of these problems can be overcome with scripting languages (e.g. Python in ArcGIS); 
both can potentially be overcome by integrating the GIS with a simulation/modelling 
system better equipped for the task at hand. Before exploring the possibilities of 
linking GIS and simulation/modelling systems (Sect.  12.2.2 ), the following section of 
this chapter evaluates the capability of GIS to handle space-time information, which 
computer simulations generate in volume, and has always been a limitation. 

    12.2.1   Representing Time and Change Within GIS 

 The subject of time within GIS has received a considerable amount of attention. 
Heywood et al.  (  2006  )  comments that ideally, GIS would be able to represent tem-
poral change using methods that explicitly represent spatial change, as well as dif-
ferent states through time. Furthermore, methods allowing direct manipulation and 
comparison of simulated or observational data in a temporal and spatial dimensions 
should be catered for. In reality, two main challenges for the integration of time 
within GIS exist: (1) continuous data over a period of time are rarely available for 
an entity or system of interests; (2) data models and structures able to record, store, 
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and visualise information about an object in different temporal states are still in 
their infancy (Heywood et al.  2006  ) . In the context of this chapter, the former chal-
lenge is less of a constraint since an agent-based computer simulation is capable of 
generating an abundance of data over a continuous period of time, while much prog-
ress has been made on the later issue. The following discussion outlines issues 
related to the representation of time and change, as well as approaches for incorpo-
rating space-time information within GIS. 

 The basic objective of any temporal database is to record change over time, 
where change can be thought of as an event or collection of events. An event might 
be a change in state of one or more locations, entities, or both. Changes that might 
affect an event can be distinguished in terms of their temporal pattern; Peuquet 
 (  2005  )  has suggested four types: (1) continuous – events occurring throughout some 
period of time; (2) majorative – events occurring most of the time; (3) sporadic – 
events occurring some of the time, and; (4) unique – events that only occur once. 
The distribution of events within these temporal patterns can also be very complex 
(e.g. chaotic, cyclic, or steady state), complicated further as change, to some extent, 
is always occurring at various rates as well (e.g. from sudden to gradual). Hence, 
duration and frequency are important descriptive characteristics within this taxonomy 
of temporal patterns. 

 There are three approaches for capturing space-time information within a GIS: 
(1) location-based; (2) time-based, and; (3) entity-based. The only method of viewing 
a data model within existing GIS, as a space-time representation, is as a temporal 
series of spatially-registered ‘snapshots’ (Peuquet  2005  ) . Invariably this approach 
employs a raster data model, although vector has also been used, with only a single 
information type stored (e.g. elevation, density, precipitation, etc.) for each cell at 
any one point in time. Information for the entire layer is stored for each time step, 
regardless of whether change has occurred since the previous step. There are several 
criticisms of this approach. Firstly, the data volume increases enormously, because 
redundant data is stored in consecutive snapshots. The state of a spatial entity can 
only be retrieved by querying cells of adjacent snapshots, because information is 
stored implicitly between each time step. Finally, the exact point when change has 
occurred cannot be determined. Langran  (  1992  )  has proposed a modifi cation of this 
approach. The temporal-raster (or grid) approach allows multiple values to be stored 
for each pixel. A new value, and the time at which change occurred for each pixel is 
stored, which can result in a variable number of records for each cell. Recording the 
time at which change has occurred allows for values to be sorted by time. The most 
recent value for each cell can therefore be retrieved, which represents the present 
state of the system. The obvious advantage to this approach is the reduction of 
redundant data stored for each cell. 

 Peuquet and Duan  (  1995  )  have proposed a time-based approach to storing 
space-time information within a GIS, where change is stored as a sequence of 
events through time. Time is stored in increasing order from an initial point, with 
the temporal interval correlating to successive events. An event is recorded at the 
time when the amount of accumulated change is considered signifi cant, or by 
another domain-specifi c rule. This type of representation has the advantage of 
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facilitating time-based queries, and the addition of a new event is straight forward 
as it can simply be added to the end of the timeline. Furthermore, in terms of mod-
elling an important capacity of any model is the ability to represent alternative 
versions of the same reality. The concept of representing multiple realities over 
time is called branching. Branching allows various model simulation runs to be 
compared, or simulation results to be compared to observed data. The time-based 
approach facilitates the branching of time in order to represent alternative or paral-
lel sequences of events resulting from specifi c scenarios, because it is strictly an 
ordinal timeline. 

 Finally, several entity-based space-time models have been proposed. 
Conceptually these models extend the topological vector approach (e.g. coverage 
model); tracking changes in the geometry of entities incrementally through time. 
The amendment vector model was the fi rst of this type, and extended frameworks 
have been proposed subsequently. Besides maintaining the integrity of entities 
and their changing topology, these approaches are able to represent asynchro-
nous changes to entity geometries. However, the space-time topology of these 
vectors becomes increasingly complex as amendments accumulate through time. 
In addition, aspatial entity attributes can change over time. To record aspatial 
changes, a separate relational database is often used. However, if change occurs 
at a different rate between the spatial and aspatial aspects of an entity, maintain-
ing the identity of individual entities becomes diffi cult, especially when entities 
split or merge. 

 Object-oriented data models have transformed the entity-based storage of space-
time information within GIS (Zeiler  1999  ) , and have become mainstream within 
commercial GIS (e.g. the geodatabase structure with ArcGIS). They have grown 
increasingly more sophisticated, catering for a powerful modelling environment. 
The object-oriented data model approach provides a cohesive representation that 
allows the identity of objects, as well as complex interrelationships to be maintained 
through time. Specifi cally, temporal and location behaviour can be assigned as an 
attribute of features rather than the space itself, which has the distinct advantage of 
allowing objects to be updated asynchronously. Despite the advantages of the 
object-oriented data model, Reitsma and Albrecht  (  2006  )  observe that, to date, no 
data model or data structure allows the representation of processes (i.e. recording a 
process that has changed the state of an object within a model). 1  Consequently, 
queries about where a process is occurring at an instant of time cannot be expressed 
with these current approaches. Notwithstanding, object-oriented data models are 
the canonical approach to the storage of space-time data generated by agent-based 
models, and their visualisation within GIS, given their complementarities. 
Nevertheless, the visualisation of agent-based models within GIS is still limited to 
a temporal series of snapshots.  

   1   However this is an active research topic and holds much promise with respect to creating geospa-
tial agent-based models (see Torrens  2009  for a more detailed discussion).  
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    12.2.2   Linkage – Coupling Versus Integration/Embedding 

 Models implemented as direct extensions of an underlying GIS, through either 
graphic model-building or scripts, generally make two assumptions: (1) all opera-
tions required by the model are available in the GIS (or in another system called 
by the model); and, (2) the GIS provides suffi cient performance to handle the 
execution of the model (Longley et al.  2005  ) . In reality, a GIS will often fail to 
provide adequate performance, especially with very large datasets and a large 
number of iterations, because it has not been designed as a simulation/modelling 
engine. This one-size-fi ts-all approach inherent in GIS provides limited applica-
bility, and attention has subsequently been devoted to linking, either through cou-
pling or integration/embedding, GIS with simulation/modelling systems more 
directly suited to users needs. General classifi cations have been produced by 
numerous authors (e.g. Maguire  1995 ; Bernard and Krüger  2000 ; Westervelt 
 2002 ; Goodchild  2005 ; Longley et al.  2005 ; Maguire  2005  ) . Several of their defi -
nitions now overlap as technological advance has blurred the boundaries of their 
classifi cations, whist some defi nitions are convoluted because terminology has 
been used interchangeably or sometimes inappropriately (e.g. coupling, linkage 
or integration). Nevertheless, categorisation of these techniques is possible, and a 
brief description of each is developed below, in an attempt to clarify the situation. 
This is followed by a critique of these different approaches, with a view to identi-
fying an appropriate method for developing geospatial agent-based models. 

 In situations where GIS and simulation/modelling systems already exist (e.g. as 
commercial products), or the cost of rebuilding the functionality of one system into 
another is too great, the systems can be coupled together (Maguire  2005  ) . Coupling 
can therefore be broadly defi ned as the linkage of two stand-alone systems by data 
transfer. Three types of coupling are distinguishable, although these are only a sub-
set of the much larger fi elds of enterprise application integration (Linthicum  2000  )  
and software interoperability (Sondheim et al.  2005  ) . The attributes of each approach 
cascaded along the coupling continuum, from loose to tight/close (Table  12.1  sum-
maries the competing objectives of the different coupling approaches; greyed boxes 
are considered more desirable characteristics – adapted from Westervelt  2002  ) : 

    1.     Loose Coupling.  A loose connection usually involves the asynchronous opera-
tion of functions within each system, with data exchanged between systems in 
the form of fi les. For example, the GIS might be used to prepare inputs, which 
are then passed to the simulation/modelling system, where after execution the 
results of the model are returned to the GIS for display and analysis. This 
approach requires the GIS and simulation/modelling system to understand the 
same data format; if no common format is available an additional piece of soft-
ware will be required to convert formats in both directions. Occasionally, specifi c 
new programmes must be developed to perform format modifi cations;  

    2.     Moderate Coupling.  Essentially this category encapsulates techniques between 
loose and tight/close coupling. For example, Westervelt  (  2002  )  advocates 
remote procedure calls and shared database access links between the GIS and 
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simulation/modelling system, allowing indirect communication between the 
systems. Inevitably, this reduces the execution speed of the integrated system, 
and decreases the ability to simultaneously execute components belonging to 
the different software; and,  

    3.     Tight or Close Coupling.  This type of linkage is characterised by the simulta-
neous operation of systems allowing direct inter-system communication during 
the programme execution. For example, standards such as Microsoft’s COM 
and .NET allow a single script to invoke commands from both systems (Ungerer 
and Goodchild  2002  ) . A variant of this approach allows inter-system communication 
by different processes that may be run on one of more networked computers 
(i.e. distributed processing).     

 Coupling has often been the preferred approach for linking GIS and simulation/
modelling systems. However, this has tended to result in very specialised and isolated 
solutions, which have prevented the standardisation of general and generic linkage. 
An alternative to coupling is to embed or to integrate the required functionality of 
either the GIS or simulation/modelling system within the dominant system using its 
underlying programming language (Maguire  2005  ) . The fi nal system is either referred 
to as GIS-centric or modelling-centric depending on which system is dominant. In 
both instances, the GIS tools or modelling capabilities can be executed by calling 
functions from the dominant system, usually through a graphical user interface (GUI). 
Compared to coupling, an embedded or integrated system will appear seamless to a 
user (Maguire  1995  ) . However, in the past integration has been based on existing 
closed and monolithic GIS and simulation systems, which poses a risk of designing 
systems that are also closed, monolithic, and therefore costly (Fedra  1996  ) . 

   Table    12.1    Comparison of coupling approaches (Adapted from Westervelt  2002  )    

 Objective and explanation  Loose  Moderate  Close/tight 

  Integration Speed:  The programmer time involved in 
linking the programmes 

 Fast  Medium  Slow 

  Programmer Expertise:  Required level of software 
development expertise 

 Low  High  Medium 

  Multiple Authorship Avoidance:  In some instances 
it might be necessary for the programmer to 
modify the original software product. Any 
alteration reduces the ownership responsibility. 
Major alterations could totally sever this link, 
resulting in limited or no support by the original 
author(s) 

 High  Medium  Low 

  Execution Speed:  How rapidly does the integrated 
software execute? 

 Slow  Medium  Fast 

  Simultaneous Execution:  Can components of the 
system run simultaneously and communicate with 
one another? Can the components operate on 
separate platforms? 

 Low  Low  High 

  Debugging:  How diffi cult is it to locate execution 
errors in the linked system? 

 Easy  Moderate  Hard 
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 Interest in modelling-centric systems has increased considerably over recent 
years, predominately due to the development of simulation/modelling toolkits with 
scripting capabilities that do not require advanced computer programming skills 
(Gilbert and Bankes  2002  ) . Often the simulation/modelling toolkit can access GIS 
functions, such as data management and visualisation capabilities, from a GIS soft-
ware library. For example, the RepastJ (see Sect.  12.3.3.3 ) toolkit exploits functions 
from GeoTools (a Java GIS software library) for importing and exporting data, Java 
Topology Suite (JTS) for data manipulation, and OpenMap for visualisation. The 
toolkit itself maintains the agents and environment (i.e. their attributes), using iden-
tity relationships for communication between the different systems. Functions avail-
able from GIS software libraries reduce the development time of a model, and are 
likely to be more effi cient because they have been developed over many years with 
attention to effi ciency. Additionally, the use of standard GIS tools for spatial analy-
sis improves functional transparency of a model, as it makes use of well known and 
understood algorithms. Alternatively, spatial data management and analysis func-
tions can be developed within the modelling toolkit, although this strategy imposes 
huge costs, in terms of time to programme the model, and time required to fre-
quently update spatial data or use spatial analysis functions within the model. 

 Conversely, the GIS-centric approach is an attractive alternative; not least because 
the large user-base of some GIS expands the potential user-base for the fi nal model. 
Analogous to the modelling-centric approach, GIS-centric integration can be car-
ried out using software libraries of simulation/modelling functions accessed through 
the GIS interface. There are many examples of simulation/modelling systems inte-
grated within commercial GIS, including: the Consequences Assessment Tool Set 
 (  2011 , CATS) system, designed for emergency response planning; the Hazard 
Prediction and Assessment Capability  (  2004 , HPAC) system, for predicting the 
effect of hazardous material releases into the atmosphere; the NatureServe Vista 
 (  2011  )  system, for land use and conservation planners. 

 Brown et al.  (  2005  )  propose an alternative approach which straddles both the 
GIS-centric and modelling-centric frameworks. Rather than providing functionality 
within one system, the middleware-based approach manages connections between 
systems, allowing a model to make use of the functionality available within the GIS 
or the simulation/modelling toolkit most appropriate for a given task. Thus, the 
middleware approach allows the simulation/modelling toolkit to handle the identity 
and relationship of, and between agents and their environment. Conversely, the GIS 
would manage spatial features, as well as temporal and topological relationships of 
the model. Essentially, the simulation/modelling toolkit handles what it is designed 
for (i.e. implementing the model), while the GIS can be used to run the model, and 
visualise the output. An example of this approach is the ABM extension within 
ArcGIS (referred to as Agent Analyst), which allows users to create, edit, and run 
RepastPy models from within ArcGIS (Redlands Institute  2010  ) . However, it is the 
opinion of the authors that only a dichotomy of integration classifi cations exists. A 
GIS is either integrated into a simulation/modelling toolkit, or vice versa. The defi -
nition of the middleware approach is essentially tight coupling (see above).   
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    12.3   Developing Geospatial Simulations with Agent-Based 
Modelling Toolkits 

 The process of building an agent-based model begins with a conceptual model, 
where basic questions or goals, elements of the system (e.g. agent attributes, rules 
of agent interaction and behaviour, the model environment, etc.), and the measur-
able outcomes of interest are identifi ed (Brown  2006  ) . It is important to ‘ground’ a 
model during the conceptualisation process (i.e. establish whether simplifi cations 
made during the design process do not seriously detract from the credibility and 
likelihood that the model will provide important insights; Carley  1996  ) . It is usual 
for a modeller to set forth a claim as to why the proposed model is reasonable. This 
claim will be enhanced if the applicability of the model is not over stated, and by 
defi ning the models limitations and scope. Grounding can be reinforced by demon-
strating that other researchers have made similar or identical assumptions in their 
models, and by justifying how a proposed model will be of benefi t in relation to 
pre-existing models. 

 Conceptualising the fundamental aspects of an agent-based model (i.e. one or 
more agents interacting within an environment), juxtaposed with the distinction 
between explanatory vs. predictive purposes of a model suggests a fourfold typol-
ogy of agent and environment types (Table  12.2 ). Couclelis  (  2001  )  classifi es agents 
and their environment as either being designed (i.e. explanatory) or analysed (i.e. 
predictive – empirically grounded). If designed, agents are endowed with attributes 
and behaviours that represent (often simplifi ed) conditions for testing specifi c 
hypotheses about general cases. Analysed agents are intended to accurately mimic 
real-world entities, based on empirical data or ad hoc values that are realistic substi-
tutes for observed processes. Similarly, the environment that agents are situated 
within can be designed (i.e. provided with characteristics that are simplifi ed to focus 
on specifi c agent attributes), or analysed (i.e. represent a real-world location).  

 The boundary between designed and analyzed is not always distinct, especially 
when ad hoc data are employed. Subtle but profound differences, both practical and 
conceptual, exist between the design or analysis approach of developing agents and 
their environment. A major difference in practical terms is that designing something 
provides direct (partial or total) control over the outcome, whereas there can only be 
hope that something has been analyzed correctly (Couclelis  2001  ) . Table  12.2  pro-
vides further details to consider when developing agents and their environment; 
including a brief description of the model, the purpose and intent of the model (see 
Parker et al.  2001  ) , verifi cation and validation strategies used to assess the model 
outputs (see Parker et al.  2001 ; Crooks et al.  2008  ) , and appropriate software for the 
development of a model (see Sect.  12.3.2 ). 

 Once a model has been conceptualised, it must be formalised into a specifi cation 
which can be developed into a computer programme (Grimm and Railsback  2012  
and Abdou et al.  2012  offer constructive advice on this); if the model is required to 
be run as a computer simulation. The process of formalisation involves being pre-
cise about what an identifi ed theory relating to a phenomena of interest means, 
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making sure that it is complete and coherent. There are several reasons why computer 
simulation is more appropriate for formalising social science theories than mathe-
matics, which has often been used in the social sciences (Gilbert and Troitzsch 
 2005  ) . First, programming languages are more expressive and less abstract than 
most mathematical techniques. Second, a computer simulation can deal more easily 
with parallel process and processes without well defi ned order or actions than systems 
of mathematical equations. Third, a computer model can include heterogeneous 
agents (e.g. pedestrians with varying degrees of knowledge about a building layout), 
while this is usually relatively diffi cult using mathematics. Finally, computer pro-
grammes are (or can easily be made to be) modular, so that major changes can be 
made to one part of the model without requiring large changes in other parts of the 
programme, an ability which mathematical systems often lack. 

   Table 12.2    Descriptio   n, purpose/intent, verifi cation and validation strategies, and appropriate 
development tools for agent-based models incorporating designed or analysed agents/environ-
ments (Adapted from Berger and Parker  2001  )    

 Agent 

 Designed  Analysed 

 E
nv

ir
on

m
en

t 

 D
es

ig
ne

d 

 Model description  Model description 
 – Abstract  – Experimental 
 Purpose/intent  Purpose/intent 
 – Discovery of new relationships  –  Role-playing games among 

stakeholders 
 – Existence proof  – Laboratory experiments 
 Verifi cation and validation strategy  Verifi cation and validation strategy 
 – Theoretical comparison  – Repetitions 
 – Replication  – Adequacy of design 
 Appropriate development tools  Appropriate development tools 
 – Easy to implement simulation/

modelling system 
 – Flexible simulation/modelling systems 

with well developed user interfaces 

 Example model  Example model 
 – Filatova et al.  (  2009  )   – Mooij et al.  (  2002  )  

 A
na

ly
se

d 

 Model description  Model description 
 – Historical  – Empirical 
 Purpose/intent  Purpose/intent 
 – Explanation  – Explanation 

 – Projection 
 – Scenario analysis 

 Verifi cation and validation strategy  Verifi cation and validation strategy 
 – Qualitative: goodness of fi t  – Quantitative: goodness of fi t 
 Appropriate development tools  Appropriate development tools 
 – Advanced simulation/modelling 

systems linked with GIS 
 – Low-level programming languages 

 Example model  Example model 
 – Mathevet et al.  (  2003  )   – Jackson et al.  (  2008  )  
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 The object-oriented paradigm provides a very suitable medium for the development 
of agent-based models. In particular, it provides the aforementioned modularity useful 
for developing a computer simulation. It is not the intention of this chapter to out-
line the fundamental object-oriented concepts, this has been achieved by numerous 
others (refer to Booch  (  1994  )  for a seminal discussion and Armstrong  (  2006  )  for a 
useful evaluation and clarifi cation of key object-oriented notions). 

 At the time of writing, there are many simulation/modelling systems available 
to assist the development stage of ABM. The majority of these simulation/model-
ling systems are programmed, and/or require the user to develop their model in an 
object-oriented language. The subsequent section of this chapter identifi es some 
of the simulation/modelling systems available for ABM, highlighting key ques-
tions that should be considered for a user to determine an appropriate system for 
their needs. 

    12.3.1   Types of Simulation/Modelling Systems 
for Agent-Based Modelling 

 In general, two types of simulation/modelling systems are available to develop 
agent-based models: toolkits or software. 2  Based on this dichotomy, toolkits are 
simulation/modelling systems that provide a conceptual framework for organising 
and designing agent-based models. They provide appropriate libraries 3  of software 
functionality that include pre-defi ned routines/functions specifi cally designed for 
ABM. However, the object-oriented paradigm allows the integration of additional 
functionality from libraries not provided by the simulation/modelling toolkit, 
extending the capabilities of these toolkits. Of particular interest to this chapter is 
the integration of functionality from GIS software libraries (e.g. OpenMap, 
GeoTools, ESRI’s ArcGIS, etc.), which provide ABM toolkits with greater data 
management and spatial analytical capabilities required for geospatial modelling 
(see Sect.  12.2 ). 

 The development of agent-based models can be greatly facilitated by the utilisation 
of simulation/modelling toolkits. They provide reliable templates for the design, 
implementation and visualisation of agent-based models, allowing modellers to focus 
on research (i.e. building models), rather than building fundamental tools necessary to 
run a computer simulation (see Tobias and Hofmann  2004 ; Railsback et al.  2006  ) . In 
particular, the use of toolkits can reduce the burden modellers face programming parts 

   2   An agent-based model could be programmed completely from scratch using a low-level program-
ming language if a modeller has suffi cient programming knowledge and experience; see below for 
disadvantages of this approach.  
   3   A collection of programming classes grouped together, termed packages (i.e. classes with similar 
purpose).  
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of a simulation that are not content-specifi c (e.g. GUI, data import-export, visualisation/
display of the model). It also increases the reliability and effi ciency of the model, 
because complex parts have been created and optimised by professional developers, 
as standardised simulation/modelling functions. Unsurprisingly, there are limitations 
of using simulation/modelling systems to develop agent-based models, for example: 
a substantial amount of effort is required to understand how to design and implement 
a model in some toolkits; the programming code of demonstration models or models 
produced by other researchers can be diffi cult to understand or apply to another purpose; 
a modeller will have to learn or already have an understanding of the programming 
language required to use the toolkit; and fi nally the desired/required functionality may 
not be present, although additional tools might be available from the user community 
or from other software libraries. Benenson et al.  (  2005  )  also note that toolkit users 
are accompanied by the fear of discovering that a particular function cannot be 
used, will confl ict, or is incompatible with another part of the model late in the devel-
opment process. 

 Probably the earliest and most prominent toolkit was SWARM, although many 
other toolkits now exist. At the time of writing there are more than 100 toolkits 
available for ABM (see AgentLink  2007 ; SwarmWiki  2010 ; Nikolai and Madey 
 2009 ; Tesfatsion  2010 ; Wikipedia  2010  for comprehensive listings). However, vari-
ation between toolkits can be considerable. For example, their purpose (some tool-
kits have different design objectives e.g. Artifi cial Intelligence (AI) rather than 
social science focus, or network opposed to raster or vector model environments), 
level of development (e.g. some models are no longer supported or have ceased 
development), and modelling capabilities (e.g. the number of agents that can be 
modelled, degree of interaction between agents) can vary. A review of all toolkits 
currently available is beyond the scope of this chapter. However, we identify a selec-
tion of noteworthy simulation/modelling toolkits (e.g. Swarm, MASON, Repast, 
AnyLogic), highlighting their purpose and capabilities, as well as resources providing 
further information. 

 In addition to toolkits, software is available for developing agent-based models, 
which can simplify the implementation process. For example, simulation/modelling 
software often negates the need to develop an agent-based model via a low-level a 
programming language (e.g. Java, C++, Visual Basic, etc.). In particular, software 
for ABM is useful for the rapid development of basic or prototype models. However, 
modellers using software are restricted to the design framework advocated by the 
software. For instance, some ABM software will only have limited environments 
(e.g. raster only) in which to model, or agent neighbourhoods might be restricted in 
size (e.g. von Neumann or Moore). Furthermore, a modeller will be constrained to 
the functionality provided by the software (unlike ABM toolkits modellers will be 
unable to extend or integrate additional tools), especially if the toolkit is written in 
its own programming language (e.g. NetLogo). Section  12.3.3  identifi es a selection 
of noteworthy software for the development of agent-based models; StarLogo, its 
derivative NetLogo, and AgentSheets.  
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    12.3.2   Guidelines for Choosing a Simulation/Modelling System 

 Ideally, a modeller would have comprehensive practical experience in a range of 
modelling/simulation systems before choosing which system to use for a modelling 
endeavour. Unfortunately, this is not usually feasible. For this reason several authors 
(Najlis et al.  2001 ; Gilbert and Bankes  2002 ; Serenko and Detlor  2002 ; Tobias and 
Hofmann  2004 ; Dugdale  2004 ; Rixon et al.  2005 ; Robertson  2005 ; Andrade et al. 
 2008 ; Berryman  2008 ; Liebert et al.  2008 ; Nikolai and Madey  2009  )  have gained 
practical experience and/or have surveyed several systems, identifying key criteria 
that should be considered before making a decision. General criteria include, but are 
not limited to: ease of developing the model/using the system; size of the commu-
nity using the system; availability of help or support (most probably from the user 
community); size of the community familiar with the programming language in 
which the system is implemented (if a programming language is necessary to imple-
ment the model); is the system still maintained and/or updated; availability of dem-
onstration or template models; technical and how-to documentation, etc. Criteria 
relating specifi cally to a systems modelling functionality include: number of agents 
that can be modelled; degree of interaction between agents; ability to represent 
multiple organisational/hierarchical levels of agents; variety of model environments 
available (network, raster, and vector); possible topological relationship between 
agents; management of spatial relationships between agents, and agents with their 
environment; mechanisms for scheduling and sequencing events, etc. These criteria 
will be weighted differently depending on a modeller’s personal preferences and 
abilities (e.g. the specifi cation of the model to be developed, programming experience/
knowledge, etc.). 

 Another important distinction separating simulation/modelling systems is there 
licensing policy; open source, shareware/freeware, or proprietary. Open source 
simulation/modelling systems constitute toolkits or software whose source code is 
published and made available to the public, enabling anyone to copy, modify and 
redistribute the system without paying royalties or fees. A key advantage of open 
source simulation/modelling systems relates to the transparency of their inner work-
ings. The user can explore the source code, permitting the modifi cation, extension 
and correction of the system if necessary. This is particularly useful for verifying a 
model (see Crooks et al.  2008  ) . The predominant open source simulation/modelling 
systems are toolkits (e.g. MASON, Repast, Swarm, etc.). The distinction between 
an open source simulation/modelling system and a shareware/freeware system is 
subtle. There is no one accepted defi nition of the term shareware/freeware, but the 
expression is commonly used to describe a system that can be redistributed but not 
modifi ed, primarily because the source code is unavailable. Consequently, share-
ware/freeware systems (e.g. StarLogo, NetLogo, etc.) do not have the same fl exibility, 
extendibility or potential for verifi cation (in relation to access to their source code), 
as open source systems. Similarly, shareware/freeware systems tend to be toolkits, 
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rather than software. 4  Finally, proprietary simulation/modelling systems are 
available for developing agent-based models. Proprietary systems are mainly soft-
ware, developed by an organisation who exercises control over its distribution and 
use; most require a licence at a fi nancial cost to the user. These systems have the 
advantage of being professionally designed and built for a specifi c use, and are often 
relatively simple to use. However, they often lack the community support found 
with open source or shareware/freeware systems. Moreover, since access to their 
source code is prohibited, a model developed with proprietary software is essen-
tially black box. A modeller will therefore, to some extent, be left unsure about the 
inner validity of a model constructed with a proprietary system. This situation is 
compounded when the output of a model is emergent or unexpected. 

 Striking a balance between the aforementioned criteria is diffi cult. Unfortunately, 
while identifying a suitable system for the development of an agent-based model, 
too much time can often be expended trying to fi nd this balance. This balance can 
be perceived as a trade off between the diffi culty of developing a model (e.g. in 
terms of time required to programme the model, understand how to develop a model 
with a specifi c system, or acquiring experience and knowledge of a programming 
language if required, etc.), versus the modelling power provided by the simulation/
modelling system (e.g. modelling capabilities and functionality, Fig.  12.1 ). The key 
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  Fig. 12.1    Balance between power versus diffi culty of developing a model with a simulation/
modelling system       

   4   Other shareware/freeware systems used for the creation of spatial agent-based models include 
OBEUS (Benenson et al.  2006  )  and CORMAS (Bousquet et al.  1998  ) . These systems are not 
reviewed in this chapter for space requirements.  
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is striking a ‘personal’ balance between these criteria. For example, those more 
accustomed to programming may prefer the functionality and fl exibility of a simulation/
modelling toolkit. However, modellers that only wish to develop a basic or proto-
type model quickly and easily, possibly with little or no programming skills may 
prefer to use simulation/modelling software (see Railsback et al.  2006  ) .   

    12.3.3   Simulation/Modelling Systems for Agent-Based Modelling 

 This section provides key criteria pertaining to a selection of simulation/modelling 
systems available for the development of agent-based models (the rationale for each 
criterion was described in Sect.  12.3.2 ). Although there are many systems available for 
developing agent-based models, this chapter reviews seven, separated into three catego-
ries of licensing policy (1) open source (Swarm, MASON and Repast); (2) shareware/
freeware (StarLogo and NetLogo); and (3) proprietary systems (AgentSheets and 
AnyLogic). These systems were chosen because they fulfi lled the (majority of the) 
following criteria, they are: maintained and still being developed; widely used and sup-
ported by a strong user community; accompanied by a variety of demonstration models 
and in some instances the model’s programming script or source code is available; and 
fi nally they are capable of developing spatially explicit models, possibly via the inte-
gration of GIS functionality. Tables  12.3 – 12.5  tabularise information of each system 
for comparison purposes; categorised by their licensing policy (adapted from Najlis 
et al.  2001  and Parker  2001  ) . The reminder of this section provides further information 
about each system, identifying examples of geospatial models that have been devel-
oped with the system. A caveat must be noted at this point, the information provided 
within this section is accurate at the time of publication. However, the systems reviewed 
are constantly being updated, thus modellers are advised to check each systems website 
to obtain up to date information.  

    12.3.3.1   Swarm 

 Swarm (Table  12.3 ) is an open source simulation/modelling system designed spe-
cifi cally for the development of multi-agent simulations of complex adaptive sys-
tems (Swarm  2010  ) ; although agent-based models can easily be develop using 
Swarm as well. Inspired by artifi cial life, Swarm was designed to study biological 
systems; attempting to infer mechanisms observable in biological phenomena 
(Minar et al.  1996  ) . In addition to modelling biological systems (e.g. Railsback and 
Harvey  2002  ) , Swarm has been used to develop models for anthropological, com-
puter science, ecological, economic, geographical, and political science purposes. 
Useful examples of spatially explicit models include: the simulation of pedestrians 
in the urban centres (Schelhorn et al.  1999  and Haklay et al.  2001  ) ; and the exami-
nation of crowd congestion at London’s Notting Hill carnival (Batty et al.  2003  ) . 
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Najlis et al.  (  2001  )  identify the steep learning curve of Swarm as a signifi cant factor 
to consider before choosing this system to develop an agent-based model; although 
this should be less of a problem for a modeller with strong programming skills.  

    12.3.3.2   MASON 

 MASON (Multi Agent Simulation Of Neighbourhood – Table  12.3 ) is developed by 
the Evolutionary Computation Laboratory (ECLab) and the Centre for Social 
Complexity at George Mason University (see Luke et al.  2005  ) . Currently MASON 
provides much of the same functionality as Repast, for example, dynamically charting 

   Table 12.4    Comparison of shareware/freeware simulation/modelling systems (Adapted from 
Najlis et al.  2001  and Parker  2001  )    

 Shareware/freeware simulation/modelling systems 

 System name  StarLogo  NetLogo 

  Developers   Media Laboratory, 
Massachusetts Institute of 
Technology, USA 

 Centre for Connected Learning 
and Computer-Based 
Modelling, Northwestern 
University, USA 

  Date of inception   Early 1990s, Java based 
version 2000 

 1999 

  Website     http://education.mit.edu/
starlogo/     

   http://ccl.northwestern.edu/
netlogo     

  E-mail list     http://education.mit.edu/
pipermail/starlogo-users     

 None 

  Implementation language   Proprietary scripting  Proprietary scripting 
  Operating system   Windows, UNIX, Linux, Mac 

OSX 
 Windows, UNIX, Linux, Mac 

OSX 
  Required programming 

experience  
 Basic  Basic 

  Integrated GIS functionality   None  Yes 
  Integrated charting/graphing/

statistics  
 Yes  Yes 

  Availability of demonstration 
models  

 Yes  Yes 

  Source code of demonstration 
models  

 Yes  Yes 

  Tutorials/how-to 
Documentation  

 Yes  Yes 

  Additional information   OpenStarLogo website: 
  http://education.mit.edu/
openstarlogo/     

   http://groups.yahoo.com/
group/netlogo-users     

   http://ccl.northwestern.edu/
netlogo/docs/gis.html     

   http://backspaces.net/wiki/
NetLogo_Bag_of_Tricks     
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(e.g. histograms, line graphs, etc.) and model output during a simulation. A recent 
addition to MASON is GeoMASON  (  2010  )  which allows GIS vector data to be 
imported/exported. In addition MASON also supports the use of raster data in the 
creation of geospatial agent-based models (e.g. Kennedy et al.  2010  )  as shown in 
Fig.  12.2 .  

 MASON has a growing set of technical documents and well commented Javadocs 
and a user group which is actively supports its e-mail list. MASONs how-to docu-
mentation, demonstration models (e.g. the seminal heat bugs example, network 
models, etc.), and several publications detailing the implementation and/or applica-
tion of MASON are available for a prospective modeller to evaluate the system 
further (MASON  2010  ) . Examples of spatially explicit models utilizing MASONs 
GIS functionally include exploring confl ict between herdsmen and farmers in East 
Africa (Kennedy et al.  2010  ) , pastoralists in Inner Asia (Cioffi -Revilla et al.  2010  ) , 
residential dynamics in Arlington County, Virginia (Hailegiorgis  2010  )  and under-
standing the Afghan drug industry (Łatek et al.  2010  ) .  

    12.3.3.3   Repast 

 Repast (Recursive Porous Agent Simulation Toolkit – Table  12.3 ) was originally 
developed at the University of Chicago, and is currently maintained by Argonne 

   Table 12.5    Comparison of proprietary simulation/modelling systems (Adapted from Najlis et al. 
 2001  and Parker  2001  )    

 Proprietary simulation/modelling systems 

 AgentSheets  AnyLogic 

  Developers   AgentSheets Inc., USA  XJ Technologies, Russia 
  Date of inception   1991  Unknown 
  Website     http://www.agentsheets.

com     
   http://www.xjtek.com     

  E-mail list   None  None 
  Implementation language   Proprietary scripting  Proprietary scripting 
  Operating system   Windows, UNIX, Linux, 

Mac OSX 
 Windows, UNIX, Linux, 

Mac OSX 
  Required programming experience   None – Basic  Moderate 
  Integrated GIS functionality   None  None 
  Integrated charting/graphing/

statistics  
 Yes  Yes 

  Availability of demonstration 
models  

 Yes   http://repast.
sourceforge.net/
examples/index.html     

 Yes   http://repast.sourceforge.
net/examples/index.html     

  Source code of demonstration 
models  

 N/A  N/A 

  Tutorials/how-to documentation   Yes  Yes 
  Additional information   Carvalho  2000  and 

Repenning et al.  2000  
   http://www.xjtek.com/

support/forums/general     
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National Laboratory and managed by the Repast Organisation for Architecture and 
Development (ROAD). Earlier incarnations of Repast catered for the implementa-
tion of models in three programming languages: Python (RepastPy); Java (RepastJ 
and Repast Simphony); and Microsoft.Net (Repast.Net). RepastPy allows basic 
models to be developed by modellers with limited programming experience via a 
‘point-and-click’ GUI (Collier and North  2005  ) . RepastPy models can subsequently 
be exported/converted into Java for further development in RepastJ. Repast.Net and 
RepastJ allow for more advanced models to be developed (Vos  2005  ) , because more 
complex functionality can be programmed into a model. Agent Analyst is an ABM 
extension that allows users to create, edit, and run Repast models from within 
ArcGIS (Redlands Institute  2010  ) . For further information of earlier versions of 
Repast, readers are referred to Crooks  (  2007  ) . Repast has a relatively large user 
group and an actively supported e-mail list, as well as extensive how-to documenta-
tion and demonstration models available from the system website. 

 Whilst still being maintained RepastJ, Repast.Net and RepastPy have now 
reached maturity and are no longer being developed. They have been superseded by 
Repast Simphony (RepastS), which provides all the core functionality of RepastJ or 
Repast.Net, although limited to implementation in Java. For a comparison of 
RepastS and previous versions readers are referred to North and Macal  (  2009  ) . 
RepastS was initially released in late 2006 and now provides the same GIS function-
ality of previous versions. The main improvements with RepastS over Repast 3.0 is 
a new optional GUI point-and-click environment for model development that gener-
ates Java classes, however models can still be coded manually. Secondly a improved 
runtime GUI, the GUI can now be used to build displays (both in 2 and 3D) or 
charts, output data, interrogate agents, and interface with other programs (like R for 
statistics) via a point-and-click interface at run time. This means that these tasks are 

  Fig. 12.2    Examples of raster and vector agent-based models in MASON. ( a ) Agents are  red  points 
which move around the footpaths ( Blue Lines ). ( b ) A rainfall model where agents are  blue  and fl ow 
down the Terrain (Built from a Digital Elevation Model)       
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done more quickly after the model has been built and compiled, and do not feature 
in the underlying code at all, unlike previous Repast implementations. 

 The Repast development team have provided a series of articles regarding 
RepastS. The architecture and core functionality are introduced by North et al. 
 (  2005a  ) , and the development environment is discussed by Howe et al.  (  2006  ) . The 
storage, display and behaviour/interaction of agents, as well as features for data 
analysis (i.e. via the integration of the R statistics package) and presentation of 
models within Repast S are outlined by North et al.  (  2005b  ) . Tatara et al.  (  2006  )  
provide a detailed discussion outlining how-to develop a “simple wolf-sheep preda-
tion” model; illustrating RepastS modelling capabilities. In relation to the integra-
tion of GIS functionality the reader is referred to the tutorials by Malleson,  (  2008  )  
which demonstrates how to create a virtual city via the importation of shapefi les, 
create agents and then move the agents around a road network (this tutorial was 
used for the creation of Fig.  12.3a ). Furthermore, within RepastS it is possible to 
embed spatially explicit agent-based models directly into a 3D GIS display. For this 
RepastS provides methods to directly visualise agent-based models to NASA’s 
 (  2010  )  virtual globe – World Wind. This new interactive 3D GIS display allows one 
to visualise agents with satellite imagery, elevated terrain and other scientifi c data-
sets as shown in Fig.  12.3b . RepastS also supports the importation of NetLogo (see 
Sect.  12.3.3.5 ) models into the Repast framework via ReLogo (Ozik  2010  ) . Such 
functionality aims to allow for rapid prototyping of agent-based models by fi rst 
building simple agent-based models in NetLogo and once satisfi ed allowing one to 
migrate and extend them in RepastS. Not only does RepastS provide tools for the 
conversion of simple models from NetLogo, it also supports high performance dis-
tributed computing, via Repast for High Performance Computing (Repast HPC, see 
Collier  2010  ) .  

 Useful examples of spatially explicit models created using Repast include the 
studying of segregation, and residential and fi rm location (Crooks  2006,   2010  ) , 

  Fig. 12.3    Examples of vector agent-based models in RepastS. ( a ) Agents ( Red Dots ) moving 
about on footpaths ( Grey Lines ). ( b ) An agent-based model overlaid on NASA world wind (Source: 
Repast  2011  )        
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residential dynamics (Jackson et al.  2008  )  crime (Malleson et al.  2010  )  and the 
evacuation of pedestrians from within an underground station (Castle  2007  ) .  

    12.3.3.4   StarLogo 

 StarLogo (Table  12.4 ) is an shareware/freeware modelling system developed at 
the Media Laboratory, Massachusetts Institute of Technology (MIT) It has 
undergone some change, the original StarLogo modelling system has been 
released as an open source project (see OpenStarLogo  2010  )  however, it is still 
included in this section as the new version, StarLogo TNG (The New Generation) 
is still shareware/freeware. StarLogo TNG moves StarLogo from the 2D to the 
3D realm through the use OpenGL graphics API and aims to lower the barrier 
for programming agent-based models through the use of a drag and drop pro-
gramming graphical interface. Modellers can drag commands from a set of 
model building blocks (a block based graphical language) rather than creating 
models using the StarLogo syntax thus allowing for rapid model development. 
StarLogo TNG uses OpenGL for displaying the models at run time therefore 
providing a 3D display termed ‘SpaceLand’. The terrain within such models is 
editable and can be manually shaped. Agents can also be programmed to move 
in x, y and z directions.  

 StarLogo lacks the same fl exibility offered by open source systems, since mod-
ellers are constrained to functionality provided by the system. Despite this limita-
tion, StarLogo is very easy to use, notably for people with very little programming 
experience. Dynamic charting functionality of model output during a simulation is 
provided. In addition, a number of demonstration models and detailed how-to docu-
mentation relating to these models is supplied with StarLogo, and many more are 
available to download from the World Wide Web (WWW). While StarLogo does 
not support GIS per se, it does allow one to import GIFs, therefore allow pixels to 
be converted into patches. Batty et al.  (  1998  )  used this approach to examine visitor 
movement within London’s British Tate Gallery, specifi cally how changes in room 
confi guration can affect movement between exhibits.  

    12.3.3.5   NetLogo 

 NetLogo (originally named StarLogoT – Table  12.4 ) is a variant of StarLogo, origi-
nally developed at the Centre for Connected Learning and Computer-Based 
Modelling at Northwestern University, to allow StarLogo models to be developed 
on computers using the Macintosh operating system. It is now possible to create 
StarLogo models on a computer using a Macintosh operating system, thus the criti-
cally distinction between the two simulation/modelling systems is that NetLogo is 
specifi cally designed for the deployment of models over the internet (NetLogo 
 2010  ) . Initially both NetLogo and StarLogo only provided functionality to import 
image fi les, which can be used to defi ne the environments within which agents are 
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located, thus facilitating the development of spatial models (Fig.  12.4 ). However, 
within NetLogo it is now possible to import both raster (in the form of .asc fi les) and 
vector data (shapefi les). This new ability opens up a range of possibilities for the 
easy creation of spatial agent based models. For example, for the studying of surface 
erosion (Wilensky  2006  )  as shown in Fig.  12.4b .  

 The NetLogo installation comes with two demonstration models highlighting 
this functionality. For vector data, four different GIS datasets: a point fi le of world 
cities, a polyline fi le of world rivers, a polygon fi le of countries (however there is 

  Fig. 12.4    Example of GIS integration in NetLogo. ( a ) Demonstration model of using  point ,  line  
and  polygon  shapefi les for creating a landscape. ( b ) NetLogo’s gradient example and ( c ) the cruis-
ing model where cars move along the roads ( Red lines ) (Source: NetLogo  2010  )        
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no way to distinguish if the polygon has holes in it) are imported into a NetLogo 
model and converted into patches as shown in Fig.  12.4a . For the raster example, 
a raster fi le of surface elevation is loaded into a NetLogo model to demonstrate the 
possibilities of working with spatial data as shown in Fig.  12.4b . In this example, 
Agents follow the surface to lower elevations. Such functionality potentially 
lowers the barrier between coupling agent-based models and GIS to none expert 
programmers. For example, the gradient example presented above could be used 
to model process that relies on cost surfaces such as emergency evacuation of 
buildings (see Crooks et al.  2008 , for an example). As with StarLogo TNG 
(Sect.  12.3.3.4 ), models within NetLogo can be viewed in a 3D environment how-
ever unlike StarLogo TNG it is only the agents that appear in 3D while the surface 
remains a 2D plane. 

 NetLogo has been used to develop applications in disciplines varying from biol-
ogy and physics to the social sciences. Extensive how-to documentation/tutorials 
and demonstration models are available from the system website, and functionality 
can be extended through APIs, although the source code for the system is currently 
unavailable. Useful examples of spatially explicit models created using NetLogo 
include the study of gentrifi cation (Torrens and Nara  2007  ) , residential housing 
demand (Fontaine and Rounsevell  2009  )  and the emergence of settlement patterns 
(Graham and Steiner  2006  )  and the reimplementation of Axtell et al.  (  2002  )  artifi -
cial Anasazi model by Janssen  (  2009  ) .  

    12.3.3.6   AgentSheets 

 AgentSheets (Table  12.5 ) is a proprietary simulation/modelling system that allows 
modellers with limited programming experience to develop an agent-based model, 
because models are developed through a GUI (Repenning et al.  2000  ) . A number of 
demonstration models are available from the system website. For example, 
Sustainopolis is a simulation analogous to the computer game SimCity; exploring 
pollution dispersal within a city (Fig.  12.5 ). Furthermore, AgentSheets can be linked 
to real time information over the internet (Repenning and Ioannidou  2004  ) . For 
example, AgentSheets has been used in conjunction with real time weather feeds 
and used to make mountain biking recommendations in Boulder County. Within the 
model, agents represent locations that are possible candidates for biking featuring 
real time, web accessible weather sensors. This information is then used by the 
biker to reach a decision on where to go biking. Carvalho  (  2000  )  has used 
AgentSheets extensively to teach undergraduate students. He comments that it is 
easy to use the system to develop models quickly and provides students with hands-
on experience of ABM without the need to learn a programming language. However, 
he also found that models created with AgentSheets were limited in their sophistica-
tion (notably in terms of the complexity of representation of agent behaviour and 
interaction). Furthermore, agents are limited to movement within a two-dimensional 
cell-based environment.    
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    12.3.3.7   AnyLogic 

 AnyLogic (Table  12.5 ) incorporates a range of functionality for the development of 
agent-based models. For example, models can dynamically read and write data to 
spreadsheets or databases during a simulation run, as well as dynamically chart 
model output. Furthermore, external programmes can be initiated from within an 
AnyLogic model for dynamic communication of information, and vice versa. 
However, AnyLogic models can only be created on Microsoft operating systems, 
although a simulation can be run on any Java-enabled operating system once com-
piled (e.g. a Macintosh operating system). The AnyLogic website notes that models 
have been developed for a diverse range of applications including: the study of 
social, urban (Fig.  12.6 ) and ecosystem dynamics (e.g. a predator-prey system); 
planning of healthcare schemes (e.g. the impact of safe syringe usage on HIV diffusion); 
computer and telecommunication networks (e.g. the placement of cellular phone 
base stations); and the location of emergency services and call centres. Further 
information pertaining AnyLogic modelling applications can be found in Parinov 
 (  2007  ) , these include imitating the functioning of a emergency department in a large 
hospital. However, the source code of these examples and/or documentation of these 

  Fig. 12.5    The Sustainopolis model developed in AgentSheets  (  2010  )        
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models is unavailable. Example applications utilizing AnyLogic for spatial agent-
based modelling include: Makarov et al.  (  2008  )  who studied traffi c jams in Moscow 
and explored different scenarios for reducing such events either by road pricing or 
new road building. Johnson and Sieber  (  2009  )  used AnyLogic to explore tourism in 
Nova Scotia, while Pint et al.  (  2010  )  used AnyLogic to explore organised crime in 
Rio’s favelas.     

    12.4   Summary 

 This chapter has reviewed the current capabilities of modelling within a GIS and 
suggests that agent-based modellers interested in developing geospatial models 
involving many (possibly tens of thousands) interacting agents with complex behav-
iours and interactions between themselves, and their environment should consider 
either GIS-centric or modelling-centric integration. Moreover, we have discussed 
considerations one should take when thinking about utilizing an agent-based simu-
lation/modelling system. Furthermore, we have outlined a selection of simulation/
modelling systems which can be used for the creation of geospatial agent-based 
models along with providing examples of applications. 

  Fig. 12.6    An urban and transport dynamics model developed in AnyLogic  (  2010  )        
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 Each of simulation/modelling systems discussed within this chapter can be 
positioned within the continuum illustrated in Fig.  12.1  (power versus diffi culty of 
developing a model with a simulation/modelling system). However, the exact loca-
tion of each system is very subjective (i.e. dependant upon a modeller’s knowledge 
and experience of ABM in general, and each simulation/modelling system in 
particular). The information presented within this chapter is aimed at providing the 
reader with a selection of useful criteria to assess the seven simulation/modelling 
systems presented, allowing each system to be (approximately) located within this 
continuum based on the readers own knowledge and experience. That is not to say 
that the selection criteria cannot be utilized for other simulation/modelling systems 
and once a candidate system(s) has been identifi ed the reader will need to investi-
gate the potential suitable of the system(s) further. 

 However, it needs to be noted that while such tools exist, integrating GIS data for 
ABM is still a diffi cult process (Gilbert  2007  )  and many considerations are needed 
such as what data is needed, how should the data be utilised, how should agents 
interact with the data, etc. Nevertheless, such systems lower the entry level needed 
to create geospatial agent-based models and thus allowing a greater number of 
social scientists to create geospatial agent-based models. One note of caution how-
ever is needed, that is there is still a computational challenge when it comes to the 
creation of geospatial agent-based models with thousands of agents operating and 
interacting with raster or vector features (see Kennedy et al.  2009  for a discussion) 
but over time this should be reduced with increased computational power.      
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  Abstract   The chapter offers an overview of the issues related to the integration and 
representation of space in agent-based models (ABMs), with a focus on those 
models that can be considered spatially explicit. Key aspects of space in ABM are 
highlighted, related to: the role of space as an attribute of agents and the environment; 
as an interaction component; as a determinant of issues of scale; and as a tool for 
communicating and validating model outcomes. The chapter reviews the issues and 
challenges arising from the diffi culties of integrating space in agent-based modeling. 
It outlines the emerging trend towards improving the level of realism in representing 
space, which can lead not only to an enhanced comprehension of model design and 
outcomes, but to an enhanced theoretical and empirical grounding of the entire fi eld 
of agent-based modelling.      

    13.1   Introduction 

 One of the main characteristics of agent-based systems is that the interactions of the 
modeled agents do not take place in a vacuum, but are situated within structures that 
both condition agents’ behavior and are in turn infl uenced by it (Epstein and Axtell 
 1996  ) . These interaction structures can be physical or social environments, or 
networks that encode geographic or other feature-based differences (Riolo et al. 
 2001  ) . Consequently, a key advantage of ABMs is their ability to integrate these two 
components – agents and their environment – through systematic specifi cation of 
interdependencies and feedbacks (Parker et al.  2003  ) . 
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 It should be noted, however, that traditionally the emphasis in agent-based 
modeling has been clearly placed on the development of agents and their behavior 
at the expense of less sophisticated representations of space and spatial relation-
ships (Brown et al.  2005  ) . Many ABMs, in fact, consider spatial relationships as a 
marginal issue, or at least treat space as a feature of the model that becomes relevant 
only at the macro scale. Examples of such models include investigations of social 
and cultural phenomena such as investment management, dynamics of labor mar-
kets, shifts in consumer behavior, or spread of technological innovations. In con-
trast, another string of ABMs, more tightly related to investigations of geographic 
phenomena, considers space as an integral component of their system. These mod-
els, referred in the literature as spatially explicit ABMs, include a diverse group of 
studies ranging from explorations of urban growth and natural resource manage-
ment to agricultural economics and archaeology. Commonly, these models try to 
establish explicit links between environmental characteristics and agent behavior 
(Benenson and Torrens  2004  ) . 

 The discussion offered in this chapter on issues related to space and its rep-
resentation in ABMs is centered on those models that can be considered spa-
tially explicit. The review of the literature on which this paper is based is far 
from balanced as it relies heavily on examples from the fi eld of urban modeling. 
This is due partially to the author’s background, but more importantly to the fact 
that in urban modeling the consideration of space is inevitably explicit (Berger 
et al.  2002  ) . The proliferation of spatially explicit ABMs in the last 10 years is 
particularly impressive in the area of land use analysis where such models have 
become popular tools for understanding land-use systems (Polhill et al.  2001 ; 
Deadman et al.  2004  ) . Here ABMs are considered particularly well suited for 
representing complex spatial interactions under heterogeneous conditions 
(Parker et al.  2003  ) . 

 The discussion of space offered on the following pages is structured into two 
parts. The fi rst one provides an overview of the general concepts of space and 
its integration within agent-based modeling. The key aspects of space in ABM 
are highlighted related to: the role of space as an attribute of agents and the 
environment; as an interaction component; as a determinant of issues of scale; 
and as a tool for communicating and validating model outcomes. A further dis-
cussion in this section addresses the various ways in which space is represented 
in the ABM world. The second part of the chapter reviews the issues and chal-
lenges arising from the diffi culties of integrating space in agent-based modeling. 
The most promising venues towards a better representation of space are out-
lined, reviewing the shift from cell-based to object-based applications. The 
chapter concludes by sketching the contours of an emerging trend aimed to 
move the theory and practice of ABM beyond the grid-vs-vector debate, offering 
some new prospects for the integration of space within agent-based modeling 
frameworks.  
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    13.2   The Concept of Space in ABM 

    13.2.1   The Integration of Space in Modeling Frameworks 

 This section outlines several aspects of space critical for its integration within spa-
tially explicit agent-based modeling systems. 

    13.2.1.1   Space as an Attribute 

 An apparent role of space in ABMs that try to incorporate the signifi cance of spatial 
phenomena in the simulation of social processes is the function of space as an attri-
bute of a model’s components – both of the environment and of the agents that oper-
ate within it. 

 The spatial characteristics of the environment could be represented with various 
levels of detail (this topic is discussed in more detail later in this section), but at a 
minimum, the model environment could be described as a non-differentiated plane 
with geographic or relative coordinates on which the actions of the agents take 
place. In such models the environment infl uences the agents’ interactions simply by 
measures of distance and direction (Castle and Crooks  2006  ) . In models that repre-
sent the physical characteristics of the environment with a greater level of sophisti-
cation, the agents respond to attributes of the landscape such as physical barriers, 
soil types, infrastructure, or aesthetic qualities by adopting their behavior to the 
features of the modeled environment. 

 Space as a characteristic of agents in ABMs is a more fl exible concept. The 
agents could be spatially explicit or they could be implicit (meaning that their 
precise spatial location is not essential for the operation of the model). In addition, 
spatially explicit agents could be static (tied to a specifi c location in the environ-
ment) or dynamically situated (free to move within the environment either with or 
without predefi ned constraints).  

    13.2.1.2   Types of Space-Agent Interactions 

 Due to the wide variety of details with which both the environment and the agents 
within an ABM could be specifi ed, the nature of the interactions between them could 
be rather complex. First, it is possible for an agent to be associated with only one 
spatial feature in a one-to-one relationship. A typical example of such a relationship 
is a household and its place of habitation in a simple residential location model or a 
local government and its jurisdiction in an urban growth management simulation. An 
agent, however, could be associated with more than one spatial feature in a one-to-many 
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relationship. Examples of such cases are models in which households are linked with 
their places of residence, work, shopping, entertainment, etc. 

 In addition to the level of connectivity, there are two ways in which environment-
agent interactions could be constructed: as a simple unidirectional relationship in 
which the environment is affected by the behavior of the agents (or vice versa), or 
as a multidirectional cycle of interactions and feedbacks between the two. Examples 
of models integrating space in a simple one-way causal environment-agent relation-
ship are relatively few. In such models the environment is the only factor governing 
agent behavior. The agents adopt strategies that allow them to react to a heteroge-
neous environment given their goals and actions (Parker et al.  2003  ) . Alternatively, 
the causal relationship could be pointed the other way by modeling changes in the 
environment as a result of the agents’ behavior. Examples here include studies of 
deforestation due to agricultural practices, fragmentation of the natural habitat due 
to urban sprawl, etc. 

 In reality, the interactions between humans and their environment are always 
more complex, never confi ned to a single unidirectional link – a fact which is 
recognized by the majority of agent based modelers. A good example of the com-
plexity of environment-agent interaction is urban gentrifi cation, where a chain of 
events dynamically transforms both the actors and the environment. In this pro-
cess, agents are drawn to urban areas due to specifi c locational or environmental 
characteristics; they engage in interactions with other actors in the local property 
market thus changing its dynamics; as a result the environment is changing; this 
in turn draws new actors to the scene affecting further the dynamics of the pro-
cess. Another good example of modeling the complexity of environment-agent 
interactions is the SLUCE model of residential location at the urban fringe (Rand 
et al.  2002 ; Brown et al.  2005  ) . Here residents make decisions about where to 
locate based on a combination of environmental factors including density, dis-
tance to service centers, and the aesthetic quality of the landscape. New service 
centers locate near recent residential development, infl uencing, in turn, the 
behavior of future homebuyers. A main challenge for the models exploring the 
complexity of environment-agent linkages is to separate the effects of endogenous 
interactions from spatially correlated exogenous landscape features (Irwin and 
Bockstael  2002  ) .  

    13.2.1.3   Space and Scale 

 Scale is another important aspect of the task of integrating space in ABM frame-
works. The issues of scale become relevant in the construction of the model in 
two distinct ways linked to the determination of the spatial extent and the spatial 
resolution of the data used (Goodchild  2001  ) . First, in terms of the spatial extent 
of the modeled area, studies have demonstrated that changes in spatial extent 
have a signifi cant impact on the outcomes of spatial analysis (Saura and Millan 
 2001  ) . This fact highlights the need to capture processes at the scale at which 
they operate. This principle of scale-dependency is also particularly important 
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in determining the level of spatial resolution, or the level of detail captured in 
the model (Lam and Quattrochi  1992  ) . A coarse granularity of the data tends to 
iron out both spatial heterogeneity and spatial dynamics (Batty  2005  ) . The 
issues of spatial aggregation are particularly relevant for ABMs that try to cap-
ture emergent behavior (Goodchild  2001  ) . The “modifi able areal unit problem” 
(MAUP) and associated issues of ecological fallacy (Openshaw  1983  )  loom 
large in all models based on assumptions that larger units are representative of 
smaller units. While this does not seem to be an issue with the specifi cation of 
agents, which is commonly done at the level of individuals and households, 
fi nding the proper level of representation of environmental characteristics and 
processes presents signifi cant methodological diffi culties. The use of a very fi ne 
data resolution, on the other hand, has been found to produce patterns that are 
overly fragmented (Menard and Marceau  2005 ; Chen and Mynett  2003  ) . Finally, 
making the integration of space in ABM an even more challenging task, is the 
recognition of the fact that an individual agent is likely infl uenced by, and in 
turn infl uences, processes occurring at multiple spatial scales (Batty  2005 ; 
Parker et al.  2003  ) . 

 The consideration of scale also becomes pertinent in ABM through the defi ni-
tion of neighborhoods of interaction. In the classic cellular automata (CA) concep-
tualizations on which the majority of ABM environments are based, neighborhoods 
are defi ned on the principle of spatial proximity. Here the magnitude of interaction 
is described as a distance decay function following Tobler’s law, which postulates 
that near things are more related than distant things (Tobler  1970  ) . While the 
size of the neighborhoods in many CA and ABMs is predetermined by a fi xed 
(and in many cases somewhat arbitrary) radius, a relatively small number of studies 
have carried out systematic analysis of the impact of this critical neighborhood 
parameter. A recent study of residential segregation, for instance, has emphasized 
the importance of scale over the shape of neighborhoods, which in this case is 
interpreted as the fi eld of the agents’ vision (Fossett and Dietrich  2009  ) . Other 
studies have proposed more refi ned techniques of neighborhood defi nition taking 
into account different spatial scales relevant for the modeled interactions (Batty 
et al.  1999 ; Vancheri et al.  2008  ) . In recognition of the larger spatial scale at which 
neighborhood interactions operate, some scholars have introduced the concept of 
domains – large scale spatial ensembles representing a group of neighborhoods 
populated by agents of homogeneous characteristics – devising algorithms for the 
identifi cation of emerging domains and techniques for following their evolution 
(Benenson et al.  2005  ) . 

 It should be noted, however, that operational ABMs of larger scale systems such 
as metropolitan areas are still quite rare (e.g. Benenson et al.  2002 ; Mathevet et al. 
 2003  ) , pointing to a lack of studies taking on the challenge of modeling processes 
that operate on multiple spatial scales (e.g., from the level of individual parcels and 
neighborhoods to the scale of urban regions). The task of simulating large-scale 
dynamics based on detailed representation of micro-scale processes poses many 
new challenges in terms of computational algorithms, data organization, and model 
architecture (Ettema et al.  2007  ) .  
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    13.2.1.4   Space as a Tool of Validation and Communication 

 Another important aspect of integrating space in ABM is its utility as a powerful 
tool of communication and validation of model outcomes. These two areas – 
communication and validation – have been identifi ed as key challenges for the 
future development of the ABM fi eld (Crooks et al.  2008  )  having received so far 
only scant coverage in the professional literature. This fact is somewhat surprising, 
considering that in many cases a comparison between model outcomes and real data 
along their spatial characteristics is the ultimate form of model validation. Yet one 
needs to be aware that location-specifi c estimates based solely on landscape metrics 
may not be as useful as having model outcomes reproduce realistic patterns, or as 
Mandelbrot simply put it – they must “look right” (Mandelbrot  1983  ) . And while 
ABMs have the potential of being more easily comprehended by the general public 
due to the fact that they simulate “real world” behavior based on simple rules, quite 
often the outcomes of these models are not immediately transparent for a wide 
range of potential users who happen to lack the appropriate technical background 
for interpreting the results. In this sense, the visualization of model outcomes 
through maps and other types of commonly used spatially referenced information 
can serve as a great medium of communicating a model’s results, reaching effec-
tively a wider range of users (Axtell  2000  ) .   

    13.2.2   The Representation of Space 

 The level of detail with which the environment is described in spatially explicit 
ABMs depends primarily on the type and the purpose of the model. Thus while in 
theoretical interaction models environmental characteristics are traditionally 
simplifi ed (Irwin and Bockstael  2002  ) , in models that are based on real-world 
locations the representation of landscape heterogeneity is a critical feature of a 
model’s design. These two approaches have been referred to in the literature as 
 designed  (in the case of the more abstract theoretical models) and  analyzed  (in the 
case of applied inductive studies) (Parker et al.  2003  ) . It should be noted that the 
distinction between the two approaches in not always clear-cut, with a substantial 
number of models straddling the boundary between abstract and more realistic 
representations. At the same time, since the early days of ABM, there has been a 
gradual yet noticeable trend towards more detailed representations of socio-spatial 
systems (Epstein and Axtell  1996  ) . This could be explained by the natural course 
of the evolution of the fi eld striving for higher fi delity of the modeled reality on 
one hand; and the increasing pressure to develop tools that are geared towards 
end-users and other stakeholders on the other (Matthews et al.  2007  ) . 

 In general, the majority of spatially explicit ABMs rely on a regular cell frame-
work used as a basis for representing the environment (Barros  2003 ; Batty et al. 
 2003  ) . This concept of spatial organization is borrowed directly from the fi eld of 
CA due to the kinship between the two modeling techniques in the analysis of 
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related socio-spatial phenomena. With the conceptual linkages between ABM and 
CA being so tight, often CA models are re-interpreted as ABMs by attributing 
anthropomorphic state variables to cells (Torrens and Benenson  2005  ) , using transi-
tion rules as proxies to decision making (Parker et al.  2003  ) . However, regardless of 
these attempts, an important distinction remains. While CA can be described entirely 
through the interaction of spatial phenomena, they do not provide support for typical 
actor-based processes (Ligtenberg et al.  2001  ) . As a result, CA models rely on a 
fi xed interaction topology whereas the interactions in ABMs can be changed 
dynamically since they are defi ned at the level of mobile agents (Brown  2005  ) . 

 The general model formulation, based on CA populated by agents migrating 
between cells, seems to be a natural process of merging ABM and CA by building 
on the strengths of each modeling approach (Portugali et al.  1994 ; Portugali and 
Benenson  1997  ) . The ability of such systems to separate out the infl uence of actors, 
institutions, and the environment have been enthusiastically embraced more specifi -
cally in urban high-resolution modeling (Parker et al.  2003 ; Manson  2006  ) . Here, 
the urban environment is represented in two layers, one for the city’s infrastructure 
(immobile), and the other for migrating human individuals (mobile) (Portugali 
 2000 ; Polhill et al.  2001  ) . Correspondingly, in many land-change models, agents 
choose cells from a gridded landscape for their productive utility, either for agriculture 
or home building (Evans and Manson  2007  ) . 

 A key conceptual dilemma in the construction of model environments in ABMs 
is in the choice of selecting the best way to represent the environment’s critical 
properties. Choosing between raster vs. vector-based representations is not always 
an easy decision to make. While raster-based structures are best fi tted to capture 
continuous fi eld data, vectors are best suited to depict the properties of discrete 
objects. Since the natural and built environments are composed of both, the ques-
tion is which way would be most appropriate for capturing the essence of the mod-
eled spatial phenomena. Traditionally, the prevailing practice in both CA and 
ABMs has been to favor a rigid partitioning of space into regular cells, and there 
are several factors that have solidifi ed this choice. Some of the main reasons include 
the conceptual foundations of CA theory and its grounding in cell space; the pre-
vailing availability of remote sensing data in raster formats; the advantages of 
using the functionality of raster-based GIS data preparation and analysis in model 
development; and the computational effi ciency of working with regular grids 
(Stanilov  2009  ) . 

 Deviations from the practice of using a rectangular tessellation of space in CA 
and ABMs have included experimentation with hexagonal grids (Phipps  1989 ; 
Sanders et al.  1997  ) , yet it has been recognized that in order to make models appli-
cable in the arena of public policy, modelers need to move away from abstract cellular 
representations in order to incorporate the detailed geography of the real places (Xie 
and Batty  2003  ) . While the literature has long suggested the integration of irregular 
structures in microsimulation (Couclelis  1985  ) , only recently have ABMs begun to 
use real-world spatial data (Brown et al.  2005  ) . Early attempts have considered non-
uniform partitions of urban space, accounting exclusively for infrastructure units 
(Erickson and Lloyd-Jones  1997 ; Semboloni  2000  ) . One of the fi rst ABMs to use 
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real-world geographic features was developed in the fi eld of natural resource 
management, in a simulation of the recreational use in a state park in Arizona 
(Gimblett et al.  2002  ) . More recent work based on the integration of parcel-level 
data has included the development of custom-built model environments such as 
MABEL (Alexandridis and Pijanowski  2007  ) , but most common has become the 
use of hybrid raster-vector environments in which vector-based features are used to 
calculate spatial attributes of raster-based cells such as calculating accessibility of 
cells based on the distance to the road network (Brown et al.  2008  ) . 

 The evolution of the grid vs. vector dilemma within the fi eld of agent-based 
modeling is discussed in more detail in the following section which offers a sum-
mary of the main challenges related to the integration of space within ABMs.   

    13.3   Issues and Challenges 

 One of the main challenges for agent-based modeling is to move both practice and 
theory from the arena of experimental and hypothetical applications towards empir-
ically-based research (Berger and Schreinemachers  2006 ; Janssen and Ostrom 
 2007  ) . This process entails a transition from abstract towards more realistic repre-
sentations of the environment (Torrens and O’Sullivan  2001  ) . While CA and agent-
based systems have been introduced in the modeling world with the intent to infuse 
it with a recognition of the fi ner scale on which spatial relationships operate in both 
the natural and the built environments, these models, in their majority, continue to 
be based on highly restrictive assumptions related to the integration and representa-
tion of space. This situation has been primarily a function of the limitations imposed 
by the direct utilization of the generic spatial constructs underlying CA theory, 
rather than the application of empirical or theoretical knowledge on how systems 
function in space (Torrens and Benenson  2005  ) . 

    13.3.1   From Cells to Objects 

 The defi ciencies of employing a rigid tessellation of space as a basis of ABM envi-
ronments stem from the fact that pixel-based cellular dynamics seldom match 
spatial phenomena (Xie and Batty  2003  ) . To begin with, many linear features of 
both the natural and the built environment (rivers, infrastructure, etc.) do not lend 
themselves to be easily represented in a grid format that engenders the proper inte-
gration of network elements in the specifi cation of spatial interactions (Benenson 
et al.  2005  ) . Additional problems arise with the depiction of entities and agents that 
are either larger or smaller than a single grid cell. The representation of entities 
larger than the size of the basic modular unit calls for aggregation of cells based on 
a unique shared attribute describing the identity of the depicted object. The grouping 
of cells on this principle, however, creates conceptual and computational problems 
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challenging the basic premises on which cell-based structures operate. In cases 
when cells are larger than the spatial entities on which they are superimposed, the 
issue of cell heterogeneity presents signifi cant methodological challenges. The 
problems created by such a tessellation could be as diffi cult to address as the MAUP 
in aggregate models where the boundaries are at least drawn with the idea of main-
taining a certain level of area homogeneity. 

 There have been several attempts to increase the fi delity of the model outcomes 
by fi ne-tuning the size of the grid cells of the lattice underlying CA and ABM envi-
ronments. While common sense logic would suggest that smaller cell sizes increase 
data resolution, thus leading to more accurate results, in some cases the fi ndings of 
sensitivity analysis indicate that a coarser resolution can generate more realistic 
spatial patterns (Jenerette and Wu  2001    ). Support for this claim has been provided 
by studies concluding that using the fi nest resolution does not provide the best 
results (Menard and Marceau  2005 ; Chen and Mynett  2003  ) . Overall, there appears 
to be a general agreement shared in the fi eld that the choice of cell size has consider-
able impact on simulation results (Kocabas and Dragicevic  2006  ) , and that one 
needs to perform a systematic sensitivity analysis to determine the optimal cell size 
for a particular model (Jantz and Goetz  2005  ) . This task, however, takes a signifi -
cant amount of resources and ultimately the selection of cell sizes in many projects 
is determined somewhat arbitrary, mostly relying on previous studies. 

 The problems stemming from the application of abstract rectangular grids as a 
spatial framework for modeling are compounded further by the use of rigid raster 
cells for defi ning the spatial extent of neighborhoods of infl uence. While the utiliza-
tion of a universal nondiscriminatory grid might be appropriate in modeling envi-
ronmental processes where infl uence is mainly determined by proximity (e.g., the 
spread of brushfi res) in urban environments spatial relationships tend to be much 
more complex in their dimensions and magnitude of interaction. 

 The fi eld of CA/ABM abounds with experimentation aimed at optimizing the 
defi nition of neighborhoods (much more so than with studies questioning the appli-
cability of raster lattices). In the majority of cases, this has included experiments 
with extending the radius of infl uence beyond the traditional von Neumann and 
Moore neighborhoods (White et al.  1997  ) . Some have used hierarchical neighbor-
hoods defi ned on a neighborhood, regional, or global level. Others have proposed to 
defi ne neighborhood interactions based on empirical analysis derived from neigh-
borhood characteristics by calculating over- or under-representation of particular 
parameters (e.g., land use class) relative to their representation in the entire study 
area (Verburg et al.  2004  ) . 

 The issues associated with the application of rigid grid lattices has spurred a 
strand of research exploring the utility of alternative conceptualizations of spatial 
structures underlying model environments, including the Voronoi model of spatial 
tessellation (Shi and Pang  2000 ; Flache and Hegselmann  2001  )  and the use of 
graph-based CA (O’Sullivan  2001 ; Torrens and Benenson  2005  ) . This path of 
exploration has drawn its own share of critics, pointing to the fact that Voronoi poly-
gons do not correspond to real-world entities, but are generated automatically for 
simplicity of computation. 



262 K. Stanilov

 Recently, attempts to link closer the tessellation of space to real world entities 
have been emphasized in the fi eld of urban modeling with several studies employing 
parcels as the basic unit of spatial organization (Stevens and Dragicevic  2007 ; 
Alexandridis and Pijanowski  2007  ) . The use of parcel-based cells in urban ABMs 
offers several avenues for refi ning the defi nition of neighborhoods and transition 
rules that are not available in the conventional raster-based modeling environment. 
The utilization of a cadastral–based lattice provides an opportunity to incorporate 
important parameters of spatial interaction that cannot be accounted for in the tradi-
tional grid-based models. Such systems of structuring the modeled environment can 
be linked to the following methodological advantages (Stanilov  2009  ) :

   An environment in which cells are based on parcel boundaries allows for the • 
integration of cell size as a factor of spatial interaction, refl ecting the fact that 
smaller parcels exert a smaller impact on neighboring cells and vice versa.  
  Parcel-based cells can account for variations in the magnitude of cell interaction • 
that are due not only to differences in the size of neighboring cells but in their 
mutual orientation as well. Such relationships are captured by the length of their 
shared boundaries.  
  Parcel-based cells also have the advantage of being homogeneous in terms of • 
their land use. This allows for a more precise defi nition of land use interactions, 
thus eliminating the problems associated with cell heterogeneity.  
  Parcel-based cells can take cognizance of variations in the intensity of develop-• 
ment better than nondescript raster cells. The use of parcel boundaries can 
capture, for instance, the fact that a large parcel with a small building footprint 
can have less of an impact on its neighboring cells than an intensely developed 
smaller parcel.    

 The use of cadastral property lines as a basis for creating the underlying lattice 
of a model environment is of fundamental importance for capturing the essence of 
urban form generation. Research in urban morphology has consistently stressed the 
essential role that land ownership patterns play in setting up the spatial confi gura-
tion of urban environment. Parcel boundaries, although not physical entities per se, 
outline the basic spatial framework within which the urban landscape is constituted 
(Conzen  1960  ) . The use of historic cadastral boundaries makes particular sense in 
the context of modeling the growth of the urban periphery where the pre-urban 
cadastre has set the basic framework within which the pieces of urban development 
are distributed. 

 The integration of parcel data in ABM indicates a new direction for the develop-
ment of the fi eld marked by the transition from raster to vector-based data and from 
cells to objects as descriptors of both agents and their environment. Indeed, some 
of the most exciting and promising theoretical advances in ABM in recent years 
have been related to experimentations with the object-oriented data modeling 
approach. Such developments have been driven by the similarity in abstraction 
shared between the agent-based and object-oriented paradigms (Castle and Crooks 
 2006  ) . The fact that most ABMs use object-oriented programming languages, such 
as C++, Java, or Objective-C, points naturally to conceptualizations describing the 
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environment as a collection of spatially discrete objects (Benenson and Torrens 
 2004  ) . The possibilities for the effective implementation of the object-based 
approach seem to be most frequently recognized in the development of high-reso-
lution simulations of urban dynamics. 

 One of the most conceptually advanced systems of this type is the Object-Based 
Environment for Urban Simulation (OBEUS) (Torrens and Benenson  2005 ; 
Benenson et al.  2005  ) . Here discrete objects directly represent real-world urban 
entities and both agents and features are treated as individual automata situated in 
space through a set of geo-referencing rules. The model distinguishes between fi xed 
objects (described with the coordinates of their vertices, edges, centroids, minimal 
bounding rectangles, etc.) and non-fi xed urban objects identifi ed by pointing to one 
or several fi xed ones. Neighborhoods are defi ned by Voronoi coverages constructed 
on the base of centroids, and by interaction rules which allow neighborhoods to be 
varied in space or time in the course of the simulation. Such object-based models 
have the added advantage in their ability to assign temporal and location behavior 
as an attribute of features rather than space itself, allowing objects to be updated 
asynchronously (Castle and Crooks  2006  ) . 

 In spite of the numerous advantages of employing an object-based modeling 
framework, there have been a relatively limited number of cases embracing this 
approach in the fi eld of ABM. The reluctance to venture into this territory is related 
to several factors. First, compared to models based on raster data, vector-based 
structures require signifi cant computational resources and object-based pro-
gramming knowledge. In addition, the departure from traditional cellular-based 
space representations leads to several conceptual problems (Castle and Crooks 
 2006  ) . A major obstacle is that, while the neighborhood relationship between iden-
tical cells in a CA-based model do not vary, in an object-based vector model the 
magnitude of the neighborhood interactions is impacted by the spatial attributes of 
the objects (Benenson et al.  2005  ) , which makes them conceptually and procedurally 
diffi cult to model. 

 Another problem in object-based modeling arises from the challenge of 
dynamically updating connected or adjacent features whose shapes change over 
time (Miller  1999  ) . In such cases the space-time topology of objects’ vectors 
becomes increasingly complex as amendments accumulate during the simulation 
runs (Castle and Crooks  2006  ) . Of particular interest in urban modeling, for 
instance, are the processes of parcel subdivision or amalgamation which under-
line the morphogenetic processes of growth. Yet, due to the issues outlined above, 
these processes have not found adequate representation in ABMs so far. The few 
attempts to incorporate dynamic repartitioning of space rely on rather mechani-
cally construed Voronoi tessellation algorithms (Semboloni  2000 ; Benenson 
et al.  2005  )  that do not bear much resemblance to the complex patterns generated 
by the processes of land subdivision. In spite of the growing number of experi-
ments with the object-based approach, moving forward from agents with fi xed 
vector boundaries remains to this day a seemingly insurmountable challenge in 
ABM (Hamman et al.  2007  ) .  
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    13.3.2   Beyond the “Grid vs. Vector” Debate 

 Another interesting area of development within ABMs, situated outside the territory 
of the grid vs. vector and cells vs. objects debate, is composed of a recent group of 
studies concerned with the integration of urban form characteristics that have been 
previously overlooked. An early example of such an attempt is the ILUTE project 
(Miller et al.  2004  )  in which the built environment is described by the type and 
amount of fl oorspace, while transition rules incorporate the age of development as 
well as local and global vacancy rates. Similar attributes of the built environment 
are used in another detailed land use change model, which adds to the spatial param-
eters the amount of land surface covered by buildings, thus identifying spatial 
resources available in each cell for further development (Vancheri et al.  2008  ) . 

 A further effort to capture key features of the built environment in an ABM struc-
ture is aimed at incorporating representation of physical design elements.   The DEED 
model (Brown et al.  2008  )  locates residential agents using a utility calculation that 
considers the landscape characteristics associated with a range of subdivision types. 
Each of the four types is defi ned on the basis of observed land-cover proportions and 
patterns, street patterns, and lot sizes. The characteristics of subdivision design are 
also incorporated in a high-resolution data model which evaluates how different sub-
division designs might infl uence development under varying population growth rates 
and buyer preferences (Stevens and Dragicevic  2007  ) . 

 A logical step in the progression towards higher levels of sophistication with 
which the environment is represented in ABMs is the incorporation of the third 
dimension of space. The fi eld of ABM has traditionally been dominated by two 
dimensional approaches, with very few experiments venturing into 3D space 
(Dibble and Feldman  2004 ; Thorp et al.  2006  ) . Most of these projects are concep-
tual developments creating hypothetical environments such as CityDev, which 
offers an interactive multi-agent simulation model of city development organized 
spatially in cubic cells (Semboloni et al.  2004  ) . A few studies, however, have tried 
to incorporate 3D features into models simulating the development of real urban 
environments. Of particular interest among these examples is the quality of views 
offered within a given landscape. In such studies, viewshed analysis is used to 
describe the degree of visibility as a determining factor for residential location 
(Yin and Muller  2007  ) . 

 An interesting venue of exploration within the ABM world is the use of 3D envi-
ronments for the purposes of visualization (see Patel and Hudson-Smith  2012  for an 
overview of visualizing ABM outputs). One of the fi rst illustrations of such capabili-
ties utilized a combination of Repast software libraries and GIS layers (Dibble and 
Feldman  2004  ) , allowing the movement and interaction of agents to be followed in 
real-time 3D networks. The system has been used to model a number of socio-spatial 
phenomena including the transmission of infectious diseases, the dynamics of civil 
violence, and the coordination of social networks. Latest attempts to develop further 
conceptually the application of 3D visualization include the idea of moving ABM 
simulation environments from individual workstations to collaborative geographic 
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space using Second Life as a platform for the dissemination of geographic content 
(Crooks and Hudson-Smith  2008  ) . Such experiments underscore the great potential 
for the development of the fi eld charted by the advancement of the concepts of space 
within ABMs.   

    13.4   Conclusions 

 The primary strength of ABMs is as a testing ground for a variety of theoretical 
assumptions and concepts about human behavior. As a result of this concentration 
on behavior-driven social processes, ABMs tend to be traditionally less concerned 
with realistic representation of the physical environment. Therefore, they are rarely 
used as predictive models for real-world sites where the concern is that they can be 
overly fi tted to existing data, thus losing their power of generalization or ability to 
explore alternative systems. 

 As the fi eld of ABMs develops and matures, it has faced the need to refi ne its 
underlying theoretical concepts, including the role played by the environment in 
conditioning the interactions of agents. Research has highlighted the point that 
dynamic behavior-based processes can be signifi cantly impacted by even small 
changes in underlying spatial structures (O’Sullivan  2001  ) . This has directed the 
attention of agent-based modelers towards new paths for better integration and rep-
resentation of the spatial aspects of the modeled environment. 

 The most numerous group of such studies have been constrained within a general 
effort to refi ne CA-based structures, which continue to be utilized as an underlying 
environment for the majority of ABMs. These efforts have included the employ-
ment of higher resolution data, larger areal extents, and experiments with alternative 
methods of grid tessellation. An interesting departure from the dominant tradition is 
based on the work of a relatively small but growing number of researchers who have 
tried to break away from the bind of CA constructs by experimenting with environ-
ments defi ned by vectors and objects. This approach holds the promise of producing 
very interesting results, especially in view of the natural affi nity between the agent-
based and object-oriented paradigms. The third stream of innovations in the integra-
tion of space in ABMs is built on the idea of achieving a richer representation of the 
spatial characteristics of the environment through the inclusion of features that have 
been previously overlooked but which might have a critical importance for the 
dynamics of the modeled phenomena. An important conceptual leap forward here is 
the inclusion of the third dimension of space which opens up exciting opportunities 
for exploration of model parameters and the visualization of simulated 
phenomena. 

 All of these new avenues of exploration present new challenges for the develop-
ment of the fi eld of agent-based modelling. Many of the conceptual and technical 
considerations related to the integration of space are pushing the fi eld forward as 
modellers are charged to apply forward thinking, which should not be confi ned by 
the limitations of the tools and concepts in currency today. This chapter has presented 
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the argument that improving the level of realism in representing space can lead not 
only to an enhanced comprehension of model design and outcomes, but to an enhanced 
theoretical and empirical grounding of the entire fi eld of agent-based modelling. 
It appears that this new decade will be a critical time for meeting these goals.      
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  Abstract   This chapter provides a review and examples of approaches to model 
scaling when constructing large agent-based models. A comparison is made between 
an aggregate ‘super-individual’ approach, as run on a single processor machine, and 
two different approaches to parallelisation of agent models run on multi-core hard-
ware. Super-individuals provide a straightforward solution without much alteration 
of the model formulation and result in large improvements in model effi ciency 
(speed and memory use). However, there are signifi cant challenges to using a super-
individual approach when relating super-individuals to individuals in time and 
space. Parallel computing approaches accept the requirement for large amounts of 
memory or CPU and attempt to solve the problem by distributing the calculation 
over many computational units. This requires some modifi cation of the model soft-
ware and algorithms to distribute the model components across multiple computa-
tional cores. This can be achieved in a number of different ways, two of which we 
illustrate further for the case of spatial models, an ‘agent-parallel’ and an ‘environ-
ment-parallel’ approach. However, the success of such approaches may also be 
affected by the complexity of the model (such as multiple agent types and agent 
interactions), as we illustrate by adding a predator to our example simulation. 
Between these two parallelisation approaches to the case study, the environment-
parallel version of the model, written in C++ instead of Java, proved more effi cient 
and successful at handling parallel processing of complex agent interactions. 
In conclusion, we use our experiences of creating large agent-based simulations to 
provide some general guidelines for best practice in agent-based model scaling.      
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    14.1   Introduction 

 In agent-based simulation (ABS), the term ‘large scale’ refers not just to a simula-
tion that contains many agents, but also refers to the problem of managing the com-
plexity of the simulation (Parry  2009  ) . Another term also used for such simulations 
is ‘Massively Multi-agent Systems (MMAS)’ or ‘Massive Agent-based Systems 
(MABS)’ (Ishida et al.  2005 ; Jamali et al.  2008  ) , the term ‘Massive’ being used in 
the general computing sense where it implies extremely large numbers (i.e. mil-
lions) of agents. 

 Resource limitations in ABS may be encountered as the modeller adds more 
agents to investigate whole system behaviour, as the modeller adds complexity to 
each agent in the form of rules and parameters, or when the modeller wishes to 
examine the response of an agent in a more realistic and complex environment. 
Haefner  (  1992 , pp. 156–157) had the foresight nearly 20 years ago to identify 
aspects of ecological individual-based models that would benefi t from advanced 
computing: multi-species models; models of large numbers of individuals within a 
population; models with greater realism in the behavioural and physiological mech-
anisms of movement; and models of individuals with ‘additional individual states’ 
(e.g. genetic variation). The introduction of a spatial dimension also adds complex-
ity and puts demands on computing resources, yet many agent-based models 
(ABMs) are spatial. 

 In this chapter we focus on spatial ABMs. We compare the aggregate ‘super-
individual’ approach as run on a single processor machine with two different 
approaches to parallelisation of agent models run on multi-core hardware, using 
Message-Passing Interface (MPI) libraries to achieve communication between 
cores. We use a model of insect population dynamics to provide specifi c examples 
of each approach. We point out the potential pitfalls that arise from aggregation of 
individuals in a spatial context and from communication complications that arise 
when moving from serial to parallel code. The advantages and disadvantages of 
each approach for speeding up computation and managing memory use will be 
discussed.  

    14.2   Review of Large-Scale Modelling Techniques 

 A number of methodologies have arisen to deal with the problem of ‘large scale’ 
simulations in the agent-based literature in a number of disciplines, ranging from 
molecular physics, social science, telecommunications and ecology, to military 
research. Some of these methods are given in Table  14.1 . This chapter focuses on 
the last two entries in the table, as the most common types of solution found in the 
literature: (1) model software restructuring; (2) computer hardware and software 
programming solutions, including the use of vector computers, Graphics Processing 
Units (GPUs) and parallel computing.   
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   Table 14.1    Potential solutions to implement when faced with a ‘large scale’ ABM (Adapted from 
Parry  2009  )    

 Solution  Pro  Con 

 Reduce the number of 
agents, or level of 
agent complexity, 
in order for model to 
run on existing 
hardware 

 No reprogramming 
of model 

 Assumes dynamics of a smaller or less 
complex system are suffi ciently identical 
to larger systems, or that there is a simple 
scaling relationship deducible from the 
reduced model 

 Revert to a population-
based modelling 
approach 

 Could potentially 
handle any 
number of 
individuals 

 Lose insights from agent approach. Effects 
of diversity in agent population lost. 
Emergent properties from simulation of 
non-linear interactions at agent level 
diffi cult to capture. Construction of 
entirely new model (not agent-based) 

 Invest in a larger 
or faster serial 
machine 

 No reprogramming 
of model 

 High cost. CPU speeds limited to gains of 
only a few percent (CPU speeds no 
longer increasing with Moore’s law). 
Most gain likely for large memory 
problems, but again maximum machine 
memory is limited. Multi-threading or 
parallelism would increase the utility of 
this approach (see last entry in the table) 

 Run the model on a 
vector computer 

 Potentially more 
effi cient as more 
calculations may be 
performed in 
a given time 

 High cost. Vector hardware not easy to 
obtain (although Graphics Processing 
Units (GPU) may compensate this 
somewhat – see below). This approach 
works more effi ciently with SIMD (see 
glossary), possibly not so suitable for 
ABMs with heterogeneous model 
processes 

 Super-individuals 
(model software 
restructuring) 

 Relatively simple 
solution, keeping 
model formulation 
similar 

 Restructuring of model. Aggregation can 
change dynamics. Potentially inappropri-
ate in a spatial context (Parry and Evans 
 2008  )  

 Invest in a large scale 
computer network 
and reprogram the 
model in parallel 

 Makes available high 
levels of memory 
and processing 
power 

 High cost (although lowering with advent of 
multi-core and GPU computing). 
Advanced computing skills required for 
reprogramming of model software. 
Algorithms need to be modifi ed to cope 
with out-of-order execution on different 
cores. Communication effi ciency 
between cores becomes important. 
Solutions required are problem 
dependent 
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    14.3   Model Software Restructuring: ‘Super-individuals’ 

 A relatively simple option is to implement an aggregation of the individual agents 
into ‘super-agents’, such as the ‘super-individual’ approach in ecological model-
ling (Scheffer et al.  1995  ) . Other terms coined for this approach in ecology are 
the ‘Lagrangian Ensemble’ method (Woods and Barkmann  1994 ; Woods  2005  )  
and ‘generalised individuals’ (Metz and de Roos  1992  ) . A similar approach has 
been termed ‘agent compression’ in social science (Wendel and Dibble  2007  ) , 
which is derived from an earlier ecological paper (Stage et al.  1993  ) . In many 
ways these approaches are analogous to the concept of ‘cohorts’, which has been 
used for a long time in entomological modelling (e.g. Barlow and Dixon  1980 ; 
Ramachandramurthi et al.  1997  ) . There are a number of examples of the super-
individual method in relation to ABMs in a wide range of literature, with examples 
in ecology (Schuler  2005 ; Parry and Evans  2008  )  and social science (epidemiology) 
(Dibble et al.  2007 ; Rao et al.  2009  ) . The basic concept of this approach is shown 
in Fig.  14.1 .  

 The challenge to using a super-individual approach is relating super-individuals 
to individuals in time and space (Parry and Evans  2008  ) . Some solutions to manag-
ing super-individuals spatially have been proposed, e.g. to maintain a constant num-
ber of super-individuals within a spatial unit or cell, so that individuals migrate from 
one super-individual in one cell to become part of a super-individual in another cell. 
However, these solutions still affect model behaviour and it comes down to a ‘trade-
off between error and computing costs’ (Hellweger  2008 , pp 148). This approach is 
still likely to have some limitations when behaviour at low densities is important 
and there is a strong spatial effect on the individuals. 

 Recent work has proposed a dynamic approach to the creation of super-individuals 
(Wendel and Dibble  2007  ) . Compression algorithms are applied to homogenous 
super-individuals to selectively compress their attributes. The algorithm can maintain 
the integrity of the original data; however, it can be an advantage for the algorithm 
to combine similar pieces of information to produce a more compact representation. 
The result is super-individuals that contain varying numbers of similar or identical 
individuals, from just a single individual to many, depending on the uniqueness of 
the individuals. The attributes of the individuals contained within the super-individual 
are monitored over time, so that if individuals differentiate themselves from the 
group (e.g. they change spatial location, perhaps to another spatial cell), they are 
extracted from the super-individual and become separate individuals. If the attri-
butes of the uncontained agent now match another super-individual, they may join 
that super-individual (e.g. they are added to a super-individual at their new spatial 
location). Although there is some computing overhead for this ‘dynamic agent com-
pression’, it has been show that it may give some effi ciency gain over an individual-
based model whilst promising to preserve heterogeneity as necessary (Wendel and 
Dibble  2007  ) . In general, the fewer unique agents in the simulation the more effec-
tive this approach will be.  
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    14.4   Parallel Computing 

 Instead of attempting to reduce the computational load by agent-aggregation, parallel 
approaches accept the requirement for large amounts of memory or CPU and attempt 
to solve the problem by distributing the calculation over many computational units. 
One sense in which such distribution can be used is for parameter-space exploration 
or Monte-Carlo simulations, in which many runs of a small serial (i.e. single-CPU) 
code may be required. In such cases, effi cient use of computer clusters can be made 
by running identical copies of the code on many separate machines using solutions 
such as CONDOR (  http://www.cs.wisc.edu/condor    ). While these are in a sense 
‘large-scale’ and make good use of multi-core or distributed computer resources on 
heterogeneous hardware, here we discuss the use of parallel computing to address the 
issue of models that require signifi cant resources even for a single model run. 

 Reprogramming a model in parallel is challenging. Despite this, over the last 
10 years or so it has become a popular solution for agent-based modellers in many 
different fi elds of research. These range from ecology (Lorek and Sonnenschein 
 1995 ; Abbott et al.  1997 ; Wang et al.  2004,   2005,   2006a,   b ; Immanuel et al.  2005 ; 
Parry et al.  2006a  )  and biology (Castiglione et al.  1997 ; Da-Jun et al.  2004  )  to social 
and economic science (Massaioli et al.  2005 ; Takeuchi  2005  )  and computer science 
(Popov et al.  2003  ) , including artifi cial intelligence and robotics (Bokma et al.  1994 ; 
Bouzid et al.  2001  ) . In the early 1990s, work in the fi eld of molecular-dynamics 
(MD) simulations proved parallel platforms to be highly successful in enabling 
large-scale MD simulation of up to 131 million particles – equivalent to very simple 

  Fig. 14.1    ‘Super-agents’: grouping of individuals into single objects that represent the collective 
(Taken from Parry and Evans  2008  )        
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‘agents’ (Lomdahl et al.  1993  ) . Today the same code has been tested and used to 
simulate up to 320 billion atoms on the BlueGene/L architecture containing 131,072 
IBM PowerPC440 processors (Kadau et al.  2006  ) . ABS in ecology and social science 
tend to comprise more complex agents. Therefore, distributed execution resources 
and timelines must be managed, full encapsulation of agents must be enforced, and 
tight control over message-based multi-agent interactions is necessary (Gasser et al. 
 2005  ) . ABMs can vary in complexity, but most tend to be complex, especially in the 
key model elements of spatial structure and agent heterogeneity. 

    14.4.1   Multi-core Architectures 

 ‘Parallel computing’ encompasses a wide range of computer architectures, where 
the common factor is that the system consists of a number of interconnected ‘cores’ 
(processing units), which may perform simultaneous calculations on different data 
(Wilkinson and Allen  2004  ) . These calculations may be the same or different, 
depending upon whether a ‘Single Instruction Multiple Data’ (SIMD) or ‘Multiple 
Instruction Multiple data’ (MIMD) approach is implemented (see glossary). Large-
scale shared-memory vector processing machines operating via SIMD are now 
something of a rarity (although individual processors will usually use such methods 
internally). On the other hand, desktop machines now typically have multi-core 
processors (with each core essentially acting as a separate CPU), and large-scale 
high performance computer (HPC) clusters built from such machines with fast low-
latency network inter-connects allow the same code to be tested on a desktop and 
then deployed to a larger system with little or no modifi cation. As there is no longer 
a trend toward increasing individual CPU speeds, increases in computing power are 
mostly coming from higher numbers of cores per chip, so that building parallel 
applications will be a necessary part of exploiting hardware improvements. By 
designing models that exploit local desktop parallelism and scale to HPC machines, 
one can not only benefi t from desktop speed improvements but also thoroughly test 
parallelization before making larger runs on more expensive systems. In practice 
MPI-based applications fulfi l this role well, but alternative architectures are begin-
ning to compete with this approach.  

    14.4.2   Graphics Processing Units (GPUs) 

 Recent advances in the power of Graphics Processing Units (GPU) now make it 
easier for modellers to take advantage of data-parallel computer architectures on 
desktop machines (Lysenko and D’Souza  2008  ) . Multi-core graphics cards can be 
used not just for display purposes, but also for more general numerical computing 
tasks (sometimes referred to as GPGPU (General Purpose GPU)). The need for high 
levels of inter-agent communication and agent movement can make it diffi cult for 
cluster-based parallel computing to be effi cient, an issue that may be addressed by 
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tighter communication within a GPU as these devices have been designed with very 
high memory bandwidth (although this comes at the cost of higher memory latency). 

 Essentially GPUs are similar to vector computers (see glossary). The structure of 
agent simulations (often with asynchronous updating and heterogeneous data types) 
could mean that running a simulation on a vector computer may make little differ-
ence to the simulation performance. This is because an ABM typically has few 
elements that could take advantage of SIMD: rarely the same value will be added 
(or subtracted) to a large number of data points (Nichols et al.  2008  ) . In particular, 
vector processors are less successful when a program does not have a regular struc-
ture, and they do not scale to arbitrarily large problems (the upper limit on the speed 
of a vector program will be some multiple of the speed of the CPU (Pacheco  1997  ) ). 
GPUs offer some advantage over vector processors – their operation is single 
process multiple data (SPMD) rather than SIMD, so that all processing units need 
not be executing that same instruction as in a SIMD system (Kirk and Hwu  2010  ) . 
Although it is diffi cult to keep the advantages of object-oriented code in a GPU 
environment, there can be considerable benefi ts in terms of speed. 

 The architecture of GPUs is rather different from traditional cluster systems. 
Groups of stream processors are arranged with their own local shared memory, plus 
access to global memory that resides on the GPU. To make use of this, data must be 
copied from the CPU-accessible memory into the graphics card. Then the data can 
be processed by invoking one of a number of ‘Kernel functions’ that run on the 
GPU. Lysenko and D’Souza  (  2008  )  reformulated two ABMs (Sugar-scape and 
Stupid Model) to operate on a GPU by the use of large, multi-dimensional arrays to 
contain the complete state of an agent. Kernels were programmed to run update 
functions on these arrays. A different kernel was created for each update function, 
which operated one at a time on the dataset. Some careful coding was required when 
handling mobile agents (see below), but good performance was obtained for models 
with a few millions of agents on a domain of up to 2,048 × 2,048 cells. However, 
their approach required explicit use of the graphics card’s texture maps and pixel 
colour values – such technical details make it awkward for the general programmer 
to easily access and exploit hardware of this type. Since that time, further develop-
ments have made it more straightforward to use GPUs for general computation with 
the advent of better hardware and libraries designed for the purpose such as 
NVIDIA’s CUDA (  http://developer.nvidia.com/object/cuda.html    ). These libraries 
relieve the programmer of some of the previous awkwardness involved in convert-
ing code for use on a GPU, although awareness of the hardware layout is still 
required in order to get good performance. Other similar libraries such as Apple’s 
openCL (Khronos  2010  ) , Intel Ct and Microsoft Direct Compute also exist, but as 
of the time of writing, seem to be in a less advanced state of development. These 
latter libraries also seek to incorporate some level of hardware independence and 
are therefore likely to be somewhat more involved to code with than CUDA (Kirk 
and Hwu  2010  ) . Object-oriented Molecular Dynamics (MD) code already exists 
that can exploit the CUDA library (Stone et al.  2007  ) , so that the prospect for 
making individual-based or agent-based code that exploits these libraries in the 
future would seem to be good. Typically for MD codes, a 240 core GPU seems to 
be able to deliver similar performance to a 32 core CPU cluster (see for example 
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  http://codeblue.umich.edu/hoomd-blue/benchmarks.html    ). Simulations of cell-level 
biological systems using FLAME (Richmond et al.  2009a,   b  ) , a fi nite-state machine 
agent architecture designed specifi cally to exploit parallel hardware, seem to bear 
out the potential for simulation speedup that a GPU can offer. However, problems 
with very large memory requirements may still be challenging for these architec-
tures (as of the time of writing the largest GPU memories are of order 4 GB). The 
solution in such cases is likely to require running on multiple GPUs, possibly dis-
tributed over many independent nodes, with the result that the message passing 
techniques described below will still be needed.  

    14.4.3   Challenges of Parallel Computing 

 Several key challenges arise when implementing an ABM in parallel, which may 
affect the increase in performance achieved. These include load balancing between 
cores, synchronising events to ensure causality, monitoring of the distributed sim-
ulation state, managing communication between nodes and dynamic resource 
allocation (Timm and Pawlaszczyk  2005  ) . Good load balancing and inter-node 
communication with event synchronisation are central to the development of an 
effi cient parallel simulation, a full discussion of which is in Parry  (  2009  ) . Notable 
examples of load balancing strategies can be found in Pacheco  (  1997  ) , including 
‘block mapping’ and ‘cyclic mapping’ (see glossary). 

 A further major hurdle is that many (perhaps most) ABMs are constructed with 
the aid of agent toolkits such as RePast or NetLogo. These toolkits may not be able 
to handle this conversion to another program representation (particularly an issue 
for GPU). Recently, Minson and Theodoropoulos  (  2008  )  have used a High Level 
Architecture (HLA) to distribute the RePast Toolkit for a small number of highly 
computationally intensive agents over up to 32 cores with signifi cant improvements 
in performance. Rao et al.  (  2009  )  express reservations about the general availability 
of such HLAs, however. In the examples that follow, we show an instance of RePast 
parallelised using a library (MPIJava 1 ) that adds external Message Passing Interface 
(MPI) 2  calls to Java, but use of this library required extensive restructuring of the 
original model code, as it was originally designed for serial execution. Since this 
work was carried out, a facility for making MPI-parallel models using C++ has been 
added to RePast. Conversion of existing Java code to C++ is usually fairly straight-
forward, (we will use an alternative C++ library later in this chapter) but the algo-
rithmic considerations regarding the changes needed to ensure correct functioning 
of parallel code discussed below are still relevant.  

   1   Message Passing Interface for Java (MPIJava)   http://www.hpjava.org/mpiJava.html     is no longer 
available for download online. It has been super-ceded by MPJ-Express   http://mpj-express.org/      
   2   See glossary for defi nition of MPI  



27914 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

    14.4.4   Approaches to Agent Parallelism 

 Parallel agent modelling requires that agent computation is distributed in a way that 
allows model updates to be carried out on many computational cores simultane-
ously. This can be achieved in a number of different ways, two of which we will 
illustrate further for the case of spatial models. In both cases the idea is to send the 
whole data-structure involved with each agent out to processor cores for updating. 
In the ‘agent parallel’ approach, this is done without reference to any spatial struc-
ture, but is needed for carrying out update tasks. The ‘environment parallel’ approach 
instead divides up the spatial domain between cores and carries the agents associ-
ated with each spatial unit along with the spatial sub-division. 

    14.4.4.1   The ‘Agent-Parallel’ Approach 

 This approach focuses on the agents and divides them between the cores, which 
keep track of the individual agents’ properties and spatial location. Thus, each core 
must keep up-to-date information on the complete environment and surrounding 
agents. Communication with other cores is necessary to update the actual agent 
densities for a given location as a result of movement, birth and death. This form of 
parallelisation is similar to ‘functional decomposition’ (Foster  1995  ) , which divides 
various model processes or calculations, though not necessarily agents, between 
cores. The advantage is that load balancing is more straightforward, as cores can be 
loaded with agents symmetrically so that each core bears as nearly as possible an 
equal share of the computation. However, since the spatial data are not included in 
this process, an extra overhead is implied in ensuring that spatially localized agent 
interactions are dealt with consistently, as co-location on a core does not guarantee 
co-location in space. 

 Examples from ecology:

   Aphids and hoverfl ies (Parry and Evans  • 2008  ) , the example used in this 
chapter.  
  Schools of fi sh (Lorek and Sonnenschein  • 1995  )  – includes an extension where 
fi sh are dynamically redistributed according to their neighbourhood to improve 
effi ciency.  
  Trees (one processor per tree) (Host et al.  • 2008  ) .  
  Landscape vegetation model (functional decomposition) (Cornwell et al.  • 2001  ) .  
  Daphnia, distributing individuals between processors as cohorts or ecotypes, • 
similar to super-individuals (Ramachandramurthi et al.  1997 ; Nichols et al. 
 2008  ) .    

 Examples from social science:

   Financial markets (Massaioli et al.  • 2005  ) .  
  Crowd simulation (Lozano et al.  • 2007  ) .     
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    14.4.4.2   The ‘Environment-Parallel’ Approach 

 This approach divides the geographical space between cores. The parallelisation 
focuses on a point in space (e.g. a grid cell), which is assigned to each core. The 
core then keeps track of all agent activity within that space. This has also been 
termed ‘geometric’ or ‘domain’ decomposition (Foster  1995  ) . Local spatial inter-
actions between agents are now likely also to be local to a single core, with poten-
tially easier co-ordination of agent updates. However, when the agents are highly 
mobile, or when the density of agents varies spatially over time, balancing the load 
between cores becomes more of an issue, as the allocation of agents to cores must 
be re-calculated at intervals that depend upon the model dynamics. 

 Examples from ecology:

   Parallel individual-based modeling of everglades deer ecology (Abbott et al. • 
 1997  ) .  
  Design and implementation of a parallel fi sh model for South Florida (Wang • 
et al.  2004  ) .  
  Fire simulation (Wu et al.  • 1996  ) .  
  Forest modelling (Chave  • 1999  ) .    

 Examples from social science:

   Parallel implementation of the TRANSIMS micro-simulation model (Nagel and • 
Rickert  2001  ) .  
  Abstract agent model ‘StupidModel’ (Lysenko and D’Souza  • 2008  ) .  
  Traffi c simulation (Dupuis and Chopard  • 2001  ) .  
  Disaster Mitigation (Takeuchi  • 2005  ) .       

    14.5   Model Software Restructuring Example: 
Spatial Super-Individuals 

 This example uses a spatially-explicit individual-based aphid model detailed in 
(Parry  2006 ; Parry et al.  2006 b); see also Sect.  14.6.1 . Turning the individuals in 
this simulation into ‘super-individuals’ involved only a small alteration of the 
model’s structure; for details see Parry and Evans  (  2008  ) . A variable was added to 
record the number of individuals that all super-individuals actually represent. 
Equations that were dependent on density (such as morphology determination) were 
altered so that the density values were related to the real number of individuals in 
the simulation, not the number of super-individuals. 

 Movement of super-individuals followed the same rules as that of individuals; 
however, this produced spatial clustering of the populations. The model was tested 
by Parry and Evans  (  2008  )  using varying populations of individuals (100, 1,000, 
10,000 and 100,000 and 500,000 individuals) represented by varying numbers of 
super-individuals. A brief summary of the fi ndings in this paper follow. 

 The super-individual model runs on a cellular landscape of 50 × 50 25m cells, 
with the initial population of apterous adult aphids initiated at the central cell. 
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    14.5.1   Temporal Results 

 The temporal comparison of super-individuals (representing 10,000 individuals) 
given in Parry and Evans  (  2008  )  is shown in Fig.  14.2 . The results for 1,000 super-
individuals (scale factor ten individuals per super-individual) are the only results 
that fall within the 95% confi dence limits of the original model for the duration of 
the simulation period. This is due to excessive discretization of mortality in the 
model for the super-individuals. Therefore, super-individuals composed of large 
numbers of individuals as shown here with low scale factors may be the only accept-
able way to use this approach, in this case.   

    14.5.2   Spatial Results 

 The spatial results given in Parry and Evans  (  2008  )  are summarised in Fig.  14.3 . 
Clustering is evident in the spatial distribution. The super-individuals are contained 
in fewer cells, closer to the origin, than the individual-based simulation for all 
instances of super-individuals, even those with a low scale factor. Thus, it is an 
important consideration for spatially-explicit models to test super-individual scaling 
approaches spatially as well as temporally, as temporal testing will not show the 
more sensitive spatial errors.    
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  Fig. 14.2    10,000 individuals: comparison between individual-based simulation, 1,000 super-
individual simulation (each represents 10 individuals), 100 super-individual simulation (each 
represents 100 individuals) and 10 super-individual simulation (each represents 1,000 individuals), 
showing 95% confi dence limits derived from the standard error (Taken from Parry and Evans  2008  )        
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    14.6   Parallel Computing Examples: ‘Agent-Parallel’ 
and ‘Environment-Parallel’ Approaches 

    14.6.1   Example of the Use of an Agent-Parallel Approach 

 This example uses a spatial predator–prey (hoverfl y-aphid) model to show how an 
agent-parallel model can be established. The model was constructed with the RePast 
2.0 agent-based software development toolkit for Java (  http://repast.sourceforge.
net/    ). The example illustrates how spatial interactions between predators and prey 
can lead to diffi culties in reproducing the results from serial code. 

  Fig. 14.3    Spatial density distributions for individual-based versus super-individual simulations 
(10,000 aphids) at (a) 2 days (b) 20 days and (c) 40 days. The distribution further from the central 
cell is infl uenced by the constant westerly wind direction to result in a linear movement pattern 
(Taken from Parry and Evans  2008  )        
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 The basic overall structure of the model system is similar to the structure used by 
Tenhumberg  (  2004  ) , which refers to two interacting sub-models for syrphid larvae 
and aphids. The model describes the population lifecycle of an aphid,  Rhopalosiphum 
padi . However, in the individual-based model presented here, the movement of 
adult female syrphids across the landscape is also modelled. This includes spatial as 
well as temporal population dynamics within a fi eld. Full details of the aphid sub-
model can be found elsewhere (Parry  2006 ; Parry et al.  2006 b), with a highly sim-
plifi ed model fl ow diagram shown in Fig.  14.4 .  

 The basic rules followed in the syrphid model are given in Fig.  14.5 , with more 
detail on the rules used in the hoverfl y model given in the Appendix, as this sub-
model is unpublished elsewhere. The two sub-models (aphids and hoverfl ies) are 
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  Fig. 14.4    Simplifi ed fl ow chart for the aphid model       
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connected to one another, by the consumption of aphids by hoverfl y larvae. The 
relationship between the two models is simplifi ed in Fig.  14.6 .   

 The simple model landscape is as shown later in this chapter, two rectangular 
fi elds split by a central margin (see Fig.  14.11 ). The space is divided into a set of 
square cells, each of area 1 m 2 . The model is initiated with one apterous adult aphid 
in each fi eld cell and one female adult hoverfl y in each cell at the fi eld margin. 

 In order to parallelise the model to distribute the agents to different cores in a 
cluster, a Message Passing Interface (see glossary) for Java was used   http://www.
hpjava.org/mpiJava.html     (no longer available for download, see footnote 1), run on 
a Beowulf cluster (see glossary). At each time step, agents are updated on the worker 
cores (see Fig.  14.7 ), as the control core maintains global insect density and aphid 
consumption information and controls the simulation fl ow.  

 Testing just the aphid model, simple tests of the parallel code versus the original 
model (without hoverfl y larvae) showed the parallel model to replicate the original 
serial model accurately. 

 However, when hoverfl y larvae were introduced, the parallel implementation did 
not replicate the original, non-parallel version. The added complexity of including 
predators gave rise to two major problems. The most complex element of the model 
to program was the interaction between the hoverfl ies and the aphids (i.e. aphid 
consumption). This involved additional message passing, as the hoverfl y might 
attempt to consume aphids allocated to another processor (although in the same cell 
geographically). Therefore, consumption for each cell had to be totalled on the con-
trol core and then messages passed to each core to instruct the core to remove a 
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  Fig. 14.6    Key processes of the hoverfl y-aphid model       
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given number of aphids in each cell. However, as these messages are only sent once 
per iteration, it was possible for more than one hoverfl y larvae to consume the same 
aphid (as the hoverfl y larvae would only have information from the previous model 
iteration on the total aphid densities within the cell, and would be unaware if an 
aphid had been consumed by another hoverfl y larva on another core). 

 The result was that, occasionally, the total calculated consumption of aphids per 
iteration per cell was greater than the total density of aphids per cell in that iteration. 
A simple fi x was added to recalculate the total consumption, so that when the total 
aphid consumption was greater than the total aphid density, the consumption was 
reduced to the total aphid density. However, the problem still remained, and it gave 
rise to lower aphid populations in the parallel model than in the non-parallel model, 
as shown by Fig.  14.8 .  

 In addition, more hoverfl ies were born into a cell than should be. During the 
same iteration, different female hoverfl ies on different processors may perceive a 
cell to have no larvae present, and then both lay in that cell. However, the model 
rules state that once larvae are present in a cell, no more larvae should be laid there. 
The result is likely to be higher numbers of larvae throughout the simulation, as 
shown in Fig.  14.9 . This also acts to reduce the aphid population below that of the 
non-parallel simulation.  

 The knock-on effect is that, although higher populations of larvae are present in 
the non-parallel model due to the artifi cial reduction in the aphid population and 
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artifi cial increase in the larvae population, these larvae are less likely to reach adult-
hood as there are not enough aphids to consume so that they undergo the transition 
to adulthood in the model before dying (a combination of higher competition due to 
the higher larvae density and lower aphid populations due to the higher consump-
tion rate) (Fig.  14.10 ).  

 These problems are not experienced in the non-parallel model, as it is straight-
forward to re-set the number of hoverfl y larvae present within a cell during a time-
step so that further hoverfl y larvae are not introduced mid-iteration, and the 
consumption of aphids does not confl ict as information on the number of aphids 
present can also be updated easily mid-iteration. 

 Such programming issues need to be resolved before the agent-parallel model 
can be used further in scenario development. However, the comparisons provide a 
valuable insight into the diffi culties that may arise when simulating increasingly 
complex ABMs in parallel. One possible solution may be the use of ‘ghost’ agents, 
as done by Nichols et al.  (  2008  ) . However, until tested with this particular model, 
it is uncertain if this would fully resolve the issues. More generally, this indicates 
that as the complexity of an ABM increases, it may be more effi cient to distribute 
the model environment (as described in the next section), rather than the agents, 
so that local agents may interact directly and update parameters within a single 
model iteration.  
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    14.6.2   Example of the Use of an Environment-Parallel Approach 

 The environment-parallel approach is essentially a form of domain-decomposition 
in which spatial units are passed out for processing by remote cores, rather than 
individual agents. Two challenges are: fi rstly, to effi ciently distribute the environ-
ment across cores so as to keep the processor load as even as possible and secondly, 
how to handle the interaction between, and movement of, the agents. 

 For the hoverfl y-aphid model described here, handling interactions is relatively 
simple – the landscape (see Fig.  14.11 ) is divided into a regular cellular grid, which 
is used to organise the search process by which hoverfl ies discover their prey. Note 
that this particle-in-cell approach need not constrain the actual spatial locations of 
agents, which may still take on values to a much higher level of precision than cell 
locations (c.f. Bithell and Macmillan  (  2007  ) ) – the cells can simply act as agent 
containers. Since the hoverfl y larvae are relatively immobile their search process is 
approximated as involving only the cell that they currently occupy (as opposed to 
having to search nearby cells – this introduces further complication as noted below). 
Cells can then be handed off to remote cores, for processing of all parts of the model 
that do not involve movement beyond cell boundaries (egg-laying by hoverfl y 
adults, predation by larvae, progression of larvae to adult hoverfl y, production of 
young by aphids, calculation of movement by either type of insect) during the fi rst 
part of the model timestep. Since all cells are independent at this point, this results 
in a high degree of effi ciency in the use of the distributed cores (provided that the 
cell distribution gives equal numbers of insects per core) whilst also resolving the 
issues arising in the agent-parallel methodology described above.  

 For the current simulation, cells are 1 m 2  – this means that typical movement per 
timestep (1 day) exceeds the cell size (see the Appendix) – insect movement may 
therefore necessitate transfer of agents from their current core to a remote core upon 
which their new cell is located. At the end of the above predation timestep, there-
fore, all the cells are synchronized across cores (to ensure that the same stage of 
calculation has been reached) and then a communication step is performed to move 
agents to their correct new locations (see Fig.  14.12 ). As this communication step is 
relatively expensive, it reduces the level of speedup achievable somewhat.  

 In order to implement the above scheme, the model was re-cast into C++, so that 
advantage could be taken of an existing data-parallel formulation (the graphcode 
library – Standish and Madina  2008  ) , in which the MPI-parallel part of the code is 
encapsulated in the formulation of the model grid, along with a utility program 
(named classdesc) that allows packing and unpacking of arbitrarily structured agents 
for transfer between cores, making it possible to defi ne the agent dynamics indepen-
dent of the details of the MPI libraries. 

 The serial model, when re-coded into C++, produces essentially identical results 
(barring very small variations introduced by the use of random number generators) 
to the original Java version. The parallel version of the code in this case shows 
negligible differences from the serial version. The re-coding of the model into C++ 
might be expected to have effi ciency gains before any parallelisation of the model 
(as shown for a similar individual-based model of a plant-aphid-disease system by 
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  Fig. 14.11    Snapshots of spatial distributions of aphids, hoverfl y larvae and hoverfl y adults showing 
spatial distribution over a 100 m × 200 m domain       
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Barnes and Hopkins  (  2003  ) ). However, at least for the current implementation, 
using Java openjdk 1.6.0 and gnu C++ 4.3.2, runtimes of the serial version of the 
code in the two languages proved to be comparable. The parallel versions of the two 
implementations are not compared as the Java simulation had signifi cant errors 
introduced by the parallelisation, as discussed in the preceding sections. An analysis 
of the speed-up of the Java model (when simulating aphids only) is given later in 
this chapter, which also draws comparisons with the speed of the super-individual 
model implementation and the effi ciency of the C++ environment-parallel model. 

 While the environment-parallel version of the model successfully reproduced the 
results of the serial code, the example presented so far has two simplifi cations that 
in practice side-step two of the more awkward issues that need to be addressed in 
creating parallel agent code – namely (a) domain decomposition is performed only 
once at the start of the run, where in principle it should be a dynamic process that is 
adaptive depending on agent density, in order to ensure a balanced load and (b) 
the interaction between agents takes place only within a single cell, thereby limiting 
the necessary processes to a single core. We discuss each of these in the following 
sections.

    (a)    Balancing loads in the spatially decomposed case 
 When the density of agents does not vary signifi cantly across the spatial domain 
(or the density is uniform but the internal computation within each agent is not 
spatially variable), then the decomposition of the domain can be achieved at the 
start of the run by allocating equal area blocks of cells to different processors; see 
e.g. Abbott et al.  (  1997  ) . However, where there are mobile agents, the density of 
occupation of the domain need not be uniform either spatially or temporally. 
Figure  14.11  shows two snapshots from the run of the aphid-hoverfl y model – one 
at day 2 and the other after 45 days. Note that initially the aphids are completely 
uniformly distributed, but hoverfl ies and larvae are concentrated near the middle 
of the domain. However, once signifi cant predation has taken place, aphids are 

  Fig. 14.12    Schematic to show the sequencing of the environment-parallel model. Note that here 
there is no distinction between workers and control – all cores are treated equally and all run the 
same set of processes       
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almost entirely excluded from the domain centre, with a similar distribution to the 
larvae, whereas the hoverfl y adults are almost uniformly spread. Since the aphids 
constitute the bulk of the computational load, a simple block decomposition of 
the domain with cores being allocated horizontal strips of cells across the domain 
from top to bottom would lead to cores near the domain centre spending much of 
their time idle compared to those nearer the upper and lower boundaries. 

 Since the evolution of the density is not necessarily known from the start of 
the run, a re-allocation of the cell-to-core mapping should be recomputed 
automatically as the run proceeds. In practice this is not always a simple 
thing to do effi ciently. Standish and Madina  (  2008  )  use the parallel graph 
partitioning library PARMETIS (  http://glaros/dtc/umn.edu/gkhome/metis/
parmetis/overview    ). Other methodologies exist based on space fi lling curves, 
e.g. Springel  (  2005  )  – see Fig.  14.13 . The latter has the advantage of being 
straightforward to code directly, but unlike PARMETIS, does not explicitly 
take into account communication overhead, and has the added disadvantage of 
requiring a domain that can be easily mapped by a self similar structure (e.g. in 
the example shown, the grid has to have a number of cells in each dimension 
that is a power of 2), making irregular regions with complex boundaries more 
diffi cult to handle.  

 In addition, any domain re-partitioning implies an overhead in re-building 
the allocation of cells to processor cores. How often this needs to be done and 
whether it is worth the time is problem dependent. For example, the C++ ver-
sion of the example code on a 200 × 100 m domain runs 124 days on 32 cores in 
just 7 s. A much larger domain or a larger number of days would likely be 
required before load-balancing the code would provide a practical benefi t.  

  Fig. 14.13    Spatial domain decomposition using a Peano-Hilbert space fi lling curve. A self-similar 
path is drawn connecting all the cells in the grid. The path is then traversed (as shown by the 
arrows), counting up the computational load, and the grid is then segmented along sections of 
the curve so that equal loads can be distributed to each core (here load is assumed proportional 
to the number of agents, shown as red dots)           
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    (b)    Dealing with non-local agent interactions 
 As mentioned above, we can overcome the problem of predators on different cores 
accessing the same prey by using the environment-parallel approach when the 
predators do not look beyond their own local cell. However, once a region of inter-
action exists that extends across many cells, the problem of co-ordinating agent 
actions on different cores re-surfaces. Indeed the typical particle-in-cell code uses 
at least a four or eight cell interaction region about a central cell; see e.g. Bithell 
and Macmillan  (  2007  ) . Once the spatial domain is split across cores, such interac-
tion regions also get subdivided. Typically the fi rst level required to deal with this 
problem is to maintain a ‘halo’ or ‘ghost’ region on each core, in which copies of 
the boundary cells that lie on a neighbouring core, together with  passive  copies of 
their contained agents, are kept on the local machine (Fig.  14.14 ).  

 This allows any independently computable symmetrical or uni-directional 
interactions to be accounted for immediately (examples would be molecular, 
smooth particle hydrodynamic or discrete element models, where forces 
encountered between interacting particles are equal and opposite, or are possibly 

  Fig. 14.14    Domain decomposition where agents interact with others outside their own local cell. 
The circled agent interacts with those in its own cell, but also those in the eight-member neighbour-
hood outlined by the blue square. On decomposition, part of this neighbourhood lies on a remote 
core. A halo region is therefore defi ned around the boundary of each decomposed part of the grid, 
into which passive copies of the appropriate remote cells can be placed. Locally active agents can 
then examine these copies in order to make decisions about interaction with the remotely stored 
agents. In this case, the circled agent can see one active agent on its own core, and 4 passive copies 
that are active on core 2. Agent copies in the halo cells are updated whenever their corresponding 
active counterparts on a remote core are changed           
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determined by an external fi eld, or disease models where contact with infectives 
leads to susceptibles acquiring disease, but the nature of the interaction is uni-
directional, with no feedback to the infecting agent). Update of the passive 
agent copies can be performed at the end of each timestep as required. However, 
for typical ecological or social simulations, this is unlikely to be suffi cient. 
Figure  14.15  illustrates a typical case. Here agent A is a predator that can see 

  Fig. 14.15    Predator–prey interaction taking place across cores.  Prey P  can see both  predator A  and 
the passive copy  B’ .  Predator A , however, only knows about  P , and not about  B’ . Active  predator B  
on core 2 can see two prey, one of which is the passive copy of  P . Predators and prey need to set and 
communicate fl ags to ensure consistency of action (see text). Once fl ags are consistent (fl ag on  P  
labels it with  A , fl ag on  A  labels it with  P ), then prey can be consumed as indicated by the  arrow        
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only the prey (P) on its own core. Agent B can see a prey on its own core, but 
also the passive copy of the prey visible to agent A. Suppose both A and B 
choose to attack prey P. Since the passive copy at fi rst knows nothing of the 
attack of agent A, potentially A and B could independently attempt to consume 
the whole of P, leading to over-counting of the available prey. Any solution 
of this problem must additionally take account of the fact that the order of 
execution on different cores cannot be guaranteed.      

 Lysenko and D’Souza  (  2008  )  encountered a similar problem in the allocation of 
single-occupancy spatial cells in their implementation of Stupid Model (Railsback 
et al.  2005  )  – they overcame this using a two-pass method in which the agents ini-
tially attempted to place a fl ag in the cell they wish to occupy – a pre-allocated pri-
ority allowed agents to compute independently which would succeed – and on a 
second pass, those agents with highest priority got to occupy the cells of their choice. 
However, in general, it will not be known a priori which agent should have priority 
over others, requiring some form of confl ict resolution to be performed: in the pred-
ator-prey case a competition between predators needs to ensue, and the outcome of 
this may not be known ahead of time. Mellott et al .   (  1999  )  discuss such a case in 
their implementation of deer predation by panthers, an extension of the earlier work 
by Abbott et al .   (  1997  ) . In essence, a further layer of communication is needed in 
order to ensure consistency between the cores. Looking back at Fig.  14.15 , we can 
envisage a three-pass algorithm in which the initial exchange is for each predator to 
mark itself with a fl ag indicating their interest in prey P. This fl ag is then copied 
across to the passive copy of the predator (in this case B’) on the neighbouring core. 
Prey P then examines predators that are within range and runs a confl ict resolution 
process (which may involve a more or less elaborate chase sequence involving A 
and B’) to resolve the winner of A and B’, setting a fl ag on itself with the identity of 
the winner. This fl ag can then also be copied across cores, and the predators can 
compare the fl ag on P with their own identity in order to fi nd the outcome. Clearly 
this kind of algorithm may need to be extended in the case of more complex preda-
tor strategies (hunting as groups, for example) or more complex cognitive agents 
able to take account of a more extensive view of their surroundings and the available 
options for attack or escape. Again the result would seem to be that a general algo-
rithm for dealing with this kind of parallel consistency issue is unlikely to be pos-
sible – the necessary solution is dictated by the problem at hand.   

    14.7   Potential Effi ciency Gains 

 This section fi rstly compares the super-individual model with a parallel implemen-
tation of the aphid model only, described in Parry and Evans  (  2008  ) . The aphid-only 
model parallelised well using the agent-parallel method as it lacked the complexity 
of the hoverfl y interactions. This shows how parallelisation and super-individuals 
can both help deal with increasing numbers of agents. 
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 The second part of the section presents the effi ciency gains in terms of memory 
and speed with increasing numbers of processors for the environment-parallel ver-
sion of the aphid-hoverfl y model, to illustrate how effi cient this method has been in 
parallelising this more complex model. 

    14.7.1   Model Speed and Increasing Numbers of Agents 

 Super-individuals always improve the model speed with increasing numbers of 
agents (Fig.  14.16 ). This improvement is linear (shown here on a log-log scale). The 
speed improvement is enormous for the largest simulations: 500,000 individuals 
simulated with super-individuals using a scale factor of 100,000 increases the model 
speed by over 500 times. However, it was shown above that only large simulations 
with a low scale factor (10–100) may benefi t from the super-individual approach. 
Thus for these scale factors, an improvement in model speed of approximately 
10,000–30,000% (100–300 times) the original speed would result for simulations of 
100,000–500,000 individuals.  

 For the agent-parallel implementation, adding more processors does not neces-
sarily increase the model speed. Figure  14.16  shows that for simulations run on two 

  Fig. 14.16    Plot of the percentage speed up from the individual-based (non-parallel) model against 
number of agents modelled: comparison between super-individuals of scale factor 10, 100, 1,000, 
10,000, 100,000 and 500,000       
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cores (one control core, one worker core) the simulation takes longer to run in 
parallel compared to the non-parallel model. Message passing time delay and the 
modifi ed structure of the code are responsible. As the number of cores used increases, 
the speed improvement depends on the number of agents simulated. The largest 
improvement in comparison to the non-parallel model is when more than 500,000 
agents are run across 25 cores, where model speed does scale linearly as the number 
of individuals increases. However, the parallel model is slower than the serial code 
for fewer than about 30,000 individuals. When only fi ve cores are used, the relation-
ship is more complex: for 100,000 agents, fi ve cores are faster than the non-parallel 
model, but for 500,000, the non-parallel model is faster. This is perhaps due to the 
balance between communication time increasing as the number of cores increases 
versus the decrease in time expected by increasing the number of cores. Overall, 
these results seem to suggest that when memory is suffi cient on a single processor, 
it is unlikely to be effi cient to parallelise the code unless the number of individuals 
is suffi ciently large.  

    14.7.2   Model Memory Use and Increasing Numbers of Agents 

 The individual-based model has a linear increase in the memory used as agent num-
bers increase (shown here on a log-log scale, Fig.  14.17 ).  

 Super-individuals always reduce the memory requirements of the simulation 
(Fig.  14.17 ). The relationship between the number of (real) individuals in the simu-
lation and the memory used is linear for each scale factor (number of individuals 
represented by each super-individual). The memory requirement for a simulation of 
super-individuals has a similar memory requirement to that of an individual-based 
simulation with the same number of agents as super-individuals. For simulations of 
100,000 agents, this can reduce the memory requirement to less than 10% of the 
memory required for the individual-based simulation with a scale factor of 10,000. 
For simulations of 500,000 agents, this may be reduced to around 1% with the same 
scale factor. Thus, when large scale factors are used and as agent numbers increase, 
there is very little extra demand on memory. 

 The mean maximum memory usage by each worker core in the agent-parallel 
simulations is signifi cantly lower than the non-parallel model, for simulations using 
more than two cores (Fig.  14.17 ). The relationship between the number of agents in 
the simulation and the memory used is linear for each number of cores. The two 
core simulation used more memory on the worker core than the non-parallel model 
when the simulation had 100,000 agents or above. This is probably due to the mem-
ory saved due to the separation of the visualization of the output onto the control 
core being over-ridden by the slight additional memory requirements introduced by 
the density calculations. However, when 5 and 25 cores are used, the memory 
requirements on each core are very much reduced, below that of the super-individual 
approach in some cases. The super-individual approach uses the least memory for 
500,000 individuals, apart from when only a scale factor of 10 is used (after which 
the 25 core parallel simulation is more memory effi cient).  
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    14.7.3   Hoverfl y-Aphid Model Environment-Parallel 
Programming Effi ciency 

 The C++ programmed environment-parallel version of the hoverfl y-aphid model 
was run on a dedicated cluster at CSIRO Black Mountain, Canberra. Each node in 
this network has 28x dual 3.2 GHz Xeon, with 2 or 4 Gbytes per node. 

 The speed-up of the model approximates a power law for up to 32 cores in 
comparison to the non-parallel serial model code run on a single processor 
(Fig.  14.18 ). At 64 processors the speed-up drops, probably due to the overhead 
required for each processor to run the model and the time taken for processors to 
communicate now exceeding the time take for the distributed model to run (at 32 
processors the model takes less than 7 s to run) – if tested with a longer or larger 
(more agents) run of the model, 64 processors would perhaps continue to show 
increased effi ciency as this would remove the effect of this overhead. In terms of 
memory, the parallel model uses much less memory per processor than the serial 
implementation, again approximately following a power-law decay up to 32 pro-
cessors (Fig.  14.19 ). Overall, of the two parallel approaches, the environment-
parallel version of the model, written in C++ instead of Java, proved more effi cient 
and successful at handling parallel processing of complex agent interactions in 
this case study.     

  Fig. 14.17    Plot of the mean maximum memory used in a simulation run against number of agents 
for the model, for different scale factors for super-individuals       
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  Fig. 14.19    Environment-parallel hoverfl y-aphid model: Plot of the mean maximum memory used 
per processor in a simulation run against number of processors       

    14.8   Guidelines for Agent-Based Model Scaling 

 There is no standard method for the development of ABMs, although there are a 
number of agent modelling toolkits and recently some design protocols have arisen, 
e.g. Gilbert  (  2007  ) , Grimm et al.  (  2006  )  and Grimm and Railsback  (  2012  ) . Therefore, 
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as stated in Parry  (  2009  ) , there is no standard method with which a large scale ABM 
can be best developed. Instead, Parry  (  2009  )  puts forward some key questions to 
consider at this stage of model development, from Parry  (  2009 , pp 152):

    1.    What program design do you already have and what is the limitation of this 
design?

   (a)    What is the memory footprint for any existing implementation?  
   (b)    What are your current run times?      

    2.    What are your scaling requirements?

   (a)    How much do you need to scale now?  
   (b)    How far do you need to scale eventually?  
   (c)    How soon do you need to do it?      

    3.    How simple is your model and how is it structured?  
    4.    What are your agent complexities?  
    5.    What are your output requirements?     

 The answers to these questions will help to determine the kind of solution you 
might seek to the problems of scale. By initially investigating the ‘bottlenecks’ 
in your model, you will be able to understand whether it is memory availability 
or processor speed that is limiting your model. If simple adjustments to your 
model code are insuffi cient to solve this, other solutions will then need to be 
sought. Perhaps a hardware upgrade may be suffi cient, but if anything other than 
moderate scaling is required a more drastic but longer term solution might be 
necessary. 

 Question 3 is important to help decide which method may be optimal to scale up 
the model. Model complexity, agent interaction and spatial model environments 
will all pose challenges to the use of any method presented here. Some suggestions 
are made in this chapter as to how best to use some popular solutions when scaling 
a complex model. However, this cannot be exhaustive and a great deal of experi-
mentation, creativity and development of solutions appropriate to the individual 
model is likely to be necessary. 

 Model outputs may also pose limits on the model, in terms of memory for data 
storage or the way that the output is handled (which may become critical as the 
model is scaled up). This should be considered when scaling-up an ABM and alter-
ing the model structure. 

    14.8.1   A Protocol 

 In relation to the key considerations highlighted above, a simple protocol for devel-
oping a large scale ABS was defi ned by Parry  (  2009 , pp 153):

    1.    Optimise existing code.  
    2.    Clearly identify scaling requirements (both for now and in the future).  
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    3.    Consider simple solutions fi rst (e.g. a hardware upgrade).  
    4.    Consider more challenging solutions.  
    5.    Evaluate the suitability of the chosen scaling solution on a simplifi ed version of 

the model before implementing it on the full model.     

 The main scaling solution to implement (e.g. from Table  14.1 ) is defi ned by the 
requirements of the model. Implementation of more challenging solutions should be 
done in stages, where perhaps a simplifi ed version of the model is implemented on 
a larger scale using some of the techniques described here. Also, as demonstrated 
here, it is best to initially test the model with numbers lower than perhaps required 
for realism, to allow for faster run times when testing and experimenting with dif-
ferent approaches. Agent simulation development should originate with a local, 
fl exible ‘prototype’, and then as the model development progresses and stabilises 
larger scale implementations can be experimented with (Gasser et al.  2005  ) . For 
complex solutions, such as parallel computing, a simplifi ed model is often nec-
essary to experiment with large numbers. Improvements to model effi ciency are not 
necessarily linear and optimal solutions tend to be model specifi c. Thus solutions 
demonstrated here will work for some ABMs but perhaps not so well for others. 
A key point, however, is to devise a set of test cases against which the code modifi -
cations can be validated at every stage. Although this should be a standard part of 
any software development programme, it becomes even more vital in developing 
parallel solutions, where subtle issues to do with timing of agent updates and access 
to data across cores can lead to diffi cult debugging problems.       
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       Appendix: Rules for Hoverfl y Sub-Model 

      Development 

 Development of hoverfl ies is highly simplifi ed, and birth and death is minimised 
(see below). The only development that occurs in the model is the transition of 
larvae to adults. In this, there is a 50% probability that the hoverfl y will be female 
(determined at birth) and male hoverfl ies are not included in the model from this 
stage onwards as their activities are assumed not to infl uence the distribution of 
larvae and thus the mortality of the aphids. 

 The transition from larvae to adult is modelled with the assumption that the 
larvae need to eat a minimum of 120 aphids in total to reach a weight at which they 
are able to pupate (28 mg) (Ankersmit et al.  1986  ) . Thus, once this number of aphids 
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has been consumed by an individual larva it pupates and becomes an adult (if male, 
it is then removed from the model).  

      Reproduction 

 In this model oviposition occurs once within a single 1 m 2  area (i.e. grid cell) per 
day. This occurs providing aphids are present and the location has no other larvae. 
It is assumed only one egg is laid per day within the cell, and the egg is assumed to 
become a larva the next day. This is probably an underestimate; however, it can 
easily be modifi ed at a later stage. A suggested estimate may be up to 49 eggs within 
a 1 m 2  area per day, based upon Harmel et al.  (  2007  ) , where a high oviposition rate 
of  E. balteatus  was observed when aphid-infested potato was studied (a mean of 
48.9 eggs per laying and per female). This study also found that no eggs were pro-
duced by the hoverfl y on healthy aphid-free plants.  

      Mortality 

 The scenarios shown here do not include adult hoverfl y mortality. Experiments with 
mortality in the model showed that adult mortality has a high impact upon the popu-
lation dynamics of the syrphids and should be included in further developments of 
the model. 

 Mortality of larvae occurs when no aphids are present to feed them (possible if aphids 
are consumed or are alate and fl y away); otherwise there is no mortality of larvae.  

      Movement and Dispersal 

 Movement of syrphids and oviposition is key to this model. A number of rules govern 
the oviposition of larvae by female adult syrphids:

   Search for prey is not random (Kindlmann and Dixon  • 1993  ) .  
  Refrains from ovipositing in the presence of conspecifi c larvae (Hemptinne et al. • 
 1993  ) .  
  Avoids laying eggs close to old aphid colonies, recognized by the presence of • 
winged aphids (Hemptinne et al.  1993  ) .    

 In this model, rules govern a non-random search for prey, where eggs are only laid 
where aphid colonies are present and oviposition does not occur where larvae are already 
present. The model does not include a rule to recognise old aphid colonies at present, but 
this information is available in the model and could be included at a later stage.  
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      Basic Movement 

 A model of syrphid predator movement proposed by Kareiva and Odell  (  1987  )  is 
that predators move at constant speed but change direction of movement more often 
when satiated (area restricted search), and that increase in prey density increases the 
feeding rate and satiation of the predators (applied to  Uroleucon nigrotuberculatum  
and  Coccinella septempunctata ). However, this may have restricted applicability to 
the early stages of aphid colony development (Kindlmann and Dixon  1993  )  and it 
has not been proved that this strategy is optimal (it was arbitrarily chosen). 

 This model will use a simplifi ed movement rule based upon this principle – the 
adult female hoverfl ies move in a random direction, but move a greater distance if 
no aphids are present or the crop is early in season. It has been shown that crop 
growth stage and habitat type may infl uence syrphid movement patterns and ovipo-
sition (Powell et al.  2004  ) , providing the foundations for this behavioural rule. 

 It is assumed that hoverfl ies move between 4 and 6 m a day (given that a mark-
recapture study of Holloway and McCaffery  (  1990  )  found hoverfl ies moved between 
20–30 m in a 5 day period). Thus, in the model, ‘focused’ movement in favourable 
habitat (margins or late season crop) or around aphid colonies is set between 0 and 4 m, 
and in unfavourable habitat (early season crop), movement is set at 4–6 m per day.  

      Foraging Optimisation 

 It has been suggested that the model of Kareiva and Odell  (  1987  )  can be improved 
by adding terms to describe foraging optimisation (Kindlmann and Dixon  1993  ) . 
This will enable the model to function at later stages of aphid colony development. 
The ability of the predator to assess the present and future quality of an aphid colony 
for their larvae should be included in the model. The effect of more than one aphid 
colony present in a landscape should also be considered – the presence of other 
colonies is likely to reduce the optimal number of eggs laid by the predator in a 
particular aphid colony (Kindlmann and Dixon  1993  ) . 

 This is applied in the model through a simple behavioural rule: if there are aphids 
present within a given 1 m 2  location but other larvae are also present, the hoverfl y 
does not oviposit but moves on a short distance.  

      Parasitation/Predation 

 A very simple model of aphid consumption was constructed based on the research 
of Ankersmit et al.  (  1986  ) :

     
× ×= × +0.0337( 24) 0.0253( 24)(0.3119 (2.512 )A AMORT e D e    (14.1)  
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where  MORT  is the predation rate per day;  A  is the age of the Syrphid larvae in days; 
and  D  is the density of aphids per cm 2  (which is scaled down from 1 m 2  in the 
model). More recent, complex models exist, e.g. the use of a Holling type-III func-
tion by Tenhumberg  (  1995  ) . However, the nature of the model presented here at this 
stage does not require this level of complexity.    

  Glossary 

     Please note this glossary is largely taken from Parry  (  2009  ) .   

  Beowulf cluster    A scalable performance computer cluster (distributed system) 
based on commodity hardware, on a private system network, with open source 
software (Linux) infrastructure (see   http://www.beowulf.org/    )   

  Block Mapping    A method of partitioning an array of elements between cores of a 
distributed system, where the array elements are partitioned as evenly as possible 
into blocks of consecutive elements and assigned to processors. The size of the 
blocks approximates to the number of array elements divided by the number of 
processors.   

  Central Processing Unit (CPU)    May be referred to as a ‘core’ or ‘node’ in paral-
lel computing: computer hardware that executes (processes) a sequence of stored 
instructions (a program).   

  Cyclic Mapping    A method of partitioning an array of elements between cores 
of a distributed system, where the array elements are partitioned by cycling 
through each core and assigning individual elements of the array to each core 
in turn.   

  Grid    Computer ‘Grids’ are comprised of a large number of disparate computers 
(often desktop PCs) that are treated as a virtual cluster when linked to one 
another via a distributed communication infrastructure (such as the internet or 
an intranet). Grids facilitate sharing of computing, application, data and storage 
resources. Grid computing crosses geographic and institutional boundaries, lacks 
central control, and is dynamic as cores are added or removed in an uncoordi-
nated manner. BOINC computing is a form of distributed computing where idle 
time on CPUs may be used to process information (  http://boinc.berkeley.edu/    )   

  Graphics Processing Unit (GPU)    Computer hardware designed to effi ciently per-
form computer graphics calculations, particularly for 3-dimensional objects. It 
operates in a similar manner to a vector computer, but is now widely available as 
an alternative to the standard CPU found in desktop computers.   

  Message passing (MP)    Message passing (MP) is the principle way by which parallel 
clusters of machines are programmed. It is a widely-used, powerful and general 
method of enabling distribution and creating effi cient programs (Pacheco  1997  ) . 
Key advantages of using MP architectures are an ability to scale to many proces-
sors, fl exibility, ‘future-proofi ng’ of programs and portability (Openshaw and 
Turton  2000  ) .   
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  Message passing interface (MPI)    A computing standard that is used for program-
ming parallel systems. It is implemented as a library of code that may be used 
to enable message passing in a parallel computing system. Such libraries have 
largely been developed in C and FORTRAN, but are also used with other 
languages such as Java (MPJ-Express   http://mpj-express.org/    ). It enables devel-
opers of parallel software to write parallel programs that are both portable and 
effi cient.   

  Multiple Instruction Multiple Data (MIMD)    Parallelisation where different 
algorithms are applied to different data items on different processors.   

  Parallel computer architecture    A parallel computer architecture consists of a 
number of identical units that contain CPUs (Central Processing Units) and func-
tion as ordinary serial computers. These units, called cores, are connected to one 
another. They may transfer information and data between one another (e.g. via 
MPI) and simultaneously perform calculations on different data.   

  Single Instruction Multiple Data (SIMD)    SIMD techniques exploit data level 
parallelism: when a large mass of data of a uniform type needs the same instruc-
tion performed on it. An example is a vector or array processor and also a GPU. 
An application that may take advantage of SIMD is one where the same value is 
being added (or subtracted) to a large number of data points.   

  Stream Processing    Stream Processing is similar to a  SIMD  approach, where a 
mathematical operation is instructed to run on multiple data elements simulta-
neously.   

  Vector Computer/Vector Processor    Vector computers contain a CPU designed 
to run mathematical operations on multiple data elements simultaneously (rather 
than sequentially). This form of processing is essentially a SIMD approach. The 
Cray Y-MP and the Convex C3880 are two examples of vector processors used 
for supercomputing in the 1980s and 1990s. Today, most recent commodity CPU 
designs include some vector processing instructions.    
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  Abstract   Errors in input data, parameterisation, and model form cause errors and 
uncertainty in model outputs. This is particularly problematic in non-linear systems 
where small changes propagate through models to create large output differences. 
This chapter reviews the issues involved in understanding error, covering a broad 
range of methodologies and viewpoints from across the spatial modelling sciences.      

    15.1   Introduction to Error and Its Terminology 

   There are known knowns. These are things we know that we know. There are known 
unknowns. That is to say, there are things that we know we don’t know. But there are also 
unknown unknowns. There are things we don’t know we don’t know. 

 Donald Rumsfeld: February 12, 2002   

 The quote above outlines, as best as it can, an important truth in modelling the 
real world: that the ramifi cations of ignorance can be tempered by meta-information 
on the level of that ignorance. Whatever the appropriateness of Donald’s statement 
at the time (on which, see Žižek  2004  ) , the Rumsfeld ‘Ladder of Ignorance’ never-
theless summarises nicely that it is one thing not to know something, and it is quite 
another to be able to quantify that ignorance and to summarise it. 1  While there are 
things we know with perfect accuracy in modelling the real world, in general these 
are few and far between. It is much more the case that we know that there is some  error  
in our understanding, and this leads to  assumptions  in our models and  uncertainty  
about our model results that need to be communicated to users of the results. If we are 
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Suter et al.  (  1987  ) .  
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lucky, we can quantify this error and/or the resultant uncertainty. If we are very unlucky 
we either can’t do this, or we don’t know about the error in the fi rst place: we have 
an unknown unknown, a situation to be avoided at all costs. 2  

 Generally in agent-based modelling we have a diffi cult job, as we tend to deal 
with concealed and non-linear systems which may be infl uenced by multiple vari-
ables. Some of these variables we may not recognise as important (an error of 
understanding, that is, an  epistemic error ; see Faber et al.  1992  ) . Indeed, we are 
often uncertain as to how closely the broader model form which these variables slot 
into replicates the system in the real world. It is often the case that we have data and 
need to infer at least part of the model from it. It may be that other models would do 
the same quality job against the data we have, and a better job against new data: the 
so-called model  equifi nality  problem (Beven and Binley  1992  ) . Even if we have the 
right form and variables, we may have multiple options for the weights of particular 
variables within the model (the  inverse problem ). These diffi culties have led many 
to suggest that such models should be regarded as grand “thought experiments”, not 
so much designed to predict accurately as to allow us to refl ect on the systems we 
are studying and our understanding of them (Di Paolo, Bullock and Noble  2000  ) . 

 Traditionally, however, modellers tend to feign confi dence in their model forms 
and concentrate on error issues associated with another feature of dealing with 
real-world multivariate systems: that some of the variables we don’t want to use 
will cause  noise  in the real data records of those we do. Noise is essentially varia-
tion in our variables of interest around the values we expect to represent their ‘true’ 
or ‘important’ value, but it is diffi cult to defi ne objectively. At best ‘true’ in this 
context means, tautologically, uninfl uenced by the variables causing the noise, 
while ‘important’ means, equally tautologically, the signal that we need to under-
stand the system given the variables we’ve chosen to include. Noise produces a 
 sampling error , as we hope sampling for our model inputs will generally give us 
the ‘true’ or ‘important’ behaviour of a sampled system, but what we get instead is 
varied by outside infl uences, including the mechanics of the measurement process. 
If we use the data as the foundation of a model prediction, such an error will 
plainly cause problems. 

 Noise is frequently treated as an  aleatory  [i.e. random]  error  (which may be 
regarded as, a type of  ontological  (Walker et al.  2003  )  or  phenomenological  (Faber 
et al.  1992  )   uncertainty ), added to an underlying signal. The apparently random 
nature of noise is both problematic and of use. More often than not our defi nition of 
something as ‘random’ is an admission of our ignorance of the infl uences on a 
system, or our inability to model them directly and deterministically. However, even 
though the acknowledgement of noise represents something of an admission of 
failure, if we know something of the form of the errors involved we can build a 
description of them into our model. If our model is also a perfect representation of 

   2   Here we will largely deal with ignorance from the viewpoint of uncertainty. For more detailed 
discussions of wider types of ignorance in modelling see: Faber et al.  (  1992  ) , Walker et al.  (  2003  ) , 
and Brown  (  2004  ) .  
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the bit of the system we are interested in, this gives us the so-called  Perfect Model 
Scenario . As noise-based errors can usually be treated as random, one simple way 
we can include such errors is by developing  stochastic models , which include some 
randomisation of the key variables within strictly controlled ranges or distributions. 
This is usually achieved through  Monte Carlo testing : the distribution of each input 
variable and/or parameter in the model is sampled randomly, but with an emphasis 
on more probable values appearing proportionally more often (so-called  Monte 
Carlo sampling ); the model is then run and the process repeated multiple times. 
Such stochastic models will give a distribution of results if run enough times, and 
this is often treated probabilistically (for a clear agent-based example centred on 
generating uncertainty statistics, see Bobashev and Morris  2010  ) . However, for 
social modellers at least, the top-down analysis of fi nal aggregate results isn’t facili-
tated by the fact that, by-and-large, we lack the very large samples over time other 
modelling disciplines have and therefore struggle to understand whether the fi nal 
probabilistic results match the real world well or poorly. This data scarcity some-
times perversely encourages social modellers to abandon randomisation and make 
one-number ‘dart-board’ predictions that attempt to hit the few real-world points we 
have as closely as possible. The alternative to top-down probabilistic assessments of 
results are bottom-up attempts to delimit the effects of different sources of error as 
they  propagate  through the system. Unfortunately these are far from simple in non-
linear systems. There is a large body of literature on understanding the propagation 
of error from model inputs, through the model, to outputs/predictions, and for lin-
ear/linearisable mathematical models there are well-trodden solutions. However, 
these solutions usually rely on us being able to characterise the distribution of the 
noise or other error involved. For social modellers the lack of data highlighted above 
often makes this problematic. Moreover, many of the techniques assume the distri-
bution is Gaussian/normal. For non-linear systems like ours this need not be the 
case – indeed, noise may additionally have a changing character ( heteroscedasticity ), 
and the system may have inputs that vary in importance (i.e. be  non-stationary ) – all 
of which render many of the traditional methods for dealing with the propagation of 
errors problematic. 

 In some cases, then, we may be limited to following some traditional non-linear 
systems analysis (e.g. Smith et al.  2010b  )  in bounding worst-case scenarios. This is 
the position that non-linear uncertainty analysts have endeavoured to move away 
from for years, not least because identifying and quantifying a “worst” case is 
usually diffi cult (Suter et al.  1987  ) . Moreover, it may be that the error propagating 
through our systems renders even that approach problematic. Non-linearities tend to 
accentuate small initial data fl uctuations (Lorenz  1963  )  until the small differences 
between our noisy model input data and the ‘true’ signal we were hoping for at the 
start have exploded to cause wild behaviour in our fi nal model results. In such situa-
tions, the resultant uncertainty range swamps the range of predictions we suspect the 
system might have given if presented with the ‘true’ data. Such errors bloom equally 
where the  digital precision  with which we can deal with numbers in computer 
systems fails us and we get initially small changes to our fi gures through, for example, 
truncation. If our model is predictive over time, such exploding differences will only 
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increase as we move further from the starting conditions. As such, a nuanced approach 
to error at different stages of the model process seems critical. However, the 
peculiarly untraditional architecture of agent-based systems, and their complicated 
interactions and iterations, do create diffi culties in applying the techniques developed 
for segregating and quantifying errors in more traditional non-linear systems 
modelling. For example, one standard technique used to more easily understand how 
errors are propagated is to linearize non-linear models at particular points of 
equilibrium (for example, with a Taylor expansion), under the assumption that these 
equilibria are the key modes of operation of the system. The view is taken that the 
loss of accuracy at these points due to (often low-order) linearization is a worthwhile 
sacrifi ce to make to understand the propagation. In agent-based systems, however, 
the large number of interactions between elements with mixed-method rulesets make 
any such approach diffi cult, on top of which most agent-based modellers see non-
linear dynamics and a lack of equilibrium in a far more positive light than those 
working in alternative modelling paradigms. 

 Along with errors of the types above, uncertainty is also produced by  biases  in 
our system or inputs: systematic shifts in our model or results away from the ‘true’ 
picture. Although traditional modellers make a clear distinction between bias and 
error, for most models of any complexity the distinction is not always so clear – a 
missing variable from a model, for example, may be an error of understanding and 
a systematic bias, but may display as a set of variations that appear to be noise; each 
problem is related but often handled separately before the overarching issue is 
appreciated. 

 This chapter will outline some of the errors and uncertainties associated with 
modelling the real world, and introduce some of the techniques to deal with such 
issues. It is worth noting that the chapter only really deals with error from the point 
of view of uncertainty (the assessment of error in the calibration, verifi cation, 
sensitivity testing, and validation of models is dealt with more fully in Ngo and See 
 2012  ) . This chapter is broadly divided into the sources of error and uncertainty, 
following through the modelling process from inputs to outputs, and ends on an 
optimistic note with a discussion of why we stand some chance of dealing with this 
diffi culty. It is probably beholden of the author to note that the size and scope of 
the uncertainty literature is signifi cant beyond the limitations of a single chapter in 
a book, so this review, by necessity, is more selective in some areas than others.  

    15.2   Uncertainty Associated with Input Data 

 Most agent models are based, in some manner, on the real world. Even the most 
abstract models contain rulesets built on qualitative or quantitative data collection. 
Real world data can be directly used as an input during formation of a model’s 
structure, the calibration of parameters, or for driving the model. This section looks 
at the errors that result from the recording process for this data; having insuffi cient 
data; missing data within a dataset of otherwise continuous values; and errors that 
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result from the pre-processing of data, such as classifi cation binning. Generally 
it has to be noted that the complexities of dealing with sources of data mean that 
we often assume little error in our input data, any prediction error being usually 
attributed to our parameterisation. This is far from ideal. 

    15.2.1   Data Measurement and Transcription Errors 

 Plainly, however data is measured there will generally be errors associated with 
the process, including transcription errors. 

 Input error is most successfully quantifi ed for instrumental noise, where the 
instrument can be checked against multiple readings of the same physical property. 
In this situation, errors are represented by metrics of  accuracy  (closeness of the 
sample or a derived statistic to the real value) and  precision  (the tightness or lack of 
variance of a sample repeated under the same set of conditions). Provided there is 
no consistent bias in the sample, levels of accuracy will largely be determined by the 
measurement precision. Standard measures of variance will provide a representa-
tion of the error associated with a lack of precision, and, as most instrument errors 
are Gaussian, the usual fi gures reported are the standard deviation of the sampling 
distribution (the  standard error ) and the sample mean, in the form mean ±SD (see 
Nagele  2001  ) . Such reported fi gures may be useful in the remaining modelling pro-
cess provided the error distribution is Gaussian or the fi gures adapted to a reported 
alternative distribution. The JCGM/ISO GUM methodology (  http://www.bipm.org/
en/publications/guides/gum.html    ) is the standard in this area, and utilises a probabi-
listic treatment of the belief one might hold in a measurement and standard propaga-
tion of error techniques (see Sect.  15.5.1 , below). 

 For spatially located data, particularly data that arrives without a clear error 
distribution associated with it, more care has to be taken that the data error is not 
heteroscedastic. That said, information about the spatial fi eld, for example that all 
points within an area should be the same, or there is positive spatial autocorrelation 
(i.e. points should be more similar to nearer neighbours), can allow estimates of the 
distribution of errors to be made. Heuvelink  (  1998  )  gives details (see also, for 
spatio-temporal autocorrelation, Powers  2005  ) . Spatial/locational uncertainties in 
spatial data are covered by an extensive literature, but Zhang and Goodchild  (  2002  )  
provide a very comprehensive overview of standard techniques in raster, vector, 
and spatial object uncertainty modelling. Research issues in semantic uncertainty 
associated with objective and subjective spatial data are reviewed in Fisher et al. 
 (  2004  )  and Evans and Waters  (  2007  ) , respectively. 

 Measurement errors that are non-instrumental, for example errors encouraged 
by qualitative survey design, are complicated issues of psychology and semiotics. 
They are one of the most important areas of concern for agent-based modelers 
wishing to deal with qualitative rulesets and decision making. Good survey design 
can go a long way – a good starting point on minimizing errors in quantitative 
judgments is Poulton  (  1989  ) , while Groves et al.  (  2009  )  concentrate on minimizing 
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errors in surveys more generally. In addition, the use of fuzzy sets defi ned from 
surveys as model inputs can at least acknowledge and embrace the problem (Zadeh 
 1975,   1976 ; Verkuilen  2005 ; see Evans and Waters  2007 , for a spatial example). 

 If we are lucky, such issues are simple and systematic biases we can recognize 
and may, infact, be of interest: for example, a bias from mis-understanding the 
intended levels of a Likert scale survey, or a genuine attempt at fraud. Issues of 
genuine fraud during data collection might be revealed by comparison with normal 
(or other) distributions, or through comparison of chosen digits in the data with the 
Benford distribution  (  Kiesling undated ; Cho and Gaines  2007 ; Mebane and Kalinin 
 2009  ) , but more usually they require detailed stakeholder knowledge and trust to be 
developed during the modelling project to solve them. 

 Transcription errors should become increasingly rare as more data is collected 
electronically at source. Most will be treated as noise, unless we are lucky enough 
to have a consistent bias, though some will be recognisable as outliers. The standard 
source on recognising and dealing with outliers is Barnett and Lewis  (  1994  ) . For an 
updated treatment in multivariant space, see Cerioli and Farcomeni  (  2011  ) , while 
López  (  1997  )  and Rogers et al.  (  2009  )  give good starting points for recognising 
geographical/spatio-temporal outliers.  

    15.2.2   Appropriate Sample Size 

 The inherent complexities of most of the systems agent-based modellers deal with 
mean than there is a complicated, multivariant, and non-linear relationship between 
variables of interest and system predictions. To capture the complete set of potential 
combinations of variables would involve considerable sampling efforts, in systems 
that are often hard, if not impossible, to sample well. In addition, we have the problem 
of noise distorting our samples. To understand noise we need repeated measurements 
of the same quantity/system state, with enough samples taken to defi ne the distribu-
tion of the measurements under the infl uence of the noise sources. Once we have this 
distribution we may use it probabilistically (see above), or we may try to estimate 
what the noiseless data would look like. In general, to get as close to the noiseless 
value as possible, we have to pick a representative statistic to estimate that is as noise-
less as possible: for example, if the noise is Gaussian, the arithmetic mean of the popu-
lation. Where we want continuous data we may smooth out the noise.    Keesman and 
van Straten (1989) summarise some of the opportunities for data smoothing, while 
Beck  (  1987  )  summaries some of the issues. However, it isn’t especially clear whether 
treating data to remove noise is always appropriate. We generally try to minimise the 
effects of noise on inputs, especially with systems that explode errors non-linearly, as 
it is usually regarded as a detrimental infl uence from things we’d like to exclude from 
our models. However, this needs to be determined on a case-by-case basis; if the real 
systems suffer from such noise, are we correct to exclude it by, for example, statistical 
pre-processing? A better approach (Sect.  15.6 ) may be to build systems that show the 
same resilience to noise that we see in real world systems. 
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 If we are going to try to remove noise, and we’ve identifi ed our statistic of interest, 
we need to sample suffi ciently highly that we can estimate that value in the popula-
tion accurately from the samples. But how do we decide how large a sample is 
‘suffi cient? Traditionally this has come down to trading off expensive increases in 
sample size against inherent risk that with small samples your value of interest may 
be unrepresentative. For situations where the value of interest has a well character-
ised, independent, and constant variation, we can directly calculate the size of sample 
needed for us to be able to make the estimate of the true value at some level of 
precision within some pre-defi ned levels of confi dence. For example, with random 
independent samples, the standard error of the sample mean is the population 
standard deviation, divided by the square root of the sample size. By adjusting the 
sample size, we can reduce the error by a known degree. It is usual to trade off 
sample error and size for a specifi c confi dence, such that if multiple samples were 
taken the number for which the true value of the statistic would fall within the range 
of the sample-based estimate ± the sample error would be, say, 95%. 

 However, this process is not so simple when the data/noise is non-normal and not 
independent, as it frequently is in non-instrumental noise cases. For basic non-normal 
distributions, appropriate sample sizes can be estimated for a given confi dence using 
Kolmogorov-Rényi statistics (Spear  1970  ) . However, for time series and spatial data, 
this process becomes more complicated. Spatial and temporal autocorrelation (where 
nearby points have related values) can have a signifi cant effect on the apparent sample 
size of sampled datasets by introducing sample redundancy (Getis  2007  ) . These issues 
become particularly important when datasets for validating models against are drawn 
from the same area by sample splitting (Araújo et al.  2005 ). Signifi cance testing based 
on autocorrelated data should take autocorrelation into account (though rarely does). 
A summary of some of the general methods for dealing with spatial autocorrelation 
can be found in Legendre ( 1993 ) and Getis  (  2007  ) . Kelejian and Prucha  (  2010  )  outline 
something of the size of the problem facing spatial modellers in their discussion of the 
relationships between sample size, spatial correlation, and missing data, in regression 
models with spatial lags. 

 Where non-spatial data suffers from heteroscedasticity or non-independence of 
noise, it can be treated (see Gallagher and Doherty  2007 , for details) which helps 
with some issues. Spatial heteroscedasticity can further complicate the picture 
though (see    Lauridsen and Kosfeld  2007  ) ; for example, positive autocorrelation in 
errors can falsely reduce error levels (Araújo et al.  2005 ; Getis  2007  ) . With more 
complicated non-linear systems, we often have to take a slightly wider viewpoint 
and concentrate instead on how input variation affects the modelling we are trying 
to do. When we are trying to model a non-linear system, and the function that we 
are trying to estimate parameters for is known, it is possible to sample repeatedly to 
simultaneously build up a picture of the error and the resultant sample size needed. 
Methodologies can be found in the comparison provided by Malinarič and Ďuríšek 
 (  2004  ) . If we know something of the variation in the model error at key points, we 
can sample these more frequently (O’Neill et al.  1980 ; Beck  1987  ) . However, with 
complex systems and limited sampling budgets it is sometimes more practical to 
use more distribution-free methods, for example ‘sampling to redundancy methods’, 
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like species area curves, where sample novelty across multiple samples is plotted 
against sample numbers or size to determine when sampling is suffi cient to capture 
all new elements in a population (Lyman and Ames  2007  ) . While such methods give 
a poor statistical confi dence, they do at least ensure a sample across the potential 
range of values has been taken. A fi nal issue is that in many of the systems we study 
the relationships are non-Markovian, that is their future may be infl uenced by the 
specifi c pathway the system has taken historically, rather than just the current instan-
taneous, autocorrelated, state. This introduces considerable complications into the 
process of determining appropriate sample sizes. 

 Adequately sampling the set of potential combinations of variables and predictands 
is diffi cult in complex and non-linear systems with non-normal and interdependent 
variables, and it is doubly so if we also wish to understand the errors in the data. As 
such, we are generally thrown back on validating models at output, rather than trying 
to statistically validate the representativeness of the inputs.  

    15.2.3   Missing Data 

 Missing data is usually a result of disrupted sampling, or the repurposing and 
combination of previously collected datasets. For traditional models missing data 
can often be problematic, especially where data is iteratively re-fed into the model. 
Artifi cial intelligence systems based around weight-adjusted learning (like artifi cial 
neural networks) and/or case-by-case decision making (like agent-based models) 
tend to respond better to missing data in both calibration and prediction than 
traditional models. Nevertheless, sometimes it is necessary to deal directly with 
missing data for computational or predictive purposes. 

 Where data is reasonably well distributed it is sometimes possible to interpolate 
new data into the gaps using a function based on the data we have. For simple 
datasets with well-known statistical properties, the techniques used for developing 
the functions (such as linear least-squares regression) have well-known error 
assessments that utilise all the data brought in to calculate the function. However, 
for complex non-linear datasets – especially spatial datasets – where the error and 
function are not easily characterised, it is more common to assess the error by 
rotational cross-validation (repeated removal of known data points, construction of 
the interpolation, and comparison of the interpolation against the removed points). 
This has the strengthening advantage of maintaining some distinction between the 
datasets used to construct and validate the function. A short but useful review of 
the relevant literature on missing spatial data can be found in Kelejian and Prucha 
 (  2010  )  and interpolation in Isaaks and Srivastava  (  1990  ) . When a distribution of 
new data points is needed, rather than values on a continuous surface, popular 
techniques revolve around resampling what is already present to generate larger 
datasets. For example, in bootstrapping, systems are trained on data derived by 
sampling a distribution multiple times to generate a training set, unselected data 
giving a validation dataset. Such techniques are common when datasets are too 
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small to use as-is. In addition to generating new data with its own or inherited error, 
where data limitations are known resampling can be used to constrain errors, par-
ticularly where based on Bayesian or error-led assessments (Luoto et al.  2010  ) . 

 Where data is poorly distributed, missing data can lead to biases. Such biases can 
be quite subtle, particularly when dealing with spatial autocorrelation. Where a sur-
face is needed, it is sometimes possible to adjust the importance of samples to 
account for an inappropriate sample distribution. For example, spatially clustered 
data can be declustered to reduce the importance of over-sampled areas by weight-
ing each value by a function of the distance to its neighbours (for techniques, see 
Dubois and Saisana  2002  ) . When a distribution is required, resampling can remove 
some kinds of biases (for example, autocorrelation in sequential, or spatial, samples) 
if the sampling is carefully randomised (Luoto et al.  2010  ) . However, ultimately 
biases caused by missing data usually necessitate additional data collection exercises 
to resolve the problem. 

 In the absence of good data, models often rely on strongly believed deterministic 
relationships or qualitative theory, where they might be better off including Bayesian 
entities in the relationships so that they can be updated as information comes in, and 
uncertainty can be properly quantifi ed (Young et al.  1996  ) . Bayesian approaches 
are, of course, only really worthwhile where we know more data may be forthcom-
ing. This is not always the case in the kinds of systems agent-based modellers deal 
with, at least currently.  

    15.2.4   Classifi cation Discretisation Error 

 Almost all data is an aggregation or interpretation of facts about the world. Direct 
measurements of unique physical properties are very rare, even in such apparently 
concrete subjects as physics. There will, therefore, always be some loss of informa-
tion in data recording and use. Even in the event that our instruments are recording at 
an accuracy/precision we are happy with, we generally add an additional uncertainty, 
or fi nd one introduced in post-production, through data classifi cation into bins. 

 Binning data into classifi cations can be problematic, especially where classifi ca-
tion schemes are multivariate and prototypical (that is, very broadly, objects are 
classed by, and into, examples). Real-world membership of a set is usually fuzzy, and 
fuzzy sets are generally a more realistic way of dealing with the world. Where crisp 
sets are needed, entropy statistics can be used to represent multivariate classifi cation 
uncertainty, and their relative simplicity provides a useful option for spatial mapping 
(van der Wel et al.  1996  ) . The more common uncertainty, however, usually concerns 
the granularity of the bins and where the original data point fell within the bin. Data 
that has already been binned appropriately is not usually problematic where we have 
control over it (the uncertainty is easily quantifi ed, and can be included in with other 
assessments of precision). It is only where we wish to use the data for other classifi -
cation systems or as a continuous dataset, that binning causes issues. For numerical 
data, there is the possibility of shifting the data back into a continuous sequence by 
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stochastically distributing the data within each class to match an overall distribution 
fi tted to the totality of the classifi ed data. However, once such a distribution has been 
identifi ed, sampling directly from the distribution becomes simpler. 

 Redistributing the original sample is only really worthwhile if the classifi ed data 
is n-tuples, carrying ancillary data with the data that was originally binned. One 
common use of such a redistribution is within spatial microsimulation (Ballas et al. 
 2005  ) , in which a population of individuals, which have been lumped together at 
some geographical scale (say a national bin) are redistributed to smaller areas 
(say electoral districts bins) such that their distribution matches some statistic 
(say, employment) in that area. If people can broadly be divided into socio-
economic types, with correlated traits, we might expect ancillary traits (say, news-
paper readership) to be recreated in the smaller areas (with an error associated with 
the strength of correlation between the two traits). Such models are increasingly 
used as the starting conditions for agent-based models where individual-level cen-
sus data is unavailable, though assessing the accuracy of the recreation of ancillary 
variables is not easy without detailed new sampling, because we’re usually trying 
to recreate distributions which are essentially unknown. Generally even where we 
are just trying to recreate the location of individuals with a set of traits which we 
have constraining distributions for, the geographical location is rarely accurate; 
commonly individuals are assigned to the smaller geographical boundary set itself 
or randomly allocated a home within the area. More sophisticated pycnophylactic 
(Tobler  1979  ) , or other types of reallocation, are rarely completed, meaning there 
is also a considerable distribution error within each area. 

 A further major error during classifi cation is caused by conversion between 
classifi cation schemes, for example the placing of classifi ed and geographically 
binned census data into new classes and geographical boundaries (Martin et al.  2002  ) . 
Usually error can only be avoided by aggregating up bins or spatial boundaries to 
some common aggregate level (for example, Martin  2003  ) .   

    15.3   Uncertainty Associated with Model Choice 

 As well as errors and uncertainty associated with data, we recognise that there are 
also epistemic uncertainties: those associated with our knowledge of the system. 
Essentially we may regard ourselves as being on a fruitless quest: languages (com-
puter code included) are not the physical real world. Not only does this mean that 
we are unlikely to ever get a perfect computational representation of the real world 
(what Faber et al.  1992 , call  hermeneutic ignorance ), but it also means we’re 
unlikely to ever understand it properly, as we simply don’t have the tools to do so 
(Faber et al.’s  axiomatic ignorance ), and those we do have may be fatally fl awed 
(Faber et al.’s  logical ignorance , following Gödel’s incompleteness work). Not only 
this, but we essentially have to limit our modelling attempts in a way that the inter-
connected real systems are not limited (the  closure problem : Lane  2001  ) . 
Nevertheless, as languages, and mathematics in particular, have shown, we can get 
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a useful approximation that carries us forward. This is especially true for real 
systems that are mediated though language. In this section we examine some of the 
epistemic uncertainties we will have to deal with to do so. We shall assume a simple 
model where input variables are utilised via some kind of weighting against each 
other, or mathematical relationship, or ruleset, and the component  parameters  of 
these forms control the conversion of the variable inputs to one or more model 
outputs. The parameters are  calibrated , that is fi xed based on the real world to give 
as realistic output as possible. The parameterised section of the model may include 
actions by one or more agents. 

    15.3.1   Error in Choosing Variables 

 Simultaneous with fi nding data for our models is the process of deciding which 
data we are going to use, and which we are going to exclude. The tendency to load 
a model with variables is a particular problem with those branches of agent-
based modelling where the model is developed to accurately replicate reality. An 
increased number of variables may lead to a more realistic model, but it also leads 
to increased levels of error through the need to calibrate more parameters (the so-
called  Information Paradox , O’Neill  1973 ; Rowe  1977  ) . Moreover, added detail 
often adds little to a model, and a shift from parsimony can obscure simpler mod-
els that perform just as adequately. Generally measures of model quality trade off 
accuracy of representation against model complexity (see Spiegelhalter et al. 
 2002 , for a discussion of classical and Bayesian methods for achieving this 
tradeoff). This said, however, the option for adding additional variables is some-
times worth investing effort in early in the modelling process. Flexible code that 
allows for the addition and removal of variables through a well-structured object 
hierarchy and generic programming (parameterized types: Gamma et al.  1994  )  
will pay considerable dividends on its investment in the longer term. 

 While we would hope that the choosing of variables was part of a linear progres-
sion, from thinking about the system we are interested in, to deciding how to model 
it, to picking data, it rarely works out so simply. Investigating our data often suggests 
we may have to settle for different, less than ideal, proxies for the data we would like 
to have, or, indeed, different data altogether. It may also be that we are using too 
small or too large a number of variables to represent the system (O’Neill 1973’s 
 aggregation error ). To some extent having too many variables should reveal itself 
through covariance, but having too few variables, or the wrong type of variables, will 
result in errors or biases. In addition, there are often problems of scale: we may 
misunderstand the boundaries between objects in the real world (Suter et al.  1987  ) , 
or, more simply, have the wrong time or spatial scale for the model. 

 There are broadly two sets of techniques for choosing/excluding variables. We 
can either examine the real system statistically, independent of the model, to see 
which variables might be appropriate, or we can run the model and use its ability to 
predict the real system to determine how well we’ve identifi ed the variables needed. 
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The former methodologies have the advantage that we are dealing directly with the 
system. However, for agent-based models they have the issue that they tend to assume 
aggregate statistical tests on lumped data can identify variables acting at the indi-
vidual level. With model-testing, we often assume our model form is appropriate, 
and any differences between the model outputs and the real world are due to poorly 
chosen variables/parameters, which is plainly untrue. However, the advantage with 
this approach is that testing is achieved at the same scale as the fi nal model. 

 In both cases, the choice of variables is often (though not always) compared 
with a single dependent predictand, with the strength of the relationship being used 
to exclude variables. It should be noted that is not necessarily ideal. Utilisation of 
a single output statistic (or, indeed, multiple statistics) is always going to be prob-
lematic, as it will fail to calibrate the system to the nuances of the detailed indi-
vidual characteristics of the system (Wagener et al.  2003  )  even if the model is at the 
individual level. Optimisation against a single output may only be suffi cient to 
identify between three and fi ve parameters with any accuracy. It may be necessary 
to consider multiple outputs to gain any further distinction (Wagener et al.  2003  ) . 
Moreover, following Benjamini and Hochberg  (  1995  ) , there is an argument that 
more attention should be given to the false-positive (Type I) errors when variables 
are kept, to ensure than random variation doesn’t allow in variables that could be 
trimmed out (Green and Babyak  1997  ) . The probability of Type I and II errors in 
multi-model assessment can usefully be balanced with reference to the costs to 
policy makers that result from the different errors (Hartley et al.  2006  ) . 

 In the fi rst category of techniques, examining the real system, the simplest 
method is just to examine the size of the variables. For linear models, variables 
can be removed on the basis that smaller variables are less likely to have an effect 
than larger ones, and small co-varying variables, particularly those on the same 
time-cycles, can be removed or aggregated (O’Neill and Rust 1979). However, 
this is less possible for non-linear models, where small variations in variables can 
have large effects. Looking in more detail at the relationships rather than the size, 
Stepwise Linear Regression has been used since the 1940s to exclude insignifi -
cant variables (Glahn and Lowry  1972  ) . Although the core technique is broadly 
distribution-insensitive, it does assume variables are uncorrelated and related to 
the fi nal dependent variable linearly. Stepwise variables really need to be on a 
common range to avoid size effects. While there are issues with this (see King 
 1986  ) , a range transformation can aid when working with some non-linearities. 

 Where there is co-linearity between variables it may be that an underlying variable 
or process may be responsible. While we may be able to tease apart the relationships 
with an instrumental variable approach, the usual method for proceeding in such cases 
is to use Principle Components Analysis (PCA) to combine variables into indepen-
dent components representing the latent variables. This can both indicate variables 
that are essential/non-essential and provide combined-variable components that rep-
resent the missing ‘true’ variable infl uencing the system. PCA analysis of model 
parameter sets following calibration runs can additionally reveal potential points of 
investigation for new processes not directly captured by the model (Keesman and van 
Straten  1990  ) . Plainly, we may also fi nd ourselves in the situation of having ‘known 
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unknowns’ – knowing a variable is missing, but being unable to discover what it is. 
Provided we know something of the part played by the variable we may still be able 
to represent such unknowns as latent variables within an agent based model, as they 
are within Bayesian (Kavetski et al.  2006  ) , Hierarchical Bayesian (Clark  2005  ) , or 
Structural Equation Modelling. In these techniques the explicit representation of 
uncertainty usefully shifts the models away from only assessing uncertainty at the 
level of inputs (through Monte Carlo sampling) and outputs (Clark and Gelfand  2006  ) . 
However, embedding Bayesian techniques themselves, for example, is not always 
simple in agent-based models, not least because Bayesian assessments of any detail 
often rely on an assumption of independent Gaussian output noise (see, for example, 
Kavetski et al.  2006  ) . 

 In general, for non-linear systems that are sensitive to small variable changes, it is 
usually the case that attempts to identify variables statistically from the original data are 
of limited success. For such systems we really need to consider all possible variable 
combinations and their effects on model runs, though generally a subset of the combi-
notronic space is used. There is a large literature on variable selection that utilises 
models. George  (  2000  )  provides an overview of the key issues. Statistical representa-
tions of the model may suggest the number of parameters that can reasonably be 
extracted from the data (e.g. Young et al.  1996  ) , but more usually selection proceeds by 
running the model with a set of variables and assessing how well it runs, either through 
signifi cance testing (for example, in Structural Equation Modelling: Green and Babyak 
 1997  )  or, more commonly, by ranking the errors associated with different selections. 

 The spread of values of parameters that match model inputs to model results can 
tell us if the associated variables are important to the sensitivity of the model. If we 
are confi dent in our model structure, parameters which vary a great deal between 
calibrations while still producing viable results may not be especially  important  to 
the detailed behaviour of a system (Spear  1970 ; though see below) and might be 
discarded. The Generalised/Regional Sensitivity Analysis (GSA/RSA) Hornberger-
Spear-Young Algorithm utilises this  rejection sampling  and Monte Carlo testing of 
inputs and parameters to determine which variables a model should contain 
(Hornberger and Spear  1981 ; see Beck  1987 ; Young et al.  1996  for summaries of 
developments). Although such techniques tend to be tied to statistical models, the 
general principles are applicable in agent-based systems. A popular alternative to 
GSA, sometimes merged with it in hybrid methodologies, is to allow the weighting 
of variables to be dynamically set during single model runs, and to prune weight-
ings associated with the variables dynamically as model calibration moves towards 
highlighting some variables over others (essentially the non-linear equivalent of the 
above pruning of small-sized variables). This pruning can, for example, be done 
with a Bayesian approach (George  2000  ) . Of course, the danger with this is that 
parameters extracted from the real-world system may not be stable, and the 
 relationships as represented may vary (Matott et al.  2009  ) . In one hybrid example, 
Wagener et al.  (  2003  )  suggest that by splitting up the parameters’ range and  different 
modelling time-windows it should be possible to identify which parameters are 
important at specifi c model periods. This also allows an assessment of the  sensitivity 
of specifi c model components formed by combining parameters. 
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 Looking at parameter variation has another useful by-product: variation over 
time may also tell us whether variables are  missing . When we think that variables 
should be related in a stable fashion, variation may result from the current param-
eters adapting to make up for missing parameters (Beck  1987  ) . Moreover, Beck 
 (  1987  )  and (for an agent-based system) Heppenstall et al.  (  2007  )  have suggested 
that for recursive estimation and Genetic Algorithm based parameter calibration 
respectively, trajectories through parameter space may reveal underlying processes 
in the real data. Beck notes that calibration can often clash with model forms, 
suggesting adjustment is necessary.  

    15.3.2   Model Representation – Is This the Right 
Functional Form? 

 Even if we can correctly identify the variables involved in our model, we still have 
the potential for  model error , that is, error in our fi nal outputs resulting from a 
structural problem with our model. We need to tackle the  identifi ability problem , 
for both variables and the relationships between them captured in the model. In 
general this is not an area of error much investigated by agent-based modellers. 
This perhaps refl ects our general feeling that we are better placed than most 
modellers to claim our models match reality and are directly representative of true 
objects and relationships in the world. Even if we believe our agents represent 
active agencies in the real world, we can be much less certain that we have no 
 functional error  (van der Sluijs et al.  2003  ) , that is, that we are using the correct 
relationships between them. 

 In general agent rulesets will be built up from other studies that generate/test 
hypotheses about relationships in the real world, and give them a signifi cance value 
that, broadly, represents the likelihood that the relationships are not falsely identifi ed 
as real. Plainly there are potential errors here associated with identifying the 
incorrect hypothesized relationships, and most statistical tests include terms to allow 
for sample size and degrees of freedom, and will have a particular power representing 
the likelihood of false positives and false negatives. The question then, really, is how 
these sub-models/rulesets are combined when no, or relatively little, information on 
the combination process exists. Frequently this combination in agent systems is 
achieved through choosing weighted elements based on a ranking process, or 
combining them arithmetically, but there are many alternatives (see, for examples, 
Wooldridge  2009  ) . This problem arises beyond areas of, for example, decision 
making – we may lack a coherent understanding of even relatively deterministic 
elements of the model. 

 On the simplest level, we can examine the performance of a single model run 
under different starting conditions and parameterisations to gain an idea of the range 
of probabilistic outcomes. Differences between the space of model responses and 
the real data may allow us to explore model defi ciencies and even go some way to 
separating out model structural error from input uncertainties (Keesman and van 



32315 Uncertainty and Error

Straten 1989). Alternatively, we can build our models by evolving them to have the 
right components, through Genetic Programming, with sub-models as genes (see 
Poli et al.  2008  as a starting point). 

 However, multiple model testing is now becoming the preferred option in many 
modelling fi elds. Indeed, if one looks at subject areas where models are entrenched 
in the testing of hypotheses, multiple model testing is replacing single model vs null 
hypothesis testing as the standard methodology (Johnson and Omland  2004  ) , with 
the likelihood of gaining a correct hypothesis considerably enhanced by multiple 
hypothesis testing as signifi cances can be ranked and fi ltered, and likelihoods 
enhanced through Bayesian techniques (see Farcomeni 2008). 

 A general methodology for multiple model testing of parameters was developed 
by Hornburger, Spear, and Young (see Sect.  15.3.1 , above). We shall come back to 
examine this in detail when we look at calibration, however, the basic idea is that 
multiple models with different parameters are run and only those models that can hit 
a given set of targets are kept (so called  rejection sampling ). This algorithm was 
developed into the GLUE (Generalised Likelihood Uncertainty Estimation) proce-
dure by Bevan and Binley  (  1992  ) . This utilises multiple model runs which may vary 
in form or parameterisation, and assigns a likelihood to each. Results can then be 
ranked by likelihood and/or summary statistics generated by weighted combina-
tions of the predictions. Poor models sets can be removed when new data from the 
real world is available to validate against. O’Neill et al.  (  1980  )  have suggested that 
by fi ltering out model runs by validation criteria at different stages of the model 
evolution (e.g. days 10, 20, and 30 of a model run) it is possible to constrain the 
error of the fi nal models that survive. The days for this fi ltering are best taken when 
the inter-model variation is high (O’Neill et al.  1980  ) . By adjusting the parameters 
on the basis of their co-variance it is possible to reduce their error further (O’Neill 
et al.  1980  ) . Gupta et al.  (  1998  )  extend these broad techniques to multi-objective 
(~output) models and review alternative developments. 

 The potential for combining model results under GLUE marks it out as an early 
basic example of a broader set of methodologies for  Multimodel Ensemble Forecasting.  
With ensemble modelling the issue of which model to run is avoided, to an extent, by 
running multiple models and then selecting the best or combining their results. In 
ensembles, one can either run very different models, or the same model can be run 
multiple times with a variety of initial states drawn from the potential distribution of 
real conditions and their potential errors. Once ensemble models have run, they can be 
combined to give an overall prediction including an uncertainty measure dictated by 
not only within-forecast variation, but between forecasts as well, for example, using 
Bayesian Model Averaging (Raftery et al.  2005  ) . In general, combining multiple pre-
dictions will improve forecast reliability in the same way that generating the mean of 
noisy data is usually a better estimate of the true value than picking a single sample 
(Leith  1974  ) . The combination of predictions means that forecast  sharpness  (close-
ness of forecasts) can be assessed as an additional uncertainty measure (Gneiting and 
Raftery  2005  ) . A good review of multi-model selection criteria and combination tech-
niques can be found in Johnson and Omland  (  2004  ) . Generally multiple-model 
ensemble methods are most frequently used in climate/weather studies and hydrology. 
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They are rarer elsewhere, where single models with randomisation of key components 
and a probabilistic assessment are more likely (Brown  2010 ; for a review in meteorol-
ogy, see Gneiting and Raftery  2005  ) . This refl ects the considerable costs involved in 
multiple model development and the limited number of researchers working in very 
specifi c fi elds, particularly in the social sciences.  

    15.3.3   Picking Scale 

 One of the problems with data-driven identifi cation of models/variables is that the 
system explicitly represents the spatial and temporal scales at which the data is 
sampled, rather than that most appropriate for the system (Young et al.  1996  ) . To 
an extent this is mitigated in agent-based systems which have the potential for 
modelling different components at the appropriate spatio-temporal scales with less 
of the cross-scale errors that creep into other kinds of models. Multi-scale model-
ling and validation where there was any doubt would be an ideal solution, but data 
and computational effort are strongly limiting factors in this. To an extent the issue 
can be investigated by using cross-scale validation techniques (Costanza  1989  )  
both during calibration and to examine key scales at which the model best repre-
sents the system (Malleson  2010  ) .  

    15.3.4   Model Fitting – Picking Parameters 

 For any given sub-component of a model there is usually a need to estimate param-
eters from the real world as represented in training datasets. Such parameters are 
almost certainly going to be a ‘fudge’ on real-world processes, and therefore be 
associated with errors of verisimilitude, and there will be additional errors associ-
ated with accurately estimating them: inversion errors of picking the correct weights 
from the vast number that may model training datasets, and accuracy errors associ-
ated with picking them well. A large number of parameters can potentially lead to 
cryptic equifi nality, with erroneous models matching training data simply by pro-
viding so many tunable parameters that they can match any function. Having a wide 
variety of parameters may also enhance overfi tting unless care is taken to prevent it, 
that is, model weights may be adjusted to the point that they very accurately model 
training datasets, but don’t have the fl exibility to capture the alternative behaviours 
of the real system. There is a perverse relationship between the number of parame-
ters and overfi tting because poor models with lower levels of parameters won’t 
overfi t, whereas those with the right number are more likely to do so. The usual 
solution to overfi tting is to reserve some data as a test set not involved in training, 
but this is often diffi cult to justify where data is thin on the ground or critical and 
unique, as it tends to be in social sciences, and, as mentioned above, spatial and 
temporal autocorrelation can cause problems in determining the appropriate size of 
dataset necessary to do a good calibration job. 
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 More generally the errors associated with parameters are adjusted largely by 
minimising the error of the output of the model, either assuming that the error is 
entirely due to the parameters being mis-calibrated, or trying to segregate the 
errors from different sources, i.e. inputs, parameter calibration, and the model 
form. A key element of this may be  sensitivity testing : perturbing inputs and/or 
parameters to see what the result is on the fi nal model output. This allows an assess-
ment of the importance of the input/parameter on the model behaviour, and, if the 
perturbation is drawn from an input error distribution using Monte Carlo sampling, 
an idea of how much those errors change the range of results ( uncertainty testing ). 
The standard text on sensitivity testing is Saltelli et al.  (  2000  ) , but a good introductory 
review is Hamby  (  1994  ) . 

 Once errors are assessed they can be used to adjust the parameters to improve the 
match, either statically, at the end of the model run, or dynamically as the model is 
running. The estimate/adjustment of unknown weights associated with variables 
can be achieved in a variety of ways:

    1.    through expert/stakeholder advice,  
    2.    real-world experimentation in aggregate,  
    3.    or automatic fi tting to known input–output data.     

    15.3.4.1   Expert Advice 

 There are a wide range of methodologies for involving experts and stakeholders in 
model design and assessment. At the simplest, this involves expert  face validation  of 
parameters determined automatically, that is getting experts to agree the model looks 
ok. Seminal work on the process and problems of eliciting uncertainty assessments 
from experts was presented by Spetzler and von Holstein  (  1975  ) . More recently a 
sophisticated expert-analysis process, which includes quantitative sensitivity testing, 
was developed by Funtowicz and Ravetz  (  1990  ) . Their NUSAP (Numeral Unit 
Spread Assessment Pedigree) methodology builds up a ‘pedigree’ for a model based 
on evidence including expert opinion on proxy use, the empirical basis of parameters, 
theoretical understanding, methodological rigour, and model validation (Van der 
Sluij et al.  2002 ;   http://www.nusap.net    ). Alternatively expert advice can be incorpo-
rated at one remove from the assessment process, by getting experts to design the 
metrics for uncertainty assessment, rather than completing the assessment them-
selves (Bevan and Binley  1992  ) . 

 At the other end of the scale, experts can directly choose parameters. Because of 
the complication of most models and the lack of absolute verisimilitude, it is rare for 
experts to choose the values that parameters are fi xed at. It is more usual for expert 
advice to be used in initialising weights that are then adjusted through calibration 
against the real world. For example, expert advice can be: incorporated into the 
development of priors in Bayesian treatments of parameters/parameter uncertainty 
(for a summary, see Clark  2005 ; for a clear discussion on options for very non-
informed priors, see Kavetski et al.  2006  ) ; used to constrain the ranges parameters 
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are sampled from (Lutz et al.  1996  ) ; or alternatively incorporated though the 
development of inputs or parameters as fuzzy sets (Janssen et al.  2010  ) . The balance 
between automatic calibration and expert input can vary considerably, with attempts 
made to integrate expert calibration into an otherwise automatic procedure (Gupta 
 1999  )  and to replicate the actions of experts automatically (Boyle et al.  2000  ) .  

    15.3.4.2   Real-World Experimentation in Aggregate 

 Sadly governments seem strangely unwilling to give agent-based modellers the 
complete control over national policies they need and deserve. Real-world experi-
mentation in aggregate is more common in the physical sciences, where ethical 
issues play out less. For social science modellers, such parameters are usually taken 
from the quantitative literature outlining statistical treatments of society, but these 
more rarely generate laws and sets of parameters that can be built directly into 
larger-scale models in the same way. Large scale experiments to derive rulesets are 
rare, even in these days of internet data collection and citizen scientists.  

    15.3.4.3   Fitting to Known Input–Output Data 

 Most commonly models follow a process of  data assimilation , in which forecasts 
(or, more rarely, backcasts) are generated and compared with real-world data, with 
the model being adjusted automatically on the basis of the difference. With agent-
based models this adjustment is commonly a static process – the model runs to some 
completion and then the adjustment takes place. This is because agent-based systems 
are generally initiated and allowed to run on their internal dynamics without the 
injection of external driving data as the model progresses. However, sequential/
dynamic data assimilation (that is, adjustment as the model runs) is common in other 
fi elds and likely to become an increasingly important element of agent-based modelling 
as it attempts to take on predicting large scale and dynamic socio-economic systems 
(as we shall see, machine learning does represent a middle-way taken by many 
agent-based systems). 

 The calibration process has to fi nd optimal parameter weights in a variable 
space of potential solutions. For simple mathematical functions with a limited 
number of variables, the technique used is usually to assume the function includes 
one or more error terms, and then to fi t the function to the data by minimising the 
error term. The classic example of this is linear least-squares fi tting, which seeks 
to place a line representing data through scattered data points by minimising the 
residual error between the line and the points along its length. Such techniques 
make a number of assumptions, not least that the errors are random and limited to 
specifi c variables. For example, the standard least-squares method assumes there 
is only an error on the independent variable, not the dependent variable that is 
being predicted. This is rarely the case where two datasets are being used to derive 
model rules. 
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 Unfortunately for most agent-based models the non-linearities and considerable 
interactions involved render mathematical treatments impossible for almost all 
components. The solution spaces involved are complicated and too extensive to try 
all parameter combinations. In the absence of expert advice and experimental 
results, we are usually left with imputing the parameters from data. The worse-case 
scenario is where we have clear input data, but only a very qualitative understanding 
of what potential outputs might look like (for example, in predicting urban form). 
Choosing parameters by manually manipulating their values to see what gives 
appropriate-looking results is generally to be avoided. The inversion problem plays 
out particularly badly against researchers with limited time on their hands and it is 
likely that local or sub-optima will be chosen. Nevertheless, this technique is fre-
quent in agent-based modelling, as the computational resources needed for model 
runs are high (removing automated checking as an option), and the variables are 
often interdependent in non-linear manners (rendering mathematical optimisations 
inappropriate/impossible). Experts should always be involved in the face validation 
process where it can’t be avoided to limit the potential errors. 

 Where the computational demands are less restrictive, but still prevent a full 
characterisation of the solution space, we have the option of adjusting the parame-
ters through either a greedy algorithm (adjusting the weights by some rule and keep-
ing those changes that improve the fi nal fi t) or some mathematical equivalent 
(distributing the error to individual components and adjusting them to reduce the 
local error). As part of this data-led process we usually have to identify some opti-
misation function to minimise (usually the error between reality and the model out-
put, but not always), and heuristics to control the selection of adjustments. 

 Standard treatments in non-agent-based models are, at their simplest, recursive 
greedy treatments with parameters updated on the basis of new data (Gupta et al. 
 1998 , review standard methods for multi-input/multi-output calibration). Many mod-
elling techniques rely on transfer functions to convert between input sources and 
output objectives (one can visualise a matrix that stores the functions that convert 
between the two). Given output errors, it is possible, if we know the form of the rela-
tionship between input parameters and outputs, to estimate the error in the functions’ 
parameters (Beck  1987  ) , in a manner similar to back-propagation in neural-networks 
(though with a more fl exible set of functional relationships). A great many tech-
niques rely on linearising these functions through Taylor expansions for key condi-
tions or dynamically, as a precursor to allocating error to the parameters. As one can 
imagine, the mathematics of updating the associated parameters becomes quite com-
plicated. Many models rely on Bayesian methodologies to cope with the updating 
process, though this is still far from simple. Furthermore as many inputs and param-
eters are non-normal and cross-correlated, inputs and parameters are often sampled 
using Monte Carlo techniques when looking at the error in the model due to noise 
and calibration issues. Generally the sensitivity of non-linear models to small changes 
in parameters means that multiple parameter sets need to be tested uniquely (Smith 
et al.  2010a  ) . Multiple runs of the same model utilising different starting conditions 
and parameter sets allows for the quantifi cation of the error and its effects and the use 
of this information in the updating process. The full adjustment process is therefore 
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of considerable complexity. While most such techniques are heavily embedded in 
statistical modelling, it is nevertheless worth considering the application of their core 
ideas to agent-based modelling. 

 The standard technique used is the  Extended Kalman Filter . The idea behind an 
Extended Kalman Filter is essentially that we know the output (real predicted values 
plus model-caused error) is a function of the model components, i.e. the model 
inputs and parameters, along with errors associated with both. Knowing the output, 
real values, input values, parameters, and the error associated with the input mea-
surements, we can estimate the remaining missing element, the parameter errors, 
and adjust them on this basis. The parameter error is only an estimate, and (with an 
adaptive Kalman fi lter: see Evensen  1992  or Young  2002  for an introduction) will 
change with each new input/output pair, but if we know the parameter error, even 
roughly, we can adjust the parameters to remove that error. When, as usually is the 
case, there are multiple outputs from the model and multiple parameters, the adjust-
ment is in the form of a Kalman gains matrix, which is used to adjust the parame-
ters’ actions in the next iteration along with the error value. The process generally 
moves recursively. The uncertainty is usually represented through Bayesian-like 
probabilities (as the error cannot be assumed Gaussian, these are usually dealt with 
through Monte Carlo methods: see Young  2002  for an introduction), and the adjust-
ment takes place preferentially when we know more about the real world than we do 
about the model (i.e., there’s no adjustment if we’re more sure about the model than 
the current real-world values). Beck  (  1987  )  gives a summary of both this technique, 
and recursive estimation techniques in general, along with a summary of the issues 
with Extended Kalman Filters, chief of which, from our point of view, is the usual 
assumption of Gaussian input noise throughout. To gain a best estimate of parame-
ters where there is error, assumptions must be made about the variables the error 
relates to directly and the error distribution (Smith et al.  2010a  ) , but this is 
frequently not well characterised for social-science models. 

 Generally when multiple model runs are used with an algorithm from the 
Hornburger/Spear/Young family the spread of results gives a minimal estimate of the 
parameter uncertainty (Gupta et al.  1998  ) . However, with multiple models there is the 
potential for intelligently utilising cross-model comparison to further limit the param-
eter uncertainty. The Ensemble Kalman fi lter, after Evensen  (  1994  ) , can be utilised on 
single-model multiple-run ensembles to reduce the combinatorial load needed to 
characterise the parameter change. It uses Monte Carlo sampling (commonly Markov 
Chain Monte Carlo) to take an initially naive distribution for each parameter and 
update it using a Bayesian treatment of new data to gain a better parameter distribu-
tion. An alternative methodology by Toth and Kalnay  (  1993  )  utilises the differences 
between perturbed and unperturbed ensemble models to adjust the unperturbed mod-
els, removing potential errors caused by specifi c system instabilities. Of promise is 
also the SIMEX methodology (Cook and Stefanski  1994  )  in which a system that has 
well-understood input errors has increments of those errors added to the inputs across 
multiple model runs, and the output error assessed. As the output error increases tell 
us about the relationship between the stepped input and output errors, the remaining 
output error due to poor parameterisation can be identifi ed as the equivalent of the 
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intercept on a graph of input vs. output errors (in a perfectly modelled system). By 
building a relationship between the fi nal and input errors, it is therefore possible to 
estimate the parameter error, and, thereafter, to correct the parameters. Chowdhurya 
and Sharma  (  2007  )  review the literature on this technique, the adjustments necessary 
under a variety of conditions, and compare it with methodologies like GLUE. More 
generally, ensemble re/starting conditions can be subjected to a variety of algorithms, 
including evolutionary algorithms, to constraint the errors and lower computational 
effort (see NRC  2006 , for a review). 

 In general, however, agent-based social and ecological modellers don’t tend to 
follow the techniques generated in other fi elds of similar complexity. Instead, they 
are turning to artifi cial intelligence (AI) mechanisms to calibrate their models. In 
part this is because most agent models are extremely computationally expensive to 
run, but the subject area doesn’t have the computational, personnel, or data resourc-
ing seen in, for example, climate modelling. AI represents a sound and relatively 
fast method of calibration. It is usual for most models to be a mix of parameters 
fi xed on the basis of the literature, parameters fi xed by an AI method like a Genetic 
Algorithm, and parameters that vary stochastically across a distribution, picked with 
Monte Carlo sampling. Such multi-method models are diffi cult to assess for param-
eter quality except by validation of their outputs, though there is no reason some of 
the algorithms above could not be applied to elements of the models. 

 In addition to fi xed parameters, most agent-based techniques include some form 
of machine learning, essentially doing the same job as dynamic data assimilation for 
a limited sub-set of parameters; parameters are derived by experiencing the system 
and optimising behaviour based on one or more objective functions. These objective 
functions are generally more internalised than simply the error between model out-
puts and the real world. In many senses agent-based modellers would rather see a 
model that learns well, than one that minimises an output error, but which has unre-
alistic internal dynamics. The problem is, of course, that such learning is hard to 
assess for reliability, except to the degree to which the overall model works. 

 Where information comes from experimentation or the literature, rather than 
model testing, confi dence intervals are usually used to represent input and parame-
ter uncertainty because inter-relationships are rarely known (Young et al.  1996  ) . 
Confi dence intervals for model parameters are more diffi cult to calculate properly 
when there is covariance between inputs/parameters, when the solution surface is 
complicated, and where input errors are poorly understood (Gallagher and Doherty 
 2007 ; who give some indications of ways forward). Under these conditions, and for 
relatively simple parameterisations, uncertainty associated with inputs can be repre-
sented through a sensitivity coeffi cient matrix – more detail on these will be given 
below, but essentially they are the covariance matrix showing how the output/s 
change as each input varies. In terms of parameter uncertainty, for large numbers of 
more complicated tests statistical signifi cances can be generated to reduce parame-
ter errors, with signifi cances adjusted to pare down the potential for Type I and II 
errors, which would be high using traditional one-test  p -values (Farcomeni 2008). 
The variation during parameterisation can also be used to give uncertainty statistics 
(see Matott et al.  2009 , for a review). Equally, some calibration tests, notably those 
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based on Fuzzy or Baysian and/or Monte Carlo techniques can give uncertainty 
estimates (Keesman and van Straten  1990 ; Kennedy and O’Hagan  2001 ; Clancy 
et al.  2010 ) and assign likelihoods to parameter sets (Mitchell et al  2009  ) . However, 
while such tools exist, it is nevertheless more common in model calibration to simply 
take the best result without considering the potential identifi cation error. 

 So far we’ve dealt with uncertainty as something that is outside of the model and 
to be assessed for reduction. A more realistic way of dealing with it may be to build 
it into the model, so that the model reacts as more information comes online (through 
Baysian probabilities or more general Dempster–Shafer methodologies, or by includ-
ing a more explicit error distribution in the model) or, furthermore, to assume that 
such an uncertainty is inherent in reality through the use of Fuzzy Sets and Logic (see 
Hassan et al.  2010 , on agent-based systems; also Zadeh  2005  which goes further in 
handling modelling uncertainty explicitly using methods including Fuzzy Logic). 

 More generally, however, there is a fundamental question to be asked about many 
of these calibration techniques, including those used currently by many agent-based 
modellers. Many traditional model calibration/inversion techniques fail to cope with 
agent-based systems simply on the basis that they adjust parameter weightings to an 
average across a system, which isn’t what an individual agent would respond to. 
Ideally each agent needs calibrating separately, rather than picking up average behav-
iours. However, if traditional calibration is to be utilised, the space to explore for 
individual calibration is considerable and the number of parameters fi tting the system 
very large. In this sense, giving each agent some degree of machine learning may be 
the closest we can get to appropriate parameterisation in agent-based systems.    

    15.4   Model Mechanics – Errors Generated 
by Running the Model 

 In general, agent-based modellers assume models run well, not least because pro-
cessor time renders multiple-platform runs diffi cult. Our confi dence in this matter 
may be misplaced.  Model-fi x Errors  come in when elements are added to the model 
that are not in the real system, either for simplifi cation or because an element of the 
real system is not understood (van der Sluijs et al.  2003  ) . These errors can be distin-
guished from  Process Error , in which a complex element of the real system is sim-
plifi ed to make calculation tractable (van der Sluijs et al.  2003  ) . On top of such 
accepted errors, it may be that our software is not well formed, either because of 
software bugs, or because the digital precision needed is not suffi cient. 

    15.4.1   Model Bugs 

 It is an unpleasant truth that many of our models probably contain coding errors. 
Les Hatton produced a devastating report on the quality of coding in industrial 
programs infl uenced by academia (Hatton  1997  ) . He noted that on average the C 
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programs he looked at contained 8 lines hiding serious faults per 1,000 lines of 
code. Programs written in the academic favourite Fortran were generally so over-
parameterised and poorly written that the average rose to 12 lines in 1,000. 
Moreover, the situation with Fortran wasn’t helped by the fact that software written 
in Fortran contained 2.5 times as many lines as the equivalent C software. When a 
single algorithm for seismic processing was tested with the same data across multiple 
programs and platforms, Hatton found that the results were only comparable to 
within one signifi cant fi gure. Before anyone gets too smug about this never happening 
in their code, let us not forget that these programs, albeit starting out as academic 
software, were fi nalised by software houses who work to specifi c quality standards 
and testing regimes. Some recent changes in programming will have reduced these 
issues: the removal of some error prone areas of code, such as pointers, from 
languages like Java will have helped considerably, as will the rise of Programming 
by Contract, Unit Testing, and the inclusion of Assertions. However, it remains 
true that most academic code, particularly that written in older versions of lan-
guages like Fortran, is likely to be replete with issues. Galán et al.  (  2009  )  offer 
practical advice, for agent-based modellers specifi cally, on model verifi cation and 
code-checking.  

    15.4.2   Uncertainty Due to Representation 

 Computers can only usually hold memory-limited binary representations of numbers. 
As such, some numbers are, by necessity, stored as approximations. Such digital 
imprecision can, if unchecked and/or propagated, result in catastrophic macro-scale 
errors (see, for an example, Hayes  2003  ) . Good, programmer-centred, discussions on 
mitigating this issue can be found in Warren  (  2002  )  or Hyde  (  2004  ) , while Izquierdo 
and Polhill  (  2006  )  and Polhill et al.  (  2006  )  provide sound practical advice and con-
centrate specifi cally on the propagation of these errors in agent-based modelling. 
Ultimately, however, the issue is constraining. The unifi cation of most platforms 
around IEEE 754 as the standard for fl oating-point arithmetic has helped coders at 
least tackle the issue consistently (though utilising IEEE 754 standard routines in 
some languages is still far from direct – yes, Java, I’m talking about you). Nevertheless, 
one still has to take care with the transfer of code involving other data types between 
platforms (for example, the maximum integer size can change considerably). In general 
it is good practice to assess model error due to differences in processor, complier, and 
memory architecture, by transferring models to different platforms. However, the 
implementation of such transfers is limited by the lack of common code representa-
tion schemes of suffi cient detail and the coding time needed. Common runtime envi-
ronments such as the Java and .Net virtual machines mitigate the effort required to 
some extent, but don’t stress-test code to a great enough degree as some issues that 
usually play out more apparently on different platforms are ameliorated at the virtual 
machine level. For problems of representation specifi cally, efforts to work using 
 Interval Computation  (essentially arithmetically treating the potential upper and 
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lower bounds of representations as they interact) seem promising, if at an early 
stage for complex models. A good introduction can be found in Hayes  (  2003  ) , while 
further material can be found at   http://www.cs.utep.edu/interval-comp/    . 

 Related issues for spatio-temporal modellers include the granularity within 
which space and time are represented, which controls the  resolution  of the data – the 
size of the smallest useful object. These issues stretch from the appropriateness 
of different styles and sizes of neighbourhood in Cellular Automata (see Moreno 
et al.  2008  ) , through to the synchronous or asynchronous updating of agent states 
(see Schönfi sch and Roos  1999  ) . This is a vast area of potential error; however, in 
general, the most recognised response is to build up models across a variety of 
tested landscapes, starting with abstract plains, and to test models on multiple 
systems as above.   

    15.5   Output Uncertainties 

 More often than not, the problems involved in quantifying input and parameter 
uncertainties mean that agent-based modellers deal with uncertainty at the point of 
model output. While outputs can be assessed for overall uncertainty, it is also at 
output that we most often consider the representation of uncertainty to stakeholders, 
and the recording of uncertainty in metadata. 

    15.5.1   Assessing Overall Uncertainty 

 In general a large number of agent-based studies either make no direct comparison 
with the real world (in the sense that they are abstract behavioural models), or 
treat the error between predictions and reality as the single expression of model 
uncertainty. If this error is low, the assumption is that inputs are realistic and para-
meters well estimated. While there is some truth to this, such characterisations give 
us little idea of how a model will respond to change, or where the model or data 
needs investment. If, instead, we can examine the contribution of specifi c input, 
parameter, and model-form errors to the fi nal prediction we stand a better chance 
of commenting on, and tackling, these issues. Of course, if a model isn’t sensitive 
to errors, it matters less if they are present; but if a model changes in a strongly 
non-linear fashion under error, then that has important ramifi cations for its pre-
dictive power. 

 Traditionally the contribution of errors in mathematical models is examined by 
tracking the noise from the inputs and using the difference between model outputs 
(including the noise) and the real world (the, so-called,  prediction error ) to estimate 
the errors due to parameters. Generally a traditional error propagation/sensitivity 
analysis utilises the following formula (commonly after Ku  1966  ) , which gives the 
standard deviation of the results  Y  of a function, based on the standard deviations 
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( s )/ variances ( s   2  ) of the input variables ( X, Z …), and the relationship between each 
variable and Y:
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X    is 
the partial derivative of the function  Y  with respect to  X , known in this context as the 
 sensitivity coeffi cient  (see NIST/SEMATECH  2010  for a summary). Where more 
than one output value is predicted, the equation needs expanding to Jacobean matrices 
(that relate each variable to each output via a partial derivative). Even when the 
relationship between Y and each variable is poorly characterised, as long as the 
variables can be shown to be independent (i.e. with no covariance), input variation 
can be empirically correlated with outputs individually to give the sensitivity coef-
fi cients (O’Neill et al.  1980  ) . For independent variables and relatively simple rela-
tionships this leads to reasonably simple predictors for error which can be used 
within models and which can give rankable information on the importance of 
variables to the model sensitivity and confi dence intervals (Walker  1982  ) . 

 However, there are considerable issues in applying this methodology in the kinds 
of systems agent-based modellers deal with, and the kinds of models they generate. 
Variables are rarely completely independent in non-linear systems, and in such 
cases a more sophisticated development based around variance-covariance matrices 
is necessary (O’Neill et al.  1980 ; van Straten  1985 ; for developed details, see Beck 
 1987  ) . In combination the error terms can gain strange distributions if the same 
variables link together multiple mathematical representations within a model (Tang 
and Wang  2001  – see references therein). If these relationships vary with time, the 
matrices may need updating with new input data iteratively (see parameter 
estimates, Sect.  15.3.4 ). In addition, spatial systems have their own problems, both 
with spatial autocorrelation of errors, and with large combinotronic spaces when 
multiple spatial locations contribute to a fi nal prediction at one or more points. 
Heuvelink  (  1998  )  details the use of this technique when mathematically modelling 
simple spatial systems with well-known input errors, however, there are consider-
able issues with more complex non-linear spatial models. 

 In general, non-linear relationships are usually linearized in such treatments 
through Taylor expansions. This may be limited to points of assumed equilibrium, 
that is, where it is assumed that if there is no change in inputs there is no change in 
outputs (Young et al.  1996  ) ; but, as mentioned above, this is not always appropriate 
in the kinds of systems agent-based modellers tackle. Alternatively the linearization 
may be around dynamic model points, but such schemes do not cope well with the kinds 
of relationships modelled by agent-based systems, which tend not to be continu-
ously differentiable, if, indeed, they can be represented mathematically at all, and 
where function-changing relationships between two variables and a third can make 
partial differentials diffi cult to work with consistently. Either way, for more compli-
cated functions under large variances the fi rst-order linear approximations generally 
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used introduce their own errors. Replacements for this technique, which take more 
account of the non-linear nature of most systems, still tend to rely on an overly 
mathematical treatment in which noise is regarded as an additional component to a 
signal (see, for example, Smith et al.  2010a , and for a review Matott et al.  2009  ) . 

 Given these problems, for models of any level of complication it is usual to resort 
to Monte Carlo Sensitivity (MCS) testing, in which the model is run multiple times 
with input data perturbed in some fashion. In uncertainty testing the perturbations 
are usually drawn from the error distribution of the appropriate inputs, and the 
parameter distributions are usually also sampled to provide the parameters for each 
run. Although sensitivity testing can proceed by targeted ‘manual’ manipulation of 
the inputs, automated Monte Carlo sample selection based on input/parameter 
distributions is needed for full output distribution uncertainty testing. There are 
some broad variations on the scheme: Bayesian models, for example, generally 
explore uncertainty by sampling their parameter distributions, and then adding white 
noise to the inputs, while GLUE simply varies the parameter values (Kavetski et al 
 2006  ) . Either way, multiple model runs using such carefully selected inputs and/or 
parameters allow for an assessment of the variation in the model outputs on the 
basis of their errors, and statistical summaries can be generated, along with con-
fi dence statistics. In this way, the technique avoids the middle stage of traditional 
error assessments: the stage of directly calculating the error propagation. A good 
introduction to Monte Carlo techniques in a spatial context can be found in Walker 
et al. ( 2003) , along with references to work on sensitivity testing, while a clear detail-
ing of the technique from the point of view of tracking input errors can be found in 
JCGM  (  2008a  ) . A more generic study of uncertainty testing, concentrating on sta-
tistical summaries, can be found in Bobashev and Morris  (  2010  ) . 

 Because the run-time of models can be long, Monte Carlo simulation of thou-
sands of runs length may be inappropriate, even with parallel processing. Some 
spatial analysts have claimed that much of a distribution can be determined with a 
small number of runs (up to a hundred: Openshaw  1989 ; Bobashev and Morris 
 2010  ) , but this is of considerable contention (Heuvelink  1998  ) . Given this, more 
restricted tests have been devised which control the sampling of inputs to ensure a 
small but representative sample of their distributions is taken into account. One 
could, for example, sample the parameter space regularly: a so-called  Grid Sample . 
While this has the advantage that it is easy to see the sensitivity of one parameter 
against others (Urban and Fricker  2010 ), this still generates large numbers of runs. 
More notable is the Latin Hypercube sampling technique (see McKay et al.  1979  ) , 
in which each input is divided up into  n  number of sections, each with an equal 
probability of occurring (i.e. for a normal distribution the sections are larger at the 
distribution limbs, where probabilities are generally lower). Each section is then 
Monte Carlo sampled once and only once. Each value from the series of sections for 
one variable is then combined with an equivalent value from each of the other vari-
ables, generating  n  sets of input values. Essentially this ensures the full range of 
sample distributions will be sampled, but only generates  n  tests. The combination of 
samples from each distribution can be random, or the combination can be chosen to 
enhance or dampen correlations between the values (for a discussion, see Wyss and 
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Jorgensen  1998 ; Urban and Fricker 2010). An excellent summary and pointers to 
the literature on sensitivity testing can be found in Wyss and Jorgensen (1998) 
which is associated with software for generating both Monte Carlo and Latin 
Hypercube input sample datasets. Of course, the use of this technique in testing 
output variation based on input error assumes the modeller has some idea of the 
distribution of errors in their inputs, which may not always be true. 

 Increasingly, in climate modelling, researchers are avoiding the use of full mod-
els in parameter sweeps. Instead, they train an emulator (for example, an Artifi cial 
Neural Network) on the outputs of a sub-set of parameter sweeps, and then use the 
emulator to predict the results of a more comprehensive sweep through parameter 
space with appropriate signifi cance values for the predictions. Of particular interest 
is Gaussian Process emulators, which use the equivalent of Bayesian kriging to 
estimate the form of a solution space, in the same way that kriging can be used to 
estimate missing data in geographical space (Urban and Fricker 2010; see also 
Young et al.  1996 , for a statistical approach that provides a statistical linearization 
of complex deterministic models). As with kriging, it may be appropriate to feed in 
training samples in areas of particular variation, worrying less about other areas 
(Urban and Fricker 2010). 

 In addition to quantifying uncertainty and error using the outputs, it is also pos-
sible to process outputs to reduce the uncertainty by redefi ning the objective func-
tion we are aiming at. For example, where thresholds are involved, uncertainty in 
models can be reduced by predicting event occurrences rather than continuous prob-
abilities; indeed, generally the prediction of statistical aggregations of outputs, or 
aggregations related to model outputs can reduce the uncertainty if the relationships 
are more robust to variance (Glahn and Lowry  1972  ) . More generically,  Forecast 
Post-Processing  can include interpolation and adjustment for biases and local con-
ditions (NRC  2006  ) . If the outputs are to be used in sequential/dynamic data assimi-
lation (i.e. as the model runs and real data comes in) they will plainly have an effect 
on the non-linear behavior of the model, and fi ltering results to remove small-scale 
instabilities can stop non-linearities getting out of hand (Evensen  1992  ) . 

 Finally, it is worth noting that in agent-based systems there is interesting work 
to be done at the meta-assessment level. One direction here is the push towards 
more objective and automatic hands-off model assessment by allowing meta-agents 
to assess the models (Li et al.  2007  ) . A second area of interesting potential is the 
broadening of our criteria of assessment. It is worth noting, with Mearns  (  2010  ) , that 
even with the best models, metrics of uncertainty may well increase in some model-
ling efforts before they decrease. The improvement of models is not always about 
improving very specifi c error metrics; structural change may bring greater verisimili-
tude and future error constraints, without these resulting immediately. We have to be 
wary of measuring success on the basis of error metrics. Indeed, it may be that with our 
software, like any engineered solution, we might actually wish to trade error off against 
alternative values, such as model versatility, adaptability, evolvability or interopera-
bility, and there are a number of techniques from engineering that allow us to manually 
examine these trade-offs on a cost basis (see Hasings and McManus  2004 , for an 
introduction). This may be an interesting area for meta-agents to additionally explore.  
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    15.5.2   Representing Uncertainty 

 In general model error is calculated as the total absolute difference between the 
real and predicted values, normalised in a variety of ways. The bias of a model can 
be examined by using the total non-absolute difference, as this will highlight con-
sistently great or lesser predictions (if our inputs are reliable, a consistent bias is 
usually indicative of an issue with the model form). Despite these relatively simple 
outlines, where the error between a model and reality is given, the statistic used in 
detail needs considerable and careful thought, especially where the error is het-
eroscedastic. Gupta et al.  (  1998  )  summarise some of the measures commonly used 
for aspatial value predictions, especially multi-objective predictions that need 
combining, while Knudsen and Fotheringham  (  1986  )  discuss errors in the context 
of spatial predictions. 

 Uncertainty itself is usually reported as an estimated statistic (like the mean of 
model runs) and an uncertainty or set of confi dence intervals. For Gaussian sample 
data, for example, this is usually the sample mean ± standard error. As Smith et al. 
 (  2010a  )  point out, this type of representation is appropriate for linear systems where 
behaviour varies predictably and slowly with a shift from the mean, but means con-
siderably less in sensitive non-linear systems. In addition error measures like the 
standard deviation of a sampling distribution drawn from a Gaussian population are 
well understood for standard statistical estimators like sample means, and the biases 
between them and population fi gures are well characterised. The biases in the statis-
tics can therefore be taken into account by readers or augmented when reporting 
results. For complex and novel model errors, however, this is less easy, and gener-
ally it is simpler to quote the distribution-free summaries of model runs. For exam-
ple, model 95% output ranges are quoted more often than formal 95% confi dence 
intervals (for reasonably clear details of generating confi dence intervals from Monte 
Carlo runs, see Lodwick  1989 ; Heuvelink  1998 ; or Bobashev and Morris  2010  ) . 
However, almost all simple metrics can hide considerable useful information; for 
example, with Bayesian predictions summary statistics usually hide the fact that 
forecasts are infl uenced by the prior belief used to initialise the system. 

 The relationships between model inputs and outputs can be represented, as dis-
cussed above, by sensitivity coeffi cients. Where the relationship is linear, standard 
regression between the inputs and outputs, along with a correlation coeffi cient, is 
useful, but this becomes more complicated with non-linear non-normal data. For 
non-linear but independent variables there are less powerful representations of the 
relationships between inputs and outputs that allow the contribution of the inputs to 
be quantifi ed, such as the Importance Index, and Relative Deviation Ratio. For more 
co-linear variables, there is the partial correlation coeffi cient. A wide range of such 
basic sensitivity statistics are reviewed in Hamby  (  1994  ) . 

 For spatial modellers, it is key to understand the distribution of uncertainty 
in space and time. Uncertainty can, therefore, usefully be displayed on maps. 
For example, based on output confi dence limits, maps displaying all possible 
results within 95% confi dence limits can be displayed (e.g. Hartley et al.  2006  ) . 
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For ensemble predictions, Bayesian Model Averaging (Raftery et al.  2005  )  will 
produce uncertainty maps that take into account both intra and inter-model vari-
ation. Laffan  (  1999  ) , Reinke and Hunter  (  2002  ) , Drecki  (  2002  )  and Kardos et al. 
 (  2003  )  explore some of the theoretical issues and solutions associated with 
communicating uncertainty using 2D maps. Uncertainty representation in 3D 
spatial datasets is explored by Viard et al.  (  2011  ) . 

 However, it is plainly important that we consider not only the display of uncer-
tainty to other scientists, but also to policy makers and the public at large. This is 
equally plainly problematic, and an area in which contentions about the relationship 
between science, decision-making, the public, and trust are extremely likely to arise 
(see Brown  2010  for a review). Scientifi c uncertainty can be converted into policy 
reticence, even when the science points strongly to action. Equally, however, the 
exposition of uncertainty can lead to increasingly targeted investment in areas with 
high uncertainty (Suter et al.  1987  ) . Agent-based systems, with their individual-
level processes, may be well placed to bring policy-centred discussions of uncer-
tainty back to a more detailed level of treatment (Zellner  2008  ) , arguably lost for 
non-linear systems since the move to Monte Carlo assessments. 

 Shackley and Wynne  (  1996  )  discuss some of the mechanisms by which scientists 
mitigate the effects of uncertainty, while Walker et al.  (  2003  )  subdivide some of the 
uncertainties in ways more pertinent to the interaction of modellers and policy-
makers (for example, they identify  scenario uncertainty , in which it is not clear 
what scenario is going to occur). Specifi cally spatial uncertainties and decision 
making are examined from a policy-makers’ viewpoint by Cornélis and Bruet 
 (  2002  ) . Morss et al. ( 2008 ) give a useful template study for determining how the 
public understand uncertainty and want it displayed, while a detailed discussion of 
stakeholder engagement (a very large area) is provided by Dewulf et al.  (  2005  ) . 
A formal approach to uncertainty in decision making may be formulated by embed-
ding uncertainty representation within the demands of Quality Assurance (QA) 
guidelines (see, for examples, Refsgaard et al.  2005 ; van der Sluijs et al.  2003 ; 
JCGM  2008b  ) , potentially including schemes designed under the ISO 9000 stan-
dards family. Such guidelines can also include detailed frameworks for decision-
making under uncertainty (for an example of a formal quantitative decision-making 
framework centred on risk and uncertainty see Marin et al.  2003  ) . On the fl ip-side, 
Brown  (  2004,   2010  )  and Couclelis  (  2003  )  provide usefully discussions on the place 
of uncertainty in science as a social process, and uncertainty’s place in scientifi c 
self-refl ection and knowledge production, while some of the more cognitive uncer-
tainties associated with science-led decision making are described in van der Sluijs 
et al.  (  2003  ) . 

 While we have dealt here with uncertainty associated with the advancement of 
knowledge, there is one further uncertainty or error that doesn’t impact the quality 
of knowledge advancement, but is nevertheless important for scientists and society 
because it reduces the speed of progress: the uncertainty that scientifi c work is 
novel. Smithson  (  1989 , 3) identifi ed the diffi culty of constructing models in a world 
in which scientifi c pursuits are becoming increasingly swamped by knowledge and 
separated into different areas. Recent developments have suggested that scientists 
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are already starting to “re-invent the wheel” (Monaco and Anderson  1994  ) . With 
over 1,350,000 scientifi c papers a year published (Björk et al.  2009  ) , this novelty 
error or (at best) uncertainty can only increase, and represents a very real threat to 
modelling, if not a signifi cant barrier science needs to avoid as it becomes a mature 
human endeavour.  

    15.5.3   Metadata Systems 

 A structured meta-framework for uncertainty may be built into the model itself, as 
it is in Bayesian treatments (see Clark  2005  )  or, for example, through Zadeh’s 
 (  2005  )  GTU (Generalized Theory of Uncertainty). However, there are increasing 
efforts to develop separate metadata systems that focus on uncertainty assessments 
(Dassonville et al.  2002 ; Gan and Shi  2002  ) . Such efforts are key to the chained 
interoperability of models, and the transmission of uncertainty with results. In par-
ticular, eXtensible Markup Language schemata that encapsulate uncertainty prom-
ise to take uncertainty recording and manipulation from the current level of the 
dataset down to the specifi c datum, storing detailed uncertainty information with 
each data point. A notable example for spatial modellers is UncertML (Williams 
et al.  2008 ;   http://www.uncertml.org/    ) which has the potential to be used with the 
Geographical Markup Language (Cornford  2011  ) , along with the web-based 
framework supplied to aid in its more general use, UncertWeb (  http://www.
uncertweb.org/    ).   

    15.6   Conclusions 

   To be able to predict only that all things are more or less equally probable is not a useful 
basis for decision making 

 M.B.Beck  (  1987  )    

 All the above may seem terribly depressing. We work with non-linear, non-
normal, high-combinatronic-space, models, highly demanding of computing power 
and memory storage. Why, then, do we believe we can do any better at modelling the 
world than astrology or the I-Ching? Are we not generating just the same kinds of 
largely random outputs and imputing meanings to them beyond rational boundaries? 
I don’t think so, and part of the reason for this confi dence comes down to the way 
the world works. By and large, at the scale at which we deal with it, the world is not 
completely random; rivers do not leap 50 m into the air and turn into a shower of 
goldfi sh; economic systems do not contrive to feed everyone bullion from ATMs. 
Systems are, generally, very stable compared with the wide range of potential states 
they could be in. Self-regulatory elements in the systems act to dampen the effect of 
noise and constrain the propagation of errors. However, my confi dence rests in mod-
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elling that concentrates to a far greater degree than we currently do in identifying 
elements that act to dampen systems and drive them towards attractors; elements 
like social negotiation, averaging, buffering, and thresholding. If we can centre our 
investigations of the real world on these, and then represent them in our models, we 
stand a much greater chance of building reasonable models of our apparently highly 
unpredictable systems. 

 Finally, it is also worth highlighting an alternative viewpoint put forward by 
Beck  (  1987  ) , who suggests that rather than asking what the future will be, given 
parameters now, we instead ask what parameters would be necessary now, to create 
a reasonable future. It is generally true that as agent-based modellers we usually 
model current systems to predict what they might be like in the future, with very 
little refl ection on our duty as academics to imagine a better world, and critique the 
fundamental components of the systems we are modelling. It is easy to point out 
when current policies will be disastrous, and even to see how small tweaks may 
mitigate this, but it is much harder for us to consider wholesale changes that might 
make the world a notably better, if stranger, place.  

    15.7   Further Reading 

 For a good overview of the subject area, which weights scientifi c methodology and 
stakeholder engagement, see Refsgaard et al.  (  2007  ) . NRC  (  2006 : Climate models) 
reviews uncertainty assessment and control methods, with good sections on uncer-
tainty and decision making, while a formal strategy for conveying uncertainty to 
policymakers can be found in van der Sluijs et al.  (  2003  ) . Funtowicz and Ravetz 
 (  1993  )  provide a solid attempt to place uncertainty in the context of both critical 
theory and the democratization of science. 

 The Royal Society special issue “Ensembles and probabilities: a new era in the 
prediction of climate change” (Collins and Knight  2007  )  gives an insight into the 
state of the art in much of the fi eld of complex systems modelling outside of agent-
based modelling, including the use of emulators, while Brown  (  2010 : Physical 
models) and Matott et al.  (  2009 : Environmental models) provide good technical 
overviews of these areas. 

 Matott et al.  (  2009  )  additionally give a very complete review of uncertainty soft-
ware, broken down into data analysis, identifi ability analysis, parameter estimation, 
uncertainty analysis, sensitivity analysis, multimodel analysis, and Bayesian networks. 
This is supplemented by an ongoing website at: http://www.epa.gov/athens/research/
modeling/modelevaluation/index.html 

 A good review of Monte Carlo techniques, with a meta-review of other sensitiv-
ity and uncertainty testing techniques, is Helton et al.  (  2006  ) , and Hamby  (  1994  )  
gives a good review of sensitivity statistics. Finally, Bobashev and Morris  (  2010  )  
provide a very clear walkthrough of one such sensitivity/uncertainty analysis for an 
agent-based system.      
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  Abstract   New technologies and techniques now enable us to construct complex 
social models with more sophistication. In this paper we introduce an individual-
based model, which combines the strengths of both microsimulation models and 
agent-based model approaches to project the UK population 30 years into the future. 
The hybrid modelling approach has been adopted to add fl exibility and practicality 
in order to capture individual characteristics, especially in terms of individual 
movements, interactions and behaviours in the absence of suitable microdata. Such 
characteristics during the life courses of individuals are modelled through an event-
driven model that simulates discrete processes that represent important demographic 
transitions.      

    16.1   Introduction 

 People and society, as well as their past, present and future, have always been of 
fundamental interest to both academic social scientists and to planners and policy-
makers in both government and commercial organisations. New research methods 
enabled by the capabilities of modern computers may radically transform human 
ability to reason systematically about complex social systems. This has become 
increasingly important as our world today confronts rapid and potentially profound 
transitions driven by social, economic, environmental, and technological changes. 

 Indeed, “one of demography’s main contributions to societal planning is to pro-
vide projections of the future population” (Rees  2009  ) . Despite the simplifi cation 
and uncertainty of the modelled population, population projections still play an 
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indispensible role in our society today, as population evolution affects all levels of 
planning and policy making. MoSeS (Modelling and Simulation for e-Social 
Science) is a research node of the UK National Centre for e-Social Science. 1  MoSeS 
aims to develop a national demographic model and simulation of the UK population 
specifi ed at the level of individuals and households. Our interest is not only in the 
construction of more sophisticated and effective models, but also how simulations 
might be transferred into a real-world environment. The approach builds up from 
cities and regions, with an aim to create simulation models of interactions between 
individuals, groups, or neighbourhoods within large metropolitan areas. Such simu-
lations can form the basis of a wide range of applications in both e-Research and 
public policy analysis. 

 This paper describes the hybrid approach used in the MoSeS Dynamic Model, 
which combines the strengths of both MSM and ABM to enable the modelling of 
complex social systems. The results generated by the model and our experiments 
with different sub-populations will also be discussed in this chapter.  

    16.2   Background 

 Modelling population and their societies have always been challenging, due to the 
complex nature of such systems. They normally consist of a large number of indi-
vidual components that interact in a strongly nonlinear fashion. Population models 
concern collections of discrete entities with stochastic behaviours, as well as com-
plex population dynamics caused by temporal population changes. Such changes 
are bounded and result from something other than a monotonic approach to a stable 
equilibrium. The dynamics of these systems are typically irregular and may include 
oscillations and chaos that are produced by some combination of exogenous and 
endogenous stochastic and/or deterministic factors. Such a complex system requires 
the capability to handle real data and phenomena that are not necessarily tractable 
mathematically. Therefore modelling such a system often requires heavy use of 
simulations and other computational tools to reproduce the picture of the dynamics 
and behaviours within such systems (Turchin  2003  ) . 

 There are two main types of population simulation models: microsimulation 
models (MSMs) and macrosimulation models (see Birkin and Wu  2012 , for further 
details). In MSMs each individual is described with its particular attributes and 
behaviour, while a macrosimulation model is based on stochastic differential equa-
tions, where the population is described in aggregated terms by the number of indi-
viduals in different states (Gustafsson and Sternad  2007  ) . Traditional macroscopic 
population models project populations by age and sex only. Aggregated probabilities 
are applied to grouped populations by age and sex in the fundamental demographic 
transitions such as mortality, fertility and migration to project the components of 

   1     http://www.ncess.ac.uk/      
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changes in future. Due to their aggregate nature, it is diffi cult to capture the individual 
characteristics in such models. MSMs, on the other hand, can model the impact on 
individual decision units from the changes in strategic planning or government 
policies. With the increasing complexity of such social and economic programmes, 
MSMs, with a used and tested record, have become an essential part of the decision 
making process, allowing identifi cation of the magnitude of gains and losses from 
policy changes in such areas as taxation, social security, pensions and social ser-
vices (Bourguignon and Spadaro  2006 ; Fredriksen et al.  2007  ) . As MSMs can model 
the population and their past, present and future at the individual level (Wolf  2001  ) , 
its usage has quickly spanned the whole spectrum of the social sciences to model 
complex social systems where individual characteristics are important. 

 However, MSMs require realistic micro-data and can be more diffi cult to apply 
in situations where appropriate data are not available. For example, in many appli-
cations of MSMs to problems involving taxation, housing or the public fi nances, 
real individual records can be manipulated under alternative scenarios to evaluate 
the impact of policy alternatives. In a population MSM, the individual attributes and 
transition processes are typically driven by probabilities from aggregate data or 
samples, and this can make it less fl exible in modelling interactions and behaviours 
of various population groups that occur in the real world. Agent-based models 
(ABMs) can strengthen our understanding of the interactions between people and 
their behaviour by modelling demographic processes through interactions with 
other agents and/or the environment that they live in and model actions according to 
their unique built-in rules of behaviour. The fl exibility of being able to construct 
heterogeneous agents and their rules makes it particularly helpful when there is a 
knowledge gap or data are unavailable (Axtell  2000 ; Epstein  1999  ) . Crooks and 
Heppenstall  (  2012  )  present a useful overview of ABMs. 

 The MoSeS hybrid model attempts to combine the strength of a dynamic spatial 
MSM and an ABM to simulate discrete demographic processes at the level of an 
electoral ward to project the individuals into the future from the year 2001 to 2031.  

    16.3   Methodology 

    16.3.1   Microsimulation Models (MSMs) 

 MSMs can model the impact on individual decision units from the changes in 
strategic planning or government policies. Referring to the probabilistic generation 
of artifi cial data on an individual basis of the kind that would be observed in real 
life, MSM techniques have several advantages over the macrosimulation approach 
(van Imhoff and Post  1998  ) . It allows more factors to be taken into account in demo-
graphic processes, and it is possible to model the interactions between individuals 
and to incorporate continuous covariates that are not possible in the macrosimula-
tion approach (Siegel  2002  ) . It can also produce data with much richer outputs and 
yield probabilistic results allowing confi dence intervals to be created for the resulting 
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projections. MSMs are able to generate individual event histories that are fully 
consistent with a set of transition intensities (probabilities) and produce estimates of 
the full distribution of an outcome, in addition to the expected value that is produced 
analytically by most models. They are also particularly useful where the projections 
are produced to answer a “what if” question such as the effect of a policy on a demo-
graphic characteristic (Wittenberg et al.  1998  ) . 

 However, social simulation models are normally targeted to analyze complex 
social outcomes, i.e. macro outcomes that strongly depend on systemic processes of 
interactions between individuals that are co-located within a given environment. 
Microsimulation and macrosimulation are also recognized in previous research as 
alternative methods for making similar statements about the future. Despite its 
power, the MSM approach is also complex with onerous data requirements. It relies 
on quality microdata to produce realistic results, especially for important demo-
graphic transitions. When suitable data are not available, it will struggle. MSMs are 
also more prone to error than macrosimulation due to the sources of randomness 
such as the extra sources of error from the rich attributes of the individuals, a degree 
of inherent randomness in the Monte Carlo simulation process and the randomness 
in the initial population samples (van Imhoff and Post  1998 ; Wilson and Rees  2005  ) . 
Some researchers continue to pursue macro-micro linkages, either in linking general 
equilibrium macro-economic models to MSMs (Aaberge et al .   2007  )  or allowing 
behavioural responses in MSMs. Among them, the MicMac project aims to offer 
a bridge between aggregate projections of cohorts (Mac) and individual cohort 
members (Mic) (Willekens  2005  ) . Mac and Mic both use the same set of aggregated 
transition rates, but extra attributes in addition to age and sex have been introduced 
into Mic to address demographic events and other life transitions at the individual 
level (Gampe et al.  2009  ) . Mac focuses on transitions among functional states by 
age and sex to produce cohort biographies, while Mic addresses demographic events 
and other life transitions at the individual level using a multistate model to produce 
individual biographies (Willekens  2005  ) . 

 However, the diffi culty of incorporating behavioural responses into a pure MSM 
becomes clear in practice. The fundamental dilemma of the behavioural vs. proba-
bilistic model has been experienced (O’Donoghue  2001  ) .  

    16.3.2   Agent-Based Models (ABMs) 

 More recently, the ABM approach has been used in various areas of social science, 
as agents in an ABM seem to be able to naturally mimic human population. A defi ni-
tion is provided by Axtell  (  2000  ) : “An ABM consists of individual agents with states 
and rules of behaviour. Running such a model is simply creating a population of such 
agents and letting agents interact, and monitoring what happens”. Typically, indi-
vidual agents can move around and interact with each other and the environment that 
they live in according to their built-in rules. They can also store information gathered 
through such movements and interactions and make decisions or act upon it. 
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 One of the most useful features of ABMs, as suggested by Epstein  (  1999  ) , is that 
it demonstrates that a suffi cient microspecifi cation can generate a macrostructure of 
interest. Through the repetition of application interaction rules for individual agents 
at the microscopic level, a target macrostructure can be effectively attained. As 
ABM tries to bridge the micro and macro by identifying microspecifi cations that are 
suffi cient to generate the macroscopic picture in a robust and replicable manner, it 
also allows us to study the micro-to-macro mapping. 

 Furthermore, each individual/society is multi-dimensional and such dimensions 
can often not be considered separately in the real world, unlike the artifi cial division 
of different disciplines of academic social science. The ABM approach refl ects the 
complexity of social systems and provides powerful new forms of hybrid theoretical 
computational work, especially in studies of non-equilibrium systems. In fact, ABM 
“invites the interpretation of society as a distributed computational device, and in 
turn the interpretation of social dynamics as a type of computation. This interpreta-
tion raises important foundational issues in social science – some related to intrac-
tability, and some to undecidability proper”. For instance, “it is not obvious how 
we can formulate (or solve) the equations to represent large populations of discrete 
heterogeneous agents coevolving on a separate space, with which they interact” 
(Epstein  1999  ) . 

 In demography, there is a poor level of precision in theoretical constructions. 
Quite often it not only lacks suffi cient theory for applications of statistical models 
and data collection, there is also insuffi cient accounting for observability of impor-
tant quantities used in the theory. Therefore ABM is very helpful for problems where 
“writing down equations is not a useful activity” (Billari et al .   2003  ) . Despite such 
useful features that can benefi t demographic studies, especially for those who are 
interested in understanding demographic behaviour, limited use of ABMs has been 
made in the area of demography. However, there is a stream of researchers who 
believe that the use of ABM in demography is of interest to all scientists interested in 
studying demographic behaviour, as well as to computer scientists and modellers 
who are looking for a promising fi eld of application. Different to the approach based 
on statistical analysis of behavioural data that aims to understand why specifi c rules 
are applied by humans, ABMs pre-suppose (realistic) rules of behaviour and try to 
challenge the validity of these rules by showing whether they can or cannot explain 
macroscopic regularities. They argue that in order to study human populations, agent-
based approaches are particularly useful from various theoretical perspectives, and 
as a promising stream of research, agent based approaches can improve our under-
standing of demographic behaviour (Billari et al .   2003  ) .  

    16.3.3   The MoSeS Hybrid Approach 

 A hybrid modelling approach that combines the strength of both MSMs and ABMs 
has been adopted to capture the individual characteristics in the simulation model. 
Microsimulation in the hybrid model provides the capability to work with large 
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scale data through the list processing power and the theoretical basis of dealing with 
real microdata and empirical data, the macro consequences of a certain behaviour 
from in depth studies, as well as the analysis of the impact of policies through a 
predefi ned group of transition rates, which drives the simulation. 

 However using the pure MSM, it is diffi cult to model the movements, interac-
tions and behaviours of individuals or sub-populations due to its statistical nature 
and central controlled structure, as well as a lack of appropriate data on important 
transitions. Therefore a hybrid approach combining MSM and ABM techniques is 
tested to provide the fl exibility and practical solution for modelling the subtlety of 
population changes and the heterogeneous behaviour of the individuals among a 
large population with rich details. This is less well studied and lacks an appropriate 
theoretical basis in previous MSMs. The use of ABMs also provides us with the 
ability to introduce heterogeneous agents in the model whose distinctive behaviours 
are not necessarily mathematically tractable (Billari et al .   2003  ) . 

 ABMs mimic the human population naturally in the way that individuals can 
move around and interact with each other and/or the environment where they live. 
They can also have some intelligence according to their built-in rule bases where 
memories/changes can be stored for future decisions/actions. Within an ABM, indi-
viduals in the hybrid model are not socially isolated. On the contrary, they demon-
strate the autonomy and interdependency at the same time. Thus this hybrid approach 
allows us to better understand social/demographic processes such as migration and 
marriage, where the movements, interactions and behaviours are playing an impor-
tant role. The feature discussed above also provides a way to experimentally test 
hypotheses on decision processes and behaviours at an individual level.   

    16.4   Creating Agents from a Microsimulated Population 

    16.4.1   MoSeS Model Description 

 MoSeS is a dynamic spatial MSM that simulates discrete demographic processes at 
a ward level and projects the individuals into the future from the year 2001 to 2031. 
At the core of the MSM is the population model consisting of six modules, which 
model the following demographic processes: ageing, mortality, fertility, health 
change, marriage and migration. It models the demographic lifecycle at an annual 
interval. As a dynamic MSM, this model uses dynamic ageing and the simulation is 
driven by probabilities applied to each individual in each demographic transition at 
each simulation step. These transition probabilities are underpinned by a variety of 
data sources, most notably the ‘British Household Panel Survey’ (BHPS), 2  a lon-
gitudinal survey of individuals and households which is enormously rich in its 

   2     http://www.esds.ac.uk/longitudinal/access/bhps/L33196.asp      



35316 Agent-Based Extensions to a Spatial Microsimulation Model of Demographic Change

demographic, social, economic and behavioural content. As a spatial MSM, all 
probabilities used in the MSM are not only age and gender specifi c, but also spa-
tially disaggregated at the ward level. 3  Such probabilities have been calculated to 
refl ect the individual and local difference, using a combination of both individual-
level sample records and aggregate small area data from the UK census. The prob-
abilities also refl ect other vital factors regarding specifi c demographic processes. 
The transition of population status, movements and interactions of individuals are 
the focus in the model. 

 MoSeS models the individuals within the households, where they interact with 
the rest of the world through interactions with other people and the environment 
that they live in. Although the studied population is modelled as individuals, there 
is an interdependency between the household, individual and environment. The 
attributes of individuals, households and their environment can change due to various 
interactions between the individuals and: (a) other individuals; (b) households; or 
(c) the area that they live in. For example, during the process of marriage, the 
formation of a new household will result in changes in at least one individual’s 
location; for households, this will result in changes in both existing and new house-
holds; for the areas that they used to/are going to live in, it will see changes in both 
local housing and the local population. Similar changes will be experienced in 
migration processes, too. Due to this interdependency, the operation of these demo-
graphic processes of individuals also leads to the formation and dissolution of 
households during the simulation. 

 MoSeS uses an ABM for some demographic processes to allow more fl exibility 
and practicality where individual movements, interactions and behaviours are play-
ing an important role. The MoSeS ABM naturally complements its spatial dynamic 
MSM components, as MoSeS agents refl ect four of the most important features 
highlighted by Epstein  (  1999  ) : heterogeneity, autonomy, explicit inclusion of space 
and bounded rationality: 

 Firstly, MoSeS agents have a rich portfolio of attributes from various data sources 
of human population samples and such characteristics change over time. Secondly, 
there is no central control over behaviours of individual MoSeS agents, and each 
agent acts autonomously according to their own rules. Thirdly, all events happen in 
an explicit space in MoSeS and local interactions are modelled typically through 
agents’ interactions with others or their local spatial environments. Finally, MoSeS 
agents only make decisions/take actions according to simple rules that are based on 
local information. They do not have global information or infi nite computational 
power. Such features of the MoSeS agents are “especially powerful in representing 
spatially distributed systems of heterogeneous autonomous actors with bounded 
information and computing capacity who interact locally” (Epstein  1999  ) . Such a 
description of the system refl ects the characteristics of a dynamic spatial population 
model extremely well. 

   3   A ward is an administrative unit varying in size from 2,000 to 10,000 households. They are typi-
cally more populous in urban areas than in the countryside.  
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 Agents have been created from the microsimulated population to model the 
heterogeneous migration behaviours and the impact of migration histories in two 
experiments. Student migration and the impact of personal migration history on 
mortality will be described in the following sections. We use Leeds as an example 
(Fig.  16.1 ), which is a city in northern England with a population of approximately 
760,000, but the MSM is generalizable between local areas across the UK.   

    16.4.2   Student Migration 

 Migration is a complex demographic process where individual movements, interac-
tions and behaviours are of obvious importance (Champion et al .   2002  ) . Using an 
ABM, individual activities and diversity of migration decisions leading to observed, 
complex migration patterns can be simulated in detail. Some attempts have pro-
duced fruitful outcomes (Espindola et al .   2006 ; Makowsky et al .   2006  ) . In this chapter 
we investigate the usefulness of a hybrid modelling approach in a series of experi-
ments where the MSM is combined with an ABM. We experimented on three 
important properties of agents: their ability to interact with their environment; to 
interact with others and to carry their own personal history around; and to use the 
history as a reference for current/future decisions/actions. 

 We chose student migrants as the sub-population in our fi rst experiment due to 
their distinctive migration patterns, as well as the fact that in a large UK city such as 
Leeds, the frequent local migrations of approximately 30,000 university students 

  Fig. 16.1    Map of the wards of Leeds (Source: Generated by the authors using 2001 Census statistics 
and ward boundaries. Crown Copyright 2003)       
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make an important impact on local population structures. Previous studies have 
recognized the diffi culty of modelling student migration in small areas (Champion 
et al .   2002  ) . Students do not only move frequently and they also exhibit a distinctive 
pattern from the rest of the migrants, i.e. they tend to reside only in certain areas, 
mostly around universities during the period of their study. Most then leave while 
other new students move in. Due to the replenishment of the student population 
each year, the population in such wards stays younger than in other wards. As an 
ABM is very fl exible in terms of constructing heterogeneous agents with different 
rules, we experiment with an ABM for the student migration process using hypo-
thetical rules in a similar way to Schelling’s model on individual decisions to move 
and the composition of neighbourhoods (Schelling  1971  ) . 

 In the MoSeS ABM, we identify four types of agents/students: fi rst year under-
graduates, year 2 and 3 undergraduates, masters students and doctoral students. 
Based on the above assumptions, we then apply some general rules to the students 
in terms of the areas they stay in and the duration of their stay. Specifi c rules for 
individual groups vary according to their specifi c characteristics. For example, a 
year one undergraduate student will choose to stay in available accommodation on 
campus and then move into off-campus accommodation where they can stay in the 
city for two more years. They may then study a masters degree for one more year or 
leave. A masters student can then stay in the area for one year and leave or continue 
with doctoral study for three more years. The typical interaction between the agents/
students themselves would be to look for fellow students to live within a certain 
area, and the interaction with the environment would be checking if there is a 
vacancy in that area. An agent/student keeps searching in areas where their fellow 
students live until they fi nd a vacancy. The agent without success at the end of the 
search stays in the current area. 

 The simulation results of the student population using the pure MSM and using the 
ABM approach have been compared to the observed distribution of the student popu-
lation. Through the implementation of simple rules at the individual level, the hetero-
geneity of student migration is captured in the model. Instead of students almost 
evenly scattering around the whole city in the MSM, the hybrid model provides a 
much better refl ection of the observed student population concentration around the 
city centre, close to a university. More importantly, as new students come into the area 
each year, most existing students leave upon completion of their study in the hybrid 
model. Students are no longer ageing with the rest of the population in the suburban 
areas as in the pure MSM (Fig.  16.2 ). The number of students in wards is indicated by 
the shade of colour, the darker colour indicates more students in areas. Further details 
and discussion of these model results can be found elsewhere (Wu et al .   2008  ) .   

    16.4.3   Mortality 

 Simulating geographically identifi ed populations can demonstrate the local (environ-
mental, economic, etc.) impact on the individuals to a degree. However, sometimes 
not only the current locations, but where individuals came from or used to live also 
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contributes to individual heterogeneities. For instance, if a person has worked as a 
miner all his life, his/her mortality/morbidity rates should not suddenly change a 
great deal just because he/she retired to a pleasant residential area. An ABM can 
complement the MSM by retrieving personal histories with great ease. In this experi-
ment, we explored three scenarios of mortality projections based on the impact of: 
the current residence location, the fi rst residence location in the system/birth places 
and the mortality dependent on personal migration histories. In the fi rst scenario, all 
individuals are simulated in the MSM. Their survivals are determined against an age, 
sex and location specifi c mortality probability generated on the basis of local infor-
mation about the current location of residence. An ABM approach is used in the 
second and third scenarios, where agents carry their own histories along with them 
and have to check on such histories to determine their mortality probabilities. In the 
second scenario, the survivals are determined on the basis of the mortality rates of 
individual fi rst residence location/birth places. In the third scenario, we tried to model 
the impact of personal migration history on mortality. Mortality is projected on the 
basis of the mortality rates of the area where the individual stays the longest to date. 

 In the experiments, the whole population of Leeds has been simulated under the 
three assumptions for 30 years separately and the results of the year 2031 are then 
compared spatially to assess the difference in the mortality distribution within the 
city. Although the distribution pattern of mortality is similar on the whole, the 
experiments still reveal some interesting variations in small areas. Unsurprisingly, 
the mortality projection based on origins in the second scenario is more different 
from the projection based on current locations in the fi rst scenario, while the projec-
tion based on individual migration history in the third scenario demonstrates more 
similarity with the fi rst scenario. However, interestingly, we can see from the map 
that there tends to be a higher mortality in the more established suburban wards in 
the northern area of the city in the fi rst residence based projection compared to the 
current residence. This refl ects the fact that new migrants may take time to absorb 
the benefi ts of favourable demographic conditions in the robustly healthy and affl u-
ent northern suburban areas. In comparison, the majority residence based projection 
indicates a reduction of mortality compared with the current residence based projec-
tion in the northern suburban areas, but indicates an increase of mortality in the 
traditionally less affl uent areas in the south and eastern areas around the city centre. 
Such fi ndings demonstrate that personal history could have an important impact on 
mortality (see Fig.  16.3 ).  

  Fig. 16.2    Student migration in small areas 2001 and 2031: observed, pure MSM and hybrid 
results. Darker areas indicated higher migration (Source: Generated by the authors using 2001 
Census statistics and ward boundaries. Crown copyright 2003)       
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 Empirical research on the relationship between limiting long-term illness and 
migration established that the illness status of migrants is mid-way between that of 
their origin and destination locations (Norman et al .   2004  ) . If this fi nding also 
applies to mortality, then a combination of all three scenarios may be needed to 
represent the mortality chances of migrants properly. We will continue to improve 
the mortality projection in the light of such evidence. Needless to say, the migration 
histories of international migrants may also have a considerable impact on their 
health and mortality compared to the local people. Although the mortality experi-
ments discussed here are purely based on hypothesis (as a result of lack of data), it 
demonstrates that there are many more aspects of the population MSM that can be 
strengthened through the use of personal history. Important elements of the model 
such as marriage behaviour, fertility patterns and change in health status might all 
benefi t in a similar way (e.g. the recent trends of adopting the Total Fertility Rate 
(TFR) approach, marriage behaviour dependency on previous marital status and 
health on previous health history). Such explorations are not only just interesting 
experiments, but can potentially play a vital role in facilitating decision making 
where the impact of personal history should be taken into account.   

    16.5   Conclusions 

 In this paper, we introduced the hybrid approach used in an ambitious social model 
(MoSeS) which combines the strength of both a MSM and ABM to model hetero-
geneity in a complex social system. MSM in the hybrid model provides the capability 
to work with large scale data through the list processing power and the theoretical 
basis of dealing with real datasets, the macro consequences of certain behaviour 
from in-depth studies, as well as the analysis of the impact of policies through a 
predefi ned group of transition rates, which drives the simulation. With the four 
important features of heterogeneity, autonomy, explicit inclusion of space and 
bounded rationality, the MoSeS agents in the hybrid model naturally mimic human 
populations and complement the spatial dynamic MSM components. The hybrid 
model provides a powerful way to model the local interactions in spatially distrib-
uted systems of heterogeneous autonomous actors with bounded information and 
computing capacity. 

  Fig. 16.3    Mortality projections in small areas 2001 and 2031: by current, fi rst and majority resi-
dence. Darker areas indicated higher mortality (Source: Generated by the authors using 2001 
Census statistics and ward boundaries. Crown copyright 2003)       
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 In the two experiments we described above, we deliberately chose some 
straightforward processes and applied ABM with considerable simplifi cation. 
However, the modelling of interaction, behaviour and personal history impact can 
be signifi cantly more complex with more intelligent agents. For example, people 
can have much more complex interactions with others and their environment to 
make a decision or take an action, assisted by information from their personal his-
tories or requirements during the household formation process. The hybrid approach 
can also present opportunities to recent demographic modelling trends such as 
using total fertility rate (TFR) instead of age-specifi c fertility rates (ASFRs), as 
“maternal” agents can easily track the history throughout their childbearing lives. 
The examples discussed in this chapter are simply used to demonstrate the poten-
tials of the hybrid model. 

 As a demographic planning tool, MoSeS can monitor the evolution of population 
structures and various demographic changes on a fi ne geographical scale. This 
provides vital information for demographic planning/policy making (especially 
location-based policies). MoSeS can also benefi t other public policy making or pub-
lic service planning. For instance, the ageing trends in certain suburban areas may 
promote changes in the health service and public transportation provision in order 
to enable easy access to such services for the old population in the area. The rich 
attributes captured in the system are also very useful in various policy analyses or 
research purposes. 

 The MoSeS hybrid model has provided a framework to enable the effective 
modelling of heterogeneous decision making units on a large scale, as well as adding 
the fl exibility to introduce different modelling techniques to strengthen various 
aspects of the model. The model itself provides a useful tool in assisting decision 
making, exploring various “what if” situations and testing different hypotheses. As 
we have discussed above, the hybrid modelling approach demonstrates great poten-
tial in demographic modelling and we will continue trying to improve various aspect 
of this model using this approach to provide a better groundwork for more wide-
ranging social science studies.      
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  Abstract   Designing, formulating, and communicating agent-based models (ABMs) 
poses unique challenges, especially how to choose the right level of complexity and 
how to describe – and, even, think about – a model in a way that captures both its 
essential characteristics and its complete detail. Two techniques for dealing with 
such challenges have become established among agent-based modellers. The 
“ODD” (Overview, Design concepts, Details) protocol is a standard for describ-
ing ABMs in publications, but also provides design patterns for the model devel-
oper. ODD starts with an overview of what the model is and does, and then 
describes how the model implements ten “design concepts” that capture essential 
and unique characteristics of ABMs. Last come all the details needed to com-
pletely replicate the model. “Pattern-oriented modelling” (POM) is a set of strate-
gies for using patterns observed in the systems to ensure that an ABM captures the 
right “essence” of the system. POM starts with identifying multiple patterns of 
behaviour in the real system and its agents that seem to capture the essential inter-
nal mechanisms for the problem being modelled. These patterns are then used to 
decide what kinds of entities, state variables, and processes need to be in the 
model; compare and test alternative “theory” for key agent behaviours; and fi lter 
potential parameter values to limit uncertainty. ODD and POM are important 
steps toward the acceptance of agent-based approaches as established, credible 
ways to do science.      
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    17.1   Introduction 

 Agent-based models (ABMs) can be hard to communicate. They usually include 
different types of agents and spatial units, each distinguished by a suite of state 
variables, attributes, behaviours, and environmental processes. Model results can 
depend strongly on how model entities are initialised, how processes and events are 
scheduled, the data used to drive the simulated environment, and the details of how 
submodels represent model processes. As a consequence, many, if not most, descrip-
tions of ABMs are lengthy but nevertheless incomplete. 

 Communication is, however, part and parcel of using ABMs as a scientifi c tool. 
Models are the “Materials and Methods” used by modellers to obtain scientifi c 
results. Thus, as with any other method used in science, the very feature that renders 
an ABM “scientifi c” is replicability: that the same results can be obtained by peers 
if they use exactly the same materials and methods. But most published ABMs 
would be impossible, or at least challenging, to replicate. This situation cannot be 
tolerated because it undermines the credibility of ABMs as a scientifi c method. 
Moreover, because ABMs are increasingly built to support real-world decision 
making, model structure and assumptions need to be transparent to decision makers; 
otherwise the models are likely to be (justifi ably) ignored, or used inappropriately. 

 Incomplete and ineffi cient communication is linked to a second challenge of 
agent-based modelling: the lack of a framework for designing ABMs. Current prac-
tice is that most ABMs are developed from scratch and that the choice of model 
structure and process representation is more or less  ad hoc . Model design and for-
mulation often refl ect the disciplinary background, experience, and personal prefer-
ences of the modeller more than general principles of model design that would lead 
to similar model designs for similar problems. 

 Lack of effi ciency and coherence in design and communication is to be expected 
for an emerging scientifi c approach. But agent-based modelling is no longer in its 
infancy: hundreds of ABMs have proven the potential of this approach, both in 
theory and application, in a wide array of disciplines; many research projects and 
programs dealing with complex systems include ABMs in their portfolio of 
approaches; and the issues of standardisation, communication, and transparency 
have increasingly been addressed over the last 10 years. 

 There are several examples of the drive for a general framework for ABMs. 
Railsback  (  2001  )  listed design concepts that are important for designing ABMs, in 
particular when adaptive behaviour is included. Grimm and Railsback  (  2005  )  
devoted their book on individual-based modelling in ecology to making this 
approach more “coherent and effi cient”. A series of workshops addressed the issue 
of model replication (e.g., Hales et al.  2003  ) . Standards for model development 
(Richiardi et al.  2006  )  and communication were proposed (Grimm et al.  2006, 
  2010  ) , and a community has been established with the mission to “foster the agent-
based modelling development, communication, and dissemination for research, 
practice and education” (Janssen et al.  2008  ) : the Open Agent Based Modelling 
Consortium (  www.openabm.org    ). 
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 Standardisation is an indicator for a maturing approach: the approach has been 
used enough to understand its strengths and weaknesses, what decisions have to be 
made when using it, and how standards can make its use more effi cient and coher-
ent. Standards must of course avoid restricting the approach’s fl exibility and 
usefulness. 

 Here we present the ODD protocol, a standard for communicating and formulat-
ing ABMs; and pattern-oriented modelling (POM), a general strategy for tying 
model structure to multiple observed patterns to make model design and analysis 
less  ad hoc . Both approaches were formulated in ecology but are relevant in any 
discipline using ABMs. Since both ODD and POM have been described in detail 
elsewhere, we focus here on what these approaches are, how they can be used, and 
what benefi ts they provide to the agent-based modeller.  

    17.2   The ODD Protocol 

 The ODD protocol was developed as a standard format for describing individual- 
and agent-based models (Grimm et al.  2006 ; Grimm and Railsback  2005  ) . The 
acronym stands for the three blocks by which ODD’s elements are grouped: 
Overview, Design concepts, Details. ODD is designed to be used for  all  ABMs, 
independent of their domain, purpose, complexity, and computer implementation. 
The main idea of ODD is to present ABMs in a hierarchical way: an overview of 
model structure and processes fi rst, with details on processes last. Between over-
view and details is a checklist that explains how important general concepts for 
designing ABMs have been taken into account. This checklist ensures that mod-
ellers make important design decisions consciously and that readers understand 
how and why certain design decisions were made. 

 Using ODD implies referring to this standard explicitly by stating: “The model 
description follows the ODD (Overview, Design concepts, Details) protocol for 
describing individual- and agent-based models (Grimm et al.  2006,   2010  ) ” and 
then presenting the seven elements of ODD (Table  17.1 ) using exactly the given 
sequence and element labels. By using ODD always in this way, writers do not 
waste time fi guring out how to organise their model description and readers avoid 
frustration by knowing exactly where to fi nd information about a model. Moreover, 
understanding of a model is greatly facilitated by fi rst providing an overview of its 
structure and processes. For most readers, this information is suffi cient to grasp the 
overall rationale of the model and to understand its results. Readers hooked by the 
overview can go into more detail and see how certain processes have been repre-
sented. Finally, an ODD description should be complete enough to allow the 
model’s replication.  

 For complex models, the Details and possibly also the Design concepts parts 
may be too long, so they can be moved to an electronic appendix, or the full ODD 
model description could be published in a separate report. 
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    17.2.1   Design Concepts 

 The design concepts of ODD were fi rst summarised by Railsback  (  2001  ) , then 
discussed in detail in Grimm and Railsback  (  2005  ) , and most recently updated by 
Grimm et al.  (  2010  ) . The ten concepts are not actually needed to replicate a model, 
but they are important for communicating the essence of how (and why) an ABM 
has been designed—because traditional formats such as equations and diagrams 
cannot capture the essence of most ABMs. For example, the fi rst design concept is 
“emergence”. Its discussion should explain whether key model results are imposed, or 
whether instead they emerge from agent behaviours and other processes – information 
that is the key to understanding the rationale of the model. Here “imposed” means 
that model rules and equations force the model to behave in a predictable way. For 
example, if a model is designed so that an event like a traffi c jam occurs with a 
constant probability of 5%, then it is no surprise that on average the model produces 
traffi c jams 5% of the time. If, however, traffi c jams emerge from the behaviour and 
decisions of the agents and the roads they follow, there is no simple way to predict 
how often traffi c jams occur: we have to run the model and see what emerges. 

   Table 17.1    The seven elements of the ODD protocol (See also the ODD webpages at   www.ufz.
de/oesatools/odd    )   

 ODD  ODD element  Questions to be answered 

 Overview  Purpose  What is the purpose of the model? 
 Entities, state variables, 

and scales 
 What kind of entities are in the model? By what 

state variables, or attributes, are these entities 
characterised? What are the temporal and 
spatial resolutions and extents of the model? 

 Process overview and 
scheduling 

 Which entities do what, in what order? 
When are state variables updated? How is 
time modelled — as discrete steps or as a 
continuum over which both continuous 
processes and discrete events can occur? 

 Design concepts  Design concepts  There are  ten design concepts  (see text). How 
have these concepts been taken into account 
in the model’s design? 

 Details  Initialisation  What is the initial state of the model, i.e. at time 
 t  = 0? 

 Input data  What input does the model use from external 
sources such as data fi les or other models to 
represent processes that change over time? 

 Submodels  What, in detail, are the submodels that represent 
the processes listed in “Process overview and 
scheduling”? What are the model parameters, 
their dimensions, and reference values? How 
were submodels designed or chosen, tested, 
and parameterised? 
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 In many descriptions of ABMs, it is not entirely clear what the authors wanted to 
emerge and what they imposed. Similar “ad hoceries” often occur with the other 
design concepts. The following description of the concepts is adopted from Grimm 
et al.  (  2010  ) :

    • Emergence . What key outputs of the model are modelled as emerging from the 
adaptive behaviour of its agents? Are there other outputs that are more tightly 
imposed by model rules and hence less dependent on what individuals decide 
to do?  
   • Adaptation . What rules do agents have for changing behaviour in response to 
changes in themselves or their environment? Do these traits explicitly aim at 
increasing some measure of individual objectives or success? Or do they instead 
cause individuals to reproduce observed behaviours that are implicitly assumed 
to convey success?  
   • Objectives . If adaptive behaviour is represented as explicitly seeking some objective, 
what is the objective and how is it measured? Examples of “objectives” are “fi tness” 
for organisms, “utility” for economic reward in social models, or simply “success”.  
   • Learning.  Do individuals change their adaptive behaviour over time as a conse-
quence of their experience? How?  
   • Prediction . To make decisions, model agents often need to predict future conse-
quences of their alternatives. What internal models are used by the agents to 
estimate future conditions or consequences of their decisions? What “tacit” or 
hidden predictions are implied in these internal models?  
   • Sensing . What information (state variables of other model entities and them-
selves) can agents sense and consider in their adaptive decisions? Are the mecha-
nisms by which agents obtain information modelled explicitly, or are agents 
simply assumed to “know” these variables?  
   • Interaction . What kinds of interactions among agents are in the model? Are there 
direct interactions, or are the interactions indirect, e.g. via competition for a 
mediating resource? How do agents interact with their environment?  
   • Stochasticity . What processes are modelled by assuming that they are random or 
partly random? Why is stochasticity used – to represent variability in a simple 
way, or to cause events or behaviours to occur with a specifi ed frequency?  
   • Collectives . Are there aggregations of agents that affect, and are affected by, the 
agents? Examples include social groups, fi sh schools and bird fl ocks, human 
networks and organisations, or cells constituting an organ. Are collectives repre-
sented as emergent properties of the agents or as a separate kind of entity with its 
own state variables and traits?  
   • Observation . What data and patterns must be observed from the ABM for test-
ing, understanding, and analyzing it, and how are they collected?    

 ODD model descriptions should describe how these design concepts were taken 
into account. It is possible to leave out some of the concepts if they are not included 
in the ABMs design at all (e.g., if adaptive behaviour is simple, then Objectives, 
Learning, and Prediction may be irrelevant). Four concepts are relevant to almost 
every ABM: emergence, interaction, stochasticity, and observation.  
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    17.2.2   Examples 

 As a simple example, we apply the ODD protocol to the “Segregation” model 
published as part of NetLogo (Wilensky  1997  ) , which was inspired by the work of 
T. Schelling (e.g., Schelling  1971  ) .

    Purpose.  The model addresses segregation of households in cities: why members 
of two different groups tend to separate into different neighbourhoods. The model 
explores the relationship between how tolerant individuals are of the opposite group 
and how segregated neighbourhoods are, when individuals express intolerance by 
moving.  

   Entities, state variables, and scales.  The model entities include mobile agents that 
represent households, and square grid cells that represent houses. Households are 
characterised by their location (which house they occupy) and their colour, which is 
either blue or red. Households also have a state variable “happy?”, a boolean vari-
able set to false if the household is intolerant of its neighbours. The grid cells make 
up a square 51 × 51 cells in extent, with no depiction of roads or other spaces between 
them. The space is “toroidal”: if an agent moves off one edge of the space, it reap-
pears on the opposite edge; and the neighbours of a household on one edge of the 
space include those on the opposite edge.    

 The length of a time step is unspecifi ed but represents the time in which a house-
hold would decide whether to move. The number of time steps in a model run is an 
emergent outcome: the model runs until no households are intolerant of their neigh-
bours and want to move (see submodel  move ).

    Process overview and scheduling . The following actions are executed, in this order, 
once per time step.

   If no households are intolerant of their neighbours (“happy?” is true for all • 
households), then the model stops.  
  The households who are intolerant of their neighbours (“happy?” is false) execute • 
the submodel  move . The order in which these households execute is randomly 
shuffl ed each time step.  
  All households update their “happy?” variable (see submodel  • update ).  
  Outputs for system-level results are updated.     • 

   Design concepts . The key outcomes of the model are segregation patterns, espe-
cially how strongly segregated the entire system is; these outcomes  emerge  from 
how tolerant households are to unlike neighbours. The households’  adaptive behav-
iour  is to move when their  objective  – to live in a neighbourhood with the fraction 
of unlike neighbours below their tolerance threshold – is not met. The behaviour 
does not involve learning, or prediction other than the implicit prediction that mov-
ing will lead to a neighbourhood where the tolerance objective is met. Households 
 sense  the colour of other households on the eight surrounding grid cells.  Stochasticity  
is used in only two ways: to initialise the model so that it starts unsegregated; and to 
determine the new location of households when they move, because modelling the 



36717 Designing, Formulating, and Communicating Agent-Based Models

details of the movement is beyond the scope of this model.  Observations  include a 
visual display of which colour household is on each grid cell, and two numerical 
results: the mean (over all households) percent of neighbours of similar colour, and 
the percent of households with “happy?” false.  

   Initialisation . A user-chosen number (typically, 2000) of households are initialised. 
They are each placed on a random empty grid cell and given a colour randomly, 
with equal probability of red and blue.  

   Input data . The model does not use input from external models or data fi les.  

   Submodels . The submodel  move  is performed by individual households if they are 
not tolerant of their neighbours. The household chooses a direction randomly from 
a uniform real distribution between 0° and 360°, then moves forward a distance 
drawn randomly from a uniform real distribution of 0–10 grid cell widths. If there 
is already a household on the grid cell at this new location, the household repeats the 
move. If the new grid cell is empty, the household moves to its centre.    

 The submodel  update  is conducted by all households, to determine whether they 
tolerate their neighbourhood. The tolerance of households is determined by a param-
eter “%-similar-wanted”, the value of which ranges from 0 to 100 and applies to all 
households. A household’s “neighbours” are all households on the eight surround-
ing patches. The household’s variable “happy?” is set to false unless the number of 
neighbours with the household’s colour is greater than or equal to “%-similar-
wanted” divided by 100 and multiplied by the number of neighbours. 

 Using ODD for such simple models may look overdone. However, the ODD 
model description has a clear hierarchical structure, different elements of the model 
are easy to fi nd, and all information required for implementation is provided. 
Moreover, the design concepts provide some explanation of why the model was 
designed as it was. 

 An important benefi t of ODD is that any ABM can be described in exactly the 
same format as the segregation model. ODD thus provides a unifying format. 
Consequently, using ODD to rewrite model descriptions made it much easier to 
compare three different models of land use/land cover changes (Polhill et al.  2008a  ) : 
SLUDGE (Parker  1999 ; Parker and Meretsky  2004  ) , SOME (Brown et al.  2004, 
  2005  ) , and FEARLUS (Polhill et al.  2001 ; Gotts et al.  2003  )  with the ELMM exten-
sion (Polhill et al.  2005,   2008b  ) . 

 Just identifying the entities and state variables of the three models made it easy 
to see the conceptual similarities of these models, but also their differences in com-
plexity, resolution, and scope (Table  17.2 ). Obviously, SLUDGE and SOME are 
conceptually very simple and similar, whereas FEARLUS + ELMM can represent 
quite complex landscapes and scenarios. FEARLUS + ELMM could, however, 
probably be mapped to the two simpler models by choosing simplifi ed parameteri-
sations and initialisations. Model-to-model comparison, and thus transfer of ques-
tions, model designs, and results, is greatly facilitated by using ODD. This applies 
also to comparing process overviews and schedules, and design concepts (Polhill 
et al.  2008a  ) .   
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    17.2.3   ODD as Design Patterns for Formulating ABMs 

 Since 2006, ODD has been used for over 70 individual- and agent-based models. 
ODD has mainly been used by ecologists, but recently applications are appearing in 
other domains as well, e.g., microbiology (Hellweger et al.  2008  ) , socio-ecology 
(Guzy et al.  2008  ) , biomedical research (Galvão and Miranda  2009  ) , and anthropol-
ogy (Premo and Hublin  2009  ) . After reviewing most of these applications of ODD 
and summarising the questions and comments from many ODD users, Grimm et al. 
 (  2010  )  revised ODD slightly but completely rewrote its description and explanation 
to make its use easier. 

 Reviewing these applications of ODD revealed unexpected benefi ts, including 
that ODD provides a general format for thinking about and designing ABMs. ODD 
makes us ask questions about model structure and design in a hierarchical way: 
structure and overview fi rst, processes and details later. This facilitates translating 
the often confusing and vague conceptual models which are the starting point of any 
modelling process (Grimm and Railsback  2005  )  into model formulations. Scientists 
with no background in agent-based modelling found ODD helpful for understanding 
what would be involved to implement an ABM of their system and problem. 
Likewise, communication between students who develop ABMs and their supervi-
sors is made much more effi cient by using ODD. ODD also facilitates communi-
cation between different domains, which usually have their own styles of modelling 
and communicating models. 

 Last but not least, ODD corresponds to “design pattern” in software engineering 
(Gamma et al.  1994  ) , which describe “recurring solutions to common problems in 
software design” (Wikipedia  2009  ) . In agent-based modelling, ODD is a design pat-
tern for formulating new models, and for re-formulating existing models.   

    17.3   Patterns and Stylized Facts 

 While ODD has proven very important and useful, it provides only a general struc-
ture for formulating ABMs. It cannot, by itself, prevent “ad hocery” in the choice 
of entities and state variables. ABMs can still be too simple or too complex to be 
useful for inferences about how their real counterparts are working. We need a 
strategy for increasing the chance that our models explain the internal organisation 
of real complex systems by guiding our choices of what to include in a model and 
in what detail. 

 Such a strategy emerged in ecology over the last 15 years: pattern-oriented mod-
elling (POM). It is based on the notion that complex systems provide indicators of 
their internal organisation: patterns, signals, or regularities that cannot be explained 
by random processes and therefore call for an explanation (Heine et al.  2007  ) . For 
example, if vegetation in semi-arid regions shows a characteristic banded structure 
(Fig.  17.1 ), we can take this pattern as an indicator of how vegetation is affected by, 
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and affects, the distribution of water. Our task thus is to “decode” the patterns 
observed in the real systems. We do this inversely by trying to fi nd models that 
produce the same patterns.  

 This approach is certainly not new but just the basic idea of science, or infer-
ence (Platt  1964  ) . Patterns were key to revealing the internal organisation of atoms 
and the universe (spectral patterns), identifying quasars (periodic signals), and 
proposing asteroids as the cause of mass extinctions (unusual Iridium concentra-
tions in geologic strata). However, one important and often neglected point in the 
science of agent-based complex systems is that a single pattern is rarely enough 
to decode the internal organisation. Many different models are, for example, able 
to reproduce cycles in the population dynamics of small mammals (Czárán  1998  ) . 
How can we select the right model or falsify models that produce cycles for the 
wrong reasons? 

 The basic and simple idea of POM is to use multiple patterns, observed at differ-
ent scales and hierarchical levels, as multiple criteria for selecting among alternative 
model structures, submodel formulations, and parameter sets. One single pattern 
might be relatively “weak” and contain little information so that still, say, half of the 
models considered would reproduce it. But by adding a second pattern, we possibly 
reduce the degrees of freedom in model structure. Thus, every single pattern serves 

  Fig. 17.1    Banded vegetation pattern in semi-arid regions produced by a simple grid-based model 
(Thiery et al.  1995 ; model reimplementation courtesy of U. Berger). The 100 × 100 cells each have 
the size of a tree.  Dark cells  are covered by woody vegetation,  white cells  are not. Implicitly, the 
landscape is assumed to have a gentle slope so that runoff from rain fl ows from  top  to  bottom        
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as a fi lter. Again, this method of inference is old and regularly used by detectives 
who use motives, alibis, witness statements, and evidence to fi lter possible suspects. 
Or, in the famous story of the discovery of the structure of DNA (Watson  1968  ) , 
X-ray diffraction patterns indicated a spiral structure, but many such structures were 
compatible with this patterns. Only after two additional patterns, Chargaff’s rule 
and the geometry of purine and pyridimine bases, were taken into account was the 
real structure identifi ed. 

 In social sciences and in particular in economics, the notion of “stylised facts” 
(after Kaldor  1961  )  corresponds to what we here mean by patterns. In the modelling 
literature of these domains, stylised facts often seem to be disregarded as too vague 
to use for rigorous inferences. The point of POM is, however, to increase inferential 
power by  combining  multiple vague, weak, or qualitative patterns or stylised facts 
(see also the discussion of ‘middle range models’ by Gilbert  (  2008 , pp. 41–44)).  

    17.4   Pattern-Oriented Modelling 

 In POM, multiple patterns are used for three elements: designing model structure 
(what entities, state variables, and processes to include); selecting among alternative 
submodels; and determining parameter values. 

    17.4.1   Patterns for Model Structure 

 The key question of POM’s fi rst element is: what do experts who know the system 
well consider to be characteristic features, or essentials, of the system? For example, 
in growing cohorts of trees, competition among neighbouring trees increases as the 
trees grow. Initial differences in size and the trees’ spatial distribution cause some 
trees to be more suppressed by competition so they die, which is called “self-thinning” 
in ecology. The resources used by the trees that die (space, light, nutrients) become 
available to survivors, who can grow further until competition is again strong enough 
that more trees die. 

 A characteristic pattern of this process is that the relationship between average 
tree biomass and tree density follows a power law: a straight line on a log-log graph. 
Moreover, the slope of this line is similar for virtually all plant species and environ-
ments. Until about 2000 it was believed that the slope has to be, for theoretical 
reasons, –3/2 but a new theory predicts a slope of −4/3 (Enquist et al.  1998  ) . 

 The consequence of this pattern for modelling self-thinning was that models 
focussed on tree density and average biomass as state variables. Different models, 
however, can each produce a power law with the right slope. So, what other patterns 
characterise self-thinning? This question is not fully answered yet, but it seems that 
the spatial distribution of trees is quite regular during the entire process, which indi-
cates that neighbour competition, depending on local tree density, is important. 
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 To potentially explain this regular spatial distribution, a model should be individual-
based so that space and local interactions can be represented. Trees might be repre-
sented just by their biomass, which corresponds to a certain “zone of infl uence” 
over which they interact with neighbours (Berger and Hildenbrandt  2000  ) . No further 
patterns seem to be known yet that would suggest including further state variables 
of the trees, e.g. height, crown shape, etc. Interestingly, power laws are also found 
in the size distribution of cities, where probably similar mechanisms of neighbour 
competition are the underlying mechanism (Batty  2005  ) . 

 To use POM to design a model structure, we identify multiple patterns, typically 
two to fi ve, which seem to characterise the system and problem being modelled. 
Making it possible for the model to reproduce each pattern requires adding some 
state variables and processes. These make the model more complex but also rich 
enough in structure to be tested against not only one, but multiple patterns. The 
models are also “mechanistically rich” (DeAngelis and Mooij  2003  )  so that they can 
be checked for patterns that were not used for model formulation and calibration. 

 An example of a mechanistically rich model is the natural beech forest ABM of 
Rademacher et al.  (  2004  ) , who found characteristic patterns in the age structure and 
spatial distribution of canopy trees in model results. These patterns were not at all 
considered during model formulation and verifi cation, which were driven by other 
characteristic patterns, but agreed very well with observations (Rademacher et al. 
 2001  ) . This discovery indicated that the model captures essentials of the system’s 
internal organisation instead of just being fi t to observations. One generic feature of 
structurally realistic models is that they reproduce observed patterns at different 
hierarchical levels simultaneously. They capture essential behaviours of both the 
system and its agents. 

 Quite a few ABMs have been oriented towards reproducing sets of observed 
patterns, but usually this is not stated explicitly. POM means to use multiple patterns 
systematically and explicitly.  

    17.4.2   Patterns for Selecting Submodels 

 ABMs usually comprise a set of submodels that describe the model entities’ behav-
iour. The segregation model described above, for example, has two submodels, 
 move  and  update . Formulating submodels includes many degrees of freedom. The 
decision of whether and where to move could, instead of being very simple and 
partly random, have been a complex algorithm using knowledge about distant loca-
tions and prediction of future changes in neighbourhoods. Submodels, like entire 
models, must compromise between being simple and unrealistic vs. more realistic 
and harder to understand. How much detail, and what detail, must we have to solve 
a particular problem? 

 The idea of POM for selecting submodels is to use the entire ABM as a virtual 
laboratory in which we separately test alternative submodels: which submodel, or 
theory (Grimm and Railsback  2005  ) , is able to reproduce multiple observed patterns 
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simultaneously? If more than one submodel can do so, which is the most simple one? 
For example, Railsback and Harvey  (  2002  )  distilled from the literature six broad pat-
terns in the habitat selection behaviour of trout; their ABM was designed so these 
patterns  could  emerge but were not  forced  to emerge. Three alternative habitat selec-
tion submodels were tested, and only one could reproduce all six patterns. 

 Contrasting alternative submodels or theories by their ability to reproduce sets of 
patterns corresponds, in principle, to more formal model selection algorithms from 
information theory, which are used to select among alternative simple descriptive 
models (Piou et al.  2009  ) . 

 One important advantage of contrasting alternative submodels is also that it helps 
communicate that “the model can be wrong” (J. Goss-Custard personal communi-
cation) and thus counter the widespread notion that complex ABMs cannot be 
wrong because you can fi t them to any result you want. The segregation model, for 
example, does  not  reproduce segregation if the decision to move is entirely random. 
Likewise, Janssen et al.  (  2009  )  found that two ‘naïve’ models of behaviour in a 
common dilemma game, random walk and greedy agents, did not reproduce all four 
patterns identifi ed in controlled laboratory experiments. 

 Of course, this kind of high-level, pattern-oriented submodel selection cannot be 
applied to all submodels of an ABM but only to those that represent key behaviours; 
examples from ecology are habitat selection (Railsback and Harvey  2002  )  and for-
aging strategy (Goss-Custard et al.  2006  ) .  

    17.4.3   Patterns for Parameterisation 

 Pattern-oriented models are usually of moderate complexity with typically 10–20 
parameters. Ideally, all parameter values could be determined directly from informa-
tion about the agents being modelled, but this is virtually never the case. Estimating 
parameter values from expert knowledge is often suffi cient to get the qualitative behav-
iour of the model right, because experts often know much more than can be expressed 
by hard numbers. One important benefi t of POM is that this qualitative knowledge can 
be included via empirical if-then rules and tested against multiple patterns. 

 Nevertheless, if models are to be used to make inferences about the real world 
and support decision-making, “guestimated” parameterisations can be too uncer-
tain. For example, Wiegand et al.  (  2004  )  developed a spatially explicit ABM of 
brown bears re-invading the Alps from Slovenia. Uncertainty in the predicted popu-
lation growth rate in a certain area was very high (Fig.  17.2 ). Wiegand et al. there-
fore used multiple patterns in spatial distributions and census time series to reduce 
uncertainty in parameter values.  

 They created a large number of parameter sets by sampling values of the uncer-
tain parameters from their assumed ranges. Then, each observed pattern was used as 
a fi lter: parameter sets leading to model output which did not reproduce the pattern, 
according to quantitative criteria, were discarded. Some patterns could be repro-
duced by many parameter sets, others contained more information and reduced 
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the set of possible parameterisation more. In combination, however, only a few 
(typically 10–30) parameter sets fulfi lled all patterns. Using only these “fi ltered” 
parameterisations strongly reduced uncertainty in the model output (Fig.  17.2 ). 

 Again, this technique of “Monte Carlo fi ltering” is not new and is used in other 
domains under the name “inverse modelling”, but Wiegand et al.  (  2004  )  fi rst dem-
onstrated its power for parameterising ABMs and linked it to the other two elements 
of POM. Inverse parameterisation, like the entire POM strategy, is independent of 
its origin in ecology (Grimm et al.  2005  )  and applicable to ABMs in general (e.g. 
Janssen et al.  2009  ) .   

    17.5   Discussion 

 ABMs are fundamentally different from the traditional models of many fi elds, espe-
cially from models based on system-level equations. We now have enough experi-
ence to know that the processes of designing, building, and doing science with 
ABMs are different from traditional approaches. Traditional system-level models 
are designed and described using established “languages” such as differential equations 
and fl ow diagrams, and have their complexity determined mainly by mathematical 
tractability. With ABMs, we need new standards and strategies. This chapter 
describes two such standards and strategies that have already proven very useful. 

 The ODD standard addresses the need for a way to describe both the essential 
characteristics and the full details of an ABM. The value and success of ODD is 
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  Fig. 17.2    Population growth rate ( red bars ) and its coeffi cient of variation ( black bars ) of a brown 
bear population as predicted by the model of Wiegand et al.  (  2004  ) . Each  pair of bars  represents 
one set of model parameterisations, as ( left to right ) more patterns are used as “fi lters”: parameteri-
sations that do not reproduce the pattern are no longer used. Uncertainty decreases greatly as more 
patterns are used       
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illustrated by how widely and rapidly it has been adopted. Benefi ts of ODD include 
allowing readers to quickly get an overview of a model’s most important character-
istics, providing suffi cient detail for replication, and providing the modeller with a 
framework for thinking about and designing an ABM from the start. 

 The POM strategy addresses three needs in the process of designing and using an 
ABM. First, it helps with the fundamental model design problem: determining what 
entities, variables, and processes must be in a model, so it is complex enough but not 
unnecessarily complex. Second, it provides a way to develop and test theory: rules 
for how individual agents behave that are shown, via pattern-oriented analysis, to 
reproduce essential dynamics of the system. Finally, POM can be used to fi lter 
potential parameter values in an effi cient and rigorous way. 

 Both ODD and POM seem “messier” than the standard techniques of traditional 
modelling, but that is simply a refl ection that ABMs are messier than simpler mod-
els: if we want to model complex systems, we must use more complex models. But 
the messiness of ABMs is exactly why we need techniques like ODD and POM: to 
help us cope with the complexity. We can view these techniques as evidence of the 
establishment and acceptance of ABMs as a way of doing science.      
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  Abstract   Many situations exist that require virtual crowds to be modelled via com-
puter simulations on varying scales. Such simulations often have confl icting goals; 
the need for large and complex worlds with rich behaviours in agents, but at the 
same time, the need for fast performance provided by simpler agents with reason-
able crowd authoring. Our goal in this chapter is to establish the tools and  techniques 
required for simulating large-scale virtual crowds. We identify both macroscopic 
and microscopic simulation methods and detail application areas where there is the 
need for navigation and behaviour of agents around the simulation environment, to 
correspond to realism. Hence, we actively identify different classes of applications 
that form balances between the confl icting goals that exist in simulating virtual 
populations.      

    18.1   Introduction 

 Different applications have specifi c needs, and therefore, dedicated techniques to 
solve navigation and behavioural problems. Applications for these macroscopic and 
microscopic simulations can be described in three broad classes: safety and urban 
planning, entertainment, including the video games and the movie industry, and 
lastly virtual reality. 

 Safety and urban planning models require simulations that correspond to realism 
related to calibrated environments. The navigation of the crowds and their behav-
iour has to correspond to reality. The general objective of these types of simulations 
are to model the fl ow of pedestrians around a building, e.g. when trying to exit a 
building or fi re, to test the suitability of the design of a building, or as an aid to large 
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scale planning, such as shopping centres, stadiums or town planning. Therefore, the 
simulation has to correspond to real world conditions; however interactivity and real 
time simulation is not a requirement. The data are generally analysed during a post 
processing phase. 

 Entertainment applications, such as video games or movies, require the behaviour 
and navigation of agents to appear real, but exact realism is not necessary. Interactivity 
is a crucial requirement for video games. Examples include recent games that pro-
vide an open world, such as Crysis 2 for the Xbox 360, 1  where players inhabit a 
virtual city. The realism here is enhanced by simulations of computer controlled 
agents with subsets reacting to real time human input. 

 While safety and urban simulations require exact simulations, and entertainment 
applications require interactivity, virtual reality simulations require both interactiv-
ity and believability. Virtual reality models can also enhance urban planning mod-
els by adding a level of immersion that gives the realism required to aid town 
planning. Here, the immersion of a user into the virtual world requires pedestrians 
moving around the scene to look and behave in a natural and real manner. A num-
ber of resources are used in a virtual reality application, from the rendering of the 
scene in the virtual world, to the pedestrians walking around the city during the 
crowd simulation. In order to solve the navigation problem, the global movement 
of a pedestrian around the virtual world is generally planned (see Sect.  18.2 ). 
We will explore the meaning of planned movement in the following sections. In 
addition to global planned behaviour, local behaviour of pedestrians interacting at 
street level must be taken into account. The local behaviour is commonly reactive, 
taking into account the interactions of pedestrians with the environment and other 
pedestrians (see Sect.  18.3 ). 

 The section that follows will survey some of the relevant models for pedestrian 
simulations to give a broad idea of techniques used and the tools that exist as well 
as alternatives to these tools. Further surveys can be found in Pelechano et al.  (  2008  )  
and Thalmann and Musse  (  2007  ) .  

    18.2   Macroscopic Agent Behaviour 

 In order to simulate crowds, individuals need to behave realistically at a local level 
as well as at a global level when navigating the environment. Therefore, coordinat-
ing the movements of these individual agents plays an important role. When simu-
lating large and complex environments, local behavioural techniques such as the 
social forces model (Helbing and Molnár  1995 ; Helbing et al.  2000  )  and the boids 
model (Reynolds  1987  )  can get caught up in local minima. Several techniques have 
been proposed in order to deal with the crowd navigation problem at a global scale. 
The techniques can be divided into three major classes: navigation graphs (Pettre 

   1     http://www.crytek.com      
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et al.  2005 ; Pelechano and Badler  2006 ; Lerner et al.  2006  ) , potential fi elds (Loscos 
et al.  2003 ; Chenney  2004 ; Treuille et al.  2006  ) , and roadmaps (Bayazit et al.  2002 ; 
Sung et al.  2005 ; Sud et al.  2007  ) . This section will describe the techniques for each 
class of navigation. 

    18.2.1   Navigation Graphs 

 Graphs were fi rst introduced by Teller  (  1992  ) , with the aim to aid architectural 
walk-throughs in real time. Graphs are made up of a series of nodes and portals. The 
agents need to navigate through these nodes and portals defi ned by the graph to 
reach a destination. Nodes may represent rooms or corridors indoors and pavements 
outdoors, and portals may represent doors internally and crossings outdoors. 

 In Pettre et al.  (  2005  ) , navigation graphs use a cell decomposition technique rep-
resented as a data structure that captures the topological structure of the navigable 
space in the environment. The navigable space is divided into a set of intersecting 
circles. Edges are defi ned as the line segments that join the intersecting circles, 
which divide the adjacent navigable areas. Navigation graphs only have to be com-
puted once for each environment. Navigation for agents from a source to a destina-
tion is performed by scattering the number of people navigating from a source A to 
a destination B by  x%  using Dijkstra’s graph search algorithm. Alternative paths for 
pedestrians to follow are then computed depending on the scattering parameter  x . 
This scattering provides for variety, saving computation time during simulation. 
Collision avoidance is, therefore, disabled for agents at far distances, as collisions 
are not detectable by a viewer. 

 In Pelechano and Badler  (  2006  ) , Helbing and Molnár’s  (  1995  )  social forces 
model is used for the local behaviour, and combined with a wayfi nding approach to 
build up a high level global view of the environment. This global view is constructed 
via agents exploring the environment using current knowledge. Wayfi nding is com-
puted by using four components: building a mental model of the environment, its 
current position within the mental model, processes that help it learn features such 
as doors and walls within the environment, and fi nally, the navigation process that 
allows it to move through the environment. The mental map is made up of a cell and 
portal graph with nodes added as the agent navigates the environment. The algo-
rithm calculates the shortest path to the exit based on the agent’s knowledge of the 
environment. When agents interact, they can share information to the adjacent cells 
only, to share knowledge such as whether it is passable or there is danger through 
the portal (e.g. a door). 

 Agents have different levels of knowledge to conform to real world situations 
within three classes: agents who are leaders and trained, i.e. they have complete 
knowledge of the environment; those that do not have complete environmental 
knowledge and make their own decisions in stressful environments such as a fi re 
evacuation; and agents who are not leaders and untrained, i.e. they do not have com-
plete environmental knowledge and may be incapable of making their own decisions 
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in a highly stressful environment. High level wayfi nding then takes place. Leaders 
share their mental map with other agents. Agents then check their shortest known 
path based on their own and shared knowledge, reacting differently to a hazard based 
on the agent class. 

 In Lerner et al.  (  2006  ) , outdoor environments are represented using cells and 
portals. The cells and portals are created by a two-pass algorithm; the fi rst pass cre-
ates the initial partition, which is refi ned by a second pass. It proves more effi cient 
than traditional Binary Space Partitioning (BSP), and creates an effi cient automatic 
cell and portal partitioning; as such it can deal with arbitrary orientation of walls. 
Half edges, i.e. a single sided oriented edge obtained from a 3D model, are passed 
to the algorithm in 2D, which will create the partitioning. Pedestrian paths are rep-
resented as cells, whereas the intersections between pedestrian paths and crossings 
are represented by portals. The average number of visible cells and portals in a ren-
dered scene is signifi cantly lower than a BSP tree, which allows for more agents to 
be accommodated in real time.  

    18.2.2   Potential Fields 

 In methods that involve potential fi elds, the environment is modelled as a 2D discre-
tised grid. Each cell in the grid has a certain potential. The goal has attractive poten-
tials while the obstacles have repulsive potentials. A gradient can therefore be applied 
that guides the agents from the source to the destination. These methods help reduce 
the complexity at a macroscopic level. In Thompson and Marchant  (  1994  ) , Simulex 
used potential fi elds for the agents to navigate around the scene. 

 Loscos et al.  (  2003  )  also uses a potential fi eld method whereby the space is subdi-
vided into a 2D grid to indicate the areas that are accessible such as crossings and 
pathways, and collision detection with buildings is achieved with a collision map 
(Tecchia and Chrysanthou  2000  ) . The agents are not entirely represented as fl ows, 
but have individual-based behaviour. A graph of goals is around the urban environ-
ment, covering each pavement area. Individual behaviour is achieved by creating a 
trajectory, where the agents start at one of the goals in the graph, and are assigned 
another goal as a destination. The fl ows are achieved by using local information 
rather than global, making use of the graph of goals. When an agent reaches a goal, 
it stores a direction vector that fades over time. When another agent reaches that goal, 
it checks for a previous direction vector, and if found, makes a decision based on that 
vector. These methods have the potential of getting stuck in local minima. Figure  18.1  
shows a representation of the agents moving around in the environment.  

 Another similar technique to potential fi elds is fl ow tiles (Chenney  2004  ) . Each 
fl ow tile contains a precomputed velocity fi eld. These fl ow tiles can be combined to 
form a continuous fl ow for various applications, where the edges and corners main-
tain continuity. For a crowd simulation, the streets can be represented with fl ow tiles 
(Fig.  18.2 ). Internal boundary conditions on the tiles can denote buildings preventing 
the agents bumping or walking through buildings.  
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 In Treuille et al.  (  2006  ) , the model uses a continuum-based approach. The envi-
ronment is modelled as a 2D grid including the mapping of uneven terrain. Large 
numbers of agents can be accommodated as the computations are based spatially 
rather than per-each individual agent. The motion of crowds is controlled by a 
dynamic potential fi eld, which allows it to avoid moving obstacles without the need 

  Fig. 18.1    Behaviours achieved by agents based on underlying grids containing behavioural maps 
(Taken from    Tecchia and Chyrsanthou ( 2000 ))       

  Fig. 18.2    Flow tiles on the streets drive the fl ow of agents through the city (Taken from Chenney 
 (  2004  ) )       
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for explicit collision avoidance. The potential fi eld is composed of superimposing 
grids made up of different types of information, such as the density grid (the loca-
tion of people), the goal grid (their goals), boundary grids (impassible grid cells), 
etc. (Fig.  18.3 ). The environment uses a cost function that determines the speed of 
the agents. The cost function takes in factors such as the slope of the terrain, the 
density of the agents, obstacles, etc. This cost function helps compute the optimal 
path for the agents to travel through by using the gradient of the computed potential 
fi eld. Most crowd simulations combine global path planning and local behaviour 
planning methods with the potential of confl icts between the two methods. The con-
tinuum dynamics method integrates local path planning with the global navigation 
for the agents. A dynamic potential fi eld integrates agents as moving obstacles, and 
therefore, a dynamic global path can be planned that will avoid static obstacles as 
well as other agents. As the path is dynamic and is updated based on the current 
environment, agents do not get stuck in local minima.   

    18.2.3   Road Maps 

 Road maps use robotics as a basis, as well as algorithms for route planning of agents 
around an urban environment developed from the motion planning solutions of robots. 
The real time global navigation of only a small number of agents will run effi ciently 
when computing road maps based solely on the robot motion planning solution. 
When the number of agents increases, global collision-free routes have to be com-
puted for each independent agent, which can result in exponential computation time, 
therefore becoming a bottleneck. Dynamic objects can cause an even greater problem 
for motion planning with the potential of agents getting stuck in local minima. Various 
solutions have been developed from road maps that will allow large numbers of agents 
to navigate around scenes that contain static as well as dynamic objects. 

 Bayazit et al.  (  2002  )  incorporates Reynold’s seminal work on fl ocking (Reynolds 
 1987  )  with probabilistic roadmaps (PRM) to allow global navigation of agents. 

  Fig. 18.3    An underlying dynamic potential fi eld representing density, goals and boundaries. Other 
conditions control the positions of the agents (Taken from Treuille et al.  (  2006  ) )       
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Flocking behaviour uses local behaviour planning, where each fl ock member’s 
behaviour is determined by its local environment. Integrating a roadmap based path 
planning method with the fl ocking behaviour allows complex group behaviours 
among the fl ock such as homing towards a goal, exploring an environment and shep-
herding. The roadmaps that are computed have maximum clearance from obstacles, 
allowing the fl ock to pass through a collision-free path. Individual fl ock members 
may have sub-goals within the group, and on reaching the sub-goal, continues along 
the global path of the group. 

 Lien et al.  (  2005  )  extend the road map integration of Bayazit et al.  (  2002  ) , specifi -
cally the shepherding behaviour of the fl ock when following a global path. Shepherding 
behaviour is a type of group behaviour where one or more group members shepherds 
or controls the motion of another group, i.e., the fl ock. Lien et al.  (  2005  )  introduce 
multiple shepherds that control the fl ock individually without communicating with 
each other, and still manage to effi ciently control a fl ock. The environment, once 
divided into a roadmap, contains milestones that are the nodes of the roadmap. The 
shepherds attempt to steer the fl ocks towards the milestones in order to help the fl ock 
reach the goal. The roadmap here is dynamic. 

 Kamphuis and Overmars  (  2004  )  created roadmaps for groups to follow. A path 
is created for a single agent known as the backbone path. The clear area around the 
path is termed the corridor, in which other agents in the group must stay. The cor-
ridor’s width and the extent to which other agents can move away from the main 
group is limited by using a social forces model. This ensures the group stays together, 
and allows agents in the group to catch up or even pass through obstacles from the 
same side. 

 Sung et al.  (  2005  )  used the concept of roadmaps to create a global motion plan-
ning solution. A probabilistic roadmap (PRM) was computed for the pedestrians to 
navigate through the complex environments to avoid collisions (Fig.  18.4 ). The 
PRM does not create an accurate navigation path, but provides an initial guess for 
the search that approximately satisfi es the constraints. It then uses Dijkstra’s search 
to further refi ne the search to allow for smooth adjustments to the position, and 
direction of the pedestrian, providing an accurate motion that exactly satisfi es the 
constraints. All the possible sets of actions are represented in a motion graph, and 

  Fig. 18.4    The black character uses roadmaps to navigate through the rooms avoiding obstacles to 
lift a box ( circled ) in the  upper right  room (Taken from Sung et al.  (  2005  ) )       
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the search algorithms just described are used to generate motion. The crowd motion 
is authored by taking into account constraints such as duration, position, orientation 
and body pose. This allows two characters to meet at particular places face-to-face 
at specifi ed times, or even to go to certain events together.  

 Lau and Kuffner  (  2005  )  introduced a behavioural motion planning approach 
using a fi nite-state machine (FSM), which determines the motion of the pedestrians 
by avoiding collisions with other pedestrians as well as obstacles. This motion is 
determined during runtime via a planning algorithm that uses the FSM to create a 
global search to create the trajectory that the pedestrian has to follow. This tech-
nique was further extended by Lau and Kuffner  (  2006  )  to accommodate a larger 
number of pedestrians in the simulation. It also allowed for the motion planning 
technique to re-plan in real time, allowing for a more dynamic environment. The 
environment here is modelled as a 2D grid where the cells are determined to either 
contain an obstacle or not. A search tree is precomputed to represent all the behav-
ioural states that are reachable based on the current state of the pedestrian. A search 
algorithm also computes a global path to the goal of each pedestrian by avoiding 
obstacles mapped onto the environment grid map. A path fi nding algorithm using 
reverse path lookup is then used to calculate the shortest path to the destination for 
the pedestrian to follow. Using the behavioural states that were determined using the 
precomputed search tree, the path calculated is able to handle the presence of cer-
tain obstacles and characters by making the pedestrians jump or pass under them. A 
sequence of behaviours is then converted to actual believable motion using a motion 
synthesis system blending frames at transition points. 

 Sud et al.  (  2007  )  introduced a technique called Adaptive Elastic Roadmaps 
(AeRO). The roadmap is based on a Voronoi diagram. It uses an approach that allows 
agents to have distinct goals and individual-based behaviour without getting stuck in 
local minima similar to Treuille et al.  (  2006  ) . The road map algorithm adapts to 
dynamic environments and computes a dynamic global navigation path for the agents 
by taking into account moving obstacles and inter-agent collision avoidance. The 
global road map updates incrementally, which reduces the computation time and 
offsets the requirement of continuous updating by introducing a concept called  link 
bands . Link bands are introduced at a local level to augment the global navigation. 
The link bands deform and reform the road map at a local level, and therefore, guide 
agents through a collision free path avoiding other agents and moving obstacles.   

    18.3   Microscopic Agent Behaviour 

 There are varying techniques used to solve the crowd motion planning problem at a 
local scale. The technique used depends on the application that needs to be solved, 
and the specifi c requirements based on the crowd density and the scale of the area 
in which it needs to be simulated. This section will focus on the crowd behaviour at 
a local scale, and will divide local navigation techniques based on the application, 
as the application’s requirements defi ne the technique. 
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    18.3.1   Safety, Urban Modelling and Architectural Applications 

 The analysis of video fi lms of individual and groups of pedestrians has given a 
good insight into the way pedestrians behave, and it could give us an idea of how 
they infl uence crowds – see also Johnasson and Kretz  (  2012  ) . There are certain 
observations made by Helbing et al.  (  2001  )  and Loscos et al.  (  2003  ) . With regards 
to groups of pedestrians, they will walk at the same speed, follow the same goals, 
and will wait for each other if one goes missing. In order to simulate these pedes-
trians, the main goal of the simulator is to provide results that match real world 
data, e.g. evacuation times, walking speed, infl uence among individuals, individual 
personal space. Therefore, it is important to calibrate the models with real world 
data. There are three common approaches that are used to simulate pedestrians for 
safety applications. These can be classed as fl uid, cellular automata (CA) and 
agent-based models (ABMs). Details of CA and ABMs can be found in Iltanen 
 (  2012  )  and Crooks and Heppenstall  (  2012  ) , respectively. 

 Flow-based simulations are used to model pedestrians at a macroscopic scale, 
where an individual does not have a powerful infl uence on the behaviour of the crowd. 
These pedestrians are, therefore, not individual entities but are part of a network of 
fl ows. These fl ows are based on the Navier-Stokes equations, where Henderson’s 
 (  1971  )  early work showed that it was possible to model pedestrians based on these 
equations. The Navier-Stokes equations describe the motion of fl uid substances based 
on Newton’s second law. These equations describe compressible and incompressible 
fl uids, but to apply it to pedestrians, only the incompressible part of the equations 
need to be used. Helbing et al.  (  2001  )  and Hughes  (  2003  )  are examples of recent work 
that has used fl uids to simulate crowds. Figure  18.5  illustrates pedestrian fl ow repre-
sented by arrows from Helbing et al.  (  2001  ) .  

 CA approaches include the environment that is divided into a group of cells. 
Each cell has a fi nite amount of states. The pedestrians occupy the cells, and they 
move from cell to cell based on parameters such as crowd density and walking 
speed. ABMs are quite popular among safety sciences, social sciences and the 
urban modelling area. An agent as defi ned by Jennings et al.  (  1998  )  is “a computer 

  Fig. 18.5    The fl ow of agents leads to lane formation in this example. The direction and  arrow  
lengths represent the walking direction and the speed of the agents (Taken from Helbing et al. 
 (  2001  ) )       
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system, situated in some environment, that is capable of fl exible autonomous action 
in order to meet its design objective”. These agents can also represent pedestrians 
at an individual level, unlike fl ows. This allows us to set micro-specifi cations of a 
crowd system, which generate emergent behaviours at a macro-scale. Castle’s 
 (  2006  )  work is one example of an ABM for evaluating evacuation scenarios at 
King’s Cross St Pancras underground station in London (Fig.  18.6 ). Batty et al.’s 
 (  2003  )  simulation of the Notting Hill carnival is another example of the use of an 
ABM in this area.  

 Helbing and Molnár  (  1995  )  introduce a ‘social forces model’ for pedestrians. 
They describe a model where a sum of the forces exists that infl uences the loco-
motion of pedestrians. There are three forces. The fi rst is acceleration since the 
velocity of the pedestrian can vary over time. The second is repulsion, which is 
the repulsive force experienced from other pedestrians and obstacles, and the third 
is attraction, which is the attractive force experienced by other people (e.g. friends, 
family) or other objects (e.g. popular attractions, window displays). These forces 
are combined with a term to account for behavioural fl uctuations to form the 
equation for the ‘social forces model’. This model is one of the most popular 
approaches to pedestrian modelling in safety applications, and has been reused 
and refi ned in many other approaches such as Helbing et al.  (  2001  )  to simulate 
escape panic, and others used for modeling evacuation scenarios (Braun et al. 
 2003 ; Cordeiro et al.  2005  ) .  

  Fig. 18.6    Kings Cross St. Pancras underground station evacuation model (Taken from Castle  (  2006  ) )       
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    18.3.2   Entertainment Applications 

 The aim of crowd simulation in entertainment applications is interactivity, especially 
in video games. Interactivity is also needed in the movie industry, but applied in a 
different context to video games. Whereas video games require real-time interaction 
with crowds for the end user, the movie industry handles all the crowd simulation 
offl ine in order to create impressive scenes containing huge crowds. The user inter-
acts with the simulator running several trials and set-ups to create the fi nal scene. 
This also gives the user global and local control, allowing precise control over the 
crowds’ movements. Although the simulation is computed offl ine, it has to be fast 
enough for the several trials that will take place. 

 Work by Reynolds  (  1987  )  fi rst introduced artifi cial life to the computer anima-
tion/graphics area. He demonstrated how the behaviour of bird fl ocks could emerge 
from an extension of a particle system, where the birds act as the particles. This was 
a computer model of coordinated animal motion such as bird fl ocks or fi sh schools, 
which accounted for collision avoidance and goal seeking (Fig.  18.7 ). This behav-
iour can be applied equally to crowds, although commercially, this model has had 
various applications. One such application is the bat swarms and penguin fl ocks in 
the 1992 movie ‘Batman Returns’. More recent work by Reynolds  (  1999  )  extended 
the behaviours that were simulated, and introduced steering behaviours in addition 
to the collision avoidance and goal seeking introduced in Reynolds  (  1987  ) . The 
steering behaviours involved seeking, fl eeing, pursuit, evading, path following, wall 
following, etc. The crowd simulation has been further extended, and moved onto the 
Sony PlayStation 3 platform (Reynolds  2006  ) . The general navigation and behav-
iour remains the same, but accommodates more agents in real time (Fig.  18.8 ).  

 Particle systems have been used in other ways to simulate crowds (Fig.  18.8 ). 
Bouvier et al.  (  1997  )  uses a particle system combined with Newton’s law of motion 
to model crowds. This again uses a microscopic approach, which allows for the 
navigation to be planned at a local level. The local planning is based on taking into 
account reactive behaviour, where individuals avoid each other based on density as 
well as the avoidance of obstacles. The model by Bouvier et al.  (  1997  )  also uses 
higher level decision making to create the simulation, taking into account the param-
eters such as destination, density, the duration of stay for visiting certain places and 

  Fig. 18.7    Animated fl ock showing behaviours of separation (steering to keep a minimum distance 
among fl ockmates), alignment (steering to keep aligned with the direction of local fl ockmates) and 
cohesion (steering to move closer to fl ockmates) (Taken from Reynolds  (  1999  ) )       
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other global events such as taking into account the presence of obstacles. This higher 
level is based on Newton’s law.  

 Models created for the entertainment industry are often created in packages out-
side of the custom created research toolkits. While not being a specialised model-
ling system per se, 3ds Max from Autodesk is an industry leader in game production 
linking into the wider Autodesk suites. Built into the package is a ‘Crowd and 
Delegate’ system allowing groups of 3D objects and characters to be animated 
according to a series of computed behaviours. Using simple rules such as ‘avoid’ 
‘follow’, ‘seek’ or custom written in the form of scripts, one can create crowds with 
highly complex behaviours. Figure  18.9  illustrates the most basic level of model 
behaviour in 3ds Max using the ‘follow surface’ and ‘wander behaviour’. Each del-
egate is represented by the triangles forming part of a team assigned with a wander 
rule for a set period of time while following the 3D object surface. Once set up, key 

  Fig. 18.8    Flock of 10,000 fi sh rendered on a Sony PlayStation 3 (Taken from Reynolds  (  2006  ) )       

  Fig. 18.9    3ds Max crowd and delegate system: follow surface and wander behavior       
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frames are assigned according to a predefi ned time sequence, and the simulation is 
pre-computed allowing for later export or rendering. Using such a method, it can be 
quickly extended to cityscapes, fi ctional landscapes or any realm.  

 Models created in such a software not only utilize advances in graphic card tech-
nology, but also advances in physics-based engines such as Havok Physics, which 
allows the user to easily add additional elements such as mass and gravity to infl u-
ence the behavior of the agents. 

 The various built-in components of 3ds Max enables high quality graphic out-
puts as well as real-time previews and outputs to game engines such as Crysis. This 
allows researchers to achieve ‘semi movie-like’ results. Indeed 3ds Max is arguably 
the most powerful mass market simulation engine although it does need viewing in 
context. The package itself is essentially a ‘black box’ compared to more traditional 
approaches with routes and behaviours pre-computed with minimal feedback on the 
underlying dynamics. We would argue, however, that it is within the entertainment 
industry with increasing consumer demand for realistic reaction from agents within 
gaming environments where future innovation will emerge.  

    18.3.3   Virtual Reality Applications 

 The techniques used for virtual reality applications combine the techniques used in 
the previous two sections. This is an area where we see more of a convergence 
between the two broad areas of crowd simulation, i.e. realism of crowd behaviour, 
and high quality visualisation. This convergence helps to immerse the user into the 
virtual crowd. 

 Tecchia et al.  (  2001  )  introduced a layered approach to simulate agent behaviour. 
The approach is based on using a 2D grid with four layers. Two layers are used for 
collision detection with the environment, and between other agents. The other two 
layers are used for other complex behaviours, one layer which involves behaviours 
such as waiting, turning a certain direction or computing a new direction based on 
the environment. The other layer deals with highly complex local behaviour such as 
pushing a button to call a lift (Fig.  18.10 ). This layered approach allows for highly 
realistic behaviour to be simulated at a real-time rate, with thousands of agents.  

 Musse and Thalmann  (  2001  )  introduced scalability in simulating virtual crowds. 
The crowd simulation used an agent-based approach. The hierarchy was comprised 
of virtual crowds, groups and individuals where the groups are the more intelligent 
and complex structures. The individual follows the specifi cation of the group. The 
group can be controlled at different levels of the autonomy, which refers to the inde-
pendence of the agents without the need for user intervention including the amount 
of information needed for simulating the crowds. There are three different levels of 
control of the groups. The fi rst is through the use of scripted behaviour for the crowds 
to follow, the second is by defi ning behavioural rules to user events and reactions to 
create more complex behaviours, and the third is by guiding crowds to follow orders 
by the user during run-time. Individual agents, therefore, group together based on 
having common sociological factors defi ned for the group. 
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 Lamarche and Donikian  (  2004  )  introduce a different type of hierarchical approach 
using the geometry of the virtual environment. The topological structure of the geom-
etry enables the capability for global path planning in real-time for each agent while 
taking into account visibility and reactive behaviours. To create the topological struc-
ture, the 3D geometry in the database is converted into a 2D map (Fig.  18.11 ). This 
is done by using two parallel planes separated by the height of a humanoid, and cut-
ting the database geometry starting at the fl oor. This area cut is the navigation area, 
which is projected onto an XY plane to create the 2D map. A cell decomposition 
technique is then used on the 2D map, and the resulting triangulation is then opti-
mised to create convex cells of the environment, which is then captured in a graph.  

 The cell decomposition enables the ability to generate road maps for path plan-
ning. The topological abstraction of the geometry reduces the path planning graph 
size, enabling real time path planning computations. While agents are navigating 
the path, a reactive technique is used to take into account the presence of other 
agents in each cell. An iterative optimisation approach is used to reach the goal and 

  Fig. 18.10    ( a ) An example of a collision map. The regions where agents can move are encoded in 
 white  and inaccessible regions in  black . Examples of behaviour maps: ( b ) visibility map ( c ) attrac-
tion map (Taken from Tecchia et al.  (  2001  ) )       

  Fig. 18.11    A 2D map extracted from a 3D database (Taken from Lamarche and Donikian  (  2004  ) )       
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avoid collisions. The way the trajectory of the agent is computed depends on the 
pedestrian viewing angle and the next cell. A free personal space is kept around 
each agent, which is a minimum distance between other agents, and obstacles. By 
predicting the positions of the other agents, the model can predict if a collision may 
occur, and in turn modify its trajectory. 

 Shao and Terzopoulos  (  2005  )  use a conceptually similar hierarchical structure 
for the virtual environment to Lamarche and Donikian  (  2004  ) , but with different 
methods. Their method uses a hierarchical collection of maps (Fig.  18.12 ). At the 
highest level, it includes a topological map that represents the structure of the differ-
ent parts of the virtual world. This topological structure results in a graph structure 
that represents the environment as a set of rooms or corridors that are intercon-
nected. At the middle level, perception maps provide information related to percep-
tual queries by storing lists of stationary objects as well as agents in the vicinity. 
This level also includes grid maps and quadtree maps for the geometry of the 
 environment. The lowest level consists of path maps.  

 These maps enable path planning online for navigating through the environment. 
The level also includes special representations such as seats and waiting lines. 
Pedestrians in this model use a reactive and deliberative approach. The reactive 
behaviours with which the pedestrians are equipped are primitive and based on Tu 

  Fig. 18.12    Hierarchical collection of maps representing the environment (Taken from Shao and 
Terzopoulos  (  2005  ) )       
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and Terzopoulos  (  1994  )  using a bottom-up strategy. The behaviours include standing 
still and moving forward as well as collision avoidance. These local behaviours in 
turn support more complex motivational behaviours. The motivational and naviga-
tional behaviour enable the pedestrians to reach their goal. The topological map intro-
duced here allows for the achievement of this task. The graph structure is used to fi nd 
the global path for the pedestrian, which is then refi ned using the grid maps. 

 In Narain et al.  (  2009  ) , a dual representation approach is used, where agents are 
represented as both discrete, and as part of a continuous system which is described 
by density and fl ow velocity. Therefore, the discrete representation of agents is 
combined with the representation of the crowd as a continuum fl uid. Local collision 
avoidance is mapped into the continuous domain. A Unilateral Incompressibility 
Constraint (UIC) is introduced in this mapping to obtain a variational constraint on 
the crowd fl ow depending on the region of the environment. The constraint acceler-
ates the collision avoidance step, as it increases the density constraint to maximum 
where obstacles exist. 

 Figure  18.13  illustrates the UIC algorithm as well as a rendered scene of an evac-
uation. This approach can be used as a local planner along with a global planning 
approach such as a road-map based algorithm (Sud et al.  2007  )  or continuous based 
optimisation (Treuille et al.  2006  )  on a coarse grid. The global planning approach 
needs to be computed to determine a preferred velocity for each agent. The global 
path is computed by avoiding large static obstacles in the environment, and ignoring 
the presence of agents. The UIC solver introduced is then used for collision avoid-
ance among agents, and therefore, computes the corrected velocity fi eld for the 
crowds, taking agents into account. Using the corrected crowd velocity fi eld, the 
agent fl ow is constrained in high density regions, but the agents fl ow will be over-
constrained in low density region. In order to overcome this problem, the velocity of 
the agent is computed by interpolating between the continuum velocity and the 
agents own preferred velocity. A fi nal step is then added to create a personal space 
around each agent by introducing a minimum distance based on the method used in 
(Treuille et al.  2006  ) .    

  Fig. 18.13    Overview of the algorithm ( left ) with a screenshot of the simulation ( right ) (Taken 
from Narain et al.  (  2009  ) )       
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    18.4   Tools 

    18.4.1   Safety and Urban Planning 

 A number of commercial tools exist for creating pedestrian simulators for safety 
applications, particularly for evacuation scenarios. We will cover the most popular 
tools, and we will try to describe the technique used behind each tool where possi-
ble. Due to the commercial nature of some of the tools, the information in the litera-
ture is gathered from publicly available data. 

 Legion TM  is a popular pedestrian simulator used in the commercial sector, which 
resulted from extensive research at the Maia Institute in Monaco. It uses ABMs for 
all of its simulations, with the environment layouts based on computer aided design 
(CAD). Therefore, agents are treated as individuals. Legion TM  is based on work 
 carried out by Still  (  2000  ) , trying to simulate and analyse crowd dynamics in envi-
ronments such as stadiums. Environments in the simulation are known as  iSpace , 
where agents and the environment communicate with each other. Agents inform the 
environment with their observations such as obstacles, while it asks the environ-
ment for the direction to take based on its objective. In this way, the agents can 
communicate using the environment. The path planning algorithm has not been 
disclosed, but the agent uses a least effort algorithm to reach its goal, based on sat-
isfying a number of constraints, such as speed distribution and collision (Thalmann 
et al.  2005  ) . The least effort means the maximum speed, but a minimum cost, time 
and congestion, and therefore, optimality may not be guaranteed. The path costs are 
based on their length, travel time and effort. A number of parameters in Legion TM  
for the agents give the simulations a factor of believability, e.g. they may move 
around randomly in a particular space, and come together to congregate before 
moving apart again. Other random events can be entered into the simulation such as 
size, speed and age. 

 As mentioned in the previous sections, fl ow-based models are based on a macro-
scale, where the individual is not signifi cant, and pedestrians are part of a network 
of fl ows. EVACNET4 (Kisko et al.  1998  )  is an example of a fl ow-based model used 
to simulate evacuation scenarios. The environment of the simulator is represented as 
a network of nodes. This network is called the EVACNET network model, and con-
sists of a set of nodes and arcs. The nodes are the building components or the 
bounded parts of the environment, such as rooms, corridors, lobbies and halls. The 
arcs are the passageways that connect these parts. Each arc has to be set up with a 
fl ow capacity and a traversal time by the user. The user also has to set the initial 
placement of occupants, i.e. each node has an initial state, such as the number of 
people, and the destination (fi re exits). The maximum number of people for each 
node must also be defi ned. The program then searches for a minimum evacuation 
time, and the network fl ow algorithm fi nds a solution for the evacuation. Note that 
the model does not have the environment described in explicit geometry, and it is 
rather an implicit model using the nodes. There are other examples of fl ow-based 
models such as EESCAPE and FIREWIND. 
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 Simulex (Thompson and Marchant  1994  )  is another agent-based simulator. Like 
Legion TM , Simulex uses CAD fi les, but uses these fi les to defi ne 2D grids which 
represent fl oor plans. It uses distance maps on top of the 2D grid, which is a discrete 
vector fi eld. The aim of Simulex is to model evacuation scenarios, and individual 
agents have various attributes such as walking speed, acceleration, position, and 
angle of orientation. Agents use the gradient of the vector fi eld to reach their goal, 
while the attributes help solve the motion planning problem. 

 EXODUS is a simulation tool created by the Fire Safety Engineering Group of 
the University of Greenwich. 2  This tool is also an agent-based simulator. It is used 
for both evacuation scenarios and pedestrian dynamics, and was fi rst introduced in 
Galea et al.  (  1993  ) . It is made up of fi ve interactive submodels, namely, occupant, 
movement, behaviour, toxicity and hazard (Fig.  18.14 ). The navigation of the occu-
pants uses a rule-based system and is adaptive. CAD fi les are used again to defi ne 
2D grids for the fl oor plans as well as the general geometric structure. Each grid is 
made up of nodes and arcs, but unlike EVACNET4, these nodes represent a small 
region of space on the grid, while the arcs represent the distance between nodes. 
Individual agents travel using the arcs from node to node to reach their goal. This 
model incorporates many psychological factors for the simulation.  

 In addition to creating the fi rst prototype for Legion TM , Still  (  2000  )  developed 
Myriad II along with colleagues at Crowd Dynamics Ltd. 3  Myriad II is unique com-
pared to other tools seen thus far, where it integrates three different techniques to 
create the modelling tool (Fig.  18.15 ). It comprises network analysis, spatial analy-
sis, and agent-based analysis. This integration enables it to create the best possible 
model based on the situation in the environment, e.g. a network model representing 

  Fig. 18.14    The submodels representing the algorithm of the EXODUS model       

   2     http://fseg.gre.ac.uk/exodus/      
   3     http://www.crowddynamics.co.uk/      
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simple roads can be integrated into an ABM representing complex interactions in 
parts of the environment such as a shopping centre. Data can then be passed between 
the two models of the environment. Four attributes defi ne the crowd behaviour, 
namely, objective, motility (walking speed), constraint (eg. crowd density) and 
assimilation (acceleration) (Still  2000  ) .  

 Mass Motion (   Challenger et al.  2009  )  is a 3D agent-based simulation tool devel-
oped by Erin Morrow at Arup. 4  The ABM’s simulation core runs on a 64 bit multi-
core architecture, and it may be the only currently available commercial simulation 
software that is multi-threaded. Each individual agent has a position, orientation and 
velocity. Each agent has a goal, and has to reach it in the minimum amount of time 
by using both local and global navigation. Figure  18.16  shows a crowd simulation 
using the Mass Motion software.  

 Each individual agent is aware of the environment using a 2D projection of all 
static obstacles within a defi ned volume in order to map the obstacles (Fig.  18.17 ). 
A modifi ed version of Dijkstra’s algorithm is used to defi ne the complete paths 
between origin and destination within the map. Each agent also accounts for the 
visibility of other agents within their immediate neighbourhood.  

 Figure  18.17  shows the structure of a simulation environment within Mass 
Motion via a sparse node network and its implicit relationships between fl oors via 
links. The distance for each agent to the exit is precomputed using the modifi ed 
Dijkstra’s algorithm and is stored at link nodes. This helps in considering the best 
possible route to the destination (exit) via a perceived cost, which is randomised per 

  Fig. 18.15    The overlapping of different methods in Myriad II       

   4     http://www.arup.com/      
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  Fig. 18.16    Screenshot of Mass Motion simulation software (Transbay terminal in San Franciso) 
(Image courtesy of Erin Morrow, Arup)       

  Fig. 18.17    Sparse node network structure of a simulation environment within Mass Motion 
(Image courtesy of Erin Morrow, Arup)       
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agent using randomised weights for the cost components of the routes. A simplifi ed 
algorithm for the total route cost is given as:
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dom agent properties. The structure shown in Fig.  18.17  has the advantage of allow-
ing the environmental geometry to be easily replaced, where the sparse node network 
will then update itself based on the new geometric relationships. 

 STEPS 5  is another agent-based simulation tool developed by Mott MacDonald 
and uses coarse grid geometry. Agents do not have a global view of the environment 
but move around towards a fi nal exit. STEPS takes in CAD fi les for modelling geom-
etry. It uses a CA where each individual occupies one cell at a given time. Agents 
know the shortest route but not the density or obstacles that they may encounter. 
Each agent then moves in the desired direction if the next cell is empty. The routes 
that agents take can generally be defi ned by a crude form of global view, mainly for 
normal operation, i.e. not during evacuation scenarios. Costs can be accounted for by 
the route taken. Each agent also has its own characteristics and familiarity behaviour. 
Figure  18.18  shows a screenshot of the software.   

   5     http://www.mottmac.com/skillsandservices/software/stepssoftware/      

  Fig. 18.18    Screenshot of the STEPS software       
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    18.4.2   Entertainment 

 As the entertainment fi eld is based on interactivity and real time simulation where 
computer games are concerned, a number of tools exist to facilitate the creation of 
interactive environments for a cinematographer or the user. 

 MASSIVE (Multiple Agent Simulation System in Virtual Environment) is one of 
the most advanced crowd animation and simulation systems for off-line productions 
(Fig.  18.19 ). It was fi rst developed by Stephen Regelous in order to address the ani-
mation problems for the Lord of the Rings 6  trilogy, and is now used in many visual 
effects systems. The software does not contain any explicit Artifi cial Intelligence 
(AI), the agents can be assigned AI, and it uses a simple way to deploy intelligent 
agents (Thalmann et al.  2005  ) . It does not use global path planning, and the user can 
author the entire crowd motion although autonomous agents can be introduced. It uses 
a hierarchical system where behavioural systems vary (Pettre et al.  2006  ) , and at the 
lowest level, techniques such as potential fi elds can control the fl ow of the crowds 
(Thalmann and Musse  2007  ) . MASSIVE uses a bottom-up approach, which leads to 
emergent behaviour based on reactive motion planning, with high user control.  

 The user specifi es inputs such as vision and internal states. Through the use of 
fuzzy logic, agents then respond to the environment after taking into account the static 
and dynamic obstacles (such as other agents). In this way agents can endlessly walk 

  Fig. 18.19    Screenshot of the MASSIVE software       

   6     http://www.lordoftherings.net/      
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through the environment without the need for elaborate path planning. The realisation 
of long term goals of the agents in this case is not important, as cinematic shots 
average at around 5 s, and therefore, the main aim is high quality visualisation during 
the fl ow. The design decision in this case allows for a very large number of agents 
(hundreds of thousands) to be accommodated during the simulation. MASSIVE 
Insight 7  is a spin-off from MASSIVE, and is at a beta stage that is aimed for safety, 
architecture and urban applications. It uses the original bottom-up approach of 
MASSIVE and a global planning algorithm will be incorporated in the system. 

 There are a number of middleware tools available to author crowds for video games. 
Spirops 8  is a middleware tool for game development, which focusses on AI problems 
in the game development cycle (see Fig.  18.20 ). This allows the in-game characters to 
behave realistically. Spirops crowd is a component of Spirops focused on crowd simu-
lation. It creates paths for the pedestrians to follow and avoid collisions. It was fi rst 
developed by Axel Buendia based on his research thesis. Due to its commercial nature, 
not many details are available with regards to the path planning of pedestrians. 
However, it currently uses a hard linked behaviour to plan the global path although a 
future release will include dynamic planning. A screenshot is provided in Fig.  18.20 .  

 PathEngine 9  is another toolkit to provide realistic movements of agents in virtual 
worlds such as games. The toolkit provides collision avoidance and paths for agents 
to follow. However, path fi nding is based on visibility of agents, and it does not 
provide a global path planning solution. 

 OpenSteer 10  has been developed by Reynolds based on his boids work (Reynolds 
 1987,   1999  ) . It is an open source library written in C++ and uses OpenGL, which 
is available to build the steering behaviours of autonomous agents. It is a cross 

   7     http://www.massivesoftware.com/real-world-simulation/      
   8     http://www.spirops.com/      
   9     http://www.pathengine.com/      
   10     http://opensteer.sourceforge.net/doc.html    .  

  Fig. 18.20    Screenshot of the Spirops Crowd software       

 



402 A. Patel and A. Hudson-Smith

 platform toolkit available as a demo which demonstrates a number of steering 
behaviours  supplied as sample plug-ins (Fig.  18.21 ). Bespoke plug-ins can be writ-
ten by using the steering library provided, which defi nes the behaviours for the 
autonomous agents such as wander, goal seeking, fl ee, path following as well as 
collision avoidance. The individual steering behaviours as described in Reynolds 
 (  1999  )  combine to form a more complex behaviour. There are two ways it happens: 
either by switching between individual behaviours as the environment changes, or 
by combining the individual behaviours together, therefore, working in parallel with 
each other.   

    18.4.3   Virtual Reality 

 As this section deals with the convergence between two fi elds, not many tools exist. 
Research in academia has focused on the realistic behaviour of individuals com-
bined with rendering huge numbers (hundreds of thousands) on desktop computers. 
Crowd simulation systems in this area have mainly been developed in the academic 
fi eld. A few tools mainly relevant to this section will be described in greater detail. 

 ViCrowd is an academic tool developed by Musse  (  2000  )  and detailed in Musse 
and Thalmann  (  2001  ) . It includes the three-tier hierarchy for the different degrees of 
autonomy, and uses Reynold’s fl ocking model for behavioural rules. A screenshot 

  Fig. 18.21    OpenSteer demo window       
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of ViCrowd can be seen in Fig.  18.22 . The architecture for the tool is shown in 
Fig.  18.23 . A behaviour motor exists to process various low level behaviours such 
as perception and other sociological behaviours. The architecture of ViCrowd is 
described below, and the steps are indicated in Fig.  18.23 .   

  Fig. 18.22    Screenshot of ViCrowd (Taken from Musse and Thalmann  (  2001  ) )       

  Fig. 18.23    Diagram representing the behavioural algorithm (Taken from Musse and Thalmann  (  2001  ) )       
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    18.4.3.1   Procedure 

    Step 1: Scripted behaviours are specifi ed before the simulation takes place  
  Step 2:  The user may also provide behaviours for the crowd to follow during the 

simulation.  
  Step 3:  The behaviours indicated in the last two steps, as well as informa-

tion emerging using behavioural rules, are then distributed among the 
groups.  

  Step 4:  The group information that is passed describes the groups’ goals, intentions 
and knowledge.  

  Step 5:  This information is then combined with other information such as the events 
and other sociological behaviours. These sociological behaviours include 
beliefs describing the internal state of the groups, and knowledge represent-
ing the environmental information.  

  Step 6:  The behavioural motor represents the process where the low level behav-
iour of the groups and individuals is generated.  

  Step 7:  The low level behaviour of the groups is then created such as goals, walking 
speed and actions.    

 The behaviour motor’s process uses a number of priority rules for the behav-
iours. It fi rst analyses the group information where the low level behaviours for each 
group are created. If sociological factors exist, the low level behaviours can be 
changed again by getting the agents to change groups. If certain events occur, the 
reaction defi ned by the user or scripted behaviour can also change the group’s low 
level behaviour. This low level behaviour is then passed to the individual agents of 
the group, where perception and innate abilities are used to satisfy the group’s inten-
tions. This procedure described allows for complex behaviours of crowds to be 
simulated in real time. 

 Crowdbrush is another tool that comes out of the same research lab as ViCrowd. 
This tool was designed and developed by Ulicny et al.  (  2004  )  to make the author-
ing of complex crowd scenes with different scenarios simpler. It introduces the 
capability to create, modify and control the crowd member of a scene in real time 
with visual feedback. A brush metaphor allows for crowd authoring. The main 
focus of the tool is to author crowd scenes, which is beyond the scope of this sec-
tion. Crowdbrush does allow the creation of pedestrian paths, but is done manu-
ally, and no global motion planning algorithms are involved. Low level behaviours 
are defi ned using a rule-based behaviour engine (Ulicny and Thalmann  2002  ) . 
A simple reactive rule system is defi ned in order to achieve fast real-time simu-
lation of thousands of agents. The agents use simple displacement of humans 
when reacting to any type of internal or external event defi ned by the behavioural 
rules. A simple collision avoidance system also exists based on Helbing and 
Molnár’s  (  1995  )  social forces model. Collision queries are minimised by using a 
bin-lattice space subdivision (Reynolds  2000  ) . The behaviour can be applied both 
directly and indirectly in real-time using the same brush metaphor used for author-
ing crowd scenes by sending events to activate behavioural rules or tagging 



40518 Agent Tools, Techniques and Methods for Macro and Microscopic Simulation

agents with a tagging brush that selectively triggers different behavioural rules for 
different agents. This allows for various actions happening in different parts of the 
crowd scene.    

    18.5   Summary 

 As demonstrated through the three application areas within this chapter, there are 
multiple micro and macro simulation techniques dependent on the environment to 
be modelled and the industry involved. In-house or third party toolkits are common 
place, each with their own pros and cons and methods to achieve the desired simula-
tion. Packages such as 3ds Max are available free of charge to the global academic 
community, yet their use is limited outside of the entertainment fi eld. As the simula-
tion industry widens in scope and moves towards more real time inputs and outputs 
rather than pre-computed ones, we expect this to change. Simulation is increasingly 
moving towards a real-time input/output environment as processing speeds and data 
collection techniques advance.      
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  Abstract   Due to the complexity of human behaviour and the intricacies of the 
urban environment, it is extremely diffi cult to understanding and model crime pat-
terns. Nevertheless, a greater understanding of the processes and drivers behind 
crime is essential for researchers to be able to properly model crime and for policy-
makers to be able to predict the potential effects of their interventions. Traditional 
mathematical models that use spatially aggregated data struggle to capture the low-
level dynamics of the crime system – such as an individual person’s behaviour – and 
hence fail to encapsulate the factors that characterise the system and lead to the 
emergence of city-wide crime rates. 

 This chapter will outline a realistic agent-based model that can be used to simu-
late, at the level of individual houses and offenders, occurrences of crime in a real 
city. In particular, the research focuses on the crime of residential burglary in the city 
of Leeds, UK. The model is able to predict which places might have a heightened 
burglary risk as a direct result of a real urban regeneration scheme in the local area.     

     19.1   Introduction 

 Understanding the processes and drivers behind crime is an important research area in 
criminology with major implications for both improving policies and developing effec-
tive crime prevention strategies (Brantingham and Brantingham  2004 ; Groff  2007  ) . 
Advances in environmental criminology theory (e.g. Cohen and Felson  1979 ; Clarke 
and Cornish  1985 ; Brantingham and Brantingham  1993  )  have highlighted a shift in the 
fi eld towards understanding the importance of the social and  environmental contexts in 
which crimes occur, rather than focussing purely the behaviour of offenders. 
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Furthermore, the complexity of the crime system – which consists of the dynamic 
interactions between the individuals involved in each crime event as well as their inter-
actions with others and with their environment – means that individual-level approaches 
are the most suitable modelling methodologies for simulating the crime system. 

 This chapter will discuss how agent-based models (ABM’s), coupled with real-
istic geographic environments, can be used to simulate crime. In particular, it will 
focus on the crime of residential burglary and outline a current agent-based simula-
tion model that can be used to make predictions about future burglary rates in the 
real world. The model described is based on the city of Leeds, UK. 

 The chapter is organised as follows. The next section will outline the important driv-
ers of the crime system that must be included in a model followed by a discussion on 
how crime has been modelled previously. The remainder of the chapter will then dis-
cuss a model that can be used to simulate residential burglary and will demonstrate how 
it can be used to simulate the effects that urban-regeneration can have on burglary.  

    19.2   Background: Environmental Criminology 

 Crime is a highly complex phenomenon. An individual crime event is the result of 
the convergence of a multitude of different factors including the motivations and 
behaviours of the offender, infl uences of the physical surroundings, community-
wide effects such as community cohesion, the actions of the victim and the behav-
iour of other people such as the police or passers-by. Associated with this already 
complex framework are additional factors such as a diverse urban geography and 
obscure human psychology. 

 Criminology can help to understand patterns of crime. However, pre-1970 crimi-
nology research was largely dominated by studies into victims, the law and offend-
ers (Andresen  2010  )  and thus omitted a vital element; the  place  in which the crime 
occurs. It was to this end that the fi eld of “environmental criminology” arose as a 
discipline to study the  spatial  variations of crime and the underlying reasons for 
these variations (Johnson et al.  2002  ) . The remainder of this section will discuss 
examples from environmental criminology research for a crime model. Although 
the focus is on the crime of residential burglary, many of the factors are relevant for 
most other types of inquisitive crime. 

    19.2.1   Physical Factors 

 Major advancements in criminological theory in the 1970s solidifi ed the link 
between the physical form of an area and its affect on crime (Jeffery  1971 ; 
Newman  1972  ) . With respect to burglary, the important physical factors that 
determine a house’s vulnerability can be classifi ed into three groups as identifi ed 
by Cromwell et al.  (  1991  ) . 

 The fi rst group,  accessibility , relates to how easy it is to actually enter a prop-
erty. For example, detached houses and ground-fl oor fl ats have been found to be 
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 vulnerable because there are more potential entry points (Robinson and Robinson 
 1997 ; Felson  2002  ) . The second category of physical factor that might infl uence 
burglary is  visibility  and refers to the extent to which a residence can be seen by 
neighbours and passers-by (Cromwell et al.  1991  ) . Buildings that are less visible are 
generally easier for offenders to access without being seen by others. Visibility can 
be affected by objects such as large hedges or other buildings that can obscure the 
view of the property as well as factors like the distance between the house and its 
connecting road, levels of street lighting and the amount of passing traffi c. Finally, 
 occupancy  represents whether the residents are at home or not.  

    19.2.2   The Social Environment 

 Although physical factors are clearly important determinants of burglary risk, the 
“environmental backcloth” (Brantingham and Brantingham  1993  )  extends well 
beyond these simple physical factors. It is also important to consider the  social  factors 
that surround a crime event. Unfortunately, whereas the relationship between physical 
factors and burglary risk is often fairly straightforward, that of the social environment 
and crime is not. For example, deprived communities often suffer disproportionately 
high crime rates (Baldwin and Bottoms  1976 ; Sampson et al.  1997  )  but the reverse has 
also been found (Wilkström  1991 ; Bowers and Hirschfi eld  1999  ) . 

 Fortunately, the relationship between other variables is more straightforward. 
Students, for example, are often a highly victimised group (Tilley et al.  1999 ; 
Barberet et al.  2004  )  as student households are often seen as an easy targets (Deakin 
et al.  2007  )  and can contain an abundance of attractive goods. Other demographic 
factors that can increase burglary risk include the age of residents, the tenure type 
(e.g. publicly rented compared to privately owned) and the number children/young 
people in the area (Tilley et al.  1999  ) . 

 Another factor that is not necessarily related to socioeconomic status, but can 
have a strong impact on crime rates, is community cohesion. It is hypothesised that 
if a community looses the ability to police itself then crime is the “natural response” 
by individuals. This process can occur when an area contains a transient population 
as people do not stay in area long enough for make friends and develop a feeling of 
“community” and ownership over the area. The importance of community cohesion 
is evidenced by the seminal theories it has provoked (e.g. Shaw and McKay  1942 ; 
Jeffery  1971 ; Newman  1972 ; Wilson and Kelling  1982  )  and by the large body of 
empirical research that supports it (Hope  1984 ; Brown and Bentley  1993 ; Wright 
and Decker  1996 ; Sampson et al.  1997 ; Kawachi et al.  1999  ) . 

 In summary, this section has illustrated that the relationship between crime and 
the surrounding environment is complex. In order to model the system, it must be 
determined if a high crime rate is due to the types of housing in the area, the houses’ 
physical properties, the number of and behaviour of potential burglars, the amount 
of community cohesion or for other reasons that have yet to be identifi ed. However, 
using the appropriate methodology it is nevertheless possible to account for all these 
features in a crime model as the following section will discuss.   
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    19.3   Modelling Crime 

    19.3.1   The Geography of Crime 

 Since the fi rst pioneering work on the geography of crime in the nineteenth century 
(Quetelet  1831 ; Glyde  1856  ) , crime research has moved to smaller and smaller units 
of analysis. However, with the exception of a small number of “crime at place” stud-
ies (e.g. Eck  1995 ; Weisburd    et al.  2009  ) , most research still uses aggregated data 
and there has been very little work into what the most appropriate unit of analysis 
should be (Weisburd et al.  2009  ) . Modern environmental criminology theories 
(e.g. Cohen and Felson  1979 ; Brantingham and Brantingham  1981 ; Clarke and 
Cornish  1985  )  suggest that an individual crime depends on the behaviour of  indi-
vidual  people or objects and should thus be analysed at the level of the individual 
(Weisburd et al.  2004  ) . This is extremely relevant with the crime of burglary because 
burglars choose  individual  homes based on their  individual  characteristics (Rengert 
and Wasilchick  1985  ) . Models that uses aggregate-level crime or demographic data 
will therefore suffer, to a greater or lesser extent, from the ecological fallacy 
(Robinson  1950  ) . Indeed, recent crime research has shown that individual- or street-
level events exhibit considerable spatial variation which would be hidden if analy-
sed at even the smallest administrative boundaries (Bowers et al.  2003 ; Weisburd 
et al.  2004 ; Groff et al.  2009 ; Andresen and Malleson  2011  ) . 

 That said, the majority of crime models to date employ regression techniques and 
look for relationships using aggregate data. For a review of commonly used 
approaches the reader is directed to Kongmuang  (  2006  )  but, in general, the central 
drawback is that statistical models fail to address the importance of the individual: 
individual people, incidents, locations and times. 

 Following this, ABM appears to be the most appropriate methodology for mod-
elling crime and the following section will explore the use of ABM for crime analy-
sis in more detail.  

    19.3.2   Agent-Based Crime Modelling 

    19.3.2.1   Advantages and Disadvantages 

 An obvious advantage with ABM is its ability to capture emergent phenomena. 
Environmental criminology research tells us that the geographical patterning of 
crime rates is an emergent phenomenon, resulting from the interactions between 
individual people and objects in space. Only “bottom-up” approaches truly capture 
this phenomenon. 

 Closely related to it ability to reproduce emergent phenomena is the ability of 
ABM to create a  natural description  of the system under observation (Bonabeau 
 2002  ) . There are many systems, particularly in the social sciences, that cannot be 
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sensibly modelled using mathematical equations (Axtell  2000 ; O’Sullivan  2004 ; 
Moss and Edmonds  2005  ) . Because, with an agent-based model, rules are specifi ed 
directly for each individual unit there is no need to try to coax a higher-level model 
into performing as if it were modelling individuals directly. Therefore, by using 
ABM the “natural variety” of cities becomes part of the model, rather than smoothed 
out by aggregate methods (Brantingham and Brantingham  2004  ) . 

 Of course there are some disadvantages to using agent-based modelling for crime 
analysis. Crime systems are highly dependent on human characteristics such as 
seemingly irrational behaviour and complex psychology. However, formally defi ning 
these characteristics in a computer model is extremely diffi cult and can lead to 
reduced behavioural complexity (O’Sullivan and Haklay  2000  ) . If the behavioural 
complexity of the agents is adequate, then computation power can become a problem 
as each decision made by each agent becomes more computationally expensive.  

    19.3.2.2   Incorporating Geography 

 To gain a better understanding of the spatial nature of crime, geographic informa-
tion systems (GIS) are routinely used to analyse crime data sets (Hirschfi eld et al. 
 2001  )  and are becoming an increasingly important tool for crime analysts (Chainey 
and Smith  2006 ; Weir and Bangs  2007  ) . They are also being used for another 
 purpose; agent-based crime modelling. 

 In order to make predictive analyses (i.e. predicting future crime rates in a real 
city or neighbourhood) it is essential that the environment is a realistic representa-
tion of the physical area under study. Therefore the coupling of agent-based models 
with GIS is essential. This is not such a daunting task as it once was as many toolkits 
are now available to support researchers in this activity such as Repast Simphony 
(North et al.  2005a,   b  )  and Agent Analyst (The Redlands Institute  2009  ) . 

 However, a researcher must be aware that incorporating a GIS with an ABM can 
result in an  overly-complex  model that is as diffi cult to understand as the underlying 
system itself. Too much complexity can detract from our understanding of the 
dynamics that are at the heart of the system (Elffers and van Baal  2008  ) . As Axelrod 
 (  1997  )  notes, if the goal of a simulation is to more fully understand the underlying 
dynamics then it is the fundamental model assumptions which are important, not the 
accuracy of the surrounding environment.  

    19.3.2.3   Existing Agent-Based Crime Models 

 Following the remarks made by eminent environmental criminologists (such as 
Brantingham and Brantingham  1993  ) , researchers are starting to realise the benefi ts 
of ABM for studying crime. Initial models, (e.g. Gunderson and Brown  2000 ; 
Winoto  2003 ; Melo et al.  2005 ; Malleson    et al.  2009, 2010  )  were relatively simple 
and did not necessarily incorporate realistic urban environments. They were typi-
cally used to explore theory or determine how changing variables such as offender 
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 motivation or police behaviour impacted on offending rates. More recently, advanced 
models have begun to emerge that can explore crime rates in real cities and can be 
used to make real-world predictions. For example: Dray et al.  (  2008  )  used ABM to 
explore drug market dynamics in Melbourne; Liu et al.  (  2005  )  present an agent-
based/cellular-automata model of street robbery in the city of Cincinatti; Birks et al. 
 (  2008  )  and Hayslett-McCall et al.  (  2008  )  have independently developed agent-
based burglary simulations; and Groff and Mazerolle  (  2008  )  have developed an 
urban simulation for street robbery with a realistic vector road network. It is not 
possible to discuss these models in more detail here. For more information about 
current agent-based crime modelling applications the reader is directed to the recent 
book entitled “ Artifi cial Crime Analysis Systems: Using Computer Simulations and 
Geographic Information Systems ” (Liu and Eck  2008  )  or a special issue of the 
Journal of Experimental Criminology entitled “ Simulated Experiments in 
Criminology and Criminal Justice ” (Groff and Mazerolle  2008  ) .    

    19.4   A Simulation of Burglary 

 Having suggested that ABM is the most appropriate methodology for modelling 
crime, this section will strengthen the case for ABM by outlining, in detail, an 
advanced burglary simulation. Then Sect.  19.5  will show how the model can be used 
to predict crime patterns after an urban regeneration scheme. For more information 
about any aspects of the model, the interested reader is directed to Malleson  (  2010  ) . 

    19.4.1   The Virtual Environment 

 The virtual environment is the space that the agents inhabit and, in a crime model, 
must incorporate many of the factors that form the “environmental backcloth” 
(Brantingham and Brantingham  1993  ) . Along with a road and public transport net-
works that the agents can use to navigate the city, the environment must include 
individual buildings – to act as homes for the agents and as potential burglary targets – 
and community-wide factors such as deprivation and community cohesion. 

    19.4.1.1   The Community Layer 

 In Sect.  19.2  it was noted that people other than the offender can have an affect on 
crime by acting as victims or guardians. This is particularly relevant to burglary 
because an offender is unlikely to attempt to burgle if they are aware that the house 
is occupied or if they are being observed by passers-by. In an ABM, people are 
represented as agents. This approach demonstrated success when it was included in 
a burglary model that operated on an abstract environment (Malleson et al.  2010    ) . 
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However, creating a simulation of every person in a  real city  is an immense under-
taking. Instead, the behaviour of people other than offenders can be simulated 
through a  community  layer in the virtual environment. In this manner, factors that 
would otherwise originate directly from agent behaviour can be estimated for each 
community based on the socio-demographic information about that community. For 
example, houses in student communities are likely to be vacant at different times 
(e.g. in the evenings) than communities who predominantly house families with 
small children. Rather than simulating individual household behaviour, it is possible 
to  estimate  occupancy rates for the whole community based on demographic data. 

 UK data for the layer can be extracted from the 2001 UK census (Rees et al. 
 2002b  )  and also from deprivation data published by the UK government such as 
the Index of Multiple Deprivation (Noble et al.  2004  ) . 1  These data can then be 
spatially referenced through the use of administrative boundary data available 
through the UKBORDERS service (EDiNA  2010  ) . It was noted in Sect.  19.3  that 
the use of administratively-defi ned areal boundaries can pose serious problems 
to research because the boundaries are not designed to be homogeneous. To medi-
ate these problems in this research, individual-level data will be used wherever 
possible (houses and roads, for example, are represented as individual geographic 
objects). 

 An obvious requirement of the community layer is a measure of  occupancy . 
In this simulation, occupancy is calculated at different times of day based on the 
proportions of the following demographic variables:  students ;  working part time ; 
 economically inactive looking after family ;  unemployed . These four variables were 
chosen because they are able to represent common employment patterns. Another 
important relationship noted in Sect.  19.2  was that  community cohesion  has a large 
infl uence on crime; residents in cohesive communities are more likely to be mindful 
of their own and their neighbours’ property. For this model, community cohesion is 
calculated from three variables that have been identifi ed in the literature (Shaw and 
McKay  1969 ; Sampson et al.  1997 ; Bernasco and Luykx  2003 ; Browning et al. 
 2004  )  as important:  concentrated disadvantage ;  residential stability ;  ethnic hetero-
geneity . With the exception of concentrated disadvantage which is obtained directly 
from the Index of Multiple Deprivation, all other variables can be established from 
the UK census. 

 In a similar manner to community cohesion, research has shown that potential 
burglars feel more comfortable in areas that are similar to their own because they do 
not feel that they will “stand out” (Wright and Decker  1996  ) . This concept can be 
formalised through the creation of a  sociotype  which is a vector containing values 
for all the available census and deprivation data for each area. Therefore, the simi-
larity between a target community and a burglar’s home community can be calcu-
lated as the Euclidean distance between the two sociotypes. 

   1   Census data is published through CASWEB (Mimas  2010  ) , For more information about the census 
see Rees et al.  (  2002a,   2002b  )   
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 The fi nal community-level variable,  attractiveness , incorporates a measure of 
the affl uence of the target community and therefore the potential available returns 
from burglary. Ideally this would be calculated individually for each property but 
in the absence of individual-level affl uence data a community-wide variable must 
be used, based on census data. Evidence suggests that the following census vari-
ables provide good affl uence measures:  percentage of full time students ;  mean 
number of rooms per household ;  percentage of houses with more than two cars ; 
and  percentage of people with higher education qualifi cations  (Bernasco and 
Luykx  2003 ; Kongmuang  2006  ) .  

    19.4.1.2   The Buildings Layer 

 For the burglary simulation discussed here, Ordnance Survey MasterMap data 
(Ordnance Survey  2009  )  was used to represent the virtual environment in a highly 
detailed way. The product contains a number of different “layers” which can, sepa-
rately, be used to represent the network of roads as well as other features such as 
buildings, rivers, parks etc. Fig   ure  19.1  illustrates the Topography layer which is 
used in the model to create residential houses. Some cleaning and fi ltering processes 

  Fig. 19.1    An example of the OS MasterMap Topography layer which shows how different types 
of houses can be distinguished and the types of geographic objects that  could  be included in a 
crime model       
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were required to extract  houses  from the set of all buildings (which includes 
 structures such as cinemas, shopping centres, garages etc.) but otherwise the data is 
ready for input.  

 Along with the variables that represent household attractiveness and occupancy – 
which are modelled at the level of the community because insuffi cient individual-
level data are available – Sect.  19.2  identifi ed the following factors as important 
determinants of household burglary risk:

    • Accessibility  – how easy it is to gain entry to the house (e.g. the number of win-
dows or doors);  
   • Visibility  – the level of visibility of the house to neighbours and passers-by;  
   • Security  – effective physical security e.g. dogs or burglar alarms;    

 Parameter values for  accessibility  and  visibility  can be calculated directly through 
an analysis of the geographic household boundary data. Visibility can be calculated 
by using a GIS to compute both the size of the garden that surrounds each property 
and the number of other properties within a given buffer distance. Using similar 
geographic methods, the accessibility of the house can be estimated by determining 
if the house is detached, semi-detached or terraced by counting the number of 
adjacent buildings to the house. Figure  19.2  presents values for these variables nor-
malised into the range 0–1. Although the geographical techniques are coarse and 
there are some errors (for example some terraced houses towards the north of the 
map have a larger number of neighbours than should be expected) they are able to 
broadly distinguish between the different physical house attributes that will infl u-
ence burglary.  

 With regards to household  security , there is unfortunately limited national or 
local data that can be used to estimate individual household security precautions. 
Generally, therefore, this value is set to be the same for every house so does not 
infl uence household burglary risk.  

  Fig. 19.2    Number of adjacent neighbours, size of garden and the number of neighbours within 
50 m. All normalised to the range 0–1       
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    19.4.1.3   The Transport Network 

 Transport networks are required in a geographic crime model because they restrict 
the agents’ movements to certain paths and affect where and how the agents navi-
gate the city. To include virtual roads, the Integrated Transport Network (ITN) 
MasterMap layer can be used. The ITN layer consists of line objects that represent 
all the different types of roads, including alleyways, motorways, pedestrianised 
areas etc. Using these data it is also possible to vary the speed that agents travel 
around the environment based on the transportation available to them. 

 Through an analysis of the roads data, it is possible to estimate the traffi c volume 
on each road and this can affect the burglary risk associated with the houses on the 
road. Although most evidence suggests that houses which are situated on busy roads 
have a heightened burglary risk because they are more likely to be known by poten-
tial burglars (Brantingham and Brantingham  1993 ; Beavon et al.  1994  ) , it is also 
possible that houses on busy roads are  less  of a risk at certain times of day because 
gaining undetected access can be more diffi cult. 

 Estimating traffi c volume can be accomplished by using theories from the “space 
syntax” research area and analysing the  connectivity  of the road network. 2  Roads 
that are the most “integrated” (i.e. the most highly connected) have been found to 
correlate with large amounts of pedestrian and vehicle traffi c and have been used in 
other crime studies (van Nes  2006  ) . Figure  19.3  illustrates the integration values for 
all Leeds roads.    

  Fig. 19.3    Space syntax integration values for the entire city and a local area       

   2   For more information about space syntax techniques, refer to Hiller and Hanson  (  1984  ) , Bafna 
 (  2003  )  or Park  (  2005  ) .  
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    19.4.2   The Burglar Agents 

 In the social sciences, agent-based models often use agents to represent people and 
this poses a substantial challenge: how should complex human psychology be 
included in a computer model? This section will address this issue and discuss how 
the burglar agents have been constructed for the burglary simulation. 

    19.4.2.1   Modelling Human Behaviour 

 Including human behavioural characteristics in agents – such as seemingly irratio-
nal behaviour and complex psychology (Bonabeau  2002  )  – can be a very diffi cult 
task to accomplish. However, agent cognitive architectures exist that can simplify 
the process of building a cognitively-realistic human agent. The most commonly 
used architecture is “Beliefs-Desires-Intentions” where  beliefs  represent the agent’s 
internal knowledge of the world (i.e. its memory);  desires  represent all the goals 
which the agent is trying to achieve; and  intentions  represent the most important 
goals which the agent chooses to achieve fi rst. Although the BDI architecture has 
been widely used  (  Rao and Georgeff 1995 ; Müller  1998 ; Taylor et al.  2004 ; 
Brantingham et al.  2005a,   b  ) , it has also suffered some criticism due mainly to its 
reliance on practical reasoning. No action is performed without some form of delib-
eration (Balzer  2000  )  but people rarely meet the requirements of rational choice 
models (Axelrod  1997  ) . 

 A less widely used architecture is “PECS” (Schmidt  2000 ; Urban  2000  )  which 
stands for “Physical conditions, Emotional states, Cognitive capabilities and 
Social status”. The authors of the architecture propose that it is possible to model 
the entire range of human behaviour by modelling those four factors. PECS is 
seen as an improvement over BDI because it does not assume rational decision 
making and is not restricted to the factors of beliefs, desires and intentions 
(Schmidt  2000  ) . Instead, an agent has a number of competing  motives  (such as 
“clean the house”, “eat food”, “raise children”, “sleep” etc.) of which the stron-
gest ultimately drives the agent’s current behaviour. Motives depend on the 
agent’s internal state (an agent with a low energy level might feel hungry) as well 
as other external factors (an agent who smells cooking food might become hun-
gry even if they do not have low energy levels). Personal preferences can also 
come into play, where some people feel a need more strongly than others even 
though their internal state variable levels are the same.  

    19.4.2.2   The Burglar Agents 

 The fi rst decision to be made regarding the agents’ behaviour is what internal state 
variables should be used as these, ultimately, dictate the range of possible motives 
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and behaviours. From the crime literature, it is apparent that a common motivation 
for burglary is the need to sustain a drug addiction or to maintain “high living” (i.e. 
socialising). Therefore, drug taking and socialising should be included as well as 
the ability to sleep when necessary. 3  With these behaviours in mind, the following 
state variables are suffi cient:

    • Drugs  – the level of drugs in an agent’s system. An agent’s motivation to take 
drugs is based on the level of drugs in their system and a  personal preference  for 
drugs (i.e. how heavily they are addicted).  
   • Sleep  – a measure of the amount of sleep an agent has had. The need for sleep is 
stronger at night than during the day.  
   • Social  – a measure of how much the agent has socialised, felt more strongly dur-
ing the day.    

 Levels of these internal state variables decrease over time and, as they decrease, 
the agents will be more strongly motivated to increase them. Figure  19.4  illustrates 
how state variable levels are combined with personal preferences and external fac-
tors (the time of day in this case) to determine the strongest motive which will drive 
an agent’s behaviour. Although sleep can simply be sought at home, taking drugs 
and socialising require money which can only be gained through burglary.  

 Another important agent component is the  cognitive map . As an agent moves 
around the environment, they remember all the houses and communities they have 

  Fig. 19.4    How state variables,  s , personal preferences,  p  and external factors (e.g. the time of day, 
 t ) are used in intensity functions to determine the strongest motive. In this example, the agent’s 
 social  level is very low (the agent has not socialised in some time) and this is the strongest motive. 
The agent will make a plan that ultimately allows it to socialise (this could include burgling to 
make money fi rst)       

   3   Legitimate employment (whether full-time or temporary) is also common and has been included 
in the model, but is not a feature that is used in the later case studies.  
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passed and also where they commit any burglaries. This allows two important 
 characteristics of the burglary system to be included. Firstly, the agents’ cognitive 
maps will be more detailed around their homes and the places they visit on a regular 
basis (e.g. drug dealers and social locations in this case). Secondly, it has been 
found that following a burglary, the victim and their neighbours have a substantially 
heightened burglary risk for a short time (Townsely et al.  2003 ; Johnson  2007  )  
because the burglar is likely to re-visit the area.  

    19.4.2.3   The Process of Burglary 

 The process of actually committing a burglary in the model is broken into three 
distinct parts:

    1.    Deciding where to start looking for victims;  
    2.    Searching for a victim;  
    3.    Deciding upon a suitable target.     

 From the crime literature, some authors have suggested that burglars act as “opti-
mal foragers” (Johnson and Bowers  2004 ; Bernasco and Nieuwbeerta  2005  ) . Their 
decision regarding where to burgle is based on an analysis of potential rewards 
against risks. In this model the agents work in the same way and consider each area 
that they are aware of taking into account the distance to the area, its attractiveness, 
its similarity to the agent’s home area and the number of previous successes they 
have had there. The area which is seen as the most appropriate to that burglar at that 
particular time is the one they travel to in order to start their search. 

 Research has shown that burglars do not search randomly for burglary targets, 
they exhibit identifi able search patterns (Johnson and Bowers  2004 ; Brantingham 
and Tita  2006  ) . To refl ect fi ndings from the literature (e.g. Rengert  1996  ) , in this 
model the agents perform a  bulls-eye  search; moving out from a starting location in 
increasingly large concentric circles (road network allowing). If an agent has not 
found a target within a certain amount of time, the burglary process is repeated; the 
agent chooses a new start location, travels there and begins the search again. 

 As the agents travels to their search location and performs their search, they 
inspect the houses they pass to determine if they are suitable for burglary. The 
assessment of suitability is based on the community cohesion and occupancy levels 
of the area, the traffi c volume on the road and the accessibility, visibility and secu-
rity levels of the individual house. The agent is also more likely to burgle if their 
motivation is high, i.e. as they become desperate to satisfy a need.   

    19.4.3   Model Implementation 

 For the simulation described here, the Repast Simphony tool was used (North et al. 
 2005a,   b,   c  )  which consists of a library of tools that can be used by computer pro-
grammers as well as a graphical-user-interface for non-programmers. Importantly, 
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the software includes essential geographic functions that allow for the input/output 
of GIS data as well complex spatial queries. The simulation is written using the Java 
programming language and, due to the considerable computational complexity, was 
adapted to run on a high-performance computer grid provided by the National Grid 
Service (NGS: Geddes  2006  ) .  

    19.4.4   Evaluating the Model – Verifi cation, 
Calibration and Validation 

 Evaluating the predictive accuracy of ABMs (see    Evans  2012 ) is a particularly 
problematic task although one that is extremely important. Not only are the models 
themselves usually highly complex, but there is often a lack accurate individual-
level data against which the model can be evaluated. Following Castle and Crooks 
 (  2006  ) , the process of evaluating this model was segregated into three distinct 
activities: verifi cation, calibration and validation. Verifi cation was accomplished 
by individually varying each model parameter and establishing its effect on the 
behaviour of the model. Calibration was manually undertaken based on knowledge 
of the dynamics of the model and model validity was achieved by testing the extent 
to which the model is able to represent the system it is attempting to simulate 
(Casti  1997  ) .   

    19.5   Results of the Burglary Simulation 

    19.5.1   Scenario Context: EASEL 

 Parts of the south-east of Leeds, UK, contain some of the most deprived neigh-
bourhoods in the country. To reduce deprivation in these areas, Leeds City Council 
has instigated an urban renewal scheme which is called EASEL (East and South 
East Leeds). By creating new houses, transport links, employment opportunities 
and green spaces, the council hopes to attract residents from outside the area 
(as well as many from within) to create more stable and less deprived neighbour-
hoods. Figure  19.5  illustrates where the EASEL boundary lies within Leeds as a 
whole and also shows how deprived the area is. Only the EASEL area (plus a 
1 km buffer) will actually be simulated, i.e. agents within the model cannot move 
outside of this boundary.  

 At present, work has begun in two of the EASEL areas referred to here as sites  A  
and  B . The scenario is discussed here is “optimistic”; it assumes that the council’s 
plans succeed and the new communities are both cohesive and the new houses are 
well designed (secure from burglary). The scenario contains 273 individual offender 
agents (established through analysis of crime data).   
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  Fig. 19.5    The Index of Multiple Deprivation in Leeds and the EASEL area       
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    19.6   Results 

 The model was fi rst run  without  any of the proposed EASEL changes to create a 
benchmark. To ensure that the results were consistent, the simulation was run 50 
separate times and the results from all simulations were combined. Having created 
a benchmark, the levels of security and community cohesion in the affected sites (A 
and B) were increased to refl ect the planned EASEL regeneration changes and the 
simulation was executed again (50 times). 

 Figure  19.6  presents the difference in simulated crime rates before and after 
the proposed EASEL changes. Observing the entire EASEL area (upper-right 
map) it becomes apparent that, on the whole, the results of the two simulations are 
very similar. This is to be expected as the simulated environmental changes only 
cover very small areas. When observing the regeneration areas A and B in more 
detail, however, it appears that crime rates  within  the areas have fallen. This is not 
unexpected because the increased security and community cohesion make the 
houses in the area less attractive burglary targets. However, the orange and red 
areas surrounding the regeneration zones indicate that there are some houses 
which show a substantially higher risk of burglary than others. In other words, it 
appears that crimes are being  displaced  into the surrounding areas. The effect is 
highly localised which is unusual because it might be expected that burglaries 

  Fig. 19.6    Comparing simulated crime rates before and after regeneration of sites A and B       
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  Fig. 19.7    Examples of simulated offender movement patterns in the post-regeneration simulation. 
Illustrative of the difference between the agents who did and did not burgle in development site B       

would be more evenly distributed in the surrounding area (for example see 
Malleson et al.  2009  ) .  

 The most substantial burglary increases are evident in a small number of houses 
to the north of the development site B. To explain why these houses in particular 
suffer a higher crime rate, Fig.  19.7  plots the movements of four agents; two who 
did not commit crimes in the highly burgled area and two that did. By observing the 
agents’ travel patterns throughout the simulation it is obvious that even the agents 
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who did commit crimes in the highly burgled area still left large parts of site B 
 unexplored. The houses that suffered particularly high burglary rates are situated on 
a main road that runs along the northern boundary of the development area; a road 
that was regularly used by burglars. This explains part of their burglary risk; agents 
did not have to explore the area at length to become aware of them. Also, the houses 
themselves are slightly more visible and accessible than their non-regenerated 
neighbours which adds to their risk.  

 A close inspection of Fig.  19.7  indicates that the agents passed the houses 
whilst looking for a burglary target, not during legitimate travels on some other 
business (such as travelling to a social location). Figure  19.8  illustrates this in 
more detail. Therefore one can conclude, from this evidence, that the EASEL 
changes attracted the agents to the area specifi cally for burglary purposes and the 
location of some houses on the main road coupled with slightly more physical 
vulnerability (accessibility and visibility) increased their risk disproportionately 
to that of their neighbours. Although one might assume that the houses surround-
ing a regeneration area might experience increased burglary rates (indeed this can 
be explained by criminology theory), only an individual level model could not 
have predicted which  individual houses  might be susceptible to burglary above 
others. Only when crime theories were implemented in a model that is able to 
account for the low-level dynamics of the burglary system can specifi c real-world 
predictions such as this be made.  

 In conclusion, it is apparent that the effects of having a slightly higher burglary 
risk, coupled with their location on a main road, mean that on average particular 
houses received more burglaries after local regeneration. But only after an examina-
tion of the routine activities of the burglar agents as well as an inspection of the 
individual household characteristics does this become apparent. This result demon-
strates the power of agent-based geographic models; here we are able to pinpoint 
which  individual houses  might suffer a high burglary risk as a direct but unintended 
consequence of urban regeneration. This also leads to a specifi c policy implication: 
the houses identifi ed surrounding site B (as well as some in the site A) should be 
target hardened.  

    19.7   Conclusions 

 This chapter has discussed the use of ABM for analysing and predicting occur-
rences of crime. In particular, a model that has been used to simulate occurrences of 
residential burglary was outlined in detail. A brief review of crime research identi-
fi ed a number of key factors that should be included in a model. GIS data was used 
to create a realistic virtual environment that represents the study area in a high level 
of detail, including the individual roads that people use to travel around a city and 
the buildings that they pass on the way. Furthermore, through an analysis of the data 
it was possible to create estimates of the physical burglary risks associated with 
every individual house. Agents in the model (the “burglars”) were equipped with an 
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  Fig. 19.8    Visualising the journey to and from a burglary close to regeneration area B. The agent 
travels to the area specifi cally for burglary. For clarity, both images illustrate the same journey but 
from different angles. GeoTime software used courtesy of Oculus Info Inc. All GeoTime rights 
reserved       
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advanced cognitive framework (PECS) and were able to make a comprehensive 
decision about what action they should take at any given model iteration. As impor-
tant as the houses and the burglars, “communities” were incorporated into the model 
through the use of census and deprivation data. 

 The result is a comprehensive model that can directly account for the interactions 
and dynamics that drive the underlying system and can be used to make predictive 
analyses at a high resolution. As an example of the types of experiments that are 
possible with such a model, it was shown that a small number of houses might be at 
a higher risk of burglary after a regeneration scheme due to their spatial location and 
the resulting behaviour of the burglar agents. Although it inevitably has some draw-
backs, the agent-based approach is the most appropriate technique for modelling 
such a system; one that is characterised by individual interactions and contains 
intelligent organisms that exhibit complex behaviour.      
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  Abstract   The fi eld of geosimulation represents one of the most innovative attempts 
to revitalize the usefulness and application of spatial modeling. With its generative 
emphasis on micro-dynamics of complex systems and its fl exible treatment of space, 
time, pattern, and process, it marks a signifi cant departure from traditionally employed 
coarse, static approaches. The primacy of geography in geosimulation also repre-
sents a departure for spatial simulation from its reliance on modeling methods bor-
rowed from economics and physics, which were often ported to spatial applications 
because of tractability, but without consideration of the suitability of the fi t. Research 
in geosimulation, while still nascent in its development, has been particularly active 
in urban applications, where the technique has considerably expanded the range of 
questions and ideas that can be explored in simulation. This chapter reviews the ori-
gins of urban geosimulation, discusses the state-of-the-art relative to urban applica-
tions, and speculates about potential future avenues of inquiry in the fi eld.      

    20.1   Introduction 

 Geosimulation represents an innovative approach to constructing spatial simula-
tions, building on the successes of previous generations of spatial simulation within 
the relatively unique context of a conventional era of ‘big data’, rapid advances in 
computing hardware and software, the convergence of modeling and simulation 
technologies across applications, and the growing utility of Geographic Information 
Science (Torrens  2010  ) . Geosimulation has been developed in several disciplines, 
although much of its usefulness has been proven for  urban applications . In essence, 
the geosimulation approach is characterized by information processing, and in that 
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way, it is no different than most conventional computer simulation schemes. 
However, the novelty, in geosimulation, is in using  geography  to map information 
processing directly to individual system elements and the processes that determine 
their dynamics in a massively interactive systems context, such that complete, real-
istic models of complex phenomena can be built, generatively, from the spatial 
atoms that comprise them. The emphasis in establishing such mappings, is on how 
geography – geographic processes, patterns, and context – can enable and advance 
more useful information processing. 

 In this chapter, I will describe the development of geosimulation for urban appli-
cations: its origins in the early introduction of computing to urban modeling in the 
1970s, an overview of the current state-of-the-art, and a discussion of potential 
future avenues for research and development in the fi eld.  

    20.2   The Origins of Geosimulation 

 The  premise  for geosimulation has quite a distinguished history. It dates back to 
Alan Turing’s ideas for the digital computer, which were pioneered in his efforts to 
design devices that could crack the German Enigma code during World War II. In 
his original paper, Turing  (  1936,   1938  )  introduced the idea for an automaton (a term 
which had historically been associated with anthropomorphized but mechanical 
 machines ) that, given enough storage, power, and the right rule-set could automati-
cally and effi ciently compute solutions to mathematical problems. His later devel-
opment of the idea to ascribe machine intelligence to such devices (Turing  1950  )  
established the origins for modern-day artifi cial intelligence. Turing’s use of neigh-
borhood fi lters for information processing in these ideas was of key relevance to 
geography. Turing originally suggested that information processing could be treated 
as a quadruple of interacting factors: a serialized set of cells as containers for data 
on a tape-like manifold; state information which described data in the context of its 
unique location in space and time along the tape; a tape-reading head that could 
shift cell-by-cell along the tape to interpret neighboring state information on adja-
cent cells; and a table of rules that determined how states and neighbors should be 
contextualized. This introduced some core geographical concepts – space-time, 
relationships between pattern and process, action-by-proximity, neighborhood fi l-
tering, and perhaps even the trained eye of the geographer – into the early evolution 
of information processing. 

 The signifi cance was not lost on geographers and the idea of using automata to 
formally treat geography in computer models of spatial process surfaced as early as 
the fi eld began. Indeed, Waldo Tobler’s  (  1970  )  concise expression of one of the 
tenets of exploration in the geographical sciences, the idea that near things are 
related to each other, neatly encapsulates the core components of Turing’s automata 
and the heuristic was at the foundation of one of the fi rst examples of automata 
modeling (and geosimulation), Tobler’s model of the urbanization of Detroit. Other 
early examples included the land-use transition models developed by Chapin and 
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Weiss  (  1962  ) , an urbanization model introduced by Nakajima  (  1977  ) , and Peter 
Allen’s work on modeling settlement hierarchy (Allen and Sanglier  1979  ) . 

 The actual  term  geosimulation was introduced by Torrens in 1999 to describe 
efforts underway at the time in the Centre for Advanced Spatial Analysis (CASA) 
at University College London to build a next generation of spatial simulation meth-
ods, which were essentially building on the foundation introduced by Chapin, Weiss, 
and Tobler decades before. In a time before the popularity of Weblogs, Torrens 
launched a Website,   http://www.geosimulation.com     (later, .org) devoted to the topic 
(Fig.  20.1 ). Torrens outlined the idea for geosimulation in a talk at the 2000 
Geocomputation meeting in Greenwich co-authored with David O’Sullivan (Torrens 
and O’Sullivan  2000  ) . This was further developed in a 2004 special issue of the 
journal,  Computers, Environment and Urban Systems  by Torrens and Itzhak 
Benenson (Benenson and Torrens  2004b  ) , who also co-authored a book on the topic, 
which was published in 2004 (Benenson and Torrens  2004a  ) .  

 Many people at CASA were doing work in this area at the time, following the 
interests of Michael Batty and Yichun Xie in developing new forms of urban model-
ing around cellular automata (CA) (Batty and Xie  1994  ) . Michael was building 
several extensions of the idea, for urbanization (Batty     1997a,   b,   1999,   2001 ; Batty 
et al.  1999 ; Batty and Xie  1997  )  and movement of walkers within (Batty et al.  1998  )  
and around (Batty et al.  2003  )  built spaces. Bin Jiang was collaborating with Michael 
on CA models for pedestrian simulation (Batty and Jiang  1999  ) ; David O’Sullivan 
was researching graph-based CA for gentrifi cation modeling (O’Sullivan  2001  ) ; 
and Torsten Schelhorn, Muki Haklay, and David O’Sullivan were building the 
STREETS movement model for town centers (Schelhorn et al.  1999  ) . 

  Fig. 20.1    The geosimulation.com website in 1999, complete with horrendous graphics, as befi t-
ting web design of the time       
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 Several other groups were also developing the essential components of urban 
geosimulation in parallel at other sites. In North America, Keith Clarke’s group at 
the University of California, Santa Barbara had long been developing an extensible 
urban growth model based on CA and his ideas for deltatrons (Clarke  1997 ; Clarke 
and Gaydos  1998 ; Clarke et al.  2007  ) . This, perhaps, built on earlier work in apply-
ing CA to wildfi re modeling (Clarke et al.  1994  ) . Helen Couclelis, also at Santa 
Barbara, had experimented with CA modeling in the 1980s (Couclelis  1985  )  and 
her interest in the intersection between CA and GIS was revived around this time 
(Couclelis  1997 ; Takeyama and Couclelis  1997  ) . Geographer, Michel Phipps  (  1989  )  
at the University of Ottawa, developed the idea for the neighborhood coherence 
principle – initially used in biology, not urban analysis – using cellular automata. In 
the early-2000s, the land-use and land cover change modeling community in North 
America also began to pick-up CA modeling as a mechanism for developing what 
they referred to as spatially-explicit models, continuing the tradition started by 
Chapin and Weiss in the 1960s (Manson  2000 ; Brown et al.  2003 ; Evans and Kelley 
 2004 ; Lim et al.  2002  ) . However, this work was mostly focused on  non-urban  areas, 
where ecologically signifi cant canopies manifested as land cover. 

 In Europe, Roger White, at the Memorial University of Newfoundland was 
developing what would become the MURBANDY models (Engelen et al.  2002  )  
with Guy Engelen and colleagues at the Research Institute for Knowledge Systems 
(RIKS) in the Netherlands (Engelen et al.  1995 ; White and Engelen  1994,   1997  ) . 
From the outset, these were developed with the intention of becoming operational 
planning support systems (White and Engelen  1993  ) . Denise Pumain and Lena 
Sanders at the Université Paris I were building the original SIMPOP model of 
demographic geography based around agent automata (Sanders et al.  1997  ) . Itzhak 
Benenson and Portugali at Tel Aviv University were also working on urban segrega-
tion models based on the idea of agents in CA cells (Benenson  1998 ; Portugali 
 2000  ) , echoing the idea of the “particle in a cell” (p. 99) introduced by Gipps and 
Marksjö  (  1985  ) . Chris Webster and Fulong Wu were also building CA models of 
urban growth at Cardiff University, using fuzzy approaches and linguistic rule-sets 
(Webster and Wu  1998 ; Wu  1996  ) . Ferdinando Semboloni at the University of 
Florence was developing 2.5 dimensional (land-use and height) urbanization mod-
els based on CA functionality (Semboloni  1997 ;  2000  ) . Peter Mandl at Alpen-Adria 
Universitat in Austria was pursuing CA modeling research and adopted the term 
geosimulation for his work (Mandl  2000  ) . Harry Timmermans and Jan Dijkstra at 
the Delft University of Technology in the Netherlands were also developing 
CA-based pedestrian models at the time (Dijkstra et al.  2000  ) . Related work was 
ongoing in European physics and biophysics research, with some crossover in urban 
applications (Nagel and Schrekenberg  1995 ; Schweitzer  1997 ; Helbing and Molnár 
 1995 ; Ermentrout and Edelstein-Keshet  1993  ) . Transport modelers in Europe had 
also begun to look at CA as a vehicle for simulating pedestrian traffi c along 
streetscapes (Blue and Adler  2001  ) , following early infl uential work by Gipps and 
Marksjö  (  1985  ) . 

 In Asia, Anthony Gar-On Yeh and Xia Li at the University of Hong Kong 
were developing CA models of urbanization with GIS output functionality 
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(Li and Yeh  2000  ) . Takashi Arai’s group at the Tokyo University of Science was 
also developing well-calibrated CA models of urbanization on the basis of the 
White & Engelen model (Arai and Akiyama  2004  ) . 

 In Australia, Robert Itami had long been developing agent automata models of 
hikers’ movement along trails (Itami  1988  ) , which although not urban was one of 
the fi rst (as far as I know,  the  fi rst) introductions of  agent  automata in geography. 
Martin Bell at the University of Adelaide developed a CA-like graphic model of 
urbanization that was coupled to geographic information systems (GIS) and that 
considered adjacency rules (Bell et al.  1999  ) . Doug Ward, Stewart Phinn, and Alan 
Murray, then at the University of Queensland, also developed a CA-based urbaniza-
tion model, which considered the role of road-building in fostering urban growth 
(Ward et al.  2000  ) . 

 CA models rely on checking the information contained in automata through 
neighborhood fi lters and so geography featured implicitly in many of these models. 
Similarly, many of the models relied on GIS for data management and for visual-
izing model output. However,  geographical science , which sits at the heart of the 
geosimulation approach, was not necessarily treated  explicitly  in the models. The 
contribution of geosimulation is mainly in reawakening interest in the developments 
introduced by early pioneers in the 1960s and 1970s, but also in infusing anew the 
idea of using geography to advance urban simulation amid more recent develop-
ments in computing technology. In this sense, geosimulation also draws upon the 
early work of Stan Openshaw in developing the fi eld of geocomputation at the 
University of Leeds (Openshaw et al.  1987 ; Batty  1998  )  at the intersection of com-
puting (rather than simply using computers) and geography (Longley et al.  1998  ) . 

  Geography-specifi c  automata modeling actually forms a smaller sub-set of the 
activity I have just described. Early work by Waldo Tobler really exemplifi es a  dedi-
cated  geographic consideration of the utility of employing automata for spatial 
modeling. His initial paper on the topic introduced variable neighborhood consider-
ations as a vehicle for exploring the relationship between action and distance (Tobler 
 1979  ) , perhaps following from his interest in automated cartography and projec-
tions (Tobler  1959  ) . Later work by Couclelis extended geographic ideas, exploring 
the fundamental nature of information-gathering in geographic automata (Takeyama 
and Couclelis  1997  ) . Similar ideas had been pursued by Phipps, in examining the 
utility of the neighborhood as a vehicle for spatial interaction (Phipps  1989  ) . 
Clarke’s careful exploration of suffi cient geographic (and GIS) processes for the 
SLEUTH model (Clarke and Gaydos  1998  )  was also critical in laying the founda-
tion for the development of dedicated geographic algorithms for urban automata: an 
area of research which still does not enjoy the attention that it deserves (Torrens and 
O’Sullivan  2000  ) . Although not specifi cally urban, Robert Itami’s work on ascrib-
ing spatial cognition as artifi cial intelligence for agent automata was pioneering in 
its early exploration of the role of spatial intelligence in allying automata models to 
human geography (Itami  2002,   1988  ) . Recently, Bernard Moulin’s group at 
Université Laval have developed a series of geosimulation applications, ranging 
from shopping behavior (Ali and Moulin  2005  )  and crowd modeling (Moulin et al. 
 2003  )  to disease propagation (Bouden et al.  2008  ) . 
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 Of course, much of the geography that fi nds its way into urban automata fi lters 
through GIS. Many of the urban automata modeling schemes built in the 1990s and 
early-2000s had components that  connected  to GIS. Usually, this was for simple 
data input and cartographic visualization of results. Many CA models, for example, 
would read-in polygonal, raster, or graph lattices as a cellular structure for autom-
ata. Similarly, the graphic user interface (GUI) components of GIS were often used 
to visualize model output cartographically, allowing for on-screen querying of 
results through brushing and other geovisualization procedures. For some time, 
there was debate about whether urban automata models should be run within stan-
dard GIS toolboxes (Wagner  1997 ; Batty et al.  1999 ; Park and Wagner  1997  )  and 
automata-based extensions for commercial GIS software were developed (Strout 
and Li  2006 ; Brown et al.  2005  ) , as were GIS input-output functionality for popular 
open source (Dibble and Feldman  2004  )  or freeware automata model development 
packages (Blikstein et al.  2005  ) . Similarly, there was debate about whether the two 
should be loose-coupled or tight-coupled (Brown et al.  2005 ; Clarke and Gaydos 
 1998 ; Torrens and Benenson  2005  ) .  

    20.3   Geosimulation: A Primer 

 Geosimulation goes beyond issues of getting GIS data in and out of simulations. 
However, at its core, it deals with fl exible handling of geographic information 
through process modeling (Torrens  2009  )  and matching those processes as realisti-
cally as possible to ideas, theory, hypotheses, or knowns of the system being consid-
ered. Geosimulation has several key components in interfacing geography with 
information processing generally and automata particularly. 

 First, traditional treatment of geographical units as average, spatially-modifi able 
geographical units, or (statistically) mean individuals (Openshaw  1983  )  in spatial 
modeling is expanded in geosimulation. This coarse approach is instead replaced 
with a regard for spatially non-modifi able entities, replete with individual descrip-
tions and independent functionality. If spatial aggregates are indeed treated in simu-
lation, they are handled generatively (Epstein  2006  ) , as being built from the bottom 
up through assembly of individual entities and their connecting interactions for the 
purposes of producing aggregate behavior, phenomena, processes, or structures. 
This introduces a signifi cant advantage as it allows for exploration of the genesis of 
spatial phenomena as the ‘atoms’ of the process. Additionally, it permits for the 
emergence of complexity from these assemblies across complicated mechanisms 
such as non-linearity, path-dependence, self-organization, feedback, scaling, bifur-
cation, fractality, and so on (O’Sullivan  2004  ) . 

 Second, geosimulated entities are usually endowed with autonomy and indepen-
dence in their behavior, even when collaborating or confl icting. This individuality is 
important as it shifts the attention in model-building and in exploring simulations to 
treatment of singular behavior in the context of larger systems (O’Sullivan and 
Haklay  2000  ) . It also marks a departure from physics-based or economics-based 
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modeling methods, from which spatial modeling has traditionally pilfered, in that 
the behavior of entities in simulation is not necessarily considered as being homog-
enous across the system, i.e., the spatial uniqueness of the behavior and the unique 
geography of its context matters, whether spatial, temporal, social, technical, envi-
ronmental, built, economic, and so on. Moreover, these behaviors are not consid-
ered as being static within a simulation. Even if a transition rule is applied 
mechanically in the same way for each modeled entity, the unique experience of that 
entity will infuse the rule with unique information, producing variation in outcomes 
over space and time. This sort of sensitivity to micro-specifi cation is one of the 
hallmarks of complexity studies (Arthur  1990  ) . The computational fl exibility of 
geosimulation also means that the approach is agnostic in its consideration of the 
sorts of behaviors, phenomena, agency, or processes that it can handle. 

 Third, geosimulations are usually designed as event-driven systems, as compared 
to the traditional approach of building time-driven (or even cross-sectional) models. 
Specifi cally, geosimulations generally treat interactions among modeled entities as 
events, with discrete bundles of change in space-time. These could be one-off 
events, or cyclical, seasonal, chain reactions, serials, and so on. They can also be 
considered synchronously or asynchronously among entities and spaces within the 
simulation. Treatment of timing in this manner has a number of advantages. It 
allows for representation of entities’ internal ‘clocks’ (whether these are actual, 
mechanical within a simulation, or conceptual). This allows, for example, for the 
‘thought calculus’ of a modeled entity to be worked through before it produces an 
interaction within the simulation, and for diversity in these calculi to be reconciled 
and scheduled parsimoniously across many interacting entities. When put together 
to form a system, update of modeled entities’ clocks may be fl exibly defi ned and the 
methodology can reconcile diverse temporal scales. Events can also be constructed 
heterogeneously per simulated entity with the result that the characteristic timing of 
a process, phenomenon, thought, collaboration, confl ict, and so on can be repre-
sented in simulation. In essence, this allows for the treatment of entities at both their 
spatial and temporal atoms of behavior or process. 

 Fourth, geosimulation has a natural symbiosis with Geographic Information 
Science, GIS, spatial analysis, and related geospatial technologies. This connection 
to Geographic Information Science extends to spatial data models, including entity-
relationship, object-oriented, raster, graph, hierarchical and so on. It also allies 
automata with spatial data access heuristics. This is perhaps not surprising, given 
the origins of geosimulation in  information processing  and the fundamental consid-
eration of space, time, process, and neighborhood in relating information dynamics 
within the automata framework. It is, however, quite a signifi cant development over 
traditional spatial modeling approaches, which quite often were designed for read-
ing-in variables and parameters, but not for handling input data, output results, and 
the internal information processing dynamics of simulation with dedicated data 
models. Fundamentally, it increases the opportunities for information diffusion and 
interaction in models. 

 Fifth, with origins in the birth of digital computing, geosimulation is comfort-
ably allied with computer science with the result that geosimulation models can be 



442 P. Torrens

docked with other forms of computational modeling, including computer graphics 
and animation (Torrens  2007a  ) , parallel and high-performance computing (Guan 
et al.  2006 ; Phipps and Langlois  1997  ) , artifi cial neural networks (Li and Yeh  2002  ) , 
Bayesian computing (Kocabas and Dragi evi   2006  ) , swarm optimization (Liu et al. 
 2007  ) , evolutionary computation (Manson  2005  ) , and so on. 

 Sixth, because of its fundamental emphasis on dynamics and interaction, geo-
simulation is well-suited to representing complexity in simulation, and associated 
phenomena of feedback and path-dependence, non-linearity, emergence, fractality, 
allometry, bifurcation, autopoiesis, self-organization, and so on (see Batty  (  2005  )  
for an overview).  

    20.4   Geographic Automata as a Vehicle for Geosimulation 

 The introduction of  geographic automata  has perhaps represented the most explicit 
conventional treatment of geosimulation. Development of the idea has come from a 
variety of sources, mostly organized around geographic CA, with extended (usually 
derived from GIS and spatial analysis) geographic functionality for relating cells to 
other cells through neighborhood fi lters. Often, these are developed to handle spe-
cifi c cellular geometries, such as layered rasters (Takeyama and Couclelis  1997  ) , 
vectors (Moreno et al.  2008 ; Stevens and Dragi evi   2007  ) , and graphs (networks) 
(Dibble and Feldman  2004 ; O’Sullivan  2001  ) . Other approaches have used the geo-
graphic attributes of CA to accelerate computing in simulation (Guan et al.  2006 ; 
Liu et al.  2007  ) . 

 The development if  geographically-enabled  CA has introduced fantastic geo-
graphic functionality to urban automata models, but in many ways they are extensions 
of existing CA approaches through spatial analysis. In the early-2000s, Torrens  (  2001  )  
introduced a dedicated geographic automata system (GAS), designed to treat geogra-
phy inherently in an automata framework. Starting with a basic, stripped-down autom-
aton with processing capability (states, input, state transition), the approach infused 
geographic functionality into the basic working elements of the automaton. This 
included dedicated processing capabilities for space-time movement, malleable loca-
tion conventions, dedicated neighborhood process rules that dictate how neighbor-
hood fi lters should transform over space and time, and ontology of spatial primitives. 
In a paper with Itzhak Benenson (Torrens and Benenson  2005  ) , Torrens demonstrated 
the concept with a working demonstration of the classic Schelling/Sakoda segregation 
model (Sakoda  1971 ; Schelling  1971  ) , worked as a GAS, and a review of how all 
urban automata models at the time could be accommodated in the framework. The 
GAS framework goes beyond simply allying automata models with GIS, as it allows 
the model-designer to infuse core geographic principles into the essential functional-
ity of the automata. These geographic primitives can then be used to build spatial 
entities or phenomena from the bottom-up. In essence, knowledge is created in model-
building and simulation by experimenting with the geographical building-blocks of 
geographic complexity, from fi rst principles. 
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 Torrens has since published a series of demonstrations of the approach for urban 
geosimulation, including models of urbanization (Torrens  2006a  ) , suburban sprawl 
(Torrens  2006b  ) , residential location behavior (Torrens  2007b  ) , gentrifi cation dynam-
ics (Torrens and Nara  2007  ) , and behavioral geography (Torrens  2007a  ) . Itzhak 
Benenson also developed the idea into a software package (Benenson et al.  2006  ) . 

 The GAS framework has also been adopted for geosimulation in other fi elds. 
Shawn Laffan at the University of Queensland and Michael Ward at Texas A&M 
have developed a series of infection propagation models for veterinary studies using 
geographic automata (Doran and Laffan  2005 ; Ward et al.  2007 ; Laffan et al.  2007  ) . 
Shen and colleagues  (  2009  )  have used geosimulation and geographic automata for 
land-use modeling. Hammam and colleagues  (  2007  )  developed an extended concept 
for geographic automata with geometry displacement. A series of related concepts 
for geographic automata have also been developed by Moreno and Marceau, with at 
least partial inspiration from the GAS approach (Moreno et al.  2008,   2009  ) .  

    20.5   Epilog: The Future of Urban Geosimulation 

 The fi eld of geosimulation is still quite nascent and developments are almost inex-
tricably tied to the emergence of new forms of modeling and simulation in science 
generally. The emergence of new forms of dataware for modeling and simulation 
and the growth in computational social science around those developments could 
have a transformative impact on the future research trajectory for urban geosimula-
tion. In particular, a set of promising avenues for future research are relevant. 

 The fi rst is the development of semantic search on the Web (Berners-Lee et al. 
 2001  ) , semantic computing (Egenhofer  2002  ) , and the evolution of the “GeoWeb” 
(Elwood  2010 ; Haklay et al.  2008  ) . The basic components of geosimulation are 
naturally amenable to ontological representation, which lends geosimulation inter-
operability with semantic computing. Coupled with the popularity of semantic 
approaches, there has been a recent swelling in the volume, availability, and seman-
tic organization of geographic information on the Web. Already, applications that 
use geosimulation-like process functions are being used to extract and interpret 
space-time data on the Web or data generated using mobile devices tethered to the 
Web. These include so-called predestination models (Krumm and Horvitz  2007  )  
that couple geosimulation-like modeling with location-based services to provide 
application to users of mobile devices based on their position in space and time and 
models of their (and others’) past trajectories (Torrens  2010  ) . Indeed, there exists 
great potential for the development of more sophisticated semantically-operable 
and Web-enabled geosimulation processing services, which can feed on a steady 
stream of newly-emerging geographic information (Goodchild  2007  ) . The emer-
gence of geoagents as Web-scraping tools has already shifted Geographic Information 
Science in this direction (Yu and Peuquet  2009 ; Zhang and Tsou  2009  ) . 

 Geosimulation-like schemes are also being introduced in computer graphics 
research, specifi cally to endow synthetic characters in special effects and games 
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with realistic behavioral geography (Pelechano et al.  2008  ) . Thus far, the spatial 
intelligence afforded these synthetic (usually automata-based) characters has been 
relatively simple, but signifi cant advances are being made, in ascribing them realis-
tic vision (Terzopoulous et al.  1994  ) , activity (Paris and Donikian  2009  ) , behavior 
(Ulicny and Thalmann  2003  ) , collective geography (Nieuwenhuisen et al.  2007  ) , 
and even emotions (Badler et al.  2002  ) . Cross-fertilization of ideas between com-
puter graphics and geosimulation could catalyze signifi cant gains in the comput-
ability of geosimulation models (which developers of computer graphics often excel at) 
while maintaining rich behavioral fi delity (which geographers often excel at). 
Several geographers have already made initial forays into this area from the per-
spective of Geographic Information Science, geovisualization (Crooks et al.  2009  ) , 
and geosimulation (Torrens  2007a  ) . 

 There also remains a relatively untapped potential for connecting urban geosimu-
lation with geodemographics and related business intelligence. Geodemographics, as 
a fi eld of study, concerns itself with classifying and grouping consumers based on the 
geography of their activity patterns and spending habits (Singleton and Longley 
 2009 ; Harris et al.  2005  ) . It is used widely and practically in marketing and business 
analysis, for political polling, consumer testing, advertising, and actuarial analysis. 
Much of the spatial analysis used in geodemographics is relatively primitive, how-
ever, and would benefi t substantially from the infusion of geosimulation, which 
would allow for more sophisticated models of individuals and their space-time activ-
ity and behavior to be developed (Kurose et al.  2001 ; Hui et al.  2009  ) . Given the basis 
for geodemographics in data-collection and data-generation (Longley and Harris 
 1999  ) , there also exists potential for calibration of geosimulation models. Of course, 
the potential for unwelcome uses of such systems and function creep beyond simple 
customer analysis is great (Dobson and Fisher  2003  ) .      
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  Abstract   With an increasing world population and with more cost effective 
transportation, mass gatherings become ever more frequent. The total size of such 
gatherings is often as large as millions of people. Furthermore, everyday life in cities 
becomes increasingly crowded with people. This development has prompted better 
solutions to mitigate crowded places and make them safer as well as more effi cient 
in terms of travel time. One way to approach this crowd problem is to use crowd 
modeling tools to assess and optimize locations where pedestrian crowds move 
around. Within the last decade, crowd modeling has become a mature science and 
there now exist well calibrated pedestrian models that can reproduce empirically 
observed crowd features. In this chapter, we will introduce the fi eld of crowd modeling, 
explain how crowd models can be calibrated with empirical data, and expand a bit 
on how navigation works in these models.      

    21.1   Introduction and Motivation 

 In the past, pedestrian simulations have mainly been used to  qualitatively  reproduce 
and understand various aspects of crowds. Nowadays however, neither the computing 
performance nor the amount and detail of available empirical data restrict us from 
aiming at reproducing crowd dynamics  quantitatively  as well. 

 One of the reasons why the microscopic simulation of pedestrians as a fi eld of 
research has taken off as late as about 1985, and has gained pace only during the last 
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decade, is the availability of computing power. The simulation of pedestrians and 
especially real-world applications related to simulation of pedestrians has been at the 
edge of available standard computational power and will remain there for some more 
years to come. Compared to vehicle simulations that are effectively 1 dimensional, 
crowd simulations are 2D or even 3D, and this increase in dimensionality results in 
more degrees of freedom, which requires more sophisticated models with higher 
temporal and spatial resolution. Therefore, computing power (in terms of speed as 
well as RAM) plays a more decisive role in the simulation of pedestrians. 

 This has at least three implications: (1) Pedestrian modelers have often implicitly 
or explicitly restricted their creativity in using mathematical tools to make the model 
results more realistic with respect to computational costs. (2) While refi ned models 
successively replace more coarse-grained models for medium-scale applications, 
applications such as iterative approaches in large-scale projects only recently became 
possible to carry out with spatially continuous microscopic models. (3) Using pedes-
trian modeling for large-scale urban planning and transport projects often turns 
out to be a highly challenging task, since the right balance has to be found between 
computational time, model complexity and scale, and accuracy of results.  

    21.2   Modeling Approaches 

 There are various different ways to approach pedestrian modeling, and among 
the fi rst ideas to simulate interacting agents in a swarm-like way, was proposed by 
Reynolds  (  1987  )  with his  Boids  model. Different approaches to pedestrian modeling 
can be classifi ed in various different ways, for example according to their level of 
abstraction:

    • Microscopic  models describe each pedestrian as a unique entity with its own 
properties.  
   • Macroscopic  models delineate the average or aggregate pedestrian dynamics by 
densities, fl ows, and velocities as functions of space and time.  
   • Mesoscopic  (gas-kinetic) models are in between the two previously mentioned 
levels, taking into account the velocity distribution. Mesoscopic models often 
include individual entities but model interactions between them with common 
fi elds.    

 Alternatively, models can also be classifi ed by their respective detail of 
description:

    • Discrete space  models sub-divide the environment into a lattice, and the spatial 
resolution of the model is limited by the cell size of the lattice.  
   • Continuous space  models describe the spatial resolution down to an arbitrary 
level of detail.    

 Also time in the model can be either discrete or continuous. The latter can be 
achieved if there is no fi xed time step in the model. If instead time is advanced until 
the next  event  occurs, then that requires non-trivial calculations. 
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    21.2.1   Agent-Based Models 

 A class of models which is especially popular in the computer science community 
is agent-based models (ABMs) (O’Sullivan and Haklay  2000 ; Musse et al.  1998  ) . 
These models are characterized by a high level of autonomy of the simulated pedes-
trians, where each pedestrian is controlled by a set of rules (see Crooks and 
Heppenstall  2012  for an overview). The advantages with these kinds of models 
are that the motion can look very realistic and that the agents can be adaptive and 
possess a high degree of artifi cial intelligence, with emergent phenomena arising 
from simulations. This also makes ABMs suitable for crowd animation (Treuille 
et al.  2007 ; Popovic et al.  2003  ) . 

 A disadvantage is that these kinds of models tend to be very complicated, which 
makes it hard to approach them analytically, and they typically also need a lot of 
computational effort. However, the separating line between ABMs and other types 
of microscopic models is not that clear, and in a sense, most models could be referred 
to or reformulated as ABMs.  

    21.2.2   Social-Force Model 

 The social-force model (Helbing and Molnar  1995 ; Helbing and Johansson  2009  )  
is a microscopic model, which is continuous both in space and time. It is infl uenced 
by Newtonian mechanics, generalized to the motion of pedestrians. The forces con-
sist of repulsive forces with respect to other pedestrians and boundaries, friction 
forces, attractive forces among group members, and driving forces related to desired 
velocities. A superposition of all these forces gives a resultant force which determines 
the acceleration of the pedestrians. Finally, by integrating over time, velocities and 
positions are obtained from the accelerations.  

    21.2.3   Cellular Automata Models 

 Another popular approach to pedestrian modeling is based on cellular automata (CA) 
(Bolay  1998 ; Blue and Adler  2000 ; Meyer-König et al.  2002 ; Batty et al.  2003 ; 
Nishinari et al.  2004 ; Kretz  2007 ; Iltanen  2012  ) , which is a microscopic model, 
discrete both in time and space. 

 The exact specifi cation of these models differs, but the common idea is to divide 
the walkable space into a lattice, where each cell has an area corresponding to the size 
of a human body projected onto the fl oor, approximately 40 × 40 cm. Each cell can 
either be occupied by  nobody  or by  one pedestrian . The movements of pedestrians 
are carried out by iterating the time in steps in intervals of about 0.3–1.0 s. In each 
time step the pedestrians can move to unoccupied neighboring cells. However, even 
though the basic idea of CA models is simple, it often becomes complex with many 
rules for how the movement should be performed. 
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 Since CA models are discrete in both time and space, and due to the fact that 
they use only local interactions, they are often used for simulating large crowds. 
One drawback of CA models, however, is the central role of the underlying lattice, 
which introduces artifi cial symmetries and tends to cause problems. An example is 
the tendency for deadlocks in counterfl ow situations at relatively low demand. The 
reason is that the grid structure promotes exact head-on movement. It is possible to 
solve this problem at the cost of giving up a part of the advantage of CA models, 
namely their computational effi ciency. The grid structure itself poses a limit to the 
spatial precision. A bottleneck with a width of three cells can represent a real width 
just above 80 cm to just below 160 cm. Conversely, a real width of 100 cm can end 
up as a bottleneck with two or three cells in the model.  

    21.2.4   Fluid-Dynamic Models 

 When the crowd density is high, fl ows of pedestrians resembles fl uid fl ows. Therefore, 
a macroscopic approach to crowd modeling is to use fl uid-dynamic models (Helbing 
 1992 ; Hughes  2003  )  adapted to the simulation of pedestrian crowds. 

 An advantage of fl uid-dynamic modeling of pedestrians is that it becomes 
possible to make analytical evaluations of changes in the infrastructure or changes 
in the boundary conditions.  

    21.2.5   Queuing Models 

 Queuing models (Watts  1987 ; Lovas  1994  )  make further simplifi cations to crowds. 
They are used to analyze how pedestrians are moving around in a network of mod-
ules, where the nodes and links can, for example, be doors and rooms, or intersec-
tions and roads. It is important to stress that the dynamics inside each node is not 
explicitly taken into consideration. 

 The idea is rather to grasp how the different modules are interacting with each 
other, by analyzing queues in the system. Each node has a certain ‘service rate’ and 
pedestrians move to the next queue as soon as they have been ‘served’.   

    21.3   Calibration 

 No matter on which principles a pedestrian model is built, there is probably no 
model in existence without parameters. This opens the possibility and imposes the 
necessity to calibrate the models by comparison with empirical data. Calibration 
can be approached in at least three different ways: one is to measure pair-wise 
interactions of pedestrians in different situations, calibrate the model such that it 
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reproduces these interactions and assume that the model with these parameters yields 
realistic results when pedestrians move in crowds (Johansson  2009  ) . See Fig.  21.1 .  

 The second approach is to measure aggregated macroscopic properties of moving 
crowds and calibrate the parameters according to these (Fischer  1933 ; Hankin and 
Wright  1958 ; Older  1968 ; Navin and Wheeler  1969 ; Fruin and Strakosch  1971 ; 
Predtechenskii and Milinskii  1978 ; Weidmann  1993 ; Virkler and Elayadath  1994 ; 
Muir et al.  1996 ; Hoogendoorn and Daamen  2005 ; Kretz et al.  2006a,   b ; Seyfried 
et al.  2009 ; Chattaraj et al.  2009 ; Seyfried et al.  2010a,   b  ) . The third approach is to 
calibrate the parameters for minimal deviation of individual trajectories of pedes-
trians moving in a crowd (Johansson et al.  2007 ; Hoogendoorn and Daamen  2009 ; 
Bauer and Kitazawa  2010  ) , where the borderline between the second and third 
approach is fuzzy (Portz and Seyfried  2011  ) . 

 These approaches are different methods of calibration, but they can also be com-
bined, e.g. using method 3 for calibration and method 1 for validation to make sure 
that the model reproduces empirically obtained patterns on a macroscopic scale. 

    21.3.1   Shortest Path vs. Quickest Path 

 One aspect of pedestrian motion that has received very little attention is in terms of 
calibration work. It is this aspect which distinguishes most pedestrians from vehicles: 
pedestrians often choose between slowing down to walk a shorter path within a dense 
crowd or take some detour to keep the walking speed higher in a less dense region 
of the crowd (see Fig.  21.2 ). There is some theoretical and modeling work available 
on this issue (Kretz  2009a,   b ; Kirik et al.  2009 ; Steffen and Seyfried  2009 ; Dressler 
et al.  2010 ; Venel  2010 ; Rogsch and Klingsch  2010 ; PTV Planung Transport Verkehr 
AG  2010  ) , but the empirical data are much sparser than for corridor movement.  

  Fig. 21.1    Resulting trajectories from a simulation of two pedestrians who are approaching each 
other at a 180-degree angle. The simulation is carried out with the social-force model, with two 
different model specifi cations. The  dashed lines  are the resulting trajectories for an isotropic model 
and the  solid lines  are the resulting trajectories for an ‘elliptical’ anisotropic model, which gives 
smoother evading maneuvers and also a better fi t to empirical data       
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 The current state of empirical crowd research is that it has even sometimes 
taken one step back and explicitly excluded this degree of freedom (evading vs. 
decelerating) in pedestrian motion by measuring the speed density relation for 
single fi le movement. This has yielded fruitful results (Chattaraj et al.  2009 ; Portz 
and Seyfried  2011 ; Seyfried et al.  2005,   2010b  ) .  

    21.3.2   Principle of the Weakest Elements 
in Real-World Projects 

 Neither a model that perfectly describes single fi le movement nor a model that is 
perfectly calibrated for straight and wide corridor movement offers suffi cient help 
to a project manager who is faced with a project that includes one or more corners 
and the movement around corners is corrupted in all models available to him, as the 
precision level of the entire project will normally be set by the worst precision of all 
elements of the simulation. Movement of a large crowd around a corner is the sim-
plest situation one can think of where a pedestrian has to choose between trying to 
walk the quickest or the shortest path or something in between. Empirical efforts in 
the science of pedestrians need to and will turn to this aspect soon in the future.  

    21.3.3   Other Infl uences and Effects 

 The option set of travel time vs. travel distance can be generalized to a concept of 
generalized costs, as it has been done in a number of the utility-based models. Then 
not only travel time and travel distance can be combined to a utility for an individual 
pedestrian, but also, for example, the discomfort of walking on a bicycle lane or over 
muddy terrain or the comfort of walking shaded from rain or sunshine can be inte-
grated in just the same manner. It is well known that the free speed (or desired speed) 

  Fig. 21.2    A snapshot from a simulation with the social-force model. If the pedestrians take the 
shortest path ( left ), they gather in front of the bottleneck, and do not use the second path. When 
the pedestrians use the fastest path instead ( right ), they balance over the two possible routes       
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of pedestrians depends on their demographics, e.g. age, sex, air temperature, trip 
purpose (e.g. commuting or leisure time), time of day, trip circumstances (e.g. early 
for a train or late), culture and probably some more factors (Weidmann  1993 ; 
Chattaraj et al.  2009 ; Buchmüller and Weidmann  2006  ) . Some of these factors are 
correlated (e.g. certain trip purposes occur not distributed equally over a day, air 
temperature has a typical course during a day, etc.). As the desired speed is relevant 
in any other movement situation, we may infer that these parameters also infl uence 
all other movement situations.   

    21.4   Navigation 

 A crowd simulation project is set up by defi ning the relevant boundaries: the spatial 
boundaries of the walkable area (i.e. the geometry of the model) and the boundary 
between external knowledge about the dynamics of the pedestrians and where the 
model needs to take over – in other words the localized demand, which is the infl ow 
into the model, and how it varies over time. The last elementary defi nition a modeler 
needs to do is to set the destinations for the agents, which are set in the model. 

 The fi rst and most basic element that a dynamics model then needs to include is 
a navigation or wayfi nding method from the positions of the infl ow (‘sources’) of 
the pedestrians to the given destinations (‘sinks’). The remainder of the section will 
deal with that task. 

 One way to achieve shortest route navigation to the destination is to make use of 
a visibility graph (de Berg et al.  1997  ) . Simply speaking, a visibility graph is the 
graph of mutually visible corners of obstacles of a pedestrian movement geometry. 
With Dijkstra’s algorithm (Dijkstra  1959  ) , the shortest path from the agent’s current 
position to the closest corner point of the destination polygon can be found. When 
using this method, one is faced with the diffi culty of where to place the navigational 
points exactly: if only individual agents are moving through the geometry in low 
density, the navigation points can be very close to the corners of the obstacles. If the 
agents are moving in large groups, then the navigation points need to be placed 
further away. Moreover, there has to be some minimum distance that allows agents 
to come close to these points such that an agent can proceed toward the next naviga-
tion point. 

 As an example in the social-force model (Helbing and Johansson  2009  ) , the 
beeline direction from the current position of an agent toward the next navigation 
point would then typically use the direction of the desired velocity (the absolute 
value of the desired velocity is an external parameter). 

 A method that avoids this diffi culty, but which requires more computational 
effort, is that of a fl oor fi eld (also called “static potential”), which is a grid placed 
over the geometry, where the distance towards the destination (under consideration 
of the obstacles) is written to each grid point. Plainly spoken, it is a localized look-up 
table of distances. There are numerous methods to calculate this static potential. 
Typically the calculation time rises when the deviation from the Euclidean distance 
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is reduced (Kimmel and Sethian  1998 ; Jeong and Whitaker  2008 ; Kretz et al.  2010  ) . 
The negative gradient of the static potential at the position of an agent gives the 
direction of the shortest path from that agent to the destination. Thus, the negative 
gradient of the static potential is used as the direction of the desired velocity. Recently 
a method has been proposed that directly and effi ciently calculates the gradients 
without the need to calculate the static potential (Schultz et al.  2010  ) . 

 The Fast Marching Method (Kimmel and Sethian  1998  )  and Fast Iterative 
Method (Jeong and Whitaker  2008  )  are well suited to also calculate a fl oor fi eld, 
which contains the estimated remaining travel time from a grid cell to the destina-
tion (PTV Planung Transport Verkehr AG  2010  ) . Contrast this with the method 
employed in Sect.  21.3.1 . As the distribution of agents has a major impact on the 
estimated remaining travel time, and as the distribution of agents naturally changes 
in each simulation time step, such a fl oor fi eld needs to be recalculated frequently. 
Therefore, it is called the ‘dynamic potential’. In this way it is possible to make 
agents in the social-force model evade groups of other agents dwelling around or 
being jammed at a bottleneck or the inner side of a corner early on, already by the 
direction of their desired velocity (see Fig.  21.3 ). For the dynamics of the whole 
system this means that jams do not grow endlessly and that agents distribute better. 
Therefore this method can be seen as a kind of non-iterative assignment in two 
continuous spatial dimensions.  

 Let us assume that an agent wants to reach its destination as quickly as possible. 
In principle the ‘bee line’ would be the quickest way. An agent walking the shortest 
path under consideration of obstacles is modeled as someone, who accepts that 
inevitably obstacles prevent one from walking along the bee line. In principle the 
shortest path under consideration of obstacles would also be the quickest path under 
consideration of obstacles. An agent walking into the direction of the estimated 
quickest path under consideration of all other agents is modeled as someone 
who accepts that jams will inevitably cause delays and therefore might prevent the 
shortest path from being the quickest. 

 While real pedestrians can be assumed to have a very good comprehension of the 
situation around them, and while there are situations where it is safe to assume that 

  Fig. 21.3    A static potential fi eld ( left ) compared to a dynamic potential fi eld ( right ). The snapshots 
are taken at the same time instant in two identical simulation scenarios. Notice how pedestrians get 
stuck and delayed at the corner when a static potential fi eld is used       
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early arrival is the single-most important movement criterion (passengers in a 
station who are late for a train), modeling pedestrians to walk on the shortest path 
under consideration of obstacles can nevertheless be justifi ed in many situations. 
First there are situations in which the quickest path is not much different from the 
shortest and where inter-pedestrian forces can reproduce these differences. 

 Second, there can be situations, where the shortest path is valued more than the 
quickest. As has been stated above the quickest path/shortest path trade-off can be 
seen as a special case of a generalized cost. Instead of calculating a fi eld of estimated 
remaining travel time to the destination, it is also possible to calculate a fi eld of 
generalized cost to reach the destination associated with the fi eld. This shows 
that by using the gradient of such a fi eld as the direction of the desired velocity in 
the social-force model, it is possible to connect the force-based approach with the 
utility-based approach. This can be interpreted such that the information entering 
the direction of the desired velocity models the free planning process of an agent, 
while the forces act according to their name, and they force the agent to evade other 
agents at rather small distances to avoid collisions.  

    21.5   Conclusions 

 Pedestrian crowd modeling has emerged as a mature and active fi eld of research, 
where models are challenged on their ability to reproduce empirically observed 
features. This has resulted in crowd simulation tools, both commercial and freely 
availably ones, that are routinely used in the planning of major events, and also for 
optimizing transport systems, assessing building evacuations, optimizing the orga-
nization of airports and train stations, etc. Some of the challenges ahead are to reach 
consensus as to which modeling approaches yield the most realistic results. Another 
ongoing challenge is to make crowd modeling tools more autonomous. Earlier 
crowd modeling tools relied heavily on the user to specify every single detail in the 
model scenario, whereas in more recent models, pedestrians fi nd their way around 
complex spaces, they queue, and they even interact with and use public transport.      
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  Abstract   Agent-based models (ABMs) provide a natural representation of large 
markets with many consumers interacting. As a result, business applications of 
these tools can provide powerful insights in to complex problems. When spatial and 
geographic modeling is added as well, these insights gain the ability to be trans-
ported to the real world, where challenging questions can be addressed. Most of the 
work that has been done in this area focusses on two different levels of spatial mod-
els: (1) the regional or macro-level, and (2) the small-scale or micro-level. Macro-
level spatial ABMs are models which address the movement of individuals and the 
location of facilities across an entire region, such as spatial retail decisions, residen-
tial housing choices, or geographically extended supply chains. Micro-level spatial 
ABMs examine the movement of individuals within a constrained physical space, 
such as pedestrian modeling in a neighborhood, or consumer modeling within a 
retail location. We will discuss each of these levels of detail in turn and fi nish by 
discussing future applications of spatial ABMs to business.      

    22.1   Introduction 

 Despite some initial success, 1  the use of Agent-Based Models (ABMs) in business 
applications has only recently started to garner serious interest within the practitio-
ner community (North and Macal  2007 ; North et al.  2010  ) . One reason for this recent 
increase in interest may be that it has become increasingly clear that traditional mod-
eling approaches are not able to handle many of the complexities and details involved 
in a modern market. Though the academic community has used ABMs for a long 
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time within managerial science, dating back at least to Cohen, March and Olsen’s 
use of an agent-based modeling framework to understand organizational decision 
making (Cohen et al.  1972  ) , 2  the recent interest by business experts in ABM has 
reinvigorated the academic community’s research in to this unique use of ABM in a 
number of different managerial sub-disciplines from marketing (Rand and Rust  2011  )  
to fi nance (Ehrentreich  2007  )  to managerial strategy (Davis et al.  2009  ) . 

 This renewed interest is well-deserved. ABM has several natural advantages for 
modeling business situations: (1)  Multiscale and Complex Interaction Structures:  
Most business applications deal with interactions between either multiple businesses 
of varying size, businesses and consumers, or individuals at different levels within an 
organization. Moreover, even when these agents are all of the same scale, often the 
interactions within a model need to occur on a complex interaction structure such as 
a social network; ABM provides the ability for multiple scales of agency and net-
work-based interactions to be included within the same model. (2)  Heterogeneity:  
Many business applications, such as consumer market models, require a large  number 
of individuals who are very different from each other. These individuals could have 
different personal wealth status, different thresholds to innovation, or different pref-
erences for a product. Though new approaches in equation-based/math modeling 
have allowed for more and more heterogeneity to be incorporated in to a model, 
ABM still provides a maximal level of potential heterogeneity. (3)  Adaptive Agents : 
Most organizations and consumers do not operate according to the same rules of 
behavior throughout time; instead they learn from the past and change their behavior 
as a result of previous actions and consequences. This is especially true when there 
are large rewards to be gained for acting as optimally as possible. ABM is one of the 
few approaches that allows the modeler to construct agents which not only adapt the 
parameters of the rules by which they act, but to fundamentally alter the rules them-
selves. (4)  Rich Environments  – Many business applications occur distributed through 
a physical space; whether that be a city road network, a county development map, a 
neighborhood street, or within a store, the physical geography of these systems can 
dramatically alter the way the complex system unfolds. ABM allows for the rela-
tively simple inclusion of this physical geography as an environment in which the 
agents operate and ABM has proven to be successful in helping to understand com-
plex phenomenon related to geography and urban development in the past (Benenson 
and Torrens  2004 ; Batty  2005  ) . 

 It is this last advantage that we will discuss in detail in this chapter. Of course, 
spatial models of business systems occur that do not involve ABMs (Longley and 
Clarke  1995  ) , but GIS and spatial modeling techniques by themselves are not suffi -
cient to capture the rich details necessary for some models. Static spatial models are 
a representation of pattern and describe very well how items of interest are distrib-
uted in space and relate to each other. However, static spatial models fail to describe 
temporal dynamics very well, and thus they lack a representation of  process. ABM, 

   2   Though Cohen, March and Olsen used what is clearly an ABM, they did not call their model, an 
“ABM”, since that phrase was not yet in use.  
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on the other hand, describes processes very well; in fact, it might be argued that ABM 
is by its nature a process description, but without a rich environmental description, 
such as that provided by GIS. Without spatial modeling, ABM fails to capture the 
nuances of sophisticated spatially distributed patterns (Brown et al.  2005b  ) . However, 
by combining ABM and GIS, researchers can build sophisticated tools that model 
both pattern and process simultaneously. Models of pattern and process are critical 
to several interesting business applications, since the discovery of spatially distrib-
uted patterns and how they evolve over time is key to their understanding. Therefore, 
spatial ABMs could prove a powerful tool within management science. 

 In order to explore this hypothesis in more depth, we will examine a number of 
different applications of spatial ABMs to questions of relevance within business 
applications. We will begin by examining macro-level models, or models where the 
scale of the model does not require detailed models of individual entity movement; 
examples of these types of models include residential housing decisions, retail loca-
tion preferencing, and geographically extended supply chains. Then we will  examine 
micro-level models, which are models in which the base representation is an indi-
vidual moving around as a pedestrian; examples of these types of models include 
pedestrian traffi c in a neighborhood, or even movement within a retail shop. We 
utilize this distinction since the types of data and models of behavior will differ 
signifi cantly between these two levels. At the end of this chapter we will discuss 
how far spatial ABMs have advanced in business applications and potential avenues 
for future research.  

    22.2   Macro-Level Spatial ABMs 

 Large-scale spatial ABMs are useful in business application in which the business or 
phenomenon being modeled is large enough to extend spatially over an entire region. 
For instance, a delivery service that must manage a fl eet of trucks could use ABM to 
maximize the routing of the trucks incorporating a traffi c model that varies based on 
time of day (Hartenstein et al.  2001  ) , or a chain of stores that are trying to cover a 
market ensuring that no store is located too far away from any consumer could use 
ABM to determine a new store location taking into account consumer commuting 
patterns (Lombardo et al.  2004  ) , or a business that deals with a global distribution of 
goods and shipping logistics could use these technologies to track and examine the 
distribution of containers throughout the world (Sinha-Ray et al.  2003  ) . Macro-level 
models are also useful in cases where a business competes with other fi rms and 
organizations and the needs of their customers are infl uenced by geography, even if 
the focal fi rm itself does not have multiple locations or provide services over a geog-
raphy. For instance, a residential developer could use ABM to forecast future demand 
for new housing based upon individual decisions to locate in various regions (Brown 
et al.  2005a  ) , or a gas station could use ABM to examine how to set its prices in 
comparison to its competitors (Heppenstall et al.  2005  ) . 

 A signifi cant barrier in the past to increased use of ABMs to model large-scale 
geographically dispersed systems was the lack of integration between ABM tools 
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and GIS tools (Brown et al.  2005b  ) . As eluded to in the introduction, an ABM, in its 
simplest form, represents dynamic aspatial processes, and so the basic concepts of 
an ABM are agents, timesteps, and behavior. A GIS, on the other hand, represents 
static spatial patterns, and so the basic concepts of a GIS are maps, projections, and 
spatial analysis. It is not intuitively clear how to get these two methodologies to 
work together in a way that facilitates the development of more complex models 
(Brown et al.  2005b  ) . Should the ABM be the primary model, using the GIS simply 
as a storage platform? Or should the GIS be the primary model, using the ABM to 
update the spatial patterns? Or should both tools be rolled up in to one cohesive 
package? An ideal tool to address this problem has still not been developed, but 
there have been signifi cant advances in tool development that have helped mitigate 
this problem. Specifi cally most of the most commonly used ABM platforms, such 
as NetLogo (Wilensky  1999  )  and RePast (North et al.  2005  ) , have incorporated the 
ability to read and write GIS data. Though there are signifi cant challenges in using 
spatial ABMs to address large-scale geographies, several research projects have 
successfully used this approach to develop new understandings to complex prob-
lems. In the next few sections we will highlight a couple of these projects and talk 
about them in more detail. This is not meant to be an exhaustive listing, but rather 
to provide a few illustrative examples. 

    22.2.1   Spatial Retailing Decisions 

 Almost all consumer retail decisions are spatially-infl uenced. In the end when it 
comes to purchasing from a brick-and-mortar retail location, whether it be out of 
preference (e.g., the ability to try on clothing, the convenience of lack of shipping, 
etc.) or necessity (e.g., there is no economically or practically feasible way to ship 
gasoline over the internet), consumers prefer to buy from locations that are spatially 
convenient to them, i.e., they aim to minimize some cost associated with the trans-
action (Hotelling  1929  ) . This cost can result in fi rms locating near other fi rms since 
the same spatial location may wind up being the most convenient for a large part of 
the population. On the other hand, fi rms may want to locate as far away from each 
other as possible, in order to not compete directly with other fi rms nearby 
(d’Aspremont et al.  1979  ) . Involved in all these decisions is not only where to locate, 
but what products to offer at what price; all of which are interrelated decisions 
(Hotelling  1929  ) . 

 Despite the advances that have been previously made using game theory and 
equation-based modeling, more advanced models of these decision processes can be 
made by combining consumer-level behavioral rules with agent-based models. An 
example of this combination working well together is Heppenstall, Evans and 
Birkin’s examination of petrol price setting in a spatially-infl uenced retail market 
(Heppenstall et al.  2005 ,  2006  ) . This model examined the price setting behavior of 
individual petrol stations in the geographic area of West Yorkshire, UK (including 
Leeds, Bradford, Wakefi eld, Huddersfi eld and Halifax). In the model, petrol stations 
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were represented as full agents, while the consumers were represented by a spatial 
interaction model, since fully representing the consumers as agents as well was too 
computationally expensive. Within the model petrol stations set their prices based 
on local competition and profi t earned in the last time period. Consumer demand 
was modeled using a spatial interaction model, where consumers decided which 
petrol stations to buy from on the basis of distance and price. In the initial “hybrid 
model” (it was called a hybrid model because it involved both an ABM and a spatial 
interaction model), consumers were always considered to exist at their home loca-
tion. Heppenstall et al.  (  2005 ,  2006  )  went on to examine a “network” model, which 
modeled commutes to work as well and used this commuting data to re-examine the 
spatial model on the basis of where consumers would most likely be when driving. 
The difference between these two models in terms of their effect on consumer density 
within the ABM is illustrated in Fig.  22.1 . After constructing these two models, they 
then compared and contrasted these two different models, performed robustness and 
validation checks, and showed that the model recreated real-world price and profi t 
patterns.  

 This trade-off between the hybrid model, which models resident locations using 
their residency locations, and the network model, which approximates where resi-
dents will be when they are likely to refuel their cars is illustrative of design deci-
sions that often need to be made when constructing spatial agent-based models at 
the macro-scale. The petrol stations that were modeled were well-defi ned and in 
fi xed locations, so they were modeled at their present stations, but commuters are 
mobile, and so a decision must be made as to which level of mobility to model them. 
The hybrid model is an extreme case where the residents are modeled as existing at 
one fi xed location, namely their homes. The advantage of this approach is that it is 
less computationally expensive, but the disadvantage is that the model is not as 

  Fig. 22.1    Differences in the distribution of consumer density in the “hybrid” model ( a ) and the 
“network” model ( b ) (Reprinted with permission from Heppenstall et al. (2006))       
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refl ective of the real-world as a more fi ne-grained model that modeled actual 
transportation patterns. At the other end of the spectrum, commuters could be mod-
eled as constantly moving, and their locations dynamically modeled at a minute-by-
minute resolution. This has the advantage of being a better representation of the 
real-world, but also has the disadvantage of being extremely computationally expen-
sive, not to mention the diffi culties with obtaining the data necessary to model 
traffi c data at that level of detail. The network model that Heppenstall, Evans and 
Birkin chose is a well-designed compromise that balances computational and data 
limitations with the fi delity of the model. 

 Once a model such as this has been constructed and validated, the results could be 
used to explore future chain-wide policy decisions, examine marketing strategies, or 
even determine the viability of current and future retail locations. One of the most 
intriguing aspects of this model is that there are many necessity goods for which a 
similar model could be built. Though petrol is uniquely dependent on the transporta-
tion system for its demand, in general people do like to shop in proximity to either 
their home or work (or someplace in-between) for most of their basic necessities. 
Thus, it would be possible to imagine similar models of prices that could be con-
structed for grocery stores (Schenk et al.  2007  ) , big-box retail stores, restaurants, and 
health and beauty services, which are all retail locations that a commuter might visit 
once every few weeks.  

    22.2.2   Residential Location Preferencing 

 The petrol station model described in the previous section was mainly aimed at 
building a comprehensive model of the supply-side of the market, including retail-
ers and competitors. The demand-side of the market was exogenous, assumed to 
operate using a fi xed set of rules, and was not explicitly modeled as agents. However, 
demand-side modeling at the macro-level can also benefi t from the use of spatial 
ABMs. As was mentioned previously, it is well-known that consumers make deci-
sions based upon proximity and cost of travel (Hotelling  1929  ) , so modeling where 
consumers will locate and the demand that they place upon a geographical area is 
critical to organizations and businesses that rely upon these forecasts. 

 For instance, within the housing market understanding where residents want 
move to is useful for contractors, developers, retailers, and even public policy ana-
lysts. One project that attempted to analyze this process using spatial ABM is proj-
ect SLUCE ( S patial  L and  U se  C hange and  E cological Effects) 3  and its successor 
SLUCE 2. The goal of which was to examine the relationship between the environ-
ment and suburban sprawl. Though the aim of project SLUCE was more on the side 
of providing advice to policymakers interested in reducing the negative effects of 
suburban sprawl, a model similar to the one that was constructed could also be used 

   3     http://www.cscs.umich.edu/sluce/      
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from a business and organization perspective in understanding future demand 
patterns in a geographic area. 

 To address these concerns, Project SLUCE has built at least three different ver-
sions of the models to address different questions (Brown et al.  2008  ) . The fi rst 
model that was constructed, called SOME ( S luce’s  O riginal  M odel for  E xploration), 
was built in the Swarm modeling toolkit 4  (Minar et al.  1996  ) . The core agents of the 
SOME model are residents and service centers that interact on a complex landscape 
that includes roads and landscapes of aesthetic quality; both of which can either be 
generated or drawn from empirical GIS data. Later, a NetLogo 5  (Wilensky  1999  )  
version of the SOME model was constructed. This model was a stripped down ver-
sion that was used primarily to examine general patterns and as an educational tool. 
Finally, a new model was created, called DEED ( D ynamic  E cological  E xurban 
 D evelopment)(Brown et al.  2008  ) , which was constructed using the RePast toolkit 6  
(North et al.  2005  ) . This model included several new agent types including: farmers, 
policy boards, and developers; as well as the residents present in the SOME model. 
This allowed more realistic models of exurban development to be constructed and 
different questions of policy impact to be explored; all of which are heavily depen-
dent upon spatial interactions that exist between these various stakeholders. 

 Project SLUCE has used this suite of models to examine a number of different ques-
tions including: (1) the interaction of residents with policy constraints (e.g., green-
belts) (Brown et al.  2004  )  (2) the validation of the models against classically observed 
empirical patterns (Rand et al.  2003  ) , (3) the development of new spatial validation 
techniques (Brown et al.  2005a  ) , (4) the role of zoning in exurban sprawl (Zellner 
et al.  2009 ,  2010  ) , and several other research questions (Brown et al.  2008  ) . 

 A key aspect in investigating all of these different possibilities was that SLUCE 
had developed a suite of models rather than just one model. This allowed the project 
researchers to employ the right model at the right time. This approach, which has 
sometimes been referred to as full-spectrum modeling (Rand and Wilensky  2007  ) , 
embraces the idea of choosing the right model for the right level of detail, back-
grounding other decisions when need be, and at the same time bringing other details 
of interest to the front. Choosing the correct level of detail is often a concern in 
macro-level spatial modeling and something that should be considered whenever 
developing a spatial ABM with business applications. Sometimes there will be some 
agents that need to be emphasized, such as residents, where in other cases other 
agents will be more important, such as developers. The reason why this is particu-
larly relevant when it comes to considering spatial ABMs at the macro-level is that 
there are many different types of consumers in any context. One of the arguments 
for the development of the DEED model by Project SLUCE was that for many 
policy questions regarding new housing, the developer, as opposed to the individual 
resident/homeowner, was a more appropriate unit of analysis, and so as Project 

   4     http://www.swarm.org/      
   5     http://ccl.northwestern.edu/netlogo/      
   6     http://repast.sourceforge.net/      
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SLUCE transitioned to examining more of these types of questions, a new model 
was constructed. In the SOME model, the consumer being represented was the resi-
dent, consuming a housing location and making a residential location decision based 
upon the amenities offered, while in the DEED model the primary consumer was a 
developer who essentially consumed zoning policies and made development deci-
sions based upon them. For researchers, and business practitioners interested in 
representing a large-scale market using a spatial ABM it may be useful to consider 
the possibility of constructing multiple models at different scales that represent 
these different levels of consumption and market interaction. 

 Macro-scale models of market demand and consumption could also be useful in 
other contexts as well. For instance, it is possible to build “heat maps” of potential 
future demand in different areas, and then use those to infl uence future retail con-
struction decisions, or even future logistical needs for an organization that is a service 
provider to other industries. Moreover, consumers like to not only shop near where 
they live, but they also like to work near where they live. As consumers of employees, 
businesses should pay attention to how future housing trends are developing and 
attempt to locate where they will have the best access to highest quality labor. One of 
the fi ndings of Project SLUCE (Brown et al.  2005a  )  was that often it is useful to 
examine not only individual runs of a model and “frequency” or “heat maps” which 
illustrate how often an area gets developed in the model, but also to break model 
forecasts up in to “variant” regions (regions that are sometimes developed and some-
times not under the model) and “invariant” regions (regions that are almost always 
developed or not developed in the model). This is useful because development tends 
to be path dependent, meaning that new development tends to follow recent develop-
ment even if the recent development occurred at its location purely due to happen-
stance. Figure  22.2  illustrates how to explore these different effects using an ABM 
and teh comparison of these projections to an underlying reference map.   

    22.2.3   Other Macro-Level Models 

 There are many other business phenomenon that could be and have been modeled 
using spatial ABMs at the macro-level. For instance, geographically extended supply 
networks, where the physical distances between the locations is vital to understand-
ing how the supply network operates could be modeled using macro-level spatial 
ABMs. Spatial ABMs can be used to examine dynamic supply networks that evolve 
and change in time (Emerson and Piramuthu  2004  )  taking in to account the informa-
tion moving across these networks which has its own dynamics (Ahn and Lee  2004  ) . 
Related to supply chains, is the question of vehicle routing. Given that you have a 
particular fl eet of vehicles that need to deliver goods to a variety of locations what is 
the best way to do so, especially in the presence of changing traffi c conditions, and 
potentially changing consumer demands (Kohout and Erol  1999  ) . Moreover, and 
somewhat extending on both of the examples listed above, is the question of retail 
location placement (MacKay  1972  ) . If we have a good representation of consumer 
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movement in a market, and detailed information about competitor placement and 
prices, then we can ask the question: where should a fi rm locate its next store and 
should it close down any stores that it currently has open? (Lombardo et al.  2004  )  
Such a model would provide a sophisticated decision support tool; but spatial ABMs 
could also be used to construct descriptive and exploratory models (Huang and 
Levinson  2008  ) . For instance, they could be used to investigate why urban and retail 
concentrations occur in the fi rst place? (Krugman  1996  )  

 Finally, one interesting application of spatial ABMs at the macro-level does 
not involve any notion of physical movement but instead the movement of infor-
mation. There has recently been considerable interest in understanding the diffu-
sion of information across social media from a marketing perspective (Trusov 
et al.  2009 ; Domingos  2005  ) . It might be thought that in these systems geography 
and space are unimportant, but in fact there is some evidence that geography still 
plays a role in diffusion of information (Goldenberg and Levy  2009  ) . Thus, one 
macro-level spatial ABM that might be useful from a marketing and business per-
spective would investigate the spread of information across social networks and 
geography at the same time, and examine optimal strategies for seeding viral 

  Fig. 22.2    Different ways of examining development models: ( a ) illustrates a single run of the 
model with white areas being developed land, and the black areas being undeveloped land, ( b ) uses 
grey scale to illustrate the frequency with which an area was developed over a large number of 
model runs, ( c ) breaks the map up into areas that are always developed ( black ), never developed 
( white ) and sometimes developed ( grey ) for a large number of model runs, ( d ) is a reference map 
indicated what actually happened (Reprinted by permission from Brown et al. (2005))       
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 marketing strategies (Stonedahl et al.  2010  )  taking in to account both geography 
and network properties simultaneously.   

    22.3   Micro-Level Spatial ABMs 

 On the other end of the spectrum from macro-level spatial ABMs is micro-level 
spatial ABMs. Such models may still use GIS data to provide the environment 
within which the agents move, but the unit of focus here is on the individual con-
strained within a smaller geographic space. In particular these models require some 
model of pedestrian movement, whether it be within a retail location (Zacharias 
et al.  2005  ) , through a mall (Bitgood and Dukes  2006  ) , or around a neighborhood 
(Batty et al.  1998 ; Borgers and Timmermans  1986  ) . Unlike the macro-level models 
described above, there has not been as much research applying these kinds of mod-
els specifi cally within the realm of business applications, though there is substantial 
research into the problem of pedestrian agent-based modeling in general (Batty  2003  ) . 
However, recent advancements in the collection of data about consumers in  business 
locations, using RFID-enabled shopping carts among other technologies (Larson 
et al.  2005  ) , means that it may be possible to build micro-level spatial ABMs at a 
much greater level of fi delity than was previously possible. Pedestrian-level ABMs 
could be useful in understanding neighborhood foot traffi c in order to develop retail 
locations (Borgers and Timmermans  1986  ) , movement within a grocery store in order 
to optimally allocate store layout (Larson et al.  2005  ) , or even model spatial interac-
tions within an offi ce building to improve organizational effi ciency and interaction 
(Wineman  1982  ) . 

 Despite the advances in new data collection techniques, there are still open 
research questions with regards to how to best integrate this data. Moreover, most 
ABMs are not built for physical interactions something that may be required to cre-
ate sophisticated micro-level models. These are issues that deserve attention and 
research if micro-level spatial ABMs are to prove useful within the context of man-
agement science and business applications. 

    22.3.1   Neighborhood Pedestrian Modeling 

 Examinations in to agent-based pedestrian models have evolved over the years from 
random walk models to goal-oriented walking to fl ocking and object avoidance 
models (Batty  2003  )  and have been used to examine crowd movements at the 
Noting Hill Carnival (Batty et al.  2003  )  (see Fig.  22.3 ) and in the Tate Modern 
(Turner and Penn  2002  ) . Models of pedestrian movement within a neighborhood 
could be useful within a number of different business and management science 
applications. For instance, it would be interesting to examine micro-level models of 
individuals moving around a neighborhood, and using this model of foot traffi c to 
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determine retail location placement (Borgers and Timmermans  1986  ) . In much the 
same way that a heat map of car traffi c can be useful for understanding where to 
place a new retail location that is car accessible, pedestrian heat maps could be used 
to help examine how to place retail locations in pedestrian friendly areas, such as 
city centers or malls.  

 To some extent these models would not be very different than the macro-level 
models described above, but consumers who are moving through a pedestrian acces-
sible landscape do have access to different information than those who are driving 
by a big box store. Pedestrians can partake in window shopping, and retailers can 
alter their displays to entice consumers, and even to compete with other stores or 
services nearby. Retail employees can interact with pedestrians, providing samples 
or coupons to entice them in to their store. This could be done adaptively in response 
to other spatially proximate competitors. This interaction between pedestrians, store 

  Fig. 22.3    Illustrations of data and analysis used in an ABM of pedestrian traffi c around the Notting 
Hill Carnival: ( a ) street geometry, ( b ) parade route, sound systems, and tube stations, ( c ) all pos-
sible paths without street constraints, ( d ) shortest routes from tube stations without streets, ( e ) all 
possible paths with street constraints, ( f ) shortest paths with street constraints (Reprinted by per-
mission from Batty et al. (2003))       
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employees and competitors creates a whole new level of marketing interaction that 
could be modeled and examined using spatial ABMs. 

 Of course, an issue that needs to be considered within the context of pedestrian 
modeling, especially if complexities such as window displays and sampling are to 
be included, is the lack of well-validated models at this level of detail. Though mod-
els of how pedestrians move have become more and more sophisticated, there cur-
rently is little or no research in to how these more goal-oriented pedestrian models 
would be affected by distractions and marketing interventions. This presents a num-
ber of interesting open research questions, and as data from closed-circuit TVs 
(Batty  2003  )  becomes more and more prevalent, it may be possible to build more 
sophisticated models of this complex consumer behavior. In the end, it would be 
useful to have a general model of pedestrian movement that could then be used to 
investigate a wide-range of questions from retail location placement to the effect of 
foot traffi c on institutional environment design to questions of public safety 
(Kerridge et al.  2001  ) , and steps have been taken in the past to create such models 
(Schelhorn et al.  1999  ) , but a fully realized model that incorporates all of the con-
cerns mentioned above has yet to be developed.  

    22.3.2   Retail Consumer Modeling 

 In general, the design of consumer retail environments (Babin and Darden  1995  )  and 
servicescapes, i.e., the built environment within which services operate (Bitner  1992  ) , 
is critical to profi tability and customer satisfaction. Despite the high impact of these 
decisions on business success, most guidelines about how to construct environments 
are based upon trial and error and past experience. There are very few ways to test 
out a design ahead of time and to determine if the physical layout of a retail environ-
ment will achieve the goals that management wants to achieve. Spatial ABMs pro-
vide a unique way to examine these environments before they are ever built and to 
try out multiple different layouts and investigate how well they perform. Of course 
such models require a sophisticated model of consumer movement within the space, 
and since each space is slightly different and that consumer interactions will vary 
from space to space, e.g., consumers act differently and have different goals in a bar 
than they do in a supermarket, this task can be quite diffi cult. 

 Though there has been some past work at examining in-store movement by con-
sumers (Zacharias  2000 ,  2001 ; Zacharias et al.  2005  ) , recent advances in the avail-
ability of RFID level data (Larson et al.  2005  )  (see Fig.  22.4  for an illustration of the 
kind of data obtainable from RFID tags), closed circuit television feeds (Batty  2003  )  
and other technologies, have made it easier to construct and validate such models. 
One question that remains is at what level of detail to model the pedestrian move-
ment. It is possible that every pedestrian entering a store could navigate in very 
different ways, but there do appear to be regular patterns of behavior, and research 
suggests that it may be possible to model consumer behavior within a shopping 
environment using a few simple rules (Zacharias et al.  2005  ) .  
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 One way to validate these models, would be to use the “virtual” models in 
 combination with “real” data. For instance, Red Dot Square 7  is a company that cre-
ates photorealistic interactive retail “virtual” worlds, brings “real” consumers in to 
them and then examines what they do in order to provide advice to retailers about 
“real” store layouts. However, these real consumer experiments are very expensive. 
If there was a sophisticated enough model of consumer-level behavior either based 
on Red Dot Square’s data or other data sources, then an ABM could be used to 
evaluate thousands of different store layouts using virtual consumers. After a smaller 
selection of store layouts were chosen from this larger set then they could be evalu-
ated using either Red Dot Square’s virtual environment and real consumers, or 
changes could actually be made in-store for an evaluative period. 

 Though it has been known for a long time that stores can increase sales through 
in-store marketing efforts (Chevalier  1975  )  and that the provision of different kinds 
of pricing comparisons can affect consumer information processing (Zeithaml  1982  ) , 
these results could be built upon to create more sophisticated in-store retail ABMs. 
Moreover, applications of spatial ABMs to retail locations could even get down to the 
level of evaluating the effectiveness of displays with respect to the position and quan-
tity of shelf-facings, i.e., how goods are actually laid out on a shelf. Though even 
simple models along these lines may garner new insights in to in-store marketing, 

  Fig. 22.4    RFID (PathTracker { ©} ) data from 20 random customers (Reprinted from Jeffrey et al. 
(2005), Copyright (2005), with permission from Elsevier)       

   7     http://www.reddotsquare.com      
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more advanced models could also be useful. For instant, recent research indicates that 
placing a product in an area of higher attention is sometimes not enough to drive addi-
tional purchases and that such models should include information about out-of-store 
marketing efforts and brand awareness (Chandon et al.  2009  ) .  

    22.3.3   Other Micro-Level Applications 

 There are many other interesting questions within the management science context 
that could be examined using micro-level spatial ABMs. For instance, in the same 
way that diffusion of information is interesting at the macro-level, it is also interest-
ing at the micro-level. Specifi cally, how does information diffuse within an organi-
zational workspace? Clearly social networks and the chain of command play a role 
in organizational information diffusion (Cross et al.  2002  ) , but physical proximity 
also plays a role. After all, the water cooler was the center of gossip for years not 
because individuals were socially tied to each other, but rather because the water 
cooler served as a central point where individuals interacted and exchanged infor-
mation. To fully understand how information diffuses through an organization, it is 
necessary to take spatial process of movement with in the organizational space in to 
account. Models of this process could also be used to explore the effect of virtual-
ization of organizations (Barrett et al.  2007  ) . 

 Similarly, there has been a recent trend toward the development of “third” places, 
i.e., spaces that are neither home nor work, such as coffee bars and innovation coop-
eratives (Rosenbaum  2006  ) . Clearly these new interaction environments will dra-
matically effect the diffusion of information both within an organization and across 
organizations as employees working in these third spaces interact with employees 
and entrepreneurs working in other organizations and industries. Potential research 
areas to consider include whether these spaces are useful for organizations, and how 
to design them to foster interactions at an appropriate level to reach some goal.   

    22.4   Discussion and Conclusion 

 The goal of this chapter has been to provide some examples of how agent-based 
models and spatial modeling can be combined to provide interesting insights in to 
business and management science applications. Throughout this chapter we have 
discussed not only applications of spatial ABM to business and management, but 
important issues that must be considered during this process. At the macro-level 
these issues usually revolve around what level of detail to create the model at, and 
whether it is better to create a suite of complementary models. At the micro-level 
there are fundamentally interesting issues that concern data integration, and to some 
extent how much fi delity to include in a model of pedestrian movement. As spatial 
ABMs continue to evolve, new issues and questions will arise, and new solutions 
and best practices to these already extant questions will be developed. 
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 So far these models have been described as taking place at either the micro- or 
macro-level, and this distinction was drawn because the issues that must be exam-
ined at each level are often very different from each other. This distinction seems 
relatively valid since it is often possible to separate out micro- from macro-effects. 
For instance, it might be hypothesized that individuals who enter a grocery store 
may shop differently depending on where they had come from Herrmann and 
Beik  (  1968  ) , but its not clear why a micro-level model would not be suffi cient since 
the agents entering the store could be given different synthetic or empirically-derived 
histories. Alternatively if a store’s contents varied based upon where individuals 
came from its not clear why this decision would also have to model the layout of the 
store at the micro-level. This is not to say that there will never be a need to blur this 
demarcation between scale boundaries but in many cases it may be more useful to 
build two complementary models instead. 

 In order to fully realize many of the goals and projects envisioned in this chapter, 
one aspect that need to be addressed is suitable tool development. As mentioned 
above, the integration of GIS tools into most of the modern ABM platforms has 
been a substantial assistance in terms of developing more integrated models, but 
unfortunately this integration is still far from seamless and requires effort on the part 
of the model developer. One possible approach that has been discussed elsewhere is 
a middleware approach (Brown et al.  2005b  )  that would allow a tighter integration 
between GIS and ABM and allow for a potentially platform independent model to 
be developed. Such an approach would also have the useful benefi t of creating a 
somewhat more abstract language for talking about pattern (GIS) and process 
(ABM) in the same conceptual framework, a task which is currently hindered by the 
lack of a common language across these two methodologies. Since many phenom-
ena of interest to modern business researchers and management science scholars 
contain both spatial and temporal elements, such a conceptual language would be 
very useful. 

 Of course such tools would be even more useful if they are teachable and explain-
able to management students. ABM has been used for management education in the 
past by combining it with participatory modeling (a version of ABM where some 
agents are played by actual people). The classic example is the “beer game” in sup-
ply chain management education (Sterman  1992  ) , where managers control part of a 
supply chain and learn about how time lags affect supply chain operations. Though 
the beer game is relatively aspatial, spatial ABMs have also been combined with 
participatory simulation in other contexts to help determine local land-use policies 
(Castella et al.  2005 ; D’Aquino et al.  2003  ) , and it seems clear that such techniques 
could also be employed in management science. 

 One of the main benefi ts of ABM in general is that the model representation is 
easily explainable to a non-technical stakeholder. As a result, spatial ABMs have 
the potential to be very convincing in business applications because of the relatively 
close relationship between their ontology and the ontology of the real business 
world. It seems like a natural combination then to bring together spatial ABMs with 
participatory modeling to develop sophisticated models of business applications 
and situations. The simulation could even use rules for the non-human agents that 
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were inferred from previous observations of human behavior, allowing management 
students to compete again “human-trained” computational agents. And why stop 
there? The computational agents could even observe human participant behavior in 
real-time and adapt their strategies in response. Clearly, there are many possibilities 
and research opportunities in the application of spatial ABMs to business and man-
agement science education and research.      
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  Abstract   Agent-Based Modelling (ABM) is a relatively new spatial modelling 
technique. The ability of ABM to simulate a real world system, the UK education 
market, is explored in this chapter. It is shown how a simple ABM incorporating 
common sense rules can provide acceptable results with over 60% of pupils being 
allocated to the correct schools and 75% of schools containing at least 50% of 
correct pupils when compared to observed data. The exploration outlined here 
highlights that the education has a good deal to offer researchers in the ABM fi eld. 
Possibly more importantly, the real potential of ABM as a technique for simulating 
real world systems and delivering appreciable benefi ts to the general population is 
demonstrated.      

    23.1   Introduction 

 The world is a complex place; the systems that make up the environment in which 
we live are both diverse and interactive. In a social context, the complexities of 
interactions between different peoples’ lives have been observed and explored by 
fi lmmakers for many years, a good example being ‘Love Actually’. In this fi lm all 
of the ongoing sub-stories are interwoven by a network of friends, family and work 
colleagues, many of whom are unaware of many of the other characters in the fi lm; 
yet the decisions they make have wide ranging impacts. A global story emerges 
from the micro, ‘individual’, level interactions. 

 However, in the real world micro level interactions produce emergent level 
macro behaviours or events. A real world example of this would be the protests 
observed in Tunisia, Egypt and Jordan in February–March 2011. These protests 
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start with interactions at a micro level and result in events that make news headlines 
throughout the world. Agent-Based Modelling (ABM) is a relatively new modelling 
technique used to mimic micro scale interactions to observe what the macro level 
outcomes are (see Crooks and Heppenstall  2012  for an overview). To date many 
ABM applications have been theoretical, most notably SugarScape (Epstein and 
Axtell  1996  )  and discussions by authors such as O’Sullivan and Haklay ( 2000 ) have 
asked questions as whether the ‘world really is agent based’? Despite the questions 
raised as to whether ABM can actually represent the real world, some ABMs are 
now starting to have real world applications, such as the crowd control applications 
for the Notting Hill Carnival (Batty et al.  2003  ) , modelling infectious diseases 
(Epstein  2009  ), petrol price modelling (Heppenstall et al.  2006  )  or more recently 
crime simulation (Malleson et al. 2010). The world is made up of many different 
discrete objects that interact given a particular set of rules or laws, governments 
interact, companies interact, clubs and social groups interact, individual people 
interact, chemicals interact even down to the particle physics world of protons, 
electrons and quarks etc. all interact. Therefore, the question shouldn’t be whether 
the world is Agent-Based, but whether we have the computational power and ability 
to model it. All things considered, it comes down to fi nding a suitable scale at which 
to model interactions where the processing time and complexity can be balanced 
against gathering fruitful and useful results. 

 This chapter will explore the application of ABM to the simulation of events in 
a real world system, the education system in England (UK). Section  23.2  will present 
contextual background with Sect.  23.3  presenting the case for the importance of 
education planning. The model is presented in Sect.  23.5  with results discussed in 
Sect.  23.6  and concluding thoughts given in Sect.  23.7 .  

    23.2   A Brief History of the English Education System 

 Over the past one hundred years education policy and provision has evolved 
signifi cantly. There have been periods of unprecedented development, but also periods 
of unrivalled contradiction and controversy. As the education sector developed in the 
early part of the twentieth century, momentum gathered. This momentum carried 
into a period of substantial development leading to reform and the introduction of 
the 1944 Education Act. This was widely recognised as the Act that “laid the foun-
dation for the modern education system” (Statham et al.  1991 , p. 42). It abolished 
the Board of Education and replaced it with the Ministry of Education, with the 
Minister having a much more proactive role in education policy formation. Robert 
Butler became the fi rst Minister of Education and was the main proponent of the 
Act spearheading it through Parliament in controversial circumstances. “[I]t was 
overseen by a Conservative MP (Butler), taking advice from Labour MPs ([James] 
Chuter Ede, [Ernest] Bevin and [Clement] Attlee amongst others), and with a civil 
service department in agreement that the time for reform was at hand. It was passed 
by a Coalition government in direct opposition to the Prime Minister [Winston 
Churchhill]” (Langley  1997 , p. 38). 
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 These sweeping reforms and the distinctive shift of power away from the schools 
and towards the Local Education Authorities (LEAs) have been described as “the 
single most important piece of legislation to be passed between 1939 and 1945.” 
(Chitty  2004 , p. 18). However, omissions from the Act would prove troublesome 
over the next 44 years. Firstly, the provision of religious instruction for primary and 
secondary schools was the only curriculum requirement of the 1944 Act, allowing 
schools to develop individual curricula. A second major omission that would 
prove a particular point of contention was the lack of any specifi c framework for 
the structure of new compulsory secondary schools. Would the system be a tripartite 
system as recommended in the Spen Report (Lawrence  1992  )  or a comprehensive 
system favoured by the Hadow Report (Armytage  1970  ) ? This question would 
prove inhibiting to the smooth implementation and running of the secondary educa-
tion system until the next round of major reforms in 1988. In the following years 
political polarisation exploited the gaps in the 1944 ‘Butler’ Act and left the 
education sector with a legacy of school types, many still in existence today and 
each having different characteristics such as admission policies. 

 In 1988 the Education Reform Act (ERA) opened up the education market place 
and closed up the loop holes in the ‘Butler’ Act. This piece of legislation forms the 
cornerstone of the education system in operation today. It laid the groundwork for 
information collection, competition between schools based on performance and 
school inspections. Subsequent, legislation has built on provisions in the 1988 ERA. 
Today schools operate in a quasi-competitive market, with competition between 
schools for pupils who in turn have a choice of the school they wish to attend. 
The ubiquity of the educational product supplied by schools has been diversifi ed 
after Key Stage 3, with the introduction of specialist schools that focus on particular 
vocational themes.  

    23.3   Why Is Education Planning Important? 

 Recent demographic trends have provided education planners with considerable 
challenges. For the fi rst time since signifi cant development of the education sector 
was undertaken, declining pupil numbers have meant that school rationalisation has 
been required. Surplus school places are recommended to be no more than 10% within 
an LEA and no more than 25% in any single institution (Audit Commission  2006  )  
with current fi scal pressures underlining the need to keep surplus school places to a 
minimum while ensuring educational the requirements of the population are met. 
The challenge to ensure that school places are available at the institutions preferred 
by pupils and parents has fallen to the LEAs as the ‘commissioners’ of education. 
Over the preceding century, control of the education sector has been shifted from 
schools to the LEAs, and then recently, from the LEAs up to Government, with the 
setting of the National Curriculum, and back down to schools, with the advent of 
‘Trust schools’. LEAs sit in the middle layer with a great deal of responsibility for 
the planning of education provision, and ensuring that education is supplied fairly 
for all sections of society, but with much reduced control over their local area. 
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 Accurate school roll forecasting has become increasingly important for education 
planning professionals because of the dynamic nature of population demographics. 
The level and distribution of demand for education constantly change overtime as the 
pupil population either increases or decreases over space. It is not just population 
change that is demanding more sophisticated projection techniques, life style changes 
have altered the way that people operate in the spaces in which they live. The school 
run has become part of a multi-purpose journey which includes other functions, 
such as a journey to or from work plus, perhaps, a shopping trip (Pooley et al.  2005  ) . 
Therefore, family convenience infl uences school choice decisions. Additionally, 
concerns over child safety during their daily commute to school have become a 
signifi cant concern to parents when selecting a school for their children to attend 
(Valentine and McKendrick  1997  )  over and above the conventional attractiveness 
factors, such as teaching quality, attainment levels and proximity to home. All of 
these factors create a more complicated environment in which education planners 
seek to keep the supply of education commensurate with demand. 

 Information in the education sector has become more abundant in recent years. 
The introduction of the Pupil Level Annual School Census (PLASC) dataset and its 
incorporation into a National Pupil Database (NPD) in 2001/2002 made detailed 
pupil level information available to education planners. The information contained in 
the NPD, and in particular PLASC, is not only detailed but also longitudinal, providing 
a resource of immense value to LAs and education planners. Unfortunately, projection 
methods used by most LAs have not refl ected the changes in the education market or 
the increased availability of information in this sector. The projection method of choice 
for most education planners is still a basic cohort progression model where the under-
lying demand is based on either the previous years demand directly or on a weighted 
average of a number of previous years demand. In the 1970s the cohort progression 
model was adopted into the education planning process (Simpson and Lancaster  1987  ) , 
at a time when the education sector was still experiencing considerable expansion. 
However, the cohort progression model, although easy to understand and apply, lacks 
the sophistication required to respond to rapidly changing pupil populations and in 
turn school network restructuring tasks required in the modern education market. 

 In recent years, there has been a growing interest in various aspects of the 
education sector by geographers. Social and ethnic segregation in the education 
sector has been the focus of a good deal of research including notable texts by 
Gibson and Asthana  (  2000 b), Gorard  (  1999  ) , Gorard and Fitz  (  1998 a), Goldstein 
and Noden  (  2003  ) , Harris et al.  (  2007  )  and Johnston et al.  (  2006  ) . Other aspects of 
academic investigation into the education sector have examined the effects of school 
performance on local house prices (Cheshire and Sheppard  2004 ; Leech and Campos 
 2003 ; Croft  2004  ) , links between school roll size and academic achievement by 
pupils (Bradley and Taylor  1998  ) , competition and performance between schools 
and the resulting effect of parental choice after the 1988 ERA (Gereluk  2005 ; Pooley 
et al.  2005 ; Bradford  1990,   1991  ) . However, there has been little academic research 
into pupil daily commuting patterns and the journey to school. Pupil commuting 
patterns do result from the school selection process. Equally, school selection is infl u-
enced by geographical factors, such as school proximity and, more importantly 
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how connected a school and the pupil’s home location are. Therefore, school 
selection behaviour and pupil commuting patterns are inter-connected. 

 The planning demands of a dynamic population, a competitive education system 
with open parental choice and Government policy changes, requires that education 
planning professionals develop more sophisticated and effective methods of assessing 
and supporting the planning decisions they make. A Spatial Education Model 
framework consisting of a number of layered spatial interaction models simulating 
pupil movements interacting with schools represented as agents provides a series of 
promising results and provides a potential resolution to the current lack of a sophis-
ticated planning tool for use in the education sector (Harland and Stillwell  2010  ) . 
However, frameworks such as these do not handle individual pupil characteristics 
well. For example, single sex schools are not easily serviced when the demand (pupils) 
side of the model is serviced by an aggregate model such as a spatial interaction 
model. This type of issue seems ideally suited to the application of an ABM and 
with the abundance of individual level information available within the education 
sector the model can be based on and measured against a real world social system.  

    23.4   Data in the Education Sector 

 The National Pupil Database (NPD) is a relatively new dataset created in 2002 and 
contains individual pupil records for all state educated school children (Ewens  2005  ) . 
It is updated on an annual basis with additions in excess of eight million individual 
pupil records collected by each Local Authority (LA) in England and Wales and is 
maintained by the Department for Education (DfE formerly known as the Department 
for Children Schools and Families (DCSF)) (Jones and Elias  2006  ) . Access to the 
NPD has recently been provided through a central gateway funded jointly by the DfE 
and the Economic and Social Research Council (ESRC) and managed by the Centre 
for Market and Public Organisation (CMPO) at the University of Bristol where the 
PLASC/NPD User Group (PLUG) is based (Burgess et al.  2006  ) . The NPD is stored 
in a relational database structure with several different datasets capable of being 
linked together using either a Unique Pupil Number (UPN) or a unique establishment 
identifi cation number to allow for both temporal and cross-sectional analysis, creat-
ing a powerful information resource for policy formulation (Jones and Elias  2006  ) . 

 Completion of the Pupil Level Annual School Census (PLASC) is statutory for all 
state maintained primary, secondary and special schools under section 537A of the 
Education Act 1996 (Jones and Elias  2006  ) . The DfE began collection of the data in 
2002 and it now forms the cornerstone of the NPD. Individual schools are required to 
submit a PLASC return to the LA on the third Thursday of January each year. The 
return consists of entries for every pupil on roll with data such as home postcode, 
ethnicity, Special Education Need (SEN) status and Free School Meals (FSM) eligi-
bility, plus information relating to the school and its staff (for more detail on the com-
plete contents of the PLASC dataset and the structure of the NPD see Harland and 
Stillwell  2007  ) . In actual fact, the data collection of pupil information is no longer 
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referred to as PLASC because a tri-annual data collection procedure called the School 
Census with a modular structure was introduced in 2006 for secondary schools and in 
2007 for primary schools (Department for Education and Skills  2006b  ) . One of the 
three data collections is still carried out in January, with two further collections on the 
third Thursday in May and the third Thursday in September augmenting the January 
collection (Department for Education and Skills  2006a  ) . The tri-annual data collec-
tions coincide with the three school terms and enables more effective tracking of pupil 
migrations, moves between homes and moves between schools, throughout the year. 

 Ewens  (  2005 , p. 4) comments that “the National Pupil Dataset is amongst the 
most important national innovations in data collection in the recent past. Its potential 
is considerable and the scope for development is also considerable.” These comments 
made by Ewens are true in more ways than one. The collection of pupil data is critical 
for the evaluation education policy and progression in raising the standards of 
education provision. Moreover, the collection of such datasets assists education 
planners in their efforts to align the supply of education with demand. A relatively 
self contained system, such as education, with a rich supply of complete real world 
data, where a great deal is known about the individual, is surely a candidate to 
construct an ABM and test how applicable this relatively new modelling paradigm 
is at simulating real world situations.  

    23.5   Model Construction 

    23.5.1   Model Structure 

 The ABM applied here is constructed using the Java object orientated programming 
language and built into the Flexible Modelling Framework developed at the University 
of Leeds to assist in the application of social science modelling studies. Figure  23.1  
below shows the basic design of the ABM.  

 The top level class ‘Agent’ is an abstract class that contains common attributes that 
all agents within the model will require, such as location coordinates. The two classes 

Agent 

School Pupil 

ModelRun 

  Fig. 23.1    Basic design diagram of the education ABM       
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below ‘Agent’, ‘School’ and ‘Pupil’, inherit from ‘Agent’ and so contain the common 
attributes, but they also contain attributes specifi c to the real world subjects for which 
they are a software representation. ‘School’ contains attributes such as whether it is 
a single sex institution, the maximum number of admissions that can be accepted 
and performance information such as the average point score for pupils examined 
while attending that institution. ‘Pupil’ contains information relevant to pupils such 
as their gender, whether they are eligible to FSM, ethnicity and a derived Catholic 
religion attribute discussed in more detail below. 

 When the model runs, the ‘ModelRun’ object is invoked and a collection of pupil 
agents is created and a collection of school agents are created. Once created the 
pupil agents are iterated over and according to the implemented rules (outlined in 
more detail below) they select their preferred school, it is worth noting that all pupil 
agents have perfect knowledge of all schools agents. Once all pupil agents have 
expressed a preference of school agent the school agents are iterated over and they 
accept pupil agents that have expressed an interest in the school agent according 
to the implemented rules (outlined in more detail below). This process is repeated 
three times or until all pupil agents have be accepted by a school agent. If at the end of 
three iterations of the complete model some pupil agents have not been accepted by 
school agents they are allocated to the closest school agent which is not full and 
offers education suitable to the pupil agent. 

 The reason the model has been constructed in this particular way is to mimic as 
closely as possible the pupil / school application / admissions process observed in 
the study area. Certain types of school can choose to apply an alternative admissions 
policy to that of the LA, so long as they are within the mandatory requirements of 
the ‘School Admissions Code’ (Department for Education and Skills  2007  ) . In the 
Leeds study area the main alternative admissions policy is implemented by Voluntary 
Aided schools and incorporates some aspect of prioritising by religious denomi-
nation. However, the majority of schools in the study area apply the overarching 
admissions policy for the area which is:

   “Priority 1 –• 

   A.    Children with a statement of Special Education Need    
 B.    Any child deemed by Education Leeds to benefi t signifi cantly by admission 

to the preferred school.      

  Priority 2 – Siblings  • 
  Priority 3 –• 

   A.    All children are offered a place if there are enough places.  
   B.    In cases of oversubscription places are offered to nearest children measured 

as a straight line distance with priority to -

   1.    Preference of nearest Leeds school to home address.  
   2.    Preference school other than nearest Leeds school to the home address.      

   C.    If parental preferences cannot be met by these criteria then a place is guaran-
teed at the nearest community school.” (Education Leeds  2004 , p. 2–3).         
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    23.5.2   Model Rules 

 As demonstrated above, the model structure is a good approximation of the real 
world school admissions process in the study area. Further rules are implemented at 
both the ‘School’ agent and ‘Pupil’ agent levels to defi ne the model more realistically. 
Each of these rules is introduced progressively so that the impact of each rule can be 
analysed. These rules are shown in Table  23.1 .  

 The fi rst model is a baseline model which assigns pupil agents to school agents 
randomly. This model can be used to estimate how much of the agreement between 
the model results and observations in the data can be explained by random chance 
allocation. The following two rules are applied to the school agent to simulate indi-
vidual school characteristics more closely. The fi rst of these, rule 2, simulates the 
school admissions policy, priority 3, by assigning pupil agents to their closest school 
agent. Rule 3 introduces the concept of school agents having a fi nite capacity to 
accept education agents, as in real life schools can only admit a particular number 
of pupils which is dictated by complex calculations taking into consideration school 
characteristics as diverse as the amount of common space in the school, area of 
teaching space and number of teachers. 

 The following two rules are applied to both school agent and pupil agent. Rule 4 
ensures that single sex school agents will only accept applications from pupil agents 
of the correct gender. This rule is also applied so that pupils of will make applications 
to single sex schools if they accept applications from pupils of their own gender. 
Rule 5 is similar in application, however, rather than a strict yes / no rule where a 
male pupil agent will not apply to an all female school agent, and would not be 
successful if they did, pupil agents who attended a catholic primary school will seek 
out a catholic school agent and the catholic school agent will favour applications 
from a catholic pupil agent. 

 How is the likelihood of a pupil agent seeking out a catholic school agent arrived 
at, and how is the probability of a school agent accepting the application of a 
non-catholic pupil agent over a catholic school agent calculated? And indeed why have 
this rule in the fi rst place? The answer lies in the previous research and empirical 
analysis. Religion is, quite rightly, considered to be an important school choice 
driver by Pooley et al.  (  2005  ) . Schools can be selective on religious grounds and, in 
2005/2006, there were eight selective primary schools in Leeds having a ‘SEL4’ 

   Table 23.1    Order of rules applied to the model   

 Rule #  Rule 

 1  Random selection 
 2  Closest school 
 3  Admissions limits 
 4  Single sex schools 
 5  Catholic schools 
 6  Network distances 
 7  Affl uence with school performance 
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code in the PLASC dataset, one Jewish, three Church of England and four Catholic, 
and two selective secondary schools, one Church of England and one Catholic. 
However, there are many more schools that prioritise a particular religion, but are 
not shown to have a selective admissions policy in the PLASC dataset (for detailed 
school admissions policies for 2009/2010 see Education Leeds  (  2008  ) ). It follows 
that parents and pupils of a particular religious denomination will be more inclined to 
select a school that prioritises their religion and less inclined to select a school that 
is orientated to an alternative religion. The problem is that the religion of school 
pupils cannot be identifi ed. PLASC returns contain information on the ethnic origin 
of each pupil but there is no information on the religious denomination of pupils. 

 However, during the transfer between primary and secondary school, it is 
possible to calculate the proportions of children progressing between different 
selective schools, or schools identifi ed to be of a specifi c religious denomination. 
Of the 8,141 pupils moving between primary and secondary schools in Leeds in 
2005/2006, 83% of those moving from primary schools identifi ed as Catholic went 
to Catholic secondary schools, and 90% of the intake of all secondary schools 
identifi ed as Catholic in this year originated from Catholic primary schools. These 
statistics highlight the importance of religion, especially Catholicism, in school 
selection by parents and pupils, and present an argument for between school moves 
of this type to have a rule associated when modelling is undertaken. However, of 
the 8,141 pupils moving between primary and secondary schools only 7.5% were 
Catholic. Although, other religious denominations are prevalent in the Leeds study 
area, Catholic pupils are the most identifi able, and also display the most selective 
behaviour. For example, the one Leeds Church of England secondary school shown to 
be selective in the PLASC dataset in 2005/2006 could only have 7.5% of its intake 
identifi ed as originating from Church of England primary schools. In contrast, the 
one Catholic secondary school shown to be selective in the PLASC dataset had an 
intake consisting of 86% of pupils originating from Catholic primary schools. 
Therefore, despite religion clearly being an important factor in school choice, the 
extent to which it can be used in modelling the interactions between pupils and 
schools is limited to prominent religious denominations that can be identifi ed, such 
as Catholic pupils in the Leeds study area. Rule 5 refl ects the empirical analysis and 
Catholic pupil agents will actively prefer a school if it is Catholic 80% of the time 
and any school 20% of the time, with the school accepting Catholic pupil agent 
applications 85% of the time. 

 Rule 6 considers the use of network distances rather than Euclidean distances 
when pupil agents select schools agents. This again is further added realism to the 
model. The infl uence of school accessibility and the presence of physical barriers on 
school selection are considered by both Pooley et al.  (  2005  )  and Parsons et al. 
 (  2000  ) , but quantifying the presence of a physical barrier is not easily achieved. 
However, the signifi cant effect of physical barriers on primary school territories has 
been identifi ed by Harland  (  2008  ) , and although diffi cult to quantify, they must be 
considered. One method of doing this is to calculate the distance to school for pupils 
using the road network rather than Euclidean distance. Although the use of network 
distance calculations does provide a method for introducing connectivity and 
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incorporating physical barriers to some extent, it also introduces further issues. 
Pupils walking to school do not necessarily follow road networks, making use of 
short cuts between roads and crossing greenfi eld sites such as parks. Therefore, the 
use of road networks in analysis and modelling could be benefi cial for some social 
groups, but for others it could prove detrimental. 

 The fi nal rule, rule 7, combines the assessment of school performance by pupil 
agents with a proxy for affl uence. As shown in Harland  (  2008  ) , the use of school 
performance in school selection by pupils and their families is related to social 
status and the education level of the parents. In order to refl ect this observation in 
the model a proxy for social status or affl uence is used. When this proxy is of a type 
that would indicate a pupil agent that would consider school performance, a density 
function, incorporating both the distance to the school agent and the performance of 
the school agent is applied to fi nd the pupil agents preferred school agent. In these 
circumstances this rule overrides rule 2, where the pupil agent type is not one that 
would fi nd school performance important rule 2 persists.   

    23.6   Results 

 In order to compare the affect of the different rules on the model outcomes, each 
rule has been applied and the model executed. The model results are then compared 
to the observed data, and a percentage of pupils that end up attending the correct 
school is calculated, a simple but accurate effectiveness measure. Table  23.2  below 
shows the results for each model run. It is important to note that, with the exception 
of rule 1, each rule builds on the next, that is to say that each model builds on the 
previous one. To exemplify this, if the model run with rule 5 is considered, this model 
run incorporates rule 2, 3, 4 and 5. The baseline model, rule 1, simply assigns pupil 
agents to randomly selected school agents. This model is stochastic, the results will 
vary with each run, therefore the model is run 1,000 times and the percentage result 
show the average result from all run results. The model runs for rules 2, 3 and 4 are 
deterministic, there is no stochastic element and as such the results will be exactly the 
same with each run so long as the input data remains constants. Rule 5 introduces 
stochastic elements to the model and as such the results are the average over 1,000 
model runs.  

   Table 23.2    Progressive model results   

 Rule #  Rule  % pupils correct 

 1  Random selection  2.75 
 2  Closest school  50.59 
 3  Admissions limits  49.98 
 4  Single sex schools  50.19 
 5  Catholic schools  55.43 
 6  Network distances  54.26 
 7  Affl uence with school performance  60.06 
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 It can be seen that the results of assigning the pupil agents to their closest school 
agent using a Euclidean distance, rule 2, is a vast improvement over the baseline 
random allocation model with over 50% of pupil agents being admitted to the correct 
school agent. When admission limits are applied to the school agents in rule 3 the 
percentage of correct admissions drops by a little over half a percent. The introduc-
tion of single gender institutions in rule 4 improves the model fi t slightly but a larger 
improvement is gained from the introductions of Catholic school and pupil agents in 
rule 5. Applying network distances in Rule 6 decreases the overall fi t of the model, 
which is consistent with research performed by Harland  (  2008  )  demonstrating that 
distance was a more ubiquitous consideration in primary education with impacts 
limited to less affl uent families in secondary education. The introduction of rule 7 
signifi cantly improves the model fi t to over 60%. 

 Examining each model run results from this high level vantage point shows a 
steady and gradual improvement as rules are introduced. But is this improvement 
homogeneous throughout the model? Table  23.3  shows the lowest, highest and 
difference between the percentages of pupil agents admitted to the correct school 
agents. It is clear that the relatively simple model, rule 3, which allocates pupils 
agents to the closest school and applies a school admission limit presents as the most 
consistent model. It has the highest low value, however it also has the lowest high 
value. This would suggest consistency within the model. Considered in context with 
the overall percentage correct value, which is the lowest of all model combinations 
with the exception of the baseline random selection model, this suggests that the 
model is relatively consistent but also relatively consistently incorrect.  

 To examine the internal distribution of pupil agents admitted to the correct 
school agents the percentage of correctly assigned pupil agents in each school 
agent is banded into fi ve groups 0–20%, 20–40%, 40–60%, 60–80% and 80–100%. 
The counts of the number of school agents falling within each band are displayed in 
Fig.  23.2  below. The results summarised in Fig.  23.2  show that a high number of 
school agents have quite low percentages of pupils agents correctly assigned in 
model ‘2’. This situation improves in models ‘3’ and ‘4’ and then again in models 
‘5’ and ‘6’. However, it is model ‘7’ that shows a distinct shift to the higher percentage 
bands demonstrating that this model contains the greatest proportion of school agents 
with correctly assigned pupil agents. In fact, model ‘7’ has an average of 77.5% of 
school agents admitting at least 50% of the correct pupil agents and an average of 
25% of school agents admitting at least 80% of the correct pupil agents.  

 Figure  23.3  shows the spatial distribution of average percentage of correctly 
allocated pupil agents to school agents for model confi guration ‘7’. Most of the 
school agents with low percentages of correctly assigned pupil agents are contained 

   Table 23.3    Spread of correct results (%)   

 2  3  4  5  6  7 

 Low   3.85  10.14   0.00   0.00   0.00   1.93 
 High  84.06  82.55  83.49  83.18  82.87  88.79 
 Difference  80.21  72.41  83.49  83.18  82.87  86.86 
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in the inner urban area of the city, a traditionally less affl uent area with a relatively 
high density of secondary schools. Within this area of the city there is a wide range 
of school performance with a little over 3.5 km distance between the lowest and 
highest performing schools in the city. However, we know from education research 
that less affl uent pupil and their families are less likely to consider performance 
of a school when making school selection. Financial considerations are possibly 

  Fig. 23.2    Percentage of pupil agents admitted to correct school agents by model rule       

  Fig. 23.3    Percentage of pupil agents admitted to correct school agents for model confi guration ‘7’       
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more pressing with the option of pupils catching public transport to travel greater 
distances to attend a better performing school is potentially not fi nancially practical. 
Therefore it follows that more less affl uent pupils are likely to attend the closest 
school to their home location. The pattern observed in Fig.  23.3  with many urban 
schools not attracting the correct pupil agents is potentially a manifestation of the 
limitations associated with the proxy used for social status, Free School Meals 
(FSM) eligibility. Social stratifi cation is more complex than can be assessed from a 
yes or no answer to whether a child is eligible for aid with school meals. Variables 
such as, but not limited to, parental education levels, occupation type, access to private 
transport and tenure all have an impact on the social experience and opportunities 
available to a child. There is also the possibility that changes in the benefi t system 
or to the criteria for assessing FSM eligibility can change a pupil’s eligibility status 
without the child’s living circumstances altering (Burgess et al.  2006  ) . Furthermore, 
if a family is eligible for, but does not claim, certain state benefi ts because of either 
pride or ignorance to their eligibility, this will infl uence a pupil’s eligibility for FSM. 
It is therefore highly likely that pupil agents representing only the very poorest 
pupils are identifi ed using this proxy for social status and the resulting pattern of 
under representation of correctly allocated pupil agents in the inner city area is a 
facet of this limitation.  

 Another limitation with the use of FSM as a proxy for social status is that there 
is no way to identify the opposite end of the social spectrum, the most affl uent. 
A process of indirect selection which is commonly referred to in the education litera-
ture as ‘selection by mortgage’ (Leech and Campos  2003  ) , where more affl uent 
parents can afford to move closer to a perceived good school to increase the chances 
that their child will secure a place at their chosen school remains undetectable using 
only the FSM social status proxy. There is a consensus in previous research, both in 
the UK and internationally, that perceived good schools do infl uence house prices in 
the surrounding area. A study by Cheshire and Sheppard  (  2004  ) , found a premium 
of up to 34% or £42,550 on houses in close proximity to perceived good schools in 
Reading. Given the lack of affordable housing in Leeds, the same is likely to be 
true and makes for a substantive indirect selection criterion, insurmountable to less 
affl uent families. However, the decision making process that leads to a home move 
is complex and isolating one particular motivation for moving, such as moving 
closer to a desirable school, diffi cult. Although, the infl uence of perceived good 
schools on house prices cannot be ignored, unravelling the intricate motivations for 
residential movement is complicated, and is an area where a great deal more research 
is required in order to identify the effect more accurately. Such a selection criteria 
would manifest itself as more affl uent pupils attending the closest school to their 
home location, simply because family relocation would ensure that the ‘desirable’ 
school for the pupil would be the closest to home. 

 This means that the group of pupils where school performance criteria would be 
a large selection factor, from a modelling perspective, would be the mid-range social 
groups. A further limitation of the modelling structure utilised here, and likely to be 
refl ected in the results, is the ability of a pupil’s parents to ‘play the system’. Parents 
with higher education attainment are much more likely to have the confi dence and 
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experience to challenge school allocation procedures or read papers and literature 
where school performance information is published. Additionally, Parental education 
levels are suggested to be important infl uencing factors in the selection of a school 
and in the eventual performance of a child at school. Bradley and Taylor (2004) 
discovered strong correlations between education attainment of pupils and parental 
occupation variables with pupils having parents in professional occupations much 
more likely to achieve higher grades than those with parents in unskilled, semi-
skilled or manual work. Dustmann  (  2004  )  draws conclusions from his study on the 
infl uence of parental background on the educational track of children in Germany 
which supports this assertion. However, Dustmann notes that the relatively young 
age of 10 at which the educational track is chosen in Germany differentiates this 
study from education markets like the UK and USA where the track choice is taken 
much later. In contrast to these studies, Feinstein and Symons  (  1999  )  conclude that 
the most important infl uencing factor on pupils’ educational attainment is parental 
interest. However, they fi nd high correlation levels between parental educational level 
and parental interest and between social class and parental interest, suggesting that 
parental interest is, at least in part, a culmination of these two variables. The infl uence 
of parental status is not considered in this model structure whatsoever.  

    23.7   Conclusions 

 In the introduction we considered, with a somewhat unorthodox example from the 
fi lm industry, how micro level events manifest themselves into macro level stories / 
behaviour. This research has gone on to apply ABM technology to build a bottom-up 
model of the secondary education sector in Leeds. The application of this model is 
not conventional in terms of ABM literature. We have not been looking for emer-
gence per se but rather creating a simulation model capable of assigning the correct 
pupil agents to the correct school agents based on rules derived from both the 
overarching admissions policy published by the study area of Leeds and from 
the education research literature. Accurate spatial models are required to assist 
education planners in their effort to align investment with demand, this is particularly 
important in the current challenging fi nancial climate. It is necessary that any models 
produced are capable of being used to assess the impacts of alterations to school 
networks, neighbouring education authority provision or the pupil population size 
and complexion; to achieve this they fi rst have to be able to simulate the current 
situation in a robust and scalable manner. This research has demonstrated that ABM 
technology can be used in this type of application. Furthermore, it has shown how 
the implementation of simple common sense rules observed in the real world can 
be used to construct an Agent Based Simulation Model. Moreover, it has become 
apparent that ABM technology excels at representing pupil level attributes such as 
gender, religion or ethnicity and can equally well represent different school attributes 
such as whether a school has a religious admissions policy etc. These are issues that 
are diffi cult to address in traditional aggregate spatial models. 
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 However, this work has also shown that there are many complexities of the 
education system that are not well represented by this simplistic ABM. Mostly these 
complexities are centred around the decision making process for school selection 
and there are techniques that can be applied here that could bolster the models 
performance. The selection process that was employed here was a very simple prob-
abilistic function, however, much more complex behavioural simulation techniques 
are available, two such behavioural simulation models are Physical conditions, 
Emotional States, Cognitive Capabilities and Social Status, known as PECS (Urban 
 2000  )  and Beliefs, Desires and Intentions more commonly referred to as BDI 
(Rao and Georgeff  1995 ; Müller  1998  ) . Other areas where this simple model 
could be improved include the inclusion of more datasets to augment the rich PLASC 
data. School preference data is collected nationally by all education authorities 
and would prove an invaluable resource in developing a more accurate behavioural 
school selection model. The social status of the pupil agents could be derived from 
their location through the use of geodemographic databases and would surely be 
a much improved source of information over the single binary indicator of FSM 
eligibility. 

 The education sector is rich in data. However, it is not only rich in data but 
rich in individual level data. This is a sector that agent based modellers must move 
towards to refi ne their approach and transition ABM technology from a research 
tool into an applied modelling method with real world applications and quantifi able 
impacts with tangible benefits for the general population. A concerted effort to 
develop ABM technologies for the education sector can have no other effect than 
benefi cial. Benefi cial to agent based model researchers through pushing their 
methods further into the main stream; benefi cial to education planners by providing 
them with better insight; benefi cial to the pupil population because a better planned 
education system is a better understood education system which will provide better 
education at the point of need; benefi cial to central government, with better planning 
comes increased fi nancial effi ciency. In all ABM has an important role to play, none 
more so than in the education sector.      
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  Abstract   Simulation models are historically vital to epidemiology and have recently 
become more common in social sciences such as geography, where the aim is to 
understand underlying causes of population health inequalities. Traditionally the 
methods used to estimate health outcomes at the local level rely heavily on regression 
techniques and are restricted by data availability. One possible way forward is to 
take the best elements of current methods to model interactions between individuals 
at multiple scales, and extend such models to predict changes in health over time. 
Complex systems dynamics models and agent-based models in particular are one 
methodological improvement that would realise both of these goals.      

    24.1   Introduction 

 Little is known about population health at the local level. Although there is knowl-
edge of trends towards changing health behaviours and outcomes in the national 
population as a result of regular surveys, the focus on health at such a coarse scale 
can mask local variation. For instance, the UK is known to have very high rates of 
child and adult obesity as a nation, but there are likely to be areas where rates are far 
above or below the mean values (Moon et al.  2007  ) . Understanding how these rates 
might change and what might be driving the change among different populations in 
disparate areas are questions often asked by epidemiologists and health professionals. 
Social and spatial variation in health has remained a focus of health geography 
over the previous decades, particularly in wealthier nations as the gaps between 
the wealthy and poorer members of society has become clearer. Recent research 
addressed this issue in The Widening Gap, a book which clearly illustrated the 

    D.  M.   Smith   (*)
     Department of Geography, Queen Mary ,  University of London ,   London ,  UK    
e-mail:  d.smith@qmul.ac.uk   

    Chapter 24   
 Simulating Spatial Health Inequalities       

       Dianna   M.   Smith         



500 D.M. Smith

evolving geographies of health inequalities in Britain through extensive data analysis 
and detailed maps of health outcomes over time and space (Shaw et al.  1999  ) . 
This work and similar publications (Macintyre et al.  1993  )  have highlighted the 
importance of geography, and the potential infl uence of local environments, in under-
standing public health variation within a country. 

 The fascination with social and spatial variation in health has extended beyond the 
exploration of historical patterns to include present-day trends in non-contagious and 
infectious disease, health behaviours and the introduction of predictive models that aim 
to estimate how the spread of disease or health-related outcomes may adjust over time 
in relation to a changing population. The predictive aspect of many models is especially 
relevant in countries where health care is provided by the state rather than through 
individual health insurance schemes. If health professionals and policy makers have an 
idea of the current and future patterns in smoking, obesity, or cardiovascular disease, 
then they are better prepared to allocate resources to areas of greatest demand. 

 The utility of dynamic models is clear in the wake of recent infectious disease 
outbreaks across the world (H1N1, H5N1 fl u) as discussed in a recent article appearing 
in Nature (Epstein  2009  )  and later in this book (Simoes  2012  ) . Both authors show 
how agent-based models (ABMs) of the disease diffusion can be used to formulate 
policy response to current and future infectious disease outbreaks at the macro scale. 
This chapter will outline the development of public health models in epidemiology 
and the social sciences such as geography, and focus particularly on the microspatial, 
local-level element of any models. The current options available for static models, 
which estimate health characteristics of populations for one point in time, will fi rst 
be outlined to give readers an overview of the various techniques and algorithms used 
by researchers and health organisations to model public health. The chapter concludes 
with a discussion of the advancement towards dynamic models, which consider 
population change and observed predictors of disease/behaviours to estimate future 
public health trends. ABMs, already suggested by epidemiologists to be the best 
way forward in modelling public health (Auchincloss and Diez Roux  2008  ) , are one 
strong alternative to the traditional regression-based models.  

    24.2   Individual Level Models of Health Outcomes 

 Few geographical health-oriented models deal with individuals; most are prevalence 
models which look at aggregate local area population characteristics (from a popu-
lation census) to identify the likelihood of various health outcomes occurring at the 
population level. Often these models are simply identifying the population-level 
attributes which are known to infl uence the disease or health outcome of interest, for 
instance, the risk of type 2 diabetes increases with age so is more prevalent among 
retirees than university students. Implicitly all of the models outlined in the following 
section will consider the relationship between geographic place and health, the 
intersection of context and composition. This place/person relationship has become 
a central interest in the study of spatial inequalities; if you remove people from one 



50124 Simulating Spatial Health Inequalities

environment and place them in another, will it impact their health? How can these 
associations be identifi ed and quantifi ed? 

 Epidemiologists and geographers have developed several modelling approaches 
which use some type of regression equation to derive probabilities of behaviours or 
disease in relation to the local population and/or environment. Most methods are a 
type of direct standardisation, where the predictors of a disease/outcome in a repre-
sentative population (such as a national level health survey like the annual Health 
Survey for England [HSE] or the periodic New Zealand Health Survey [NZHS]) 
are statistically identifi ed through regression analysis to estimate the likelihood of 
individuals with certain predictive traits to experience a health condition. The regres-
sion may take into account only the individual-level (compositional) characteristics, 
or it may be extended to include area-level (contextual) attributes. The probabilities 
created from the regression process can then be applied to the local population. 

 Indirect standardisation methods take the opposite approach, which is to look at 
the predictors of a heath outcome in a sample population such as a local health 
survey and apply it upwards to the national population. This is much less frequently 
used in spatial public health models due to the prohibitive cost associated with 
carrying out comprehensive local level health surveys which provide the health data 
for this technique. 

 The focus in this chapter is to consider models with fi ner spatial scale, and usu-
ally these models may be categorised into one of the following groups: epidemio-
logical, synthetic population estimation (multilevel or spatial microsimulation) or 
Empirical Bayesian. The next section outlines these main types of static estimation 
models and gives examples of their application within the United Kingdom. There 
is an evolution from the earliest estimation models as computational power and data 
collection has improved, as will be shown later in this section, where the line 
between more traditional static models has begun to blur into the dynamic micro-
simulation models (Wu and Birkin  2012 ; Portz and Seyfried  2011  )  that can be seen 
as predecessors of ABMs. 

    24.2.1   Multilevel Models 

 One of the most inherently geographical approaches to creating local-level estimates 
of health outcomes or behaviours is the use of multilevel, or hierarchical models, 
to develop local prevalence estimates (Moon et al.  2007 ; Pearce et al.  2003 ; Twigg 
and Moon  2002  ) . The structure of multilevel models is described in the name; peo-
ple are ‘nested’ within multiple area levels, such as neighbourhoods, schools or 
work environments. Multilevel models have gained substantial popularity in the 
social sciences as they allow researchers to quantify the magnitude of the infl uence 
that place-based characteristics might have on population health. For example, how 
might neighbourhood deprivation affect mental well-being? (Fagg et al.  2006  ) . 

 Prior to the implementation of a multilevel model, relevant predictors for the health 
outcome need to be identifi ed. Each of the predictors need to be relevant to the 



502 D.M. Smith

health outcome and present in both the survey dataset and the small-area population 
data (Twigg and Moon  2002  ) . Logistic regression models are preferable in situations 
where the outcome is a dichotomous value (not diabetic/diabetic; non-smoker/
smoker) and the predictors are either a continuous scale (such as age) or categorical 
(such as ethnic groups) (Gatrell  2002  ) . 

 One example of the multilevel modelling framework is the creation of nationwide 
probabilities for smoking status based on data (age, sex, smoking status, home Output 
Area [OA]) from the Scottish Health Survey and the 1991 Census (Pearce et al. 
 2003  ) . Each of the 13,784 respondents are grouped into 12 age-sex bands to calcu-
late the probability of smokers in each band; the age-sex distribution is available 
from the 1991 Census. Using the known smokers/non-smokers and their area of 
residence alongside age and sex bands at the individual level, the authors were able to 
estimate additional data from the census about each OA’s population characteristics, 
including 16 ‘person’ variables (including % unemployed) and 9 ‘household’ 
variables (e.g., % owner occupied households). There were also two variables at the 
next largest area (pseudo postcode sector), deprivation and an Offi ce of National 
Statistics (ONS) Ward classifi cation (Pearce et al.  2003  ) . 

 After testing a series of multilevel models and identifying the signifi cant variables 
infl uencing smoking at the individual and area level, the parameter estimates from 
the fi nal multilevel model were used to calculate new probabilities for smoking 
in each of the age/sex groups, based on several new variables; these probabilities 
were then applied to all of the output areas (where all of the predictive variables 
were available) across Scotland. The results showed a wide range of smoking preva-
lence, but the predictor variables which proved most signifi cant were consistent 
with previous studies (Pearce et al.  2003  ) . The combination of small-area data with 
survey responses is very similar to the epidemiological modelling approach; 
however, the multilevel framework allows researchers to clearly identify signifi cant 
predictors at more than one scale. In addition, the inclusion of cross-level interac-
tions between predictor variables adds greater accuracy to the resulting estimates 
(Twigg and Moon  2002  ) . 

 One limitation of the multilevel modelling framework for the creation of preva-
lence estimates is the need for data on predictor variables to be available at the 
geographic scale for the resulting estimates. As will be explained later in this 
section, spatial microsimulation techniques are not as limited by data to create 
estimates. Where the multilevel modelling approach assigns the parameter estimates 
to individuals matching a multifaceted profi le (for instance, white males aged 
30–39 years in social class AB), the microsimulation method assigns probabilites 
for behaviours iteratively to each of the four attributes in turn (ethnicity, sex, age 
and social class). 

 The results from this prevalence estimation approach can be tested for accuracy 
by comparing the outputs against known local-level surveys. Previous results 
have indicated that the method is quite robust when used for tobacco smoking 
estimation, although less reliable in accurately predicting alcohol consumption 
(Twigg and Moon  2002  ) .  
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    24.2.2   Epidemiological Models 

 The primary difference between epidemiological models and the alternative 
options for static estimation processes is the use of multiple datasets to generate 
probabilities. The challenge with this type of model is that the user is limited to 
only estimate outcomes on typically small-scale studies for derivation of reference 
rates. However, one particular application of this method has been used extensively 
by the National Health Service (NHS) as a way of fi rstly estimating the national 
(English) prevalence of type 2 diabetes, which is often undiagnosed, and to 
also create these estimates at a more local level (Forouhi et al.  2006  ) . Because 
these models are dependent on relatively small local surveys, they may use data 
from sources that are far apart in time and place. In the case of the model of 
Forouhi et al.  (  2006  )  model, they used reference rates based on age, sex and 
ethnicity from six datasets ranging from 1986 to 2000. The authors created a set of 
time and place adjustments to correct for differences between the study populations 
and locations. 

 Once the reference rates are created from the epidemiological datasets, they can 
be applied to crosstabulated 2001 Census data (age-sex-ethnicity) at the smallest 
area level where such crosstabulations are available. The benefi t of this modelling 
approach is that all the data are based on a variety of real-world datasets. However, 
users are constrained by the need for crosstabulated census data to build up the esti-
mates. In the case of diabetes, the lack of data fl exibility meant that socioeconomic 
status was not used as a predictor in the model, although this variable is known to 
infl uence diabetes incidence (Connolly et al.  2000 ; Evans et al.  2000  ) . Unlike the 
multilevel modelling framework, there is no scope for adding area-level predictors 
such as land use mix. 

 A different type of synthetic population estimation similar to the epidemiological 
models described above, but with greater fl exibility in how the predictor variables 
are included in the model, is through the incorporation of Bayesian estimates. 
As with the epidemiological method, the models are designed to be used at a 
scale where crosstabulations of the necessary attributes are available. This method 
has been used to estimate coronary heart disease (CHD) and diabetes in England 
(Congdon  2006,   2008  ) . 

 The diabetes estimates created in this way are similar to the epidemiological 
model described above, but the initial data come from the 1999 and 2003 HSE to 
calculate age by sex by ethnic group specifi c prevalence rates for both type 1 and 2 
diabetes. The estimated rates are then applied to the 2001 Census wards, where the 
age-sex-ethnic group population distributions are known. The Bayesian methods 
employed by Congdon include a 1999 diabetes risk factor to create accurate predic-
tions of diabetes prevalence and confi rm the probabilities for diabetes created from 
the regression of 2003 data. There is signifi cant overlap in the modelling techniques 
between Congdon’s model and those implemented using a multilevel approach or 
epidemiological method.  
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    24.2.3   Microsimulation 

 Spatial microsimulation techniques offer the ability to link non-spatial datasets, 
such as national health surveys, with spatial data such as sociodemographic attributes 
from the population census. Unlike the other approaches, the microsimulation model 
is not dependent on having cross-tabulated data at each area level where the 
estimates are being created. Instead, the purpose of spatial microsimulation is to 
iteratively replicate known characteristics of the population which predict the health 
outcome of interest reliably at the local level. There are several different computa-
tional algorithms for spatial microsimulation, which are outlined elsewhere in this 
book (Birkin and Wu  2012  ) . Deterministic reweighting has been used in a suite 
of models for health behaviours and outcomes including smoking, diabetes and 
obesity (Tomintz et al.  2008 ; Smith  2007  ) . Other options include stochastic methods 
such as simulated annealing and combinatorial optimization. With deterministic 
reweighting, a probability for each person who responded to the non-spatial survey to 
live in each local area is calculated, based on a reweighting algorithm that takes each 
of the predictive variables in turn (Smith et al.  2009 ; Ballas et al.  2006  ) . The sums 
of all the probabilities generated for each area will add up to the census-based 
population total. These probabilities can be used to generate prevalence estimates as 
they will give an indication of the proportion of the population affected by the health 
outcome/behaviour. 

 Where microsimulation differs strongly from the alternative methods outlined 
above is that multiple outcomes or behaviours may be estimated for a local popula-
tion at one time rather than creating a series of outcome-specifi c models which have 
to be re-run for every desired characteristic. For example, if the prevalence rates 
of adult obesity and type 2 diabetes were created using a multilevel modelling 
framework, this would require two separate modelling runs for each health condition 
rather than only one with spatial microsimulation. However, the lack of specifi city 
in the synthetic population creation from microsimulation may mean that resulting 
estimates are not as accurate as alternative methods because different health con-
ditions may be best predicted by very different sociodemographic characteristics. 
The predictors of smoking behaviour and high levels of physical activity are quite 
different, so it is unlikely that one model might provide the most accurate estimation 
of both outcomes. If the conditions are predicted by similar characteristics, such as 
with obesity and diabetes, then the use of one model is appropriate. 

 As with the other static prevalence models, validation of prevalence estimates 
is diffi cult due to the lack of real-world data. Options to test the reliability of the 
model predictions can include comparing the model estimates against a related 
outcome with known prevalence at the same scale, or aggregating the estimates up 
to a geography where the prevalence is known (Tomintz et al.  2008 ; Congdon  2008  ) . 
All of the models are only estimating health based on observed relationships between 
the modelled health outcome and the local populations’ sociodemographic profi le 
that is associated with that outcome (Moon et al.  2007  ) . 

 Static models, like the dynamic models described in the next section, are limited 
by the available data that can be included in them. One of the biggest challenges 
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with any type of prevalence estimation is the use of older data for the baseline 
population (to include attributes such as age, sex, ethnicity). The UK census of 
population takes place every 10 years but the tables with population characteristics 
are not immediately available for researchers, so the models are never based on 
real-time population characteristics. Depending on the country, the larger/national 
health surveys, which can be used to create the estimates, may not be collected 
every year; the Health Survey for England is annual but the Scottish Health Survey 
has only recently been conducted each year (2008 through 2011).  

    24.2.4   Dynamic Models 

 Dynamic models attempt to create health outcomes not only for one point in time 
but also for future populations, by taking into account potential population changes 
such as an aging population. The utility of predictive models for future planning is 
particularly important for countries where health care is funded by the government 
and future budgets must be allocated in advance. Dynamic models can take the form 
of the regression analysis described above (dynamic microsimulation) or may be 
based on more intricate relationships, like the complex systems dynamics models 
which consider individual and environmental level interactions. The systems 
dynamics models are iterative in nature, building on the baseline data and creating 
new data as the populations evolve and interact; one specifi c example of this type of 
model is an ABM.  

    24.2.5   Dynamic Microsimulation Modelling 

 Dynamic microsimulation modelling is described in detail elsewhere in this book 
(Birkin and Wu  2012  ) . Briefl y, this method is an advance beyond the simple static 
models outlined earlier, often including a stochastic element to the population 
generation process. Similarly to the static models, health outcomes are estimated 
based on previous observed associations with demographic characteristics in a type of 
regression analysis. However, with the dynamic models, the baseline populations are 
allowed to change in line with expected demographic evolution within an area. For 
example, aging populations or migration of different ethnic groups between areas 
will affect the model’s estimated outcomes, as will possible changes to government 
policy related to the behaviour, such as tobacco taxation and smoking policies. 

 Dynamic microsimulation models have already been created to estimate the future 
prevalence of obesity (Kopelman et al.  2007  ) . However, the models are still con-
strained by linear relationships defi ned by regression analysis. Using obesity prev-
alence as an example, these models may fail to accurately represent how real people 
would react to a variety of infl uences such as less expensive food, better access to 
fi tness facilities, or increased education about the risks associated with obesity.  
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    24.2.6   Complex Systems Dynamics Models 

 Newer methods in disease estimation approach the health outcome as a complex 
system, with the aim of including as many potential infl uences as possible. Gatrell 
has recently acknowledged the diffi culty of accurately modelling health outcomes 
using predictive models. However, the means of dealing with complexity is not 
strongly developed in public health applications (Gatrell  2005  ) . Many of the issues 
raised by Gatrell are intuitive: the inability of the models to account for interac-
tions between variables (beyond the simplistic methods in multilevel models); the 
simplifi ed, linear nature of the models that are unable to account for non-linear 
relationships (which, arguably, are widespread in health research); the inherently 
complex nature of relationships between people and place; the idea of epidemiology 
as a ‘web’ of inter-connected mechanisms, which uniquely combine in individual 
lives (Gatrell  2005  ) . 

 A recent issue of the American Journal of Public Health was devoted to exploring 
potential approaches to modelling complex systems, with several authors who echo 
Gatrell’s call for improved models. One of the models, developed in the United 
States to estimate the impact of various governmental policy on diabetes prevalence, 
is created using systems dynamics (Jones et al.  2006  ) . This is perhaps the closest 
that researchers have come to acknowledging the true complexity of public health. 
However, the model is currently only feasible at the national scale. This particular 
model, created by health planners at the Centers for Disease Control in the United 
States, was designed specifi cally to understand population dynamics related to 
diabetes. The intention was to inform public health strategy by predicting the future 
prevalence of diabetes through 2050. The model incorporated factors such as 
death rates, health insurance, diabetes diagnosis and medication. This model, along 
with others currently under development at the CDC, promises to improve health 
planning by better predicting the effects of interventions on public health (Jones 
et al.  2006  ) . 

 There appears to be a trade-off in terms of the level of complexity allowed in a 
model and the unit of geographical analysis for which it can estimate disease preva-
lence. As complexity studies continue to gain momentum (and computational powers 
increase), this ‘choice’ may be resolved, leading to more robust models which can 
accurately depict current and future health trends at a fi ner spatial scale. 

 Complex systems dynamic models are a general category of advanced simula-
tion models that includes ABMs (see Crooks and Heppenstall  2012  ) . The benefi t 
of this family of models is their ability to incorporate multiple scales of infl uence 
(like a multilevel model) as well as considering the changing relationships between 
infl uences on agents’ health within the model. The inherent complexity in person-
environment interactions is best modelled using this type of approach because the 
agents (people) in the model are allowed to react to changes in causal factors for 
disease from the local environment or each other. The environment may not be such 
an obvious causal factor in non-communicable disease as it is for illness such as 
malaria or Dengue fever, but much of the recent work that aims to investigate the 
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increasing trends in obesity suggests that a person’s local environment plays a key 
role (Egger and Swinburn  1997  ) . 

 An ABM has the unique ability to combine multiple scales/types of infl uence as 
well as interactions and feedback loops to ideally replicate interactions that cannot 
be represented in regression-based models (Auchincloss and Diez Roux  2008  ) . 
The dynamic nature of ABMs is a great asset to health planning; people vary over 
time and are infl uenced by any number of factors at different ages, and this method 
is the best way to address such complexity. ‘Agents’ in the models do not necessarily 
have to be individuals but this is the most common confi guration. Attributes and 
behavioural rules are assigned to the agents based on available data (commercial 
data, qualitative studies) to begin the simulation, and there is the option to add a 
random element to the evolving interactions that will dictate how the agents may 
respond to different situations. The model is then run numerous times to generate a 
variety of outcomes (Auchincloss and Diez Roux  2008  ) . The model is usually created 
in a computer programming language like Java, but there are several ready-made 
programmes such as Recursive Porous Agent Simulation Toolkit (REPAST) that 
may be adapted by individual users who have less programming experience. 

 Obesity is a good example of how ABMs can move the epidemiological research 
forward (Galea et al.  2009  ) . With the wealth of research devoted to studying 
obesity-promoting (obesogenic) infl uences at the personal and area level, the com-
plexity of obesity aetiology is well documented (Kopelman et al.  2007  ) . A recent 
example of agent-based modelling of BMI with regards to local stores and varied 
strength of an individual’s social networks gave one illustration of a possible policy 
scenario (Galea et al.  2009  ) . In this simplistic model, created in a ready-made ABM 
framework, the results suggested that people with weaker social network ties had a 
greater decrease in BMI. However, they were also more likely to have an increase 
from baseline BMI after the food stores had returned to normal. 

 A more ABM to predict the evolution of BMI at local levels would likely 
incorporate much more data. A good basis for a comprehensive ABM for obesity 
would be to include the obesogenic environment framework outlined by Egger and 
Swinburn  (  1997  ) . Their ecological model of obesity breaks the ‘environment’ into 
four distinct types (physical, economic, political and sociocultural) and further 
subdivides these types into the micro (i.e., neighbourhoods, schools, homes) and 
macro (transport, health regulatory system). Then the individual factors could be 
introduced in the model (age, sex, ethnicity, social class, marital status, educational 
attainment, etc.). All of these individual attributes and their relative importance in 
predicting obesity may be identifi ed from the same types of surveys used to inform 
the regression-based models. It would be best to isolate aspects of the different 
infl uences to understand the relative importance of certain parameters on different 
people. For instance, women may be less likely to use parks for physical activity 
than men, or men may make less healthy choices with regards to available food. 

 ABMs, as one of the complex systems dynamics models, are clearly a big step 
forward for epidemiological research. However, as with all methods, there are limi-
tations to be considered. The rules that govern agent behaviour are often infl uenced 
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by the assumptions of the researchers creating the model, or may be overly simplistic. 
The parameters that are included in the model may not be based on large samples of 
observed data, particularly with regards to interactions (Galea et al.  2009  ) .   

    24.3   Conclusion 

 Increasing computational power has changed the available methods and allowed for 
the evolution of complex models to more accurately capture the behaviours that 
contribute to health outcomes. While early prevalence models were restricted in 
power to a static population, the new developments in systems dynamic models and 
agent-based modelling have led to more fl exible and powerful choices for social 
scientists and policy analysis. 

 As discussed elsewhere in this book, advanced computational methods are 
valuable in predicting the spread of infectious disease and have historically been used 
by many governments and health organisations to this end. The increasing ability to 
capture population health dynamics for non-communicable disease may have a 
signifi cant role in protecting public health in the future as limited funds and resources 
may be allocated to areas of greatest need. Alternatively, the models will enable users 
to test the effi cacy of various policies to reduce the prevalence of tobacco use, binge 
drinking or obesity among heterogeneous populations in disparate areas. 

 Although there are clear challenges to the use of a systems dynamic or agent-
based approach to the simulation of population-level spatial health outcomes, the 
advancement beyond regression based models is a signifi cant addition to the 
toolbox available for public health and social science. With careful consideration 
for the data included in the models, including rules of behaviour for the agents, 
ABMs provide a great improvement from previous methods that took little or no 
account of individual variation and interactions (Galea et al.  2009  ) . Researchers 
are encouraged to be aware of limitations to this method. As with any new approach, 
the outputs must be interpreted with an understanding of the underlying processes that 
are used to generate them. However, the shift towards complex systems dynamics 
modelling is a move towards true individual-based modelling in non-infectious 
epidemiology.      
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  Abstract   Dynamics in the housing market can be simulated using agent-based 
modelling. Focusing on the theme of urban regeneration, we present a housing 
market model framework which explores the causal relationships that occur in this 
market.      

    25.1   Introduction 

 The housing market is a dynamic system of intricately woven interdependent 
processes. It is affected by the volatility in the fi nancial markets and the conditions 
of this market affect discriminatory individual level behaviour. Like other applica-
tions, agent-based models (ABMs) can be used to simulate activity in this market 
with a view to gaining a better understanding of how the market works as well as to 
realise causal relationships that occur. 

 The terms residential mobility and housing choice are standard within housing 
market research and can be found across the housing studies literature (Kim et al. 
 2005 ; Tu and Goldfi nch  1996  ) . These terms encapsulate the movement questions 
which lead households to decide whether to move and subsequently choose a new 
home. One of the most infl uential factors which affect these processes is the family 
life cycle, in collaboration with income (Dieleman  2001  ) . Changes in the family life 
cycle affect location choice whilst overall government policy affects demand and 
supply of the housing stock. The linkages between these processes are important. 
We can use ABMs to answer this question. 

    R.      Jordan   (*) •     M.   Birkin   •     A.   Evans  
     Centre for Spatial Analysis and Policy, School of Geography ,  University of Leeds ,   Leeds ,  UK    
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 In this chapter, we fi rst build the foundation of such a model by taking a look at 
the theory of residential mobility and housing choice with particular emphasis on 
the family life cycle, income, location choice and government policy. The link 
between this theory and ABMs will be made while exploring how ABMs have been 
used to simulate aspects of the housing market. A modelling framework is presented 
illustrating how housing market behaviour can be represented programmatically. 
Results of the model are then presented followed by a discussion of the usefulness 
of this technique for land use planners and housing study practitioners.  

    25.2   Residential Mobility and Housing Choice 

 Residential location decisions are strongly infl uenced by national housing policies, 
local planning constraints, and by a wide range of fi scal and social policies. In addition 
to government policy, household characteristics often initiate movement and in turn 
infl uence where the household will move. In a more basic sense, households progress 
through the family life cycle with various levels of income at their disposal. Changes 
in either of these attributes – the family life cycle or income – are likely to trigger 
residential mobility. These are the main links between the household’s characteristics 
and residential mobility. While some households may choose not to move because 
of limitations in income and/or supply on the market, other, less constrained house-
holds will try to fi nd a new house. By taking a closer look at these processes, we can 
build an understanding of how the housing market operates. 

    25.2.1   Family Life Cycle, Income and Location Choice 

 Figure  25.1  illustrates the general progression of the family life cycle. Typically, 
the cycle begins with a single individual and advances through varying household 
formations. This process is punctuated by signifi cant events such as job losses or 
gains, marriage, births, deaths, divorce or separation, retirement and adult children 
leaving the parental home. As these signifi cant events occur, changes in household 
attributes can be observed. For example, events such as marriage and births result in 
larger families while the converse is true for deaths. Thus the need for larger or 
smaller homes is likely to be triggered.  

 The fi nancial budget is by far one of the most important factors when the 
decision to move is considered (Boehm  1982  ) . There is a direct positive correlation 
between the amount of disposable income that can be used for housing and the cost 
of the house. For example, a promotion may make more money available and can 
trigger a move to a more expensive house. The converse of this statement is also 
likely to be true. 

 Therefore, income has a knock-on effect for the type of property which house-
holds can afford, the size of the house and the housing tenure. In the case of the 
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framework that we develop in this chapter, we use type to indicate the accommodation 
type, i.e., whether a house is detached, semi-detached, terrace, a fl at or maisonette. 
Size is represented by the number of rooms in the house and tenure type indicates 
whether a house is on the private rental market, the public rental market or up for 
full ownership. If we consider every combination of these three variables, we can 
quickly come to the conclusion that when these combinations are compared, strati-
fi cation in the housing market can be observed. For example, a detached house, up 
for ownership, with ten rooms is likely to be more expensive than a publicly rented 
house with fi ve rooms. 

 In addition to these factors, the infl uence of neighbourhood quality must be 
underscored. The physical conditions of the neighbourhood, and amenities such as 
shops, school quality, security, transport connections, green spaces, and the proxim-
ity to built up areas, are characteristics which can alter house prices. Understandably 
this further increases the complexity of household preferences and choice. The choice 
of a new home can be conceptualized as a choice between a weighted combination 
of dwelling alternatives. The strength of each weight may be based on the changing 
needs of the household. These weights are discussed when the modelling framework 
is introduced.  

    25.2.2   Housing Policy 

 None of the determinants of movership work in isolation; they are interrelated and 
interdependent. They are also largely affected by market conditions. A household’s 
choice of dwelling is constrained by the demand for and the requisite supply of houses 
as well as the availability and accessibility of fi nancial instruments such as mortgages. 
Each of these factors is infl uenced by government policies in general. More specifi -
cally, changes in housing policy can affect the supply of new houses. Demographic 
changes can affect demand. Economic policy can alter interest rates, which can 
affect house prices and access to lending instruments. Therefore, households will 
choose homes based on the extent to which government policies affect them. 

  Fig. 25.1    The family life cycle       
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 Although there are numerous government and housing policies that can be 
mentioned here, we focus on urban regeneration policy and its effect on public 
housing or council tenants. 

    25.2.2.1   The Evolution of Urban Regeneration Policy 

 Council housing in the UK has gone through signifi cant changes over the last 
century. Also known as public housing, it was initially created to improve dwelling 
conditions for those without the means to do so for themselves. Government-owned 
housing transitioned to a market which provided another housing option for anyone 
regardless of income (Mullins and Murie  2006  ) . Over time the housing market 
changed; many of the houses in good condition were sold off leaving an inventory 
of poor quality houses in the council housing market. Poor quality housing and 
low-income tenants entangled in the cycle of poverty added to the melee of prob-
lems that plagued this sector (Power and Mumford  1999  ) . It was in this context that 
Urban Regeneration policies were conceptualized. 

 Aimed to encourage social mixing, policies focusing on urban regeneration 
were introduced in the 2007–2008 period. Proponents of such policies believe that 
communities of mixed socio-economic status can encourage social development 
among disadvantaged households (Tunstall  2003  ) . In theory, different classes of 
people have the potential to attract a wider range of new businesses and new residents 
in communities affected by social problems. This type of cross tenure community is 
likely to comprise of a range of people at different socio-economic levels, with 
different lifestyles, values and attitudes where the more productive socio-economic 
groups are thought to positively infl uence the other groups (Bridge  2002  ) . The govern-
ment believes that regeneration efforts are likely to create stable communities 
and disadvantaged households can experience reduced fi nancial dependence on the 
public purse as a result of increased aspirations and availability of jobs.  

    25.2.2.2   The EASEL Case Study 

 One example of the implementation of Regeneration Policy can be observed in the 
East and South East district of Leeds in the UK (EASEL). Home to approximately 
36,000 households, the area is noted to have some of the worst deprivation statistics 
(Index of Multiple Deprivation) in the country as reported by the Offi ce of National 
Statistics. Issues of poor housing, high unemployment rates and low educational 
attainment are some of the negative characteristics that add to the stigma associated 
with this area. With an aim to improve these statistics, Leeds City Council has 
initiated intense regeneration efforts to the tune of £90 million (Leeds City Council 
 2007  ) . Improvements in housing stock quality and quantity are designed to provide 
more affordable homes nestled in new mixed tenure communities. 

 Policies such as these appear legitimate in theory, but in reality their practical 
impact is questionable. Regeneration policy attributes the inherent social problems 
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in low-income communities to the fact that these communities are segregated. 
Although there is evidence to support this, it is unlikely that households with 
suffi cient disposable income would choose to live in neighbourhoods that are badly 
stigmatised. Furthermore, the early work of Thomas Schelling suggests that, if 
people are allowed to exercise slight demographic preferences when relocating, 
they will cluster together based on these preferences (Schelling  1969  ) . This is one 
of the major challenges to mixed communities, one which can be explored through 
the implementation of an ABM.    

    25.3   Where Do the Agents Come In? 

 We can take these theoretical observations and use them to build our agent-based 
simulation. Households and houses can be classifi ed as agents while housing policy 
can be simulated by altering the housing stock available. 

 We may associate various attributes such as age, number of children, number of 
cars, socio economic status, accommodation type and tenure type with each house-
hold. This list is not exhaustive but captures the type of information that is useful 
when modelling the household. One may choose to model the entire household as 
one agent or model every possible person while using the unit household, to represent 
an aggregation of individuals dependent on the sophistication in the life-cycle model 
to be used. Where houses are concerned, we can use attributes such as accommo-
dation type, value, vacancy status, etc. A collection of houses may form a district or 
some other aggregated unit used in the real world. 

 The work of Schelling  (  1969  ) , Aguilera and Ugalde  (  2007  ) , Laurie and Jaggi 
 (  2003  )  and Yin  (  2009  )  illustrate how these entities can be used to simulate housing 
market activity via ABMs. Schelling  (  1969,   1971  )  examined the role of preferences 
in an artifi cially created community and illustrated how individual behaviour can 
create signifi cant collective results not directly intended by the individual. Schelling 
 (  1969  )  demonstrated this by using only one rule, i.e., all agents preferred to live 
among at least 33% of agents of the same ethnic group as themselves. The result 
was total segregation. 

 Aguilera and Ugalde  (  2007  )  attached house prices to each space on a lattice grid. 
Individuals were rated by socio-economic status and income. House prices were 
strongly related to the type of neighbourhood each house was located in and evolved 
in such a way that prices fl uctuated at times. Agents moved momentarily in order to 
match their status with house prices by exchanging their location with other agents. 
This inequality in income among agents was noted to be the factor strongly, posi-
tively correlated to segregation. In other words, the more unequal a neighbourhood 
is, the more segregated it becomes. 

 The work of Laurie and Jaggi  (  2003  )  also used the basic segregation model as 
proposed by Schelling  (  1969,   1971  )  in examining the role of vision in effecting 
segregation. Vision is used in this sense to describe the number of neighbours the agent 
assesses in determining whether or not they wish to move. The model illustrated 
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that with only slight preferences and increasing vision, the society became more and 
more integrated. The converse is true when vision and the level of tolerance are 
decreased, i.e., society becomes more and more segregated. 

 Yin  (  2009  )  increased the dynamics in his model by devising a social simulation 
based on the City of Buffalo in the United States. In his model, the issue of race and 
social class are examined as they relate to residential segregation. Yin’s research 
builds on Schelling’s theory and illustrates how factors such as race and economic 
constraints, when exercised as a part of the housing choice process, can cause 
segregation of varying degrees at the aggregate level. However, Yin illustrated that 
when housing policies were implemented, this segregation could be reduced once 
racial sensitivity was low. 

 These and other models such as those by Pancs and Vriend  (  2007  ) , Zhang  (  2004a, 
  b  )  and Benenson  (  2004  )  give us an idea of how agents can be used to simulate and 
test phenomena in the housing market. Notice how each of these models focus on a 
different aspect of the housing market. Whether ethnicity preference, socio-economic 
status, neighbourhood distance, house prices, or integration policy, the dynamics 
are diverse and yield varying results. We can build on these examples by introducing 
other dynamics in order to create a complete agent-based market model.  

    25.4   The Model Framework 

 Using the entities, households, houses and the surrounding environment, a modelling 
framework is presented here to recreate the housing market. Fundamentally, we 
know that amidst a list of households, some choose to move while others do not. 
We also know that once these households choose to move, they need to fi nd a house 
to relocate to. 

    25.4.1   How Do We Know Which Households 
Want to Move? 

 For ABMs, individual records are ideally needed to represent households. In the 
UK, these households can be derived from data sources such as the Household 
Sample of Anonymised Records (H-SAR). The H-SAR contains attributes such as 
age, ethnicity, accommodation type, tenure type and the propensity to move statistic. 
The propensity to move is a migration indicator which dictates if the household 
moved within the last year of the recorded census (CCSR  2010  ) . It is very important 
for our model as it is used to determine which households need to fi nd a new house. 
A more extensive discussion of the use of this variable can be found in the paper by 
Jordan et al.  (  2011  ) . 

 Other data such as Output Areas, roads, and signifi cant buildings are also used. 
This data is stored in shapefi le format and can be obtained for the UK through data 
providers such as Edina UK Borders and Ordnance Survey MasterMap.  
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    25.4.2   Where Do These Households Go? 

 Seven rules are used to determine where households will move to. The rules are 
defi ned as follows:

    1.     Households move to areas where the ethnic makeup is tolerable.  
   When a household desires to move, the search for a new house begins. A house 

is deemed favourable if at least 33% of the surrounding households are of the 
same ethnicity type as the household wanting to move. The rule is augmented for 
minority groups with strong religious ties; i.e., the new house must also be within 
close proximity (~5 miles) to a religious centre, for example, a mosque (Johnston 
et al.  2002 ; Phillips  1998,   2007 ; Peach  1999 ; Schelling  1969  ) .  

    2.     Households look for a new house within known areas.  
   Communities where households frequent for the purpose of work and other 

activities can be characterized as known areas. Since this simulation focuses on 
housing, for each household, we create memory by storing all the districts in 
which the household may have lived. The proximity of the surrounding commu-
nity is thought to be between 6 and 20 miles. For public renters this distance is 
close to 6 miles while for private sector households, the distance from the previ-
ous house may vary between either extremes of this range (Cho et al.  2004 ; Cho 
 2004  ) . Therefore, when a new, vacant house is found, its location is checked to 
ensure that it is within a known area.  

    3.     Households move to houses where the size of the house is adequate.  
   Ensuring that the size of the house is acceptable is important (Dieleman  2001  ) . 

This can be determined by trying to fi nd a house with the desired number of 
rooms for each household. This variable is derived from the H-SAR, i.e. number 
of rooms required.  

    4.     Households move to areas where schools are accessible.  
   If the household contains school aged children, the proximity to schools is taken 

into consideration. Desirable schools are generally thought to be within a 5 mile 
radius of the home although this distance may increase with secondary school aged 
children (Gibbons and Machin  2003 ; Black  1999 ; Strand  2002  ) . This distance 
measure is used in the current implementation.  

    5.     Neighbourhood quality plays a role in infl uencing household choice.  
   The determinants of neighbourhood quality include amenities such as shops, 

schools, green spaces and security. Households often take this into account when 
choosing a new home (Tu and Goldfi nch  1996  ) . Using the Index of Multiple 
Deprivation (IMD), the neighbourhood (Output Areas) in which a house exists is 
compared to that of the current house. The IMD is a statistic which ranks Output 
Areas across the UK. It is made up of average statistics pertaining to crime rates, 
employment deprivation, education and barriers to housing. A new house is 
thought to be more favourable if the IMD within the new Output Area is higher 
than that of the current house.  

    6.     The socio-economic status of a household infl uences the type of house chosen.  
   Households in higher socio-economic brackets are likely to be owner occupiers 

while households in lower socio-economic brackets are likely to be private or 
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public renters (Cho et al.  2004 ; Cho  2004  ) . For example, a manager in a larger 
organisation is likely to live in an owner occupied home. On the contrary, an 
unskilled worker is likely to live in the public or private rental market.  

    7.     Households will move to areas where transport routes are accessible.      

 Although this rule applies to all households, it is especially important for house-
holds without cars. As a means of ensuring that the journey to work is manageable, 
this rule ensures that a major road is found within a 1 mile radius of the new house 
(Böheim and Taylor  1999 ; Gjessing  2009  ) . Therefore, for a household without cars, 
a new house is favourable if it is located within a 1 mile radius of a major road. For 
households without cars, it is not important that this criterion be satisfi ed. 

    25.4.2.1   Ranking the Ruleset 

 The model is initiated with a realistic proportion of vacant houses. As each 
household is interrogated with the movement questions, each vacant house is taken 
through a process of ranking. For example, in Rule 1, a house found within a neigh-
bourhood where the ethnic mix is not tolerable (less than 33%) would be ranked with 
a value of 0 while for a tolerable mix the house would be ranked with a value of 1. 
Similarly, for the socio-economic status by tenure (Rule 7), if a public rented house 
is found and the household is deemed to be low-income, then this council house will 
be ranked higher than an owner occupied house. For a household with a managerial 
role, a council house will be ranked lower than an owner occupied house. 

 The choice of a new house is a combination of dwelling alternatives (   Tu and 
Goldfi nch  1996 ; Dieleman  2001  ) . Using this process of ranking, the profi le of the 
household is compared to the characteristics of all available houses. The house with 
the highest combined ranking is chosen.  

    25.4.2.2   Advancing the Model in Yearly Timesteps 

 In order to move the model from year to year, we create a threshold based on the 
percentage movers in any given year. This statistic can be calculated using the original 
data source, i.e., the number of people who have moved in a given year divided by 
the total number of people. Once this threshold is met, another year begins. Note 
that yearly time spans measured in timesteps may not be equal from year to year as 
this threshold condition must fi rst be met. 

 With the framework in place, we can begin to explore some of the results of the 
model.    

    25.5   Results and Application 

 Let us use a series of scenarios to examine the model results. Scenario 1 is the result 
of running Rule 4 in isolation. Scenario 2 is the result of running all the rules simul-
taneously. In this instance, the number of vacant houses is severely constrained. 
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Households are limited by a vacancy rate of 4% of the total houses. Scenario 2 is 
executed a second time with a signifi cant increase in vacant houses. 

    25.5.1   Scenario 1 – Rule 4: Households Move to Areas 
Where Schools Are Accessible 

 Figure  25.2  is a pictorial representation of the initial distribution of households 
before Rule 4 is executed and Table  25.1  contains the starting conditions. Notice 
how the households are reasonably distributed across the Output Area zones after 
initialisation.   

 Assuming that only households which move contain school aged children, 
Fig.  25.3  is the result of this rule. Notice the shift in the households toward the lower 
left area of the diagram. This is because there is a school in the vicinity of this area 
as shown above.  

 In executing each rule separately, similar trends are realised. In the case of 
Rule 1 – Ethnicity, households begin to cluster around others who are of the same 

  Fig. 25.2    Initialised EASEL area display before execution of Rule 4. Here the  coloured dots  
are used to represent households of varying ethnic types while the  small rectangular polygons  are 
representative of houses. The  larger green polygons  are used to represent Output Areas       

   Table 25.1    Details of the 
starting conditions   

 Initial state 

 # Households  465 
 # Houses  490 
 # Iterations  Unspecifi ed; not linked to actual time 
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ethnic type as themselves. Rule 2 – Known Areas, households choose a new house 
in areas previously known to them; this limits the number of potential new locations 
where they may choose to live. In the case of Rule 6 – Socio-economic Status, 
households begin to cluster together based on their socio-economic status. This is 
largely because tenure types are clustered together in a similar manner. 

 These trends are most pronounced when each rule is run separately. However, 
when the ranking system is employed, the individual trends become less distinct.  

    25.5.2   Measuring Diversity 

 We can extend our interpretation of Scenario 1 to include an index by which diversity 
is measured. In the case of the previous scenario, the question can be asked: how does 
the schools rule affect the demographic makeup of Output Areas once implemented? 
In the case of Rule 6 – Socio-economic Status, we can query how a household’s 
social class can affect the demographic makeup of Output Areas once implemented. 
If the goal of urban regeneration is to create mixed communities, then such a statistic 
can be used to inform us of the extent of this mixing over time. This can be illustrated 
by using the Index of Diversity (Blau  2000  ) . 

 The index of diversity is a statistical indicator that can be used to examine the 
relative diversity of households within each Output Area. Diversity can be measured 

  Fig. 25.3    Resultant EASEL area display after execution of Rule 4 (~40 timesteps). Here the system 
has reached a point of stability, i.e. movement within the model is negligible indicating that the 
majority of the households are satisfi ed with their current location       

 



52125 Agent-Based    Modelling of Residential Mobility, Housing Choice and Regeneration

based on any variable of interest. Thus, ethnic diversity, socio-economic diversity and 
demographic diversity are some of the scenarios that can be examined. The index is 
defi ned as follows:

     =

= − ∑ 2
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i

D p
    

 Here  p  
 i 
  is the proportion of households in Output Area  i  of a specifi c type, 

e.g. ethnicity,  N  is the total number of Output Areas and  D  returns values between 
0 and 1. Values closer to 0 indicate that the Output Area is not very diversifi ed while 
values closer to 1 are indicative of heterogeneous Output Areas, i.e., where com-
munities are mixed. Let us explore the usefulness of this indicator using Scenario 2.  

    25.5.3   Scenario 2 – All Rules 

 We can explore the results of our model when all of the rules are implemented 
together. Using the initial states shown in Table  25.2 , the model is fi rst executed for 
a period of 50 years with a 6% vacancy rate. The model is then executed a second 
time with a less constrained vacancy rate as detailed in the table below. The results 
are shown in Fig.  25.4 .   

   Table 25.2    Details of the starting conditions. Approximately 625 houses are 
used with a vacancy rate of 6%   

 Initial state  Constrained vacancy  Less constrained vacancy 

 # Households  587  587 
 # Houses  625  875 
 # Iterations  1,089  1,086 
 # Years  50  50 

  Fig. 25.4    Index of diversity       
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 Figure  25.4  shows the result of the simulation executed under two different 
conditions and uses the Index of Diversity to analyse the variation in diversity. 
Although the variation in the statistics is limited, varying from 0.21 to 0.25, we can 
still observe a difference in the two simulation runs. When the simulation is executed 
with a 6% vacancy rate, the variation is more limited than when the simulation is 
executed with a higher vacancy rate. One may link this contrasting pattern to the 
fact that under constrained conditions, households have fewer housing options and 
may compromise on their ideal home, an effect of the ranking system mentioned in 
Sect.  25.4.2.1 . When housing options increased, households have a wider selection 
of vacant houses to choose from and are more likely to choose homes that are ideal 
for their circumstance, if available. Thus, more variation in diversity can be seen.   

    25.6   Discussion and Conclusions 

 The ABM framework, which has been introduced in this chapter, can be used to give 
insights into the dynamics of the housing market in relation to urban regeneration 
plans. What is interesting about the rules introduced is that they are all limited by 
parameters. Rule 1 dictates that households will search for homes where the ethnic 
makeup is tolerable. This is limited to a percentage of at least 33%. Rule 2 dictates 
that households look for houses in known areas. A distance measure of 6–20 miles is 
used in this rule. A similar distance measure of 5 miles is used in Rule 4 (Schools). 

 In general, these parameters are used to constrain the model each time it is 
executed. They can be used to explore how different combinations of parameters 
affect the model outcome. Thus as shown in Scenario 2, a higher vacancy rate 
increases the potential range of new homes which households can occupy and leads 
to greater homogeneity. Other scenarios can be created to examine lower tolerance 
levels in terms of the ethnicity rules while distance measures can be increased or 
decreased again to examine their effects. 

 This is how we can analyse the effects of regeneration policy. When new houses 
are built, this increases the previously limited housing stock, therefore increasing the 
housing options for households. If new schools are built or schools are demolished, 
the distance to schools is affected. Socio-economic status can be monitored as these 
changes are made, and overall, the change in diversity in the study area can be 
measured over time. 

 Even with these considerations, further work is proposed for this model. The model 
variables need to be updated from year to year, parameters need to be calibrated and 
the correctness of the model should be validated. 

 As mentioned in Sect.  25.2 , changes in the family life cycle cause changes in 
housing needs. Therefore, it is important that family characteristics be altered 
from time to time to refl ect reality. At the very least, mortality and fertility rates 
should be a consideration. Another consideration may be the fact that households 
may move out of the region of interest. These changes are important as they affect 
demand and supply of the housing stock and the distribution of households. 
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 Calibration can be used to fi nd the most suitable combination of parameters that 
replicate reality, which may be determined using a genetic algorithm to analyse 
the performance of various combinations of parameters. In turn, the validity of the 
model can be tested by comparing yearly diversity indices generated by the model 
with yearly diversity indices generated from known datasets such as the Pupil Level 
Annual School Census (PLASC) data available in the UK. Such a data source 
contains details on ethnicity at the Output Area level. The distribution of school age 
children in the PLASC dataset can then be compared to the distribution of house-
holds with school aged children in our model. 

 We have created a framework to explore and analyse the dynamics of the housing 
market and urban regeneration. Such a framework allows us to unpack the building 
blocks of the housing market with a view to understanding not only how the market 
works but also the effects that changing parameters can have on housing market 
outcomes. This allows us to explore the extent to which urban regeneration schemes 
can result in the creation of mixed communities.      
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  Abstract   Urban sprawl is shaped by various geographical, ecological and social fac-
tors under the infl uence of land market forces. When modeling this process, geogra-
phers and economists tend to prioritize factors most relevant to their own domain. 
Still, there are very few structured systematic comparisons exploring how the extent 
of process representation affects the models’ ability to generate extent and pattern of 
change. This chapter aims to explore the question of how the degree of representation 
of land market processes affects simulated spatial outcomes. We identify four dis-
tinct elements of land markets: resource constraints, competitive bidding, strategic 
behavior, and endogenous supply decisions. Many land-use-change models include one 
or more of these elements; thus, the progression that we designed should facilitate 
analysis of our results in relation to a broad range of existing land-use-change mod-
els, from purely geographic to purely economic and from reduced form to highly 
structural models. The description of the new agent-based model, in which each of the 
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four levels of market representation can be gradually activated, is presented. The 
behavior of suppliers and acquirers of land, and the agents’ interactions at land exchange 
are discussed in the presence of each of the four land-market mechanisms.      

    26.1   Introduction 

 Growing concern regarding the development of fragmented patterns of land conver-
sion at the urban-rural fringe (“sprawl”) has lead to the development of a wide 
variety of fi ne-scale spatial models of land-use change at the urban-rural fringe. 
Models developed using a wide variety of techniques, including those based on 
cellular automata (CA), neural networks, spatial econometrics, and agents, have 
successfully replicated the fragmented patterns of development that occur at the 
urban-rural fringe (Verburg et al.  2006  ) . 

 These models differ greatly in terms of their level of detail and representation of 
real-world processes. At one end of the spectrum, CA models calibrated based on the 
historical spatio-temporal pattern of land-cover change can be characterized as highly 
inductive, pattern-based geographic approaches. At the other end of the spectrum, 
detailed agent-based models (ABMs) explicitly model socioeconomic processes, with 
correspondingly higher data demands for model parameterization and/or calibration. 
While these differences in modeling approaches are widely acknowledged, few 
structured comparisons have been undertaken to explore how the extent of process 
representation affects the models’ ability to generate extent and pattern of change. 

 In this paper, we focus on a small subset of this spectrum of models – ABMs of 
land-use change at the urban-rural fringe driven by open space amenity values – to 
explore the question of how the degree of representation of land market processes 
affects model spatial outcomes. Land market factors such as credit availability, 
interest rates, the strength of demand relative to supply, and institutional details of 
land market function can be signifi cant drivers of land-use change. In addition, 
interdisciplinary research is often conducted with the goal of producing policy 
recommendations for market-based mechanisms (e.g. subsidies, taxes, quotas, and 
insurance). Yet, these market factors have not been included in the majority of 
land-use change models. To our knowledge, few formal comparisons have been 
conducted to explore how the representation of land markets within land-use 
models affects projected land-use patterns. 

 We describe a series of model extensions to a simple land-change model with 
minimal market mechanisms that create a land-change model that has a simple but 
complete land market. We further describe a series of structured, comparative experi-
ments that progressively introduce important aspects of land market interactions – 
including economic resource constraints, competition for land, strategic behavior, 
and endogenous land supply decisions – that seek to answer the question, “Do land 
markets matter?” for the spatial outcomes of land-use ABMs. In short, does a land-
use change model that incorporates a process-based, land market model grounded in 
spatial economics produce more realistic spatial patterns of land  development than a 
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model based on reduced form representations of these infl uences? The paper elabo-
rates the design of model versions with progressive introduction of market mecha-
nisms. Future papers will present the experimental results. 

 We defi ne a land market as the series of transactions and exchange of land 
between buyers and sellers in a bounded region. The number of buyers and the 
price at which they would acquire a given land parcel – their willingness to pay 
(WTP) – provide demand for the resource or product (i.e. land). The supply side of 
the market is defi ned by sellers’ decisions to offer land for sale on the market and 
the price that they would accept for the land they are offering – their willingness to 
accept (WTA). The aggregate average price of land, the amount of land available 
(i.e. supply), the number of buyers and their willingness to pay (i.e. demand), the 
factors of production (i.e. inputs to the land and its biophysical and geographical 
characteristics), and the opportunity costs of taking part in land transactions versus 
other commodity transactions create what we call the land market and its associated 
dynamics over time. These land market dynamics also infl uence choices about 
factors of production (e.g. through land use and land management). 

 The following general conceptual questions frame our experimental approach:

   To what degree does the incorporation of constraints and competitive bidding • 
(the focus of our fi rst set of experiments) alter development patterns, gains from 
trade (the difference between WTP and WTA), and agent utility?  
  Do models that exclude market mechanisms include suffi cient proxies for market • 
mechanisms to be considered reduced-form versions of fuller models, replicating 
results of fuller models in many circumstances? Or rather, do these models exclude 
important processes that infl uence land market outcomes in a signifi cant way?  
  Even when market outcomes are modeled, many economic models are forced to • 
make simplifying assumptions, such as agent and environmental homogeneity, 
modeling only transaction prices rather than WTA/ask and WTA/bid price 
formation, and not modeling strategic behavior, for the sake of analytical tracta-
bility. What are the implications of these simplifying assumptions for the ability 
of these models to project the extent and pattern of land-use change?  
  To what extent do the effects of including or excluding market processes depend • 
on the particular socioeconomic circumstances modeled? More specifi cally, are 
there some sets of parameter settings for which inclusion of market mechanisms 
has a large effect, and some for which effects are relatively small? If so, what 
would be the real-world interpretation of the conditions that these parameter 
settings represent?  
  How does the incorporation of heterogeneity (i.e. in agent preferences and • 
resource constraints) and level of information (i.e. the number of sites evaluated) 
infl uence these outcomes?    

 This modeling exercise is part of the SLUCE II project, an interdisciplinary, 
multi-university project funded by the US NSF Dynamics of Coupled Natural-
Human Systems program. Our new model builds from two existing models by 
including new economic elements in each. The fi rst, ALMA (Parker and Filatova 
 2008 ; Filatova et al.  2009a,   b  ) , focuses on land market interactions and the 
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microeconomic determinants of WTP and WTA. The second, SOME (Brown 
and Robinson  2006 ; Brown et al.  2008 ; Robinson and Brown  2009  ) , uses survey and 
spatial data to develop empirically-based utility/suitability measures for residential 
agents, and then uses these measures to sequentially allocate land-use change events 
in the landscape, in the tradition of spatial statistical modeling. Our new model 
builds from these two existing models, expanding on both existing models to include 
additional economic elements.  

    26.2   Conceptual Overview 

 Our initial goal for this effort was to compare a land-use change model with and 
without a “land market,” with the idea that a land market is a single, comprehensive 
concept that can be switched on or off. However, given the diversity of modeling 
approaches and institutional environments in which land is traded globally, it quickly 
became clear that “land market” does not have a single, comprehensive defi nition. 
Our discussions led us to break down the operation of land markets into several dis-
tinct elements that progressively add four important aspects of markets:  Resource 
Constraints, Competitive Bidding, Strategic Behavior,  and  Endogenous Supply 
Decisions . Many land-use-change models include one or more of these elements; 
thus, the progression that we designed should facilitate analysis of our results in rela-
tion to a broad range of existing land-use-change models, from purely geographic to 
purely economic and from reduced form to highly structural models. We describe 
four levels of representation for modeling land markets (Table  26.1 ) and use these 
levels to design experiments to explore the answers to our questions (above).  

 The contents and motivation for each of these levels are as follows.

    • Level 0:  Level 0 is essentially a “fi rst-come, fi rst-served” sequential allocation 
model, i.e. a demand-driven model. A new land manager (or in many cases, 
simply a new land use) is selected for the parcel based on a utility ranking or 
suitability score, with parcels with highest utility or suitability selected fi rst. This 
utility function refl ects preferences for land attributes, a key building block of 

   Table 26.1    Degrees of market representation: model levels and their defi nitions   

 Level 0  Level 1  Level 2  Level 3  Level 4 

 No LM  Add resource 
constraints 

 Add competition  Add strategic 
behavior 

 Add endogenous 
supply 
decisions 

 No resource 
constraints, 
competitive 
bidding, strategic 
behavior, or 
endogenous 
supply decisions 

 Level 0 plus 
resource 
constraints 
for buyers 
and sellers 

 Level 1 plus 
allocation via 
competitive 
bidding 

 Level 2 plus 
strategic bid/
ask price 
formation 

 Level 3 plus 
modeled 
decision to 
sell rural 
parcel 



52926 Do Land Markets Matter? A Modeling Ontology and Experimental Design…

demand in any market model. However, the utility function is the only “market” 
element in the model. Sequential allocation models are generally constrained by 
a top-down quantity of change, either total or categorical, although models 
can also be driven by a total population that needs to be allocated across the 
landscape. This type of land allocation mechanism is used with a variety of 
parcel-scale land-use-change models, including CA, statistical regression 
models, and ABMs (Verburg et al.  2006  ) .  
   • Limitations:  Level 0 models generally do not explicitly incorporate the damping 
and sorting effects of economic resource constraints. A corollary to this point is 
that these models lack any explicit land prices, even exogenous prices. They may 
also assume unlimited land acquisition budgets on the part of acquiring agents. As 
a result, economically implausible land transactions may occur, such as land being 
acquired by an agent who in reality lacks the economic resources to accomplish 
that acquisition. In the case of several land- use types, a vacant parcel can be occu-
pied by a land use that would be outcompeted in reality by a higher-value use.  
   • Level 1:  The level 1 model overcomes the limitations found in Level 0 by adding 
 parametric, exogenous buyer and seller land values and land budgets  to the 
model. These limit the ability of a buyer to acquire the highest utility parcel. 
A buyer can then acquire a parcel only if the parcel is affordable under her  budget 
constraint, and a seller will accept her bid only if it is higher than his WTA. Thus, 
each transaction, in theory, will generate positive or neutral gains from trade.  
   • Limitations:  In the level 1 model, although the acquiring agent may be able to 
afford the parcel, that parcel may be of higher value to another agent. The Level 
1 model does not allow for competitive bidding, thus potentially preventing the 
higher-valuing agent from acquiring the parcel. As a result, land may not be 
allocated to the highest privately valued use. Although in the real world a variety 
of factors might mean that land is not necessarily allocated to its highest valued 
use, if a land market were allowed to operate, an agent with a higher value should, 
in theory, outbid an agent with a lower value.  
   • Level 2:  The level 2 model allocates parcels via  competitive bidding , rather 
than sequentially, giving the short-term opportunity for an agent with the highest 
valuation to acquire the parcel. This competitive bidding process also creates an 
endogenous land price or land rent, one that in theory refl ects the highest valued use 
of the land. This approach is taken in several agent-based models and analytical 
models of land markets (see Parker and Filatova  (  2008  )  for a recent review).  
   • Limitations:  In the level 2 model, buyers and seller each reveal their true valuation 
for the parcel (their WTP and WTA). In real land markets, these values are care-
fully guarded, and relative bargaining power may infl uence actual bid and ask 
prices, fi nal transaction prices, and the fi nal distribution of gains from trade.  
   • Level 3:  The Level 3 market model adds bid and ask prices to the level two 
model. Once competitive bidding is introduced into a market model, buyers and 
sellers have an incentive to behave strategically in order to capture the highest 
possible amount of surplus (the difference between a seller’s willingness to accept 
and a buyer’s willingness to pay). This strategic behavior is expressed through 
setting of ask prices and bid prices that are respectively higher and lower than the 
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sellers’ and buyers’ WTA and WTP. The ways in which these strategic decisions 
are made in land markets have not been thoroughly investigated as of yet, but 
such decisions are clearly a function of expectations regarding future trajectories 
of land prices and the participation decisions of other agents in the land market. 
Parker and Filatova  (  2008  )  lay out possible infl uences on such expectations, and 
Filatova et al.  (  2009a,   b  )  implement a simple version based on the proportion of 
buyers and sellers active in the market.  
   • Limitations:  Although the Level 3 model allocates land to its highest valued use, 
it does not allow feedbacks between this highest valued use and the supply of 
economically scarce land for conversion to the market. Just as market conditions 
may lead to strategic setting of bid and ask prices, market conditions may also 
lead to strategic incentives regarding when to supply a parcel to the market.  
   • Level 4:  The level 4 model  endogenizes land supply decisions . Expectations 
regarding sales prices have a strong infl uence on the decision to supply land to a 
market, and thus, the probability of fi nding a parcel on the market will be higher 
closer to the city center, where property values are higher.     

    26.3   Behaviors of Suppliers and Acquirers 
of Land in Each Model 

 We now describe the detailed assumptions for the behavior of suppliers of land, 
acquirers of land, and land-exchange mechanisms for each of the models. We 
follow a slightly modifi ed version of the MR POTATOHEAD template for land-
use-change models described in Parker et al.  (  2008  ) . Each models’ mechanisms 
are summarized in Tables  26.2 – 26.4 . MR POTATOHEAD terminology is in  italics . 
Our experimental design strives, as much as possible, to keep most of the elements 
the same between model levels, and progressively changes one or few elements at 
each level.    

    26.3.1   Suppliers of Land 

 The  suppliers of land  (Table  26.2 ) in our fi rst, simple model implementation are 
rural sellers, who are assumed in each case to put the single parcel that they own up 
for sale. 

 For Levels 0–3, the  motivation for supply  is not explicitly modeled. Motivation 
for supply also essentially describes the  event sequencing/triggers for land transfer  
that are part of the Exchange Rules section of the Land Exchange class of the MR 
POTATOHEAD model. A simple rule, consistent with the approach taken in the 
base versions of the SLUDGE, SOME, and ALMA models, will be used to deter-
mine which rural parcels are put on the market in each time period in Levels 0–3. 
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Initially, all rural parcels are initially available for acquisition. 1  The Level 4 model 
will endogenize the supply decision, with the potential supplier of land forming an 
estimate of the price at which they are likely to sell their parcel. If the difference 
between this expected price and the potential seller’s WTA reaches a certain 
threshold, the parcel will be put up for sale. In each case, the  parcels supplied  will 
include the entire rural parcel (no subdivision), although in later work, rural parcels 
can be subdivided by developers. 

 Suppliers of land for the Level 0 model will have no  resource constraint , where 
their resource constraint sets a minimum threshold for compensation for their par-
cel. In this fi rst set of experiments (Level 1), we essentially defi ne this constraint in 
terms of a willingness to accept (WTA), highlighting the fact that in the Level 0 
model, their parcel will be supplied without compensation. In economic terms, this 
basically assumes no land scarcity; an economically scarce resource is defi ned as 
one for which, if the resource were available without cost, more would be demanded 
than is supplied. Again to keep our experiments simple, we assume that the WTA is 
defi ned by a parametrically set opportunity cost; the value of the land in its current 
use. 2  This value will be set to zero for the Level 0 model. 

 For Levels 0–2, the  terms offered  (or ask price in standard economic terminology) 
will simply be equal to the WTA. The actual compensation received may still be 
above the WTA of the supplier, as the differential will depend on the bidding 
rules and the number of buyers. For Levels 3–4, the ask price will be strategically 
set based on the expectations of market conditions, following Parker and Filatova 
 (  2008  )  and Filatova et al.  (  2009a,   b  ) .  

    26.3.2   Acquirers of Land 

 At each level, the  acquirers of land  (Table  26.3 ) will represent new buyers entering 
the region. Each will seek to acquire a single residential parcel (their  motivation for 
Acquisition/trigger for market participation) . 

 In all models, acquirers of land will base their decision to acquire land on a 
simple utility function, whose representation will stay fi xed between experiments. 
They will gain utility from two factors: the  proximity infl uence  as a function of 
distance to a city/service center and the  neighborhood infl uences  of open-space 
amenities, which, for simplicity, will be generated by undeveloped open space in 
the local neighborhood of the parcel. 3  For each case, the  parcel they hope to acquire  

   1   We debated whether or not to make parcel availability stochastic, with the probability of parcel 
supply being higher for parcels closer to the city center. We may explore the effects of these 
alternative algorithms in future work.  
   2   In later versions of the Level 3 model, the WTA could also be a function of additional resource 
constraints (credit and debt constraints) and of expected sales price.  
   3   Later versions of the models will have much more sophisticated defi nitions of open space 
amenities based on land management as well as land use.  
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will be the highest utility parcel based on this utility function. In some experiments, 
agents will have heterogeneous preferences, so their utility for the same parcel will 
potentially differ. For model tractability, it is possible that this highest utility parcel 
may be selected from a sub-sample of all available parcels, constrained by budget 
if applicable. 

 In the Level 0 model, acquirers of land will face no  resource constraints ; they 
will be able to acquire their highest utility parcel at no cost. They will also face no 
constraint on their transportation budget. In Level 1–4 models, acquirers of land 
(buyers) will have both housing and transportation budget constraints, following 
Filatova et al.  (  2009a,   b  ) . Total income and transport costs will be set parametrically 
and varied experimentally. It follows that in the Level 0 model, acquirers’ willing-
ness to pay will be set to zero to refl ect the fact that they are assumed to be able 
to acquire any parcel at no cost. For Levels 1–4, the willingness to pay will be a 
function of the utility gained from the parcel and the budget constraint. To avoid the 
need to model price expectations in the Level 1–2 models, the functional transfor-
mation used in Filatova et al.  (  2009a,   b  )  will be used to create a WTP function that 
has the behavioral properties of a standard economic demand function. 

 The  terms offered  (bid price, in economic terms) for Levels 0–2 will simply be 
the WTP, in parallel with the setting of ask = WTA for suppliers of land. Again, in 
cases where the acquirers’ WTP is above the suppliers’ WTA, the actual transaction 
price may lie below the WTP. Bid prices at Levels 3–4 will be strategically set, 
dependent on market conditions, and will follow the approaches outlined in Parker 
and Filatova  (  2008  )  and Filatova et al.  (  2009a,   b  ) . 

  Model initialization and exchange rules:  Here we describe some key elements 
of the various levels in the form of both the  Exchange Rules  subclass of the  Land 
Exchange  and  Model Operation  classes in MR POTATOHEAD (Parker et al.  2008  ) . 

  Initial agent numbers, types, and locations : As mentioned above, we will initialize our 
landscape with a single active seller located on each parcel. Our initial experiments 
will focus on comparison of the Level 0–2 models. One of the biggest challenges in 
model design was the decision of what macro-scale constraint would drive land 
development in the model. In the real world, land development is driven by a com-
bination of such factors as migration and changes in employment and population 
structure. In land-use modeling, these infl uences are often represented by proxies 
that make assumptions regarding a quantity of cells/parcels that should change land 
in each time period. In an ABM, these infl uences could be represented through the 
assumption that a fi xed number of agents enter (or leave) the market in each time 
period. In our longer-term modeling, we intend to have progressive in-migration of 
new buyers, at rates consistent with the land change dynamics of our study area, and 
we also intend to endogenously model relocation decisions of currently settled 
agents (see “extensions,” below). However, in order to be able to draw a broad set of 
conclusions, relevant to the many other previously developed land-use change models 
that fall under our different model levels, the fi rst version will fi x some concept of 
“quantity of change” in order to facilitate comparison between models. 

 Executing experiments with comparable levels of change is diffi cult because 
one of the major differences between models with sequential allocation vs. land 
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market exchange is whether they have a fi xed vs. endogenous quantity of change. 
A fi rst-come/fi rst-served allocation method, such as in Level 0, requires that the 
quantity of change be limited, or the entire landscape will be converted. In contrast, 
a model with resource constraints (Level 1 and above) will limit conversion to only 
those parcels where the willingness to pay of the buyer is above the willingness 
to accept of the seller. With positive transport costs, these constraints will also lead to 
clustering of development around city/service centers. Once competitive bidding is 
introduced, the process of land-use change will be further constrained, because a 
buyer not only needs a higher level of resources than a seller, but also a higher bid 
than other potential buyers who strive to acquire the same parcel. 

 The implication of these differences in model mechanisms is that, for a fi xed 
population of agents who differ only in their resource constraints, (i.e., moving from 
a Level 0 to a Level 1 model), less land-use conversion should occur in the Level 1 
model than the Level 0 model. Furthermore, even less land conversion should occur 
in the Level 2 model than the Level 1 model. (Filatova et al.  (  2009a,   b  )  demonstrate 
that more conversion may occur when strategic bidding is introduced). We will fi nd 
appropriate parameter settings for the model (a homogeneous total population less 
than the number of cells on the landscape, and a combination of utility and budget 
parameters that imply that not all agents in the Level 2 model will seek to buy) in 
order to run a baseline model that verifi es these results. If our model behaves as we 
anticipate, we will then fi x the number of agents in at each level to an amount that 
produces the same number of land exchange events. This means that the number of 
participating agents may be different at each level, but that the total amount of land 
conversion will be the same. This will allow us to run experiments that examine the 
effects of the model runs on the extent and pattern of land conversion, holding 
the number of converted cells fi xed. 

  Land allocation mechanisms, event sequencing, and scheduling : For the Level 0 
model, acquirers of land will be allowed to sequentially select and acquire their 
most preferred parcel. For the Level 1 model, this acquisition will be limited to the 
parcels that are affordable under the buyer’s budget constraint, accounting for both 
the purchase price (the WTA of the seller) and the transport costs to city/service 
center. In each case, for any model run in which there are positive open space 
amenities and/or any heterogeneity in agent characteristics or resources, multiple 
model runs with different stochastic draws need to be run to account for stochastic 
elements. For the Level 2 model and above, initially all buyers will put a bid on their 
highest valued parcel, and sellers will then review bids and accept the highest 
valued bid, if it lies above their WTA. Buyers who do not succeed in acquiring 
a parcel, and sellers who do not succeed in selling their parcel, will participate in a 
next round of trade. Rounds of trade will continue until no more trades occur. Again, 
multiple model runs will be needed in most cases, since different agents may have 
equal utility and WTP for a given parcel. 

  Experiments:  Our initial experiments will compare the Level 0–2 models. Our fi rst 
goal is to identify sets of parameter values that demonstrate the extremes of model 
outcomes. In other words, we will search for a set of parameter values that lead to 
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the smallest effects of including market mechanisms as well as those that lead to the 
largest effects. Consistent with our previous work, we plan experiments that vary 
distributions of agent characteristics in terms of preferences for proximity and open 
space amenities and resource constraints. 

 Although we plan to run baseline models that set open space amenities to zero 
for verifi cation purposes, we are essentially interested in land-use change models 
that explore the effects of open space amenities on the pattern and extent of land 
conversion in ex-urban settings. Given the wide variety of models that explore 
similar questions that have been developed using a variety of modeling methods 
(including those based on CA, spatial econometrics, neural nets, and agents), we 
believe that a set of experiments that incorporates open-space amenities will still be 
quite generally informative with respect to investigating the importance of land 
market mechanisms on land-use change models of this type. Therefore, the bulk of 
our experiments will include positive open space amenities. 

  Hypotheses:  How do we expect inclusion of the land market mechanisms to affect 
patterns? We are still developing these hypotheses, and of course, one reason for 
building simple simulation models of complex systems is to help develop theoretical 
hypotheses for systems for which simple intuition and/or mathematics fail. However, 
an initial hypothesis is that a model that excludes market mechanisms (Level 0) may 
predict more expansion and sprawl than a model that includes them. Including 
representations of positive open space amenities, disamenities from commuting 
without transport costs, and some prior development, a parcel that is relatively distant 
from the city center will provide relatively higher utility than a closer in parcel, which 
will likely have more highly developed neighborhood density. If an acquirer of land 
is not constrained by a housing or transport budget, they will easily acquire that 
higher utility parcel. Having located there, they then decrease the utility of that loca-
tion for another potential resident with a high preference for open-space amenities, 
leading to path dependence in which the next acquirer occupies a parcel even further 
out than they would have had they not been able to acquire that parcel. 

 This path-dependent, leapfrog-generating location incentive will be present in 
any of our model runs that have positive open-space amenities. However, our 
hypothesis is that the pull towards the city center – whether from transportation cost 
constraints or from the need to outbid other buyers – will be stronger for the model 
that include market mechanisms. Thus, the constrained development path may 
be progressively more compact for the Level 1 and 2 models. This result, however, 
could be dependent on relative parameter values. 4  It may also no longer hold, 
or may be dampened, in models that allow endogenous relocation by residents 
(see Sect.  26.4 ). Finally, based on our previous work with heterogeneous agents, we 
anticipate that differences between model outcomes will be magnifi ed as the degree 

   4   Note that this hypothesis could break down if buyers had sophisticated expectations regarding future 
paths of development. However, in a complex environment, even the most intelligent boundedly 
rational agent would likely fail to anticipate exact future patterns of local development. Modeling 
of such expectations, in any case, will be an interesting topic for future work.  
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of agent heterogeneity – in terms of preferences for open space amenities and 
proximity and resource constraints – increases. 

 A second set of questions relate to the degree to which the modeled landscape 
produces an economically effi cient allocation, where economic effi ciency is 
measured by the sum of economic surplus (the difference between WTP and WTA) 
generated by the landscape. Economic effi ciency is, in theory, characterized by 
Pareto optimality, under a very narrow set of conditions that include a “no externality” 
condition. When open-space amenities are present, every landscape pattern/quantity 
allocation outcome will be characterized by a potentially different pattern of external 
costs and benefi ts. Thus, for the majority of our experiments, we do not expect the 
land market allocation to be economically effi cient. 

 Yet, given the limitations of models that omit market mechanisms that we discuss 
above, we are interested in the economic surplus generated in each of our experi-
mental outcomes, since it should refl ect the success of the competitive allocation 
algorithms. We plan to evaluate the economic effi ciency of each landscape outcome 
for a baseline, no open space amenity model, relative to a baseline random alloca-
tion model. Since calculations of economic effi ciency depend on WTP and WTA, 
economic effi ciency for each outcome will be calculated using the WTP and WTA for 
the level 2 model. One hypothesis is that, in terms of relative orders of magnitude, the 
level 0 model (which bases allocation on utility-metric preferences) will lead to 
the highest relative increase in the economic effi ciency of the generated landscapes, 
relative to the level 1 and 2 models. A counter hypothesis is that only the level 2 
model, which most closely resembles the traditional market models on which 
economic effi ciency theorems are based, will lead to a signifi cantly more effi cient 
landscape. From the perspective of economics, these comparisons will shed light on 
the question of whether land markets matter from a formal theoretical perspective.   

    26.4   Model Extensions 

 We have described a series of incremental steps to add market mechanisms 
(Levels 0–4) and evaluate the effects of including a market on spatial development 
patterns. A number of additional mechanisms could be added to (1) extend the 
levels of market complexity and (2) include additional mechanisms that may alter 
the effects of our current set of market mechanisms. In this section we focus on the 
second of these two types of extensions. We provide a brief discussion on endoge-
nous price expectation in supply that could lead to relocation by residents and the 
incorporation of developers into the land-change system as mechanisms that could 
alter our model behavior and provide increased realism desired by policy and 
decision makers. 

  Endogenous relocation by residents : Spatial economics suggests that there are 
several main reasons for the migration and relocation of households (Clark and van 
Lierop  1986 ; van der Vlist et al.  2002 ; Clark et al.  2003  ) . Employment opportunities 
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elsewhere are a main driver of inter-urban migration. Intra-urban migration occurs 
when households become dissatisfi ed with the neighborhood or home they live in 
and they fi nd more attractive housing options elsewhere (potentially due to a change 
in life-cycle stage). Housing bundle theory identifi es three components that infl u-
ence the attractiveness of a particular property for a buyer: (1) housing structure 
(2) neighborhood quality, which includes both social and environmental components 
and (3) accessibility to public and private services (infl uenced by transport costs 
and geographic/institutional restrictions) (Adams  1984  ) . The relocation process is 
largely determined by the demand and supply of these components. Relocation 
creates two important feedbacks. In the short run, relocation can change neigh-
borhood quality; and in the long run, it also changes the quality and cost of public 
services. Given the focus of our modeling work on open-space amenities, we are 
most interested in how these short-run feedbacks may trigger a subsequent cascade 
of endogenous relocation. 

 Although a lack of endogenous relocation has been put forward as a criticism 
of land change models that lack a land market (Polhill et al.  2005  ) , endogenous 
relocation can be modeled even in the absence of resource constraints, competitive 
bidding, and strategic behavior. If new residents infl uence the quality and character 
of natural or neighborhood amenities, then the utility/value that an agent holds at a 
location may change. In a non-market context, an agent will have a utility-based 
incentive to move. In a market context, a parcel that was initially allocated to its 
highest valued use may no longer be. 

 In later work we will evaluate the infl uence of endogenous relocation on model 
output for each of the model levels described above. For Levels 0 and 1, agents will 
be able to relocate when the expected utility (constrained by budget where relevant) 
of relocation exceeds the expected utility of remaining on the current parcel. For 
Level 2 and beyond, this relocation would, under most circumstances, be contingent 
on the ability of the current agent to sell the current parcel and make a gain from 
trade. Endogenous relocation should facilitate evolution of a more dynamic land-
scape. For the market model variants, it will allow the highest valued use to evolve 
over time. 

 We hypothesize that the inclusion of endogenous relocation may increase 
residential sprawl. Preferences for natural amenities by households have been 
increasing over time as evidenced by the rate of exurban development, which has 
outpaced that of population growth in the conterminous USA between 1980 and 
2000 (Theobald  2005  ) . We anticipate that as neighborhood density increases, there 
will be increasing incentive for agents to relocate to locations with higher in natural 
amenities or to locations that have socio-economic characteristics that are more 
preferable but are constantly changing over time. 

  Modeling developers:  Conventional urban economic models typically assume 
that agricultural land is transferred to households directly (Alonso  1964  ) . In some 
cases, these models omit the direct modeling of agricultural land owners and focus 
instead on transactions between developers and households (Henderson and Thisse 
 1999  ) . In others, the transactions occur between agricultural sellers and developers 
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(Asami and Teraki  1991  ) . Rarely are all three actors, i.e. agricultural owners, 
developers and households explicitly represented in a spatially explicit model. 5  
Perhaps the largest void exists with respect to research on developers. However, 
developers signifi cantly infl uence land change. It is the developer who, in a free 
market, generally determines which agricultural lots to convert to residential land use, 
at what structural density (subject to government constraints) and at what price to 
offer parcels in the land market. These decisions and the market transactions between 
developers and farmers, and further between developers and residential households 
are important processes infl uencing land market dynamics (land patterns and land 
prices). As a next step of model development we plan to include developer agents in 
the land market. As with other agents we would like to consider three levels of 
economic behavior of a developer based on two criteria: resource constraints and land 
acquisition via competitive bidding. In future work we will evaluate the infl uence of 
developers on model output for each of the model levels (0–4) described above.  

    26.5   Discussion and Conclusions 

 Our focus has been on evaluating the incremental inclusion of land-market mecha-
nisms, using a suite of ABMs, on spatial settlement patterns and market dynamics. 
ABMs of land-use use virtual agents to provide computational representation of 
the actions and decision-making strategies used by real-world actors. The forms of 
interaction among agents in the absence of a market are typically through substitution 
(i.e. the acquisition of one property alters the selection choices available to other 
agents), by constraint (i.e. a township invokes a land-use policy that excludes a 
specifi c type of development action from occurring), or through neighborhood 
effects (i.e. the evaluation of a settlement location by residential household agents 
involves comparing its location preferences with those of possible neighbors at the 
evaluated site). However, with the inclusion of market mechanisms, the degree of 
interaction is increased through competitive bidding, strategic behavior, and endo-
genous supply decision making. Anderson  (  1972  )  notes that ‘more is different’ with 
respect to the degree of interaction among agents. Therefore we speculate that 
through the increasing degrees of interaction brought about by market mechanisms, 
our results will illustrate that markets do infl uence settlement patterns. 

 Ultimately we are interested in the role of land development dynamics and patterns 
on ecosystem function(s) through land-use and land-cover change. Several market 
interactions are relevant to this question. First, land cover patterns intervene in the 

   5   Analytical non-spatial models that account for the behavior of all three categories in a land 
market exist (Kraus  2006 ). However, within each group (developers, agricultural land owners and 
households) all agents are assumed to be homogeneous, perfectly rational and, with constant 
returns to scale. Space is assumed to be homogeneous except for the distance to the center, and 
enters economic models as travel costs and amount of spatial good acquired (sq foot). Location 
specifi cs and neighborhood externalities remain unexplored.  
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choices of land for development and residence, through the individual preferences 
of residents for particular landscape characteristics and the perception of those 
preferences by developers. Second, to the degree that residents and developers are 
concerned about the market value of their land, residents’ and developers’ percep-
tions of the infl uence of landscape characteristics on the choices of other residents 
could infl uence their choices about landscape management activities, regardless of 
their own landscape preferences. In later stages of our modeling, we will explore 
such questions in detail.  
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  Abstract   Land markets are characterized by spatially distributed exchanges of 
 heterogeneous goods and decision-making by heterogeneous, adaptive partici-
pants. Land market dynamics infl uence and are infl uenced by spatially varying 
demands for residential housing through housing markets. This chapter describes 
a spatially disaggregated, economic agent-based model for exploring ex-urban 
growth patterns emerging from coupled interactions between housing and land 
markets (CHALMS). CHALMS simulates the conversion of farmland to housing 
development over time, through the actions of the agents in the land and housing 
markets. Three types of agents—consumers, farmers and a developer—make deci-
sions based on microeconomic principles, and use stylized expectation formation 
models to adapt to dynamic market conditions. The location, price, and density of 
housing are represented explicitly, as are the location, price, and productivity of 
individual farms. The possibility of many possible system states, due to agent and 
landscape heterogeneity, stochastic processes, and path-dependence, requires mul-
tiple model runs, as does the expression of the spatial distribution of housing types, 
overall housing density, and land prices over time in terms of the most likely, or 
‘average’, patterns. CHALMS captures stylized facts of diminishing population 
density and land prices at greater distances from the center city, increasing land 
prices over time, and dispersed leapfrog patterns of development evident in most 
suburban areas of the U.S.      
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    27.1   Introduction 

 As urban sprawl and other undesirable development patterns become more  prevalent, 
policy-makers and researchers alike are coming to grips with the complexity of 
forces that generate such patterns (Atkinson and Oleson  1996 ; Brown et al.  2005 ; 
Brown and Robinson  2006 ; Magliocca et al.  2011  ) . Land-use patterns on the urban 
fringe emerge from many individual landowners’ conversion decisions in response 
to changing economic opportunities and landscape features. With such complexity, 
land-use change simulation models have become valuable tools to understand pro-
cesses of land conversion and development, and for analyzing the effects of land use 
policies. Various modeling methodologies have been applied in a wide range of 
disciplines, such as urban planning, landscape ecology, geography, and economics, 
to build the current understanding of land-use change (Irwin  2010 ; Parker et al. 
 2003 ; Veldkamp and Verburg  2004  ) . 

 However, most models represent either spatially detailed development patterns 
or individual-level decision-making—rarely integrating both elements explicitly. 
For example, models that provide spatially explicit representations of land-use pat-
terns may lack an equally rigorous representation of agent decision-making processes 
(Fernandez et al.  2005 ; Parker and Filatova  2008 ; Parker et al.  2012  ) . Models that 
take into account microeconomic agent decision-making, on the other hand, may 
fail to capture the full heterogeneity of those agents and inadequately describe spa-
tial characteristics of model outcomes (Irwin  2010  ) . 

 This chapter describes the Coupled Housing and Land Markets model—CHALMS. 
It is an economic agent-based model (ABM) of housing and land markets that cap-
tures the conversion of farmland to residential housing of varying densities over time 
in a hypothetical, growing ex-urban area. The primary goal of this study is to develop 
some general theoretical insights into the individual-level processes that drive regional 
development patterns. CHALMS is unique among ABMs of land-use for its integra-
tion of: (1) microeconomic decision-making rules for consumer, farmer, and devel-
oper agents in a spatially explicit framework; (2) representation of heterogeneous 
agent characteristics and spatial goods (e.g. land productivity and housing sizes and 
densities); and (3) direct linkages between adaptive price expectations and demand 
and supply decisions of developer and farmer agents through housing and land mar-
kets. The model demonstrates how patterns in development density and land prices 
predicted by traditional urban economic theory can be reproduced in an ABM frame-
work. In addition, it shows how disconnected, leapfrog development patterns emerge 
from the simulation of individual price expectations and market transactions. 

 Section  27.2  reviews the capabilities and limitations of current land-use model-
ing approaches, and describes how integrating the insights from recent economic 
and non-economic ABMs can provide a more complete representation of the pro-
cesses driving urban growth. Section  27.3  details the structure of CHALMS, agent 
representations, and market interactions. Section  27.4  presents baseline results and 
outcomes of preliminary sensitivity analysis. Finally, Sect.  27.5  concludes with a 
discussion of model capabilities and limitations and directions for future research.  
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    27.2   Some Previous Land-Use Modeling Approaches 

    27.2.1   Spatial Equilibrium Economic Models 

 Economic models of urban land use are typically built on the assumption of spatial 
equilibrium. These models assume that over the long run housing rents will reach 
equilibrium and offset differences in spatially heterogeneous attributes such as 
transportation costs to the central business district (CBD), neighborhood amenities, 
and access to employment. Early models in the urban economics literature used a 
monocentric city framework in which location is defi ned purely by distance to a CBD 
where all jobs are located (Alonso  1964 ; Muth  1969 ; Mills  1972  ) . Decreasing hous-
ing rent and density gradients are a feature of these monocentric models—i.e., rents 
and housing density fall as distance to the CBD increases. The basic monocentric 
framework has been expanded to incorporate growth and uncertainty, include envi-
ronmental and open space amenities, evaluate zoning and other regulations, and 
study a variety of other issues (Capozza and Helsley  1990 ; Mills  2005 ; Wheaton 
 1974 ; Wu and Plantinga  2003  ) . In recent years, economists have relaxed the mono-
centricity assumption (e.g. Epple and Sieg  1999 ; Walsh  2007  ) . 

 Although spatial equilibrium models have many desirable features—a rigorous 
representation of agent behavior and capitalization of spatial differences in ameni-
ties and other factors into land values (Irwin  2010  ) —several strong assumptions are 
made to ensure analytical tractability. First, spatial equilibrium is a particularly 
restrictive assumption, because out-of-equilibrium dynamics, such as path depen-
dence of development location, are important drivers of urban systems (Arthur 
 2006 ; Brown et al.  2005 ; Irwin  2010 ; Tesfatsion  2006  ) . Second, in order to ensure 
analytical tractability, agent heterogeneity is typically quite limited. 1  More detailed 
discussions of the limitations of these assumptions are available elsewhere for a 
wide range of applications (Arthur et al.  1997 ; Arthur  2006 ; Axtell  2005 ; Kirman 
 1992 ; Filatova et al.  2009 ; Irwin  2010 ; Parker and Filatova  2008 ; Tesfatsion and 
Judd  2006  ) . Since the intent here is to investigate the spatial and temporal dynamics 
of housing density patterns, a framework that can account for both agent prefer-
ences for spatially heterogeneous goods and idiosyncratic differences in decision-
making processes is necessary. Path dependence of land-use patterns can then be 
explicitly linked to individual-level motivations of land conversion decisions.  

    27.2.2   Agent-Based Models 

 Agent-based modeling (ABM) has emerged as an alternative method for modeling 
urban growth and land use change (see Crooks and Heppenstall  2012  for an 

   1   Some models include more heterogeneity than others. See, for example, Anas and Arnott  (  1991  )  
and Epple and Sieg  (  1999  )  for models with heterogeneous consumers.  
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 overview). Parker et al.  (  2003  )  provide a detailed review of the different types and 
applications of ABMs for modeling land use change. Although ABMs differ widely 
in their focus, assumptions, and formalizations of agent interactions (e.g. Benenson 
and Torrens  2004 ; Ettema  2010 ; Filatova et al.  2007,   2009 ; Ligtenberg et al.  2004 ; 
McNamara and Werner  2008 ; Otter et al.  2001 ; Parker and Filatova  2008 ; Robinson 
and Brown  2009  )  they all rely on interactions between many distributed agents to 
form emergent larger-scale patterns (Manson  2001  ) . Thus, microeconomic funda-
mentals can be incorporated into individual agents’ decision-making rules to simulate 
emergent trends in a spatially explicit framework. 

 However, examples of incorporating microeconomic decision-making rules into 
ABMs are few. Filatova et al.  (  2009  )  and earlier papers (Filatova et al.  2007 ; Parker 
and Filatova  2008  )  present the fullest, economically-based implementation of an 
agent-based land market to date. The authors relax the conventional spatial equilib-
rium assumption by explicitly modeling decentralized, bilateral transactions 
between land buyers and sellers. Transaction prices for land are determined by spec-
ifying a buyer’s and seller’s willingness to pay and willingness to accept, respec-
tively, which are then adjusted to form bid and asking prices accounting for different 
market power scenarios (Filatova et al.  2009 ; Parker and Filatova  2008  ) . The authors 
have provided valuable insights into methods for relaxing spatial equilibrium 
assumptions and incorporating microeconomic decision-making into the ABM 
framework. However, their model lacks a housing market and cannot capture the 
feedbacks between land and housing markets that infl uence spatial rent structures. 

 Ettema  (  2010  )  presents an economic ABM of a housing market, which explicitly 
simulates relocation and price setting processes. Housing prices are produced 
through bilateral transactions between a buyer and seller, and are constrained by the 
agents’ perceptions of market conditions and by the buyer’s budget constraint and 
housing preferences. The buyer’s opportunity costs are explicitly considered by 
comparing utility derived from housing dwellings available in the current period to 
the maximum expected utility of potential housing in the future. Expectation forma-
tion, executed using Bayesian updating, is a key advance from this model design. 
However, the expectation formation process only accounts for price changes driven 
by changing consumer preferences attributed to life cycle effects. For the purposes 
of simulating spatially explicit development patterns—which the author acknowl-
edges is beyond the scope of his current model—the model’s design cannot accom-
modate spatial characteristics of housing goods or the formation of spatially 
heterogeneous price expectations. 

 Robinson and Brown  (  2009  )  present a detailed spatial representation of regional 
development patterns in a GIS-based ABM named dynamic ecological exurban devel-
opment (DEED). Land and housing markets are integrated by the conversion of farm 
parcels to residential subdivisions of different densities by developers, and the acqui-
sition of deeds to subdivision lots by residential household agents. In addition, town-
ship agents are able to specify zoning and land acquisition polices to alter development 
patterns. However, land conversion events are not based on microeconomic decision-
making. Farm and residential parcel sales probabilistically occur on the basis of land 
or lot characteristics. No markets are represented in which  competing land uses can be 
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valued, and the economic constraints or opportunity costs of the acting agents are not 
considered. Although the authors make a valuable contribution towards empirically 
grounding ABMs, this approach makes it diffi cult to gain general insights into the 
underlying economic forces that drive land conversion decisions. 

 CHALMS builds upon the above ABMs by integrating many of their innovations 
into one framework capable of simulating development density patterns through cou-
pled housing and land markets. Similar to Robinson and Brown  (  2009  ) , housing and 
land markets are linked through the supply and demand functions of the developer and 
consumer households, respectively; however, our agents respond directly to and create 
market prices subject to economic constraints. Mechanisms of land and housing trans-
actions in CHALMS are built upon the bilateral transaction framework developed by 
Parker and Filatova  (  2008  ) , but are expanded to link the developer’s rent expectations 
in the housing market to his bid prices in the land market. Price expectations play a 
similar role in CHALMS as they do in Ettema’s model  (  2010  ) . Adaptive expectations 
of future prices and market conditions are used to compare the utility of present and 
potential future transactions—directly infl uencing the timing of transactions. In addi-
tion, our agents’ price expectation models are designed to capture spatially dependent 
price trends that directly affect the location of housing and land sales. These advances 
allow us to investigate both the supply- and demand-side forces driving spatial patterns 
of land conversion and development density over time.   

    27.3   Model Description 

    27.3.1   Model Structure 

 A growing exurban area is represented in which land is converted from farming to 
residential housing of varying densities over time. Farmland differs randomly in its 
productive capacity across farms, and farmers differ in how they form expectations 
about future prices of their land. Farmers compare the returns from farming to 
expected profi t from selling their land to a single representative developer and make 
the decision each period whether to continue farming or enter the land market. 
Inequality between farmers’ total supply and the developer’s demand for land estab-
lishes the bargaining power of farmers, which infl uences land transaction prices. 

 The developer determines the profi tability of different types of housing that vary 
by both structure and lot size. He sells a housing good (i.e. a combination of a given 
house and lot size) to consumers who prefer to be close to the urban area to mini-
mize transport costs, and are differentiated by both income and preferences over 
different housing types. CHALMS tracks development over time incorporating ele-
ments of path dependence and stochastic uncertainty that determine spatial develop-
ment. A schematic of agent decision-making and market interactions, along with 
the sequence of events, is shown in Fig.  27.1 . Price prediction models for farmers 
and the developer are used to form expectations of future land and housing prices, 
respectively, and are described in detail in the Appendix.   
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    27.3.2   Formation of Agent Price Expectations 

    27.3.2.1   Consumer Utility, Willingness to Pay (WTP), 
and Willingness to Bid (WTB) 

 A consumer  c  calculates standard Cobb-Douglas utility derived from the  consumption 
of a general consumption good and a housing good. Each housing good can be con-
sidered a ‘bundle’ of 1 of 18 different housing types, which are distinguished by 
different combinations of three different house sizes ( h )—1,500, 2,000, and 2,500 
square feet—and six different lot sizes ( l )—¼, ½, 1, 2, 5, and 10 acre; these lot and 
house sizes are meant to represent a typical ex-urban area. Consumer  c’ s utility 
function is assumed to have a Cobb-Douglas form:

     ( )|( , )
c

c c

c ask n n n nU c n I P h l
a b gy= − −

   (27.1)  

where  I  
 c 
  is income,   y   

 n 
  is the travel cost from the location of house  n  to the CBD, and 

  b   
 c 
  and   g   

 c 
  are the consumer’s idiosyncratic preferences for house and lot sizes, 

respectively.  P  
 ask/n 

  is the developer’s asking price for house  n , which is determined 
by Eqs.  27.15  or  27.16  below, depending on whether the house is being re-sold or is 
newly constructed, respectively (see Sect.  27.3.4.1 ). 

 The WTP of consumer  c  for any given house  n  is then equal to the portion of the 
consumer’s income that he/see is willing to pay for housing as given by the Cobb-
Douglas structure:

     ( )( )( , ) c n c cWTP c n I y b g= − +
   (27.2)   

 Although this functional form for the utility function implies that consumers 
would pay the same amount for all housing net of transportation costs, consumers 
identify the housing option with the greatest utility and adjust their bids on other 

  Fig. 27.1    Conceptual map of agent and market interactions in CHALMS. The  numbers  indicate 
the (counter-clockwise) sequence of events within one simulated time period (t). Agents ( italics)  
are labeled with the underlying conceptual model that governs their behavior. Inter-temporal pro-
cesses (t + 1) shown include updating developer’s rent prediction models, updating the farmers’ 
land price prediction models, and exogenous growth of the consumer population (Taken from 
Magliocca et al.  2011  )        
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houses relative to this most preferred option. First, the maximum utility possible 
across all houses,  U* , is found. Holding  U*  constant for all housing options, the 
rent,  R   *   ,  that would produce the same utility to the consumer as the most preferred 
choice (i.e. an optimal rent such that the consumer would be indifferent among 
housing options) is calculated for each housing option.

     

1
*

* ( , )
c

c cc n

n n

U
R c n I

h l

a

b gy
⎛ ⎞

= − − ⎜ ⎟⎝ ⎠
   (27.3)   

 Second, the difference between the rent being asked by the developer,  P  
 ask|n 

 , 
and the optimal rent,  R   *  , is used to form a willingness to bid (WTB) from WTP for 
each house.

     ( )*
|( , ) ( , ) ( , )ask nWTB c n WTP c n P R c n= − −    (27.4)   

 Consumers therefore bid more or less than the constant share of income for 
housing depending on their income and idiosyncratic preferences for house and lot 
size, and on the seller’s asking prices for the houses actually available at a point in 
time. It is important to note that the full heterogeneity of consumer preferences is 
captured, and bids refl ect the relative utility of each housing option offered.  

    27.3.2.2   Developer’s Rent and Return Projections and Willingness 
to Pay (WTP) for Land 

 The developer is assumed to use housing information, such as incomes and utilities 
of residents and records of past housing prices, to form rent expectations, which in 
reality would be available from a ‘real estate agent’ or similar source. Housing 
information is recorded in discrete ‘zones’ of fi ve by fi ve blocks of cells, which seg-
ment the entire simulated landscape. This information includes the average expected 
rent, lot size, house size, number of bidders before sale, percent that sale price was 
above/below the original asking price, the number of houses of each type in the 
zone, and residents’ income and utility levels for all houses in each zone. For any 
given house, the developer uses fi nancial prediction models (see  Appendix , 
Eqs.  A.1 – A.6 ) to form a rent expectation ( R  

 expt 
 ) for that house in  t  + 1 given past 

price information from the neighboring zones. Based on rent expectations for exist-
ing housing, the developer makes spatially explicit rent projections for all housing 
types for all undeveloped cells. 

 Rent projections are made by one of the three different methods described below. 
Projected rents are a combination of weighted local and regional (city-wide) rent 
information. For a given housing type to be built in a given location, a similar hous-
ing type within a local geographic area provides rent information from which a 
direct extrapolation can be made based on distance and local price trends. However 
when a similar housing type does not occur locally, the developer must rely on rent 
prediction methods that draw from similar housing types in a larger geographic 
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region. In this ‘regional case’, rent predictions are less direct than in the ‘local case’. 
Thus, the appropriate rent projection method is adopted based on the amount of rent 
information available in a given area. For each undeveloped cell, a rent for each 
housing type is projected taking into account the distance of the given cell from the 
CBD and associated travel costs. 

 For a given undeveloped cell, the distance to every other grid cell is calculated 
and mapped. The specifi ed parameter,  n  

 close 
 , sets the number of closest cells to be 

considered as a local search area for rent information. Using  n  
 close 

  developed cells, a 
distance-from-the-CBD-weighted average rent is calculated for each housing type 
present. This subset of local houses,  n  

 close 
 , is the basis of rent projections so that high 

demand in particular areas (e.g. due to desirable housing types and/or a relative 
shortage of housing in close proximity to the CBD) can be capitalized into rents that 
may exceed what is predicted based on only the travel cost gradient. Depending on 
whether the housing type for which a rent projection is being made is present in  n  

 close 
  

search cells, one of the following methods for projecting rent is used:

    1.    If the housing type for which a projection is made  is present  in the  n  closest 
cell:

     ( , ) ( , )loc loc loc
proj ltR i lt R mcD i lt= −    (27.5)  

  where    loc
ltR    is the local distance-weighted average rent for housing of type  lt  

within he closest developed cells,  mc  is the travel cost per cell (converted from $/
mile), and    ( , )locD i lt    is the distance from the cell  i  to the closest developed cell of 
the same housing type  lt .

     ( )( , )reg reg reg
proj lt i ltR i lt R mc D D= − −    (27.6)  

  where     reg
ltR   is the regional average rent for housing type  lt ,     iD    is the distance 

from the CBD of cell  i , and     reg
ltD    is the average distance from the CBD of all 

housing of type  lt  in the region. The resulting rent projection is given by:

     ( , ) ( , ) ( , )loc reg
proj loc proj reg projR i lt w R i lt w R i lt= +    (27.7)  

  where  w  
 loc 

  and  w  
 reg 

  are local and regional weights of 0.3 and 0.7, respectively.  
    2.    If the lot type for which a projection is being made  is not present  in the  n  closest 

cells, but exists somewhere in the city, the rent projection is solely based on 
regional rental information and is given by Eq.  27.6  for     ( , )reg

projR i lt   .  
    3.    If the lot type for which a projection is being made  is not present  in the  n  closest 

cells, and it  does not exist  anywhere else in the city, then rent projections are 
made based on average utilities:
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  where    loc
nI    is the average income (available from zonal housing information, see 

above in Sect.  27.3.2.2 ) households located in the  n  closest cells, and     loc
nU   is the 

average utility of households located in the  n  closest cells.

     

1

( , )
reg

reg reg
proj i

U
R i lt I

h l

a

b gy
⎛ ⎞

= − − ⎜ ⎟⎝ ⎠    (27.9)  

  where     regI   and    regU    are the average household income and utility, respectively, 
over the entire region. The rent projection for housing type  lt  in cell  i  is then 
given by Eq.  27.7 .     

 Based on projected rents, potential returns are calculated for every housing type 
in every undeveloped cell by subtracting the costs of construction and infrastructure 
(Table  27.1 ), which vary by housing type, and the price of land for the given cell. 
The maximum return for each cell is calculated as the housing type with the maxi-
mum return over all possible housing types (subject to zoning constraints) for the 
given cell. Maximum returns are then projected onto the gridded landscape to be 
used by the developer to determine the type and location of housing construction 
that maximizes profi t across all vacant holdings.  

 Given the rent projections for every undeveloped cell, the rent associated with 
the housing type that produces the maximum return in each cell  i  of farm  F  is 

   Table 27.1    Selection of model parameters   

 Mean (Std. dev) farm size, in acres  128 (70.67) 

 Mean (Std. dev) agricultural return, in $/acre  $2,486 ($249) 
 Building cost per square foot  $85–$165 

 Infrastructure costs per housing unit    a  
  One acre lots or smaller  $6,000–$17,000 
  2 acre lots  $11,000–$20,000 
  5+ acre lots  $13,000–$25,000 

 Share of income on housing expenditure, ß +  g  
  Low income  .35–.42 
  Middle income  .27–.34 
  High income  .18–.26 
 Proportion of housing expenditure on land,  g /(ß +  g )  .10–.90 

 Transportation costs (costs/mile) 
  Time b   $1.30 
  Out of pocket (   BTS  2007 )  $0.54 
 Exogenous rate of population growth  10% 

   a Based on Frank  (  1989  ) and Fodor  (  1997  )  
  b We assumed time costs to be a function of average road speed (30 mph), average number of work-
ers per house (2), average wage per person ($30/h), value of time as a percent of wage (50%), and 
the road network indirectness coeffi cient (0.3) (this is the ratio of network distance to the Euclidean 
distance)  
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 specifi ed as  R  
 max|i 

 . The developer’s WTP for a given farm  F  is the average  R  
 max|i 

  over 
the extent of the farm:

     

max|

( , ) i

j
j F

F

R

WTP F t
A

==
∑

   (27.10)  

where  A  
 F 
  is the total acreage of farm  F .  

    27.3.2.3   Formation of Farmer’s Willingness to Accept (WTA) 

 Farmer expectations of land prices are formed using a randomly allocated set of 20 
prediction models. Each prediction model uses one of six different methods for 
forming predictions based on up to 10 years of past land prices from which to 
extrapolate the next period’s price expectation (Eqs.  A.1 – A.6  in Appendix). A farm-
er’s decision to sell to a developer or continue farming is based on the expected 
return from selling his farm relative to the value of the farm’s agricultural return per 
acre in perpetuity,  V  

 agr 
 . The projected land price for cell  i  on farm  F ,  P  

 Lproj|Fi 
 , which 

consists of spatially discounted (Eq.  A.10  in Appendix) and predicted (Eqs.  A.1 – A.6  
in Appendix) price components, is compared to the farmer’s baseline WTA.

     { }| |( , ) max ,
i ii Lproj F agr FWTA F t P V=    (27.11)   

 The farmer’s WTA is dynamically set to the greater of the two values. This 
enables the farmer to capture speculative gains from sale of his/her land when devel-
opment pressure is high, while enforcing a rational threshold below which the 
farmer would be better-off farming.   

    27.3.3   Land Market Interactions 

    27.3.3.1   Bargaining Power 

 If the developer’s WTP for a given farm is greater than the farmer’s WTA for his 
land, then the two enter into bilateral negotiation to determine the fi nal transaction 
price of each parcel. Bargaining power in the land market,  e , is adapted from Parker 
and Filatova  (  2008  )  and captures differences in the developer’s demand for and the 
farmers’ supply of land at the initial WTP of the developer.

     

( )
( )

*

*

Land F

Land F

d A

d A
e

−
=

+
   (27.12)  

where  d  
 Land 

  is the acreage demanded by the developer and  A  
 F* 

  is the acreage supplied 
by participating farmers.  F*  is the subset of all farmers for which the condition 
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WTP > WTA is true. If the developer demands more land than farmers supply,  e  is 
positive and farmers bid above their WTA (see Sect.  27.3.2.3 ). If farmers supply 
more land than is demanded by the developer,  e  is negative and the developer will 
bid below his initial WTP (see Sect.  27.3.2.1 ). Bargaining power is dynamic because 
the amount of land supplied by farmers depends on the initial WTP of the developer. 
Also, the developer’s WTP for a given farm depends on the level of rents in the 
housing market. Thus, housing and land markets are explicitly linked.  

    27.3.3.2   Formation of Farmer’s Asking Price (P ask|L ) 

 After bargaining power is observed (Sect.  27.3.3.1 ), farmers participating in the 
market ( F* , i.e. WTP > WTA for their farm) form an asking price in response to 
market conditions to maximize their gains from trade (Parker and Filatova  2008  ) .

     { }*

* *
| |

( , ) max ( , )* (1 ),
i

ask L i i agr F
P F t WTA F t Ve= +    (27.13)   

 The asking price of the market-participating farmer,     *
iF   , is equal to or greater than the 

value of his land in agriculture. If the developer demands more land than farmers supply, 
each farmer will mark up his asking price to potentially maximize gains from trade.  

    27.3.3.3   Formation of the Developer’s Bid Price (P bid|L ) 

 After bargaining power is observed (Sect.  27.3.3.1 ), the developer forms a bid price 
for each farm for which the condition, WTP > WTA, is true.

     { }* * *
| ( , ) min ( , )* (1 ), ( , )bid L i i iP F t WTP F t WTP F te= +    (27.14)   

 The developer’s bid price for the farm of a market-participating farmer (    *
iF   ) is 

equal to or less than his initial WTP for the farm. If farmers supply more land than 
the developer demands, the developer will mark down his bid price for each farm to 
maximize both gains from trade and profi t from sales of houses in that location.   

    27.3.4   Housing Market Interactions 

    27.3.4.1   Formation of Asking Prices for Houses (P ask|H ) 

 Houses enter the housing market as either new construction or as pre-existing, 
recently vacated houses. For existing housing, the asking price equals the develop-
er’s expected rent, which is formed using the price expectation models described in 
Sect.  27.3.2.2  and the Appendix (Eqs.  A.1 – A.6 ). For newly constructed houses, the 
asking price equals the developer’s projected rent subject to varying levels of rent 
information, as described in Sect.  27.3.2.2  and specifi ed by Eqs.  27.5 – 27.9 .  
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    27.3.4.2   Housing Market Competition 

 The set of houses on which consumer  c  bids,  H  
 j 
  ,  are identifi ed by the criteria:

     { }|: ( , )j n ask j ltH H WTB c j P∈ ≥ Ω    (27.15)   

 Consumer  c  will bid on houses for which his  WTB  is greater than or equal to the 
developer’s asking prices,  P  

 ask|j 
 , multiplied by the bid level,   W   

 lt 
  for housing type  lt . 

The bid level is the running average percentage that sale prices have been above/
below the original asking prices for houses of type  lt  in the past. 

 The housing market competition factor,  HMC , describes the competition for 
housing that each consumer faces in the housing market. It is calculated by compar-
ing the number of houses consumer  c  will bid on to the number of other consumers 
bidding on the same houses:

     
( )
( )c

NC NH
HMC

NC NH

−
=

+    (27.16)  

where  NH  is the number of houses in  H  
 j 
  and  NC  is the number of other consumers 

bidding on  H  
 j 
 .  

    27.3.4.3   Formation of Consumer Bidding for Housing 

 After  HMC  is observed (Eq.  27.16 ), consumer  c  sets his bid price for each particular 
house  j  in the set  H  

 j 
  in relation to his optimal rent for that house,  R*(c, j) , in response 

to market conditions:

     [ ]*( , ) ( , ) ( ) ( )bid c askP c j R c j HMC WTP c P j= + −    (27.17)   

 If  HMC  
 c 
  is positive, competition for housing for consumer  c  is high and his bids 

will be set above his optimal rents. If  HMC  
 c 
  is negative, competition for housing for 

consumer  c  is low and his bids will be set below the asking prices. If  HMC  
 c 
  is zero, 

the number of consumers bidding on consumer  c ’s set of houses is the same as the 
number of houses  c  is bidding on, and his bids will equal his optimal rents. The 
adjustment of the consumers’ bid prices in response to market conditions allows 
consumers to try to simultaneously maximize their gains from trade and the likeli-
hood that they will be the highest bidder.  

    27.3.4.4   Rules for Matching Consumers with Houses 

 After the bidding process is completed, the highest bidder on each house is identi-
fi ed. Consumers possessing at least one ‘winning bid’ are put into a subset of ‘win-
ning bidders’. For each consumer in the set of winning bidders, the set of houses for 
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which the consumer owns the highest bid is identifi ed. The consumer’s utility is 
recalculated (using Eq.  27.1 ) for each of these houses using his winning bid instead 
of the initial asking price. Given these new levels of utility, the consumer is matched 
with the house for which he is the highest bidder and derives the highest utility. 
Once a consumer is matched with a house, both the consumer and house are removed 
from the market. The matching process is repeated with the remaining bids (which 
are kept constant) until all consumers are matched, all houses are occupied, or all 
positive bids are exhausted. This process ensures consumers are matched to houses 
that generate their maximum possible utility levels given competitive bids from 
other consumers and discrete housing options provided by the developer.    

    27.4   Model Experiments 

 CHALMS was run on an 80 × 80 gridded landscape with each cell representing an 
acre for a total region of 6,400 acres, or 10 square miles. The CBD was set in the 
middle of the top row at coordinates (1,40) with an established ex-urban developed 
area shown as the dark blue half-moon at the top of Fig.  27.2 . Although CHALMS 
was able to replicate 18 different housing types, where type is defi ned by lot and 
housing size, initial development only consisted of randomly placed housing types 

  Fig. 27.2    Initial landscape confi guration. Each polygon represents the location of one of 50 farms. 
The semi-circle (top center) represents the initial ‘city’ location       

 



556 N.R. Magliocca

1 through 12 (see Table  27.2  for a description of the housing types). Fifty farms 
 surrounded the initial development and are shown as different colored patches in 
Fig.  27.2 . 2  Initially, 334 consumers participated in the housing market, and an exoge-
nous growth rate of 10% a year was assumed. Incomes of incoming households are 
assumed to vary from $20,000 for the lowest quintile to $200,000 for the highest quin-
tile. 3  Travel costs for households were assumed to depend both on time and monetary 
costs (Table  27.1 ). As new households moved to the region, they demanded housing; a 
single developer for the region responded by buying land from farmers and building 
houses. Thus, farmland was gradually converted to developed uses over time.   

 CHALMS was run 30 times 4  and each run tracks growth over a 20-year period. 
Farmers’ locations and agricultural returns were held constant across all runs, as 
were the distribution and location of housing types in the initial city. Draws from 
income and consumer preference distributions and the initial assignment of all pre-
diction models (i.e. for farmers’ price predictions and distance discounting, and 

   Table 27.2    Number of lots by type of house/lot combination, at t = 20   

 Housing 
type 

 Lot size 
(acres) 

 Housing type 
description 

 Mean 
number 
of lots  Std. dev. 

 Mean annual 
rents (2007 $)  Std. dev. 

 1  ¼ ac lots  Small house  87  58  7,737.35  797.10 
 2  Medium house  51  41  12,156.92  883.71 
 3  Large house  104  77  14,502.24  788.30 
 4  ½ ac lots  Small house  144  110  9,252.51  1,426.78 
 5  Medium house  173  124  12,382.07  1,430.72 
 6  Large house  155  76  15,946.08  981.74 
 7  1 ac lots  Small house  429  185  12,218.53  689.40 
 8  Medium house  231  110  14,786.07  605.53 
 9  Large house  141  76  18,559.56  856.78 
 10  2 ac lots  Small house  475  88  19,653.39  629.50 
 11  Medium house  358  77  21,342.20  653.40 
 12  Large house  183  40  24,739.68  716.58 
 13  5 ac lots  Small house  0  0  –  – 
 14  Medium house  0  0  –  – 
 15  Large house  0  0  –  – 
 16  10 ac lots  Small house  30  32  30,461.25  4,374.33 
 17  Medium house  12  26  32,581.86  3,424.89 
 18  Large house  1  3  33,047.47  2,959.10 

   2   Colors are used in Fig.  27.2  to delineate the farms but have no other meaning.  
   3   These data were based on median household incomes for suburban counties in the Mid-Atlantic 
region (Delaware, Maryland, Pennsylvania, and Virginia) from the 2000 Census. In general, the 
model is meant to represent a hypothetical community on the urban fringe in one of these states; 
we parameterize the model using data from this region.  
   4   Thirty runs were determined to be a suffi cient sample size as given by     

2
2

2
n zα

⎛ ⎞σ
= ⎜ ⎟δ⎝ ⎠

   for estimates 
of mean rents and number of lots (Table  27.2 ) at the 95% confi dence level.  
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developer’s price predictions) were allowed to vary randomly across each of the 30 
runs. Holding landscape features constant across runs eliminates sources of geo-
graphic variability, while exploring the effects of path-dependence and stochastic 
processes on development patterns that result from agent heterogeneity. 

 Stochastic elements in CHALMS (i.e. random draws from consumer income and 
preference distributions and assignment of prediction models) limit the insight of 
any single model realization. Instead, maps of the most likely, or ‘average’, devel-
opment patterns were constructed (Fig.  27.3a–d ). For each time step displayed, the 
development pattern consists only of cells that were developed above a threshold 
frequency, which was calibrated to produce an ‘average’ development pattern that 
closely approximated the calculated average percent-developed area and dispersion 
across 30 runs. Within each of those cells, the housing type with the highest prob-
ability of occurrence is mapped. In addition, Fig.  27.4  shows the probability of 
development at any density occurring across 30 runs.   

    27.4.1   Results 

 Table  27.2  provides a description of housing and lot sizes associated with each 
housing type, and summary statistics of fi nal outcomes across 30 model runs. Even 
though the initial landscape confi guration was held constant across runs, the  housing 

  Fig. 27.3    ‘Average’ development pattern maps for time steps ( a ) 5, ( b ) 10, ( c ) 15, and ( d ) 20. 
Housing types are color-coded from 1 ( dark ) to 18 ( light )       
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types built across runs showed a good deal of variation. This variation refl ected the 
importance of heterogeneity in consumer demand. The most frequently developed 
housing types were those with small or medium sized houses on 1- and 2-acre lots, 
which were affordable for most consumers. No 5-acre lots were built over the entire 
period, but 10-acre lots show up. The absence of 5-acre lots was due to the com-
bined effects of high construction costs relative to expected rents, and the wealthiest 
consumers demanding houses on 10-acre lots. 

 The results exhibit a general development pattern that is consistent with urban 
economic theory: as shown in Fig.  27.5 , housing density tends to decrease, and 
average lot sizes increase, as distance from the CBD increases (Mills  1972 ; 
Brueckner and Fansler  1983  ) . Also consistent with urban economic theory, land 
prices tend to decrease with distance from the CBD (Fig.  27.6 ) and increase over 
time as population grows and demand for land increases (Fig.  27.7 ). The results also 
show a pattern that is typical of urban “sprawl” (Fig.  27.8 ): a divergent relationship 
over time between the number of lots and acreage developed (Heimlich and 
Anderson  2001  ) .     

 In the fi rst fi ve time steps, development density and location were primarily 
driven by consumer demand and relative farm productivity. From the initial housing 
stock, consumers generally derived higher utility from 1- to 2-acre lots than from 
other lot sizes. This resulted in strong competition for those housing types and a 
subsequent bidding up of their rents. Relatively high rent levels prompted the devel-
oper to purchase land and capitalize on the strong demand for 1- and 2-acre lots. 

  Fig. 27.4    Probability of fi nal development patterns of any density occurring at t = 20 across 
30 runs. Land that was always developed is color-coded as  white , while land that had a low prob-
ability of developing is color-coded as  black    
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The development pressure fi ltered through to the land market, where farmers 
adjusted their WTA levels upward attempting to capture gains from sale above their 
return from agriculture. This price signal was strongest close to the initial develop-
ment, resulting in high land prices that decreased with distance. Thus, the fi rst farms 
sold were those with relatively low asking prices, distant from initial development 
(weak price signal) and comparatively low productivity (low initial asking price). 
As a result, early development progressed in a ‘leapfrog’ pattern (Fig.  27.3a, b ) with 

  Fig. 27.5    Mean density by zone after 20 time steps. Zones form concentric circles at equal inter-
vals away from the CBD. Rounded interval values are shown in miles       

  Fig. 27.6    Average price of farmland sold for development over 30 runs, at any time step, as a 
function of distance from the CBD       
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farms far from initial development sold fi rst. Furthermore, because of strong demand 
and high returns net of land prices and construction costs, 1- and 2-acre lots were 
built on the fi rst farms sold. 

 As time progressed, increased land prices coupled with consumer demand 
prompted the construction of houses on comparatively small (1-acre or less) or large 
(10- acre) lot sizes. Rents for these relatively scarce housing types rose faster than 
those of other housing types in the existing housing stock and prompted a shift in 
construction. Concurrently, development pressure and land scarcity drove land 
prices upward as population growth spurred competition for housing and farmers 
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  Fig. 27.7    Average price of farmland sold for development over 30 runs in each time period       

  Fig. 27.8    Comparison of number of lots versus acreage developed over time       
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reacted to an upward trend in past land prices. Faced with higher asking prices 
from farmers and consumer demand for scarce housing options, the developer 
shifted lot sizes and location. Generally, smaller lots—i.e., higher density hous-
ing—occurred on expensive land closer to the initial ‘city’, while lower density 
housing was built on remaining land far from the initial ‘city’. Spatial and temporal 
variability around this general pattern were due to heterogeneity in farmers’ expec-
tations of selling prices and consumer housing demands and the resulting profi t-
ability in each particular location. 

 Figure  27.4  provides a sense of the probability distribution of spatial outcomes 
across model runs. Comparisons between Figs.  27.3a , b and  27.4  demonstrate that 
several farms have a greater than 85% probability of being developed early in any 
given run. Those farms have relatively poor land and suffi ciently low expectations 
of land prices to prompt early development consistently across runs. After time step 
10, however, the remaining farms shown as developed in Fig.  27.3c , d generally 
have much lower probabilities of being developed in any given model run. At this 
point in the simulations, land prices are determined more by the agents’ price expec-
tation models than by differences in agricultural land productivity. Thus, develop-
ment patterns are less dependent on landscape features and become more directly 
infl uenced by stochasticity inherent in agents’ price expectation models (Brown 
et al.  2005  ) . This leads to increased stochasticity in development patterns in the last 
half of the simulations.   

    27.5   Discussion and Conclusions 

 CHALMS is an ABM of urban growth and land-use that integrates microeconomic 
fundamentals into a framework capable of capturing full heterogeneity and spatially 
explicit development patterns. Optimizing behavior of heterogeneous consumers, 
farmers, and a developer, a spatially differentiated landscape, population growth, 
and a variety of housing and lot types are included as part of the development pro-
cess. At the same time, bounded rationality, or the lack of perfect foresight, is 
assumed on the part of all agents. CHALMS describes the dynamics and spatial 
outcomes of the development process in a hypothetical ex-urban locale. 

 CHALMS as it currently exists has some limitations. The current version is simu-
lated on a simplifi ed landscape that lacks natural features such as water bodies, 
topography, or soil quality, which would infl uence a particular location’s attractive-
ness for development and/or suitability for agriculture. In the real world, many of the 
features that constitute good agricultural land are often favorable for development, 
which compounds their infl uence on development patterns. In addition, proximity-
based valuation of natural amenities or publicly provided goods by consumers is not 
represented, which has been shown to signifi cantly infl uence development patterns 
(Filatova et al.  2007 ; Irwin and Bockstael  2002 ; Wu and Plantinga  2003  ) . Future 
model iterations will incorporate more detailed natural landscape features and asso-
ciated proximity-based valuation to explore their effects on development patterns. 
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 Another limitation is the representation of only one developer. This was a 
 simplifi cation made to ease interpretation of simulated interactions and outcomes 
in both the land and housing markets. The introduction of competition between 
developers may change current development patterns. Although incorporating the 
above elements into the model’s structure would likely improve its realism, such 
elements would also add further complexity into an already complex model. 
Moreover, the existing framework allows us to establish baseline development pat-
terns subject to heterogeneous consumer preferences and incomes and farm pro-
ductivity without the added complexity of a more detailed landscape. Thus, further 
testing of model sensitivities and outcomes will take priority before additional 
landscape features are introduced. 

 Our results demonstrate qualitative behaviors consistent with urban economic 
theory that emerge from explicitly coupling housing and land markets in the ABM 
framework. The interplay between markets and agents’ heterogeneous preferences 
and perceptions reproduces many trends predicted by conventional urban eco-
nomic models but also shows a dispersed, “leapfrog” development pattern that is 
common in ex-urban areas. This has three important implications. First, CHALMS 
demonstrates that housing and land markets infl uence and are infl uenced by one 
another. Thus, simulating feedbacks that emerge between markets is critical for 
understanding the forces that drive urban growth patterns. Second, our formaliza-
tion of economic agents shows that microeconomic decision-making can be incor-
porated into an ABM framework to reproduce regional patterns consistent with 
those produced by conventional spatial equilibrium approaches. Finally, by simulat-
ing urban growth from the ‘bottom-up’, ABMs allow the researcher to represent full 
agent and environment heterogeneity and build an individual-level understanding of 
the dynamics of growing urban systems—a combination of advantages unique to 
the agent-based modeling approach.      
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      27.6 Appendix       

      27.6.1 Prediction    Models 

      27.6.1.1 Financial Prediction Models 

 Developers and farmers make pricing decisions informed by expectations of future 
housing and land prices, respectively. Adapted from price expectation models used 
in agent-based fi nancial literature (e.g. Arthur  1994,   2006 ; Axtell  2005  ) , agents try 
to predict the next period’s price based on current and past price information. An 
agent is given a set of 20 prediction models. Each prediction model may use one of 
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six different prediction methods, and there may be more than one model applying 
the same prediction method in the agent’s set of 20 models. Some of these predic-
tion methods map past and present prices (P) into the next period using various 
extrapolation methods.

    1.     Mean model : predicts that P(t + 1) will be the mean price of the last  x  periods.

     ( )
( )

:1
i

i t x t

P t

P t
x

= −+ =
∑

   (A.1)    

    2.     Cycle model : predicts that P(t + 1) will be the same as  x  periods ago (cycle 
detector).

     ( ) ( )1P t P t x+ = −    (A.2)    

    3.     Projection model : predicts that P(t + 1) will be the least-squares, non-linear trend 
over the last  x  periods.

     ( ) ( ) ( )2
1 ;s sP t aP t bP t c+ = + +    (A.3)  

  where  t  
 s 
  is the time span of  t−x  to  t , and  a ,  b , and  c  are coeffi cients of fi t. Other 

methods translate changes from only the last period’s price to next period’s 
price.  

    4.     Mirror model : predicts that P(t + 1) will be a given fraction  x  of the difference in 
this period’s price, P(t), from last period’s price, P(t−1), from the mirror image 
around half of P(t).

     ( ) ( )( )⎡ ⎤+ = + − − − −⎣ ⎦1 0.5 ( ) 0.5 ( ) (1 ) ( ) 1P t P t P t P t P tx    (A.4)    

    5.     Re-scale model : predicts that P(t + 1) will be a given factor  z  of this period’s price 
bounded by [0,2].

     ( )+ =1 ( )P t P tz    (A.5)    

    6.     Regional model : predicts that P(t + 1) is infl uenced by regional price information 
coming from neighboring agents. 

 For farmers, land prices are a function of land scarcity as measured by the num-
ber of remaining farmers,  N  

 f 
  ,  in the region at time  t .

     ( ) 1
1 ( ) 1

f

P t P t
N

⎛ ⎞
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⎝ ⎠
   (A.6)   

 For developers, the expected price of house types with size,  h , on lot size,  l , in a 
given neighborhood,  N  

 b 
 , is the mean of the prices of the houses and lots of the same 

sizes in adjacent neighborhoods,  N  
 nei 

 .  N  
 nei 

  are neighbors in the cardinal directions.
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     ( ) ( ){ }| |, 1 ,b hl nei hlP N t mean P N t+ =    (A.7)       

 All models in the agent’s set of prediction models are used to predict the price in 
the next time period ( P(t + 1) ). In time  t  + 1, the actual price is known and an error 
squared is calculated for each model by squaring the difference between the pre-
dicted price and the actual price. The prediction model with the least error is used to 
make the agent’s pricing decisions in the current period. This same process of pre-
diction and evaluation is used every period so that the most successful prediction 
model is used every time.  

    27.6.1.2   Developer’s ‘New Consumers’ Prediction Models 
and Demand for Land 

 Adapted from Arthur’s  (  1994  )  “El Farol Problem”, the developer attempts to predict 
the population at time  t  using past population information from the last 10 years. 
Population information for time  t  is not known until new consumers bid for houses 
on the housing market (Sect.  A.2 ). Just as agents are allocated 20 fi nancial predic-
tion models, developers are allocated 20 population prediction models. However, 
instead of receiving six different predictions methods, developers receive only the 
fi rst fi ve prediction methods listed above in Sect.  A.1.1 . For trends in population 
from time  t−x  to  t −1 (where  x  ranges from 2 to 10 years in the past), developers 
attempt to predict how many new consumers will enter the market in time  t . 

 The developer uses this prediction as the number of new consumers in time  t , 
which corresponds to the number of new houses that need to be supplied in time  t  
for new consumers,  N  

 new 
 . In addition, the developer observes the number of consum-

ers who bid on houses but were not the highest bidder on any house in  t −1 and 
therefore did not locate in the region,  N  

 old 
 . By combining the number of houses 

needed for new consumers ( N  
 new 

 ) and consumers from the last period that did not 
locate ( N  

 old 
 ), the number of new houses that need to be constructed in the current 

period ( H  
 new 

 ) is calculated.

     ( ) ( ) ( 1)new new oldH t N t N t= + −    (A.8)   

 Based on the developer’s rent projections (Sect   .  A.1.2 ), the  H  
 new 

  most profi table 
houses are chosen for construction later in the period. Given this housing set and the 
associated land required to build each, the developer calculates how much land will 
be needed in the current period. The developer’s demand for land is then the differ-
ence between the amount of land needed for new construction and the amount of 
vacant land already owned by the developer from previous land purchases (if any). 
For example, if the developer calculates ten new houses are needed in time  t  and the 
ten most profi table houses require 2 acres each, but the developer already owns 5 
acres that are vacant, then the developer’s demand for land in the current period will 
be 15 acres.  
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    27.6.1.3   Farmer’s Spatial Discounting Models 

 Land is an immobile good with spatially heterogeneous attributes, thus land prices 
vary in space and time. Farmers observe the price and location of one or more land 
transactions through time. A farmer then attempts to discount the observed transac-
tion price(s) based on the distance from his location. The spatially discounted 
price(s) accounts for spatially variable land values and enables an adjustment of 
land prices based solely on trends in the market land price. 

 A coeffi cient of spatial discounting is predicted using a genetic algorithm that 
enables the farmer to ‘learn’ the best coeffi cient over time. Initially, each farmer is 
allocated a ‘population’ of 100 random coeffi cients bounded by [−200, 200]. After 
the transaction price(s) is observed, it is discounted using each coeffi cient in the 
farmer’s ‘population’ of the coeffi cients and compared to the farmer’s current ask-
ing price to evaluate the ‘fi tness’ of each coeffi cient.

     

−⎛ ⎞
χ = χ − + −⎜ ⎟⎝ ⎠
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b

   (A.9)  

where the fi tness,   c   
 i 
 , of coeffi cient   b   

 i 
  is the absolute value of the difference between 

the current asking price of farmer  F ,  P  
 ask | F 

 , and the average of the transaction price(s), 
    LP   , divided by the average distance,     FD   , of the observed transaction price(s) from 
farmer  F . ‘Fitness’ is measured as such so that the ‘most fi t’ coeffi cient will be the 
one with the least error. The ‘most fi t’ coeffi cient is designated as ‘active’ and is 
used as   b   

 L 
  in Eq.  A.10  to spatially discount observed transaction prices. 

 The farmer spatially discounts the observed transaction price(s) by predicting the 
coeffi cient of spatial discounting in a linear extrapolation to give the spatially dis-
counted price,     |L FP   , faced by farmer  F .

     = +| ( ) ( );L F L F LP t D P tb    (A.10)   

 The coeffi cient of spatial discounting,  b  
L
 , represents the marginal discount of the 

observed transaction price(s) per cell away from farmer  F . The spatially discounted 
price,     |L FP   , is then given as an input into the farmer’s fi nancial prediction models 
(Sect.  A.1.1 ).   

    27.6.2   Housing Market Competition Factor 

 The housing market competition factor has several characteristics that demand fur-
ther explanation.  HMC  can change over time based on the income distribution of 
new consumers and the type and price of new houses that come onto the market. 
Holding incomes of existing and new consumers constant, if relatively more expen-
sive homes are introduced to the market, the number of consumers that can afford to 



566 N.R. Magliocca

bid on the most expensive housing is reduced. This affects the amount of  competition 
faced by consumers of varying income levels. For example, the wealthiest consumers 
would face reduced competition (i.e.  HMC  is only slightly positive or even negative), 
because fewer consumers can afford to bid on the most expensive houses. Conversely, 
lower income consumers would face increased competition for the remaining houses 
(i.e.  HMC  becomes increasingly more positive), because there are comparatively 
fewer houses per lower income consumer to bid on. 

 This interaction between housing prices and incomes can occur with a change in 
the distribution of incomes too. Holding housing prices constant, if the income dis-
tribution skews towards lower incomes, competition for housing would increase for 
lower income consumers, but it would not change for higher income consumers. If 
the income distribution skews towards higher incomes, competition for housing 
would increase for all consumers. Wealthier consumers would experience compara-
tively more competition for the most expensive houses. Lower income consumers 
would also experience increased competition for housing, because higher income 
consumers that were not the highest bidders on more expensive houses would likely 
outbid most lower income consumers for the remaining housing.    
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  Abstract   The high rates of urban growth in Latin America during the 1960s and 
1970s produced rapid urbanization and housing problems. In developing countries, 
planning policies as well as the research community have approached urban growth 
as a static problem rather than as a spatial form that emerges from the urban devel-
opment process and that is part of a constant dynamic process. This paper focuses 
on a specifi c kind of urban growth that happens in Latin American cities, called 
‘peripherisation’. This is characterized by the formation of low-income residential 
areas in the peripheral ring of the city and a perpetuation of a dynamic core-periphery 
spatial pattern. The dynamics of growth and change in Latin American cities are 
explored using agent-based simulation. The objective is to increase the understanding 
of urban spatial phenomena in Latin American cities, which is essential to providing 
a basis for future planning actions and policies. The fi rst part of the chapter presents 
a brief overview of urban growth and dynamics in Latin American cities. The 
Peripherisation Model is introduced, and its implementation and evaluation 
described. Simulation exercises were used to revisit assumptions about urbanization 
issues in Latin American cities and investigate important aspects of growth and 
change in these cities. These exercises allowed the problem of urban growth in Latin 
American cities to be unfolded through their dynamics, relating these dynamics to 
urban morphology, and thus presenting a new and important perspective on the 
phenomenon.      
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    28.1   Introduction 

 Rapid urbanization has been the main theme of urban studies in Latin America since 
the explosion of rates of growth in the 1960s and 1970s. While studies predicted an 
unprecedented rate of growth in these cities by the year 2000, the speed of develop-
ment has been blamed as the cause of spatial inequalities and problems in these 
cities. Yet, the actual rates of growth have slowed since the 1980s and studies sug-
gest that the tendency is that the rates will remain as they are. The urban problems, 
however, have not disappeared in the last two decades, and, despite lower rates of 
population growth, cities keep growing and developing in the very same way. Hence, 
the principal problem of urban growth in Latin American cities is no longer the high 
rates of population growth and rural-urban migration. Rather, it is the spatial pattern 
of growth and its underlying dynamics of change, the peripherisation process, which 
enlarges the peripheral rings of cities and metropolises despite the reduction in 
overall urban growth rates. 

 There have been a large number of studies of urbanization issues in these coun-
tries, mainly focusing on the rapidity of growth of cities and the social inequalities 
in urban space produced by this process. Most of these studies have taken a socio-
logical and political approach, often discussing either the role of the poor and spon-
taneous settlements, or the State in the context of economic and urban development. 
Hence, while studies of demographic trends, housing, urban poor and urbanization 
proliferated during the 1970s and 1980s, very few studies have been devoted to the 
morphology and dynamics of Latin American cities to date. Planning policies as 
well as the research community have approached urban growth as a static problem 
rather than as a spatial form that emerges from the urban development process and 
that is part of a constant dynamic process. 

 The present study looks at issues related to the growth of Latin American cities 
by investigating the dynamics of this mode of urban growth and change. The 
objective is to increase the understanding of urban spatial phenomena in Latin 
American cities, which is essential to providing a basis for future planning actions 
and policies. 

 The study of urban dynamics requires tools that allow for the exploration of 
change phenomena in time and space. Urban modeling techniques have been 
traditionally used to explore issues in urban dynamics, and automata models like 
cellular automata (CA) and agent-based models (ABMs) seem to be a particu-
larly suitable approach for this kind of study. Therefore, an ABM was used in 
order to unfold the problem of urban growth of Latin American cities through 
their dynamics. ABMs are based on the understanding that human decision-making 
plays a major role in urban processes and urban change. Their framework allows 
interactions between agents and their landscape to be explicitly represented. 
Hence, this kind of model permits the analysis of dynamic processes that link 
spatial development with social issues, which is of fundamental importance when 
dealing with cases of strong social differentiation, as is the case of urban dynamics 
in Latin American cities. 
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 The present chapter describes an exploratory use of ABMs, which conceives the 
ABM simulation as a laboratory where existing theories of urban phenomena can be 
explored and further developed. The simulation model is, thus, seen as part of a 
theory-building process. Simulation exercises were used to revisit assumptions on 
urbanization issues in Latin American cities and investigate important aspects 
regarding growth and change in them. These exercises allowed the problem of urban 
growth in Latin American cities to be revealed through their dynamics, relating 
these dynamics to urban morphology, and thus presenting a new and important per-
spective on the phenomenon.  

    28.2   Urban Dynamics in Latin American Cities 

 While the problem of urban growth in Europe and North America has been formu-
lated in terms of sprawl in the Third World and, more specifi cally, in Latin America 
the main focus has been the rapidity of the growth of cities. Indeed, it has been the 
fastest urban growth in history. During the period between 1950 and 1980 growth 
rates were very high (Hall  1983 ; Valladares and Coelho  1995  )  and, based on these 
data, studies anticipated continuing high rates of growth. It was believed that many 
areas would double in population and a few would triple, creating urban areas that 
by the year 2000 would be without parallel in history (Hall  1983  ) . Latin American 
countries went from being predominantly rural to predominantly urban in a few 
decades, with high concentrations of urban population in cities with more than one 
million inhabitants (UNCHS  1996  ) . This rapid urbanization produced various kinds 
of social problems, especially in terms of housing since the governments of such 
countries did not manage to provide enough housing and urban infrastructure to 
house the infl ux of migrants to the cities. 

 However, this population change has shown marked signs of change since 1980. 
After decades of explosive urbanization, urban growth rates have slowed, the rate of 
metropolitan growth has fallen and fertility rates have declined (Valladares and 
Coelho  1995  ) . Moreover, rural to urban migration has come to have a much smaller 
role in urban population growth and, most recently, the pace of urban expansion has 
been maintained by births in the cities. These new trends have been detected in the 
period between 1980 and 1990, and have been confi rmed by recent censuses. 

 Thus, the principal problem of urban growth in Latin American cities is no lon-
ger the high rates of population growth and rural-urban migration. Rather, it is the 
spatial pattern of growth, the peripherisation process, which enlarges the periph-
eral rings of cities and metropolis despite the reduction in the overall urban growth 
rates. The peripherisation phenomenon is becoming an increasingly signifi cant 
issue, particularly in the larger cities of Latin America. In those cities, the demo-
graphic growth rate has slowed right down, migration has taken second place to 
natural increase, and the bulk of the housing stock now consists of upgraded (or in 
the process of upgrading) low-income residential areas, with a large number of 
spontaneous settlements. 
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 The phenomenon of peripheral growth, which has been recognized by Latin 
American researchers and planners and termed ‘peripherisation’, can now be con-
sidered as an established process of growth of most Latin American cities. 
Peripherisation can be defi ned as a kind of growth process characterized by the 
expansion of the borders of the city through the massive formation of peripheral 
settlements, which are, in most cases, low-income residential areas. These areas are 
incorporated to the city by a long-term process of expansion in which some of the 
low-income areas are recontextualised within the urban system and occupied by a 
 higher  economic group while new low-income settlements continue to emerge on 
the periphery. 

 Peripherisation is an urban spatial problem which has strong effects in social and 
economic terms, a problem that is unlikely to fade away without strong planning 
action. The peripheral ring of Latin American cities consists mostly of low-income 
housing including large spontaneous settlements, which usually lack urban services 
of any kind. As such, peripherisation clearly constitutes a social problem. However, 
it is not only a problem in the sense of the extreme social inequalities that appear in 
the city in a very concrete spatial form. Rather, the problem is the  perpetuation  of 
such a form in space and time and, in this sense, peripherisation is a social problem 
of spatial order. 

 In terms of urban planning policies, the peripherisation phenomenon is seen 
from a static point of view. The focus of the governments’ interventions is still on 
the local/housing scale, upgrading settlements and providing housing tracks for the 
low-income groups. There has been no focus either on the dynamics of the process 
or on the linkage between local and global scales. The overall growth of the cities 
has so far been seen as a mere result of a demographic phenomenon. 

 Peripherisation, like urban sprawl, is a suburbanization phenomenon. Whilst 
urban sprawl has been studied in detail and its main features seem to be broadly 
understood, in Latin America’s case the understanding of the peripherisation pro-
cess remains a central issue. Contrary to sprawl, an inherently spatial problem, 
urban peripherisation is essentially a  social  problem with  spatial  characteristics. 
From a social point of view, peripherisation is not a simple problem to solve. As 
a spatial problem, and more specifi cally as an urban development problem, the 
phenomenon still needs to be further investigated. 

 Like urban sprawl, peripherisation is fragmented and discontinuous develop-
ment. It also presents problems related to urban sustainability, transportation and 
the cost of infrastructure and urban services. Studies from the 1970s suggest that the 
lowest densities in Latin American cities are found in high-income residential areas, 
with the highest densities in middle-class areas and the densities of spontaneous 
settlements are somewhere between these two (Amato  1970a  ) . Finally, an interest-
ing difference between urban sprawl and peripherisation is related to the fact that, 
while urban sprawl is directly related to the preference of people for suburban set-
tings, peripherisation is not a direct consequence of locational preference. On the 
contrary, people who move to the city’s border do not wish to live there but are 
compelled to.  



57528 Exploring    Urban Dynamics in Latin American Cities…

    28.3   The Peripherisation Model 

 The Peripherisation Model is an exploratory ABM for urban growth in Latin 
American cities that explores agent-landscape relationships only, and was elabo-
rated in such a way that the behavioural rules are as simple as possible. 

 The simulation model was developed by adding features to a simple logic, or in 
other words, increasing the model’s complexity step-by-step so that the understanding 
of its behaviour was not lost during the development process. Each of these four suc-
cessive modules adds up to a model that simulates different aspects of urban growth 
and change in Latin American cities. Thus, module one focuses on the peripherisation 
phenomenon. Module two consists of the peripherisation module supplemented by a 
consolidation rule, and focuses on the formation of spontaneous settlements. Module 
three examines inner city processes, which are also added to the peripherisation logic. 
Finally, module four introduces spatial constraints on the simulation. 

 The Peripherisation Model was written in the JAVA Programming Language, 
using RePast (REcursive Porous Agent Simulation Toolkit). This is a software 
framework for creating agent-based simulations using the JAVA language devel-
oped at the University of Chicago  (  2003  ) . 

 The model’s logic and implementation will be detailed below using ODD 
Protocol (Grimm et al.  2006 ; Polhill et al.  2008 ; Grimm and Railsback  2012  ) , i.e. 
purpose, entities and behaviour, and variables will be explained where appropriate 
for each module. 

    28.3.1   Module One: The Peripherisation Module 

 The main process behind the peripherisation phenomenon has similar dynamics to 
those proposed in the succession and expansion model of Burgess  (  1925  ) . In Latin 
American cities, as the growth of the city passes over low-income areas, many of their 
original inhabitants move further out, while new peripheral rings are created on the 
border of the city. The process of peripherisation consists of the expansion of the city 
borders through the formation of peripheral low-income settlements that are then incor-
porated into the city by a long-term process of expansion in which some of the low-
income areas are recontextualised within the urban system and occupied by  higher  
economic groups while new low-income settlements keep emerging on the periphery. 

    28.3.1.1   Purpose 

 The main objective of the peripherisation module is to investigate the dynamics of 
formation and continuity of the core-periphery pattern. This module reproduces the 
process of expulsion and expansion by simulating the residential locational pro-
cesses of distinct economic groups (see Fig.  28.1 ). In the model, the population is 
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divided into three economic groups according to the pyramidal model of distribu-
tion of income in Latin American countries. This model suggests that the society is 
divided into three economic groups (high, medium and low income) that can be 
represented by a pyramid where the high-income group is the minority at the top, 
the middle-income group is the middle part of the triangle and the low-income 
group is the majority, at the bottom of the triangle.   

    28.3.1.2   Entities and Behaviour 

 The model has mobile agents which walk randomly over a grid space. The entities 
(agents) in the model are proxies to individual households. However, the peripheri-
sation phenomenon is studied independently of the spatial scale, and therefore the 
size of the cell might not correspond to the scale of a single plot. 

 Agents are divided into three economic groups (breeds) in a proportion based on 
the division of Latin American society by income. The main difference between 
agents lies in their economic group. 

 The simulation model is underlain by an economic logic, although it is not an 
economic model. It assumes that, despite the economic differences, all agents 
have the same locational preferences, which means that they all want to locate 
close to the areas served by infrastructure, with nearby commerce, job opportuni-
ties and so on. Since in Third World cities these facilities are found mostly close 
to the high-income residential areas, agents look for a place close to a high-
income group residential area. The behaviours of the three income groups are 
differentiated by the restrictions imposed on their economic power. Thus, the 
high-income group (represented in the model in medium-grey) is able to locate 
in any place of its preference. The medium-income group (in light-grey) can 

  Fig. 28.1    Flowchart of agent’s rules for the peripherisation module       
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locate everywhere except where the high-income group is already located; and, 
in turn the low-income group (in dark-grey) can locate only in otherwise vacant 
space. Since some agents can occupy other agents’ cells, this means that the latter 
are ‘evicted’ and must fi nd other places to settle. A detailed diagram of agents’ 
rules of behaviour can be found in Fig.  28.2 .  

    28.3.1.3   State Variables 

 Two main parameters defi ne the behaviour of the Peripherisation Module: steps and 
proportion of agents per income group. ‘ Steps’  is the number of cells that the agent 
walks before trying to settle in a place (cell). This parameter represents how far 
people are willing to settle from their ideal location. The proportion of agents per 
income group is a percentage of the total number of agents belonging to each eco-
nomic group. It is important to note that in reality, the proportion of agents per 
economic group differs from country to country and even from city to city, and that 
the proportion in the model represents a relative proportion only, as there is no defi -
nition of ‘economic group’ implied in the model.   

    28.3.2   Module Two: Spontaneous Settlements 

    28.3.2.1   Purpose 

 This module is intended to simulate the process of formation and consolidation of 
spontaneous settlements as part of the urban growth dynamics of the Latin American 
city. The module combines the original peripherisation logic with a consolidation 
rule. This rule refers to a process in which spontaneous settlements are gradually 
upgraded, and, as time passes, turn into consolidated favelas or, in other words, 
spontaneous settlements that are immune from eviction, as detailed in Fig.  28.2 . As 
a result of the introduction of the consolidation logic, the spontaneous settlements 
module generates a more fragmented landscape than the homogeneous concentric-
like spatial distribution of classes in which consolidated spontaneous settlements 
are spread all over the city.  

    28.3.2.2   State Variables 

 The consolidation process is built into the model through a ‘ cons ’ variable. This 
cons variable has its value increased at each iteration of the model and, at a certain 
threshold (‘ consLimit’ ), the low-income cell turns into the consolidation state. If a 
high-income or medium-income agent tries to settle on the low-income cell in a 
stage previous to the consolidation threshold, the low-income cell is replaced by 
the respective new occupant’s economic group. Otherwise, consolidated cells are 
‘immune’ from eviction.   
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    28.3.3   Module Three: Inner City Processes 

    28.3.3.1   Purpose 

 In this module, features were added to the model in order to simulate these other 
aspects of Latin American urban development, such as re-occupation and regenera-
tion of older housing in attractive inner city districts. These features attempt to repro-
duce some of the main dynamic processes in cities: inner city decay, movement of 
elites towards the city edge and gentrifi cation by the process of location and reloca-
tion of individual agents from different income groups. 

 The model simplifi es these dynamic processes using a set of very simple spatial 
interaction rules and allows the modeller to examine how these rules produce con-
trasting and complex spatial patterns in different kinds of cities. The aim of this 
module is to study the nature of inner city dynamic processes, and examine how 
these dynamics produce global spatial residential patterns.  

    28.3.3.2   Entities and Behaviour 

 Three sets of rules compose the inner city processes module: transition from a 
higher to lower-income group; transition from a lower to higher-income group, and 
movement of higher-income groups towards the suburbs. 

 Hence, the processes of fi ltering and gentrifi cation are translated in the model 
into the change from one economic group to another. Simplifying the inner city 
change processes in this form, fi ltering is translated into the model as the occupation 
of housing stock by a lower income group than that which previously occupied it 
(moving down the social scale) while gentrifi cation is the opposite, an occupation of 
a housing stock by a higher economic group. The detailed schema of the agent 
behavioural rules in these terms is illustrated in Fig.  28.2 , below.  

 In short, agents walk randomly through the grid in search of a place to settle. As 
in the peripherisation module, all agents have the same spatial preferences but react 
according to different restrictions. Each agent settles on a place based on local 
knowledge only, such as neighborhood density, their own income-group, and the 
income-group occupying their desired location.  

    28.3.3.3   State Variables 

 The housing transition from higher to lower income groups is introduced in the 
model by adding two variables: ‘ age’  which refers to occupied cells, and ‘ density’  
which is the neighborhood density. Two thresholds for these variables were also 
added: a parameter ‘ decayStartPoint’  which is the threshold value for ‘ age’  in which 
the decay is activated, and a parameter  d  which corresponds to the maximum neigh-
borhood density value. 
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 At every iteration, age value is increased in the simulation for all cells occupied 
by high-income agents. When age gets to a certain limit (parameter ‘ decayStart-
Point ’), a percentage of cells occupied by high-income agents may start to decrease 
through ‘inoccupation’ as these places become available to lower-income groups 
(their color turns green, which corresponds to empty cells that can only be occupied 
by low-income groups). Also, if the ‘ age’  value of a high-income cell is higher than 
the parameter ‘ decayStartPoint ’, and density is higher than ‘ d’ , the cell becomes 
available to the lower-income agents who wish to settle there, and the high-income 
agent must look for a place further out. A second part of the rule determines that 
low-income cells with an age value higher than the parameter ‘ consolidationLimit’  
will consolidate, i.e. they will no longer be subject to eviction.   

    28.3.4   Module Four: Spatial Constraints 

    28.3.4.1   Purpose 

 The objective of module four is to introduce spatial constraints to the simulation 
model. These spatial constraints represent bodies of water, steep slopes, or any other 
area where urbanisation is not possible. 

 Spatial constraints are implemented by the introduction of areas where agents 
are not allowed to settle or even walk as initial conditions. In the code, for every 
movement that agents make towards new cells, it checks if the new position belongs 
to a spatial constraint area or not and, if it does, the agent returns to their previous 
position and changes direction in order to avoid returning to the same cell.    

    28.4   Model Verifi cation and Validation 

 As part of the model’s development process, an evaluation of the model was per-
formed. This included both comparisons of the model outputs with the modeled 
real-world system and understanding the sensitivity of the model to its internal 
parameters (Turner et al.  2001  ) . 

 These two evaluation steps, more commonly referred to as  verifi cation  and  vali-
dation,  concern, respectively, the correctness of model construction and truthful-
ness of a model with respect to its problem domain. To perform verifi cation, a 
sensitivity analysis of relationships between a model’s parameters and its outputs 
was performed. 

 Validation concerns how well the model outcomes represent the real system 
behavior and its methodology depends on the objectives of the model. Where accu-
rate predictions are the main goal, measuring the accuracy of spatial outcomes is 
necessary. However, where the goal is to represent a process and explain general 
patterns observed across a variety of situations, as is the case with the present model, 
validation requires evaluating how well a model reproduces critical system properties 
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in terms of spatial and temporal dynamics (Brown et al.  2004b ; Rand et al.  2003  ) . 
It is important to stress that this process “involves judgments about how well a par-
ticular model meets the modeler’s goals, which in turn depends on choices about 
what aspects of the real system to model and what aspects to ignore” (Brown et al. 
 2004a , p. 2). Ngo and See  (  2012  )  provide an overview of calibration and validation 
of models in relation to land cover change. 

 For the Peripherisation Model, a set of sensitivity analysis tests was performed in 
order to study the relationships between input and output of the model. In other words, 
the study of the effects of changes in the parameters on the model’s output (Saltelli 
et al.  2000  )  which is, in this case, the spatial pattern. Since grasping a whole set of 
aspects of an ABM’s behaviour usually requires a series of different analyses, a mix-
ture of techniques were used to establish confi dence in the results of the model. 

 The tests presented here (see Fig.  28.3 ) are only a sample of the ones developed 
for this research. Each of the parameters of the model was tested and its impact on 
the model’s behaviour analyzed. These tests should serve to demonstrate the typical 
behaviour of the model and establish the relationship between inputs (parameters 
and initial conditions) and outputs (spatial pattern). The tests were conducted with 
each of the model’s module parameters and initial conditions to improve the under-
standing of the model’s behaviour, identifying the role of each parameter and the 
typical behaviour of the model (Fig.  28.4 ).   

 One of the most important outcomes of the sensitivity analysis tests is the 
acknowledgement of the typical behaviour of the model and the effect of changes in 
the parameter values in the simulation outcomes. This led to a reasonable set of 
parameter settings for the model, which are used when it is applied to explore 
aspects of the real world, to be presented in the next section. 

 Tests also demonstrated that, despite the specifi c roles played by each parameter 
within the model, the fi nal outcomes are strongly defi ned by path dependence and 
random process effects. This was further confi rmed by tests which revealed that one 
of the striking features of the model behaviour is related to the time-scale. Tests 
suggest the time-scale is mainly defi ned by the probability of settlement of high-
income agents, and therefore is highly vulnerable to stochastic processes and path 
dependence effects. 

 In summary, the sensitivity tests allowed the modeler to understand the typical 
behaviour of the model by distinguishing the features that are inherent in the mod-
el’s behaviour (result from the change in parameters) from those that can be observed 
as proxies for the real behaviour of the system modeled. This is particularly impor-
tant when the model is built as an instrument to help understand and question aspects 
of the real system.  

    28.5   Simulation Exercises 

 Simulation exercises were used to explore a number of aspects of dynamic change 
and question some of the main assumptions of urban growth in Latin American 
cities. These exercises consist of analyses of the model’s outcomes. On the basis of 
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these results, we attempt to provoke discussions and draw conclusions about some 
aspects of the reality of Latin American cities. 

 Four sets of simulation exercises were performed, each exploring one of the 
Peripherisation Model simulation modules. For the purposes of the present chapter, 
only the fi rst exercise is presented. This exercise is based on the peripherisation 
module and discusses general issues of urban growth in Latin American cities. 

 The peripherisation module’s agents rule base is a very simplistic one and pro-
duces the spatial patterns presented in Fig.  28.5 , which shows the spatial develop-
ment of the simulation run through a sequence of snapshots. The parameters used 
for this simulation run were  steps  equal to 2 and  proportion of agents per economic 
group  10% high-income, 40% middle-income, and 50% low-income.  

 The fi nal spatial pattern shown in the sequence of snapshots in Fig.  28.5  consists 
of three concentric rings where medium-grey represents high-income settled agents, 
light-grey represents middle-income agents, and dark-grey represents low-income 
agents. Although the simulation starts with a mixed set of patches, the fi nal outcome 
is a clearly segregated pattern where each of the three economic groups congre-
gates, forming a single large patch completely separate from one another. 

 This outcome is not ‘unpredictable’ and makes sense within the rules of the 
model. However, there is nothing in the rule base to suggest that the spatial outcome 
of the model would be a segregated pattern, and nothing suggesting high-income 
groups should be located in the centre surround by buffering rings of middle and 
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  Fig. 28.4    Example of sensitivity test: charts testing the steps parameter, where sequence  A  uses 
 steps  = 2, sequence  B steps  = 4, and sequence  C steps  = 8       

  Fig. 28.5    Spatial pattern produced with the peripherisation module       
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low-income cells. Therefore, it is possible to conclude that the pattern is emergent, 
since it is the product of the local interactions of agents only. 

 Although very simplistic, the pattern produced by the model appears to approxi-
mate the spatial structure found in the residential locational pattern of Latin 
American cities. Similarly, the pattern produced by the model when using multiple 
initial seeds, resembles certain characteristics of metropolitan areas. 

 Figure  28.6  presents a sequence of snapshots using four seeds, all equidistant 
from the centre of the grid. The simulation was conducted using the same set of 
parameter values used for the previous experiment. This sequence approximates 
to the development of metropolitan areas, which are the result of the combination 
of several cities or villages that end up as a single spatial area because of their 
proximity. It is interesting to note how the spatial development starts with a very 
mixed structure, and as time passes, the core-periphery structure emerges. As in 
reality, this spatially segregated pattern is consolidated in the model, and as the 
simulation progresses, the spatial development expands, maintaining the core-
periphery structure.  

 It is particularly striking to see how the high-income areas of the spatial patterns 
become slowly linked to each other, and the light-grey and dark-grey rings simply 
follow the shape imposed by high-income areas, acting as buffering zones for high-
income areas, following the pattern described by Amato  (  1970b  )  for Bogotá, 
Colombia. This suggests that the model reproduces not only a fi nal spatial pattern 
that is consistent with reality, but also that the evolutionary process shaping this 
pattern is relevant too. 

 The simple spatial pattern produced by the Peripherisation Model resembles in 
essence the spatial pattern and dynamics of urban growth in Latin American cities. 
As discussed previously, Latin American cities are characterized by their high rates 
of growth, and their spatial patterns are the result of this fast process of urban 
development. It is understood that high rates of urban growth have overwhelmed 
the capacity of urban governments to provide either adequate services or infra-
structure and, therefore, are the main cause of the urban inequalities found in Latin 
American cities. 

 The simulation experiments provide material with which to discuss this assump-
tion using the model as a  tool to think with,  and to examine the context of the rate of 

  Fig. 28.6    Spatial pattern produced with the peripherisation module using multiple seeds as initial 
condition       
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development within the simulation. In the Peripherisation Model, the presence of a 
great percentage of high-income agents, for instance, results in larger and faster 
development. This is implicit in the model’s rules since high-income cells act as a 
catalyst for urban development. In reality it seems that the presence of high-income 
groups has a similar effect. The richer a city is, the more attractive it is and, there-
fore, more people migrate to it causing a higher rate of growth. 

 Whenever urban growth in Latin American cities is encountered, the fi rst factor 
to be mentioned is the high rate of growth. In the literature, this rate is seen as an 
essential cause of the resulting spatial patterns. The present simulation exercises 
make clear that if the rules of the model are related in any sense to the way loca-
tional decision takes place in reality, then speed has little, if any, infl uence on the 
generation of the core-periphery spatial pattern. In the model, speed can be manipu-
lated by, for example, increasing the number of agents within the simulation. This 
does not affect the spatial pattern at all, as can be observed in Fig.  28.7 , which 
shows snapshots of simulation using different numbers of agents.  

 These exercises showed how some assumptions about urban growth in Latin 
American cities should be questioned and further investigated. The simulation exer-
cises made it evident that the research community must review the causes driving 
the spatial patterns of those cities, and this knowledge must be fed back to urban 
planning practice.  

    28.6   Comparison with Reality 

 This section presents simple maps built from the Census 2000 dataset for São Paulo. 
Although these maps are static representations, the patterns of income concentra-
tion combine with the simulation model to help demonstrate the locational pattern 
generated by peripherisation in Latin American cities. 

 Figure  28.8  shows maps of income distribution per census sector in the metro-
politan area of São Paulo, Brazil. The data used here are the average of the head of 
household monthly income per census sector (enumeration district/census block), 
which are part of the Census 2000 dataset provided by the Brazilian Institute of 

  Fig. 28.7    Sequences of snapshots testing different numbers of agents       
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Geography and Statistics (IBGE). This variable was chosen because of its similarities 
to the rules of the Peripherisation Model, which is based on the division of agents 
into economic groups.  

 The aggregated data per urban census sector were normalized by the number of 
householders in each sector and then classifi ed into three ranges (maps A and C in 
Fig.  28.8 ) or six ranges (maps B and D). The maps use medium-grey for the higher 
income groups, light-grey for middle-income groups, and dark-grey for the lower 
income groups as in the simulation model, to aid comparison. One can easily iden-
tify a concentric pattern in the maps, in which the high-income groups are concen-
trated towards the centre of the urban area and thus the concentration decreases 
towards the urban periphery. 

 It should be noted that we have not used established defi nitions of income groups 
either in the simulation model or in the maps shown above, and our focus is only on 
the relative locational pattern of these groups within the city. As such, the actual 
number in each income group is not relevant for the present study. 

 When comparing the spatial pattern produced by the Peripherisation Model to 
the maps in Fig.  28.8 , the fi rst noticeable conclusion is that the spatial pattern in 

  Fig. 28.8    Maps of São Paulo showing distributions of income in the urban area. Maps ( a ) and ( b ) 
were built, respectively, using 3 and 6 quantile breaks and maps ( c ) and ( d ) were built using, 
respectively, 3 and 6 natural breaks       
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reality is not as concentric as the patterns produced by the simulation model. This is 
due to various factors such as initial conditions, topography, the presence of bodies 
of water, etc. In particular, the topography of these areas has strong infl uences on 
the spatial development of these cities. 

 A second very clear difference is that high-income groups are not all concen-
trated in the (historical) centre of the city, but may reach towards the city’s outskirts. 
Similarly, middle-income groups are at times located on the city edge and in more 
central areas surrounded by low-income areas. These suggest that there are more 
dynamic processes in action than those simulated in module one of the model. Some 
of the shortcomings highlighted by these exercises have led towards the next stages 
in the development of the model, which were added to the model through the mod-
ules presented previously.  

    28.7   Conclusions 

 The main idea of the Peripherisation Model is concentrated in module one, which, 
therefore, forms the main stream of this research. This is because the module is 
based on the rather simple assumption that residential locational patterns in Latin 
American cities can be explained by essentially two concepts. The fi rst is the idea 
that the composition of society, or how society is divided in groups, has a great 
impact on spatial development. The second is that restrictions rather than prefer-
ences generate the spatial pattern. Once these two factors are established, urban 
development appears to become locked in a vicious circle with high-income groups 
located in the best locations, while low-income groups are pushed away from all 
urban facilities. 

 The kind of government housing typically provided in Latin American cities 
consists mainly of housing tracts for low-income groups located in the vast 
majority of cases on the urban fringe. It is evident that governments have acted 
without knowledge of the global dynamics of the urban system and, reinforcing 
the current dynamics, have attracted more low-income groups to the outskirts of 
the city. As such, the need for centrally located housing for low-income groups 
was not understood. Similarly, government policies for spontaneous settlements 
have disregarded the dynamics of the global process of which their location and 
evolution is part. Because of the absence of available housing in the central area 
combined with the lack of good transport systems, spontaneous settlements con-
tinue to be a reasonably good alternative for low-income citizens. Yet urban 
interventions continue to approach the problem from a static and local point of 
view, and although upgrading interventions by urban governance have supported 
the natural upgrading process, those intervention programs have not dealt with 
the problem as a whole, and new spontaneous settlements continue to proliferate 
on the urban fringes and in other unoccupied areas within the city. From this 
point of view, it seems that rather than not being able to cope with the housing 
demand, urban governments do not have the appropriate knowledge to deal with 
this situation. 
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 It seems the major planning problem in Latin American cities is how to stop such 
a process once it has been initiated. The role of the present investigation is not to 
answer this question, but to attempt to raise alternative points of view and speculate 
about urban development in those cities on the basis of the simulation experiments. 
It is important to note that the simulation exercises provide insights provoking 
debate, not only when the simulation results accord with reality, but also when they 
do not. In this case, the modeller is obliged to look for further explanations. Hence, 
the fi ndings from this chapter are neither conclusive nor proven. Rather, they draw 
attention to gaps in our knowledge in the urban development of Latin American cit-
ies that deserves further investigation 

 The dynamic modeling exercises presented in this chapter have helped to further 
develop an understanding of the rapid urbanization process and its dynamics. They 
have changed the perspective on the problem from a demographic and static view-
point to a dynamic and morphological one. The fi ndings of this chapter have thus 
taken a step in the direction of bringing a new perspective to an old problem. 

 In this light, a question arises as to what in fact generates the segregated spatial 
pattern found in most Latin American cities; is it the rate of growth that was so 
uncontrollable that planners could not contain or control it, or is it perhaps a simple 
product of the inequalities of a segregated urban society? If it is assumed that the 
roots of a segregated spatial pattern can be largely explained by the unequal division 
of urban society and its economic power, then the role played by speed in the forma-
tion of the spatial pattern must be questioned. 

 The Peripherisation Model seems to be a good example of an exploratory simu-
lation model, and the simulation exercises seem to be an effective way to explore 
aspects of reality. In addition, agent-based simulation proved to be a suitable tech-
nique to explore urbanization issues at the conceptual level, and allowed spatial 
patterns, dynamics and social issues to be handled within the same conceptual and 
modeling framework. 

 The need for an increased understanding of urban spatial phenomena in cities of 
the Third World is essential in order to provide a basis for future planning actions 
and policies. The approach outlined in this study has taken a step in this direction. 
This study provides evidence that urban modeling tools can provide an appropriate 
basis for research on Latin American urban processes, and makes clear the need to 
approach the problem by relating morphology and dynamics, for which dynamic 
modeling provides the appropriate means.      
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  Abstract   This study focused on the development of a spatially explicit agent-based 
model (ABM) for simulating the spreading of infectious diseases; furthermore it 
was assumed that the diseases spread in non-homogeneous mixed populations, 
distributed in an irregular space. We believe that in large scale simulation models, 
a realistic description of space and movement is as essential to the spreading of the 
disease as the description of the infectious process itself. Therefore a lot of effort 
was put on the development of a realistic movement model. The fi nal version of this 
ABM comprehends both a movement and an infection model, which are sequentially 
applied at each time step. In order to be applied an tested, the model was imple-
mented as a standalone software using the Object Oriented Paradigm (OOP), 
integrating the modelling algorithms with Geographic Information Systems (GIS) 
concepts and functionalities.      

    29.1   Introduction 

 This chapter covers the    description of a spatially explicit agent-based model (ABM) 
for simulating the spreading of infectious diseases in non-homogeneous mixed popu-
lations, irregularly distributed in space. We developed this work based on the assump-
tion that in large scale simulation models, a realistic description of space and movement 
is  as  essential to the spreading of the disease as the description of the infectious 
process itself. For this reason, the description of movement is a strong component of 
the model. The complete model comprehends two sub-models – for describing 
movement and infection – which are sequentially applied at each time step. 
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 The use of computer simulations allows the precise study of the dynamical 
consequences of models which cannot be solved by analytical methods (Nowak and 
Lewenstein  1996  )  – as is the case of ABM – and therefore the actual implementation 
of the model is an essential part of the modelling process. In this study we adopted 
the Object Oriented Paradigm (OOP), which we believe is pertinent for representing 
the entities and processes in ABM. The key difference between the object oriented 
and the traditional structured approach is that objects are entities and functions 
rather than procedures, and in this way they tend to closely refl ect natural systems 
in the real world (Montgomery  1994  ) . There was also an effort to fully integrate the 
temporal and spatial components of the model, the latter one strongly relying on 
Geographic Information Systems (GIS) concepts and functionalities. Finally it is 
important to state that being a computational model, the conception of the model is 
so tied to the software design, that sometimes we will describe parts of the software, 
in order to describe parts of the model. 

 The model description that we present in the next sections, follows the ODD 
(Overview, Design concepts, Details) protocol for describing individual- and 
agent-based models (Grimm et al.  2006 ; Grimm and Railsback  2012  ) . We believe 
the application of this method can bring redundancies in some of the sections, as 
sometimes things are explained more than once across the different points; however, 
it has the value of trying to implement a standard approach and therefore it can 
make the contents of the model more easily perceived by the reader. 

 Finally, as recommended by the ODD specifi cation, Sect.  29.9  covers the 
application of the model to a case study: a mumps outbreak in continental 
Portugal between 1993 and 1996. This allowed us to gain an insight into the 
strengths and limitations of this particular kind of simulation model when deal-
ing with real-world data.  

    29.2   Purpose 

 The purpose of this model is to simulate the spreading of a non-vector disease, a 
disease that spreads directly from one host to another without the intervention of an 
organism, such as a mosquito, for carrying the disease-causing microorganisms. 
The majority of work reviewed in this fi eld (e.g. Mansilla and Gutierrez  2000 ; Fuks 
and Lawniczak  2001  )  follow the assumption of random mixing of the population; 
this can be a way of overcoming the lack of data or lack of knowledge about the 
mechanisms of movement. However, we think it is a weak assumption for human 
populations, as we believe humans follow routines with structured movement pat-
terns which are unlikely to be random. One of the main concerns of this model was 
to put aside this simplistic assumption and develop a realistic movement model. On 
the other hand, we also tried to build a realistic infection model, and although so far 
it has only been applied to mumps (Simoes  2007  ) , it has a fl exibility of parameters 
that allows it to capture the behaviour of different kinds of diseases.  
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    29.3   Entities, State Variables and Scales 

 As a peer-to-peer model, the main entity of this model is the individual, which for 
large scale simulations can be seen as a generalization of a group of individuals. The 
other entity of the model, which abstractly represents the geographic environment, 
is the region. In general terms, we can say that this model covers the interaction 
between individuals and between individuals and regions, within regions. 

 The case study for this model, mumps (infectious parotitis), is an acute infectious 
disease that is highly contagious and affects many children aged 5–9 years, usually 
before the age of 15 (Simoes  2007  ) . Since we targeted this age group as the popula-
tion of the model, and since mumps affects both genders, gender and age are not 
state variables of the entities (individuals). 

 The variable that describes the state of the individual and that distinguishes it 
from other individuals and from itself, at other points in time, is its health condition, 
as it is going to be described with more detail in the infection sub-model (see 
Sect.  29.8.2 ). 

 The SIR model (Susceptible-Infectious-Removed) formulated by Kermack and 
McKendrick in 1927 (Epstein  1997  )  expresses the relations between different 
population states. These states are:

   Susceptibles (S) – individuals capable of acquiring the disease.  • 
  Infected (I) – individuals who can transmit the disease.  • 
  Removed (R) – individuals who are either dead, recover or become immune from • 
the disease.    

 Therefore. each individual is characterized by a variable “infection status”, that 
can assume the exclusive values: susceptible, infected or removed. As a network 
inspired model, we also store the contacts of each individual. These connections are 
a state variable of the entity individual, which stores pointers to other individuals. 

 The entity “region” is a geographical area with well defi ned borders, i.e. it is 
taken as having a high degree of mixing inside it (despite the fact that it might not 
be homogeneous) and a lower degree of mixing with other regions. This assump-
tion, which is inspired by the household model (Deijfen  2000  ) , targets the represen-
tation of cities where the geographical aggregation imposes some kind of identity 
that assembles individuals into a common domain. The state variables for a region 
account for the size and current state of its population, in terms of the number of 
susceptible, infected and removed individuals. Moreover, it is important to say that 
individuals also store a pointer to their current region (which changes in time as they 
travel), and it can therefore also be considered as another of their state variables. 

 Finally, the simulation process itself can be seen as an entity of the model since 
it controls the general fl ow of the model. In this case it was implemented as a 
thread, which is characterized by a Boolean variable describing its state:  running  
or  not running . 

 Figure  29.1  contains a UML diagram with a more accurate description of these 
classes: “cidade” (region), “turtle” (individual) and “processo” (process). These classes 
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illustrate the suitability of the OOP to ABM, a framework which is totally based on the 
behavior of singular entities with a common structure.  

 The linking of different spatial scales is a key feature of the movement model. To 
summarize, we can say that there are three nested levels (or scales) involved in the 
movement model: the global scale, regions (split into two levels: inter and intra 
region), and neighborhoods as we illustrate schematically in Fig.  29.2 . At some level, 
all these scales relate to the concept of regions, as described earlier on this section.  

 The time scale in this model is mostly related to the movement patterns that we 
want to describe. Since the model describes daily activities (such as going to work, 
etc.), we assumed that the fi nest division of time (time step) should be daily, and 
therefore we can simulate a succession of days that can describe weeks, months or 
even years. Again, it is possible to do some generalization, sacrifi cing the represen-
tation of the principles of the model, and assume that each time step is a greater 
temporal unit.  

    29.4   Process Overview and Scheduling 

 The core of the program is the method “run”, represented on Fig.  29.3 . Discarding 
all procedures related to the User Interface (UI) and storing of information for the 
GIS, the simulation can be described purely as a set of two nested cycles: one related 
to the number of steps and the other to the number of simulations, which call the 
sub-models (movement and infection) sequentially.  

 As time was introduced as a discrete unit in this model, the steps are accumulated 
in order to represent a certain time span. If we assume, as stated in the previous 

  Fig. 29.1    Classes that implement the ABM: “cidade”, “turtle” and “processor”       
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section, that each time step represents a day, this span can be weeks, months, or even 
years. The outside loop, that controls the number of simulations, was introduced as 
a matter of convenience. As ABM simulations are not reproducible (the “law of 
large numbers”), we may want to run a high number of simulations and look at the 
average values, rather than using one single run of the model. 

 The function “Mov()” is shown in Fig.  29.4 . This function reads the probabilities 
assigned on the initial conditions and loops through all individuals to animate them 
with movement.  

 The way that movement is assigned to each individual is: generating a random 
variable, and comparing this value with the probabilities of each component of 
movement, through a chain of nested conditions. 

 This system is perhaps easier to understand, by looking at Fig.  29.5 , where A to 
D correspond to the different components of movement. Once one component of 
movement is selected, it calls the corresponding algorithm of movement to displace 
the individual.  

 The infection model, is represented in Fig.  29.6 . All individuals are members of 
the class “turtle” (Fig.  29.1 ) and its state is controlled by the variable “state”, which 
can assume the values of: 0 (susceptible), 1 (latent), 2 (infected) and 3 (removed). 
Variables “state_old” and “tranca” are in the program to assure the synchronous 
update of all individuals.  

  Fig. 29.2    Different scales involved in the movement model. From  top  to  bottom : neighborhood, 
intra-region, inter-region and global       
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 The function loops through the whole population and targets the latent and 
infected individuals. The latent individuals can change their state if the latent period 
is over. The infected individuals can infect any individual contained in a “buffer” 
around them that matches certain conditions, and can change state if the infectious 
period is over.  

    29.5   Design Concepts 

 Human epidemics are strongly related to the dynamics of human populations and 
therefore to the network of social contacts. These kinds of systems present  self 
organization , a behavior in which order may arise from low level interactions with-
out any supervision from higher-order structures (Nowak and Lewenstein  1996  ) . 
Self organizing systems typically display emergent behavior, where  emergence  is 
the process of complex pattern formation from simpler rules. 

  Fig. 29.3    The method “run” implementing the simulation process       
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 In the case of this model, we expect two complex phenomena to emerge: the 
movement of individuals and the spreading of epidemics. These systems are not 
totally independent, as the latter one depends on the fi rst one, and although this was 
not considered in the current model, the fi rst one could also depend on the second 
one. However, contrary to what happens in the traditional approach (e.g., statistical 
models, systems of differential equations), retroactions (feedbacks) and variable 
dependencies are not a problem in bottom-up models. 

 Since this is not an evolutionary model, the concepts of “learning” and “adapta-
tion” are not really represented; however, “stochasticity” is a strong component that 
is present at several stages of the simulation process. 

 The movement model is a network approach, inspired by the Small World 
graph (Newman  1999  ) . There are several ways to generate this graph, and in the 
Watts and Strogatz  (  1998  )  model, this can be achieved by adding some links ran-
domly, which will produce the shortcuts responsible for the short average path 
length. Following this approach, we introduced a random component in the move-
ment model, which can be explained in terms of mobility, as a small number of 
individuals that travel large distances over the domain, e.g. politicians, football 
players or academics. In the sensitivity analysis of the model (Simoes  2007  ) , we 
found that this component, even in a small proportion, has a major impact on the 
outcome of the simulations, since it is able to provide “shortcuts” in the network 
that are totally outside our structured movement patterns, thus reformulating all 
the accessibilities. 

 In the infection model, a stochastic variation of the infection force was intro-
duced, which can represent the mutation of a virus in reaction to external factors 
such as antibiotics or even environmental conditions. Although for the moment we 
treated this variation in the infection force as a purely stochastic process, we believe 
there would be room to introduce some truly evolutionary traits to represent gene 
mutation for antibiotic resistance. 

  Fig. 29.5    Algorithm for random selection of the movement component, according to the pre-
defi ned probabilities       
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 An obvious consequence from the previous paragraphs is that the stochastic 
nature of the model makes the simulations unique and irreproducible. 

 As in any ABM, interaction between entities is a crucial part of the model. 
There is an explicit interaction between individuals stated in the (infection) model 
rules and an implicit interaction between individuals and regions, since regions 
constrain the individual mobility within its borders and infl uence the number of 
contacts with its size and the composition of its neighborhood. As regions are 
different from each other, so is their infl uence on the individuals within them, and 
perhaps this is a striking difference from the grid representation of space that we 
see in Cellular Automata (CA) models (Margolus  1987  ) . 

 Finally, it is important to say that there is no concept of collectives in this model, 
and the behavior of the population and of the country as aggregates, emerges directly 
from the behavior of the entities: individuals and regions.  

    29.6   Initialization 

 The initial conditions of the model are constituted by the model parameters (Fig.  29.7 ), 
which are all of the variables that are considered to be constant during the simulation, 
and therefore  exclude the state variables  (as described in Sect.  29.3 ).  

 Apart from the population parameters (which are tied to a “population model” 
described in the next section), the parameters can be divided into two groups 
corresponding to the two sub-models: movement and infection. 

 Each component of the movement model is described in terms of its proportion 
of the overall movement or the probability of occurrence. This choice regulates the 
actual behavior of the movement model (and therefore the spreading of infection) 
and it should not be made by chance. After a careful sensitivity analysis, we recom-
mend the choice of parameters on Figs.  29.7  and  29.8 , which follows a distance 
decay law: an individual is more likely to stay where it is than to travel over large 
distances. Therefore, movements with a longer range (like inter region or random) 
have a lower probability than movements with a shorter range (like intra region or 
neighborhood).  

 The neighborhood radius and the infection radius are spatial parameters, which 
are numerical quantities that obviously refl ect the scale, but ultimately they control 
the “closeness” of the community (how large is the area we call “neighborhood”) 
and the infectiousness of disease (how close an individual has to be from an infec-
tious individual to become potentially infected). 

 The other parameters of the infectious model are the latent and morbid periods 
(in terms of time steps) and the strength of the infection force (from 0 to 1), which can 
also be random. The choice we see in Fig.  29.7  refl ects the behavior of mumps, our 
case study, but these values can easily be changed to accommodate other diseases. 

 Finally, the time steps and number of simulations (as mentioned in Sect.  29.4 ) 
are also input parameters of the model.  
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  Fig. 29.7    Parameters of the model, as presented in the user interface       
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    29.7   Input Data 

 As a spatial model, the input data for this model must be spatially distributed, and 
as the format is vector, s hapefi les  were chosen. A shapefi le is a working and inter-
change format promulgated by ESRI for simple vector data with attributes. 1  This is 
also an open format that is fully described in ESRI’s whitepaper (ESRI  1998  ) . 

 The shapefi le prepared for the model must contain the defi nitions of the regions 
(represented as polygons), and the attribute table must contain the susceptible popu-
lation – allocated by region – and may also contain the infected population. 

 Prior to running the simulation, a simple model is run that allocates the individuals 
randomly within the regions. 

 The initial infected population can also be introduced manually, by clicking on 
the screen, after activating an input mode (Fig.  29.9 ). This can be particularly useful 
in sensitivity analysis where we want to assess the reaction of the model to specifi c 
confi gurations of the initial infected individuals, e.g., a single individual or a “ring” 
of individuals around a region.   

    29.8   Submodels 

    29.8.1   Movement 

 Although we did not fi nd many studies focused specifi cally on movement networks, 
there are analogue studies on social networks, which we used as a basis for the 
movement model. 

  Fig. 29.8    Probabilities for each component of the movement       

   1     http://www.esri.com/      
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  Fig. 29.9    Illustrations of the input of infected individuals through the user interface       

 In Deijfen  (  2000  ) , the Bernoulli graph, the Markov graph and the 3-clique model 
are presented as examples of random graphs used for describing social networks. 
However, these graphs are too focused on friendship ties to be useful in our represen-
tation of movement. On the other hand, there are other social graphs that show that 
some features can be analogue to the ones expected in a movement network, e.g. the 
household and the Small-World graphs, which are described in more detail. 

 The household model divides the population into mutually exclusive groups with a 
high level of mixing, as is the case with households. This model is described by two sepa-
rate graphs: one describing the division into households and another one describing the 
relationships between individuals. Although the household graph itself does not allow for 
the spreading of the disease, households are linked together by the friendship network. 
Given a set of  N  labeled vertices, let  V 1 be a graph representing the household structure 
and  V 2 a random graph representing the network of contacts. Formally, we can say that 
the network  V  is formed by the superimposition of the graphs  V 1 and  V 2 as in ( 29.1 ):

     1 2= ∩V V V
   (29.1)   

 The movement model developed in this study establishes an analogy between 
households in a “social space” and regions in a “geographical space”. Instead of 
households, we use a set of geographical “regions” that are assumed to have a high 
degree of mixing within them. If we assume that these regions correspond to cities, 
the movement model establishes a network linking neighboring cities (adjacent ver-
tices) and another network inside the city itself, but contrary to the analogous 
household model, the network inside this unit  is not  a random graph. The city itself 
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presents an inner structure; each city is subdivided into smaller units called  neigh-
borhoods . A random graph defi nes the movement inside each neighborhood and 
another random graph links these neighborhoods together inside the city. In 
Fig.  29.2 , we can observe the relation between these networks, operating at different 
scales, which combine together to create the movement network. 

 Elaborating more on each kind of movement, we can say that neighborhood move-
ment ( V 1) represents the movement of an individual in a street or a block, involving 
activities such as staying at home or going to the pub. Intra-region movement ( V 2) is 
the movement inside the city, e.g. going to work or shopping, while inter-region 
movement ( V 3) means traveling to neighboring cities, e.g. visiting relatives or taking 
part in leisure activities. Finally, random movement ( V 4) links together distant parts of 
the network and is related to another kind of social graph: the  Small-World  model. 

 Small-Worlds, also referred popularly as “six degrees of separation”, were fi rst 
introduced by Milgram in 1967, and are now widely used to represent several kinds 
of social networks (Newman  1999  ) . According to Newman  (  1999  ) , Small-worlds 
can be defi ned as random graphs which possess two properties: short average path 
lengths and high clustering coeffi cients. Although at fi rst sight these properties only 
describe ties between individuals, they are of some interest for the movement model. 
Following the Watts and Strogatz  (  1998  )  model, we introduced small values of 
probability  p  on  V 4, which produces long range links in the network. Our assump-
tion on the movement network of having a small number of individuals with a high 
mobility is analogous to the assumption of very well connected individuals in the 
Kasturirangan  (  1990  )  model. On another level, regions with higher populations, for 
example in big cities, show high coordination numbers, behaving as hubs. It should 
be noticed that this assumption follows the idea that the accessibility follows the 
population distribution, and thus can compensate for the lack of accessibility data. 
An individual’s network is also highly clustered inside each region, reproducing in 
this way another Small-World property. 

 As a conclusion, we can say that the movement network arises from the 
super-imposition of the different graphs referred to earlier, which we defi ne in 
( 29.2 ) as:

     1 2 3 4= ∩ ∩ ∩V V V V V    (29.2)   

 Using a bottom-up approach, the global structure of the network emerges from 
the displacement of each individual  a , according to the Eq.  29.3 :

     
( 1) ( )
( , ) ( , )
t t
i j i ja a d+ = +

   (29.3)   

 The stochastic variable  d  has a probabilistic distribution as follows:

     

4

1 1 2 2 3 3 4 4
1

( ) ( ) ( ) ( ) ( ) 1x x
x

d P D P D P D P D P D
=

= + + + = =∑
   

(29.4)
   

 The parameters  D  
 1 
 ,  D  

 2 
 ,  D  

 3 
  and  D  

 4 
  are the different ranges of movement.  
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    29.8.2   Infection 

 In this ABM, we implemented a variation of the SIR model (Epstein  1997  )  called 
SEIR (Susceptible-Exposed-Infectious-Removed). The main difference between 
SEIR (see Eqs.  29.5a –d) and the original SIR model is the introduction of a fourth 
state very relevant in childhood diseases such as mumps or measles: the Latent or 
Exposed ( E ) state. In this model, an  infected  individual might not be yet  infectious  
and therefore it is important to distinguish between these two states.

     

dS
SI

dt
β= −

   
(29.5a)

  

     
E

dE
SI

dt
= −b q

   (29.5b)  

     
E I

dI

dt
= −q a

   
(29.5c)  

     
I

dR

dt
= a

   
(29.5d)

   

 The contact parameter  b , also known as infection force, regulates the state 
transition from susceptible to latent. The transition parameters  q  and  a  regulate 
the state transition from exposed to infectious and infectious to removed. From 
the point at which the individual becomes infected until it becomes infectious, 
there is a latent period (that includes both the symptomatic and asymptomatic 
period), and from the point that the individual becomes infectious until it is 
removed, there is an infectious period, or morbid period. Figure  29.10  presents 
the sequence of states in the SEIR model.  

 The discrete version of this model is given in Eqs.  29.6a –d.

     

S
SI

t
= −

D
b

D    
(29.6a)  

  Fig. 29.10    Diagram of the epidemic model state transitions       
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(29.6b)
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D    
(29.6c)

  

     
I

R

t
=

D
a

D    
(29.6d)

  

where  D  represents a discrete change over a time period  t  to  t + 1 . Therefore the 
states at ( t  + 1) can be computed as per Eqs.  29.7a –d as:

     
1 ( I 1)t t tS S+ = − −b    (29.7a)  

     
1 S ( 1)t t t tE I E+ = − −b q    (29.7b)  

     
1 E ( 1)t t tI I+ = − −q a    (29.7c)  

     
1 It t tR R+ = −a    (29.7d)   

 In this study, we considered a closed population of  N  individuals, as we show in 
Eq.  29.8 :

     
0

dN

dt
=

   
(29.8)

   

 We also assume that we are dealing with micro parasites, in which case a single 
infection triggers an autonomous process in the host (Diekmann and Heesterbeek 
 2000  ) . This means that each infection process is independent of other individuals 
and from the environment, a situation that does not occur with macro parasites. It is 
 important to emphasize once again, that in this model, the contact process is only a 
function of physical proximity and is not based on social ties as for instance is the 
case of sexually transmitted diseases. Therefore, the contact is directly determined 
by the movement model: for infection to occur, it is only necessary to have immedi-
ate “proximity” between a susceptible and an infective individual; the exact defi ni-
tion of this “proximity” is controlled by a distance parameter called  infection radius . 
Finally, it is important to note the key difference between the model adopted in this 
study and the compartmental model formulated by Kermack and McKendrick 
(Epstein  1997  ) , which is not formulated via the previous equations. This difference 
relies on relaxing the assumption of homogeneous infectivity and homogeneous 
mixing of susceptibles and infectives. Rather than having such an assumption, their 
model considered  spatially complex scenarios with an irregular distributions of 
individuals in order to achieve a more realistic representation. As the homogeneous 
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assumptions were abandoned, the fi nal size as well as the growth rate of the  epidemic 
can no longer be computed analytically and these can only be achieved through 
computer simulation.   

    29.9   Simulation Experiments 

 This chapter would not be complete without the application of the model to a real 
world scenario. Our case study was an epidemic outbreak that took place in Portugal 
in 1996–1997, an episode usually attributed to vaccination failure (Dias et al.  1996 ; 
Gonçalves et al.  1998  ) . As in many ABMs, the input data for the model (as mentioned 
in Sect.  29.7 ) is crucial for recreating a certain scenario. Getting the correct data into 
the model is not a trivial task. Statistical temporal series suffer from widely known 
problems such as the Modifi able Areal Unit Problem (MAUP) (Lawson  2001  ) , 
introduction errors and incomplete information, etc. Some assumptions were made 
in order to use this data but it is important to say that all these things can bias the 
initial conditions and lead us away from reality. On the other hand, there are limita-
tions in the implementation the model, resulting in some simplifi cations and conse-
quently to some distortions in the magnitude of the results. In Fig.  29.11 , we can see 
the distribution of infected individuals in the dataset and in the model.  

 After running one hundred simulations, we calculated the correlation coeffi cient 
between the epidemic size in each time step and the observed dataset. This value 
varied between 0.88 and 0.94, with an average correlation of 0.92. We also com-
pared the spatial distribution of infected individuals in the simulations and the 
model, and although there are magnitude differences, probably introduced by the 

  Fig. 29.11    Initial distribution of the infectious individuals: ( a ) in the dataset (1993) and ( b ) in the 
simulations (t = 0)       
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biased initial conditions, we verify the occurrence of the same clusters of infected 
individuals in both scenarios. 

 To remove this magnitude difference, the two series were standardized with a 
classifi cation based on quartiles. Despite some outliers, the comparison between the 
quartile class in each region in the dataset and in the simulations reveals very close 
results. This is easily perceived by looking at the normalized distribution of affected 
individuals in Fig.  29.12 .  

 Finally, it is important to note that a model dealing with many random components 
usually faces great variability and that the results presented in this section rely on aver-
age values of a large number of simulations run over time. Analyzing the distribution 
of frequencies generated by the model, we came to the conclusion that although they 
do not follow a standard normal distribution, the levels of skewness and kurtosis are 
fairly acceptable, and the measures of central tendency indicate a normal behavior, as 
well as a low dispersion around the mean. These results validate the signifi cance of the 
simulations and also the use of average values to represent the series.  

    29.10   Conclusions and Final Remarks 

 This chapter covers different aspects of the process of implementing and running a 
bottom-up simulation model applied to human epidemics. We believe that there is 
much to be gained from this approach of using a hybrid model that combines both 

  Fig. 29.12    Spatial distribution of the infected individuals, classifi ed in quartiles ( a ) in the dataset 
and ( b ) in the model       
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networks and multi-agent systems as a way of capturing the complexity of a group 
of interacting individuals in a non-homogeneous environment. Although the choice 
of language, C++, makes the programming slightly less trivial than in other lan-
guages, the object oriented paradigm is well suited for the development of an indi-
vidual based model like the one presented. 

 The exercise with the dataset of mumps made us aware of the high sensitivity 
of the model to the input data, which compromises its success due to lack of quality 
and incompleteness of the data. It also made us aware of some weaknesses of the 
model, namely its incapability of dealing with the full dataset. However, despite all 
the simplifi cations and assumptions made, the prediction of spatial patterns of infec-
tion was quite successful. 

 Finally, the most important contribution of this model was to incorporate space 
into the simulation and to relax the simplistic assumptions of homogeneous space 
and random movement of individuals. Although it was not covered in this chapter, 
the use of GIS data and algorithms were central to this model. A realistic spatial 
simulation model can also be the basis for simulating spatial intervention strategies 
(Simoes  2007  )  and therefore provide an important tool for planners and policy 
makers in the health fi eld.      
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  Abstract   This paper outlines an agent-based modeling application of shifting 
cultivation for an upland village in Vietnam, which was developed to improve the 
management of shifting cultivation and aid forest protection. The model consists of 
household and land agents situated in a dynamic social, economic and political 
environment. Adaptation of the agents to changes in policy is incorporated through 
a trade-off between economic gains and social responsibility, which affect the sub-
sequent decision-making process. The basics of the model are described including 
the validation process and the results in a business as usual scenario.      

    30.1   Introduction 

 Shifting cultivation is commonly practiced in the tropical areas of Africa, Latin 
America and Southeast Asia (Do  1994 ; Kerkhoff and Sharma  2006 ; Tran  2006  ) . 
Many different practices fall under the term shifting cultivation but it generally 
involves an alternation of cropping for a few years followed by a relatively long 
period of fallow (Angelsen  1995 ; Conklin  1961 ; Do  1994 ; Spencer  1966  ) . 
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 Shifting cultivation is often viewed negatively (Gilruth et al.  1995  )  and in devel-
oping countries, it is seen as a primary driver of deforestation, with an estimated 
contribution ranging from 41% to 60% (Angelsen  1995 ; Geist and Lambin  2001  ) . 
In the uplands of Vietnam, shifting cultivation is a common method of agricultural 
production, with more than 340,000 households practicing this type of agriculture 
across nearly 74% of the national territory (Institute for Ethnic Minority Affairs 
 2005  ) . As in other countries, shifting cultivation is viewed as highly destructive to 
the forest and has become the focus of several government policies in Vietnam. 
Despite large investments, these policies appear to have had little success as shifting 
cultivation still remains active outside of the areas where it is legally permitted 
(Institute for Ethnic Minority Affairs  2005 ; Tran et al.  2005  ) . Several researchers 
(Fox et al.  2000 ; Institute for Ethnic Minority Affairs  2005 ; Shanks et al.  2003 ; 
Vuong  2001  )  have argued that these polices have been implemented with little con-
sideration for the local socio-economic context or the provision of alternative, cul-
turally acceptable livelihoods. As a result, there has been limited adoption by the 
local people. To develop more realistic policies for land management and to assist 
policy makers and stakeholders in evaluating different policy options, it is essential 
to gain a better understanding of shifting cultivation, in particular the interplay 
between shifting cultivators, household resources and the constraints associated 
with production. This requires an approach such as agent-based modeling that takes 
into account the dynamic properties of the system, including the biophysical, socio-
economic and political aspects of shifting agriculture in a larger context. The more 
generic advantages of this approach are already described in detail in Crooks and 
Heppenstall  (  2012  )  but agent-based modeling is particularly suitable for this appli-
cation because the decision-making process can be captured at a household level in 
terms of livelihood, as well as at the landscape scale, in terms of land cover change 
and natural resource management. 

 This chapter presents the development of an agent-based model (ABM) to the 
study of shifting cultivation in Vietnam, which captures the relationships between 
the political power, the community structure and the need to clear the forest for 
agriculture. Previous modeling work is reviewed to demonstrate the advances of 
this application over other related work, which is followed by a description of the 
model. Implementation, validation and scenario development are also discussed.  

    30.2   Previous Work on Modelling Shifting Cultivation 

 Early research into shifting cultivation (e.g. Conklin  (  1957  ) , Spencer  (  1966  )  and 
Watters  (  1971  ) ) was largely descriptive in nature and did not explain its dynamic 
structure or the driving forces. However, simulation modeling in the 1980s allowed 
further developments, e.g. the forest regeneration model of Wilkie and Finn  (  1988  ) , 
which simulated the long term effects of shifting cultivation in north-eastern Zaire. 
The results showed that population pressure, land tenure systems and fallow length 
have a strong infl uence on the spatial patterns of the landscape. In another study, 
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Dvorak  (  1992  )  developed an analytical model that established a relationship between 
shifting cultivation, the labour economy and the fallow cycle in West Africa. This 
was followed by GEOMOD1 and GEOMOD2 by    Hall et al.  (  1995  ) , which were 
designed to estimate the total amount of land use change in Southeast Asia and sub-
Saharan tropical Africa. Although these models produced results with a high accu-
racy, ranging from 74% to 96%, they performed less well in predicting the patterns 
of shifting cultivation when compared to permanent agriculture. Similar to the 
GEOMOD application, the dynamic spatial model of Gilruth et al.  (  1995  )  was based 
on forest structure, productivity, elevation and the distance to towns and cities. This 
model predicted the locations of shifting cultivation at different time steps for an 
area in the Republic of Guinea, West Africa, but the results did not compare well 
with remotely sensed data. 

 The reasons for the high uncertainty in the above simulated models are their 
simple assumptions about the decision-making process, some of which view shift-
ing cultivation simply as a transformation from forest to agriculture. To better cap-
ture the decision-making process, Brown  (  2005  )  developed a spatiotemporal model 
of shifting cultivation and forest cover dynamics in the Congo basin. The basic 
concept for making a decision in this model is based on utility maximisation. The 
decision making of the farmers is based on personal preferences, which are repre-
sented by the relative importance of the various factors infl uencing the farmers in 
making land use decisions. The importance of each factor or criterion was quanti-
fi ed by undertaking a household survey in which the respondents were asked to 
assign scores to refl ect the importance of a given factor to the land use decision-
making process. The fi elds with the greatest net benefi t would then be selected in a 
given year subject to labour constraints. This approach to collecting data on per-
sonal preferences has been adapted for use in this research. However, the decision 
function does not include the infl uence of the socio-economic circumstances of the 
local area yet it is clear that these external factors (i.e. markets, policies) have an 
infl uence on the land use decisions made by a household (Castella et al.  2007 ; 
Fresco et al.  1990 ; Haggith et al.  2003  ) . Therefore, the model of Brown  (  2005  )  can-
not be used effectively in its current form for policy analysis. Furthermore, fi eld 
selection operates separately for each household within the individual landholding 
but it does not clearly represent the interactions between different households in the 
decision-making process. It is recognised that farmers are often infl uenced by their 
neighbours’ choices, e.g. sharing fencing works with neighbours (Jepsen et al.  2006  )  
or other kinship relations (Gilruth et al.  1995  )  Therefore, a model that allows for the 
simulation of several households simultaneously and interactively is necessary in 
order to model shifting agriculture at a village level. 

 Another relevant study in the literature is the ABM of Sulistyawati et al.  (  2005  ) . 
It was developed to compare different land use strategies within a subsistence econ-
omy of rice and rubber cultivation under scenarios of fl uctuating rubber prices and 
a changing population in Indonesia. The model consisted of modules to calculate: 
(i) the population dynamics; (ii) land use decision-making; (iii) vegetation dynam-
ics; and (iv) production. However, there are limitations to this model associated with 
the way in which the decisions were modeled, and the rules were formulated for 



614 The An Ngo       et al.

swidden fi eld selection. To evaluate the attractiveness of potential sites, weights 
(or personal preferences) were assigned, but these were applied equally to all house-
holds, which means that all households effectively use the same decision function. 
The socio-economic conditions of the households should be taken into account in 
the decision making as outlined in the research by Brown  (  2005  ) . Another limita-
tion of this model is that the potential rice yield is only estimated based on fallow 
age. However, with the same biophysical conditions in a rice fi eld, different man-
agement practices could produce quite different yields. It is possible in ABMs to 
calculate yield separately for each land parcel as a function of the land characteris-
tics and socio-economic conditions of its owner. This modifi cation to the model 
would have made it more realistic. 

 Jepsen et al.  (  2006  )  were the fi rst to publish on the direct application of agent-
based modelling to shifting cultivation in Vietnam. Household agents make deci-
sions in the model regarding which fi elds they will cultivate based on expected yields 
and labour investment. Fallow age, which is used to calculate the potential yield and 
labour required to work on the fi eld, is used to estimate land productivity. The fi nd-
ings of the research showed that local farmers behave as would be expected accord-
ing to well established shifting cultivation theory, and the spatial output of the model 
resulted in a good match with the data derived from remote sensing. The ABM of 
Jepsen et al.  (  2006  )  has an advantage compared to the model of Brown  (  2005  )  as it 
is able to capture the interaction between household agents in decision making. 
However, the model is still overly simplistic in its assumptions such as ignoring all 
economic factors, e.g. price or household potential capital that could be important in 
other regions. Adding more constraints to the choice of agents such as soil condition, 
water availability or distance to the household would make the model more realistic. 
The rules governing fi eld selection are also too simple and therefore some important 
decision-making aspects (e.g. the linkage between production goals, preferences and 
decisions) could be lost. This limitation means that the model is unable to simulate 
the changing context of agents such as the change in land use strategies due to the 
application of new policies. A further limitation noted by the authors is the simplistic 
yield relationship in the model, which is simply derived from the cell age and the 
labour cost based on the number of adjacent cultivated cells. Other potential factors 
such as fertilisers, agricultural extension etc. could be added to the model. However, 
this would require much more fi eld data and further statistical analysis. 

 The research that is most similar to the application described in this chapter is the 
Land use Dynamic Simulator (VN-LUDAS) of Le  (  2005  )  and Le et al.  (  2008  ) . The 
type of study area is the same and the categorisation of households into groups, that 
are then assigned a specifi c land use strategy for selecting fi elds, has been adapted 
from this research. This categorisation is dynamic so households may change their 
strategy during a simulation. This is something that is currently not incorporated into 
other models such as those developed by Jepsen et al.  (  2006  ) , Sulistyawati et al. 
 (  2005  )  and Wada et al.  (  2007  ) . However, Le  (  2005  )  classifi ed households into groups 
and then built separate relationships to determine fi eld selection based on the fi eld 
characteristics. This approach essentially predicts the probability of land use types based 
on explanatory variables but it does not explain why farmers make these choices. 
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Instead the method of Brown  (  2005  ) , which uses household context to predict the 
probability of selecting land use strategies (i.e. types of personal preferences), was 
incorporated into this research. Another aspect of the VN-LUDAS model that has 
been adapted here lies in the land transition module. A large sample was collected for 
exploring the relationship between stand basal area and forest development. Le  (  2005  )  
provided ranges of thresholds indicating the transitions between forest land cover 
types. This calibration is particularly signifi cant for Vietnamese conditions because 
the forest is quite area specifi c, and it might not be suitable to use parameters gathered 
for other regions. Some of these parameters have been used in this ABM application. 
Furthermore, the VN-LUDAS model incorporates a response mechanism for policy 
change but the probability that households will violate constraints, including land use 
policies (e.g. forest protection regulations), is random and treated equally by all 
household agents. The VN-LUDAS model is therefore limited in capturing the asso-
ciation between individual accountability and the pressure exerted by local authorities 
to implement policy in the decision-making process of the land users. 

 The ABM developed as part of this research has incorporated elements from 
previous research into the development process but it has also attempted to address 
some of the shortcomings outlined above.  

    30.3   Study Area and Datasets Used 

 A model was developed for Binh Son-1 village in Ky Son district, Nghe An prov-
ince. This village is typical of upland villages in Vietnam, and the ethnicity of the 
village is almost 100% Kho Mu for whom shifting cultivation is the only agricul-
tural practice. The elevation of the village ranges from 400 to 1,200 m above sea 
level with a total area of about 7.4 km 2 . The village contains 88 households, with a 
total population of 436 people in 2007. There have been several policies and forest 
protection programmes implemented in the village. However, a considerable amount 
of illegal shifting cultivation still occurs in the protected forests. 

 The data used in this research consists of a survey dataset that was collected dur-
ing 2007 as well as land cover maps derived from TM satellite images in 2000, 2005 
and 2006. The survey data collected include maps that were obtained from partici-
patory mapping exercises, and socio-economic data about the households from 
questionnaires. Participatory rural appraisal (PRA) was used for the mapping tasks 
(Chambers  1994  ) , including village territory, soil status and land use maps. The 
questionnaires were carried out randomly on 63 households, and were specifi cally 
focused on gathering information about household conditions related to livelihoods 
and personal preferences for cultivation. The information on personal preferences 
was collected based on the method proposed by Brown  (  2006  )  in which the survey 
respondent rated land decision criteria on a zero-to-ten scale according to the impor-
tance they placed on each factor. Additional interviews were conducted with key 
villagers and local authorities about the customary laws and the institutional and 
other rules that govern the land use activities of the local people.  
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    30.4   Description of the ABM of Shifting Cultivation 

 An ABM of shifting cultivation consists of household agents, land agents and global 
parameters. Household agents represent shifting cultivators, who are capable of 
autonomous actions in the biophysical environment (i.e. on land patches or fi elds). 
Land agents are a set of grid cells representing land patches with their characteristics 
such as soil, land cover and land use. Global parameters are the set of external condi-
tions that include important socio-economic and policy-related parameters. The 
global environment is considered as the external driving force of land use change. 
It varies from year to year but applies across the whole grid and infl uences all agents. 
Within the shifting cultivation system, household agents interact and make changes 
to their biophysical environment (i.e. the land patches) while the environment also 
constrains the activities of the household. The household agents, the policy response 
mechanism and the land agents are now briefl y described below. 

    30.4.1   The Household Agent 

 Each household is an autonomous agent that is embedded within a potential decision 
routine, where fi eld selection and policy adaptation are the two main components:

    Field selection routine : this contains the rules that govern the choice of which 
fi elds or land patches to cultivate. The rules governing choice are based on the 
traditional economic behavioural theory of utility maximisation, which is widely 
applied in the simulation community (Le et al.  2008 ; Russell and Norvig  1995 ; van 
den Bergh et al.  2000 ; Wooldridge  2002  ) . The main assumption of this theory as 
applied in this model is that the agent will rationally choose the fi eld that is pre-
ferred to or no worse than all the others. The utility represents the ranked personal 
preferences of a household agent for all possible patches or combination of patches, 
the set of which is also restricted by labour requirements and accessibility (i.e. 
physical and tenure accessibility). The utility function ( u  

 i 
 ) for fi eld selection is 

formulated as:
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where  i  is a household,  s  is a fi eld or land patch within the accessible area  S  at time 
 t ;  Z  

 
st

 
  are the land specifi c factors, and  r  

 
it

 
  are the preference parameters of the 

household, which can be derived from the household context (Brown  2005  ) . There 
is also a stochastic component, which captures the uncertain nature of the perceptions. 
By multiplying the vector of land variables with the vector of personal preferences 
of a particular household, the utility function represents the suitability of a given 
fi eld to the household. Fields with the largest utility values are, therefore, the ones 
that will be potentially selected by the agent. The general algorithm of the fi eld 
selection routine is shown in Fig.  30.1 .   
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   Adaptation routine : this contains the simulation of responses by individual 
households to policies. The general response mechanism is adopted from the 
Institutional Analysis and Development (IAD) framework (Ostrom  1999  ) , which 
has been specifi cally developed for organising research on institutions and gover-
nance structures. The factors that drive an agent’s decisions are a combination of 
incentives (e.g. likely economic benefi ts) and beliefs (e.g. political accountability) 
(Clement and Amezaga  2009  ) . The policy response is, therefore, based on the 
assumption that an individual will behave by trading off their vested interests 
against their individual accountability or social responsibility (Crano  1995  ) . 
The general response mechanism is formulated as:

    
( ){ }( ) , *Response R f vestedInterests accountability pressure=

   (30.2)  

where vested interests comprise the expected economic outcome that the policy 
implementation will bring to the household. This variable can be expressed by the 
rate of expected income after and before policy implementation. The accountability 
is quantifi ed based on a farmer’s background and the infl uence of the body that 
implements the policy, while the pressure is based on the priority with which the 
policy is implemented. 

 The response of an agent to a policy is in the form of a response index that indi-
cates how related policies satisfy each individual. The minimal response index is 
zero, which indicates no policy is to be implemented or both vested interests and 
accountability are at the lowest level. Low values indicate potential opposition to 
the policy while higher values indicate support. The response does not directly 
change the land use decision of an agent but it contributes to the probability that the 
agent will undertake activities that support or oppose a given policy and to then act 
accordingly, e.g. cultivate in the protected forest. 

 The response affects the  fi eld selection  routine by modifying the defi nition of total 
accessible land  S . For example, land allocation policies are intended to encourage 
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  Fig. 30.1    Field selection algorithm       
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farmers to cultivate only inside the allocated areas. If these policies are implemented, 
then farmers that respond positively will only choose fi elds within the total accessi-
ble land  S  that fall within the allocated areas. In contrast, farmers that respond 
negatively to the policy will extend their search to land patches outside the allocated 
areas and broaden the defi nition of total accessible land  S . Similarly, forest protec-
tion policies do not allow farmers to cultivate inside any protected forests. Farmers 
that respond negatively to this policy will not consider the boundary between 
protected and non-protected areas in their fi eld selection.     

    30.4.2   The Land Agent 

 The land agents represent the biophysical environment as a series of grid cells, each 
of which has associated properties such as land cover, soil, slope, etc. The land 
patches are updated through direct interaction with the household agents, neighbour-
ing land agents and natural succession processes. The routine that controls the 
dynamics of the land agents is responsible for regularly updating the dynamic status 
of the land patches. The land use is simply updated after each fi eld selection since it 
is a direct driving force of land use change in the uplands (Jakobsen et al.  2007 ; 
Jepsen et al.  2006  ) . However, updating land cover is much more complicated as it is 
driven not only by human intervention but also by natural succession, which is beyond 
human control. The basic transition model used in this research is expressed as:

    ( )1 , ,t t t tS f S P T+ =
   (30.3)  

where  S  
 t+1 

  and  S  
 t 
  are the vegetation state of patch  S  at time  t + 1  and  t ;  P  

 t 
  is the col-

lective gross development at time  t  depending upon both internal and external forces 
acting on patch  S ; and  T  

 t 
  are the transition rules.  P  

 t 
  is determined from the fallow 

age and ground basal area, which is estimated from the parameters and empirical 
models in the literature (Le et al.  2008  ) . The transition rule  T  is estimated using 
fuzzy sets (see Ngo et al. (2009) for more details).  

    30.4.3   Model Implementation 

 The model operates iteratively on an annual production cycle. Each simulation starts 
with an initialisation stage and continues with cycles of three main phases: categori-
sation, fi eld selection and update (see Fig.  30.2 ). 

    The initial phase : The land patch attributes are imported to the model directly as 
GIS data layers, which include land cover, fallow age, ground basal area, land use, 
soil, slope and maps of buffered areas (i.e. distance to settlement areas, roads and 
streams). Household agents are then created, where the number of agents is equal to 
the number of households in the study area. Household profi les are assigned based 
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on the household survey samples (i.e. mean and standard error). Each household is 
located randomly in the settlement area. Finally, fi elds for cultivation are allocated 
to the households according to the land tenure status that is identifi ed by the global 
parameters at the time of the simulation.  

   Household categorisation phase : This phase categorises households into groups 
based on their characteristics and assigns the fi eld selection strategies (i.e. personal 
preferences [ r  

 it 
 ]) to the individual household agents based on the probability that the 

household will select a certain strategy. During a single iteration of the model, if a 
household agent changes the group to which it belongs, the fi eld selection strategies 
will be updated accordingly.  

   Field selection stage : This phase involves fi eld selection, policy adaptation and predic-
tion of possible outcomes of human activities. The simulation steps are as follows:

   Adopt policies by estimating the policy response index for each household agent, • 
and determine whether or not the agent will violate the land use regulations.  
  Search for the most suitable fi elds based on the perception of the household • 
about land resources and accessibility. The accessibility of land is determined 
based on the response to the policy in the previous step.  

  Annual production cycle 

1. Initialisation
     Setup global parameters 
     Setup land patches 
     Create household agents 
     Assign land tenure 

2. Categorisation 
  Categorise household into group 
  Adopt land use strategies 

3. Field Selection
 Select most suitable land patches

4. Update
Incomes, household partition, land 

tenure, household profile, land 
properties 

Y
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=
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  Fig. 30.2    A general simulation cycle of the SCM       
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  Decide on the number of patches to be selected based on basic food requirements • 
and the availability of land.  
  Record the human interactions (e.g. tenure) for each of the land patches.     • 

   Update phase   : The phase consists of updating the land tenure, land cover and other 
household characteristics. Land tenure is regularly updated according to the land use 
rights in place after each fi eld selection and after changes to the characteristics of the 
household agents, which are updated using survey information collected at the study 
site. If the simulation runs long enough, it is possible to produce new household 
agents based on the demographic attributes of the local population. New households 
are created when a household immigrates or a newly married couple moves to a new 
household (i.e. household partitioning). This partitioning can occur when parents 
are too old or the household size becomes too large. New household profi les are 
created stochastically based on the mean value and standard errors of the survey data 
set. The newly created household acquires land tenure based on the global parame-
ters set by the model user.    

 Each simulation cycle ends when the update phase fi nishes. However, the simu-
lation can continue to run for other simulation cycles as long as required by the 
model user. The ABM developed as part of this research operates in NetLogo 
(Wilensky  1999  )  with extensions written in Java.  

    30.4.4   Model Validation 

 Validation is an essential process to ensure that the model can be applied to examine 
the patterns of shifting cultivation and produce reliable data for policy analysis. Part 
of the validation process involves calibrating the model. Some of the parameters in 
the model were determined from the survey data and a statistical analysis. These 
include the personal preferences  r  

 it 
  and the policy response. The rest of the param-

eters were determined using a genetic algorithm. Details of how these parameters 
were obtained can be found in Ngo  (  2009  ) . 

 Validation was also applied to the fi eld selection and policy response routines as 
well as to the fi nal model outputs of land cover change. The Mean Nearest Neighbour 
distance (MNN) (Campbell  1995  )  was used to test the hypothesis that the fi eld selec-
tion routine behaves differently from a random selection. The test results showed 
that the selected fi elds were signifi cantly different from a random selection and the 
clustering tendency in the simulated maps is quite similar to that of reference maps, 
which were derived from TM Landsat satellite images. 

 The policy response was validated by examining the amount of illegal cultivation 
predicted by the model, which is indicated by the number of land patches cultivated 
inside the protected forests. The simulated results were comparable with the results 
from reference maps (i.e. 20.5% compared to 24.6%). 

 The overall operation of the model was validated by comparing the spatial 
structure of land cover maps and reference maps derived from satellite images. 
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This evaluation was conducted using a Multiple Resolution Goodness-of-fi t index,  F  
 t 
  

(Costanza  1989  ) . The result produced an  F  
 t 
  of 80%, indicating a good fi t between the 

model outputs and the reference data, and the model can now be used for further 
analysis. Details of the validation process of the model can be found in Ngo  (  2009  ) .  

    30.4.5   Building a Baseline Scenario 

 The application of the model in assessing policy impacts is based on formulating a 
scenario that quantifi es the possible transitions and the approximate processes lead-
ing to the changes in shifting cultivation in the study site. As an initial start, a base-
line scenario was applied to the model which assumes that the development context 
of the village follows the current trend (i.e. 2007) and remains stable during the 
simulation. The parameter settings, which are based on the survey in 2007, are shown 
in Table  30.1 . The term of the simulation is 14 years, from 2006 to 2020, which 
coincides with the time frame of the current forest development strategy (District 
People Council of Ky Son  2007 ; MARD  2007  ) . It also approximates a time period 
suggested in previous research (i.e. 10–20 years) (Huss  1988  ) . The starting point is 
2006 because the latest available land cover map (derived from satellite images) is 
for the year 2006. All scenarios were run ten times and the results were averaged.  

 The percentage of land cover types and their changes over time are shown in 
Table  30.2  and Fig.  30.3  respectively. The results show that under a business as usual 
scenario, the areas under bare land and shrubs increase while open and dense forest 
decreases by 2020. However, the amount of forest appears to stabilise as the simula-
tion progresses. This fi nding refl ects continued encroachment upon the forest for 
shifting cultivation and conversion to shrub through fallow and natural succession.   

 The visual analysis of the land cover maps between the start of the simulation in 
2006 and 2020 shows that the greatest change was an increase in the cultivated land 

   Table 30.1    Policy setting for the baseline scenario   

 Type of policy  Start  Term  Implemented body  Pressure 

 Land allocation  NA  –  –  0 
 Techn. support  NA  –  –  0 
 Credit support  2000  30  Headmen, VCP  4 
 Extension training  1999  30  Headmen  5 
 Forest protection  1996  50  Headmen, VCP  8 
 Population  2000  30  Women’s Union  4 

  Note:  NA  not applicable,  VCP  Vietnam Communist Party cell  

   Table 30.2    Percentage change in land cover type in the baseline scenario in 2020   

 Scenarios  Swidden  Bare soil  Grass-shrub  Open forest  Dense forest 

 Land cover in 2006  10.8  8.8  9.9  53.8  15.9 
 Baseline (S 0 )  13.7  16.7  25.7  31.9  11.6 
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(Fig.  30.4 ). Although some dense forests remain at the end of the simulation, these 
areas are either holy forests or forests located in inaccessible locations such as on 
steep slopes.  

 Therefore, under a business as usual scenario, the amount of shifting cultivation 
will increase. The model was also run for a range of different scenarios related to the 
implementation of potential government policies in the future. The details of these 
scenarios and their results are described in Ngo  (  2009  ) .   
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  Fig. 30.3    Land cover change over 14 years from the baseline scenario       
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    30.5   Conclusions 

 This chapter has presented the application of an ABM to study shifting cultivation in 
an upland village in Vietnam. The application has shown that the relationship between 
policy implementation and shifting cultivation can be explicitly described using an 
ABM approach, in particular combining the household context and institutional fac-
tors into the land use decision-making process. Given the ability to capture these 
complex relationships, the model can be used for exploring alternative scenarios and 
facilitating analysis of policy options towards sustainable forest management. 

 It is necessary to note, however, that the model has only been validated to date 
using data from a single village. To develop a really useful and reliable decision 
support tool for the future, which is the ultimate goal of this research, more data 
from villages with different types of internal community dynamics and/or policies 
implemented by the government are required.      
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  Abstract   Road networks are complex entities, which are arranged hierarchically 
both in their structure (topology) and by speed. This property has a strong infl uence 
on their performance, both at an individual and collective level. Indeed, they intrin-
sically favour car use, especially for distant trips. In that sense, they may contribute 
actively to urban sprawl, a non desirable property of urban growth. In this chapter, 
we propose and explore a strategy aimed at regulating and even reversing such a 
“speed metric”. Using agents, we simulate road traffi c on various road network 
structures and show how limited but well targeted actions can have a strong global 
impact on the system.      

    31.1   Introduction 

 From a planning perspective, road networks do not play fair game: the farther one 
goes, the more effi cient his/her travel is. Indeed, as road networks are hierarchically 
organised by speed, the proportion of a trip spent at low speeds on minor roads 
decreases while the proportion of time spent on faster roads increases. This rather 
evident phenomenon is rarely put forward nor exploited according to its real impor-
tance in urban planning. Indeed, the performance of road networks are frequently 
evaluated using global indices (such as mean speed), without taking into account the 
distribution of trip lengths. 
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 This structurally-based “speed metric” ensures car drivers the possibility to travel 
farther without necessarily increasing their transportation time in the same propor-
tion. Obviously, public transport modes (bus, tramways) benefi ts less from such a 
property, limited as they are by the frequent stops they are supposed to make along 
their route. Therefore road networks, by their mere structure, intrinsically favour car 
use, especially for distant trips. As a direct consequence, they also encourage disas-
sociation – within the limits of daily time budgets – the various places of life (home, 
work) and fi nally actively contribute to urban sprawl. 

 Would it be feasible to reduce these negative global scale effects by penalizing 
road users accordingly to the length of their trips? 

 In this chapter, we present an agent-based model (S3) aimed at exploring this 
critical issue. Based on a comprehensive description of the problem at hand, the 
main components of the model are described and illustrated. Results from fi rst sim-
ulations are then presented, suggesting that new metrics could be obtained with 
rather simple but well targeted actions.  

    31.2   Road Networks and Trip Effi cacy 

 As Gutiérrez et al .   (  1998  )  proposed, effi cacy of road networks can be defi ned in a 
very simple way. Let’s imagine two places,  A  and  B  (Fig.  31.1 ), connected by a road 
network of length  d  

 r 
 .  

 It is then very useful to compare the time needed to travel from  A  to  B , that is 
 t(d  

 r 
  ) , with the Euclidean distance  d  

 e 
  separating  A  and  B  such that:

    ( )
=

( , )

( , )
e

ij
r

d i j
E

t d i j
   

(31.1)  

where     = - + -2 2( , ) ( ) ( )e i j i jd i j x x y y    (31.2)   

 Trip effi cacy  E  
 ij 
  can then be seen as an average speed, 1  defi ned as the Euclidean 

distance between origin and destination of a trip divided by its real duration. When 
describing a road network, effi cacy may be privileged compared to speed indicators 
as it integrates morphological dimensions. Indeed, a given road network may pro-
vide high speeds but a poor effi cacy with the proportion of detours growing. 

  Fig. 31.1    Defi nition of trip 
effi cacy       

   1   In the rest of the chapter it will be expressed in km/h or in m/s, depending on the context.  
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 When plotting this index of effi cacy against the distance travelled, one can verify 
that, on average, the level of performance (effi cacy) increases non-linearly with the 
distance travelled (Fig.  31.2 ).  

 The main hypothesis we draw here is that by inverting this trend (i.e. short-
distance trips being favoured instead of long ones), one could promote higher densi-
ties and better functional proximities in urban design, according to the hypothesis of 
the rational locator (Levinson and Kumar  1994  ) . Therefore, while reinforcing the 
economic value of physical proximity in a signifi cant way and encouraging short 
trips, one could actively contribute in reducing urban sprawl. 

 We call this new kind of metric the “slow metric” (Genre-Grandpierre  2007  ) . 
However, as road networks are organised hierarchically both by their topology and 
the speed of their components, it is obvious that one cannot invert this trend simply 
by reinforcing speed limits or even imposing constant speeds. Coupling this last 
option with a dramatic alteration of network topology (e.g. imposing a regular struc-
ture) would just cancel the trend, but would not invert it (Fig.  31.3 ).  

 A war metaphor may then help us overcome this obstacle. Indeed, let us imagine 
with Stanley and Ostrowsky  (  1985  )  a fi eld battle covered with land mines. Moreover, 
let us assume the distribution of these nasty weapons is fractal, such that one can 
show an inverse power relation between the number of clusters of size  S  

 i 
  and the size 

of these clusters:

    ( )i iN S S a-μ    (31.3)   

 Let us now imagine a soldier being given a dangerous mission by his offi cer to 
deliver a message from place  A  to place  B . Obviously, this soldier has to fi nd a way 
to avoid land mines on his way. Let us imagine he has the possibility to fi nd the 
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may be cautious in interpreting small differences between curves as they are based on average 
effi cacy values       
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shortest safe path from  A  to  B  and that he is able to deliver the message in a given 
time  t  

 1 
 . As soon as he arrives, his offi cer asks him to have a 5 min rest and then to 

deliver a new message from place  B  to  C . Estimating from his topographic map that 
the Euclidean distance between  B  and  C  is three times the Euclidean distance 
between  A  and  B  (i.e.    =( , ) 3 ( , )e ed B C d A B   according to our previous notation), his 
offi cer fi nally asks him to deliver the new (and by the way urgent) message in a 
given time  t  

 2 
 , proportional to that relation:  t  

 2 
  = 3  t  

 1 
  .  However, since the soldier has 

read the Stanley and Ostrowsky  (  1985  )  book, he is able to (respectfully) suggest to 
his offi cer that the probability of him delivering the message in this time is very low, 
if not impossible. Indeed, as the distribution of clusters follows a power law, the 
time needed to connect increasingly distant places does not increase in a linear fash-
ion, but more likely in a non-linear one:

    1nt tbμ    (31.4)   

 Coming back to the issue at hand, what does this war metaphor suggest? Well, a 
very direct interpretation can be derived: in a road network, traffi c lights might be 
seen as land mines while their duration resembles the cluster’s size of the latter. In 
other words, by correctly positioning a reduced number of traffi c lights with their 
duration following a precise probability law (power law), one could reach the met-
ric inversion goal. Simulations ran in a GIS indeed that specifi c combinations of 
location and duration of traffi c lights on a network may produce the desired effect 
(Fig.  31.4 ).  

 By modifying the number and duration of traffi c lights, we thus obtain various 
effi cacy curves, favouring short-distance trips. These fi rst positive results encour-
aged us to explore this problem with a more dynamic and microscopic model, in 
order to address some keys issues identifi ed so far such as: (a) the number, location 
and duration of stops; (b) the possible structural effect induced by network topol-
ogy; and (c) the possible impacts on traffi c, including congestion and traffi c jams.  
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    31.3   Smart Slow Speed (S3): An Agent-Based 
Simulation Platform 

 S3 was designed as an interactive platform to explore complex issues with reactive 
agents as highlighted previously (Fig.  31.5 ).  

 S3 is composed of two interacting modules: the fi rst one concerns both the cre-
ation of a road network differentiated by speed and the location of traffi c lights, 
while the second one implements an agent-based traffi c simulation model. 
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  Fig. 31.5    The S3 platform, developed in NetLogo       
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    31.3.1   Traffi c Lights: Choosing Location and Time Duration 

 The fi rst module (network builder) constructs regular (rectangular or octagonal), 
networks. The graph generated is non-oriented but weighted by speed. Edges are 
indeed valued with a given speed  v , such that    { }30,50,70,90,110v Î   , expressed in 
km/h. On this basis, the shortest paths are computed between any two distinct nodes 
using the Floyd-Warshall algorithm. As the graph is non-oriented, the total number 
of pairs is  (n (n − 1)/2)  where  n  is the number of nodes. 

 A population of agents of size  P  is then created, each agent being defi ned by an 
origin node, a destination node, and therefore the shortest-path between these two 
end nodes. The  P  paths created are then used to create the traffi c lights, in a four step 
process (Fig.  31.6 ).  

 The main issue concerns the effi cient location of a limited number of traffi c 
lights. Let us assume two simplifi cations. Firstly, let us assume that there is no 
capacity constraint, which means that the fl ow on every edge of the network may 
surpass the edge’s capacity: for each edge  e ,    e eF U³   , where  F  

 e 
  is the fl ow on  e  and 

 U  
 e 
  is its capacity. Secondly, let us assume that our agents have no adaptation capaci-

ties, i.e. they strictly follow their allocated shortest-path, whatever the context is. 
 Impacting the maximum number of agents with a limited number of traffi c lights 

then involves identifying target edges, which will be crossed by a large number of 
agents (Fig.  31.6a ). Basically, the probability that a given edge  e  will host a traffi c 
light  L  will be a function of the fl ow on  e ,    P =( ) ( )e eL f F   . We can think about this 
process as a preferential attachment one (Newman  2005  ) . Moreover, given the 
assumptions previously formulated (no capacity constraints and no adaptation 
behaviour), then it is evident that the fl ow  F  

 e 
  on a given edge  e  is the number of 

times that the edge belongs to a shortest path between two given nodes. Therefore, 

  Fig. 31.6    Location and duration of traffi c lights: a four step process       
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the fl ow  F  
 e 
  of edge  e  can also be interpreted as a proxy of its “edge betweenness” 

(Girvan and Newman  2002  ) , which is a generalisation of Freeman’s betweenness 
centrality (Freeman  1977  )  to edges. However, introducing slow speed metrics in a 
network does imply targeting also the longest trips, as they benefi t the most from the 
standard “speed metric” (Fig.  31.6b ). Therefore, we reduce the candidates to edges 
characterised by a fl ow superior or equal to a given threshold value    γ   :

    ( ) ( )e e eL f F F gP = " ³    (31.5)   

 Once traffi c lights are located (Fig.  31.6c ), we have to defi ne their duration. 
A power law is assumed such that    -P μ( )t tD D a   . Increasing values of parameter  a  
provide various distributions of the durations of the traffi c lights, once the minimum 
and maximum durations are defi ned (Fig.  31.7 ).   

    31.3.2   A Microscopic Traffi c Model 

 The second module handles a microscopic traffi c model, aimed at testing the effi -
ciency of the designed network, as well as its impact on traffi c fl uidity. Before each 
simulation,  m  agents are created and located randomly on the  n  nodes of the net-
work, their destination also being chosen randomly. During a simulation, each agent 
will have to reach its destination following the shortest route computed as  previously 
defi ned, and takes into account speed  v  of the links but also the presence of other 
agents in front as well as the presence of red lights at intersections. 
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 We use an underlying grid covering the 1 km × 1 km wide area, composed of a 
large number of small cells (length 4 m). Agents are then located on cells underlying 
the network. Only one agent can occupy one cell at a time. On this basis and follow-
ing Banos et al .   (  2005  ) , we then extend the NaSch model (Nagel and Schreckenberg 
 1992  )  in order to introduce traffi c lights. According to the prescription of the NaSch 
model, we allow the speed  V  of each vehicle to take one of the integer values  V =  0, 
1, 2 …, Vmax , where  Vmax  corresponds to the speed  v  of the current link. At each 
discrete time step  t → t +  1, the arrangement of the  m  agents is then updated in 
 parallel according to the following driving rules:      

  Step 1: Acceleration 

    ( )< ® +If Vn Vmax,Vn min Vn 1,Vmax
   (31.6)   

 i.e. the speed of the  nth  vehicle is increased by one. 

  Step 2: Deceleration  (due to other vehicles/traffi c signal). 
 Suppose  Dn  is the gap between the  nth  vehicle and the vehicle in front of it, and  Dtn  
is the gap between the car under consideration and the red light in front of it on the 
road, then:

    ( )if dn Vn or dt n Vn, then Vn min Vn,Dn 1,Dtn 1£ £ ® - -
   (31.7)   

  Step 3: Randomisation 

    If Vn 0 and, ,  then Vn Vn 1pe> £ ® -    (31.8)  

where   e   is a value generated at random from a uniform distribution  U  [0,1] and 
0  £   p   £  1. In other words, the speed of the car under consideration is decreased ran-
domly by unity with probability  p . This random deceleration probability  p  is identi-
cal for all the vehicles, and does not change during updating. Three different 
behavioural patterns are then embedded in that single computational rule: fl uctua-
tions at maximum speed, retarded acceleration and over-reaction at braking 

  Step 4: Movement  
 Each vehicle moves forward with a certain speed, i.e.  Xn → Xn + Vn , where  Xn  
denotes the position of the  nth  vehicle at any time  t .  

 Figure  31.8  illustrates the kind of traffi c patterns generated by this simple but 
powerful model.  

 Once a specifi c hierarchical network is fi xed, this traffi c model allows explora-
tion of its effi ciency as well as the impact of various strategies of speed reduction. 
More precisely, it allows exploration of the possible conditions under which we 
may obtain a slow metric and the potential effects of the latter on traffi c (fl uidity). 

 Exploring these various issues in a systematic way is a challenge in itself as the 
possible combination of parameters grows rapidly with their number. In this chapter 
we will mainly focus on results related to the creation of a slow metric. Its effects 
on congestion and on global accessibility will be less detailed, even though it 
remains a fundamental issue.   
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    31.4   Preliminary Results 

 The results we present here may be seen as preliminary as they suggest more than 
they demonstrate. However, what they suggest is undoubtedly of interest: a small 
number of traffi c lights, with location and duration carefully defi ned, may be suffi -
cient to obtain a slow speed metric. However, defi ning the cost of such a measure is 
trickier than expected at fi rst glance and should be investigated in a much more 
exhaustive way than we do here. 

    31.4.1   A Small Number of Traffi c Lights May Do the Job 

 Let us imagine a regular but octagonal network arranged hierarchically by speed in 
a star-like manner with high speed corridors converging towards the centre (Fig.  31.9 ). 
On that basis we can explore the infl uence of various combinations of traffi c lights 
characteristics on network effi cacy, located as described in Eq.  31.5 . Importantly, 
the traffi c model (NaSch) is not activated so the pure network component can be 
identifi ed.  

 As expected, the speed metric occurs in the absence of traffi c lights. Introducing 
such equipment reduces the discrepancy between short and long trips by penalising 
the long ones. However, the number of lights seems to play a secondary role 
 compared to their duration, as expressed by the clustering of curves. This graph 
even suggests that a small number of traffi c lights may do the job quite well, if we 
calibrate their duration and location correctly. It is indeed well known that the pat-
tern of fl ows depends strongly of the structure of the network, as shown by Penn 

  Fig. 31.8    Examples of traffi c patterns obtained from the extended NaSch model ( a)  A global view 
of the traffi c (presence of traffi c lights) ( b)  Spontaneous formation of traffi c jams (absence of 
 traffi c lights)       
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et al .   (  1998  ) . Therefore, those edges constituting the backbone of traffi c fl ows 
should be targeted preferentially in order to setup and reinforce the slow metric 
process. Moreover, those involved in long distance trips are of specifi c interest. This 
crucial point may be illustrated by comparing two values of the threshold    γ    used in 
Eq.  31.5 . As can be seen in Fig.  31.10 , targeting long distance trips amplifi es the 
inversion process in a signifi cant way.   

    31.4.2   Introduction of Traffi c Interactions 

 Free fl ow conditions can hardly be defi ned as representative situations in urban daily 
life. Introducing traffi c interactions between agents, as defi ned previously, is there-
fore an important point. A key feature emerging from the simulation may be 
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 emphasized: traffi c conditions and more precisely congestion may contribute actively 
to the slow speed metric that we are searching for. As Fig.  31.11  reveals, increasing 
the number of agents and the intensity of the interactions between them (parameter 
 p  in Eq.  31.8 ) dramatically alters the effi cacy curve in the absence of traffi c lights.  

 Obviously, theoretical performances of road networks are very far from real ones 
when traffi c interactions and traffi c lights are taken into account. Interestingly 
enough, adding traffi c lights to this picture amplifi es the process, with an additional 
impact on short distance trips (Fig.  31.12 ).  

 However, balancing the effi cacy of a given network between long and short trips 
may not be an end in itself. Indeed, even if the goal of the so-called slow metric is to 
lower network effi cacy, especially for long range trips, the global system should 
remain effi cient. One way to evaluate this loss in effi ciency is to compute a “fl uidity” 
index. One basic idea would be to compare a given state, characterised by some 
constraints (e.g. traffi c lights, traffi c interactions) with a previous one, free from such 
constraints. Let us defi ne  t  

 i 
  as the duration of a simulated trip, under given traffi c 

conditions. Let us also defi ne   τ i    as the theoretical duration for that same trip under 

18

16

14

12

10

70 km/h

30 km/h

110 km/h
8

6

4

2

0
0 200 400 600 800 1000 1200

range of the trips (m)

Yes

Yes

Yes

500
500

500

1500

No

traffic
interactions

nb
agents p value

ef
fic

ac
y 

(m
/s

)

p =0,2

p =0,9

p =0,9

  Fig. 31.11    Traffi c and congestion as contributing factors to a slow speed metric       

  Fig. 31.12    Combining traffi c interactions and traffi c lights (same road network as Fig.  31.11 )       

 

 



638 A. Banos    and C. Genre-Grandpierre

free fl ow conditions (no traffi c interactions and no traffi c lights). This theoretical 
indicator may be defi ned in a simple manner for each trip as:

    1

k

k

n
l

i v
k

t
=

= å
   

(31.9)
  

where  l  
 k 
  is the length of edge  k  and  v  

 k 
  is its speed. Given step 1 (acceleration) of the 

NaSch model, it is obvious that    i it t³   . For each trip (and therefore each agent  i ), we 
can then defi ne its loss in fl udity  f  

 i 
  as:
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(31.10)  

which evolves between 0 and 1. We can then defi ne an average indicator of fl uidity loss 
 F , which will also evolve between 0 (minimum fl uidity) and 1 (maximum fl uidity) as:

    1
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n t

t

=

-
= -å

   
(31.11)   

 Under free fl ow conditions, the fl uidity loss is null as    i it t=   , and it increases when 
traffi c interactions (NaSch rules) and traffi c lights are introduced (Fig.  31.13 ).  
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 One key issue is therefore to identify socially acceptable ranges of variation for 
such an index but also to identify winners and losers in a very detailed manner, as 
very different situations may occur behind the same global value. However, the 
fl uidity index represents the loss of time due to the introduction of the new metric 
compared to a free fl ow situation. It is, therefore, closely related to the effi cacy 
index and then provides rather limited insights on traffi c jams. Representing the 
proportion of vehicles being stopped during the simulation then adds some valuable 
information to this specifi c issue (Fig.  31.14 ).  

 Obviously, adding constraints (number of agents, number of traffi c lights) has a 
strong impact on the proportion of vehicles being stopped (curves tend to 0 as vehicles 
progressively reach their destination during simulation). Of course, this index merges 
both stops due to traffi c lights and those generated by traffi c jams. In that sense, it should 
be improved in order to display clearer insights on the local and global impacts of the 
slow speed metric. Comparison with “real world” data may also be of crucial impor-
tance here, in order to defi ne the range of what may be seen as acceptable conditions.   

    31.5   Conclusions 

 These fi rst results, while being very preliminary, are promising. Indeed they suggest 
that slow speed metrics could be designed and maintained with limited and thus 
well-targeted efforts. However, several questions still remain unanswered so far. 
The fi rst one concerns the calibration of such a metric, which is very complex as it 

  Fig. 31.14    Proportion of cars stopped during the simulation (same parameters as Fig.  31.13 ).  
 Number of agents and lights increases from left to right       
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depends on the number, duration and location of traffi c lights, the structure of the 
network, the intensity of the traffi c and the nature of its local interactions. In order 
to optimize this calibration, we must know more about road users’ acceptance levels 
regarding waiting times at junctions, fl uidity, and more generally, accessibility. 

 A second point concerns the strong underlying assumption of non-adapting trav-
elling behaviours. By imposing traffi c lights with randomly chosen and ever chang-
ing durations, we assume that no driver can predict a better solution to the shortest 
path (in distance) and therefore has no interest in modifying their route, thus reach-
ing an equilibrium quite naturally. This very strong assumption needs further explo-
ration, even before we imagine possible sources of heterogeneity introduced, for 
example, by real time traffi c information. 

 Another issue concerns the regulation of traffi c jams. In the presence of local traf-
fi c jams generated or amplifi ed by a long lasting traffi c light, we can imagine self-
regulatory processes overriding this targeted traffi c light periodicity, especially when 
edge capacity reaches a critical value. Such self-regulatory systems have already 
been explored by simulation with promising results in terms of fl uidity (Lämmer and 
Helbing  2008  ) . 

 The last issue concerns the social acceptance of such a constraining policy. This 
issue raises a large variety of debates we cannot address here. However, one key 
issue concerns the capacity of the slow metric to reinforce the economic value of 
physical proximity in a signifi cant way. This would be mandatory if one’s goal is to 
drive localisation strategies of both households and fi rms towards more sustainable 
urban patterns. Moreover, our simulations suggest that the “do nothing” politics that 
are usually adopted, which consist of letting traffi c jams occur and “regulate” the 
system, do act as non-mastered slow speed metrics. Indeed, it is our belief that long 
distance trips are still favoured by such a strategy, an intuition we will have to dem-
onstrate in future work. More generally, despite the complexity of the problem and 
its highly political dimension, our claim is that we can do better than such “do noth-
ing” politics through proactive and well-targeted strategies.      

   References 

   Banos, A., Godara, A., & Lassarre, S. (2005). Simulating pedestrians and cars behaviours in a 
virtual city: An agent-based approach. In  Proceedings of the European Conference on Complex 
Systems , Paris, 14–18 Nov 2005.  

    Freeman, L. C. (1977). A set of measures of centrality based on betweenness.  Sociometry, 40 , 
35–41.  

    Genre-Grandpierre, C. (2007). Des réseaux lents contre la dépendance automobile? Concept 
et implications en milieu urbain.  L’Espace Géographique, 1 , 27–39.  

    Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. 
 Proceedings of National Academic Science USA, 99 , 7821–7826.  

    Gutiérrez, J., Monzòn, A., & Pinero, J. M. (1998). Accessibility, network effi ciency and transport 
infrastructure planning.  Environment and Planning A, 30 , 1337–1350.  

       Lämmer, S., & Helbing, D. (2008). Self-control of traffi c lights and vehicle fl ows in urban road 
networks.  Journal of Statistical Mechanics: Theory and Experiment, 2008 (4), P04019.  



64131 Towards New Metrics for Urban Road Networks: Some Preliminary Evidence…

    Levinson, D., & Kumar, A. (1994). The rational locator: Why travel times have remained stable. 
 Journal of the American Planning Association, 60 (3), 319–332.  

    Nagel, K., & Schreckenberg, M. (1992). Cellular automaton models for freeway traffi c.  Journal of 
Physics I, 2 , 2221–2229.  

    Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law.  Contemporary Physics, 
46 , 323–351.  

    Penn, A., Hillier, B., & Xu, J. (1998). Confi gurational modelling of urban movement networks. 
 Environment and Planning B, 25 , 59–84.  

       Stanley, H. E., & Ostrowsky, N. (1985).  On growth and form: Fractal and non fractal patterns in 
physics . Nijhoff, Dordrecht.     



643A.J. Heppenstall et al. (eds.), Agent-Based Models of Geographical Systems, 
DOI 10.1007/978-90-481-8927-4_32, © Springer Science+Business Media B.V. 2012

  Abstract   This chapter presents a logistic based cellular automata model to simulate 
the continuous process of urban growth in space and over time. The model is con-
structed based on an understanding from empirical studies that urban growth is a 
continuous spatial diffusion process which can be described through the logistic 
function. It extends from previous research on cellular automata and logistic regres-
sion modelling by introducing continuous data to represent the progressive transi-
tion of land from rural to urban use. Specifi cally, the model contributes to urban 
cellular automata modelling by (1) applying continuous data ranging from 0 to 1 
inclusive to represent the none-discrete state of cells from non-urban to urban, with 
0 and 1 representing non-urban and urban state respectively, and all other values 
between 0 and 1 (exclusive) representing a stage where the land use is transiting 
from non-urban to urban state; (2) extending the typical categorical data based logis-
tic regression model to using continuous data to generate a probability surface which 
is used in a logistic growth function to simulate the continuous process of urban 
growth. The proposed model was applied to a fast growing region in Queensland’s 
Gold Coast City, Australia.      

    32.1   Introduction 

 This chapter presents a logistic based cellular automata model to simulate the continu-
ous process of urban growth in space and over time. The model is constructed based 
on an understanding from empirical studies that urban growth is a continuous spatial 
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diffusion process over time which can be described through the logistic function 
(Herbert and Thomas  1997 ; John et al.  1985 ; Jakobson and Prakash  1971  ) . It extends 
from previous research on cellular automata and logistic regression modelling by 
introducing continuous data to represent the progressive transition of land from rural 
to urban use. Specifi cally, the model contributes to urban cellular automata modelling 
by (1) applying continuous data ranging from 0 to 1 inclusive to represent the none-
discrete state of cells from non-urban to urban, with 0 and 1 representing non-urban 
and urban state respectively, and all other values between 0 and 1 (exclusive) repre-
senting a stage where the land use is transiting from non-urban to urban state; (2) 
extending the typical categorical data based logistic regression model to using con-
tinuous data to generate a probability surface which is used in a logistic growth func-
tion to simulate the continuous process of urban growth. The proposed model was 
applied to a fast growing region in Queensland’s Gold Coast City, Australia. 

 Many CA based urban models have been developed over the last two decades 
(see Iltanen  2012  ) ; these models vary considerably based on the confi gurations of 
the fi ve basic elements that make up the CA model – the type and size of the cells, 
the defi nition of cell states, the type and size of the neighbourhood, the confi gura-
tion of transition rules, and the way time is modelled. While the sizes of cells and 
their neighbourhood are fundamentally a scale issue which is common to all geo-
graphical problems (Openshaw  1984  ) , it is more challenging for modellers to con-
fi gure the state of the cells and identify rules that drive the transition of cells from 
one state to another over time in order to capture the various features and mecha-
nisms of urban growth dynamics. 

 A common practice in defi ning cell state is using discrete data to represent a binary 
state of either non-urban or urban, or using specifi c land use types (Ward et al.  2003 ; 
Li and Yeh  2000 ; Clarke and Gaydos  1998 ; Wu  1998a,   b,   c,   1996 ; Clarke et al.  1997  ) . 
Many of these models have made signifi cant contributions to our understanding on 
urban growth and land use change dynamics both theoretically and empirically, how-
ever, a limitation of this modelling practice is in capturing the progressive or continu-
ous change of state geographically and temporally. To overcome this limitation, Liu 
 (  2008  )  and Liu and Phinn  (  2003  )  developed models using a fuzzy membership func-
tion to represent the fuzzy boundary between the urban core and suburb areas towards 
the rural land. Other models developed by Mandelas et al.  (  2007  ) , Dragićević  (  2004  )  
and Wu  (  1998b  )  also introduced the fuzzy set and fuzzy logic concepts in their models 
following the pioneering attempt by Wu  (  1996  ) . However, as the membership func-
tion and the fuzzy linguistic modifi ers are defi ned in a subjective way, the interpreta-
tion of the model’s results is largely restricted (Wu  1996  ) . 

 In terms of identifying and confi guring the transition rules, both statistical and 
non-statistical methods have been developed; the former include the Monte Carlo 
method (Clarke et al.  1997  ) , the analytical hierarchy process (AHP) (Wu  1998c  ) , 
multi-criteria evaluation (MCE) (Wu and Webster  1998  ) , principal components 
analysis (PCA) (Li and Yeh  2002a  ) , multiple regression analysis (Sui and Zeng 
 2001  ) , and logistic regression (Wu  2002  ) ; and the latter include the artifi cial neural 
network (Almeida et al. 2008; Li and Yeh  2002b  ) , and the spatial optimization 
methods such as particle swam optimization (Feng et al.  2011  ) , support vector 
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machines (Yang et al.  2008  ) , kernel method (Liu et al.  2008a  ) , and ant intelligence 
(Liu et al.  2008b  ) . Amongst these approaches, the logistic regression method has 
been favoured in a number of studies primarily due to its strong statistical founda-
tion in exploring the association of a dependent variable, measured as presence or 
absence of a phenomenon (e.g., yes/no, or urban/non-urban), and multiple indepen-
dent (predictor) variables such as the various environmental, social and institutional 
factors on urban growth. 

 For instance, Wu and Yeh  (  1997  )  applied logistic regression method for modelling 
land development patterns based on parcel data extracted from aerial photographs; 
Gobim et al.  (  2002  )  adopted logistic modelling technique to predict the probabilities 
of local agricultural land use systems in Nigeria; Wu  (  2002  )  used logistic regression 
to compute the probability of a cell experiencing land change and developed a sto-
chastic CA model; Verburg et al.  (  2002  )  developed a spatially-explicit land-use 
change model (i.e. CLUE-S) based on logistic regression to simulate land-use change 
in relation to socio-economic and biophysical driving factors, which has also been 
widely applied in other areas (e.g., Zhu et al.  2009  ) ; Fang et al.  (  2005  )  used logistic 
regression to analytically weigh the scores of the driving factors of an urban sprawl 
model for predicting probability maps of land use change. 

 Indeed, the logistic regression method is effective and effi cient in modelling 
urban growth with cellular automata. However, the use of categorical data repre-
senting a binary state of non-urban or urban is limited in modelling areas that are 
partly developed but are yet to be fully urbanised. Given that the logistic regression 
model is not restricted to only using categorical data to represent the dependent vari-
able, this method can also be applied to model continuous dependent variable data, 
so long as the data is within a range from 0 to 1 representing probability values or 
proportions (Sherrod  2010  ) . 

 The following section describes the study area where the proposed logistic CA 
model using continuous data will be tested and calibrated, followed by a section on 
model description, including the model design concepts and principles, input data 
and the model confi guration details. The results generated from the application of 
the model in simulating the processes of urban growth in the Gold Coast City from 
1996 to 2006 are presented and discussed in the Results section, together with 
assessments of the model’s simulation accuracies using a set of landscape matrix 
measures. The last section of the chapter summarises fi ndings from the current 
research and identifi es future research directions.  

    32.2   Study Area 

 Gold Coast City, the second largest city in Queensland, Australia was selected to 
apply the logistic regression based CA model to simulate the continuous 
urban growth from 1996 to 2006. Geographically, the city is situated in the south-
east corner of Queensland between the state’s capital city of Brisbane at its north 
and the State of New South Wales at its south. To the west of the Gold Coast are 
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the Lamington National Park and the foothills of the Great Dividing Range. 
Spanning across an area of 1,400 km 2  and with 57 km of coastline, this city has 
some of the most popular surf breaks and beaches in Australia and the world; its 
west and southwest hinterland also offers the most spectacular scenery in Australia 
and extremely rich biodiversity which supports rural production, water quality, 
scenic amenity and outdoor recreation (Department of Infrastructure and Planning 
 2009  ) . 

 This city consists of 106 state suburbs prior to the year 2008, with a number of 
localities, towns and rural districts within the suburbs. Since March 2008, 
Beenleigh-Eagleby region on Gold Coast’s northwest border has been transferred 
to Logan City. Given that the time frame in this study is from 1996 to 2006, the 
study area still includes those suburbs that are currently part of Logon City 
(Fig.  32.1 ). The total resident population of the city in 2006 was 472,000 (Australia 
Bureau of Statistics 2006), and the estimated resident population in 2010 was 
528,000 (Australian Bureau of Statistics 2011). Over the past 15 years, the urban 

  Fig. 32.1    The study area       
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footprint has been growing rapidly with most of development been concentrated 
between Yatala at the north and Coolangatta at the south, and continues south 
beyond the Queensland border into the Tweed Shire in New South Wales 
(Department of Infrastructure and Planning  2009 ; Ward et al.  2000  ) .   

    32.3   Model Description 

 The model description follows the ODD (Overview, Design concepts, and Details) 
protocol for describing individual- and agent-based models (Grimm et al.  2006,   2010 ; 
Grimm and Railsback  2005,   2012  )  and consists of seven elements. The fi rst three ele-
ments provide an overview of the model; the fourth element explains general concepts 
underlying the model’s design; and the remaining three elements provide details. 

    32.3.1   Purpose 

 The purpose of the model is to simulate urban growth as continuous processes in 
space and over time. It hypothesises that the transition of land from rural to urban 
use is a continuous process which can be modelled using continuous data and logis-
tic functions in a cellular environment. The proposed cellular model was applied to 
the rapidly growing Gold Coast City in Southeast Queensland, Australia to test the 
conceptual framework and effectiveness of the model in simulating the continuous 
processes of urban growth.  

    32.3.2   Entities, State Variables and Scales 

 In cellular automata based urban modelling, the space or area under study is typi-
cally tessellated into regular grid cells, each cell representing a piece of land on the 
ground at a certain scale. For the study area in the Gold Coast City, the spatial scale 
of cells is at 30 m, with a total of 1,559,283 cells covering the entire study area. 

 Each spatial entity or cell is represented by a state variable representing the state 
of a cell undertaking the urban development process. Instead of defi ning the state 
variable with a binary value of urban or non-urban, as most other CA based urban 
models typically do, this model defi nes the state of cells as continuous values ranging 
from 0 to 1 (inclusive). For instance, a non-urban cell which has not started its devel-
opment will have a state value of 0, while a fully developed urban cell will have a 
state value of 1. Cells that have started their process of urban development but are yet 
to be fully developed will have a state value between 0 and 1 (exclusive). 

 Another state variable used in the CA model is the neighbourhood size. In this 
study, a rectangular 5 × 5 cells neighbourhood was selected. According to CA 
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 principles, the state of a cell at a certain time is not only dependent on the state of 
the cell itself in a previous time step, but also the collective effect of all cells within 
its neighbourhood. This collective neighbourhood effect is modelled in the land use 
conversion probability sub-model.  

    32.3.3   Process Overview and Scheduling 

 Three processes of urban growth have been modelled; these include a continuous 
urban growth process, a new urban growth process, and a no-growth process. All 
processes are under the assumption that urban growth progress from a lower state 
(with a state value close to 0) to a higher state (with a state value close to 1), with 
the value 1 being the highest state in the urban growth process. Once a cell reaches 
a state value of 1, it is considered being fully developed and its state will remain as 
1 until the simulation is terminated. This excludes both urban re-development and 
anti-urbanisation processes.

    Continuous urban growth  
 The continuous process of urban growth can be represented by a logistic function (Liu 
 2008 ; Herbert and Thomas  1997 ; John et al.  1985 ; Jakobson and Prakash  1971  ) .

    0

1

1 (1 / 1) exp( )
t
iS

S tg
=

+ - ´ - ´    
(32.1)

  

where    t
iS   is the state of cell  i  at time  t ;    0S   is the initial state of the cell to start its 

urban growth process. This initial state value can be small but larger than 0 for 
the cell to start its urban growth process (e.g.,    =0 0.01S   ).    g    is a parameter rang-
ing from 0 to 1 which controls the speed of the urban growth process (Fig.  32.2 ). 

  Fig. 32.2    The logistic urban growth process under various growth control speeds       
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This growth control parameter is modelled through a land use conversion 
 probability sub-model, which will be discussed further in the Design Concept 
and Sub-model sections.   

   New growth  
 A new growth process can occur to a non-urban cell if there is a high probability for 
such growth to occur. For instance, if a non-urban cell is surrounded by cells which 
are all fully urbanized, this non-urban cell may have the tendency or be infl uenced 
by its neighbouring cells to develop towards an urban state. In this case, an initial 
very low value is assigned as the state of the cell so it can start its urban growth 
process. Once a non-urban cell is triggered to start its urban growth process, it will 
then follow the continuous urban growth process; the growth speed is also controlled 
by the land use conversion probability at the time of development.  

   No growth  
 Apart from the above two growth processes, other non-urban cells will remain as non-
urban until such conditions where new development can be triggered to proceed.  

   Model scheduling  
 The model starts from a historical time where input data is available to represent the 
initial state of entities in the model. For the City of Gold Coast, this starting date was 
set to 1996. Another set of data was collected in 2006 which was used to calibrate the 
model over time. The temporal iteration of the simulation process was determined by 
comparing the overall urban area generated by the model with the actual urban area 
size in 2006; if the generated urban area size is within less than 1% difference from 
the actual urban area size in 2006, then the model is terminated for a simulation accu-
racy assessment in 2006. This calibration process continues until satisfactory results 
were achieved which match with the actual urban growth patterns.     

    32.3.4   Design Concepts 

     Basic principles : The basic principle imbedded in this urban cellular model is that 
urban growth is a continuous spatial diffusion process overtime. Spatially, an 
urban area is featured with high population density and the dominance of non-
agricultural land. However, as cities are surrounded by rural or natural land, there 
is no clear boundary between an urban built-up area and its non-urban hinterland. 
Between the well-recognized urban land use and the area devoted to agriculture, 
there exists ‘a zone of transition in land use, social and demographic characteris-
tics, lying between (a) the continuously built-up area and suburban areas of the 
central city, and (b) the rural hinterland, characterized by the almost complete 
absence of non-farm dwellings, occupations and land use’ (Pryor 1968:206). This 
‘zone of transition’ is a place where both urban and non-urban features occur, 
which has been broadly termed as ‘fringe’ or ‘rural-urban fringe’ (Bryant et al. 
 1982 ; Pryor 1968). The urban fringe area has become the most vigorous part of 
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development in the rural-urban continuum and has attracted much attention in 
research. 

 Temporally, the transition of land from rural to urban use is a continuous pro-
cess which occurs over a period of time. This transition process can be illustrated 
through a logistic function with fi ve distinctive growth stages which can be illus-
trated by Rostow’s fi ve-stage model of development, Which can be illustrated by 
Rostow’s fi ve-stage model of development, that is, it transits from a traditional 
rural society to pre-conditional stage for growth. Which can be illustrated by 
Rostow’s fi ve-stage model of development, to a take-off stage for rapid growth, 
and then to a drive to maturity stage and a fi nal stage of urban society (Potter et al. 
 2003  ) . Such spatial and temporal processes of continuous growth  cannot be cap-
tured through a conventional CA model with binary states of non-urban and urban 
confi gurations. 

 While the general process of urban growth can be described through a logistic 
growth function, the speed of such growth or any possibility of new growth are 
affected by a number of other factors, namely, the neighbourhood effect, accessibil-
ity to infrastructures and services, physical or institutional constraints on the use of 
land, and other stochastic factors that are uncertain at time of modelling. Such impact 
factors can be built into the logistic function through a probability index at individual 
cell scale. This probability index is computed in a sub-model which is elaborated 
further in the Sub-model section.  

   Emergence : Urban growth patterns emerge from the transition of states of individual 
cells, but the transition of individual cells from one state to another is dependent on 
the state of the cell itself and the states of neighbouring cells at a previous time step 
according to certain transition rules.  

   Adaptation : The transition of land use from non-urban to urban is an adaptive pro-
cess over time; each cell will adapt to change of the land use conversion probability 
according to its environmental conditions. For instance, a cell with a high proba-
bility for growth will develop faster than those with lower probability for growth. 
A high land use conversion probability is related to advantageous driving factors 
such as close proximity to transportation network, facilities and services or strong 
neighbourhood support. On the other hand, a low land use conversion probability is 
more likely associated with lack of support for growth or other land use constraint, 
such as steep slope or other planning constraints.  

   Objectives : The objective of the model is for the simulated patterns of urban growth 
to match the actual pattern of urban growth at certain point in time. For instance, if 
the model is initialised with the actual urban growth data in 1996 to generate the 
urban growth scenario in 2006, the objective of the model is for the simulated 
urban growth scenario in 2006 to match with the actual urban growth patterns at 
that point in time.  

   Learning : Individual cells may change their transition speed over time as a conse-
quence of their experience in matching the expected state of the cell during the 
model calibration process.  
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   Prediction : Under the basic principle that urban growth will progress continu-
ously from a lower to a higher state over time, it is assumed that individual 
cells are able to predict their cell state in this growth process according to the 
logistic function. However, this predictability is inherently associated with 
their adaptability to change of the land use conversion probabilities in space 
and over time.  

   Sensing : Individual cells are assumed to know their own state and the state of their 
neighbouring cells. They can also sense the environmental conditions such as 
land slope, spatial proximity to urban centres, and other data regarding the socio-
economic and environmental conditions.  

   Interaction : Interaction amongst cells is modelled through the neighbourhood 
effect. In essence, the collective state of all cells within the neighbourhood of a 
processing cell contributes signifi cantly to the land use conversion probability 
index, which in turn impact on the transition speed of the cell in its urban growth 
process.  

   Stochasticity : The land use conversion probability sub-model includes a stochastic 
disturbance factor on urban development. This stochastic factor is used to represent 
any unknown or unexpected factors that may impact on land use conversion proba-
bility, hence reproduce variability in the simulation processes.  

   Collectives : The impact of neighbourhood effect on urban growth is modelled col-
lectively. The mean state value of all cells within the neighbourhood of the process-
ing cell will impact on the land use conversion probability which is modelled 
through the land use conversion probability sub-model.  

   Observation : Observations of the model’s results include graphical display of urban 
patterns in space and over time. For model calibration, results generated by the 
model were compared with the actual urban growth patterns through a set of land-
scape metrics and a spatial confusion matrix analysis.     

    32.3.5   Initialization 

 Each cell in the cellular space was initially assigned a state value ranging from 0 to 
1 inclusive representing its state in the urban growth process. This initial state value 
was assigned based on the modifi ed population density map computed from the 
1996 Census of Population and Housing data at the Census Collection District 
(CCD) level; the modifi cation was carried out using the 2006 Census data at the 
mesh block level (Australian Bureau of Statistics  2005,   2006  ) . As the mesh block 
data contains higher spatial resolution than the 1996 data at the CCD level, areas 
identifi ed as non-urban in the 2006 mesh block data were projected back to the 1996 
census data to defi ne the area as non-urban in 1996, if the area was not identifi ed as 
non-urban with the 1996 census data. This modifi cation increases the spatial accu-
racy of the initial input data for the model to commence.  
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    32.3.6   Input Data 

 The input data used in the model include two sets of census data in 1996 and 2006. 
The 1996 census data were processed at CCD level and used (with modifi cation 
as elaborated above) to defi ne the initial state of the cells in the cellular space. 
The 2006 census data were collected at the mesh block level to modify the 1996 
census data in order to increase the spatial accuracy of the population density map; 
this dataset was also used to defi ne the state of cells in 2006 which were used sub-
sequently to calibration the simulation accuracy of the model. In addition, a set of 
spatial proximity or distance variables were also generated to feed the logistic 
regression model which was used to generate the land use conversion probability 
due to spatial proximity to facilities and services.

    Data defi ning the continuous state of cells   
  Two threshold values were used to defi ne the lower and upper limits of population 
density respectively in delimiting the cell state in the urban growth process. These 
threshold values were set to 200 and 1,500 persons per square kilometres respec-
tively; this refl ects the relatively low population density measure used in Australia 
to delimit the extent of urban areas (Liu  2008 ; Linge  1965  ) . A cell with a population 
density of less than 200 persons per square kilometre is defi ned as non-urban; its 
cell state is assigned a value of 0. Similarly, a cell with a population density of 
1,500 persons per square kilometre or over is defi ned as urban; its cells state is 
assigned a value of 1. All other areas with a population density value of between 
200 and 1,500 persons per square kilometre is assigned a state value between 0 and 1, 
which are linearly interpolated based on the density value of the cell at the specifi ed 
point in time.  

   Other input data   
  The constraint data to urban growth used in the model includes transportation net-
work such as highways, primary and secondary roads, data identifying the major 
urban and town centres, land use planning schemes, and data illustrating areas where 
urban development cannot occur, such as large water bodies, forest reserves, nature 
conservation reserves, large recreational areas, prohibited areas for defence pur-
pose, mine sites, golf courses and major aquaculture areas. These data were col-
lected from various government agencies and processed as raster data in GIS at 
30 m spatial scale.  

  While many spatial factors may impact on urban land use change, in practice, 
not all factors can be quantifi ed into a simulation model, especially when data 
refl ecting such factors are neither available nor accessible. Historically, Gold 
Coast’s urban growth has been largely driven by existing urban and town centres 
and the spatial accessibility to transportation and other infrastructure and ser-
vices; it is also constrained by natural conservation and primary agricultural land. 
Therefore, eight spatial factors refl ecting the spatial proximity of each cell to 
urban and town centres, to main roads, to residential, industrial, commercial and 
educational areas, and to natural conservation and primary agricultural land, 
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together with the neighbourhood effect, physical and land use zoning con-
straints, and a stochastic disturbance factor representing any unexpected errors on 
urban growth to simulate the continuous processes of its urban development 
(Table  32.1 ).      

    32.3.7   Sub-model 

    32.3.7.1   Land Use Conversion Probability Sub-model 

 While urban development follows the logistic function in general, the speed of 
development varies from one location to another within the urban cellular space 
over time. This factor is refl ected in Eq.  32.1  through the parameter of     γ    .  This 
parameter can be represented by a land use conversion probability which is deter-
mined by the collective effect of its spatial proximity to other facilities and services, 
the neighbourhood effect, land use suitability constraints as well as a stochastic 
disturbance factor. Therefore,    γ   can be expressed as:

    
t t t

i di NiP P P C Rg = = ´ ´ ´    (32.2)  

   Table 32.1    Variables used to compute land conversion probability   

 Variable  Meaning  Data extraction 

 d 
ct
   Distance to urban and town centres  Distance variables were extracted from 

various GIS data layers including 
urban centres, transportation 
network, coastal lines and land use 
data layers  

 d 
rd
   Distance to main roads 

 d 
rs
   Distance to residential areas 

 d 
in
   Distance to industrial areas 

 d 
co

   Distance to commercial areas 
 d 

ed
   Distance to educational areas 

 d 
pk

   Distance to parkland 
 d 

ag
   Distance to agricultural land 

 P 
N
   Probability of a cell changing from 

non-urban to urban within a 
rectangular 5 × 5 cells neighbourhood 

 Calculated using GIS’s focal function 

 C  Land use constraints including large 
water bodies, forest reserves, nature 
conservation reserves, large 
 recreational areas, prohibited areas 
for defence purpose, mine sites, golf 
courses and major aquaculture areas 
as well as land use restrictions 
through planning regulation 

 Extracted from urban land use and 
planning data 

 R  A stochastic disturbance factor 
representing any unknown errors 

 Randomly generated in GIS 
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where    t
iP   represents the land use conversion probability of cell  i  at time  t ;    t

diP    is a 
land use conversion probability due to its spatial proximity to facilities and services; 
   t

NiP    is a land use conversion probability due to neighbourhood support; C represents 
a (set of) land suitability constraint/s; and    R    is a stochastic disturbance factor on 
urban development.  

    32.3.7.2   Spatial Proximity to Facilities and Services 

 The land use conversion probability    t
diP    at location  i  and time  t  is controlled by a set 

of spatial proximity or distance variables, which can be represented using a logistic 
regression model.

    ( )( )0 1

1

1 exp

t
di k

j jj

P
a a d

=

=
+ - +å    (32.3)  

where    =( 1,2,..., )jd j k    represents a set of spatial proximity factors on urban land 
use change. This includes the distances from a cell to urban centres, town centres, 
main roads, and other service facilities.    0a    is a constant and    =( 1,2,..., )ja j k    is a set 
of weighting factors representing the impact of the corresponding distance variables 
on urban development. 

 Using the input data from the Gold Coast City, a total of 23,370 sample cells 
(which accounts for 1.5% of the total cells within the study area) with their state 
values ranging from 0 to 1 were selected to build the logistic regression model, 
resulting in a set of spatial proximity parameters (Table  32.2 ). Table  32.2  shows 
that Distance to urban and town centres (d 

ct
 ), Distance to main roads (d 

rd
 ), Distance 

to residential areas (d 
rs
 ), Distance to commercial areas (d 

co
 ) and Distance to educa-

tional areas (d 
ed

 ) are all having a negative coeffi cient value, indicating that these 
factors contribute to the probability for urban growth positively, that is, the closer 
a cell is to these types of areas, the more likely it is to be developed. On the other 
hand, the variables of Distance to industrial areas (d 

in
 ), Distance to parkland (d 

pk
 ) 

and Distance to agricultural land (d 
ag

 ) having a positive coeffi cient value, indicat-
ing that these factors contributes to the probability for urban growth negatively, 
that is, the closer a cell is to these types of areas, the less likely it is to be 
developed.   

   Table 32.2    Spatial proximity parameters generated using logistic regression model for the Gold 
Coast City   

 Variable  Constant  d 
ct
   d 

rd
   d 

rs
   d 

in
   d 

co
   d 

ed
   d 

pk
   d 

ag
  

 Coeffi cient of 
variable 

 0.690  −0.102  −0.214  −0.235  0.264  −0.151  −0.207  0.158  0.174 
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    32.3.7.3   Neighbourhood Support 

 Assume that within the rectangular neighbourhood of    ´m m    cells, each cell has 
equal opportunity for development. Thus, the probability a cell develops from one 
state to another can be defi ned as:

    1

t
Nit m m

Ni

S
P

m m
´=

´ -
å

   (32.4)  

where    t
NiP    is the probability that a cell can change from one state to another at time 

t due to neighbourhood support;    t
NiS    is the state of a cell within the neighbourhood 

of cell  i  at time  t ;    
´å t

Nim m
S    is the accumulative state value of all cells within the 

m × m neighbourhood. For the application of the model to the Gold Coast City, the 
neighbourhood size used in the model is 5 × 5 cells.  

    32.3.7.4   Land Use Suitability 

 In practice, not all cells have equal opportunity for development. For instance, 
some areas such as large-scale water bodies, national parks, nature conservation 
reserves, large recreational areas, prohibited areas for defence purpose, mine sites, 
golf courses and major aquaculture areas and natural reserves cannot be developed 
into urban land use. Other areas such as areas used primarily for farmland may be 
prevented from urban development through institutional control, i.e., land use plan-
ning regulation. Such constraints can be represented through a constraint 
function:

    = =( )t
iC Con x suitable    (32.5)   

 The value of C ranges from 0 to 1, with 0 meaning the cell is constrained from 
changing its current state, and 1 meaning the cell is able to change its state at the 
following time step.  

    32.3.7.5   Stochastic Disturbance Factor 

 The stochastic disturbance factor R on urban development is defi ned as (White and 
Engelen  1993  ) :

    = + -1 ( ln )R r a
   (32.6)  

where    r   is a random real number ranging from 0 to 1, and    a    is a parameter rang-
ing from 0 to 10 which controls the effect of the stochastic factor on urban 
growth. 
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 With Eqs.  32.3 – 32.6 , the land use conversion probability of a cell  i  at time  t  can 
be rewritten as:

   ( )
´

=

= ´ ´ ´

= ´ ´ = ´ + -
é ù ´ -+ - +ê úë û

å
å0 1

1
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a

 
       (32.7)   

 This land use conversion probability is used in Eq.  32.1  to replace parameter    γ
  which controls the speed of urban growth process.    

    32.4   Results and Assessment 

    32.4.1   Simulation Results 

 Using the initial urban state in 1996 as a starting point, the model was run until it 
generates an overall urban land size which is within 1% difference from the actual 
urban size in 2006. Then the simulation accuracy of the model was assessed by 
comparing the simulated urban pattern with the actual urban pattern in 2006. 
Through a trial-and-error approach, the best result generated by the model is pre-
sented in Fig.  32.3c . As a comparison, the initial state of cells in 1996 and the actual 
urban pattern in 2006 are presented in Fig.  32.3a , b respectively.   

    32.4.2   Assessment of Simulation Results 

 A commonly used method in assessing the simulation accuracy of the model is 
through a confusion matrix analysis between the simulated results and the observed 
urban growth patterns (Liu  2008 ; Li and Yeh  2002b  ) . While the confusion matrix 
offers a quantitative and locational comparison to measure the ‘goodness-of-fi t’ of 
the simulated result to the reference map, it lacks the capacity to provide insights on 
the structural similarity of the map pairs, or the spatial pattern-process relationships 
between different land patches (Liu    2008   ; Power et al.    2001   ). On the other hand, the 
landscape metrics developed by McGarigal et al.  (  2002  )  have been widely applied 
in landscape ecology studies to quantify specifi c spatial characteristics of land 
patches, classes of patches, or entire landscape mosaics. Such landscape metrics, 
measured directly from fi elds or maps (e.g., patch size, edge, inter-patch distance, 
proportion), are more likely to generate meaningful inferences (Li and Wu  2004  ) . 
Hence, both a confusion matrix and a landscape metrics approaches are used in this 
study to assess the model’s ‘goodness-of-fi t’ as well as the similarities of spatial 
structure and patterns of the simulated results and the observed landscape patterns. 

 As both the confusion matrix and the landscape metrics method use categorical 
data, the continuous cell state data developed in this model were reclassifi ed into 
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categorical data, with C1 representing non-urban (cell state = 0), and C9 represent-
ing urban (cell state = 1), and C2–8 representing states where their state value are 
linearly interpolated from 0 to 1 (exclusive). 

    32.4.2.1   The Confusion Matrix 

 Using a cell-by-cell comparison, Table  32.3  shows the confusion matrix between 
the actual urban states defi ned from the census data and the simulated urban states 
in 2006 using the categorical data reclassifi ed from the continuous data.  

  Fig. 32.3    Actual and simulated urban patterns of Gold Coast in 1996 and 2006. ( a ) is the actual urban 
pattern in 1996 which was used as initial state of cells in the CA model; ( b ) is the actual urban pattern 
in 2006; and (c) is the simulated result produced by the model which can be  compared with ( b )       

   Table 32.3    The confusion matrix between the actual and simulated cell states of the Gold Coast 
City in 2006 (%)   

 Actual state of cells in 2006 

 C1  C2  C3  C4  C5  C6  C7  C8  C9 

 Simulated 
results 
for 2006 

 C1  96.5  53.4  19.2  18.0  13.7  18.8  15.9  17.2  11.0 
 C2  0.9  27.2  42.9  26.0  7.2  6.1  5.4  6.0  3.4 
 C3  0.3  12.1  14.7  6.7  25.0  22.1  1.8  1.4  2.1 
 C4  0.2  1.8  13.8  26.3  4.9  3.3  17.2  22.8  1.4 
 C5  0.7  1.4  4.4  8.9  8.7  9.1  10.1  15.1  12.1 
 C6  0.2  0.2  1.4  8.2  6.8  4.1  6.8  4.6  3.3 
 C7  0.2  0.1  1.0  1.2  12.6  4.2  6.1  4.6  3.3 
 C8  0.4  1.5  0.7  1.2  8.2  22.6  22.1  15.2  9.8 
 C9  0.9  2.3  2.2  3.5  12.8  9.7  14.6  13.1  53.6 
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 Based on the confusion matrix, the model generated an overall simulation accu-
racy of 87%. However, the Kappa coeffi cient is only 58% indicating a large number 
of mismatches of cell states due to commission or omission errors. Nevertheless, the 
high overall simulation accuracy and the higher matching score of 96.5% for non-
urban and 53.6% for urban states indicate it is possible to apply the proposed model 
for urban growth simulation.  

    32.4.2.2   The Landscape Metrics 

 Using the FRAGSTATS software program which is freely available from McGarigal 
et al.  (  2002  ) , the major landscape metrics used for assessing the model’s simulation 
accuracies are listed in Table  32.4  and such metrics for the actual and simulated 
urban patterns of the Gold Coast City in 1996 and 2006 are computed and listed in 
Table  32.5 .   

 Table  32.5  shows that the actual number of patches of the landscape increased 
from 1,050 in 1996 to 1,371 in 2006; their patch densities also increased from 0.765 
to 0.977 patches per 100 ha during the same period. However, the Largest Patch 

   Table 32.4    Landscape metrics used to assess the simulated results   

 Landscape metrics  Meaning of the landscape metric a   Unit 

 NP  Number of patches in the landscape  None 
 PD  Patch Density. This is the number of patches of the 

landscape per 100 ha 
 Number per 

100 ha 
 LPI  Largest Patch Index, which shows the percentage of total 

landscape area comprised by the largest patch 
 % 

 LSI  Landscape Shape Index, which provides a standardized 
measure of total edge or edge density that adjusts for 
the size of the landscape 

 None 

 PAFRAC  Perimeter-Area Fractal Dimension, which indicates the 
shape complexity across a range of spatial scales 

 None 

 DIVISION  Landscape Division Index, which shows the probability 
that two randomly chosen cells in the landscape are not 
situated in the same patch 

 None 

 SPLIT  Splitting Index, which indicates the effective mesh number, 
or number of patches with a constant patch size when 
the corresponding patch type is subdivided into S 
patches, where S is the value of the splitting index 

 None 

 AI  Aggregation Index, which shows the frequency with which 
different pairs of patch types appear side-by-side on the 
map 

 % 

   a For computation of these metrics, please refer to McGarigal et al.  (  2002  )   

   Table 32.5    Computed landscape metrics of the Gold Coast City in 1996 and 2006   

 Metrics  NP  PD  LPI  LSI  PAFRAC  DIVISION  SPLIT  AI 

 1996 Actual  1,050  0.765  85.270  12.591  1.246  0.272  1.374  98.391 
 2006 Actual  1,371  0.977  74.950  18.938  1.237  0.435  1.771  97.556 
 2006 Simulated    5,348  3.895  79.591  21.550  1.345  0.364  1.573  96.949 
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Index (LPI) decreased from 85.27% to 74.95%, indicating that the size of the largest 
land patch, that is, the non-urban agricultural land, decreased over this time period. 
While the shape of land patches measured through PAFRAC was almost stable, the 
increased value of the Landscape Shape Index (ISI) and the SPLIT index indicate an 
increased land use complexity and subdivision of the landscape, and the slightly 
decreased AI value also indicates an increasing tendency of land use disaggregation 
of the region. 

 Comparing the landscape metrics generated from the simulated results with those 
of the 2006 actual cell states, major discrepancies exist in the total number of patches 
and the patch densities, where the simulated results generated much larger values 
than those from the actual urban patterns. However, the temporal landscape change 
patterns of the simulated results match with the actual landscape metrics measure-
ments, indicating the validity of the simulation results.    

    32.5   Conclusion 

 Logistic regression is a classical method which has been extensively tested, vali-
dated and applied in many research to model the patterns and relationships between 
the dependent variable and a set of independent variables through a probability sur-
face. The simplicity of its modelling mechanism matches well with cellular autom-
ata modelling where complex spatial patterns and relationships can be simulated 
through a set of simple transition rules. Hence, the integration of logistic regression 
in urban cellular automata modelling is natural and valid in simulating the spatio-
temporal process of urban growth (Dendoncker et al.  2007 ; Fang et al.  2005 ; Cheng 
and Masser  2004 ; Verburg et al.  2002 ; Wu  2002 ; Sui and Zeng  2001  ) . 

 This chapter contributes to urban growth modelling by developing a logistic 
regression based cellular automata model using continuous data to simulate the con-
tinuous progression of land from non-urban to urban use. The application of the 
model in Australia’s Gold Coast City has generated realistic urban growth scenarios, 
which matches well for the actual urban growth patterns. Assessment of the land-
scape metrics shows not only a structural similarity between the simulated and actual 
landscape patterns, but also consistency in terms of the temporal change of the land-
scape metrics. This proves the validity of the logistic regression based CA modelling 
as well as the effectiveness of applying landscape metrics to evaluate the simulation 
accuracies of the model. 

 Further research is required to apply the logistic regression based CA model 
to generate future urban growth scenarios based on projections of population 
growth and dwelling increases. Population projections made by the Queensland 
Government Department of Demography and Planning show that by 2031 the 
expected population of the Gold Coast City will be between 724,000 and 867,000 
people (low and high series) (Offi ce of Economic and Statistical Research  2010  ) . 
This represents 53–83% increase from the resident population in 2006. The applica-
tion of the cellular automata modelling should provide useful insights by generating 
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different growth scenarios for urban planners and government decision makers to 
consider in order to managing such substantial urban growth of the city in future.      
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  Abstract   Building upon previous modelling efforts, an agent-based model of land 
use change has been developed to model small-scale agriculture in the Brazilian 
Amazon. The model, LUCITA (Land Use Change in the Amazon), simulates het-
erogeneous farming household agents during the period of 1970–2000, settling and 
developing properties west of Altamira, Pará, Brazil. Farming agents, as heuristic 
agents that satisfy subsistence needs then maximize utility, clear old growth for-
ested areas to pursue agricultural activities. The simulation is utilized here to explore 
how the development of the household lifecycle is altered when households have 
access to outside labour resources, and when households settle on previously occu-
pied properties. Simulation results support the assertion that the household lifecycle 
model alone is insuffi cient to explain patterns of land use change in these rural 
frontier-like environments.      

    33.1   Introduction 

 Since the early 1970s, a series of initiatives, including government-sponsored eco-
nomic incentives and the construction of the Transamazon highway, have resulted 
in rapid land use change within the Brazilian Amazon rainforest. While industrial 
 agriculture, commercial lumber operations, mining, hydroelectric development, and 
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highway construction have brought large-scale land use change to the Amazon 
region, important changes have also happened at smaller scales. In particular, one of 
the more important local scale actors that have made a signifi cant contribution to land 
use change in the region are the individual farming households. Researchers focused 
on understanding land use and land cover change (LUCC) have frequently focused 
on household-level drivers of change in rural forested frontier environments. There 
are a number of reasons for this. In many forested frontier environments, smallhold-
ers are signifi cant drivers of change. Rural people comprise a very large proportion 
of the populations of the developing world, providing important foodstuffs and other 
resources to nearby cities where the majority of people in developing countries are 
now living. A better understanding of the dynamics of LUCC in these environments 
can inform policy developments focused on the improvement of rural livelihoods 
(de Sherbinin et al.  2008  ) . 

 One forested frontier that has been the focus of much research is the region along 
the Transamazon highway, west of Altamira, Brazil. For more than a decade, research-
ers have focused on a variety of questions, including; the rates and patterns of defor-
estation (Brondízio et al.  2002  ) , the nature and patterns of secondary succession 
(Lu et al.  2002 ; Mausel et al.  1993 ; Moran et al.  1994,   2000  ) , the differences between 
patterns of land use on neighbouring farms (McCracken et al.  2002  ) , and the infl u-
ence of natural factors, such as soil quality, on household livelihood (Moran  1995 ; 
Moran et al.  2000,   2002  ) . Farming households have frequently been the focus here, 
as they are the primary unit of production and decision making in this landscape. In 
particular, neighbouring farms in the Altamira region have been observed to have 
markedly different patterns of land use (McCracken et al.  2002  ) . This observation has 
raised research questions related to the relative importance of natural, household, and 
broader market drivers in shaping land use decisions. 

 A great deal of debate has focused on the importance of household-level demog-
raphy in shaping the land use activities of these smallholders. The household life-
cycle model, as discussed by Goody  (  1958  )  and de Sherbinin et al.  (  2008  ) , typically 
starts with a newly married couple arriving on the frontier with limited labour and 
capital resources. Over time, children are added to the household, grow older, and 
begin to contribute to the family’s labour and economic resources, eventually leav-
ing or staying within an extended family to assume the role of decision maker. 
Researchers have explored the utility of the lifecycle model for explaining patterns 
of land use amongst smallholders in the Altamira region over time, where the type 
of agricultural practices pursued are a function of the labour and capital resources 
within the household (McCracken et al.  1999 ; Moran et al.  2002  ) . Here, the lifecy-
cle model indicates that young families with limited resources will initially seek to 
clear forest on their properties and plant annual crops, such as rice, beans, maize, or 
manioc. As families age, and labour and capital resources grow, they continue the 
pattern of deforestation and the planting of annuals, while converting previously 
cleared land into pasture or perennial crops. Available household resources are seen 
as a key driver of land use change, as households with greater resources tend to gravi-
tate towards a more diversifi ed land use with an emphasis on perennial crops such 
as fruit trees, coffee, or black pepper. Households with more limited resources tend 
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to follow land use strategies focused on pasture development and cattle production 
(McCracken et al.  2002  ) . 

 More recent studies (de Sherbinin et al.  2008 ; VanWey et al.  2007  )  found limited 
support for the household lifecycle model, noting inconsistent effects of household 
demography on LUCC. VanWey et al.  (  2007  )  found no signifi cant effects of work-
ing age males on land use or land cover change, but signifi cant effects for women 
and children. The study notes the importance of cash, from off-farm employment or 
government subsidies, as a household resource that facilitates investments in agri-
culture and subsequent land use and land cover change. These studies call into ques-
tion the effectiveness of the lifecycle model as a tool to explain patterns of land use. 
In these complex environments, multiple drivers beyond household demographics 
appear to be driving land use decision-making. The agent-based simulation outlined 
here is designed to explore the household lifecycle model. 

 The challenges posed by the complexity of these environments has led, more 
recently, to an increasing number of interdisciplinary efforts to explore the complex 
dynamics of coupled human and natural systems (CHANS) (Liu et al.  2007a,   b  ) . 
These studies have explored the complexity of organizational, spatial, and temporal 
couplings within CHANS, revealing that these interactions have evolved to become 
more indirect, distant, and global in scale (Liu et al.  2007b  ) . These couplings also 
exhibit nonlinear dynamics with multiple thresholds, feedback loops, resilience, 
and heterogeneity (Liu et al.  2007a  ) . Unravelling and exploring these complex rela-
tionships will require a variety of interdisciplinary approaches and tools. 

 Spatially referenced agent-based models (ABMs) are one tool that has been uti-
lized to explore dynamic interactions within CHANS. In particular, simulations uti-
lizing collections of agents to represent the actions of specifi c human or natural 
entities have been explored in many fi elds, including land use change (Parker et al. 
 2008b ; Rindfuss et al.  2008  ) . These models couple a human system, represented by a 
collection of agents making land use decisions with an environment system, repre-
sented by a raster grid of spatially distributed resources within the landscape, through 
agent-agent and agent-landscape interactions that feedback and alter the land use 
or cover change in the area of interest (Parker et al.  2002,   2003 ). Researchers have 
also utilized ABM/LUCC to explore the drivers of change in frontier environments 
(see Parker et al.  2008b  for a review). Recent work has focussed on assessing the 
utility of these tools (Messina et al.  2008  )  and the need for cross-site comparisons of 
these models (Hare and Deadman  2008 ; Parker et al.  2008a,   b ; Rindfuss et al.  2008  ) . 

 Here, an ABM, called LUCITA (Land Use Change in the Amazon), is utilized 
to explore the dynamics of smallholder driven land use change. The study site 
explored here is the area along the Transamazon highway, west of Altamira, in the 
state of Pará, Brazil. This is a region characterized by the creation of household 
farms on 100ha lots located on the highway and a series of side roads running per-
pendicular to the highway at 5km intervals, creating what has come to be known as 
the fi shbone patterns of settlement in the Amazon. Starting with a baseline simula-
tion that captures some of the dynamics of the household lifecycle model, we 
observe how the behaviour of the model changes when parameters such as avail-
able household capital, available outside labour, and previous land use on a lot 
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are added. These explorations indicate that multiple interacting drivers of change 
produce different patterns of land use that cannot be explained by the household 
lifecycle model alone.  

    33.2   Model Description and Methods 

 The ODD (Objects, Design concepts, Description) protocol will be used to pro-
vide a standardized description of LUCITA (Grimm et al.  2006,   2010 ; Grimm and 
Railsback  2012  ) . 

    33.2.1   Purpose 

 LUCITA was formulated to measure the effects of household demographics on defor-
estation in the Brazilian Amazon during the period between 1970, when the area was 
settled by migrants along the Transamazon Highway, and 2000 (   Deadman et al.  2004  ) . 
Given hypothetical limitations of capital (or lack thereof), as well as limitations on 
labour based on household size and hired labour (or lack thereof as well), are  household 
demographics (household size and composition) a predictive indicator of  deforestation 
and subsequent land use, or are there more relevant factors to consider? 

 LUCITA, implemented as a spatial ABM, provides an experimental laboratory 
for varying household composition, initial capital, immigration cohort size and avail-
able land use choices. This allows researchers to explore a series of scenarios from 
basic behaviours. Such a scenario could be developed to emulate real-world condi-
tions or an alternative hypothetical outcome. In the case of LUCITA, the model is 
used as a means to explore how variations in household size and composition as well 
as initial capital and other factors affect macro-level deforestation and land use.  

    33.2.2   Entities, State Variables and Scales 

 The ABM is divided into layers: the household layer, wherein agents perform land 
use and land cover activities, a cadastral layer (a raster grid of properties), and a 
cellular land cover model. The land cover model is composed of a cellular model of 
crops, pasture and forest imposed upon a soil grid. One time step in the model rep-
resents 1 year. The model is run for a period of 30 years, theoretically covering the 
period of 1970–2000. The property grid and land cover model have matching extents 
and resolution: One grid cell represents 1 ha, of which there are 381,000 cells and 
3,916 properties comprising the simulation space. 

 The primary entity of the model is the household agent. The household itself is 
implemented as an agent that performs farming and harvesting activities, as well as 
the decision-making involved to pursue such activities. The household resides on a 
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property, which is composed of a set of cells on the cadastral layer and a matching 
set of cells on the land cover grid. The household’s elementary state variables are: 
property ID and arrival year. Other variables are derived from household members, 
land cover composition and history (net and total deforestation). The state variables 
of household members are: age, gender, capital, and contributing labour. The con-
tributing labour variable indicates the amount of labour, in hours per year, which the 
agent is willing to contribute to farming activities. 

 Each property has attributes related to its location and use: property ID, a list of 
cells included in the property, direction to road, and the year the property is fi rst set-
tled. Property grid cells have only a location (x, y) state variable, but also include the 
distances to the nearest road, highway, and a number of settlements. Other than the 
year of fi rst settlement, property and property cell attributes are determined  a priori . 

 Properties are populated by land cover cells. Land cover cells have a number of 
attributes related to the lifetime and farming of the occupying land cover class: loca-
tion (x, y), required labour, initial fi xed cost, maintenance cost, age of the land cover 
(in other words, years since the land was assigned for said land use), death age (total 
years that the cell can be used for this land use), seed requirements, planting density, 
expected yield, and years until production. The cell’s yield from the previous year 
is also stored for reference. Concrete land cover classes, which extend the abstract 
land cover object, include forest, annual crops, perennial crops, pasture and fallow. 
These crops follow rules established by Fearnside  (  1986  ) , detailed specifi cally by 
Lim  (  2000  )  and Robinson  (  2003  ) . 

 Soil cells, themselves governed by the Fearnside-based model, include state vari-
ables that characterize nutrients and soil conditions: pH, aluminium, nitrogen, car-
bon, clay, phosphorus, predicted erosion and average precipitation. 

 Crops may be bought and sold on a market. LUCITA’s market is simple, with 
constant prices throughout the simulation. Similarly, a labour market is implemented 
with constant buying and selling prices for a year’s worth of labour. However, limi-
tations on the number of farming agents in the labour market may be placed to 
enforce a maximum amount of available labour.  

    33.2.3   Process Overview and Scheduling 

 A model year (one discrete time step) begins with an immigration of households, 
each occupying one property ( immigration ). Households, new and old, convert or 
maintain land for cultivation, pasture and fallow, according to their needs and 
resources ( land allocation ). Based on the year’s land uses, households can harvest 
yield and reap revenues ( harvest ). After the harvest stage,  cleanup  is performed. 
A time-varying environment is not driven from exogenous factors (input data), so 
the Input Data section of the ODD protocol is omitted from this paper.

    Immigration : The number of households immigrating during a given year may be set 
to correspond to historical cohorts (Brondízio et al.  2002  )  or other scenarios. A house-
hold can migrate into the simulation if at least one property is available. If several 
properties are available, the incoming household samples 3 properties and selects the 
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one that is closest to the main road leading to Altamira. The new household sets its 
property ID and arrival year state variables accordingly. Among the 6 available choices 
of annual crops (bitter manioc, maize, phaseolus beans, rice, sweet manioc and 
 cowpeas), the household chooses 4–6 of these as its preferences upon immigration. 
(Two uniformly random choices are involved: The household fi rst chooses how many 
crops to prefer, then selects the crops.) Annual crop choices are restricted to these 4–6 
crops for the remainder of the simulation. Perennial crop choices, black pepper and 
cacao, as well as pasture and fallow are available to all households.  

   Land Allocation : During the land conversion process, each household iterates 
through each of its available cells in order from closest to furthest away from the 
road. As each cell is iterated through, the household will convert or maintain the cell 
based on its state, subject to available capital and labour. If internal household labour 
is unavailable and suffi cient external labour can be purchased, the household will 
purchase any labour necessary to process the next cell. If the cell is forested, the 
household will clear and burn (fallow) the forest. If a cell is fallowed and the soil is 
moist or last burned more than 3 years ago, a second burn must be performed. If a 
cell is fallowed, dry and last burned less than 3 years prior to the current year, then 
a number of options are available. If subsistence needs are met and soil pH is greater 
than 5.5, then perennials are planted. Otherwise, if pH is too low, then the cell is 
used for pasture. If pH is greater than 5.5 and the household requires subsistence 
crops, then a random annual is chosen. An annual crop is chosen from the restricted 
set of preferred annuals by weighted random selection. Crop choices are weighted 
by the selling price of the good (per kg) rather than the expected revenue of the 
cell’s yield, as this is considered to refl ect local decision-making practices (Moran 
 1981  ) . During this cell-by-cell traversal, the household is deducted costs and labour. 
Each land use, other than virgin forest, has an initial fi xed cost, an annual mainte-
nance cost and an annual amount of required labour. During the year of conversion 
(the fi rst year), the initial fi xed cost is deducted from the household’s capital pool. 
Subsequent years deduct the maintenance cost. The household continues traversing 
through cells until it runs out of capital or labour. Resource limitations generally 
prevent households from clearing their properties in a given year.  

   Harvest : Similar to the land allocation process, households traverse through their 
property, cell-by-cell in increasing distance from the road to perform harvesting. 
The labour and costs required to harvest have been factored into the land allocation 
step, so this is implemented as a cost-free process. Households calculate their yields 
by summing the yield from each crop cell. Land cover cells perform natural transi-
tions in this step. For instance, if a fallowed cell is allowed to mature for 20 years, 
it transitions to a forest cell.  

   Cleanup : Failed households, those accumulating signifi cant debt, are removed 
from the simulation and vacate their properties. At the end of the step, household 
members are aged by 1 year. State variables related to available labour and subsis-
tence needs, derived from the ages and genders of household member agents, are 
reset for the new year.     
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    33.2.4   Design Concepts 

     Basic principles : Given utility maximizing households with resource limitations of 
labour and capital, as well as subsistence needs which must be satisfi ed, it should be 
expected that household demographics play a direct, if not linear, role in determin-
ing the degree and nature of land use and, by extension, the total amount of defor-
estation. The development of LUCITA has been an effort to explore this hypothesis 
by implementing household agents in a virtual laboratory where household sizes 
and resource constraints could be varied in a series of runs. The environmental 
model, based on Fearnside’s work, has been given suffi cient complexity to present 
households with variable yields based on past actions and environmental condi-
tions. Households have been given behaviours, which while not perfectly rational, 
refl ect local decision-making practices.  

   Emergence : LUCITA has demonstrated emergent outcomes that have not been 
modelled explicitly, including fi sh-bone deforestation patterns representative of his-
torical outcomes. While a relationship between deforestation and demographics can 
be demonstrated, the relationship between lot life cycles and land use is less obvious 
without the development of a model.  

   Adaptation : Household agents are implemented as heuristic decision makers, 
selecting actions based on conditional if-then decision rules, followed by weighted 
selection between feasible alternatives. Each of these actions seeks to better the 
agent’s position, fi rst with respect to meeting subsistence needs, then to profi tability 
and future sustainability.  

   Objectives : The household agents in LUCITA are modelled as utility maximizing 
decision makers. Households fi rst seek to satisfy subsistence needs, and then per-
form actions in order to increase profi ts and/or keep the land suitable for future use 
(such as fallowing and pasture).  

   Prediction : Household crop selections are made through a weighted selection based 
on crop prices (Moran  1981  ) . Within a model where market clearing conditions are 
easily met regardless of supply and with little risk, purely rational agents would 
choose far more homogeneous landscapes of fewer crops (Cabrera et al.  2010  ) . The 
weighted random choice used by households in LUCITA produces heterogeneous 
landscapes that mitigate risk.  

   Sensing : In making land allocation decisions, households are assumed to be able to 
sense (determine or measure, with perfect knowledge) soil conditions, market prices 
and current household resources. Households do not, however, consider the actions 
of other households, such as neighbouring agents, nor do they consider actions and 
consequences occurring in future years.  

   Interaction : Households generally do not interact. On occasion, a household may 
hire a member of a failed household for extra labour, but this is done after the latter 
household has already vacated its property.  
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   Stochasticity : Stochastic processes are used to seed a number of model variables: 
household size, initial capital. The underlying processes governing these variables 
are exogenous to the model. Many of the choices made by households are based on 
uniform or weighted random selection: property selection, crop selection. These 
random choices are made when a number of feasible alternatives are  available to 
the household, yet the underlying drivers of these choices such as risk, profi t maxi-
mization and competition are not modelled explicitly, yet heterogeneity between 
households is desired.  

   Collectives : Households, as collectives of individual members, are implemented as 
explicit agents.  

   Observation : Model outputs are recorded to PostgreSQL, a relational database. All 
variable input parameters are included, as are household states at the end of each 
year and property histories. Household state information includes the number of 
cells assigned to each land use (each type of crop, forest, fallow and pasture), mem-
ber ages and genders and the year of arrival. Subsistence needs, although derived 
from ages and genders of household members, are written to the database to sim-
plify later calculation. In addition, land use raster grids are written for each year to 
separate fi les outside the database. Property histories are also written to the database, 
summarized as the year of fi rst settlement. Resettled properties can be determined 
by comparing the year of fi rst settlement with the residing household’s year of 
arrival, as households do not change properties within the simulation. This provides 
near-perfect observation of the system for the variables under analysis.     

    33.2.5   Initialization 

 The landscape begins in 1970 as virgin forest with no settled households and 3,916 
available properties. Migrating households are assigned an initial capital amount of 
500–6,000, depending on parameterization (Fearnside  1986  ) . Incoming family sizes 
may vary from 2 to 12 members, again, depending on parameterization. For the 
purposes of model analysis, small households consist of smaller than 6 members, 
whereas large households consist of 6 or more members.   

    33.3   Analysis 

 We begin with a discussion of the baseline, or default, version of the model, in 
which households do not have access to outside sources of labour, and must rely on 
their own labour resources for agricultural production. Aggregated land use trajec-
tories of these individual household farms verify that household agents follow the 
generally theorized pattern of initially growing short-term crops (annuals, in par-
ticular), followed by more permanent plots of perennials and pasture. Examining 
Figs.  33.2  and  33.3 , we also see that households follow a pattern of deforestation 
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characterized by an initial pulse of higher activity in the fi rst 3 or 4 years, followed 
by reduced deforestation rates in later years. Spatially, the deforestation follows that 
of a fi sh-bone pattern over time, as households settle on a property and begin  clearing 
the forest, starting at the road and moving towards the back of the property 
(Fig.  33.1 ). Household agents in the model generally purchase subsistence crops in 
favour of allocating labour resources toward longer-term and more profi table goods 
such as perennials and, depending on soil conditions (for cells with low pH, for 
instance), pasture.  

 Examining the deforestation trajectories for an aggregated set of households, the 
effects of household demographics and lot life cycles can be assessed. Three sets of 
runs are presented, each representing a minimum of 2,000 households. The default 
run presents a uniform distribution of household family sizes and a broad range of 
initial capital. The other two runs fi x initial capital parameters, and examine the 
effect of varying household size to a high or low value. Small households consist of 
2–6 members, including adults and children, while large households consist of 6–10 
members. Within these ranges, a uniform random distribution determines the initial 
size of the household. An additional three runs are analysed where an outside source 
of cheap labour is available. 

 Figure  33.2  illustrates averaged trajectories of total deforestation assumed by 
households of different sizes, comparing the absence and presence of a labour mar-
ket. Based on a standard run with no externally available labour (Fig.  33.2a ), the 
model runs exhibit varying levels of total deforestation in response to household 
size. As would be expected, the additional internal labour resources of larger house-
holds allow them to deforest more land, converting it to agricultural production, 
initially annuals followed by perennials and pasture. In these runs, the level of capital 
resources in a household makes little difference in terms of long-term deforestation 
rates, since external labour is not available for purchase.  

 Larger households, with additional labour, and thus relaxed labour constraints, 
allow them to cultivate additional plots, each of which carry initial and long-term 

  Fig. 33.1    Birds-eye view of land use in LUCITA, illustrating the deforestation pattern       
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maintenance costs. In addition, large households face increased subsistence require-
ments, in the form of capital expenses and subsistence crops. Households with more 
available labour clear more forest than those with less labour by an additional 73.4% 
on average, indicating that labour is the limiting constraint. 

 We can begin to see how the behaviour of the model diverges from the patterns of 
the household lifecycle model when we add additional drivers of land use change to 
the simulation. By introducing a source of cheap outside labour (Fig.  33.2b ), house-
holds are able to purchase additional labour to cultivate or maintain additional land. 
This relaxes the labour constraint, especially benefi tting smaller households that are 
quite limited in terms of farming capacity. In this scenario, households accumulate 
less capital since it is spent on additional labour. These households are not rational 
revenue-maximizing agents, as their decision-making is governed by a set of heuris-
tic rules. These rules maximize land use, and by extension, household productivity. 
Here, household demographics play a more limited role in determining overall defor-
estation rates, and long-term household wealth and productivity, although they are 
still a factor. Larger households continue to have an advantage in productivity above 
smaller households, accounting for a 40.4% increase in deforestation when a labour 
market is present. However, experiments have shown that this difference in produc-
tivity can be further mitigated by artifi cially lowering the cost of labour. 

 We further explore how patterns of land use change within a household can be 
altered when we introduce another element of complexity to the model. The defo-
restation trajectory can be analysed in the context of lot life cycles by comparing 
the settlement of virgin properties to previously settled properties. The period of 
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  Fig. 33.2    Average property deforestation in the ( a ) absence or ( b ) presence of external labour       
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1970–2000 was largely a pioneering period of settlement. Thus, most households in 
the model settle into virgin properties, especially at the beginning of a simulation run. 
Most household failures occur within the fi rst few years of settlement. Therefore the 
typical deforestation trajectory at the time the household vacates its property would 
likely be, on average, 20%. However, Fig.  33.3 , which separates deforestation trajec-
tories by virgin and non-virgin properties (both types of properties in the presence of 
a labour market), indicates that that the initial clearing of non-virgin properties is 
signifi cantly more aggressive, as the household settling into the vacated property does 
not need to expend the effort and costs to clear the property. That initial pulse of 
deforestation activity is not seen within households that settle on a previously occu-
pied property. Instead, resources are allocated toward maintenance and recovery, with 
remaining labour allocated to deforestation. Year to year, however, the net rate of 
deforestation is signifi cantly tempered after the initial clearing. Yet, the differences 
between deforestation trajectories do not narrow until approximately a 15–20 year 
period has passed. A similar trend is observed when a labour market is not present.   

    33.4   Discussion 

 Overall, exploration of the model reveals how added complexity, interpreted here in 
terms of additional parameters, can cause patterns of land use to diverge from those 
seen in a household lifecycle type model. We started with a simple default version 
of the model, one in which a Chayanovian assumption of a household without access 

  Fig. 33.3    Comparison of deforestation trajectories for ( a ) virgin and ( b ) non-virgin properties       
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to external sources of labour or capital can be seen (de Sherbinin et al.  2008  ) . This 
model is capable of producing patterns of land use change in which household size 
is a fundamental determinant of overall amounts of land use change. Since house-
holds may not acquire external labour, the availability of household adolescent and 
adult males is a key limit to deforestation activity. 

 By introducing available outside labour to the simulation, the importance of 
internal household agricultural labour, represented demographically as male mem-
bers of the household, is diminished, while the importance of capital resources, 
which may be generated by female off-farm labour or government subsidization 
programs, becomes more important to overall farm productivity. Available capital, 
coupled with available outside labour, signifi cantly reduces the difference in defor-
estation rates between small and large households. 

 We can also demonstrate a clear change in simulated household behaviour when 
we examine differences between households settling on virgin properties from those 
settling on previously occupied properties. This lot effect infl uences household 
activities, as seen by the absence of a pulse of initial deforestation for those settling 
on a previously cleared property. The original pattern of initial land clearing to grow 
annuals is also less evident in households arriving on previously occupied proper-
ties. Household agents are not clearing perennials or pasture to grow annuals. 

 The simulations discussed here certainly do not provide enough evidence to 
completely discard the household lifecycle model as a tool to explain patterns of 
land use change in forested frontiers. The simulations discussed here also do not 
include many factors that could add a further degree of realism. For example, the 
simulation does not include multi-sited households, non-farm employment, urban-
rural migration, agricultural diseases, the use of sharecroppers, a land market, or 
government subsidies, However, by demonstrating that the behaviour of a simple 
household lifecycle model can be altered by introducing additional factors such as 
access to outside labour and lot effects, we can see that multiple coupled human and 
natural drivers of land use change are likely operating in these regions – drivers that 
will require continued investigation.      
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  Abstract   George Kingsley Zipf observed in 1949 that the size distribution of cities 
within nations tends to follow a particular kind of power-law. This distribution is often 
described as the “rank size rule” or simply as the Zipf distribution. While Zipf convinc-
ingly documented this distribution, he was less successful in explaining its emergence. 
During the ensuing half century, various theories of city formation and development 
have emerged that have contributed real insights into the geography and economics of 
cities. For the most part, however, these theories have failed to predict the Zipf distri-
bution of sizes. Another class of theories has been put forward to explain the distribu-
tion, but these have tended to rest on unrealistic assumptions, to lack explanatory 
power, or, at best, to lack the ability to explain the deviations from Zipf that can be 
observed in many nations. In this paper, we offer a simple agent-based model of city 
size evolution. This model offers substantial insight into the distribution of city sizes in 
various countries, while complementing previous work on the economic geography of 
cities and offering plausible economic interpretations and logic. The model can also 
account for several important categories of systematic deviation from Zipf that are 
observed in empirical data, and offers new insights about how such deviations arise.      

    34.1   Introduction    

 George Kingsley Zipf observed in 1949 that the size distribution of cities within 
nations tends to follow a particular kind of power-law (Zipf  1949  ) . This distribution is 
often described as the “rank size rule” or simply as the Zipf distribution. While Zipf 
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 convincingly documented this rule in cities and many other systems (including the 
frequency of word usage in most languages), he was less successful in explaining its 
emergence. During the ensuing half century, various theories of city formation and 
development have emerged and have contributed real insights into the geography and 
economics of cities. They have, for the most part, however, failed to predict the Zipf 
distribution of sizes. Another class of theories has been put forward to explain the dis-
tribution, but these have tended to rest on unrealistic assumptions, to lack explanatory 
power, or, at best, to lack the ability to explain the deviations from Zipf that can be 
observed in many nations. In this paper, we offer a simple, agent-based model (ABM) 
of city size evolution. This model offers substantial insight into the distribution of city 
sizes in various countries while complementing previous work in the economic geog-
raphy of cities, and offers plausible economic interpretations and logic. The model can 
also account for several important categories of systematic deviation from Zipf that are 
observed in empirical data, and offers new insights about how such deviations arise. 

 In essence, we fi nd that the distribution and its variants arise naturally when 
people try to optimize their wellbeing by migrating between a given set of cities. We 
use an agent approach because the dynamics of this process depend on the citizens 
having imperfect information – they are more likely to move from a congested city 
to an uncongested one, but may also misread the situation and move to a city that is 
already overfull. This simulation approach also allows us to model city sizes in 
dynamic terms, with urban equilibrium sizes responding to population shocks with 
a lagged adjustment mechanism corresponding to the adaptive provision and decay 
of infrastructure. We represent these mechanisms in highly simplifi ed, abstract 
terms beginning with a model that is so abstract that it has little to do with human 
behavior. We proceed, however, to develop a model that, while still abstract, does 
present a plausible version of these basic economic phenomena. 

    34.1.1   The Zipf Distribution 

 The Zipf distribution is neatly summarized by the expression S 
r
  = S 

0
  * r −1  where S 

r
  is 

the size of city r, r is the rank of the city (i.e. for the tenth largest city, r = 10) and S 
0
  

is the size of the largest city. This can be restated as the so called “rank size rule” by 
observing that the second largest city is half the size of the largest city, the third 
largest 1/3 as large, the fourth 1/4 as large, etc. One property of this distribution is 
that when it is plotted as an ordered histogram on log-log axes, it results in a straight 
line with a slope of −1 (the exponent of the power-law) as shown in Fig.  34.1 .   

    34.1.2   Explanations for the Distribution 

 While the Zipf regularity has been well known for some time, it has resisted attempts 
at theoretical explanation. Fujita et al.  (  1999  )  directly address this fi t between theory 
and observation in their chapter entitled “An Empirical Digression: The Sizes of 
Cities”. They write:
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  Attempts to match economic theory with data usually face the problem that the theory is 
excessively neat, that theory gives simple, sharp-edged predictions, whereas the real world 
throws up complicated and messy outcomes. When it comes to the size distribution of cit-
ies, however, the problem we face is that the data offer a stunningly neat picture, one that is 
hard to reproduce in any plausible (or even implausible) theoretical model. (p. 215).   

 The conclusion to this chapter begins: “At this point we have no resolution to the 
explanation of the striking regularity in city size distributions. We must acknowledge 
that it poses a real intellectual challenge to our understanding of cities…” (p. 225). 
Although work in this area has continued in the intervening years, there remain few 
behaviorally-based candidates to explain the Zipf regularity, and no consensus on 
how these explanations relate to one another. 

 Attempts to model the dynamics of city size have largely fallen into one of two 
categories. 1  Models in the fi rst category extend concepts from standard economic 
theory to apply to city size dynamics. These include externality models, which apply 
the “Henry George” theorem from urban economics (Marshall  1890 ; Jacobs  1984 ; 
Henderson  1974 ; Kanemoto  1980  ) , and models that extend Christaller’s  (  1933  )  
“central place” theory; see Fujita and Mori  (  1997  ) . Such models are well integrated 
with the existing body of economic theory, and are often consistent with other eco-
nomic evidence about city dynamics. Unfortunately, none of these models convinc-
ingly produce the empirical regularity of the Zipf distribution. 

 Models in the second category apply one or more abstract stochastic processes to 
represent city size dynamics. Early examples included Simon’s  (  1957  )  proportional 
growth model and Hill and Woodrofe’s  (  1975  )  application of the Bose-Einstein 
process. More recently, the most prominent models in this category have focused on 
descriptions of city growth as a “Gibrat process” (Gibrat  1931  ) . Papers applying the 
Gibrat processes include Gabaix  (  1999a  )  and Reed  (  2002  ) . These processes have all 
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  Fig. 34.1    Zipf Distribution ordered histogram on normal and log-log axes       

   1   For a more comprehensive review of the literature on urban size distributions, see Gabaix and 
Ioannides  (  2003  ) .  
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been shown mathematically to successfully generate a stable power-law  distribution, 
and in many cases, to closely replicate the Zipf distribution itself. However, such 
models have little or no economic content. They demonstrate that the Zipf regularity 
can be generated using a variety of statistical mechanisms, but they do not offer a 
set of comparable behavioral principles or realistic economic mechanisms that are 
suffi cient to produce Zipf. As one recent paper put it: “this collection of models is 
essentially statistical – they seek to  generate rather than to explain  the regularity” 
(Overman and Ioannides  2001  ) . It is often unclear how the abstract mechanisms 
represented in many of these models can be useful metaphors for real-world social 
or economic processes. Indeed, in some cases, closer examination has found strong 
empirical evidence that mechanisms such as the Gibrat process are  not  good descrip-
tions of real city-size dynamics; see Cuberes  (  2004  ) . Abstract stochastic models 
have also tended to be “brittle” – they can generate the Zipf distribution, but they are 
“one-process-fi ts-all” and cannot generally account for the exceptions to or varia-
tions in Zipf that are observed in the data. 

 Duranton  (  2002  )  presents a model based on Grossman and Helpman’s  (  1991  )  
quality-ladder model of growth that produces both Zipf and certain observed varia-
tions from Zipf. This model is similar to the model presented here in that it treats 
urban population as a largely conserved quantity that is redistributed among inter-
connected cities. In this respect, these models differ sharply from other models that 
produce good fi ts, e.g. Gabaix  (  1999a  ) . Most notably, this property allows these 
model to produce Zipf-like distributions without assuming that shocks are uncor-
related with city size (Gibrat’s law). The model presented here differs from 
Duranton’s in that it is considerably more general, while still having a strong behav-
ioral basis. Indeed, the goal of this paper is to establish a general behavioral frame-
work within which successful economic city size models can be built.  

    34.1.3   Deviations from Zipf 

 While the Zipf distribution offers a remarkably good fi t for many nations, the fi t is 
imperfect in many cases. In this paper, we will examine three countries that are par-
ticularly interesting with regard to their adherence to and deviations from Zipf. These 
three countries are: the United States, Russia, and France. All three countries provide 
excellent data on urban agglomerations. The United States represents a relatively 
good (though signifi cantly imperfect) fi t for Zipf, while France and Russia deviate in 
different ways that may offer lessons applicable to broad classes of countries. 

 Before attempting to analyze the extent to which cities in different countries do 
or do not deviate from Zipf, we need to address the defi nition of a city. In this paper, 
we are interested in the city as a social and economic phenomenon, rather than as a 
legal entity. Our unit of analysis is thus not the population within the offi cial city 
limits, but rather the population of the urban agglomeration of which the legally 
incorporated city is often only a part. 

 Consistently defi ning an urban agglomeration is challenging (Le Gleau et al. 
 1996  ) , but in the cases we have chosen, it is possible to derive reasonably satisfying 
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defi nitions of urban agglomerations. The statistical agencies of both the United 
States and France have addressed this problem directly by developing various func-
tional defi nitions of urban agglomerations, while Soviet central planning produced 
Russian cities that are clearly separated, compact and well defi ned. We will discuss 
the specifi cs of each of these cases in turn. 

    34.1.3.1   USA 

 The cities of the United States have generally been regarded as being very nearly Zipf 
distributed. Because of the sprawling nature of many US cities, and the high daily 
mobility of the US population, the defi nition of an urban agglomeration for the US 
has proven particularly diffi cult. Over the past several decades, the set of Metropolitan 
Statistical Areas (MSAs) developed by the US Offi ce of Management and Budget 
(OMB) and the Census Bureau were the standard measure of urban agglomerations. 
The MSA defi nitions had signifi cant limitations, however, and were often infl uenced 
by local electoral politics. 

 In 2003 the OMB released a new series of consistently and objectively defi ned 
agglomeration data that it terms Core Based Statistical Areas (CBSAs) or 
“Metropolitan and Micropolitan” areas (Federal Register  2000  ) . This defi nition 
attempts to capture spatial and economic integration with a rigor that had not previ-
ously been attempted. The result is a consistently defi ned set of 922 cities. These 
cities follow the Zipf distribution fairly closely over a tremendous range: from 
greater New York City with 18.3 million people down to about the 800th city 
(Jennings, Louisiana) with a population of about 30,000. Although several of the 
largest cities are signifi cantly smaller than Zipf would predict, the distribution gen-
erally fi ts a power-law exponent very close to −1. 

 For convenience in the analysis that follows, we will restrict our data to a subset 
of the 250 cities with populations over 150,000 (Fig.  34.2 ). This reduced set of cities 
looks very much like the full set, displaying a power-law exponent of 1.005.  

 Comparing the US city size distribution to a pure Zipf distribution for a compa-
rable number of cities and citizens, we fi nd the Zipf assumption misplaces about 
15% of the population overall, with an error of 9.7% at the median city. 2   

   2   We can produce an objective measure of how well a “constructed” Zipf distribution fi ts the observed 
data by dividing the number of people which the Zipf rule misplaces relative to the data (the cumula-
tive error) by the total population of the cities. The cumulative error is calculated as the sum of the 
absolute values of the errors for each city divided by two (because each citizen which is in the wrong 
place is also missing from the right place). We will refer to this measure as the total error. 

 While the overall error is well refl ected by this measure, it does not give a sense of how the error 
is distributed. A sense of this distribution is given by the error at the median city. This is to say that 
we measure the error for each individual city ((abs(Data 

i
  − Model 

i
 )/2)/Data 

i
 ) and report the median 

of these values. This indicates whether the error is concentrated in a few large cities which fi t 
poorly or is distributed throughout the range of the cities. We will refer to this measure as the 
median error.  
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    34.1.3.2   France 

 The French National Institute of Statistics and Economic Studies (INSEE) produces 
a variety of excellent data on French cities using various defi nitions. These include 
the municipality ( commune ); the urban pole ( pôle urbain  or  unité urbain ); and the 
urban area ( Aire urbain ). 

 One of the most salient features of the French city size distribution is the domi-
nance of the Paris metropolitan area. Of the three ways of defi ning a city offered by 
the French statistical agency (INSEE), the “urban pole” defi nition is the most appro-
priate for our analysis, but under-represents the size of the Paris metro area. We will 
use a modifi ed defi nition of “urban pole” which, following Le Gleau et al.  (  1996  ) , 
we will call an “urban center”. This revised defi nition better captures the dominance 
of Paris in the French urban system. 

 The urban center data conforms fairly closely to Zipf, displaying an overall 
power-law exponent of −0.98 (see Fig.  34.3 ). The primary deviations from Zipf are 
that Paris is about two and half times the size that the rest of the distribution would 
predict while the second agglomeration, Marseille-Aix-en-Provence, is about two 
thirds the size that the distribution would predict. The combination of these two fac-
tors makes Paris about seven times as large as France’s second city – whereas in a 
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strict Zipf distribution it would be twice as large. Overall, the Zipf distribution 
 displaces 17% of the French population, but this is largely due to the very poor fi t of 
Paris – the error at the median city is only 7%.  

 Because France is much less populous than the United States, its urban structure 
is also much smaller. Whereas the United States has about 900 cities with popula-
tions greater than 20,000, France (following the 1999 urban center defi nition) has 
only 170 cities above this size.  

    34.1.3.3   Russia 

 Unlike the United States and France, which both adhere closely to the Zipf regularity 
for all but their largest cities, the Russian city size distribution displays a distinct 
curvature on log-log axes over the entire range of its urban structure (see Fig.  34.4 ).  

 The substantially different Russian urban structure is not surprising given the radi-
cally different physical, social, and economic environment in which it developed. 
Much of Russia’s urbanization took place during the Soviet period when internal 
migration was intensely managed by the central government, which pursued objec-
tives such as the extraction of natural resources, the occupation of territory that might 
be claimed by China, and the movement of industrial production away from the poten-
tial front with Western Europe. Policies of forced and incentivized migration, costly 
investments in infrastructure, and intensive subsidies to far-fl ung cities in inhospitable 
locations increased both the number and the size of cities in remote parts of the Soviet 
Union (Hill and Gaddy  2003  ) . A basic reality of this system, which we will make use 
of in our model, was that moving down the urban hierarchy was generally easier than 
moving up it. A person living in Moscow might be assigned a job in a minor industrial 
center in Siberia, but a person living in that Siberian city would be unlikely to be 
assigned to Moscow. This system insured that the smaller (and often colder and 
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 generally less hospitable) industrial cities of Siberia remained populated in spite of 
Russian citizens’ inclinations to move elsewhere (Hill and Gaddy  2003 ; Iyer  2003  ) . 

 Russian urban agglomerations are easier to defi ne than their US and French 
counterparts because of the way that Soviet planners designed the Russian urban 
structure (Hill and Gaddy  2003  ) . The desire to spread population over the vast ter-
ritory of the Russian empire created large distances between cities, while the planned 
nature of these cities reduced or eliminated urban sprawl in most cases. Because 
Russian cities tend to be distinct and compact, Russian city population numbers and 
urban agglomeration numbers tend to coincide, requiring the aggregation of suburbs 
with central cities only for Moscow and St. Petersburg. The data generated by the 
Russian census are therefore appropriate for our purpose without adjustment beyond 
the agglomeration of these suburbs. 

 The overall best fi t power-law for this data has an exponent of −0.92 – a number 
close enough to unity that some authors have failed to remark on it. Our measure of 
total error indicates that the fi t between the Russian distribution and the Zipf distri-
bution is similar to that for the US and France, misplacing 16% of the population 
(as compared to 15% and 17% respectively), but this apparent similarity is mislead-
ing. This shows up in a median error fi gure of 17% (as compared to about 10% for 
the US and 7% for France). While distributions for the US and France are generally 
Zipf like, with departures in the largest cities, the Russian distribution is distinctly 
curved as shown in Fig.  34.5 .  

 We can demonstrate this curvature by dividing the Russian city distribution into 
two parts and examining the exponents of the best-fi t power-law that describes each 
part, measuring the power law exponent for cities larger than 500,000 separately 
from those between 500,000 and 100,000. These sets of cities display two distinct 
exponents. The upper part of the curve has a slope of −0.68 while the lower part has 
a slope of −1.19. These slopes are signifi cantly different with p << 0.001. Similar 
tests on data from the US and France yield slopes that are not signifi cantly different. 
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By inspecting the graph (Fig.  34.5 ) we can see that our cut off of 500,000 between 
the two groups is an arbitrary one, and that the distribution of cities larger than 
100,000 is better described by a curve that is concave toward the origin. In this 
sense, the Russian distribution departs from the Zipf distribution for all of the 161 
cities in this range.    

    34.2   A Simple, Abstract Model: Jars and Beans 

    34.2.1   Model Description 

 In the sections that follow, we will attempt to explain both the tendency of urban 
systems to approximate Zipf, and the reasons why various countries depart from it, 
by constructing a model that is as simple as possible while capturing the essential 
features of the systems in question. 

 We begin with an abstract model that produces remarkably good agreement with 
real city size distributions. This model is designed to explore the way in which 
power-law distributions can emerge from systems involving stochastic exchange. 
Because the abstract model does not itself contain suffi cient detail to capture plau-
sible urban dynamics, we describe it in terms of “jars” (rather than cities)  exchanging 

Russian Cities 1997 
(log-log axes)

10,000

100,000

1,000,000

10,000,000

1 10 100 1000

Rank

P
o

p
u

la
ti

o
n

Slope = -0.68

Slope = -1.19

Slope = -0.92

  Fig. 34.5    Curvature of the Russian city size distribution       

 



686 T.R. Gulden    and R.A. Hammond

“beans” (rather than citizens). In the next section, we will extend the model in such 
a way that it demonstrates a plausible relationship to social and economic realities. 

 The rules of the abstract model are simple. The model begins with some number 
of jars, each of which contains some number of beans. The jars interact in random 
pairings. In each interaction, the jars exchange some number of beans (“the bet”) 
equal to half of the beans in the smaller jar. In the base case, both jars have an equal 
probability of winning the bet. Once the winner is determined, the beans are 
exchanged and a new random pairing of two different jars is made. There is a fl oor 
size of 1 bean. If a jar of size 1 loses a bet, nothing happens and it remains at size 1. 
If it wins a bet, it wins a whole bean (rather than half a bean). 

 One important feature of this model is that it assumes that urban population is 
conserved, unlike other models (e.g. Gabaix  1999a ; Fujita et al.  1999  )  that assume 
people freely enter and leave the urban system. Our assumption of conservation fi ts 
with empirical evidence that once people have migrated to a city and have traded 
their rural skills for urban ones, they tend to remain in the urban system – migrating 
from one city to another in search of opportunities, but seldom returning to live in 
the hinterlands. In our simple abstract model, this is refl ected in a strict conservation 
law: beans are neither created nor destroyed, they simply move from jar to jar. 

 The model also differs from other stochastic models (typifi ed by Gabaix  (  1999a  ) ) 
by not needing to assume that the growth rates of cities are independent. These 
previous models generally depend on a Gibrat process for their results, in which 
cities grow (or shrink) by random amounts that are uncorrelated but share a com-
mon mean. In our model, growth rates  are  correlated (one city’s gain is another 
city’s loss). We believe that this is a more plausible assumption for modeling city 
size dynamics. We also assume that growth rates depend on city size. When a small 
city faces a larger city, it faces a gain or loss of half its size, whereas the larger city 
faces a gain or loss that comprises a smaller fraction of its population. Small cities, 
therefore, face greater size volatility than large ones, a fact that also coincides with 
real world observation (Gabaix  1999b  ) .  

    34.2.2   Results from the Abstract Model 

 Although the model is very simple, it can produce statistically robust Zipf distribu-
tions as well as some interesting variations on the distribution. If the model is run 
with the appropriate number of beans 3  for the given number of jars, it will approach 
the Zipf distribution regardless of the initial distribution of the beans between jars. 
Initializing the model with “too many” beans – more beans than would be required 

   3   From the defi nition of the distribution, it follows that a certain number of jars requires a certain 
number of beans to fi ll the distribution. When the fl oor size (the size of the smallest jar) is one 
bean, the largest jar should contain a number of beans equal to the number of jars. The sizes of all 
the jars between the largest and the smallest are then given by the rank/size rule, rounding to the 
nearest whole bean. For example, for 100 jars, 516 beans are required to fi ll the distribution.  
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to fi ll a Zipf distribution for the given number of jars – produces instability in the 
top of the distribution with large fl uctuations in the sizes of the largest jars, with the 
excess beans tending to fl oat among the top few jars. Radical overfi lling of the dis-
tribution tends to produce “jamming” at the top, where the largest jar ends up with 
the majority of the excess beans. Initializing the model instead with “too few” beans 
produces a curvature of the distribution, maintaining the power-law exponent in the 
lower tail and progressively lowering it in the upper tail. As we will see below, these 
two related results have important parallels to the real world deviations from Zipf’s 
law observed in the cases of France and Russia. 

 The model is reasonably robust to changes in key parameters. For example, while 
it is important that the “bet” be related to the size of the smaller jar in a given inter-
action, the exact proportion used generally affects only the speed with which the 
system approaches equilibrium, not the nature of that equilibrium. 4  

 We can make a fi rst analogy from this abstract model to urban dynamics by 
thinking of the jars as cities and the beans as groups of citizens. Each bean repre-
sents the number of citizens in the smallest city (size = 1) in the sample. Actual 
population data can therefore by translated for use in the jars and beans model by 
dividing the total population of the urban system by the size of the smallest city in 
the system. This translation means that the units of exchange in the model are the 
size of the smallest city. This coarse assumption leads to discontinuities in the lower 
tail of our graphs, but it produces some interesting initial results and we will subse-
quently refi ne them. 

 Population fi gures for the United States, inserted into this simple model, produce 
a distribution that bears a noticeable resemblance to real data. In the year 2000, 
according to the Census Bureau data discussed above, the US had 250 cities with a 
population larger than 150,000 and these cities were home to a total of 220,227,293 
people. We translate this for use in the jars and beans model by dividing the total 
population by the size of the smallest city (150,000), giving 1,468 beans in total. We 
can then get a fi rst approximation of the US urban distribution by initializing the 
model with 250 jars and 1,468 beans (initially distributed randomly). Running the 
model with these parameters gives a fi t that is quite suggestive. 

 Figure  34.6  shows the discretized version of the US data compared to output 
from 100 runs of the simple model using 250 jars and 1,468 beans. The heavier, 
central line on the graph indicates the median size for the city of each rank across 
all model runs; the lighter lines represent a 90% confi dence interval around this 
median. The US data do not fi t precisely within this envelope, but it is not far off. 
The gray circles in the fi gure represent one of the hundred sample runs that is par-
ticularly suggestive. We will return for a more careful analysis with a more complex 
model in the next section of the paper.  

   4   Extremely small bet sizes can begin to cause the lower tail of the distribution to collapse. This 
does not occur with a bet sizes close to 50% of the smaller jar (the setting used throughout this 
section of the paper). We will discuss the sensitivity of the model to bet sizes in more detail in the 
next section of the paper.  
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 Conducting the same exercise for France produces similarly provocative 
(although again not entirely realistic) results. Using our defi nition of an urban  center, 
France has 170 cities with populations larger than 20,000 that collectively contain 
22,386,598 people. We thus initialize the model with 170 jars and 1,119 beans 
(again distributed randomly). 

 Again, we see that the real data generally fi t within the range of model results 
(Fig.  34.7 ). We can see from the representative sample run (grey dots) that in a case 
where the fi rst two cities are of the proper size, the fi t of the rest of the distribution 
is also very close. Although the simple model does not fully predict the primacy of 
Paris in the French urban system, the median model run does refl ect an increase in 
slope in the top three or four positions. This is consistent with the notion that a small 
urban system with a relatively large population will tend to see disproportionately 
large cities at the top of its range.  

 Finally, we can obtain intriguing results for Russia by applying the model with a 
slight variation. In 1997 Russia had 161 cities with populations over 100,000 that 
collectively contained 70,282,100 people. This yields 703 beans in 161 jars. 

 Initializing the model with these values gives us a distribution that is concave 
toward the origin on log-log axes, but which has a somewhat different shape than 
we see in the data from Russia. If, however, we approximate Soviet era restric-
tions on internal migration by introducing a slight bias into the process ( simulating 
the asymmetry in diffi culty between moving up and moving down the urban 
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 hierarchy by giving the smaller city in each pairwise interaction a small  advantage) 
the shape of the distribution comes to match the Russian case much more closely, 
as shown in Fig.  34.8 .   

    34.2.3   Limitations of the Abstract Model 

 While the abstract model offers a simple mechanism that is capable of generating 
distributions resembling real city size distributions, it suffers from several serious 
limitations in interpretation. Although this model incorporates more realistic 
assumptions (such as correlated growth rates) than other stochastic models have 
employed, the dynamics of the model still bear little resemblance to those of real 
cities: cities do not engage in “tournaments” of fl ipping coins for half of their citi-
zens. In addition, the fl oor assumption of the abstract model provides a subsidy to 
the smallest jars – in each interaction they stand to either remain unchanged or to 
double their number of beans. This mechanism tends to move beans from the upper 
parts of the distribution into the lower tail in a way that has no clear analog in the 
dynamics of urban migration. 

 Also, the dynamics of the simple model involve a high churn rate, with cities 
changing rapidly changing their rank within the distribution and the largest indi-
vidual cities varying tremendously in size over time. In the time scale that is required 
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to achieve the power-law distribution, Chicago might change places with Peoria 
several times. This unrealistic dynamic highlights the fact that the abstract model 
has no place in it for differences in site suitability. Some sites (natural ports, for 
example) are inherently better than others for large cities, and any plausible model 
of urban dynamics should be able to refl ect this fact.   

    34.3   A Richer Model: Cities and Citizens 

    34.3.1   Model Overview 

 To address these defi ciencies, we will now introduce a richer model that comes 
closer to representing real urban dynamics. This model preserves and improves 
upon many of the desirable qualities of the abstract model while remedying some of 
its shortcomings. The richer model relies on the notion that a city has a short-term 
equilibrium size that balances economies of agglomeration (reasons to move into 
the city) with diseconomies of congestion (reasons to move out). A city can be 
thought of as being oversized if it moves above this equilibrium value and under-
sized if it moves below it. This short-term equilibrium is subject to shocks that result 
from the bounded rationality of citizens. The equilibrium reacts to these shocks over 
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the longer term according to a lagged adjustment mechanism. Finally, the model 
introduces a conception of “core size” – a size below which it is not economically 
feasible for a given city to shrink.  

    34.3.2   Bounded Rationality 

 The concept of bounded rationality underlies the exchange mechanism in the abstract 
model and provides us with guidance in refi ning it in terms of both the size of and 
bias in exchanges. We can see the central role of imperfect information in the model 
by assuming (temporarily) that all cities are at their equilibrium sizes. In this case, 
with each city at its optimal size, perfectly informed and rational agents would have 
no incentive to move from one city to another because any move would leave their 
home city underfi lled and their new city overfi lled – making the mover worse off. 
Under the assumption of perfect information, any distribution of city sizes in which 
all cities are in local equilibrium would be stable indefi nitely. 

 The citizens in our model, however, have imperfect information and bounded 
rationality. Some citizens, therefore, will move from city to city  even at  an “equilib-
rium” distribution of sizes. People are more likely to move from a more crowded 
city to a less crowded city, but the reverse is also possible. The size of the exchange 
between cities, therefore, is a parameter of the model. It represents the degree to 
which the rationality of the citizens is bounded – the percentage of the citizenry that 
will move between two equally attractive cities because of imperfect information 
(which we are modeling only in the abstract). With full information and no bounds 
on rationality, the exchange between two cities at their equilibrium sizes would 
always be zero. In the extended model we present below, the expected value of the 
exchange is zero, but the actual exchange amount varies symmetrically around zero. 
In this sense, the exchange mechanism is “unbiased”. 5  This principle of unbiased 
exchange differs from the abstract (jars and beans) model discussed above. In that 
model, the fl oor mechanism provides a signifi cant subsidy to small jars. With 100 
Zipf distributed jars, an exchange size of 50% of the smaller jar, and a fl oor of one, 
about 1/3 of the jars face positive expected returns – and the rest face negative 
expected returns. 

 As with the abstract model, the primary effect of changing the size of the bet in 
this richer model is simply to change the speed with which the system moves. 
However, when the bet is small enough, very few small cities face positive expected 
returns. Over the long run, this leads the lower tail of the distribution generated by 
the model to sag (i.e. to bend toward the origin) and produces long oscillations in 
the extent of this sagging. These features are not observed in real data. A closer 

   5   When the exchange amount is decreased to 1% of the smaller jar (as it is in the runs of the model 
that follows), only the single smallest jar can be expected to be within 1% of its fl oor, and the bias 
that it introduces into the system is vanishingly small.  
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match to empirical reality can be achieved by introducing a small amount of growth 
into the system. When all cities grow by a tiny amount each round, the lower tail 
restabilizes near a slope of −1. The amount of growth does not need to be carefully 
tuned to achieve this result. The growth rate needs only to be large enough to keep 
the tail from sagging, and small enough that the system can “digest” the new citi-
zens. Within that range, the growth rate can vary by an order of magnitude without 
signifi cant impact on model output. 

 This assumption of growth is consistent with the real world, where all of the 
world’s major urban systems are still growing. This is most apparent in developing 
countries, which are experiencing both population growth and urbanization. It is 
also true, however, of OECD countries such as France, where urbanization contin-
ues even as population has stabilized (Julien  2001a  ) .  

    34.3.3   Lagged Adjustment 

 Cities’ equilibrium sizes adapt to the shocks imposed by the bounded rationality of 
their citizens through a lagged adjustment mechanism. If a city grows above its 
equilibrium size, it will become congested in the short run. If it remains congested 
for long enough, however, the city will adapt. Firms will move in to hire idle work-
ers. New housing, roads and facilities will be built. Once these things happen, the 
city can comfortably accommodate more people than it did before – its equilibrium 
size has increased. Similarly, if citizens move out and stay out for long enough, 
fi rms will leave and infrastructure will deteriorate, leaving the city able to comfort-
ably accommodate fewer people than it once could. 

 Adding an adjustment lag does not change the dynamics of the model, but does 
impact the rate at which individual cities change size over time and therefore the 
rate at which the distribution changes. Because the parameters of this mechanism 
only infl uence the speed with which the model changes (and we are not attempting 
to calibrate the model to real time), we will not dwell on the lagged adjustment 
mechanism here. Any mechanism that retains the unbiased quality of the exchange 
system from the simple model, and that does not introduce excessive noise into the 
model will produce similar results.  

    34.3.4   Inherent Suitability 

 A further requirement for the richer model is to account for the infl uence of geo-
graphic suitability and the persistence of great cities. We accomplish this by posit-
ing “core size”, determined according to more conventional economic logic, which 
is one component of observed size. 

 We begin with the assumption that only some fraction of the population of a city 
is tied to the city’s specifi c geographic location. Chicago, for instance, is in a unique 
location to serve as a port for a huge section of the American Midwest. Many of the 
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jobs in Chicago need to be located exactly where they are geographically – at the 
base of Lake Michigan. Many other jobs in Chicago, however, do not have to be in 
that location. But they do have to be somewhere. We thus divide the population of a 
city into a “core” population, which is dependent on the city’s geographic location 
(and is subject to more or less standard microeconomic rules for its size), and a 
fl oating population, which is subject to the mechanisms of the model. 

 A recurring problem for theorists of city sizes has been that models containing 
appropriate economic content (e.g. Fujita et al.  1999  )  tend to predict distributions 
that look quite different from those that are actually observed. The model presented 
here solves this problem and dovetails nicely with such models by freeing them 
from the need to predict a Zipf like distribution. A model like that of Fujita et al. 
 (  1999  )  is probably well suited for predicting the core sizes of cites. These core 
sizes should be much more readily subject to “rational” analysis. The core sizes, 
however, are not the only component of the observed distribution. The sizes we 
observe are based on the sum of the core size and the size of the fl oating population 
that can potentially live elsewhere. We will equate the “core” size of a city to its 
“fl oor” (i.e. minimum size) in the model. 

 Remarkably, the presence of some cities with higher fl oors (larger core sizes) 
does not change the basic dynamics of the model. It still produces Zipf distributions 
and the aforementioned characteristic departures from Zipf. However, the cities with 
higher fl oors tend to stay in the upper part of the distribution, thus refl ecting much 
more realistically the persistence of major cities that we observe in the real world. 

 An analogy to a cake with icing is a useful way to visualize the relationship 
between the core and observed distributions of city sizes. The core distribution is the 
cake, while the fl oating population is the icing. All that we observe in city size data is 
the height of the top of the icing. While the cake of the core size distribution might be 
rather lumpy and vary depending on economic and geographic structure, the icing of 
the fl oating population fl ows smoothly over the cake and fi nds its level. In the case of 
cities, the attractor is not fl at – as it is in the case of a physical cake – but rather follows 
the shape of the Zipf distribution and its related departures as outlined above. 

 Because this study is concerned with the overall shape of the various city size 
distributions, it is suffi cient to note that adding heterogeneous core sizes does not 
change the distributions that emerge from the model. The simulations that follow 
will use uniform core sizes unless otherwise stated, with the core size being equal 
to the size of the smallest city in the system. The results would not be changed if a 
more complex or dynamic core distribution were used.  

    34.3.5   Results from the Richer Model 

    34.3.5.1   USA 

 This richer model produces a fi t for United States core-based statistical area data 
that is signifi cantly  better  than the Zipf approximation. The only signifi cant 
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 parameters in this model are the number of cities with populations over 150,000 
(250 of them), the number of people in these cities (220,227,293 in total), the rate 
by which each city grows at the end of every round, and the fraction of the smaller 
city which will serve as the exchange amount in interactions. The fi rst two (cities 
and citizens) are given by the data. The results are insensitive to the growth rate over 
a broad range of values (roughly and order of magnitude). The size of exchanges 
alters the degree of variance between runs, but does not have a noticeable impact on 
their median outcome. The model has no other free parameters. 

 We begin the simulation of the United States city size distribution with 250 cities 
and a reduced population of 50 million citizens (about 1/5 of the actual population) 
distributed evenly between the cities. The initial population size is not signifi cant so 
long as it is small enough to allow the model to approach equilibrium before the full 
population is reached. We run the simulation forward with each city growing by a 
small amount (1/20,000th) at the end of each round, stopping when the population 
reaches the year 2000 total urban population of 220,227,293 (Fig.  34.9 ).  

 For the sake of simplicity, we begin these simulations with a uniform distribution 
and with a fi xed number of cities, although in the real world the urban system is 
always in the neighborhood of the Zipf distribution (with the number of cities 
increasing along with their populations). Such a growth pattern is supported by his-
tory (Zipf  1949 ; Pumain  2004  )  and emerges from certain theoretical formulations 
(Simon  1957 ; Gabaix  1999a ; Axtell and Florida  2001  ) . When the initial state is 
close to Zipf, the growth rate becomes much less critical. It needs to be great enough 
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  Fig. 34.9    USA model results       
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to prevent the collapse of the lower tail, but more rapid growth is not a problem 
because the system does not need to produce major structural changes.  

    34.3.5.2   France 

 As discussed above, France is generally characterized by a Zipf distribution with 
Paris considerably larger than the distribution would predict. Although the abstract 
model was capable of producing results that were consistent with French data, this 
occurred in only a small fraction of model runs. The richer model performs consid-
erably better in this respect, although it requires a somewhat more complex assump-
tion about growth 6  (see Appendix). The distributions are shown in Fig.  34.10 .  

   6   The previously discussed issue with collapse of the lower tail in the absence of growth is particu-
larly problematic in this case because of the very large size of Paris. Starting from a uniform dis-
tribution of city sizes, any growth rate large enough to prevent the collapse of the lower causes the 
population to reach its target size before the model has had time to grow Paris to its full size. We 
therefore begin the model with approximately 90% of the total population of France and run it 
forward until Paris has reached 90% of its actual population. We then introduce growth at the same 
rate of 1/20,000th per iteration used for the US simulation and run it until the model population is 
equal to the French population.  
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  Fig. 34.10    France model results       
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 Whereas Zipf produced a total error of 17% and a median error of 7%, the model 
produces a total error of 5.3% and a median error of 3.3%.  

    34.3.5.3   Russia 

 To simulate Russia, we initialize the model with 161 cities, a population of 
70,282,100 in these cities and a fl oor of 100,000 (the size of the 161st city). As with 
the simple model, we introduce a bias into the migration probability to simulate the 
effects of internal movement restrictions. The degree of this bias is a free parameter 
of the model, which we calibrate to 0.0025 in favor of the smaller city in each pair-
wise interaction. 7  The slight bias toward smaller cities eliminates the tendency of 
the lower tail of the distribution to collapse and makes the model behavior invariant 
in the presence or absence of population growth (Fig.  34.11 ).  
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  Fig. 34.11    Russia model results with constant core sizes       

   7   Given that the model does not attempt to represent the urban system in actual space and time, it is 
not possible to calculate this movement bias using actual data. Because it is the only free parameter 
in the model, however, we can calibrate it by comparing model results to the observed data. We 
obtain a good fi t by assuming a bias of 0.25% in favor of the smaller city in each pair-wise inter-
action. That is to say that, in each interaction, the probability of the larger city receiving the migra-
tion is 49.75% while the probability of the smaller city receiving the migration is 50.25%.  
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 When run with these parameters, the model captures the basic shape of the 
Russian city size distribution, but misses the primacy of Moscow and St. Petersburg. 
These cities have each played unique roles in Russia’s economic and political his-
tory, serving as capitals of highly centralized political systems under both the Czars 
and the Soviet system. St. Petersburg is also unique in serving as European Russia’s 
only ice-free port. The continuing pressure of internal immigration on these cities – 
even in the face of falling population in Russia generally (Iyer  2003  ) , indicates that 
these cities remain at or below their equilibrium size in the collective mind of the 
Russian people. We incorporate the unique economic and geographic appeal of 
these two cities by assigning them core sizes that are 90% of their observed sizes, 
while leaving the cores of the remaining cities uniform at 100,000 people. 

 We observed earlier that introducing heterogeneous fl oor sizes alters the stability 
of individual cities but does not change the shape of the overall distribution  unless  
fl oors are set so high as to make a city “protrude” from the distribution. In this case, 
we are conjecturing that political and geographic forces have caused the core sizes 
of Moscow and St. Petersburg to protrude from the Russian city size distribution. 

 When we incorporate these larger core sizes for Moscow and St. Petersburg into 
the model, it produces an excellent fi t for the data (Fig.  34.12 ). Overall, the median 
model run misplaces only 3.25% of the population. This is much better than Zipf, 
which displaces 12.5%. The error at the median city similarly drops yet further to 
2.5% as compared to 16.5% for Zipf.    
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  Fig. 34.12    Russia model results with larger cores for Moscow and St. Petersburg       
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    34.3.6   Limitations 

 The richer model presented above displays a good deal of success in reproducing 
the distribution of city sizes in the United States, France, and Russia, but does have 
some limitations. 

 While the model can predict the overall shape of the urban distribution for vari-
ous countries, it does not predict the movements of particular cities within that 
distribution. In order to control volatility of city size in the model, we have employed 
the “core size” concept – but we do not model explicitly how such core sizes evolve. 
The model produces similar distributions over an extremely broad range of possible 
core size including, we believe (but do not show here), core sizes that are compati-
ble with observed levels of volatility. 

 A second, related, limitation of the model is that its current formulation does not 
lend itself to calibration to real time scales. Real urban systems generally expand 
simultaneously in both population and number of cities, whereas we hold the num-
ber of cities fi xed. We believe that this assumption, although unrealistic in the long 
term, can yield insights in the shorter term by keeping the model simple enough for 
ready analysis and insight. 

 A third limitation is that the model uses a simple but highly unrealistic interac-
tion network. Cities in the model interact randomly, regardless of their size or loca-
tion – indeed, location is not represented in the model at all. We do not explore here 
the sensitivity of the model to different interaction regimes.   

    34.4   Discussion 

    34.4.1   Implications for Developing Nation Megacities 

 One of the more interesting and policy-relevant insights generated by the model is 
that the primacy of Paris (and, by extension, other disproportionately large capitals) 
might have more to do with the number of small cities than it does with the nature 
of the large city. Previous efforts to explain urban primacy (e.g. Ades and Glaeser 
 1995  )  have tended to focus on the political economy of the capital as the reason that 
it grows disproportionately large. These theories would attribute the massive size of 
Paris to the highly centralized nature of the French political system and the fact that 
it is “the capital of everything” including politics, fi nance and culture, for the nation. 
This contrasts with the United States where the political capital (Washington) is dif-
ferent from the fi nance capital (New York and to some extent Chicago) and the 
cultural capital (which one might argue is split between New York and Los Angeles). 
Our model allows for such theories – we invoke this kind of reasoning to explain the 
size of Moscow and St. Petersburg in Russia – but the model suggests that this kind 
of explanation may not be required to explain the size of Paris. While the central 
role that Paris plays in French political, economic, and cultural life undoubtedly 
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does endow it with a substantial core size, it is not clear that this role requires the 
city to be as large as it actually is. 

 The stylized result from the model is that a country with a large population and 
relatively few cities will tend to produce a Zipf distributed population in all but the 
largest city (or few cities) with the “overfl ow” population collecting at the top of the 
distribution (here, in Paris). Our framework suggests more generally that there is a 
relationship between number of cities and number of people in an urban system. 
This relationship has important implications for urban planning in the developing 
world. Our analysis presents a reason to expect the emergence of megacities such as 
Sao Paulo in Brazil, Dhaka in Bangladesh, and Jakarta in Indonesia. These coun-
tries generally have highly centralized governments and severely constrained capi-
tal availability. These factors make it very diffi cult for their urban systems to expand 
in terms of number of cities at a rate that bears any resemblance to their rates of 
population growth and urbanization. Developing nations are therefore left with a 
small number of cities and a large urban population. While a person’s fi rst move 
from rural to urban life may be from the countryside to a nearby city (a tendency 
that would tend toward balanced urban growth), our model suggests that the next 
step of inter-urban migration will tend to concentrate the urban population. 

 Megacities create numerous policy challenges, involving growth management 
and the provision of adequate infrastructure for a rapidly growing population. 
Failure to meet these challenges can create disastrous situations in the areas of envi-
ronmental protection, public health, and human development and can lead to social 
unrest, political instability and violence (Bugliarello  1999  ) . 

 The model further suggests that efforts to encourage migration from the fi rst tier 
cities to middle sized cities are not likely to succeed over the long term. A govern-
ment hoping to stem the growth of a primate city would do better to focus limited 
resources on providing the infrastructure and economic base that would allow large 
towns to become full participants in the urban system – thus expanding the number 
of cities and thereby reducing pressure on the capital.  

    34.4.2   Implications for Russian Urban Structure 

 The model suggests that two factors have played a role in creating the odd distribu-
tion currently observed in the Russian urban structure: a large urban system relative 
to its population and movement restrictions that have historically biased movements 
toward smaller cities. Unlike the urban structures of the US and France, the Russian 
urban structure was not created by free mobility and free markets. Soviet central 
planning created, instead “a structure of production – location, capital, employment, 
materials, energy use, etc. without any regard for economic opportunity costs, in an 
environment free of economic valuation” (Ericson  1999  ) . 

 The result of this non-market resource allocation was an extensive urban struc-
ture that post-Soviet leaders have continued to work hard to preserve through subsi-
dies and other measures. For a host of ideological and security related reasons, 
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Soviet central planners aimed for relatively even dispersal of cities of fairly uniform 
size while at the same time creating a highly centralized system of power (Demko 
and Fuchs  1984  ) . These factors contributed heavily to the creation of the odd urban 
structure that we see today. 

 One of the major Soviet era policies used to maintain this sprawling urban struc-
ture was a system of permits that were required for one to move from the hinterlands 
into an industrial center, and from a smaller industrial center to a larger one. This 
policy may be likened to biasing migration toward the smaller city in our model. 
While these policies are offi cially no longer in place since the fall of the Soviet 
Union, traces of them remain – particularly with regard to migration into Moscow 
and St. Petersburg. President Putin remained committed to avoiding Siberian “ghost 
towns” at almost any cost and many subsidies to these towns are in place long after 
the end of the Soviet system (Gaddy and Ickes  2002  ) . 

 While the current form of our model is not useful for estimating the speed with 
which the size distribution might change with the relaxation of these restrictions 
and subsidies, we can use it to speculate about their general nature. We expect that 
unmanaged movement would lead to continued growth pressure on Moscow 
and St. Petersburg. We would further expect strong growth in a small handful of 
second tier industrial cities with current populations between 1 and 1.5 million 
(Novosibirsk is a typical example). However, we would expect this growth to 
extend to only three or four such cities, with the vast majority of cities with popu-
lation between 100,000 and 1.5 million experiencing a prolonged period of pop-
ulation decline.   

    34.5   Conclusions 

 Our adaptive agent framework has allowed us to design and explore a framework for 
understanding city size distributions which, in spite of its extreme simplicity, is able 
to generate close approximations of the actual city size distributions for the US, 
France, and Russia. Although simple, this model is hard to examine analytically 
because of the high degree of interaction among its parts. Previous attempts to 
explain the Zipf distribution have, in general, gained analytical tractability by 
assuming independence of the growth rates of cities. While it is possible to generate 
the Zipf distribution using such assumptions (Gabaix  1999a  )  it is hard to imagine 
how the departures that we have reproduced could be derived in such a setting, and 
independent growth rates seem implausible for real city interactions. Our agent-
based simulation methodology allows us to drop this restrictive assumption. 

 The use of this approach has made it possible for us to make real progress in 
understanding a phenomenon that has puzzled economists, geographers and others 
for over 50 years. Our model establishes a basis for moving beyond the assignment 
of mystical signifi cance to the Zipf distribution of city sizes and allows us to see city 
size distributions as the result of straightforward behavioral rules. We can further 
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understand Zipf as only a special case of city size distributions and see deviations 
from Zipf not as noise or error of some sort, but as the products of differing policies 
and situations.       

      Appendix   : City Defi nition for France    

 The French National Institute of Statistics and Economic Studies (INSEE) produces a 
variety of excellent data on French cities using various defi nitions. These include the 
municipality ( commune ); the urban pole ( pôle urbain  or  unité urbain ); and the urban 
area ( Aire urbain ). 

 Of these three ways of defi ning a city, the fi rst and third are inappropriate for use 
in this analysis. The municipality defi nition is not useful because most major cities 
are composed of many municipalities. The municipality of Paris, for example, had 
a population of only about 2.1 million people in 1999. The urban pole of Paris, in 
contrast, was composed of 396 such municipalities and was home to over 9.6 mil-
lion people (Chavouet and Fanouillet  2000  ) . While the legal defi nition of a munici-
pality refl ects historical and administrative realities, it tells us little about the urban 
agglomerations that we are studying. 

 Where the city as municipality defi nition is too restrictive, the city as urban area 
defi nition seems to be too broad. French urban areas are defi ned as those areas 
where at least 40% of the workers commute into an urban center that employs at 
least 5,000 people (INSEE  2004  ) . These areas can be very large, often many times 
the area of the urban pole. A major problem with this defi nition for our purposes is 
that this surrounding area mixes people who commute into the city center with 
people whose social and economic lives are not integrated with the city. This com-
muting based defi nition also creates the impression of rapid growth for many cities, 
not because the cities have changed signifi cantly, but because French commuting 
patterns have been changing, with workers traveling increasing distances to work 
(Julien  2001b  ) . French cities have therefore been expanding their areas of infl uence 
more rapidly than they have been growing in terms of employment, built area, or 
other measures of city size (Julien  2001a  ) . 

 The French defi nition of an urban pole strikes something of a balance between 
these two defi nitions. An urban pole is defi ned as a collection of contiguous com-
munes in which more than half of the population lives in an area where buildings are 
separated by no more than 200 m. This defi nition is thus a reasonably close approxi-
mation of the built up area of the city. However, because this defi nition includes 
whole communes that are only partly urbanized, it tends to over count the urban 
population at the edges of cities. Because the circumference of a circle increases 
more slowly than its area, this bias tends to infl ate the size of smaller cities. 

 In an effort to avoid this problem, we adopt a slightly more restrictive defi nition 
of a French city, that we will call an “urban center”. Our defi nition follows the 
spirit of the one described by Le Gleau et al.  (  1996  )  while adapting it to better 
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capture the dominance of Paris in the French urban system. Le Gleau defi nes an 
urban center such that, if a single commune within an urban pole contains more 
than half of the pole’s population, then this commune is the urban center. If the 
central commune contains less than half of the population of the pole, then it is 
agglomerated with the other communes of the pole that have at least half of the 
population of the largest commune. This defi nition has the effect of making the 
urban centers of France appear very nearly Zipf distributed (Fig.  34.13 ) – but it 
makes little sense as a defi nition of a city. Most notably, the central commune of 
Paris is much larger than any of the other 395 communes that make up the Parisian 
urban pole. This means that, by Le Gleau’s defi nition, the urban center of Paris is 
represented by only this one commune, putting its size at 2.1 million people (as 
compared to 9.6 million in the urban pole).  

 We retain Le Gleau’s concept of omitting the fringe areas by changing the cri-
teria for agglomerating secondary communes, but refi ne it to avoid distorting 
large cities (particularly Paris). Under our defi nition, we agglomerate all of the 
communes in the pole that have a population greater than 20,000 people. Because 
communes tend to be of roughly uniform size, this is a reasonable proxy for den-
sity. We choose the number 20,000 because it is also the minimum size of a city 
in our dataset. Thus, any commune within an urban pole that would qualify as a 
city in its own right by virtue of its population of 20,000 is agglomerated into the 
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urban center. This defi nition eliminates the infl ation of the urban periphery that is 
present in the urban pole defi nition while retaining the basic idea of a city as a 
contiguous built-up area. Our analysis uses this defi nition of a French urban 
center.   
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  Abstract   Entropy maximising models are well established within the fi eld of urban 
modelling as a method for predicting fl ows of people or material within an urban 
system. The dynamic urban retail model (Harris and Wilson ,  Environ Plan A 
10:371–388, 1978) is one of the most well known applications of this technique and 
is an example of a BLV (Boltzmann-Lotka-Volterra) model. We defi ne an agent-
based model (ABM) of urban retail and explore whether it can be made equivalent 
to a BLV model. Application of both models to the metropolitan county of South 
Yorkshire in the UK indicates that both models produce similar outputs. This direct 
comparison provides some insights into the differences and similarities of each 
approach, as well as highlighting the relative strengths and weaknesses. The ABM 
has the potential to be easier to disaggregate, while the entropy maximising model 
is more computationally effi cient.      

    35.1   Introduction 

 In this chapter, we explore the relationship between dynamic entropy maximising 
models of spatial interaction and agent-based models (ABMs). The dynamics are 
added to spatial interaction models through a form of Lotka-Volterra equations, 
which has led to these models being designated as BLV (Boltzmann-Lotka-Volterra) 
models. These models have a long history. ABMs are based on agents which have 
‘development rules’. There is sometimes a confusion with CA (cellular automata) 
models in which the cells are given development rules and so in some ways can 
seem like agents. This is resolved by Epstein and Axtell  (  1996  )  by distinguishing 
agents from an ‘environment’ (which can be a grid of cells). 
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 Here, we want to explore whether it is possible to defi ne a set of agents, an 
 environment and associated rules in such a way that there is an ABM model that is 
equivalent to any BLV model. If this can be established, since BLV models are typi-
cally more highly developed and realistic, then this should point the way to building 
more realistic ABMs. We proceed as follows. We take the retail model as an archetypal 
BLV model and then seek to formulate an equivalent - or near-equivalent - ABM.  

    35.2   The Retail Model as an Archetypal BLV Model 

 Defi ne S 
ij
  as the fl ow of spending power from residents of i to shops in j; let e 

i
  be 

spending per head and P 
i
  the population of i. W 

j
  is a measure of the attractiveness 

of shops in j which, for these illustrative purposes, we take as the logarithm 
of ‘size’ – refl ecting the range of choice and the lower prices through economies of 
scale. The vector {W 

j
 } can then be taken as a representation of urban structure – the 

confi guration of W 
j
 s. If many W 

j
 s are non-zero, then this represents a dispersed 

system. At the other extreme, if only one is non-zero, then it is a very centralised 
system. There is clearly, potentially, a measure of order in this specifi cation of struc-
ture. An obvious order parameter would be the number of zones greater than some 
size N(W 

j
  > M) for some constant M. 

 A spatial interaction model can be built by maximising an entropy function in the 
usual way (Wilson  1967,   1970  )  to give:

     
ijc

ij i i i jS A e PW e
ba −=

   (35.1)  

where

     
1 ikc

i kk
A W e ba −= ∑    (35.2)  

to ensure that

     
=∑ ij i ij

S e P
   (35.3)  

and

     
=∑ logij jij

S W X
   (35.4)  

where logW 
j
  is taken as the measure of consumer benefi ts and X is an estimate of 

the total benefi ts achieved. We also have

     
=∑ ij ijij

S c C
   (35.5)  

 a  and  b  are parameters (which are the Lagrangian multipliers associated with 
Eqs.  35.4  and  35.5 ). Because the matrix is only constrained at the origin end, we can 
calculate the total fl ows into destinations as



70735 The Relationship of Dynamic Entropy Maximising and Agent-Based…

     

ij

ik
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ba
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−
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∑ ∑ ∑
  

 (35.6)   

 The model is essentially based on a microcanonical ensemble with double labels 
(i, j) for ‘energy’ states instead of the single i-labels in the classical gas model, 
hence the ‘Boltzmann’ element of the model. A 

i
  is the inverse of the statistical 

mechanics partition function – but at a zonal level. C can be taken to represent total 
‘energy’ in some sense and the c 

ij
  are individual energy states. c 

ij
  is a measure of 

impedance, i.e. some kind of transport cost. c 
ij
  is usually taken as a generalised cost, 

i.e. a weighted sum of elements like travel time and money cost. 
 Note that W  

j
   a    can be written as

     
log jW

jW e
aa =

   (35.7)  

so that

     
logij j iju W ca= −

   (35.8)  

can be taken as a measure of utility. 
 A suitable hypothesis for representing the dynamics is (Harris and Wilson  1978  ) :

     
( )j

j j j

dW
D KW W

dt
e= −

   (35.9)  

where K is a constant such that KW 
j
  can be taken as the (notional) cost of running 

the shopping centre in j. This equation then says that if the centre is profi table, it 
grows; if not, it declines. The parameter  e  determines the speed of response to these 
signals. Equation  35.9  is a form of the Lotka-Volterra equation and hence the char-
acterisation of these models as BLV models (Wilson  2008  ) . The equilibrium posi-
tion is given by

     
=j jD KW

   (35.10)  

which can be written out in full as

     

ij

ik

c

i i j

jci
kk

e PW e
KW

W e

ba

aa

−

−

⎧ ⎫⎪ ⎪ =⎨ ⎬
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∑ ∑
   

(35.11)
  

and these are clearly nonlinear simultaneous equations in the {W 
j
 }. 

 It is possible to characterise the kinds of confi gurations that can arise for differ-
ent regions of  a  and  b  space: for larger  a  and lower  b , there are a smaller number 
of larger centres; and vice versa - as characterised in broad terms by the order 
parameter, N(W 

j
  > M), defi ned earlier (Wilson and Oulton  1983 ; Clarke and Wilson 

 1985,   1986 ; Clarke et al.  1986 ; Lombardo  1986  ) .  
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    35.3   An Agent-Based Retail Model 

 We defi ne two kinds of agents:

   Consumers (C), with retail expenditure  • 
  Retailers (R), each running a single shop • 1     

 Each consumer and retail agent can be located at a unique point in our region of 
interest, rather than being aggregated into zones. We then need to defi ne an associ-
ated set of running costs for each R-agent and a matrix of interaction costs. 

 The C-agents will each be given a residential location, i – possibilities of chang-
ing these would involve a model extension. Each R-agent will seek a possible shop 
location, j. The i’s and j’s are now nodes in the environment. In one time period, the 
consumers will each deploy a utility maximisation rule – on a probabilistic basis - to 
fi nd a shop – the utility being given in Eq.  35.8 . Note that this involves ‘looking’ 
further than neighbouring cells in the environment and hence mimics – in fact gen-
eralises – Epstein’s and Axtell’s ‘vision’ mechanisms in their sugarscape model 
(Epstein and Axtell  1996  ) . (This also has a relationship to Potts’ models in the sta-
tistical mechanics of crystal lattices in which interactions extend beyond nearest 
neighbours.) At each j, the retailer will be able to sum the in-fl ows and decide 
whether the revenue exceeds the costs or not – cf. Eq.  35.9 . In our trial ABM, there 
will be a probability that a loss-making retailer will seek to relocate. In the terminol-
ogy of Holland  (  1995  ) , each agent has a stimulus and a response – consumers hav-
ing income as the stimulus and spending it as a response; each retailer having the 
total revenue infl ow as a stimulus and the possibility of relocation as a response. The 
retailer totalling infl ows is equivalent to Holland’s ‘tagging’ of (C) agents as a 
means of aggregating. The decision to relocate is an (R) agent interaction with the 
environment. We expect that running a model of this type would generate emergent 
behaviour as in the BLV model and we put this to the test below. 

 The model to be tested works as follows. Each retailer calculates a  range of choice  
factor R 

j
  for its current shop location j by counting the number of other shops within 

n metres of itself, where n is, say, easy walking distance to other shops nearby – here 
we use n = 200 m. We will refer to this range as the  range of choice distance . R 

j
  then 

represents the number of other shops a consumer would also be able to visit if they 
travelled to shop j. The value of R 

j
  is recalculated every iteration of the model. 

 Each retailer calculates the net income f 
j
  for their shop j every iteration:

     
= −j jf D K

   (35.12)  

where D 
j
  is the total income of shop j and K its operating costs. The total operating 

costs of all shops in the region are set equal to the total spending money of all 

   1   For simplicity we are only modeling independent retailers. An interesting extension of the model 
might be to include chain stores with one retailer owning multiple shops.  
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consumers in the region. As a result some shops will always be unprofi table and as 
a result their owners will be looking to relocate. 

 At each iteration a proportion of randomly chosen retailers are allowed to relo-
cate. Only those retailers making no money (f 

j
   £  0) will consider relocating when 

prompted. A retailer that decides to relocate has an equal chance of either moving 
to a random position in the region or moving near to one of its competitors. If it 
decides to move near a competitor, it will evaluate the profi t made by every other 
shop k and use this to calculate a probability m 

jk
  of moving near that shop:

     

=
∑

k
jk

ll

t
m

t
   

(35.13)
  

where t 
k
  is the profi t made by shop k. If a shop k is making a loss, then t 

k
  = 0 and 

there will be no chance of another retailer relocating near it. It is possible for a 
retailer to decide to relocate near itself in which case it remains where it is. Here we 
defi ne “moving near to a competitor” as: moving to a random position that is at most 
n metres away from it, where n =  range of choice distance . 

 A consumer’s position in the region is fi xed and represents the position of its 
home. Each consumer calculates the probability p 

ij
  that it will travel from its home 

i to visit shop j:

     

ij

ik

c

j

ij c
kk

R e
p

R e

ba

ba

−

−=
∑    

(35.14)
   

 As with the entropy maximising model,  a  represents the impact of range of 
choice on shopping decisions,  b  the impact of travel cost and c 

ij
  is the travel cost 

between house i and shop j. The set of all p 
ij
  for one consumer agent i makes up a 

probability distribution that represents the likelihood of that consumer shopping at 
each shop in the region. Each time a consumer is prompted to go shopping it gener-
ates a uniform random number to choose a shop based on these probabilities. Each 
consumer agent has a fi xed amount of money to spend when it goes shopping and it 
always spends the full amount in its chosen shop. This amount can obviously vary 
across agents depending on the data used to initialise the model. 

 During the course of a model run, several retailers may locate within each other’s 
 range of choice distance  and so mutually benefi t each other by increasing each 
other’s range of choice factor, R 

j
 . We can think of a group of retailers that does this 

as making up an “emergent” retail zone, which could, in practice, represent a row of 
shops, a high street or a shopping mall. Some pairs of retailers in the retail zone 
might be outside of each other’s  range of choice distance  and so not mutually ben-
efi t each other but still be part of the same group because they are linked indirectly 
via other retailers. We can identify these groups as they form in the model using a 
recursive algorithm to identify closed groups of retailers that are all directly or indi-
rectly connected to each other. The full algorithm is given in Appendix  1 . The num-
ber of retailers in each “emergent” retail zone can be thought of as equivalent to the 
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W 
j
  term in the entropy maximising model, and the value of R 

j
  for each retailer in the 

centre may be less than or equal to this term depending on its layout. An alternative 
measure of attractiveness for a retailer could use the W 

j
  term for the retail zone it 

belongs to rather than the R 
j
  term. The formula for p 

ij
  would then be:

     

ij

ik

c

j

ij c
kk

W e
p

W e

ba

ba

−

−=
∑    

(35.15)
   

 One iteration of the model comprises the following steps:

    1.    Each consumer chooses a shop and spends all their money there.  
    2.    All retailers calculate their profi t level.  
    3.     e % of retailers are given the option of relocating.  
    4.    All retailers recalculate their range of choice factor, R 

j
  (because one retailer mov-

ing can affect multiple neighbours).  
    5.    The size of each emergent retail zone is calculated.  
    6.    All consumers recalculate their set of probabilities p 

ij
 .     

 The percentage  e  represents the rate at which retailers respond to profi t levels and 
so performs a similar role to  e  in the entropy maximising model.  

    35.4   Results 

    35.4.1   System Overview 

 In order to properly test the ABM, we choose to model the metropolitan county of 
South Yorkshire in the UK. By modelling a real system, we are better able to judge 
whether the outputs are realistic or not. Full details of data sources and how we use 
them to initialise each model are given in Appendix  2 . Figure  35.1  shows the raw 
data plotted on a map and gives an idea of the distribution of retail outlets within the 
county.   

    35.4.2   System Equilibrium 

 The BLV model generally tends towards an equilibrium solution. We can detect this 
by examining the change in size of each retail zone, W 

j
 . Here we defi ne equilibrium 

as less than 0.001% change in the size of each retail zone for at least 250 iterations. 
We abandon a model run after 10,000 iterations in case the model does not converge. 

 For the ABM to detect equilibrium is more diffi cult because whatever structure 
emerges is not fi xed. For this purpose we use the Fuzzy Numerical technique 
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 developed by Hagen-Zanker et al.  (  2006  )  for comparing continuous raster maps. At 
100 iteration intervals, we calculate the number of retailers in each cell of a 40 × 40 
grid that covers the region. We use the fuzzy numerical similarity metric to compare 
consecutive grids, 2  and if this metric exceeds 0.996, we assume that the model has 
reached a stable state. 

 The rate of response parameters in each model were set as follows: for the BLV 
model we use  e  = 0.003, and for the ABM we set  e  = 1%.  

    35.4.3   Emergent Structures 

 Our fi rst job is to see what kind of structures and behaviour, if any, emerge from the 
ABM. For this we use population data for South Yorkshire to generate consumer 
agents (Fig.  35.2    ) but start with a uniform random distribution of retailers across the 
region. For this fi rst exploration, we choose the model parameters  a  = 1.0,  b  = 0.5. 
The output using Eq.  35.14  is shown in Fig.  35.3 , and using Eq.  35.15 , is shown in 
Fig.  35.4 .    

  Fig. 35.1    Visualisation    of the South Yorkshire data         

   2   We use a neighborhood size of 10.  
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 In both cases, realistic structures emerge with large clusters of retailers appearing 
at the major cities and towns in the region: Sheffi eld, Barnsley, Rotherham and 
Doncaster. Equation  35.14  appears to produce more compact retail centres than 
Eq.  35.15 , presumably because there is more benefi t in locating close to as many 
other retailers as possible.  

  Fig. 35.2    Distribution of the 50,000 consumer agents in the South Yorkshire model       

  Fig 35.3    Structure in the model using Eq.  35.14        
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    35.4.4   Results Grids 

 For the BLV model, a results grid can be plotted (Wilson and Dearden  2011  )  and 
this shows the possibilities of emergent behaviour and of phase changes through 
plots of the order parameter. The results grid in Fig.  35.5  represents the parameter 
space formed by varying the parameters  a  = 0.1–2 and  b  = 0.1–2, using a step size in 
both cases of 0.2.  

 Figure  35.6  shows a surface plot of the order parameter N(W 
j
  > 300,000) for the 

same parameter space as Fig.  35.5 .  
 For comparison, we produce a results grid for both variants of the ABM and show 

the results in Figs.  35.7  and  35.8 . A visual comparison of the grids suggests that both 
models are producing similar outputs with the BLV model grid in Fig.  35.5 .   

 Plots of the order parameter N(W 
j
  > 300,000) in Figs.  35.9  and  35.10  indicate that 

the behaviour of the ABM is largely similar to the BLV model across the parameter 
space; however, there some clear differences, especially when Eq.  35.14  is used. This 
may be, in part, because the ABM is a much more noisy system than the BLV model.    

    35.4.5   Model Calibration 

 We can calibrate the model runs in the results grids above to fi nd a best fi t for each 
model. The goodness of fi t of the output from the BLV model is easily checked 
against data using the coeffi cient of determination, R-squared, because we have a 

  Fig. 35.4    Structure in the model using Eq.  35.15        
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fi xed zone system – each retail zone in the model is at the same position as its 
equivalent zone in the data. We fi nd the best fi t at  a  =1.57 and  b  = 0.85, which pro-
duces an R-squared value of 0.74. The output (Fig.  35.11 ) matches the real system 
reasonably well. However, because we are not taking into account the complexities 

  Fig. 35.5    Results grid for the BLV model in ( a ,  b ) space       

  Fig. 35.6    Order parameter surface plot for the BLV model in (  a ,  b  ) space       
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  Fig. 35.7    Results grid in (  a ,  b  ) space for the agent based model using Eq.  35.14        

  Fig. 35.8    Results grid in (  a ,  b  ) space for the agent based model using Eq.  35.15        
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of the transport network in our measure of distance, we are missing some retail 
zones, most notably the large Meadowhall shopping centre near Sheffi eld.  

 Measuring the output from the ABM is more diffi cult because retail zones can 
emerge anywhere on the map. We again make use of the Fuzzy Numerical compari-
son technique because it allows us to compare two retail systems that differ in both 

  Fig. 35.9    Order parameter surface plot for the agent based model using Eq.  35.14  in (  a ,  b  ) space       

  Fig. 35.10    Order parameter surface plot for the agent based model using Eq. ( 35.15 ) in (  a ,  b  ) 
space       
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position and number of centres. To do this we convert both the town centres data 
(see Appendix  2 ) and the ABM output to a raster grid. We fi nd the best fi t parameter 
set for Eq.  35.14  at  a  = 1.57 and  b  = 1.15 ( 35.2 ) and for Eq.  35.15  at  a  = 1.57 and 
 b  = 0.73 ( 35.3 ) (Figs.  35.12  and  35.13    ).     

  Fig. 35.11    Best fi t BLV model run for South Yorkshire       

  Fig. 35.12    Best fi t model run using Eq.  35.14        
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    35.5   Conclusion 

 We have demonstrated a zoneless ABM of urban retail in which retail centres 
emerge due to individual retailers locating near each other. By comparing the out-
puts across a portion of ( a ,  b ) parameter space, we have demonstrated that it pro-
duces similar results to the well established BLV urban retail model. This work is a 
fi rst step towards defi ning an ABM that is equivalent to any BLV model. 

 In comparing the models side by side, it becomes clear that the BLV model is far 
less computationally intensive to run when dealing with very large systems. For 
example, the real population of South Yorkshire is approximately 1.2 million peo-
ple. However, in order to produce fast run times, we modelled the region using 
~50,000 consumer agents and ~500 retailer agents (see Appendix  2  for more details). 
Given more time and/or computing power the number of retailer and consumer 
agents could be increased closer to the real number in South Yorkshire. 

 The ABM approach does provide benefi ts when built using an object oriented 
programming language because the system can be constructed in a modular fashion. 
This may mean that the ABM is easier to disaggregate because we can quickly 
introduce multiple agent types. 

 Here we used macro level to data to calibrate our ABM output. It would be pref-
erable to use micro-level data to generate and calibrate the retailer and consumer 
agents, although locating appropriate sources of data is diffi cult. 

 The next steps would involve more disaggregation, i.e. more agent types, and 
then to extend the model in the direction of a comprehensive model that draws in a 

  Fig. 35.13    Best fi t model run using Eq.  35.15        
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wider range of urban sub-models - possibly using the Lowry  (  1964  )  model as an 
archetype, but also moving towards realism (cf. Wilson  2006  ) .       

      Appendix 1   : An Algorithm for Calculating the Boundary and 
Membership of Emergent Retail Zones 

 Pseudo code is given here for calculating the emergent retail zones that appear in the 
model.

    Setup an empty list of shops called processedList   
   While there are still shops not in processedList 
    Choose a shop s that is not in processedList   
   Setup an empty list called shopList   
   Call function   fi ndClosedGroup   with s, shopList 
and processedList as parameters   
   shopList now contains all the shops in one retail 
zone        

 The recursive function  fi ndClosedGroup  does the following:

    For each shop t nearby     
If t is not already in shopList
     Add t to shopList   
   Add t to processedList   
   Call function   fi ndClosedGroup   with t, 
shopList and processedList as parameters            

      Appendix 2: Data Sources 

 The retail data comes from the  Town Centres project  2004. We use the  total retail 
fl oor space  attribute from each town centre area to:

    • For the BLV model : set the fl oor space of each retail zone.  
   • For the ABM : determine the number of retailer agents we need to generate 
inside the town centre area. We do this by dividing the  total retail fl oor space  by 
an average shop size of ~2,800 m 2 , which produced about 500 retailer agents for 
the region.    

 The average shop size was chosen to reduce the computational load but could 
obviously be reduced given more time. 

 The population data are from the 2001 UK Census. We use the  All people  fi eld from 
the KS001 Usual resident population table for the CAS Ward boundaries. Then:

    • For the BLV model : the centroid of each CAS Ward is the location of each resi-
dential zone and the P 

i
  value is set to the  All people  value.  
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   • For the ABM : the  All people  value, divided by an aggregation factor, decides the 
number of consumer agents we generate at random positions inside the CAS 
Ward boundary. In this case the aggregation factor was set to 24 (meaning that each 
consumer agent represents 24 people) and produced ~50,000 consumer agents in 
the model. Again this was done to allow for reasonable computation times.    

 The average income data are from the CACI Paycheck data for 1999 at postcode 
area level. We aggregate these data up to CAS Ward level and then use the aggregate 
value for each CAS Ward to:

    • For the BLV model : set the e 
i
  value for the corresponding residential zone.  

   • For the ABM : set the spending money available to each agent living inside the 
CAS Ward.    

 For simplicity, all travel costs were calculated from the Euclidean distance 
between two points.   
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  Abstract   The SIMPOP simulation model was the fi rst application of a multi-agent 
system (MAS) in geography and has been followed by a series of related applica-
tions. This chapter summarizes a few specifi c features of this series of models and 
the main insights that have been gained from this experiment. As the fi rst objective 
of these models was to reconstruct the evolution of urban settlements at broad scales 
in geographical space and time (i.e. at national or continental levels and for decades 
or centuries), we explain the selection of the stylised facts making up knowledge 
about the dynamics of complex urban systems. They are used in the simulation 
models so as to reconstruct the interaction networks structuring the systems of cit-
ies. The originality of SIMPOP is thus to simulate the emergence and further hier-
archical and functional differentiation of interdependent cities from interactions 
between them, so that the agents in this model are immobile entities, representing 
complex aggregation of individuals at meso-level. The quality of MAS is under-
lined for its fl exibility in modelling spatial interactions with varied geographical 
confi gurations, and for its ability to deal with objects occurring on different scales, 
between geospatial entities that have expanding range of activities. We explain how 
we set about restricting the impact of the diffi culties inherent in this type of model-
ling, which have been the subject of frequent criticism, in particular for their exces-
sive complexity, thought to make any validation procedure unfeasible. In particular, 
we endeavour to describe in detail the various stages of model construction, on the 
basis of stylised facts obtained via numerous observations and comparisons, and set 
out to perform a multi-scale validation by testing the plausibility of the results deliv-
ered by the model at different aggregation levels. However, despite these promising 
methods of validation, further improvements are necessary for fully exploiting the 
capacities of simulation by using more powerful computing devices and validation 
methods. In this direction, the generic model SIMPOP will be completed and 
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 transferred to an open and scalable simulation platform, and specifi c versions will 
be developed and tested for the main regions of the world.      

    36.1   Introduction 

 There is considerable interest in multi-agent system (MAS) modelling in the human 
and social sciences. This is because the analytic methods that are usually developed 
for dealing with complexity in physical or biological systems meet two major limita-
tions when applied to this domain. First, societal complex systems share a large path 
dependence regarding their historical and geographical context, due to a functional 
directedness in social innovation and institutions, and resulting in a very high speed 
of their evolutionary processes, when compared to biological or geological evolu-
tions (Lane et al.  2009  ) . Second, they rarely admit reductionism in explanation, 
because the structuring of societies through reproduction and innovation always 
involves a variety of processes of a different nature that are analysed and formalised 
through specifi c axioms and concepts by each discipline. For instance, in order to 
describe urban systems dynamics, we can model separately population growth in 
demography, markets in economics, confl icts in political science and spatial con-
fi gurations in geography in terms of complex systems analytical tools, but they have 
to be rearticulated for making a concrete situation understandable in a satisfying 
way (Pumain  2011a  ) . Thus it is not only the intentionality and liberty of human 
behaviour that imposes limits to these models for predicting their future evolution, 
but probably as well a complexity of a different kind from natural phenomena. 

 The development of simulation models as “artifi cial laboratories” for exploring 
the behaviour and evolution of complex systems in social sciences is still in its 
infancy, especially regarding the principles of parsimony in the construction of, and 
the reliability in validation methods during experimentation that were identifi ed by 
Batty and Torrens  (  2001  )  as major issues for their possible use in prediction (the issue 
of validation is further discussed by Ngo and See  2012  ) . However, we think that 
MAS models do have a potential for progress in these two directions (Bura et al. 
 1996  ) ; this has been a focus over the last 15 years in the series of the SIMPOP mod-
els. 1  The SIMPOP models simulate how a structured system of cities emerges over a 
long time period in a given territory from interactions between individual cities. This 
is achieved by reconstructing interaction networks from previous information and 
knowledge in urban theory (in the form of “stylised facts”). In our view, it is not only 
the capacity of modelling the behaviour of reacting, adaptive or learning individual 

   1   We acknowledge here the participation of computer scientists, Jacques Ferber, Stéphane Bura, 
Alexis Drogoul, Benoît Glisse, Jean-Louis Giavitto, Guillaume Hutzler, and Thomas Louail, as 
well as statisticians and geographers, Lena Sanders, Hélène Mathian, France Guérin-Pace, Anne 
Bretagnolle, Céline Vacchiani-Marcuzzo, Arnaud Banos, Clara Schmitt and Sébastien Rey to the 
conception and use of these models. The European programme ISCOM (2002–2006) directed by 
David Lane supported the development of the SIMPOP2 model.  
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agents that represents the major epistemological change in urban dynamics, labelled 
as “the shift from macro-static to micro dynamics” that has occurred during the last 
50 years (Batty  2008 ). Indeed, it is the possibility of merging entities from different 
levels (of space and time) in the same model, together with the parallel development 
of multi-level validation methods that may as well be a fruitful way for MAS model 
design in geography. Such tools already can be used for testing theoretical hypothesis 
about the historical evolution of urban systems and could perhaps help in exploring 
their possible future evolution, and reducing the uncertainty about the future by delin-
eating plausible dynamic trajectories.  

    36.2   Some Stylised       Facts for Explaining How Urban 
Hierarchies Emerge in a Geographical Theory 
of Urban Systems 

 The series of SIMPOP models was fi rst conceived as a tool for theory testing. The 
main objective was to model stylised facts that would retrace the generic dynamics 
of urban systems over long periods of time. Urban systems are complex adaptive 
systems whose evolving geographical structure can be explained in the framework 
of an evolutionary theory (Pumain  2000  ) . As with any geospatial system, they are 
largely self-organised (Allen  1997  ) , even when constrained by strong forms of 
political or economic control. This is because urban systems involve very large 
numbers and a wide variety of interactions of different kinds at different scales that 
change over time. Similar to territorial systems like countries or regions, urban sys-
tems share common dynamic properties which produce regularities in the organisa-
tion of their geographical diversity. When considered as self-organised systems, 
systems of cities in any part of the world can be described at two basic levels of 
observation, that each are emerging from the interactions occurring mainly at lower 
levels: indeed one city can be described as a spatial organisation that is produced by 
the interactions between different urban actors, in majority from inside and partly 
outside the urban fi eld generated by the “daily urban system” (   Berry 1964). In con-
trast, is the second upper level systems of cities that are mainly shaped by the 
exchanges of persons, goods, capital and information from one city to the next, 
under the constraint of evolving ecological and overall political, technological, cul-
tural and economic rules. These networks of cities are characterised by emerging 
properties that remain relatively stable over time and space, as: the increasing  hier-
archical differentiation  in their sizes (as abstracted by Zipf’s law    or lognormal dis-
tribution, and measured by the accumulation of population or wealth as well as in 
qualitative way by the complexity of their society (see Gulden and Hammond  2012  
for a further discussion of Zipf’s law)); their  functional differentiation  (economic 
and social specialisation) that can maintain over much longer periods of time than 
the corresponding characteristics of the individuals that are composing them (change 
in profession, residential migration, replacement of generation); their rather regular 
 spatial organisation  (originally summarized by central place theory, today more 
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frequently conceived as complex networks, organised according scale free small 
worlds networks (Rozenblat  2010 ; Rozenblat and Pumain  2007 )). 

 The evolutionary modes of such systems are similar to those observed for other 
types of complex systems (Pumain and Saint-Julien  1979 ; Allen  1997  ; Pumain 2006) . 
The  competition between cities  for attracting people and activities in order to maintain 
and increase the local value (in terms of economic, human, symbolic, patrimonial… 
capitals) leads to many  local fl uctuations  (growth, decline) that in general do not 
modify the  global hierarchical structure of the system  that remains much more 
 stable (Robson  1973 ; Pumain  1982  ) . However, that structure is progressively trans-
formed over time, especially through a process of hierarchical diffusion of innova-
tions (concerning for instance in the last decades the business services, that are still 
concentrated in the largest metropolitan areas), and through cycles of functional 
specialisation (examples of manufacturing, tourism…) (   Pred  1977  ) . Such processes 
are essentially non linear: urban growth induces a concentration in the largest cities, 
partly due to positive feedbacks between size and accessibility (early adoption of 
modern rapid transportation and communication means, such as paved roads, then 
rapid trains, airlines…) and partly to the capture of the benefi ts of the innovations 
(concepts of initial advantage, associated to a site or a situation). During the course 
of time, the intermediary steps are short-circuited, because of the more limited 
number of necessary stops within the rapid networks that hampers the chances of 
development of smaller towns and systematically weakens them (Bretagnolle  1999  ) . 
Moreover, the urban dynamics, when expressed in terms of demographic or economic 
growth, are likely to show reversals: unlike in the economic product cycle, there is 
never a total substitutability in the case of cities, but on the contrary a possible 
reuse of some old urban locations, that may have been momentarily abandoned but 
become attractive again in the course of a new economic cycle (Fig.  36.1 ). A well 
known example among many others is the city of Montpellier in France that was a 
brilliant university town in the eighteenth century, but completely ignored by the 
industrial revolutions of the nineteenth and twentieth, and had a spectacular revival 
after 1950.  

 Zelinski (1971) suggested to call “urban transition”, an expression analogous to 
“demographic transition”, that can be interpreted as a phase transition in physics, 
the transformation of the world pattern of settlement, from a mainly rural habitat, 
constituted of relatively homogeneous and dispersed small population clusters, into 
an urban form of habitat, made of much larger, concentrated and differentiated 
nodes. According to the region of the world, the transition occurred more or less 
early in time (from beginning of nineteenth century until about 1950) and at differ-
ent paces. But everywhere it was accompanied by an intensifi cation of the commu-
nication between towns and cities, by multiplying the networks that were connecting 
them, especially through the gains in speed and capacity provided by new means of 
transportation and communication. Meanwhile, the transition everywhere lead to 
huge increases in city sizes (while in 1800 there were very few urban agglomera-
tions approaching one million inhabitants in the world, there are today about 400 of 
them and about 40 are above 10 million inhabitants) and to a wider concentration of 
population within cities (half of the world population is located in urban areas in the 
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2000s, 80% in developed countries – it was only 20% two centuries ago). Moreover, 
the societal and economic evolution of these towns and cities is so coherent that, 
fi rst within regional then national frames (and even later at world scale), it has been 
suggested to consider them as forming  systems of cities , as early as in 1841 (Jean 
Reynaud, quoted by Robic 1982). The emerging properties of such systems can be 
interpreted as resulting from the interactions between cities (Pumain 1997). 

 These stylised facts were tested in the SIMPOP1 model, which was the fi rst 
application of MAS in geography (Bura et al.  1996 ; Sanders et al.  1997  ) , developed 
with the help of Jacques Ferber’s  (  1995  )  research group. The objective was to iden-
tify the conditions of emergence of a functionally differentiated system of towns 
and cities from an initial much more homogeneous rural settlement system, over 
duration of some 2,000 years. This model differs from most of MAS in two aspects: 
its agents are immobile, as they represent places in geographical space, even if their 
interactions are affected by the technical innovations in the communication systems 
and the increasing level of urban resources which modify the relative situation of 
elementary cities in the network of their relational space. Second, as SIMPOP is a 
model of interactions between territories (aggregated geographical objects), the 
“behaviour” of such agents is not reducible to the behaviour of individual persons, 
for instance as in models of cognitive economy. SIMPOP simulates the emergence, 
structuring and evolution of a system of cities, starting from an initial spatial distri-
bution of settlements in a large region, state or set of states, a repartition of resources 
which can be assessed randomly or exogenously, and rules defi ning how cities 

  Fig. 36.1    Urban trajectories within innovation fl ow and relative positions in the system of cities       
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 interact, grow and specialise in urban functions that appear exogenously. In this 
model, the environment is represented by cells having different kinds of resources, 
for agricultural production or industrial purposes (those last ones can be exploited 
from year 1800 only), and various facilities or obstacles for circulation. They can be 
allocated randomly or according to a specifi c pattern. Towns emerge as centres of 
accumulation of population and wealth, through fi rst the trading of agricultural sur-
plus with their surrounding cells, then from their competition for the acquisition of 
other urban functions, as other types of trades, or administrative roles, or manufac-
turing activities, within broader networks. Interurban competition is simulated by 
relating profi ts (from trade or taxes) and growth rates, weighted by a random factor. 
Meanwhile, the spatial range of interactions is increased when cities acquire new 
functions and with technological progress going. As a result, different patterns of 
towns and cities in terms of spatial and hierarchical distribution emerge. 

 Three main results were established from this fi rst experiment: (1) interactions 
among settlements can indeed produce the emergence of a system of cities, even 
when starting from a pattern where settlements are all of same size; (2) if there are no 
interactions in the system, an urban hierarchy cannot emerge; (3) the urban hierarchy 
requires a recurrent appearance (creation) of new urban functions for being main-
tained over time as a major structural feature of the system. 

 The computing power available at the time restricted the number of interacting 
geographical entities to 400 cities. With SIMPOP2 (prepared in a collaboration with 
Alexis Drogoul’s research group (Glisse  2007  ) ) we have been able to extend the 
capacity of the model to about 5,000 cities, enabling simulation of the European cit-
ies from the Middle Ages to the year 2000 (Pumain et al.  2009  ) ; these cities are dif-
ferentiated by way of some ten main functions corresponding to the main waves of 
socio-economic innovation during the period. This generic model was then used in 
an adapted form to simulate the evolution of settlement in the USA, thus enabling 
identifi cation of the particular features of the urban dynamics of this New World 
country (Bretagnolle and Pumain  2010  )  by confronting results of the simulations 
with the historical database reconstructed by Anne Bretagnolle from census data 
(Bretagnolle et al.  2008  ) .  

    36.3   Innovation and Interurban Competition 
as Driving Processes 

 At the heart of urban dynamics is the very strong linkage between innovation and 
urban development (Lane et al.  2009  ) . Innovation has here to be understood in a very 
broad sense, including not only production processes or technological novelty but 
also societal evolutions that may be of cultural or symbolic nature and therefore infl u-
ence urban change. Contrary to the modern theories of local development (that are 
rightly criticized for instance by Shearmur  2010  ) , we believe that this developmental 
process is not so much embedded inside localities – although deeply rooted in 
local societal systems once installed- but on the contrary highly dependent for its 
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 appearance and evolution on interactions between urban places. We have investi-
gated this process by observing the quantities of economic activities in urban systems 
and using scaling laws as a tool for detecting their behaviour regarding urban popula-
tion size at different stages of their evolution within urban hierarchies (Paulus 2004; 
Pumain et al.  2006b ; Pumain  2011b  ) . As scaling laws are a tool for identifying con-
straints on the development of complex systems, there is a rather strong and general 
evidence that the already well documented process of hierarchical diffusion of inno-
vation (as identifi ed by Hägerstrand 1952, modelled by Morrill (1965) as early as 
1965 and revisited by Pred including more complex network processes in 1977) is a 
major generic feature in the dynamics of urban systems. 

 Innovations are propagated in the urban system by a variety of exchanges includ-
ing information. Interactions between cities keep over time some permanent fea-
tures, among them the most important is their competition for adopting social 
change and capturing the benefi ts from innovation. In the SIMPOP models, a city 
participates to this interurban competition through the functions (mainly defi ned by 
economic specialisation) that it successively acquires over time. A function enables 
a city to supply a type of product or service to other cities, which provide more or 
less returns in terms of economic growth and attractiveness on population, accord-
ing to the level of productivity of that function. The criteria for establishing a list of 
relevant specialisations for defi ning urban functions are related to an evolutionary 
perspective, under the main hypothesis that the relative dynamics of an urban entity 
in the system of cities is depending on the innovation cycles that the city has adopted 
(or to which it has better adapted). The question is to identify, for the entire system 
of cities, which innovation cycles have produced noticeable urban specialisations, 
affecting in a durable way the relative evolution of the specialised cities, by deter-
mining specifi c urban growth trajectories. For the SIMPOP1 and SIMPOP2 models, 
a limited number of urban functions (about 10) were selected as representative of 
the major economic cycles which gave rise to differential urban growth and cities 
specialisation over the past four centuries (Bretagnolle and Pumain  2010  ) . A few 
more functions were added in the EUROSIM version of SIMPOP designed for 
modelling the evolution of European cities between 1950 and 2050 (Sanders et al. 
 2007  ) . 2  Cities as agents have a total or partial (as constrained by the network of their 
partner cities) information about the emergence of new functions (that remain exog-
enous to the model). Cities also have a power to decide whether or not to invest in a 
given innovation, according to the wealth they have previously accumulated and to 
their line of urban strategy, that can be more or less risk-oriented. This decision 
process is represented by a “cognitive” attribute named “urban governance” 3  The 
urban governance also may represent in the model the possible intervention of the 
individual actors, which represent a third level in the modelling of urban systems. 

   2   This project was supported by the EU Programme called TiGreSS directed by N. Winter.  
   3   Although implemented in the SIMPOP2 and EUROSIM models, the role of this political entity in 
the dynamics has not yet been fully explored. It may reveal essential for modelling the recent 
dynamics of urban systems in countries such as Russia or China.  
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This level can be lower than the city level (for instance, an investor choosing a 
specifi c location for a fi rm, or a mayor defi ning a type of urban policy) or above 
the system of cities (for instance a multinational fi rm choosing a place for investment, 
or a political system imposing a centralised administration that can lead to the 
emergence of a prominent capital in an urban system (for example, that of France), 
whereas a more decentralised government may lead to a more regular urban hierarchy 
(for example, that of Germany)). 

 As we simulate the development of urban systems which include a large number 
of towns and cities, it would be unrealistic to think of implementing their interac-
tions in the model as “real” fl ows of exchanged goods, people or information. The 
interactions which are simulated in SIMPOP models are not these “fi rst order” 
interurban exchanges, but more abstract, “second order” interactions, which repre-
sent an interpretation of the effect of these concrete fl ows on the relative dynamics 
of cities (Pumain et al. 2006a). The urban functions that are essential attributes of 
the cities do not give an exhaustive description of their economic profi les, since they 
are attributed only to the cities having developed a major specialisation in a particu-
lar sector of activity during the corresponding innovation cycle. In a similar way, the 
exchange of products and resources among cities on the “market place” (cities sell-
ing and buying according to their level of supply and demand) does not refl ect the 
totality of the urban economy but only the specialised part of the interurban market, 
the one that is likely to give rise to urban growth differentials. The rules which 
defi ne the ability of a city to adopt innovations (i.e. new functions) are partly deter-
ministic, in order to reproduce the powerful trend to hierarchical diffusion of urban 
innovation (this is the case for most of central functions, a given level cannot be 
acquired if the other are not yet there), and partly random: when new urban speciali-
sations appear, they can select locations (or become acquired according to some 
decision of urban governance) which do not necessarily correspond to the largest 
cities. There are sometimes necessary “seeds” for such location of specialised activ-
ities, as mineral resources for manufacturing industries of the nineteenth century, or 
knowledge (human capital) in the case of technopoles of the twentieth. Such speci-
fi cation about the “environment” of the urban systems was implemented when cali-
brating SIMPOP2 on the European and USA cases (Bretagnolle et al. 2010).  

    36.4   Urban Dynamics, History and Evolution 

 The series of the SIMPOP models is called “evolutionary” because a major underly-
ing hypothesis is that the pervasive structural features of urban systems that we can 
observe are produced both by a generic dynamics (reproducible, or repeated pro-
cesses) and an historical evolution (specifi c trends), over long periods of time. 
This evolution involves systematic, time-oriented changes in major circumstances 
of the system over time, including the demographic and urban transitions, the 
increase in gross and per capita economic wealth, the trendy increase in the speed 
of transportation means, as well as the recurrent appearance of technical, economic 
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and cultural innovation. Thus, it is this social, historical evolution which supports the 
dynamics of urban systems, even if in a concrete way the dynamics is made through 
the mechanism of interurban interactions. Those are the “bottom-up” processes lead-
ing to the emergence of the structure of the system, whereas the evolutionary trends 
can be thought of as emerging trends, which are produced as feed-back effects by the 
system of cities itself, and become new constraints on the dynamics of individual 
cities. Actually, we do not know yet how to make these large evolutionary trends 
emerge (as sets of qualitative and quantitative changes), and they are represented in 
an exogenous way within our models, whereas it is possible to represent the endog-
enous process of building an urban hierarchy from the interactions between cities. 

 Another peculiarity of our simulation experiments is thus that they are not exactly 
“historically driven”, but at least widely guided by the general historical trends that 
we do not intend to generate through the model. These historical trends are useful 
in two ways during the course of modelling: fi rst, they help to rightly specify the 
values of some of the parameters and the syntax of rules during the stage of concep-
tion of the model (these parameters and rules help to maintain the simulations in a 
range of plausibility, they help in reducing the number of parameters whose values 
are unknown or not measurable and have to be estimated from the simulations). 
Secondly, a few historical series are used as benchmarks for checking the ability of 
the model to reproduce the temporal trajectories of different variables as urban pop-
ulation and wealth, share of employment in different types of urban functions, or 
distribution of city sizes. This calibration exercise is conducted as parsimoniously 
as possible in order to keep a large generic dynamic core in each application. Only 
modifi cations that are necessary for retracing the general evolution of the urban 
system (urban population and distribution of city sizes) are allowed when transfer-
ring the model from one system to the next (Bretagnolle et al. 2010). 

 These experiments are used for testing major hypothesis about the constraints 
and evolutionary paths that have differentiated the geographical structure of urban 
settlement systems all over the world. Conceiving generic dynamics and specifi c 
histories for reconstructing a variety of observed evolutions is thought of as a way 
of testing our urban theories through comparative analysis. This method relies not 
only on the design of simulation models, but as well on large historical urban data 
bases that are built according to precise and harmonised rules (Bretagnolle et al. 
 2008  ) . The main problem is to defi ne urban areas that despite their expanding and 
often fuzzy spatial limits keep a coherent geographical signifi cance over long peri-
ods of time and for a large variety of political, economic and societal contexts.  

    36.5   MAS as Adapted Simulation Tools for 
Geographical Dynamics 

 When compared to our previous attempts at modelling the dynamics of urban sys-
tems using systems of differential equations (Pumain et al.  1989 ; Sanders  1992  ) , 
MAS models have introduced a broader fl exibility in the model conception, both 
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for describing a variety of spatial interactions and including interactions from 
different levels. However, in order to fully exploit their potential from what we 
discovered in the nineties, we had to wait for the recent increases in technical 
computing capacities for developing applications of large systems of cities, at 
national or  continental scales. 

    36.5.1   Simulating a Variety of Spatial Interactions 

 Our model is a geographic model, in the sense that spatial interaction are supposed 
to refl ect the power of cities in terms of range of infl uence of their activities and 
support for new developments from their access to more or less extended markets. 
Three types of spatial interactions are distinguished for refl ecting the most frequent 
types of interurban exchanges, linked to different constraints: (1) proximity con-
strained interactions are representative of many activities for which the distance 
between supply and demand is an essential constraint, they are the rule for all cen-
tral place functions, whatever their level and range, and even if that spatial range is 
increasing over time; under that rule, the probability of exchanges are distributed 
according to an interaction model of gravity type. (2) territorially constrained inter-
actions are limiting a city’s infl uence within boundaries, regional of national, they 
correspond to all types of administrative or political activities; the interaction rule is 
modulated according to the nature of the activity, for instance, a capital can levy 
taxes in an exhaustive way on all cities belonging to its region or state, whereas in 
the case of other activities this rule can attribute only a preference for a territorial 
market. (3) interactions within specialised networks are free from distance con-
straints, even if exploring them for developing new markets along this line may have 
a differential cost according to the distance. Long distance trade, maritime trans-
port, part of tourism and manufacturing industry follow this type of spatial interac-
tion rule. From these modulated rules of spatial interaction, a variety of patterns of 
exchange networks are generated during the course of simulation by the model.  

    36.5.2   Mixing Entities of Different Levels 

 The paradigm of contemporary complex systems theory focuses on the emergence of 
properties at a macro level as resulting from micro-level behaviours. Most of the 
applications, for instance in cognitive economics or social networks, refer to a “social 
ontology” that includes only two levels: the micro level of individuals whose interac-
tions defi ne an emerging structure or confi guration at a macro level. These models do 
not include entities of different levels that could also have an important role in the 
structuring of social systems, as for instance institutions. Most of the time their inter-
vention remains as a black hole for instance in economic modelling. There are few 
exceptions, such as the EURACE model developed for simulating divergences or 
convergences in the economic development among European regions (Deissenberg 
et al.  2008  ) . Actually there is no reason for limiting the use of MAS to simulating 



73136 Multi-agent    System Modelling for Urban Systems: The Series of SIMPOP Models

micro-macro interactions, as this type of modelling enables including entities of 
different levels and scope that are characterised in the same way as the “agents”, with 
specifi c attributes, behavioural rules and information protocols. For instance, in the 
more recent versions of the SIMPOP model, the urban functions are designed that 
way, and in EUROSIM cities were related not only to their country of location but to 
entities of higher levels defi ning “blocks” with specifi c parameters and rules for 
demographic and economic evolutions. These implementations can represent steps 
toward multilevel modelling, that was experimented in the conception of another 
model named SIMPOPNano that was designed by Thomas Louail  (  2010  ) . 4  In this 
model we made explicit the possibility of interactions between the location of urban 
functions inside the space of one city and the role played by the city in the system of 
cities. The model was intended to test the hypothesis above, by comparing the con-
nexions between intra-urban spatial structures and urban systems dynamics in styl-
ised large metropolitan areas of European or North-American type.  

    36.5.3   Developing Multi-scale Validation Methods 

 Different granularity of space and time in the analysis of simulation results can be of 
great help when trying to assess the validity of such simulation models. Each simula-
tion produces large quantities of data and fi gures that can be analysed in order to 
check if the simulated dynamics are plausible when compared to observations made 
at different geographical levels and for different historical periods of time. Helène 
Mathian (Mathian and Sanders  2009  )  contributed in a decisive way to improve our 
ability to evaluate the quality of different simulations by implementing analytical 
tools for exploring and comparing the results. The principle is to observe the ability 
of the simulation to reconstruct the urbanisation process at several levels of observa-
tion. For instance, at the most aggregated level, curves of the evolution of total popu-
lation and wealth of cities (for the system under consideration) are compared to 
observed curves of their development over the same duration. At that level, rank-size 
distributions of the system of cities are established and the evolution of their slopes 
over time is compared with observations. At a meso-geographical level, comparisons 
are made of the mean size and evolution of number of cities by classes of size of by 
types of urban functions. In the case of Europe, the plausibility of urban patterns 
obtained within large groups of countries (in three blocks, North-western, Southern 
and Eastern Europe) was also examined for assessing the quality of simulation at this 
meso-level. Eventually, the individual trajectories of cities were classifi ed and analy-
sed to check if their relative frequencies, type of curve and  dispersion indices were 
matching the stylised observations, at this micro level of individual cities evolution. 

 Although constructed under the principle of parsimony, the SIMPOP models as 
most of MAS models can be blamed for being “complex” and perhaps  “complicated” 

   4   We acknowledge the support of Thomas Louail ‘s PhD by the R2D2 DIM of Region Ile-de-
France.  
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models (Pumain 1998). To avoid classifying them as purely “ad hoc” models that 
would replicate specifi c urban evolutions by excessively reducing the degree of 
freedom in the variation of city sizes and functions we adopted several compromises 
between designing a generic model and simulating realistic ones. For instance, we 
can start from initial conditions were the locations of cities are totally random, or 
regular, and compare the simulation results obtained with the same rules and para-
meters when introducing the map of geographical locations. This method could be a 
way of measuring the impact of previous historical interactions on the spatial struc-
ture of urban systems (Bretagnolle and Pumain  2010  ) . But in our view the best way 
for validating our approach of urban dynamics is to design a series of models that can 
be applied to different periods in time and parts of the world and check which rules 
and parameters have to be adapted for satisfying the change in the context and envi-
ronment of the model. This could be named a rule of conceptual consistency, if the 
necessary changes actually refl ect well what is already known about the historical 
and geographical conditions prevailing in a particular stage of evolution of each settle-
ment system. Of course, we also have to develop in the future new methods that are 
now under experiment for improving the model testing.   

    36.6   A New Series of SIMPOP Models as Virtual Laboratory 

 Over the last 15 years, a series of models were elaborated in the laboratory 
Géographie-cités (SIMPOP 1 and 2, EUROSIM, SIMPOPNano, SIMPOPlocal, 
SimpopNet etc.…), to compose one overall view of systems of cities. This series 
will grow with the elaboration of several new models designed for testing comple-
mentary hypotheses about urban dynamics. To be preserved, it must be integrated 
into a formal framework of exploitation, which will help to re-use and share models: 
standardization of in/out of models, traceability of realized experiences and evalua-
tions, coupling with communitarian platforms. 

    36.6.1   Enlarging Urban Dynamics Towards Urban Evolution 

 Urbanisation dynamics used to be strongly dependent on local environmental con-
straints at the time of the emergence of the fi rst cities and during the following 
centuries. At that time, natural disasters or even smaller recurrent diffi culties as 
climatic variations or epidemics could completely destroy the population and 
resources of human settlements as well as predations from other groups. A simpli-
fi ed SIMPOP model called SIMPOPlocal is now designed using Netlogo language 
by Clara Schmitt 5  and Sébastien Rey with the help of Arnaud Banos for  simulating 

   5   We acknowledge the supports of ADEME for Clara Schmitt’s PhD and of R2D2 DIM Région 
Ile-de-France for Sébastien Rey.  
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this type of dynamics. Once developed, this model could afterwards be tested by 
archaeologists on specifi c environments. It is intended to be generic for the period 
of emergence of urban systems when they were still highly dependent on the local 
amenities and uncertainties of their environment (Diamond 1997) at a time where 
spatial interactions had a much less important impact on settlement systems than the 
local ecological constraints. These local constraints were then overcome through 
the development of long range exchanges between cities. Cities became interdepen-
dent and were co-evolving because all-connected by communication networks. The 
impact of local resource limitation was considerably reduced during the industrial 
revolution and the contemporary urban transition, during which the development of 
exchange networks between cities allowed them to import what they lacked and 
export surplus thus initiating a seemingly unlimited urban growth. Another simpli-
fi ed model called SIMPOPNet will be designed for representing the evolution of 
urban systems during that period of quasi-autonomy in their dynamics (Fig.  36.2 ). 
Today, environmental constraints on city development do reappear but in a top-
down way, through the spiralling global awareness of climate change, energetic 
resources limits, biodiversity loses, air and water quality, etc. Cities could now fi nd 
their growth trajectories re-affected by environmental limits. Because the adapta-
tion to the new constraint is similar to an innovation diffusion process following 
urban hierarchy and specifi c networks, this evolution can be modelled in our agent-
based simulation model SIMPOPClim (Fig.  36.2 ).   

  Fig. 36.2    Three versions of SIMPOP for modelling the changing relationship of systems of cities 
to the environmental constraints (Source: Clara Schmitt  2011 , PhD thesis (University Paris I and 
ADEME))       
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    36.6.2   Endogeneisation of the Appearance of Innovation 
in the SIMPOPlocal Model 

 There are decades and centuries of exchanges related to socio-economic innovations. 
In the fi rst SIMPOP models, two processes of emergence are represented: one is 
bottom-up and the other top-down. Indeed, the level of the system of cities infl uence 
the local level of each city as a constraint (by reducing the space of its possible tra-
jectories) while it also acts as an activator of urban development (through interurban 
emulation). Only a few transformations of the generic model are necessary for its 
application to different systems of cities. They reveal for instance how the historical 
and geographical context infl uence the emergence of specifi c properties in structur-
ing urban systems in ancient or more recent settlement systems or in developing 
countries (application of SIMPOP2 to South Africa by Céline Vacchiani-Marcuzzo 
with the help of Thomas Louail). Nevertheless, the actual societal innovation remains 
exogenous to the model as represented by new urban functions that are introduced 
over time during the simulation. Thus, only weak emergences can be simulated 
through this type of modelling, that is, for processes and properties that are already 
identifi ed. Strong emergence, producing social innovation, as new artefacts or tech-
nologies, ideas or social practices is not yet well understood enough for any predic-
tive or prospective simulation – unless a high level of abstraction is accepted, but this 
operation implies the emptiness of the applications in terms of societal signifi cance. 

 The appearance of innovation is made endogenous in the SIMPOPlocal model. 
This is possible because very little information is available about effective interaction 
processes due to innovation during the early times of emergence of urban settlement 
systems. A very general process is thus imagined for producing innovation from prob-
ability of encounter between populations, inside and outside each settlement. The 
impact of innovation cannot be detailed according to differentiated urban functions 
but is converted in a more productive rate of exploitation of local resources allowing 
for settlement growth, whatever the concrete type and content of innovations (that can 
be related to any aspect of social and economic life of the time). The frequency of 
appearance of this abstracted innovation is thus estimated in this model from a generic 
historical pattern of the evolution of urban population. This model is an attempt for 
quantifying the pace of emergence of innovation and their impact on the development 
of urban systems, in an evolutionary mode where the availability of local resources 
impose a major constraint on the growth of each settlement (Schmitt  2011  ) .  

    36.6.3   Scenarios for Exploring the Future 

 Studying the dynamical properties of urban systems in a variety of historical and 
geographical contexts may bring an important contribution to the issue of the future 
or urbanisation: on the long run, one may wonder if, after the end of the urban tran-
sition, settlements will continue to concentrate and to differentiate, or if a  bifurcation 
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toward a different form of organising human habitat will occur. On a shorter period 
of time, a better knowledge of the dynamics of urban systems can help to predict the 
effects of the increasing connections linking towns and cities, either from political 
decisions (as following the European integration process) or, more generally, due to 
the diversity of linkages created through the globalisation process. The main ques-
tion then is about how cities are going to redefi ne their relative positions within 
enlarged networks and hierarchies. On the very short term, many questions remain 
debated, as the possible effects of the new means of communication and trade on 
urban systems: are the new information and communications technologies (NICTs) 
going to overturn the existing urban hierarchies, or will they be progressively inte-
grated into these systems without changing much their relative confi guration, as this 
happened in the past for previous innovations (telegraph, railway, telephone, auto-
mobile…). Our hypothesis is that a generic model that would succeed in simulating 
on the long term the transformation of urban systems, respective to their capacity of 
reaction and adaptation to the changing conditions that allow for and constrain com-
munication and trade, would be a great help in understanding the past co-evolution 
of cities and predicting the future.  

    36.6.4   A Generic Simulation Platform 

 A key issue in relying with confi dence upon MAS models for sustaining scientifi c 
predictions is to improve our capacity of understanding the complex dynamics they 
simulate by screening the massive data bases that they generate during a simulation 
(Banos 2009). As complex systems more generally include many non linear relation-
ships, MAS models have differentiated properties of sensitivity and robustness 
regarding the parameters and rules that they activate. The classical method for run-
ning simulations estimating parameters value by trial and error is no longer valid 
when trying to calibrate models that have huge numbers of possible evolutionary 
paths. New calibration methods automatically generating simulations and varying 
parameters in a systematic way within a given range and under specifi c protocols of 
control have to be experimented. Such scientifi c workfl ow management systems are 
now available, and will inspire the development of our MAS modelling platform. 
It integrates the model as a generic module, loosely coupled but easily exchange-
able, with a series of module-tools, organized around it, and resulting from the com-
munity or to the intern development of the laboratory. 6  

 This platform includes at least four types of components: one for describing the 
type of experiment by choosing a set of parameters values and planning their varia-
tion for running series of simulation; another one is dedicated to the distribution of 
modelling tasks on a computer grid for reducing the duration of computation and 

   6   We acknowledge the support of ANR Transmondyn and ERC grant GeodiverCity for various 
developments of this platform.  
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entailing the necessity of replication of simulations in large quantities to obtain 
good evaluation of mechanisms; a third one consists in a variety of exploitation 
tools for analysing the results of each simulation and comparing them (it is here that 
the multi-scale validation methods are implemented). Eventually, a communication 
tool for sharing the information about the simulations among the pluri-disciplinary 
research group (in which each one intervenes with own skills, lexical fi elds, formal-
isms and methodologies) is essential for establishing a memory of the experiments 
and contributing to the scientifi c value of the exercise (Rey  2011  ) .   

    36.7   Conclusion 

 As with all pioneer works, the fascinating adventure of the SIMPOP series of 
models required a lot of efforts, from a multi-disciplinary community of researchers. 
When trying to solve theoretical questions through MAS modelling, a major chal-
lenge is to practice a right selection for defi ning a tractable granularity in the 
multiple dimensions of space, time, attributes and processes that specify the model. 
This adjustment between modelling capabilities and pending urban mysteries or 
gaps in theoretical construction is made through negotiation (conceptual as well as 
procedural) between geographical scientists and computer scientists. The exercise 
is thus highly constrained by the state of the art in both disciplines, including as well 
purely technical considerations like computing power or data availability. It is thus 
not surprising if at that stage we prefer not to conclude, but mentioning our intuition 
that the efforts are worthwhile!      
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  Abstract   This chapter provides some general refl ections on the development of 
ABM in terms of the applications presented in this book. We focus on the dilemma 
of building rich models that tend to move the fi eld from strong to weaker styles of 
prediction, raising issues of validation in environments of high diversity and vari-
ability. We argue that we need to make progress on these issues while at the same 
time extending our models to deal with cross-cutting issues that defi ne societal 
grand challenges such as climate change, energy depletion, aging, migration, secu-
rity, and a host of other global issues. We pick up various pointers to how we might 
best use models in a policy context that have been introduced in many of the appli-
cations presented within this book and we argue that in the future, we need to 
develop a more robust approach to how we might use such models in policy making 
and planning.      
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    37.1   Where Do We Stand in Modelling Geographical Systems? 

 The models dealt with in this book represent our most recent thinking as to how we 
might best represent geographical systems to describe the variety and complexity that 
confronts us in both our abstractions and our casual perceptions of the world around 
us. Agent-based modelling (ABM) 1  represents a softening of the rather parsimonious, 
aggregative, largely static models that we began with over 50 years ago. As we have 
argued throughout this book, this is because of what we have learnt about such sys-
tems but also because these systems have become more complex, and our models 
have been reduced in their severity. They are now richer and more descriptive, thus 
probably more informative but less predictive. Yet what we have been at pains to 
portray is not that ABM or cellular automata (CA) or microsimulation models substi-
tute for any of those that have gone before, for they complement our knowledge. The 
array of modelling approaches now available provides us with a much greater menu 
of ideas, which we might apply to critical spatial problems. Of course, some of the 
applications in the past can now be done much more effectively with newer styles of 
theory and model, but all the approaches that have been developed build on this past, 
and in the kind of pluralistic world that we have implicitly adopted as anchoring our 
fi eld, we consider all these approaches to have value. 

 One of the central issues in all of science is dramatically illustrated by our expe-
rience of ABM. It has long been regarded that good science can only be generated 
if theory is tested under controlled conditions, in laboratory contexts where extrane-
ous events are excluded or at least accounted for in some defi nite way. As we have 
learnt more about the world, it has become increasingly clear that science has two 
faces: one where strong theory can be generated and tested in the classical tradition 
and one where such strong theory breaks down in more open applications. It is the 
latter that dominates our quest to apply scientifi c principles to more open problems 
and we thus face a dilemma. Some rather good and obvious examples are widely 
known. For example, weather forecasting, which is based on strong classical theory, 
is generally of weak predictability. When such theory and their models are put into 
the real world, such extensive variability based on extraneous unpredictable forces 
is simply unknown and this destroys strong predictions. Although we may be able 
to test and confi rm or falsify the sorts of strong theory that underpin the hydrody-
namics of controlled atmospheres, when it comes to making strong predictions in 
the wider context of the world’s weather, this is simply not possible. In fact in our 
own fi eld for geographical systems such as cities and regions, strong theory is even 
less likely to be possible because it is almost impossible to set up controlled human 
experimentation, and once what theory there is, is put to the test, the whole basis of 
any such knowledge that is culled from experiment, changes. 

 It is still an open question as to whether or not there are intrinsic differences 
between science and social science. Traditionally these have been assumed to relate 
to animate and inanimate matter – that physical systems are not able to manufacture 

   1   ABM is also taken to mean Agent-Based Model (s) as well as Modelling.  
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their own destinies whereas human systems have that potential. But notwithstanding 
this point, which may not be resolvable in any case in the context of the variability 
that models of geographical systems need to work with, we must accept that strong 
prediction is not likely, nor is it appropriate. Thus the role of models is intrinsically 
different from that which was assumed 50 years ago. Models must be to inform 
rather than predict or if to predict, then these are entirely conditional on the context 
in which such prediction is made. To an extent, this is encapsulated in the notion of 
‘what if’ experiments and scenarios, i.e. conditionals that are context dependent. 

 So far we have not explored this dilemma in detail for it is compounded by the fact 
that our systems of study are getting more complex as they evolve, and thus our theo-
ries and models tend to lag behind the systems that we observe. Moreover, our mod-
els also tend to change the very system that they attempt to simulate as we learn more 
about the world and apply more considered actions to its problems. In some respects, 
as soon as models came to be applied to geographical systems, their designers and 
users became quickly aware how problematic was the issue of validating them and 
using them to generate robust predictions. The very act of constructing the model 
soon became a focus of such efforts, imposing on the discipline what were usually 
inchoate and ill-defi ned problem contexts. The ideology of modelling quickly moved 
from notions about prediction to information, from making forecasts to providing 
informed advice concerning the problem in context. Despite the longevity of these 
notions, little has been done on pursuing the logic of using models in this way, for 
science in general and policy analysis in particular has been stymied by the dilemma 
of getting to grips with the uncertainty of scientifi c knowledge in the human domain. 
What has been done, and this is very clear from the various contributions in this book, 
is that as models have become richer to deal more effectively with the systems which 
they are designed to represent, the process of calibration, estimation, or validation 
against external, purportedly independent data has become more involved. For exam-
ple,    Ngo and See ( 2012 ) develop considerable detail with respect to model validation 
which is considerably more elaborate in its testing than that developed for more 
aggregate parsimonious models. Verifi cation has come onto the agenda largely 
because as models have got bigger, it has become clear that simply defi ning a model 
and then assuming it runs as specifi ed, generates considerable uncertainty. Indeed 
visualization of model data and outputs, even the processes of simulation, is essential 
because of errors that creep in during the process of assembling data, encoding alge-
bra, and operating such models in complex computational environments. 

 One of our conclusions is that we must engage in a more vibrant and wide rang-
ing discussion of formal theory and models of geographical and other social systems 
in terms of their validation. We need to continue to explore the limits of how far we 
can expect our models to replicate reality, to examine the conditions that we observe 
in the past and expect in the future with respect to what our models are able to say 
about different circumstances. We need to think much more out of the box about 
complexity, validation and the world that we wish to infl uence, following the exem-
plar of van der Leeuw  (  2004  )  who in his discussion of modelling the ancient past 
raises a series of dilemmas that are clearly different from attempts to simulate the 
contemporary past and the present. In the social sciences, there has always been an 



742 A.J. Heppenstall    et al.

uncomfortable tension between developing theory for its own sake – curiosity driven 
knowledge – in contrast to theory that is practically inspired, particularly for circum-
stances where we ourselves are involved in making proposals and plans for design-
ing the future, for resolving social problems and for engendering a better quality of 
life for all. We need to grasp this nettle more directly, and only by doing so, will we 
be able to reconcile the key issues involving the use of the new generation of models 
introduced in this book. It is highly likely that the future will be dominated by a 
plurality of model types and styles, and to confront this world, we will need a much 
clearer sense of where and when to use what particular model (Epstein  2008  ) . This 
plurality has been anticipated and there is already some rudimentary research into 
how two or more models might be compared (Axtell et al.  1996  ) . The idea that we 
build more than one model for any and every situation is growing. It was suggested 
many years ago by Greenberger et al.  (  1976  )  as counter-modelling but it has taken a 
long time in coming. It is a challenge that will underpin all others.  

    37.2   The Need to Address the Grand Challenges 

 Most of the applications of ABM presented in this book involve city systems in the 
mainstream traditions of urban geography, regional science, urban economics, and 
transportation modelling. Much of the fi eld however, has been infl uenced by a more 
rural focus, particularly with respect to land cover modelling and applications to 
development in developing countries. Although the concept of an agent does differ 
between rural and urban, and across spatial scales, common applications deal with 
spatial structure, form, mobility and demographics. Most ABMs to date have focused 
on specifi c sectors rather than on comprehensive representations, except where, the 
tradition in urban modelling, large models such as TRANSIMS have attempted to 
model a wider range of sectors. As we have implied, many models still lie at the 
level of ‘proof-of-concept’ with a strong pedagogic focus, and the fi eld is ripe for 
more focused applications. 

 Because ABM tends to be a generic style of modelling, it is often used as more 
of a toolkit to develop models, rather than as an exclusive framework for large scale 
applications. This however, is changing as we become more familiar with its poten-
tial, as evidenced by the large scale epidemiological, transportation, fi nancial mar-
kets and the human immune system models currently being attempted (Castiglione 
 2003  ) . However, the grand challenges which have dominated the social and policy 
sciences of late are not well represented so far in terms of these new styles of model. 
Currently most applications to geographical systems have focused on different 
activity or land use sectors, dividing the city system into housing markets, education 
and schools, the health sector, transportation, with specifi c spatial behaviours relat-
ing to crime, pedestrian fl ow and movement, segregation, traffi c fl ow and related 
processes. In a developing countries context, there has been a focus on aid and 
development, but the bigger issues of energy, climate change, and security have 
rarely been tackled. As we have noted, there has been a focus in ABM on diffusion, 
particularly disease but it is timely to stand back and inquire into how such  modelling 
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styles can be best used to inform the really big, pressing questions that now domi-
nate both local and global policy. 

 Perhaps the most focused of any of the models presented here are those involving 
microsimulation where policy questions are to the fore, specifi cally demographics. 
Aging, for example, is of central concern certainly in western nations but also in 
China, and such secular change can have an enormous impact on the structure of 
geographical systems that defi ne populations and their life cycles. The models devel-
oped here by Wu and Birkin  (  2012  )  show how some really big challenges might be 
addressed in terms of changing life cycles but these have not yet been linked to other 
sectors where the impact of changing demographic profi les is likely to have an enor-
mous impact on the spatial consequences of such change. It is only when these types 
of model are integrated in some way, coupled, that the level of comprehensiveness 
of the simulation is much increased, and that the real effectiveness in discussing the 
impact of these challenges on modern urban society and its cities can be thoroughly 
appreciated. To an extent, this is achieved via a loose coupling of various models, 
which tend to be different perspectives on how a variety of tools such as microsimu-
lation, visualization, online mapping, and database organization for city simulation 
are being developed in the NeISS project (see   http://www.neiss.org.uk/    ) but the 
extent to which the integration is based on coupling ABMs is not strong. Integrated 
modelling insofar as it exists for geographical systems has so far been based much 
more on aggregative models as, for example, in the climate change impact assess-
ment of fl ooding in the Greater London region, which was based on an integration 
of various macro models such as input-output, land use transportation interaction 
(LUTI) models, land development using CA, and hydrological fl ood models (Walsh 
et al.  2011  ) . The domain is thus wide open for more ambitious ABM simulation 
frameworks which integrate different models as well as interfacing them with appro-
priate policy analysis and stakeholder participation (Batty  2010  ) . 

 In the next section, we will sketch some of the grand challenges that are key to 
social and public policy at the present time and suggest how ABM and related tech-
niques might relate to some of these applications. Our focus is more on coupling, on 
how we use ABM to enrich and inform the dialogue, rather than on producing highly 
integrated structures that attempt complete comprehension. Moreover, we also see 
these grand challenges being informed by many different kinds of models, thus 
reinforcing our sentiments that in the future, many models, models at different lev-
els of aggregation, both static and dynamic, will defi ne the portfolio that decision-
makers and scientist alike consider appropriate to the kinds of advice that science 
can bring to bear on these critical questions.  

    37.3   Climate Change, Energy Issues, Poverty, Aging 
and Migration: Can ABM Make a Difference? 

 Models of geographical systems tend to cut across the kinds of problems that are 
now widely regarded to be of major societal signifi cance. The grand challenges that 
have emerged over the last 20 years involve themes that cross many sectors for which 
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models are individually built and thus integrated modelling is usually required if 
these challenges are to be informed by the tools and methods presented in this book. 
In particular, the key challenges at present involve aging and demography, urbaniza-
tion and migration, energy depletion, climate change, poverty (which is a recurrent 
issue), health and disease, and security and confl ict. These are by no means all those 
that are identifi able, for at more modest scales, issues involving housing, fi nancial 
markets and global trade all raise profound issues that cannot be tackled sector by 
sector. Moreover, technology change is compounding, complicating and continually 
changing the nature of these problems. This poses a dilemma, for our models tend to 
be focused on quite manageable and identifi able sectors and activities, whereas the 
grand challenges are cross-cutting. Indeed, these challenges tend to be important 
because they cannot be handled in traditional ways, by traditional models. 

 The quest therefore is to develop our models so that they can address pieces of 
these major challenges. ABMs in fact are rather focused on behaviours central to the 
way many of these big problems need to be resolved. Behavioural change is often a 
clear and obvious solution to some of these issues and ABMs have the potential to 
simulate such behaviours. However, one key paradox is that the grand challenges 
appear to involve changes in behaviour, which represent not a continuous evolution 
of current patterns of behaviour but often radical shifts. How we use models which 
simulate current patterns of behaviour which need to change if the key issues are to 
be resolved poses enormous diffi culties for implementing and using models that are 
based on current and past patterns of behaviour. For example, shifts in responses to 
climate change such as adaptation involves changing behaviours to reduce their 
impact while mitigation policies will give rise to changed behaviours as a result of 
new policies designed to reduce the drivers of change such as carbon emissions. 

 There are some areas of ABM that are well suited to developing insights into 
some of these global challenges. In fact the intersection between ABM and micro-
simulation modelling involves representing life cycle effects that incorporate issues 
of aging related to geodemographics and health. There are strong policy issues 
involved here with respect to the provision of facilities, particularly housing and 
health services, for different age groups. Wu and Birkin  (  2012  )  address these issues 
directly in one of their contributions here but the contributions from Leeds more 
generally, particularly from Malleson  (  2012  )  on crime, Harland and Heppenstall 
 (  2012  )  on education, and Smith  (  2012  )  on health, all inform these key issues. The 
various contributions on city size distributions from Gulden and Hammond  (  2012  )  
and Pumain  (  2012  )  do not quite address migration although the elements of such 
modelling are implicit in their models, but as migration is likely to be a key chal-
lenge at every spatial scale as we become more mobile, then the seeds of how we 
might explore this through ABM are refl ected in various of the contributions which 
deal with spatial interaction and movement. 

 Issues of security and confl ict have been handled extensively at the micro-spatial 
scale in pedestrian models useful in testing evacuation scenarios. There is a lot of 
expertise in dealing with crowding in confi ned spaces as illustrated in the articles on 
crowd movements by Johansson and Kretz  (  2012  )  and on traffi c congestion by 
Banos and Genre-Grandpierre  (  2012  ) . Many of these challenges are global in scope 
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and to address these will require generalizing many of these approaches to deal with 
large spatial scales. There is also considerable potential in many of the models 
reviewed here to simulate diffusion in many media. Simoes  (  2012  )  provides a direct 
example of such spatial simulations by modelling the spread of a childhood disease 
in Portugal, but it is easy to see how these kinds of models might be generalized to 
the global scale in the manner proposed by Epstein in the PACER  (  2011  )  project. 

 Mobility is central to these grand challenges and the models contained herein 
address these issues directly. There is the scale change of course in the way we have 
posed these challenges, for many applications here address these issues at a more 
local scale. For example, questions of compactness and sprawl intimately affect 
energy issues. Here we have reviewed various CA models that are being used to 
generate insights into such development (see Iltanen  2012 ; Barros  2012  )  but what 
we sorely need is to extend such models to explicitly deal with such activities. In 
fact, one problem in ABM is to represent actions and interactions in a suffi ciently 
robust way to begin to generate predictions that deal explicitly with mobility and 
movement that can be matched against more aggregate observations. Indeed the 
need to aggregate from the individual level to a level where patterns are more mean-
ingful is a technical challenge that is only just being addressed. Last but not least, 
development and aid are key to poverty and in some of the contributions here, par-
ticularly those dealing with development in developing countries at the fi ner scales 
of land cover, there are useful suggestions for showing how ABM can begin to 
address questions of equity and distribution.  

    37.4   Anticipating Future Forms of Modelling and Prediction 

 Our focus on modelling and simulation here has been pluralistic, focusing on ABM, 
the newest variant of geographical models but arguing that good models of geo-
graphical systems inevitably mix and match the best from many different simulation 
frameworks. Our best guess is that there will be many more examples in the future 
of a hybrid variety, which take the best tools and methods from different types, and 
produce model structures that combine the best of many worlds. In the future, inte-
grated models of a hybrid type may well become the norm but perhaps the greatest 
changes will not come from new insights into how to model, but from new sources 
of data. A change in focus from what in the past has been meso-level approaches to 
the truly micro – local – and the macro – global – is possible. Dealing with routine 
fi ne scale spatial and temporal behaviours is more closely matched to ABM than 
location predictions of the more aggregate kind, while at the global level, the policy 
context is ripe to be informed by insights for a new class of aggregate ABM. These 
can combine the individualistic behaviours in such models with aggregates or 
groups treated as individuals at the highest levels. 

 It is tempting to second-guess new styles of model that might emerge which 
build on this evolution of the last 50 years. We are not able to do this but we can 
identify responses that appear promising: integrated and hybrid models, a sustained 
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and direct approach to simulating spatial behaviour, which is something more than 
the tokenism that currently besets most behavioural simulations, a new sense of how 
models might be developed and used all the way from model specifi cation through 
to implementation and validation with new ways of fi guring out how such models 
can be used to inform the future, how new data sources might change what we con-
sider important in simulation, and how many different and competing models of the 
same phenomena might be reconciled in the quest to enrich our understanding of 
key problems: these are all pointers to a future that will take this fi eld further and 
improve its relevance to ongoing social challenges.      
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