
Huib Aldewereld
Jaime Simão Sichman (Eds.)

 123

LN
AI

 7
75

6

14th International Workshop, COIN 2012
Held Co-located with AAMAS 2012, Valencia, Spain, June 2012
Revised Selected Papers

Coordination, Organizations,
Institutions, and Norms
in Agent Systems VIII

Lecture Notes in Artificial Intelligence 7756

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Huib Aldewereld Jaime Simão Sichman (Eds.)

Coordination, Organizations,
Institutions, and Norms
in Agent Systems VIII

14th International Workshop, COIN 2012
Held Co-located with AAMAS 2012
Valencia, Spain, June 5, 2012
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Huib Aldewereld
Delft University of Technology
Department of Technology, Policy and Management
Section ICT
Jaffalaan 5, P.O. Box 5015
2600 GA Delft, The Netherlands
E-mail: h.m.aldewereld@tudelft.nl

Jaime Simão Sichman
Universidade de São Paulo
Av Prof. Luciano Gualberto
158 travessa 3
05508-970 São Paulo, SP, Brazil
E-mail: jaime.sichman@poli.usp.br

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-37755-6 e-ISBN 978-3-642-37756-3
DOI 10.1007/978-3-642-37756-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013935398

CR Subject Classification (1998): I.2.11, I.2.0, I.2.3, I.2.6, I.2.8, H.3.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 2012 edition of the international workshop on Coordination, Organiza-
tion, Institutions and Norms was the 14th occurrence of a series that began
in 2006, as may be found at http://www.pcs.usp.br/∼coin. Moreover, it was the
7thoccurence of the workshop within the AAMAS conference.

All these years, the workshop has expressed that coordination, organizations,
institutions, and norms are four key governance elements for the regulation of
open multi-agent systems, and this year was no different. The workshop tried to
constitute a space for the debate and exploration of these four elements that are
central in the design and use of open systems. The submitted papers all touch
on one (or more) of these main topics of the COIN workshops.

COIN 2012 was hosted at the 11th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2012), which was held in
Valencia, Spain, during June 4–8, 2012. In this edition, 28 submissions from 11
countries were received, from which we selected 13 papers for presentation at
the workshop (near 45% acceptance).

2012 was a year of changes. COIN used to have a (rotating) Steering Commit-
tee that ensured the quality of the workshop. During the yearly COIN Committee
meeting in Valencia it was decided that it was time for a new form of leadership:
COIN is now a community-driven workshop. The other change for COIN was
that there was only one single COIN event this year, the workshop co-located
at AAMAS 2012. Hence, this volume contains 10 out of 13 revised versions of
papers presented at the workshop. We want to acknowledge the quality of the
reviews of both the selection of papers for the workshop as well as the reviewing
for the proceedings. We would like to thank the PC members for their time and
effort in reviewing the papers in both rounds, which have made this volume of
the quality level expected of a COIN proceedings.

We are also grateful to all the authors; the high quality of the submitted
papers made our choice of acceptance a difficult one. With the amount of good-
quality submissions, it was a hard decision to reject some of the papers, but
unfortunately we could not fit more into the workshop program. While the pro-
gram was rather packed, there was still ample room for lively discussion. The
high level of the discussions clearly had its impact on the quality of the revised
versions of the papers, presented in this volume.

Finally, thanks are due to Elisabeth Sklar (AAMAS 2012 Workshop Chair),
to Wiebe van der Hoek and Lin Padgham (AAMAS 2012 General Co-chairs),
and to Vicente Botti (AAMAS 2012 Local Organising Chair) for the wonderful
ambience in Valencia.

January 2013 Huib Aldewereld
Jaime Sichman

Organization

General and Program Chairs

Huib Aldewereld Delft University of Technology,
The Netherlands

Jaime Sichman University of Sao Paulo, Brazil

Program Committee

Sergio Alvarez-Napagao Universitat Politècnica de Catalunya, Spain
Alexander Artikis NCSR “Demokritos”, Greece
Guido Boella University of Turin, Italy
Olivier Boissier ENS Mines Saint-Etienne, France
Patrice Caire University of Namur, Belgium
Cristiano Castelfranchi Inst. of Cognitive Sciences and Technologies,

Italy
Antonio Costa Universidade Federal do Rio Grande, Brazil
Luciano Coutinho Universidade Federal do Maranhão (UFMA),

Brazil
Marina De Vos University of Bath, UK
Gennaro Di Tosto Utrecht University, The Netherlands
Virginia Dignum Delft University of Technology,

The Netherlands
Nicoletta Fornara Universita della Svizzera Italiana, Lugano,

Switzerland
Chris Haynes King’s College London, UK
Jomi Fred Hubner Federal University of Santa Catarina, Brazil
Joris Hulstijn Delft University of Technology,

The Netherlands
Eric Matson Purdue University, USA
John-Jules Meyer Utrecht University, The Netherlands
Simon Miles King’s College London, UK
Pablo Noriega IIIA-CSIC, Spain
Eugénio Oliveira Universidade do Porto, Portugal
Andrea Omicini Università di Bologna, Italy
Sascha Ossowski University Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Alessandro Ricci University of Bologna, Italy
Juan Antonio Rodriguez

Aguilar IIIA-CSIC, Spain

VIII Organization

Bastin Tony Roy Savarimuthu University of Otago, New Zealand
Christophe Sibertin-Blanc University for Social Sciences, Toulouse, France
Viviane Silva Universidade Federal Fluminense, Brazil
Yao-Hua Tan Delft University of Technology,

The Netherlands
Pankaj Telang North Carolina State University, USA
Catherine Tessier Onera-DCSD, France
M. Birna Van Riemsdijk Delft University of Technology,

The Netherlands
Wamberto Vasconcelos University of Aberdeen, UK
Javier Vazquez UPC, Spain
Harko Verhagen Stockholm University, Sweden
George Vouros University of Piraeus, Greece
Pinar Yolum Bogazici University, Turkey

Additional Reviewers

Tina Balke
António Castro
Baldoino Fonseca
Guillaume Infantes

Jie Jiang
Henrique Lopes Cardoso
Matteo Vasirani

Table of Contents

Invited Talk

Situating COIN in the Cloud (Invited Paper) . 1
Julian Padget

Compliance and Enforcement

Monitoring Interaction in Organisations . 17
Mehdi Dastani, Leendert van der Torre, and Neil Yorke-Smith

Reasoning over Norm Compliance via Planning . 35
Sofia Panagiotidi, Javier Vázquez-Salceda, and Frank Dignum

An Agent-Based Simulation Approach to Comparative Analysis
of Enforcement Mechanisms . 53

Tina Balke, Marina De Vos, and Julian Padget

Norm Emergence and Social Strategies

Shared Strategies in Artificial Agent Societies . 71
Amineh Ghorbani, Huib Aldewereld, Virginia Dignum, and
Pablo Noriega

Goal-Directed Policy Conflict Detection and Prioritisation 87
Mukta S. Aphale, Timothy J. Norman, and Murat Şensoy

Norms as Objectives: Revisiting Compliance Management
in Multi-agent Systems . 105

Aditya Ghose and Tony Bastin Roy Savarimuthu

Refinement, Contextualisation and Adaptation

Norm Emergence through Dynamic Policy Adaptation in Scale Free
Networks . 123

Samhar Mahmoud, Nathan Griffiths, Jeroen Keppens, and
Michael Luck

Norm Contextualization . 141
Jie Jiang, Huib Aldewereld, Virginia Dignum, and Yao-Hua Tan

X Table of Contents

Programming Institutional Facts in Multi-Agent Systems 158
Maiquel de Brito, Jomi F. Hübner, and Rafael H. Bordini

Towards a General Model for Adapting Structure while Maintaining
Topology: Pipelines . 174

Matthew Shaw, Jeroen Keppens, Michael Luck, and Simon Miles

Author Index . 193

Situating COIN in the Cloud
(Invited Paper)

Julian Padget

University of Bath, Dept. of Computer Science
jap@cs.bath.ac.uk

Abstract. We start from the view that the central theme of the research at the
core of coordination, organization, institutions and norms, is whether the social
structures and mechanisms, that have emerged over time, can be adapted and ap-
plied to artificial societies of programs and perhaps more significantly, to mixed
societies of humans and programs –and how The means by which the social con-
straints that guide and regulate behaviour are acquired and represented remains
an open problem. If recent experiences in information retrieval and natural lan-
guage processing are plausible indicators, the statistical may yet oust the logical.
Technology aside, it is clear that for socio-technical systems, that integrate hu-
man and software components, we may expect the adoption of, or the illusion of
observation of, and support for human social conventions. The growing migration
to cloud computing of the services that make up current pervasive, social appli-
cations suggests near-term developments emerging from the same platform(s).
Thus, the question considered here is, what pathways, opportunities and chal-
lenges exist for the development, wider use and validation of COIN technologies
to help realize socio-technical systems that better meet human requirements. As
examples of specific enabling technologies, we review current developments in
resource-oriented architecture, complex event processing and stream reasoning
and observe how COIN technologies might integrate with them.

1 Introduction

At the first meeting of the COIN series in 2005, Noriega [36] spoke of “fencing the
open fields” as an analogy for the need to provide suitable regulation of participant
interactions in open systems governed by electronic institutions. However, the risk is
that designers, in their desire to ensure the “right” outcomes, may lock actors into a
protocol strait-jacket, simply because it is then possible to prove through brute-force
search that compliance is assured and only good results follow. In seeking to formalize
electronic institutions, this writer fell into the trap of over-specification, attempting to
use the π-calculus to describe elements of the FishMarket [19]. We may observe similar
trends in both policy- and law-making, where in some cases the political debate appears
to exhibit a strong desire to circumscribe individual actions for the sake of the goal of
achieving high levels of compliance. Paradoxically, such approaches would appear to
be counter to the underlying principles, at the formal end, of game theory, or at the
informal end, of economics and the notion of free markets and the ‘invisible hand’. In
each case, it is precisely freedom of action that imbues the arena with the flexibility to

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J. Padget

adapt to changing circumstances and to provide the essential space – ‘wiggle room’, if
you will – to explore as well as exploit [30]. Thus, optimization – interpreted as a high-
level of compliance, regardless of cost – may be preferred to satisficing [45]. Costs here
may be reflected in a lack of agility to respond to change as much as in the actual cost
of policing [9].

We may also consider the freedom to move from a genuinely architectural perspec-
tive – a theme we pick up later with reference to patterns – by recalling that Alexan-
der [3] sought what he called “quality without a name” in the design of habitable spaces.
Effective, by some definition of the word, social institutions, whether they capture poli-
cies or laws, or even social conventions, can equally be viewed as habitable spaces:
desirable properties they may typically exhibit are flow, ease of use and low overheads
(action, cognition). There has inevitably been a reaction1 to the up-take of design pat-
terns and the consequences of it, because while Alexander’s vision was that inhabitants
would design and build their own environment, that is largely unrealistic for most users
of software. The situation is potentially different however in respect of normative frame-
works – if we are prepared to give participants – both human and software agents – the
power to change the rules that govern them and prepared to build the tools to accom-
modate that change while maintaining system integrity [7,8].

The challenge is how to regulate loosely enough to provide sufficient autonomy and
flexibility, but tightly enough to meet system objectives, where most, rather than all,
participants behave correctly. Indeed, such a notion of optimization may be illusory,
in that all it ensures is behaviour as foreseen by the designer in advance of use. The
software engineering literature and the security literature provide many anecdotes on
the subject of how system integrity can be undermined by actual usage, not for any ma-
licious motive, but simply because practice discovers more efficient – again, by some
definition of the term – ways to achieve the same goals. This observation is central to
the argument that underpins process mining, which seeks to discover the so-called ‘de-
sire lines’ (also called more popularly elephant path, social trail, goat track or bootleg
trail) that indicate the sequences of events that occur in practice. This is in contrast to
the view of business process engineering, which sees such sequences as almost certainly
non-optimal from a business point of view (cost, speed, reliability) and sees instead me-
anderings of little consequence which they call ‘cow paths’ [1]. Thus, whether the path
is due to an elephant – and is worth preserving – or a cow – and should be eradicated –
seems to depend on point of view.

The consensus in normative systems research might now appear to be in favour of
regulation (good?) rather than regimentation (bad?). But even that may not be a perma-
nently tenable position, because while the balance between the two can be established
through a priori design choices, it may be desirable to adjust the degree of autonomy
subject to prevailing conditions. These conditions may be reflected in system metrics,
leading to a shift from regulation towards regimentation or vice versa, as circumstances
dictate.

Let us now consider some more pragmatic issues, such as: (i) where shall the many
software components execute that comprise such systems, (ii) how shall data sent
between them be represented, and (iii) how shall communications between them be

1 There are many reports on, but no definitive link to, the Gang of Four trial at OOPSLA’99.

Situating COIN in the Cloud 3

achieved? These are not new questions for the agent community, although unfortunately
our attempts to reach a conclusion on at least the latter two have been unsuccessful.
These questions are not new, either, for the wider computer science community. The
momentum that is forming around cloud computing not only suggests an answer to the
first issue, but also that we should consider establishing common ground with the ac-
companying technologies of web services, publish/subscribe communications protocols
and semantic annotation. Consequently, COIN technologies can be part of, rather than
apart from, the cloud environment.

To return to the issue cited at the opening of fencing the open fields, the challenge
left for the community then was “how to put the bell on the cat”. Put another way, if
we believe normative specifications and norm-aware actors are the answer, how are we
to get these features into open systems, the designers of which may well see no need
for such bells2. The purpose of this somewhat wide-ranging introduction has been to
make connections with a variety of research and practice, inside and outside computer
science to try to provide some form of backdrop for the current state of COIN technol-
ogy research. We review the state of COIN research in the next section and put forward
some of the significant tasks that we believe face us. Then in section 3, we examine the
features of cloud computing that together offer an excellent experimentation and eval-
uation environment. Using these we can show what COIN technologies might achieve,
so that we may indeed “bell the cat”. We conclude with some suggestions for actions
that the COIN community might take to initiate the transition to cloud computing and
at the same time create greater synergy across the community.

2 The State of COIN Technologies

The aim of this section is to examine from a high level what has been achieved in COIN
technologies over the last decade and a half, but also to identify the various issues that
stand in the way of the wider recognition of the utility it offers and, more significantly,
what needs to be done to provide externally acceptable validation of the technologies.
Several factors are put forward as problems relating to COIN technologies, but the
overriding issues are connectivity – how to join our tools and components with the
wider software world – and usability – how to join our concepts and approaches with
the wider software community. The citations are intended as representative of relevant
work rather than as an exhaustive survey. A complete list of the COIN volumes can be
found at http://www.pcs.usp.br/˜coin/.

Over a period of more than 15 years, COIN technologies have evolved from static
normative frameworks, encoded implicitly in the control logic of software components,
through explicit representations regimenting agent behaviour in trading platforms [43]
or informing agent choices in agent-based simulation [34], to guiding agent and human
actions in complex mixed environments [35]. But while this progression demonstrates
real advances in norm representation and reasoning, those demonstrations are largely
limited to small, carefully constructed illustrative cases – not necessarily helped by the
publication format of the conferences and journals that the community uses, as well as

2 or whistles.

http://www.pcs.usp.br/~coin/

4 J. Padget

other academic environment factors – rather than showing impact on large scale systems
driven by real, rather than synthetic, data.

There is little originality in the following observations on the criticisms that can be
levelled at COIN technologies and could equally be applied to other areas of computer
science, or even science in general:

1. Plausibility: this is the first barrier to up-take. We have no demonstrators that make
the case in practice for COIN technologies; there is only the potential and the case
is not compelling because existing systems work – or appear to – on small and
carefully selected illustrative scenarios.

2. Scalability: part of the lack of plausibility stems from a lack of evidence either
in the form of deployed systems or from theoretical analysis of the capacity for
the technologies to scale; we need to demonstrate solutions at scale. But this is
a chicken-and-egg situation, because we also need host systems that can be aug-
mented post-facto by COIN technologies in order to be able to make that case.

3. Visibility: the benefits of the use of COIN technologies need to be clear and to offer
substantive improvement, possibly in several ways, over conventional technologies.
But, frustratingly, the best indicator of effective application of COIN technologies
may be that they are barely noticeable.

4. Packaging: a practical barrier to up-take depends upon how COIN technologies
are delivered. New technologies that either require re-training, new interfaces or
discarding (part of) the existing software base inevitably face greater resistance
to up-take than something that integrates by means of widely-used interfaces and
which enhance rather than replace. Not least, the capacity for turning enhancements
on and off may provide a valuable way to demonstrate their impact. We need to
deliver COIN technologies in packaging that not only helps us as a community to
integrate and evaluate what we do, but also to integrate with minimal overhead or
impact with legacy systems.

COIN technologies have the potential to contribute to the creation of systems that are
all of open, distributed, intelligent and adaptable – even if those terms might require
an essay each of their own to circumscribe expectations and establish the connections
between them. But the software we have built so far typically has limited interoperabil-
ity: a Java library can be a useful component and might with some effort be deployed
as a web service, but lack of systems experience means it is hard to say whether an
API is a suitable interface or whether a richer communication language is desirable.
A further artefact of the development process is the difficulty of re-usability: although
the technologies aim to be and often are quite general purpose in nature, the supporting
software can be quite sensitive to deployment environment and hard to maintain even
in the short to medium term. Performance is also often over-looked, not least because
the development scenarios that illustrate the properties we wish to demonstrate (for aca-
demic purposes) are quite small, but also because it is hard to identify useful metrics
and because the decision procedures in play do not, or cannot, have well-defined perfor-
mance profiles. Much COIN technology software is written to demonstrate that a par-
ticular behaviour or envelope of behaviours can be realized, but there is little culture as
yet in the practice of patterns for COIN technologies: this may percolate through from

Situating COIN in the Cloud 5

the underlying software base, but that seems more likely to address how some func-
tion is realized, rather than the function itself. Finally in this tally of criticisms, there
is the matter of resilience: given that flexibility and adaptation in the face of changing
circumstances are among the benefits that should follow from COIN technologies, it
seems essential that it should be possible to demonstrate such properties in our own
software – that is, reflection – and not just in the systems to which it is applied.

2.1 The Agent View

Previously in intelligent agent research, agent architecture was a major topic from the
earliest days of agent-based simulation (ROSS, SWIRL and TWIRL [32]) and subse-
quently with the more complex layered architectures such as Touring Machines [20] and
InteRRap [33]. However, these are now largely forgotten and either regimented agents,
such as in e-Institutions [43] and MOISE+ [26], or BDI and variants appear to be the
common choices. In consequence, a number of those variants of BDI have sought to
address the matter of how an agent could and should avail itself of normative reasoning.
This has lead to a dichotomy between the internal approach, which further divides be-
tween full incorporation [4] and separation of BDI and normative knowledge [14] and
the external approach, where normative positions are communicated to agents in the
form of obligations [2], determined by normative reasoning components [13].

The convergence of architectural choice on BDI makes system comparison some-
what simpler, but has also had the effect of pushing processing into the agent that is
not necessarily so easily handled at that level. Specifically, complex trigger formulae
for BDI actions are both hard to test, inasmuch as BDI testing is feasible [48], and
to maintain. Furthermore, this hard-codes plan triggers into agents, reducing scope for
resilience, since they cannot easily be adjusted in response to changing circumstances.

2.2 The Organization View

In parallel with the evolution of agent architecture, the twin notions of institution and
organization have also undergone significant development. In the first instance, there
was the FishMarket [44], in which the agents cede control to a governor that directs
which actions they shall take in order that each agent be fully compliant with the rules
of the institution. Although the approach is somewhat different,MOISE+ achieves sim-
ilar goals, in which agents are constrained by the role they play within a group, so that
agents are in effect regimented. A second group of approaches to institutional specifi-
cation have favoured agent autonomy over guaranteed compliance, using a variety of
formalisms [22,12,13,46], in which the common trait is an external entity that reasons
about agent actions in respect of the governing norms and identifies normative positions
and obligations acquired by agents in consequence.

Dignum and Padget [15] put forward a view that brings together organization and
institution. Here, the latter capture the regulations pertaining to specific contexts, and
the former expresses the combination of the many institutions that together describe
the processes that make up an organization together with the roles of the actors that
participate in those institutions.

6 J. Padget

3 COIN in the Cloud

The preceding sections have summarised a view on the current state of COIN tech-
nologies and also put forward some shortcomings that we believe must be addressed in
order to raise awareness of the technologies outside the immediate agent community.
The purpose of this section is to assess how COIN and cloud technologies might fit
together and what actions we might take as a community to bring that about.

The most significant and attractive feature of cloud computing is that it offers pro-
vision on demand. Furthermore, that provision can be configured through virtual ma-
chines to exactly the combination of operating system and resources that a particular
program requires, facilitating the deployment of legacy codes so they can be accessible
from anywhere. Cloud computing is also unavoidably distributed, which makes it es-
sential that we establish some conventions on how to interact with COIN deployments –
some approaches are discussed below. Distribution offers the opportunity not only for
the community to share software (as a service), but also to take advantage of the mecha-
nisms such as enterprise bus architectures, distributed messaging systems and different
forms of web services to connect our components with one another and with a huge
range of other services. This could potentially significantly reduce our development
burden by re-using rather than re-inventing.

Cloud computing can also be seen as the product of an evolutionary process in com-
puting systems. This began with closed systems in which all the components are the
product of a single team running on one computer, moved through the (re-)use of li-
braries and components connected by CORBA running on several computers (on an
intranet) and now seeks the creation of increasingly open systems. In this last, compo-
nents may be replaced/upgraded in live deployments over a range of platforms and edge
devices across the internet.

Clearly, from a systems management perspective, the complexity increases signifi-
cantly in the transition from one computer, to many on a LAN, to many – where devices
join and leave the system over time – on a WAN/internet. The governance of such sys-
tems has to be distributed, with many components making decisions on the basis of
local circumstances, but also, crucially, informed by guidelines for the perceived cor-
rect running of the system, which is where COIN technologies are key. Recognition
that both much data is being created all the time and that its rapid interpretation is nec-
essary (until we establish what is actually worth collecting) forms the motivation for
the SHINE project3, which brings together sensors, social media and intelligent agents
to answer complex information retrieval requests in real-time. But not only are such
systems conduits for data and information for delivery to human users, they are also
huge data sources in their own right, as each component can be viewed as a monitoring
element that feeds into an over-arching process that can observe system health, identify
the early stages of anomalous or undesirable situations and alert system control agents
of the need to consider whether action need be taken and what it might be [16,17].

Another inevitability concerns the relationship between the producer and consumer
of such data. Up to a certain level, a request-response communication model, as has
conventionally been used in agent systems. This follows the tradition of procedural

3 http://direct.tudelft.nl/shine-117.html

http://direct.tudelft.nl/shine-117.html

Situating COIN in the Cloud 7

programming, through remote procedure call to SOAP-based web services – and can
work, as long as network latency is low enough. However, asynchronous communica-
tions in the form of event notifications, publish/subscribe and RESTful web services are
seeing increasing adoption as mechanisms that, while imposing constraints on the pro-
gramming model, manage to insulate components from the innate and unpredictable
latencies in operating across wide area networks. This perspective leads to a view of
software components – of all kinds – as a rich variety of event processors – both as
consumers and producers of events – connected together in loose and dynamic oppor-
tunistic networks.

Unfortunately, although by design, producers know nothing of the requirements or
capabilities of consumers and the data volumes can be hard to process and assimilate, if
they are not at the information level and frequency commensurate with the consumer’s
reasoning cycle. For example, a BDI reasoning cycle in one Jason application (driving
autonomous vehicles in simulation) [31] appears to be able to cope with percept updates
every few hundreds of milliseconds, although this frequency will depend upon number
of plans, the complexity of their triggers and the duration of their actions. The critical
issue here is the rate at which a consumer can process the event streams it is receiving
in order for it to be able to achieve its intended level of situational awareness. This in
turn can be exacerbated by the level of the event information being incompatible with
the plan triggers (for example) – typically by being at a lower level – so that patterns
comprising several events, and possibly several event sources must be recognized [41]
before a plan can be triggered. Such processing is typically difficult to develop, debug
and maintain within an agent framework and would be better out-sourced to a compo-
nent that can deliver a single percept covering a set of events that characterize a given
situation. This leads to the creation of more independent software components in an in-
creasingly complex communication network and a consequent need for further system
health monitoring and appropriate presentation of that data, if there is to be any chance
of identifying anomalous behaviours.

Looking back at the above, there appear to be several aspects of cloud computing
that have features that we need both to demonstrate the benefits of COIN technologies,
and also to provide the facilities we need to demonstrate those benefits, amongst which:

1. Sources of data both about the system and the application domain
2. The capacity to create (on demand) the computational facilities to interpret it
3. Means to deploy legacy code in bespoke environments through cloud-based VMs
4. On demand creation of new services to filter, aggregate and summarize data com-

prising multiple events, even from multiple sources.

3.1 Understanding the Situation

If all the above can be realized, it puts us on a path towards the creation of system that
can construct degrees of situational awareness, both about the state of their own system
(self-awareness) and awareness of situations as they evolve in the application domain
of the system. The outcome should be the means to monitor and to take action on both
system health and actor health. Eventually, it should even become feasible to discern
the desire lines [1] and, following some collective decision procedure, implement a
consistent revision of the governing norms [8].

8 J. Padget

We want to enable software agents to make good and timely action choices in a vari-
ety of situations, thinking specifically about those created by: (i) virtual environments,
where there may be a mix of software- and human-controlled avatars and (ii) (imagined)
socio-technical systems, such as in search and rescue, military, emergency-response and
medical domains.

Intelligent behaviour, or behaviour that is perceived as intelligent, may be attributable
to many factors. The one of concern here is how an agent uses information about its
situation to make choices of actions. The right choice may be regarded as intelligent. The
wrong choice and at worst the agent or its collaboration partners, or even the humans for
which it is working, may be exposed to some risk. The situation may not be as black-
and-white as just described, but rather there may be better choices, amongst which a
dominating choice may not be readily apparent, and worse choices. Optimisation is not
required, but satisficing is. Seemingly less serious, at first sight, is that by making a worse
choice, trust and plausibility is forfeited and the agent is seen as just another program.
However, this too can be critical, not because some pretence need be maintained, but
because the loss of reputation and believability induces distraction in a human participant,
since they are now looking for the next “mistake”, as well as everything else they are
doing. As a result, the whole collaborative activity may no longer achieve its goals.

Although there are many factors affecting the effectiveness of such mixed system,
we highlight two that we believe have a significant influence on everything else: speed
of response and breadth of knowledge. A third aspect is a corollary to these two: the
matter the communication of data between components.

Speed of Response. Early agent architectures, such as those mentioned earlier [20,33]
sought to reflect then current AI thinking, influenced by research in robotics, by propos-
ing a layered architecture comprising reactive, deliberative and generative components,
reflected in the apotheosis of this line of development by Soar [29]. Meanwhile, as
noted earlier, the agent community has largely converged on the BDI architecture to
fulfil the function of the deliberative and generative layers. In consequence, the reactive
layer is effectively subsumed into BDI as events lead to the addition of percepts that
in turn cause actions. This usefully simplifies the agent structure and programming be-
cause control is all expressed through some variant of the AgentSpeak language. How-
ever, the BDI architecture is not designed for the rapid assimilation and assessment of
high frequency data and even if higher performance implementations were available,
the relative sophistication of the architecture is at odds with the task asked of it. Since
the purpose of BDI is to support the deliberative component of an agent, this suggests
that: (i) high frequency data needs to be processed and somehow summarized to pro-
vide lower frequency data with an implied higher informational value, and (ii) such
processing must use a lower overhead computational model to accommodate the high
frequency data rate. Out-sourcing this task to a process situated between the data source
and the agent, therefore seems sensible. Connectivity can be addressed through some
of the distributed computing technologies identified earlier.

Breadth of Knowledge. Understanding the situation should allow us to choose an ap-
propriate action both for the situation and with respect to individual and group goals.
Programming an agent to be prepared for any and every situation is clearly infeasible.

Situating COIN in the Cloud 9

Thus, while decision-making must remain the responsibility of the agent, the informa-
tion upon which that decision is the result of the assessment of sensed data from a
variety of sources across a range of time frames and representations. Again, it is likely
to be infeasible and undesirable to integrate all such assessment processes within an
agent. Thus, although the BDI agent has the capacity for deliberation, not all deliber-
ations are within its capabilities and in common with both software engineering and
societal structures, such deliberation could be delegated, leading to recommendations
from which to choose. From this, again two conclusions follow: (i) specialized domains
may be better reasoned about externally, producing summary recommendations for the
agent to choose between and (ii) such processing can use representations and resources
appropriate to the domain, or indeed re-use existing reasoning systems. Once again, the
conclusion from this is the desirability of out-sourcing the task to a process that may
function more like a service, collecting inputs from several sources and publishing re-
sults either when ready or on request. A particular case in point are the institutions that
comprise an organization, for example, where it is the institutions that act as repositi-
tories of social state(context) and provide the function of social reasoning to identify
violations and obligations. It nonetheless remains the responsibility of agents to decide
what actions to take, in the light of information received from the institutions.

Making Connections. There are two issues to address under the heading of connec-
tivity: (i) how to pass data between the components – representation and protocol –
and (ii) how to package existing software to operate in such an environment, and each
will affect the other. Our aim is for a low overhead, low maintenance connection fab-
ric, preferably that can be relied upon for support in the wider internet community for
some time. Network speeds continue to increase, but latency, as a relative factor, does
not change significantly as a proportion of the delay. Thus, although it is traditional
to speak of synchronous and asynchronous systems, the practice reflecting the physi-
cal constraints of the internet, is either for loosely synchronizing systems, where one
side may pause or continue working while waiting for a response from the other side,
or asynchronous systems in which components push out data without concern for the
receiver, while other components pull in data as it suits them.

Much effort has been expended in the agent community on trying to reach agreement
on what and how to communicate between agents. The results have been inconclu-
sive and furthermore are unlikely to see up-take, or indeed support, outside the agents
community. Therefore, we suggest that the pragmatic solution is to adopt widely used,
maintained and developed standards, so that the task for the community is just to track
those standards and build components that utilise them. Specifically, for protocols, this
suggests something based on HTTP, to ensure traffic across firewalls, such as the eX-
tended Messaging and Presence Protocol (XMPP) and for content, something based on
RDF, but possibly defined in terms of OWL in order to put constraints on the RDF.

Having discussed broadly the form of some requirements, the following two sec-
tions present brief introductions and some indicative references to technologies that
may offer some solutions. These are resource-oriented architecture and event process-
ing. The rationale for highlighting these two is firstly, their fit with the intrinsic compu-
tational properties of the internet as a distributed computing environment and secondly,
as emerging maturing technologies and frameworks, into which we can embed and

10 J. Padget

package COIN technologies, in order to deliver reach beyond individual research groups
and beyond the COIN community.

4 Resource Oriented Architecture

It is perhaps an oversimplification to say that ROA is for RESTful web services [47]
what Service Oriented Architecture (SOA) is for RPC-style (SOAP) web services, but
it does capture the sense of the relationship, in that REST should be seen as one way
of achieving resource orientation [38]. In practice, ROA, as do events, enables decou-
pling of components based on stateless message exchange. Stateless however does not
mean state cannot be modelled, but rather that each state, if so required, is a new re-
source, identified by a new, unique URI. Furthermore, message exchange does not mean
request-response in the RPC sense, rather an operation (the request) typically results in
a new resource, identified by URI (the response). From this perspective, it has much in
common with functional programming.

Although Resource Oriented Architecture denotes a general purpose set of principles
in respect of web application design, it is fair to say that its synthesis has been driven
by the concrete aspects of RESTful web services and the principles of addressability,
statelessness, connectedness, and a uniform interface [42]. Consequently,

1. Resources can be universally identified by unique addresses (addressability),
2. Every request to a resource should contain all the information needed for further

processing (statelessness),
3. A resource representation should contain the addresses of all related resources (con-

nectedness) and
4. All resources can be manipulated through uniform methods (uniform interface).

REST-compliant Web services differ from RPC-style Web services in the protocol em-
ployed between client and server, in that the latter requires each application designer
to define a new and arbitrary protocol comprising vocabulary of nouns and verbs that
is usually overlaid on the HTTP protocol[39]. In contrast, REST services work directly
with the HTTP verbs of POST, PUT, GET and DELETE which map to the four basic
functions of data storage, namely Create, Update, Retrieve and Delete.

As with adopting a purely event-oriented approach, ROA/REST puts constraints on
design (and implementation), which can initially be tiresome. But, as with functional,
or perhaps a better analogy would be with dataflow/single assignment languages, there
are potentially significant benefits, when operating in a distributed environment and es-
pecially one with unpredictable levels of latency. Specifically cited benefits [21] include
simpler protocols, better synergy with underlying web components, and lower applica-
tion design costs, but it is hard to find studies that substantiate these largely qualitative
claims.

5 Event Processors

This section discusses how to carry out data analysis on behalf of agents, based on
the twin criteria of speed of response and breadth of knowledge, identified above. We
review some of the work in this area over the past few decades and evaluate its suitability
for incorporation into the connection fabric outlined earlier.

Situating COIN in the Cloud 11

5.1 Real-Time Expert Systems

The 1970s and 80s saw the development and refinement of expert systems and the shells
used to author them. Two directions emerged from this activity that are still in use today:
(i) rule-based systems utilising the RETE algorithm, and (ii) the Prolog language, which
although not solely used for building expert systems, nevertheless provides a concep-
tually similar environment, where facts drive inferencing, expressed through rules. A
handful of tools now represent the first group, with some commercial (Ilog Rules) and
a few free/open-source (JBoss Rules, JESS) examples. Most recent publications are
domain-oriented, focussing on how an expert system has been applied in a particular
control context. This underlines the maturity and stability of the underlying technology,
which is either RETE (the net algorithm) or Selective Linear Definite clause resolution
(logic languages).

A naive implementation of a rule selection process is linear in the number of rules.
Any given rule set is finite and so has an upper bound on the matching time required, but
is not an adequate guarantee of real-time response, because it means that the number of
rules and the complexity of the rule conditions that determine which are applicable must
be constrained in order to meet performance requirements. RETE effectively compiles
the left hand sides of the rules to build a decision network that identifies the conflict
set (of rules that match the current state). While, this and subsequent improvements,
are better than the naive approach, complexity is still O(n). The story is broadly the
same in logic languages, but with semantic changes (committed choice) and the use of
parallel resolution algorithms helping to improve performance.

The key requirement is to be able to know how long the match process will take.
This in turn can be affected by placing limitations on the left-hand side conditions
resulting in the network having particular time-based properties. The need for real-time
response was recognized decades ago and some of the issues surrounding the delivery
of such performance are addressed in [28], while a notable contemporary example of
the application of the technology was IBMs YES/MVS system [18]. A current example
is GENSYMs G24, which appears to have significant up-take in process control settings.

RTES provide general programmability through a declarative framework as well as
the means to accumulate data over arbitrary long time windows. The programmability
also affects how real-time a particular system can be in practice. Prediction of match
time can be computed off-line (static analysis of the rules). However, apart from pro-
viding an upper bound on the cycle time, there appears to be no way either to guide
or to constrain the programmer to produce a match procedure with guaranteed perfor-
mance. It may be possible to apply syntactic restrictions to the rules so that the (RETE)
networks generated are of limited propagation depth. But either way – syntactic restric-
tion or cycle time bound – is not a solution if it means expressing the reasoning logic
becomes either contorted, creating a maintenance problem, or it is just impossible to
express what is wanted. Furthermore, the match procedure is very fragile in respect of
the system as a whole, because it can be pushed outside its performance envelope either
by accommodating new requirements or by an increase in the data rate of one of its
subscription feeds.

4 Retrieved from http://www.gensym.com/, 20130111

http://www.gensym.com/

12 J. Padget

5.2 Complex Event Processing (CEP)

Like many concepts in Computer Science, event processing is not new and could, termi-
nologically, be traced back to the earliest operating systems and soon after with the de-
velopment of discrete event simulation frameworks such as GPSS [24] and Simula [37].
But there, events were the drivers (of simulation), rather than the subject of analysis
themselves. The emergence of the topic of verification as a topic within the design pro-
cess of various kinds of systems, at both hardware and software levels, focussed on the
scrutiny of event traces to detect desirable or undesirable patterns of behaviour. Model
checking languages and the tools associated with the various calculi of concurrent sys-
tems are some of the computational approaches that have resulted from the objective
of understanding large collections of traces in their entirety. Such systems analyse all
possible systems states – and the paths between them – in pursuit of the establishment
of system invariants. In contrast, ad-hoc solutions to analysing such things as packets
on networks, transactions in distributed systems and intrusion detection systems laid
the foundations for looking at fragments of traces for significant or anomalous activ-
ity. Financial markets were early adopters of the conceptual model, using it to process
real-time market feeds for events of significance.

The languages for expressing CEP have become more sophisticated and now offer
functions to filter, correlate and aggregate data. The practical question remains however,
of how quickly can or must such operations be carried out. Esper 5 and Drools Fusion6

are typical examples of event processing engines – which notably have a strong com-
mercial orientation, coupled with up-take in the financial sector. The conceptual model
is that the user registers queries with the event processor, which will then invoke the
query when its conditions match. In Esper, the matching conditions can express dura-
tions, the composition of several different streams, filtering, aggregation and sorting. An
important abstraction feature is the means to glue together statements using “followed
by” conditions. The summary of features that follows is abstracted from the Esper tu-
torial7. Esper’s programming language shares some syntactic features with Structured
Query Language (SQL) for accessing relational databases, in particular in its select
and where clauses, but the operations are carried out on views – finite length frag-
ments – over streams rather than tables. Views can represent windows over a stream
of events, specified by time or count. Views can also sort events, derive statistics from
event properties, group events or handle unique event property values. Furthermore, a
window can be used to preserve data, in effect by defining an internal table that can be
used for input or output by other queries. It is not clear how performance is guaranteed,
but the finiteness of the windows and the relative simplicity of the queries that can be
performed would certainly limit demand for processing time.

5 Retrieved from http://esper.codehaus.org, 20130111.
6 Retreieved from http://www.jboss.org/drools/drools-fusion.html,

20130111.
7 Retrieved http://esper.codehaus.org/tutorials/tutorial/
tutorial.html 20130110.

http://esper.codehaus.org
http://www.jboss.org/drools/drools-fusion.html
http://esper.codehaus.org/tutorials/tutorial/tutorial.html
http://esper.codehaus.org/tutorials/tutorial/tutorial.html

Situating COIN in the Cloud 13

5.3 Stream Reasoning

The term ‘stream reasoning’ has emerged in the last few years. Initially, this has applied
to the means to process streams of RDF triples, using SPARQL extended with concepts
similar to those discussed above [10].From a technical point of view, there would appear
to be very little difference between the two, since both rely upon finite state machines to
recognise patterns in the input stream in order to trigger some action. The important ad-
vance offered by C-SPARQL, however, is that the event data may also contain reference
to ontologies, and not just literals. As a result, data from different sources may be as-
sociated semantically, rather than through the syntactic structure of the stream records,
thus reducing the coupling (in the software engineering sense) between producer and
consumer.

Alternative, but different, logic-based approaches are put forward by Gebser et al [23]
and Anicic-et-al [5]. The difference is that the former is based on answer set semantics,
while that latter uses Prolog, but both have to face technical challenges to ensure that
the tree synthesis approach both works efficiently and does not consume unbounded
resources. The essential idea is that the head of a logic programming term denotes the
recognition of a complex event, subject to the satisfaction of the right hand side of the
clause. As such, the programmer is presented with a language that has much in common
with real-time expert systems, but the implementations must provide temporal perfor-
mance guarantees as well as a means to ‘forget’ facts in order to recover memory. As a
result, both approaches incorporate a substantial amount of theoretical work that estab-
lishes the correctness of their mechanisms to recover memory and to compute results
under real-time constraints.

6 Closing Remarks

We have put forward a personal survey of the situation in COIN and how its strengths
and weaknesses fit with cloud computing. In particular, we believe that the resource-
oriented architecture and stream processing have much to offer in conjunction with
COIN technologies. In conclusion, we make some suggestions for next steps:

1. Make our components deployable as Software as a Service (SaaS), possibly through
RESTful [39] interfaces and informed by a ROA perspective,

2. Out-source complex situation analysis to software built for the purpose, rather than
trying to embed it in an agent architecture that was not designed for the task,

3. Collect datasets from cloud systems for testing and training of decision-making
components, but not forgetting the value of synthetic datasets as a means to test
boundary conditions,

4. Utilise communication protocols and data representations that enable interoperabil-
ity, such as enterprise bus architectures [6,27,40] or distributed communication ar-
chitectures [11] with semantically-annotated messaging for further decoupling of
producer and consumer, and

5. Take advantage of free cloud services to prototype and share ideas and services.

14 J. Padget

Acknowledgements. I am grateful to the organizers of COIN 2012 at AAMAS for
inviting me to speak at the meeting and to have the opportunity to follow that up with
this invited paper. Some of ideas presented here have been developed in part with the
support of The Royal Society (UK), the University of Otago and the COST action on
Agreement Technologies.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer (2011) ISBN: 978-3-642-19344-6

2. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents. In: van der Hoek, et
al. (eds.) [25], pp. 1057–1064.

3. Alexander, C.: A Timeless Way of Building. Center for Environmental Structure. Oxford
University Press Inc., USA (1980)

4. Andrighetto, G., Villatoro, D., Conte, R.: Norm internalization in artificial societies. AI Com-
munications 23(4), 325–339 (2010)

5. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A Rule-Based
Language for Complex Event Processing and Reasoning. In: Hitzler, P., Lukasiewicz, T.
(eds.) RR 2010. LNCS, vol. 6333, pp. 42–57. Springer, Heidelberg (2010)

6. Apache Camel, http://camel.apache.org/ (retrieved January 04, 2013)
7. Artikis, A.: Dynamic protocols for open agent systems. In: Sierra, C., Castelfranchi, C.,

Decker, K.S., Sichman, J.S. (eds.) AAMAS, vol. (1), pp. 97–104. IFAAMAS (2009)
8. Athakravi, D., Corapi, D., Russo, A., Vos, M.D., Padget, J.A., Satoh, K.: Handling change in

normative specifications. In: van der Hoek, et al. (eds.) [25], pp. 1369–1370.
9. Balke, T., De Vos, M., Padget, J.: Normative Run-Time Reasoning for Institutionally-Situated

BDI Agents. In: Cranefield, S., van Riemsdijk, M.B., Vázquez-Salceda, J., Noriega, P. (eds.)
COIN 2011. LNCS, vol. 7254, pp. 129–148. Springer, Heidelberg (2012)

10. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF streams
with C-SPARQL. SIGMOD Record 39(1), 20–26 (2010)

11. Bernstein, D., Vij, D.: Using XMPP as a transport in intercloud protocols. In: 2010 the 2nd
International Conference on Cloud Computing, CloudComp (2010)

12. Cardoso, H.L., Oliveira, E.C.: Institutional reality and norms: Specifying and monitoring
agent organizations. Int. J. Cooperative Inf. Syst. 16(1), 67–95 (2007)

13. Cliffe, O., De Vos, M., Padget, J.: Modelling Normative Frameworks Using Answer Set
Programing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
548–553. Springer, Heidelberg (2009)

14. Criado, N., Argente, E., Botti, V.: A BDI architecture for normative decision making. In:
Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems, vol. 1, pp. 1383–1384. International Foundation for Autonomous Agents and Mul-
tiagent Systems (2010)

15. Dignum, V., Padget, J.: Multiagent organizations. In: Weiss, G. (ed.) Multiagent Systems,
2nd edn. MIT Press (2012) (in press)

16. El-Akehal, E.E.D., Padget, J.A.: Pan-supplier stock control in a virtual warehouse. In: Berger,
M., Burg, B., Nishiyama, S. (eds.) AAMAS (Industry Track), pp. 11–18. IFAAMAS (2008)

17. Elakehal, E.E., Padget, J.: Market intelligence and price adaptation. In: Proceedings of the
14th Annual International Conference on Electronic Commerce, ICEC 2012, pp. 9–16. ACM,
New York (2012), http://doi.acm.org/10.1145/2346536.2346538

http://camel.apache.org/
http://doi.acm.org/10.1145/2346536.2346538

Situating COIN in the Cloud 15

18. Ennis, R.L., Griesmer, J.H., Hong, S.J., Karnaugh, M., Kastner, J.K., Klein, D.A., Milliken,
K.R., Schor, M.I., Van Woerkom, H.M.: A continuous real-time expert system for computer
operations. IBM J. Res. Dev. 30(1), 14–28 (1986),
http://dx.doi.org/10.1147/rd.301.0014

19. Esteva, M., Padget, J.: Auctions without Auctioneers: Distributed Auction Protocols. In:
Moukas, A., Ygge, F., Sierra, C. (eds.) AMEC 1999. LNCS (LNAI), vol. 1788, pp. 220–
238. Springer, Heidelberg (2000), http://dx.doi.org/10.1007/10720026_12

20. Ferguson, I.A.: Touring machines: Autonomous agents with attitudes. Computer 25(5), 51–
55 (1992), http://dx.doi.org/10.1109/2.144395

21. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. Ph.D. thesis. University of California, Irvine (2000)

22. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a model of
institutional reality for open multiagent systems. Artif. Intell. Law 16(1), 89–105 (2008)

23. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reason-
ing with answer set programming: Preliminary report. In: Brewka, G., Eiter, T., McIlraith,
S.A. (eds.) KR. AAAI Press (2012)

24. Gordon, G.: The development of the general purpose simulation system (gpss). In: Wexelblat,
R.L. (ed.) History of Programming Languages I, pp. 403–426. ACM, New York (1981),
http://doi.acm.org/10.1145/800025.1198386

25. van der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M. (eds.): International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, June 4-8,
vol. 3. IFAAMAS (2012)

26. Hübner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional, and De-
ontic Specification of Organizations in Multiagent Systems. In: Bittencourt, G., Ramalho,
G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002),
http://dx.doi.org/10.1007/3-540-36127-8_12

27. Ibsen, C., Anstey, J.: Camel in Action. Manning (2010) ISBN-13: 978-1935182368
28. Laffey, T.J., Cox, P.A., Schmidt, J.L., Kao, S.M., Read, J.Y.: Real-time knowledge-based

systems. AI Mag. 9(1), 27–45 (1988),
http://dl.acm.org/citation.cfm?id=44132.44133

29. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: An architecture for general intelli-
gence. Artificial Intelligence 33(1), 1–64 (1987), http://www.sciencedirect.com/
science/article/pii/0004370287900506

30. Lazer, D., Friedman, A.: The dark side of the small world: how efficient information diffusion
drives out diversity and lowers collective problem solving ability. Program on Networked
Governance (PNG) Working paper 06-001, Harvard University (2006),
http://www.hks.harvard.edu/netgov/files/png workingpaper
series/PNG06-001 WorkingPaper LazerFriedman.pdf (retrieved January 06,
2013)

31. Lee, J., Baines, V., Padget, J.: Decoupling Cognitive Agents and Virtual Environments. In:
Dignum, F. (ed.) CAVE 2012. LNCS, vol. 7764, pp. 17–36. Springer, Heidelberg (2013)

32. McFall, M.E., Klahr, P.: Simulation with rules and objects. In: Proceedings of the 18th
Conference on Winter Simulation, WSC 1986, pp. 470–473. ACM, New York (1986),
http://doi.acm.org/10.1145/318242.318479

33. Müller, J.P.: The Design of Intelligent Agents: A Layered Approach. LNCS, vol. 1177.
Springer, Heidelberg (1996)

34. Neville, B., Pitt, J.: PRESAGE: A Programming Environment for the Simulation of Agent
Societies. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS, vol. 5442,
pp. 88–103. Springer, Heidelberg (2009)

http://dx.doi.org/10.1147/rd.301.0014
http://dx.doi.org/10.1007/10720026_12
http://dx.doi.org/10.1109/2.144395
http://doi.acm.org/10.1145/800025.1198386
http://dx.doi.org/10.1007/3-540-36127-8_12
http://dl.acm.org/citation.cfm?id=44132.44133
http://www.sciencedirect.com/science/article/pii/0004370287900506
http://www.sciencedirect.com/science/article/pii/0004370287900506
http://www.hks.harvard.edu/netgov/files/png_workingpaper_series/PNG06-001_WorkingPaper_LazerFriedman.pdf
http://www.hks.harvard.edu/netgov/files/png_workingpaper_series/PNG06-001_WorkingPaper_LazerFriedman.pdf
http://doi.acm.org/10.1145/318242.318479

16 J. Padget

35. Nieves, J.C., Padget, J., Vasconcelos, W., Staikopoulos, A., Cliffe, O., Dignum, F., Vázquez-
Salceda, J., Clarke, S., Reed, C.: Coordination, organisation and model driven approaches
for dynamic, flexible, robust software and services engineering. In: Schahram, D., Li,
F. (eds.) Service Engineering, pp. 85–115. Springer (2011) ISBN: 978-3-7091-0414-9,
http://dx.doi.org/10.1007/978-3-7091-0415-6_4

36. Noriega, P.: Fencing the Open Fields: Empirical Concerns on Electronic Institutions (In-
vited Paper). In: Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski,
S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM and OOOP 2005. LNCS (LNAI),
vol. 3913, pp. 81–98. Springer, Heidelberg (2006)

37. Nygaard, K., Dahl, O.J.: The development of the simula languages. In: Wexelblat, R.L. (ed.)
History of Programming Languages I, pp. 439–480. ACM, New York (1981),
http://doi.acm.org/10.1145/800025.1198392

38. Overdick, H.: The Resource-Oriented Architecture. In: 2007 IEEE Congress on Services
Services, pp. 340–347 (2007), http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4278816

39. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. Big Web Services:
Making the Right Architectural Decision. In: 17th International World Wide Web Conference
(WWW 2008), Beijing, China, pp. 805–814 (April 2008), http://www2008.org/

40. Ranathunga, S., Cranefield, S.: Embedding BDI agents in business applications using enter-
prise integration patterns (extended abstract). In: Ito, Jonker, Gini, Shehory (eds.) Proceed-
ings of the 12th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2013). IFAAMAS (to appear, 2013)

41. Ranathunga, S., Cranefield, S., Purvis, M.K.: Identifying events taking place in second life
virtual environments. Applied Artificial Intelligence 26(1-2), 137–181 (2012)

42. Richardson, L., Ruby, S.: RESTful Web Services, 1st edn. O’Reilly Media, Inc. (May 2007)
43. Rodriguez, J.: On the design and construction of agent-mediated electronic institutions. IIIA

Monographs 14 (2001)
44. Rodrı́guez, J.A., Noriega, P., Sierra, C., Padget, J.: FM96.5 A Java-based Electronic Auction

House. In: Proceedings of 2nd Conference on Practical Applications of Intelligent Agents
and MultiAgent Technology (PAAM 1997), London, UK, pp. 207–224 (April 1997) ISBN
0-9525554-6-8, http://www.iiia.csic.es/
Projects/fishmarket/PAAM97.ps.gz

45. Simon, H.A.: Rational choice and the structure of the environment. Psychological Re-
view 63(2), 129–138 (1956)

46. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Autonomous
Agents and Multi-Agent Systems 11(3), 307–360 (2005)

47. Web Services Architecture, http://www.w3.org/TR/ws-arch/#relwwwrest,
http://www.w3.org/TR/ws-arch/#relwwwrest (retrieved August 08, 2011)

48. Winikoff, M., Cranefield, S.: On the testability of BDI agent systems. Information Science
Discussion Papers Series 2008/03. University of Otago (2008),
http://hdl.handle.net/10523/1063 (retrieved January 04, 2013)

http://dx.doi.org/10.1007/978-3-7091-0415-6_4
http://doi.acm.org/10.1145/800025.1198392
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4278816
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4278816
http://www2008.org/
http://www.iiia.csic.es/Projects/fishmarket/PAAM97.ps.gz
http://www.iiia.csic.es/Projects/fishmarket/PAAM97.ps.gz
http://www.w3.org/TR/ws-arch/#relwwwrest
http://www.w3.org/TR/ws-arch/#relwwwrest
http://hdl.handle.net/10523/1063

Monitoring Interaction in Organisations

Mehdi Dastani1, Leendert van der Torre2, and Neil Yorke-Smith3,4

1 Utrecht University, The Netherlands
M.M.Dastani@uu.nl

2 University of Luxembourg, Luxembourg
leon.vandertorre@uni.lu

3 Olayan School of Business, American University of Beirut, Lebanon
4 University of Cambridge, United Kingdom

nysmith@aub.edu.lb

Abstract. In an organisational setting, such as an online marketplace, the organ-
isation monitors agent interactions, and enforces norms by means of sanctions.
This paper provides an operational semantics for agent interactions within such
a setting, distinguishing constitutive norms for monitoring and sanction rules for
enforcement of norms. Our contribution emphasizes a more detailed exploration
of the processes of monitoring commitments created through agent interactions
and imposition of sanctions when commitments are violated. We consider both
agent–agent and agent–environment interactions, focusing on operationalizing
enforcement of commitment-based norms. We provide a generic way to develop
operational semantics from specific definitions of norm behaviour. For an exam-
ple set of norm behaviours, we sketch some formal properties that follow from
our semantics, such as continuity, (non-)interference, and (non-)redundancy.

1 Introduction

In an open multi-agent environment, agents can coordinate their interactions by means
of communication. Following earlier works concerned with multi-agent organisations,
we define the semantics of agent interactions, including communication actions, in
terms of social commitments [20]. Such commitments constitute institutional facts of
an organisation, and it is within an organisational setting such as 2OPL [12] that agents
interact. For our purposes, the organisation consists of two main processes: the moni-
toring process checks for compliance to norms while the enforcement process ensures
imposition of sanctions.1 Agent interactions affect the state of the institutional facts
(i.e., commitments). The norms, represented as counts-as rules, define both constitu-
tive as well as regulative norms. Finally, sanction rules are responsible for updating the
organisation state as a consequence of detected violations.

Our focus, then, is on what has been called agreement technologies, i.e., how coordi-
nation is achieved between autonomous computational entities [2]. Following [12] one
can specify norms to govern the interaction between agents. However, we believe that
interaction by means of communication should respect a set of generic norms which are

1 Other organisation attributes and processes, such as environmental interaction, or roles, enti-
ties, and the relationships between them, are orthogonal to our purpose in this paper.

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 17–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

18 M. Dastani, L. van der Torre, and N. Yorke-Smith

inherent in communication actions. We follow the line of works that posit that commu-
nication actions create and operate on social commitments [20,11,15]. In our setting, an
organisation will manage the commitments according to the utterances (messages) and
actions of the agents, and regiment the compliance of agents with the commitments.
Since we represent norms as counts-as rules, we specify the relations between commu-
nication actions and commitments explicitly via counts-as rules.

Our contribution emphasizes a more detailed exploration of the processes of moni-
toring and enforcement through an organisation’s tracking of institutional state defined
in terms of commitments, which are established and modified through agent communi-
cation acts. By adopting a simple set of such actions, and not focusing on the protocol
or semantic concerns of a full Agent Communication Language, we are able develop a
more technical account for a full operational semantics, and explore its properties.

A common methodology to define an operational semantics in such a paradigm spec-
ifies the typical or desired behaviour of the system. For example, explicit acceptance of
commitments (i.e., must the creditor accept a commitment, or not?), fulfilment of a
commitment’s consequent before its antecedent (i.e., can a non-detached commitment
be satisfied?), or synchronization details (e.g., if a consequent is fulfilled at the same
moment its deadline occurs, is the commitment detached or expired?). Based on such
choices, one defines norm behaviour, typically based on a finite state automaton; based
on the automaton, one then defines an operational semantics.

Our methodology differs in that, given an automaton defined using rules, we develop
a generic way to go from the automaton to the operational semantics. Thus, the seman-
tics for any given description of norm behaviours follow automatically by means of a
generic mechanism. Hence our generic methodology can be applied to different sets of
counts-as rules, and further can admit constitutive norms that change dynamically.

We use the term ‘organisation’ and ‘organisational setting’ in this paper. Some au-
thors draw a distinction between institutional concepts and organisational concepts,
placing for example in the former, concepts such as brute and institutions facts, counts-
as relations, and the constitutive nature of commitments, and placing in the latter con-
cepts such as roles, organisational objectives, and terminologies or conventions. In such
a view, to be explored would be the relationship between the organisation and the insti-
tutional reality created by the conventions we study.

The remainder of the paper is organized as follows. Sections 2 and 3 present our
formal setting and operational semantics of the organisation from the coordination point
of view. Section 4 illustrates on an insurance scenario. Section 5 studies properties of
our approach and investigates the management of agent interaction and commitments.
Section 6 places our work in context of the existing literature, Section 7 presents topics
for future research, and Section 8 concludes the paper with a summary.

2 Normative Organisation

Our model of an exogenous organisation allows individual agents to interact with each
other and with their shared environment. The function of an organisation, as we will use
the term, is to monitor and regulate the interaction between agents, i.e., it observes the
(inter)actions of agents, evaluates their consequences and imposes sanctions if needed.

Monitoring Interaction in Organisations 19

The agents’ (inter)actions are assumed to be observed/received by the organisation as
events. The evaluation of agents’ (inter)actions as well as their sanctioning are realized
based on the norms and sanctions that specify the organisation. In this paper, we focus
on commitments as a specific type of norms and study agents’ interactions that influence
the generation and state of commitments.

For example, consider an organisation such as a marketplace where agents can buy
and sell goods from each other. In such an organisation, agent i offers agent j to make
a payment p(b,20) (i.e., paying 20 euro for book b) within 5 days if agent j first sends
the book s(b,i) within 2 days. We assume that the marketplace has the credit card infor-
mation of the participating agents and that the agents can give a payment order to the
organisation when they have received their goods. We also assume that the marketplace
is allowed to withdraw money from a credit card without the order from the card holder
only in designated cases, e.g., when the buyer of a good, who has asked the seller to
send him the good, returns the good back to the seller, the organisation can then subtract
the shipping cost paid by the seller from the credit card of the buyer agent.

The organisation can monitor the agents’ interactions, determine the commitments
of agents, and ensure that the agents fulfill their commitments—or otherwise take nec-
essary measures such as putting the violating agent on a blacklist. The organisation, as
an exogenous process, cannot intervene in the decision making of individual agents by
either disallowing them to perform actions or forcing them to perform specific actions,
i.e., agents are autonomous and decide their own actions.

2.1 Agent Interactions

We begin by identifying possible actions that agents can perform to interact with each
other or with their shared environment. These include pure communication actions, as
well as non-communicative actions that change the actual state of their environment. It
is important to notice that it is not our purpose to define an Agent Communication Lan-
guage (ACL) or a communications protocol [14,1]. Instead, we select a representative
set of actions that influence the generation and state of commitments. The following six
actions will prove sufficient for justifying the adequacy of our organisational model for
managing and enforcing commitments. We will use variables x, y, etc. to range over the
agent names i, j, etc.; propositional variables p, q, etc. to range over propositions a, b,
etc.; and finally d, d′, etc. to range over deadlines tm, tn, etc. where m,n ∈ N.

– offer(x, y, p, q, d1, d2) — x tells y that x will make q true in the environment by
deadline d2 if p becomes true in the environment by deadline d1

– tell(x, y, p) — x tells y that p is true in the environment
– cancel(x, y, q) — x tells y that x will not make q true in the environment
– release(y, x, q) — y tells x that x need not make q true in the environment
– failure(x, y, p) — x tells y that p cannot be made true in the environment
– do(x, p) — x performs an action to make proposition p true in the environment

In our running example, agent i can offer agent j to do the payment p(b,20) before time
t5 if agent j sends him the book s(b,i) before time t2. Agent i can offer this deal to agent
j by performing the following action: offer(i, j, s(b,i), p(b,20), t2, t5).

20 M. Dastani, L. van der Torre, and N. Yorke-Smith

Fig. 1. State transitions of commitment lifecycle

2.2 Commitments

A joint commitment (hereafter commitment) is defined as a tupleC=C(x, y, p, q, d1, d2).
Agent x (as debtor) tells agent y (as creditor) that if proposition p (the antecedent) is
brought about by deadline d1 then x will bring about q (the consequent) by deadline d2.
In the rest of the paper, we assume that deadlined1will be satisfied before deadlined2. It is
important to note thatC is neither a second-order predicate nor a modal operator and that
we do not aim at devising a logic to reason about the internal structure of commitments.
C(x, y, p, q, d1, d2) is an atomic proposition denoting a specific commitment.

Fig. 1 shows the states of a lifecycle of a commitment, adapted from [21] (we omit
suspension and delegation of commitments). Boxes indicate states and arrows indicate
transitions. A commitment, once created, moves to state Conditional. Should the an-
tecedent become true, the commitment moves to Detached. Should the consequent
become true, it moves to Satisfied. However, should the antecedent not become true
by d1, then the commitment is Expired. Likewise if the consequent of a detached com-
mitment does not become true by d2, then the commitment is Violated. It is likewise
Violated if x cancels a detached commitment. The commitment is Terminated if x
cancels it before it is detached, or y releases x from C once it has been detached.

We will write commitment state with superscript, i.e., Cstate. It will be useful to dis-
tinguish violation because of cancel (vc) and violated because of timeout (vt).

2.3 Organisation

An organisation is specified by facts, norms (including commitments), and sanctions.
We distinguish brute and institutional facts. Brute facts denote the state of the shared
environment (e.g., bj denoting the fact that agent j has book b or p(b,20) denoting the
fact that 20 euro is paid for book b), while institutional facts denote the normative

Monitoring Interaction in Organisations 21

state of an organisation (e.g., Cc(i, j, s(b,i), p(b,20), t2, t5) denoting the fact that agent i
is committed to pay 20 euro before t5 if agent j sends book b before t2). In the fol-
lowing, we assume Πb and Πi to be finite disjoint sets of brute and institutional facts
(constructed by two disjoint sets of brute and institutional atomic propositions), respec-
tively. Moreover, we follow [12] and represent norms by means of counts-as rules that
relate brute and institutional facts. The original version of the counts-as construct is of
the form “φ counts as ψ in the context c”. We represent a counts-as construct as a rule
φ ∧ c =⇒cr ψ, where φ, c ∈ Πb and ψ ∈ Πi. For example, an offer by agent i to agent
j to do a payment if j sends i a book counts-as the creation of a conditional commit-
ment. In the following, we use counts-as rules to evaluate and determine the institutional
consequences of a certain environment state. In the more general framework proposed
in [12], the antecedent of counts-as rules can include institutional facts as well. This al-
lows institutional facts to be created based on other institutional facts making it possible
to specify more complex norms such as country-to-duty norms. Finally, we represent
sanctions by rules of the form φ =⇒sr ψ, where φ ∈ Πb ∪ Πi and ψ ∈ Πb. Note the
difference between counts-as and sanctions rules: the first relates brute to institutional
facts, while the latter relates institutional facts to brute facts. In our running example, a
delay in payment by agent i beyond day 5 will be considered as a violation and will be
sanctioned by having agent i on the organisation’s blacklist.

We would like to emphasize that the consequent of the sanction rules (in this case
having an agent on the blacklist) are brute facts and not actions. In our proposed model,
an organisation imposes sanctions by updating its brute state with the consequents of the
applicable sanction rules. It is also important to note that sanction rules are not meant
to create other commitments, but they are meant to realize the final punishments. The
creation of new commitments based on other commitments can in principle be modelled
through counts-as rules that allow institutional facts in their antecedents.

Definition 1. An organisation is specified as (F, cr, sr), where F ⊆ Πb is a set of initial
brute facts, cr is a set of counts-as rules, and sr is a set of sanction rules. ��
In our running example, the organisation is initially specified by some brute facts such
as agent j wants to sell a book b, and the blacklist of the organisation is empty, i.e.,
bj ∈ F. The set of facts will change during the execution of multi-agent system, based
on the interaction between agents, e.g., the fact p(b,20) will be added to F when an
agent pays 20 euro for book b. Note that the institutional facts such as commitments
will be generated only during the execution of multi-agent system as a consequence
of agents’ interactions. Although an organisation can be specified in terms of arbitrary
norms [12], we suppose that specific agents’ interaction creates and manipulate social
commitments (institutional facts) and claim that manipulation of commitments should
respect a specific set of norms. Therefore, we focus on commitment-based norms and
represent them as counts-as rules defined in terms of specific actions.

Fig. 2 illustrates a set of commitment-based norms, represented as counts-as rules.
We next explain these rules, which specify how interactions between agents operate
on social commitments. The application of counts-as rules (and the resulting removal
and addition of commitments) are explained later in this section when we present the
operational semantics of our organisational model in transition rules 1–4, which are
introduced in Section 3, below.

22 M. Dastani, L. van der Torre, and N. Yorke-Smith

1 offer(x, y, p, q, d1, d2) =⇒cr Cc(x, y, p, q, d1, d2)
2 tell(y, x, p) ∧ Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ p =⇒cr Cd(x, y, p, q, d1, d2)

3 do(y, p) ∧ Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ p =⇒cr Cd(x, y, p, q, d1, d2)
4 tell(x, y, q) ∧ Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ q =⇒cr Cs(x, y, p, q, d1, d2)
5 do(x, q) ∧ Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ q =⇒cr Cs(x, y, p, q, d1, d2)
6 tell(x, y, q) ∧ Cd(x, y, p, q, d1, d2) ∧ ¬d2 ∧ q =⇒cr Cs(x, y, p, q, d1, d2)

7 do(x, q) ∧ Cd(x, y, p, q, d1, d2) ∧ ¬d2 ∧ q =⇒cr Cs(x, y, p, q, d1, d2)

8 cancel(x, y, q) ∧ Cd(x, y, p, q, d1, d2) ∧ ¬d2 ∧ ¬q =⇒cr Cvc(x, y, p, q, d1, d2)

9 Cd(x, y, p, q, d1, d2) ∧ d2 ∧ ¬q =⇒cr Cvt(x, y, p, q, d1, d2)
10 failure(y, x, p) ∧ Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ ¬p =⇒cr Ce(x, y, p, q, d1, d2)
11 Cc(x, y, p, q, d1, d2) ∧ d1 ∧ ¬p =⇒cr Ce(x, y, p, q, d1, d2)
12 cancel(x, y, q) ∧ Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ ¬p =⇒cr Ct(x, y, p, q, d1, d2)
13 release(y, x, p) ∧ Cd(x, y, p, q, d1, d2) ∧ ¬d2 ∧ p =⇒cr Ct(x, y, p, q, d1, d2)

Fig. 2. Counts-as rules specify the lifecycle of commitments based on actions and deadlines

– Performing action “x offers to y that x realizes q before d2 if y realizes p before d1”
counts as creation of a conditional commitment (superscript c denotes conditional
state of commitment; similar convention is used for other commitment states). The
application of rule #1 by the organisation adds institutional fact Cc(x, y, p, q, d1, d2)
to the institutional facts.

– Performing action “y tells x that p is realized” or “y does act and realizes p” when d1
is still not passed counts as detaching the conditional commitment. The application
of these rules #2 or #3 removes the conditional commitment from institutional facts
and adds a corresponding detached commitment to it.2

– Performing action “x tells y that q is realized” or “x does act and realizes q” when d1
is still not passed counts as satisfying the conditional commitment. The application
of these rules #4 or #5 removes the conditional commitment from institutional facts
and adds a corresponding satisfied commitment to it.

– Performing action “x tells y that q is realized” or “x does act and realizes q” when d2
is still not passed counts as satisfying the detached commitment. The application of
these rules #6 or #7 removes the detached commitment from institutional facts and
adds a corresponding satisfied commitment to it.

– Performing action “x cancels to realizes q” when d2 is still not passed counts as the
violation of the detached commitment. The application of this rule #8 removes the
detached commitment and adds a corresponding violated commitment.

– Elapsing deadline d2 counts as the violation of a detached commitment. The appli-
cation of this rule #9 removes the detached commitment from institutional facts and
adds a corresponding violated commitment to it.

– Performing action “y fails to realize p” when d1 is still not passed counts as expi-
ration of the conditional commitment. The application of this rule #10 removes the
conditional commitment and adds a corresponding expired commitment.

2 Detaching a commitment based on telling assumes that y is a trusted agent, i.e., its utterances
are according to its beliefs. Note that an organisation may develop a list of trusted agents.

Monitoring Interaction in Organisations 23

– Elapsing deadline d1 counts as expiration of a conditional commitment. The appli-
cation of this rule #11 removes the conditional commitment from institutional facts
and adds a corresponding expired commitment to it.

– Performing action “x cancels to realize q” when d1 is still not passed counts as ter-
mination of the conditional commitment. The application of this rule #12 removes
the conditional commitment and adds a corresponding terminated commitment to it.

– Performing action “y releases a detached commitment after p has been satisfied”
when d2 is still not passed counts as termination of the conditional commitment. The
application of this rule #13 removes the conditional commitment from institutional
facts and adds a corresponding terminated commitment to it.

Finally, organisations can be specified in terms of arbitrary sanctions represented by
sanction rules [7]. Sanctions are defined in terms of specific violations and determine
how a violated system state can be turned back to a ‘normal’ state by means of a system
update. In contrast to commitments, sanctions are not generic and depend on application
in hand. For example, in our marketplace organisation, a timed-out commitment caused
by agent i who has failed to make a payment will be sanctioned by blacklisting the
agent. This sanction can be represented as:

Cvt(i, j, s(b,i), p(b,20), t2, t5) =⇒sr blacklisti

Another possible sanction can be designed to cope with a detached commitment that
is cancelled by its debtor. For example, suppose agent j sends the book before dead-
line t2 after which agent i cancels the commitment. The cancel action by i violates the
detached commitment Cd(i, j, s(b,i), p(b,20), t2, t5), turning it into the canceled com-
mitment Cvc(i, j, s(b,i), p(b,20), t2, t5). One may want to sanction such a violation by
charging i the shipping cost paid by j (and possibly some additional administration
costs). Such a sanction can be represented by the following rule, which indicates that
agent i should pay the shipping cost (chargedShippingCost(i,5)):

Cvc(i, j, s(b,i), p(b,20), t2, t5) =⇒sr chargedShippingCost(i,5)

3 Operational Semantics

We now give the operational semantics for the normative organisation. The specifica-
tion of an organisation determines the its initial state. The execution of an organisation
is determined by a set of transition rules that specify possible transition steps. In the
following, we first define the (initial) states of an organisation, followed by the set of
four transition rules.

Definition 2. The state of an organisation is specified as the tuple 〈σb, σi, cr, sr〉, where
σb ⊆ Πb, σi ⊆ Πi, cr is the set of counts-as rules, and sr is the set of sanction
rules. Since the counts-as and sanction rules do not change during the execution of
organisations, we omit cr and sr from the organisation states, representing state as
〈σb, σi〉. Let (F, cr, sr) be the initial specification of an organisation. The initial state
of the organisation is 〈F, ∅〉, i.e., the initial set of institutional facts is the empty set. ��

24 M. Dastani, L. van der Torre, and N. Yorke-Smith

In order to compute the set of commitments (and sanctions) that should be generated
or modified by the counts-as rules cr (and the sanction rules sr) in a given state of an
organisation, we follow [7] and define the closure of a set of propositions under a set of
rules. Let cond(()r) and cons(()r) denote the condition and consequent of rule r, re-
spectively. First, we determine the rules R that are applicable to a set of propositions X
as:

App(X,R) = {r ∈ R | X |=
∧

cond(r)}

Using function clRX(Y) = {cons(r) | r ∈ App(X∪Y,R)} we define clRX↑ω as the small-
est fixed-point of clRX(·), which exists due to Knaster/Tarski’s fixed point theorem [7].
This fixed point provides the set of heads of all applicable rules.

Let cr be the set of counts-as rules presented in Fig. 2 and clcrX↑ω be the closure
of set X under cr. The following transition rule specifies the interaction between two
agents through communication action α. Note that the organisation updates the institu-
tional facts (e.g., commitments) based on the performed communication action and by
applying the above counts-as rules.

com(α) & σ′
i = ⊕(σi ∪ σb ∪ {α})

〈σb, σi〉 →c 〈σb, σ
′
i〉 (1)

1. com(α) indicates that α is the communicated message,
2. ⊕(X) = σi \ {cx(V) | cy(V) ∈ (clcrX↑ω \X)} ∪ (clcrX↑ω \X),

for x, y ∈ {c, d, s, vc, vt, e, t}.

According to this transition rule, the state of a multi-agent organisation can make a
transition when message α is communicated. In this transition the institutional state σi

of the organisation is updated by applying the counts-as rules to determine new in-
stitutional facts. The new institutional facts are computed by taking the closure of in-
stitutional facts, brute facts, and the performed action under the counts-as rules, i.e.,
clcrX↑ω \X . Note that the original set of institutional facts, brute facts, and the performed
action denoted by X are removed from the closure to obtain the new institutional facts.
The second item in the rule specifies the update of the institutional facts by adding new
institutional facts to σi while removing the corresponding institutional facts from σi.
This operation guarantees that the state of commitments (x, y ∈ {c, d, s, vc, vt, e, t})
changes according to the transitions in the commitment lifecycle depicted in Fig. 1.
Lastly, note that clcrX↑ω \X = ∅ if none of the counts-as rules are applicable. In our
running example, the performance of action offer(i, j, s(b,i), p(b,20), t2, t5) in an organi-
sation state 〈σb, σi〉 causes a transition to state 〈σb, σi ∪{Cc(i, j, s(b,i), p(b,20), t2, t5)}〉
where a commitment is created. This is accomplished by the application of rule 1.

The next transition rule specifies the performance of non-communicative actions,
such as an agent sending a book. Note that counts-as rules 3 and 5 cover the cases
where performing a non-communicative action by some agent counts as changing the
state of a commitment.

act(α) & σ′
b = ⊗(σb, α) & σ′

i = ⊕(σi ∪ σ′
b ∪ {α})

〈σb, σi〉 →a 〈σ′
b, σ

′
i〉 (2)

Monitoring Interaction in Organisations 25

1. act(α) indicates that α is the action,
2. ⊗ is an update operation that changes the state of environment σb after performing

α. We assume the existence of such an update operator.
3. ⊕ is the operator for updating institutional facts as defined above.

The new institutional facts σ′
i are determined based on σ′

b, the result of realizing the
effect of α on σb. In our running example, sending the book b by agent j (i.e., we have
thatα = s(b,i)) causes a transition of the organisation state from 〈σb, σi〉, where we have
σi |= Cc(i, j, s(b,i), p(b,20), t2, t5), to 〈σ′

b, σ
′
i〉 with σ′

i �|= Cc(i, j, s(b,i), p(b,20), t2, t5)

and σ′
i |= Cd(i, j, s(b,i), p(b,20), t2, t5). Of course, we assume this is only possible if

σb |= s(b,i) ∧ ¬t2 indicating that the sending action is indeed performed within the
corresponding deadline t2. This is accomplished by the application of counts-as rule 3.

Finally, we allow the environment state to change by the internal mechanism of the
environment, e.g., the state of a clock changes automatically. This is essential for the
application of counts-as rules 7 and 9, which are applicable when the deadline elapses.

σb → σ′
b & σ′

i = ⊕(σi ∪ σ′
b)

〈σb, σi〉 →e 〈σ′
b, σ

′
i〉 (3)

This transition rule ensures that elapse of the deadlines are possible and changes the
state of the institutional facts accordingly. Let the organisation of our running ex-
ample be in state 〈σb, σi〉 where σi |= Cd(i, j, s(b,i), p(b,20), t2, t5), σb �|= p(p,20),
and the environment makes a transition such that σ′

b |= d5. In this case, we have
σ′
i �|= Cd(i, j, s(b,i), p(b,20), t2, t5) and σ′

i |= Cvt(i, j, s(b,i), p(b,20), t2, t5). This is ac-
complished by the application of the counts-as rule 7.

Sanctions. A common scenario is that the organisation imposes sanctions when com-
mitments are violated. For example, a non-paying agent is added to a blacklist. We rep-
resent sanctions by rules connecting commitment violations to a specific brute state of
the organisation. In order to allow context-dependent sanctions, the antecedent of rules
can be composed of both brute and institutional facts. Given a set of sanction rules sr
and the state of an organisation 〈σb, σi〉, we define the enforcement of sanctions as the
closure of state under the sanction rules, denoted by clsr(σb∪σi)↑ω \σi. The following
transition rule ensures that the organisation imposes sanctions when commitments are
violated.

σ′
b = clsr(σb∪σi)↑ω \σi & σ′

i = σi \ sanctioned(σi, σ
′
b, sr)

〈σb, σi〉 →s 〈σ′
b, σ

′
i〉 (4)

The function sanctioned(σi, σ
′
b, sr) removes all violated commitments from σi for which

sanctions are imposed. Consider again the sanction for the payment violation in our run-
ning example, which is represented by the rule

Cvt(i, j, s(b,i), p(b,20), t2, t5) =⇒sr blacklisti

and let the organisation be in the state 〈σb, σi〉 whereσi |= Cvt(i, j, s(b,i), p(b,20), t2, t5).
The application of this transition rule causes a transition to the state 〈σ′

b, σ
′
i〉 where

σ′
b |= blacklisti (i.e., i is blacklisted) and σ′

i �|= Cvt(i, j, s(b,i), p(b,20), t2, t5).

26 M. Dastani, L. van der Torre, and N. Yorke-Smith

Multi-agent System Execution. Recall that an organisation has two main processes
to perform: (1) monitoring the interaction between agents, and between agents and the
environment, to detect norm violations; and (2) enforcing norms by means of sanctions
when violations are detected. In our framework, transitions 1–3 are responsible for the
monitoring task while transition 4 is responsible for imposing sanctions. The executions
of a multi-agent organisation are determined by the transition system which is specified
by the transition rules 1–4; the system consists of all possible computational runs.

Definition 3. Given transition rules 1–4 and an initial state of an organisation c0 =
〈σb, σi〉, a computational run CR(c0) is an infinite sequence c0, c1, . . . where ci is a
multi-agent organisation state and ∀i>0 : ci → ci+1 is a transition derived by applying
transition rules 1–4. The execution of a multi-agent organisation with initial state c0 is
a set of all possible computational runs CR(c0). ��

Possible computational runs of an execution are due to different orders of the applica-
tions of transition rules 1–4. One may constrain the set of possible computational runs
by specifying one specific order for applying transition rules. For example, one order
may apply transition rules 1–4 consecutively while a second order applies transition
rules 1–3 interspersed by the application of transition rule 4. According to the first or-
der, the organisation allows (1) agents to communicate, (2) agents to interact with the
environment, (3) the environment to make a transition, and (4) the organisation to im-
pose sanctions. By contrast, the second order imposes sanctions immediately after each
of the three activities. Note that the first order allows different violations to occur before
sanctions are imposed while the second order applies the sanctions immediately. The
consequences of these different orders will be studied in the next section.

4 Example

Chopra et al. [9] describe an insurance claim process involving a vehicle repair, with
the actors being the driver claimant (assumed to be not at fault, and whose policy has no
deductible), the driver’s insurance company, a car repair garage, and a damage assessor.
In our example scenario, the agents are a Customer (who owns the car), an Insurer (who
pays for repairs), a Repairer (who conducts the repair), and an Assessor (who decides
how much the repair should cost). Commitments between agents model the business
protocols of the process:3

– C1: insurer to repairer: if insurance has been validated and the repair has been re-
ported, then the insurer will have paid and approved the assessment within 7 days

– C2: insurer to assessor: if the assessment has been done, the assessment will have
been paid within 5 days

– C3: assessor to repairer: if damages have been reported and the insurance has been
validated, a damage assessment will have been performed within 2 days

– C4: repairer to customer: if the insurance has been validated and the car was dam-
aged, then the car will have been repaired within 8 days

3 Note there is an ‘implied’ commitment from insurer to customer: if the insurance has been
validated and the car was damaged, then the car will have been repaired.

Monitoring Interaction in Organisations 27

– C5: insurer to customer: if the premium has been paid, then the insurance will have
been validated within 8 days

Hence, formally, we have a set of social commitments as follows. Note that we specify
relative deadlines for the consequent of commitments using the notation +x to indicate
x days after the antecedent becomes true. ∅ indicates an absence of a deadline.

– C1 = C(Insurer,Repairer, insurance-validated ∧ repair-reported, assessment-approved
∧payment-done, ∅,+7)

– C2 = C(Insurer, Assessor, assessment-done, assessment-paid, ∅,+5)
– C3 = C(Assessor,Repairer, damages-reported ∧ insurance-validated, assessment-done, ∅,+2)
– C4 = C(Repairer,Customer, insurance-validated ∧ car-damaged, car-repaired, ∅,+8)
– C5 = C(Insurer,Customer, premium-paid, insurance-validated, ∅,+8)

In the scenario, the car owner reports an accident to her insurance company, and takes
the car to a garage. On certification that the insurance is valid (because the customer has
paid the insurance premium), the repair garage accepts the damaged car and contacts
the assessor. Since the insurance is valid, the repair garage commences the repair. The
assessor reports to the insurance company, which approves the assessment of damage
and pays the assessor for its work. The repair garage reports to the insurance company
when it has completed the repair, and with the approval of the insurer, the garage then
tells the customer that the car is ready. The insurer pays the repair garage.

Consider now a set of agent actions corresponding to this scenario. These actions
are manifest in communication actions, and the impact of the actions upon the commit-
ment store. The trace in Table 1 begins with the offers that create the five commitments.
Column Rule gives the Counts-as Rule. We abbreviate the logical propositions by their
initials, e.g., pp for premium-paid. In line 6, the customer proves payment of the insur-
ance. In line 9, she reports car damage. In line 14, the garage has completed the repair.
In line 17, the garage tells the customer the car is ready.

5 Properties

The propositions in this section show various kind of properties following from our
approach and operational semantics. We describe them but leave the proofs and further
formalization for future work.

5.1 Temporal Properties

We study first temporal properties, i.e., the dynamics of the commitment states. These
properties illustrate that the commitment states follow the commitment lifecycle in
Fig. 1. In this subsection, we assume that each offer(x, y, p, q, d1, d2) is done with
unique p and q, such that there is no interference. We discuss the lifting of this as-
sumption in the following subsection.

We begin by stating continuity properties about conditional and detached commit-
ments: they hold until they are fulfilled or the deadline is reached. We use Linear Time
Logic LTL with the release operator, not to be confused with the release communica-
tion action of Section 2.1: φ releases ψ if ψ is true until the first position in which φ is
true (or forever if such a position does not exist). We assume execution traces to be fair.

28 M. Dastani, L. van der Torre, and N. Yorke-Smith

Ta
bl

e
1.

E
xe

cu
ti

on
tr

ac
e

in
ca

r
in

su
ra

nc
e

sc
en

ar
io

St
ep

A
ge

nt
C

om
m

un
ic

at
io

n
A

ct
T

im
e

R
ul

e
In

st
it

ut
io

na
lS

ta
te

B
ru

te
Fa

ct
s

0
–

–
0

–
{}

{}
1

I
of

fe
r(

I,
R
,i

v
∧

rr
,a

a
∧

pd
)

1
1

{C
C 1
}

{}
2

I
of

fe
r(

I,
A
,a

d,
ap
)

2
1

{C
C 1
,C

C 2
}

{}
3

A
of

fe
r(

A
,R

,d
r
∧

iv
,a

d)
3

1
{C

C 1
,C

C 2
,C

C 3
}

{}
4

R
of

fe
r(

R
,C

,i
v,

cr
)

4
1

{C
C 1
,C

C 2
,C

C 3
,C

C 4
}

{}
5

I
of

fe
r(

I,
C
,p

p,
iv
)

5
1

{C
C 1
,C

C 2
,C

C 3
,C

C 4
,C

C 5
}
{}

6
C

do
(C

,p
p)

6
3

{C
C 1
,C

C 2
,C

C 3
,C

C 4
,C

D 5
}{

p
p
}

7
C

do
(I

,i
v)

7
5

{C
C 1
,C

C 2
,C

C 3
,C

C 4
,C

S 5
}
{iv

,p
p
}

8
–

–
8

–
{C

C 1
,C

C 2
,C

C 3
,C

C 4
,C

S 5
}
{c
d
,i
v
,p
p
}

9
C

te
ll

(C
,R

,i
v
∧

cd
)

9
2

{C
C 1
,C

C 2
,C

C 3
,C

D 4
,C

S 5
}
{c
d
,i
v
,p
p
}

10
R

te
ll

(R
,A

,d
r
∧

iv
)

10
2

{C
C 1
,C

C 2
,C

D 3
,C

D 4
,C

S 5
}
{c
d
,d
r,
iv
,p
p
}

11
A

do
(A

,a
d)

12
5

{C
C 1
,C

C 2
,C

S 3
,C

D 4
,C

S 5
}

{a
d
,c
d
,d
r,
iv
,p
p
}

12
A

te
ll

(A
,I

,a
d)

12
2

{C
C 1
,C

D 2
,C

S 3
,C

D 4
,C

S 5
}
{a

d
,c
d
,d
r,
iv
,p
p
}

13
I

te
ll

(I
,A

,a
p)

16
4

{C
C 1
,C

S 2
,C

S 3
,C

D 4
,C

S 5
}

{a
d
,a

p
,c
d
,d
r,
iv
,p
p
}

14
R

do
(R

,r
r)

16
3*

{C
C 1
,C

S 2
,C

S 3
,C

D 4
,C

S 5
}

{a
d
,a

p
,c
d
,d
r,
iv
,p
p
,r
r}

15
R

te
ll

(R
,I

,i
v)

17
2*

{C
D 1
,C

S 2
,C

S 3
,C

D 4
,C

S 5
}

{a
d
,a

p
,c
d
,d
r,
iv
,p
p
,r
r}

16
I

te
ll

(I
,R

,a
a)

17
4*

{C
D 1
,C

S 2
,C

S 3
,C

D 4
,C

S 5
}

{a
a
,a

d
,a
p
,c
d
,d
r,
iv
,p
p
,r
r}

17
R

te
ll

(R
,C

,c
r)

18
2

{C
D 1
,C

S 2
,C

S 3
,C

S 4
,C

S 5
}

{a
a
,a

d
,a
p
,c
d
,c
r,
d
r,
iv
,p
p
,r
r}

18
I

do
(I

,p
d)

21
5*

{C
S 1
,C

S 2
,C

S 3
,C

S 4
,C

S 5
}

{a
a
,a

d
,a
p
,c
d
,d
r,
iv
,p
d
,p
p
,r
r}

Monitoring Interaction in Organisations 29

Proposition 1. If the organisation updates the institutional facts based on the per-
formed communication action as follows:

– offer(x, y, p, q, d1, d2), then p ∨ q ∨ d1 releases Cc(x, y, p, q, d1, d2).
– if tell(y, x, p), and Cc(x, y, p, q, d1, d2) holds, then ¬d1 ∧ p → (q ∨ d2) releases
Cd(x, y, p, q, d1, d2)

– if we have do(y, p), and Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ p holds, then q ∨ d2 releases
Cd(x, y, p, q, d1, d2)

Second, we can state continuity properties about reaching termination states: each con-
ditional and detached commitment state will lead to precisely one termination state.

Proposition 2. For any commitment, we have at most one of Cc(x, y, p, q, d1, d2),
Cd(x, y, p, q, d1, d2), Cs(x, y, p, q, d1, d2), Cvc(x, y, p, q, d1, d2), Cvt(x, y, p, q, d1, d2),
Ce(x, y, p, q, d1, d2), and Ct(x, y, p, q, d1, d2) true at any time. ��
Third, we can state continuity properties about some of the termination states: once they
are true, they will stay true. This does not hold for the violation states, as the violation
will be removed once the sanction is applied.

Proposition 3. If Cs(x, y, p, q, d1, d2), Ce(x, y, p, q, d1, d2), or Ct(x, y, p, q, d1, d2)
hold, then they will hold forever. ��
Further temporal properties can be defined to illustrate that the operational semantics
behaves according to the commitment lifecycle in Fig. 1. Since the characterization
of these properties is relatively straightforward, we turn here to two other classes of
properties which can be defined for our operational semantics.

5.2 Interference

Figure 1 is a bit misleading in the sense that in practice there is not a single commitment
cycle at the same time, but many of them operate in parallel. In this section we consider
whether one commitment cycle can affect another one; we call this interference. We
now consider the lifting of the assumption that each offer(x, y, p, q, d1, d2) is done with
unique p and q. For example, consider the situation where an agent i makes two consec-
utive offer statements, offer(i, j, s(b,i), p(b,20), t2, t5) and offer(i, j, t(b,i), p(b,20), t2, t5).

Proposition 4. If the organisation updates the institutional facts based on a performed
communication action tell(y, x, p) or an action do(y, p), then it can detach or satisfy
multiple commitments at once. ��

Example 1. Assume the organisation updates the institutional facts based on the follow-
ing actions: offer(i, j, s(b,i), p(b,20), t2, t5), offer(i, j, t(b,i), p(b,20), t2, t5), do(j, s(b,i)),
and do(j, t(b,i)). This leads to two detached commitments, namely
Cd(i, j, s(b,i), p(b,20), t2, t5) and Cd(i, j, t(b,i), p(b,20), t2, t5). Performing do(i, p(b,20))
by agent i will now move both detached commitments to satisfied commitments, i.e.,
agent i de-commits itself by paying 20 euro instead of 40 euro.4 ��

4 Another similar example is when an agent makes two offers that differ only in the deadlines. In
that case, the commitment with the earlier deadline ‘subsumes’ the one with the later deadline.

30 M. Dastani, L. van der Torre, and N. Yorke-Smith

This example illustrates that the agents must be careful to distinguish propositions. In
this case, the agents should syntactically distinguish the two propositions referring to
pay 20 euro, and it is left to the agent to prevent this undesired interference.

5.3 Redundancy

Redundancy properties concern communication actions that, if omitted as part of a se-
quence of communication actions, do not change the final set of institutional facts [3].
We confine ourselves to an example of a redundancy property, as follows.

Consider a sanction system where agents are blacklisted regardless of the commit-
ment they violated, i.e., containing the following two rules:

Cvt(x, y, p, q, d1, d2) =⇒sr addy,BL

Cvc(x, y, p, q, d1, d2) =⇒sr addy,BL

In the context of our running example, we say that an offer is blacklist redundant if it
does not change the situations in which an agent will be blacklisted. Given a sequence of
offers, which offers can be made in addition which are in this sense blacklist redundant?

Proposition 5. – If Cc(x, y, p, q, d1, d2), then offer(x, y, p ∧ r, q, d1, d2) is blacklist
redundant. If I have offered you that if you do p I will do q, then it is redundant to
offer you that if you do p ∧ r then I will do q, under the same conditions.

– If Cc(x, y, p, q∧r, d1, d2), then offer(x, y, p, q, d1, d2) is blacklist redundant. If I have
offered you that if you do p I will do q ∧ r, then it is redundant to offer you that I will
do q, under the same conditions.

– If Cc(x, y, p, q, d1, d2)∧Cc(x, y, r, q, d1, d2), then offer(x, y, p∨r, q, d1, d2) is black-
list redundant. If I have offered you that if you do p I will do q, and if you do r I will
do q, then it is redundant to offer you that if you do p ∨ r then I will do q, under the
same conditions.

– If Cc(x, y, p, q, d1, d2)∧Cc(x, y, p, r, d1, d2), then offer(x, y, p, q∧r, d1, d2) is black-
list redundant. If I have offered you that if you do p I will do q, and if you do p I will
do r, then it is redundant to offer you that I will do q ∧ r, under the same conditions.

The redundancy properties give some deeper insight in the system, but they depend
on the sanctioning system adopted by the organisation. The above properties still hold
when the sanction system does not depend on the actual commitment that is violated,
but only that some commitment has been violated. Another way of reasoning says that
the sanction depends only on q—not on p, the agents x and y, or the deadlines. This
yields a subset of the above properties. A further refinement is to assume relations
among sanctions. For example, a sanction for violating the offer to do p should not be
more than that for violating the offer to do p ∧ q. We leave this matter for future work.

6 Related Work and Discussion

The idea of non-communicative actions and the enforcement of sanctions by monitor-
ing the state of commitments is something common in the agent literature. The schema

Monitoring Interaction in Organisations 31

of our model is standard when dealing with commitments in agents organizations: orga-
nizations consist of facts, norms, commitments and sanction, the agents can perform a
set of actions which lead to the creation of commitments, and these commitments have
rules in form of count-as rules and when the commitments are violated, sanctions apply
[20,11,17,14,15,19,8,16,4,1,9,18,10].

Moreover, formalizations are often based on a lifecycle for commitments using an
operational semantics. However, the aim is typically to give a semantics for a large
variety of speech acts, for example for propose or request, and they therefore have
to define their semantics in considerable detail. Further still, the trend is to make the
languages ever more complex, for example by introducing higher order commitments,
meta-commitments [22], embedded temporal regulations [1], goal of organizations,
other norms than commitment-based ones, and so on.

Building on earlier work [11,14], Fornara et al. [15] propose an ACL based on com-
munication actions. They define norms as “rules that manipulate commitments of the
agents engaged in an interaction” and thus, unlike our work, define norms as event-
driven rules and provide a more limited operational semantics. Our work is further
distinguished in generality since we can define a range of operational semantics by
changing the constitutive norms. Our purpose is not to define an ACL but to establish
how norms are be operationalized in an organisation setting.

Compared to earlier works, our approach differs in the following regards. First, we
use counts-as rules explicitly as technical constructs while Fornara et al. [14], for in-
stance, treat counts-as relation primarily as linguistic conventions. Note that counts-as
rules in our work can be seen as defeasible rules. Second, we provide an operational se-
mantics for interactions (among which communication actions) within an organisational
setting. Fornara et al. provide semi-formal specification of organisations and consider
only communication actions. Further, we analyze the properties of interaction within an
organisational setting. Third, we consider the effect of non-communicative actions as
well as the elapse of deadlines. Fourth we have sanction rules while earlier works leave
open the question of what should happens when commitments are violated. Fifth, in
contrast to some works, we adopt a contemporary lifecycle of commitments, following
Chopra and Singh [10] and precedents.

These last authors are interested in simplifying the specification of commitment-
based protocols or requirements. Our aim is in line with the latter paper [10], and the
two approaches are orthogonal. Chopra and Singh capture business requirements with
commitment-based specifications, and then group these specifications into reusable
methods. They consider protocol enactment but not the organisational setting, which
is our focus. By contrast, we do not aim to directly model business requirements, but
start from the lifecycle of commitments and define a minimal language to make all
possible changes to the commitment base.

An alternative approach, that aims for the same level of genericity as we pursue, uses
deontic-inspired specifications that are monitored and enforced, such as the recent work
of Álvarez-Napagao and colleagues [13]. An interesting discussion for the future is to
compare our commitment-based approach versus a deontic-inspired approach.

32 M. Dastani, L. van der Torre, and N. Yorke-Smith

7 Future Work

Our on-going work is to characterise the properties of the operational semantics and to
prove them. In this paper, we considered two principal communication actions: offer
and tell. Alternative semantics can be defined for these actions using other constitutive
rules, and compared to the ones we defined. Moreover, our model can be extended to
a wider range of communication actions and provide their semantics in terms of social
commitments. Extending the set of communication actions should be done carefully
since commitments may create unwanted interferences.

Second, commitments, as we have adopted them, possess special slots for deadlines.
Alternatively, as proposed by Marengo et al. [18], the deadline could be part of the
propositional content (the antecedent and consequent) of the commitment. In that case,
the deadline would not have a special status. For example, we could express the com-
mitment that the insurer will have paid the assessment within 7 days, and (further)
approved it within 14 days. Whether such composite commitments can be expressed by
several commitments in our language, and in general the advantages and disadvantages
of the two definitions from the point of view of the organisational setting, is left for
further research.

Third, we considered here generic counts-as rules that were designed based on the
semantics of specific communication actions (i.e., offer and tell). A possible exten-
sion would be to investigate the interaction between such generic counts-as rules and
domain-specific counts-as rules representing domain-specific norms. For example, we
can consider norms such as “buying a book while having no money on a credit card
counts-as a violation”.

Fourth, a further issue not considered in this paper is the role of interaction protocols
in agents’ interactions. The representation of an organisation could be enriched with—
in addition to counts-as and sanction rules—interaction protocols that constrain the
order of communication actions.

Finally, the dynamics of organisations is an important topic which we have not
treated here. We think there is potential in exploring a mechanism to dynamically
change the rules of the constitutive norms and sanctions [6,5].

8 Summary

This papers focuses on the use of social commitments as institutional facts. The life-
cycle of these commitments can be managed by an organisation based on agents’ in-
teractions, and thus the commitments play a role in coordination of agents and their
interaction, through the monitoring and enforcement processes of the organisation.

The state of an organisation consists of brute and institutional facts, a set of counts-as
rules, and a set of sanction rules. In addition, we define the closure of a set of proposi-
tions under a set of rules. Then we introduce an operational semantics using four tran-
sition rules. The first transition rule defines the interaction between two agents through
communication actions, the second specifies the performance of non-communicative
actions, the third defines the change by the internal mechanism of the environment,
such as the state of the clock, and the fourth ensures that the organisation imposes sanc-
tions when commitments are violated. We define a multiagent system execution as a

Monitoring Interaction in Organisations 33

sequence of states of the organisation, where each transition is derived by applying one
of the four transition rules.

We define a normative organisation using six actions of the agents: conditional of-
fers to make something true (offer), telling that something is true (tell), performing an
action to make something true (do), cancelling one’s own offer to make something true
(cancel), cancelling someone else’s offer to make something true (release), and inform-
ing that something cannot be made true (failure). In addition, we define seven states for
commitments: Null, Conditional, Detached, Expired, Terminated, Satisfied, and Vi-
olated. We introduce thirteen counts-as rules specifying the lifecycle of commitments
based on communication actions, non-communicative actions, and deadline expirations.
In addition, we give two examples of sanction rules.

We illustrate the operational semantics and the normative organisation using an in-
surance claim process. We define five commitments, from insurer to repairer, from in-
surer to assessor, from assessor to repairer, from repairer to customer, and from insurer
to customer. An execution trace of seventeen actions and one deadline expiration illus-
trates how these commitments change over time.

We discuss temporal properties, interference, and redundancy. First, the temporal
properties are the usual specification and verification properties defined for operational
semantics. Second, the interference properties refer to the possible interaction between
offers. For example, can a single communication act detach multiple commitments?
Third, the redundancy properties, which are more involved than temporal and interfer-
ence properties, give a form of implicit logical relations between the communication
actions. We consider a sanction system where agents are blacklisted regardless of the
commitment they violated, and we show, for example, that weaker commitments and
some conjunctions of commitments are blacklist redundant.

Our approach presents a generic methodology that can be applied to different sets of
counts-as rules: for instance, variants of Fig. 2 that reflect variants of the commitment
lifecycle, e.g., if conditional commitments are created only after explicit acceptance by
the creditor. It further can permit constitutive norms that change dynamically.

Acknowledgements. We thank the referees for their constructive comments, and the
participants of the COIN’12 workshop at AAMAS’12 for the discussions.

References

1. Baldoni, M., Baroglio, C., Marengo, E.: Behavior-oriented commitment-based protocols. In:
Proc. ECAI, pp. 137–142 (2010)

2. Billhardt, H., Centeno, R., Cuesta, C.E., Fernández, A., Hermoso, R., Ortiz, R., Ossowski,
S., Pérez-Sotelo, J.S., Vasirani, M.: Organisational structures in next-generation distributed
systems: Towards a technology of agreement. Multiagent and Grid Systems 7(2-3), 109–125
(2011)

3. Boella, G., Broersen, J., van der Torre, L.: Reasoning about Constitutive Norms, Counts-As
Conditionals, Institutions, Deadlines and Violations. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.)
PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 86–97. Springer, Heidelberg (2008)

4. Boella, G., Damiano, R., Hulstijn, J., van der Torre, L.: A common ontology of agent commu-
nication languages: Modelling mental attitudes and social commitments using roles. Applied
Ontology 2(3-4), 217–265 (2007)

34 M. Dastani, L. van der Torre, and N. Yorke-Smith

5. Boella, G., Pigozzi, G., van der Torre, L.: Normative framework for normative system
change. In: Proc. AAMAS, pp. 169–176 (2009)

6. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative multiagent
systems. In: Proc. KR, pp. 255–266 (2004)

7. Bulling, N., Dastani, M.: Verification and implementation of normative behaviours in multi-
agent systems. In: Proc. IJCAI 2011, pp. 103–108 (2011)

8. Carabelea, C., Boissier, O.: Coordinating agents in organizations using social commitments.
Electronic Notes in Theor. Comp. Sci. 150(3), 73–91 (2006)

9. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Modeling and Reasoning about
Service-Oriented Applications via Goals and Commitments. In: Pernici, B. (ed.) CAiSE
2010. LNCS, vol. 6051, pp. 113–128. Springer, Heidelberg (2010)

10. Chopra, A.K., Singh, M.P.: Specifying and applying commitment-based business patterns.
In: Proc. AAMAS, pp. 475–482 (2011)

11. Colombetti, M.: A commitment-based approach to agent speech acts and conversations. In:
Proc. Workshop on Agent Languages and Communication Policies, pp. 21–29 (2000)

12. Dastani, M., Grossi, D., Meyer, J.-J.C., Tinnemeier, N.: Normative Multi-agent Programs
and Their Logics. In: Meyer, J.-J.C., Broersen, J. (eds.) KRAMAS 2008. LNCS, vol. 5605,
pp. 16–31. Springer, Heidelberg (2009)

13. Felipe, L.O., Álvarez-Napagao, S., Vázquez-Salceda, J.: Towards a framework for the anal-
ysis of regulative norm performance in complex networks. In: Proc. of 1st Intl. Conf. on
Agreement Technogolies (AT 2012), pp. 103–104 (October 2012)

14. Fornara, N., Colombetti, M.: A commitment-based approach to agent communication. Ap-
plied Artificial Intelligence 18(9-10), 853–866 (2004)

15. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial institutions.
Autonomous Agents and Multi-Agent Systems 14, 121–142 (2007)

16. Kibble, R.: Speech acts, commitment and multi-agent communication. Computational and
Mathematical Organization Theory 12, 127–145 (2006)

17. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving Commitments among Autonomous Agents.
In: Dignum, F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 166–182. Springer, Hei-
delberg (2004)

18. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A.K., Patti, V., Singh, M.P.: Commitments
with regulations: Reasoning about safety and control in REGULA. In: Proc. AAMAS, pp.
467–474 (2011)

19. Pasquier, P., Chaib-draa, B.: Integrating Social Commitment-Based Communication in Cog-
nitive Agent Modeling. In: Dignum, F.P.M., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS
(LNAI), vol. 3859, pp. 76–92. Springer, Heidelberg (2006)

20. Singh, M.P.: A Social Semantics for Agent Communication Languages. In: Dignum, F.,
Greaves, M. (eds.) Issues in Agent Communication. LNCS, vol. 1916, pp. 31–45. Springer,
Heidelberg (2000)

21. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business models.
IEEE Trans. Services Computing 4 (2011)

22. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols. Au-
tonomous Agents and Multi-Agent Systems 2(3), 217–236 (1999)

Reasoning over Norm Compliance via Planning

Sofia Panagiotidi1, Javier Vázquez-Salceda1, and Frank Dignum2

1 Universitat Politècnica de Catalunya, Spain
{panagiotidi,jvazquez@lsi.upc.edu}
2 Utrecht University, The Netherlands

dignum@cs.uu.nl

Abstract. Norms are a way to provide some flexibility to the speci-
fication of acceptable actor behaviour in a shared context. Instead of
viewing norms as static restrictions over an agent’s conduct (and auton-
omy), the full power of normative specifications comes when norms are
seen as guidelines that agents can use in their decision-making. In liter-
ature there is a lot of work on norm theories, models and specifications
on how agents might take norms into account when reasoning, but many
of them focus on the goal or intention selection and few of them apply
the norms into the agent’s plan generation. In this paper we present a
norm-oriented agent that takes into consideration operationalised norms
during the plan generation phase, using them as guidelines to decide the
agent’s future action path. In our work norms can be obligations or pro-
hibitions which can be violated, and are accompanied by repair norms
in case they are breached. To make norms influence plan generation,
our norm operational semantics is expressed as an extension/on top of
STRIPS semantics, acting as a form of temporal restrictions over the
trajectories (plans) computed by the planner. In combination with the
agent’s utility functions over the actions, the norm-aware planner com-
putes the most profitable trajectory concluding to a state of the world
where the effects of all the active norms have been explored, including
the repair norms. We use a simplified fire emergency scenario in order
to demonstrate the usefulness of the framework, integrating the norm-
aware planner to 2APL agent architecture. We depict possible outcomes
depending on criteria such as time and danger.

Keywords: normative systems, decision making, reasoning, planning.

1 Introduction

In the last decade, computational systems have become more and more complex
resulting in highly complicated interconnected networks. Agent-oriented mod-
els, techniques and methodologies provide some ways to tackle the complexity
in distributed (software) systems. But as systems grow to include hundreds of
components, the agent metaphor alone is not enough, and the need to design so-
cial or organisational autonomous models on top where the members’ behaviour
is somehow regulated in order to produce desirable and avoid undesirable situ-
ations becomes stronger.

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 35–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

36 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

A traditional way of dealing with possible deviations from desired behaviour
is applying hard constraints to the agents. Still, this might lead to exponen-
tially large numbers of decision paths and most of the times such a hard coded
modelling leads to rigid and complex agent specification. For example, while it is
possible for a firefighter agent to allow a restriction “whenever there is a fire, call
reinforcements before entering the building”, it might not always be the desired
thing to do and under some specific circumstances (if for example the nearest
fire station is far, implying that the reinforcements might take too long to arrive)
one might desire to deviate from such a restricting measure. On the other hand,
modern approaches ensuring appropriate individual entities’ behaviour in dis-
tribute systems, which comes from multi-agent systems research, use norms (or
regulations or policies) and/or communication protocols to express a different
layer of desired or undesired states. From the individual’s perspective, an agent
needs to be able to function in an environment where norms act as behavioural
restrictions or guidelines over what is appropriate, not only for the individual
but also for the community.

While the very notion of agent autonomy refers to the ability of individual
agents to determine their own actions, plans and beliefs and, to the capability
of an agent to act independently, exhibiting control over its own internal state,
it is not always clear how norms affect an agent’s autonomy. In this paper we
try to tackle and provide a practical solution to the following question:

“How to model an agent that is able to take the environment’s normative in-
fluence into account in its decision-making?”

Given the above, we take our previous work [13] a step further and suggest that
decision making in a normative environment can be implemented via a extended
planning mechanism. The mechanism, integrated into an agents deliberation
cycle, produces and at the same time evaluates the plans. In possession of a
set of norms which can be seen as indications over desired behaviour of the
agent and an objective, and taking into account the current state of affairs, it
computes the most beneficial way to achieve its objective, that is, what sequence
of actions should be followed in order to reach it gaining at the same time optimal
cost/benefit though fulfilling or ignoring obligations and prohibitions.

The rest of the paper is structured as follows. In Section 2 we detail a mo-
tivating example which later will be used in order to provide implementational
details. In Section 3 we describe the proposed architecture of an agent and the
agent lifecycle and the tools used in order to integrate the normative planner
into the agent platform. A formalisation of the planning and normative model
is provided in Sections 4) and 5). The implementation details of the normative
agent and the implementation of the scenario and the simulation outcomes are
explained Section 7.

Reasoning over Norm Compliance via Planning 37

2 Example

The example follows a simple scenario where a building is on fire and the fire-
fighters are called to help. The main firefighter arrives at the entrance. The envi-
ronment (see the small graphics window inside Figure 5) consists of six doors in
two corridors, the rooms behind which are on fire. In order to be able to extin-
guish a fire in a room, the door to that room needs to be open. The topographic
knowledge is known to the agent, i.e. which door is next to which and where
the entrance is located with reference to the doors. The agent can move freely
from the entrance to the doors and back. The goal of the agent is to try and
extinguish all the fires behind the doors while keeping the risk of getting injured
during the operation as low as possible. The urgency of such realistic scenario
lies on the fact that there could be victims that need to be saved behind the
doors, still, for simplicity reasons we avoid modelling them.

One norm is put into force under these circumstances. Whenever the agent
is about to enter a building on fire, he must be accompanied by reinforcements.
More specifically, because the opening of a door produces a substantial amount
of danger, the agent should make sure to be accompanied before any doors are
opened. In the opposite case, a second norm is put into force, that is, his ranking
position gets lowered (the ranking represents some rewarding bonus expressing
the braveness of the firefighters and thus making it desirable to maintain it high).

We introduce three factors that make the example realistic and at the same
time serve as parameters that the planner will take into account.

– time increases with every action that the agent performs. Additionally,
whenever reinforcements are called, it always takes them some time to arrive
to the spot.

– The personal risk (danger) of the agent increases with every action that
the agent performs since time is passing by and the risk of getting hurt by
a constantly increasing fire is bigger. Whenever the agent opens a door, his
personal risk increases, still when he is accompanied by reinforcements this
increase is less than when he is alone.

– The agent starts with an initial ranking level.

The objective is to have an agent operating in such an environment and addi-
tionally being able to come up with plans over how to fulfil the goal while at the
same time keeping the combined value of the three factors as low as possible.

In order to create a more realistic simulation, we designed the environment
to include some factors that the agent is unaware of. This results in different
outcomes for similar scenarios. One such factor is that the agent always runs
a random risk of dying when opening a door while being alone. This change is
relatively small, but it still leads to cases where the simulation ends without the
expected outcome. Furthermore, the environment might unexpectedly notify the
agent about the danger of being inside the building getting too severe. In this
case, the agent will need to make sure to take this information under considera-
tion, dropping the plan and the goals and replanning taking the new information
into account.

38 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

3 Architecture

As we mentioned in section 1, unlike most frameworks, our approach takes into
consideration the norms during the planning phase, this is what we call “norm-
oriented planning”. To do this, we introduce in the agent’s deliberation cycle
(more concretely in its practical reasoning step) a norm-aware planning compo-
nent that can create plans influenced by the norms.

We have chosen 2APL [2] as the basis for our norm-aware agents. 2APL
is a modular BDI-based agent programming language. At the individual agent
level, 2APL agents are implemented in terms of beliefs, goals, actions, plans,
events, and three types of rules (to generate plans for achieving goals, to process
-internal and external- events and received messages, to handle and repair failed
plans). The beliefs and goals of 2APL agents are implemented in a declarative
way, while plans and (interfaces to) external environments are implemented in an
imperative programming style. 2APL agents can perform different types of ac-
tions such as belief update actions, belief and goal test actions, external actions
(including sense actions), actions to manage the dynamics of goals, and com-
munication actions. Plans consist of actions that are composed by a conditional
choice operator, iteration operator, sequence operator, or non-interleaving oper-
ator. It should be noted that a 2APL agent can observe an environment either
actively by means of a sense action or passively by means of events generated
by the environment.

The execution of an individual 2APL agent program is realised by a cyclic
sense-reason-act process (deliberation process) including five steps: 1) Rules are
checked and any new plans produced are added to the plan list. 2) Execution of
the first action of each plan. After these actions, goals are queried in the belief
base. Valid goals in the base are considered achieved and are removed from
the goal base and any plan triggered by this goal is removed. 3) Processing of
external events. 4) Handling of failed plans. 5) Processing of external messages

In our architecture (Figure 1) we have modified the way the deliberation
process handles plans. While standard 2APL uses pre-computed plans, in our
architecture 2APL requests plans dynamically to a planner. We have chosen
Metric-FF, a domain independent planning system, as the basis for our nor-
mative planner. Metric-FF can deal with problems expressed in PDDL 2.1 level
2, combined with ADL [6]. Metric-FF can handle effects and constraints on lin-
ear functions over numerical state variables and favours minimisation of a given
cost function. It uses Enforced hill-climbing (EHC), a heuristic search strategy,
as the base search method. The algorithm combines Hill-climbing with system-
atic breadth first search. Unlike standard Hill-climbing it is enforced that the
successor picked at the current state at each stage of the search is one that
is better than the current state. Enforced Hill-Climbing solves the problem of
local maxima by switching to breadth-first search if it gets trapped in a local
maximum.

For the Metric-FF planner to be able to use the environment norms and
the agent’s beliefs and goals, we need to properly include them into the plan-
ner’s inputs. The next sections explain the details of the norm-oriented planning

Reasoning over Norm Compliance via Planning 39

Fig. 1. 2APL Planner Architecture

semantics and how this is used in real-time scenarios. In sections 4 and 5 we
adapt our norm semantics to the planner, and in section 6 we translate also the
agent beliefs and goals into PDDL.

4 STRIPS Planning

In our work we use a situation calculus formalisation of STRIPS. Furthermore,
we extend STRIPS with additional normative elements (see Section 5) in order
to allow for normative reasoning within the planning process. In this section, we
briefly describe the semantics of STRIPS [4].

Definition 1. We define F as set of fluents F = {f1, f2, . . . , fm} where fluent
fi is an atomic proposition (propositional property).

The state of the world is defined in terms of fluents that hold at the particular
situation. We define a state to be a (possibly empty) subset of F, i.e. a state is
represented by the set of fluents that are true in it. The fluents not in the state
are assumed false.

Each combination of fluents forms a different state, and the union of all the
states is a set of states as in Definition 2.

Definition 2. We define S to be the state domain (set of all states) occurring
from F as S = 2f .

Definition 3. Having a set of fluents F as in Definition 1, we define A to be a
set of domain actions (actions with pre and postconditions) A={α1, α2, . . . , αn}
where αi =< Cpreci , Cposti > and Cpreci , Cposti are sets of fluents or negated
fluents from F . Since states are represented by sets of conditions, the transition
function �−→ relative to a domain instance < F,A > is a function �−→: S×A →

40 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

S where S is the state domain S occurring from F . If σ1, σ2 ∈ S and α ∈ A
and �−→ (σ1, α) = σ2 then we write σ1

α�−→ σ2. The transition function can be
defined as follows, using the simplifying assumption that actions can always be
executed but have no effect if their preconditions are not met:

– �−→ (σ,< Cpreci , Cposti >) is σ ∪ {all m where m belongs to Cposti}\{all
fluents l where ¬l belongs to Cposti} if {every fluent j in Cpreci belongs in
σ} and {every fluent k where ¬k in Cpreci does not belong in σ}

– σ otherwise

The function �−→ can be extended to sequences of actions by the following recur-
sive equations:

σ
[]�−→= σ

σ
[α1,α2,...,αn]�−→ = σ

α1�−→[α2,...,αn]�−→

Definition 4. A goal g is a pair < P,R >, where P and R specify which fluents
are true and false, respectively, in order for a state to be considered a goal state.

In order to proceed to the definition of a plan, we assume the existence of an
initial state σ0 where σ0 ∈ S. Then:

Definition 5. A plan is a sequence of actions such that the state that results
from executing the actions in order from the initial state satisfies the goal con-
ditions. Formally, [α1, α2, . . . , αn] is a plan for goal g =< P,R > if the state
σ′ = �−→ (σ0, [α2, . . . , αn])) is such that P ⊆ σ′ and R ∩ σ′ = ∅.

The above means that the state reached by the execution of the actions α1, . . . , αn

should lead to a state which satisfies the specification of the goal.

5 Normative Model

As explained in Section 1, our motivating force is how to deal with decision
making and planning within normative environments. How can we represent
domain knowledge and the normative influence so that the agent simulates a
“natural” planning process? When might an agent decide to violate a norm?
Could it predict this based on the available actions and preferences?

Using the domain elements of the STRIPS semantics (fluents, actions, states,
goals, plans) we include norms as the additional elements that will lead to the
definition of our normative model. In brief, the norms are expressed on top of
STRIPS, acting as a complicated form of restrictions over the trajectories (plans)
computed by the planner. In combination with utility functions over the actions,
the system computes the most profitable trajectory concluding to a state of the
world where no norms awaiting settlement exist.

Reasoning over Norm Compliance via Planning 41

5.1 Norms

To ease operationalisation, our norm representation is a tuple containing a deon-
tic statement and the conditions for norm activation, deactivation and violation.
The deontic operator of the deontic statement expresses the deontic “flavour” of
the norm (in our case obligation or prohibition) and thereby establishes whether
an agent should attempt to fulfil the norm or on the contrary avoid the prohi-
bition. The activation, maintenance and deactivating conditions are specified as
(partial) state descriptions, denoting the conditions that express when the norm
gets activated, violated and deactivated. They add operational information to
the norm, to simplify the verification and enforcement of the norm. They work
as follows1:

– The activation condition specifies when a norm becomes active, i.e the state
of affairs in which the norm is triggered (and must henceforth be checked
for completion/violation);

– The deactivating condition specifies when the norm has been deactivated,
i.e. has no longer normative force.

– The maintenance condition is needed for checking violations of the norm;
it expresses the state of affairs that should hold all the time between the
activation and the deactivation of the norm.

In essence, when a norm has been activated, has not yet expired and the main-
tenance condition is not fulfilled, a violation of the norm happens. Whenever a
norm is violated, the norm continues to be active but in addition a norm vio-
lation triggers the activation of a new norm (a repair norm). This happens by
including the “violation” of the original norm in the activating condition of the
repair norm. Finally, a norm might have several active instances at the same
time [11]. Below we define the set of norms N :

Definition 6. Given a set of fluents F as in Definition 1 we define N to be a set
of norms N = {N1, N2, . . . , Nv} where Ni = {id, type, Cact, Cdeact, Cmaint} and
id is an identificator, type is in {obligation, prohibition} and Cact, Cdeact, Cmaint

are sets of fluents or negated fluents from F .

5.2 Definition of Normative Model

We define our normative model below.

Definition 7. A normative model is a tuple M = (F,A,N) where F is a set
of fluents as defined in Definition 1, A is the set of domain actions (labels) as
in Definition 3 and N a set of norms as defined in Definition 6.

In order to be able to know whether a norm is active or violated, it is not enough
to be aware of the current state of affairs. An additional knowledge concerning
the norm status at previous states is required. For example, in order to derive

1 The operational semantics follow our previous work on norm lifecycle semantics [11].

42 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

that a norm gets deactivated one needs to know not only that the deactivation
condition holds at a specific state but also that the norm was active previously.
Therefore, such properties need to be defined with respect to an entire sequence
of states (trajectory path) visited during the execution of a plan, starting from
an initial point.

Definition 8. Given a set of actions A, a plan π = [α1, α2, . . . , αn] and an
initial state σ0, π generates the trajectory < σ0, σ1, . . . , σn > iff for every 1 ≤
i ≤ n: σi

αi�−→ σi+1

We define Fext as Fext = F ∪ {act(N), deact(N),maint(N),
active(N), violated(N)} where act, deact,maint are special additional fluents
indicating the activating, deactivating, maintenance and violation deactivation
conditions of a norm N and active, violated are fluents indicating the state of the
norm (whether it is active or not and whether it is violated). As explained, the
entailment for the norm lifecycle properties is defined with respect to a trajectory
path produced by a plan in Definition 9.

Definition 9. The interpretation of the entailment for the norm lifecycle in M
over a trajectory < σ0, σ1, . . . , σn > of a path π at a state σ given a norm
N = {id, type, Cact, Cdeact, Cmaint} is as follows:

–
(
(M,< σ0, σ1, . . . , σn >, σi) |=act(N)

)
⇔

(
∀f ∈ Cact ·f ∈σi and ∀¬f∈Cact ·f �∈σi

)
and

(
∀N ′ ∈

M : violated(N ′) ∈ Cact ⇒ (M,< σ0, σ1, . . . , σn >, σi) |= violated(N ′)
)

–
(
(M,< σ0, σ1, . . . , σn >, σi) |=deact(N)

)
⇔

(
∀f ∈ Cdeact ·f∈σi and ∀¬f∈Cdeact ·f �∈σi

)

–
(
(M,< σ0, σ1, . . . , σn >, σi) |=maint(N)

)
⇔

(
∀f ∈ Cmaint ·f ∈σi and ∀¬f∈Cmaint ·f �∈σi

)

– (M,< σ0, σ1, . . . , σn >, σi) |= active(N) ⇔
(
(M,σi) |= act(N) and ¬deact(N)

)
or(

(M,< σ0, σ1, . . . , σn >, σi−1) |= active(N) and (M,σi) |= ¬deact(N)
)

– For N of type obligation: (M,< σ0, σ1, . . . , σn >, σi) |= violated(N)

⇔
(
(M,σi) |= ¬maint(N) and (M,< σ0, σ1, . . . , σn >, σi) |= active(N)

)

– For N of type prohibition: (M,< σ0, σ1, . . . , σn >, σi) |= violated(N)

⇔
(
(M,σi) |= maint(N) and (M,< σ0, σ1, . . . , σn >, σi) |= active(N)

)

The first three ones declare when a norm’s activating condition, deactivating
condition and maintenance condition will hold. To evaluate the truthfulness of
its activating condition one takes into account whether it is also a repair norm
for some other norm that is violated (if it includes the “violated(N ′)” predicate
for some norm N ′). The fourth declares that a norm is active at a state if its
activating condition holds at the current state and the deactivating condition
does not, or if it was already active at the previous state of the trajectory and
its deactivating condition does not hold at the current state. Note here that the
activeness status of a norm is calculated recursively over the path trajectory,
since it depends on whether it was active or not at the previous state. The fifth
declares that a violation of an obligation occurs at some state if it is active, and
its maintenance condition does not hold at the current state. The sixth declares
respectively that a violation of a prohibition occurs at some state if it is active,
and its maintenance condition holds at the current state.

Reasoning over Norm Compliance via Planning 43

5.3 The Normative Planning Problem

Having stated the above, we are finally able to define the exact nature of what
normative planning is. In a given planning domain where additional norms ac-
quire committing (obligation) or preventing (prohibition) force through paths
and when the agent failing to comply with them needs to see to it that a re-
pairing state is reached, the problem is to find such a plan that the final state
achieves the goal, that there are no pending obligations open and that for all
possible violations of obligations and prohibitions that might have occurred, the
repair state has been accomplished.

Formally, given an initial state σ0, a goal g and a normative model M =
(F,A,N) we are looking for a plan π = [α1, α2, . . . , αn] generating the trajec-
tory < σ0, σ1, . . . , σn > where all goals are accomplished and additionally the
obligations that rise from other violated norms are not active:

– (M,< σ0, σ1, . . . , σn >, σn) |= g

– Forall obligations O ∈ N : (M,< σ0, σ1, . . . , σn >,σn) �|= violated(O) ⇒
(M,< σ0, σ1, . . . , σn >, σn) �|= active(O)

In later PDDL versions, actions can have an associated cost function which might
be combined with conditional effects. This allows for paths (plans) to have a total
cost. We introduce action costs in our framework in order to be able to evaluate
not only the norm conformance but also to calculate most beneficial paths while
taking into account compliance to or violation and reparation of norms. When
defining what the norm repair (penalty) state is, we require that any plan-
solution that violates a norm also takes the necessary steps to achieve its repair
state. By giving the appropriate cost function to the actions, the planner is able
to determine the choice between a path that complies to a norm and a path
that violates it and afterwards compensates by reaching the repair state. In this
way, such complex reasoning over conformance to the soft restraints imposed by
norms becomes part of the planning problem rather that an external issue.

6 Implementation of the Normative Planning in PDDL

In this section we detail the implemented simulation of the example in Section 2.
Many implementation details are omitted due to lack of space but also in order
to preserve the clarity of the message of the paper.

6.1 Intermediate States

The norm status lifecycle is not trivial to integrate in the planning process. The
reason for this is that it is not enough to check at every state whether a norm
is violated or not. It is also necessary to check whether the norm applies or still
applies (is active) subsequently implying that the violation should be checked
too.

For each norm, we introduce an additional intermediate state which the plan-
ner is forced to include between all actions for every produced plan, which comes

44 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

Fig. 2. Intermediate States

after state Si and before state Si+1 (see Figure 2). That is so that we are able to
implement the update of all norm statuses (activation, violation and activation
of the repair norm), which, as seen in Section 5 are dependent on the previous
state of affairs as well as the current one. This technique is known when im-
plementing PDDL planners. In this way, the calculation of the norms lifecycle
happens in two stages. In the first, the effects of the action are evaluated while
norm status remains the same as it was before taking into consideration the
action’s effects. In the second step the norm status is evaluated. Figure 2 depicts
the intermediate states for two norms introduced in the normative planner.

Figure 3 depicts the derivation rules for the norm lifecycle.

Fig. 3. Derivation rules

The rules follow an intuitive derivation pattern (the norm parameter N is
omitted due to lack of space). The bold non italic are the ones that are ex-
pressed in terms of the previous state S′

i (and consequently included in the
PDDL implementation).

Since for every norm we introduce one intermediate state that evaluates its
status (see Figure 2), every action in the plan is followed by |N | states (with
|N | being the total number of the norms in the normative model). If |V | is the
vertex and |E| is the edge number, with the addition of the intermediate states
we will have |V | + |N | and |E| + |N | vertexes and edges in the search graph,
augmenting the computational complexity respectively.

6.2 Cost Calculation Issues

By default the agent sets as criterion for the “preciousness” of a plan the min-
imisation of the addition of all the numerical factors. A more complex formula
comprising of weights of importance for every factor might be defined within the
agent and passed on to the normative planner.

Reasoning over Norm Compliance via Planning 45

The costs of a plan can be calculated in different ways. One can take the
costs of repair actions completely into account, but also reduce them when for
example the chance that someone discovers a violation is 0.5 and thus half the
times repair actions do not have to be executed. This of course depends on the
agents own morals as the detection chance might be of less interest to some
agents. In addition, one can see the exercise of creating a plan and choosing
the one with lowest cost as just one way of choosing the next action. This does
not mean that the plan will always be executed completely. What happens in
this case is to choose a next action BECAUSE it is the first one of a possible
plan with the lowest cost to achieve a goal. But in principle the plan could
be recomputed after each action, before a next action is chosen. This makes a
difference. For example, an agent might go into the building, extinguish one fire
and then (possibly under new data) replan and come outside the building and
call for reinforcement. While if he originally had a plan to extinguish all fires
right away he would never call reinforcement any more. Of course the overhead
for replanning would have to be taken into account in the process but this is out
of the scope of the paper.

6.3 Norms and Normative Planner Inputs

(a) Prohibition: It is not permitted to
be alone inside a burning building if
any door is opened

(b) Obligation: In case of violation of
the norm “call reinf” the agent’s ranking
should be lowered

Fig. 4. Norms of the example

The norm (the agent is obliged to be accompanied by reinforcements when
stepping into a burning building) is modelled as in Figure 4a. Note that the norm
does not explicitly express the need for reinforcements, but instead forbids the
agent to be alone in the building while any door is opened. This is done because
the norms are expressed in terms of states rather than in terms of actions that
are imposed or forbidden. The repair of the norm, a second norm stating that
in the case of violation of the first the agent’s ranking should be reduced, can
be seen in Figure 4b.

The PDDL code for the intermediate step (as explained in Section 6) checking
the status of the first norm would be:

46 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

(:action check-call_reinf
:parameters ()
:precondition (and (not (checked-call_reinf)))
:effect (and
(when (and (active_call_reinf) (not (or (and (not (true_predicate)))))) (active_call_reinf))
(when (and (or (and (some_door_open)))

(not (or (and (not (true_predicate)))))) (active_call_reinf))
(when (or (and (not (true_predicate)))) (not (active_call_reinf)))
(when (and (not (violation_point_call_reinf)) (active_call_reinf)

(not (or (and (not (true_predicate))))) (not (or (and (not (alone))))))
(violation_point_call_reinf))

(when (and (not (violation_point_call_reinf)) (or (and (some_door_open)))
(not (or (and (not (true_predicate))))) (not (or (and (not (alone))))))
(violation_point_call_reinf))

(when (violation_point_call_reinf) (not (violation_point_call_reinf)))
(checked-call_reinf)))

Table 1. Belief Updates, Belief and Goals Transformation

2APL PDDL

BeliefUpdates:

{alone and equals(time, X)}
CallReinforcements()

{not alone, not equals(time, X),
equals(time, X+10)}

(:action CallReinforcements
:parameters ()
:precondition (and

(checked-call_reinf)
(checked-repair))

:effect (and (not (alone))
(not (checked-call_reinf))
(not (checked-repair))
(increase (time) 10)))

D
o
m
a
in

Beliefs:

true_predicate.
at(entrance).
alone.
equals(ranking, 3).
equals(personal_risk, 2).
equals(time, 0).
next(entrance, door_1).
next(door_1, door_2).
...

(true_predicate)
(at entrance)
(alone)
(= (ranking) 50)
(= (personal_risk) 2)
(= (time) 0)
(next entrance door_1)
(next door_1 door_2)
...

P
ro
b
le
m

Goals:

not_fireAt(door_1) and
not_fireAt(door_2) and
not_fireAt(door_3) and
not_fireAt(door_4) and
not_fireAt(door_5) and
not_fireAt(door_6) and
at(entrance)

(and (not (active_repair))
(checked-call_reinf)
(checked-repair)
(not_fireAt door_1)
(not_fireAt door_2)
(not_fireAt door_3)
(not_fireAt door_4)
(not_fireAt door_5)
(not_fireAt door_6)
(at entrance))

The belief updates (see section 3) of the 2APL agent (where the first part is the
precondition, the second is the name and the third is the postcondition) can be
considered the capabilities (actions) of the agent. These will be transformed to a
PDDL domain action. More belief updates of the agent might be MoveFromTo,
LowerRanking, OpenDoor and ExtinguishFireAt. The beliefs of the agent are
transformed to the PDDL problem instance. The beliefs include the initial values
of the factors time, danger and ranking. Finally, the goals of the agent are directly

Reasoning over Norm Compliance via Planning 47

transformed to the goals in the PDDL problem instance2. To the goals are added
the normative objectives explained in subsection 5.3, that is, that there is no
active obligation coming from violated norms at the end of the execution of the
plan. An example of belief updates, beliefs and goals in 2APL and how they are
translated in PDDL domain and problem can be seen in Table 1.

7 Experimental Setup and Results

In this section we present the experimental setup and the results that occur from
the simulation of the example in Section 2.

Fig. 5. 2APL Agent and Environment

Having described the fire emergency use case in Section 2 we deploy a set of
scenarios (the graphical result of the simulation is as in Figure 5). While the
objective of the agent is to extinguish the fires and get to the entrance of the
building, the agent needs to take into consideration the normative commitment
of not being alone when doors are opened. The three factors (time, risk, ranking)
play an important role. The planner has to find a plan that either conforms to
the norm, or, in the case it does not, to make sure that the appropriate steps
are taken, in order to satisfy the repair norm that is activated with the violation
of the first (have the ranking lowered).

We assume that the agent’s welfare lies equally on the three factors. We remind
that the factors get affected (increased or decreased) by the execution of the actions
as explained in Section 2.As a result the formula (personal risk+time−ranking)

2 The details of the transformation are not presented in the paper due to limitation
of space.

48 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

can serve as an appropriate metric for the normative planner to produce the most
beneficial plan. Trying the model under different setups of the three factors, the
simulation produces two distinct results.

Whenever the weight of the waiting time for the reinforcements to arrive
is considerably small compared to and the estimated risk for opening the door
when being alone and the estimated loss of ranking in case of violating the norm,
the agent decides to comply with the norm, call and wait for reinforcements. An
example of such a setup can be seen in Table 2 and the resulting plan in Figure 6.

Table 2. Setup leading to compliance to
the norm

action personal time ranking
risk

CallReinforcements 0 +10 0
MoveFromTo +1 +1 0
OpenDoor

{if alone} +3 +1 0
{if not alone} +1 +1 0

ExtinguishFireAt 0 +2 0
LowerRanking 0 0 -20

Table 3. Setup leading to violation to
the norm

action personal time ranking
risk

CallReinforcements 0 +12 0
MoveFromTo +1 +1 0
OpenDoor

{if alone} +25 +1 0
{if not alone} +1 +1 0

ExtinguishFireAt 0 +2 0
LowerRanking 0 0 -11

Plan 1

ca l l r e i n f o r c ement s
movefromto (entrance , door 4)
opendoor (door 4)
e x t i n g u i s h f i r e a t (door 4)
movefromto (door 4 , door 5)
opendoor (door 5)
e x t i n g u i s h f i r e a t (door 5)
movefromto (door 5 , door 6)
opendoor (door 6)
e x t i n g u i s h f i r e a t (door 6)
movefromto (door 6 , door 5)
movefromto (door 5 , door 4)
movefromto (door 4 , entrance)
movefromto (entrance , door 1)
opendoor (door 1)
e x t i n g u i s h f i r e a t (door 1)
movefromto (door 1 , door 2)
opendoor (door 2)
e x t i n g u i s h f i r e a t (door 2)
movefromto (door 2 , door 3)
opendoor (door 3)
e x t i n g u i s h f i r e a t (door 3)
movefromto (door 3 , door 2)
movefromto (door 2 , door 1)
movefromto (door 1 , entrance)

Fig. 6. Conforming to norm.
Calling reinforcements and en-
tering the building accompanied.

Plan 2

lowerrank ing
movefromto (entrance , door 1)
opendoor (door 1)
e x t i n g u i s h f i r e a t (door 1)
movefromto (door 1 , door 2)
opendoor (door 2)
e x t i n g u i s h f i r e a t (door 2)
movefromto (door 2 , door 3)
opendoor (door 3)
e x t i n g u i s h f i r e a t (door 3)
movefromto (door 3 , door 2)
movefromto (door 2 , door 1)
movefromto (door 1 , entrance)
movefromto (entrance , door 4)
opendoor (door 4)
e x t i n g u i s h f i r e a t (door 4)
movefromto (door 4 , door 5)
opendoor (door 5)
e x t i n g u i s h f i r e a t (door 5)
movefromto (door 5 , door 6)
opendoor (door 6)
e x t i n g u i s h f i r e a t (door 6)
movefromto (door 6 , door 5)
movefromto (door 5 , door 4)
movefromto (door 4 , entrance)

Fig. 7. Violating norm. Enter-
ing the building alone and re-
pairing by lowering ranking.

Whenever weighing the same factors gives a contrary result, the agent decides
not to wait and start the fire battle alone, having the ranking lowered as a
consequence. An example of such a setup can be seen in Table 3 and the resulting
plan in Figure 7.

Reasoning over Norm Compliance via Planning 49

Metric-FF planner [6] allows to choose between the weight of the quality of the
search and the metric of the plan. Giving more weight to minimise search cost,
the planner is able to find a solution in less than a second, but the resulting plan
usually differs from the best options. Giving more weight to the plan quality, the
planner is able to find a solution in a minute or more. For the example above,
if we give the same relevance to speed and plan quality, the planner provides a
solution in less than 20 seconds.

We used this example and made several experiments, expanding every time
the domain (the number of doors in the building and thus the number of steps
the agent needs to take in order to extinguish the fires behind them). The ex-
periments were done on Mac OS version 10.8 with an Intel processor 2.9GHz
Core i7. Increasing the importance of the metric in the planning process (quali-
ty/metric) becomes rather costly. Nevertheless, the quality of the plans returned
when executing with small plan metric importance seems to be good and we get
coherent plans depending on the values of the cost parameters time/personal-
risk/ranking. We provide execution times for both possible plans that might oc-
cur, depending on the setting of the parameters (the one where the agent obeys
the norm and calls for reinforcements and the other where the agent violates it
and enters the building alone). The results can be seen in Table 4.

Table 4. Experimental Results

Results
door number quality/metric norm status time (sec)

6 5/1 not violated 0.00
5/1 violated 0.00

12 5/1 not violated 0.01
5/1 violated 0.01

14 5/1 not violated 0.01
5/1 violated 0.01

6 5/2 not violated 0.00
5/2 violated 0.05

12 5/2 not violated 0.01
5/2 violated 4.19

14 5/2 not violated 0.01
5/2 violated 37.29

6 5/3 not violated 0.01
5/3 violated 0.05

12 5/3 not violated 0.16
5/3 violated ∞

14 5/3 not violated 0.35
5/3 violated ∞

We are currently working on further improvements in our model and in the
Metric-FF settings in order to reduce the time needed while keeping an accept-
able accuracy in the results given.

50 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

8 Discussion and Related Work

Our work stems from the fact that while regulation of agent’s behaviour has
become a necessity in current multi-agent environments, little work on practical
reasoning mechanisms within normative environments exists.

In the planning domain, the closest approach to ours is the introduction of
control rules in PDDL planners. Control rules [1] are formulas expressed in Linear
Temporal Logic (LTL) which, applied to the (forward chaining) search, they
reduce the search space by pruning paths that do not comply to the rules. More
recently, the PDDL 3.0 specification [5] has added strong and soft constraints
(expressed in LTL formulas) which are imposed on plan trajectories, as well
as strong and soft problem goals, which are imposed on a plan. However in
order to use control rules or PDDL 3.0 constraints, we would need to reduce all
the operational semantics in our norm lifecycle into LTL formulas, which would
imply merging all possible future temporal paths into a single future path, loosing
expressivity. PDDL 3.0 also lacks the operator “until”, which would permit us
to express some properties in our norm lifecycle (ex. a norm is violated when
activated at some point and maintenance condition does not hold at some state
after this and deactivating condition does not hold at any state in between).
Furthermore, in our model a norm can be activated and deactivated (and possibly
violated) several times during the execution of a plan, something not possible to
be expressed directly in PDDL 3.0.

Close to our work is also [8]. It presents the NoA (normative agent) archi-
tecture, comprising the NoA language for the specifications of plans, norms and
contracts, and the NoA architecture, which operates as an interpreter and ex-
ecutor of such specifications and represents a concrete implementation of an
approach to norm-governed practical reasoning. The plans get instantiated at
runtime according to whether they can satisfy a norm and they are labelled as
consistent or inconsistent according to the currently activated permissions and
prohibitions. With this labelling mechanism, the deliberation process becomes
informed about possible norm violations. While the semantics used for the spec-
ification of the norms and a norm’s activation and deactivation as well as plans
specification are very similar to the ones we use, the approach differs in that it
uses sets of predefined plans in order to achieve tasks or states.

In [9] the authors extend a BDI agent language, enabling them to enact be-
haviour modification at runtime in response to newly accepted norms. This
consists of creating new plans (adding them to the plan library) to comply
with obligations and suppressing the execution of existing plans (removing them
from the plan library) that violate prohibitions. They demonstrate the approach
through an implementation of in the AgentSpeak(L) language [12].

In a more recent work, Modgil et al. [10] propose an architecture for moni-
toring norm-governed systems. The system deploys monitors that receive inputs
from trusted observers, and processes these inputs together with Augmented
Transition Networks (ATNs) representations of individual norms. In this way,
monitors determine the states of interest relevant to the activation, fulfilment,

Reasoning over Norm Compliance via Planning 51

violation and expiration of norms. Additionally, the monitoring system is cor-
rective in the sense that it allows norm violations to be detected and reacting to
them.

In [3] the authors provide an overview of the issues encountered in implement-
ing different norm aspects in agents. Using a simulation scenario they implement
rules that lead to the adoption or not of a norm, the generation of norm com-
pliant plans and the monitoring of a norm enforcement. However they provide
hard coded mechanisms for dealing with norms (norms are integrated into the
agent’s code) and as a result several implementation complications occur.

Recent work detailed in [7] assumes the workflows/plans to exist already, but
describes how to cope with deviations/exceptions. Our approach differs in that
we merge the planning and evaluation with respect to the norms process into
one and build appropriate plans during runtime phase.

The strength of our approach lies on the effort made to keep as much flexi-
bility as possible in the norm influence to the decision making while keeping it
practical. One benefit of our approach is that normative states can be defined
separately to the agent’s capabilities, allowing in this way to express “what”
is desired or undesired but not necessarily “how” this should be achieved or
avoided. Emphasis is given on the agent’s welfare attributes and how these are
influenced by the execution of a plan with respect to a set of norms. Given the
fact that two agents might vary in the importance that they give to individual
factors, different outcomes concerning the achievement of a goal are expected.
Referring to the firefighter example, in the case of a upright agent, he might call
and await for the reinforcements, knowing that they might take long to arrive,
while in the case of a less committed agent, he might risk his loyalism in order to
act faster. Further to this, multiple norms may be in conflict and an agent must
make informed choices. For example, if an agent has an obligation to achieve a
goal g, but all the methods / plans that it possesses to achieve goal g will violate
one prohibition or another, then it is confronted with a conflict that requires
the agent to make a decision on which prohibition to violate to achieve g (or
not to fulfill its obligation at all). In such a case, the agent being aware of the
consequences that the violation of each one could have given the circumstances,
might be able to make an informed decision based on situational criteria rather
than always producing the same outcome.

A main drawback is that whereas our framework works well in environments
where the consequences of an agent’s conformance to normative restrictions are
known or can be estimated, it is not always the case that this is feasible. In many
cases the effect of a violation cannot be known in advance, or might even be non
existing (not always does crossing a red traffic light implies a fine). Our approach
assumes that there is an instant global enforcing mechanism and cannot for the
moment handle probabilistic effects of norm deviation. While we cannot claim
that our approach covers all aspects of normative multi-agent environments, we
consider it a first step that could have further extensions towards more advanced
implementation.

52 S. Panagiotidi, J. Vázquez-Salceda, and F. Dignum

Our objective is to extend our work towards multiple agent decision making.
While one agent considers its personal settings in order to create a plan that sat-
isfies its needs, the issue becomes more complex when dealing with more agents
and social metrics. Such extension might become subject to many questions in-
teresting to be studied, such as how can the agents share their preferences about
plans, how to manage asymmetrical influence of the norms to different agents,
or how to balance the collective preferences and costs with the individuals’ when
comparing among several plans’ adequacy.

Acknowledgments. This work has been supported by the project ICT-FP7-
289067 SUPERHUB.

References

1. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence 116(1-2), 123–191 (2000)

2. Dastani, M.: 2APL: a practical agent programming language. JAAMAS 16(3),
214–248 (2008); Special Issue on Computational Logic-based Agents

3. Dignum, F., Aldewereld, H., Vanhee, L.: Implementing Norms? COIN@WI-IAT
(2011)

4. Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. In: Artificial Intelligence, vol. 2, pp. 189–208. Elsevier
Science Publishers Ltd., Essex (1971)

5. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. In: 5th Inter-
national Planning Competition (2006)

6. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

7. Lam, J., Guerin, F., Vasconcelos, W., Norman, T.J.: Building Multi-Agent Sys-
tems for Workflow Enactment and Exception Handling. In: Padget, J., Artikis, A.,
Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A. (eds.) COIN
2009. LNCS (LNAI), vol. 6069, pp. 53–69. Springer, Heidelberg (2010)

8. Kollingbaum, M.J.: Norm-governed Practical Reasoning Agents. Tech. Rep. (2005)
9. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in BDI agents. In: 8th

International Conference on Autonomous Agents and Multiagent Systems (2009)
10. Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., Luck, M.: A framework

for monitoring agent-based normative systems. International Foundation for Au-
tonomous Agents and Multiagent Systems (May 2009)

11. Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., Miles, S.:
Towards a Formalisation of Electronic Contracting Environments. In: Hübner, J.F.,
Matson, E., Boissier, O., Dignum, V. (eds.) COIN 2008. LNCS (LNAI), vol. 5428,
pp. 156–171. Springer, Heidelberg (2009)

12. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language.
In: 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World: Agents Breaking Away, pp. 42–55. Springer (1996)

13. Panagiotidi, S., Vázquez-Salceda, J.: Normative Planning: Semantics and Imple-
mentation. In: 13th International Workshop on Coordination, Organizations, In-
stitutions and Norms in Agent Systems (COIN@WI-IAT), Lyon, France (2011)

An Agent-Based Simulation Approach
to Comparative Analysis of Enforcement Mechanisms

Tina Balke1,2, Marina De Vos2, and Julian Padget2

1 University of Surrey, Centre for Research in Social Simulation
t.balke@surrey.ac.uk

2 University of Bath, Dept. of Computer Science
{mdv,jap}@cs.bath.ac.uk

Abstract. Incentive-based enforcement can be an effective mechanism for fos-
tering cooperation in open distributed systems. The strength of such systems is
the absence of a central controlling instance, but at the same time, they do depend
upon (voluntary) regulation to achieve system goals, creating a potential “tragedy
of the commons”. Many different mechanisms have been proposed, both in the
multi-agent systems and the social science communities, to solve the commons
problem by using incentive-based enforcement. This paper advocates the use of
agent-based simulation to carry out detailed comparative analysis of competing
enforcement mechanisms, by providing common settings, the environment and the
basis for comprehensive statistical analysis. To advance this argument, we take the
case study of wireless mobile grids, a future generation mobile phone concept, to
ground our experiments and analyse three different enforcement
approaches: police entities, image information and a well-known existing repu-
tation mechanism. The contribution of this paper is not the enforcement mecha-
nisms themselves, but their comparison in a common setting through which we
demonstrate by simulation and statistical analysis that enforcement can improve
cooperation and that a relatively small percentage (of the population as a whole)
of police agents outperforms (under the chosen metrics) image- and reputation-
based approaches. Hence, qualified conclusions may be drawn for the application
of such mechanisms generally in open distributed systems.

1 Introduction

Open distributed systems allow autonomous entities with some form of social relation-
ship to join and leave freely as well as to perform actions such as interacting with other
entities. Entities base their decisions and actions on their own goals as well as their
expectations about the system and the behaviour of the other entities. The result of the
combined individual decisions and actions is a global emergent behaviour that—in con-
trast to the individual decision making processes—can be perceived from outside the
system.

The principal advantage and disadvantage of open distributed systems is that at
design-time, it is unknown precisely what individual and collective behaviour may be
exhibited by participating entities. Complete control of even closed distributed systems
has proven a very challenging problem. Rigid control of open systems, especially given

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 53–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

54 T. Balke, M. De Vos, and J. Padget

their increasingly pervasive nature, is unrealistic; not only is imposition of controls a re-
action to a perceived threat (to system integrity), it also fails to recognize open systems
as a nascent opportunity.

One particular problem in open distributed systems (be it relay-routing, peer-to-peer,
cloud computing, etc.) is that they require some form of contribution on the part of
participants, which translates into some form of cost to them. Participants can exhibit
strategic behaviour and are not necessarily cooperating (i.e. contributing to the sys-
tem). For an agent, making resources available therefore has the danger that its good
behaviour is not reciprocated, resulting in no inherent value in cooperation for a par-
ticipant. A lone cooperating user draws no benefit from their cooperation, even if the
rest of the system might. Guaranteed cost paired with uncertainty or even lack of any
resulting benefit does not induce cooperation for a utility-maximizing user. Without
any further incentives, rational users therefore would not cooperate in such an environ-
ment and all will be worse off than if they cooperated. This phenomenon is referred to
as the “Tragedy of the Commons” [14,20]. Ostrom’s work analyses how contributions
in such (semi-)closed systems can be reinforced through mechanisms such as iden-
tity and sanctions such as ostracism. The problem with the applicability of Ostrom’s
work in the above described settings is that Ostrom focuses on small (relatively closed)
communities which are qualitatively different (easier identification of agents and eas-
ier application of ostracism) and might typically require quite different solutions. As a
consequence of the above problem, and of the limitations on the extent to which rigid
control is feasible in open distributed systems, enforcement mechanisms offer a means
to reduce the prevalence of the commons phenomenon [15].

To evaluate enforcement mechanisms empirically, as we propose here, a suitable
domain is needed, in order to be able to identify which aspects can be quantified and
how. However this inevitably creates the risk that decisions are made, or metrics are
constructed that are domain-specific. The domain chosen in this paper is the wireless
mobile grid (WMG), which is described in more detail in the next section. We do not
make a judgement as to whether the WMG concept is viable or not: it is simply a novel
example of the kind of emerging ‘digital commons’ that makes it suitable as a case
study for which it would also be useful to get some early indicators of which kinds of
enforcement are effective and what the associated costs might be.

The WMG, as an opportunistic network made possible by chance co-location, ex-
hibits many of the characteristics of an open system: participants are free to join or
leave at any time, identity is not authenticated and free-riding appears to be easy. Con-
sequently, repeat encounters are likely to be few and participant turnover high. Thus,
the participant contributions required to sustain it may be difficult to acquire or to incen-
tivize. The relative complexity of the scenario, at least until better understood, makes
an analytical or game-theoretic approach infeasible at this stage, so we advocate agent-
based simulation as a means to establish a better understanding of the dynamics and
to evaluate side-by-side three well-established enforcement mechanisms. Based on the
common setting provided by the simulation environment we examine the mechanisms’
advantages and disadvantages with respect of one another. For this purpose, in the next
section, we describe the case study, then in Section 3 we present the three enforcement
mechanisms to be compared. The simulation experiments which were validated with

An Agent-Based Simulation Approach to Comparative Analysis 55

the help of domain experts and its results are discussed in Sections 4 and 5. This paper
ends with a short summary of the findings as well as a discussion of their implications
for open distributed systems (Section 7).

2 The Wireless Mobile Grid Case Study

To demonstrate the use of agent-based simulation for the comparative analysis of en-
forcement mechanisms, we start by establishing a common case study for our experi-
ments which portrays the particular features of open distributed systems sketched in the
previous section. In one sense, the domain details of the case study are not especially
important, but are simply there to ground the scenario, rather than using an abstract
scenario which can be harder to assimilate. Thus, the particular domain is the so-called
“wireless mobile grid” (WMG); a mechanism proposed by Fitzek and Katz [10] to ad-
dress the energy issues inherent in 4th generation mobile phones. This paper is not about
the plausibility or otherwise of WMGs, but about the comparative effectiveness of dif-
ferent approaches to enforcement in the context generated by WMGs, representing an
instance of the broader class of open distributed systems.

In WMGs, as well as using the traditional 3G (or LTE) communication link with
base stations, users are envisioned as sharing resources in a peer-to-peer fashion using
a short-link connection protocol such as IEEE802.11 WLAN. The advantage of this
short-link connection is that it uses less power and allows for higher data rates. How-
ever, in order to function properly WMGs require collaboration between users, which
may be difficult to realize. The main problem in WMG is that collaboration comes at
the cost of battery consumption1. In consequence, rational users will prefer to receive
the resources without any commitment to contribute themselves. However, if a sub-
stantial number of users follow this selfish strategy, the WMG will not work and none
will benefit from the potential energy savings arising from cooperation [26]. A WMG
is an interesting and novel example of an open distributes system, in which there are
autonomous users with their own goals who can freely join and leave, who can interact
with one another over short-range connections for short periods, and whose individual
actions contribute to the success or failure of the WMG as a whole.

Purely technical (hard-ware or hard-coded) solutions for ensuring non-compliance
in open distributed systems are frequently subverted (see [18] for example). Hence, the
approach we take here, which is to employ enforcement mechanisms such as reputation
information or police agents that regulate WMGs by social means.

3 Enforcement Mechanisms for Wireless Mobile Grids

Many possible enforcement mechanisms exist, so how to choose suitable ones? Balke
and Villatoro [3] provide a systematic overview of possible enforcement options by
identifying the roles actors can have in an enforcement setting and discussing all pos-
sible combinations of these roles in the enforcement process. We do not reproduce the
details of the mechanisms analysed in [3], for sake of space as much as correctness,

1 The patterns of collaboration and interaction in WMGs are described in details in Section 4.1.

56 T. Balke, M. De Vos, and J. Padget

but draw on their conclusions to select three mechanisms to concentrate on in more de-
tail: reputation information, image information, also known as direct trust, and police
agents. We choose these because of their popularity in the agent community as much as
for their complementary foundational concepts that allows us to explore a wider range
of options.

3.1 Utilization of Police Entities

The utilization of police entities can be thought of as the implementation of entities with
normative power [16], created for the enforcement purpose by the owner of the system
that participate in the system (in our example, the WMG), and have permission from the
owner to punish, if detected, negative/inappropriate behaviour (i.e. non-compliance) by
means of sanctions. In contrast to regimentation (i.e. complete control) [7], the police
entities do not control all actions but only act as enforcers when violations are detected.
Detection of violations is done by the police entities themselves, who test the behaviour
of entities and react to what they detect. Several kinds of sanctions can be imagined
depending on the severity of the non-compliance, such as complete exclusion from the
WMG or penalty payments either monetary or in terms of energy.

3.2 Image Information

Image information [19], also called direct trust, is a global or averaged evaluation of
a given agent – usually called the target – on the part of an individual. It consists of
a set of evaluative beliefs about the characteristics of a target. These evaluative beliefs
concern the ability or the possibility of the target to fulfil one or more of the evaluator’s
goals, e.g. to cooperate in a WMG transaction. An image basically gives the evaluator’s
opinion of whether the target is “good” or “bad” or “not so bad” etc. with respect to a
norm, a standard, a skill etc. When utilizing image information, an agent uses its own
information about the past behaviour of the potential interaction partner and makes
decisions based on this information.

3.3 Reputation Information

Reputation information, in contrast to image information, comprises not only agent’
own acquired image information, but that obtained from other agents as well. Thus, rep-
utation in this paper is understood as the process of and the effect of the transmission of
a target’s image. In contrast to image information alone, as described above, when im-
ages are circulated more information becomes available to the individual agents. How-
ever, the circulation of information itself can generate costs. Furthermore it is possible
that agents may circulate false image information to increase their value relative to other
agents.

4 The Simulation Design

Having briefly outlined the enforcement mechanisms under examination, we now
present the basic simulation setup. We first describe the agents and their decision

An Agent-Based Simulation Approach to Comparative Analysis 57

making behaviour and then outline how the enforcement mechanisms have been im-
plemented. Concerning the technical components of the wireless mobile grid, we adopt
the well-established “flat earth model” [17] that assumes symmetry (i.e. if node A can
hear node B, B can hear A) and an absence of obstacles that might reduce transmis-
sion quality. The flat-earth model is a widely accepted simplification made in the mo-
bile communications community and has been used for simulation presented in mobile
communication centred articles on this topic (e.g. [2]). Furthermore we assume that all
agents have identical mobile phones, for which we use the energy consumption profile
data reported in [22]. A reason for this assumption is that [22] explains that the Nokia
N95 mobile phone is a representative phone with features for WMG communication
and that the differences between different mobile phones are only marginal.

4.1 The Basic Agent Decision Process

The simulation uses one agent for each user/mobile phone pair. These agents move
randomly in the simulation space and at any given point of time can interact with the
agents that are within their (modelled) WLAN range. The agents make decisions that
maximize their utility under the constraint of bounded rationality. Different agents are
given different utility valuations. We define three kinds of non-police agents according
to the behaviours for which they maximise: (i) “utility agents” that try to minimize
battery consumption and avoid punishment (ii) “honest agents” that cooperate whenever
possible, and (iii) “malicious agents” that try to undermine the system regardless of cost
The agent’s decision-making is based on incomplete knowledge of the system state, so
they can only optimize for local utility, which may be different from the global utility.
Local knowledge is determined by two factors: the agent’s location and its WLAN
radius. A full Cartesian model is unnecessary, since we only need to model proximity,
hence an agent location is modelled as l ∈ R mod 1, that is the interval wraps around.
An agent at ε and another at 1−ε are 2ε apart. The proximity of two agents is determined
by each agent’s WLAN radius (rv). An agent at l1 has radius [l1 − rv1, l1 + rv1] and
another at l2 has radius [l2−rv2, l2+rv2]. Communication between these two is possible
if these intervals intersect.

The procedure for the agent’s decision making process and its utility considerations
(see Figure 1) are based on the following issues:

1. Each agent has the task of acquiring a whole file through downloading (over 3G) or
exchanging (over WLAN) file chunks. The agent must decide whether to download
it all or to search for a collaboration partner with whom to share the work. File
size is the first determinant: if the file is small and the potential costs of finding a
collaborator are higher than the potential gains, then the agent will download all
the chunks itself. Otherwise, it looks for nearby agents.

2. If the neighbourhood is sparsely populated, then the chances of finding sufficient
partners is low and the agent downloads all the chunks itself. Otherwise, it sends
a cooperation request specifying the file whose chunks it requires using WLAN
broadcast.

3. If the agent receives a cooperation request for the same file, there is no need to send
a request, so it just replies using WLAN broadcast.

58 T. Balke, M. De Vos, and J. Padget

obtain file

task to obtain

a specific file

check oppor-

tunity costs

check

neighbours

check cooperation

requests/replies

perceive partner

risk

join/initiate

group

download

assigned chunks

sending

decision

download

self

cooperate defect

[file too small]

[file not too small]

[neighbours]

[no neighbours]

[cooperation

requests/replies]

[no cooperation

requests/replies]

[risk too high]

[defect][cooperate]

[file complete]

[file not complete]

[risk not too high]

check

cooperation

download

remaining chunks

1

2

3

4

5

6

Fig. 1. Download considerations

An Agent-Based Simulation Approach to Comparative Analysis 59

4. Having sent a cooperation request, the agent awaits responses. From the positive
replies, the agent selects collaboration partners, possibly using image or reputation
mechanisms to decide.

5. Once a cooperation group has been formed, an agent has to decide: (i) whether to
download its promised chunk(s) (over 3G) and (ii) whether to share its chunks with
the cooperation group.

6. The cooperation decision depends on the agent’s individual utilities for cooperation
and defection. Thus, an utility agent (see definitions above) compares energy ben-
efits from defecting now, against the future costs arising from detection in terms of
the likelihood and level of a fine, by comparing the number of past defections with
the number and level of past fines. An honest agent will always cooperate and will
never defect. A malicious agent, in contrast, will always defect.

Having made its decision, the last step is to wait and see whether the cooperation part-
ners send their promised shares. For missing shares, the agent repeats the decision pro-
cess outlined above.

4.2 Implementing the Enforcement Mechanisms

We now describe the implementation of the three enforcement mechanisms.

Enforcement Agents. A police agent has the same properties as an ordinary agents,
except for restricted behaviour in that it: (i) responds positively to cooperation requests,
if not already committed, and then performs its share of downloading and sharing,
(ii) does not have its own file download tasks set at the beginning and (iii) does not
send cooperation requests.

A police agent never defects. Its energy costs count towards the total WMG energy
costs – so that enforcement costs are included. It also monitors cooperation by checking
on the number of defections in the cooperation group to which it belongs and fines those
that have defected. The fine is measured in terms of energy and is set at three times the
agent’s relative gain from defection2.

Enforcers make no distinction between intention and absence of action: it only mat-
ters whether an agent kept the cooperation agreement by sending its chunks by the
cooperation deadline. The same defection may be observed by more than one enforcer,
but the fining mechanism ensures that an agent is not fined twice for the same offence.

Image Information. Image information [5] is used by agents in making cooperation
decisions. No police agents are used. Image information is information acquired about
another agent through direct interaction with that agent. Thus, the experience of own
past interactions is used to evaluate new cooperation requests. If the image is positive,
the collaboration proceeds. Each agent could have an individual defection tolerance
level for all its past collaborators, but to keep the range of experiments within what can
be reported in this paper, this is uniformly set to zero. Thus, the object of a defection

2 We tested a range of alternative fine levels. Space limits prevent a full report, but the value
of three time’s the gain exhibited the best balance between deterrent and the fine not being
disproportionate to the offence.

60 T. Balke, M. De Vos, and J. Padget

will never collaborate with the defector again. If an agent has no image for the originator
of a cooperation request, it treats the image as positive.

The next step is to incorporate image information in the utility computation. First,
the agent computes the fraction of the number of times its cooperation (request and
offer) was rejected because of its image. This value is then weighted by (i) the chunk
size and (ii) the cooperation group size.

The latter is significant because, the larger the group, the greater the spread of nega-
tive image information if the agents defects.

The advantage of image information is its reliability. However, one problem often
associated with image mechanisms is that an agent first needs its own experience to
construct image information. Consequently, it can always be the object of a defection
at least once. Reputation mechanisms are proposed as a way to avoid this problem. We
explore this approach next.

Reputation Information. In reputation mechanisms, the image information of indi-
vidual agents is circulated. A large number of reputation mechanisms have been put
forward in the literature covering a range of circumstances. To select one suitable for
WMG, we start by examining the requirements and constraints.

Although the work reported here is simulation-based, in a real WMG, the actual
agents will include humans. This suggests any mechanism should allow for the subjec-
tive expression of trust based on individuals’ perceptions. Additionally, the mechanism
needs to be compatible with the non-numerical and non-monotonic models of human
expression. Finally, the mechanism must be able to handle incorrect information, tak-
ing the sources of (reputation) information into account and identifying those that pro-
vide false information. Consequently, we consider three candidate mechanisms: Regret,
Fire and Abdul-Rahman and Hailes (ARH), which are analysed in detail in [24]. Re-
gret seems unsuitable because by default it requires a large number of messages to be
sent (accounting for witness, neighbourhood and system reputation) which inevitably
increases overall energy consumption. Fire is also unsuitable because of its basic as-
sumptions that agents (i) willingly share their experience and (ii) report truthfully when
exchanging information with one another. This leaves the ARH reputation mechanism
[1], which fortunately satisfies our requirements.

ARH requires that each agent maintains a database of trust relationships that they
use for themselves or to respond to the requests of others. The data is segregated into
direct (image) and indirect (reputation) information. ARH defines a “trust-relationship”
as a vectored connection between exactly two entities, which in some circumstances
can be transitive. In this way they distinguish between direct trust relationships (“Alice
trusts Bob.”) and recommender trust relationships (“Alice trusts Bob’s recommenda-
tions about the trustworthiness of other agents”). This allows entities to account for the
source of reputation information as well as collecting and evaluating information about
the reliability of recommenders. Another interesting contrast to other formalizations is
that, reflecting the qualitative nature of trust, ARH does not use probability values or
the [−1, 1] interval, but a multi-context recording model with abstract trust categories
that are easier for humans to understand. These trust values relate to certain contextual
information (“Alice trusts Bob, concerning “table”-transactions. However, she does not
trust him when it comes to “chair”-transactions.”).

An Agent-Based Simulation Approach to Comparative Analysis 61

ARH models trust as context-dependent, so it is defined as a “troika” of (agent-
ID, Trust-Category, Trust-Value), with trust categories such as “cooperation partner” or
“recommender”. ARH sets out a recommendation protocol for handling recommenda-
tion requests, statements and enquiries. A recommendation request is forwarded until
one or more agents are found that can give information for the requested category and
which is trusted by the penultimate agent in the chain. We do not support routing in
the WMG simulation and implementing the protocol described above would result in
large amounts of network traffic, impacting significantly upon the potential benefits of
WMG. Thus, we simplify this aspect of ARH in such a way that an agent seeking a
recommendation about a target sends out one broadcast message to its neighbours. If it
receives no answers, the agent does not wait for further information, but as in the case
of image information, cooperates with the target.

An agent, of whichever kind, uses the reputation mechanisms as follows:

1. If it has image or reputation information about the potential cooperation partner, it
uses it.

2. If not, it sends a request for recommendations to its neighbours:
(a) If there are no replies, the agent agrees to collaborate and will update its image

information in due course in respect of the outcome of the collaboration.
(b) If there are one or more replies, they are categorized by source into trusted,

untrusted and unknown:
i. Trusted source: the agent updates its local reputation information using the

most trusted source and acts accordingly (i.e. positive recommendation:
collaborate, negative: not). For equally trusted sources, the first reply is
used.

ii. Untrusted source: the information is kept for later validation but not taken
into account for the current decision.

iii. Unknown source: information is treated as for a trusted source.

Different kinds of agent respond differently to reputation requests. The utility maximiz-
ing agent will not send any information, because answering a message costs energy. An
honest or a malicious agent answers on average one request per interaction event, in
order to limit energy spent on answering reputation requests. An honest agent always
reports truthfully about the target, with the aim of improving the overall information
level in the system. A malicious agent however, if the target is not itself, always gives
negative feedback on the target, with the aim of enhancing its relative reputation.

5 Hypotheses, Parameters and Results

5.1 Simulation Hypotheses and Parameters

As pointed out in the introduction this paper focuses on the use of agent-based simula-
tion to carry out a detailed comparative analysis of competing mechanisms (i.e. enforce-
ment mechanisms in our scenario) and to determine which of these meets the system
objective (which we defined as energy saving) best. To test the impact of the three dif-
ferent enforcement mechanisms on the cooperation problem and the resulting energy
consumption in WMGs, we formulate the following hypothesis:

62 T. Balke, M. De Vos, and J. Padget

Table 1. Simulation Variables

Name Range/Type Simulation Parameter
Number of Agents (| A |) [2, ∞] 200, 400, 800
Utility Agents as % of | A | [0,100] 0, 25, 50, 75, 100
Malicious Agents as % of | A | [0,100] 0, 25, 50, 75
Honest Agents as % of | A | [0,100] 0, 25, 50, 75
Enforcement Mechanism None, Police Agents, Image Info.,

Reputation Info.
Number of Police Agents | AEnf | as %
of | A |

[0,∞] 0.5, 1, 2, 3, 5 % of | A |, s.t.
| AEnf |> 1

ρneighbourhood [0,| A |-1] 10, 20

Hypothesis 1: The presence of an enforcement mechanisms reduces the average en-
ergy consumption compared to when there is none.

We can assume that an enforcement mechanism has an effect on energy consumption,
but if it affects cooperation – and in consequence energy consumption – is this effect
constant across various simulation settings? Specifically, we want to establish sensi-
tivity across a range of parameters: (i) population size, | A | (ii) population density
(the average number of agents within each others’ WLAN radius), ρneighbourhood, and
(iii) population composition, that is proportions of utility, honest and malicious agents.

To test the influence of | A | and whether either of the other two parameters affects
the simulation results, we check the null-hypotheses that no difference in simulation re-
sults can be observed when these parameters are varied. We then examine what impacts
upon the different enforcement mechanisms:

Hypothesis 2: The success (in terms of the average energy consumption) of a WMG
using reputation-based enforcement depends on population size, density and com-
position.

Hypothesis 3: The success (measured by average energy consumption) of a WMG
using police agents as the enforcement mechanism depends on population size,
density and composition as well as the number of police agents | AEnf |.

Hypothesis 4: The success (measured by average energy consumption) of a WMG us-
ing image-based enforcement depends on population size, density and composition.

For all of the above, we use the experiment configuration shown in Table 1, which sum-
marizes the factorial experiments performed and the values over which each simulation
parameter ranges.

5.2 Simulation Results

The experiments consist of 50 runs for each of the 468 parameter combinations in Ta-
ble 1, making 23,400 runs in total. We used ANOVA to test the significance relationship
between the independent variables (the parameters in the simulation) and the dependant

An Agent-Based Simulation Approach to Comparative Analysis 63

Table 2. Analysis of variance of experiments with and without enforcement

Source Sum of
Squares

Degrees of
Freedom

Mean
Squares

F Prob > F
(= p-value)

Enforcement 224.759 4 56.1898 1539.94 < 0.0001
Error 709.842 19454 0.0365
Total 934.601 19458

Table 3. Post-hoc analysis of variance of enforcement mechanisms

Source Sum of
Squares

Degrees of
Freedom

Mean
Squares

F Prob > F
(= p-value)

Image-Information 26.969 1 26.969 684.73 < 0.0001
Police Agents 168.95 5 33.7907 801.85 < 0.0001
Reputation 12.308 1 12.3078 332.01 < 0.0001

variables (the number and ratio of defections and energy consumption)3. We also ap-
plied Tukey’s test as a post-hoc ANOVA, which identifies the impact of specific vari-
ables on the overall result.

Testing Hypothesis 1. We can now analyse the simulation results to test the hypotheses
formulated in the previous section. First, we test hypothesis 1 and look at mean energy
consumption when there are different enforcement mechanisms employed. By means
of ANOVA, we can test whether there is sufficient evidence to reject the null hypothesis
that enforcement mechanisms have no effect on energy consumption. Table 2 shows the
results of this comparison.

As the significant p-value suggests, we can reject the null hypothesis and conclude
that the utilization of enforcement results in a difference in the average energy con-
sumption. Looking at the parameters that influenced this result the most, we see that
the success of enforcement mechanisms was depended significantly on the population
composition (p < 0.0001) which makes hypotheses 2–4 correct with respect to that
parameter. Analysing Table 2 more closely, one notices that a high error rate can be ob-
served, indicating that a difference exists between the three enforcement mechanisms
that are grouped in the ANOVA. In order to examine this effect more closely, as well
as to determine the extent to which each enforcement mechanism contributes to this
difference, we perform Tukey’s test as post-hoc analysis. Fig 2 shows the results of this
analysis and Table 3 summarizes the statistical measures for each enforcement mecha-
nism.

As the p-values in Table 3 show, all mechanisms have an average energy consumption
significantly different to the experiments with no enforcement, however looking at the
Tukey’s test results in Fig. 2, it is clear that the results for the reputation mechanism
stand out. Thus, whereas the results indicate that we can confirm hypothesis 1 for image-
related information and police agents, Tukey’s test for the reputation mechanism shows

3 We performed the Shapiro-Wilk test and Levene’s test to ensure the applicability of ANOVA.
Due to limits on space we do not include details of these results.

64 T. Balke, M. De Vos, and J. Padget

Fig. 2. Multiple Comparison (Tukey’s Test) Results of Marginal Means for Comparing Simula-
tion Experiments with and without Enforcement – Post Hoc Test

that the experiments using reputation, have an on average higher mean than when no
enforcement is used. This implies that the utilization of reputation information increases
the average energy consumption.

Testing Hypothesis 2. Digging deeper into the differences in energy consumption, the
reason for this effect becomes apparent. As a result of the large number of messages aris-
ing from the transmission of reputation information, the communication costs are propor-
tionately higher and thereby increase energy consumption. Thus, especially in cases with
large numbers of honest agents, which would choose cooperation even without enforce-
ment mechanisms, the reputation requests and answers do not improve enforcement, but
rather result in greater energy consumption. This leads to reputation being worse with
respect to the overall energy consumption ratio even compared to image information, i.e.
settings where agents rely only on their own individual experiences.

This effect arising from additional communication can also be observed in the
ANOVA and Tukey’s test result for ρneighbourhood (Figure 3), which show that a higher
value of ρneighbourhood tends to result in greater energy consumption4. This can again
be attributed to the increased number of cooperation messages, because with a higher
ρneighbourhood more agents receive and send messages. These message costs outweigh
the benefits of being able to observe more agents, because of the higher number of
neighbours in the system. A second effect that impacts the reputation mechanism is
the negative information introduced by malicious agents. Our simulation experiments

4 The p-value for this relation is 0.3052, i.e. it is not significant. Nevertheless a tendency towards
the described effect was detectable throughout the experiments.

An Agent-Based Simulation Approach to Comparative Analysis 65

0.82 0.825 0.83 0.835 0.84 0.845

20

10

?
n

e
ig

h
b

o
u

rh
o

o
d

?
neighbourhood

 Marginal Means

Fig. 3. Multiple Comparison (Tukey’s Test) Results of Neighbourhood Density Marginal Means
in Settings with Reputation Information – Post Hoc Test

were set up in such a way that if in doubt (i.e not verifiable), reputation information
was considered to be correct (i.e. information from unknown sources was considered
correct at the beginning). As a result of this, especially at the start of each experiment,
by giving negative reputation information, malicious agents were able to discourage
agents from cooperating with potential rivals, which also had the side-effect that agents
could gather less image information of their own. As a consequence, they were more
likely to have to trust uncertain reputation information in the following interactions,
causing problems for the overall reputation mechanism. As a result of these findings,
we conclude that the reputation mechanism chosen for our particular case study is un-
suitable. The reasons for this however seem of a more general nature, that is, they are
applicable to reputation mechanisms in general and should be considered when thinking
about employing a reputation mechanisms for enforcement purposes: (i) transmission
of reputation information incurs costs for both sender and receiver, which might result
in reduced contribution of information, and the associated costs may outweigh the ben-
efits (ii) in our experiments false information clearly harmed the system: a reputation
mechanism therefore needs to be able to cope with false information, and (iii) most rep-
utation mechanisms rely on small communities in order to function well: due to space
limitations, we do not present the detailed figures, but our experiments indicate that an
increase in the population size is deleterious for the reputation mechanisms, as more
messages are sent and agents are less likely to encounter one another again soon.

Testing Hypothesis 3. A second interesting effect we can observe in Fig 2 is that an
increase in the percentage of police agents does not result in a reduction of the average
energy consumption ratio. Earlier on, in Table 3 we established that police agents can
contribute to energy consumption reduction in WMGs, however exploring further, the
value of this statement varies significantly with the percentage of police agents being
employed (this is also indicated by a relatively high sum of squares error of 985.84 for
the police agent value in Table 3). In the figure, the average mean energy consump-
tion for experiments with 1%, 2% and 3% police agents are lower than the one with

66 T. Balke, M. De Vos, and J. Padget

5% and testing for significance, there is significant evidence against the null hypoth-
esis that the means of the results with 1%, 2% and 3% police agents are not smaller
than the results with 5% police agents (respective p-values < 0.0001). This implies
that we have to reject the null hypothesis, which in turn means that the lower average
energy consumption values for results with 1%, 2% and 3% police agents are not a
result of chance. Comparing the number of defections in the experiments with police
agents by performing a t-test, only a slight, and not significant, advantage for experi-
ments with 5% police agents can be seen, i.e. in these settings police agents only added
slightly to the total energy consumption. This implies that the improved detection of
violations resulting from the larger number of police agents, is outweighed by the addi-
tional energy they consume. In economic terms this means that the lower percentage of
police agents performs better with regard to satisficing cooperation when considering
energy consumption. In economics, satisficing refers to a decision-making strategy that
attempts to meet criteria for adequacy, rather than to identify an optimal solution [25].
Thus, although not optimal with regard to the detection of violations (1%, 2% and 3%
police agents will detect less than 5%) the costs associated with them (i.e. the energy
they consume for performing their observation and punishing actions) are significantly
lower, making them more advantageous in terms of the overall energy saving.

Concerning the remaining parameters addressed in hypothesis 3, we found signifi-
cant evidence that the null-hypotheses (i.e. that there is no impact on the parameters)
can be rejected both for population composition and for neighbourhood density (respec-
tive p-values < 0.0001), while the significance levels for the size of the population vary
between 0.0154 and 0.0604, which does not allow rejection of the null-hypothesis at a
significance level of 0.01, but still indicates that there is reason to believe that popula-
tion size has moderate impact.

Testing Hypothesis 4. For simulations in which image information is used, as hypoth-
esized, we can reject the null hypothesis for all input parameters (i.e we have enough
evidence to assume that hypothesis 4 is correct). Both the population composition and
the population size have a significance level p < 0.0001 and ρneighbourhood has a p-
value < 0.0005.

Summarizing the Findings. Summarizing for the four hypotheses formulated in
Sec. 5.1 we arrive at the following conclusions:

Hypothesis 1: Correct for police agents (between 1% and 5% of | A |) and for image
information, but incorrect for reputation information.

Hypothesis 2: Reputation information did not help to decrease the average energy con-
sumption in the WMG. Both population size and composition had a significant
impact here.

Hypothesis 3: The success of police agents is dependent on population density, com-
position and the number of police agents | AEnf |.

Hypothesis 4: Correct for all parameters.

An Agent-Based Simulation Approach to Comparative Analysis 67

6 Related Work

Looking at previous works that are of importance for this paper, one can look into two
different directions. The first direction is related work on means of enforcement in open
distributed systems, such a WMGs, whereas the second direction is related work dealing
with the comparison of enforcement mechanisms.

Looking at the first direction, one can identify a large literature in economics and
social sciences on cooperation and free-riding and the mechanisms to overcome the
latter. One of the most well-known analyses is by Ostrom [21], who shows that in small
(relatively closed) communities these “tragedies” can be overcome. Other works use
game theory [4] or evolutionary game theory [12,13] to address the question. In general,
most of the works looking into enforcement use some form of punishment which serves
as as a deterrent to the rational behaviour of utility-based participants (e.g. [9]). Thus, a
punishment is a fine taken from the the participant’s benefits. The topic has been framed
mostly in terms of mechanism design and the issues that economists have studied more
thoroughly are the information about infraction and sanctions [8], as well as the amount
and pervasiveness of sanctions [6]. As pointed out before methodology often is either
(evolutionary) game-theoretic (see [4] for example) or experimental (including agent-
based simulations) [11,23].

In the second direction, i.e. the comparative study of enforcement, little related work
can be found. In [5] for example, the authors discuss differences between image and
reputation in detail, however no detailed experiments testing their impact on the same
setting are made. Similar in [23] the authors tests the impact of how far messages are
sent in a network and even considers the costs of these messages, but no comparison
between trust and reputation is made.

7 Conclusions

We have compared three different enforcement mechanisms that are often employed in
open distributed systems in the context of a single case study, namely WMGs. We use
our analysis to examine the facilitation of cooperation are reduces the commons prob-
lem in WMGs. We show that by employing enforcement mechanisms we can reduce
the cooperation dilemma inherent in WMGs and achieve overall positive effects with
regard to a good that participants must contribute in order to sustain the WMG, namely
battery power. WMGs broadly exhibit some of the most challenging characteristics of
open systems, in the form of (potentially) rapidly changing participation and little or
no authentication. Perhaps the most contentious aspect of the measurements, in respect
of generalization, is the focus on energy consumption, since this is clearly specific to
the WMG domain. The question is to what extent can this be viewed as a proxy for
the fitness of an open system. We do not pretend that it is an accurate indicator, but
being an aggregator of interactions within the open system, and its minimization be-
ing a metric for the effectiveness of the enforcement mechanisms, it seems likely to be
positively correlated with the overall system fitness. A second issue affecting broader
applicability may be the costs attributed to enforcement, since these are unavoidably
expressed in domain-specific terms. Nevertheless, as with the previous point, the costs

68 T. Balke, M. De Vos, and J. Padget

are just a formula associated with a transaction, and while changing the formula may
lead to a different preference outcome, it should not fundamentally affect the validity
of the approach.

Thus, the primary and unsurprising conclusion of this comparative analysis is that en-
forcement does not always help, and that the costs of enforcement need to be accounted
for when deciding upon an enforcement mechanism, whether intrinsic in the form of,
say communications, or extrinsic, in the form of, say rewards for observers looking for
infractions. Of the three mechanisms presented, police agents especially seem to help
to improve energy consumption. Although the results we present are inevitably linked
to the specific mechanisms chosen, some general findings can be made.

The first is that the population composition accounts for the majority of the impact by
the input factors on energy consumption. Second, the costs associated with the enforce-
ment can outweigh the benefits. In the case of police agents this resulted in the situation
that fewer agents produced a better absolute result in terms of energy consumption,
while “only” satisficing the detection of violation actions. Similar effects could be seen
in experiments with reputation information, where as a result of the particular repu-
tation mechanisms chosen (i.e. Abdul-Rahman and Hailes) the message overhead pro-
duced by the reputation request and answers outweighed the benefits of the mechanism.
One further aspect that influenced the performance of our reputation information-based
enforcement mechanism negatively, is false information. This is particularly important
as we implemented an adaptation of a mechanism that tried to account for this problem.
However it did not have sufficient interactions to have any significant effect. The mech-
anism of Abdul-Rahman and Hailes – like any reputation mechanism – works better
when the number of repeated interactions increases. Unfortunately this seems unlikely
in a WMG and in open distributes systems in general, suggesting that the designer
needs to consider – and possibly evaluate – carefully whether the characteristics of the
situation are compatible with reputation mechanisms.

With respect to future work we aim to extend the simulation experiments by employ-
ing combinations of different enforcement mechanisms. In the experiments leading to
this paper, we assumed that only one enforcement mechanism can be employed at any
given time and that the choice of mechanism is constant throughout a simulation exper-
iment. We plan to extend the work by relaxing this assumption and combining different
enforcement concepts in the simulation experiments. This paper established the base-
line for each mechanism in isolation.

The experiments could also be extended by employing more sophisticated agents. We
employed three kinds of agents that pursue very different strategies in order to test how
sensitive the simulation is to very one-sided behaviour (e.g. always defect or always
cooperate). In an actual deployment of a WMG such a one-sided behaviour might not
be very realistic. Therefore, agents with more sophisticated reasoning processes that
exhibit more diverse responses to the successes or failures of cooperation situations are
needed. One extension could be to allow malicious agents to cooperate occasionally in
order to make them harder to detect for other agents, or to allow for variations in the
reactions to sanctions by the utility maximizing agents. A further line of research might
be to remove the assumption that police agents never cheat and repeat the simulation
accounting for false information by police agents.

An Agent-Based Simulation Approach to Comparative Analysis 69

Acknowledgments. Tina Balke was partially supported by funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
n◦ 288147.

References

1. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: HICSS (2000)
2. Balke, T., De Vos, M., Padget, J.A.: Analysing energy-incentivized cooperation in next gen-

eration mobile networks using normative frameworks and an agent-based simulation. Future
Generation Computer Systems Journal 27(8), 1092–1102 (2011),
http://www.sciencedirect.com/science/article/pii/
S0167739X11000574

3. Balke, T., Villatoro, D.: Operationalization of the Sanctioning Process in Utilitarian Artificial
Societies. In: Cranefield, S., van Riemsdijk, M.B., Vázquez-Salceda, J., Noriega, P. (eds.)
COIN 2011. LNCS, vol. 7254, pp. 167–185. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-35545-5_10

4. Coleman, J.S.: Foundations of social theory (August 1998)
5. Conte, R., Paolucci, M.: Reputation in Artificial Societies: Social Beliefs for Social Order.

Springer (October 2002)
6. Dreber, A., Rand, D., Fudenberg, D., Nowak, M.: Winners don’t punish. Nature 452, 348–

351 (2008)
7. Esteva, M., Rodrı́guez-Aguilar, J.-A., Sierra, C., Garcia, P., Arcos, J.L.: On the Formal Spec-

ification of Electronic Institutions. In: Dignum, F., Sierra, C. (eds.) Agent Mediated Elec.
Commerce. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

8. Fehr, E., Gächter, S.: Cooperation and punishment in public goods experiments. The Ameri-
can Economic Review 90(4), 980–994 (2000),
http://dx.doi.org/10.2307/117319

9. Feldman, M., Papadimitriou, C., Chuang, J., Stoica, I.: Free-riding and whitewashing in peer-
to-peer systems. In: Proceedings of the ACM SIGCOMM Workshop on Practice and Theory
of Incentives in Networked Systems. ACM (2004)

10. Fitzek, F.H.P., Katz, M.D.: Cellular controlled peer to peer communications: Overview and
potentials. In: Fitzek, F.H.P., Katz, M.D. (eds.) Cognitive Wireless Networks, pp. 31–59.
Springer (2007)

11. Gurerk, O., Irlenbusch, B., Rockenbach, B.: The competitive advantage of sanctioning insti-
tutions. Science 312(5770), 108–111 (2006),
http://dx.doi.org/10.1126/science.1123633

12. Güth, W., Ockenfels, A.: Evolutionary norm enforcement. Journal of Institutional and
Theoretical Economics 156(2), 335–347 (2000), http://edoc.hu-berlin.de/
series/sfb-373-papers/1999-84/PDF/84.pdf

13. Güth, W., Ockenfels, A.: The coevolution of trust and institutions in anonymous and
non-anonymous communities. Discussion Papers on Strategic Interaction 2002-07. Max
Planck Institute of Economics, Strategic Interaction Group (March 2002),
ftp://papers.mpiew-jena.mpg.de/esi/discussionpapers/
2002-07.pdf

14. Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968),
http://www.garretthardinsociety.org/articles/
art tragedy of the commons.html

15. Ionescu, M., Minsky, N., Nguyen, T.D.: Enforcement of Communal Policies for P2P Sys-
tems. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS,
vol. 2949, pp. 152–169. Springer, Heidelberg (2004)

http://www.sciencedirect.com/science/article/pii/S0167739X11000574
http://www.sciencedirect.com/science/article/pii/S0167739X11000574
http://dx.doi.org/10.1007/978-3-642-35545-5_10
http://dx.doi.org/10.2307/117319
http://dx.doi.org/10.1126/science.1123633
http://edoc.hu-berlin.de/series/sfb-373-papers/1999-84/PDF/84.pdf
http://edoc.hu-berlin.de/series/sfb-373-papers/1999-84/PDF/84.pdf
ftp://papers.mpiew-jena.mpg.de/esi/discussionpapers/2002-07.pdf
ftp://papers.mpiew-jena.mpg.de/esi/discussionpapers/2002-07.pdf
http://www.garretthardinsociety.org/articles/art_tragedy_of_the_commons.html
http://www.garretthardinsociety.org/articles/art_tragedy_of_the_commons.html

70 T. Balke, M. De Vos, and J. Padget

16. Jones, A.J.I., Sergot, M.J.: A formal characterisation of institutionalised power. Logic Journal
of the IGPL 4(3), 427–443 (1996),
http://www-lp.doc.ic.ac.uk/_lp/Sergot/InstitPower.ps.gz

17. Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., Elliott, C.: Experimental eval-
uation of wireless simulation assumptions. In: Proceedings of the 7th ACM Inter-
national Symposium on Modeling, Analysis and Simulation of Wireless and Mo-
bile Systems, pp. 78–82. ACM, New York (2004), http://users.cis.fiu.edu/
˜liux/research/papers/axiom-mswim04.pdf

18. Leibowitz, N., Ripeanu, M., Wierzbicki, A.: Deconstructing the kazaa network. In: Proceed-
ings of the Third IEEE Workshop on Internet Applications. IEEE Computer Society (2003),
http://portal.acm.org/citation.cfm?id=832311.837393

19. Miceli, M., Castelfranchi, C.: The role of evaluation in cognition and social interaction. In:
Dautenhahn, K. (ed.) Human Cognition and Social Agent Technology. Benjamins, Amster-
dam (2000)

20. Ostrom, E.: Governing the Commons: the Evolution of Institutions for Collective Action.
Cambridge University Press (1990); 18th printing (2006)

21. Ostrom, E.: Coping with tragedies of the commons. Annual Review of Po-
litical Science 2, 493–535 (1999), http://www.cipec.org/research/
institutional analysis/w98-24.pdf, Workshop in Political Theory and
Policy Analysis; Center for the Study of Institutions, Population, and Environmental
Change, Indiana University, Bloomington, USA

22. Perrucci, G.P., Fitzek, F.H., Petersen, M.V.: Energy saving aspects for mobile device ex-
ploiting heterogeneous wireless networks. In: Heterogeneous Wireless Access Networks.
Springer, US (2009)

23. Perreau de Pinninck Bas, A.: Techniques for Peer Enforcement in Multiagent Networks. Phd
thesis, Universitat Autónoma de Barcelona (2010)

24. Sabater-Mir, J.: Trust and Reputation for agent societies. Ph.D. thesis, Institut d’Investigació
en Intel.ligncia Artificial, IIIA (2003), http://www.tesisenxarxa.net/
TESIS UAB/AVAILABLE/TDX-0123104-172828//jsm1de1.pdf

25. Simon, H.A.: Rational choice and the structure of the environment. Psychological Re-
view 63(2), 129–138 (1956)

26. Wrona, K., Mähönen, P.: Analytical model of cooperation in ad hoc networks. Telecommu-
nication Systems 27(2-4), 347–369 (October 2004)

http://www-lp.doc.ic.ac.uk/_lp/Sergot/InstitPower.ps.gz
http://users.cis.fiu.edu/~liux/research/papers/axiom-mswim04.pdf
http://users.cis.fiu.edu/~liux/research/papers/axiom-mswim04.pdf
http://portal.acm.org/citation.cfm?id=832311.837393
http://www.cipec.org/research/institutional_analysis/w98-24.pdf
http://www.cipec.org/research/institutional_analysis/w98-24.pdf
http://www.tesisenxarxa.net/TESIS_UAB/AVAILABLE/TDX-0123104-172828//jsm1de1.pdf
http://www.tesisenxarxa.net/TESIS_UAB/AVAILABLE/TDX-0123104-172828//jsm1de1.pdf

Shared Strategies in Artificial Agent Societies

Amineh Ghorbani1, Huib Aldewereld1, Virginia Dignum1, and Pablo Noriega2

1 Delft University of Technology, Faculty of Technology, Policy and Management,
Delft, The Netherlands

{a.ghorbani,H.M.Aldewereld,M.V.Dignum}@tudelft.nl
2 Artificial Intelligence Research Institute of the Spanish National Scientific Research

Council, Barcelona, Spain
pablo@iiia.csic.es

Abstract. A shared strategy is a social concept that refers to a type of
behavioural pattern that is followed by a significant number of individ-
uals although it is, prima facie, not associated with an obligation or a
prohibition. E. Ostrom has argued in favour of the pertinence of social
strategies for institutional design and evolution and proposed a charac-
terization suggestive of formal treatment. However, shared strategies as
such have not been explicitly used in the context of regulated MAS in
spite of their relevance and their affinity to more standard normative
notions, of which a rich tradition exists in MAS research. In this paper,
we discuss the notion of shared strategy, characterize its distinguishing
features, propose its formalization using a temporal epistemic logic, and
explore its potential use in regulated multi-agent systems.

1 Introduction

In the Netherlands, almost all people have dinner around 5:30pm. As a foreigner
in that country, it is almost impossible to plan a (working) meeting around this
time, which would be a ‘normal’ time in many other countries. On the other
hand, having dinner that early is not an obligation. No one will be offended or
would even care if you choose to eat later. In other words, there is no particular
goal that everyone must reach following this strategy and therefore, individual
disobedience would not have any particular consequence. One other important
attribute of such statement is that it is more significant at the collective level
rather than individual. In many cases people are not even aware of the common
behaviour they are showing. Therefore, it is not a decision making action but
rather more a routine-based reactive process. Nevertheless, knowledge of this
typically Dutch behaviour, can help actors to plan their own, or joint activities
(e.g., you can go to the supermarket at that time as it is likely to be very quiet,
or you can invite your Dutch friends for dinner at that time). This is an example
of a shared strategy, i.e. an institutional arrangement where different actors have
the intention of performing the same task at a certain time or setting [17].

Even though the concept of shared strategy is socially and computationally
very instrumental, it has not yet been implemented nor formalized in the MAS

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 71–86, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

72 A. Ghorbani et al.

literature. First, it determines the general behaviour of the system thus providing
expectations about the global behaviour of the system. For example, restaurants
should start preparing meals early since there will be many people coming at
that time. Second, this notion adds a new dimension to the deontic classical
concept where there is no obligation, permission or prohibition, yet a shared
behaviour takes place.

In MAS research, shared strategies can be a new way of expressing conventions
that cannot easily be fitted into norms as they have no deontic ‘flavour’ to it.
Shared strategies are different from collective intentions [7]. A collective intention
is a goal shared by everyone in a team. Moreover, members of the team are
aware of other agents intention to meet the common goal. For a shared strategy
however, while all agents possibly have the same goal, their execution of tasks to
fulfil the goal are independent of each other and if one agent does not perform
the task, their goal can still be met. For example, while two people may have the
collective intention to watch a new movie together that has just been released,
many people share the strategy to watch movies as soon as they are released. In
the former case, the whole objective of watching the movie will not be achieved
if the two do not manage to watch the movie together, in the latter however,
whether one watches the movie does not effect the general goal.

Regarding the benefits of implementing the concept of shared strategies in
MAS, in this paper we take inspiration from the Institutional Analysis and De-
velopment framework (IAD), an institutional economic framework developed by
the Nobel laureate Elinor Ostrom [18]. IAD is an analysis framework for un-
derstanding social systems with the purpose of (re)designing social rules (i.e.
norms). The ADICO structure, part of the IAD framework, provides a language
for institutional statements, such as shared strategies, institutional rules and
norms [6].

The remainder of the this paper is structured as follows. In section 2 we
explore the different definition of institutions and introduce the IAD framework
and ADICO statements. In section 3 we further define shared strategies and
formalize the concept. Section 4 discusses how this definition can be used in
MAS. Section 5 explores related work. Finally, section 6 gives our conclusions
and directions for future research.

2 Institutions

Institutional economics is an area of research in the social sciences with a rich
collection of theories and frameworks that can be highly instrumental for MAS
research. Among these is the Institutional Analysis and Development (IAD)
framework which has gained popularity in different disciplines. A major focus
of this framework is institutional statements defined as the ADICO sequences.
We take inspiration from the ADICO definition to formalize shared strategy for
artificial agent societies.

In institutional economics, institutions are defined as “the set of rules actually
used by a set of individuals to organize repetitive activities that produce out-
comes affecting those individuals and potentially affecting others” [18,15]. These

Shared Strategies in Artificial Agent Societies 73

rules include laws, regulations, social norms, and shared strategies amongst oth-
ers. However, in MAS, the concept of institution usually refers not only to a set
of rules as above but also to the regulative structures that enable verification
and enforcement of those norms [4,1]1.

Institutions have two sides: on the one hand, they enable interactions, provide
stability, certainty, and form the basis for trust. On the other hand, they may
cause biased power relations. If institutions fail to fulfil stability or to enable
decision making, there are grounds for institutional (re)design [13].

Institutional (re)design refers to the devising of new social arrangements, by
examining existing arrangements and altering them when necessary [19]. I.e., in-
stitutional redesign refers to deliberate changes in institutional characteristics.
In order to design institutions, one should be able to understand and analyse the
institutional rules. Institutional frameworks such as the IAD framework by Os-
trom [17] are developed for this purpose. This framework addresses the different
components of a socio(-technical, -ecological) system that need to be analysed for
institutional (re)design [17]. In the remainder of this section, we briefly introduce
the IAD framework and the grammar of institutions (i.e. ADICO institutional
statements).

2.1 Institutional Analysis and Design

The IAD decomposition of a social system is presented in figure 1. Its central
concept is the ‘action arena’, in which individuals (or organizations) interact,
exchange goods and services, engage in appropriation and provision activities,
solve problems, or fight. The action arena is described by the participants (who
have a set of resources, preferences, information, and selection criteria for action)
and the action situation: the actual activity (or ‘game’) that is to be understood.

Physical World

Community

ADICO
statements

Rules, norms, shared
strategies

Action Arena

Action Situation

Participants

Patterns of Interaction

Outcomes

Evaluation
Criteria

Fig. 1. The components of a social system in the IAD framework [18]

What happens in the action arena leads to patterns of interaction and out-
comes that can be judged on the basis of evaluation criteria. The action arena
itself is influenced by attributes of the physical world (e.g., climate, present tech-
nological artefacts), the attributes of the community in which the actors/actions

1 Throughout this paper, we will be using the institutional economic terms where
required.

74 A. Ghorbani et al.

are embedded (e.g. demographics), and the set of rules(referred to as institu-
tional statements) that guide and govern the individuals behaviour.

Although physical world and community influence the action arena, it is the
rules of the game or, in other words, the norms, that actually define it. Therefore,
in IAD quite some attention is given to the institutional statements, which are
decomposed into a structure (also referred to as grammar of institutions) called
ADICO [17].

2.2 ADICO Institutional Statements

An ADICO statement consists of five components namely: Attributes, Deontic,
aIm, Condition, and sanction (Or else). This decomposition is for the purpose
of summarizing and analysing institutional statements2, distinguishing between
the different types and understanding the formation and evolution of these state-
ments [17].

Attributes. Attributes describe the participants of an action situation to whom
the institutional statement applies. Participants can be individuals who are dis-
tinguished by values such as age, sex or even roles in the system. For example, an
attribute of an ADICO statement can be a ‘student’. Corporate actors can also
be considered as attributes instead of individuals (e.g., university). These actors
can be distinguished by their organizational values such as location and size. The
attribute component of an ADICO statement can never be empty. Therefore, if
no attribute is specified for a given institutional statement the default value is
‘all members’ of the group.

Deontic Type. The purpose of the components is to distinguish between pre-
scriptive and non-prescriptive statements. Deontic operators are obligated (O),
permitted (P) and forbidden (H). While obliged and forbidden directly relate to
the normative notions of ‘ought’, ‘must’ or ‘should’, permitted seems less related
to the intuitive notion of norm. Permission rules however influence the struc-
ture of an action situation in three different ways. First by putting constraints
on permissions and thus restricting actor behaviour. Second, assigning a per-
mission to an action is constituting that action. Therefore, permission rules add
action options to the action situation. Third, such rules grant rights to particular
participants with certain properties to do an action. Some institutional state-
ments don’t have any deontic operator. As an example: “The person who places
a phone call, calls back when the call gets disconnected”.

Aim. The aim component describes the action or outcome (i.e., a state of af-
fairs) to which the institutional statement applies. In order for a institutional
statement to influence behavior, individuals must have a choice concerning its
Aim. In other words, prescribing an action or outcome only makes sense if it its
negation is also possible. E.g., the capability of voting implies the capability of
not voting.

2 We will use ‘institutional statement’ as a general term to address the concepts norm,
rule and shared strategy.

Shared Strategies in Artificial Agent Societies 75

Condition. Conditions are the set of parameters that define when and where
an ADICO statement applies. If there is no condition stated it implies that the
statement holds at all times.

Or Else. ‘Or else’ is the consequence of non-compliance to an assigned institu-
tional statement. Only deontic statements include an ‘Or Else’. A common type
of ‘Or else’ is a sanction. Besides sanctions, rule violation may also result in the
change of deontic (e.g. permitted to forbidden) of another rule. For example, it
is forbidden to put a person in jail, but if they perform a crime, then the deontic
changes to permission and one is allowed to imprison someone. Institutional ac-
tions may also be a result of norm violation. For example the role of the violator
may be taken away. In general, the ‘or else’ component of an ADICO statement
contains an institutional statement by itself which results in a nested structure
of institutional statements. Also, the ‘or else’ component may be linked to the
condition component that specifies the number of times that the norm has been
violated.

According to the ADICO decomposition given above, an institutional state-
ment can be divided into three different categories namely: rules, norms and
shared strategies.

1. ADICO
A Rule3 (aka, regulatory rule) is the most complete form of statements
covering all five components of the ADICO statement. In other words, rules
have attributes, deontic type, action, condition and ‘or else’.

2. ADIC
A Norm4 is an institutional statement without an ‘or else’ component. For
example, shaking hands when being introduced to someone is a norm given
that, if not done, it may affect your future relationship with that person.
However, there is no fixed sanction and different people may have different
reactions.

3. AIC
A Shared strategy is an institutional statement where there are no sanctions
or deontic type, and represents general expectations about the aggregate
behaviour of others.

In the next section, we will discuss shared strategies in more detail.

3 Shared Strategies

3.1 Towards a Definition

According to E. Ostrom, a shared strategy is a social concept that refers to a
type of behavioural pattern that is observed by a significant number of individ-
uals although it is, prima facie, neither associated with any deontic modality,

3 In agent literature, a rule is often addressed as ‘norm’ or ‘regulation’.
4 Sometimes called ‘social norm’ or even ‘moral’ or ‘ethic code’ in agent literature.

76 A. Ghorbani et al.

Table 1. Examples of Behaviours that can be assumed shared strategies

s1 When a telephone conversation is cut, call back

s2 When in Rome, do as Romans do

s3 Dutch eat at 5:30

s4 In a busy stairway, walk on the left

s5 Jumping the queue is not nice

s6 Faced with an unexpected obstacle, break

s7 Only when a pedestrian makes a clear sign to at-
tempt to cross the street, yield the right-of-way

s8 If no police officer is in sight, skip the red light

nor having a reward or punishment linked to its performance. In order to eluci-
date the distinguishing features of shared strategies, in this section we explore
different examples of social behaviour.5

Ostrom, in [17], pg. 143, proposes as an example of shared strategy, the rule of
calling back when a telephone conversation is cut (s1 in Table 1). Strategy s1 is
a conditional that under objective circumstances triggers an action. It does not
explicitly entail an obligation or a prohibition, and no explicit or unique reward
or punishment ensues. On a closer look, however, strategy s1 may entail an
expectation, that, depending on the context in which the interruption took place,
may be a strong, possibly asymmetrical and, if not fulfilled may be consequential.
The level and nature of expectation therefore reconciles with Ostrom’s claim
that, if an action rule is to be a shared strategy, then it would not matter
whether α is done or not. We believe that the key is in the collective nature of
expectations involved in shared strategies as we shall see.

Strategies s2 and s3 are similar to s1 but their deontic component is more
tenuous and thus closer to Ostrom’s intuitive definition. Strategy s2 “When in
Rome, do as Romans do”, like s1, is an ostensible directive for action whose
—relatively inconsequential— deontic component may guide the adaptive be-
haviour of foreigners, on one hand, and the leniency of natives towards non-
standard behaviour of foreigners, on the other. Strategy s3, “Dutch eat at 5:30”,
asserts a factual regularity but it also hides a directive for action whose compli-
ance by an individual is indifferent to the rest of the world; nevertheless, under
certain circumstances, it may have practical consequences (in Holland, for an
individual’s eating plans or for the operation of restaurants).

These three strategies may be deemed shared strategies only if we make some
assumptions about the expectations involved explicit, otherwise they would be
examples of common and collective strategies. Thus, strategy s3 would be not
a shared strategy but a “common strategy” if we understand it as a prevalent
behaviour which people may not even be aware of. However, it becomes a “shared
strategy” when we understand it as an expectation of common global behaviour;

5 The concept of shared strategies has been addressed by social scientist using different
terms. For instance, scripts by Schank and Abelson [21] or conventions by Hodgson
and Knudsen [12]. For an overview of this literature see pg. 178 [17].

Shared Strategies in Artificial Agent Societies 77

Table 2. Strategy Types

common strategy most individuals do sj
shared strategy most individuals believe that most individuals do sj
collective strategy most individuals believe that most individuals believe most

individuals do sj

for instance, saying that most people believe that most Dutch eat at 5:30. Finally,
s1 also fails to be a shared strategy when the two parties expect that both parties
should follow the rule, or technically, when there is collective belief. That is we
have the three types of strategies characterized in Table 2:

Shared strategies may be situated, thus examples s7 may only hold if in, say,
Portugal. Furthermore, notice that some shared strategies (s7 and s8) may very
well hold and be socially useful if situated in one context but may be highly
dangerous patterns of behaviour in others, hence giving rise to full norms that
forbid and punish their performance. Finally, situatedness is not only physical as
s5 “jumping the queue is not nice” illustrates. It is present in everyday situations
like the supermarket or a theatre but becomes a strict directive (i.e., norm or
rule) in surgery waiting lists and in some bureaucratic procedures.

As section 4 will show, it is important to distinguish between the collective
character of a shared strategy –the fact that a collectivity has shared strategy or
not— and whether each individual decides to enact or not that shared strategy in
a particular moment. In fact, asymmetries of different types may create different
expectations that affect agents’ decisions; for instance, even when s1 is a shared
strategy, if I am calling a cab to go to the airport and communication breaks,
it is me who should call back because it is in my best interest to continue the
conversation and I may presume the cab doesn’t know my number.

Likewise, shared strategies reveal a transient character that puts them
between actual standard norms or social conventions, and fully unregulated be-
haviour, this transient character is revealed both in the collective and the in-
dividual perspectives. Thus, from an institutional perspective shared strategies
can be seen as an emerging social convention or the grounds for an emergent
norm. That is the case of s4, “walking on the left of a busy stairway”, that in
London is a solid social convention —whose non-compliance is met with con-
tempt or derision, while in Paris it is a shared strategy, and in the US it is
not (still?). Note also that driving on one of either sides of a road, which was
a shared strategy at some point, became institutionalized as an explicit norm
everywhere; probably because of the social significance of non-compliance. From
an individual’s perspective, on the other hand, the transient character of shared
strategies is evident in the same strategy s4 that may be likened either to an
internalized norm or to a tacit social convention of which the subject might be
not fully aware.

78 A. Ghorbani et al.

3.2 Formalizing ADICO Statements

In this section we formalize the notion of Institutional Statement from Ostrom
[17] to get to a semantic description of the rules, norms and, foremost, shared
strategies of the ADICO framework. This forms the basis of our discussion on
shared strategies in the next section.

The logic used for the formalization is a temporal epistemic logic based on
CTL* [8] for the temporal aspect and KD45 [14] for the epistemic aspect. We
use a technique similar to [9] for the combination of these modalities. In short,
the resulting logic is a temporal logic where the states contain an epistemic
modality. This allows for the expression of beliefs and changes of beliefs, but not
the expression of beliefs about the temporal structures (that is, one can change
its beliefs in a future state, but one cannot have beliefs about future or past
states).

The core of the logic is given by the set of propositions P , which can be used
to construct sentences using the typical propositional operators (¬,∧,∨,→,↔).
The set of all possible well-formed propositional formulas will be denoted as LP .
This logical core is extended to an epistemic logic of beliefs using a belief-operator
(B), following the KD45 principles, resulting in a set of well-formed sentences
LBP . The temporal logical language LT BP is then constructed by adding the
usual temporal operators: path operators A (all paths), E (some paths), and
state operators X (next), G (always), F (sometime), U (until). The language
is further enriched with stit : er (‘see to it that’, see [5]) to express individual
action.

Using the logic LT BP we can now introduce the syntax of ADICO institutional
statements as follows.

Definition 1 (Institutional Statement). ADICO Institutional Statements
are of the form

DR(I |C)� o

where
- D represents one of the modalities: {O, P, H, S }
- R being the attribute, represented as a set of roles;
- I being the aim, represented as an expression from LP ;
- C being the condition, represented as an expression from LP ; and
- � o being the or-else, where o is represented as combination of institutional
statements.

The modality of an institutional statement can either be: O (obligation), P (per-
mission), H (prohibition), or S (shared strategy). The modality determines the
semantics of the statement. Roles in our framework are considered as labels, with
R being the set of all roles in the institution. The applicability of an institutional
statement is thus R ⊆ R. The� o part of the statement expresses the or-else of
the institutional statement, representing the reaction to violations of the state-
ment. Intuitively, this means that when the lefthand-side of the �-operator is
violated, the righthand-side of the �-operator is activated. The reaction, o, is
represented as an expression containing institutional statements combined with

Shared Strategies in Artificial Agent Societies 79

conjunctions and disjunctions. It is also possible that o ≡ �, which expresses
that the institutional statement has no reaction6.

The different types of institutional statements referred to by Ostrom can
be obtained in the following ways. A rule is an institutional statement that
contains all elements, and where the modality is of deontic nature (that is,
D ∈ {O,P,H}). Norms are institutional statements with a deontic modality
(D ∈ {O,P,H}) and where no o is specified; DR(I |C). Finally, shared strategies
are institutional statements without a deontic modality (D = S) and where the
reaction o is absent; SR(I |C).

For the semantics of the institutional statements, we create reductions of the
newly introduced operators to the basics of the LT BP . Due to space limitations,
we give the reduction of obligations, prohibitions and shared strategies; the re-
duction of permissions (weak permissions, strong permissions, cf. [23]) is out of
scope of this paper, and left as an exercise to the reader.

Definition 2 (Reduction of Obligations).

OR(I |C)� o ⇔ ∀r ∈ R :A
[
C → (¬viol(I, r)) U(
er I ∧X(AF¬viol(I, r)) ∨
X(¬I ∧ viol(I, r))

)
∧ viol(I, r) → o

]
The above definition transforms the obligation into a LT BP sentence, using an
Anderson’s reduction [2], similarly as done in, e.g., [1]. Intuitively, the definition
expresses that whenever the condition (C) holds, either the aim (I) is achieved
by those obliged (er I), in which case no violation of the obligation will ever
occur, or the aim is not achieved, and a violation happens. Moreover, when
the violation happens, the reaction statement o (if present) is triggered (these
statements typically express sanctioning mechanisms, see [17]).

Definition 3 (Reduction of Prohibitions)

HR(I |C)� o ⇔ OR(¬I |C)� o

The reduction of prohibitions is based on the principle that Hp ≡ O¬p from
most deontic logics.

Definition 4 (Reduction of Shared Strategy)

SR(I |C) ⇔ ∀r1 ∈ R, ∀r2 ∈ R\{r1} : A(C → Br1er2I)

The reduction of shared strategies is formed around the idea that shared strate-
gies represent an expectation. Intuitively, a shared strategy expresses the expec-
tation that other members of the same group (i.e., playing the same role, or

6 Typically, when o ≡ �, we omit the � o part of an institutional statement for
readability: DR(I |C)� � = DR(I |C).

80 A. Ghorbani et al.

part of the group of roles that share the strategy) will try to follow the shared
strategy. This idea is reflected in definition 4. This is different from the notions
of common strategy, where everyone in the group does the expected thing, and
joint strategies, where everyone in the group intends that they do the expected
thing. Using similar elements as used in definition 4, we can also formalize the
notions of common strategy and joint strategy:

Proposition 1 (Common & Joint Strategies)

CSR(I | C) ⇔ A(C → ∀r1 ∈ R : er1I)

JSR(I | C) ⇔ A(C → ∀r1, r2 ∈ R : Br1Br2er1I)

Common strategies (CS) happen when all agents in a system are programmed
alike, and act in similar manners; that is, every member of a group R follows a
common strategy CSR to do I when each member of that group does I. A joint
strategy (JS), similar to joint-intentions [7], is when every member of a group
R does I, but also knows (and expects) that every other member of R also does
I. That is, there is shared belief that the group beliefs that they are doing I.

By formalizing the shared strategies (and similarly, common and joint strate-
gies) we lost an aspect of Ostrom’s concept. An important aspect of Ostrom’s read-
ing is that a shared strategy can be not acted upon, which is missing from
definition 4, since we expect that every agent in the group will do I. Informally,
definition 4 reads as “everyone from groupR believes everyone from groupR does
I”. Ostrom’s reading of a shared strategy is more in line with “most from group
R believe that most of group R do I” (see the discussion earlier in section 3.1).
This has an impact on the way agents behave, because in the first reading one can
be sure that members of the group R will do I, whereas in the second reading it
might be that some members ofR will not do I. Therefore, we need to weaken our
definition, for which we require a semantic definition of ‘most’.

Definition 5 (Most). We define the set-theoretic ‘most’ operator

M

as follows,
for a set of roles R:

M

(R) = R′ ⇔ R′ ⊆ R ∧ (|R′| > 1/2 · |R|)

Intuitively, this definition expresses what one would expect. If R′ is representing
the most of set R, then at least half of the agents in R are also in R′; that is, R′

is a subset of R and the number of elements of R′ is at least half that of R.
Using the concept of ‘most’ we can create weaker versions of the earlier

strategies as follows.

Proposition 2 (Weak strategies)

CS−
R (I | C) ⇔ A(C → ∀r1 ∈ M

(R) : er1 I)

JS−
R (I | C) ⇔ A(C → ∀r1, r2 ∈ M

(R) : Br1Br2er1I)

S−
R (I | C) ⇔

A(C → ∀r1 ∈ M

(R), ∀r2 ∈ M

(R\{r1}) : Br1er2I)

Shared Strategies in Artificial Agent Societies 81

Table 3. Examples of Shared Strategies

s1 S−
on phone(call back | conversation cut)

s2 S−
tourist(do as Roman | in Rome)

s3 S−
Dutch(eat | 5 : 30)

s4 S−
pedestrian(stay left | in busy stairway)

s5 S−
civilised people(¬jump queue)

s8 S−
driver(skip red light | ¬police in sight)

The expressions in proposition 2represent theweakened versions of the expressions
in proposition 1 and definition 4. Intuitively, they read as follows. A groupR has a
weak common strategy to I whenmost ofR do I. A groupR has aweak joint strategy
to I when most members of R believe that most other members of R believe that
most of them do I. Finally, a group R has a weak shared strategy to I when most
members of groupR believe that most other members of R do I.

A formalization of some of the examples from table 1 is shown in table 3
below.

4 Shared Strategies Applied in MAS

In this section, we discuss the practical application of shared strategies in MAS.
Shared strategies can be seen as a form of regulation of individual behaviour
within a system, or as mechanisms to improve cooperation, coordination and
control in MAS. As such, shared strategies can be used by agents in their rea-
soning processes, in order to determine their plans in a shared environment (cf.
section 4.1), or as means to support design and evaluation of engineered MAS
(cf. section 4.2).

4.1 Individual Application

In this section, we look at how shared strategies can be used by individual agents
in their planning. As with norms, agents can and should take into account the
shared strategies holding in a domain in order to generate efficient plans for their
goals. We assume here autonomous cognitive agents that are able to use their
knowledge about a domain in the generation of plans. Such agents can decide
on the adherence or not to norms. Other researchers have studied norm-based
planning [22], i.e. the generation of optimal plans with respect to a set of norms.
In this section, we concentrate on the use of shared strategies for the generation
of plans.

The intuition of the formal definition of shared strategy introduced in section 3
is that most agents assume that under certain conditions, other agents will behave
in a certain way. While common strategies may be designed into agent systems so
that agents are not aware of them as common behaviour, shared strategies can be
perceivedby theagents as sharedbehavioural patterns. Ifmost agents see thatmost

82 A. Ghorbani et al.

agents have this newperception, the strategies will be globally recognized as shared
strategies.This new knowledgewill then be updated in their belief systemand used
in their planning. Based on these newbeliefs, agents can take two approaches to use
shared strategies in their planning, referred here as an optimistic and a pessimistic
approach. In order to discuss the difference between these two approaches, we take
as example the shared strategy:

S−
drivers(break|obstacle in road)

which represents the fact that drivers will break when there is an obstacle in the
road.

An optimistic pedestrian agent will assume that all drivers will break when
she crosses the road, and therefore will plan to cross the road even if she sees a
car approaching. On the other hand, a pessimistic pedestrian will assume that
you cannot know which drivers will adhere to the shared strategy, since not all
have to follow it, and therefore will plan to stop at the curb when she sees a car
approaching.

We are currently working on an extension to the BDI architecture that incor-
porates reasoning using shared strategies.

4.2 Institutional Application

Form an institutional perspective there are two issues worth identifying. The
relationships between shared strategies and institutional design and evolution,
and the role of shared strategies in multiagent-based simulation.

Since shared strategies constitute a regularity of the aggregate behavior, insti-
tutional conventions may be designed to promote or to control the consequences
of that regularity. The approach is straightforward when the existence of a shared
strategy is known in advance and it is likely that its execution carries out in-
stitutional objectives. In this case, it is reasonable to include specific evaluation
mechanisms to monitor the effects of the strategy, and use these to assess trans-
action costs that would in turn guide the adaptation of the institution to actual
performance ([14]). Concomitantly, it is also feasible to establish institutional
norms and conventions —with the appropriate evaluation mechanisms— that
regiment, constrain or foster the enactment of the shared strategy by participat-
ing agents.

The way of dealing with the alternative case is less obvious. When the ex-
istence of a shared strategy is not known in advance, ordinary performance
monitoring does not necessarily identify the behavioral regularity, even when
performance indicators might signal a hidden cost. In such case, institutional
reaction may be untimely and inefectual. To contend with such eventuality,
one may attempt to foresee undesirable outcomes and, at the risk of overreg-
ulation, legislate against them. The opacity of undesirable outcomes, however,
may sometimes be appropriately addressed with conventional mechanism-design
techniques or by a clever use of modeling and simulation methodologies.

In addition to their value for visualizing the effect of shared strategies on in-
stitutional performance, in this context, the modeler deals with the system as

Shared Strategies in Artificial Agent Societies 83

a regulated MAS, making a shared strategy a feature of individual agents and
harnessing individual actions through institutional conventions of different sorts.
The use of shared strategies may be fruitful for some forms of agent-based simu-
lation. One relevant form is to use shared strategies as a salient part of the agents’
internal decision models. This way, the designer may study different aspects of
normative, motivational and goal-directed attitudes (for example the interplay
of norms and strategies in different agent architectures, norm internalization
processes, norm emergence, norm compliance vs. conflict resolution approaches,
value formation, achievement degrees). Another form of using shared strate-
gies in agent-based simulation is to factor the analysis of aggregate behavior by
designing populations partitioned by shared strategies, thus measuring cost and
value of interactions within populations with pure and mixed strategies, rational
or spontaneous triggering of the shared strategies, etc.

4.3 Institutional Emergence

Although this is not the primary focus of this paper, we see the ADICO struc-
ture as an instrumental tool to study the emergence of rules, norms and shared
strategy in agent societies.

As Ostrom explains in [17], the change in any part of the ADICO statement
results in the evolution of such entities in a society. For example, when global ex-
pectations about a shared strategy narrow down to individuals, a deontic flavour
emerges, turning the shared strategy to a norm. Likewise, when the implicit, non-
unique and unclear consequences of non-compliance to a norm become common,
known and explicit to everyone, that norm turns into a sanction.

Besides the study of institutional evolution as we described above, the ADICO
statement can be linked to the internal architecture of an agent (e.g. BDI) so
that the agents can perceive common behaviour and recognize and establish it
as an institutional statement. For example, if the agent detects the components
of an ADICO structure in a repeated pattern of behaviour in the society it will
announce this as a shared strategy/rule/norm, and if many agents announce
the same statement, this will become an emergent ADICO statement in the
artificial society. We are only addressing the idea of this application. However,
the implementation will be the topic for future work.

5 Related Work

Some concepts in the MAS literature address shared strategy to some extent.
Table 4 shows some of the most relevant concepts and compares their usage with
similar examples. Normative information can be situated in the environment (e.g.
sign boards) which means that a norm only needs to be followed within a certain
boundary of space and time [16]. The type of situated norm can be warning,
obligation and direction. A shared strategy however, does not necessarily have
to be bound to location and time or have any of the types given to distributed
norms (i.e. warning, obligation, direction).

84 A. Ghorbani et al.

Social conventions are rules that restrict agent behavior while having no threat
or punishment. Young (1993) presents the following definition of a conventional
norm: “A convention is a pattern of behavior that is customary, expected, and
self-enforcing. Everyone conforms, everyone expects others to conform, and ev-
eryone wants to conform given that everyone else conforms.”

For a shared strategy however, no one has expectation for others to conform
because they are not aware if the person is necessarily a follower of the strategy.
No (low) expectation results in no (low) disappointment. For example, if in a
given context calling back if the line is dropped is a social convention, then the
person may be upset but if it is a shared strategy, the person does not know
if he is a performer of the shared strategy ‘calling back’, and thus will not be
offended if the caller does not call back. Therefore it can also be concluded that
a shared strategy has lower priority than a convention for agent planning.

A collective intention is the reason for team existence and it implies that
all members intend for all others to follow that intention [7] . The goal of the
team may not be reached if one agent may decide not to follow the intention.
However, for a shared strategy, as mentioned previously, most people know the
strategy and know that most others will follow the strategy. Therefore, there is
no obligation for agents to perform the strategy and there is also no significant
consequence on an individual level while the global behavior of the system may
be important.

Table 4. Concepts related to shared strategy in current MAS literature

Concept name ref. Example

Shared Strategy [17] The Dutch eat dinner at 5:30pm.

Situated Norm [16] In this ship dinner is served at 5:30 pm (or else no
food).

Social Norms/ Conventions [24] When eating dinner, people start at the same time

Shared/Collaborative plans [11,10] Those group of friend have plan to make dinner
together

Collective Intention [7] Those group of friend are committed to have din-
ner together at 5:30 pm.

Norm internalization [3] is another topic of research in MAS that can be used
in combination with shared strategies. Norm internalization is progressive. This
is in line with the transition of ADICO statement from one type to another (e.g.
a norm becomes a shared strategy)[16, 3]. In other words, during the process of
internalization, an ADICO rule which has all five parts of the statement, may
loose the ‘or else’ and become a norm and later on turn into a ‘shared strategy’
by losing the deontic. On the other hand, the more the norm is internalized
the less decision making is required. This again is in line with the definition of
shared strategy which is more of a routine that requires less thinking. A fully
internalized norm is a shared strategy only if it is shared among people.

Shared Strategies in Artificial Agent Societies 85

The original formulation of shared plans [10] does not see the necessity for
an agent to have intentions towards the act of another agent. It is similar to
shared strategies in the sense that there is not joint intention between the agents.
However, it is different to shared strategies because the agents make plans and
actually coordinate in performing the action. Collaborative plans [11] which are
a revised version of shared plans are also different from shared strategies because
they produce commitment to the joint activity.

6 Conclusion and Future Work

In this paper we presented the concept of shared strategy as an alternative
concept to that of norm in MAS. Based on the work of Ostrom, namely the
notion of ADICO institutional statement, we presented an integrated formalism
to describe the semantics of norms and shared strategies, based on a temporal
epistemic logic.

A shared strategy is a low priority statement leading to action among a group
of agents. Since the expectation is shared, each agent believes that most other
agents will perform the action but does not necessarily know who. Therefore,
agents don’t have expectations for a particular other agent to perform shared
strategies because they cannot know whether that particular agent follows the
strategy or not, even though as a group, most will. This yields that no deontic
type and no sanction can be assigned to a shared strategy.

Shared strategies are a crucial part of agent societies as they result in global
behaviors that may need to be taken into consideration by other agents who may
be part of the system or merely global viewers. A shared strategy can change into
norm and vice versa depending on the level of norm internalization and the context
which facilitates the implementation of norm emergence and evolution [20].

For future work, we are further extending the formalization of shared strat-
egy. We are also exploring how shared strategies can be implemented into BDI
architecture.

Acknowledgments. This research was partly funded by the COST Action
IC0801 “Agreement Technologies” Grant.

References

1. Aldewereld, H.: Autonomy vs. Conformity: an Institutional Perspective on Norms
and Protocols. SIKS Dissertation Series 2007-10. Utrecht University, PhD Thesis
(2007)

2. Anderson, A.: A reduction of deontic logic to alethic modal logic. Mind 67, 100–103
(1958)

3. Andrighetto, G., Villatoro, D., Conte, R.: Norm internalization in artificial soci-
eties. AI Communications 23(4), 325–339 (2010)

4. Arcos, J., Esteva, M., Noriega, P., Rodrguez, J., Sierra, C.: Engineering open en-
vironments with electronic institutions. Journal on Engineering Applications of
Artificial Intelligence 18(2), 191–204 (2005)

86 A. Ghorbani et al.

5. Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. Theo-
ria 54(3), 175–199 (1988)

6. Crawford, S., Ostrom, E.: A grammar of institutions. American Political Science
Review, 582–600 (1995)

7. Dunin-Keplicz, B., Verbrugge, R.: Collective intentions. Fundamenta Informati-
cae 51(3), 271–295 (2002)

8. Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 955–1072. MIT Press (1990)

9. Engelfriet, J.: Minimal temporal epistemic logic. Notre Dame Journal of Formal
Logic 37(2), 233–259 (1996)

10. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial In-
telligence 86(2), 269–357 (1996)

11. Grosz, B., Sidner, C.: Plans for discourse. Technical report, DTIC Document (1988)
12. Hodgson, G., Knudsen, T.: The complex evolution of a simple traffic convention:

the functions and implications of habit. Journal of Economic Behavior & Organi-
zation 54(1), 19–47 (2004)

13. Klijn, E., Koppenjan, J.: Institutional design. Public Management Review 8(1),
141–160 (2006)

14. Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press (1995)

15. North, D.: Institutions, institutional change and economic performance. Cambridge
University Press (2009)

16. Okuyama, F., Bordini, R., da Rocha Costa, A.: Spatially distributed normative
objects. In: Coordination, Organizations, Institutions, and Norms in Agent Systems
II, pp. 133–146 (2007)

17. Ostrom, E.: Understanding institutional diversity. Princeton Univ. Pr. (2005)
18. Ostrom, E., Gardner, R., Walker, J.: Rules, games, and common-pool resources.

Univ. of Michigan Pr. (1994)
19. Pettit, P.: Institutional Design and Rational Choice, pp. 54–89. Cambridge Uni-

versity Press (1996)
20. Savarimuthu, B., Cranefield, S., Purvis, M., Purvis, M.: Norm emergence in agent

societies formed by dynamically changing networks. Web Intelligence and Agent
Systems 7(3), 223–232 (2009)

21. Schank, R., Abelson, R., et al.: Scripts, plans, goals and understanding: An inquiry
into human knowledge structures, vol. 2. Lawrence Erlbaum Associates, Nueva
Jersey (1977)

22. Panagiotidi, S., Vázquez-Salceda, J.: Normative Planning: Semantics and Imple-
mentation. In: 13th International Workshop on Coordination, Organizations, In-
stitutions and Norms in Agent Systems (COIN@WI-IAT), Lyon, France (2011)

23. van der Torre, L.: Deontic Redundancy: A Fundamental Challenge for Deon-
tic Logic. In: Governatori, G., Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181,
pp. 11–32. Springer, Heidelberg (2010)

24. Villatoro, D., Sen, S., Sabater-Mir, J.: Of social norms and sanctioning: A game
theoretical overview. International Journal of Agent Technologies and Systems
(IJATS) 2(1), 1–15 (2010)

Goal-Directed Policy Conflict Detection

and Prioritisation

Mukta S. Aphale�, Timothy J. Norman, and Murat Şensoy

Dept. of Computing Science,
University of Aberdeen,

Aberdeen, UK
{m.aphale,t.j.norman,m.sensoy}@abdn.ac.uk

Abstract. A policy (or norm) is a guideline stating what is allowed,
forbidden or obligated for an entity, in a certain situation, so that ac-
ceptable outcomes are achieved. Policies occur in many types of scenarios,
whether they are loose social networks of individuals or highly structured
institutions. It is important, however, for policies to be consistent and
to support their goals. This requires a thorough understanding of the
implications of introducing specific policies and how they interact. It is
difficult, even for experts, to write consistent, unambiguous and accurate
policies, and conflicts are practically unavoidable. In this paper we ad-
dress this challenge of providing automated support for identifying and
resolving logical and functional conflicts.

Keywords: Policies, Norms, Policy Authoring, Conflict Resolution,
Intelligent Agents.

1 Introduction

Policies are designed to guide and regulate behaviour of entities in a system; they
are system-level constraints that represent ideals of behaviour. The benefits of a
policy-based approach include reusability, extensibility, context-sensitivity, veri-
fiability, information security, support for simple and sophisticated components
and reasoning about component behavior [13].

Policies can be classified into two categories — collective and individual. Col-
lective policies are sets of rules applicable to entities in a particular group or
entities playing a specific role. They represent an agreement among agents who
are responsible for defining the rules and ensuring that common goals are pro-
moted. For example, the NHS Care Record Guarantee for England is an agree-
ment between NHS (National Health Service) and patients, brokered by patient
organisations and senior healthcare experts. Personal preferences of entities are

� The research described here is supported by the award made by the RCUK Dig-
ital Economy programme to the dot.rural Digital Economy Hub; award reference:
EP/G066051/1.

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 87–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

88 M.S. Aphale, T.J. Norman, and M. Şensoy

also often expressed by individual policies. For example, rules for sharing per-
sonal information in a social network. Policies operate in conjunction with indi-
vidual and organisational goals, such as the provision of effective patient care.
The key challenge here is: how to specify policies/norms that protect important
information (secrets) and promote ideal action (normal operating procedures),
while ensuring the achievement of individual/organisational goals?

It is difficult, even for experts to write consistent, unambiguous and accu-
rate policies. Policies may conflict with each other and with organisational goals
in many situations; i.e., logical and functional conflicts, respectively [5]. Iden-
tifying and resolving such conflicts, and functional conflicts in particular, is an
important challenge. This question has been explored in the context of practical
reasoning by Kollingbaum [9], where an agent architecture (NoA) is proposed
that detects direct and indirect conflicts between norms and action choices. Con-
flicts are then either resolved through heuristic strategies or labelled for further
deliberation. Conflicts between beliefs, obligations, intentions and desires are
also explored in the BOID architecture [4], where the aim is to identify maximal
subsets of consistent norms and intentions. Reasoning about plans and norms
has been further addressed by Meneguzzi [10], where Jason [2] was extended
to include normative constraint checking. In this way, agents can modify their
behaviour in response to newly accepted norms, by creating new plans to com-
ply with obligations and suppressing the execution of existing plans that violate
prohibitions.

In other research it has been demonstrated how intelligent agents can as-
sist humans in complex, norm-governed decision making [12] and prognostically
reason about possible normative violations and replan to avoid these violations
[11]. In addition to supporting human decision-making constrained by norms or
policies, existing research has addressed the problem of supporting humans in
authoring policies. In this area, however, there is very limited automated support
for conflict detection and resolution. The authoring process is guided through
the use of templates in the work of Johnson et al. [8]. In Uszok et al.[14] some
reasoning support for conflict detection has been explored, but this is confined
to the detection and resolution of logical conflicts.

In this research, we focus on the support of policy authors in conflict detection
and resolution including functional conflict detection. Conflicts occurring in a
system may be of varying significance. More critical are the those that have
higher chances of occurring and those that can impair goal achievement. Hence,
it is crucial to identify conflicts, the resolution of which will lead to maximum
likelihood of goal achievement. The key questions addressed are: how to identify
conflicts that are most relevant given the domain and goals of organisation, and
how to resolve conflicts that are most important.

This paper is organised as follows: In Section 2 we introduce the Polar Agent
application developed for policy authoring and planning. Our notions of policies
and conflicts are detailed in Section 3. Our activity prioritisation model for
ranking the activities within a set of plans to achieve a goal is described in Section
4. Conflict detection methods implemented by the Polar Agent are described in

Goal-Directed Policy Conflict Detection and Prioritisation 89

Section 5, where specific emphasis is given to functional conflict detection. The
conflict resolution method implemented by the Polar Agent and scope for future
work are outlined in Section 6, and in Section 7 we present our conclusions.

2 Polar Agent

In support of this research, we have developed the Polar Agent for authoring
OWL-POLAR (OWL-based POlicy Language for Agent Reasoning) [6] policies
and reasoning about interactions between plans and such policies (see Section
3). It consists of two core modules — Policy Authoring and Domain Analysis.
Conflict detection and resolution mechanisms are implemented by the author-
ing module, and possible plans for a specified goal are generated and analysed
using the domain analysis module. An intelligent agent assists the user in under-
standing the implications of policies and any conflicts that may occur between
policies and between policies and plans. The architecture of the Polar Agent is
illustrated in Fig. 1.

1. Policy Authoring. This consists of an interface for specifying policies using
OWL-POLAR and machinery for the detection and resolution of conflicts.
– Conflict detection. Potential logical and functional conflicts are as-

sessed according to the relative priorities of activities. Priorities are com-
puted on the basis of the cost of achieving goals and the probability of
successful plan execution.

– Conflict resolution. Our aim is to support users in the resolution
of conflicts, and so the focus here is on the presentation of options to
refine policies in order to resolve conflicts. The intelligent agent assistant

Policy Authoring Domain Analysis

Goals

Refinement

Conflict Resolution

Explanation

Suggest Possible
Refinements

Policies

Plan Generation

Activity Annotation

Active Policies

Activity Prioritisation

Conflict
Detection

Fig. 1. Polar Agent Architecture

90 M.S. Aphale, T.J. Norman, and M. Şensoy

provides recommendations regarding how conflicts my be resolved and
the implications of policy refinements.

2. Domain Analysis contains an interface for specifying goals and mecha-
nisms for the automatic generation and analysis of possible plans. There are
three core processes involved here:
– Plan Generation generates all possible plans for a particular goal.
– Activity Annotation labels activities in possible plans with policies

that may constrain these activities, the cost of achieving goal, etc.
– Activity prioritisation prioritises activities on the basis of factors in-

cluding cost, frequency of occurrence in plans and probability of success.

In this paper, our focus is on the prioritisation of conflict detection, and resolu-
tion driven by an organisation’s goals. Before presenting our model of prioritised
conflict detection, however, we must clarify precisely what we mean by policies
and conflicts.

3 Policies and Conflicts

OWL-POLAR, developed in prior research [6], is used as a language for ex-
pressing policies in this work. OWL-POLAR is sufficiently expressive to be used
for specifying policies in real-life applications. It is based on OWL-DL and ex-
ploits OWL 2.0 that includes a sophisticated set of built-in numeric data ranges
and expressive constructors for building new data ranges. The expressiveness of
OWL-POLAR is not restricted to DL — use of variables is allowed while defining
policies by means of conjunctive semantic formulae and data ranges are exploited
to enable the expression of complex constraints on policies. Means for explicitly
defining expiration conditions for policies are provided in OWL-POLAR.

Advanced policy analysis that is not limited to subsumption checking is im-
plemented in this framework. For example consider following policies: (i) Dogs
are prohibited to enter in a restaurant, and (ii) A member of CSI team is permit-
ted to enter a crime scene. There is no subsumption relationship between these
policies. However, the OWL-POLAR reasoner anticipates a conflict by compos-
ing a state of the world where these policies are in conflict; e.g. the crime scene
is a restaurant and there is a dog in the CSI team.

An OWL-DL ontology o = (TBoxo, ABoxo) consists of a set of axioms defin-
ing the classes and relations (TBoxo) as well as a set of assertions about indi-
viduals in the domain (ABoxo). Concept axioms are of the form C � D, where
C and D are concept descriptions. Relation axioms are expressions of the form
R � S, where R and S are relation descriptions. The ABox contains concept
assertions of the form C(a), where C is a concept and a is an individual name;
and relation assertions of the form R(a, b), where R is a relation and a and b are
individual names.

Conjunctive semantic formulae are used to express policies. A conjunctive se-
mantic formula F o

v =
∧n

i=0 φi over an ontology o is a conjunction of atomic
assertions φi, where a vector of variables used in these assertions is repre-
sented by v = 〈?x0, . . . , ?xn〉. For the sake of convenience

∧n
i=0 φi ≡ {φ1, . . . φn}

Goal-Directed Policy Conflict Detection and Prioritisation 91

refers to a conjunctive formula. Based on this, F o
v can be considered as T o

v ∪
Ro

v ∪ Co
v, where T o

v is a set of type assertions using the concepts from o, e.g.
{student(?xi), nurse(?xj)}; Ro

v is set of relation assertions using the relations from
o, e.g. {marriedTo(?xi, ?xj)} and Co

v is a set of constraint assertions on variables.
Each constraint assertion is of the form ?xi
 β, where β is a constant and
 is
one of the symbols {>,<,=, �=,≥,≤}. A constant is either a data literal (e.g. a
numeric value) or an individual defined in o.

Variables are divided into two categories: data-types and object variables. A
data-type variable refers to data values (e.g. integers) and can be used only once
in Ro

v. On the other hand, an object variable refers to individuals (e.g. Univer-
sity of Aberdeen) and can be used any number of times in Ro

v . Equivalence and
distinction between the values of object variables can be defined using OWL
properties sameAs and differentFrom respectively, e.g. owl:sameAs(?x,?y) de-
notes that variables ?x and ?y refer to the same individual. In the rest of the
paper, the symbols α, ρ, ϕ, and e are used as a short hand for semantic formulae.

Definition 1. Given an ontology o, a conditional policy π is defined as α −→
Nχ:ρ (λ : ϕ) /e

– α, a conjunctive semantic formula, is the activation condition of the policy.
– N ∈ {O,P, F} indicates the modality of the policy (i.e., if the policy is an

obligation, permission or prohibition).
– χ is the policy addressee and is described by ρ using only the role concepts

from the ontology (e.g. ?x : Doctor(?x) ∧ Female(?x), where Doctor and Fe-
male are defined as sub-concepts of the concept role in the ontology). That
is, ρ is of the form

∧n
i=0 ri(χ), where ri � role. Note that χ may directly

refer to a specific individual (e.g. John) in the ontology or a variable.
– λ : ϕ is the regulated action or state. λ is a variable referring to an ac-

tion or a state that is regulated by the policy, where λ, is described by
ϕ using the concepts and properties from the ontology. For example, ?a :

UpdateHealthRecord(?a) ∧ hasPatient(?a, John) ∧ hasRecord(?a,

HealthReport218

.pdf), where UpdateHealthRecord is an action concept. Each action concept
has only a number of functional relations (aka. functional properties) [1] and
these relations are used while describing an instance of that action.

– e is the expiration condition of the policy.

An example of an RDF representation of an OWL-POLAR policy ‘Doctors are
permitted to access patients’ records.’ is given below.

<policy>

<var> ?x </var>

<var> ?a </var>

<var> ?b </var>

<addressee> ?x </addressee>

92 M.S. Aphale, T.J. Norman, and M. Şensoy

<role> Doctor(?x) </role>

<modality> P </modality>

<action var = "?a"> Access(?a), PatientRecord(?b),

about(?a,?b), hasActor(?a,?x)</action>

</policy>

As stated in Section 1 conflicts are practically unavoidable. Effective conflict de-
tection and resolution mechanisms are required for authoring consistent, unam-
biguous and functional policies. Here, following Castelfranchi [5], we distinguish
between logical and functional conflicts.

Definition 2. Logical Conflicts arise between policies when the same action is
both prohibited and permitted or both prohibited and obligated at the same
time. Entities adopting logically conflicting policies will not necessarily be able
to decide which policy should be respected. To avoid such conflicts, a thorough
understanding of the exact meaning and the implications of a policy, individually
and as a part of a set of policies, is required.

Given logically conflicting policies πi = αi −→ Aχi:ρi

(
λi : ϕi

)
/ei and πj =

αj −→ Bχj :ρj

(
λj : ϕj

)
/ej, The logical conflict L is denoted as : L �−→ πi×πj .

For example, consider two policies defined in healthcare domain.

– π1 - Doctors are prohibited from modifying the chemotherapy regime of a
patient.

– π2 - Oncology specialists are permitted to modify the chemotherapy regime
of a patient.

Since an Oncology Specialist is a subclass of Doctor, both the policies π1 and π2
are applicable. Hence, a logical conflict exists between π1 and π2. This conflict
arises due to π1 being ill-formed; it should refer to Doctors who are not oncology
specialists.

Definition 3. Functional Conflicts arise between policies and underlying goals
of an organisation [5]. For example, a policy requires some action to be per-
formed that has a side-effect (or a pre-condition) that is harmful to a goal of the
organisation.

Given functionally conflicting policies πi = αi −→ Aχi:ρi

(
λi : ϕi

)
/ei and πj =

αj −→ Bχj :ρj

(
λj : ϕj

)
/ej, The functional conflict F is denoted as : F �−→

(πi × πj)type, where type denotes the type of the conflict such as forbidden side-
effect, forbidden pre-condition, inaccessible input/output, etc.

Consider, for example, two policies defined in healthcare domain.

– π1 - Nurses are permitted to perform various tests on patients
– π2 - Nurses are prohibited from updating health-details of patients.

Goal-Directed Policy Conflict Detection and Prioritisation 93

As a side-effect of performing various tests, nurses update health-records of pa-
tients. Hence, a functional conflict (due to a side-effect) exists between π1 and π2.

Let us consider another example.

– π1 - Doctors are obliged to study cases of patients.
– π2 - Doctors are prohibited from accessing complete medical history of pa-

tients.

Access to complete medical history of a patient is required as a pre-condition for
a thorough study of a case. Hence, a functional conflict (due to pre-condition)
exists between π1 and π2.

Conflict detection and resolution are computationally expensive. Hence, the
reasoning mechanism must focus on the most relevant conflicts, given the goals
of the organisation/agent. Conflicts occurring in a system are of varying sig-
nificance. Some conflicts have higher chances of occurring and they need to be
resolved statically, while others have very rare chances of occurring and they
can be resolved at runtime [7]. We argue that organisational goals provide the
appropriate focus for identifying more critical conflicts.

Given a specific domain, and given a set of organisational goals, the circum-
stances in which a certain conflict arises may be highly unlikely, albeit possible.
What are the benefits of resolving such a conflict? Potentially,marginal.Moreover,
policies are designed by people, for people, and hence they need to be understand-
able with respect to given context. Thus, it is important to asses if a set of policies
that covers all possibilities in a consistent way is necessary, or whether it is bet-
ter to live with some inconsistency for the sake of accessibility of organisational
policies to human actors. For example, an agent in role x can perform α and agent
in role y cannot. There is nothing in the ontology that states that memberships
of these roles are disjoint (i.e., an individual could play both). This conflict may
only be relevant, for example, when the goals of the organisation require α, and a
number of individuals who can perform α play both roles x and y. It may be the
case that this conflict need not be resolved otherwise. Hence, it is crucial to identify
conflicts, the resolution of which, will lead to maximum benefits, satisfy relevant
safety constraints and promote goal achievement.

4 Activity Prioritisation Model

The aim of the activity prioritisation model is to identify activities that are most
important given the domain and goals of an organisation. Our model is based on
the Page Rank algorithm [3], an algorithm that assigns a numeric weight to each
elementof a hyperlinked set of documentswith thepurpose ofmeasuring its relative
importance within the set. Page Rank score is a probability distribution used to
represent the likelihood that a person randomly clicking on links will arrive at any
particular page. The higher the number of links to a page the higher its Page Rank
score. A hyperlink to a page is counted towards its score. Outbound link from a
page gets a portion of the Page Rank score that is equal to the Page Rank score of
the page divided by the total number of outbound links.

94 M.S. Aphale, T.J. Norman, and M. Şensoy

We have a set of activities connected by transitions. The transitions are defined
by possible plans to achieve a goal. Our requirement is to rank the activities and
define how likely it is that an activity will be performed while achieving the goal.
Similar to multiple incoming links to a page in the Page Rank algorithm, we can
have an activity that is a part of multiple plans. Further, activities that have
higher probability of successful execution and that help in achieving goals with
lower cost are more likely to be chosen for execution. Hence, unlike Page Rank
algorithm, the average cost of achieving the goal after performing the activity and
probability of success associated with it must also be considered while defining
the rank of the activity. In our adaptation of the Page Rank algorithm, the
priority (i.e., rank) of each activity is computed using the probability of the
activity being executed while achieving a goal, the average cost of achieving the
goal from the activity, and the probability of successful execution of the activity.

Consider an organisational goal G, and an initial situation T . We assume
that a goal and initial situation are conjunctions of states, each representing a
partition of all possible states. We denote Ac to be the set of all atomic actions
defined in the domain and Plans to be the set of all plans that will, according to
the action specifications transform the world from the initial situation to achieve
the goal.

Definition 4. A plan p ∈ Plans is a sequence of atomic actions (α1, α2, ..., αn)
such that {α1, α2, ..., αn} ∈ Ac.

Each atomic action (or activity) is annotated with information about the activity
thus:

Definition 5. An annotation τi for action αi is a tuple < Aparents
i , Achildren

i ,
Υi→g , w

o
i , w

u
i , πi >, where Aparents

i is the set of all actions preceding αi in all the
plans containing αi; A

children
i is the set of all actions that follow αi in all the plans

containing αi and Υi→g is a set of costs of every path from αi to αg, where αg

is an activity in the plan that achieves goal G. The original and ultimate weight
of αi are represented by wo

i and wu
i respectively (see below for how these are

computed). πi is the active policy (i.e., activation condition is true and expiration
condition is false) that regulates αi.

Policy annotations are performed by comparing action descriptions and inputs of
every active policy with the activity. If they match then the policy is annotated
to the activity. If no such active policy exists (i.e., if no active policy regulates
the activity) a temporary active permission is generated that expires when the
goal is achieved.

The priority of an activity within a set is computed in two stages. First, the
original weight of an activity is computed, such that it is inversely proportional to
the average cost of achieving the goal (i.e., the lower the average cost of achieving
the goal the higher the weight of the activity), and directly proportional to the
probability of successful execution of the activity (i.e., the higher the probability
higher the weight of the activity). The assumption here is that low cost/high
probability plans have higher precedence over high cost/low probability plans.
The formulae for calculating the original weight of an activity αi are:

Goal-Directed Policy Conflict Detection and Prioritisation 95

Υ avg
i→g =

∑
Υi→g

|Υi→g |
(1)

Υ avg
i→g is the average cost of achieving goal G from αi (i.e., the average of the

values stored in Υi→g).

Υ avg =
∑

αi∈
⋃

p∈Plans

p

Υ avg
i→g (2)

Υ avg is the sum of average costs of achieving the goal for all the activities being
considered

wo
αi

= Pr(α̂i)×
(
Υ avg

Υ avg
i→g

)
(3)

Pr(α̂i) represents the probability of successful execution of αi and the ratio
represents relative importance of an activity within a set in terms of cost of
achieving the goal.

The number of plans that the activity is part of and the weight the activity
inherits from its preceding activities is not considered in the original weight.
After determining original weights of all the activities, therefore, the ultimate
weight of each activity is computed. This ultimate weight takes into account the
weight induced by preceding (or parent) activities. The formulae for calculating
the ultimate weight of an activity αi are:

wu
α = wo

α if
∣∣Aparents

α

∣∣ = 0

(4)

=
∑

β∈Aparents
α

⎛
⎜⎜⎝wu

β × wo
α∑

ε∈Achildren
β

wo
ε

⎞
⎟⎟⎠ otherwise (5)

In the Page Rank algorithm, the score given to a page is distributed to all its
outbound links. In our model, the ultimate weight of an activity is distributed
in proportion to the original weights (i.e., the relative importance within the set
of activities) of its child activities. If α is the first activity in a plan, then the
ultimate weight remains the same as the original weight of α. If α is not the first
activity in the plan, the ultimate weight of activity α is the sum of the weights
induced by all its preceding activities, Aparents

α . A portion of the ultimate weight
of these parent activities is induced on each activity that follows in proportion to
the original weight of the child activity. If a parent has only one child activity the
ultimate weight of the parent is induced on the child. If a parent has more than
one children activities, then its weight is divided among them in proportion to
their original weights. Activities are then prioritised according to their ultimate

96 M.S. Aphale, T.J. Norman, and M. Şensoy

Cost = 5

Cost = 15

Cost = 11Cost = 10

Cost = 7 Cost = 13

Cost = 18

40,45,
51,47

35

42

40,46

25

31

18

45.75

35

42

43

25

31

18 1

5

6

7

3

4

20.85

0.48

0.78

0.56

0.77

0.9

0.9 11.987499

4.454372

6.9604836

7.3842998

4.4525

3.2879999

3.1223254

4.454372

4.454372

2.4470277

2.0073442

1.8257765

1.3482656

1.2803297

6.8383594

0.9296622

2.3911257

2.2337992

4.5237107

6.4216723

18.403233

6.8383594

1.144525

2.9437609

2.7500732

2.2811263

4.557233

6.838359

1

2

3

4

5

6

7

α1

α1

α21

α21

α22

α22

α3

α3

α41α41

α42

α42

α5α5

τ1

τ21 τ22

τ3

τ41 τ42

τ5

Υi→g Υ
avg
i→g

Pr(α̂)
o
i
o

i
�u

i
�u

i PriorityPriority

∑
Υ

avg
i→g

= 239.75

Fig. 2. Activity Annotation and Activity Prioritisation Model

weights. The higher the ultimate weight, the higher the priority. Original weight
is used to rank two activities with the same ultimate weights.

Fig 2 shows an example of activity prioritisation. The first activity in the plan,
α1 has an ultimate weight equal to its original weight. The ultimate weight of α1

is divided among its child activities α21, α22 and α3 in proportion to their original
weights. Since activities α21, α22, α41 and α42 have only one child activity each,
their weights are not divided. The ultimateweight ofα41 is the sumof its share from
the ultimate weight of α3 and the ultimate weight of α21. Similarly, the ultimate
weight ofα42 is computed froma share of the ultimateweight ofα3 and the ultimate
weight of α22. Finally, the ultimate weight of α5 is the sum of the ultimate weights
of α41 and α42. The ultimate weights of α1 and α5 are approximately the same.
Hence, their priorities are decided according to their original weights.

If we were interested in simply prioritising activities in isolation, this adap-
tation of the Page Rank algorithm would be sufficient. However, we are also
interested in prioritising conflict resolution in order to find good plans to achieve
organisational goals. In other words, along with identifying high-rank activities,
our aim is to highlight an optimum (i.e., higher probability and lower cost) plan
towards the goal. For this reason, we now present an adaptation to the method
for computing the original weight of an activity that takes these factors into
account. In addition to the probability of successful execution of an activity, we
need to consider the probabilities of successful execution of all the plans of which
the activity is a part.

Pr(p̂) =
∏
α∈p

Pr(α̂) (6)

Probability of success of a plan is a product of probabilities of success of all the
activities in that plan. Now we can reformulate our method for computing the

Goal-Directed Policy Conflict Detection and Prioritisation 97

original weight of an activity by biasing it toward activities that occur in plans
that are more likely to succeed.

wo
αi

= Pr(α̂i)×
∑

p∈PlansWith(αi)

Pr(p̂)×
(
Υ avg

Υ avg
i→g

)
(7)

Where PlansWith(αi) = {p : p ∈ Plans ∧ αi ∈ p}
The formula for computing wu

αi
(i.e., the ultimate of activity αi) remains the

same.
The last three columns in Fig. 2 show the outcome using the refined activity

prioritisation model, where a plan with highest probability {α1, α22, α42, α5} is
highlighted first. We evaluated the heuristic activity prioritisation model by gen-
erating random plans (i.e., random directed acyclic graphs with varying number
of nodes within the range of 5 to 25). Each activity was assigned a random cost
and probability of success. Preliminary results are shown in Fig 3 and 4. Fig 3
shows the frequency of the best, the second best, etc. plan being highlighted
first. Fig 4 shows the average ratio of the number of activities analysed in order
to identify the first feasible plan to the average plan length. These preliminary
results are promising, where the prioritisation heuristic tends to highlight plans
with lower cost and higher probability of success. Furthermore, the average num-
ber of activities considered tends to be within 1 and 2 times the average number
of activities in a plan (i.e, average plan length). However, this ratio increases as
the number of activities increases and so further investigation is required.

Activity prioritisation process requires four iterations on the given set of ac-
tivities. In first iteration policy annotations on activities are performed and sets
for preceding and following activities are computed. Initial weights and ultimate
weights are calculated in second and third iterations. Finally, priorities are as-
signed in fourth iteration. Hence, the computational complexity of the activity
prioritisation process is linear with respect to total number of activities, i.e.,
O(4n), where n is the total number of activities. Moreover, only conflicts that
involve the policies annotated to high-rank activities will be detected and re-
solved. All the policies in the set of policies are not checked against each other.
Also, if the plans are static activity prioritisation will be performed only once.

Fig. 3. Frequency of highlighting the best viable plan

98 M.S. Aphale, T.J. Norman, and M. Şensoy

Fig. 4. Activities analysed to highlight a viable plan

5 Conflict Detection

We now have a heuristic mechanism for prioritising conflict detection and resolu-
tion. As described in the Definition 5 each activity is annotated with a policy that
permits its execution. We may now reason about potential logical and functional
conflicts. Following our ranking of activities, we ask the question: is a permission
to perform the action consistent with our organisational policies?

We have extended the OWL-POLAR reasoning mechanism [6] by implement-
ing algorithms to detect functional conflicts arising due to side-effects (i.e., an ac-
tion has a side-effect that is prohibited by some other policy) and pre-conditions
of actions (i.e., a pre-condition of an action cannot be fulfilled due to some
prohibition).

Consider two policies πi = αi −→ Aχi:ρi

(
λi : ϕi

)
/ei and πj = αj −→ Bχj :ρj(

λj : ϕj
)
/ej. These policies will conflict with each other if the necessary condi-

tions are satisfied; i.e., modalities of πi and πj are conflicting (Condition 1), and
πi and πj are active for the same policy addressee in the same state of the world
Δ (Conditions 2, 3 and 4).

1. A conflicts with B. That is, A ∈ {O,P} while B ∈ {F} (i.e, (λi : ϕi) is
permitted or obligated action and (λj : ϕj) is a forbidden state).

2. There exists a substitution σi s.t. Δ �
(
αi ∧ ρi

)
· σi, but no substitution σ′

i

s.t. Δ �
(
ei · σi

)
· σ′

i. In the state of the world Δ there exists at least one
individual (substitution σi) in role ρi such that the activation condition αi

is true but the expiration condition ei is not true.

3. There exists a substitution σj s.t. Δ �
(
αj ∧ ρj

)
· σj , but no substitution σ′

j

s.t. Δ �
(
ej · σj

)
· σ′

j . In the state of the world Δ there exists at least one

individual (substitution σj) in role ρj such that the activation condition αj

is true but the expiration condition ej is not true.

4. χi · σi = χj · σj . The substitutions σi and σj are such that the individuals
χi and χj are the same.

Goal-Directed Policy Conflict Detection and Prioritisation 99

Algorithm 1 checks these necessary conditions. Two policies πi and πj as speci-
fied above and the type of functional conflict that is being checked for, are inputs
to the algorithm. The first step is to test if A conflicts with B (line 2). If they are
conflicting, a canonical state of the world Δ, in which πi is active, is created by
freezing1

(
αi ∧ ρi

)
with a substitution σi, mapping the variables in

(
αi ∧ ρi

)
to

the fresh individuals in Δ (line 3). Δ is then queried with
(
αi ∧ ρi

)
(line 4). The

results of this query satisfy
(
αi ∧ ρi

)
· σi. For each σk satisfying

(
αi ∧ ρi

)
· σi, Δ

is updated by freezing
(
αj ∧ ρj

)
· σk, without removing any individual from its

existing ABox (line 6). As a result of this process, σj is the substitution map-
ping the variables in

(
αj ∧ ρj

)
· σk to the new fresh individuals in the updated

Δ, so that χi · σi =
(
χj · σk

)
· σj . The consistency of the resulting state of the

world Δ is tested (line 7). If this is not consistent, it is concluded that it is not
possible to have a state of the world satisfying the requirements. If the resulting

Algorithm 1. Anticipate if πi may functionally conflict with πj .

1: Input: Policy πi = αi −→ Aχi:ρi

(
λi : ϕi

)
/ei,

Policy πj = αj −→ Bχj :ρj

(
λj : ϕj

)
/ej

type
2: if ((A ∈ {O, P} and B ∈ {F}) then
3: 〈Δ,σi〉 = freeze(αi ∧ ρi)
4: rs = query(Δ,αi ∧ ρi)
5: for all (σk ∈ rs) do
6: 〈Δ,σj〉 = update(Δ,

(
αj ∧ ρj

) · σk)
7: if (isConsistent(Δ)) then
8: if (query(Δ,ei · σi) = ∅ and query(Δ,

(
ej · σk

) · σj) = ∅) then
9: if (type = sideeffect) then
10: return checkSideEffects(λi, λj , σk,Δ)
11: end if
12: if (type = precondition) then
13: return checkPreconditions(λi · preconditions, λj , σk,Δ)
14: end if
15: end if
16: end if
17: end for
18: end if
19: return false

1 In order to test whether qA subsumes qB, the standard technique of query freezing
is used to reduce query containment problem to query answering in Description
Logics [6]. In this technique a canonical knowledge-base is built from the query
by replacing variables in the query with fresh individuals, adding each individual
appearing in the query to the canonical knowledge-base and inserting relationships
between individuals and constants defined in the query into the canonical knowledge-
base. As a result of this process, the canonical knowledge-base contains a pattern
that exists only in ontologies that satisfy the query.

100 M.S. Aphale, T.J. Norman, and M. Şensoy

Δ is consistent, the expiration conditions of the policies are checked. If both
policies are active in the resulting state of the world (line 8), we test for the
sufficient conditions. If policies are being checked for functional conflicts arising
due to side-effects then (line 9), the function ‘checkSideEffects’ is called and the
value returned by the function is returned (line 10). If policies are being checked
for functional conflicts arising due to pre-conditions then (line 12), the function
‘checkPreconditions’ is called and the value returned by the function is returned
(line 13). If any of these requirements do not hold then false is returned (line
19). The functions ‘checkSideEffects’ and ‘checkPreconditions’ are explained in
the subsequent algorithms.

Algorithm for Detecting Functional Conflicts Arising Due to Side-
Effects: The policies πi and πj may conflict functionally (due to side-effects)
if, in addition to the necessary conditions stated above, the following sufficient
condition is also satisfied.

– λj is the effect of performing λi (Reasoning about an atomic action λi and
a state λj).

Algorithm 2. Check Side Effects

1: Input: λi, λj , σ, Δ
2: initial = clone(Δ)
3: state1 = query(initial, λj · σ)
4: next = applyActionToState(λi · σ, initial)
5: state2 = query(next,λj · σ)
6: if ((state1 = ∅)and(state2 �= ∅)) then
7: return true
8: end if
9: return false

Algorithm 2 is used to check side-effects of an atomic task. Permitted/obligated
action (λi), forbidden state (λj), substitution (σ) for which both the policies are
active for the same individuals and the state of the world (Δ) where both the
policies are active for the same individuals at the same time, are inputs. The
state of the world (Δ) is cloned and the resulting state of the world is stored in
‘initial’ (line 2) . This clone is queried for (λj · σ) and the results are stored in
the set ‘state1’ (line 3). The atomic action (λi ·σ) is then applied to ‘initial’ (line
4) and the resulting state of the world is stored in ‘next’. The state of the world
‘next’ is then queried for (λj · σ) and the results are stored in the set ‘state2’
(line 5). If ‘state1’ is empty and ‘state2’ is not empty then it is concluded that λj

is an effect of performing λi and true is returned, otherwise the function returns
false.

Algorithm for Detecting Functional Conflicts Arising Due to Precon-
ditions: The policies πi and πj may conflict functionally (due to preconditions)

Goal-Directed Policy Conflict Detection and Prioritisation 101

if, in addition to the necessary conditions stated above, the following sufficient
condition is also satisfied.

– λj is a precondition of λi (Reasoning about an atomic action λi and a state
λj).

Algorithm 3 is used to check pre-conditions. A conjunction query of precondi-
tions of the permitted / obligated action (preconditions), forbidden state (λj),
substitution (σ) for which both the policies are active for the same individuals
and the state of the world (Δ) where both the policies are active for the same
individuals at the same time, are inputs. The state of the world (Δ) is cloned
(line 2) the resulting state of the world is stored in ‘initial’. This clone is updated
by freezing (preconditions · σ) and the resulting state of the world is stored in
‘previous’ (line 3). The state of the world ‘previous’ is queried for (λj · σ) (line
4) and results are stored in the set ‘state’. If ‘state’ is not empty then, it is
concluded that one of the preconditions of the permitted/obligated action (i.e.,
one of the elements of preconditions) is the same as the forbidden state λj and
true is returned (line 6), otherwise the function returns false (line 8).

Algorithm 3. Check Preconditions

1: Input: preconditions, λj , σ, Δ
2: initial = clone(Δ)
3: 〈previous, 〉 = update(initial, preconditions · σ)
4: state = query(previous, λj · σ)
5: if (state �= ∅) then
6: return true
7: else
8: return false
9: end if

6 Discussion

In this paper, we have presented a heuristic method for prioritising reasoning
about policy conflicts in such a way that the most preferred plans to achieve
organisational goals are explored as early as possible, and presented both some
preliminary evaluations of this heuristics and algorithms for detecting functional
conflicts. This is, of course, only a part of the story, and effective conflict res-
olution is an essential part of a complete solution. Various strategies can be
used to resolve conflicts, e.g. adding a new policy, modifying action constraints
of a policy, modifying the activation window of a policy, norm-curtailment [15],
and prioritising policies. However, addition of new policies or modification of
the conflicting policies might introduce new conflicts. Hence, a new/modified
policy must be checked for consistency against all existing policies. Prioritising
technique does not make any changes to the existsing set of policies. Hence, it

102 M.S. Aphale, T.J. Norman, and M. Şensoy

is guaranteed not to introduce new conflicts. Checking the whole set of policies
that are already reasoned about is not required.

Classic forms of policy prioritisation are lex-superior (policies/norms from
higher authority take precedence) and lex-posterior (most recent policies/norms
take precedence) [9]. In lex-specialis, a generic policy is overridden by a more spe-
cific one. All these techniques, however, do not permit a resolution that involves
different policies taking precedence in different contexts. Also, it is not necessar-
ily appropriate to apply one resolution method for all conflicts in a system [7].
User-defined precedence may play an important role in resolving conflicts.

Extending OWL-POLAR further, we have implemented a policy prioritisa-
tion method for resolving conflicts and refining policies. In this method poli-
cies can be prioritised based on cost of violation or specificity or user-input.
We have extended Definition 1 to include Π - a list of references (e.g. pol-
icy names) to overriding policies. Hence, references to overriding policies are
maintained by overridden policy. Consider two conflicting policies πi = αi −→
Aχi:ρi

(
λi : ϕi

)
/ei/Πi and πj = αj −→ Bχj :ρj

(
λj : ϕj

)
/ej/Πj . Where Πi and

Πj are the sets containing references to overriding policies. Let us consider that
after using one of the techniques of policy prioritisation described above, policy
πi overrides πj . Hence, Π

j will be modified as Πj = {πi}. Consider that policy
πk = αk −→ Cχk:ρk

(
λk : ϕk

)
/ek/Πk also conflicts with πj and πk overrides πj .

Hence, Πj will be modified as Πj = {πi, πk}. Conflict detection mechanism of
OWL-POLAR is augmented so that resolutions are taken into account.

In future, we will extend the OWL-POLAR further to detect other types of
functional conflicts, e.g. inaccessible input/output and incoherent domain. We
also plan to evaluate the activity prioritisation model with human users. We will
investigate if activity prioritisation model identifies an optimum set of conflicts
to resolve, such that the goal is achieved with likelihood ≥ threshold. It will be
investigated and evaluated if the automated support mechanisms developed for
helping policy authors in resolving policy conflicts and refining policies can also
aid collaborative authoring and refinement. Currently, we are annotating a single
active policy to an activity and considering only static plans. In future, we will
investigate techniques for annotating multiple policies to an activity ensuring
consistency of annotated policies. We will also improve our model to incorporate
dynamically changing plans.

7 Conclusion

The key questions addressed in this paper are: how to identify conflicts that are
most relevant given the domain and goals of organisation, and how to resolve
conflicts that are most important. The activity prioritisation model is used to
identify the most significant activities that can be performed while achieving a
goal. Active policies that regulate high priority activities are reasoned about to
detect logical and functional conflicts. This ensures identification of conflicts that
are most relevant to the domain and goals of organisation. Only those conflicts
that have very high chances of impairing the goal-achievement (i.e., conflicts

Goal-Directed Policy Conflict Detection and Prioritisation 103

involving high priority activities) will be resolved using the conflict resolution
techniques described in the paper. Preliminary results indicate that along with
identifying the most crucial activities, the refined activity prioritisation model
emphasises on highlighting an optimum plan (i.e., higher probability and lower
cost) for achieving a goal. Depending on significance of goal, resource availability
and computational capacity a threshold can be defined for number of activities
to be considered for conflict detection and resolution. A threshold for number
of conflicts that can be resolved offline can also be defined. Thus, fewer policy
violations and decreased possibility of failures in plan execution at runtime are
ensured by the activity prioritisation model.

References

1. W. O. W. Group, OWL 2 Web Ontology Language: Document overview,
http://www.w3.org/TR/owl2-overview

2. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-
oriented programming. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni,
A.E. (eds.) Multi-Agent Programming: Languages, Platforms and Applications,
pp. 3–37. Springer (2005b)

3. Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

4. Broersen, J., Dastani, M., Hulstijn, J., Huang, J., van der Torre, L.: The BOID
Architecture - Conflicts Between Beliefs, Obligations, Intentions and Desires. In:
Proceedings of the 5th International Conference on Autonomous Agents, pp. 9–16.
ACM Press (2001)

5. Castelfranchi, C.: Formalizing the Informal?: Dynamic Social Order, Bottom-
Up Social Control, and Spontaneous Normative Relations. Journal of Applied
Logic 1(1-2), 47–92 (2003)

6. Şensoy, M., Norman, T.J., Vasconcelos, W.W., Sycara, K.: OWL-POLAR: Seman-
tic Policies for Agent Reasoning. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P.,
Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I.
LNCS, vol. 6496, pp. 679–695. Springer, Heidelberg (2010)

7. Dunlop, N., Indulska, J., Raymond, K.: Methods for Conflict Resolution in Policy-
Based Management Systems. In: Proceedings of the 7th International Enterprise
Distributed Object Computing Conference, pp. 98–109. IEEE Computer Society
(2003)

8. Johnson, M., Karat, J., Karat, C.-M., Grueneberg, K.: Usable Policy Template
Authoring for Iterative Policy Refinement. In: Proceedings of the 2010 IEEE Inter-
national Symposium on Policies for Distributed Systems and Networks, pp. 18–21.
IEEE Computer Society (2010)

9. Kollingbaum, M.J.: Norm-Governed Practical Reasoning Agents. Ph.D. thesis,
Dept. of Computing Science, University of Aberdeen (2005)

10. Meneguzzi F.: Extending Agent Languages for Multiagent Domains. Ph.D. thesis,
University of London, King’s College London (2009)

11. Oh, J., Meneguzzi, F., Sycara, K., Norman, T.J.: An Agent Architecture for Prog-
nostic Reasoning Assistance. In: Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, IJCAI, pp. 2513–2518 (2011)

http://www.w3.org/TR/owl2-overview

104 M.S. Aphale, T.J. Norman, and M. Şensoy

12. Sycara, K., Norman, T.J., Giampapa, J.A., Kollingbaum, M.J., Burnett, C.,
Masato, D., McCallum, M., Strub, M.H.: Agent Support for Policy-Driven Col-
laborative Mission Planning. The Computer Journal 53(5), 528–540 (2009)

13. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
Web Languages for Policy Representation and Reasoning: A Comparison of KAoS,
Rei, and Ponder. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 419–437. Springer, Heidelberg (2003)

14. Uszok, A., Bradshaw, J.M., Breedy, M.R., Bunch, L., Feltovich, P., Johnson, M.,
Jung, H.: New Developments in Ontology-Based Policy Management: Increasing
the Practicality and Comprehensiveness of KAoS. In: 2008 IEEE Workshop on
Policies for Distributed Systems and Networks, pp. 145–152. IEEE Computer So-
ciety (2008)

15. Vasconcelos, W.W., Kollingbaum, M.J., Norman, T.J.: Normative Conflict Reso-
lution in Multi-Agent Systems. Auton Agent Multi-Agent Systems 19(2), 124–152
(2009)

Norms as Objectives: Revisiting Compliance

Management in Multi-agent Systems

Aditya Ghose1 and Tony Bastin Roy Savarimuthu2

1 Decision Systems Laboratory
School of Computer Science and Software Engineering

University of Wollongong, NSW 2522 Australia
aditya@uow.edu.au

2 Dept. of Information Science
University of Otago

Abstract. This paper explores a hitherto largely ignored dimension to
norms in multi-agent systems: the normative role played by optimiza-
tion objectives. We introduce the notion of optimization norms which
constrain agent behaviour in a manner that is significantly distinct from
norms in the traditional sense. We argue that optimization norms un-
derpin most other norms, and offer a richer representation of these. We
outline a methodology for identifying the optimization norms that under-
pin other norms. We then define a notion of compliance for optimization
norms, as well as a notion of consistency and inconsistency resolution.
We offer an algebraic formalization of valued optimization norms which
allows us to explicitly reason about degrees of compliance and graded
sanctions. We then outline an approach to decomposing and distribut-
ing sanctions amongst multiple agents in settings where there is joint
responsibility.

1 Introduction

The connection between norms and preferences and between norms and opti-
mization objectives has received relatively little attention in the literature. Boer
et al [1] have argued that legal norms may be viewed as statements of ceteris
paribus preference. van der Torre and Tan [2] have defined a preference-based
semantics for norms which have been leveraged by Dignum et al [3] to develop
a semantic account of how goals and intentions are obtained from desires via a
process constrained by norms and obligations (utilities are also mentioned in [4]
but not related to norms).

The connections, however, are deeper and merit closer scrutiny. Let us consider
the connections with preferences and optimization objectives first. Optimization
problems are traditionally formulated via a set of decision variables (a complete
assignment of values to these constitutes a solution to the problem), a set of
constraints on these variables and an objective function formulated from these
variables whose value we seek to optimize (i.e., maximize or minimize). Solu-
tions which satisfy all of the applicable constraints are called feasible solutions,

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 105–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

106 A. Ghose and T.B. Roy Savarimuthu

while those which optimize the value of the objective function are called opti-
mal solutions. An objective function may be viewed as generating a preference
relation on the set of feasible solutions, such that optimal solutions are the most
preferred of the feasible solutions under this relation. Given a set of alternatives
(in the this instance, the set of feasible solutions) an objective function may be
viewed as an intensional representation of the underlying preference relation.

Imagine a future where organizations may be referred to “carbon tribunals”
for non-compliance with the carbon-mitigation norm. We would argue that in
its purest sense, this norm must be represented as the optimization objective
minimize carbon-footprint. One might argue that in real-life, such norms are
manifested as simpler numeric carbon mitigation targets for organizations (e.g.
“reduce your cumulative emissions by n tons”). However, this representation
of the norm is a compromise, where some regulatory authority has sought to
present a simpler (to evaluate and understand) target for organizations to meet,
by trading off the need to impose a target that achieves real emissions reduction
against the need to not impose a norm that would be infeasible for organizations
to meet. We would argue that such norms (with numerically specified targets)
must be accorded a status befitting their true nature: as simplifications and
imperfect, incomplete compromises between the true intent of the norm and the
current business reality. The numeric target is a fragile construct, contingent
on the perceived business context at the time the norm was formulated. The
introduction of new technology may actually make a higher carbon-mitigation
target feasible, but such a change would be hard to reflect dynamically on the
norm (which would typically be reviewed and revised infrequently, together with
other norms, by a regulatory authority). Similarly, difficult market conditions
might oblige us to revise the carbon-mitigation targets downwards. Clearly, this
constant need for revising the norm could be avoided if the norm were represented
in its natural form (as the optimization objective minimize carbon-footprint).

It may appear at first blush that a notion of compliance with such norms
is difficult to define. We will present evidence to the contrary. Imagine the or-
ganization charged with non-compliance with the carbon-mitigation offering its
defence to the tribunal by presenting a log of all its key organizational decisions
over an audit period and establishing that each choice of the organization from
the available options was in fact the optimal one with respect to the minimize
carbon-footprint objective. Intuitively, this is a reasonable defence, underpinned
by the argument that the organization “did the best that it could” under the
circumstances. We shall formalize a notion of compliance with norms that are
optimization objectives along these lines.

Based on these considerations, we argue that there is a need to extend our
ontology of norms with a new class of optimization norms. These are norms
represented in the form of optimization objectives or, as we shall see later, as
the preference relations that underpin them. Optimization norms do not admit
boolean evaluation. We shall distinguish them from the more traditional concep-
tion of a norm (which does admit boolean evaluation) by referring to the latter
as boolean norms. Our approach bears some similarity in underlying intuitions to

Norms as Objectives: Revisiting Compliance Management 107

studies of supererogation in deontic logic (see for instance [5]) but uses entirely
different machinery.

Note that the use of optimization norms does not imply that there must exist a
unique optimal state (or set of states) in the absolute sense. As the motivating ex-
ample above illustrates, and as we shall discuss in greater detail later in this paper,
optimization norms merely inform choice amongst the available feasible alterna-
tives. That set of available feasible alternatives might change from context to con-
text. This approach thus does not preclude dynamic contexts or norm evolution.

Part of our premise here is that “teasing out” the objective underpinning
a norm and bringing it to bear on the reasoning process is important, for the
following reasons. First, encoding norms as objective functions offers a more
accurate and richer representation of norms. Second, it provides an opportunity
to explicitly bring a mature body of results from the field of optimization to bear
on norm-driven reasoning problems, opening up the possibility of significantly
faster reasoners. Third, it permits us to relate norm-compliance to the notion of
satisficing [6] of optimization objectives. Fourth, it enables us to define a notion
of degrees of norm compliance, and correspondingly, graded sanctions.

This latter point is of particular importance, and can be analyzed from two
perspectives. The first involves the notion of graded compliance. Many commonly
occurring compliance requirements are stated in an imprecise fashion. Consider,
for instance, the requirement quarterly activity statements must be filed within
a reasonable time frame [7]. It is difficult to determine in a categorical fash-
ion whether this requirement has been satisfied, given the ambiguity associated
with determining whether a certain time frame is ”‘reasonable”’. One way of
dealing with the problem is to ”‘contextualize”’ such requirements through a
(largely human-mediated) exercise of transforming these into crisp requirements
by adding elements to the specific context (such as a definition of ”‘reasonable”’
in a particular application context) [8]. Alternatively, one can make (potentially
subjective) assessments of degrees of compliance. In the spirit of satisficing op-
timization objectives, thresholds on these degrees of compliance can be used to
determine, for instance, whether the operations of an organization are sufficiently
compliant, even in the absence of boolean assessments of compliance.

The second involves the related notion of graded sanctions. The use of formal
reasoning tools to model, analyze and monitor contracts is becoming increasingly
important [9] [10]. A particularly hard problem in this space is the formalization
of sub-contracting and outsourcing (both increasingly common business prac-
tices). In particular, the decomposition of a set of penalties or sanctions amongst
a set of sub-contractors is difficult to formalize. Intuitively, when a norm or con-
tractual obligation is violated, we would expect the applicable penalties to be
distributed amongst the sub-contractors in direct proportion to the extent of
their contribution to (or responsibility for) the violation. While Villatoro et al
[11] and Boella et al [12] have considered the problem of sanctions in multi-agent
contexts, they have not described any machinery for decomposing a sanction to
obtain individual agent-specific graded sanctions in settings where agents have
joint responsibility (and hence graded levels of norm violation).

108 A. Ghose and T.B. Roy Savarimuthu

The remainder of this paper is structured as follows. In Section 2, we discuss
how optimization norms underpin most traditional conceptions of norms (i.e.,
boolean norms), and provide methodological guidelines for how these might be
identified/extracted from boolean norms. In Section 3, we motivate and define
an algebraic formalization of optimization norms in the form of valued optimiza-
tion norms. In Section 4, we identify two alternative notions of compliance with
optimization norms, based on the extent of the horizon over which compliance
is assessed. In Section 5, we identify alternative notions of consistency (both
between optimization norms and between optimization and boolean norms). We
also identify alternative approaches to the resolution of these inconsistencies.
In Section 6, we address the problem of sanction management, and in particu-
lar, how sanctions might be decomposed, or distributed amongst a collection of
agents that had shared responsibility for a norm (the violation of which leads
to the sanctions in question). Section 7 involves a discussion of some related
implementations that offer pointers to how a machinery for optimization norm
enforcement might be implemented. We present concluding remarks in Section 8.

2 Identifying Optimization Norms

In a very intuitive manner, it is possible to articulate an objective function un-
derpinning every norm. Consider the social norm that one should not litter.
Given that there are many plausible extenuating circumstances where littering
may in fact be permissible (e.g., one drops one’s bag of sandwiches on the park
bench to go prevent a child from stepping into traffic), the underpinning opti-
mization objective is to minimize the extent of littering. In a social context, the
articulation of the prohibition of littering may be viewed as a necessary simpli-
fication of the more complex (and more nuanced) underpinning social objective.
In a similar vein, the social norm that prohibits delays in the payment of out-
standing invoices is underpinned by the optimization objective to minimize the
delay between the receipt of the invoice and payment. The social norm that
obliges us to consult widely prior to taking decisions in organizational settings
may be viewed as being underpinned by the optimization objective to maximize
the extent of consultation prior to taking decisions. More generally, we could
posit that:

– Prohibitions are underpinned by minimization objectives.

– Obligations are underpinned by maximization objectives.

The duality of maximization and minimization objectives (every maximization
objective can be represented by a corresponding minimization objective and vice
versa) is reflected by the duality of prohibitions and obligations [13]. In addition,
fairness norms [14] can be encoded as load-balancing objectives.

In many cases, the boolean proposition associated with the norm can be trans-
formed into a continuous valued variable. Thus, the boolean proposition littering
is transformed into the variable extent-of-littering, the proposition consultation

Norms as Objectives: Revisiting Compliance Management 109

to the variable extent-of-consultation and so on in the examples above. In gen-
eral, the following simple procedure might be used to identify the optimization
objective underpinning a norm:

– Identify the action that the norm seeks to constrain. In our examples above,
these would be “littering”, “consultation” and “carbon emission”.

– Identify a measure that is applicable on the task that norm makes refer-
ence to. In our examples above, these would be extent-of-littering, extent-of-
consultation or extent-of-carbon-emission. These become the variables that
the eventual objective function would refer to. In the following, we shall refer
to this as the task measure.

– Identify whether the norm seeks to maximize or minimize the measure de-
fined in the previous step (load balancing objectives can also be represented
as maximization or minimization objectives). This gives us the final objective
function.

Note that articulating an objective function does not automatically give us a
fully formulated optimization problem (that would require the typically hard
task of modeling constraints). However, as we shall see below, the optimality
of choices with respect to an optimization objective can be evaluated using a
variety of means even if the problem has not been formulated as an optimization
problem.

It is important to note that our conception of optimization norms is not
specifically intended for modeling social norms. The machinery we develop is
applicable to both individual objectives (and preferences) as well as social norms
and the preferences that underpin them.

It is also important to note that, our observations in this section notwith-
standing, practical applications will likely involve both boolean and optimiza-
tion norms. It is therefore important to develop machinery that can handle both
(our discussion of norm consistency later in the paper will address the question
of consistency between boolean and optimization norms).

3 An Alternative Formalization

In this section, we provide an alternative formalization of optimization norms in
terms of an algebraic framework for preference handling and show how it offers a
sophisticated machinery for dealing with graded compliance and correspondingly
graded sanctions.

It is useful to examine first the space of alternative means for formalizing
optimization norms. The most obvious is to represent optimization norms in the
form of objective functions in the sense understood in the literature on operations
research, or as utility functions in the sense of the literature on decision theory.
One might also formalize these using preference relations of various kinds as
formalized in the literature on preference handling. To the extent that an opti-
mization norm needs to encode preference over states of affairs (or solutions) each
of these approaches turn out to be equally viable (recall the discussion on the

110 A. Ghose and T.B. Roy Savarimuthu

interplay between objective functions and preference in Section 1). Ultimately,
our choice was guided by two additional requirements. First, the representation
scheme needed to support an explicit notion of degree of compliance. Objective
functions (or utility functions) arguably meet this requirement - the value of a
(maximization) objective function for a given solution can be viewed as an indi-
cator of how good that solution might be. Representations based on preference
relations do not naturally lend themselves to analysis of degree of compliance.
Second, the representation scheme had to be general enought to admit assess-
ments of preference on multiple heterogeneous scales (as is likely to be the case
in real-life applications) including both quantitative and qualitative scales. Both
objective/utility functions and preference relation based approaches fall short
relative to this requirement.

The c-semiring framework [15] was chosen for our formalization of optimiza-
tion norms primarily because it satisfies all of the requirements discussed above.
The framework was originally developed for defining soft constraints as pref-
erences over assignments of values to decision variables in (potentially over-
constrained) constraint satisfaction problems. For our purposes, the c-semiring
framework enables abstract encodings of preference over multiple heterogeneous
scales (which could be both qualitative and quantitative). Multiple distinct c-
semirings, each encoding a distinct dimension over which preference is specified
(including mixes of qualitative and quantitative dimensions) can be combined
in a simple fashion to obtain a single c-semiring [15] - thus providing a modu-
lar framework in which preference dimensions could be added or removed while
leaving much of the reasoning machinery intact.

We start with the definition of a c-semiring [15].

Definition 1. [15]: A c-semiring is a 5-tuple 〈A,⊕,⊗,0,1〉 such that:

– A is a set of abstract preference values with 0,1 ∈ A (0 represents the
”‘worst”’ preference value while 1 represents the ”‘best”’ preference value);

– ⊕ is a binary operator which is closed (i.e. if a, b ∈ A, then a ⊕ b ∈ A),
commutative (i.e. a⊕ b = b ⊕ a), associative (i.e. a⊕ (b ⊕ c) = (a⊕ b)⊕ c),
idempotent (i.e. if a ∈ A, then a ⊕ a = a), has 0 as a unit element (i.e.
a⊕0 = a = 0⊕a), and with 1 as an absorbing element (i.e. a⊕1 = 1 = 1⊕a);

– ⊗ is a binary operator which is closed (i.e. if a, b ∈ A, then a ⊗ b ∈ A),
commutative (i.e. a⊗b = b⊗a), associative (i.e. a⊗(b⊗c) = (a⊗b)⊗c), has
1 as a unit element (i.e. a⊗ 1 = a = 1⊗ a), and 0 as an absorbing element
(i.e. a⊗ 0 = 0 = 0⊗ a);

– ⊗ distributes over ⊕ (i.e. a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)).

Intuitively, ⊕ is used to compare preference values, while ⊗ is used to combine
preference values. The ⊕ operator generates a partial order � on A as follows: for
any v1, v2 ∈ A, v1 � v2 (read this as v1 is “at least as good as” v2) if v1⊕v2 = v1.

In the constraint satisfaction literature, several useful instantiations of c-
semirings have been discussed: boolean (where A = {T, F}), fuzzy (where A =
[0, 1]), weighted (where A = R+) etc. Qualitative c-semirings can be of interest,
where the ⊗ and ⊕ operators are defined extensionally. Consider the following

Norms as Objectives: Revisiting Compliance Management 111

c-semiring, where l represent low, m represents medium and h represents high:
Q = 〈{l,m, h},⊕,⊗, l, h〉 where l ⊕m = m, m ⊕ h = h, l ⊕ h = h, l ⊗ m = l,
m ⊗ h = m, and l ⊗ h = l. To rephrase this, this c-semiring allows us to use 3
preference values - low, medium and high - with low as the designated “worst”
value (the element denoted by 0 in the c-semiring) and high as the designated
“best” value (the element denoted by 1 in the c-semiring). If we were to com-
pare these values using the ⊕ operator, the comparison of low and medium would
yield medium, the comparison of medium and high would yield high and so on.
Similarly, if we were to combine these values using the ⊗ operator, then the
combination of low and medium would generate low, the combination of medium
and high would generate medium and so on.

Notice that the set of preference values in each of the c-semiring instances dis-
cussed above offers a scale on which degree of compliance might be assessed. This
is also true for c-semirings consisting only of abstract preference values, and for
composite c-semirings obtained by combining several component c-semirings us-
ing the technique described in [15] (ommitted here for brevity). Thus, if we were
using the qualitative c-semiring discussed above with preference values {l,m, h},
we obtain a vocabulary for describing degree of compliance that permits us to
assert that a given state of affairs has a low (l) degree of compliance, or a medium
(m) degree of compliance and so on. Similarly, one might conceive of a compos-
ite c-semiring consisting of this qualitative c-semiring combined with the fuzzy
c-semiring discussed above which would allow us to assess preference on two
separate dimensions using these two distinct scales, where degrees of compliance
would be represented using pairs where the first element is a preference value
from the qualitative c-semiring and the second element a value from the fuzzy
c-semiring (e.g. 〈l, 0.7〉 or 〈m, 0.55〉).

In the following, we will take a state to be a complete assignment of values
to a set of variables V (these do not necessarily have to be propositional, thus
permitting us to also view solutions to constraint satisfaction or optimization
problems as states). We define a valued optimization norm (so called because
these norms associate states with specific preference and sanction values) as a
mapping from a state to a semiring valuation of that state. In addition, we define
a real-valued penalty associated with each state. We also constrain the penalties
so that any penalty associated with a more preferred state has to be lower than a
penalty associated with a less preferred state. If two states are equally preferred,
then their penalties must be equal. Also, the penalty associated with the most
preferred state must be 0.

Definition 2. Given a c-semiring P = 〈A,⊕,⊗,0,1〉 and a set of states S (with
penalties represented as elements of the set of reals R), a valued optimization
norm nP is defined as nP : S → A × R, such that: (1) For any s such that
nP (s) = 〈1, r〉, r = 0 and (2) For any s1 and s2, if nP (s1) = 〈v1, r1〉 and
nP (s2) = 〈v2, r2〉 where s1, s2 ∈ S, v1, v2 ∈ A and r1, r2 ∈ R and v1 ⊕ v2 = v1,
then r1 ≤ r2 (if v1 = v2, then r1 = r2).

Example 1. Consider a simple example where our propositional vocabulary
consists of 2 letters, p and q and we prefer the state p∧ q the most and the state

112 A. Ghose and T.B. Roy Savarimuthu

¬p ∧ ¬q the least. The states ¬p ∧ q and p ∧ ¬q are in-between most and least
preferred and are equally preferred. A valued optimization norm nQ conforming
to the definition above could be defined as follows, using the c-semiring Q =
〈{l,m, h},⊕,⊗, l, h〉 (together with its associated extensional definitions of ⊕
and ⊗) as in the discussion above: nQ(p ∧ q) = 〈h, 0〉, nQ(¬p ∧ q) = 〈m, 5〉,
nQ(p ∧ ¬q) = 〈m, 5〉, nQ(¬p ∧ ¬q) = 〈l, 10〉.

Note that the definition above provides the basis for two important dimensions
to practical compliance management. The first is graded compliance. Valued op-
timization norms permit us to associate an explicit degree of compliance value
(effectively the corresponding c-semiring value) with each state of affairs. They
also permit us to associate finer-grained sanctions (as opposed to a single sanc-
tion for the violation of a boolean norm) with different degrees of compliance.

It is easy to see how contrary-to-duty obligations can be represented in this
formalization. Consider a reparation sequence (one way to represent a contrary-
to-duty obligation) in FCL [16] (× is used in the following to mean ”‘else”’) : O1×
O2× . . .×Om. The reparation sequence above is to be read as follows: obligation
O1 holds, failing which obligationO2 holds and so on. LetM(φ) represent the set
of states that satisfy φ (i.e., the models of φ). This reparation sequence can be
represented by any norm nP satisfying the following property: For any s ∈ M(Oi)
and any s′ ∈ M(Oj) where i < j and nP (s) = 〈v, r〉 and n(s′) = 〈v′, r′〉, v⊕v′ = v
and r < r′. Consider an FCL[16] reparation sequence: (Op ∧ q) × (O¬p ∧ q) ×
(O¬p∧¬q), where Oφ represents the obligation to make φ true. nQ defined in the
example above is one instance of a valued optimization norm that encodes this
reparation sequence. In general, a given reparation sequence could be encoded
by a number of distinct valued optimization norms.

In the discussion in the subsequent sections, some of the development will be
presented in terms of the abstract notion of optimization norms, without specif-
ically referring to valued optimization norms. Some concepts will, however, be
illustrated using valued optimization norms. The discussion on sanction manage-
ment later in the paper relies entirely on our formalization of valued optimization
norms.

4 Complying with Optimization Objectives

We first consider in abstract terms the machinery that we might use to select
amongst alternative options. These options could be plans in BDI agents (often
called option selection [17]) or intentions (the intention selection problem [17])
or, more generally, states that an agent might seek to realize. In general terms,
the machinery we require must be able to make ordinal comparisons between
states resulting from the optional courses of action that an agent might have to
select from. For instance, given two states s1 and s2 and an optimization norm
maximize x articulated in terms of a task measure x, the machinery must be
able to make a determination on which of s1 and s2 lead to a higher value of
x (without necessarily computing that value), or whether they lead to identical
values of x.

Norms as Objectives: Revisiting Compliance Management 113

As discussed in the introduction, one intuitive approach to establishing that
an agent has complied with a optimization norm is to establish that its decisions
sought to optimize the norm. This can be formalized in two ways:

– Global compliance: This requires that the final state achieved by an agent be
the optimal (relative to the optimization norm) of all the states that were
feasible for the agent to achieve. Note that this approach is only applicable
when the agent performs bounded computation and a clear notion of final
state exists. It also requires the ability to compute the set of all possible final
states that would be feasible for the agent to achieve. It might also mean
that agents would make local choices that not optimal with respect to the
objective (in the interests of arriving at the globally optimal final state).

– Local compliance: This requires that every (local) choice made by the agent
be optimal with respect to the objective. Note that this might mean that
the final state arrived at by an agent (performing bounded computation)
is sub-optimal. However, this notion of compliance can be used in agents
performing unbounded computation.

5 Managing Norm Conflict

We address the question of norm conflict detection and resolution in this section.
We begin by considering a well-known example of the interplay between norms
and preferences.

Sen’s Example. Sen [18] offers an example where the interplay between norms
and objectives generates results that are contrary to what preference maximiza-
tion would generate. Consider a situation where an agent prefers option x to y
and y to z. Assume that the agent selects y from {x, y, z} and selects z from
{y, z} (both choices run counter to the preference maximization principle). Sen
offers an account involving norms that explains such behaviour. Assume that
the options are differently-sized slices of a cake, and that x is the biggest slice, y
the next in size and z the smallest. The agent has a preference for larger slices
of the cake. To explain the behaviour of the agent, Sen brings to bear a “polite-
ness” norm, which requires the agent to not select the largest slice when asked
to choose from a set of cake slices. In selecting amongst {x, y, z}, the agent uses
this norm to rule out option x and then selects the preferred option from the
remainder (i.e., option y). Similarly, in selecting amongst {y, z}, the agent rules
out y as an “impolite” choice (it is the largest of the 2 choices) and selects the
remaining option (z).

We argue that viewing the politeness norm as a preference ordering (which
prefers any state where a non-largest slice of cake is selected over a state where
the largest slice is selected), together with a prioritization on objectives (where
the optimization norm derived from the politeness norm has priority over the
optimization norm to maximize the size of the cake slice selected), offers an
equally valid explanation of the agent’s behaviour. Indeed, our approach supports

114 A. Ghose and T.B. Roy Savarimuthu

finer grained reasoning, for instance, by permitting us to explore the pareto-
frontier with respect to these two objectives (if they were treated as having
equal priority).

We need, in the first place, a formal definition of conflict for optimization
norms (with other optimization norms as well as with boolean norms). We will
define consistency for optimization norms by viewing them as preference re-
lations on the set of feasible solutions (recall the discussion of these issues in
the introduction). We can then define three distinct notions of consistency for
optimization norms.

– Absolute consistency: Under this notion, a pair of optimization norms o1 and
o2 are deemed to be inconsistent if and only if there exists a pair of solutions
(or options) s and s′ such that s is preferred over s′ under o1 and s′ is pre-
ferred over s under o2. Absolute consistency is arguably an overly stringent
notion. Our intent here is to identify situations where objectives might “pull
in different directions”’. Under this notion of consistency, we would deem a
pair of optimization norms to be inconsistent even if the pair s and s′ whose
relative ordering they disagreed on were actually not in the set of options
currently being deliberated on. In other words, we would deem the objectives
to be inconsistent even if they were not “pulling in different directions” in
the current instance. Note also that checking consistency in this mode re-
quires that we extensionally elaborate the preference relation corresponding
to the optimization norm with reference to the set of all possible options over
which preferences might be specified - but that set is potentially unbounded
and cannot in general be predicted. Checking for absolute inconsistency is
therefore impractical.

– Contextual consistency: Under this notion, a pair of optimization norms o1
and o2 are deemed to be inconsistent in a given context C (defined as a set
of options/solutions from which a choice has to be made) if and only if there
exists a pair of solutions (or options) s, s′ ∈ C such that s is preferred over
s′ under o1 and s′ is preferred over s under o2. The notion of contextual
consistency helps us determine whether a pair of objectives would lead to
conflicting preferences in a particular context, given a particular set of al-
ternatives. It could be argued that this too is a somewhat stringent notion,
since conflicting preferences might not manifest themselves in actual con-
flicting choices if the conflicting preferences involve options that are not the
top choices (i.e., the most preferred options) under the two preference or-
derings. In other words, an agent could “tolerate” optimization norms which
are deemed to be both absolutely inconsistent and contextually inconsis-
tent, as long as this does not lead to conflicting choices. On the other hand,
if the context changes infrequently, this notion of consistency can be useful
(if the relevant optimization norms are - or can be made - consistent for
that context, no further inconsistency handling will be required while that
context remains unchanged). Checking for consistency over a set of optimiza-
tion norms involves a straightforward generalization of the pair-wise check
mentioned above.

Norms as Objectives: Revisiting Compliance Management 115

– Choice consistency: Under this notion, a pair of optimization norms o1 and
o2 are deemed to be inconsistent in a given context C (defined as a set of
options/solutions from which a choice has to be made) if and only if S is the
set of strictly non-dominated solutions (or options) under o1, S

′ is the set
of strictly non-dominated solutions (or options) under o2, S ⊆ C, S′ ⊆ C
and S ∩ S′ = ∅. Here, the set of strictly non-dominated solutions consists of
those solutions for which there exists no other that is strictly more preferred
under the given ordering.

We now consider the question of conflict between optimization norms and boolean
norms. Optimization norms and boolean norms do not conflict in an absolute
sense, i.e., independent of a given context (given by set of available alternatives).
To understand why, we need to recall a commonly used definition of inconsis-
tency: two assertions are inconsistent if there does not exist a model which satis-
fies both. Note that the notion of a model “satisfying”’ an optimization objective
is undefined. Viewed in terms of preferences over models or states, the notion of
compliance with an optimization norm that we have defined above requires not
just the preferred state/model but all of the other states/models that were avail-
able as options before we can determine compliance with an optimization norm.
We cannot therefore speak of the inconsistency of an optimization norm with a
boolean norm, independent of richer contextual information, in any meaningful
sense.

However, an optimization norm o will be deemed to be inconsistent with a
boolean norm n in a given context C if and only if every element of the set S
(where S ⊆ C) of strictly non-dominated (most preferred) options according to o
violates n. We assume, as before, that the options in question are actions/tasks,
or plans or states of affairs, so that in each case we are able to check for the
violation of boolean norms. Note that we can only define inconsistency using
intuitions similar to those for choice consistency for optimization norms.

We will now consider an example that illustrates these notions of inconsis-
tency, using valued optimization norms. Note that the focus in the example
is on the c-semiring valuations associated with states of affair - the associated
penalties/sanctions do not play a role in the example (but become critical in the
later discussion on sanction management).

Example 2. Recall, from Example 1, the valued optimization norm nQ using
the c-semiring Q = 〈{l,m, h},⊕,⊗, l, h〉 (together with its associated extensional
definitions of ⊕ and ⊗): nQ(p ∧ q) = 〈h, 0〉, nQ(¬p ∧ q) = 〈m, 5〉, nQ(p ∧ ¬q) =
〈m, 5〉, nQ(¬p ∧ ¬q) = 〈l, 10〉. Consider another valued optimization norm n2Q
defined (using the same c-semiring Q) as: n2Q(p ∧ q) = 〈h, 0〉, n2Q(¬p ∧ q) =
〈m, 5〉, n2Q(¬p∧¬q) = 〈m, 5〉, n2Q(p∧¬q) = 〈l, 10〉. Under the notion of absolute
inconsistency, nQ and n2Q are inconsistent, since the state p ∧ ¬q is preferred
over ¬p ∧ ¬q under nQ while the opposite preference holds under n2Q. If the
current context is defined by these two states, then this also illustrates contextual
inconsistency. Consider a third valued optimization norm n3Q defined on the
same c-semiring Q: nQ(p ∧ ¬q) = 〈h, 0〉, nQ(p ∧ q) = 〈m, 5〉, nQ(¬p ∧ ¬q) =
〈m, 5〉, nQ(p ∧ q) = 〈l, 10〉. If the context is defined by states satisfying p ∧ q

116 A. Ghose and T.B. Roy Savarimuthu

and p ∧ ¬q, then the norms nQ and n3Q are inconsistent under the notion of
choice consistency (the strictly non-dominated states under the two norms lead
to incosistent states). In the same context, the boolean norm p∧¬q contradicts
the valued optimization norm nQ (note that the set of strictly non-dominated
states under nQ consists of a single state: p ∧ q).

The resolution of inconsistency in any theory leads to changing the theory in
some way. The logic of the theory change [19] argues that when we are obliged
to make changes to a theory, we should try to minimize the extent of change,
given that theories encode knowledge or intent or deontic constraints which
we should alter as little as possible while still accommodating the change that
needs to be implemented. Arguably, the same intuitions apply when we resolve
inconsistencies amongst norms.

The three notions of consistency discussed above lead to three corresponding
notions of resolution:

Resolving absolute inconsistency: Resolving this type of inconsistency requires
that an assertion of the form s′ ≺ s (s is preferred to s′) be removed from one of
the pair of optimization norms that are found to be inconsistent. As discussed
before, this notion of consistency is in general of little practical value, except in
settings where the set of all alternatives that an agent might ever have to select
amongst is known a priori (in which case it effectively reduces to contextual
consistency).

Resolving contextual inconsistency: This involves the same machinery as in the
case of absolute inconsistency. Observe that inconsistency resolution means that
one or more of the currently applicable set of optimization norms is relaxed. In
the event that inconsistency is detected over a set of optimization norms O =
{o1, o2, . . . , om} where Os ⊆ O consists of optimization norms which prefer s over
s′ and Os′ ⊆ O is the set of optimization norms which prefer s′ over s, then we
might use majority as the basis for deciding which of the preferences get relaxed.
Thus, if |Os′ | < |Os|, we might choose to remove s ≺ s′ from each element of
Os′ . In other settings, the criteria to determine which optimization norm to relax
would be domain-dependent (in mixed-initiative reasoning settings, one might
even ask the user for guidance on this). Observe that once inconsistency has been
resolved, we could take the union of the resulting set of preference relations to
guide choice. A range of other intuitions are explored in computational social
choice theory (see [20] for a survey).

Resolving choice inconsistency: In the case of a set of optimization norms gener-
ating sets of strictly non-dominated (most preferred) options that do not inter-
sect, we would have to pick the “winning” set of norms (whose top choices would
determine an agent’s selections). As with contextual inconsistency, we could use
majority as the basis for deciding the winners - alternatively, the criteria would
be domain-dependent.

In the account of inconsistency resolution above, we had to rely on a representa-
tion of an optimization norm in the form of a preference relation. We can explore

Norms as Objectives: Revisiting Compliance Management 117

the resolution of inconsistency between optimization norms using two additional
intuitions, which do not require this reduction to a preference relation:

Pareto-optimal solutions: The notion of pareto-optimality, frequently used in
decision theory, provides an alternative basis for resolving inconsistency amongst
optimization norms. In the following, we will use o(s) to denote the value of the
objective o for option s. Given a set of optimization norms O = {o1, o2, . . . , on},
which are viewed uniformly, and without loss of generality, as maximization
objectives and a set of options S = {s1, s2, . . . , sm}, a pareto-optimal solution
is typically defined as some si ∈ S such that there exists no sj ∈ S for which
ok(sj) > ok(si), for at least one ok ∈ O, and for all other oi ∈ O where i �= k,
oi(sj) ≥ oi(si). In other words, a pareto-optimal option is one for which there
exists no other feasible option which performs strictly better on one objective
and at least as well on all of the others. The term pareto-frontier is often used
to describe the set of all pareto-optimal solutions. In our setting, the pareto-
frontier can be viewed as consisting of alternative resolutions of optimization
norm inconsistency. These can be presented as choices to users in a mixed-
initiative reasoning setting (the system only filters, but does not make the final
choice in such settings).

Prioritization of objectives: A well-known approach to dealing with multiple ob-
jectives in operations research is to create a weighted sum of these objectives,
with the weights reflecting the relative priorities of the corresponding objectives.
There is a critical assumption here that the objective functions map options to
commensurate scales (what would happen if one objective measured cost in dol-
lars and another measured time in seconds?). If all of the objectives are equally
weighted, then each solution to the resulting optimization problem represents
an element of the pareto-frontier. In our alternative account of Sen’s cake-choice
example, let oNL represent the optimization norm that makes us prefer states
where we haven’t eaten the largest slice of cake to states where we have. Let
oL represent our preference for eating larger slices of a cake. We simplify our
discussion by avoiding the formalization of the commensurate scales on which
the two objectives would evaluate options. The weighted combination of the
two objectives would be of the form wNL.oNL + wL.oL where wNL > wL (for
the purposes of our example, the actual weights are immaterial as long as this
inequality holds).

We now need to address the question of resolving inconsistencies between
optimization norms and boolean norms. The solution here is fairly simple: op-
timization norms can be relaxed while boolean norms cannot. Recall that an
optimization norm o will be deemed to be inconsistent with a boolean norm n
in a given context C if and only if every element of the set S (where S ⊆ C) of
strictly non-dominated (most preferred) options violates n. This inconsistency
can be resolved if we are able to promote at least one n-satisfying state (say s)
to become a member of S. Given our earlier discussion on the need to minimize
change to the original specification of a norm, we could explore several intu-
itions on the specific changes required in the underlying preference relation (as

118 A. Ghose and T.B. Roy Savarimuthu

before, viewed as a set of preference assertions). The general approach would be
to identify an o′ which satisfies the following conditions: (1) There exists at least
one n-satisfying element of the set of strictly non-dominated options under o′,
(2) There exists no o′′ where (oΔo′′) ⊆ (oΔo′) which also satisfies condition (1)
(here Δ refers to the symmetric set difference operator).

An important question to address is the distinction between the violation
and relaxation of optimization norms. We relax an optimization norm to ensure
consistency with other norms. The notion of norm compliance discussed earlier
continues to provide a clear yardstick for deciding whether an optimization norm
(or a set of such norms) has been violated.

6 Sanction Management

We now consider the problem of norm compliance in multi-agent systems, and
in particular the problem of how graded sanctions (corresponding to graded de-
grees of non-compliance) might be decomposed and assigned to the (possibly
many) agents responsible for a (graded) violation. Social norms may need to be
decomposed to obtain agent-specific obligations in a multi-agent context. As dis-
cussed earlier, this is a problem of practical importance whenever agents delegate
responsibility to other agents. In a more general business setting, a formal under-
standing of the decomposition of sanctions is critical in managing outsourcing
and in formalizing the relationship between a contract and sub-contracts when-
ever sub-contracting is involved. A formalization is complicated by the fact that
the sanctions associated with different levels of compliance/violation are contex-
tually determined, specifically by the number of agents involved in satisfying the
norm in question, and the level to which each of these comply with or violate
the norm.

In the following, given a set of agents Ag and a set of variables V ar, we will
use the function θ : Ag → 2V ar to map an agent to a set of variables that the
agent is responsible for. Also in the following, given a norm nP which specifies
preferences using an underlying semiring P , we will use bestvalnP (ag), to denote
the set of preference values assigned to the set of value assignments (states) that
include the current assignments of values to variables in θ(ag) by nP such that
there exists no state s that also includes the current assignment of values to
θ(ag) where nP (s) = 〈v′, r′〉 and v′ ≺ v for some v ∈ bestvalnP (ag) (here ≺ is
the strict version of the partial order � associated with the c-semiring P).

Definition 3. Given a multi-agent norm context 〈nP , V ar, Ag, θ〉 where nP is
the norm in question, V ar is the set of variables over which the states that the
norm refers to are defined, Ag is the set of agents jointly responsible for satisfying
nP and the ⊗ operator associated with the c-semiring P is idempotent, and given
a complete assignment s of values to variables in V where nP (s) = 〈v, r〉, the
(real-valued) sanction applied on an agent agi is defined as:

– If bestvalnP (agi) = v then the sanction incurred by agi is r/m where AgX =
{ag | bestvalnP (ag) = v} and |AgX | = m.

– If bestvalnP (agi) �= v then sanction incurred by agi is 0.

Norms as Objectives: Revisiting Compliance Management 119

The idempotence property of the ⊗ operator, which states that a ⊗ a = a for
any preference value a is key to understanding the definition above. Operators
such as min and max are idempotent, while the arithmetic addition operator +
is not. With an idempotent combination operator such as min, the contribution
of an agent to the final preference value is only of interest if that final preference
value equals the best value assigned by the valued optimization norm to the
portion of the state determined by that agent. If the best value happens to be
higher, then the agent in question was not in fact responsible for the final value
of that state (some other agent or agents whose component of the final state was
evaluated to the eventual valuation of the state would have been responsible
instead). Similarly, if the contribution of the agent had a lower valuation, then
the whole state would have had that lower valuation, hence that case is not of
interest either.

As an example, consider a compliance requirement that both p and q have to
be completely satisfied. Assume that the c-semiring being used is Q as defined
above and that both p and q can be satisfied at one of the following 3 levels:
COMPLETELY (represented by the c-semiring value h), PARTIALLY (repre-
sented by m), NOT-AT-ALL (represented by l). Consider 2 agents: A1 and A2.
A1 is responsible for satisfying p. A2is responsible for satisfying q. The compli-
ance requirement is formalized by the valued optimization norm n1Q as follows:
n1Q(〈p = h, q = h〉) = (h, 0), n1Q(〈p = h, q = m〉) = (m, 50), n1Q(〈p = m, q =
h〉) = (m, 50), n1Q(〈p = m, q = m〉) = (m, 50), n1Q(〈p = l, q = l〉) = (l, 100),
n1Q(〈p = h, q = l〉) = (l, 100) (note that we need a total of 9 such assertions -
we do not list them all for brevity). Notice that the preference value assigned
to each state is obtained by applying the ⊗ operator on the preference values
associated with p and q.

– Scenario 1: The requirement is violated completely (incurring a penalty of
100) because A2 fails to satisfy q completely, i.e. as a NOT-AT-ALL (even
though A1 satisfies p completely). Here A2 pays a penalty of 100.

– Scenario 2: The requirement is violated partially (incurring a penalty of 50)
because A2 fails to satisfy q partially (even though A1 satisfies p completely).
Here A1 pays a penalty of 50.

– Scenario 3: The requirement is violated partially (incurring a penalty of 50)
because both A1 and A2 satisfy q and p (respectively) partially. Here A1

and A2 pay a penalty of 25 each

We do not list all of the scenarios here for brevity. The formalization above does
not cover the complete sanction decomposition problem, but offers pointers on
how the full problem might be solved using an approach like this. In the non-
idempotent case, if the ⊗ operator performs arithmetic addition of cost, it is
easy to decompose penalties to agents in direct proportion to their contribu-
tion to costs. In other cases, the complexity might arise due to evaluating the
contribution of each agent to an eventual outcome.

120 A. Ghose and T.B. Roy Savarimuthu

7 Related Implementions of Optimization in Agent
Deliberation

It is useful, at this point, to consider the implementation of optimization norms
in agent systems. The theory of compliance for optimization norms discussed
in this paper has been implemented in the CASO BDI agent programming lan-
guage [21], which provides pointers on how optimization objectives might be
integrated into agent deliberation (but it does not support the framework for
inconsistency detection and resolution developed in this paper). The key idea
is that CASO agents accept optimization objectives as events in their event
queues. A CASO agent uses these objectives in option selection (choosing be-
tween competing plans)and intention selection. In the absence of a clear notion
of termination (common to most BDI agent implementations), a CASO agent
cannot look ahead to a final state (as required by the notion of global compliance
defined in this paper). Instead, a CASO agent achieves local compliance by prun-
ing the goal-plan tree obtained from its current options at a parametric depth,
and then exploring all paths to the pseudo-leaf nodes obtained. In deciding which
option to commit to, a CASO agent solves an optimization problem, using the
currently applicable optimization objectives, once for each option (CASO plan
contexts contain both constrain and non-constraint predicates, leading to a rep-
resentation akin to constraint logic programming). A CASO agent then selects
the option that offers the optimal value with respect to the currently applicable
optimization norms. Intention selection in CASO uses similar machinery.

In the BAOP agent programming language [22], both objective functions and
(c-semiring) valued preferences are brought to bear on agent deliberation. The
c-semiring preferences and specified with respect to domain states. The tradi-
tional AgentSpeak-style plans of CASO are therefore annotated with effects,
and machinery defined to propagate effects over plans and sub-plans. As with
CASO, BAOP provides pointers to how optimization norms might be integrated
into agent deliberation, but does not make provision for inconsistency detection
and resolution.

The rest of the machinery described in this paper has not been implemented.
However, as the discussion above suggests, much of the conceptual framework
presented should be possible to implement in a straightforward manner. On the
one hand, the need to solve optimization problems during agent deliberation adds
to its complexity. On the other hand, this framework provides tantalizing hints
on how agent programming environments could be based entirely on (efficient)
optimization technology.

8 Conclusions and Future Work

We have argued in this paper that optimization norms represent an important
dimension to normative reasoning in multi-agent systems. We have provided a
conceptual framework to support reasoning with optimization norms, and ex-
tended it to provide support for graded compliance, graded sanctions and sanc-
tion decomposition. The observations provided in this paper provide a starting

Norms as Objectives: Revisiting Compliance Management 121

point for an interesting strand of research. Ultimately, this raises the question:
are the problems of compliance checking and non-compliance resolution instances
of the more general optimization problem?

References

1. Boer, A., van Engers, T., Winkels, R.: Mixing legal and non-legal norms. In: Pro-
ceedings of the 2005 Conference on Legal Knowledge and Information Systems:
JURIX 2005: The Eighteenth Annual Conference, Amsterdam, The Netherlands,
pp. 25–36. IOS Press (2005)

2. van der Torre, L., Tan, Y.H.: Contrary-to-duty reasoning with preference-based
dyadic obligations. Annals of Mathematics and AI 27, 49–78 (1989)

3. Frank Dignum, D.K., Sonenberg, L.: From desires, obligations and norms to goals.
Cognitive Science Quarterly 2, 407–430 (2002)

4. Panagiotidi, S., Vazquez-Salceda, J.: Norm-aware planning: Semantics and imple-
mentation. In: 2011 IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology (WI-IAT), vol. 3, pp. 33–36 (2011)

5. Mares, E.D., MacNamara, P.: Supererogation in deontic logic: Metatheory for dwe
and some close neighbours. Studia Logica 57, 397–415 (1997)

6. Simon, H.A.: Models of bounded rationality. MIT Press, Cambridge (1982)
7. Morrison, E., Ghose, A.K., Koliadis, G.: Dealing with imprecise compliance require-

ments. In: Proceedings of the 2nd International Workshop on Dynamic and Declar-
ative Business Processes (DDBP 2009). IEEE Computer Society Press (2009)

8. Koliadis, G., Desai, N., Narendra, N.C., Ghose, A.K.: Analyst-mediated contextu-
alization of regulatory policies. In: Proceedings of the IEEE International Services
Computing Conference (IEEE SCC 2010), Miami, USA, pp. 281–288. IEEE Com-
puter Society Press (July 2010)

9. Governatori, G.: Representing business contracts in ruleml. International Journal
of Cooperative Information Systems 14, 181–216 (2005)

10. Udupi, Y.B., Singh, M.P.: Contract enactment in virtual organizations: A
commitment-based approach. In: Proceedings of the 21st National Conference on
Artificial Intelligence, AAAI (July 2006)

11. Villatoro, D., Andrighetto, G., Sabater-Mir, J., Conte, R.: Dynamic sanctioning
for robust and cost-efficient norm compliance. In: IJCAI, pp. 414–419 (2011)

12. Boella, G., van der Torre, L.W.N.: Negotiating the distribution of obligations with
sanctions among autonomous agents. In: Proceedings of the 16th Eureopean Con-
ference on Artificial Intelligence, ECAI 2004, pp. 13–17 (2004)

13. von Wright, G.H.: Deontic logic. Mind 60(237), 1–15 (1951)
14. Elster, J.: Fairness and norms. Social Research: An International Quarterly 73(2),

365–376 (2006)
15. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:

Semiring-based csps and valued csps: Frameworks, properties, and comparison.
Constraints 4(3), 199–240 (1999)

16. Governatori, G., Milosevic, Z.: An approach for validating bcl contract specifica-
tions. In: 2nd EDOC Workshop on Contract Architectures and Languages (CoALA
2005). IEEE Digital Library (2005)

17. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Perram, J.W., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038,
Springer, Heidelberg (1996)

122 A. Ghose and T.B. Roy Savarimuthu

18. Sen, A.K.: Internal consistency of choice. Econometrica 61, 495–521 (1993)
19. Alchourron, C., Gardednfors, P., Makinson, D.: On the logic of theory change:

Partial meet functions for contraction and revision. Journal of Symbolic Logic 50,
510–530 (1985)

20. Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: A Short Introduction to Com-
putational Social Choice. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 51–69.
Springer, Heidelberg (2007)

21. Dasgupta, A., Ghose, A.K.: Implementing reactive bdi agents with user-given con-
straints and objectives. International Journal of Agent-Oriented Software Engi-
neering 4(2), 141–154 (2010)

22. Dasgupta, A., Ghose, A.K.: BDI Agents with Objectives and Preferences. In:
Omicini, A., Sardina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS, vol. 6619,
pp. 22–39. Springer, Heidelberg (2011)

Norm Emergence through Dynamic Policy Adaptation
in Scale Free Networks

Samhar Mahmoud1, Nathan Griffiths2, Jeroen Keppens1, and Michael Luck1

1 Department of Informatics, King’s College London, London WC2R 2LS, UK
samhar.mahmoud@kcl.ac.uk

2 Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Abstract. As has been stated elsewhere, norms are a valuable means of estab-
lishing coherent cooperative behaviour in decentralised systems in which there
is no central authority. Axelrod’s seminal model of norm establishment in popu-
lations of self-interested individuals provides some insight into the mechanisms
needed to support this through the use of metanorms, but considers only limited
scenarios and domains. While further developments of Axelrod’s model have ad-
dressed some of the limitations, in particular in considering its application to
different topological structures, this too has been limited in not offering an ef-
fective means of bringing about norm compliance in scale-free networks, due to
the problematic effects of hubs. This paper offers a solution, first by adjusting the
model to more appropriately reflect the characteristics of the problem, and sec-
ond by offering a new dynamic policy adaptation approach to learning the right
behaviour. Experimental results demonstrate that this dynamic policy adaptation
overcomes the difficulties posed by asymmetric distribution of links in scale-free
networks, leading to an absence of norm violation, and instead norm emergence.

1 Introduction

Norms are an effective means of governing the behaviours of different members of
decentralised open systems, such as P2P file-sharing systems in which cooperation
between members maintains benefits for all. However, individuals often take benefits
without contributing to the common good, the free riding phenomenon [1] by which
some download files from others without uploading in return. In decentralised sys-
tems, the absence of a central authority means that there is no consequence for such
behaviours. Many researchers ([4,6,7,12,14,16]) have proposed norms as a means of
regulating agent behaviour but, as shown by Axelrod [2], norms alone may not lead
to desired outcomes. In consequence, Axelrod proposed metanorms as a means of en-
suring not that norms are complied with, but that they are enforced. He showed that
metanorms are effective in fully-connected networks, but did not consider other kinds
of topology.

Some work has already been undertaken on examining the impact of different topolo-
gies on norm establishment. For example, Savarimuthu et al. [11] consider the ultima-
tum game in the context of a role model that provides advice on whether to change
norms in order to enhance performance, and provide experimental results for random
and scale-free networks. Delgado et al. [5] study norm emergence in coordination

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 123–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

124 S. Mahmoud et al.

games in scale-free networks, and Sen et al. [13] similarly examine rings and scale-free
networks in a related context. Additionally, Villatoro et al. [15] explore norm emer-
gence within lattices and scale-free networks. While these efforts provide valuable and
useful results, the context of application has tended to be limited, with only two agents
involved in a single interaction, rather than a larger population. This simplifies the prob-
lem compared to those in which multiple agents are involved in a single interaction can
impact on norm establishment.

Rather than adopting a fundamentally different model, in this paper we examine the
problem of norm establishment in Axelrod’s original model but extended to address
the issues arising in topological structures, and in particular scale-free networks, which
cause two significant problems. First, Axelrod’s model assumes a fully connected net-
work, and is predicated on that for certain aspects, such as how one agent observes
another’s actions. In a variably connected structure, this part of the model is thus not
meaningful and requires modification, causing some difficulties in establishing norms.
Second, in scale-free networks, which contain both heavily connected nodes (hubs)
and lightly-connected nodes (outliers), hubs strongly influence norm emergence since
they are involved in observation of, and interaction with, so many others in the network.
While the work of Galan et al. [8] addresses the first point, applying Axelrod’s model to
other networks, the approach requires inappropriate access to the strategy of others [10].

In response, this paper provides two key contributions: it addresses a weakness in a
previous technique for lattices and small-worlds to be consistent with the requirements
of agent autonomy, and it provides a dynamic policy adaptation mechanism that leads to
norm emergence in scale-free networks for which prior efforts have not succeeded. The
paper begins with a brief description of the metanorm model. Section 3 then considers
the problems that arise from the use of scale-free networks, and the adaptation of the
model to cope with their characteristics. Section 4 introduces our solution for achieving
norm emergence in this context and, finally, Section 5 concludes.

2 The Metanorms Model

Inspired by Axelrod’s model [2], our simulation focusses only on the essential features
of the problem. In the simulation, the agents play a game iteratively; in each iteration,
they make a number of binary decisions. First, each agent decides whether to comply
with the norm or to defect. Defection brings a reward for the defecting agent, and a
penalty to all other agents, but each defector risks being observed by the other agents
and punished as a result. These other agents thus decide whether to punish agents that
were observed defecting, with a low penalty for the punisher and a high penalty for the
punished agent. Agents that do not punish those observed defecting risk being observed
themselves, and potentially incur metapunishment. Thus, finally, each agent decides
whether to metapunish agents observed to spare defecting agents. Again, metapunish-
ment comes at a high penalty for the punished agent and a low penalty for the punisher.

The behaviour of agents in each round of the game is random, but governed by three
variables: the probability of being seen, boldness, and vengefulness. In each round,
agents have a fixed number of opportunities to defect, each of which has a randomly
selected probability of a defection being seen. Then, if an agent’s boldness exceeds the

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 125

Algorithm 1. The Simulation Loop
1. for each round do
2. interact()
3. learn()

probability of a defection being seen, the agent defects. Vengefulness is the probability
that an agent punishes or metapunishes another agent. Thus, the boldness and venge-
fulness of an agent are said to comprise that agent’s strategy (or policy which we use
when referring more specifically to agent actions). After several rounds of the game,
each agent’s rewards and penalties are tallied, and successful and unsuccessful strate-
gies are identified. By comparing themselves to other agents on this basis, the strategies
of poorly performing agents are revised such that features of successful strategies are
more likely to be retained than those of unsuccessful ones. While successful strategies
for agents increase their scores, our aim, in contrast, is to find strategies that will estab-
lish norms in the community: i.e. where agents tend to abide by the norm (due to low
boldness) and tend to enforce and meta-enforce the norm (due to high vengefulness).

2.1 Evolution vs. Learning

Axelrod’s evolutionary approach works well as a model to identify the fittest strategies
because all agents act in an identical context. With the introduction of a topology, each
agent possesses a potentially unique context defined by the agents to which it is con-
nected. As such, strategies are not freely interchangeable. An agent typically keeps its
strategy private, but adapts it in response to perceived effectiveness. Mahmoud et al.
addressed these concerns by means of a reinforcement learning mechanism [10]; since
we base our work on this starting point, we briefly describe those algorithms before
presenting our own contributions. As illustrated in Algorithm 1, the simulation consists
of several rounds, comprising an interaction phase and a learning phase, both of which
rely on the identification of different components in the makeup of the utility (or score),
which we introduce first. In order to assess and improve performance, each agent has
a measure of utility, represented by different scores: defection score (DS), punishment
score (PS), punishment omission score (POS) and total score (TS). DS is the utility
gained or lost from defecting, PS is the utility lost from punishing others, and POS is
the utility lost from not punishing defections. Finally, TS is the sum of these scores, in
addition to the loss of utility that is borne by agents as a result of others defecting.

The interaction phase is concerned with the interaction between agents. As shown in
Algorithm 2, each agent has various defections opportunities (o), in which it decides to
defect (to violate the norm) if its boldness is greater than the probability of its defection
being seen (So). As a result, the agent’s DS is increased by a temptation value T ,
while every neighbouring agent NB (all agents that are directly connected) is hurt,
reflected through a negative value H being added to the agent’s total score. However,
each hurt agent can observe the defection and react to it by imposing a punishment
with probability corresponding to the observing agent’s vengefulness. If an agent is
punished, then its DS is decreased by a value P , and the punishing agent’s PS is
decreased with enforcement cost E. If an observing agent does not punish then, in

126 S. Mahmoud et al.

Algorithm 2. interact()
1. for each agent i do
2. for each opportunity to defect o do
3. if Bi > So then
4. DSi = DSi + T
5. for each agent j ∈ NBi: j �= i do
6. TSj = TSj +H
7. if see(j,i,So) then {j sees i}
8. if punish (j, i, Vj) then {j punishes i}
9. DSi = DSi + P

10. PSj = PSj + E
11. else
12. for each agent k ∈ NBj : k �= i ∧ k �= j do
13. if see(k,j,So) then
14. if punish (k, j, Vj) then
15. PSk = PSk +E
16. POSj = POSj + P

turn, neighbours that observe this can metapunish the agent, again with probability
corresponding to vengefulness. This results in the metapunished agent’s POS being
decreased by P (and thus increased in magnitude), since the metapunishment is a result
of not punishing the defector, while the metapunishing agent’s PS is reduced by E.

In the learning phase (Algorithm 3), the various scores are used as a means of im-
proving performance in each round. Agents change their policies for action in the di-
rection that should result in better scores. Initially, TS is calculated by accumulating
the various component scores, and this is then used to determine whether to modify its
policy, by comparing TS with the average population score (since agents that perform
well should not change). If an agent’s defection score DS is positive then it increases
boldness, and decreases it if negative. Conversely, vengefulness is increased if PS is
better than POS, and decreases otherwise. These changes arise by adding or subtract-
ing a learning rate δ. Moreover, to explore the policy space, an agent may completely
change its boldness and vengefulness values, determined by an exploration rate, γ.

2.2 Metanorms, Lattices and Small Worlds

As Mahmoud et al. [9] demonstrate, applying this model to fully-connected networks,
lattices and small worlds results in norm emergence with different levels of success cor-
responding to the characteristics of the topologies. More specifically, the model always
results in a population of agents with low average boldness and varying degrees of high
average vengefulness. However, both lattices and small worlds have the attribute that
neighbourhood size determines the number of neighbours to which each agent must be
connected, and this appears to be important for convergence to norm emergence, with
larger neighbourhoods giving better vengefulness. Conversely, population size has no
effect on lattices, but in small worlds a larger population decreases vengefulness.

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 127

Algorithm 3. learn()
1. for each agent i do
2. TSi = TSi + DSi + PSi + POSi

3. if TSi < AvgSNBi
then

4. if explore(γ) then
5. Bi = random()
6. Vi = random()
7. else
8. if DSi < 0 then
9. Bi = Bi − δ

10. else
11. Bi = Bi + δ
12. if PSi < POSi then
13. Vi = Vi − δ
14. else
15. Vi = Vi + δ

3 Scale-Free Networks

The topologies considered above are similar in that each agent has exactly the same
number of connections, in contrast to scale-free networks [3], in which connections be-
tween nodes follow a power law distribution. Thus, some nodes have a vast number
of connections, but the majority have very few connections, as illustrated in Figure 3.
These properties of scale-free networks suggest an imbalance in connections. In turn,
this has an impact on the results that can be obtained, due both to punishment and to
enforcement costs, which dramatically modify the dynamics of the system. To inves-
tigate this, we ran 1000 experiments on a scale-free network with 1000 agents, five of
which were hubs (having a large number of connections) and the others (which we call
outliers) with at least two connections to other agents in the population, and typically no
more than four connections (according to Barabasi’s algorithm [3]). Each experiment
was run for 1000 rounds (or timesteps), and parameters for the experiments were as

Fig. 1. Example of a Scale-free network

128 S. Mahmoud et al.

follows (and are the same for all subsequent experiments reported in this paper): T = 3,
E = −2, P = −9, H = −1, δ = 1

7 and γ = 0.01. The results, shown in Figure 3,
indicate that all runs end with both average boldness and average vengefulness, so that
no norm is established. However, a detailed analysis of individual runs reveals that this
is because there is no significant change to the average vengefulness and boldness, with
both fluctuating around the average from the start of the run until the end.

By differentiating between hubs and outliers, some patterns are revealed, however.
In particular, the model succeeds in lowering the boldness of hubs, but their vengeful-
ness remains near average. Because hubs are connected to many other agents and are
punished many times for a defection, boldness decreases. Conversely, they also punish
many of these other agents for defecting, and consequently pay a very high cumula-
tive enforcement cost that causes them to lower their vengefulness. In turn, this lower
vengefulness causes them subsequently not to punish others and as a result to receive
metapunishment from other hubs, leading to an increase in vengefulness again. Over
time, this repeats, with vengefulness decreasing and then increasing back to the aver-
age, as shown in Figure 3(a) and 3(c). Note that for all results that are provided in this
paper, we show both the long terms results of 1000 timesteps for completeness and the
short term results of 100 timesteps for clarity.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ve
ng

ef
ul

ne
ss

Boldness

Each point represents the final average
vengefulness and boldness of a single run

Fig. 2. Overall Result - 1000 Runs, 1000 Agents, 1000 Timesteps

For the remaining, outlier, agents, changes to boldness and vengefulness are indica-
tive of overall boldness and vengefulness because they comprise the majority of the
population. They are typically connected to one or more of the hubs, and while they too
defect and punish, they do so much less frequently than the hubs to which they are con-
nected. Thus, their scores are higher than the scores of the hubs; because those agents
with higher scores do not learn from others (since there are no higher scoring others to
learn from), they do not change their strategies, and their boldness and vengefulness re-
mains close to the average, as shown in Figures 3(b) and 3(d). These results demonstrate
that Mahmoud et al.’s algorithm is not effective in scale-free networks. Importantly, as

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 129

the burden of punishment falls largely on hubs rather than outliers, hubs perform worst
in the population. To address this, we modify the learning technique so that it can cope
with the nature of scale-free networks, as discussed next.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

Va
lu

e

Timestep

Boldness
Vengefulness

(a) Hubs - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

Va
lu

e
Timestep

Boldness
Vengefulness

(b) Outliers - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

Va
lu

e

Timestep

Boldness
Vengefulness

(c) Hubs - 1000 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

Va
lu

e

Timestep

Boldness
Vengefulness

(d) Outliers - 1000 timesteps

Fig. 3. Sample Run

3.1 Universal Learning

The algorithm proposed by Mahmoud et al. suffers from the limitation that it requires
knowledge of the average score in the population in order for an agent to determine
whether to modify its policies. However, since the aim of that work is to eliminate
the unreasonable assumption of omniscience, by which agents are able to observe the
private strategies of others, as well as observing all norm violations and punishments,
it makes little sense to assume that agents have access to an average population score
against which to compare themselves before deciding whether to modify their policies.
For this reason, we consider an alternative approach, in which agents always modify
their policies to improve performance, regardless of the behaviour of others, and only
in relation to their own score. This modification is simple, and involves removing line 3
of Algorithm 3 (we do not show the new algorithm due to the simplicity of the change
and space constraints).

130 S. Mahmoud et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ve
ng

ef
ul

ne
ss

Boldness

Each point represents the final average
vengefulness and boldness of a single run

Fig. 4. Universal learning- Overall Result - 1000 Runs, 1000 Agents, 1000 Timesteps

Experiments with this new approach give the results shown in Figure 3.1. Surpris-
ingly, the results indicate norm collapse, as all runs end with high boldness and low
vengefulness. By analysing the performance of the different types of agents, we are
able to explain this behaviour; we illustrate by reference to a sample run for a hub
in Figures 5(a) and 5(c), and a sample run for an outlier agent shown in Figures 5(b)
and 5(d).

Outliers have few connections, but are connected to one or more hubs. When agents
punish others, they pay an enforcement cost but risk metapunishment when they do
not. However, since these outliers have very low connectivity, the risk of metapunish-
ment is also very low, so they avoid punishing others and vengefulness consequently
decreases. Metanorms are thus not effective here because of the lack of connectivity
between agents. Outliers thus always have high boldness and low vengefulness levels.
In addition, as we will see, the vengefulness of hubs also drops and is never higher than
average, so agents can defect and gain benefit, without being punished by hubs. Outliers
thus increase their boldness, causing norm collapse in the whole population.

In contrast to outliers, hubs are highly connected and apply punishments to many
others, incurring high enforcement costs. To address this, they decrease their vengeful-
ness, resulting in metapunishment from the many nodes to which they are connected, in
turn causing hubs to increase vengefulness (but only to a mid-range level). In addition,
because of the high boldness of outliers, there is a high rate of defection in the popu-
lation, causing oscillation between mid-range and low vengefulness for the duration of
the run. Boldness of hubs is kept low, however, due to the amount of punishment that
the hubs are exposed to. Values for vengefulness and boldness are shown Figure 5(c).

3.2 Connection-Based Observation

Axelrod’s original model considers a probability of being seen, and in the context of
a fully connected network, this may be a reasonable basis on which to base a model.

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 131

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

Va
lu

e

Timestep

Vengefulness
Boldness

(a) Hubs - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

Va
lu

e

Timestep

Boldness
Vengefulness

(b) Outliers - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

Va
lu

e

Timestep

Vengefulness
Boldness

(c) Hubs - 1000 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

Va
lu

e

Timestep

Boldness
Vengefulness

(d) Outliers - 1000 timesteps

Fig. 5. Universal learning - Sample Run

However, in the kinds of topologies we are concerned with, such as those that reflect
the situations in peer-to-peer (P2P) networks or wireless sensor networks, for example,
observation of the behaviour of others arises from the direct connection between agents.
Thus, if a peer A is connected to another peer B, then A may be able to observe all
communication from B. As a result, if B defects by, for example, not sharing files
in the case of a file-sharing P2P network, this can be observed by A. To reflect this
property in our model, Axelrod’s probability of being seen requires replacing with the
notion that each agent observes all actions of its direct neighbours. This modification to
the model gives rise to rather different results. In particular, the results of running the
model on a scale-free network, in Figure 3.2, show that all runs end in low boldness
and low vengefulness, indicating that defection is very rare in the population because
of the low boldness. In addition, punishment is not common since agents rarely punish
defectors, due to their low vengefulness. To understand this better, the results of a 1000
timestep run, for outliers and hubs, are shown in Figures 7(d) and 7(c), respectively.

More specifically, Figures 7(b) and 7(d) show that outliers start the run by decreasing
both vengefulness and boldness to a low level where they remain, with some small
degree of fluctuation. Figures 7(a) and 7(c) suggest that hubs start the run by increasing
their vengefulness to a high level and decreasing their boldness to a very low level. After
a few timesteps, vengefulness decreases to a mid-range level, from which it decreases

132 S. Mahmoud et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ve
ng

ef
ul

ne
ss

Boldness

Each point represents the final average
vengefulness and boldness of a single run

Fig. 6. Connection-Based Observation - Overall Result - 1000 runs, 1000 agents, 1000 timesteps

further to a low level. However, it does not stabilise there, since it moves up again,
and this pattern is repeated throughout the run. Similarly, boldness initially decreases
to zero and then jumps to a low level, before decreasing back to zero. Hubs thus have a
fluctuating mid-range level of vengefulness, and a very low level of boldness.

There are two distinctive features that can be observed here, in contrast to the results
obtained by the universal learning approach. First, hubs reach a high level of venge-
fulness, which is limited to mid-range vengefulness in the previous approach. This is
mainly because the new technique raises the action observation probability to 100%,
which allows a high possibility for metapunishment to occur and, as a result, forces
hubs to increase their vengefulness to a high level. However, as before, this does not
persist because of the high enforcement cost observed with such a high level of venge-
fulness. Second, the boldness of outliers is low here, mainly due to the combination of
the high vengefulness among hubs and the 100% defection observation, which together
produce sufficient punishments to force outliers to decrease their boldness.

4 Dynamic Policy Adaptation

As we have seen, universal learning has a negative impact on results, causing boldness
to increase and vengefulness to decrease. However, a more important weakness is that
the learning rate is uniform in the face of differing punishment levels: all agents use
the same learning rate, regardless of how much utility gain or loss they suffer. Thus, for
example, an agent that incurs a punishment score of −10 must modify its vengefulness
to exactly the same degree as another agent whose punishment score is −999. While
the direction of change is appropriate, the degree of change does not reflect the severity
of the sanction; a more appropriate approach would change policy in line with perfor-
mance. In this view, a very badly performing agent should modify its policy much more
significantly than one that performs better. Dynamic policy adaptation can address this,
bringing about changes to vengefulness and boldness that reflect performance. The key
idea here is to measure the level of performance rather than just the direction, through

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 19 28 37 46 55 64 73 82 91 100

Va
lu

e

Timestep

Boldness
Vengefulness

(a) Hubs - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 19 28 37 46 55 64 73 82 91 100

Va
lu

e

Timestep

Boldness
Vengefulness

(b) Outliers - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

Va
lu

e

Timestep

Boldness
Vengefulness

(c) Hubs - 1000 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

Va
lu

e

Timestep

Boldness
Vengefulness

(d) Outliers - 1000 timesteps

Fig. 7. Connection-Based Observation - Sample Run

comparison of an agent’s actual utility, or score in our terms, and the maximum or min-
imum that could be obtained. We apply this to boldness and vengefulness in turn, but
first introduce some notation. Let NDD be the number of available defection decisions,
where each agent has multiple chances to defect in a single round (as specified earlier),
NBi be the number of i’s neighbours, T be the utility gained from a single defection,
and PC be the punishment cost representing the utility lost from being punished.

4.1 Boldness

In terms of boldness, the relevant part of the total score is the defection score, which can
be either positive or negative, requiring consideration of both maximum and minimum
possible values. The maximum possible defection score MaxDSi arises when an agent
i always defects but is never punished, and the minimum defection score arises when
the agent always defects and is always punished by all of its neighbours, as follows.

MaxDSi = NDD × T (1)

MinDSi = NDD × (T + (NBi × PC)) (2)

Then, in order to determine the degree of change to an agent’s boldness, we must consider
three different situations. First, when the defection score is positive (so that boldness

134 S. Mahmoud et al.

should increase), the degree of change is determined by dividing the obtained defec-
tion score by the maximum possible defection score. Second, when it is negative, (so
that boldness should decrease), the obtained defection score is divided by the minimum
possible defection score. Finally, if the defection score is zero, no change is required.

FactorBi =

⎧⎪⎨
⎪⎩

DSi

MaxdDSi
if DSi > 0

DSi

MinDSi
if DSi < 0

0 otherwise

(3)

Given this, we now need to determine how FactorB can be used to change an agent’s
policy. In order to avoid dramatic policy movements that could lead to violent fluc-
tuations, we limit the change that can be applied to a maximum value. In this case,
the maximum is the difference between two levels as in Axelrod’s original model, of
1
7 . Thus, an agent modifies its boldness in line with its DS, as follows, so that it can
maximally change its boldness by one level (or by 1

7) when FactorB is 1.

Bi = Bi +

⎧⎪⎨
⎪⎩

1
7 × FactorBi if DSi > 0

− 1
7 × FactorBi if DSi < 0

0 otherwise

(4)

4.2 Vengefulness

An agent modifies its vengefulness depending on whether it is valuable to punish others,
determined by comparing the utility lost from punishing others (the punishment score,
PS) against and the utility lost from not punishing them (the punishment omission
score POS). If PS is greater than POS, agents increase vengefulness and decrease it
otherwise. Clearly, the magnitude of this difference between these two values gives an
indication of the degree of change that should be applied to vengefulness. For example,
if PS is −24 and POS is −20, then the degree of decrease to V should be significantly
lower than when PS is −600 and POS is −20. We call this difference DiffV :

DiffVi = |PSi − POSi| (5)

Since DiffV is 1 or more (when the values are not equal), it cannot be used directly to
update an agent’s V value, because V must always lie between 0 and 1. It must thus be
normalised so that it can be applied to V , for which we use a scaled value, FactorV ;
this is determined by dividing DiffV by the minimum of PS and POS. Since both
PS and POS are negative, their absolute value is used to obtain a positive value:

FactorVi =
DiffV

|min {PSi, POSi}|
(6)

While this always produces a value between 0 and 1, it does not provide the same value
for the same magnitude of difference. For example, if PS is −14 and POS is −20,
we want FactorVi to be the same as when PS is −6 and POS is 0. We can achieve
this by replacing the maximum of PS and POS with the maximum possible difference

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 135

between PS and POS. This maximum difference is the difference from 0 (when there
is no cost at all from punishing or from not punishing) to the greatest possible magnitude
of PS or POS. In what follows, HPS represents the highest punishment score (the
maximum in magnitude, and lowest in numerical terms — we use HPS to indicate
the highest score to avoid ambiguity of minimum and maximum) that can be received
by an agent punishing all of its neighbours for defection, and metapunishing all of its
neighbours for not punishing all of their neighbours for defection.

To determine the value of HPS we need to consider both the punishment enforce-
ment cost and the metapunishment enforcement cost. First, the highest (maximum in
magnitude, but minimum numerically) punishment enforcement cost (HPEC) arises
when all of an agent’s neighbours defect and the agent punishes all of them:

HPECi = NDD ×NBi × EC (7)

where EC is the enforcement cost of a single punishment. Similarly, the highest meta-
punishment enforcement cost (HMPEC) arises when all of an agent’s neighbours do
not punish all of their neighbours for defecting, and the agent metapunishes all of them:

HMPECi = NDD ×NBBi × EC (8)

where NBBi is the total number of neighbours of all of agent i’s neighbours. HPS is
thus defined as the sum of these two scores:

HPSi = HPECi +HMPECi (9)

In the same way, HPOS is the highest (greatest in magnitude, lowest numerically)
score that can be obtained when an agent does not punish any defectors, but is meta-
punished by all of its neighbours.

HPOSi = NDD ×NBi × (NBi − 1)× PC (10)

where the maximum number of defectors is all of an agent’s neighbours (NB), the
maximum number of metapunishers is the same but excluding the defecting agent, and
PC is the punishment cost obtained from being metapunished (which is the same as for
simply being punished). Given this, FactorV can be calculated by dividing DiffV by
one of these values, as follows. If punishing brings a greater utility reduction than not
punishing (PS < POS), then we use the highest punishment score HPS. Conversely,
if PS > POS, then we use the highest punishment omission score HPOS. If there is
no difference, then there is no change and FactorV is equal to 0.

factorVi =

⎧⎪⎨
⎪⎩

DiffVi

HPSi
if POSi > PSi

DiffVi

HPOSi
if POSi < PSi

0 otherwise

(11)

This guarantees that the change made to V is always the same given the same differ-
ence in scores, since both HPS and HPOS are fixed for each agent. Moreover, this
approach allows hubs to change much less quickly than outliers, because the highest
(maximum in magnitude) scores for hubs are much higher than for outliers, so that the

136 S. Mahmoud et al.

results achieved by using FactorV , and dividing by the difference in scores obtained
for hubs, is much less than for outliers. As the learning algorithm suggests, an agent
increases vengefulness when it finds that not punishing is worse than punishing, and it
decreases vengefulness when the converse is true.

Vi = Vi +

⎧⎪⎨
⎪⎩

1
7 × FactorVi if |PSi| < |POSi|
− 1

7 × FactorVi if |PSi| > |POSi|
0 otherwise

(12)

4.3 Example

To illustrate, assume that a hubA is connected to 20 other agents, and that an outlierB is
connected to only 2 other agents (one being a hub). Like Axelrod’s seminal experiments
and without loss of generality, let NDD = 4 for all agents, since every agent has 4
chances to defect in each round. EC = −2 and is the same for all agents. Similarly,
PC = −9 and again is the same for all agents. The temptation value for all agents,
received when they defect, is T = 3. Finally, suppose that A’s neighbours have 50 other
distinct neighbours in total (summed over all neighbours), while B’s neighbours have
20 other distinct neighbours (again, over all). This is summarised in Table 1. Given these
values, we can determine the relevant values needed as follows. Starting with defection
scores and from Equations 1 and 2 respectively, we obtain the following:

MaxDSA = MaxDSB = 4× 3 = 12

MinDSA = 4× (3 + (20×−9)) = −708

MinDSB = 4× (3 + (2×−9)) = −60

In terms of punishment values, from Equations 7, 8 and 9, we obtain the following:

HPECA = 4× 20×−2 = −160

HMPECA = 4× 50×−2 = −400

HPSA = −160− 400 = −560

HPECB = 4× 2×−2 = −16

HMPECB = 4× 20×−2 = −160

HPSB = −16− 160 = −176

Punishment omission scores using Equation 10 are as follows:

HPOSA = 4× 20× 19×−9 = −13680

HPOSB = 4× 2× 1×−9 = −72

Using this information (Table 1), we can determine the decisions for specific situations.
For example, at the start of each run, the population has average mid-range boldness and
vengefulness (because of the uniform distribution function to generate initial policies).
Now, suppose that both A and B also have mid-range boldness and vengefulness. If,
after one round, both A and B defected twice (out of their four opportunities to defect),

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 137

Table 1. Example values for Agents A and B

Agent Pos NB NBB MinDS MaxDS LevB HPS HPOS LevV
A Hub 20 50 -708 12 1/7 -560 -13680 1/7
B outlier 2 20 -60 12 1/7 -176 -72 1/7

they each gain twice the temptation value T . However, since A is a hub, suppose it is
punished 22 times, much more than B, which is only punished twice. This is because
the defection score of a hub with mid-range boldness is typically much worse than that
of a similar outlier, mainly due to the difference in their number of neighbours, and the
midrange vengefulness in the population. Thus, A has a defection score of 2 × 3 from
defecting, plus 22×−9 = −198 from being punished, giving DSA = −192. Similarly,
DSB = ((2× 3) + (2 ×−9)) = −12.

Given these defection scores, the degree of change that each agent applies to its
boldness can be calculated as follows. First, from Equation 3, FactorBA = −192

−708 =

0.3 and FactorBB = −12
−60 = 0.2. Now, using Equation 4, and since both DSA and

DSB are negative, BA is decreased by 0.3× 1
7 = 0.04, and BB by 0.2× 1

7 = 0.03.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ve
ng

ef
ul

ne
ss

Boldness

Each Point represents the final average
vengefulness and boldness of a single run

Fig. 8. Dynamic Policy Adaptation - Overall Result - 1000 Runs, 1000 Agents, 1000 Timesteps

In addition, if A punishes 35 other agents and metapunishes 16 more, and B pun-
ishes 10 other agents and metapunishes 4 more, their punishment scores are deter-
mined by multiplying the number of punishments issued by the enforcement cost EC:
PSA = ((35+16)×−2) = −102) andPSB = ((10+4)×−2) = −28). Then, if A has
spared 27 defectors and has been metapunished 6 times for each instance of omitting
punishment, and B has spared only one defector and been metapunished just once, the
punishment omission scores are calculated by multiplying the number of metapunish-
ments by the punishment cost PC, as follows: POSA = (27× 6×−9) = −1458 and
POSB = (1 × 1× −9) = −9. Thus, by Equation 11, FactorVA = |−102−(−1458)|

13680 =

138 S. Mahmoud et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 19 28 37 46 55 64 73 82 91 100

Va
lu

e

Timestep

Boldness
Vengefulness

(a) Hubs - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 19 28 37 46 55 64 73 82 91 100

Va
lu

e

Timestep

Boldness
Vengefulness

(b) Outliers - 100 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901 1001

Va
lu

e

Timestep

Boldness
Vengefulness

(c) Hubs - 1000 timesteps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 101 201 301 401 501 601 701 801 901

Va
lu

e

Timestep

Boldness
Vengefulness

(d) Outliers - 1000 timesteps

Fig. 9. Dynamic Policy Adaptation - Sample Run

0.1 and FactorVB = |−28−(−9)|
96 = 0.2. Then, since PSA > POSA, A increases

its vengefulness VA by 0.1 × 1
7 = 0.014 according to Equation 12). Similarly, since

PSB < POSB , B decreases its vengefulness by 0.2× 1
7 = 0.03.

4.4 Experimental Results

To determine the effect of introducing dynamic policy adaptation, we ran experiments,
similar to the previous experiments, on the new model, and giving the results shown
in Figure 4.3. As can be seen in the figure, all runs result in populations with low
average boldness and moderate vengefulness. As before, more detail on the evolution
of average boldness and vengefulness for hubs and outliers was provided by examining
runs of individual agents, as shown in Figure 9 , which confirm that outliers converge to
a state of low boldness and moderate vengefulness consistently, while hubs do so with
intermittent deviations. As before, hubs increase vengefulness and decrease boldness,
though much more slowly now. However, at regular intervals, there are sudden increases
to boldness, accompanied by a change in vengefulness, as a result of the exploration of
the algorithm. This phenomenon occurs in all models in this paper, and is visible here
due to the limited number of timesteps, but has no impact on the results of the dynamic
policy adaptation.

Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks 139

5 Conclusion

Norm emergence is an important and valuable phenomenon that has applications to self-
organising systems such as peer-to-peer networks or wireless sensor networks in which
there is no interference from any central or outside authority. While there has been
much work on this phenomenon (as discussed earlier), and even some on its application
to different topological structures, there has been inadequate consideration of how to
establish norms in scale-free networks. Indeed, some mechanisms have been shown not
to succeed in these topologies. In response, this paper provides an effective means of
overcoming the problems arising from asymmetric connections of hubs and outliers.

In particular, our results show that in scale-free networks, Axelrod’s basic metanorm
model is not effective, nor is Mahmoud et al.’s attempt to overcome this for other topolo-
gies. Our simulations suggest that poorly connected agents receive little discourage-
ment from defecting while hubs are discouraged from enforcing norms through high
enforcement costs. In response, we have modified the experimental setting to be more
consistent with the nature of distributed systems of partially connected nodes, bringing
an even more serious breakdown in norm emergence, but also subsequently addressed
this through a dynamic policy adaptation mechanism. In this way, agents are able to
change their policy in proportion to the punishments they receive, allowing them to
adapt proportionally, and to maintain the policy values that sustain norm establishment.

In terms of future work, we plan to conduct a more detailed analysis of the effect of
different levels of the probability of observation on the results of the model. In addition,
we aim to develop an efficient adaptive punishment approach that allows punishment to
be applied according to the specific case at hand, so that agents with different degrees of
defection will be punished accordingly. This is important so that the punishment is no
greater than needed, and will not overly constrain behaviour (limiting the functionality
of the underlying system, which is undesirable). We believe that the dynamic policy
adaptation technique that has been introduced in this paper provides a solid grounding
for just such an adaptive punishment approach.

References

1. Adar, E., Huberman, B.A.: Free riding on gnutella. First Monday 5(10) (2000)
2. Axelrod, R.: An evolutionary approach to norms. The American Political Science Re-

view 80(4), 1095–1111 (1986)
3. Barabasi, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439),

509–512 (1999)
4. de Pinninck, A.P., Sierra, C., Schorlemmer, W.M.: Friends no more: norm enforcement in

multiagent systems. In: Proceedings of the Sixth International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pp. 640–642 (2007)

5. Delgado, J., Pujol, J.M., Sangüesa, R.: Emergence of coordination in scale-free networks.
Web Intellgence. and Agent Systems 1, 131–138 (2003)

6. Epstein, J.M.: Learning to be thoughtless: Social norms and individual computation. Com-
putational Economics 18(1), 9–24 (2001)

7. Flentge, F., Polani, D., Uthmann, T.: Modelling the emergence of possession norms using
memes. Journal of Artificial Societies and Social Simulation 4(4) (2001)

140 S. Mahmoud et al.

8. Galán, J.M., Latek, M.M., Rizi, S.M.M.: Axelrod’s metanorm games on networks. PLoS
ONE 6(5), e20474 (2011)

9. Mahmoud, S., Keppens, J., Luck, M., Griffiths, N.: Norm establishment via metanorms in
network topologies. In: IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), vol. 3, pp. 25–28 (2011)

10. Mahmoud, S., Keppens, J., Luck, M., Griffiths, N.: Overcoming omniscience in axelrod’s
model. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT), vol. 3, pp. 29–32 (2011)

11. Savarimuthu, B.T.R., Cranefield, S., Purvis, M.K., Purvis, M.: Norm emergence in agent
societies formed by dynamically changing networks. In: Proc. 2007 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology, pp. 464–470 (2007)

12. Savarimuthu, B.T.R., Purvis, M., Purvis, M., Cranefield, S.: Social Norm Emergence in Vir-
tual Agent Societies. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.)
DALT 2008. LNCS (LNAI), vol. 5397, pp. 18–28. Springer, Heidelberg (2009)

13. Sen, O., Sen, S.: Effects of Social Network Topology and Options on Norm Emergence. In:
Padget, J., Artikis, A., Vasconcelos, W., Stathis, K., da Silva, V.T., Matson, E., Polleres, A.
(eds.) COIN 2009. LNCS (LNAI), vol. 6069, pp. 211–222. Springer, Heidelberg (2010)

14. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: off-line design.
Artificial Intelligence 73(1-2), 231–252 (1995)

15. Villatoro, D., Sen, S., Sabater-Mir, J.: Topology and memory effect on convention emer-
gence. In: Proceedings of the 2009 IEEE/WIC/ACM International Conference on Web Intel-
ligence and Intelligent Agent Technologies, pp. 233–240.

16. Walker, A., Wooldridge, M.: Understanding the Emergence of Conventions in Multi-Agent
Systems. In: Lesser, V. (ed.) Proceedings of the First International Conference on Multi-
Agent Systems, pp. 384–389. MIT Press (1995)

Norm Contextualization

Jie Jiang, Huib Aldewereld, Virginia Dignum, and Yao-Hua Tan

TPM, TU Delft, The Netherlands
{jie.jiang,h.m.aldewereld,m.v.dignum,y.tan}@tudelft.nl

Abstract. Agents interact with each other regulating by a set of norms
which is expressed at different levels of abstraction that capture differ-
ent contexts and operationalizations. Current normative frameworks deal
with norm operationalization, yet few consider the contextual aspects of
norms. Moreover, most frameworks are based on the independent evalu-
ations of norms, which makes it difficult to evaluate interrelated effects
of different norms and contexts. In this paper, we propose Norm Nets as
a formalism to capture the structure of contextualized norm sets. This
formalism will enable (1) the analysis of interrelations between norms,
(2) the contextualization of normative statements, and (3) the verifica-
tion of properties of interrelated norms. We apply this framework to a
case study taken from the domain of international trade.

1 Introduction

Open regulated Multi-Agent Systems (MAS) assume that agents are subjected
to norms (explicit or implicit) that regulate their behavior. A large number of
research in normative agent systems focuses on how agents can decide whether
to comply with norms (e.g., [12,6,8]). Another research area concerns consis-
tency aspects of the normative structure in MAS (e.g., [9,19,14]). However, the
traditional way of organizing norms does not emphasize their interrelations and
application environments at a large scale, which is very important in nowadays’
business operations. For example, in the domain of international trade, different
regulations would be applied when an importer imports the same kind of goods
from different countries. The changes will result in cost if the importer could not
follow the right set of regulations with respect to its associated business environ-
ment. Moreover, given a specific situation, the set of applicable regulations are
not independent with each other but have different interrelationships. A typical
example of such interrelationships is a regulation and its sanction, indicating a
conditional and exclusive relation between two regulations.

In order to explore the interdependencies between norms and their applica-
tion environments, this paper proposes an approach to represent and analyze
sets of norms that takes into consideration both the interrelationships between
different norms and the context of their application. More importantly, the ex-
plicit representation of institutional contexts on norms facilitates a contextual
refinement normative structure, which supports norm design at multiple levels
of abstraction. Our approach is different from those based on deontic reasoning,

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 141–157, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

142 J. Jiang et al.

as we do not aim at identifying the deontic consequences of actions. Instead,
we try to detail how norms can be abstracted from reality and organized in a
structured way to facilitate contextualization and compliance checking.

To illustrate our proposal, we adopt a scenario in the domain of interna-
tional trade in which a trading network may include a variety of entities (e.g.,
software, organizations and people) that are largely autonomous, geographically
distributed, and heterogeneous in terms of their operating environment, culture,
social capital, and goals. In this domain, agents represent real interests and real
entities, i.e., different agents have different owners, goals, interests, and precon-
ditions for collaboration. For example, importers are motivated by profit and
quality of products, while customs authorities are motivated by safety and secu-
rity concerns. At any given moment, most agents will be conditioned by different
regulations and norms, originating from different institutional contexts.

In general, our contributions are three-fold. First, we use context to organize
norms in such a way that the interrelationships between norms and their ap-
plication environments are structured at multiple abstraction levels. Second, we
formalize a methodology of practicing contextualization, with which designers
can easily build up their own context-aware normative models. Third, in order to
ground the operational aspects of our framework, we design a mapping method
which translates models of our framework to Colored Petri Nets (CPNs) that
can be used for checking consistency of the designed models.

The rest of this paper is organized as follows. In the next section, we present
a simplified scenario from the domain of international trade. In section 3, we
introduce a normative model Norm Nets, which is further extended to include
contexts refinement in section 4. Section 5 present the mapping from Norm Nets
into CPNs. Related work is discussed in Section 6. Finally, we conclude our work
and raise directions for future work in section 7.

2 Scenario

In this section, we introduce a simplified scenario in the field of international
trade concerning the issues of origin of goods in importing and exporting under
EU’s regulation [1]. This scenario is used throughout the paper to explain our
proposal.

Origin is the ”economic” nationality of goods in international trade, which is
generally required to be indicated in the export/import documents and govern-
mental submissions when transporting goods from one country to another. This
is checked in different ways. For example, certificates have to be presented when
importing goods from a certain country. Such certificates usually contain the
country of origin, the national goods code, etc. These should match the informa-
tion that is listed on the invoice and the packing list. According to the character-
istics of the trading goods, there are two types of origin: non-preferential origin
and preferential origin. Regulations for non-preferential origin are used for all
kinds of commercial policy measures such as anti-dumping duties, countervail-
ing duties, trade embargoes, safeguard and retaliation measures, quantitative

Norm Contextualization 143

restrictions, but also for some tariff quotas, trade statistics, public tenders, and
origin marking etc. In addition, the EU’s export refunds in the framework of the
Common Agricultural Policy are often based on non-preferential origin. Prefer-
ential origin is conferred on goods from particular countries, which have fulfilled
given criteria. In order to obtain preferential origin, it is generally required that
the goods be wholly obtained or have undergone specific processing activities.
Preferential origin confers certain tariff benefits (entry at a reduced or zero rate
of duty) on goods traded between countries which have agreed such an arrange-
ment or where one side has granted it autonomously.

3 Normative Structure

Usually, norms are perceived as a set of dos and don’ts. For example, in sociology,
a norm is considered as a rule or standard of behavior accepted by members
within a society or group1. In economics, a norm is a model of what should exist
or be followed, or an average of what currently does exist in some context, such
as an average salary among the members of a large group [7]. Formalized by
E. Ostrom [16], a norm can be defined by the ADICO syntax which describes
who (Attribute) is obliged/forbidden/permitted (Deontic) to do or achieve what
(aIm), when and where (Condition), otherwise (Or else) leading to consequences
of violation.

To reflect the reality, many MAS variants tried to incorporate norms as a
formal specification of deontic statements that aim at regulating the behavior
of software agents and the interactions among them [2,11,12], which focus more
on the operational level. While, the ADICO syntax is a natural expression of
norms which (1) provides a clear description of opportunities and constraints
that create expectations about actors’ behavior, and (2) makes it intuitive for
the actors to understand their dos and don’ts. Therefore, we follow the ADICO
syntax with adaptation to a MAS-integrable definition of norm, as shown in
Definition 1.

Definition 1 (norm). A norm is defined as a tuple n = (role, deontic, action,
condition) such that:

– role indicates the organizational position to whom the norm applies;
– deontic is one of the three modal verbs “may” (Permitted), “must/should”

(Obliged) and “must not/should not” (Forbidden);
– action specifies the particular action to which the deontic is assigned;
– condition describes when and where the norm holds.

If a norm does not specify a particular role or condition, the default value is
for all participants, or at all times and in all places covered by that norm. The
building blocks of our norm definition are expressed using lowercase (with or
without subscripts). Corresponding expressions using uppercase indicate sets of
a particular element, e.g., ROLE indicates a set of roles such that role ∈ ROLE.

1 cf. Encyclopedia Britannica: http://www.britannica.com/

http://www.britannica.com/

144 J. Jiang et al.

When a set of norms are imposed on a multi-agent system, they are usually
not independent of each other but interrelated in different ways. For example,
as an undergraduate student in the Netherlands, one should on the one hand
pay the tuition fee, and on the other hand, obtain a certain amount of aca-
demic credits. This indicates that both norms have to be complied with when
enrolled as a Dutch undergraduate student. Another typical relation between
two norms is a norm and its sanction. In particular, obligations and prohibitions
may have corresponding sanctions when the norms are violated. Sanctions are
norms which will be triggered when violations are detected, indicating a condi-
tional and exclusive relation between norms. To model the possible relationships
between norms, we introduce three logical operators AND, OR, and OE (repre-
senting Or else). Taken from the scenario introduced in section 2, the following
are examples of how norms are interrelated.

– AND(n1, n2): both norms should be met.
(ex1) (n1, n2) [role: The customs authorities] [deontic: should] (n1) [ac-

tion: grant to the approved exporter a customs authorization number].
AND (n2) [action: monitor the use of the authorization by the approved
exporter].

– OR (n1, n2): choice between the two norms.
(ex2) (n1), (n2) [role: The customs authorities] [deontic: may] [action: ex-

ceptionally issue a certificate of origin] (n1) [condition: after exportation
of the products to which it relates, if the certificate of origin was not
issued at the time of exportation because of errors]; OR (n2) [condition:
after exportation of the products to which it relates, if it is demonstrated
to the satisfaction of the competent governmental authorities that a cer-
tificate of origin was issued but was not accepted at importation for
technical reasons].

– OE (n1, n2) indicates the two norms are exclusive and conditional (only
when n1 is violated can n2 be met).
(ex3) (n1) [role: The approved exporter] [deontic: should] [action: offers all

guarantees necessary to verify the originating status of the products],
[condition: irrespective of the value of the products concerned]. OE (n2)
[role: The customs authorities] [deontic: should] [action: withdraw the
authorization] [condition: at any time where the approved exporter no
longer offers the guarantees necessary to verify the originating status of
the products].

As seen from these examples, the interrelationships between norms are attached
to different normative components. For instance, the AND relation of the two
norms in (ex1) is attached to two different actions while refers to the same role
and deontic, and the OR relation of the two norms in (ex2) is attached to two
different conditions while refers to the same role, deontic and action. However,
there is no restriction that an interrelationship between two norms is attached
to a specific normative component.

Furthermore, the application of such a set of interrelated norms is usually as-
sociated with a certain institutional environment, representing which situations

Norm Contextualization 145

are constrained by the norms. For this purpose, we use an explicit representation
of contexts to characterize the situations where a set of norms is applied. Zim-
mermann et al. [20] proposed a formal structure of context information, which
constricts and clusters this information into five fundamental categories, i.e.,
individuality, time, location, activity and relations. The individuality category
contains properties and attributes describing an entity. The activity category
covers all tasks the entity may be involved in. The location and time categories
provide the spatio-temporal coordinates of the respective entity. Finally, the re-
lations category represents information about any possible relation an entity
may establish with another entity.

This paper does not focus on how to model contexts but tries to explore
an effective way of using contexts to organize norms. Therefore, we only give
an abstract definition of Context based on the context structure proposed by
Zimmermann et al.

Definition 2 (context). A context c is a set of states defined by predicates
concerning aspects such as individuality, time, location, activity, relations.

For example, a context might be characterized by a certain location, indicating
that the norms applied in this context are mainly concerned with specific spatio
coordinates. Contexts won’t change the specification of norms but provide ad-
ditional information about the situations in which the norms are applied from a
higher-level perspective.

Note that the condition of a single norm is only a local prerequisite of when
and where the norm holds, e.g., (importers should submit importing declaration)
[condition: before goods arrive at the EU boarder] is a specific description of the
deadline for this norm, while a context characterizes the situations in which a
set of interrelated norms are applied from a broader perspective, e.g., [context :
preferential origin] characterizes the situation in which norms concerning bene-
ficial treatments for certain countries are applied. That is, conditions are at the
level of individual norm specifications and usually represent situational differ-
ences between different norms, while contexts are at the level of collective norm
sets and indicate situational commonalties of a norm set.

Putting all these together, we formalize the definition of Norm Net that not
only represents the interrelationships between norms but also reflects their ap-
plication environments.

Definition 3 (Norm Net). A Norm Net NN = (c,NS), where

– c indicates the context of the norm net, and
– NS = n, or NS = AND(NSi, NSj), or NS = OR(NSi, NSj), or NS =

OE(NSi, NSj) where n is a norm, NSi, NSj, and NS are norm sets.

Each norm net is associated with an institutional context which describes all the
situational elements that characterize the application environment of a norma-
tive structure. Making the context explicit enables actors to control the evolution
of the norm net, to accommodate compliance and resolution of conflicts from
higher-level views. A norm set NS can be a single norm or a nested structure

146 J. Jiang et al.

composed of norms, which are connected by the three operators AND, OR, and
OE in a certain context. The norms and their sanctions are exclusive and con-
ditional, i.e., one either conforms to the norms or accepts the sanctions when
violating the norms. This is reflected by the semantics of OE operator. (ex3)
shows an example of this situation where an obligation is connected with its
sanction.

Figure 1 presents a graphical construction of a norm net NN1 = (c1, NS1),
represented as an oval. NS1, represented as a rectangle, is composed of two
norm sets NS2 and NS3 connected by AND. Similarly, NS2 is another AND
connection of two sub norm sets NS4 and NS5 while NS3 is an OR connection
of two sub norm sets NS6 and NS7. Connected by an OE, NS8 with NS9 as
the consequence of not following NS8 build up NS4. Specifically, we use dashed
lines to indicate the consequence NS9. As can be seen, the proposed framework
enables a modular way of representing the interrelationships between norms in
a specific context.

NS1 AND

c1

NS2

NS3

AND

NS4

NS5

OE

NS8

NS9

OR
NS6

NS7

n3

n1

n2

n4

n5

NN1

Fig. 1. An example of Norm Net

4 Contextualization

Laws and regulations are a system of textual rules and guidelines that are en-
forced through social institutions to govern behavior. They are specified as a
normative structure, which describes the expectations and boundaries for agent
behavior. We have already presented the representation of norms using norm
nets in Definition 2 to capture the declarative meaning of the laws/regulations
and also the relations between them. However, in real world domains, norms
are not specified at a single level of abstraction. Usually, laws/regulations are
first issued at a higher abstraction level stating the dos, don’ts and sanctions
to regulate actors’ behavior. Based on this abstract set of norms, elaboration
will be conducted according to the specific characteristics and requirements of
different situations, i.e. their application environments, which results into sets
of contextual norms. This elaboration process facilitates detailed explanation of
abstract norms in a concrete implementing environment.

Norm Contextualization 147

Abstract

Concrete

Contextualization

Abstract Norm Net

Operationalization

Contextual Norm Net

Operational Norm Net

Fig. 2. Contextualization and operationalization

Our approach depicts three modeling layers of norms from abstract state-
ments to concrete operations as shown in Figure 2. It starts from an abstract
norm net which describes the expectations and boundaries for agent behavior in
general. At this layer, norm specification is abstract and assumed to be stable
throughout the life cycle of systems. The second layer uses contexts to organize
the interrelated norms in different application environments derived from the
abstract norm net. That is, the abstract norm net refers to a set of contextual
norm nets which give more specific information on the roles, actions, conditions
and the relations between the elaborated norms. Moreover, a contextual norm
net can again refers to sets of contextual norm nets in a recursive manner, which
enables a flexible normative structure and facilitates norm designing at differ-
ent abstraction levels. In this way, the contexts of these norm nets establish a
refinement relation captured in Definition 4.

Definition 4 (context refinement relation). A context c′ refines a context
c, denoted as c′ � c iff c′ ⊆ c assuming the ontologies of c′ and c are unified.

Note that in a context refinement relation c′ � c, the ontology used in c′ may
be more concrete than that in c (e.g., where in c one may talk about vehicles
while in c′ one may talk about cars). The unification of contexts is done via
“counts-as” statements [3,7].

Given this context refinement relation, norm nets can be structured at mul-
tiple abstraction levels through contextualization defined in Definition 5.

Definition 5 (contextualization). Given a context refinement relation c′ � c,
a contextualization can be defined between two norm nets NN ′ = (c′, NS′) and
NN = (c,NS) such that

– NS′ elaborates NS with refined normative components, or

– NS′ adds new norms to NS, or

– NS′ removes some of the norms from NS, or

– NS′ elaborates the interrelations between norms from NS.

148 J. Jiang et al.

Definition 4 and 5 are reflections of the laws/regulations in practice. In this
sense, contextual norm nets describe what properties should the concepts have
from the specification of the abstract norm net to the refined contexts. For
example, whether a document should be considered as a required certificate in
international trade depends on the context in which the concept of certificate is
used. A required certificate for importing fruit from China to the EU might not
counts as a required certificate for importing textile.

In general, a norm net can have multiple contextualizations with respect to
different contexts while different norm nets may be referred to in one contextu-
alization. Moreover, there is no clear boundary between two contexts, i.e., the
contexts of different norm nets may overlap, e.g., a context of the regulations for
importing goods from Asia and another context of the regulations for importing
textile products.

Finally, at the third layer, based on the contextual norm nets which contain
enough information of the dos and don’ts in a specific situation, the norms will
be extended with operational aspects to capture the operational meaning of the
norms such as how the violation is detected (detection mechanism), and what
can be done by the institution to repair the violation and minimize the negative
influence[2]. Actors only need to reason about the norms at the most concrete
level but the process of contextualization helps them to identify the applicable
norms according to their runtime environment.

NN1

 <c1: Origin of goods in the EU>

NN11

<c11: Non-preferential origin
in the EU>

NN12

<c12: Preferential origin
in the EU>

NN111

<c111: Certain agricultural products subjected
to special import arrangements in the EU>

NN121

<c121: Beneficiary countries or territories to
which preferential tariff measures adopted
unilaterally by the community in the EU>

Abstract norm net

Contextual norm nets

Contextual norm nets

Contextualization

Contextualization Contextualization

Contextualization

General

Specific

...

Fig. 3. Contextualization in the scenario

Continuing with the scenario, Figure 3 shows how the normative structure
is built into a set of norm nets in a hierarchy from general to specific through
contextualization. At the top level, a norm net NN1 specifies a general set of reg-
ulations applied in the context c1 “origin of goods in the EU”. The norms at this
level consist of coarser-grained components and provide an abstract view of the
domain. As stated in Section 2, goods with different types of origin will be treated

Norm Contextualization 149

differently, which results in two exclusive sub contexts c11 “non-preferential ori-
gin in the EU” and c12 “preferential origin in the EU”. For goods of preferential
origin, more constraints as well as benefits are identified for exporters and im-
porters in NN12, which can be further contextualized. For example, a contextu-
alization NN121 is built for certain beneficiary countries and territories to which
preferential tariff measures are adopted. Similarly for goods of non-preferential
origin, more specific regulations are formulated in NN11 and a further contex-
tualization NN111 is constructed for certain agricultural products subjected to
special import arrangements.

This norm refinement relation through contextualization is not only a natural
reflection of how norms are evolved in real life but also makes it easier for
actors to recognize their dos and don’ts according to their runtime environments.
Moreover, norm nets are distributed into well-defined reusable components and
enable hiding of details in a consistent way.

Based on the normative structure shown in Figure 3 and the practical regula-
tions in the EU, we illustrate the contents of the norm nets abstracted from the
scenario, which have been partially shown as ex1, ex2, ex3 in Section 3. However,
due to space limitations, we can only present a small part for explanation.
NN1 = (c1,NS1) where

– c1 = “origin of goods in the EU”,
– NS1 = AND(AND(n1, n2), OE(n3, n4)), where

• n1: [role: Exporters] [deontic: should] [action: apply for certificate of
origin] [condition: when exporting goods to the EU].

• n2: [role: The customs authorities] [deontic: should] [action: issue certifi-
cate of origin to the qualified applicants].

• n3: [role: Importers] [deontic: must] [action: present Customs with a
specific origin documents] [condition: at the moment of import].

• n4: [role: The customs authorities] [deontic: should] [action: reject the
import] [condition: when the origin documents cannot be presented].

NN11 = (c11,NS11) where

– c11 = “non-preferential origin in the EU”,
– NS11 = OE(AND(AND(na1, na2), OR(na3, na4)), na5), where

• na1: [role: The certificate of origin] [deontic: should] [action: measure
210× 297 mm].

• na2: [role: The certificate of origin] [deontic: should] [action: allow a
tolerance of up to minus 5 mm or plus 8 mm in the length].

• na3: [role: The certificate of origin] [deontic: should] [action: be printed
in one or more of the official languages of the Community],

• na4: [role: The certificate of origin] [deontic: should] [action: be printed
in any other language] [condition: depending on the practice and require-
ments of trade].

• na5: [role: The certificate of origin] [deontic: should not] [action: be ap-
proved] [condition: when it is not in the prescribed format].

150 J. Jiang et al.

NN12 = (c12,NS12) where

– c12 = “preferential origin in the EU”,
– NS12 = AND(AND(nb1, ex1), AND(ex2, ex3)), where

• nb1: [role: The competent governmental authorities of the beneficiary
country] [deontic: should] [action: ensure that certificates and applica-
tions are duly completed].

NN111 = (c111,NS111) where

– c111 = “certain agricultural products subject to special import arrangements
in the EU”,

– NS111 = OE(AND(AND(na1, na2), na3), na5)

From the description above, we can see that the norms in NN1 only give a
general idea about the regulations concerning the origin of goods in the EU.
While in NN11 and NN12, more specific norms are given in terms of descrip-
tions about roles, actions and conditions such as the format of certificate of
origin, the expected behavior of the approved exporter and under which condi-
tions the customs should withdraw the authorization. Specifically, we can find
the similarities and differences between the norms in NS11 and NS111, which
indicate that contextualization may not only add detailed information but also
make changes.

5 Verification

To enable consistency and compliance checking of norm nets, we introduce a
verification based on the mapping to the Colored Petri Nets.

5.1 Colored Petri Nets

CPN is a graphical language for modeling and validating distributed systems or
systems in which concurrency plays a major role [13]. Not only do CPNs model
the states of a system and the events that change the system from one state to
another, but also replace tokens by data objects of programming languages.

Definition 6 (CPN). A CPN is defined as a tuple (
∑

, P, T, A, N, C, G, E, I
) where:

∑
is a finite set of non-empty types, also called color sets; P is a finite

set of places; T is a finite set of transitions; A is a finite set of arcs; P
⋂

T=P⋂
A=T

⋂
A= Φ; N is a node function defined from A into P×T

⋃
T×P; C is

a color function defined from P into
∑

; G is a guard function defined on T; E
is an arc expression defined on A; I is an initialization function defined on P.

In CPNs, places indicate states while transitions indicate actions. A place is
a node where tokens from a specified color set may reside, and this color set
is determined by the color function. Transitions are also represented as nodes.
For each transition, a Boolean expression called a guard can be specified to

Norm Contextualization 151

restrict the conditions under which the transition can occur. Places may contain
a natural number of tokens. A distribution of tokens over the places of a CPN
is called a marking. The initial marking of a CPN specifies the initial load of
tokens. An arc represents an input or output relationship between a place and
a transition. The actual amount and the colors of tokens moved are specified
by the corresponding arc expression. Based on the current marking, the guards
can calculate which transitions are enabled with respect to which bindings. The
bindings indicate the variables in the arc expressions. If there is no conflict with
other transitions, an enabled transition may fire, whereby corresponding tokens
are removed from the input places of the transition and added to the output
places, as specified by the arc expressions. The transitions can be seen as patterns
of behavior while the actual binding determines the details of the behavior. The
number of tokens moved along an arc depends on the actual binding.

5.2 Mapping to CPNs

Norm Mapping. The mapping makes use of correspondences between the
components in norms and the elements in CPNs.

ROLE →
∑

, ACTION → T, CONDITION → G

Roles in norms are mapped to the color sets in CPNs so that colored tokens
correspond to role enacting agents in MAS. Actions in norms are mapped to
the transitions in CPNs while conditions in norms are mapped to the guard
functions in CPNs. Thus, only when the condition of a norm holds can the
corresponding action specified in the norm be permitted, obliged or forbidden.
Places in CPNs indicate the states of the role enacting agents, i.e., their behavior
status in terms of norms. For the three deontic representations in norms, we use
different building blocks with special places and transitions shown in Figure 4.

role enacting
agentscondition action

[]

Permission

timer

satisfied
[]wait

Obligation
[]

timer

satisfied

violated

wait
Prohibition

timer

satisfied

[] violatedwait

Fig. 4. Basic components in norms mapping to CPN

The CPN model of a norm starts with a place of wait which indicates the
instantiation of the norm and has a color set indicating the role in the norm.
Once the condition of the norm is satisfied, the agents in that place are able to
perform the specified action. Permissions specify what might be done and won’t

152 J. Jiang et al.

lead to sanctions. Therefore, no matter the actions specified in a permission are
performed or not, the final state of the permission will be satisfied. Obligations
and prohibitions specify the actions that must and must not be done other-
wise sanctions might be imposed, in the sense that the final state will either be
satisfied or violated.

However, we cannot determine that someone does not follow a norm by simply
saying that the action specified in the norm is not performed. In practice, whether
a norm is satisfied or violated is normally determined within a certain period of
time, e.g., the life cycle of an interaction scene. That is, the state of the norm
is changed either because of the action specified in the norm is performed or
the norm expires (a certain period passes). For this purpose, we adopt a special
kind of transitions called timer that can be used to change the state of the norm
when it expires and at the same time the action specified in the norm is not
performed.

For permissions, both the action of the norm and the timer are connected to
the place of satisfied, indicating that there are two ways to achieve this state:
either the permitted action is performed by the agent or the timer is fired (i.e.,
the permitted action has not been performed when time is up).

Obligations indicate that agents should perform the specified actions and if
this is the case, the token moves to the place of satisfied. But when the obliged
action in the norm is not performed and the timer is fired, the token moves to
the place of violated.

Prohibitions are a reverse logic of obligations. If the forbidden actions are
performed, the corresponding tokens will move to the place of violated. But
when the forbidden actions are not performed during the specified period of
time, the corresponding tokens will move to the place of satisfied.

The description above only captures the mapping of individual norms. For
norm nets, it requires a mechanism of representing different relationships be-
tween norms. To this end, we use extra elements for the mapping.

Norm Net Mapping. As an example, we model the norm net NN1 of the
scenario as shown in Figure 5. When the corresponding CPN is instantiated,
all the tokens, i.e., all role enacting agents, are in the place of input. There are
three role enacting agents in this example, a Chinese company enacting the role
of exporter, a Dutch company enacting the role of importer, and the Dutch
Customs enacting the role of customs. Then the initialization transition will be
unconditionally triggered and all the tokens are moved to the following places
of wait according to the arc expressions.

Each place of wait specifies the color sets (role types) from its corresponding
norm in the norm net and the arc expression related to the place selects the
agents that match the color sets based on their roles. For example, the role of
norm1 is exporter. Therefore, the color set for the wait place in norm1 and the
related arc expression both try to match exporter, indicating that only agents
enacting the role of exporter can move into this part of the net. Note that a token
is only a reference to a role enacting agent and tokens representing the same agent
can be in multiple places simultaneously, in the sense that the agent relates to a

Norm Contextualization 153

set of different norms. For example, the tokens representing the Dutch Customs
are distributed to the places of both norm2 and norm4 since both norms involves
the Dutch Customs. When the condition of a norm is satisfied and the agent
in the place of wait performed the related action, the corresponding token will
move to the state of satisfied or violated according to the type of the norm.

The AND (OR) relation between norms is mapped to AND transitions (OR
transitions) in CPNs. However, for norms connected by OE operators, a special
structure is used to indicate the exclusive and conditional relation between them.
For example, the violated place of norm3 and an additional wait place are joined
at an AND transition which is then connected to the wait place of norm4,
indicating that only when norm3 is violated can norm4 be triggered. In this
way, the “conditional” part of the relation between the two norms connected by
an OE operator is captured. For the “exclusive” part of the relation, we use XOR
transition to connect the two norms, indicating that only one of the two norms
can be satisfied. For instance, after the importer in the Netherlands presents the
Dutch Customs with the specific origin documents, the state of norm3 changes
to satisfied while norm4 has no chance to be triggered. However, when the action
in norm3 is not performed before the required date, the state of norm3 changes
to violated and at the same time norm4 is imposed as a sanction. Since the
example is only a part of the EU regulations, the sanction to the violations
of the norms in Figure 5 is not fully pictured. Finally, the corresponding CPN
model ends with a token at the output place which indicates the compliance of
a norm net instance.

Note that the mappings illustrated in this section is currently dedicated to a
single norm net within a specific context. The mapping of hierarchical contextual
norm nets is left as our future work.

5.3 Verification Properties

Based on the mappings from Norm Nets to CPNs, we can further explore the
correspondences between the behavioral properties of Norm Nets and CPNs, so
that the analysis techniques of CPNs can be utilized to facilitate the verification
of the behavioral properties of Norm Nets. For example, the reachability property
and liveness property in CPNs are interpreted as follows.

– Reachability indicates that, given a set of norms organized in a norm net,
whether there is a possible way to comply with those norms, i.e., a path
through the norm net (CPN) that is norm compliant at all steps. This prop-
erty can be used to identify the inconsistencies between the norms.

– Liveness indicates that, given a set of norms organized in a norm net,
whether some of the norms are never initiated, i.e., no occurrence sequences
through the norm net (CPN) that includes those norms. This property can
be used to identify the norms that are redundant or wrongly positioned.

Therefore, given a set of norms in MAS, we can first model them using the
proposed normative structure, and then map the resulted norm nets to CPNs

154 J. Jiang et al.

action1

[condition1]

timer1

satisfied

violated

n1

action2

[condition2]

timer2

satisfied

violated

n2

NS2

action3

[condition3]

timer3

satisfied

violated

n3

action4

[condition4]

timer4

satisfied

violated

n4

XOR

NS3

satisfied

satisfied

AND

Input

Output

NS1

Exporter

Customs

Importer

Customs

Exporter: a company in China

Importer: a company in the Netherlands

Customs: Dutch customs

initialization

NS1 = AND (NS2, NS3)
NS2 = AND (n1, n2)
NS3 = OE (n3, n4)

wait

wait

wait

wait
AND

wait

Customs

AND

Fig. 5. Norm nets mapping to CPN

by which we can perform consistency and compliance checking on the norms.
Furthermore, CPNs are fully supported by a number of analysis tools that can
be used to implement such verifications [17].

6 Related Work

There is a growing interest in the research of norms to regulate and coordi-
nate agents’ behavior in MAS. Fruitful results have been achieved from different
perspectives such as norm compliance, norm conflict resolution, norm contextu-
alization, etc. [15] presented a formal normative framework intended to be used
by agents that reason about why norms must be adopted and complied with,
in which the relations between norms are represented as interlocking norms.
The framework proposes that norms are applied in particular circumstances or
within a specific context, but without considering the refinement relation of con-
texts, it is at a single level of analysis on norms. Munindar P. Singh proposed to
use commitments to capture normative concepts in MAS and define norms as
a tuple including subject, object, context, antecedent and consequent [18]. This
approach provides a natural way to characterize the bounds of autonomy and
interdependence between agents, but the contextual aspects of norms are not
considered.

Norm Contextualization 155

In [12], a formalism called Process Compliance Language (PCL) is proposed
for the expression of violation conditions and the reparation obligations which is
very important for formalizing norms to determine the compliance of a process
with the relevant norms. PCL enables to represent exceptions as well as to cap-
ture violations and the obligations resulting from the violations, but it does not
take a broader view on norm sets where relationships other than reparation of vi-
olation exist between norms. In order to regulate the behavior of agents in open
and regulated MAS in a distributed manner, [11] presents a normative struc-
ture based on the propagation of normative positions as consequences of agents’
actions and provides a mapping into Colored Petri Nets for conflict resolution.
The normative structure models norms in normative scenes and builds connec-
tions between the scenes by transition rules, which focuses more on the causal
relations between norms other than conjunction, disjunction and implication.

Since norms are usually specified at different levels of abstraction, there is a
need to relate the abstract concepts used in the specification to concrete ones
used in practice, which necessitates the research on norm contextualization. In
[3], counts-as statements are used to provide the concrete concepts their insti-
tutional and organizational meaning according to different contexts and enable
agents to reason about norm compliance by the context they are in. A context-
based institutional normative environment is proposed in [5], which enables the
use of norms within a hierarchical context structure and norm inheritance as
a mechanism to facilitate contract establishment. Another perspective on con-
textual normative structure, presented in [10], models norms of MAS according
to four levels of abstraction: Environment, Organization, Role and Interaction
contexts. However, these contextual normative frameworks all concentrate on
the effects of individual norms but ignore their relations.

Due to the changing nature of norms, conflicts or inconsistencies may occur.
To solve this problem, different approaches have been proposed such as [19],
[9], [4]. Eventhough, we do not focus on checking the consistency of normative
structures, but since the building blocks (norm nets) are organized in such a
way that they can be mapped to CPNs, inconsistencies will be easy to identified
using CPNs formal analysis methods and tools.

7 Conclusions

In this paper, we proposed a normative structure that not only captures the
characteristics of a single norm but also the relationships between norms. Given
that agents in MASs interact with each other to achieve certain goals, the inter-
related effects of norms on their behavior are very important for both individuals
and the system. Therefore, the connections between norms should be explicitly
indicated in a structural way. Moreover, contexts play an important role in the
construction of norms, in the sense that the application of a norm heavily de-
pends on its institutional context and a norm may have different interpretations
in different situations. To this end, the concept of norm net in this paper ex-
presses how a set of recursive norm sets organize in a hierarchy of contexts.

156 J. Jiang et al.

Most importantly, this paper presents a norm net contextualization process
that describes norms from general to specific. This enables a modular approach
for building normative structures that improves both reusability and flexibility.
Furthermore, following this contextualization process, actors can have a better
understand of their dos and don’ts with the evolution of contextual norm nets. To
verify the proposal, we map norm nets to CPNs and incorporate agents/actors
as colored tokens in the analysis, which presents the state transition process of
norm nets and provides a potential approach for compliance checking on norms.

In future work, we intend to build a complete mapping for contextual norm
nets from general to specific using advanced Colored Petri Nets, e.g., hierarchical
CPNs. That is, linking the CPNs of abstract norm nets with that of contextual
norm nets in a recursive manner and reflecting the contextualization process
from the whole structure. Moreover, we would be interested in implementing
simulation of norm nets for compliance checking on norms on the basis of CPN
analysis tools and agent based simulation techniques.

References

1. http://ec.europa.eu/taxation customs/customs/customs duties/rules

origin/index en.html

2. Aldewereld, H.: Autonomy vs. Conformity: an Institutional Perspective on Norms
and Protocols. Utrecht University, PhD Thesis (2007)

3. Aldewereld, H., Álvarez-Napagao, S., Dignum, F., Vázquez-Salceda, J.: Making
norms concrete. In: Proc. AAMAS (2010)

4. Boella, G., Pigozzi, G., van der Torre, L.: Normative framework for normative
system change. In: Proc. AAMAS (2009)

5. Cardoso, H.L., Oliveira, E.: A Context-Based Institutional Normative Environ-
ment. In: Hübner, J.F., Matson, E., Boissier, O., Dignum, V. (eds.) COIN 2008.
LNCS (LNAI), vol. 5428, pp. 140–155. Springer, Heidelberg (2009)

6. Criado, N., Argente, E., Botti, V., Noriega, P.: Reasoning about norm compliance.
In: Proc. AAMAS (2011)

7. Dignum, F.: Abstract norms and electronic institutions. In: Proc. RASTA (2002)

8. Dignum, V., Dignum, F.: Can we ask you to read this paper? In: Proc. COIN
(2007)

9. Esteva, M., Vasconcelos, W., Sierra, C., Rodŕıguez-Aguilar, J.A.: Norm Consis-
tency in Electronic Institutions. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004.
LNCS (LNAI), vol. 3171, pp. 494–505. Springer, Heidelberg (2004)

10. Felićıssimo, C., Choren, R., Briot, J., de Lucena, C.J.P., Chopinaud, C., El Fallah
Seghrouchni, A.: Providing Contextual Norm Information in Open Multi-Agent
Systems. In: Kolp, M., Henderson-Sellers, B., Mouratidis, H., Garcia, A., Ghose,
A.K., Bresciani, P. (eds.) AOIS 2006. LNCS (LNAI), vol. 4898, pp. 19–36. Springer,
Heidelberg (2008)

11. Gaertner, D., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J., Vasconcelos,
W.: Distributed norm management in regulated multi-agent systems. In: Proc.
AAMAS (2007)

12. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Proc. WI-IAT.
Dagstuhl Seminar Proceedings (2009)

http://ec.europa.eu/taxation_customs/customs/customs_duties/rules_origin/index_en.html
http://ec.europa.eu/taxation_customs/customs/customs_duties/rules_origin/index_en.html

Norm Contextualization 157

13. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Uses. Springer (1997)

14. Kollingbaum, M.J., Vasconcelos, W.W., Garćıa-Camino, A., Norman, T.J.: Manag-
ing Conflict Resolution in Norm-Regulated Environments. In: Artikis, A., O’Hare,
G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995,
pp. 55–71. Springer, Heidelberg (2008)

15. López y López, F., Luck, M., d’Inverno, M.: A normative framework for agent-
based systems. CMOT 12, 227–250 (2006)

16. Ostrom, E.: Understanding institutional diversity. Princeton University Press
(2005)

17. Vinter Ratzer, A., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing,
M.S., Westergaard, M., Christensen, S., Jensen, K.: CPN Tools for Editing, Sim-
ulating, and Analysing Coloured Petri Nets. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462. Springer, Heidelberg (2003)

18. Singh, M.P.: Commitments in multiagent systems: Some history, some confusions,
some controversies, some prospects. In: The Goals of Cognition. College Publica-
tions (2012)

19. Vasconcelos, W., Kollingbaum, M.J., Norman, T.J.: Resolving confict and incon-
sistency in norm-regulated virtual organizations. In: Proc. AAMAS (2007)

20. Zimmermann, A., Lorenz, A., Oppermann, R.: An Operational Definition of Con-
text. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.)
CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg
(2007)

Programming Institutional Facts

in Multi-Agent Systems

Maiquel de Brito1, Jomi F. Hübner1, and Rafael H. Bordini2

1 Federal University of Santa Catarina
Florianpolis, SC, Brazil

{maiquel,jomi}@das.ufsc.br
2 FACIN–PUCRS

Porto Alegre, RS, Brazil
r.bordini@pucrs.br

Abstract. In multi-agent systems with separate agents, environment,
and institution dimensions, the institutional state can be affected by
facts originating in any of those constituent dimensions. Most current
approaches model the dynamics of the institution focusing on the agents
and the institution itself as the main sources of facts that produce changes
in the institutional state. In this paper, we investigate also the environ-
ment as an important source of facts that change the institution. We
propose thus a model and a language to specify and program the insti-
tutional dynamics as consequence of events and state changes occurring
in any of the three component dimensions of the system (agent, envi-
ronment, and institution). Our approach was evaluated through a case
study where we compare two solutions for an application: the original
design and a new one based on our proposal. We observed a simplifi-
cation of the agents’ reasoning, an increase in the functions performed
by the environment and the institution, and greater independence of the
agents within the system. This last result is specially important in open
systems where we cannot take for granted that agents will take part in
the system.

Keywords: institutional facts, constitutive rules, environment,
institution.

1 Introduction

This work considers a Multi-Agent System (MAS) as an open system with three
distinct and independent dimensions: agents, institution, and environment. In
open MAS, agents can enter or leave freely [3], and neither the number, nor the
behaviour, nor the way in which the agents interact and access shared resources
can be known at design time [11]. Therefore, an open MAS can have agent
heterogeneity, conflicting individual goals, limited trust, and non-conformance
to the specifications [2]. In order to conciliate the autonomy of the agents and
the system goals, using an institutional dimension is a usual approach [9].

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 158–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Programming Institutional Facts in MAS 159

The institution can be affected directly by the actions of the agents (e.g. when
an agent voluntarily adopts a role). In some cases, however, the institution can
be affected by facts originating in the environment or even the institution. For
instance, an agent running through a red traffic light is a fact essentially at the
environment dimension. Although this fact is initially produced by an agent, it
is also – or even mainly – an event of the environmental dimension. This fact
means, in the institutional dimension, a norm violation. As we will illustrate in
this paper, there are some advantages when considering the environment rather
than the agents as the source of events that affect the institution. In order to
model and implement this link between the institution and the other dimensions,
some issues must be addressed. It is necessary to define what kind of facts can
have an institutional consequence and how such facts can be checked for at the
different dimensions.

The environment-based approach has been investigated in some related work
(see Section 2.1). The work of Piunti [11] investigated this approach considering
MAS with agents, environment, and institution as first-class abstractions. That
work dealt with the question from a more conceptual perspective. In this paper,
we continue the work of Piunti proposing a programming language to specify
the dynamics of the institutional state as consequence of facts from both the
environment and the institution1. The proposed language, presented in Section 3,
assumes that such facts can be conceived as count-as rules. The underlying
model (i.e. the Social Reality Theory of John Searle) and related work that
deals with institutional facts in MAS are described in Section 2. The language
implementation and evaluation is discussed in the context of a case study in
Section 4. The main contributions of this work are: (i) a conceptual model of the
dynamics of institutional facts that recognises the importance of the environment
as one of the essential dimensions of multi-agent systems; (ii) a programming
language to specify such dynamics which helps formalise the proposed model;
and (iii) an implemented interpreter for the language thus making the work of
practical use in multi-agent systems development.

2 Related Work

John Searle put forward the idea that reality is divided into brute and institu-
tional portions [14]. The brute portion of reality is composed of elements that
can be described by chemistry, physics, mathematics, etc. and does not depend
on any beliefs or opinions from human beings. The institutional portion is com-
posed of subjective elements and depends on collective agreements. Some facts
occurring at the brute portion can have meaning at the institutional level. This
meaning is stated by constitutive rules that have the form X count as Y in C
where: (i) X is a brute fact ; (ii) Y is an institutional fact, i.e. a fact at the in-
stitutional level that is a consequence of brute fact X ; and (iii) C is the context

1 We consider here that any action performed by agents has some effect in the en-
vironment and therefore, by considering the environment, we are also indirectly
considering any fact produced as effect of the agents’ actions.

160 M. de Brito, J.F. Hübner, and R.H. Bordini

where X counts as Y . For instance, a priest performing a ceremony (X) counts
as an act of marriage (Y) if the act is performed in the correct way (C).

2.1 The Social Reality in MAS

Some related work, briefly analysed below, investigated how brute facts in MAS
(agent interaction, agent actions in the environment, events occurred in the
environment, etc.) may have meaning at the institutional level. They point to a
correspondence, in MAS, to Searle’s theory.

Table 1. Comparison of related models

Model Dimensions Brute facts Language Obj.

Ag Env Inst Act Ev St Lang Interp App

Artikis et al. [2] � � � � � � �
MASQ [15] � � �
SEI [6] � � � �
Dastani et al. [8] � � � � �
Aldewereld et al. [1] � � � � � � �
Emb.Org. [11] � � � � � �

A first aspect to be considered in the models above is their authors’ view
about the dimensions of MAS. All models consider at least the agent dimension,
and some of them focus on one particular dimension. The models proposed in
[2,8,6,1] consider the existence of an institutional dimension but do not con-
sider the environment as a first-class abstraction. In [2,1], the environment is
conceived as being external to the MAS and institutional facts are triggered by
agent actions. In [8,6], the environment is modelled as part of the institutional
specification (rather than an independent dimension). More precisely, in [8] the
institutional specification states the effects of the actions of the agents in the
environmental elements, while in [6] the institutional specification has modellers
and staff agents that are in charge of dealing with environmental entities.

A second aspect to be observed about the models is the source the brute facts,
i.e. where they are produced. This aspect has a close relation to the dimensions
that each model considers. Most of the models consider that agent actions are
brute facts [2,6,1]. Events occurring in the environment are deemed as brute facts
in [15] and [11]. The approach in [15] is subjective in the sense that the agents
perceive and interpret the events. In a different way, the approach in [11] depends
neither on agents’ perceptions nor on their reasoning. That model considers that
events occurring in the environment are brute facts regardless of the perception
and reasoning of the agents. Another source of brute facts is the state of the
system, as proposed in [8] and [1].

The third aspect that we have analysed is the existence of an implementation
of the proposal. Although some models have an associated language, not all of

Programming Institutional Facts in MAS 161

the cited papers have described an interpreter or an application using the model
and the language.

The last aspect considered in our analysis is where the count-as rules are
processed. In the model presented in [15], count-as rules are independently eval-
uated by the agents based on their particular perception and knowledge. This
evaluation is thus subjective, and each agent might have a different representa-
tion of the institutional state. In all other models, the evaluation is performed
by something outside the agents and does not depend on them: it is thus an
objective evaluation.

It can be noted that only two models consider the environment as a first-class
abstraction that is a source of brute facts (Table 1). Among them, only in the
model by Piunti et al. [11] the evaluation of brute facts is objective. Moreover,
both models consider only events as brute facts and, as proposed in [8], a sys-
tem state is a useful kind of brute fact. Although Piunti’s approach includes
a programming language, it does not describe an interpreter nor a practical
application of the model. Our proposal, as presented in this paper, covers the
following features: (i) considers the three distinct dimensions as first-class ab-
stractions, (ii) the environment is considered as a source of brute facts, (iii)
includes both events and state as leading to brute facts, (iv) is objective, and
(v) has an implemented programming language.

3 Programming Institutional Facts

This section presents the proposed model and language that deal with changes
in the institution as the result of events or states occurring in the environment
or in the institution. Such changes are based on count-as rules.

We assume that the environment and the institution states are not fully ac-
cessible. Thus, among the elements that compose those dimensions, there is an
observable portion that is considered in our model. About the unobservable por-
tion, its existence is assumed but is not of our concern. Figure 1 illustrates this
approach for the environment and the institution dimensions. Each dimension
has a state and events of which a portion is observable (the grey portions). The
arrows represent the direction of the count-as rules: particular events and states
in the environment/institution can produce changes in the institutional state.

Definition 1 (Observable event). An event is an instantaneous and abrupt
happening occurring inside or outside a system. These occurrences can be trig-
gered, for instance, by an agent or by the environment. An event can have, as
consequence, some change in the system state. Such change, however, is not
mandatory and, if it happens, does not need to be perceivable by an external ob-
server [7]. We define Ee to be the set of all observable events in the environment
and Ei the set of all observable events in the institution. Events are represented
as predicates.

162 M. de Brito, J.F. Hübner, and R.H. Bordini

Environment Institution

Fig. 1. Observable and unobservable portions of environment and institution

Definition 2 (Observable state). Let Pe be the set of all observable prop-
erties, represented by predicates, of the environment. An observable state of the
environment se is a subset of Pe. The set of all possible states of the environment
is represented by Se = 2Pe .

Similarly, let Pi be the set of all observable properties of the institution. An
observable state of the institution si is a subset of Pi. The set of all possible
states of the institution is represented by Si = 2Pi .

Definition 3 (Domain Knowledge Base). A Domain-Knowledge Statement
(DKS) is a predicate representing some knowledge that belongs to the institu-
tional dimension of a particular application. A set of domain-knowledge state-
ments is a Domain Knowledge Base (DKB).

For instance, in a university scenario, an agent entering a classroom count as
this agent being a student. The environment of the university can have several
rooms and it is out of the environment specification to define the institutional
meaning of the rooms (classrooms, teachers room, conference room, etc.). The
DKB can be used, for example, to state that some room is a classroom.

Having an explicit DKB part of a program also makes it easier to write count-
as rules, as they typically become more compact and readable. For example, by
having in the DKB the statements is classroom(room210) and is classroom
(room440), we can write a count-as rule to the effect that “entering a classroom
count-as adopting the role of student” without having to write rules for each
individual room. Furthermore, an agent entering room 210 or 440 could count
as adopting a role whilst entering a conference room in the same building would
have no institutional meaning whatsoever.

Programming Institutional Facts in MAS 163

3.1 Programming Language

With the elements previously defined, we introduce a language to program count-
as rules in a count-as program. The syntax of the language is given in Figure 2.

A count-as program is composed of (i) a DKB, i.e. a set of domain-knowledge
statements, and (ii) a set of count-as rules. The count-as rules are the main part
of the program as they allow users to define the institutional dynamics of their
multi-agent applications following our approach. They are explained in detail
below.

count_as_program ::= (dkb)? count_as_rule+
dkb ::= ’domain_knowledge_base:’ (predicate ’.’)+
count_as_rule ::= termX ’count-as’ termY (’in’ context)? ’.’
termX ::= event | state
event ::= ’+’ predicate
state ::= ’*’ formula
termY ::= predicate (’,’ predicate)*
context ::= formula

Fig. 2. Grammar of the proposed language

Besides the grammar for a count-as program, we also give the following defi-
nition that will help the formalisation we provide later in this section.

Definition 4 (Count-as program). A count-as program (corresponding to
count as program in the grammar) is a tuple 〈Re, Rs, Dk〉 where (i) Re is a
set of count-as rules that deal with events (event-count-as rules), (ii) Rs is a set
of count-as rules that deal with state (state-count-as rules), and (iii) Dk is a set
of DKB statements.

3.2 Count-as Rules

A count-as rule (element count as rule of the grammar) is inspired by the
idea of constitutive rules put forward by John Searle and have the form X count-
as Y in C. The X term may be an event or a state. We define thus two kinds of
rules: event-count-as to deal with events and state-count-as to deal with state.
Both can also be formalised as below:

Definition 5 (Event-count-as rule).
An event-count-as rule is a tuple 〈bf , if , c〉 where:
– bf ∈ Ee ∪Ei is an event that led to a brute fact;
– if ∈ 2Pi is a set of institutional properties that become true of the institution

through the application of the rule;
– c is a logical formula composed of predicates belonging to Pe and Pi which

point to the observable state of the environment and institution; the formula
must be true for the rule to apply.

164 M. de Brito, J.F. Hübner, and R.H. Bordini

An event-count-as rule defines a new institutional state if as consequence of
the occurrence of event bf in a context c. Suppose that an agent getting into
a classroom at 10am on a Friday counts as this agent playing the student role.
This is an example of an event-count-as rule where: (i) the event of the agent
getting into the classroom is the brute fact bf , (ii) the institutional fact of the
agent playing the student role is the consequence of the rule application (if), and
(iii) the time when the event happens is the context where the rule is applicable
(c). Figure 3 (left) shows an example of this type of rule. Notice that the event
of leaving the classroom does not cancels the effect of the count-as rule. If that
was meant to be the case, a new count-as rule could be written, stating that an
event triggered when an agent leaves the classroom count-as the agent leaving
the student role.

Fig. 3. Event-count-as rule (left) and State-count-as rule (right)

Definition 6 (State-count-as rule). A state count-as rule is a tuple 〈bf , if , c〉
where:

– bf is a logical formula composed of predicates belonging to Pe and Pi which
point to the observable state of the environment and institution; the formula
must be true for the rule to apply;

– if ∈ 2Pi is a set of institutional properties that become true of the institution
through the application of the rule;

– c is a logical formula composed of predicates belonging to Pe and Pi which
point to the observable state of the environment and institution; the formula
must be true for the rule to apply.

A state-count-as rule defines a new institutional state (given by the properties in
if) as consequence of the current state of environment and institution. Suppose
that in a university scenario, if there are more than 30 students and a teacher in
a classroom on Friday at 10am, it means that the class has started (see Figure 3
(right)). This is an example of a state-count-as rule where: (i) the brute fact
bf is the conjunction of the environmental property of some agents being in
the classroom and the institutional property of these agents playing the roles of
student and teacher, (ii) the institutional property of the class having started is
the consequence of the rule application, and (iii) the time when those properties
hold is the context where the rule is applicable (c). Notice that the effect of the
count-as rule is not cancelled when the state bf ceases to hold. In this case, a
new count-as rule could be written to explicitly define a new institutional state
when bf is not true.

Programming Institutional Facts in MAS 165

The reasons and advantages of having these two kinds of count-as rules are
discussed in Section 4.3.

3.3 Language Semantics

In this section the semantics of the language is formalised using structural op-
erational semantics [12]. The interpreter for the count-as program is placed side
by side with environmental and institutional platforms. It is constantly informed
by these platforms about successful events2 and new states and, as the result of
the application of some count-as rule, the interpreter sends to the institutional
platform what should be its next state. Notice that we consider multi-agent sys-
tems where there is only one institution and one environment model, and each
runs on a single host. Issues related to distribution and topology are beyond the
scope of this paper.

The operational semantics is given as a transition system where a particular
state of the system is represented by a configuration as formally defined below.

Definition 7. The transition system configuration is a tuple 〈Re, Rs, D, E ,N ,
I, T 〉, where:

– Re is a set of event-count-as rules provided by (the parsing of) the count-as
program;

– Rs is a set of state-count-as rules provided by the count-as program;
– D is a set of DKB statements also provided by the count-as program;
– E is a queue of events e ∈ Ee∪Ei provided by the environment and institution

platforms;
– N is a set of predicates representing the observable state of the environment

as provided by the environment platform;
– I is a set of predicates representing the observable state of the institution as

provided by the institution platform;
– T is a queue of properties that are the result of the interpretation of the rules

and must become true of the institution.

The initial configuration is 〈Re, Rs, D, ∅, ∅, ∅, ∅〉. As the interpreter runs, and
events and states are informed by the platforms, this configuration evolves as
defined by the following transition rules. Due to the lack of space, we will explain
only the main transitions of the semantics and omit the transition rules related
to addition and deletion of count-as rules during the execution of the count-as
program.

Event Processing

Let head(E) be a function that returns the head of a list, tail(E) be a function
that returns the tail of a list, and θ be a substitution of all variables of the brute

2 We assume that the reported events represent the consequence of successful action in
the environment; when attempted actions fail we assume that no event is generated
or at least that they are not reported to our interpreter.

166 M. de Brito, J.F. Hübner, and R.H. Bordini

fact in the rule. If there is an event-count-as rule where bfθ is equal to the event
given by head(E), the term c is a logical consequence of the state of environment
and institution, and the count-as consequence if does not belong to the current
state of the institution, then the rule fires. As a result, the properties expressed
by if will be added to the result queue T .

〈bf , if , c〉 ∈ Re bfθ = head(E) N ∪ I ∪D |= c if /∈ I
〈Re, Rs, D, E ,N , I, T 〉 −→ 〈Re, Rs, D, tail(E),N , I, T ∪ if 〉

State Processing

Each state-count-as rule rs ∈ Rs whose brute fact bf and context c are logical
consequences of the state of the environment and institution is triggered and its
properties expressed by if are added to the result queue T .

〈bf , if , c〉 ∈ Rs N ∪ I ∪D |= bf N ∪ I ∪D |= c if /∈ I
〈Re, Rs, D, E ,N , I, T 〉 −→ 〈Re, Rs, D, E ,N , I, T ∪ if 〉

Passing the Resulting Properties to the Institution

If T �= ∅, the institution platform pt consumes the first property from queue T
and changes the institutional state accordingly.

T �= ∅ t = head(T) consumept(t)

〈Re, Rs, D, E ,N , I, T 〉 −→ 〈Re, Rs, D, E ,N , I, T \ t〉

4 Case Study

In order to evaluate the proposal, we implemented the language interpreter and
its interface with the environmental and institutional platforms of the JaCaMo
framework3. Our count-as language was used to develop a new version of the
Build-a-House example [4]. This example is suitable for our evaluation since
it was originally designed with the three dimensions (agents, institution, and
environment) in mind, as the platform allows explicit programming of all three
levels. The agents in JaCaMo are programmed in Jason [5], the environment is
programmed in CArtAgO [13], and the institution is programmed in Moise [10].

4.1 Original Implementation

The example concerns a multi-agent system representing the inter-organisational
workflow involved in the construction of a house. An agent called Giacomo owns
a plot and wants to build a house on it. In order to achieve this overall goal, first

3 Due to the lack of space, the details of these implementations are not described in
this paper.

Programming Institutional Facts in MAS 167

Giacomo will have to hire various specialised companies (the contracting phase)
and then ensure that the contractors coordinate and execute the various required
tasks required to build a house (the building phase). For each company, there is
a company agent participating in the contracting phase and then, possibly, in
the building phase too.

In the contracting phase, Giacomo starts one auction for each of the several
tasks involved on the building of the house, such as site preparation, laying floors,
building walls, etc. The auction starts with the maximum price that Giacomo can
pay for a given task and companies that can do the task may offer a price lower
than the current bid. After a given deadline (known by Giacomo but unknown
to the bidders), for each auction Giacomo: (i) stops it, (ii) checks which company
proposed the lowest price, and (iii) sends a message to that company hiring it.

After the companies have been hired, the contractors have to execute their
tasks in a coordinate way during the building phase. Each company has to join
the organisation adopting a specific role and, by doing so, it becomes responsible
for some goals in the overall process of building the house. The organisation is
specified in Figure 4 using the Moise notation. The structural specification de-
fines a group where company agents will play the sub-role building company
and the Giacomo agent plays the role house owner. The functional specifica-
tion decomposes the organisational goals into sub-goals, defines the sequence in
which each will be achieved and gives a “time-to-fulfil” (TTF), i.e. a deadline,
for each sub-goal. The normative specification determines which goals an agent
playing a given role is obliged to achieve. Thus, the agents must be attentive to
the organisation in order to know what are their obligations. By perceiving that
new obligations are in place for themselves, the agents can trigger the execution
of particular plans in order to achieve the organisational goals and then inform
the goal achievement back to the organisation.

4.2 Implementation with Count-as Rules

The new implementation of the Build-a-House example, using count-as rules and
a DKB, allows the change of the institutional state as a result of facts about
the environment and in the institution. Several count-as rules can be defined for
this example; here, however, we will explain only the most illustrative rules.

For instance, in the original example Giacomo needs to (i) control the deadline
of the auctions, (ii) check which agent is the winner of every auction, and (iii)
send a message to these winners asking them to adopt the corresponding role in
the organisation. In the new implementation, thanks to the count-as program,
Giacomo only needs to control the deadline and finish the auctions, and com-
pany agents do not need to explicitly adopt roles. The count-as rule in Figure 5
handles the adoption of roles for the companies. When the auction state is closed
(for instance, by a Giacomo action or some deadline), the current winner will
automatically start playing the corresponding role (and it will be informed of
that by the organisation). In that rule, auctionStatus and currentWinner
are properties provided by the environment platform, play is the property that
has to become true of the institution, and auction role is a DKS.

168 M. de Brito, J.F. Hübner, and R.H. Bordini

...

Fig. 4. Organisational specification of example Build-a-House: structural specification
(left), functional specification (right) and normative specification (bottom) [4]

Fig. 5. Count-as rules for role adoption

In the original implementation, for each goal related to the house building,
company agents execute operations on the environment that simulate the real
task. Besides the execution of those operations, the agents must inform the or-
ganisation about the achievement of organisational goals. In the new implemen-
tation, these executions count-as the achievement of organisational goals. Thus,
the agents need only to act on the environment and the achievement of the
goals is informed to the organisation by the count-as interpreter. Figure 6 shows
an example of a rule stating that the occurrence of the event prepareSite
(which is the result of an operation on the environment simulator) count-as the
achievement of the organisational goal site prepared (this goal is defined in
the functional specification illustrated in Figure 4).

Programming Institutional Facts in MAS 169

Fig. 6. Count-as rules for organisational goal achievement

We defined two sets of DKS. The first one defines the roles given to the winners
of each auction. The second one defines the missions (i.e. sets of goals) attributed
to agents that are playing specific roles. Figure 7 shows some examples of such
statements.

Fig. 7. Domain knowledge statements

4.3 Case Study Discussion

The use of count-as rules has three initial advantages. The first is that agents do
not need to be aware of the organisation or even to reason about it, unless that
makes sense in the particular application. In the new version of the building a
house scenario, company agents do not need to adopt roles, reason about their
roles, etc. Trivial role adoption can be done by the count-as interpreter based
on brute facts caused by the companies. The second advantage is a consequence
of the first: agents cannot avoid the institutional consequences of their actions
either (which in some application might be very important, particularly in open
system). In the original implementation, Giacomo asks the companies to adopt
the corresponding roles when they win the auction. However, the companies can
simply ignore the request and do not adopt the role (as they ought to in this
application). More importantly, if a company actually prepares the site but does
not tell the organisation, the institution simply becomes inconsistent, and as a
consequence the system would simply halt waiting for something that already
happened.

One can argue that we are limiting the autonomy of the agents using this
kind of count-as rules. However, the motivation for this approach is precisely
to handle the autonomy of the agents in open systems, where some restrain

170 M. de Brito, J.F. Hübner, and R.H. Bordini

on agents’ autonomy is required anyway. Moreover, the designer of the system
may include or not this kind of count-as rules depending on the requirements
of the application. In some cases, the count-as rules do not mean less autonomy
than without them, it only means more readable code and conceptually more
adequate declarative representations.

The third advantage of the proposal is precisely the simplification of the rea-
soning and action of the agents and the agent programs. Due to the possibility of
modelling institutional consequences based on events and states, agents do not
need to perform some actions on the institution. For example, the agent Giacomo
performs 46 actions in the original example while this number is reduced to 19
in the new implementation. Table 2 lists the main activities of an agent named
CompanyA in both the original example and in our experiment. The number of
different tasks performed by CompanyA in the original example is 8 while in
the new implementation this number is reduced to 4. This reduction does not
necessarily mean, however, either an improvement on system performance or a
reduction in coding. It is essentially a conceptual change, as part of the code
was moved from the agents program to the count-as rules. That moved code is
better conceived as belonging to the institution than to the agents, so it is more
coherent to program it outside of and independently from the agents. Our ap-
proach therefore appears to further improve the programming style available in a
multi-agent oriented programming platform where the three distinct dimensions
of a multi-agent system can be directly programmed.

Besides the simplification of the agents’ reasoning and action, we noticed an
improvement of the institutional dimension in the system that was implemented
following our approach. The institutional dimension is composed of various kinds
of mechanisms with the aim of keeping the system in a consistent state despite
its openness and the agents’ autonomy. We regard count-as rules as playing an
important part related to this aim. As illustrated by the two examples of count-as
rules given above, it is possible to claim that the count-as rules are a mechanism
that give institutional meaning to events and states of the environment and the
institution. This meaning typically does not depend on agents participating in
a particular episode of an institution.

As described in Section 2, while some authors prefer to use events as brute
facts, others prefer states. In our point of view both approaches are useful and
were thus included in our proposal. We point out three main reason for our
decision:

– Partial Knowledge about the Institutional and Environmental
Models. We assume the possibility of incomplete knowledge about the in-
stitutional and environmental models we are dealing with. It is possible then
that a system designer does not know all the events that produce some par-
ticular state, and they may thus prefer to write count-as rules using states.
Conversely, designers may not know the complete system states generated
after some relevant events, so they may prefer to write count-as rule using
events as triggers instead.

Programming Institutional Facts in MAS 171

Table 2. Activities of agent CompanyA

Original example New implementation

Look for the group � �
Look for auctions � �
Submit bids to auctions � �
Receive the contracting message �
Adopt a role �
Commitment to a mission corre-
sponding to the adopted role

�

Execute plans related to the mis-
sion

� �

Inform the organisation about goal
achievement

�

Total 8 4

– Expressiveness of Count-as Rules. In particular cases, several events can
produce the same state of interest. Thus, a single state-count-as rule can re-
place several event-count-as rules. Similarly, an event of interest can happen
in various different states, so a single event-count-as rule might suffice to
cover various state-count-as, depending on the circumstances.

– Concurrency and Ordering of Events. In the example of the classroom,
suppose a scenario where a teacher entering into the classroom counts as
the class having started if there is at least one student in the classroom. In
the case where the teacher enters into the classroom and there is no student,
the rule is not triggered. However, as soon as a student enters in the room,
the class should be considered as started. Another event-count-as rule is then
needed (triggered by the student entering the room). Where various events
lead to particular circumstances and the order does not matter, typically a
state-based representation might be more useful.

As mentioned above, the event-count-as rules can be more suitable or
intuitive to programmers. Additionally, when evaluating rule application,
matching events seems to be faster than evaluation of an overall state (we
aim to evaluate this experimentally in future work).

Although both kinds of rules are useful depending on the application domain,
if we know all the institutional and environmental models of some application,
any event-count-as can be rewritten as state-count-as (assuming that every event
produce a change in the state) and vice-versa (assuming that every state change
is produced by some event).

172 M. de Brito, J.F. Hübner, and R.H. Bordini

5 Conclusions

In this paper, we proposed a model and programming language for specifying the
institutional dynamics in multi-agent systems that are based on three distinct
dimensions (i.e. agents, environment, and institution). An important feature of
our approach is that we consider both events and states of environment and
institution as brute facts. The contributions of this work include a programming
language and its interpreter that allowed us, in the case study presented here,
to simplify the programming of an application and make it more robust against
malevolent agents in open systems. In future work, we plan to evaluate the
performance of this interpreter and particularly the two types of count-as rules
available in our approach. We also plan to deal with issues related to topology
and distrubution.

Acknowledgments. The authors are grateful for the support given by CNPq,
grants 307924/2009-2, 307350/2009-6, and 478780/2009-5, and by CAPES. We
would like to thank Alessandro Ricci, Michele Piunti, and Olivier Boissier for
their contributions to this work.

References

1. Aldewereld, H., Alvares-Napagao, S., Dignum, F., Vasquez-Salceda, J.: Making
norms concrete. In: Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), vol. 1, pp. 807–814. In-
ternational Foundation for Autonomous Agents and Multiagent Systems, Toronto
(2010)

2. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies.
In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 3 (AAMAS 2002), pp. 1053–1061. ACM, New York
(2002)

3. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization Oriented Programming:
From Closed to Open Organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer,
Heidelberg (2007)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. In: Science of Computer Programming (2011)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. In: Wiley Series in Agent Technology. John Wiley &
Sons (2007)

6. Campos, J., López-Sánchez, M., Rodŕıguez-Aguilar, J.A., Esteva, M.: Formalising
Situatedness and Adaptation in Electronic Institutions. In: Hübner, J.F., Mat-
son, E., Boissier, O., Dignum, V. (eds.) COIN 2008. LNCS (LNAI), vol. 5428,
pp. 126–139. Springer, Heidelberg (2009)

7. Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems. Springer
(2008)

Programming Institutional Facts in MAS 173

8. Dastani, M., Tinnemeier, N., Meyer, J.C.: A programming language for normative
multi-agent systems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. Cap. XVI, pp. 397–417. Information Science
Reference, Hershey (2009)

9. Esteva, M., Rosell, B., Rodriguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Jennings, N.R., Sierra, C., So-
nenberg, L., Tambe, M. (eds.) Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 1,
pp. 236–243. ACM, Washington, DC (2004)

10. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multi-agent sys-
tems using the MOISE+ model: programming issues at the system and agent lev-
els. International Journal of Agent-Oriented Software Engineering 1(3/4), 370–395
(2007)

11. Piunti, M.: Situating agents and organisations in artifact-based work environments.
PhD Thesis, Univerist di Bologna (2009)

12. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)

13. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment Programming in
CArtAgO. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming: Languages, Tools and Applications, pp. 259–288.
Springer (2009)

14. Searle, J.: The construction of social reality. Free Press (1999)
15. Stratulat, T., Ferber, J., Tranier, J.: MASQ: Towards an integral approach to

interaction. In: Proceedings of the 8th Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Richland, SC, vol. 2, pp. 813–820 (2009)

Towards a General Model for Adapting Structure
while Maintaining Topology: Pipelines

Matthew Shaw, Jeroen Keppens, Michael Luck, and Simon Miles

Department of Informatics, King’s College London, Strand, London, UK
matthew.shaw@kcl.ac.uk

Abstract. Large scale information systems are increasingly structured around
flexible workflows of services providing a range of functionalities that are con-
figured to suit particular needs, yet this flexibility can bring a lack of organi-
sation in the ways in which services are combined. Particular system structures
bring different benefits to an application in terms of efficacy and efficiency but
sometimes need to reorganise as their circumstances change. In this context, this
paper seeks to establish techniques for reorganisation that preserve particular
topologies in support of their recognised benefit for the target applications. The
contributions are twofold: first, a general vision of reorganisation of defined
topologies, in which topology is preserved but efficiency and efficacy are opti-
mised; and second, a specific solution for the case of pipelines, reorganising to
optimise key application-specific metrics, while preserving topology. The paper
is thus the starting point for a more ambitious general programme of research.

Keywords: Self-organisation, reorganisation, adaptation, topology, organisa-
tional structure, pipelines.

1 Introduction

Large scale information systems are increasingly structured around workflows of ser-
vices providing a range of functionalities that are configured to suit particular needs.
Indeed, the construction of combinations of services to form systems satisfying
application-specific demands offers a flexibility that is often missing in rigid system
structures. However, this flexibility can bring a lack of organisation in the ways in
which services are combined. For example, many applications are naturally hierarchical
in nature and are thus best suited to a hierarchical organisation of services. Other appli-
cations will suggest alternative structural arrangements, some of which may correspond
to well-known organisations, and some of which may be ad hoc instead.

Now, the suitability of an organisational structure to an application in this sense lies
in the efficacy and efficiency of the structure in supporting the particular goals of the
system. This may be in terms of minimising load, in maximising throughput, or in other
such objectives to be optimised. This paper recognises the value of such organisational
structures yet seeks to provide a means of enabling them to reorganise as their cir-
cumstances change. Indeed reorganisation is known to be a valuable technique in the
armoury of modern computing systems, motivated in part by increasing interest in ar-
eas such as autonomic computing. Importantly, however, rather than allowing arbitrary

J. Simão Sichman and H. Aldewereld (Eds.): COIN 2012, LNAI 7756, pp. 174–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards a General Model for Adapting Structure while Maintaining Topology 175

ad hoc structures to emerge, this paper takes a different standpoint in seeking to estab-
lish techniques for reorganisation that preserve particular topologies in support of their
recognised benefit for the target applications.

As indicated above, our work is concerned with the key concepts of structure and
topology, but these these terms are unfortunately often conflated. In some work, the
term structure is used to represent the collection of connections or interrelationships
between agents in a system [14], while in other work it is used in a more general sense,
encompassing roles and social norms, as well as interaction constraints [3]. For the pur-
pose of clarity, in this paper, we take an organisation’s structure to be nothing more
than a configuration of connections or relationships between all agents within an organ-
isation. More specifically, a structure can be understood as a set of agent pairs, where
each pair represents some connection between them. Now, an organisation’s structure
is often constrained by a particular topology. In this sense, a topology represents some
pattern, or rule, that constrains the connections allowed in an organisation’s structure,
thereby producing structures that follow topologies, such as pipelines, or hierarchies. In
this paper, we adopt this terminology, and use it throughout.

The contributions of this paper are twofold. First, the paper presents a general vi-
sion of reorganisation of defined topologies, in which topology is preserved, but effi-
ciency and efficacy are optimised. Ultimately, this will lead to a library of techniques for
topology-preserving reorganisation across different topologies, and potentially a means
to transform between topologies as needs demand. Second, the paper instantiates this
broad vision with a specific solution for the case of pipelines, reorganising to optimise
key application-specific metrics, while preserving topology. It is thus the starting point
for the more ambitious general programme of research.

The paper is structured as follows. The next section motivates the paper as whole by
presenting a motivating scenario and a task allocation model setting out the problem
we address. Then, in Section 3, we describe the main contribution of the paper, the
techniques for reorganising, both in general and in the specific case of pipelines. Section
4 presents the initial results obtained with our techniques, before reviewing related work
in Section 5, and concluding in Section 6.

2 Task Allocation and Execution Model

2.1 eScience Scenario

To motivate our work, we introduce a scenario based in the domain of eScience. Con-
sider a large, potentially global network of electronic resources (such as devices, or
even data) that are owned by different institutions, all willing to pool their individual
resources in order to gain access to a larger set of shared resources that would otherwise
be unavailable to them. All resources are networked, with some performing computa-
tionally intensive tasks like the analysis of large scientific data sets such as resulting
from the Large Hadron Collider (LHC) at CERN [7,8]. Processing this data takes con-
siderable time, and we want to process it as quickly as possible. If there is only one
task that cannot be processed concurrently across multiple machines, then the optimal
solution is for it to be processed on the fastest machine.

176 M. Shaw et al.

Fig. 1. Visualisation of the eScience scenario

Now, suppose there are two research centres, each using a particle accelerator (PA),
and a laser research apparatus (LRA) respectively, and both generate large data sets.
Such data needs to be stored and then processed, but neither research facility has the
ability to do so. However, there are two data storage units, (DSU1 and DSU2), that are
each capable of storing 100 units of data, and two supercomputers, (SC1 and SC2),
that are capable of processing data, with SC1 processing data faster than SC2. This is
summarised in Table 1.1

Table 1. The capabilities and resources available in the eScience scenario

Computational Devices
SC1 SC2 DSU1 DSU2 PA LRA

Services
Data Storage N N Y Y N N

Processing Power Y Y N N N N

Hardware Specs
Memory - - 100 100 - -

Processing Power Faster Slower - - - -

If PA and LRA simultaneously perform experiments, respectively producing 50 units
and 120 units of data, PA can store its data at DSU1, but LRA stores 100 units at DSU2
and 20 units at DSU1, since neither DSU has the capacity for 120 units. PA’s data is
then passed to the fastest supercomputer, SC1, for processing and, since SC1 is now
busy, LRA’s data is passed to SC2 despite it being slower. This is illustrated in Figure 1,
in which the arrows labelled 1 show PA’s task being completed, the arrow labelled 2
shows LRA’s task being completed, and arrows labelled 2.1 and 2.2 show the task being
decomposed.

2.2 Task and Agent Model

In this scenario we require the different computational entities to undertake various
tasks (storing data or processing it), and to pass these tasks to others if the entities

1 The capabilities of PA and LRA are not relevant, so are omitted.

Towards a General Model for Adapting Structure while Maintaining Topology 177

Fig. 2. Example of a task hierarchy

themselves cannot execute them. The key task of this scenario is to analyse data. In
this sense, a task satisfies a particular requirement, where that requirement amounts to
a specification of the services needed to perform that task, and the time for which each
such service is needed. Tasks may also be decomposed into subtasks (potentially with
ordering constraints): for example, to analyse data it must first be stored, then processed.

In our example, DSU1 and SC1 offer services for processing and storing data. The
details of such services are unimportant for our purposes, and we simply specify the
set of all services, S = {s1, s2, . . . }. Clearly, in order to fulfil tasks, services must
perform some work. A requirement is a specification of the services and the amount
of work needed from each in order to achieve the task. For simplicity, we assume that
all services provide the same amount of work, or effort, per unit of time, and we use
time as a simple proxy for an amount of work. In this way, a service may be required
for 3 units of time, while another is required for 6 units of time. A requirement r thus
takes the form (s, reqt), where s ∈ S is the required service, and reqt ∈ Z+ is the
amount of time for which it is required. The enactment of a service to satisfy a task’s
requirement is encapsulated as a service instance, in the form, si = (t, s), where s is
the service satisfying task t. Since tasks are decomposable, as indicated above, they are
represented in a tree structure, as in Figure 2, where each vertex indicates a subtask,
and each line an ordering constraint between subtasks. These constraints mean that t1
must be completed before t2 and t3 can begin, but once t1 is completed, t2 and t3 can
be executed concurrently. To represent this additional complexity, a task takes the form
t = (r, SUBT) where r is a requirement, and SUBT is a set of subtasks.

Given all this, devices such as PA or DSU1 are represented as agents, that use their
services SERV to execute tasks that are in its list of tasks, TASKS. Each agent has a
capacity cap ∈ Z+ limiting the number of service instances it can run concurrently,
to capture limited resources such as memory in a data storage unit. As each service
is used, a service instance is created and added to an agent’s set of current service
instances SI, such that |SI| ≤ cap. Once all of a task’s requirements have been met,
the service instance will be removed, allowing more to be created. Finally, an agent has
a set CON of connections with other agents. An agent a, therefore, is represented as
a = (SERV, TASKS, cap, SI, CON).

While agents are clearly by definition autonomous and social, with the ability to refuse
to undertake tasks delegated to them, for example, our focus in this paper is not on the
internal decision-making apparatus of agents, but instead on the macro-level of organi-
sation. For this reason, and to ensure clarity and simplicity of presentation, in this paper
we abstract away from any details of autonomy and decision-making, and assume that
agents are benevolent, executing any tasks they are allocated. Clearly, more sophisticated
models are possible, but that is outside the scope of the work presented here.

178 M. Shaw et al.

Fig. 3. An example of an organisational structure represented as a graph

2.3 Task Allocation

Given our basic model above, we can now consider how agents are allocated tasks. We
adopt a simple model with the assumption that time is in discrete units, with a number
of rounds, in each of which an agent a undertakes two major activities: it manages
its TASKS list; and it executes tasks. In managing its tasks, a first places any received
tasks in its TASKS list. Then, in order of arrival, each task t in the list is reviewed: if
t’s requirements can be satisfied directly by a, and a has capacity to do so, a creates a
service instance si to execute t, adds si to SI, and removes t from the TASKS list; if a
can satisfy t’s requirements, but does not currently have capacity to do so, then the task
remains on the list, waiting for capacity to become available; finally, if a cannot satisfy
t’s requirements, then it must find another agent to which to delegate the task.

Once a has finished managing its TASKS list for the current round, it begins execut-
ing tasks, each of which is represented as a service instance in SI. As indicated above,
tasks require a service for a specified number of rounds (reqt in the task’s requirement),
so a service instance persists until reqt has elapsed, at which point the service instance
is removed. If a completed task has subtasks, each subtask is added to the TASKS list so
that they can be allocated or executed on the next round. In our model, each agent con-
nects to a set of other agents, which are the only agents with which it can communicate,
giving an organisational structure. Then, if an agent wants to find a service to which to
allocate tasks, it performs a depth first search across the organisational structure until
an appropriate service is found. Clearly the links between agents determine how easily
an agent can find another agent offering a required service.

2.4 System Metrics

While any system can be designed to achieve different goals, in this paper we assume
the most obvious goal of executing tasks as quickly as possible. In this subsection,
therefore, we complete the description of our model by introducing the ways in which
we are able to measure the performance of our system, first through three main metrics:
load, throughput, and messages, and subsequently through ways of measuring other
relevant systems properties.

The load of an agent is specified as (|SI|/cap) × 100, where |SI| is the number of
service instances. The result is a percentage, indicating the degree of usage from full
capacity at 100% to complete idleness at 0%. An agent is overloaded when its load is
100% and there are tasks in its TASKS list for which it satisfies the requirements. An
agent’s throughput is the number of tasks it finishes executing each round. The system’s
throughput is the total number of tasks that finish being executed at each time step. This

Towards a General Model for Adapting Structure while Maintaining Topology 179

value is suboptimal if tasks are waiting to be executed by one overloaded agent, but
there are other agents that can execute these tasks immediately instead. Finally, when
trying to locate a service to allocate a task that an agent cannot perform itself, the agent
sends query messages to others for the required service. Similarly, to actually allocate
a task, another message is sent. If the organisational structure is well designed, then
agents will be close to the required services, thus sending fewer messages.

In addition to these three main metrics for performance, we can consider others that
may be useful in what follows. For example, an agent’s task arrival rate is the number
of tasks that it receives each round, its executable task arrival rate is the number of tasks
that it is capable of executing it receives each round, and its allocation task arrival rate
is the number of tasks that it cannot execute it receives each round, and so must allocate
elsewhere. We consider how frequently each service type is used, as service frequency.

3 Adapting Organisational Structure

The model just described specifies how tasks may be allocated and executed in dis-
tributed systems exemplified by our eScience scenario. However, since the structure of
the system constrains the way in which tasks are allocated, we may not have an efficient
system, or not as efficient as may be possible. For example, load (tasks requiring allo-
cation and execution) may be poorly distributed across the agents (and their services)
as a result. In consequence, this section describes a set of techniques that allow a sys-
tem to be reorganised in such a way as to improve its efficiency in line with the metrics
described above. In what follows, to be clear and to restate the difference between struc-
ture and topology, we take structure to be simply a set of connections between agents,
and topology to be structure with some imposed constraints, to give rise to particular
organisation types, such as pipelines, hierarchies, and so on.

Importantly, we want techniques that adapt a system so that efficiency is improved
while also preserving the topology the system is designed to exploit. These techniques
might apply to pipelines, hierarchies or other topologies, each of which has particular
characteristics. In this respect we seek to provide a general form of reorganisation, a
template that can be instantiated for different topologies, while at the same time drawing
them all together in a coherent whole. In this paper we therefore discuss aspects of the
general tools, but focus in particular on the case of simple pipelines.

In what follows, each reorganisation technique is designed around a two-stage pro-
cess, where the first stage is concerned with analysing the specific organisational struc-
ture and determining what links between agents should be added to or removed, while
the second stage ensures that the adaptation (the addition or removal of links) preserves
the particular topology. As for task allocation, we assume that when a change is pro-
posed to the structure, the agents that are included in the change will comply, in the
sense that they will agree to the new structure.

In this paper, due to space constraints, we illustrate the general concept by means of
one of the simplest topologies, pipelines, but seek to apply this template for reorganisa-
tion to other structures, in the same way, proposing changes to the links between agents,
while preserving the overarching topology.

180 M. Shaw et al.

3.1 Analysing Structure

The first stage in reorganisation thus requires an analysis of an organisational structure
in order to populate a change set, C, in which each element c = (a1, a2, action) ∈
C indicates a change to be made, where a1 and a2 are agents that are either con-
nected, or have the potential to be connected, and action is an element in the set
{create, remove}. Now, since an organisational structure is, in essence, a graph de-
fined by the agents (or vertices) involved and the connections (or edges) between them,
the initial analysis uses graph metrics to find potential problems in the organisational
structure, as follows.

By convention, a vertex is denoted by v such that v ∈ V where V is the set of all
vertices, and an edge is denoted by e such that e ∈ E where E is a set of all edges. The
end points of an edge are always two vertices, so an edge e is a vertex pair e = (v1, v2).
We thus represent a graph as G = (V, E) [11]. Similarly, we denote a multiagent system
MAS = (A, C), where A is the set of all agents and C is the set of all connections between
the agents in A. In a graph G = (V, E), a path is a sequence of vertices P = (v1, v2, . . .)
such that each vertex is connected to the next, in order, and the same vertex does not
appear twice. A path is a traversal of a graph.

Given this description, we can introduce some standard graph metrics that may be
used to undertake our initial analysis. First, the degree of connectivity, or the degree, of
a vertex v is the number of edges that v is a part of, and is denoted by deg(v). Second,
the length of a path is the number of edges that it traverses. The shortest path is the path
with the least number of edges, and the length of the shortest path between v1 and v2 is
the distance between v1 and v2, denoted by d(v1, v2).

Now, one of the key properties of an agent is its ability to interact with others. In
this context, Freeman reviews different concepts of centrality [4], which is accepted
as playing a significant role in influence in social networks and on the efficiency of
group behaviour. For example, in Figure 3, an intuitive assessment suggests that m and
p are central. According to Freeman, this is for three reasons: first, m has direct contact
with the largest proportion of the system; second, m is closest to all other nodes in the
system; and third, m and p are in control of much information that may pass between
nodes [4]. Different measures of centrality can be defined: degree centrality, closeness
centrality, and betweenness centrality.

Degree Centrality states an agent’s centrality based on its degree, compared to the
degree of all other agents. The higher the value the more central the agent. The degree
centrality of an agent m is Cd(m) = deg(m).

Betweenness Centrality is concerned with the position of an agent in relation to oth-
ers. An agent m is between a pair of agents n and q if it appears in the shortest path
connecting n and q. Betweenness centrality is the number of agent pairs that m appears
between: the higher the value, the more central. In Figure 3, agent m is between seven
agent pairs, while agent p is between six pairs, so agent m is the most central. Calculat-
ing m’s betweenness centrality is more complex when there is more than one shortest
path between two agents, because m will no longer be between the two agents all of the
time. If there are two shortest paths between n and q, and m appears in only one, then
there is 0.5 chance that a message between n and q will pass through m. More specif-
ically, m’s betweenness centrality can be measured by the number of shortest paths in

Towards a General Model for Adapting Structure while Maintaining Topology 181

which it appears, σnq(m), divided by the total number of shortest paths, σnq , as in
Equation 1. Szczepanski et al. [13] introduce a novel approach to more efficiently cal-
culate betweenness centrality, but since we are interested in the use of betweenness, not
its complexity, we do not consider this further.

CB(m) =
∑

m �=n�=q∈A

σnq(m)

σnq
(1)

Closeness Centrality gives an agent m’s centrality based on how close it is to the rest of
the system. We can use Dijkstra’s algorithm to find the shortest spanning tree rooted at
agent m, consisting of the shortest path from m to all other agents. Agent m’s closeness
centrality is the sum of the length of all of these shortest paths as in Equation 2; the
lower, the value the more central.

CC(m) =
∑

n∈A\m
d(m,n) (2)

3.2 Proposed Changes to Structure

The above metrics provide a means of understanding certain properties of our organisa-
tional structures so that we are able to consider the changes that should be made. In the
previous discussion, we have considered metrics in general, and continue this general
analysis in this section in which we consider two simple ways of modifying a structure
to give greater efficiency.

First, we seek to reduce the distance between an agent and the service it uses most
frequently. Here, for each agent m, a depth-first search is used, starting at that agent,
and searching through the entire organisational structure to find the closest instance of
the service s that m most frequently uses, but that m and its neighbours do not offer. If
the closest agent n offering service s is more than a specified number of hops away from
agent m, then an element is added to the change set recommending a direct connection
between m and n: C = C ∪ {(m,n, create)}.

Second, we seek to decrease the load on overloaded agents by decreasing their close-
ness centrality, and moving them away from the centre of the system. Here, each agent’s
load is measured. If at least one agent has a load of 100%, with tasks waiting in its
TASKS list that it has the capability to execute, then the system contains at least one
overloaded agent. In response, each agent’s centrality value is calculated and over-
loaded agents are moved one step away from the centre of the system, as follows. An
overloaded agent m finds the neighbour n with the highest centrality, and the neighbour
p with the lowest centrality. It also finds q, a neighbour of p with the lowest centrality
out of p’s neighbours. A new connection is then created between m and q, while the
connection between m and n is removed. The resulting elements in the change set are:
C = C ∪ {(m, q, create), (m,n, remove)}.

3.3 Preserving Topology

To this point, the techniques introduced, and indeed the methodology for doing so, have
been presented in the most general way. However, this last part of the process requires

182 M. Shaw et al.

Fig. 4. An example of enacting a change in a pipeline

us now to instantiate our work with respect to a specific topology that constrains the
changes proposed. In fact, as indicated in the introduction to the paper, the aim of our
work is to facilitate reorganisation by building up a library of techniques and constraints
in a stepwise fashion across different topologies, and then to generalise these instances
to provide a generic model. This paper describes the early stages of this programme of
work, and is restricted, as a first step, to pipelines, one of the simplest possible topolo-
gies, in order to illustrate the general approach. Subsequent work will consider appli-
cation to hierarchies, matrices and other structures, but that is not considered in this
paper.

In a pipeline, all of the vertices are lined up sequentially. Each vertex has a degree
of connectivity of exactly 2, except for the vertices at the ends of the pipeline, which
have exactly 1. In a multi-agent system, this translates to each agent having a maximum
of two connections. If we wish to reorganise a pipeline, then we cannot change the
number of connections, but we can change the connections themselves as long as we
preserve the pipeline properties. The only legal change to such a structure is thus the
positioning of each agent. Note that to do this we have only two possible changes from
the change set: remove a connection and create (or add) a connection. However, if we
remove a connection from a pipeline, we cannot preserve the structure since it breaks the
pipeline irretrievably. For this reason, we do not entertain this possibility for pipelines
(though we will do so in future work for other topologies), and focus here only on
creating connections (though, confusingly, we will see that this will require removal of
connections as part of the process of structure preservation).

To illustrate, suppose we have a pipeline with five agents, as shown in Figure 4 part
1, and a change set in which the first element states that a connection should be created
between agents p and n. If this connection is created, then the organisational structure
is no longer a pipeline. To ensure that the pipeline is maintained, the following changes
must also be added to the change set: remove connections between m and p, q and p, and
k and n, and create connections between m and q, and k and p. With all these changes,
a connection can be created between p and n, while maintaining a pipeline as shown in
Figure 4 part 3. In fact, this is one way to achieve the result we aim for, but the same can
also be achieved by adding the connections elsewhere. For ease of exposition, we will
not consider the alternatives in this paper, but note that they lead to the same outcome.

More formally, the change set is altered as follows: for each (x, y, create) ∈ C, x
is moved next to y. As just noted, this is possible in different ways; here we do so by
removing agent x, then reinsert x next to y in just one way.

Towards a General Model for Adapting Structure while Maintaining Topology 183

Remove Agent. Removing x from a pipeline depends on x’s position in the pipeline. If
x has one connection then it is at the end of the pipeline, and so its only connection
is removed. If x has two connections then it is in the middle of the pipeline, so both
of its connections are removed. Then, a connection is created between x’s previous
neighbours, ensuring that the pipeline is maintained. In both instances, the result is
a pipeline, excluding the single disconnected agent x.

Reinsert Agent. Reinserting x next to y similarly depends on y’s position. If y has one
connection then it is at the end of the pipeline, so a connection is created between
x and y, and x is now at the end of the pipeline. If y has two connections then it is
in the middle of the pipeline, so we must decide on which side of y to reinsert x. To
do so we randomly select one of y’s neighbours, z, remove the connection between
y and z, and create connections between x and y, and x and z. In both instances, the
result is a pipeline where x is directly connected to y.

As indicated above, we do not consider the removal of connections due to the con-
straints of a pipeline, since this cannot be done without irretrievably breaking the topol-
ogy, and these changes are therefore simply eliminated from the change set.

Again, we assume that when a change is enacted, the agents involved in the creation
or removal of the connection agree to the change. While it is of course possible to
imagine scenarios in which this does not hold, for reasons of simplicity and clarity, we
restrict our consideration only to such cases.

4 Evaluation

Given these techniques are designed to reorganise pipelines to increase the performance
of a system, we undertook a series of experiments to show their impact and indeed
whether they are successful. In order to provide a baseline for comparison, we exper-
imented with random changes to the structure as well as the reducing distance and
decreasing load changes.

As described above, changing a pipeline involves moving agents from one position
to another. Whenever reorganisation is triggered in the random approach, 10 agents
are randomly selected and moved next to another randomly selected agent that it is
not currently connected to. Moving an agent a to an agent b consists of: removing the
connection between a and each of its neighbours; creating a connection between each
of a’s old neighbours; removing the connection between b and one of its neighbours;
and creating connections between a and b, and between a and b’s old neighbour.

In what follows, we describe our results from simulating the task allocation and ex-
ecution model described above. The simulation consisted of 100 agents in a pipeline
with a random initial structure, where the agents receive tasks, and allocate or exe-
cute them. The simulation consisted of 2000 rounds, in each of which a number of
tasks are randomly generated, and allocated to agents at random, regardless of the ser-
vices offered by agents. The number of tasks generated at each time step varies ac-
cording to the Poisson distribution with a mean task arrival rate of 10. On each round,
agents follow the behaviour described in Section 2.3, after which reorganisation is po-
tentially triggered: in rounds 0–499, there is no reorganisation, but in rounds 500–2000

184 M. Shaw et al.

reorganisation is triggered each time. Each simulation was repeated 15 times, with all
results being averaged over these multiple runs.

4.1 Task Allocation and Execution

Throughout the simulation, the number of tasks that each agent is allocated and executes
is counted, and the mean number across all agents plotted over time. It is important to
note that a task is only considered to be allocated if it is delegated by another agent.
Now, since tasks initially arrive at agents from outside of the system as a whole, and
since some of these may be executed directly by those initial agents rather than being
delegated onwards, this notion of allocation gives rise to a subtlety such that the number
of tasks executed is very likely to be higher than the number of tasks allocated.

Fig. 5. Mean number of tasks allocated

Figure 5 shows how many tasks are allocated on average at each time step, and more-
over that there is little variation between all three techniques, which each display a small
increase in the number of tasks allocated. Random reorganisation shows a slightly larger
increase, but the difference is minimal. Figure 6 shows how many tasks are executed
on average at each time step. Again, there is little variation between the reducing load
and decreasing distance techniques. However, we see better performance from random
reorganisation.

In our model, locating services and sending a task between agents takes no time,2

so the number of tasks executed increases because, rather than waiting on an over-
loaded agent’s TASKS list, after reorganisation individual tasks are allocated to agents
with spare capacity. In turn, this increases the number of subtasks being released for
execution, so the number of tasks allocated also increases. The increase appears in all

2 Instead, the number of messages needed, and the distance that tasks travel, are considered
separately.

Towards a General Model for Adapting Structure while Maintaining Topology 185

Fig. 6. Mean number of tasks executed

simulations, including random, indicating that the increase in task execution is due to
the organisational structure continuously changing, rather than any specific change in-
stance. Since an agent uses the relevant service on the closest agent, it will always use
the same agent for a particular service unless the structure changes. Globally, this means
that without any change to structure, agents whose services are not initially used will
never be used, while those services that are initially used will be used regularly. How-
ever, by making regular changes to the organisational structure (random, or otherwise),
the closest instance of a service to an agent will also regularly change.

4.2 Load and Waiting Tasks

Throughout the simulation, the load of each agent, the number of tasks waiting to be
executed, across all agents, are recorded. Figure 7 shows the average load plotted over
time, indicating that though all techniques increase the load of the system, random reor-
ganisation improves loading the most significantly. Figure 8 shows the number of tasks
waiting to be executed, with reducing distance and decreasing load both decreasing the
rate at which tasks accumulate, but increasing the number of waiting tasks. In contrast,
random reorganisation executes tasks faster than they arrive, so the number of tasks
waiting to be executed decreases. However, this effect begins to plateau after 1,000
time steps. Overall, each technique offers some improvement, but random reorganisa-
tion is effective enough to address the accumulation of tasks before reorganisation. It
is understandable that the first simulation does not significantly improve performance,
since the desire to be closer to one instance of a required service does not aid in the
distribution of load.

The second simulation tries to move overloaded agents away from areas of high cen-
trality so that overloading can be avoided, and this seems to be only partially achieved.
This could be for one of two reasons: either centrality is not a good enough indicator of
the potential load of each agent, so using it to determine where to move an overloaded

186 M. Shaw et al.

Fig. 7. Mean load of all agents

Fig. 8. Mean number of tasks waiting

agent is not sensible; or the reaction to finding an overloaded agent is not sufficient. In
this latter case, instead of moving an overloaded agent away from areas of high central-
ity step by step, agents should be moved faster.

Random reorganisation performs best out of the three techniques, because the
changes it makes are stronger, encouraging the use of multiple instances of services
by changing the organisational structure, without changing the behaviour of agents.
While we do not believe that random reorganisation is the most effective, it clearly has
some properties that can improve the effectiveness of a reorganisation process.

Towards a General Model for Adapting Structure while Maintaining Topology 187

4.3 Messages Sent and Average Distance

Our model does not directly account for the time spent locating services, and instead we
consider this separately by counting the number of messages sent. Every message sent
accounts for time that a task is waiting to be executed, either because a service is being
located, or because the task is being moved to an agent that can execute it. Figure 9
shows the number of messages sent over time, indicating that this varies greatly from
technique to technique. Decreasing load increases the number of messages required
significantly, random reorganisation requires slightly more messages, and reducing dis-
tance successfully decreases the number of messages substantially. Figure 10 shows the
reason for the difference in the number of messages, in terms of the average distance
tasks are moved at each time step. With decreasing load, the distance from required
services is increased, random reorganisation has no effect on the distance from required
services, and reducing distance successfully moves agents closer to the services they
require more frequently.

Though we previously showed that random reorganisation can execute tasks faster
because it most effectively distributes load, this does not take into consideration the
delay caused by locating services. Here, we can see that random reorganisation has no
effect on the time required to allocate tasks, whereas by actively moving agents closer
to the service they use most often, tasks can be allocated more quickly, reducing the
time between a task being initially provided to the system, and the time the tasks start
to be executed.

Fig. 9. The mean number of messages sent

4.4 Number of Changes

Figure 11 shows the number of connections changed in each time step while reorgan-
ising. Before round 500, no connections are changed, but afterwards, random reorgan-
isation makes the least number of changes, which do not vary since this is fixed and

188 M. Shaw et al.

Fig. 10. The mean distance tasks are allocated

Fig. 11. The number of connections changed

not triggered by some conditions. Reducing distance initially makes a massive num-
ber of changes, changing nearly 800 connections, but this almost instantly falls to 100
connections each round, and then slowly rises to a plateau. The initial spike is due to
the initial structure being badly organised, but this spike quickly falls when a better
structure is found. However, reorganisation does not stop completely. This is because
an agent a may have a service that many other agents desire, but a single agent can only
have two neighbours at most, creating competition to be directly connected to agent a.
In addition, every time an agent a moves, it potentially triggers its neighbours to move
if a’s neighbours relied on a service a offered. Decreasing load has no initial spike, but
instead rises to a plateau, making more changes than reducing distance.

Towards a General Model for Adapting Structure while Maintaining Topology 189

4.5 Summary

We can see that the performance of each technique varies according to what we want
to achieve. Random reorganisation is an effective way to encourage the use of multiple
service instances, which in turn distributes load. However, this does nothing to increase
the time between a task initially arriving, and the time at which execution begins. Nev-
ertheless, each of our techniques can have a positive effect on different phases of the
task allocation and execution lifecycle. Potentially by combining these techniques, and
determining when to use each, we may be able to optimise reorganisation more effec-
tively. Clearly the challenge lies in how to combine them and how to recognise when
each is appropriate.

5 Related Work

Gershenson introduces reorganisation as a means of increasing the number of tasks a
distributed system can execute, by decreasing communication delay arising from both
transmission (latency of sending messages) and work to be performed before a reply
can be sent (decision delay) [6]. In essence, this is concerned with locating the agent a
that suffers the most from transmission and decision delays combined, the agent b that
is a neighbour of a and causes the most decision delays, and the agent c that causes
the least decision delays in the whole system. Then, the connection from a to b is
removed, and a connection created from a to c. This technique was tested on a number
of topologies (random-homogeneous, random-normally distributed, symmetrical, and
scale-free), with results suggesting that: delay can be diminished, increasing the number
of tasks executed; and the more connections, the longer to reorganise. While tackling a
similar problem to this paper, Gershenson’s consideration of topologies is not in their
preservation but only their initial state.

Sims et al. introduce a self-organisation technique for a distributed sensor network
that tracks the position and movement of vehicles [12]. Each sector involves a group
of agents responsible for vehicles within the sector; problems arise when a vehicle
moves along a boundary between sectors, requiring inter-sector communication with
large overheads. Reorganisation here aims to minimise this communication by adjust-
ing sector membership: if sector s1 regularly needs information from a sensor in another
sector s2, and s2 rarely uses it, then the sensor can be moved from s1 to s2, increas-
ing global utility. This technique can adapt the organisational structure of a distributed
sensor network, while maintaining the hierarchical topology in each sector. However,
this is a basic two-tier hierarchy, and the changes do not consider the agent’s position
in the hierarchy, but rather the utility of an agent’s capability (what area an agent can
monitor). In contrast, our work is concerned with the organisational structure itself. Ab-
dallah and Lesser [1,2], and later Zhang et al. [15,16], extend the work of Sims et al.
and improve the self-organisation with reinforcement learning. While this improves the
effectiveness of reorganisation, it still focuses on the performance of individual agents
in the system, rather than on the organisational structure itself.

Gaston and desJardins introduce a couple of techniques to adapt the organisational
structure of a set of agents so that teams can more easily be formed to execute tasks [5].
This is relevant to our work in providing an initial attempt at adaptation based purely

190 M. Shaw et al.

on organisational structure, rather than on application-specific information. The results
show that structural adaptation can be effective, and lead to better performance, but with
a very high number of changes.

Similarly, Kota et al. introduce a reorganisation technique for the adaptation of
problem-solving agent organisations [10,9] in which agents receive tasks that require
services to be executed by an agent itself or by delegating to another agent. Here, reor-
ganisation involves evaluating individual connections between agents based on perfor-
mance or potential performance, and creating or removing connections appropriately.
The performance of a connection is based on its effect on the load of the agents on either
side, the change in the number of messages sent, and cost of reorganising, so that, for
example, middlemen in lines of communication are removed. However, the structure of
the organisation is never directly analysed, and again the process is based on the system
which is application specific.

6 Conclusions

This paper has presented a novel method of reorganisation to optimise system perfor-
mance, while at the same time preserving a topology. While the focus in the paper has
been on the case of simple pipelines, the implications of the work, and the more general
programme of research in which it is situated, are much more far-reaching. In terms
of the specific techniques presented, it is interesting to note that random reorganisa-
tion turns out to be most successful at distributing load because it brings about radical
rather than incremental changes: this is another case of the simple out performing the
sophisticated in certain conditions. However, in the case of reducing messages, and de-
creasing the distance between agents and required services, random reorganisation has
no effect, while reducing distance reorganisation shows a significant improvement on
both counts.

The broad conclusions that we come to indicate that our techniques are sound in par-
ticular aspects as elaborated though the paper, as well as providing a template for further
work on other topologies. Indeed, as part of a more general programme, this is just the
first step. Pipelines are clearly one of the more simple topologies that can be analysed,
yet this first effort shows the way forward in seeking to develop a general methodology
for reorganisation as well as a library of techniques for particular purposes.

References

1. Abdallah, S., Lesser, V.: Learning The Task Allocation Game. In: Proceedings of the 5th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, pp. 850–857
(2006)

2. Abdallah, S., Lesser, V.: Multiagent reinforcement learning and self-organization in a net-
work of agents. In: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 1–8 (2007)

3. Argente, E., Julian, V., Botti, V.: Multi-Agent System Development Based on Organizations.
Electronic Notes in Theoretical Computer Science 150(3), 55–71 (2006)

4. Freeman, L.: Centrality in Social Networks: conceptual clarification. Social Networks 1,
215–239 (1978/1979)

Towards a General Model for Adapting Structure while Maintaining Topology 191

5. Gaston, M., des Jardins, M.: Agent-Organized Networks for Dynamic Team Formation. In:
Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 230–237 (2005)

6. Gershenson, C., Apostel, C.: Towards Self-organizing Bureaucracies. International Journal
of Public Information Systems 2008(1), 1–24 (2008)

7. Hey, T.: The UK e-Science Core Programme and the Grid. Future Generation Computer
Systems 18(8), 1017–1031 (2002)

8. Hey, T., Trefethen, A.: Cyberinfrastructure for e-Science. Science 308, 817–821 (2005)
9. Kota, R., Gibbins, N., Jennings, N.: Self-Organising Agent Organisations. In: Proceed-

ings of the 8th International Conference on Autonomous Agents and Multiagent Systems,
pp. 797–804 (2009)

10. Kota, R., Gibbins, N., Jennings, N.: Decentralised Approaches for Self-Adaptation in Agent
Organisations. ACM Transactions on Autonomous and Adaptive Systems 7(1) (2012)

11. Lipschutz, S.: Essential Computer Mathematics. McGraw-Hill Book Company (1982)
12. Sims, M., Goldman, C., Lesser, V.: Self-Organization through Bottom-up Coalition Forma-

tion. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 867–874 (2003)

13. Szczepanski, P., Michalak, T., Rahwan, T.: A New Approach to Betweenness Centrality
Based on the Shapley Value. In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, pp. 239–246 (2012)

14. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the Gaia
Methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–370
(2003)

15. Zhang, C., Abdallah, S., Lesser, V.: Integrating Organizational Control into Multi-Agent
Learning. In: Proceedings of the 8th International Conference on Autonomous Agents and
MultiAgent Systems, pp. 757–764 (2009)

16. Zhang, C., Abdallah, S., Lesser, V.: Self-Organization for Coordinating Decentralized Re-
inforcement Learning. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, pp. 739–746 (2010)

Author Index

Aldewereld, Huib 71, 141
Aphale, Mukta S. 87

Balke, Tina 53
Bordini, Rafael H. 158

Dastani, Mehdi 17
de Brito, Maiquel 158
De Vos, Marina 53
Dignum, Frank 35
Dignum, Virginia 71, 141

Ghorbani, Amineh 71
Ghose, Aditya 105
Griffiths, Nathan 123

Hübner, Jomi F. 158

Jiang, Jie 141

Keppens, Jeroen 123, 174

Luck, Michael 123, 174

Mahmoud, Samhar 123
Miles, Simon 174

Noriega, Pablo 71
Norman, Timothy J. 87

Padget, Julian 1, 53
Panagiotidi, Sofia 35

Savarimuthu, Tony Bastin Roy 105
Şensoy, Murat 87
Shaw, Matthew 174

Tan, Yao-Hua 141

van der Torre, Leendert 17
Vázquez-Salceda, Javier 35

Yorke-Smith, Neil 17

	Cover
	Title
	Preface
	Organization
	Table of Contents
	Invited Talk
	Situating COIN in the Cloud
	Introduction
	The State of COIN Technologies
	The Agent View
	The Organization View

	COIN in the Cloud
	Understanding the Situation

	Resource Oriented Architecture
	Event Processors
	Real-Time Expert Systems
	Complex Event Processing (CEP)
	Stream Reasoning

	Closing Remarks
	References

	Compliance and Enforcement
	Monitoring Interaction in Organisations
	Introduction
	Normative Organisation
	Agent Interactions
	Commitments
	Organisation

	Operational Semantics
	Example
	Properties
	Temporal Properties
	Interference
	Redundancy

	Related Work and Discussion
	Future Work
	Summary
	References

	Reasoning over Norm Compliance via Planning
	Introduction
	Example
	Architecture
	STRIPS Planning
	Normative Model
	Norms
	Definition of Normative Model
	The Normative Planning Problem

	Implementation of the Normative Planning in PDDL
	Intermediate States
	Cost Calculation Issues
	Norms and Normative Planner Inputs

	Experimental Setup and Results
	Discussion and Related Work
	References

	An Agent-Based Simulation Approachto Comparative Analysis of Enforcement Mechanisms
	Introduction
	The Wireless Mobile Grid Case Study
	Enforcement Mechanisms for Wireless Mobile Grids
	Utilization of Police Entities
	Image Information
	Reputation Information

	The Simulation Design
	The Basic Agent Decision Process
	Implementing the Enforcement Mechanisms

	Hypotheses, Parameters and Results
	Simulation Hypotheses and Parameters
	Simulation Results

	Related Work
	Conclusions
	References

	Norm Emergence and Social Strategies
	Shared Strategies in Artificial Agent Societies
	Introduction
	Institutions
	Institutional Analysis and Design
	ADICO Institutional Statements

	Shared Strategies
	Towards a Definition
	Formalizing ADICO Statements

	Shared Strategies Applied in MAS
	Individual Application
	Institutional Application
	Institutional Emergence

	 Related Work
	Conclusion and Future Work
	References

	Goal-Directed Policy Conflict Detectionand Prioritisation
	Introduction
	Polar Agent
	Policies and Conflicts
	Activity Prioritisation Model
	Conflict Detection
	Discussion
	Conclusion
	References

	Norms as Objectives: Revisiting Compliance Management in Multi-agent Systems
	Introduction
	Identifying Optimization Norms
	An Alternative Formalization
	Complying with Optimization Objectives
	Managing Norm Conflict
	Sanction Management
	Related Implementions of Optimization in Agent Deliberation
	Conclusions and Future Work
	References

	Refinement, Contextualisation and Adaptation
	Norm Emergence through Dynamic Policy Adaptation in Scale Free Networks
	Introduction
	The Metanorms Model
	Evolution vs. Learning
	Metanorms, Lattices and Small Worlds

	Scale-Free Networks
	Universal Learning
	Connection-Based Observation

	Dynamic Policy Adaptation
	Boldness
	Vengefulness
	Example
	Experimental Results

	Conclusion
	References

	Norm Contextualization
	Introduction
	Scenario
	Normative Structure
	Contextualization
	Verification
	Colored Petri Nets
	Mapping to CPNs
	Verification Properties

	Related Work
	Conclusions
	References

	Programming Institutional Factsin Multi-Agent Systems
	Introduction
	Related Work
	The Social Reality in MAS

	Programming Institutional Facts
	Programming Language
	Count-as Rules
	Language Semantics

	Case Study
	Original Implementation
	Implementation with Count-as Rules
	Case Study Discussion

	Conclusions
	References

	Towards a General Model for Adapting Structure while Maintaining Topology: Pipelines
	Introduction
	Task Allocation and Execution Model
	eScience Scenario
	Task and Agent Model
	Task Allocation
	System Metrics

	Adapting Organisational Structure
	Analysing Structure
	Proposed Changes to Structure
	Preserving Topology

	Evaluation
	Task Allocation and Execution
	Load and Waiting Tasks
	Messages Sent and Average Distance
	Number of Changes
	Summary

	Related Work
	Conclusions
	References

	Author Index

